1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 72 73 static bool hw_memory_failure __read_mostly = false; 74 75 static DEFINE_MUTEX(mf_mutex); 76 77 void num_poisoned_pages_inc(unsigned long pfn) 78 { 79 atomic_long_inc(&num_poisoned_pages); 80 memblk_nr_poison_inc(pfn); 81 } 82 83 void num_poisoned_pages_sub(unsigned long pfn, long i) 84 { 85 atomic_long_sub(i, &num_poisoned_pages); 86 if (pfn != -1UL) 87 memblk_nr_poison_sub(pfn, i); 88 } 89 90 /** 91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 92 * @_name: name of the file in the per NUMA sysfs directory. 93 */ 94 #define MF_ATTR_RO(_name) \ 95 static ssize_t _name##_show(struct device *dev, \ 96 struct device_attribute *attr, \ 97 char *buf) \ 98 { \ 99 struct memory_failure_stats *mf_stats = \ 100 &NODE_DATA(dev->id)->mf_stats; \ 101 return sprintf(buf, "%lu\n", mf_stats->_name); \ 102 } \ 103 static DEVICE_ATTR_RO(_name) 104 105 MF_ATTR_RO(total); 106 MF_ATTR_RO(ignored); 107 MF_ATTR_RO(failed); 108 MF_ATTR_RO(delayed); 109 MF_ATTR_RO(recovered); 110 111 static struct attribute *memory_failure_attr[] = { 112 &dev_attr_total.attr, 113 &dev_attr_ignored.attr, 114 &dev_attr_failed.attr, 115 &dev_attr_delayed.attr, 116 &dev_attr_recovered.attr, 117 NULL, 118 }; 119 120 const struct attribute_group memory_failure_attr_group = { 121 .name = "memory_failure", 122 .attrs = memory_failure_attr, 123 }; 124 125 static struct ctl_table memory_failure_table[] = { 126 { 127 .procname = "memory_failure_early_kill", 128 .data = &sysctl_memory_failure_early_kill, 129 .maxlen = sizeof(sysctl_memory_failure_early_kill), 130 .mode = 0644, 131 .proc_handler = proc_dointvec_minmax, 132 .extra1 = SYSCTL_ZERO, 133 .extra2 = SYSCTL_ONE, 134 }, 135 { 136 .procname = "memory_failure_recovery", 137 .data = &sysctl_memory_failure_recovery, 138 .maxlen = sizeof(sysctl_memory_failure_recovery), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ZERO, 142 .extra2 = SYSCTL_ONE, 143 }, 144 }; 145 146 /* 147 * Return values: 148 * 1: the page is dissolved (if needed) and taken off from buddy, 149 * 0: the page is dissolved (if needed) and not taken off from buddy, 150 * < 0: failed to dissolve. 151 */ 152 static int __page_handle_poison(struct page *page) 153 { 154 int ret; 155 156 /* 157 * zone_pcp_disable() can't be used here. It will 158 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 159 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 160 * optimization is enabled. This will break current lock dependency 161 * chain and leads to deadlock. 162 * Disabling pcp before dissolving the page was a deterministic 163 * approach because we made sure that those pages cannot end up in any 164 * PCP list. Draining PCP lists expels those pages to the buddy system, 165 * but nothing guarantees that those pages do not get back to a PCP 166 * queue if we need to refill those. 167 */ 168 ret = dissolve_free_hugetlb_folio(page_folio(page)); 169 if (!ret) { 170 drain_all_pages(page_zone(page)); 171 ret = take_page_off_buddy(page); 172 } 173 174 return ret; 175 } 176 177 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 178 { 179 if (hugepage_or_freepage) { 180 /* 181 * Doing this check for free pages is also fine since 182 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 183 */ 184 if (__page_handle_poison(page) <= 0) 185 /* 186 * We could fail to take off the target page from buddy 187 * for example due to racy page allocation, but that's 188 * acceptable because soft-offlined page is not broken 189 * and if someone really want to use it, they should 190 * take it. 191 */ 192 return false; 193 } 194 195 SetPageHWPoison(page); 196 if (release) 197 put_page(page); 198 page_ref_inc(page); 199 num_poisoned_pages_inc(page_to_pfn(page)); 200 201 return true; 202 } 203 204 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 205 206 u32 hwpoison_filter_enable = 0; 207 u32 hwpoison_filter_dev_major = ~0U; 208 u32 hwpoison_filter_dev_minor = ~0U; 209 u64 hwpoison_filter_flags_mask; 210 u64 hwpoison_filter_flags_value; 211 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 216 217 static int hwpoison_filter_dev(struct page *p) 218 { 219 struct folio *folio = page_folio(p); 220 struct address_space *mapping; 221 dev_t dev; 222 223 if (hwpoison_filter_dev_major == ~0U && 224 hwpoison_filter_dev_minor == ~0U) 225 return 0; 226 227 mapping = folio_mapping(folio); 228 if (mapping == NULL || mapping->host == NULL) 229 return -EINVAL; 230 231 dev = mapping->host->i_sb->s_dev; 232 if (hwpoison_filter_dev_major != ~0U && 233 hwpoison_filter_dev_major != MAJOR(dev)) 234 return -EINVAL; 235 if (hwpoison_filter_dev_minor != ~0U && 236 hwpoison_filter_dev_minor != MINOR(dev)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 static int hwpoison_filter_flags(struct page *p) 243 { 244 if (!hwpoison_filter_flags_mask) 245 return 0; 246 247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 248 hwpoison_filter_flags_value) 249 return 0; 250 else 251 return -EINVAL; 252 } 253 254 /* 255 * This allows stress tests to limit test scope to a collection of tasks 256 * by putting them under some memcg. This prevents killing unrelated/important 257 * processes such as /sbin/init. Note that the target task may share clean 258 * pages with init (eg. libc text), which is harmless. If the target task 259 * share _dirty_ pages with another task B, the test scheme must make sure B 260 * is also included in the memcg. At last, due to race conditions this filter 261 * can only guarantee that the page either belongs to the memcg tasks, or is 262 * a freed page. 263 */ 264 #ifdef CONFIG_MEMCG 265 u64 hwpoison_filter_memcg; 266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 267 static int hwpoison_filter_task(struct page *p) 268 { 269 if (!hwpoison_filter_memcg) 270 return 0; 271 272 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 273 return -EINVAL; 274 275 return 0; 276 } 277 #else 278 static int hwpoison_filter_task(struct page *p) { return 0; } 279 #endif 280 281 int hwpoison_filter(struct page *p) 282 { 283 if (!hwpoison_filter_enable) 284 return 0; 285 286 if (hwpoison_filter_dev(p)) 287 return -EINVAL; 288 289 if (hwpoison_filter_flags(p)) 290 return -EINVAL; 291 292 if (hwpoison_filter_task(p)) 293 return -EINVAL; 294 295 return 0; 296 } 297 #else 298 int hwpoison_filter(struct page *p) 299 { 300 return 0; 301 } 302 #endif 303 304 EXPORT_SYMBOL_GPL(hwpoison_filter); 305 306 /* 307 * Kill all processes that have a poisoned page mapped and then isolate 308 * the page. 309 * 310 * General strategy: 311 * Find all processes having the page mapped and kill them. 312 * But we keep a page reference around so that the page is not 313 * actually freed yet. 314 * Then stash the page away 315 * 316 * There's no convenient way to get back to mapped processes 317 * from the VMAs. So do a brute-force search over all 318 * running processes. 319 * 320 * Remember that machine checks are not common (or rather 321 * if they are common you have other problems), so this shouldn't 322 * be a performance issue. 323 * 324 * Also there are some races possible while we get from the 325 * error detection to actually handle it. 326 */ 327 328 struct to_kill { 329 struct list_head nd; 330 struct task_struct *tsk; 331 unsigned long addr; 332 short size_shift; 333 }; 334 335 /* 336 * Send all the processes who have the page mapped a signal. 337 * ``action optional'' if they are not immediately affected by the error 338 * ``action required'' if error happened in current execution context 339 */ 340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 341 { 342 struct task_struct *t = tk->tsk; 343 short addr_lsb = tk->size_shift; 344 int ret = 0; 345 346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 347 pfn, t->comm, t->pid); 348 349 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 350 ret = force_sig_mceerr(BUS_MCEERR_AR, 351 (void __user *)tk->addr, addr_lsb); 352 else 353 /* 354 * Signal other processes sharing the page if they have 355 * PF_MCE_EARLY set. 356 * Don't use force here, it's convenient if the signal 357 * can be temporarily blocked. 358 * This could cause a loop when the user sets SIGBUS 359 * to SIG_IGN, but hopefully no one will do that? 360 */ 361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 362 addr_lsb, t); 363 if (ret < 0) 364 pr_info("Error sending signal to %s:%d: %d\n", 365 t->comm, t->pid, ret); 366 return ret; 367 } 368 369 /* 370 * Unknown page type encountered. Try to check whether it can turn PageLRU by 371 * lru_add_drain_all. 372 */ 373 void shake_folio(struct folio *folio) 374 { 375 if (folio_test_hugetlb(folio)) 376 return; 377 /* 378 * TODO: Could shrink slab caches here if a lightweight range-based 379 * shrinker will be available. 380 */ 381 if (folio_test_slab(folio)) 382 return; 383 384 lru_add_drain_all(); 385 } 386 EXPORT_SYMBOL_GPL(shake_folio); 387 388 static void shake_page(struct page *page) 389 { 390 shake_folio(page_folio(page)); 391 } 392 393 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 394 unsigned long address) 395 { 396 unsigned long ret = 0; 397 pgd_t *pgd; 398 p4d_t *p4d; 399 pud_t *pud; 400 pmd_t *pmd; 401 pte_t *pte; 402 pte_t ptent; 403 404 VM_BUG_ON_VMA(address == -EFAULT, vma); 405 pgd = pgd_offset(vma->vm_mm, address); 406 if (!pgd_present(*pgd)) 407 return 0; 408 p4d = p4d_offset(pgd, address); 409 if (!p4d_present(*p4d)) 410 return 0; 411 pud = pud_offset(p4d, address); 412 if (!pud_present(*pud)) 413 return 0; 414 if (pud_devmap(*pud)) 415 return PUD_SHIFT; 416 pmd = pmd_offset(pud, address); 417 if (!pmd_present(*pmd)) 418 return 0; 419 if (pmd_devmap(*pmd)) 420 return PMD_SHIFT; 421 pte = pte_offset_map(pmd, address); 422 if (!pte) 423 return 0; 424 ptent = ptep_get(pte); 425 if (pte_present(ptent) && pte_devmap(ptent)) 426 ret = PAGE_SHIFT; 427 pte_unmap(pte); 428 return ret; 429 } 430 431 /* 432 * Failure handling: if we can't find or can't kill a process there's 433 * not much we can do. We just print a message and ignore otherwise. 434 */ 435 436 /* 437 * Schedule a process for later kill. 438 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 439 */ 440 static void __add_to_kill(struct task_struct *tsk, struct page *p, 441 struct vm_area_struct *vma, struct list_head *to_kill, 442 unsigned long addr) 443 { 444 struct to_kill *tk; 445 446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 447 if (!tk) { 448 pr_err("Out of memory while machine check handling\n"); 449 return; 450 } 451 452 tk->addr = addr; 453 if (is_zone_device_page(p)) 454 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 455 else 456 tk->size_shift = page_shift(compound_head(p)); 457 458 /* 459 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 460 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 461 * so "tk->size_shift == 0" effectively checks no mapping on 462 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 463 * to a process' address space, it's possible not all N VMAs 464 * contain mappings for the page, but at least one VMA does. 465 * Only deliver SIGBUS with payload derived from the VMA that 466 * has a mapping for the page. 467 */ 468 if (tk->addr == -EFAULT) { 469 pr_info("Unable to find user space address %lx in %s\n", 470 page_to_pfn(p), tsk->comm); 471 } else if (tk->size_shift == 0) { 472 kfree(tk); 473 return; 474 } 475 476 get_task_struct(tsk); 477 tk->tsk = tsk; 478 list_add_tail(&tk->nd, to_kill); 479 } 480 481 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 482 struct vm_area_struct *vma, struct list_head *to_kill, 483 unsigned long addr) 484 { 485 if (addr == -EFAULT) 486 return; 487 __add_to_kill(tsk, p, vma, to_kill, addr); 488 } 489 490 #ifdef CONFIG_KSM 491 static bool task_in_to_kill_list(struct list_head *to_kill, 492 struct task_struct *tsk) 493 { 494 struct to_kill *tk, *next; 495 496 list_for_each_entry_safe(tk, next, to_kill, nd) { 497 if (tk->tsk == tsk) 498 return true; 499 } 500 501 return false; 502 } 503 504 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 505 struct vm_area_struct *vma, struct list_head *to_kill, 506 unsigned long addr) 507 { 508 if (!task_in_to_kill_list(to_kill, tsk)) 509 __add_to_kill(tsk, p, vma, to_kill, addr); 510 } 511 #endif 512 /* 513 * Kill the processes that have been collected earlier. 514 * 515 * Only do anything when FORCEKILL is set, otherwise just free the 516 * list (this is used for clean pages which do not need killing) 517 * Also when FAIL is set do a force kill because something went 518 * wrong earlier. 519 */ 520 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 521 unsigned long pfn, int flags) 522 { 523 struct to_kill *tk, *next; 524 525 list_for_each_entry_safe(tk, next, to_kill, nd) { 526 if (forcekill) { 527 /* 528 * In case something went wrong with munmapping 529 * make sure the process doesn't catch the 530 * signal and then access the memory. Just kill it. 531 */ 532 if (fail || tk->addr == -EFAULT) { 533 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 534 pfn, tk->tsk->comm, tk->tsk->pid); 535 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 536 tk->tsk, PIDTYPE_PID); 537 } 538 539 /* 540 * In theory the process could have mapped 541 * something else on the address in-between. We could 542 * check for that, but we need to tell the 543 * process anyways. 544 */ 545 else if (kill_proc(tk, pfn, flags) < 0) 546 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 547 pfn, tk->tsk->comm, tk->tsk->pid); 548 } 549 list_del(&tk->nd); 550 put_task_struct(tk->tsk); 551 kfree(tk); 552 } 553 } 554 555 /* 556 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 557 * on behalf of the thread group. Return task_struct of the (first found) 558 * dedicated thread if found, and return NULL otherwise. 559 * 560 * We already hold rcu lock in the caller, so we don't have to call 561 * rcu_read_lock/unlock() in this function. 562 */ 563 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 564 { 565 struct task_struct *t; 566 567 for_each_thread(tsk, t) { 568 if (t->flags & PF_MCE_PROCESS) { 569 if (t->flags & PF_MCE_EARLY) 570 return t; 571 } else { 572 if (sysctl_memory_failure_early_kill) 573 return t; 574 } 575 } 576 return NULL; 577 } 578 579 /* 580 * Determine whether a given process is "early kill" process which expects 581 * to be signaled when some page under the process is hwpoisoned. 582 * Return task_struct of the dedicated thread (main thread unless explicitly 583 * specified) if the process is "early kill" and otherwise returns NULL. 584 * 585 * Note that the above is true for Action Optional case. For Action Required 586 * case, it's only meaningful to the current thread which need to be signaled 587 * with SIGBUS, this error is Action Optional for other non current 588 * processes sharing the same error page,if the process is "early kill", the 589 * task_struct of the dedicated thread will also be returned. 590 */ 591 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 592 { 593 if (!tsk->mm) 594 return NULL; 595 /* 596 * Comparing ->mm here because current task might represent 597 * a subthread, while tsk always points to the main thread. 598 */ 599 if (force_early && tsk->mm == current->mm) 600 return current; 601 602 return find_early_kill_thread(tsk); 603 } 604 605 /* 606 * Collect processes when the error hit an anonymous page. 607 */ 608 static void collect_procs_anon(struct folio *folio, struct page *page, 609 struct list_head *to_kill, int force_early) 610 { 611 struct task_struct *tsk; 612 struct anon_vma *av; 613 pgoff_t pgoff; 614 615 av = folio_lock_anon_vma_read(folio, NULL); 616 if (av == NULL) /* Not actually mapped anymore */ 617 return; 618 619 pgoff = page_to_pgoff(page); 620 rcu_read_lock(); 621 for_each_process(tsk) { 622 struct vm_area_struct *vma; 623 struct anon_vma_chain *vmac; 624 struct task_struct *t = task_early_kill(tsk, force_early); 625 unsigned long addr; 626 627 if (!t) 628 continue; 629 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 630 pgoff, pgoff) { 631 vma = vmac->vma; 632 if (vma->vm_mm != t->mm) 633 continue; 634 addr = page_mapped_in_vma(page, vma); 635 add_to_kill_anon_file(t, page, vma, to_kill, addr); 636 } 637 } 638 rcu_read_unlock(); 639 anon_vma_unlock_read(av); 640 } 641 642 /* 643 * Collect processes when the error hit a file mapped page. 644 */ 645 static void collect_procs_file(struct folio *folio, struct page *page, 646 struct list_head *to_kill, int force_early) 647 { 648 struct vm_area_struct *vma; 649 struct task_struct *tsk; 650 struct address_space *mapping = folio->mapping; 651 pgoff_t pgoff; 652 653 i_mmap_lock_read(mapping); 654 rcu_read_lock(); 655 pgoff = page_to_pgoff(page); 656 for_each_process(tsk) { 657 struct task_struct *t = task_early_kill(tsk, force_early); 658 unsigned long addr; 659 660 if (!t) 661 continue; 662 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 663 pgoff) { 664 /* 665 * Send early kill signal to tasks where a vma covers 666 * the page but the corrupted page is not necessarily 667 * mapped in its pte. 668 * Assume applications who requested early kill want 669 * to be informed of all such data corruptions. 670 */ 671 if (vma->vm_mm != t->mm) 672 continue; 673 addr = page_address_in_vma(page, vma); 674 add_to_kill_anon_file(t, page, vma, to_kill, addr); 675 } 676 } 677 rcu_read_unlock(); 678 i_mmap_unlock_read(mapping); 679 } 680 681 #ifdef CONFIG_FS_DAX 682 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 683 struct vm_area_struct *vma, 684 struct list_head *to_kill, pgoff_t pgoff) 685 { 686 unsigned long addr = vma_address(vma, pgoff, 1); 687 __add_to_kill(tsk, p, vma, to_kill, addr); 688 } 689 690 /* 691 * Collect processes when the error hit a fsdax page. 692 */ 693 static void collect_procs_fsdax(struct page *page, 694 struct address_space *mapping, pgoff_t pgoff, 695 struct list_head *to_kill, bool pre_remove) 696 { 697 struct vm_area_struct *vma; 698 struct task_struct *tsk; 699 700 i_mmap_lock_read(mapping); 701 rcu_read_lock(); 702 for_each_process(tsk) { 703 struct task_struct *t = tsk; 704 705 /* 706 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 707 * the current may not be the one accessing the fsdax page. 708 * Otherwise, search for the current task. 709 */ 710 if (!pre_remove) 711 t = task_early_kill(tsk, true); 712 if (!t) 713 continue; 714 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 715 if (vma->vm_mm == t->mm) 716 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 717 } 718 } 719 rcu_read_unlock(); 720 i_mmap_unlock_read(mapping); 721 } 722 #endif /* CONFIG_FS_DAX */ 723 724 /* 725 * Collect the processes who have the corrupted page mapped to kill. 726 */ 727 static void collect_procs(struct folio *folio, struct page *page, 728 struct list_head *tokill, int force_early) 729 { 730 if (!folio->mapping) 731 return; 732 if (unlikely(folio_test_ksm(folio))) 733 collect_procs_ksm(folio, page, tokill, force_early); 734 else if (folio_test_anon(folio)) 735 collect_procs_anon(folio, page, tokill, force_early); 736 else 737 collect_procs_file(folio, page, tokill, force_early); 738 } 739 740 struct hwpoison_walk { 741 struct to_kill tk; 742 unsigned long pfn; 743 int flags; 744 }; 745 746 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 747 { 748 tk->addr = addr; 749 tk->size_shift = shift; 750 } 751 752 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 753 unsigned long poisoned_pfn, struct to_kill *tk) 754 { 755 unsigned long pfn = 0; 756 757 if (pte_present(pte)) { 758 pfn = pte_pfn(pte); 759 } else { 760 swp_entry_t swp = pte_to_swp_entry(pte); 761 762 if (is_hwpoison_entry(swp)) 763 pfn = swp_offset_pfn(swp); 764 } 765 766 if (!pfn || pfn != poisoned_pfn) 767 return 0; 768 769 set_to_kill(tk, addr, shift); 770 return 1; 771 } 772 773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 774 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 775 struct hwpoison_walk *hwp) 776 { 777 pmd_t pmd = *pmdp; 778 unsigned long pfn; 779 unsigned long hwpoison_vaddr; 780 781 if (!pmd_present(pmd)) 782 return 0; 783 pfn = pmd_pfn(pmd); 784 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 785 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 786 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 787 return 1; 788 } 789 return 0; 790 } 791 #else 792 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 793 struct hwpoison_walk *hwp) 794 { 795 return 0; 796 } 797 #endif 798 799 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 800 unsigned long end, struct mm_walk *walk) 801 { 802 struct hwpoison_walk *hwp = walk->private; 803 int ret = 0; 804 pte_t *ptep, *mapped_pte; 805 spinlock_t *ptl; 806 807 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 808 if (ptl) { 809 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 810 spin_unlock(ptl); 811 goto out; 812 } 813 814 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 815 addr, &ptl); 816 if (!ptep) 817 goto out; 818 819 for (; addr != end; ptep++, addr += PAGE_SIZE) { 820 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 821 hwp->pfn, &hwp->tk); 822 if (ret == 1) 823 break; 824 } 825 pte_unmap_unlock(mapped_pte, ptl); 826 out: 827 cond_resched(); 828 return ret; 829 } 830 831 #ifdef CONFIG_HUGETLB_PAGE 832 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 833 unsigned long addr, unsigned long end, 834 struct mm_walk *walk) 835 { 836 struct hwpoison_walk *hwp = walk->private; 837 pte_t pte = huge_ptep_get(ptep); 838 struct hstate *h = hstate_vma(walk->vma); 839 840 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 841 hwp->pfn, &hwp->tk); 842 } 843 #else 844 #define hwpoison_hugetlb_range NULL 845 #endif 846 847 static const struct mm_walk_ops hwpoison_walk_ops = { 848 .pmd_entry = hwpoison_pte_range, 849 .hugetlb_entry = hwpoison_hugetlb_range, 850 .walk_lock = PGWALK_RDLOCK, 851 }; 852 853 /* 854 * Sends SIGBUS to the current process with error info. 855 * 856 * This function is intended to handle "Action Required" MCEs on already 857 * hardware poisoned pages. They could happen, for example, when 858 * memory_failure() failed to unmap the error page at the first call, or 859 * when multiple local machine checks happened on different CPUs. 860 * 861 * MCE handler currently has no easy access to the error virtual address, 862 * so this function walks page table to find it. The returned virtual address 863 * is proper in most cases, but it could be wrong when the application 864 * process has multiple entries mapping the error page. 865 */ 866 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 867 int flags) 868 { 869 int ret; 870 struct hwpoison_walk priv = { 871 .pfn = pfn, 872 }; 873 priv.tk.tsk = p; 874 875 if (!p->mm) 876 return -EFAULT; 877 878 mmap_read_lock(p->mm); 879 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 880 (void *)&priv); 881 if (ret == 1 && priv.tk.addr) 882 kill_proc(&priv.tk, pfn, flags); 883 else 884 ret = 0; 885 mmap_read_unlock(p->mm); 886 return ret > 0 ? -EHWPOISON : -EFAULT; 887 } 888 889 static const char *action_name[] = { 890 [MF_IGNORED] = "Ignored", 891 [MF_FAILED] = "Failed", 892 [MF_DELAYED] = "Delayed", 893 [MF_RECOVERED] = "Recovered", 894 }; 895 896 static const char * const action_page_types[] = { 897 [MF_MSG_KERNEL] = "reserved kernel page", 898 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 899 [MF_MSG_SLAB] = "kernel slab page", 900 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 901 [MF_MSG_HUGE] = "huge page", 902 [MF_MSG_FREE_HUGE] = "free huge page", 903 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 904 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 905 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 906 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 907 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 908 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 909 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 910 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 911 [MF_MSG_CLEAN_LRU] = "clean LRU page", 912 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 913 [MF_MSG_BUDDY] = "free buddy page", 914 [MF_MSG_DAX] = "dax page", 915 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 916 [MF_MSG_UNKNOWN] = "unknown page", 917 }; 918 919 /* 920 * XXX: It is possible that a page is isolated from LRU cache, 921 * and then kept in swap cache or failed to remove from page cache. 922 * The page count will stop it from being freed by unpoison. 923 * Stress tests should be aware of this memory leak problem. 924 */ 925 static int delete_from_lru_cache(struct folio *folio) 926 { 927 if (folio_isolate_lru(folio)) { 928 /* 929 * Clear sensible page flags, so that the buddy system won't 930 * complain when the folio is unpoison-and-freed. 931 */ 932 folio_clear_active(folio); 933 folio_clear_unevictable(folio); 934 935 /* 936 * Poisoned page might never drop its ref count to 0 so we have 937 * to uncharge it manually from its memcg. 938 */ 939 mem_cgroup_uncharge(folio); 940 941 /* 942 * drop the refcount elevated by folio_isolate_lru() 943 */ 944 folio_put(folio); 945 return 0; 946 } 947 return -EIO; 948 } 949 950 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 951 struct address_space *mapping) 952 { 953 int ret = MF_FAILED; 954 955 if (mapping->a_ops->error_remove_folio) { 956 int err = mapping->a_ops->error_remove_folio(mapping, folio); 957 958 if (err != 0) 959 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 960 else if (!filemap_release_folio(folio, GFP_NOIO)) 961 pr_info("%#lx: failed to release buffers\n", pfn); 962 else 963 ret = MF_RECOVERED; 964 } else { 965 /* 966 * If the file system doesn't support it just invalidate 967 * This fails on dirty or anything with private pages 968 */ 969 if (mapping_evict_folio(mapping, folio)) 970 ret = MF_RECOVERED; 971 else 972 pr_info("%#lx: Failed to invalidate\n", pfn); 973 } 974 975 return ret; 976 } 977 978 struct page_state { 979 unsigned long mask; 980 unsigned long res; 981 enum mf_action_page_type type; 982 983 /* Callback ->action() has to unlock the relevant page inside it. */ 984 int (*action)(struct page_state *ps, struct page *p); 985 }; 986 987 /* 988 * Return true if page is still referenced by others, otherwise return 989 * false. 990 * 991 * The extra_pins is true when one extra refcount is expected. 992 */ 993 static bool has_extra_refcount(struct page_state *ps, struct page *p, 994 bool extra_pins) 995 { 996 int count = page_count(p) - 1; 997 998 if (extra_pins) 999 count -= folio_nr_pages(page_folio(p)); 1000 1001 if (count > 0) { 1002 pr_err("%#lx: %s still referenced by %d users\n", 1003 page_to_pfn(p), action_page_types[ps->type], count); 1004 return true; 1005 } 1006 1007 return false; 1008 } 1009 1010 /* 1011 * Error hit kernel page. 1012 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1013 * could be more sophisticated. 1014 */ 1015 static int me_kernel(struct page_state *ps, struct page *p) 1016 { 1017 unlock_page(p); 1018 return MF_IGNORED; 1019 } 1020 1021 /* 1022 * Page in unknown state. Do nothing. 1023 */ 1024 static int me_unknown(struct page_state *ps, struct page *p) 1025 { 1026 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1027 unlock_page(p); 1028 return MF_FAILED; 1029 } 1030 1031 /* 1032 * Clean (or cleaned) page cache page. 1033 */ 1034 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1035 { 1036 struct folio *folio = page_folio(p); 1037 int ret; 1038 struct address_space *mapping; 1039 bool extra_pins; 1040 1041 delete_from_lru_cache(folio); 1042 1043 /* 1044 * For anonymous folios the only reference left 1045 * should be the one m_f() holds. 1046 */ 1047 if (folio_test_anon(folio)) { 1048 ret = MF_RECOVERED; 1049 goto out; 1050 } 1051 1052 /* 1053 * Now truncate the page in the page cache. This is really 1054 * more like a "temporary hole punch" 1055 * Don't do this for block devices when someone else 1056 * has a reference, because it could be file system metadata 1057 * and that's not safe to truncate. 1058 */ 1059 mapping = folio_mapping(folio); 1060 if (!mapping) { 1061 /* Folio has been torn down in the meantime */ 1062 ret = MF_FAILED; 1063 goto out; 1064 } 1065 1066 /* 1067 * The shmem page is kept in page cache instead of truncating 1068 * so is expected to have an extra refcount after error-handling. 1069 */ 1070 extra_pins = shmem_mapping(mapping); 1071 1072 /* 1073 * Truncation is a bit tricky. Enable it per file system for now. 1074 * 1075 * Open: to take i_rwsem or not for this? Right now we don't. 1076 */ 1077 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1078 if (has_extra_refcount(ps, p, extra_pins)) 1079 ret = MF_FAILED; 1080 1081 out: 1082 folio_unlock(folio); 1083 1084 return ret; 1085 } 1086 1087 /* 1088 * Dirty pagecache page 1089 * Issues: when the error hit a hole page the error is not properly 1090 * propagated. 1091 */ 1092 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1093 { 1094 struct folio *folio = page_folio(p); 1095 struct address_space *mapping = folio_mapping(folio); 1096 1097 SetPageError(p); 1098 /* TBD: print more information about the file. */ 1099 if (mapping) { 1100 /* 1101 * IO error will be reported by write(), fsync(), etc. 1102 * who check the mapping. 1103 * This way the application knows that something went 1104 * wrong with its dirty file data. 1105 * 1106 * There's one open issue: 1107 * 1108 * The EIO will be only reported on the next IO 1109 * operation and then cleared through the IO map. 1110 * Normally Linux has two mechanisms to pass IO error 1111 * first through the AS_EIO flag in the address space 1112 * and then through the PageError flag in the page. 1113 * Since we drop pages on memory failure handling the 1114 * only mechanism open to use is through AS_AIO. 1115 * 1116 * This has the disadvantage that it gets cleared on 1117 * the first operation that returns an error, while 1118 * the PageError bit is more sticky and only cleared 1119 * when the page is reread or dropped. If an 1120 * application assumes it will always get error on 1121 * fsync, but does other operations on the fd before 1122 * and the page is dropped between then the error 1123 * will not be properly reported. 1124 * 1125 * This can already happen even without hwpoisoned 1126 * pages: first on metadata IO errors (which only 1127 * report through AS_EIO) or when the page is dropped 1128 * at the wrong time. 1129 * 1130 * So right now we assume that the application DTRT on 1131 * the first EIO, but we're not worse than other parts 1132 * of the kernel. 1133 */ 1134 mapping_set_error(mapping, -EIO); 1135 } 1136 1137 return me_pagecache_clean(ps, p); 1138 } 1139 1140 /* 1141 * Clean and dirty swap cache. 1142 * 1143 * Dirty swap cache page is tricky to handle. The page could live both in page 1144 * cache and swap cache(ie. page is freshly swapped in). So it could be 1145 * referenced concurrently by 2 types of PTEs: 1146 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1147 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1148 * and then 1149 * - clear dirty bit to prevent IO 1150 * - remove from LRU 1151 * - but keep in the swap cache, so that when we return to it on 1152 * a later page fault, we know the application is accessing 1153 * corrupted data and shall be killed (we installed simple 1154 * interception code in do_swap_page to catch it). 1155 * 1156 * Clean swap cache pages can be directly isolated. A later page fault will 1157 * bring in the known good data from disk. 1158 */ 1159 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1160 { 1161 struct folio *folio = page_folio(p); 1162 int ret; 1163 bool extra_pins = false; 1164 1165 folio_clear_dirty(folio); 1166 /* Trigger EIO in shmem: */ 1167 folio_clear_uptodate(folio); 1168 1169 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1170 folio_unlock(folio); 1171 1172 if (ret == MF_DELAYED) 1173 extra_pins = true; 1174 1175 if (has_extra_refcount(ps, p, extra_pins)) 1176 ret = MF_FAILED; 1177 1178 return ret; 1179 } 1180 1181 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1182 { 1183 struct folio *folio = page_folio(p); 1184 int ret; 1185 1186 delete_from_swap_cache(folio); 1187 1188 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1189 folio_unlock(folio); 1190 1191 if (has_extra_refcount(ps, p, false)) 1192 ret = MF_FAILED; 1193 1194 return ret; 1195 } 1196 1197 /* 1198 * Huge pages. Needs work. 1199 * Issues: 1200 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1201 * To narrow down kill region to one page, we need to break up pmd. 1202 */ 1203 static int me_huge_page(struct page_state *ps, struct page *p) 1204 { 1205 struct folio *folio = page_folio(p); 1206 int res; 1207 struct address_space *mapping; 1208 bool extra_pins = false; 1209 1210 mapping = folio_mapping(folio); 1211 if (mapping) { 1212 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1213 /* The page is kept in page cache. */ 1214 extra_pins = true; 1215 folio_unlock(folio); 1216 } else { 1217 folio_unlock(folio); 1218 /* 1219 * migration entry prevents later access on error hugepage, 1220 * so we can free and dissolve it into buddy to save healthy 1221 * subpages. 1222 */ 1223 folio_put(folio); 1224 if (__page_handle_poison(p) > 0) { 1225 page_ref_inc(p); 1226 res = MF_RECOVERED; 1227 } else { 1228 res = MF_FAILED; 1229 } 1230 } 1231 1232 if (has_extra_refcount(ps, p, extra_pins)) 1233 res = MF_FAILED; 1234 1235 return res; 1236 } 1237 1238 /* 1239 * Various page states we can handle. 1240 * 1241 * A page state is defined by its current page->flags bits. 1242 * The table matches them in order and calls the right handler. 1243 * 1244 * This is quite tricky because we can access page at any time 1245 * in its live cycle, so all accesses have to be extremely careful. 1246 * 1247 * This is not complete. More states could be added. 1248 * For any missing state don't attempt recovery. 1249 */ 1250 1251 #define dirty (1UL << PG_dirty) 1252 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1253 #define unevict (1UL << PG_unevictable) 1254 #define mlock (1UL << PG_mlocked) 1255 #define lru (1UL << PG_lru) 1256 #define head (1UL << PG_head) 1257 #define reserved (1UL << PG_reserved) 1258 1259 static struct page_state error_states[] = { 1260 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1261 /* 1262 * free pages are specially detected outside this table: 1263 * PG_buddy pages only make a small fraction of all free pages. 1264 */ 1265 1266 { head, head, MF_MSG_HUGE, me_huge_page }, 1267 1268 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1269 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1270 1271 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1272 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1273 1274 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1275 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1276 1277 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1278 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1279 1280 /* 1281 * Catchall entry: must be at end. 1282 */ 1283 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1284 }; 1285 1286 #undef dirty 1287 #undef sc 1288 #undef unevict 1289 #undef mlock 1290 #undef lru 1291 #undef head 1292 #undef reserved 1293 1294 static void update_per_node_mf_stats(unsigned long pfn, 1295 enum mf_result result) 1296 { 1297 int nid = MAX_NUMNODES; 1298 struct memory_failure_stats *mf_stats = NULL; 1299 1300 nid = pfn_to_nid(pfn); 1301 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1302 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1303 return; 1304 } 1305 1306 mf_stats = &NODE_DATA(nid)->mf_stats; 1307 switch (result) { 1308 case MF_IGNORED: 1309 ++mf_stats->ignored; 1310 break; 1311 case MF_FAILED: 1312 ++mf_stats->failed; 1313 break; 1314 case MF_DELAYED: 1315 ++mf_stats->delayed; 1316 break; 1317 case MF_RECOVERED: 1318 ++mf_stats->recovered; 1319 break; 1320 default: 1321 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1322 break; 1323 } 1324 ++mf_stats->total; 1325 } 1326 1327 /* 1328 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1329 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1330 */ 1331 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1332 enum mf_result result) 1333 { 1334 trace_memory_failure_event(pfn, type, result); 1335 1336 num_poisoned_pages_inc(pfn); 1337 1338 update_per_node_mf_stats(pfn, result); 1339 1340 pr_err("%#lx: recovery action for %s: %s\n", 1341 pfn, action_page_types[type], action_name[result]); 1342 1343 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1344 } 1345 1346 static int page_action(struct page_state *ps, struct page *p, 1347 unsigned long pfn) 1348 { 1349 int result; 1350 1351 /* page p should be unlocked after returning from ps->action(). */ 1352 result = ps->action(ps, p); 1353 1354 /* Could do more checks here if page looks ok */ 1355 /* 1356 * Could adjust zone counters here to correct for the missing page. 1357 */ 1358 1359 return action_result(pfn, ps->type, result); 1360 } 1361 1362 static inline bool PageHWPoisonTakenOff(struct page *page) 1363 { 1364 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1365 } 1366 1367 void SetPageHWPoisonTakenOff(struct page *page) 1368 { 1369 set_page_private(page, MAGIC_HWPOISON); 1370 } 1371 1372 void ClearPageHWPoisonTakenOff(struct page *page) 1373 { 1374 if (PageHWPoison(page)) 1375 set_page_private(page, 0); 1376 } 1377 1378 /* 1379 * Return true if a page type of a given page is supported by hwpoison 1380 * mechanism (while handling could fail), otherwise false. This function 1381 * does not return true for hugetlb or device memory pages, so it's assumed 1382 * to be called only in the context where we never have such pages. 1383 */ 1384 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1385 { 1386 if (PageSlab(page)) 1387 return false; 1388 1389 /* Soft offline could migrate non-LRU movable pages */ 1390 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1391 return true; 1392 1393 return PageLRU(page) || is_free_buddy_page(page); 1394 } 1395 1396 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1397 { 1398 struct folio *folio = page_folio(page); 1399 int ret = 0; 1400 bool hugetlb = false; 1401 1402 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1403 if (hugetlb) { 1404 /* Make sure hugetlb demotion did not happen from under us. */ 1405 if (folio == page_folio(page)) 1406 return ret; 1407 if (ret > 0) { 1408 folio_put(folio); 1409 folio = page_folio(page); 1410 } 1411 } 1412 1413 /* 1414 * This check prevents from calling folio_try_get() for any 1415 * unsupported type of folio in order to reduce the risk of unexpected 1416 * races caused by taking a folio refcount. 1417 */ 1418 if (!HWPoisonHandlable(&folio->page, flags)) 1419 return -EBUSY; 1420 1421 if (folio_try_get(folio)) { 1422 if (folio == page_folio(page)) 1423 return 1; 1424 1425 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1426 folio_put(folio); 1427 } 1428 1429 return 0; 1430 } 1431 1432 static int get_any_page(struct page *p, unsigned long flags) 1433 { 1434 int ret = 0, pass = 0; 1435 bool count_increased = false; 1436 1437 if (flags & MF_COUNT_INCREASED) 1438 count_increased = true; 1439 1440 try_again: 1441 if (!count_increased) { 1442 ret = __get_hwpoison_page(p, flags); 1443 if (!ret) { 1444 if (page_count(p)) { 1445 /* We raced with an allocation, retry. */ 1446 if (pass++ < 3) 1447 goto try_again; 1448 ret = -EBUSY; 1449 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1450 /* We raced with put_page, retry. */ 1451 if (pass++ < 3) 1452 goto try_again; 1453 ret = -EIO; 1454 } 1455 goto out; 1456 } else if (ret == -EBUSY) { 1457 /* 1458 * We raced with (possibly temporary) unhandlable 1459 * page, retry. 1460 */ 1461 if (pass++ < 3) { 1462 shake_page(p); 1463 goto try_again; 1464 } 1465 ret = -EIO; 1466 goto out; 1467 } 1468 } 1469 1470 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1471 ret = 1; 1472 } else { 1473 /* 1474 * A page we cannot handle. Check whether we can turn 1475 * it into something we can handle. 1476 */ 1477 if (pass++ < 3) { 1478 put_page(p); 1479 shake_page(p); 1480 count_increased = false; 1481 goto try_again; 1482 } 1483 put_page(p); 1484 ret = -EIO; 1485 } 1486 out: 1487 if (ret == -EIO) 1488 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1489 1490 return ret; 1491 } 1492 1493 static int __get_unpoison_page(struct page *page) 1494 { 1495 struct folio *folio = page_folio(page); 1496 int ret = 0; 1497 bool hugetlb = false; 1498 1499 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1500 if (hugetlb) { 1501 /* Make sure hugetlb demotion did not happen from under us. */ 1502 if (folio == page_folio(page)) 1503 return ret; 1504 if (ret > 0) 1505 folio_put(folio); 1506 } 1507 1508 /* 1509 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1510 * but also isolated from buddy freelist, so need to identify the 1511 * state and have to cancel both operations to unpoison. 1512 */ 1513 if (PageHWPoisonTakenOff(page)) 1514 return -EHWPOISON; 1515 1516 return get_page_unless_zero(page) ? 1 : 0; 1517 } 1518 1519 /** 1520 * get_hwpoison_page() - Get refcount for memory error handling 1521 * @p: Raw error page (hit by memory error) 1522 * @flags: Flags controlling behavior of error handling 1523 * 1524 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1525 * error on it, after checking that the error page is in a well-defined state 1526 * (defined as a page-type we can successfully handle the memory error on it, 1527 * such as LRU page and hugetlb page). 1528 * 1529 * Memory error handling could be triggered at any time on any type of page, 1530 * so it's prone to race with typical memory management lifecycle (like 1531 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1532 * extra care for the error page's state (as done in __get_hwpoison_page()), 1533 * and has some retry logic in get_any_page(). 1534 * 1535 * When called from unpoison_memory(), the caller should already ensure that 1536 * the given page has PG_hwpoison. So it's never reused for other page 1537 * allocations, and __get_unpoison_page() never races with them. 1538 * 1539 * Return: 0 on failure, 1540 * 1 on success for in-use pages in a well-defined state, 1541 * -EIO for pages on which we can not handle memory errors, 1542 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1543 * operations like allocation and free, 1544 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1545 */ 1546 static int get_hwpoison_page(struct page *p, unsigned long flags) 1547 { 1548 int ret; 1549 1550 zone_pcp_disable(page_zone(p)); 1551 if (flags & MF_UNPOISON) 1552 ret = __get_unpoison_page(p); 1553 else 1554 ret = get_any_page(p, flags); 1555 zone_pcp_enable(page_zone(p)); 1556 1557 return ret; 1558 } 1559 1560 /* 1561 * Do all that is necessary to remove user space mappings. Unmap 1562 * the pages and send SIGBUS to the processes if the data was dirty. 1563 */ 1564 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1565 unsigned long pfn, int flags) 1566 { 1567 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1568 struct address_space *mapping; 1569 LIST_HEAD(tokill); 1570 bool unmap_success; 1571 int forcekill; 1572 bool mlocked = folio_test_mlocked(folio); 1573 1574 /* 1575 * Here we are interested only in user-mapped pages, so skip any 1576 * other types of pages. 1577 */ 1578 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1579 folio_test_pgtable(folio) || folio_test_offline(folio)) 1580 return true; 1581 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1582 return true; 1583 1584 /* 1585 * This check implies we don't kill processes if their pages 1586 * are in the swap cache early. Those are always late kills. 1587 */ 1588 if (!page_mapped(p)) 1589 return true; 1590 1591 if (folio_test_swapcache(folio)) { 1592 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1593 ttu &= ~TTU_HWPOISON; 1594 } 1595 1596 /* 1597 * Propagate the dirty bit from PTEs to struct page first, because we 1598 * need this to decide if we should kill or just drop the page. 1599 * XXX: the dirty test could be racy: set_page_dirty() may not always 1600 * be called inside page lock (it's recommended but not enforced). 1601 */ 1602 mapping = folio_mapping(folio); 1603 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping && 1604 mapping_can_writeback(mapping)) { 1605 if (folio_mkclean(folio)) { 1606 folio_set_dirty(folio); 1607 } else { 1608 ttu &= ~TTU_HWPOISON; 1609 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1610 pfn); 1611 } 1612 } 1613 1614 /* 1615 * First collect all the processes that have the page 1616 * mapped in dirty form. This has to be done before try_to_unmap, 1617 * because ttu takes the rmap data structures down. 1618 */ 1619 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1620 1621 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1622 /* 1623 * For hugetlb pages in shared mappings, try_to_unmap 1624 * could potentially call huge_pmd_unshare. Because of 1625 * this, take semaphore in write mode here and set 1626 * TTU_RMAP_LOCKED to indicate we have taken the lock 1627 * at this higher level. 1628 */ 1629 mapping = hugetlb_folio_mapping_lock_write(folio); 1630 if (mapping) { 1631 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1632 i_mmap_unlock_write(mapping); 1633 } else 1634 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1635 } else { 1636 try_to_unmap(folio, ttu); 1637 } 1638 1639 unmap_success = !page_mapped(p); 1640 if (!unmap_success) 1641 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1642 pfn, folio_mapcount(page_folio(p))); 1643 1644 /* 1645 * try_to_unmap() might put mlocked page in lru cache, so call 1646 * shake_page() again to ensure that it's flushed. 1647 */ 1648 if (mlocked) 1649 shake_folio(folio); 1650 1651 /* 1652 * Now that the dirty bit has been propagated to the 1653 * struct page and all unmaps done we can decide if 1654 * killing is needed or not. Only kill when the page 1655 * was dirty or the process is not restartable, 1656 * otherwise the tokill list is merely 1657 * freed. When there was a problem unmapping earlier 1658 * use a more force-full uncatchable kill to prevent 1659 * any accesses to the poisoned memory. 1660 */ 1661 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1662 !unmap_success; 1663 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1664 1665 return unmap_success; 1666 } 1667 1668 static int identify_page_state(unsigned long pfn, struct page *p, 1669 unsigned long page_flags) 1670 { 1671 struct page_state *ps; 1672 1673 /* 1674 * The first check uses the current page flags which may not have any 1675 * relevant information. The second check with the saved page flags is 1676 * carried out only if the first check can't determine the page status. 1677 */ 1678 for (ps = error_states;; ps++) 1679 if ((p->flags & ps->mask) == ps->res) 1680 break; 1681 1682 page_flags |= (p->flags & (1UL << PG_dirty)); 1683 1684 if (!ps->mask) 1685 for (ps = error_states;; ps++) 1686 if ((page_flags & ps->mask) == ps->res) 1687 break; 1688 return page_action(ps, p, pfn); 1689 } 1690 1691 static int try_to_split_thp_page(struct page *page) 1692 { 1693 int ret; 1694 1695 lock_page(page); 1696 ret = split_huge_page(page); 1697 unlock_page(page); 1698 1699 if (unlikely(ret)) 1700 put_page(page); 1701 1702 return ret; 1703 } 1704 1705 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1706 struct address_space *mapping, pgoff_t index, int flags) 1707 { 1708 struct to_kill *tk; 1709 unsigned long size = 0; 1710 1711 list_for_each_entry(tk, to_kill, nd) 1712 if (tk->size_shift) 1713 size = max(size, 1UL << tk->size_shift); 1714 1715 if (size) { 1716 /* 1717 * Unmap the largest mapping to avoid breaking up device-dax 1718 * mappings which are constant size. The actual size of the 1719 * mapping being torn down is communicated in siginfo, see 1720 * kill_proc() 1721 */ 1722 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1723 1724 unmap_mapping_range(mapping, start, size, 0); 1725 } 1726 1727 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1728 } 1729 1730 /* 1731 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1732 * either do not claim or fails to claim a hwpoison event, or devdax. 1733 * The fsdax pages are initialized per base page, and the devdax pages 1734 * could be initialized either as base pages, or as compound pages with 1735 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1736 * hwpoison, such that, if a subpage of a compound page is poisoned, 1737 * simply mark the compound head page is by far sufficient. 1738 */ 1739 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1740 struct dev_pagemap *pgmap) 1741 { 1742 struct folio *folio = pfn_folio(pfn); 1743 LIST_HEAD(to_kill); 1744 dax_entry_t cookie; 1745 int rc = 0; 1746 1747 /* 1748 * Prevent the inode from being freed while we are interrogating 1749 * the address_space, typically this would be handled by 1750 * lock_page(), but dax pages do not use the page lock. This 1751 * also prevents changes to the mapping of this pfn until 1752 * poison signaling is complete. 1753 */ 1754 cookie = dax_lock_folio(folio); 1755 if (!cookie) 1756 return -EBUSY; 1757 1758 if (hwpoison_filter(&folio->page)) { 1759 rc = -EOPNOTSUPP; 1760 goto unlock; 1761 } 1762 1763 switch (pgmap->type) { 1764 case MEMORY_DEVICE_PRIVATE: 1765 case MEMORY_DEVICE_COHERENT: 1766 /* 1767 * TODO: Handle device pages which may need coordination 1768 * with device-side memory. 1769 */ 1770 rc = -ENXIO; 1771 goto unlock; 1772 default: 1773 break; 1774 } 1775 1776 /* 1777 * Use this flag as an indication that the dax page has been 1778 * remapped UC to prevent speculative consumption of poison. 1779 */ 1780 SetPageHWPoison(&folio->page); 1781 1782 /* 1783 * Unlike System-RAM there is no possibility to swap in a 1784 * different physical page at a given virtual address, so all 1785 * userspace consumption of ZONE_DEVICE memory necessitates 1786 * SIGBUS (i.e. MF_MUST_KILL) 1787 */ 1788 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1789 collect_procs(folio, &folio->page, &to_kill, true); 1790 1791 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1792 unlock: 1793 dax_unlock_folio(folio, cookie); 1794 return rc; 1795 } 1796 1797 #ifdef CONFIG_FS_DAX 1798 /** 1799 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1800 * @mapping: address_space of the file in use 1801 * @index: start pgoff of the range within the file 1802 * @count: length of the range, in unit of PAGE_SIZE 1803 * @mf_flags: memory failure flags 1804 */ 1805 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1806 unsigned long count, int mf_flags) 1807 { 1808 LIST_HEAD(to_kill); 1809 dax_entry_t cookie; 1810 struct page *page; 1811 size_t end = index + count; 1812 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1813 1814 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1815 1816 for (; index < end; index++) { 1817 page = NULL; 1818 cookie = dax_lock_mapping_entry(mapping, index, &page); 1819 if (!cookie) 1820 return -EBUSY; 1821 if (!page) 1822 goto unlock; 1823 1824 if (!pre_remove) 1825 SetPageHWPoison(page); 1826 1827 /* 1828 * The pre_remove case is revoking access, the memory is still 1829 * good and could theoretically be put back into service. 1830 */ 1831 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1832 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1833 index, mf_flags); 1834 unlock: 1835 dax_unlock_mapping_entry(mapping, index, cookie); 1836 } 1837 return 0; 1838 } 1839 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1840 #endif /* CONFIG_FS_DAX */ 1841 1842 #ifdef CONFIG_HUGETLB_PAGE 1843 1844 /* 1845 * Struct raw_hwp_page represents information about "raw error page", 1846 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1847 */ 1848 struct raw_hwp_page { 1849 struct llist_node node; 1850 struct page *page; 1851 }; 1852 1853 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1854 { 1855 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1856 } 1857 1858 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1859 { 1860 struct llist_head *raw_hwp_head; 1861 struct raw_hwp_page *p; 1862 struct folio *folio = page_folio(page); 1863 bool ret = false; 1864 1865 if (!folio_test_hwpoison(folio)) 1866 return false; 1867 1868 if (!folio_test_hugetlb(folio)) 1869 return PageHWPoison(page); 1870 1871 /* 1872 * When RawHwpUnreliable is set, kernel lost track of which subpages 1873 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1874 */ 1875 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1876 return true; 1877 1878 mutex_lock(&mf_mutex); 1879 1880 raw_hwp_head = raw_hwp_list_head(folio); 1881 llist_for_each_entry(p, raw_hwp_head->first, node) { 1882 if (page == p->page) { 1883 ret = true; 1884 break; 1885 } 1886 } 1887 1888 mutex_unlock(&mf_mutex); 1889 1890 return ret; 1891 } 1892 1893 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1894 { 1895 struct llist_node *head; 1896 struct raw_hwp_page *p, *next; 1897 unsigned long count = 0; 1898 1899 head = llist_del_all(raw_hwp_list_head(folio)); 1900 llist_for_each_entry_safe(p, next, head, node) { 1901 if (move_flag) 1902 SetPageHWPoison(p->page); 1903 else 1904 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1905 kfree(p); 1906 count++; 1907 } 1908 return count; 1909 } 1910 1911 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1912 { 1913 struct llist_head *head; 1914 struct raw_hwp_page *raw_hwp; 1915 struct raw_hwp_page *p, *next; 1916 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1917 1918 /* 1919 * Once the hwpoison hugepage has lost reliable raw error info, 1920 * there is little meaning to keep additional error info precisely, 1921 * so skip to add additional raw error info. 1922 */ 1923 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1924 return -EHWPOISON; 1925 head = raw_hwp_list_head(folio); 1926 llist_for_each_entry_safe(p, next, head->first, node) { 1927 if (p->page == page) 1928 return -EHWPOISON; 1929 } 1930 1931 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1932 if (raw_hwp) { 1933 raw_hwp->page = page; 1934 llist_add(&raw_hwp->node, head); 1935 /* the first error event will be counted in action_result(). */ 1936 if (ret) 1937 num_poisoned_pages_inc(page_to_pfn(page)); 1938 } else { 1939 /* 1940 * Failed to save raw error info. We no longer trace all 1941 * hwpoisoned subpages, and we need refuse to free/dissolve 1942 * this hwpoisoned hugepage. 1943 */ 1944 folio_set_hugetlb_raw_hwp_unreliable(folio); 1945 /* 1946 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1947 * used any more, so free it. 1948 */ 1949 __folio_free_raw_hwp(folio, false); 1950 } 1951 return ret; 1952 } 1953 1954 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1955 { 1956 /* 1957 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1958 * pages for tail pages are required but they don't exist. 1959 */ 1960 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1961 return 0; 1962 1963 /* 1964 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1965 * definition. 1966 */ 1967 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1968 return 0; 1969 1970 return __folio_free_raw_hwp(folio, move_flag); 1971 } 1972 1973 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1974 { 1975 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1976 return; 1977 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1978 return; 1979 folio_clear_hwpoison(folio); 1980 folio_free_raw_hwp(folio, true); 1981 } 1982 1983 /* 1984 * Called from hugetlb code with hugetlb_lock held. 1985 * 1986 * Return values: 1987 * 0 - free hugepage 1988 * 1 - in-use hugepage 1989 * 2 - not a hugepage 1990 * -EBUSY - the hugepage is busy (try to retry) 1991 * -EHWPOISON - the hugepage is already hwpoisoned 1992 */ 1993 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1994 bool *migratable_cleared) 1995 { 1996 struct page *page = pfn_to_page(pfn); 1997 struct folio *folio = page_folio(page); 1998 int ret = 2; /* fallback to normal page handling */ 1999 bool count_increased = false; 2000 2001 if (!folio_test_hugetlb(folio)) 2002 goto out; 2003 2004 if (flags & MF_COUNT_INCREASED) { 2005 ret = 1; 2006 count_increased = true; 2007 } else if (folio_test_hugetlb_freed(folio)) { 2008 ret = 0; 2009 } else if (folio_test_hugetlb_migratable(folio)) { 2010 ret = folio_try_get(folio); 2011 if (ret) 2012 count_increased = true; 2013 } else { 2014 ret = -EBUSY; 2015 if (!(flags & MF_NO_RETRY)) 2016 goto out; 2017 } 2018 2019 if (folio_set_hugetlb_hwpoison(folio, page)) { 2020 ret = -EHWPOISON; 2021 goto out; 2022 } 2023 2024 /* 2025 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2026 * from being migrated by memory hotremove. 2027 */ 2028 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2029 folio_clear_hugetlb_migratable(folio); 2030 *migratable_cleared = true; 2031 } 2032 2033 return ret; 2034 out: 2035 if (count_increased) 2036 folio_put(folio); 2037 return ret; 2038 } 2039 2040 /* 2041 * Taking refcount of hugetlb pages needs extra care about race conditions 2042 * with basic operations like hugepage allocation/free/demotion. 2043 * So some of prechecks for hwpoison (pinning, and testing/setting 2044 * PageHWPoison) should be done in single hugetlb_lock range. 2045 */ 2046 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2047 { 2048 int res; 2049 struct page *p = pfn_to_page(pfn); 2050 struct folio *folio; 2051 unsigned long page_flags; 2052 bool migratable_cleared = false; 2053 2054 *hugetlb = 1; 2055 retry: 2056 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2057 if (res == 2) { /* fallback to normal page handling */ 2058 *hugetlb = 0; 2059 return 0; 2060 } else if (res == -EHWPOISON) { 2061 pr_err("%#lx: already hardware poisoned\n", pfn); 2062 if (flags & MF_ACTION_REQUIRED) { 2063 folio = page_folio(p); 2064 res = kill_accessing_process(current, folio_pfn(folio), flags); 2065 } 2066 return res; 2067 } else if (res == -EBUSY) { 2068 if (!(flags & MF_NO_RETRY)) { 2069 flags |= MF_NO_RETRY; 2070 goto retry; 2071 } 2072 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2073 } 2074 2075 folio = page_folio(p); 2076 folio_lock(folio); 2077 2078 if (hwpoison_filter(p)) { 2079 folio_clear_hugetlb_hwpoison(folio); 2080 if (migratable_cleared) 2081 folio_set_hugetlb_migratable(folio); 2082 folio_unlock(folio); 2083 if (res == 1) 2084 folio_put(folio); 2085 return -EOPNOTSUPP; 2086 } 2087 2088 /* 2089 * Handling free hugepage. The possible race with hugepage allocation 2090 * or demotion can be prevented by PageHWPoison flag. 2091 */ 2092 if (res == 0) { 2093 folio_unlock(folio); 2094 if (__page_handle_poison(p) > 0) { 2095 page_ref_inc(p); 2096 res = MF_RECOVERED; 2097 } else { 2098 res = MF_FAILED; 2099 } 2100 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2101 } 2102 2103 page_flags = folio->flags; 2104 2105 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2106 folio_unlock(folio); 2107 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2108 } 2109 2110 return identify_page_state(pfn, p, page_flags); 2111 } 2112 2113 #else 2114 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2115 { 2116 return 0; 2117 } 2118 2119 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2120 { 2121 return 0; 2122 } 2123 #endif /* CONFIG_HUGETLB_PAGE */ 2124 2125 /* Drop the extra refcount in case we come from madvise() */ 2126 static void put_ref_page(unsigned long pfn, int flags) 2127 { 2128 struct page *page; 2129 2130 if (!(flags & MF_COUNT_INCREASED)) 2131 return; 2132 2133 page = pfn_to_page(pfn); 2134 if (page) 2135 put_page(page); 2136 } 2137 2138 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2139 struct dev_pagemap *pgmap) 2140 { 2141 int rc = -ENXIO; 2142 2143 /* device metadata space is not recoverable */ 2144 if (!pgmap_pfn_valid(pgmap, pfn)) 2145 goto out; 2146 2147 /* 2148 * Call driver's implementation to handle the memory failure, otherwise 2149 * fall back to generic handler. 2150 */ 2151 if (pgmap_has_memory_failure(pgmap)) { 2152 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2153 /* 2154 * Fall back to generic handler too if operation is not 2155 * supported inside the driver/device/filesystem. 2156 */ 2157 if (rc != -EOPNOTSUPP) 2158 goto out; 2159 } 2160 2161 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2162 out: 2163 /* drop pgmap ref acquired in caller */ 2164 put_dev_pagemap(pgmap); 2165 if (rc != -EOPNOTSUPP) 2166 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2167 return rc; 2168 } 2169 2170 /** 2171 * memory_failure - Handle memory failure of a page. 2172 * @pfn: Page Number of the corrupted page 2173 * @flags: fine tune action taken 2174 * 2175 * This function is called by the low level machine check code 2176 * of an architecture when it detects hardware memory corruption 2177 * of a page. It tries its best to recover, which includes 2178 * dropping pages, killing processes etc. 2179 * 2180 * The function is primarily of use for corruptions that 2181 * happen outside the current execution context (e.g. when 2182 * detected by a background scrubber) 2183 * 2184 * Must run in process context (e.g. a work queue) with interrupts 2185 * enabled and no spinlocks held. 2186 * 2187 * Return: 0 for successfully handled the memory error, 2188 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2189 * < 0(except -EOPNOTSUPP) on failure. 2190 */ 2191 int memory_failure(unsigned long pfn, int flags) 2192 { 2193 struct page *p; 2194 struct folio *folio; 2195 struct dev_pagemap *pgmap; 2196 int res = 0; 2197 unsigned long page_flags; 2198 bool retry = true; 2199 int hugetlb = 0; 2200 2201 if (!sysctl_memory_failure_recovery) 2202 panic("Memory failure on page %lx", pfn); 2203 2204 mutex_lock(&mf_mutex); 2205 2206 if (!(flags & MF_SW_SIMULATED)) 2207 hw_memory_failure = true; 2208 2209 p = pfn_to_online_page(pfn); 2210 if (!p) { 2211 res = arch_memory_failure(pfn, flags); 2212 if (res == 0) 2213 goto unlock_mutex; 2214 2215 if (pfn_valid(pfn)) { 2216 pgmap = get_dev_pagemap(pfn, NULL); 2217 put_ref_page(pfn, flags); 2218 if (pgmap) { 2219 res = memory_failure_dev_pagemap(pfn, flags, 2220 pgmap); 2221 goto unlock_mutex; 2222 } 2223 } 2224 pr_err("%#lx: memory outside kernel control\n", pfn); 2225 res = -ENXIO; 2226 goto unlock_mutex; 2227 } 2228 2229 try_again: 2230 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2231 if (hugetlb) 2232 goto unlock_mutex; 2233 2234 if (TestSetPageHWPoison(p)) { 2235 pr_err("%#lx: already hardware poisoned\n", pfn); 2236 res = -EHWPOISON; 2237 if (flags & MF_ACTION_REQUIRED) 2238 res = kill_accessing_process(current, pfn, flags); 2239 if (flags & MF_COUNT_INCREASED) 2240 put_page(p); 2241 goto unlock_mutex; 2242 } 2243 2244 /* 2245 * We need/can do nothing about count=0 pages. 2246 * 1) it's a free page, and therefore in safe hand: 2247 * check_new_page() will be the gate keeper. 2248 * 2) it's part of a non-compound high order page. 2249 * Implies some kernel user: cannot stop them from 2250 * R/W the page; let's pray that the page has been 2251 * used and will be freed some time later. 2252 * In fact it's dangerous to directly bump up page count from 0, 2253 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2254 */ 2255 if (!(flags & MF_COUNT_INCREASED)) { 2256 res = get_hwpoison_page(p, flags); 2257 if (!res) { 2258 if (is_free_buddy_page(p)) { 2259 if (take_page_off_buddy(p)) { 2260 page_ref_inc(p); 2261 res = MF_RECOVERED; 2262 } else { 2263 /* We lost the race, try again */ 2264 if (retry) { 2265 ClearPageHWPoison(p); 2266 retry = false; 2267 goto try_again; 2268 } 2269 res = MF_FAILED; 2270 } 2271 res = action_result(pfn, MF_MSG_BUDDY, res); 2272 } else { 2273 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2274 } 2275 goto unlock_mutex; 2276 } else if (res < 0) { 2277 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2278 goto unlock_mutex; 2279 } 2280 } 2281 2282 folio = page_folio(p); 2283 if (folio_test_large(folio)) { 2284 /* 2285 * The flag must be set after the refcount is bumped 2286 * otherwise it may race with THP split. 2287 * And the flag can't be set in get_hwpoison_page() since 2288 * it is called by soft offline too and it is just called 2289 * for !MF_COUNT_INCREASED. So here seems to be the best 2290 * place. 2291 * 2292 * Don't need care about the above error handling paths for 2293 * get_hwpoison_page() since they handle either free page 2294 * or unhandlable page. The refcount is bumped iff the 2295 * page is a valid handlable page. 2296 */ 2297 folio_set_has_hwpoisoned(folio); 2298 if (try_to_split_thp_page(p) < 0) { 2299 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2300 goto unlock_mutex; 2301 } 2302 VM_BUG_ON_PAGE(!page_count(p), p); 2303 folio = page_folio(p); 2304 } 2305 2306 /* 2307 * We ignore non-LRU pages for good reasons. 2308 * - PG_locked is only well defined for LRU pages and a few others 2309 * - to avoid races with __SetPageLocked() 2310 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2311 * The check (unnecessarily) ignores LRU pages being isolated and 2312 * walked by the page reclaim code, however that's not a big loss. 2313 */ 2314 shake_folio(folio); 2315 2316 folio_lock(folio); 2317 2318 /* 2319 * We're only intended to deal with the non-Compound page here. 2320 * However, the page could have changed compound pages due to 2321 * race window. If this happens, we could try again to hopefully 2322 * handle the page next round. 2323 */ 2324 if (folio_test_large(folio)) { 2325 if (retry) { 2326 ClearPageHWPoison(p); 2327 folio_unlock(folio); 2328 folio_put(folio); 2329 flags &= ~MF_COUNT_INCREASED; 2330 retry = false; 2331 goto try_again; 2332 } 2333 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2334 goto unlock_page; 2335 } 2336 2337 /* 2338 * We use page flags to determine what action should be taken, but 2339 * the flags can be modified by the error containment action. One 2340 * example is an mlocked page, where PG_mlocked is cleared by 2341 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2342 * status correctly, we save a copy of the page flags at this time. 2343 */ 2344 page_flags = folio->flags; 2345 2346 if (hwpoison_filter(p)) { 2347 ClearPageHWPoison(p); 2348 folio_unlock(folio); 2349 folio_put(folio); 2350 res = -EOPNOTSUPP; 2351 goto unlock_mutex; 2352 } 2353 2354 /* 2355 * __munlock_folio() may clear a writeback folio's LRU flag without 2356 * the folio lock. We need to wait for writeback completion for this 2357 * folio or it may trigger a vfs BUG while evicting inode. 2358 */ 2359 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2360 goto identify_page_state; 2361 2362 /* 2363 * It's very difficult to mess with pages currently under IO 2364 * and in many cases impossible, so we just avoid it here. 2365 */ 2366 folio_wait_writeback(folio); 2367 2368 /* 2369 * Now take care of user space mappings. 2370 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2371 */ 2372 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2373 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2374 goto unlock_page; 2375 } 2376 2377 /* 2378 * Torn down by someone else? 2379 */ 2380 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2381 folio->mapping == NULL) { 2382 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2383 goto unlock_page; 2384 } 2385 2386 identify_page_state: 2387 res = identify_page_state(pfn, p, page_flags); 2388 mutex_unlock(&mf_mutex); 2389 return res; 2390 unlock_page: 2391 folio_unlock(folio); 2392 unlock_mutex: 2393 mutex_unlock(&mf_mutex); 2394 return res; 2395 } 2396 EXPORT_SYMBOL_GPL(memory_failure); 2397 2398 #define MEMORY_FAILURE_FIFO_ORDER 4 2399 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2400 2401 struct memory_failure_entry { 2402 unsigned long pfn; 2403 int flags; 2404 }; 2405 2406 struct memory_failure_cpu { 2407 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2408 MEMORY_FAILURE_FIFO_SIZE); 2409 spinlock_t lock; 2410 struct work_struct work; 2411 }; 2412 2413 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2414 2415 /** 2416 * memory_failure_queue - Schedule handling memory failure of a page. 2417 * @pfn: Page Number of the corrupted page 2418 * @flags: Flags for memory failure handling 2419 * 2420 * This function is called by the low level hardware error handler 2421 * when it detects hardware memory corruption of a page. It schedules 2422 * the recovering of error page, including dropping pages, killing 2423 * processes etc. 2424 * 2425 * The function is primarily of use for corruptions that 2426 * happen outside the current execution context (e.g. when 2427 * detected by a background scrubber) 2428 * 2429 * Can run in IRQ context. 2430 */ 2431 void memory_failure_queue(unsigned long pfn, int flags) 2432 { 2433 struct memory_failure_cpu *mf_cpu; 2434 unsigned long proc_flags; 2435 struct memory_failure_entry entry = { 2436 .pfn = pfn, 2437 .flags = flags, 2438 }; 2439 2440 mf_cpu = &get_cpu_var(memory_failure_cpu); 2441 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2442 if (kfifo_put(&mf_cpu->fifo, entry)) 2443 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2444 else 2445 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2446 pfn); 2447 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2448 put_cpu_var(memory_failure_cpu); 2449 } 2450 EXPORT_SYMBOL_GPL(memory_failure_queue); 2451 2452 static void memory_failure_work_func(struct work_struct *work) 2453 { 2454 struct memory_failure_cpu *mf_cpu; 2455 struct memory_failure_entry entry = { 0, }; 2456 unsigned long proc_flags; 2457 int gotten; 2458 2459 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2460 for (;;) { 2461 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2462 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2463 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2464 if (!gotten) 2465 break; 2466 if (entry.flags & MF_SOFT_OFFLINE) 2467 soft_offline_page(entry.pfn, entry.flags); 2468 else 2469 memory_failure(entry.pfn, entry.flags); 2470 } 2471 } 2472 2473 /* 2474 * Process memory_failure work queued on the specified CPU. 2475 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2476 */ 2477 void memory_failure_queue_kick(int cpu) 2478 { 2479 struct memory_failure_cpu *mf_cpu; 2480 2481 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2482 cancel_work_sync(&mf_cpu->work); 2483 memory_failure_work_func(&mf_cpu->work); 2484 } 2485 2486 static int __init memory_failure_init(void) 2487 { 2488 struct memory_failure_cpu *mf_cpu; 2489 int cpu; 2490 2491 for_each_possible_cpu(cpu) { 2492 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2493 spin_lock_init(&mf_cpu->lock); 2494 INIT_KFIFO(mf_cpu->fifo); 2495 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2496 } 2497 2498 register_sysctl_init("vm", memory_failure_table); 2499 2500 return 0; 2501 } 2502 core_initcall(memory_failure_init); 2503 2504 #undef pr_fmt 2505 #define pr_fmt(fmt) "" fmt 2506 #define unpoison_pr_info(fmt, pfn, rs) \ 2507 ({ \ 2508 if (__ratelimit(rs)) \ 2509 pr_info(fmt, pfn); \ 2510 }) 2511 2512 /** 2513 * unpoison_memory - Unpoison a previously poisoned page 2514 * @pfn: Page number of the to be unpoisoned page 2515 * 2516 * Software-unpoison a page that has been poisoned by 2517 * memory_failure() earlier. 2518 * 2519 * This is only done on the software-level, so it only works 2520 * for linux injected failures, not real hardware failures 2521 * 2522 * Returns 0 for success, otherwise -errno. 2523 */ 2524 int unpoison_memory(unsigned long pfn) 2525 { 2526 struct folio *folio; 2527 struct page *p; 2528 int ret = -EBUSY, ghp; 2529 unsigned long count = 1; 2530 bool huge = false; 2531 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2532 DEFAULT_RATELIMIT_BURST); 2533 2534 if (!pfn_valid(pfn)) 2535 return -ENXIO; 2536 2537 p = pfn_to_page(pfn); 2538 folio = page_folio(p); 2539 2540 mutex_lock(&mf_mutex); 2541 2542 if (hw_memory_failure) { 2543 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2544 pfn, &unpoison_rs); 2545 ret = -EOPNOTSUPP; 2546 goto unlock_mutex; 2547 } 2548 2549 if (is_huge_zero_folio(folio)) { 2550 unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n", 2551 pfn, &unpoison_rs); 2552 ret = -EOPNOTSUPP; 2553 goto unlock_mutex; 2554 } 2555 2556 if (!PageHWPoison(p)) { 2557 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2558 pfn, &unpoison_rs); 2559 goto unlock_mutex; 2560 } 2561 2562 if (folio_ref_count(folio) > 1) { 2563 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2564 pfn, &unpoison_rs); 2565 goto unlock_mutex; 2566 } 2567 2568 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2569 folio_test_reserved(folio) || folio_test_offline(folio)) 2570 goto unlock_mutex; 2571 2572 /* 2573 * Note that folio->_mapcount is overloaded in SLAB, so the simple test 2574 * in folio_mapped() has to be done after folio_test_slab() is checked. 2575 */ 2576 if (folio_mapped(folio)) { 2577 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2578 pfn, &unpoison_rs); 2579 goto unlock_mutex; 2580 } 2581 2582 if (folio_mapping(folio)) { 2583 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2584 pfn, &unpoison_rs); 2585 goto unlock_mutex; 2586 } 2587 2588 ghp = get_hwpoison_page(p, MF_UNPOISON); 2589 if (!ghp) { 2590 if (folio_test_hugetlb(folio)) { 2591 huge = true; 2592 count = folio_free_raw_hwp(folio, false); 2593 if (count == 0) 2594 goto unlock_mutex; 2595 } 2596 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2597 } else if (ghp < 0) { 2598 if (ghp == -EHWPOISON) { 2599 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2600 } else { 2601 ret = ghp; 2602 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2603 pfn, &unpoison_rs); 2604 } 2605 } else { 2606 if (folio_test_hugetlb(folio)) { 2607 huge = true; 2608 count = folio_free_raw_hwp(folio, false); 2609 if (count == 0) { 2610 folio_put(folio); 2611 goto unlock_mutex; 2612 } 2613 } 2614 2615 folio_put(folio); 2616 if (TestClearPageHWPoison(p)) { 2617 folio_put(folio); 2618 ret = 0; 2619 } 2620 } 2621 2622 unlock_mutex: 2623 mutex_unlock(&mf_mutex); 2624 if (!ret) { 2625 if (!huge) 2626 num_poisoned_pages_sub(pfn, 1); 2627 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2628 page_to_pfn(p), &unpoison_rs); 2629 } 2630 return ret; 2631 } 2632 EXPORT_SYMBOL(unpoison_memory); 2633 2634 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist) 2635 { 2636 bool isolated = false; 2637 2638 if (folio_test_hugetlb(folio)) { 2639 isolated = isolate_hugetlb(folio, pagelist); 2640 } else { 2641 bool lru = !__folio_test_movable(folio); 2642 2643 if (lru) 2644 isolated = folio_isolate_lru(folio); 2645 else 2646 isolated = isolate_movable_page(&folio->page, 2647 ISOLATE_UNEVICTABLE); 2648 2649 if (isolated) { 2650 list_add(&folio->lru, pagelist); 2651 if (lru) 2652 node_stat_add_folio(folio, NR_ISOLATED_ANON + 2653 folio_is_file_lru(folio)); 2654 } 2655 } 2656 2657 /* 2658 * If we succeed to isolate the folio, we grabbed another refcount on 2659 * the folio, so we can safely drop the one we got from get_any_page(). 2660 * If we failed to isolate the folio, it means that we cannot go further 2661 * and we will return an error, so drop the reference we got from 2662 * get_any_page() as well. 2663 */ 2664 folio_put(folio); 2665 return isolated; 2666 } 2667 2668 /* 2669 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2670 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2671 * If the page is mapped, it migrates the contents over. 2672 */ 2673 static int soft_offline_in_use_page(struct page *page) 2674 { 2675 long ret = 0; 2676 unsigned long pfn = page_to_pfn(page); 2677 struct folio *folio = page_folio(page); 2678 char const *msg_page[] = {"page", "hugepage"}; 2679 bool huge = folio_test_hugetlb(folio); 2680 LIST_HEAD(pagelist); 2681 struct migration_target_control mtc = { 2682 .nid = NUMA_NO_NODE, 2683 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2684 .reason = MR_MEMORY_FAILURE, 2685 }; 2686 2687 if (!huge && folio_test_large(folio)) { 2688 if (try_to_split_thp_page(page)) { 2689 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2690 return -EBUSY; 2691 } 2692 folio = page_folio(page); 2693 } 2694 2695 folio_lock(folio); 2696 if (!huge) 2697 folio_wait_writeback(folio); 2698 if (PageHWPoison(page)) { 2699 folio_unlock(folio); 2700 folio_put(folio); 2701 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2702 return 0; 2703 } 2704 2705 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2706 /* 2707 * Try to invalidate first. This should work for 2708 * non dirty unmapped page cache pages. 2709 */ 2710 ret = mapping_evict_folio(folio_mapping(folio), folio); 2711 folio_unlock(folio); 2712 2713 if (ret) { 2714 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2715 page_handle_poison(page, false, true); 2716 return 0; 2717 } 2718 2719 if (mf_isolate_folio(folio, &pagelist)) { 2720 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2721 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2722 if (!ret) { 2723 bool release = !huge; 2724 2725 if (!page_handle_poison(page, huge, release)) 2726 ret = -EBUSY; 2727 } else { 2728 if (!list_empty(&pagelist)) 2729 putback_movable_pages(&pagelist); 2730 2731 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2732 pfn, msg_page[huge], ret, &page->flags); 2733 if (ret > 0) 2734 ret = -EBUSY; 2735 } 2736 } else { 2737 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2738 pfn, msg_page[huge], page_count(page), &page->flags); 2739 ret = -EBUSY; 2740 } 2741 return ret; 2742 } 2743 2744 /** 2745 * soft_offline_page - Soft offline a page. 2746 * @pfn: pfn to soft-offline 2747 * @flags: flags. Same as memory_failure(). 2748 * 2749 * Returns 0 on success 2750 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2751 * < 0 otherwise negated errno. 2752 * 2753 * Soft offline a page, by migration or invalidation, 2754 * without killing anything. This is for the case when 2755 * a page is not corrupted yet (so it's still valid to access), 2756 * but has had a number of corrected errors and is better taken 2757 * out. 2758 * 2759 * The actual policy on when to do that is maintained by 2760 * user space. 2761 * 2762 * This should never impact any application or cause data loss, 2763 * however it might take some time. 2764 * 2765 * This is not a 100% solution for all memory, but tries to be 2766 * ``good enough'' for the majority of memory. 2767 */ 2768 int soft_offline_page(unsigned long pfn, int flags) 2769 { 2770 int ret; 2771 bool try_again = true; 2772 struct page *page; 2773 2774 if (!pfn_valid(pfn)) { 2775 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2776 return -ENXIO; 2777 } 2778 2779 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2780 page = pfn_to_online_page(pfn); 2781 if (!page) { 2782 put_ref_page(pfn, flags); 2783 return -EIO; 2784 } 2785 2786 mutex_lock(&mf_mutex); 2787 2788 if (PageHWPoison(page)) { 2789 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2790 put_ref_page(pfn, flags); 2791 mutex_unlock(&mf_mutex); 2792 return 0; 2793 } 2794 2795 retry: 2796 get_online_mems(); 2797 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2798 put_online_mems(); 2799 2800 if (hwpoison_filter(page)) { 2801 if (ret > 0) 2802 put_page(page); 2803 2804 mutex_unlock(&mf_mutex); 2805 return -EOPNOTSUPP; 2806 } 2807 2808 if (ret > 0) { 2809 ret = soft_offline_in_use_page(page); 2810 } else if (ret == 0) { 2811 if (!page_handle_poison(page, true, false)) { 2812 if (try_again) { 2813 try_again = false; 2814 flags &= ~MF_COUNT_INCREASED; 2815 goto retry; 2816 } 2817 ret = -EBUSY; 2818 } 2819 } 2820 2821 mutex_unlock(&mf_mutex); 2822 2823 return ret; 2824 } 2825