xref: /linux/mm/memory-failure.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68 
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70 
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 inline void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /*
91  * Return values:
92  *   1:   the page is dissolved (if needed) and taken off from buddy,
93  *   0:   the page is dissolved (if needed) and not taken off from buddy,
94  *   < 0: failed to dissolve.
95  */
96 static int __page_handle_poison(struct page *page)
97 {
98 	int ret;
99 
100 	zone_pcp_disable(page_zone(page));
101 	ret = dissolve_free_huge_page(page);
102 	if (!ret)
103 		ret = take_page_off_buddy(page);
104 	zone_pcp_enable(page_zone(page));
105 
106 	return ret;
107 }
108 
109 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
110 {
111 	if (hugepage_or_freepage) {
112 		/*
113 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
114 		 * returns 0 for non-hugetlb pages as well.
115 		 */
116 		if (__page_handle_poison(page) <= 0)
117 			/*
118 			 * We could fail to take off the target page from buddy
119 			 * for example due to racy page allocation, but that's
120 			 * acceptable because soft-offlined page is not broken
121 			 * and if someone really want to use it, they should
122 			 * take it.
123 			 */
124 			return false;
125 	}
126 
127 	SetPageHWPoison(page);
128 	if (release)
129 		put_page(page);
130 	page_ref_inc(page);
131 	num_poisoned_pages_inc(page_to_pfn(page));
132 
133 	return true;
134 }
135 
136 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
137 
138 u32 hwpoison_filter_enable = 0;
139 u32 hwpoison_filter_dev_major = ~0U;
140 u32 hwpoison_filter_dev_minor = ~0U;
141 u64 hwpoison_filter_flags_mask;
142 u64 hwpoison_filter_flags_value;
143 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
144 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
145 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
146 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
147 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
148 
149 static int hwpoison_filter_dev(struct page *p)
150 {
151 	struct address_space *mapping;
152 	dev_t dev;
153 
154 	if (hwpoison_filter_dev_major == ~0U &&
155 	    hwpoison_filter_dev_minor == ~0U)
156 		return 0;
157 
158 	mapping = page_mapping(p);
159 	if (mapping == NULL || mapping->host == NULL)
160 		return -EINVAL;
161 
162 	dev = mapping->host->i_sb->s_dev;
163 	if (hwpoison_filter_dev_major != ~0U &&
164 	    hwpoison_filter_dev_major != MAJOR(dev))
165 		return -EINVAL;
166 	if (hwpoison_filter_dev_minor != ~0U &&
167 	    hwpoison_filter_dev_minor != MINOR(dev))
168 		return -EINVAL;
169 
170 	return 0;
171 }
172 
173 static int hwpoison_filter_flags(struct page *p)
174 {
175 	if (!hwpoison_filter_flags_mask)
176 		return 0;
177 
178 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
179 				    hwpoison_filter_flags_value)
180 		return 0;
181 	else
182 		return -EINVAL;
183 }
184 
185 /*
186  * This allows stress tests to limit test scope to a collection of tasks
187  * by putting them under some memcg. This prevents killing unrelated/important
188  * processes such as /sbin/init. Note that the target task may share clean
189  * pages with init (eg. libc text), which is harmless. If the target task
190  * share _dirty_ pages with another task B, the test scheme must make sure B
191  * is also included in the memcg. At last, due to race conditions this filter
192  * can only guarantee that the page either belongs to the memcg tasks, or is
193  * a freed page.
194  */
195 #ifdef CONFIG_MEMCG
196 u64 hwpoison_filter_memcg;
197 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
198 static int hwpoison_filter_task(struct page *p)
199 {
200 	if (!hwpoison_filter_memcg)
201 		return 0;
202 
203 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
204 		return -EINVAL;
205 
206 	return 0;
207 }
208 #else
209 static int hwpoison_filter_task(struct page *p) { return 0; }
210 #endif
211 
212 int hwpoison_filter(struct page *p)
213 {
214 	if (!hwpoison_filter_enable)
215 		return 0;
216 
217 	if (hwpoison_filter_dev(p))
218 		return -EINVAL;
219 
220 	if (hwpoison_filter_flags(p))
221 		return -EINVAL;
222 
223 	if (hwpoison_filter_task(p))
224 		return -EINVAL;
225 
226 	return 0;
227 }
228 #else
229 int hwpoison_filter(struct page *p)
230 {
231 	return 0;
232 }
233 #endif
234 
235 EXPORT_SYMBOL_GPL(hwpoison_filter);
236 
237 /*
238  * Kill all processes that have a poisoned page mapped and then isolate
239  * the page.
240  *
241  * General strategy:
242  * Find all processes having the page mapped and kill them.
243  * But we keep a page reference around so that the page is not
244  * actually freed yet.
245  * Then stash the page away
246  *
247  * There's no convenient way to get back to mapped processes
248  * from the VMAs. So do a brute-force search over all
249  * running processes.
250  *
251  * Remember that machine checks are not common (or rather
252  * if they are common you have other problems), so this shouldn't
253  * be a performance issue.
254  *
255  * Also there are some races possible while we get from the
256  * error detection to actually handle it.
257  */
258 
259 struct to_kill {
260 	struct list_head nd;
261 	struct task_struct *tsk;
262 	unsigned long addr;
263 	short size_shift;
264 };
265 
266 /*
267  * Send all the processes who have the page mapped a signal.
268  * ``action optional'' if they are not immediately affected by the error
269  * ``action required'' if error happened in current execution context
270  */
271 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
272 {
273 	struct task_struct *t = tk->tsk;
274 	short addr_lsb = tk->size_shift;
275 	int ret = 0;
276 
277 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
278 			pfn, t->comm, t->pid);
279 
280 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
281 		ret = force_sig_mceerr(BUS_MCEERR_AR,
282 				 (void __user *)tk->addr, addr_lsb);
283 	else
284 		/*
285 		 * Signal other processes sharing the page if they have
286 		 * PF_MCE_EARLY set.
287 		 * Don't use force here, it's convenient if the signal
288 		 * can be temporarily blocked.
289 		 * This could cause a loop when the user sets SIGBUS
290 		 * to SIG_IGN, but hopefully no one will do that?
291 		 */
292 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
293 				      addr_lsb, t);
294 	if (ret < 0)
295 		pr_info("Error sending signal to %s:%d: %d\n",
296 			t->comm, t->pid, ret);
297 	return ret;
298 }
299 
300 /*
301  * Unknown page type encountered. Try to check whether it can turn PageLRU by
302  * lru_add_drain_all.
303  */
304 void shake_page(struct page *p)
305 {
306 	if (PageHuge(p))
307 		return;
308 
309 	if (!PageSlab(p)) {
310 		lru_add_drain_all();
311 		if (PageLRU(p) || is_free_buddy_page(p))
312 			return;
313 	}
314 
315 	/*
316 	 * TODO: Could shrink slab caches here if a lightweight range-based
317 	 * shrinker will be available.
318 	 */
319 }
320 EXPORT_SYMBOL_GPL(shake_page);
321 
322 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
323 		unsigned long address)
324 {
325 	unsigned long ret = 0;
326 	pgd_t *pgd;
327 	p4d_t *p4d;
328 	pud_t *pud;
329 	pmd_t *pmd;
330 	pte_t *pte;
331 
332 	VM_BUG_ON_VMA(address == -EFAULT, vma);
333 	pgd = pgd_offset(vma->vm_mm, address);
334 	if (!pgd_present(*pgd))
335 		return 0;
336 	p4d = p4d_offset(pgd, address);
337 	if (!p4d_present(*p4d))
338 		return 0;
339 	pud = pud_offset(p4d, address);
340 	if (!pud_present(*pud))
341 		return 0;
342 	if (pud_devmap(*pud))
343 		return PUD_SHIFT;
344 	pmd = pmd_offset(pud, address);
345 	if (!pmd_present(*pmd))
346 		return 0;
347 	if (pmd_devmap(*pmd))
348 		return PMD_SHIFT;
349 	pte = pte_offset_map(pmd, address);
350 	if (pte_present(*pte) && pte_devmap(*pte))
351 		ret = PAGE_SHIFT;
352 	pte_unmap(pte);
353 	return ret;
354 }
355 
356 /*
357  * Failure handling: if we can't find or can't kill a process there's
358  * not much we can do.	We just print a message and ignore otherwise.
359  */
360 
361 #define FSDAX_INVALID_PGOFF ULONG_MAX
362 
363 /*
364  * Schedule a process for later kill.
365  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
366  *
367  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
368  * filesystem with a memory failure handler has claimed the
369  * memory_failure event. In all other cases, page->index and
370  * page->mapping are sufficient for mapping the page back to its
371  * corresponding user virtual address.
372  */
373 static void add_to_kill(struct task_struct *tsk, struct page *p,
374 			pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
375 			struct list_head *to_kill)
376 {
377 	struct to_kill *tk;
378 
379 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
380 	if (!tk) {
381 		pr_err("Out of memory while machine check handling\n");
382 		return;
383 	}
384 
385 	tk->addr = page_address_in_vma(p, vma);
386 	if (is_zone_device_page(p)) {
387 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
388 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
389 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
390 	} else
391 		tk->size_shift = page_shift(compound_head(p));
392 
393 	/*
394 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
395 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
396 	 * so "tk->size_shift == 0" effectively checks no mapping on
397 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
398 	 * to a process' address space, it's possible not all N VMAs
399 	 * contain mappings for the page, but at least one VMA does.
400 	 * Only deliver SIGBUS with payload derived from the VMA that
401 	 * has a mapping for the page.
402 	 */
403 	if (tk->addr == -EFAULT) {
404 		pr_info("Unable to find user space address %lx in %s\n",
405 			page_to_pfn(p), tsk->comm);
406 	} else if (tk->size_shift == 0) {
407 		kfree(tk);
408 		return;
409 	}
410 
411 	get_task_struct(tsk);
412 	tk->tsk = tsk;
413 	list_add_tail(&tk->nd, to_kill);
414 }
415 
416 /*
417  * Kill the processes that have been collected earlier.
418  *
419  * Only do anything when FORCEKILL is set, otherwise just free the
420  * list (this is used for clean pages which do not need killing)
421  * Also when FAIL is set do a force kill because something went
422  * wrong earlier.
423  */
424 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
425 		unsigned long pfn, int flags)
426 {
427 	struct to_kill *tk, *next;
428 
429 	list_for_each_entry_safe(tk, next, to_kill, nd) {
430 		if (forcekill) {
431 			/*
432 			 * In case something went wrong with munmapping
433 			 * make sure the process doesn't catch the
434 			 * signal and then access the memory. Just kill it.
435 			 */
436 			if (fail || tk->addr == -EFAULT) {
437 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
438 				       pfn, tk->tsk->comm, tk->tsk->pid);
439 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
440 						 tk->tsk, PIDTYPE_PID);
441 			}
442 
443 			/*
444 			 * In theory the process could have mapped
445 			 * something else on the address in-between. We could
446 			 * check for that, but we need to tell the
447 			 * process anyways.
448 			 */
449 			else if (kill_proc(tk, pfn, flags) < 0)
450 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
451 				       pfn, tk->tsk->comm, tk->tsk->pid);
452 		}
453 		list_del(&tk->nd);
454 		put_task_struct(tk->tsk);
455 		kfree(tk);
456 	}
457 }
458 
459 /*
460  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
461  * on behalf of the thread group. Return task_struct of the (first found)
462  * dedicated thread if found, and return NULL otherwise.
463  *
464  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
465  * have to call rcu_read_lock/unlock() in this function.
466  */
467 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
468 {
469 	struct task_struct *t;
470 
471 	for_each_thread(tsk, t) {
472 		if (t->flags & PF_MCE_PROCESS) {
473 			if (t->flags & PF_MCE_EARLY)
474 				return t;
475 		} else {
476 			if (sysctl_memory_failure_early_kill)
477 				return t;
478 		}
479 	}
480 	return NULL;
481 }
482 
483 /*
484  * Determine whether a given process is "early kill" process which expects
485  * to be signaled when some page under the process is hwpoisoned.
486  * Return task_struct of the dedicated thread (main thread unless explicitly
487  * specified) if the process is "early kill" and otherwise returns NULL.
488  *
489  * Note that the above is true for Action Optional case. For Action Required
490  * case, it's only meaningful to the current thread which need to be signaled
491  * with SIGBUS, this error is Action Optional for other non current
492  * processes sharing the same error page,if the process is "early kill", the
493  * task_struct of the dedicated thread will also be returned.
494  */
495 static struct task_struct *task_early_kill(struct task_struct *tsk,
496 					   int force_early)
497 {
498 	if (!tsk->mm)
499 		return NULL;
500 	/*
501 	 * Comparing ->mm here because current task might represent
502 	 * a subthread, while tsk always points to the main thread.
503 	 */
504 	if (force_early && tsk->mm == current->mm)
505 		return current;
506 
507 	return find_early_kill_thread(tsk);
508 }
509 
510 /*
511  * Collect processes when the error hit an anonymous page.
512  */
513 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
514 				int force_early)
515 {
516 	struct folio *folio = page_folio(page);
517 	struct vm_area_struct *vma;
518 	struct task_struct *tsk;
519 	struct anon_vma *av;
520 	pgoff_t pgoff;
521 
522 	av = folio_lock_anon_vma_read(folio, NULL);
523 	if (av == NULL)	/* Not actually mapped anymore */
524 		return;
525 
526 	pgoff = page_to_pgoff(page);
527 	read_lock(&tasklist_lock);
528 	for_each_process (tsk) {
529 		struct anon_vma_chain *vmac;
530 		struct task_struct *t = task_early_kill(tsk, force_early);
531 
532 		if (!t)
533 			continue;
534 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
535 					       pgoff, pgoff) {
536 			vma = vmac->vma;
537 			if (vma->vm_mm != t->mm)
538 				continue;
539 			if (!page_mapped_in_vma(page, vma))
540 				continue;
541 			add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
542 		}
543 	}
544 	read_unlock(&tasklist_lock);
545 	anon_vma_unlock_read(av);
546 }
547 
548 /*
549  * Collect processes when the error hit a file mapped page.
550  */
551 static void collect_procs_file(struct page *page, struct list_head *to_kill,
552 				int force_early)
553 {
554 	struct vm_area_struct *vma;
555 	struct task_struct *tsk;
556 	struct address_space *mapping = page->mapping;
557 	pgoff_t pgoff;
558 
559 	i_mmap_lock_read(mapping);
560 	read_lock(&tasklist_lock);
561 	pgoff = page_to_pgoff(page);
562 	for_each_process(tsk) {
563 		struct task_struct *t = task_early_kill(tsk, force_early);
564 
565 		if (!t)
566 			continue;
567 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
568 				      pgoff) {
569 			/*
570 			 * Send early kill signal to tasks where a vma covers
571 			 * the page but the corrupted page is not necessarily
572 			 * mapped it in its pte.
573 			 * Assume applications who requested early kill want
574 			 * to be informed of all such data corruptions.
575 			 */
576 			if (vma->vm_mm == t->mm)
577 				add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
578 					    to_kill);
579 		}
580 	}
581 	read_unlock(&tasklist_lock);
582 	i_mmap_unlock_read(mapping);
583 }
584 
585 #ifdef CONFIG_FS_DAX
586 /*
587  * Collect processes when the error hit a fsdax page.
588  */
589 static void collect_procs_fsdax(struct page *page,
590 		struct address_space *mapping, pgoff_t pgoff,
591 		struct list_head *to_kill)
592 {
593 	struct vm_area_struct *vma;
594 	struct task_struct *tsk;
595 
596 	i_mmap_lock_read(mapping);
597 	read_lock(&tasklist_lock);
598 	for_each_process(tsk) {
599 		struct task_struct *t = task_early_kill(tsk, true);
600 
601 		if (!t)
602 			continue;
603 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
604 			if (vma->vm_mm == t->mm)
605 				add_to_kill(t, page, pgoff, vma, to_kill);
606 		}
607 	}
608 	read_unlock(&tasklist_lock);
609 	i_mmap_unlock_read(mapping);
610 }
611 #endif /* CONFIG_FS_DAX */
612 
613 /*
614  * Collect the processes who have the corrupted page mapped to kill.
615  */
616 static void collect_procs(struct page *page, struct list_head *tokill,
617 				int force_early)
618 {
619 	if (!page->mapping)
620 		return;
621 
622 	if (PageAnon(page))
623 		collect_procs_anon(page, tokill, force_early);
624 	else
625 		collect_procs_file(page, tokill, force_early);
626 }
627 
628 struct hwp_walk {
629 	struct to_kill tk;
630 	unsigned long pfn;
631 	int flags;
632 };
633 
634 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
635 {
636 	tk->addr = addr;
637 	tk->size_shift = shift;
638 }
639 
640 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
641 				unsigned long poisoned_pfn, struct to_kill *tk)
642 {
643 	unsigned long pfn = 0;
644 
645 	if (pte_present(pte)) {
646 		pfn = pte_pfn(pte);
647 	} else {
648 		swp_entry_t swp = pte_to_swp_entry(pte);
649 
650 		if (is_hwpoison_entry(swp))
651 			pfn = swp_offset_pfn(swp);
652 	}
653 
654 	if (!pfn || pfn != poisoned_pfn)
655 		return 0;
656 
657 	set_to_kill(tk, addr, shift);
658 	return 1;
659 }
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
663 				      struct hwp_walk *hwp)
664 {
665 	pmd_t pmd = *pmdp;
666 	unsigned long pfn;
667 	unsigned long hwpoison_vaddr;
668 
669 	if (!pmd_present(pmd))
670 		return 0;
671 	pfn = pmd_pfn(pmd);
672 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
673 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
674 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
675 		return 1;
676 	}
677 	return 0;
678 }
679 #else
680 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
681 				      struct hwp_walk *hwp)
682 {
683 	return 0;
684 }
685 #endif
686 
687 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
688 			      unsigned long end, struct mm_walk *walk)
689 {
690 	struct hwp_walk *hwp = walk->private;
691 	int ret = 0;
692 	pte_t *ptep, *mapped_pte;
693 	spinlock_t *ptl;
694 
695 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
696 	if (ptl) {
697 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
698 		spin_unlock(ptl);
699 		goto out;
700 	}
701 
702 	if (pmd_trans_unstable(pmdp))
703 		goto out;
704 
705 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
706 						addr, &ptl);
707 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
708 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
709 					     hwp->pfn, &hwp->tk);
710 		if (ret == 1)
711 			break;
712 	}
713 	pte_unmap_unlock(mapped_pte, ptl);
714 out:
715 	cond_resched();
716 	return ret;
717 }
718 
719 #ifdef CONFIG_HUGETLB_PAGE
720 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
721 			    unsigned long addr, unsigned long end,
722 			    struct mm_walk *walk)
723 {
724 	struct hwp_walk *hwp = walk->private;
725 	pte_t pte = huge_ptep_get(ptep);
726 	struct hstate *h = hstate_vma(walk->vma);
727 
728 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
729 				      hwp->pfn, &hwp->tk);
730 }
731 #else
732 #define hwpoison_hugetlb_range	NULL
733 #endif
734 
735 static const struct mm_walk_ops hwp_walk_ops = {
736 	.pmd_entry = hwpoison_pte_range,
737 	.hugetlb_entry = hwpoison_hugetlb_range,
738 };
739 
740 /*
741  * Sends SIGBUS to the current process with error info.
742  *
743  * This function is intended to handle "Action Required" MCEs on already
744  * hardware poisoned pages. They could happen, for example, when
745  * memory_failure() failed to unmap the error page at the first call, or
746  * when multiple local machine checks happened on different CPUs.
747  *
748  * MCE handler currently has no easy access to the error virtual address,
749  * so this function walks page table to find it. The returned virtual address
750  * is proper in most cases, but it could be wrong when the application
751  * process has multiple entries mapping the error page.
752  */
753 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
754 				  int flags)
755 {
756 	int ret;
757 	struct hwp_walk priv = {
758 		.pfn = pfn,
759 	};
760 	priv.tk.tsk = p;
761 
762 	if (!p->mm)
763 		return -EFAULT;
764 
765 	mmap_read_lock(p->mm);
766 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
767 			      (void *)&priv);
768 	if (ret == 1 && priv.tk.addr)
769 		kill_proc(&priv.tk, pfn, flags);
770 	else
771 		ret = 0;
772 	mmap_read_unlock(p->mm);
773 	return ret > 0 ? -EHWPOISON : -EFAULT;
774 }
775 
776 static const char *action_name[] = {
777 	[MF_IGNORED] = "Ignored",
778 	[MF_FAILED] = "Failed",
779 	[MF_DELAYED] = "Delayed",
780 	[MF_RECOVERED] = "Recovered",
781 };
782 
783 static const char * const action_page_types[] = {
784 	[MF_MSG_KERNEL]			= "reserved kernel page",
785 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
786 	[MF_MSG_SLAB]			= "kernel slab page",
787 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
788 	[MF_MSG_HUGE]			= "huge page",
789 	[MF_MSG_FREE_HUGE]		= "free huge page",
790 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
791 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
792 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
793 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
794 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
795 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
796 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
797 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
798 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
799 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
800 	[MF_MSG_BUDDY]			= "free buddy page",
801 	[MF_MSG_DAX]			= "dax page",
802 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
803 	[MF_MSG_UNKNOWN]		= "unknown page",
804 };
805 
806 /*
807  * XXX: It is possible that a page is isolated from LRU cache,
808  * and then kept in swap cache or failed to remove from page cache.
809  * The page count will stop it from being freed by unpoison.
810  * Stress tests should be aware of this memory leak problem.
811  */
812 static int delete_from_lru_cache(struct page *p)
813 {
814 	if (!isolate_lru_page(p)) {
815 		/*
816 		 * Clear sensible page flags, so that the buddy system won't
817 		 * complain when the page is unpoison-and-freed.
818 		 */
819 		ClearPageActive(p);
820 		ClearPageUnevictable(p);
821 
822 		/*
823 		 * Poisoned page might never drop its ref count to 0 so we have
824 		 * to uncharge it manually from its memcg.
825 		 */
826 		mem_cgroup_uncharge(page_folio(p));
827 
828 		/*
829 		 * drop the page count elevated by isolate_lru_page()
830 		 */
831 		put_page(p);
832 		return 0;
833 	}
834 	return -EIO;
835 }
836 
837 static int truncate_error_page(struct page *p, unsigned long pfn,
838 				struct address_space *mapping)
839 {
840 	int ret = MF_FAILED;
841 
842 	if (mapping->a_ops->error_remove_page) {
843 		struct folio *folio = page_folio(p);
844 		int err = mapping->a_ops->error_remove_page(mapping, p);
845 
846 		if (err != 0) {
847 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
848 		} else if (folio_has_private(folio) &&
849 			   !filemap_release_folio(folio, GFP_NOIO)) {
850 			pr_info("%#lx: failed to release buffers\n", pfn);
851 		} else {
852 			ret = MF_RECOVERED;
853 		}
854 	} else {
855 		/*
856 		 * If the file system doesn't support it just invalidate
857 		 * This fails on dirty or anything with private pages
858 		 */
859 		if (invalidate_inode_page(p))
860 			ret = MF_RECOVERED;
861 		else
862 			pr_info("%#lx: Failed to invalidate\n",	pfn);
863 	}
864 
865 	return ret;
866 }
867 
868 struct page_state {
869 	unsigned long mask;
870 	unsigned long res;
871 	enum mf_action_page_type type;
872 
873 	/* Callback ->action() has to unlock the relevant page inside it. */
874 	int (*action)(struct page_state *ps, struct page *p);
875 };
876 
877 /*
878  * Return true if page is still referenced by others, otherwise return
879  * false.
880  *
881  * The extra_pins is true when one extra refcount is expected.
882  */
883 static bool has_extra_refcount(struct page_state *ps, struct page *p,
884 			       bool extra_pins)
885 {
886 	int count = page_count(p) - 1;
887 
888 	if (extra_pins)
889 		count -= 1;
890 
891 	if (count > 0) {
892 		pr_err("%#lx: %s still referenced by %d users\n",
893 		       page_to_pfn(p), action_page_types[ps->type], count);
894 		return true;
895 	}
896 
897 	return false;
898 }
899 
900 /*
901  * Error hit kernel page.
902  * Do nothing, try to be lucky and not touch this instead. For a few cases we
903  * could be more sophisticated.
904  */
905 static int me_kernel(struct page_state *ps, struct page *p)
906 {
907 	unlock_page(p);
908 	return MF_IGNORED;
909 }
910 
911 /*
912  * Page in unknown state. Do nothing.
913  */
914 static int me_unknown(struct page_state *ps, struct page *p)
915 {
916 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
917 	unlock_page(p);
918 	return MF_FAILED;
919 }
920 
921 /*
922  * Clean (or cleaned) page cache page.
923  */
924 static int me_pagecache_clean(struct page_state *ps, struct page *p)
925 {
926 	int ret;
927 	struct address_space *mapping;
928 	bool extra_pins;
929 
930 	delete_from_lru_cache(p);
931 
932 	/*
933 	 * For anonymous pages we're done the only reference left
934 	 * should be the one m_f() holds.
935 	 */
936 	if (PageAnon(p)) {
937 		ret = MF_RECOVERED;
938 		goto out;
939 	}
940 
941 	/*
942 	 * Now truncate the page in the page cache. This is really
943 	 * more like a "temporary hole punch"
944 	 * Don't do this for block devices when someone else
945 	 * has a reference, because it could be file system metadata
946 	 * and that's not safe to truncate.
947 	 */
948 	mapping = page_mapping(p);
949 	if (!mapping) {
950 		/*
951 		 * Page has been teared down in the meanwhile
952 		 */
953 		ret = MF_FAILED;
954 		goto out;
955 	}
956 
957 	/*
958 	 * The shmem page is kept in page cache instead of truncating
959 	 * so is expected to have an extra refcount after error-handling.
960 	 */
961 	extra_pins = shmem_mapping(mapping);
962 
963 	/*
964 	 * Truncation is a bit tricky. Enable it per file system for now.
965 	 *
966 	 * Open: to take i_rwsem or not for this? Right now we don't.
967 	 */
968 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
969 	if (has_extra_refcount(ps, p, extra_pins))
970 		ret = MF_FAILED;
971 
972 out:
973 	unlock_page(p);
974 
975 	return ret;
976 }
977 
978 /*
979  * Dirty pagecache page
980  * Issues: when the error hit a hole page the error is not properly
981  * propagated.
982  */
983 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
984 {
985 	struct address_space *mapping = page_mapping(p);
986 
987 	SetPageError(p);
988 	/* TBD: print more information about the file. */
989 	if (mapping) {
990 		/*
991 		 * IO error will be reported by write(), fsync(), etc.
992 		 * who check the mapping.
993 		 * This way the application knows that something went
994 		 * wrong with its dirty file data.
995 		 *
996 		 * There's one open issue:
997 		 *
998 		 * The EIO will be only reported on the next IO
999 		 * operation and then cleared through the IO map.
1000 		 * Normally Linux has two mechanisms to pass IO error
1001 		 * first through the AS_EIO flag in the address space
1002 		 * and then through the PageError flag in the page.
1003 		 * Since we drop pages on memory failure handling the
1004 		 * only mechanism open to use is through AS_AIO.
1005 		 *
1006 		 * This has the disadvantage that it gets cleared on
1007 		 * the first operation that returns an error, while
1008 		 * the PageError bit is more sticky and only cleared
1009 		 * when the page is reread or dropped.  If an
1010 		 * application assumes it will always get error on
1011 		 * fsync, but does other operations on the fd before
1012 		 * and the page is dropped between then the error
1013 		 * will not be properly reported.
1014 		 *
1015 		 * This can already happen even without hwpoisoned
1016 		 * pages: first on metadata IO errors (which only
1017 		 * report through AS_EIO) or when the page is dropped
1018 		 * at the wrong time.
1019 		 *
1020 		 * So right now we assume that the application DTRT on
1021 		 * the first EIO, but we're not worse than other parts
1022 		 * of the kernel.
1023 		 */
1024 		mapping_set_error(mapping, -EIO);
1025 	}
1026 
1027 	return me_pagecache_clean(ps, p);
1028 }
1029 
1030 /*
1031  * Clean and dirty swap cache.
1032  *
1033  * Dirty swap cache page is tricky to handle. The page could live both in page
1034  * cache and swap cache(ie. page is freshly swapped in). So it could be
1035  * referenced concurrently by 2 types of PTEs:
1036  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1037  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1038  * and then
1039  *      - clear dirty bit to prevent IO
1040  *      - remove from LRU
1041  *      - but keep in the swap cache, so that when we return to it on
1042  *        a later page fault, we know the application is accessing
1043  *        corrupted data and shall be killed (we installed simple
1044  *        interception code in do_swap_page to catch it).
1045  *
1046  * Clean swap cache pages can be directly isolated. A later page fault will
1047  * bring in the known good data from disk.
1048  */
1049 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1050 {
1051 	int ret;
1052 	bool extra_pins = false;
1053 
1054 	ClearPageDirty(p);
1055 	/* Trigger EIO in shmem: */
1056 	ClearPageUptodate(p);
1057 
1058 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1059 	unlock_page(p);
1060 
1061 	if (ret == MF_DELAYED)
1062 		extra_pins = true;
1063 
1064 	if (has_extra_refcount(ps, p, extra_pins))
1065 		ret = MF_FAILED;
1066 
1067 	return ret;
1068 }
1069 
1070 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1071 {
1072 	struct folio *folio = page_folio(p);
1073 	int ret;
1074 
1075 	delete_from_swap_cache(folio);
1076 
1077 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1078 	folio_unlock(folio);
1079 
1080 	if (has_extra_refcount(ps, p, false))
1081 		ret = MF_FAILED;
1082 
1083 	return ret;
1084 }
1085 
1086 /*
1087  * Huge pages. Needs work.
1088  * Issues:
1089  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1090  *   To narrow down kill region to one page, we need to break up pmd.
1091  */
1092 static int me_huge_page(struct page_state *ps, struct page *p)
1093 {
1094 	int res;
1095 	struct page *hpage = compound_head(p);
1096 	struct address_space *mapping;
1097 	bool extra_pins = false;
1098 
1099 	if (!PageHuge(hpage))
1100 		return MF_DELAYED;
1101 
1102 	mapping = page_mapping(hpage);
1103 	if (mapping) {
1104 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1105 		/* The page is kept in page cache. */
1106 		extra_pins = true;
1107 		unlock_page(hpage);
1108 	} else {
1109 		unlock_page(hpage);
1110 		/*
1111 		 * migration entry prevents later access on error hugepage,
1112 		 * so we can free and dissolve it into buddy to save healthy
1113 		 * subpages.
1114 		 */
1115 		put_page(hpage);
1116 		if (__page_handle_poison(p) >= 0) {
1117 			page_ref_inc(p);
1118 			res = MF_RECOVERED;
1119 		} else {
1120 			res = MF_FAILED;
1121 		}
1122 	}
1123 
1124 	if (has_extra_refcount(ps, p, extra_pins))
1125 		res = MF_FAILED;
1126 
1127 	return res;
1128 }
1129 
1130 /*
1131  * Various page states we can handle.
1132  *
1133  * A page state is defined by its current page->flags bits.
1134  * The table matches them in order and calls the right handler.
1135  *
1136  * This is quite tricky because we can access page at any time
1137  * in its live cycle, so all accesses have to be extremely careful.
1138  *
1139  * This is not complete. More states could be added.
1140  * For any missing state don't attempt recovery.
1141  */
1142 
1143 #define dirty		(1UL << PG_dirty)
1144 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1145 #define unevict		(1UL << PG_unevictable)
1146 #define mlock		(1UL << PG_mlocked)
1147 #define lru		(1UL << PG_lru)
1148 #define head		(1UL << PG_head)
1149 #define slab		(1UL << PG_slab)
1150 #define reserved	(1UL << PG_reserved)
1151 
1152 static struct page_state error_states[] = {
1153 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1154 	/*
1155 	 * free pages are specially detected outside this table:
1156 	 * PG_buddy pages only make a small fraction of all free pages.
1157 	 */
1158 
1159 	/*
1160 	 * Could in theory check if slab page is free or if we can drop
1161 	 * currently unused objects without touching them. But just
1162 	 * treat it as standard kernel for now.
1163 	 */
1164 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1165 
1166 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1167 
1168 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1169 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1170 
1171 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1172 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1173 
1174 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1175 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1176 
1177 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1178 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1179 
1180 	/*
1181 	 * Catchall entry: must be at end.
1182 	 */
1183 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1184 };
1185 
1186 #undef dirty
1187 #undef sc
1188 #undef unevict
1189 #undef mlock
1190 #undef lru
1191 #undef head
1192 #undef slab
1193 #undef reserved
1194 
1195 /*
1196  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1197  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1198  */
1199 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1200 			 enum mf_result result)
1201 {
1202 	trace_memory_failure_event(pfn, type, result);
1203 
1204 	num_poisoned_pages_inc(pfn);
1205 	pr_err("%#lx: recovery action for %s: %s\n",
1206 		pfn, action_page_types[type], action_name[result]);
1207 
1208 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1209 }
1210 
1211 static int page_action(struct page_state *ps, struct page *p,
1212 			unsigned long pfn)
1213 {
1214 	int result;
1215 
1216 	/* page p should be unlocked after returning from ps->action().  */
1217 	result = ps->action(ps, p);
1218 
1219 	/* Could do more checks here if page looks ok */
1220 	/*
1221 	 * Could adjust zone counters here to correct for the missing page.
1222 	 */
1223 
1224 	return action_result(pfn, ps->type, result);
1225 }
1226 
1227 static inline bool PageHWPoisonTakenOff(struct page *page)
1228 {
1229 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1230 }
1231 
1232 void SetPageHWPoisonTakenOff(struct page *page)
1233 {
1234 	set_page_private(page, MAGIC_HWPOISON);
1235 }
1236 
1237 void ClearPageHWPoisonTakenOff(struct page *page)
1238 {
1239 	if (PageHWPoison(page))
1240 		set_page_private(page, 0);
1241 }
1242 
1243 /*
1244  * Return true if a page type of a given page is supported by hwpoison
1245  * mechanism (while handling could fail), otherwise false.  This function
1246  * does not return true for hugetlb or device memory pages, so it's assumed
1247  * to be called only in the context where we never have such pages.
1248  */
1249 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1250 {
1251 	/* Soft offline could migrate non-LRU movable pages */
1252 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1253 		return true;
1254 
1255 	return PageLRU(page) || is_free_buddy_page(page);
1256 }
1257 
1258 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1259 {
1260 	struct page *head = compound_head(page);
1261 	int ret = 0;
1262 	bool hugetlb = false;
1263 
1264 	ret = get_hwpoison_huge_page(head, &hugetlb, false);
1265 	if (hugetlb)
1266 		return ret;
1267 
1268 	/*
1269 	 * This check prevents from calling get_page_unless_zero() for any
1270 	 * unsupported type of page in order to reduce the risk of unexpected
1271 	 * races caused by taking a page refcount.
1272 	 */
1273 	if (!HWPoisonHandlable(head, flags))
1274 		return -EBUSY;
1275 
1276 	if (get_page_unless_zero(head)) {
1277 		if (head == compound_head(page))
1278 			return 1;
1279 
1280 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1281 		put_page(head);
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 static int get_any_page(struct page *p, unsigned long flags)
1288 {
1289 	int ret = 0, pass = 0;
1290 	bool count_increased = false;
1291 
1292 	if (flags & MF_COUNT_INCREASED)
1293 		count_increased = true;
1294 
1295 try_again:
1296 	if (!count_increased) {
1297 		ret = __get_hwpoison_page(p, flags);
1298 		if (!ret) {
1299 			if (page_count(p)) {
1300 				/* We raced with an allocation, retry. */
1301 				if (pass++ < 3)
1302 					goto try_again;
1303 				ret = -EBUSY;
1304 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1305 				/* We raced with put_page, retry. */
1306 				if (pass++ < 3)
1307 					goto try_again;
1308 				ret = -EIO;
1309 			}
1310 			goto out;
1311 		} else if (ret == -EBUSY) {
1312 			/*
1313 			 * We raced with (possibly temporary) unhandlable
1314 			 * page, retry.
1315 			 */
1316 			if (pass++ < 3) {
1317 				shake_page(p);
1318 				goto try_again;
1319 			}
1320 			ret = -EIO;
1321 			goto out;
1322 		}
1323 	}
1324 
1325 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1326 		ret = 1;
1327 	} else {
1328 		/*
1329 		 * A page we cannot handle. Check whether we can turn
1330 		 * it into something we can handle.
1331 		 */
1332 		if (pass++ < 3) {
1333 			put_page(p);
1334 			shake_page(p);
1335 			count_increased = false;
1336 			goto try_again;
1337 		}
1338 		put_page(p);
1339 		ret = -EIO;
1340 	}
1341 out:
1342 	if (ret == -EIO)
1343 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1344 
1345 	return ret;
1346 }
1347 
1348 static int __get_unpoison_page(struct page *page)
1349 {
1350 	struct page *head = compound_head(page);
1351 	int ret = 0;
1352 	bool hugetlb = false;
1353 
1354 	ret = get_hwpoison_huge_page(head, &hugetlb, true);
1355 	if (hugetlb)
1356 		return ret;
1357 
1358 	/*
1359 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1360 	 * but also isolated from buddy freelist, so need to identify the
1361 	 * state and have to cancel both operations to unpoison.
1362 	 */
1363 	if (PageHWPoisonTakenOff(page))
1364 		return -EHWPOISON;
1365 
1366 	return get_page_unless_zero(page) ? 1 : 0;
1367 }
1368 
1369 /**
1370  * get_hwpoison_page() - Get refcount for memory error handling
1371  * @p:		Raw error page (hit by memory error)
1372  * @flags:	Flags controlling behavior of error handling
1373  *
1374  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1375  * error on it, after checking that the error page is in a well-defined state
1376  * (defined as a page-type we can successfully handle the memory error on it,
1377  * such as LRU page and hugetlb page).
1378  *
1379  * Memory error handling could be triggered at any time on any type of page,
1380  * so it's prone to race with typical memory management lifecycle (like
1381  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1382  * extra care for the error page's state (as done in __get_hwpoison_page()),
1383  * and has some retry logic in get_any_page().
1384  *
1385  * When called from unpoison_memory(), the caller should already ensure that
1386  * the given page has PG_hwpoison. So it's never reused for other page
1387  * allocations, and __get_unpoison_page() never races with them.
1388  *
1389  * Return: 0 on failure,
1390  *         1 on success for in-use pages in a well-defined state,
1391  *         -EIO for pages on which we can not handle memory errors,
1392  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1393  *         operations like allocation and free,
1394  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1395  */
1396 static int get_hwpoison_page(struct page *p, unsigned long flags)
1397 {
1398 	int ret;
1399 
1400 	zone_pcp_disable(page_zone(p));
1401 	if (flags & MF_UNPOISON)
1402 		ret = __get_unpoison_page(p);
1403 	else
1404 		ret = get_any_page(p, flags);
1405 	zone_pcp_enable(page_zone(p));
1406 
1407 	return ret;
1408 }
1409 
1410 /*
1411  * Do all that is necessary to remove user space mappings. Unmap
1412  * the pages and send SIGBUS to the processes if the data was dirty.
1413  */
1414 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1415 				  int flags, struct page *hpage)
1416 {
1417 	struct folio *folio = page_folio(hpage);
1418 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1419 	struct address_space *mapping;
1420 	LIST_HEAD(tokill);
1421 	bool unmap_success;
1422 	int forcekill;
1423 	bool mlocked = PageMlocked(hpage);
1424 
1425 	/*
1426 	 * Here we are interested only in user-mapped pages, so skip any
1427 	 * other types of pages.
1428 	 */
1429 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1430 		return true;
1431 	if (!(PageLRU(hpage) || PageHuge(p)))
1432 		return true;
1433 
1434 	/*
1435 	 * This check implies we don't kill processes if their pages
1436 	 * are in the swap cache early. Those are always late kills.
1437 	 */
1438 	if (!page_mapped(hpage))
1439 		return true;
1440 
1441 	if (PageKsm(p)) {
1442 		pr_err("%#lx: can't handle KSM pages.\n", pfn);
1443 		return false;
1444 	}
1445 
1446 	if (PageSwapCache(p)) {
1447 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1448 		ttu |= TTU_IGNORE_HWPOISON;
1449 	}
1450 
1451 	/*
1452 	 * Propagate the dirty bit from PTEs to struct page first, because we
1453 	 * need this to decide if we should kill or just drop the page.
1454 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1455 	 * be called inside page lock (it's recommended but not enforced).
1456 	 */
1457 	mapping = page_mapping(hpage);
1458 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1459 	    mapping_can_writeback(mapping)) {
1460 		if (page_mkclean(hpage)) {
1461 			SetPageDirty(hpage);
1462 		} else {
1463 			ttu |= TTU_IGNORE_HWPOISON;
1464 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1465 				pfn);
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * First collect all the processes that have the page
1471 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1472 	 * because ttu takes the rmap data structures down.
1473 	 */
1474 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1475 
1476 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1477 		/*
1478 		 * For hugetlb pages in shared mappings, try_to_unmap
1479 		 * could potentially call huge_pmd_unshare.  Because of
1480 		 * this, take semaphore in write mode here and set
1481 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1482 		 * at this higher level.
1483 		 */
1484 		mapping = hugetlb_page_mapping_lock_write(hpage);
1485 		if (mapping) {
1486 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1487 			i_mmap_unlock_write(mapping);
1488 		} else
1489 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1490 	} else {
1491 		try_to_unmap(folio, ttu);
1492 	}
1493 
1494 	unmap_success = !page_mapped(hpage);
1495 	if (!unmap_success)
1496 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1497 		       pfn, page_mapcount(hpage));
1498 
1499 	/*
1500 	 * try_to_unmap() might put mlocked page in lru cache, so call
1501 	 * shake_page() again to ensure that it's flushed.
1502 	 */
1503 	if (mlocked)
1504 		shake_page(hpage);
1505 
1506 	/*
1507 	 * Now that the dirty bit has been propagated to the
1508 	 * struct page and all unmaps done we can decide if
1509 	 * killing is needed or not.  Only kill when the page
1510 	 * was dirty or the process is not restartable,
1511 	 * otherwise the tokill list is merely
1512 	 * freed.  When there was a problem unmapping earlier
1513 	 * use a more force-full uncatchable kill to prevent
1514 	 * any accesses to the poisoned memory.
1515 	 */
1516 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1517 		    !unmap_success;
1518 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1519 
1520 	return unmap_success;
1521 }
1522 
1523 static int identify_page_state(unsigned long pfn, struct page *p,
1524 				unsigned long page_flags)
1525 {
1526 	struct page_state *ps;
1527 
1528 	/*
1529 	 * The first check uses the current page flags which may not have any
1530 	 * relevant information. The second check with the saved page flags is
1531 	 * carried out only if the first check can't determine the page status.
1532 	 */
1533 	for (ps = error_states;; ps++)
1534 		if ((p->flags & ps->mask) == ps->res)
1535 			break;
1536 
1537 	page_flags |= (p->flags & (1UL << PG_dirty));
1538 
1539 	if (!ps->mask)
1540 		for (ps = error_states;; ps++)
1541 			if ((page_flags & ps->mask) == ps->res)
1542 				break;
1543 	return page_action(ps, p, pfn);
1544 }
1545 
1546 static int try_to_split_thp_page(struct page *page)
1547 {
1548 	int ret;
1549 
1550 	lock_page(page);
1551 	ret = split_huge_page(page);
1552 	unlock_page(page);
1553 
1554 	if (unlikely(ret))
1555 		put_page(page);
1556 
1557 	return ret;
1558 }
1559 
1560 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1561 		struct address_space *mapping, pgoff_t index, int flags)
1562 {
1563 	struct to_kill *tk;
1564 	unsigned long size = 0;
1565 
1566 	list_for_each_entry(tk, to_kill, nd)
1567 		if (tk->size_shift)
1568 			size = max(size, 1UL << tk->size_shift);
1569 
1570 	if (size) {
1571 		/*
1572 		 * Unmap the largest mapping to avoid breaking up device-dax
1573 		 * mappings which are constant size. The actual size of the
1574 		 * mapping being torn down is communicated in siginfo, see
1575 		 * kill_proc()
1576 		 */
1577 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1578 
1579 		unmap_mapping_range(mapping, start, size, 0);
1580 	}
1581 
1582 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1583 }
1584 
1585 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1586 		struct dev_pagemap *pgmap)
1587 {
1588 	struct page *page = pfn_to_page(pfn);
1589 	LIST_HEAD(to_kill);
1590 	dax_entry_t cookie;
1591 	int rc = 0;
1592 
1593 	/*
1594 	 * Pages instantiated by device-dax (not filesystem-dax)
1595 	 * may be compound pages.
1596 	 */
1597 	page = compound_head(page);
1598 
1599 	/*
1600 	 * Prevent the inode from being freed while we are interrogating
1601 	 * the address_space, typically this would be handled by
1602 	 * lock_page(), but dax pages do not use the page lock. This
1603 	 * also prevents changes to the mapping of this pfn until
1604 	 * poison signaling is complete.
1605 	 */
1606 	cookie = dax_lock_page(page);
1607 	if (!cookie)
1608 		return -EBUSY;
1609 
1610 	if (hwpoison_filter(page)) {
1611 		rc = -EOPNOTSUPP;
1612 		goto unlock;
1613 	}
1614 
1615 	switch (pgmap->type) {
1616 	case MEMORY_DEVICE_PRIVATE:
1617 	case MEMORY_DEVICE_COHERENT:
1618 		/*
1619 		 * TODO: Handle device pages which may need coordination
1620 		 * with device-side memory.
1621 		 */
1622 		rc = -ENXIO;
1623 		goto unlock;
1624 	default:
1625 		break;
1626 	}
1627 
1628 	/*
1629 	 * Use this flag as an indication that the dax page has been
1630 	 * remapped UC to prevent speculative consumption of poison.
1631 	 */
1632 	SetPageHWPoison(page);
1633 
1634 	/*
1635 	 * Unlike System-RAM there is no possibility to swap in a
1636 	 * different physical page at a given virtual address, so all
1637 	 * userspace consumption of ZONE_DEVICE memory necessitates
1638 	 * SIGBUS (i.e. MF_MUST_KILL)
1639 	 */
1640 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1641 	collect_procs(page, &to_kill, true);
1642 
1643 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1644 unlock:
1645 	dax_unlock_page(page, cookie);
1646 	return rc;
1647 }
1648 
1649 #ifdef CONFIG_FS_DAX
1650 /**
1651  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1652  * @mapping:	address_space of the file in use
1653  * @index:	start pgoff of the range within the file
1654  * @count:	length of the range, in unit of PAGE_SIZE
1655  * @mf_flags:	memory failure flags
1656  */
1657 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1658 		unsigned long count, int mf_flags)
1659 {
1660 	LIST_HEAD(to_kill);
1661 	dax_entry_t cookie;
1662 	struct page *page;
1663 	size_t end = index + count;
1664 
1665 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1666 
1667 	for (; index < end; index++) {
1668 		page = NULL;
1669 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1670 		if (!cookie)
1671 			return -EBUSY;
1672 		if (!page)
1673 			goto unlock;
1674 
1675 		SetPageHWPoison(page);
1676 
1677 		collect_procs_fsdax(page, mapping, index, &to_kill);
1678 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1679 				index, mf_flags);
1680 unlock:
1681 		dax_unlock_mapping_entry(mapping, index, cookie);
1682 	}
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1686 #endif /* CONFIG_FS_DAX */
1687 
1688 #ifdef CONFIG_HUGETLB_PAGE
1689 /*
1690  * Struct raw_hwp_page represents information about "raw error page",
1691  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1692  */
1693 struct raw_hwp_page {
1694 	struct llist_node node;
1695 	struct page *page;
1696 };
1697 
1698 static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1699 {
1700 	return (struct llist_head *)&page_folio(hpage)->_hugetlb_hwpoison;
1701 }
1702 
1703 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1704 {
1705 	struct llist_head *head;
1706 	struct llist_node *t, *tnode;
1707 	unsigned long count = 0;
1708 
1709 	head = raw_hwp_list_head(hpage);
1710 	llist_for_each_safe(tnode, t, head->first) {
1711 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1712 
1713 		if (move_flag)
1714 			SetPageHWPoison(p->page);
1715 		else
1716 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1717 		kfree(p);
1718 		count++;
1719 	}
1720 	llist_del_all(head);
1721 	return count;
1722 }
1723 
1724 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1725 {
1726 	struct llist_head *head;
1727 	struct raw_hwp_page *raw_hwp;
1728 	struct llist_node *t, *tnode;
1729 	int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1730 
1731 	/*
1732 	 * Once the hwpoison hugepage has lost reliable raw error info,
1733 	 * there is little meaning to keep additional error info precisely,
1734 	 * so skip to add additional raw error info.
1735 	 */
1736 	if (HPageRawHwpUnreliable(hpage))
1737 		return -EHWPOISON;
1738 	head = raw_hwp_list_head(hpage);
1739 	llist_for_each_safe(tnode, t, head->first) {
1740 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1741 
1742 		if (p->page == page)
1743 			return -EHWPOISON;
1744 	}
1745 
1746 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1747 	if (raw_hwp) {
1748 		raw_hwp->page = page;
1749 		llist_add(&raw_hwp->node, head);
1750 		/* the first error event will be counted in action_result(). */
1751 		if (ret)
1752 			num_poisoned_pages_inc(page_to_pfn(page));
1753 	} else {
1754 		/*
1755 		 * Failed to save raw error info.  We no longer trace all
1756 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1757 		 * this hwpoisoned hugepage.
1758 		 */
1759 		SetHPageRawHwpUnreliable(hpage);
1760 		/*
1761 		 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1762 		 * used any more, so free it.
1763 		 */
1764 		__free_raw_hwp_pages(hpage, false);
1765 	}
1766 	return ret;
1767 }
1768 
1769 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1770 {
1771 	/*
1772 	 * HPageVmemmapOptimized hugepages can't be freed because struct
1773 	 * pages for tail pages are required but they don't exist.
1774 	 */
1775 	if (move_flag && HPageVmemmapOptimized(hpage))
1776 		return 0;
1777 
1778 	/*
1779 	 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1780 	 * definition.
1781 	 */
1782 	if (HPageRawHwpUnreliable(hpage))
1783 		return 0;
1784 
1785 	return __free_raw_hwp_pages(hpage, move_flag);
1786 }
1787 
1788 void hugetlb_clear_page_hwpoison(struct page *hpage)
1789 {
1790 	if (HPageRawHwpUnreliable(hpage))
1791 		return;
1792 	ClearPageHWPoison(hpage);
1793 	free_raw_hwp_pages(hpage, true);
1794 }
1795 
1796 /*
1797  * Called from hugetlb code with hugetlb_lock held.
1798  *
1799  * Return values:
1800  *   0             - free hugepage
1801  *   1             - in-use hugepage
1802  *   2             - not a hugepage
1803  *   -EBUSY        - the hugepage is busy (try to retry)
1804  *   -EHWPOISON    - the hugepage is already hwpoisoned
1805  */
1806 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1807 				 bool *migratable_cleared)
1808 {
1809 	struct page *page = pfn_to_page(pfn);
1810 	struct page *head = compound_head(page);
1811 	int ret = 2;	/* fallback to normal page handling */
1812 	bool count_increased = false;
1813 
1814 	if (!PageHeadHuge(head))
1815 		goto out;
1816 
1817 	if (flags & MF_COUNT_INCREASED) {
1818 		ret = 1;
1819 		count_increased = true;
1820 	} else if (HPageFreed(head)) {
1821 		ret = 0;
1822 	} else if (HPageMigratable(head)) {
1823 		ret = get_page_unless_zero(head);
1824 		if (ret)
1825 			count_increased = true;
1826 	} else {
1827 		ret = -EBUSY;
1828 		if (!(flags & MF_NO_RETRY))
1829 			goto out;
1830 	}
1831 
1832 	if (hugetlb_set_page_hwpoison(head, page)) {
1833 		ret = -EHWPOISON;
1834 		goto out;
1835 	}
1836 
1837 	/*
1838 	 * Clearing HPageMigratable for hwpoisoned hugepages to prevent them
1839 	 * from being migrated by memory hotremove.
1840 	 */
1841 	if (count_increased && HPageMigratable(head)) {
1842 		ClearHPageMigratable(head);
1843 		*migratable_cleared = true;
1844 	}
1845 
1846 	return ret;
1847 out:
1848 	if (count_increased)
1849 		put_page(head);
1850 	return ret;
1851 }
1852 
1853 /*
1854  * Taking refcount of hugetlb pages needs extra care about race conditions
1855  * with basic operations like hugepage allocation/free/demotion.
1856  * So some of prechecks for hwpoison (pinning, and testing/setting
1857  * PageHWPoison) should be done in single hugetlb_lock range.
1858  */
1859 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1860 {
1861 	int res;
1862 	struct page *p = pfn_to_page(pfn);
1863 	struct page *head;
1864 	unsigned long page_flags;
1865 	bool migratable_cleared = false;
1866 
1867 	*hugetlb = 1;
1868 retry:
1869 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1870 	if (res == 2) { /* fallback to normal page handling */
1871 		*hugetlb = 0;
1872 		return 0;
1873 	} else if (res == -EHWPOISON) {
1874 		pr_err("%#lx: already hardware poisoned\n", pfn);
1875 		if (flags & MF_ACTION_REQUIRED) {
1876 			head = compound_head(p);
1877 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1878 		}
1879 		return res;
1880 	} else if (res == -EBUSY) {
1881 		if (!(flags & MF_NO_RETRY)) {
1882 			flags |= MF_NO_RETRY;
1883 			goto retry;
1884 		}
1885 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1886 	}
1887 
1888 	head = compound_head(p);
1889 	lock_page(head);
1890 
1891 	if (hwpoison_filter(p)) {
1892 		hugetlb_clear_page_hwpoison(head);
1893 		if (migratable_cleared)
1894 			SetHPageMigratable(head);
1895 		unlock_page(head);
1896 		if (res == 1)
1897 			put_page(head);
1898 		return -EOPNOTSUPP;
1899 	}
1900 
1901 	/*
1902 	 * Handling free hugepage.  The possible race with hugepage allocation
1903 	 * or demotion can be prevented by PageHWPoison flag.
1904 	 */
1905 	if (res == 0) {
1906 		unlock_page(head);
1907 		if (__page_handle_poison(p) >= 0) {
1908 			page_ref_inc(p);
1909 			res = MF_RECOVERED;
1910 		} else {
1911 			res = MF_FAILED;
1912 		}
1913 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
1914 	}
1915 
1916 	page_flags = head->flags;
1917 
1918 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1919 		unlock_page(head);
1920 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1921 	}
1922 
1923 	return identify_page_state(pfn, p, page_flags);
1924 }
1925 
1926 #else
1927 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1928 {
1929 	return 0;
1930 }
1931 
1932 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1933 {
1934 	return 0;
1935 }
1936 #endif	/* CONFIG_HUGETLB_PAGE */
1937 
1938 /* Drop the extra refcount in case we come from madvise() */
1939 static void put_ref_page(unsigned long pfn, int flags)
1940 {
1941 	struct page *page;
1942 
1943 	if (!(flags & MF_COUNT_INCREASED))
1944 		return;
1945 
1946 	page = pfn_to_page(pfn);
1947 	if (page)
1948 		put_page(page);
1949 }
1950 
1951 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1952 		struct dev_pagemap *pgmap)
1953 {
1954 	int rc = -ENXIO;
1955 
1956 	put_ref_page(pfn, flags);
1957 
1958 	/* device metadata space is not recoverable */
1959 	if (!pgmap_pfn_valid(pgmap, pfn))
1960 		goto out;
1961 
1962 	/*
1963 	 * Call driver's implementation to handle the memory failure, otherwise
1964 	 * fall back to generic handler.
1965 	 */
1966 	if (pgmap_has_memory_failure(pgmap)) {
1967 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1968 		/*
1969 		 * Fall back to generic handler too if operation is not
1970 		 * supported inside the driver/device/filesystem.
1971 		 */
1972 		if (rc != -EOPNOTSUPP)
1973 			goto out;
1974 	}
1975 
1976 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
1977 out:
1978 	/* drop pgmap ref acquired in caller */
1979 	put_dev_pagemap(pgmap);
1980 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1981 	return rc;
1982 }
1983 
1984 static DEFINE_MUTEX(mf_mutex);
1985 
1986 /**
1987  * memory_failure - Handle memory failure of a page.
1988  * @pfn: Page Number of the corrupted page
1989  * @flags: fine tune action taken
1990  *
1991  * This function is called by the low level machine check code
1992  * of an architecture when it detects hardware memory corruption
1993  * of a page. It tries its best to recover, which includes
1994  * dropping pages, killing processes etc.
1995  *
1996  * The function is primarily of use for corruptions that
1997  * happen outside the current execution context (e.g. when
1998  * detected by a background scrubber)
1999  *
2000  * Must run in process context (e.g. a work queue) with interrupts
2001  * enabled and no spinlocks hold.
2002  *
2003  * Return: 0 for successfully handled the memory error,
2004  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2005  *         < 0(except -EOPNOTSUPP) on failure.
2006  */
2007 int memory_failure(unsigned long pfn, int flags)
2008 {
2009 	struct page *p;
2010 	struct page *hpage;
2011 	struct dev_pagemap *pgmap;
2012 	int res = 0;
2013 	unsigned long page_flags;
2014 	bool retry = true;
2015 	int hugetlb = 0;
2016 
2017 	if (!sysctl_memory_failure_recovery)
2018 		panic("Memory failure on page %lx", pfn);
2019 
2020 	mutex_lock(&mf_mutex);
2021 
2022 	if (!(flags & MF_SW_SIMULATED))
2023 		hw_memory_failure = true;
2024 
2025 	p = pfn_to_online_page(pfn);
2026 	if (!p) {
2027 		res = arch_memory_failure(pfn, flags);
2028 		if (res == 0)
2029 			goto unlock_mutex;
2030 
2031 		if (pfn_valid(pfn)) {
2032 			pgmap = get_dev_pagemap(pfn, NULL);
2033 			if (pgmap) {
2034 				res = memory_failure_dev_pagemap(pfn, flags,
2035 								 pgmap);
2036 				goto unlock_mutex;
2037 			}
2038 		}
2039 		pr_err("%#lx: memory outside kernel control\n", pfn);
2040 		res = -ENXIO;
2041 		goto unlock_mutex;
2042 	}
2043 
2044 try_again:
2045 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2046 	if (hugetlb)
2047 		goto unlock_mutex;
2048 
2049 	if (TestSetPageHWPoison(p)) {
2050 		pr_err("%#lx: already hardware poisoned\n", pfn);
2051 		res = -EHWPOISON;
2052 		if (flags & MF_ACTION_REQUIRED)
2053 			res = kill_accessing_process(current, pfn, flags);
2054 		if (flags & MF_COUNT_INCREASED)
2055 			put_page(p);
2056 		goto unlock_mutex;
2057 	}
2058 
2059 	hpage = compound_head(p);
2060 
2061 	/*
2062 	 * We need/can do nothing about count=0 pages.
2063 	 * 1) it's a free page, and therefore in safe hand:
2064 	 *    check_new_page() will be the gate keeper.
2065 	 * 2) it's part of a non-compound high order page.
2066 	 *    Implies some kernel user: cannot stop them from
2067 	 *    R/W the page; let's pray that the page has been
2068 	 *    used and will be freed some time later.
2069 	 * In fact it's dangerous to directly bump up page count from 0,
2070 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2071 	 */
2072 	if (!(flags & MF_COUNT_INCREASED)) {
2073 		res = get_hwpoison_page(p, flags);
2074 		if (!res) {
2075 			if (is_free_buddy_page(p)) {
2076 				if (take_page_off_buddy(p)) {
2077 					page_ref_inc(p);
2078 					res = MF_RECOVERED;
2079 				} else {
2080 					/* We lost the race, try again */
2081 					if (retry) {
2082 						ClearPageHWPoison(p);
2083 						retry = false;
2084 						goto try_again;
2085 					}
2086 					res = MF_FAILED;
2087 				}
2088 				res = action_result(pfn, MF_MSG_BUDDY, res);
2089 			} else {
2090 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2091 			}
2092 			goto unlock_mutex;
2093 		} else if (res < 0) {
2094 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2095 			goto unlock_mutex;
2096 		}
2097 	}
2098 
2099 	if (PageTransHuge(hpage)) {
2100 		/*
2101 		 * The flag must be set after the refcount is bumped
2102 		 * otherwise it may race with THP split.
2103 		 * And the flag can't be set in get_hwpoison_page() since
2104 		 * it is called by soft offline too and it is just called
2105 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2106 		 * place.
2107 		 *
2108 		 * Don't need care about the above error handling paths for
2109 		 * get_hwpoison_page() since they handle either free page
2110 		 * or unhandlable page.  The refcount is bumped iff the
2111 		 * page is a valid handlable page.
2112 		 */
2113 		SetPageHasHWPoisoned(hpage);
2114 		if (try_to_split_thp_page(p) < 0) {
2115 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2116 			goto unlock_mutex;
2117 		}
2118 		VM_BUG_ON_PAGE(!page_count(p), p);
2119 	}
2120 
2121 	/*
2122 	 * We ignore non-LRU pages for good reasons.
2123 	 * - PG_locked is only well defined for LRU pages and a few others
2124 	 * - to avoid races with __SetPageLocked()
2125 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2126 	 * The check (unnecessarily) ignores LRU pages being isolated and
2127 	 * walked by the page reclaim code, however that's not a big loss.
2128 	 */
2129 	shake_page(p);
2130 
2131 	lock_page(p);
2132 
2133 	/*
2134 	 * We're only intended to deal with the non-Compound page here.
2135 	 * However, the page could have changed compound pages due to
2136 	 * race window. If this happens, we could try again to hopefully
2137 	 * handle the page next round.
2138 	 */
2139 	if (PageCompound(p)) {
2140 		if (retry) {
2141 			ClearPageHWPoison(p);
2142 			unlock_page(p);
2143 			put_page(p);
2144 			flags &= ~MF_COUNT_INCREASED;
2145 			retry = false;
2146 			goto try_again;
2147 		}
2148 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2149 		goto unlock_page;
2150 	}
2151 
2152 	/*
2153 	 * We use page flags to determine what action should be taken, but
2154 	 * the flags can be modified by the error containment action.  One
2155 	 * example is an mlocked page, where PG_mlocked is cleared by
2156 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2157 	 * correctly, we save a copy of the page flags at this time.
2158 	 */
2159 	page_flags = p->flags;
2160 
2161 	if (hwpoison_filter(p)) {
2162 		ClearPageHWPoison(p);
2163 		unlock_page(p);
2164 		put_page(p);
2165 		res = -EOPNOTSUPP;
2166 		goto unlock_mutex;
2167 	}
2168 
2169 	/*
2170 	 * __munlock_pagevec may clear a writeback page's LRU flag without
2171 	 * page_lock. We need wait writeback completion for this page or it
2172 	 * may trigger vfs BUG while evict inode.
2173 	 */
2174 	if (!PageLRU(p) && !PageWriteback(p))
2175 		goto identify_page_state;
2176 
2177 	/*
2178 	 * It's very difficult to mess with pages currently under IO
2179 	 * and in many cases impossible, so we just avoid it here.
2180 	 */
2181 	wait_on_page_writeback(p);
2182 
2183 	/*
2184 	 * Now take care of user space mappings.
2185 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2186 	 */
2187 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2188 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2189 		goto unlock_page;
2190 	}
2191 
2192 	/*
2193 	 * Torn down by someone else?
2194 	 */
2195 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2196 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2197 		goto unlock_page;
2198 	}
2199 
2200 identify_page_state:
2201 	res = identify_page_state(pfn, p, page_flags);
2202 	mutex_unlock(&mf_mutex);
2203 	return res;
2204 unlock_page:
2205 	unlock_page(p);
2206 unlock_mutex:
2207 	mutex_unlock(&mf_mutex);
2208 	return res;
2209 }
2210 EXPORT_SYMBOL_GPL(memory_failure);
2211 
2212 #define MEMORY_FAILURE_FIFO_ORDER	4
2213 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2214 
2215 struct memory_failure_entry {
2216 	unsigned long pfn;
2217 	int flags;
2218 };
2219 
2220 struct memory_failure_cpu {
2221 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2222 		      MEMORY_FAILURE_FIFO_SIZE);
2223 	spinlock_t lock;
2224 	struct work_struct work;
2225 };
2226 
2227 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2228 
2229 /**
2230  * memory_failure_queue - Schedule handling memory failure of a page.
2231  * @pfn: Page Number of the corrupted page
2232  * @flags: Flags for memory failure handling
2233  *
2234  * This function is called by the low level hardware error handler
2235  * when it detects hardware memory corruption of a page. It schedules
2236  * the recovering of error page, including dropping pages, killing
2237  * processes etc.
2238  *
2239  * The function is primarily of use for corruptions that
2240  * happen outside the current execution context (e.g. when
2241  * detected by a background scrubber)
2242  *
2243  * Can run in IRQ context.
2244  */
2245 void memory_failure_queue(unsigned long pfn, int flags)
2246 {
2247 	struct memory_failure_cpu *mf_cpu;
2248 	unsigned long proc_flags;
2249 	struct memory_failure_entry entry = {
2250 		.pfn =		pfn,
2251 		.flags =	flags,
2252 	};
2253 
2254 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2255 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2256 	if (kfifo_put(&mf_cpu->fifo, entry))
2257 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2258 	else
2259 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2260 		       pfn);
2261 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2262 	put_cpu_var(memory_failure_cpu);
2263 }
2264 EXPORT_SYMBOL_GPL(memory_failure_queue);
2265 
2266 static void memory_failure_work_func(struct work_struct *work)
2267 {
2268 	struct memory_failure_cpu *mf_cpu;
2269 	struct memory_failure_entry entry = { 0, };
2270 	unsigned long proc_flags;
2271 	int gotten;
2272 
2273 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2274 	for (;;) {
2275 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2276 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2277 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2278 		if (!gotten)
2279 			break;
2280 		if (entry.flags & MF_SOFT_OFFLINE)
2281 			soft_offline_page(entry.pfn, entry.flags);
2282 		else
2283 			memory_failure(entry.pfn, entry.flags);
2284 	}
2285 }
2286 
2287 /*
2288  * Process memory_failure work queued on the specified CPU.
2289  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2290  */
2291 void memory_failure_queue_kick(int cpu)
2292 {
2293 	struct memory_failure_cpu *mf_cpu;
2294 
2295 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2296 	cancel_work_sync(&mf_cpu->work);
2297 	memory_failure_work_func(&mf_cpu->work);
2298 }
2299 
2300 static int __init memory_failure_init(void)
2301 {
2302 	struct memory_failure_cpu *mf_cpu;
2303 	int cpu;
2304 
2305 	for_each_possible_cpu(cpu) {
2306 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2307 		spin_lock_init(&mf_cpu->lock);
2308 		INIT_KFIFO(mf_cpu->fifo);
2309 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2310 	}
2311 
2312 	return 0;
2313 }
2314 core_initcall(memory_failure_init);
2315 
2316 #undef pr_fmt
2317 #define pr_fmt(fmt)	"" fmt
2318 #define unpoison_pr_info(fmt, pfn, rs)			\
2319 ({							\
2320 	if (__ratelimit(rs))				\
2321 		pr_info(fmt, pfn);			\
2322 })
2323 
2324 /**
2325  * unpoison_memory - Unpoison a previously poisoned page
2326  * @pfn: Page number of the to be unpoisoned page
2327  *
2328  * Software-unpoison a page that has been poisoned by
2329  * memory_failure() earlier.
2330  *
2331  * This is only done on the software-level, so it only works
2332  * for linux injected failures, not real hardware failures
2333  *
2334  * Returns 0 for success, otherwise -errno.
2335  */
2336 int unpoison_memory(unsigned long pfn)
2337 {
2338 	struct page *page;
2339 	struct page *p;
2340 	int ret = -EBUSY;
2341 	unsigned long count = 1;
2342 	bool huge = false;
2343 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2344 					DEFAULT_RATELIMIT_BURST);
2345 
2346 	if (!pfn_valid(pfn))
2347 		return -ENXIO;
2348 
2349 	p = pfn_to_page(pfn);
2350 	page = compound_head(p);
2351 
2352 	mutex_lock(&mf_mutex);
2353 
2354 	if (hw_memory_failure) {
2355 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2356 				 pfn, &unpoison_rs);
2357 		ret = -EOPNOTSUPP;
2358 		goto unlock_mutex;
2359 	}
2360 
2361 	if (!PageHWPoison(p)) {
2362 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2363 				 pfn, &unpoison_rs);
2364 		goto unlock_mutex;
2365 	}
2366 
2367 	if (page_count(page) > 1) {
2368 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2369 				 pfn, &unpoison_rs);
2370 		goto unlock_mutex;
2371 	}
2372 
2373 	if (page_mapped(page)) {
2374 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2375 				 pfn, &unpoison_rs);
2376 		goto unlock_mutex;
2377 	}
2378 
2379 	if (page_mapping(page)) {
2380 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2381 				 pfn, &unpoison_rs);
2382 		goto unlock_mutex;
2383 	}
2384 
2385 	if (PageSlab(page) || PageTable(page) || PageReserved(page))
2386 		goto unlock_mutex;
2387 
2388 	ret = get_hwpoison_page(p, MF_UNPOISON);
2389 	if (!ret) {
2390 		if (PageHuge(p)) {
2391 			huge = true;
2392 			count = free_raw_hwp_pages(page, false);
2393 			if (count == 0) {
2394 				ret = -EBUSY;
2395 				goto unlock_mutex;
2396 			}
2397 		}
2398 		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2399 	} else if (ret < 0) {
2400 		if (ret == -EHWPOISON) {
2401 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2402 		} else
2403 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2404 					 pfn, &unpoison_rs);
2405 	} else {
2406 		if (PageHuge(p)) {
2407 			huge = true;
2408 			count = free_raw_hwp_pages(page, false);
2409 			if (count == 0) {
2410 				ret = -EBUSY;
2411 				put_page(page);
2412 				goto unlock_mutex;
2413 			}
2414 		}
2415 
2416 		put_page(page);
2417 		if (TestClearPageHWPoison(p)) {
2418 			put_page(page);
2419 			ret = 0;
2420 		}
2421 	}
2422 
2423 unlock_mutex:
2424 	mutex_unlock(&mf_mutex);
2425 	if (!ret) {
2426 		if (!huge)
2427 			num_poisoned_pages_sub(pfn, 1);
2428 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2429 				 page_to_pfn(p), &unpoison_rs);
2430 	}
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL(unpoison_memory);
2434 
2435 static bool isolate_page(struct page *page, struct list_head *pagelist)
2436 {
2437 	bool isolated = false;
2438 
2439 	if (PageHuge(page)) {
2440 		isolated = !isolate_hugetlb(page, pagelist);
2441 	} else {
2442 		bool lru = !__PageMovable(page);
2443 
2444 		if (lru)
2445 			isolated = !isolate_lru_page(page);
2446 		else
2447 			isolated = !isolate_movable_page(page,
2448 							 ISOLATE_UNEVICTABLE);
2449 
2450 		if (isolated) {
2451 			list_add(&page->lru, pagelist);
2452 			if (lru)
2453 				inc_node_page_state(page, NR_ISOLATED_ANON +
2454 						    page_is_file_lru(page));
2455 		}
2456 	}
2457 
2458 	/*
2459 	 * If we succeed to isolate the page, we grabbed another refcount on
2460 	 * the page, so we can safely drop the one we got from get_any_pages().
2461 	 * If we failed to isolate the page, it means that we cannot go further
2462 	 * and we will return an error, so drop the reference we got from
2463 	 * get_any_pages() as well.
2464 	 */
2465 	put_page(page);
2466 	return isolated;
2467 }
2468 
2469 /*
2470  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2471  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2472  * If the page is mapped, it migrates the contents over.
2473  */
2474 static int soft_offline_in_use_page(struct page *page)
2475 {
2476 	long ret = 0;
2477 	unsigned long pfn = page_to_pfn(page);
2478 	struct page *hpage = compound_head(page);
2479 	char const *msg_page[] = {"page", "hugepage"};
2480 	bool huge = PageHuge(page);
2481 	LIST_HEAD(pagelist);
2482 	struct migration_target_control mtc = {
2483 		.nid = NUMA_NO_NODE,
2484 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2485 	};
2486 
2487 	if (!huge && PageTransHuge(hpage)) {
2488 		if (try_to_split_thp_page(page)) {
2489 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2490 			return -EBUSY;
2491 		}
2492 		hpage = page;
2493 	}
2494 
2495 	lock_page(page);
2496 	if (!PageHuge(page))
2497 		wait_on_page_writeback(page);
2498 	if (PageHWPoison(page)) {
2499 		unlock_page(page);
2500 		put_page(page);
2501 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2502 		return 0;
2503 	}
2504 
2505 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2506 		/*
2507 		 * Try to invalidate first. This should work for
2508 		 * non dirty unmapped page cache pages.
2509 		 */
2510 		ret = invalidate_inode_page(page);
2511 	unlock_page(page);
2512 
2513 	if (ret) {
2514 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2515 		page_handle_poison(page, false, true);
2516 		return 0;
2517 	}
2518 
2519 	if (isolate_page(hpage, &pagelist)) {
2520 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2521 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2522 		if (!ret) {
2523 			bool release = !huge;
2524 
2525 			if (!page_handle_poison(page, huge, release))
2526 				ret = -EBUSY;
2527 		} else {
2528 			if (!list_empty(&pagelist))
2529 				putback_movable_pages(&pagelist);
2530 
2531 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2532 				pfn, msg_page[huge], ret, &page->flags);
2533 			if (ret > 0)
2534 				ret = -EBUSY;
2535 		}
2536 	} else {
2537 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2538 			pfn, msg_page[huge], page_count(page), &page->flags);
2539 		ret = -EBUSY;
2540 	}
2541 	return ret;
2542 }
2543 
2544 /**
2545  * soft_offline_page - Soft offline a page.
2546  * @pfn: pfn to soft-offline
2547  * @flags: flags. Same as memory_failure().
2548  *
2549  * Returns 0 on success
2550  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2551  *         < 0 otherwise negated errno.
2552  *
2553  * Soft offline a page, by migration or invalidation,
2554  * without killing anything. This is for the case when
2555  * a page is not corrupted yet (so it's still valid to access),
2556  * but has had a number of corrected errors and is better taken
2557  * out.
2558  *
2559  * The actual policy on when to do that is maintained by
2560  * user space.
2561  *
2562  * This should never impact any application or cause data loss,
2563  * however it might take some time.
2564  *
2565  * This is not a 100% solution for all memory, but tries to be
2566  * ``good enough'' for the majority of memory.
2567  */
2568 int soft_offline_page(unsigned long pfn, int flags)
2569 {
2570 	int ret;
2571 	bool try_again = true;
2572 	struct page *page;
2573 
2574 	if (!pfn_valid(pfn)) {
2575 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2576 		return -ENXIO;
2577 	}
2578 
2579 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2580 	page = pfn_to_online_page(pfn);
2581 	if (!page) {
2582 		put_ref_page(pfn, flags);
2583 		return -EIO;
2584 	}
2585 
2586 	mutex_lock(&mf_mutex);
2587 
2588 	if (PageHWPoison(page)) {
2589 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2590 		put_ref_page(pfn, flags);
2591 		mutex_unlock(&mf_mutex);
2592 		return 0;
2593 	}
2594 
2595 retry:
2596 	get_online_mems();
2597 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2598 	put_online_mems();
2599 
2600 	if (hwpoison_filter(page)) {
2601 		if (ret > 0)
2602 			put_page(page);
2603 
2604 		mutex_unlock(&mf_mutex);
2605 		return -EOPNOTSUPP;
2606 	}
2607 
2608 	if (ret > 0) {
2609 		ret = soft_offline_in_use_page(page);
2610 	} else if (ret == 0) {
2611 		if (!page_handle_poison(page, true, false) && try_again) {
2612 			try_again = false;
2613 			flags &= ~MF_COUNT_INCREASED;
2614 			goto retry;
2615 		}
2616 	}
2617 
2618 	mutex_unlock(&mf_mutex);
2619 
2620 	return ret;
2621 }
2622