1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include "swap.h" 66 #include "internal.h" 67 #include "ras/ras_event.h" 68 69 int sysctl_memory_failure_early_kill __read_mostly = 0; 70 71 int sysctl_memory_failure_recovery __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 /* 78 * Return values: 79 * 1: the page is dissolved (if needed) and taken off from buddy, 80 * 0: the page is dissolved (if needed) and not taken off from buddy, 81 * < 0: failed to dissolve. 82 */ 83 static int __page_handle_poison(struct page *page) 84 { 85 int ret; 86 87 zone_pcp_disable(page_zone(page)); 88 ret = dissolve_free_huge_page(page); 89 if (!ret) 90 ret = take_page_off_buddy(page); 91 zone_pcp_enable(page_zone(page)); 92 93 return ret; 94 } 95 96 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 97 { 98 if (hugepage_or_freepage) { 99 /* 100 * Doing this check for free pages is also fine since dissolve_free_huge_page 101 * returns 0 for non-hugetlb pages as well. 102 */ 103 if (__page_handle_poison(page) <= 0) 104 /* 105 * We could fail to take off the target page from buddy 106 * for example due to racy page allocation, but that's 107 * acceptable because soft-offlined page is not broken 108 * and if someone really want to use it, they should 109 * take it. 110 */ 111 return false; 112 } 113 114 SetPageHWPoison(page); 115 if (release) 116 put_page(page); 117 page_ref_inc(page); 118 num_poisoned_pages_inc(); 119 120 return true; 121 } 122 123 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 124 125 u32 hwpoison_filter_enable = 0; 126 u32 hwpoison_filter_dev_major = ~0U; 127 u32 hwpoison_filter_dev_minor = ~0U; 128 u64 hwpoison_filter_flags_mask; 129 u64 hwpoison_filter_flags_value; 130 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 131 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 132 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 133 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 134 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 135 136 static int hwpoison_filter_dev(struct page *p) 137 { 138 struct address_space *mapping; 139 dev_t dev; 140 141 if (hwpoison_filter_dev_major == ~0U && 142 hwpoison_filter_dev_minor == ~0U) 143 return 0; 144 145 mapping = page_mapping(p); 146 if (mapping == NULL || mapping->host == NULL) 147 return -EINVAL; 148 149 dev = mapping->host->i_sb->s_dev; 150 if (hwpoison_filter_dev_major != ~0U && 151 hwpoison_filter_dev_major != MAJOR(dev)) 152 return -EINVAL; 153 if (hwpoison_filter_dev_minor != ~0U && 154 hwpoison_filter_dev_minor != MINOR(dev)) 155 return -EINVAL; 156 157 return 0; 158 } 159 160 static int hwpoison_filter_flags(struct page *p) 161 { 162 if (!hwpoison_filter_flags_mask) 163 return 0; 164 165 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 166 hwpoison_filter_flags_value) 167 return 0; 168 else 169 return -EINVAL; 170 } 171 172 /* 173 * This allows stress tests to limit test scope to a collection of tasks 174 * by putting them under some memcg. This prevents killing unrelated/important 175 * processes such as /sbin/init. Note that the target task may share clean 176 * pages with init (eg. libc text), which is harmless. If the target task 177 * share _dirty_ pages with another task B, the test scheme must make sure B 178 * is also included in the memcg. At last, due to race conditions this filter 179 * can only guarantee that the page either belongs to the memcg tasks, or is 180 * a freed page. 181 */ 182 #ifdef CONFIG_MEMCG 183 u64 hwpoison_filter_memcg; 184 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 185 static int hwpoison_filter_task(struct page *p) 186 { 187 if (!hwpoison_filter_memcg) 188 return 0; 189 190 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 191 return -EINVAL; 192 193 return 0; 194 } 195 #else 196 static int hwpoison_filter_task(struct page *p) { return 0; } 197 #endif 198 199 int hwpoison_filter(struct page *p) 200 { 201 if (!hwpoison_filter_enable) 202 return 0; 203 204 if (hwpoison_filter_dev(p)) 205 return -EINVAL; 206 207 if (hwpoison_filter_flags(p)) 208 return -EINVAL; 209 210 if (hwpoison_filter_task(p)) 211 return -EINVAL; 212 213 return 0; 214 } 215 #else 216 int hwpoison_filter(struct page *p) 217 { 218 return 0; 219 } 220 #endif 221 222 EXPORT_SYMBOL_GPL(hwpoison_filter); 223 224 /* 225 * Kill all processes that have a poisoned page mapped and then isolate 226 * the page. 227 * 228 * General strategy: 229 * Find all processes having the page mapped and kill them. 230 * But we keep a page reference around so that the page is not 231 * actually freed yet. 232 * Then stash the page away 233 * 234 * There's no convenient way to get back to mapped processes 235 * from the VMAs. So do a brute-force search over all 236 * running processes. 237 * 238 * Remember that machine checks are not common (or rather 239 * if they are common you have other problems), so this shouldn't 240 * be a performance issue. 241 * 242 * Also there are some races possible while we get from the 243 * error detection to actually handle it. 244 */ 245 246 struct to_kill { 247 struct list_head nd; 248 struct task_struct *tsk; 249 unsigned long addr; 250 short size_shift; 251 }; 252 253 /* 254 * Send all the processes who have the page mapped a signal. 255 * ``action optional'' if they are not immediately affected by the error 256 * ``action required'' if error happened in current execution context 257 */ 258 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 259 { 260 struct task_struct *t = tk->tsk; 261 short addr_lsb = tk->size_shift; 262 int ret = 0; 263 264 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 265 pfn, t->comm, t->pid); 266 267 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 268 ret = force_sig_mceerr(BUS_MCEERR_AR, 269 (void __user *)tk->addr, addr_lsb); 270 else 271 /* 272 * Signal other processes sharing the page if they have 273 * PF_MCE_EARLY set. 274 * Don't use force here, it's convenient if the signal 275 * can be temporarily blocked. 276 * This could cause a loop when the user sets SIGBUS 277 * to SIG_IGN, but hopefully no one will do that? 278 */ 279 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 280 addr_lsb, t); 281 if (ret < 0) 282 pr_info("Error sending signal to %s:%d: %d\n", 283 t->comm, t->pid, ret); 284 return ret; 285 } 286 287 /* 288 * Unknown page type encountered. Try to check whether it can turn PageLRU by 289 * lru_add_drain_all. 290 */ 291 void shake_page(struct page *p) 292 { 293 if (PageHuge(p)) 294 return; 295 296 if (!PageSlab(p)) { 297 lru_add_drain_all(); 298 if (PageLRU(p) || is_free_buddy_page(p)) 299 return; 300 } 301 302 /* 303 * TODO: Could shrink slab caches here if a lightweight range-based 304 * shrinker will be available. 305 */ 306 } 307 EXPORT_SYMBOL_GPL(shake_page); 308 309 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 310 unsigned long address) 311 { 312 unsigned long ret = 0; 313 pgd_t *pgd; 314 p4d_t *p4d; 315 pud_t *pud; 316 pmd_t *pmd; 317 pte_t *pte; 318 319 VM_BUG_ON_VMA(address == -EFAULT, vma); 320 pgd = pgd_offset(vma->vm_mm, address); 321 if (!pgd_present(*pgd)) 322 return 0; 323 p4d = p4d_offset(pgd, address); 324 if (!p4d_present(*p4d)) 325 return 0; 326 pud = pud_offset(p4d, address); 327 if (!pud_present(*pud)) 328 return 0; 329 if (pud_devmap(*pud)) 330 return PUD_SHIFT; 331 pmd = pmd_offset(pud, address); 332 if (!pmd_present(*pmd)) 333 return 0; 334 if (pmd_devmap(*pmd)) 335 return PMD_SHIFT; 336 pte = pte_offset_map(pmd, address); 337 if (pte_present(*pte) && pte_devmap(*pte)) 338 ret = PAGE_SHIFT; 339 pte_unmap(pte); 340 return ret; 341 } 342 343 /* 344 * Failure handling: if we can't find or can't kill a process there's 345 * not much we can do. We just print a message and ignore otherwise. 346 */ 347 348 #define FSDAX_INVALID_PGOFF ULONG_MAX 349 350 /* 351 * Schedule a process for later kill. 352 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 353 * 354 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 355 * filesystem with a memory failure handler has claimed the 356 * memory_failure event. In all other cases, page->index and 357 * page->mapping are sufficient for mapping the page back to its 358 * corresponding user virtual address. 359 */ 360 static void add_to_kill(struct task_struct *tsk, struct page *p, 361 pgoff_t fsdax_pgoff, struct vm_area_struct *vma, 362 struct list_head *to_kill) 363 { 364 struct to_kill *tk; 365 366 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 367 if (!tk) { 368 pr_err("Out of memory while machine check handling\n"); 369 return; 370 } 371 372 tk->addr = page_address_in_vma(p, vma); 373 if (is_zone_device_page(p)) { 374 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 375 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 376 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 377 } else 378 tk->size_shift = page_shift(compound_head(p)); 379 380 /* 381 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 382 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 383 * so "tk->size_shift == 0" effectively checks no mapping on 384 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 385 * to a process' address space, it's possible not all N VMAs 386 * contain mappings for the page, but at least one VMA does. 387 * Only deliver SIGBUS with payload derived from the VMA that 388 * has a mapping for the page. 389 */ 390 if (tk->addr == -EFAULT) { 391 pr_info("Unable to find user space address %lx in %s\n", 392 page_to_pfn(p), tsk->comm); 393 } else if (tk->size_shift == 0) { 394 kfree(tk); 395 return; 396 } 397 398 get_task_struct(tsk); 399 tk->tsk = tsk; 400 list_add_tail(&tk->nd, to_kill); 401 } 402 403 /* 404 * Kill the processes that have been collected earlier. 405 * 406 * Only do anything when FORCEKILL is set, otherwise just free the 407 * list (this is used for clean pages which do not need killing) 408 * Also when FAIL is set do a force kill because something went 409 * wrong earlier. 410 */ 411 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 412 unsigned long pfn, int flags) 413 { 414 struct to_kill *tk, *next; 415 416 list_for_each_entry_safe(tk, next, to_kill, nd) { 417 if (forcekill) { 418 /* 419 * In case something went wrong with munmapping 420 * make sure the process doesn't catch the 421 * signal and then access the memory. Just kill it. 422 */ 423 if (fail || tk->addr == -EFAULT) { 424 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 425 pfn, tk->tsk->comm, tk->tsk->pid); 426 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 427 tk->tsk, PIDTYPE_PID); 428 } 429 430 /* 431 * In theory the process could have mapped 432 * something else on the address in-between. We could 433 * check for that, but we need to tell the 434 * process anyways. 435 */ 436 else if (kill_proc(tk, pfn, flags) < 0) 437 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 438 pfn, tk->tsk->comm, tk->tsk->pid); 439 } 440 list_del(&tk->nd); 441 put_task_struct(tk->tsk); 442 kfree(tk); 443 } 444 } 445 446 /* 447 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 448 * on behalf of the thread group. Return task_struct of the (first found) 449 * dedicated thread if found, and return NULL otherwise. 450 * 451 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 452 * have to call rcu_read_lock/unlock() in this function. 453 */ 454 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 455 { 456 struct task_struct *t; 457 458 for_each_thread(tsk, t) { 459 if (t->flags & PF_MCE_PROCESS) { 460 if (t->flags & PF_MCE_EARLY) 461 return t; 462 } else { 463 if (sysctl_memory_failure_early_kill) 464 return t; 465 } 466 } 467 return NULL; 468 } 469 470 /* 471 * Determine whether a given process is "early kill" process which expects 472 * to be signaled when some page under the process is hwpoisoned. 473 * Return task_struct of the dedicated thread (main thread unless explicitly 474 * specified) if the process is "early kill" and otherwise returns NULL. 475 * 476 * Note that the above is true for Action Optional case. For Action Required 477 * case, it's only meaningful to the current thread which need to be signaled 478 * with SIGBUS, this error is Action Optional for other non current 479 * processes sharing the same error page,if the process is "early kill", the 480 * task_struct of the dedicated thread will also be returned. 481 */ 482 static struct task_struct *task_early_kill(struct task_struct *tsk, 483 int force_early) 484 { 485 if (!tsk->mm) 486 return NULL; 487 /* 488 * Comparing ->mm here because current task might represent 489 * a subthread, while tsk always points to the main thread. 490 */ 491 if (force_early && tsk->mm == current->mm) 492 return current; 493 494 return find_early_kill_thread(tsk); 495 } 496 497 /* 498 * Collect processes when the error hit an anonymous page. 499 */ 500 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 501 int force_early) 502 { 503 struct folio *folio = page_folio(page); 504 struct vm_area_struct *vma; 505 struct task_struct *tsk; 506 struct anon_vma *av; 507 pgoff_t pgoff; 508 509 av = folio_lock_anon_vma_read(folio, NULL); 510 if (av == NULL) /* Not actually mapped anymore */ 511 return; 512 513 pgoff = page_to_pgoff(page); 514 read_lock(&tasklist_lock); 515 for_each_process (tsk) { 516 struct anon_vma_chain *vmac; 517 struct task_struct *t = task_early_kill(tsk, force_early); 518 519 if (!t) 520 continue; 521 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 522 pgoff, pgoff) { 523 vma = vmac->vma; 524 if (vma->vm_mm != t->mm) 525 continue; 526 if (!page_mapped_in_vma(page, vma)) 527 continue; 528 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill); 529 } 530 } 531 read_unlock(&tasklist_lock); 532 anon_vma_unlock_read(av); 533 } 534 535 /* 536 * Collect processes when the error hit a file mapped page. 537 */ 538 static void collect_procs_file(struct page *page, struct list_head *to_kill, 539 int force_early) 540 { 541 struct vm_area_struct *vma; 542 struct task_struct *tsk; 543 struct address_space *mapping = page->mapping; 544 pgoff_t pgoff; 545 546 i_mmap_lock_read(mapping); 547 read_lock(&tasklist_lock); 548 pgoff = page_to_pgoff(page); 549 for_each_process(tsk) { 550 struct task_struct *t = task_early_kill(tsk, force_early); 551 552 if (!t) 553 continue; 554 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 555 pgoff) { 556 /* 557 * Send early kill signal to tasks where a vma covers 558 * the page but the corrupted page is not necessarily 559 * mapped it in its pte. 560 * Assume applications who requested early kill want 561 * to be informed of all such data corruptions. 562 */ 563 if (vma->vm_mm == t->mm) 564 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, 565 to_kill); 566 } 567 } 568 read_unlock(&tasklist_lock); 569 i_mmap_unlock_read(mapping); 570 } 571 572 #ifdef CONFIG_FS_DAX 573 /* 574 * Collect processes when the error hit a fsdax page. 575 */ 576 static void collect_procs_fsdax(struct page *page, 577 struct address_space *mapping, pgoff_t pgoff, 578 struct list_head *to_kill) 579 { 580 struct vm_area_struct *vma; 581 struct task_struct *tsk; 582 583 i_mmap_lock_read(mapping); 584 read_lock(&tasklist_lock); 585 for_each_process(tsk) { 586 struct task_struct *t = task_early_kill(tsk, true); 587 588 if (!t) 589 continue; 590 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 591 if (vma->vm_mm == t->mm) 592 add_to_kill(t, page, pgoff, vma, to_kill); 593 } 594 } 595 read_unlock(&tasklist_lock); 596 i_mmap_unlock_read(mapping); 597 } 598 #endif /* CONFIG_FS_DAX */ 599 600 /* 601 * Collect the processes who have the corrupted page mapped to kill. 602 */ 603 static void collect_procs(struct page *page, struct list_head *tokill, 604 int force_early) 605 { 606 if (!page->mapping) 607 return; 608 609 if (PageAnon(page)) 610 collect_procs_anon(page, tokill, force_early); 611 else 612 collect_procs_file(page, tokill, force_early); 613 } 614 615 struct hwp_walk { 616 struct to_kill tk; 617 unsigned long pfn; 618 int flags; 619 }; 620 621 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 622 { 623 tk->addr = addr; 624 tk->size_shift = shift; 625 } 626 627 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 628 unsigned long poisoned_pfn, struct to_kill *tk) 629 { 630 unsigned long pfn = 0; 631 632 if (pte_present(pte)) { 633 pfn = pte_pfn(pte); 634 } else { 635 swp_entry_t swp = pte_to_swp_entry(pte); 636 637 if (is_hwpoison_entry(swp)) 638 pfn = swp_offset_pfn(swp); 639 } 640 641 if (!pfn || pfn != poisoned_pfn) 642 return 0; 643 644 set_to_kill(tk, addr, shift); 645 return 1; 646 } 647 648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 649 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 650 struct hwp_walk *hwp) 651 { 652 pmd_t pmd = *pmdp; 653 unsigned long pfn; 654 unsigned long hwpoison_vaddr; 655 656 if (!pmd_present(pmd)) 657 return 0; 658 pfn = pmd_pfn(pmd); 659 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 660 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 661 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 662 return 1; 663 } 664 return 0; 665 } 666 #else 667 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 668 struct hwp_walk *hwp) 669 { 670 return 0; 671 } 672 #endif 673 674 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 675 unsigned long end, struct mm_walk *walk) 676 { 677 struct hwp_walk *hwp = walk->private; 678 int ret = 0; 679 pte_t *ptep, *mapped_pte; 680 spinlock_t *ptl; 681 682 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 683 if (ptl) { 684 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 685 spin_unlock(ptl); 686 goto out; 687 } 688 689 if (pmd_trans_unstable(pmdp)) 690 goto out; 691 692 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 693 addr, &ptl); 694 for (; addr != end; ptep++, addr += PAGE_SIZE) { 695 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 696 hwp->pfn, &hwp->tk); 697 if (ret == 1) 698 break; 699 } 700 pte_unmap_unlock(mapped_pte, ptl); 701 out: 702 cond_resched(); 703 return ret; 704 } 705 706 #ifdef CONFIG_HUGETLB_PAGE 707 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 708 unsigned long addr, unsigned long end, 709 struct mm_walk *walk) 710 { 711 struct hwp_walk *hwp = walk->private; 712 pte_t pte = huge_ptep_get(ptep); 713 struct hstate *h = hstate_vma(walk->vma); 714 715 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 716 hwp->pfn, &hwp->tk); 717 } 718 #else 719 #define hwpoison_hugetlb_range NULL 720 #endif 721 722 static const struct mm_walk_ops hwp_walk_ops = { 723 .pmd_entry = hwpoison_pte_range, 724 .hugetlb_entry = hwpoison_hugetlb_range, 725 }; 726 727 /* 728 * Sends SIGBUS to the current process with error info. 729 * 730 * This function is intended to handle "Action Required" MCEs on already 731 * hardware poisoned pages. They could happen, for example, when 732 * memory_failure() failed to unmap the error page at the first call, or 733 * when multiple local machine checks happened on different CPUs. 734 * 735 * MCE handler currently has no easy access to the error virtual address, 736 * so this function walks page table to find it. The returned virtual address 737 * is proper in most cases, but it could be wrong when the application 738 * process has multiple entries mapping the error page. 739 */ 740 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 741 int flags) 742 { 743 int ret; 744 struct hwp_walk priv = { 745 .pfn = pfn, 746 }; 747 priv.tk.tsk = p; 748 749 if (!p->mm) 750 return -EFAULT; 751 752 mmap_read_lock(p->mm); 753 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 754 (void *)&priv); 755 if (ret == 1 && priv.tk.addr) 756 kill_proc(&priv.tk, pfn, flags); 757 else 758 ret = 0; 759 mmap_read_unlock(p->mm); 760 return ret > 0 ? -EHWPOISON : -EFAULT; 761 } 762 763 static const char *action_name[] = { 764 [MF_IGNORED] = "Ignored", 765 [MF_FAILED] = "Failed", 766 [MF_DELAYED] = "Delayed", 767 [MF_RECOVERED] = "Recovered", 768 }; 769 770 static const char * const action_page_types[] = { 771 [MF_MSG_KERNEL] = "reserved kernel page", 772 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 773 [MF_MSG_SLAB] = "kernel slab page", 774 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 775 [MF_MSG_HUGE] = "huge page", 776 [MF_MSG_FREE_HUGE] = "free huge page", 777 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 778 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 779 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 780 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 781 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 782 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 783 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 784 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 785 [MF_MSG_CLEAN_LRU] = "clean LRU page", 786 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 787 [MF_MSG_BUDDY] = "free buddy page", 788 [MF_MSG_DAX] = "dax page", 789 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 790 [MF_MSG_UNKNOWN] = "unknown page", 791 }; 792 793 /* 794 * XXX: It is possible that a page is isolated from LRU cache, 795 * and then kept in swap cache or failed to remove from page cache. 796 * The page count will stop it from being freed by unpoison. 797 * Stress tests should be aware of this memory leak problem. 798 */ 799 static int delete_from_lru_cache(struct page *p) 800 { 801 if (!isolate_lru_page(p)) { 802 /* 803 * Clear sensible page flags, so that the buddy system won't 804 * complain when the page is unpoison-and-freed. 805 */ 806 ClearPageActive(p); 807 ClearPageUnevictable(p); 808 809 /* 810 * Poisoned page might never drop its ref count to 0 so we have 811 * to uncharge it manually from its memcg. 812 */ 813 mem_cgroup_uncharge(page_folio(p)); 814 815 /* 816 * drop the page count elevated by isolate_lru_page() 817 */ 818 put_page(p); 819 return 0; 820 } 821 return -EIO; 822 } 823 824 static int truncate_error_page(struct page *p, unsigned long pfn, 825 struct address_space *mapping) 826 { 827 int ret = MF_FAILED; 828 829 if (mapping->a_ops->error_remove_page) { 830 int err = mapping->a_ops->error_remove_page(mapping, p); 831 832 if (err != 0) { 833 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 834 } else if (page_has_private(p) && 835 !try_to_release_page(p, GFP_NOIO)) { 836 pr_info("%#lx: failed to release buffers\n", pfn); 837 } else { 838 ret = MF_RECOVERED; 839 } 840 } else { 841 /* 842 * If the file system doesn't support it just invalidate 843 * This fails on dirty or anything with private pages 844 */ 845 if (invalidate_inode_page(p)) 846 ret = MF_RECOVERED; 847 else 848 pr_info("%#lx: Failed to invalidate\n", pfn); 849 } 850 851 return ret; 852 } 853 854 struct page_state { 855 unsigned long mask; 856 unsigned long res; 857 enum mf_action_page_type type; 858 859 /* Callback ->action() has to unlock the relevant page inside it. */ 860 int (*action)(struct page_state *ps, struct page *p); 861 }; 862 863 /* 864 * Return true if page is still referenced by others, otherwise return 865 * false. 866 * 867 * The extra_pins is true when one extra refcount is expected. 868 */ 869 static bool has_extra_refcount(struct page_state *ps, struct page *p, 870 bool extra_pins) 871 { 872 int count = page_count(p) - 1; 873 874 if (extra_pins) 875 count -= 1; 876 877 if (count > 0) { 878 pr_err("%#lx: %s still referenced by %d users\n", 879 page_to_pfn(p), action_page_types[ps->type], count); 880 return true; 881 } 882 883 return false; 884 } 885 886 /* 887 * Error hit kernel page. 888 * Do nothing, try to be lucky and not touch this instead. For a few cases we 889 * could be more sophisticated. 890 */ 891 static int me_kernel(struct page_state *ps, struct page *p) 892 { 893 unlock_page(p); 894 return MF_IGNORED; 895 } 896 897 /* 898 * Page in unknown state. Do nothing. 899 */ 900 static int me_unknown(struct page_state *ps, struct page *p) 901 { 902 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 903 unlock_page(p); 904 return MF_FAILED; 905 } 906 907 /* 908 * Clean (or cleaned) page cache page. 909 */ 910 static int me_pagecache_clean(struct page_state *ps, struct page *p) 911 { 912 int ret; 913 struct address_space *mapping; 914 bool extra_pins; 915 916 delete_from_lru_cache(p); 917 918 /* 919 * For anonymous pages we're done the only reference left 920 * should be the one m_f() holds. 921 */ 922 if (PageAnon(p)) { 923 ret = MF_RECOVERED; 924 goto out; 925 } 926 927 /* 928 * Now truncate the page in the page cache. This is really 929 * more like a "temporary hole punch" 930 * Don't do this for block devices when someone else 931 * has a reference, because it could be file system metadata 932 * and that's not safe to truncate. 933 */ 934 mapping = page_mapping(p); 935 if (!mapping) { 936 /* 937 * Page has been teared down in the meanwhile 938 */ 939 ret = MF_FAILED; 940 goto out; 941 } 942 943 /* 944 * The shmem page is kept in page cache instead of truncating 945 * so is expected to have an extra refcount after error-handling. 946 */ 947 extra_pins = shmem_mapping(mapping); 948 949 /* 950 * Truncation is a bit tricky. Enable it per file system for now. 951 * 952 * Open: to take i_rwsem or not for this? Right now we don't. 953 */ 954 ret = truncate_error_page(p, page_to_pfn(p), mapping); 955 if (has_extra_refcount(ps, p, extra_pins)) 956 ret = MF_FAILED; 957 958 out: 959 unlock_page(p); 960 961 return ret; 962 } 963 964 /* 965 * Dirty pagecache page 966 * Issues: when the error hit a hole page the error is not properly 967 * propagated. 968 */ 969 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 970 { 971 struct address_space *mapping = page_mapping(p); 972 973 SetPageError(p); 974 /* TBD: print more information about the file. */ 975 if (mapping) { 976 /* 977 * IO error will be reported by write(), fsync(), etc. 978 * who check the mapping. 979 * This way the application knows that something went 980 * wrong with its dirty file data. 981 * 982 * There's one open issue: 983 * 984 * The EIO will be only reported on the next IO 985 * operation and then cleared through the IO map. 986 * Normally Linux has two mechanisms to pass IO error 987 * first through the AS_EIO flag in the address space 988 * and then through the PageError flag in the page. 989 * Since we drop pages on memory failure handling the 990 * only mechanism open to use is through AS_AIO. 991 * 992 * This has the disadvantage that it gets cleared on 993 * the first operation that returns an error, while 994 * the PageError bit is more sticky and only cleared 995 * when the page is reread or dropped. If an 996 * application assumes it will always get error on 997 * fsync, but does other operations on the fd before 998 * and the page is dropped between then the error 999 * will not be properly reported. 1000 * 1001 * This can already happen even without hwpoisoned 1002 * pages: first on metadata IO errors (which only 1003 * report through AS_EIO) or when the page is dropped 1004 * at the wrong time. 1005 * 1006 * So right now we assume that the application DTRT on 1007 * the first EIO, but we're not worse than other parts 1008 * of the kernel. 1009 */ 1010 mapping_set_error(mapping, -EIO); 1011 } 1012 1013 return me_pagecache_clean(ps, p); 1014 } 1015 1016 /* 1017 * Clean and dirty swap cache. 1018 * 1019 * Dirty swap cache page is tricky to handle. The page could live both in page 1020 * cache and swap cache(ie. page is freshly swapped in). So it could be 1021 * referenced concurrently by 2 types of PTEs: 1022 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1023 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 1024 * and then 1025 * - clear dirty bit to prevent IO 1026 * - remove from LRU 1027 * - but keep in the swap cache, so that when we return to it on 1028 * a later page fault, we know the application is accessing 1029 * corrupted data and shall be killed (we installed simple 1030 * interception code in do_swap_page to catch it). 1031 * 1032 * Clean swap cache pages can be directly isolated. A later page fault will 1033 * bring in the known good data from disk. 1034 */ 1035 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1036 { 1037 int ret; 1038 bool extra_pins = false; 1039 1040 ClearPageDirty(p); 1041 /* Trigger EIO in shmem: */ 1042 ClearPageUptodate(p); 1043 1044 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1045 unlock_page(p); 1046 1047 if (ret == MF_DELAYED) 1048 extra_pins = true; 1049 1050 if (has_extra_refcount(ps, p, extra_pins)) 1051 ret = MF_FAILED; 1052 1053 return ret; 1054 } 1055 1056 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1057 { 1058 struct folio *folio = page_folio(p); 1059 int ret; 1060 1061 delete_from_swap_cache(folio); 1062 1063 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1064 folio_unlock(folio); 1065 1066 if (has_extra_refcount(ps, p, false)) 1067 ret = MF_FAILED; 1068 1069 return ret; 1070 } 1071 1072 /* 1073 * Huge pages. Needs work. 1074 * Issues: 1075 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1076 * To narrow down kill region to one page, we need to break up pmd. 1077 */ 1078 static int me_huge_page(struct page_state *ps, struct page *p) 1079 { 1080 int res; 1081 struct page *hpage = compound_head(p); 1082 struct address_space *mapping; 1083 1084 if (!PageHuge(hpage)) 1085 return MF_DELAYED; 1086 1087 mapping = page_mapping(hpage); 1088 if (mapping) { 1089 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1090 unlock_page(hpage); 1091 } else { 1092 unlock_page(hpage); 1093 /* 1094 * migration entry prevents later access on error hugepage, 1095 * so we can free and dissolve it into buddy to save healthy 1096 * subpages. 1097 */ 1098 put_page(hpage); 1099 if (__page_handle_poison(p) >= 0) { 1100 page_ref_inc(p); 1101 res = MF_RECOVERED; 1102 } else { 1103 res = MF_FAILED; 1104 } 1105 } 1106 1107 if (has_extra_refcount(ps, p, false)) 1108 res = MF_FAILED; 1109 1110 return res; 1111 } 1112 1113 /* 1114 * Various page states we can handle. 1115 * 1116 * A page state is defined by its current page->flags bits. 1117 * The table matches them in order and calls the right handler. 1118 * 1119 * This is quite tricky because we can access page at any time 1120 * in its live cycle, so all accesses have to be extremely careful. 1121 * 1122 * This is not complete. More states could be added. 1123 * For any missing state don't attempt recovery. 1124 */ 1125 1126 #define dirty (1UL << PG_dirty) 1127 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1128 #define unevict (1UL << PG_unevictable) 1129 #define mlock (1UL << PG_mlocked) 1130 #define lru (1UL << PG_lru) 1131 #define head (1UL << PG_head) 1132 #define slab (1UL << PG_slab) 1133 #define reserved (1UL << PG_reserved) 1134 1135 static struct page_state error_states[] = { 1136 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1137 /* 1138 * free pages are specially detected outside this table: 1139 * PG_buddy pages only make a small fraction of all free pages. 1140 */ 1141 1142 /* 1143 * Could in theory check if slab page is free or if we can drop 1144 * currently unused objects without touching them. But just 1145 * treat it as standard kernel for now. 1146 */ 1147 { slab, slab, MF_MSG_SLAB, me_kernel }, 1148 1149 { head, head, MF_MSG_HUGE, me_huge_page }, 1150 1151 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1152 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1153 1154 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1155 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1156 1157 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1158 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1159 1160 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1161 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1162 1163 /* 1164 * Catchall entry: must be at end. 1165 */ 1166 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1167 }; 1168 1169 #undef dirty 1170 #undef sc 1171 #undef unevict 1172 #undef mlock 1173 #undef lru 1174 #undef head 1175 #undef slab 1176 #undef reserved 1177 1178 /* 1179 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1180 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1181 */ 1182 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1183 enum mf_result result) 1184 { 1185 trace_memory_failure_event(pfn, type, result); 1186 1187 num_poisoned_pages_inc(); 1188 pr_err("%#lx: recovery action for %s: %s\n", 1189 pfn, action_page_types[type], action_name[result]); 1190 } 1191 1192 static int page_action(struct page_state *ps, struct page *p, 1193 unsigned long pfn) 1194 { 1195 int result; 1196 1197 /* page p should be unlocked after returning from ps->action(). */ 1198 result = ps->action(ps, p); 1199 1200 action_result(pfn, ps->type, result); 1201 1202 /* Could do more checks here if page looks ok */ 1203 /* 1204 * Could adjust zone counters here to correct for the missing page. 1205 */ 1206 1207 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1208 } 1209 1210 static inline bool PageHWPoisonTakenOff(struct page *page) 1211 { 1212 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1213 } 1214 1215 void SetPageHWPoisonTakenOff(struct page *page) 1216 { 1217 set_page_private(page, MAGIC_HWPOISON); 1218 } 1219 1220 void ClearPageHWPoisonTakenOff(struct page *page) 1221 { 1222 if (PageHWPoison(page)) 1223 set_page_private(page, 0); 1224 } 1225 1226 /* 1227 * Return true if a page type of a given page is supported by hwpoison 1228 * mechanism (while handling could fail), otherwise false. This function 1229 * does not return true for hugetlb or device memory pages, so it's assumed 1230 * to be called only in the context where we never have such pages. 1231 */ 1232 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1233 { 1234 /* Soft offline could migrate non-LRU movable pages */ 1235 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1236 return true; 1237 1238 return PageLRU(page) || is_free_buddy_page(page); 1239 } 1240 1241 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1242 { 1243 struct page *head = compound_head(page); 1244 int ret = 0; 1245 bool hugetlb = false; 1246 1247 ret = get_hwpoison_huge_page(head, &hugetlb); 1248 if (hugetlb) 1249 return ret; 1250 1251 /* 1252 * This check prevents from calling get_page_unless_zero() for any 1253 * unsupported type of page in order to reduce the risk of unexpected 1254 * races caused by taking a page refcount. 1255 */ 1256 if (!HWPoisonHandlable(head, flags)) 1257 return -EBUSY; 1258 1259 if (get_page_unless_zero(head)) { 1260 if (head == compound_head(page)) 1261 return 1; 1262 1263 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1264 put_page(head); 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int get_any_page(struct page *p, unsigned long flags) 1271 { 1272 int ret = 0, pass = 0; 1273 bool count_increased = false; 1274 1275 if (flags & MF_COUNT_INCREASED) 1276 count_increased = true; 1277 1278 try_again: 1279 if (!count_increased) { 1280 ret = __get_hwpoison_page(p, flags); 1281 if (!ret) { 1282 if (page_count(p)) { 1283 /* We raced with an allocation, retry. */ 1284 if (pass++ < 3) 1285 goto try_again; 1286 ret = -EBUSY; 1287 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1288 /* We raced with put_page, retry. */ 1289 if (pass++ < 3) 1290 goto try_again; 1291 ret = -EIO; 1292 } 1293 goto out; 1294 } else if (ret == -EBUSY) { 1295 /* 1296 * We raced with (possibly temporary) unhandlable 1297 * page, retry. 1298 */ 1299 if (pass++ < 3) { 1300 shake_page(p); 1301 goto try_again; 1302 } 1303 ret = -EIO; 1304 goto out; 1305 } 1306 } 1307 1308 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1309 ret = 1; 1310 } else { 1311 /* 1312 * A page we cannot handle. Check whether we can turn 1313 * it into something we can handle. 1314 */ 1315 if (pass++ < 3) { 1316 put_page(p); 1317 shake_page(p); 1318 count_increased = false; 1319 goto try_again; 1320 } 1321 put_page(p); 1322 ret = -EIO; 1323 } 1324 out: 1325 if (ret == -EIO) 1326 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1327 1328 return ret; 1329 } 1330 1331 static int __get_unpoison_page(struct page *page) 1332 { 1333 struct page *head = compound_head(page); 1334 int ret = 0; 1335 bool hugetlb = false; 1336 1337 ret = get_hwpoison_huge_page(head, &hugetlb); 1338 if (hugetlb) 1339 return ret; 1340 1341 /* 1342 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1343 * but also isolated from buddy freelist, so need to identify the 1344 * state and have to cancel both operations to unpoison. 1345 */ 1346 if (PageHWPoisonTakenOff(page)) 1347 return -EHWPOISON; 1348 1349 return get_page_unless_zero(page) ? 1 : 0; 1350 } 1351 1352 /** 1353 * get_hwpoison_page() - Get refcount for memory error handling 1354 * @p: Raw error page (hit by memory error) 1355 * @flags: Flags controlling behavior of error handling 1356 * 1357 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1358 * error on it, after checking that the error page is in a well-defined state 1359 * (defined as a page-type we can successfully handle the memory error on it, 1360 * such as LRU page and hugetlb page). 1361 * 1362 * Memory error handling could be triggered at any time on any type of page, 1363 * so it's prone to race with typical memory management lifecycle (like 1364 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1365 * extra care for the error page's state (as done in __get_hwpoison_page()), 1366 * and has some retry logic in get_any_page(). 1367 * 1368 * When called from unpoison_memory(), the caller should already ensure that 1369 * the given page has PG_hwpoison. So it's never reused for other page 1370 * allocations, and __get_unpoison_page() never races with them. 1371 * 1372 * Return: 0 on failure, 1373 * 1 on success for in-use pages in a well-defined state, 1374 * -EIO for pages on which we can not handle memory errors, 1375 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1376 * operations like allocation and free, 1377 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1378 */ 1379 static int get_hwpoison_page(struct page *p, unsigned long flags) 1380 { 1381 int ret; 1382 1383 zone_pcp_disable(page_zone(p)); 1384 if (flags & MF_UNPOISON) 1385 ret = __get_unpoison_page(p); 1386 else 1387 ret = get_any_page(p, flags); 1388 zone_pcp_enable(page_zone(p)); 1389 1390 return ret; 1391 } 1392 1393 /* 1394 * Do all that is necessary to remove user space mappings. Unmap 1395 * the pages and send SIGBUS to the processes if the data was dirty. 1396 */ 1397 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1398 int flags, struct page *hpage) 1399 { 1400 struct folio *folio = page_folio(hpage); 1401 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1402 struct address_space *mapping; 1403 LIST_HEAD(tokill); 1404 bool unmap_success; 1405 int forcekill; 1406 bool mlocked = PageMlocked(hpage); 1407 1408 /* 1409 * Here we are interested only in user-mapped pages, so skip any 1410 * other types of pages. 1411 */ 1412 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1413 return true; 1414 if (!(PageLRU(hpage) || PageHuge(p))) 1415 return true; 1416 1417 /* 1418 * This check implies we don't kill processes if their pages 1419 * are in the swap cache early. Those are always late kills. 1420 */ 1421 if (!page_mapped(hpage)) 1422 return true; 1423 1424 if (PageKsm(p)) { 1425 pr_err("%#lx: can't handle KSM pages.\n", pfn); 1426 return false; 1427 } 1428 1429 if (PageSwapCache(p)) { 1430 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1431 ttu |= TTU_IGNORE_HWPOISON; 1432 } 1433 1434 /* 1435 * Propagate the dirty bit from PTEs to struct page first, because we 1436 * need this to decide if we should kill or just drop the page. 1437 * XXX: the dirty test could be racy: set_page_dirty() may not always 1438 * be called inside page lock (it's recommended but not enforced). 1439 */ 1440 mapping = page_mapping(hpage); 1441 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1442 mapping_can_writeback(mapping)) { 1443 if (page_mkclean(hpage)) { 1444 SetPageDirty(hpage); 1445 } else { 1446 ttu |= TTU_IGNORE_HWPOISON; 1447 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1448 pfn); 1449 } 1450 } 1451 1452 /* 1453 * First collect all the processes that have the page 1454 * mapped in dirty form. This has to be done before try_to_unmap, 1455 * because ttu takes the rmap data structures down. 1456 */ 1457 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1458 1459 if (PageHuge(hpage) && !PageAnon(hpage)) { 1460 /* 1461 * For hugetlb pages in shared mappings, try_to_unmap 1462 * could potentially call huge_pmd_unshare. Because of 1463 * this, take semaphore in write mode here and set 1464 * TTU_RMAP_LOCKED to indicate we have taken the lock 1465 * at this higher level. 1466 */ 1467 mapping = hugetlb_page_mapping_lock_write(hpage); 1468 if (mapping) { 1469 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1470 i_mmap_unlock_write(mapping); 1471 } else 1472 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1473 } else { 1474 try_to_unmap(folio, ttu); 1475 } 1476 1477 unmap_success = !page_mapped(hpage); 1478 if (!unmap_success) 1479 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1480 pfn, page_mapcount(hpage)); 1481 1482 /* 1483 * try_to_unmap() might put mlocked page in lru cache, so call 1484 * shake_page() again to ensure that it's flushed. 1485 */ 1486 if (mlocked) 1487 shake_page(hpage); 1488 1489 /* 1490 * Now that the dirty bit has been propagated to the 1491 * struct page and all unmaps done we can decide if 1492 * killing is needed or not. Only kill when the page 1493 * was dirty or the process is not restartable, 1494 * otherwise the tokill list is merely 1495 * freed. When there was a problem unmapping earlier 1496 * use a more force-full uncatchable kill to prevent 1497 * any accesses to the poisoned memory. 1498 */ 1499 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1500 !unmap_success; 1501 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1502 1503 return unmap_success; 1504 } 1505 1506 static int identify_page_state(unsigned long pfn, struct page *p, 1507 unsigned long page_flags) 1508 { 1509 struct page_state *ps; 1510 1511 /* 1512 * The first check uses the current page flags which may not have any 1513 * relevant information. The second check with the saved page flags is 1514 * carried out only if the first check can't determine the page status. 1515 */ 1516 for (ps = error_states;; ps++) 1517 if ((p->flags & ps->mask) == ps->res) 1518 break; 1519 1520 page_flags |= (p->flags & (1UL << PG_dirty)); 1521 1522 if (!ps->mask) 1523 for (ps = error_states;; ps++) 1524 if ((page_flags & ps->mask) == ps->res) 1525 break; 1526 return page_action(ps, p, pfn); 1527 } 1528 1529 static int try_to_split_thp_page(struct page *page) 1530 { 1531 int ret; 1532 1533 lock_page(page); 1534 ret = split_huge_page(page); 1535 unlock_page(page); 1536 1537 if (unlikely(ret)) 1538 put_page(page); 1539 1540 return ret; 1541 } 1542 1543 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1544 struct address_space *mapping, pgoff_t index, int flags) 1545 { 1546 struct to_kill *tk; 1547 unsigned long size = 0; 1548 1549 list_for_each_entry(tk, to_kill, nd) 1550 if (tk->size_shift) 1551 size = max(size, 1UL << tk->size_shift); 1552 1553 if (size) { 1554 /* 1555 * Unmap the largest mapping to avoid breaking up device-dax 1556 * mappings which are constant size. The actual size of the 1557 * mapping being torn down is communicated in siginfo, see 1558 * kill_proc() 1559 */ 1560 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1561 1562 unmap_mapping_range(mapping, start, size, 0); 1563 } 1564 1565 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1566 } 1567 1568 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1569 struct dev_pagemap *pgmap) 1570 { 1571 struct page *page = pfn_to_page(pfn); 1572 LIST_HEAD(to_kill); 1573 dax_entry_t cookie; 1574 int rc = 0; 1575 1576 /* 1577 * Pages instantiated by device-dax (not filesystem-dax) 1578 * may be compound pages. 1579 */ 1580 page = compound_head(page); 1581 1582 /* 1583 * Prevent the inode from being freed while we are interrogating 1584 * the address_space, typically this would be handled by 1585 * lock_page(), but dax pages do not use the page lock. This 1586 * also prevents changes to the mapping of this pfn until 1587 * poison signaling is complete. 1588 */ 1589 cookie = dax_lock_page(page); 1590 if (!cookie) 1591 return -EBUSY; 1592 1593 if (hwpoison_filter(page)) { 1594 rc = -EOPNOTSUPP; 1595 goto unlock; 1596 } 1597 1598 switch (pgmap->type) { 1599 case MEMORY_DEVICE_PRIVATE: 1600 case MEMORY_DEVICE_COHERENT: 1601 /* 1602 * TODO: Handle device pages which may need coordination 1603 * with device-side memory. 1604 */ 1605 rc = -ENXIO; 1606 goto unlock; 1607 default: 1608 break; 1609 } 1610 1611 /* 1612 * Use this flag as an indication that the dax page has been 1613 * remapped UC to prevent speculative consumption of poison. 1614 */ 1615 SetPageHWPoison(page); 1616 1617 /* 1618 * Unlike System-RAM there is no possibility to swap in a 1619 * different physical page at a given virtual address, so all 1620 * userspace consumption of ZONE_DEVICE memory necessitates 1621 * SIGBUS (i.e. MF_MUST_KILL) 1622 */ 1623 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1624 collect_procs(page, &to_kill, true); 1625 1626 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1627 unlock: 1628 dax_unlock_page(page, cookie); 1629 return rc; 1630 } 1631 1632 #ifdef CONFIG_FS_DAX 1633 /** 1634 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1635 * @mapping: address_space of the file in use 1636 * @index: start pgoff of the range within the file 1637 * @count: length of the range, in unit of PAGE_SIZE 1638 * @mf_flags: memory failure flags 1639 */ 1640 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1641 unsigned long count, int mf_flags) 1642 { 1643 LIST_HEAD(to_kill); 1644 dax_entry_t cookie; 1645 struct page *page; 1646 size_t end = index + count; 1647 1648 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1649 1650 for (; index < end; index++) { 1651 page = NULL; 1652 cookie = dax_lock_mapping_entry(mapping, index, &page); 1653 if (!cookie) 1654 return -EBUSY; 1655 if (!page) 1656 goto unlock; 1657 1658 SetPageHWPoison(page); 1659 1660 collect_procs_fsdax(page, mapping, index, &to_kill); 1661 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1662 index, mf_flags); 1663 unlock: 1664 dax_unlock_mapping_entry(mapping, index, cookie); 1665 } 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1669 #endif /* CONFIG_FS_DAX */ 1670 1671 #ifdef CONFIG_HUGETLB_PAGE 1672 /* 1673 * Struct raw_hwp_page represents information about "raw error page", 1674 * constructing singly linked list originated from ->private field of 1675 * SUBPAGE_INDEX_HWPOISON-th tail page. 1676 */ 1677 struct raw_hwp_page { 1678 struct llist_node node; 1679 struct page *page; 1680 }; 1681 1682 static inline struct llist_head *raw_hwp_list_head(struct page *hpage) 1683 { 1684 return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON); 1685 } 1686 1687 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag) 1688 { 1689 struct llist_head *head; 1690 struct llist_node *t, *tnode; 1691 unsigned long count = 0; 1692 1693 head = raw_hwp_list_head(hpage); 1694 llist_for_each_safe(tnode, t, head->first) { 1695 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1696 1697 if (move_flag) 1698 SetPageHWPoison(p->page); 1699 kfree(p); 1700 count++; 1701 } 1702 llist_del_all(head); 1703 return count; 1704 } 1705 1706 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page) 1707 { 1708 struct llist_head *head; 1709 struct raw_hwp_page *raw_hwp; 1710 struct llist_node *t, *tnode; 1711 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0; 1712 1713 /* 1714 * Once the hwpoison hugepage has lost reliable raw error info, 1715 * there is little meaning to keep additional error info precisely, 1716 * so skip to add additional raw error info. 1717 */ 1718 if (HPageRawHwpUnreliable(hpage)) 1719 return -EHWPOISON; 1720 head = raw_hwp_list_head(hpage); 1721 llist_for_each_safe(tnode, t, head->first) { 1722 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1723 1724 if (p->page == page) 1725 return -EHWPOISON; 1726 } 1727 1728 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1729 if (raw_hwp) { 1730 raw_hwp->page = page; 1731 llist_add(&raw_hwp->node, head); 1732 /* the first error event will be counted in action_result(). */ 1733 if (ret) 1734 num_poisoned_pages_inc(); 1735 } else { 1736 /* 1737 * Failed to save raw error info. We no longer trace all 1738 * hwpoisoned subpages, and we need refuse to free/dissolve 1739 * this hwpoisoned hugepage. 1740 */ 1741 SetHPageRawHwpUnreliable(hpage); 1742 /* 1743 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not 1744 * used any more, so free it. 1745 */ 1746 __free_raw_hwp_pages(hpage, false); 1747 } 1748 return ret; 1749 } 1750 1751 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag) 1752 { 1753 /* 1754 * HPageVmemmapOptimized hugepages can't be freed because struct 1755 * pages for tail pages are required but they don't exist. 1756 */ 1757 if (move_flag && HPageVmemmapOptimized(hpage)) 1758 return 0; 1759 1760 /* 1761 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by 1762 * definition. 1763 */ 1764 if (HPageRawHwpUnreliable(hpage)) 1765 return 0; 1766 1767 return __free_raw_hwp_pages(hpage, move_flag); 1768 } 1769 1770 void hugetlb_clear_page_hwpoison(struct page *hpage) 1771 { 1772 if (HPageRawHwpUnreliable(hpage)) 1773 return; 1774 ClearPageHWPoison(hpage); 1775 free_raw_hwp_pages(hpage, true); 1776 } 1777 1778 /* 1779 * Called from hugetlb code with hugetlb_lock held. 1780 * 1781 * Return values: 1782 * 0 - free hugepage 1783 * 1 - in-use hugepage 1784 * 2 - not a hugepage 1785 * -EBUSY - the hugepage is busy (try to retry) 1786 * -EHWPOISON - the hugepage is already hwpoisoned 1787 */ 1788 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1789 { 1790 struct page *page = pfn_to_page(pfn); 1791 struct page *head = compound_head(page); 1792 int ret = 2; /* fallback to normal page handling */ 1793 bool count_increased = false; 1794 1795 if (!PageHeadHuge(head)) 1796 goto out; 1797 1798 if (flags & MF_COUNT_INCREASED) { 1799 ret = 1; 1800 count_increased = true; 1801 } else if (HPageFreed(head)) { 1802 ret = 0; 1803 } else if (HPageMigratable(head)) { 1804 ret = get_page_unless_zero(head); 1805 if (ret) 1806 count_increased = true; 1807 } else { 1808 ret = -EBUSY; 1809 if (!(flags & MF_NO_RETRY)) 1810 goto out; 1811 } 1812 1813 if (hugetlb_set_page_hwpoison(head, page)) { 1814 ret = -EHWPOISON; 1815 goto out; 1816 } 1817 1818 return ret; 1819 out: 1820 if (count_increased) 1821 put_page(head); 1822 return ret; 1823 } 1824 1825 /* 1826 * Taking refcount of hugetlb pages needs extra care about race conditions 1827 * with basic operations like hugepage allocation/free/demotion. 1828 * So some of prechecks for hwpoison (pinning, and testing/setting 1829 * PageHWPoison) should be done in single hugetlb_lock range. 1830 */ 1831 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1832 { 1833 int res; 1834 struct page *p = pfn_to_page(pfn); 1835 struct page *head; 1836 unsigned long page_flags; 1837 1838 *hugetlb = 1; 1839 retry: 1840 res = get_huge_page_for_hwpoison(pfn, flags); 1841 if (res == 2) { /* fallback to normal page handling */ 1842 *hugetlb = 0; 1843 return 0; 1844 } else if (res == -EHWPOISON) { 1845 pr_err("%#lx: already hardware poisoned\n", pfn); 1846 if (flags & MF_ACTION_REQUIRED) { 1847 head = compound_head(p); 1848 res = kill_accessing_process(current, page_to_pfn(head), flags); 1849 } 1850 return res; 1851 } else if (res == -EBUSY) { 1852 if (!(flags & MF_NO_RETRY)) { 1853 flags |= MF_NO_RETRY; 1854 goto retry; 1855 } 1856 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1857 return res; 1858 } 1859 1860 head = compound_head(p); 1861 lock_page(head); 1862 1863 if (hwpoison_filter(p)) { 1864 hugetlb_clear_page_hwpoison(head); 1865 unlock_page(head); 1866 if (res == 1) 1867 put_page(head); 1868 return -EOPNOTSUPP; 1869 } 1870 1871 /* 1872 * Handling free hugepage. The possible race with hugepage allocation 1873 * or demotion can be prevented by PageHWPoison flag. 1874 */ 1875 if (res == 0) { 1876 unlock_page(head); 1877 if (__page_handle_poison(p) >= 0) { 1878 page_ref_inc(p); 1879 res = MF_RECOVERED; 1880 } else { 1881 res = MF_FAILED; 1882 } 1883 action_result(pfn, MF_MSG_FREE_HUGE, res); 1884 return res == MF_RECOVERED ? 0 : -EBUSY; 1885 } 1886 1887 page_flags = head->flags; 1888 1889 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1890 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1891 res = -EBUSY; 1892 goto out; 1893 } 1894 1895 return identify_page_state(pfn, p, page_flags); 1896 out: 1897 unlock_page(head); 1898 return res; 1899 } 1900 1901 #else 1902 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1903 { 1904 return 0; 1905 } 1906 1907 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag) 1908 { 1909 return 0; 1910 } 1911 #endif /* CONFIG_HUGETLB_PAGE */ 1912 1913 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1914 struct dev_pagemap *pgmap) 1915 { 1916 struct page *page = pfn_to_page(pfn); 1917 int rc = -ENXIO; 1918 1919 if (flags & MF_COUNT_INCREASED) 1920 /* 1921 * Drop the extra refcount in case we come from madvise(). 1922 */ 1923 put_page(page); 1924 1925 /* device metadata space is not recoverable */ 1926 if (!pgmap_pfn_valid(pgmap, pfn)) 1927 goto out; 1928 1929 /* 1930 * Call driver's implementation to handle the memory failure, otherwise 1931 * fall back to generic handler. 1932 */ 1933 if (pgmap_has_memory_failure(pgmap)) { 1934 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 1935 /* 1936 * Fall back to generic handler too if operation is not 1937 * supported inside the driver/device/filesystem. 1938 */ 1939 if (rc != -EOPNOTSUPP) 1940 goto out; 1941 } 1942 1943 rc = mf_generic_kill_procs(pfn, flags, pgmap); 1944 out: 1945 /* drop pgmap ref acquired in caller */ 1946 put_dev_pagemap(pgmap); 1947 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1948 return rc; 1949 } 1950 1951 static DEFINE_MUTEX(mf_mutex); 1952 1953 /** 1954 * memory_failure - Handle memory failure of a page. 1955 * @pfn: Page Number of the corrupted page 1956 * @flags: fine tune action taken 1957 * 1958 * This function is called by the low level machine check code 1959 * of an architecture when it detects hardware memory corruption 1960 * of a page. It tries its best to recover, which includes 1961 * dropping pages, killing processes etc. 1962 * 1963 * The function is primarily of use for corruptions that 1964 * happen outside the current execution context (e.g. when 1965 * detected by a background scrubber) 1966 * 1967 * Must run in process context (e.g. a work queue) with interrupts 1968 * enabled and no spinlocks hold. 1969 * 1970 * Return: 0 for successfully handled the memory error, 1971 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 1972 * < 0(except -EOPNOTSUPP) on failure. 1973 */ 1974 int memory_failure(unsigned long pfn, int flags) 1975 { 1976 struct page *p; 1977 struct page *hpage; 1978 struct dev_pagemap *pgmap; 1979 int res = 0; 1980 unsigned long page_flags; 1981 bool retry = true; 1982 int hugetlb = 0; 1983 1984 if (!sysctl_memory_failure_recovery) 1985 panic("Memory failure on page %lx", pfn); 1986 1987 mutex_lock(&mf_mutex); 1988 1989 if (!(flags & MF_SW_SIMULATED)) 1990 hw_memory_failure = true; 1991 1992 p = pfn_to_online_page(pfn); 1993 if (!p) { 1994 res = arch_memory_failure(pfn, flags); 1995 if (res == 0) 1996 goto unlock_mutex; 1997 1998 if (pfn_valid(pfn)) { 1999 pgmap = get_dev_pagemap(pfn, NULL); 2000 if (pgmap) { 2001 res = memory_failure_dev_pagemap(pfn, flags, 2002 pgmap); 2003 goto unlock_mutex; 2004 } 2005 } 2006 pr_err("%#lx: memory outside kernel control\n", pfn); 2007 res = -ENXIO; 2008 goto unlock_mutex; 2009 } 2010 2011 try_again: 2012 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2013 if (hugetlb) 2014 goto unlock_mutex; 2015 2016 if (TestSetPageHWPoison(p)) { 2017 pr_err("%#lx: already hardware poisoned\n", pfn); 2018 res = -EHWPOISON; 2019 if (flags & MF_ACTION_REQUIRED) 2020 res = kill_accessing_process(current, pfn, flags); 2021 if (flags & MF_COUNT_INCREASED) 2022 put_page(p); 2023 goto unlock_mutex; 2024 } 2025 2026 hpage = compound_head(p); 2027 2028 /* 2029 * We need/can do nothing about count=0 pages. 2030 * 1) it's a free page, and therefore in safe hand: 2031 * check_new_page() will be the gate keeper. 2032 * 2) it's part of a non-compound high order page. 2033 * Implies some kernel user: cannot stop them from 2034 * R/W the page; let's pray that the page has been 2035 * used and will be freed some time later. 2036 * In fact it's dangerous to directly bump up page count from 0, 2037 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2038 */ 2039 if (!(flags & MF_COUNT_INCREASED)) { 2040 res = get_hwpoison_page(p, flags); 2041 if (!res) { 2042 if (is_free_buddy_page(p)) { 2043 if (take_page_off_buddy(p)) { 2044 page_ref_inc(p); 2045 res = MF_RECOVERED; 2046 } else { 2047 /* We lost the race, try again */ 2048 if (retry) { 2049 ClearPageHWPoison(p); 2050 retry = false; 2051 goto try_again; 2052 } 2053 res = MF_FAILED; 2054 } 2055 action_result(pfn, MF_MSG_BUDDY, res); 2056 res = res == MF_RECOVERED ? 0 : -EBUSY; 2057 } else { 2058 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2059 res = -EBUSY; 2060 } 2061 goto unlock_mutex; 2062 } else if (res < 0) { 2063 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2064 res = -EBUSY; 2065 goto unlock_mutex; 2066 } 2067 } 2068 2069 if (PageTransHuge(hpage)) { 2070 /* 2071 * The flag must be set after the refcount is bumped 2072 * otherwise it may race with THP split. 2073 * And the flag can't be set in get_hwpoison_page() since 2074 * it is called by soft offline too and it is just called 2075 * for !MF_COUNT_INCREASE. So here seems to be the best 2076 * place. 2077 * 2078 * Don't need care about the above error handling paths for 2079 * get_hwpoison_page() since they handle either free page 2080 * or unhandlable page. The refcount is bumped iff the 2081 * page is a valid handlable page. 2082 */ 2083 SetPageHasHWPoisoned(hpage); 2084 if (try_to_split_thp_page(p) < 0) { 2085 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2086 res = -EBUSY; 2087 goto unlock_mutex; 2088 } 2089 VM_BUG_ON_PAGE(!page_count(p), p); 2090 } 2091 2092 /* 2093 * We ignore non-LRU pages for good reasons. 2094 * - PG_locked is only well defined for LRU pages and a few others 2095 * - to avoid races with __SetPageLocked() 2096 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2097 * The check (unnecessarily) ignores LRU pages being isolated and 2098 * walked by the page reclaim code, however that's not a big loss. 2099 */ 2100 shake_page(p); 2101 2102 lock_page(p); 2103 2104 /* 2105 * We're only intended to deal with the non-Compound page here. 2106 * However, the page could have changed compound pages due to 2107 * race window. If this happens, we could try again to hopefully 2108 * handle the page next round. 2109 */ 2110 if (PageCompound(p)) { 2111 if (retry) { 2112 ClearPageHWPoison(p); 2113 unlock_page(p); 2114 put_page(p); 2115 flags &= ~MF_COUNT_INCREASED; 2116 retry = false; 2117 goto try_again; 2118 } 2119 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2120 res = -EBUSY; 2121 goto unlock_page; 2122 } 2123 2124 /* 2125 * We use page flags to determine what action should be taken, but 2126 * the flags can be modified by the error containment action. One 2127 * example is an mlocked page, where PG_mlocked is cleared by 2128 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2129 * correctly, we save a copy of the page flags at this time. 2130 */ 2131 page_flags = p->flags; 2132 2133 if (hwpoison_filter(p)) { 2134 ClearPageHWPoison(p); 2135 unlock_page(p); 2136 put_page(p); 2137 res = -EOPNOTSUPP; 2138 goto unlock_mutex; 2139 } 2140 2141 /* 2142 * __munlock_pagevec may clear a writeback page's LRU flag without 2143 * page_lock. We need wait writeback completion for this page or it 2144 * may trigger vfs BUG while evict inode. 2145 */ 2146 if (!PageLRU(p) && !PageWriteback(p)) 2147 goto identify_page_state; 2148 2149 /* 2150 * It's very difficult to mess with pages currently under IO 2151 * and in many cases impossible, so we just avoid it here. 2152 */ 2153 wait_on_page_writeback(p); 2154 2155 /* 2156 * Now take care of user space mappings. 2157 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2158 */ 2159 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2160 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2161 res = -EBUSY; 2162 goto unlock_page; 2163 } 2164 2165 /* 2166 * Torn down by someone else? 2167 */ 2168 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2169 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2170 res = -EBUSY; 2171 goto unlock_page; 2172 } 2173 2174 identify_page_state: 2175 res = identify_page_state(pfn, p, page_flags); 2176 mutex_unlock(&mf_mutex); 2177 return res; 2178 unlock_page: 2179 unlock_page(p); 2180 unlock_mutex: 2181 mutex_unlock(&mf_mutex); 2182 return res; 2183 } 2184 EXPORT_SYMBOL_GPL(memory_failure); 2185 2186 #define MEMORY_FAILURE_FIFO_ORDER 4 2187 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2188 2189 struct memory_failure_entry { 2190 unsigned long pfn; 2191 int flags; 2192 }; 2193 2194 struct memory_failure_cpu { 2195 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2196 MEMORY_FAILURE_FIFO_SIZE); 2197 spinlock_t lock; 2198 struct work_struct work; 2199 }; 2200 2201 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2202 2203 /** 2204 * memory_failure_queue - Schedule handling memory failure of a page. 2205 * @pfn: Page Number of the corrupted page 2206 * @flags: Flags for memory failure handling 2207 * 2208 * This function is called by the low level hardware error handler 2209 * when it detects hardware memory corruption of a page. It schedules 2210 * the recovering of error page, including dropping pages, killing 2211 * processes etc. 2212 * 2213 * The function is primarily of use for corruptions that 2214 * happen outside the current execution context (e.g. when 2215 * detected by a background scrubber) 2216 * 2217 * Can run in IRQ context. 2218 */ 2219 void memory_failure_queue(unsigned long pfn, int flags) 2220 { 2221 struct memory_failure_cpu *mf_cpu; 2222 unsigned long proc_flags; 2223 struct memory_failure_entry entry = { 2224 .pfn = pfn, 2225 .flags = flags, 2226 }; 2227 2228 mf_cpu = &get_cpu_var(memory_failure_cpu); 2229 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2230 if (kfifo_put(&mf_cpu->fifo, entry)) 2231 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2232 else 2233 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2234 pfn); 2235 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2236 put_cpu_var(memory_failure_cpu); 2237 } 2238 EXPORT_SYMBOL_GPL(memory_failure_queue); 2239 2240 static void memory_failure_work_func(struct work_struct *work) 2241 { 2242 struct memory_failure_cpu *mf_cpu; 2243 struct memory_failure_entry entry = { 0, }; 2244 unsigned long proc_flags; 2245 int gotten; 2246 2247 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2248 for (;;) { 2249 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2250 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2251 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2252 if (!gotten) 2253 break; 2254 if (entry.flags & MF_SOFT_OFFLINE) 2255 soft_offline_page(entry.pfn, entry.flags); 2256 else 2257 memory_failure(entry.pfn, entry.flags); 2258 } 2259 } 2260 2261 /* 2262 * Process memory_failure work queued on the specified CPU. 2263 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2264 */ 2265 void memory_failure_queue_kick(int cpu) 2266 { 2267 struct memory_failure_cpu *mf_cpu; 2268 2269 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2270 cancel_work_sync(&mf_cpu->work); 2271 memory_failure_work_func(&mf_cpu->work); 2272 } 2273 2274 static int __init memory_failure_init(void) 2275 { 2276 struct memory_failure_cpu *mf_cpu; 2277 int cpu; 2278 2279 for_each_possible_cpu(cpu) { 2280 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2281 spin_lock_init(&mf_cpu->lock); 2282 INIT_KFIFO(mf_cpu->fifo); 2283 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2284 } 2285 2286 return 0; 2287 } 2288 core_initcall(memory_failure_init); 2289 2290 #undef pr_fmt 2291 #define pr_fmt(fmt) "" fmt 2292 #define unpoison_pr_info(fmt, pfn, rs) \ 2293 ({ \ 2294 if (__ratelimit(rs)) \ 2295 pr_info(fmt, pfn); \ 2296 }) 2297 2298 /** 2299 * unpoison_memory - Unpoison a previously poisoned page 2300 * @pfn: Page number of the to be unpoisoned page 2301 * 2302 * Software-unpoison a page that has been poisoned by 2303 * memory_failure() earlier. 2304 * 2305 * This is only done on the software-level, so it only works 2306 * for linux injected failures, not real hardware failures 2307 * 2308 * Returns 0 for success, otherwise -errno. 2309 */ 2310 int unpoison_memory(unsigned long pfn) 2311 { 2312 struct page *page; 2313 struct page *p; 2314 int ret = -EBUSY; 2315 int freeit = 0; 2316 unsigned long count = 1; 2317 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2318 DEFAULT_RATELIMIT_BURST); 2319 2320 if (!pfn_valid(pfn)) 2321 return -ENXIO; 2322 2323 p = pfn_to_page(pfn); 2324 page = compound_head(p); 2325 2326 mutex_lock(&mf_mutex); 2327 2328 if (hw_memory_failure) { 2329 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2330 pfn, &unpoison_rs); 2331 ret = -EOPNOTSUPP; 2332 goto unlock_mutex; 2333 } 2334 2335 if (!PageHWPoison(p)) { 2336 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2337 pfn, &unpoison_rs); 2338 goto unlock_mutex; 2339 } 2340 2341 if (page_count(page) > 1) { 2342 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2343 pfn, &unpoison_rs); 2344 goto unlock_mutex; 2345 } 2346 2347 if (page_mapped(page)) { 2348 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2349 pfn, &unpoison_rs); 2350 goto unlock_mutex; 2351 } 2352 2353 if (page_mapping(page)) { 2354 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2355 pfn, &unpoison_rs); 2356 goto unlock_mutex; 2357 } 2358 2359 if (PageSlab(page) || PageTable(page) || PageReserved(page)) 2360 goto unlock_mutex; 2361 2362 ret = get_hwpoison_page(p, MF_UNPOISON); 2363 if (!ret) { 2364 if (PageHuge(p)) { 2365 count = free_raw_hwp_pages(page, false); 2366 if (count == 0) { 2367 ret = -EBUSY; 2368 goto unlock_mutex; 2369 } 2370 } 2371 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY; 2372 } else if (ret < 0) { 2373 if (ret == -EHWPOISON) { 2374 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2375 } else 2376 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2377 pfn, &unpoison_rs); 2378 } else { 2379 if (PageHuge(p)) { 2380 count = free_raw_hwp_pages(page, false); 2381 if (count == 0) { 2382 ret = -EBUSY; 2383 put_page(page); 2384 goto unlock_mutex; 2385 } 2386 } 2387 freeit = !!TestClearPageHWPoison(p); 2388 2389 put_page(page); 2390 if (freeit) { 2391 put_page(page); 2392 ret = 0; 2393 } 2394 } 2395 2396 unlock_mutex: 2397 mutex_unlock(&mf_mutex); 2398 if (!ret || freeit) { 2399 num_poisoned_pages_sub(count); 2400 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2401 page_to_pfn(p), &unpoison_rs); 2402 } 2403 return ret; 2404 } 2405 EXPORT_SYMBOL(unpoison_memory); 2406 2407 static bool isolate_page(struct page *page, struct list_head *pagelist) 2408 { 2409 bool isolated = false; 2410 2411 if (PageHuge(page)) { 2412 isolated = !isolate_hugetlb(page, pagelist); 2413 } else { 2414 bool lru = !__PageMovable(page); 2415 2416 if (lru) 2417 isolated = !isolate_lru_page(page); 2418 else 2419 isolated = !isolate_movable_page(page, 2420 ISOLATE_UNEVICTABLE); 2421 2422 if (isolated) { 2423 list_add(&page->lru, pagelist); 2424 if (lru) 2425 inc_node_page_state(page, NR_ISOLATED_ANON + 2426 page_is_file_lru(page)); 2427 } 2428 } 2429 2430 /* 2431 * If we succeed to isolate the page, we grabbed another refcount on 2432 * the page, so we can safely drop the one we got from get_any_pages(). 2433 * If we failed to isolate the page, it means that we cannot go further 2434 * and we will return an error, so drop the reference we got from 2435 * get_any_pages() as well. 2436 */ 2437 put_page(page); 2438 return isolated; 2439 } 2440 2441 /* 2442 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2443 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2444 * If the page is mapped, it migrates the contents over. 2445 */ 2446 static int soft_offline_in_use_page(struct page *page) 2447 { 2448 long ret = 0; 2449 unsigned long pfn = page_to_pfn(page); 2450 struct page *hpage = compound_head(page); 2451 char const *msg_page[] = {"page", "hugepage"}; 2452 bool huge = PageHuge(page); 2453 LIST_HEAD(pagelist); 2454 struct migration_target_control mtc = { 2455 .nid = NUMA_NO_NODE, 2456 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2457 }; 2458 2459 if (!huge && PageTransHuge(hpage)) { 2460 if (try_to_split_thp_page(page)) { 2461 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2462 return -EBUSY; 2463 } 2464 hpage = page; 2465 } 2466 2467 lock_page(page); 2468 if (!PageHuge(page)) 2469 wait_on_page_writeback(page); 2470 if (PageHWPoison(page)) { 2471 unlock_page(page); 2472 put_page(page); 2473 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2474 return 0; 2475 } 2476 2477 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2478 /* 2479 * Try to invalidate first. This should work for 2480 * non dirty unmapped page cache pages. 2481 */ 2482 ret = invalidate_inode_page(page); 2483 unlock_page(page); 2484 2485 if (ret) { 2486 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2487 page_handle_poison(page, false, true); 2488 return 0; 2489 } 2490 2491 if (isolate_page(hpage, &pagelist)) { 2492 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2493 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2494 if (!ret) { 2495 bool release = !huge; 2496 2497 if (!page_handle_poison(page, huge, release)) 2498 ret = -EBUSY; 2499 } else { 2500 if (!list_empty(&pagelist)) 2501 putback_movable_pages(&pagelist); 2502 2503 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2504 pfn, msg_page[huge], ret, &page->flags); 2505 if (ret > 0) 2506 ret = -EBUSY; 2507 } 2508 } else { 2509 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2510 pfn, msg_page[huge], page_count(page), &page->flags); 2511 ret = -EBUSY; 2512 } 2513 return ret; 2514 } 2515 2516 static void put_ref_page(struct page *page) 2517 { 2518 if (page) 2519 put_page(page); 2520 } 2521 2522 /** 2523 * soft_offline_page - Soft offline a page. 2524 * @pfn: pfn to soft-offline 2525 * @flags: flags. Same as memory_failure(). 2526 * 2527 * Returns 0 on success 2528 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2529 * < 0 otherwise negated errno. 2530 * 2531 * Soft offline a page, by migration or invalidation, 2532 * without killing anything. This is for the case when 2533 * a page is not corrupted yet (so it's still valid to access), 2534 * but has had a number of corrected errors and is better taken 2535 * out. 2536 * 2537 * The actual policy on when to do that is maintained by 2538 * user space. 2539 * 2540 * This should never impact any application or cause data loss, 2541 * however it might take some time. 2542 * 2543 * This is not a 100% solution for all memory, but tries to be 2544 * ``good enough'' for the majority of memory. 2545 */ 2546 int soft_offline_page(unsigned long pfn, int flags) 2547 { 2548 int ret; 2549 bool try_again = true; 2550 struct page *page, *ref_page = NULL; 2551 2552 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2553 2554 if (!pfn_valid(pfn)) 2555 return -ENXIO; 2556 if (flags & MF_COUNT_INCREASED) 2557 ref_page = pfn_to_page(pfn); 2558 2559 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2560 page = pfn_to_online_page(pfn); 2561 if (!page) { 2562 put_ref_page(ref_page); 2563 return -EIO; 2564 } 2565 2566 mutex_lock(&mf_mutex); 2567 2568 if (PageHWPoison(page)) { 2569 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2570 put_ref_page(ref_page); 2571 mutex_unlock(&mf_mutex); 2572 return 0; 2573 } 2574 2575 retry: 2576 get_online_mems(); 2577 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2578 put_online_mems(); 2579 2580 if (hwpoison_filter(page)) { 2581 if (ret > 0) 2582 put_page(page); 2583 2584 mutex_unlock(&mf_mutex); 2585 return -EOPNOTSUPP; 2586 } 2587 2588 if (ret > 0) { 2589 ret = soft_offline_in_use_page(page); 2590 } else if (ret == 0) { 2591 if (!page_handle_poison(page, true, false) && try_again) { 2592 try_again = false; 2593 flags &= ~MF_COUNT_INCREASED; 2594 goto retry; 2595 } 2596 } 2597 2598 mutex_unlock(&mf_mutex); 2599 2600 return ret; 2601 } 2602 2603 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 2604 { 2605 int i, total = 0; 2606 2607 /* 2608 * A further optimization is to have per section refcounted 2609 * num_poisoned_pages. But that would need more space per memmap, so 2610 * for now just do a quick global check to speed up this routine in the 2611 * absence of bad pages. 2612 */ 2613 if (atomic_long_read(&num_poisoned_pages) == 0) 2614 return; 2615 2616 for (i = 0; i < nr_pages; i++) { 2617 if (PageHWPoison(&memmap[i])) { 2618 total++; 2619 ClearPageHWPoison(&memmap[i]); 2620 } 2621 } 2622 if (total) 2623 num_poisoned_pages_sub(total); 2624 } 2625