xref: /linux/mm/memory-failure.c (revision 3252b11fc4790d046b93f300c898df2f7cd7c176)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a 2bit ECC memory or cache
11  * failure.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronous to other VM
15  * users, because memory failures could happen anytime and anywhere,
16  * possibly violating some of their assumptions. This is why this code
17  * has to be extremely careful. Generally it tries to use normal locking
18  * rules, as in get the standard locks, even if that means the
19  * error handling takes potentially a long time.
20  *
21  * The operation to map back from RMAP chains to processes has to walk
22  * the complete process list and has non linear complexity with the number
23  * mappings. In short it can be quite slow. But since memory corruptions
24  * are rare we hope to get away with this.
25  */
26 
27 /*
28  * Notebook:
29  * - hugetlb needs more code
30  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31  * - pass bad pages to kdump next kernel
32  */
33 #define DEBUG 1		/* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/sched.h>
38 #include <linux/ksm.h>
39 #include <linux/rmap.h>
40 #include <linux/pagemap.h>
41 #include <linux/swap.h>
42 #include <linux/backing-dev.h>
43 #include "internal.h"
44 
45 int sysctl_memory_failure_early_kill __read_mostly = 0;
46 
47 int sysctl_memory_failure_recovery __read_mostly = 1;
48 
49 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
50 
51 /*
52  * Send all the processes who have the page mapped an ``action optional''
53  * signal.
54  */
55 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
56 			unsigned long pfn)
57 {
58 	struct siginfo si;
59 	int ret;
60 
61 	printk(KERN_ERR
62 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
63 		pfn, t->comm, t->pid);
64 	si.si_signo = SIGBUS;
65 	si.si_errno = 0;
66 	si.si_code = BUS_MCEERR_AO;
67 	si.si_addr = (void *)addr;
68 #ifdef __ARCH_SI_TRAPNO
69 	si.si_trapno = trapno;
70 #endif
71 	si.si_addr_lsb = PAGE_SHIFT;
72 	/*
73 	 * Don't use force here, it's convenient if the signal
74 	 * can be temporarily blocked.
75 	 * This could cause a loop when the user sets SIGBUS
76 	 * to SIG_IGN, but hopefully noone will do that?
77 	 */
78 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
79 	if (ret < 0)
80 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
81 		       t->comm, t->pid, ret);
82 	return ret;
83 }
84 
85 /*
86  * Kill all processes that have a poisoned page mapped and then isolate
87  * the page.
88  *
89  * General strategy:
90  * Find all processes having the page mapped and kill them.
91  * But we keep a page reference around so that the page is not
92  * actually freed yet.
93  * Then stash the page away
94  *
95  * There's no convenient way to get back to mapped processes
96  * from the VMAs. So do a brute-force search over all
97  * running processes.
98  *
99  * Remember that machine checks are not common (or rather
100  * if they are common you have other problems), so this shouldn't
101  * be a performance issue.
102  *
103  * Also there are some races possible while we get from the
104  * error detection to actually handle it.
105  */
106 
107 struct to_kill {
108 	struct list_head nd;
109 	struct task_struct *tsk;
110 	unsigned long addr;
111 	unsigned addr_valid:1;
112 };
113 
114 /*
115  * Failure handling: if we can't find or can't kill a process there's
116  * not much we can do.	We just print a message and ignore otherwise.
117  */
118 
119 /*
120  * Schedule a process for later kill.
121  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
122  * TBD would GFP_NOIO be enough?
123  */
124 static void add_to_kill(struct task_struct *tsk, struct page *p,
125 		       struct vm_area_struct *vma,
126 		       struct list_head *to_kill,
127 		       struct to_kill **tkc)
128 {
129 	struct to_kill *tk;
130 
131 	if (*tkc) {
132 		tk = *tkc;
133 		*tkc = NULL;
134 	} else {
135 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
136 		if (!tk) {
137 			printk(KERN_ERR
138 		"MCE: Out of memory while machine check handling\n");
139 			return;
140 		}
141 	}
142 	tk->addr = page_address_in_vma(p, vma);
143 	tk->addr_valid = 1;
144 
145 	/*
146 	 * In theory we don't have to kill when the page was
147 	 * munmaped. But it could be also a mremap. Since that's
148 	 * likely very rare kill anyways just out of paranoia, but use
149 	 * a SIGKILL because the error is not contained anymore.
150 	 */
151 	if (tk->addr == -EFAULT) {
152 		pr_debug("MCE: Unable to find user space address %lx in %s\n",
153 			page_to_pfn(p), tsk->comm);
154 		tk->addr_valid = 0;
155 	}
156 	get_task_struct(tsk);
157 	tk->tsk = tsk;
158 	list_add_tail(&tk->nd, to_kill);
159 }
160 
161 /*
162  * Kill the processes that have been collected earlier.
163  *
164  * Only do anything when DOIT is set, otherwise just free the list
165  * (this is used for clean pages which do not need killing)
166  * Also when FAIL is set do a force kill because something went
167  * wrong earlier.
168  */
169 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
170 			  int fail, unsigned long pfn)
171 {
172 	struct to_kill *tk, *next;
173 
174 	list_for_each_entry_safe (tk, next, to_kill, nd) {
175 		if (doit) {
176 			/*
177 			 * In case something went wrong with munmapping
178 			 * make sure the process doesn't catch the
179 			 * signal and then access the memory. Just kill it.
180 			 * the signal handlers
181 			 */
182 			if (fail || tk->addr_valid == 0) {
183 				printk(KERN_ERR
184 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
185 					pfn, tk->tsk->comm, tk->tsk->pid);
186 				force_sig(SIGKILL, tk->tsk);
187 			}
188 
189 			/*
190 			 * In theory the process could have mapped
191 			 * something else on the address in-between. We could
192 			 * check for that, but we need to tell the
193 			 * process anyways.
194 			 */
195 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
196 					      pfn) < 0)
197 				printk(KERN_ERR
198 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
199 					pfn, tk->tsk->comm, tk->tsk->pid);
200 		}
201 		put_task_struct(tk->tsk);
202 		kfree(tk);
203 	}
204 }
205 
206 static int task_early_kill(struct task_struct *tsk)
207 {
208 	if (!tsk->mm)
209 		return 0;
210 	if (tsk->flags & PF_MCE_PROCESS)
211 		return !!(tsk->flags & PF_MCE_EARLY);
212 	return sysctl_memory_failure_early_kill;
213 }
214 
215 /*
216  * Collect processes when the error hit an anonymous page.
217  */
218 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
219 			      struct to_kill **tkc)
220 {
221 	struct vm_area_struct *vma;
222 	struct task_struct *tsk;
223 	struct anon_vma *av;
224 
225 	read_lock(&tasklist_lock);
226 	av = page_lock_anon_vma(page);
227 	if (av == NULL)	/* Not actually mapped anymore */
228 		goto out;
229 	for_each_process (tsk) {
230 		if (!task_early_kill(tsk))
231 			continue;
232 		list_for_each_entry (vma, &av->head, anon_vma_node) {
233 			if (!page_mapped_in_vma(page, vma))
234 				continue;
235 			if (vma->vm_mm == tsk->mm)
236 				add_to_kill(tsk, page, vma, to_kill, tkc);
237 		}
238 	}
239 	page_unlock_anon_vma(av);
240 out:
241 	read_unlock(&tasklist_lock);
242 }
243 
244 /*
245  * Collect processes when the error hit a file mapped page.
246  */
247 static void collect_procs_file(struct page *page, struct list_head *to_kill,
248 			      struct to_kill **tkc)
249 {
250 	struct vm_area_struct *vma;
251 	struct task_struct *tsk;
252 	struct prio_tree_iter iter;
253 	struct address_space *mapping = page->mapping;
254 
255 	/*
256 	 * A note on the locking order between the two locks.
257 	 * We don't rely on this particular order.
258 	 * If you have some other code that needs a different order
259 	 * feel free to switch them around. Or add a reverse link
260 	 * from mm_struct to task_struct, then this could be all
261 	 * done without taking tasklist_lock and looping over all tasks.
262 	 */
263 
264 	read_lock(&tasklist_lock);
265 	spin_lock(&mapping->i_mmap_lock);
266 	for_each_process(tsk) {
267 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
268 
269 		if (!task_early_kill(tsk))
270 			continue;
271 
272 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
273 				      pgoff) {
274 			/*
275 			 * Send early kill signal to tasks where a vma covers
276 			 * the page but the corrupted page is not necessarily
277 			 * mapped it in its pte.
278 			 * Assume applications who requested early kill want
279 			 * to be informed of all such data corruptions.
280 			 */
281 			if (vma->vm_mm == tsk->mm)
282 				add_to_kill(tsk, page, vma, to_kill, tkc);
283 		}
284 	}
285 	spin_unlock(&mapping->i_mmap_lock);
286 	read_unlock(&tasklist_lock);
287 }
288 
289 /*
290  * Collect the processes who have the corrupted page mapped to kill.
291  * This is done in two steps for locking reasons.
292  * First preallocate one tokill structure outside the spin locks,
293  * so that we can kill at least one process reasonably reliable.
294  */
295 static void collect_procs(struct page *page, struct list_head *tokill)
296 {
297 	struct to_kill *tk;
298 
299 	if (!page->mapping)
300 		return;
301 
302 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
303 	if (!tk)
304 		return;
305 	if (PageAnon(page))
306 		collect_procs_anon(page, tokill, &tk);
307 	else
308 		collect_procs_file(page, tokill, &tk);
309 	kfree(tk);
310 }
311 
312 /*
313  * Error handlers for various types of pages.
314  */
315 
316 enum outcome {
317 	FAILED,		/* Error handling failed */
318 	DELAYED,	/* Will be handled later */
319 	IGNORED,	/* Error safely ignored */
320 	RECOVERED,	/* Successfully recovered */
321 };
322 
323 static const char *action_name[] = {
324 	[FAILED] = "Failed",
325 	[DELAYED] = "Delayed",
326 	[IGNORED] = "Ignored",
327 	[RECOVERED] = "Recovered",
328 };
329 
330 /*
331  * Error hit kernel page.
332  * Do nothing, try to be lucky and not touch this instead. For a few cases we
333  * could be more sophisticated.
334  */
335 static int me_kernel(struct page *p, unsigned long pfn)
336 {
337 	return DELAYED;
338 }
339 
340 /*
341  * Already poisoned page.
342  */
343 static int me_ignore(struct page *p, unsigned long pfn)
344 {
345 	return IGNORED;
346 }
347 
348 /*
349  * Page in unknown state. Do nothing.
350  */
351 static int me_unknown(struct page *p, unsigned long pfn)
352 {
353 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
354 	return FAILED;
355 }
356 
357 /*
358  * Free memory
359  */
360 static int me_free(struct page *p, unsigned long pfn)
361 {
362 	return DELAYED;
363 }
364 
365 /*
366  * Clean (or cleaned) page cache page.
367  */
368 static int me_pagecache_clean(struct page *p, unsigned long pfn)
369 {
370 	int err;
371 	int ret = FAILED;
372 	struct address_space *mapping;
373 
374 	/*
375 	 * For anonymous pages we're done the only reference left
376 	 * should be the one m_f() holds.
377 	 */
378 	if (PageAnon(p))
379 		return RECOVERED;
380 
381 	/*
382 	 * Now truncate the page in the page cache. This is really
383 	 * more like a "temporary hole punch"
384 	 * Don't do this for block devices when someone else
385 	 * has a reference, because it could be file system metadata
386 	 * and that's not safe to truncate.
387 	 */
388 	mapping = page_mapping(p);
389 	if (!mapping) {
390 		/*
391 		 * Page has been teared down in the meanwhile
392 		 */
393 		return FAILED;
394 	}
395 
396 	/*
397 	 * Truncation is a bit tricky. Enable it per file system for now.
398 	 *
399 	 * Open: to take i_mutex or not for this? Right now we don't.
400 	 */
401 	if (mapping->a_ops->error_remove_page) {
402 		err = mapping->a_ops->error_remove_page(mapping, p);
403 		if (err != 0) {
404 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
405 					pfn, err);
406 		} else if (page_has_private(p) &&
407 				!try_to_release_page(p, GFP_NOIO)) {
408 			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
409 		} else {
410 			ret = RECOVERED;
411 		}
412 	} else {
413 		/*
414 		 * If the file system doesn't support it just invalidate
415 		 * This fails on dirty or anything with private pages
416 		 */
417 		if (invalidate_inode_page(p))
418 			ret = RECOVERED;
419 		else
420 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
421 				pfn);
422 	}
423 	return ret;
424 }
425 
426 /*
427  * Dirty cache page page
428  * Issues: when the error hit a hole page the error is not properly
429  * propagated.
430  */
431 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
432 {
433 	struct address_space *mapping = page_mapping(p);
434 
435 	SetPageError(p);
436 	/* TBD: print more information about the file. */
437 	if (mapping) {
438 		/*
439 		 * IO error will be reported by write(), fsync(), etc.
440 		 * who check the mapping.
441 		 * This way the application knows that something went
442 		 * wrong with its dirty file data.
443 		 *
444 		 * There's one open issue:
445 		 *
446 		 * The EIO will be only reported on the next IO
447 		 * operation and then cleared through the IO map.
448 		 * Normally Linux has two mechanisms to pass IO error
449 		 * first through the AS_EIO flag in the address space
450 		 * and then through the PageError flag in the page.
451 		 * Since we drop pages on memory failure handling the
452 		 * only mechanism open to use is through AS_AIO.
453 		 *
454 		 * This has the disadvantage that it gets cleared on
455 		 * the first operation that returns an error, while
456 		 * the PageError bit is more sticky and only cleared
457 		 * when the page is reread or dropped.  If an
458 		 * application assumes it will always get error on
459 		 * fsync, but does other operations on the fd before
460 		 * and the page is dropped inbetween then the error
461 		 * will not be properly reported.
462 		 *
463 		 * This can already happen even without hwpoisoned
464 		 * pages: first on metadata IO errors (which only
465 		 * report through AS_EIO) or when the page is dropped
466 		 * at the wrong time.
467 		 *
468 		 * So right now we assume that the application DTRT on
469 		 * the first EIO, but we're not worse than other parts
470 		 * of the kernel.
471 		 */
472 		mapping_set_error(mapping, EIO);
473 	}
474 
475 	return me_pagecache_clean(p, pfn);
476 }
477 
478 /*
479  * Clean and dirty swap cache.
480  *
481  * Dirty swap cache page is tricky to handle. The page could live both in page
482  * cache and swap cache(ie. page is freshly swapped in). So it could be
483  * referenced concurrently by 2 types of PTEs:
484  * normal PTEs and swap PTEs. We try to handle them consistently by calling
485  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
486  * and then
487  *      - clear dirty bit to prevent IO
488  *      - remove from LRU
489  *      - but keep in the swap cache, so that when we return to it on
490  *        a later page fault, we know the application is accessing
491  *        corrupted data and shall be killed (we installed simple
492  *        interception code in do_swap_page to catch it).
493  *
494  * Clean swap cache pages can be directly isolated. A later page fault will
495  * bring in the known good data from disk.
496  */
497 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
498 {
499 	ClearPageDirty(p);
500 	/* Trigger EIO in shmem: */
501 	ClearPageUptodate(p);
502 
503 	return DELAYED;
504 }
505 
506 static int me_swapcache_clean(struct page *p, unsigned long pfn)
507 {
508 	delete_from_swap_cache(p);
509 
510 	return RECOVERED;
511 }
512 
513 /*
514  * Huge pages. Needs work.
515  * Issues:
516  * No rmap support so we cannot find the original mapper. In theory could walk
517  * all MMs and look for the mappings, but that would be non atomic and racy.
518  * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
519  * like just walking the current process and hoping it has it mapped (that
520  * should be usually true for the common "shared database cache" case)
521  * Should handle free huge pages and dequeue them too, but this needs to
522  * handle huge page accounting correctly.
523  */
524 static int me_huge_page(struct page *p, unsigned long pfn)
525 {
526 	return FAILED;
527 }
528 
529 /*
530  * Various page states we can handle.
531  *
532  * A page state is defined by its current page->flags bits.
533  * The table matches them in order and calls the right handler.
534  *
535  * This is quite tricky because we can access page at any time
536  * in its live cycle, so all accesses have to be extremly careful.
537  *
538  * This is not complete. More states could be added.
539  * For any missing state don't attempt recovery.
540  */
541 
542 #define dirty		(1UL << PG_dirty)
543 #define sc		(1UL << PG_swapcache)
544 #define unevict		(1UL << PG_unevictable)
545 #define mlock		(1UL << PG_mlocked)
546 #define writeback	(1UL << PG_writeback)
547 #define lru		(1UL << PG_lru)
548 #define swapbacked	(1UL << PG_swapbacked)
549 #define head		(1UL << PG_head)
550 #define tail		(1UL << PG_tail)
551 #define compound	(1UL << PG_compound)
552 #define slab		(1UL << PG_slab)
553 #define buddy		(1UL << PG_buddy)
554 #define reserved	(1UL << PG_reserved)
555 
556 static struct page_state {
557 	unsigned long mask;
558 	unsigned long res;
559 	char *msg;
560 	int (*action)(struct page *p, unsigned long pfn);
561 } error_states[] = {
562 	{ reserved,	reserved,	"reserved kernel",	me_ignore },
563 	{ buddy,	buddy,		"free kernel",	me_free },
564 
565 	/*
566 	 * Could in theory check if slab page is free or if we can drop
567 	 * currently unused objects without touching them. But just
568 	 * treat it as standard kernel for now.
569 	 */
570 	{ slab,		slab,		"kernel slab",	me_kernel },
571 
572 #ifdef CONFIG_PAGEFLAGS_EXTENDED
573 	{ head,		head,		"huge",		me_huge_page },
574 	{ tail,		tail,		"huge",		me_huge_page },
575 #else
576 	{ compound,	compound,	"huge",		me_huge_page },
577 #endif
578 
579 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
580 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
581 
582 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
583 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
584 
585 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
586 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
587 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
588 #endif
589 
590 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
591 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
592 	{ swapbacked,	swapbacked,	"anonymous",	me_pagecache_clean },
593 
594 	/*
595 	 * Catchall entry: must be at end.
596 	 */
597 	{ 0,		0,		"unknown page state",	me_unknown },
598 };
599 
600 static void action_result(unsigned long pfn, char *msg, int result)
601 {
602 	struct page *page = NULL;
603 	if (pfn_valid(pfn))
604 		page = pfn_to_page(pfn);
605 
606 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
607 		pfn,
608 		page && PageDirty(page) ? "dirty " : "",
609 		msg, action_name[result]);
610 }
611 
612 static int page_action(struct page_state *ps, struct page *p,
613 			unsigned long pfn, int ref)
614 {
615 	int result;
616 	int count;
617 
618 	result = ps->action(p, pfn);
619 	action_result(pfn, ps->msg, result);
620 
621 	count = page_count(p) - 1 - ref;
622 	if (count != 0)
623 		printk(KERN_ERR
624 		       "MCE %#lx: %s page still referenced by %d users\n",
625 		       pfn, ps->msg, count);
626 
627 	/* Could do more checks here if page looks ok */
628 	/*
629 	 * Could adjust zone counters here to correct for the missing page.
630 	 */
631 
632 	return result == RECOVERED ? 0 : -EBUSY;
633 }
634 
635 #define N_UNMAP_TRIES 5
636 
637 /*
638  * Do all that is necessary to remove user space mappings. Unmap
639  * the pages and send SIGBUS to the processes if the data was dirty.
640  */
641 static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
642 				  int trapno)
643 {
644 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
645 	struct address_space *mapping;
646 	LIST_HEAD(tokill);
647 	int ret;
648 	int i;
649 	int kill = 1;
650 
651 	if (PageReserved(p) || PageCompound(p) || PageSlab(p) || PageKsm(p))
652 		return;
653 
654 	/*
655 	 * This check implies we don't kill processes if their pages
656 	 * are in the swap cache early. Those are always late kills.
657 	 */
658 	if (!page_mapped(p))
659 		return;
660 
661 	if (PageSwapCache(p)) {
662 		printk(KERN_ERR
663 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
664 		ttu |= TTU_IGNORE_HWPOISON;
665 	}
666 
667 	/*
668 	 * Propagate the dirty bit from PTEs to struct page first, because we
669 	 * need this to decide if we should kill or just drop the page.
670 	 */
671 	mapping = page_mapping(p);
672 	if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
673 		if (page_mkclean(p)) {
674 			SetPageDirty(p);
675 		} else {
676 			kill = 0;
677 			ttu |= TTU_IGNORE_HWPOISON;
678 			printk(KERN_INFO
679 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
680 				pfn);
681 		}
682 	}
683 
684 	/*
685 	 * First collect all the processes that have the page
686 	 * mapped in dirty form.  This has to be done before try_to_unmap,
687 	 * because ttu takes the rmap data structures down.
688 	 *
689 	 * Error handling: We ignore errors here because
690 	 * there's nothing that can be done.
691 	 */
692 	if (kill)
693 		collect_procs(p, &tokill);
694 
695 	/*
696 	 * try_to_unmap can fail temporarily due to races.
697 	 * Try a few times (RED-PEN better strategy?)
698 	 */
699 	for (i = 0; i < N_UNMAP_TRIES; i++) {
700 		ret = try_to_unmap(p, ttu);
701 		if (ret == SWAP_SUCCESS)
702 			break;
703 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
704 	}
705 
706 	if (ret != SWAP_SUCCESS)
707 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
708 				pfn, page_mapcount(p));
709 
710 	/*
711 	 * Now that the dirty bit has been propagated to the
712 	 * struct page and all unmaps done we can decide if
713 	 * killing is needed or not.  Only kill when the page
714 	 * was dirty, otherwise the tokill list is merely
715 	 * freed.  When there was a problem unmapping earlier
716 	 * use a more force-full uncatchable kill to prevent
717 	 * any accesses to the poisoned memory.
718 	 */
719 	kill_procs_ao(&tokill, !!PageDirty(p), trapno,
720 		      ret != SWAP_SUCCESS, pfn);
721 }
722 
723 int __memory_failure(unsigned long pfn, int trapno, int ref)
724 {
725 	unsigned long lru_flag;
726 	struct page_state *ps;
727 	struct page *p;
728 	int res;
729 
730 	if (!sysctl_memory_failure_recovery)
731 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
732 
733 	if (!pfn_valid(pfn)) {
734 		action_result(pfn, "memory outside kernel control", IGNORED);
735 		return -EIO;
736 	}
737 
738 	p = pfn_to_page(pfn);
739 	if (TestSetPageHWPoison(p)) {
740 		action_result(pfn, "already hardware poisoned", IGNORED);
741 		return 0;
742 	}
743 
744 	atomic_long_add(1, &mce_bad_pages);
745 
746 	/*
747 	 * We need/can do nothing about count=0 pages.
748 	 * 1) it's a free page, and therefore in safe hand:
749 	 *    prep_new_page() will be the gate keeper.
750 	 * 2) it's part of a non-compound high order page.
751 	 *    Implies some kernel user: cannot stop them from
752 	 *    R/W the page; let's pray that the page has been
753 	 *    used and will be freed some time later.
754 	 * In fact it's dangerous to directly bump up page count from 0,
755 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
756 	 */
757 	if (!get_page_unless_zero(compound_head(p))) {
758 		action_result(pfn, "free or high order kernel", IGNORED);
759 		return PageBuddy(compound_head(p)) ? 0 : -EBUSY;
760 	}
761 
762 	/*
763 	 * We ignore non-LRU pages for good reasons.
764 	 * - PG_locked is only well defined for LRU pages and a few others
765 	 * - to avoid races with __set_page_locked()
766 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
767 	 * The check (unnecessarily) ignores LRU pages being isolated and
768 	 * walked by the page reclaim code, however that's not a big loss.
769 	 */
770 	if (!PageLRU(p))
771 		lru_add_drain_all();
772 	lru_flag = p->flags & lru;
773 	if (isolate_lru_page(p)) {
774 		action_result(pfn, "non LRU", IGNORED);
775 		put_page(p);
776 		return -EBUSY;
777 	}
778 	page_cache_release(p);
779 
780 	/*
781 	 * Lock the page and wait for writeback to finish.
782 	 * It's very difficult to mess with pages currently under IO
783 	 * and in many cases impossible, so we just avoid it here.
784 	 */
785 	lock_page_nosync(p);
786 	wait_on_page_writeback(p);
787 
788 	/*
789 	 * Now take care of user space mappings.
790 	 */
791 	hwpoison_user_mappings(p, pfn, trapno);
792 
793 	/*
794 	 * Torn down by someone else?
795 	 */
796 	if ((lru_flag & lru) && !PageSwapCache(p) && p->mapping == NULL) {
797 		action_result(pfn, "already truncated LRU", IGNORED);
798 		res = 0;
799 		goto out;
800 	}
801 
802 	res = -EBUSY;
803 	for (ps = error_states;; ps++) {
804 		if (((p->flags | lru_flag)& ps->mask) == ps->res) {
805 			res = page_action(ps, p, pfn, ref);
806 			break;
807 		}
808 	}
809 out:
810 	unlock_page(p);
811 	return res;
812 }
813 EXPORT_SYMBOL_GPL(__memory_failure);
814 
815 /**
816  * memory_failure - Handle memory failure of a page.
817  * @pfn: Page Number of the corrupted page
818  * @trapno: Trap number reported in the signal to user space.
819  *
820  * This function is called by the low level machine check code
821  * of an architecture when it detects hardware memory corruption
822  * of a page. It tries its best to recover, which includes
823  * dropping pages, killing processes etc.
824  *
825  * The function is primarily of use for corruptions that
826  * happen outside the current execution context (e.g. when
827  * detected by a background scrubber)
828  *
829  * Must run in process context (e.g. a work queue) with interrupts
830  * enabled and no spinlocks hold.
831  */
832 void memory_failure(unsigned long pfn, int trapno)
833 {
834 	__memory_failure(pfn, trapno, 0);
835 }
836