xref: /linux/mm/memory-failure.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 			t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
220 void shake_page(struct page *p, int access)
221 {
222 	if (PageHuge(p))
223 		return;
224 
225 	if (!PageSlab(p)) {
226 		lru_add_drain_all();
227 		if (PageLRU(p))
228 			return;
229 		drain_all_pages(page_zone(p));
230 		if (PageLRU(p) || is_free_buddy_page(p))
231 			return;
232 	}
233 
234 	/*
235 	 * Only call shrink_node_slabs here (which would also shrink
236 	 * other caches) if access is not potentially fatal.
237 	 */
238 	if (access)
239 		drop_slab_node(page_to_nid(p));
240 }
241 EXPORT_SYMBOL_GPL(shake_page);
242 
243 /*
244  * Kill all processes that have a poisoned page mapped and then isolate
245  * the page.
246  *
247  * General strategy:
248  * Find all processes having the page mapped and kill them.
249  * But we keep a page reference around so that the page is not
250  * actually freed yet.
251  * Then stash the page away
252  *
253  * There's no convenient way to get back to mapped processes
254  * from the VMAs. So do a brute-force search over all
255  * running processes.
256  *
257  * Remember that machine checks are not common (or rather
258  * if they are common you have other problems), so this shouldn't
259  * be a performance issue.
260  *
261  * Also there are some races possible while we get from the
262  * error detection to actually handle it.
263  */
264 
265 struct to_kill {
266 	struct list_head nd;
267 	struct task_struct *tsk;
268 	unsigned long addr;
269 	char addr_valid;
270 };
271 
272 /*
273  * Failure handling: if we can't find or can't kill a process there's
274  * not much we can do.	We just print a message and ignore otherwise.
275  */
276 
277 /*
278  * Schedule a process for later kill.
279  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
280  * TBD would GFP_NOIO be enough?
281  */
282 static void add_to_kill(struct task_struct *tsk, struct page *p,
283 		       struct vm_area_struct *vma,
284 		       struct list_head *to_kill,
285 		       struct to_kill **tkc)
286 {
287 	struct to_kill *tk;
288 
289 	if (*tkc) {
290 		tk = *tkc;
291 		*tkc = NULL;
292 	} else {
293 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
294 		if (!tk) {
295 			pr_err("Memory failure: Out of memory while machine check handling\n");
296 			return;
297 		}
298 	}
299 	tk->addr = page_address_in_vma(p, vma);
300 	tk->addr_valid = 1;
301 
302 	/*
303 	 * In theory we don't have to kill when the page was
304 	 * munmaped. But it could be also a mremap. Since that's
305 	 * likely very rare kill anyways just out of paranoia, but use
306 	 * a SIGKILL because the error is not contained anymore.
307 	 */
308 	if (tk->addr == -EFAULT) {
309 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
310 			page_to_pfn(p), tsk->comm);
311 		tk->addr_valid = 0;
312 	}
313 	get_task_struct(tsk);
314 	tk->tsk = tsk;
315 	list_add_tail(&tk->nd, to_kill);
316 }
317 
318 /*
319  * Kill the processes that have been collected earlier.
320  *
321  * Only do anything when DOIT is set, otherwise just free the list
322  * (this is used for clean pages which do not need killing)
323  * Also when FAIL is set do a force kill because something went
324  * wrong earlier.
325  */
326 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
327 			  bool fail, struct page *page, unsigned long pfn,
328 			  int flags)
329 {
330 	struct to_kill *tk, *next;
331 
332 	list_for_each_entry_safe (tk, next, to_kill, nd) {
333 		if (forcekill) {
334 			/*
335 			 * In case something went wrong with munmapping
336 			 * make sure the process doesn't catch the
337 			 * signal and then access the memory. Just kill it.
338 			 */
339 			if (fail || tk->addr_valid == 0) {
340 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 				       pfn, tk->tsk->comm, tk->tsk->pid);
342 				force_sig(SIGKILL, tk->tsk);
343 			}
344 
345 			/*
346 			 * In theory the process could have mapped
347 			 * something else on the address in-between. We could
348 			 * check for that, but we need to tell the
349 			 * process anyways.
350 			 */
351 			else if (kill_proc(tk->tsk, tk->addr, trapno,
352 					      pfn, page, flags) < 0)
353 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
354 				       pfn, tk->tsk->comm, tk->tsk->pid);
355 		}
356 		put_task_struct(tk->tsk);
357 		kfree(tk);
358 	}
359 }
360 
361 /*
362  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
363  * on behalf of the thread group. Return task_struct of the (first found)
364  * dedicated thread if found, and return NULL otherwise.
365  *
366  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
367  * have to call rcu_read_lock/unlock() in this function.
368  */
369 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
370 {
371 	struct task_struct *t;
372 
373 	for_each_thread(tsk, t)
374 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
375 			return t;
376 	return NULL;
377 }
378 
379 /*
380  * Determine whether a given process is "early kill" process which expects
381  * to be signaled when some page under the process is hwpoisoned.
382  * Return task_struct of the dedicated thread (main thread unless explicitly
383  * specified) if the process is "early kill," and otherwise returns NULL.
384  */
385 static struct task_struct *task_early_kill(struct task_struct *tsk,
386 					   int force_early)
387 {
388 	struct task_struct *t;
389 	if (!tsk->mm)
390 		return NULL;
391 	if (force_early)
392 		return tsk;
393 	t = find_early_kill_thread(tsk);
394 	if (t)
395 		return t;
396 	if (sysctl_memory_failure_early_kill)
397 		return tsk;
398 	return NULL;
399 }
400 
401 /*
402  * Collect processes when the error hit an anonymous page.
403  */
404 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
405 			      struct to_kill **tkc, int force_early)
406 {
407 	struct vm_area_struct *vma;
408 	struct task_struct *tsk;
409 	struct anon_vma *av;
410 	pgoff_t pgoff;
411 
412 	av = page_lock_anon_vma_read(page);
413 	if (av == NULL)	/* Not actually mapped anymore */
414 		return;
415 
416 	pgoff = page_to_pgoff(page);
417 	read_lock(&tasklist_lock);
418 	for_each_process (tsk) {
419 		struct anon_vma_chain *vmac;
420 		struct task_struct *t = task_early_kill(tsk, force_early);
421 
422 		if (!t)
423 			continue;
424 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
425 					       pgoff, pgoff) {
426 			vma = vmac->vma;
427 			if (!page_mapped_in_vma(page, vma))
428 				continue;
429 			if (vma->vm_mm == t->mm)
430 				add_to_kill(t, page, vma, to_kill, tkc);
431 		}
432 	}
433 	read_unlock(&tasklist_lock);
434 	page_unlock_anon_vma_read(av);
435 }
436 
437 /*
438  * Collect processes when the error hit a file mapped page.
439  */
440 static void collect_procs_file(struct page *page, struct list_head *to_kill,
441 			      struct to_kill **tkc, int force_early)
442 {
443 	struct vm_area_struct *vma;
444 	struct task_struct *tsk;
445 	struct address_space *mapping = page->mapping;
446 
447 	i_mmap_lock_read(mapping);
448 	read_lock(&tasklist_lock);
449 	for_each_process(tsk) {
450 		pgoff_t pgoff = page_to_pgoff(page);
451 		struct task_struct *t = task_early_kill(tsk, force_early);
452 
453 		if (!t)
454 			continue;
455 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
456 				      pgoff) {
457 			/*
458 			 * Send early kill signal to tasks where a vma covers
459 			 * the page but the corrupted page is not necessarily
460 			 * mapped it in its pte.
461 			 * Assume applications who requested early kill want
462 			 * to be informed of all such data corruptions.
463 			 */
464 			if (vma->vm_mm == t->mm)
465 				add_to_kill(t, page, vma, to_kill, tkc);
466 		}
467 	}
468 	read_unlock(&tasklist_lock);
469 	i_mmap_unlock_read(mapping);
470 }
471 
472 /*
473  * Collect the processes who have the corrupted page mapped to kill.
474  * This is done in two steps for locking reasons.
475  * First preallocate one tokill structure outside the spin locks,
476  * so that we can kill at least one process reasonably reliable.
477  */
478 static void collect_procs(struct page *page, struct list_head *tokill,
479 				int force_early)
480 {
481 	struct to_kill *tk;
482 
483 	if (!page->mapping)
484 		return;
485 
486 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
487 	if (!tk)
488 		return;
489 	if (PageAnon(page))
490 		collect_procs_anon(page, tokill, &tk, force_early);
491 	else
492 		collect_procs_file(page, tokill, &tk, force_early);
493 	kfree(tk);
494 }
495 
496 static const char *action_name[] = {
497 	[MF_IGNORED] = "Ignored",
498 	[MF_FAILED] = "Failed",
499 	[MF_DELAYED] = "Delayed",
500 	[MF_RECOVERED] = "Recovered",
501 };
502 
503 static const char * const action_page_types[] = {
504 	[MF_MSG_KERNEL]			= "reserved kernel page",
505 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
506 	[MF_MSG_SLAB]			= "kernel slab page",
507 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
508 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
509 	[MF_MSG_HUGE]			= "huge page",
510 	[MF_MSG_FREE_HUGE]		= "free huge page",
511 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
512 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
513 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
514 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
515 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
516 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
517 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
518 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
519 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
520 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
521 	[MF_MSG_BUDDY]			= "free buddy page",
522 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
523 	[MF_MSG_UNKNOWN]		= "unknown page",
524 };
525 
526 /*
527  * XXX: It is possible that a page is isolated from LRU cache,
528  * and then kept in swap cache or failed to remove from page cache.
529  * The page count will stop it from being freed by unpoison.
530  * Stress tests should be aware of this memory leak problem.
531  */
532 static int delete_from_lru_cache(struct page *p)
533 {
534 	if (!isolate_lru_page(p)) {
535 		/*
536 		 * Clear sensible page flags, so that the buddy system won't
537 		 * complain when the page is unpoison-and-freed.
538 		 */
539 		ClearPageActive(p);
540 		ClearPageUnevictable(p);
541 
542 		/*
543 		 * Poisoned page might never drop its ref count to 0 so we have
544 		 * to uncharge it manually from its memcg.
545 		 */
546 		mem_cgroup_uncharge(p);
547 
548 		/*
549 		 * drop the page count elevated by isolate_lru_page()
550 		 */
551 		put_page(p);
552 		return 0;
553 	}
554 	return -EIO;
555 }
556 
557 static int truncate_error_page(struct page *p, unsigned long pfn,
558 				struct address_space *mapping)
559 {
560 	int ret = MF_FAILED;
561 
562 	if (mapping->a_ops->error_remove_page) {
563 		int err = mapping->a_ops->error_remove_page(mapping, p);
564 
565 		if (err != 0) {
566 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
567 				pfn, err);
568 		} else if (page_has_private(p) &&
569 			   !try_to_release_page(p, GFP_NOIO)) {
570 			pr_info("Memory failure: %#lx: failed to release buffers\n",
571 				pfn);
572 		} else {
573 			ret = MF_RECOVERED;
574 		}
575 	} else {
576 		/*
577 		 * If the file system doesn't support it just invalidate
578 		 * This fails on dirty or anything with private pages
579 		 */
580 		if (invalidate_inode_page(p))
581 			ret = MF_RECOVERED;
582 		else
583 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
584 				pfn);
585 	}
586 
587 	return ret;
588 }
589 
590 /*
591  * Error hit kernel page.
592  * Do nothing, try to be lucky and not touch this instead. For a few cases we
593  * could be more sophisticated.
594  */
595 static int me_kernel(struct page *p, unsigned long pfn)
596 {
597 	return MF_IGNORED;
598 }
599 
600 /*
601  * Page in unknown state. Do nothing.
602  */
603 static int me_unknown(struct page *p, unsigned long pfn)
604 {
605 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
606 	return MF_FAILED;
607 }
608 
609 /*
610  * Clean (or cleaned) page cache page.
611  */
612 static int me_pagecache_clean(struct page *p, unsigned long pfn)
613 {
614 	struct address_space *mapping;
615 
616 	delete_from_lru_cache(p);
617 
618 	/*
619 	 * For anonymous pages we're done the only reference left
620 	 * should be the one m_f() holds.
621 	 */
622 	if (PageAnon(p))
623 		return MF_RECOVERED;
624 
625 	/*
626 	 * Now truncate the page in the page cache. This is really
627 	 * more like a "temporary hole punch"
628 	 * Don't do this for block devices when someone else
629 	 * has a reference, because it could be file system metadata
630 	 * and that's not safe to truncate.
631 	 */
632 	mapping = page_mapping(p);
633 	if (!mapping) {
634 		/*
635 		 * Page has been teared down in the meanwhile
636 		 */
637 		return MF_FAILED;
638 	}
639 
640 	/*
641 	 * Truncation is a bit tricky. Enable it per file system for now.
642 	 *
643 	 * Open: to take i_mutex or not for this? Right now we don't.
644 	 */
645 	return truncate_error_page(p, pfn, mapping);
646 }
647 
648 /*
649  * Dirty pagecache page
650  * Issues: when the error hit a hole page the error is not properly
651  * propagated.
652  */
653 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
654 {
655 	struct address_space *mapping = page_mapping(p);
656 
657 	SetPageError(p);
658 	/* TBD: print more information about the file. */
659 	if (mapping) {
660 		/*
661 		 * IO error will be reported by write(), fsync(), etc.
662 		 * who check the mapping.
663 		 * This way the application knows that something went
664 		 * wrong with its dirty file data.
665 		 *
666 		 * There's one open issue:
667 		 *
668 		 * The EIO will be only reported on the next IO
669 		 * operation and then cleared through the IO map.
670 		 * Normally Linux has two mechanisms to pass IO error
671 		 * first through the AS_EIO flag in the address space
672 		 * and then through the PageError flag in the page.
673 		 * Since we drop pages on memory failure handling the
674 		 * only mechanism open to use is through AS_AIO.
675 		 *
676 		 * This has the disadvantage that it gets cleared on
677 		 * the first operation that returns an error, while
678 		 * the PageError bit is more sticky and only cleared
679 		 * when the page is reread or dropped.  If an
680 		 * application assumes it will always get error on
681 		 * fsync, but does other operations on the fd before
682 		 * and the page is dropped between then the error
683 		 * will not be properly reported.
684 		 *
685 		 * This can already happen even without hwpoisoned
686 		 * pages: first on metadata IO errors (which only
687 		 * report through AS_EIO) or when the page is dropped
688 		 * at the wrong time.
689 		 *
690 		 * So right now we assume that the application DTRT on
691 		 * the first EIO, but we're not worse than other parts
692 		 * of the kernel.
693 		 */
694 		mapping_set_error(mapping, -EIO);
695 	}
696 
697 	return me_pagecache_clean(p, pfn);
698 }
699 
700 /*
701  * Clean and dirty swap cache.
702  *
703  * Dirty swap cache page is tricky to handle. The page could live both in page
704  * cache and swap cache(ie. page is freshly swapped in). So it could be
705  * referenced concurrently by 2 types of PTEs:
706  * normal PTEs and swap PTEs. We try to handle them consistently by calling
707  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
708  * and then
709  *      - clear dirty bit to prevent IO
710  *      - remove from LRU
711  *      - but keep in the swap cache, so that when we return to it on
712  *        a later page fault, we know the application is accessing
713  *        corrupted data and shall be killed (we installed simple
714  *        interception code in do_swap_page to catch it).
715  *
716  * Clean swap cache pages can be directly isolated. A later page fault will
717  * bring in the known good data from disk.
718  */
719 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
720 {
721 	ClearPageDirty(p);
722 	/* Trigger EIO in shmem: */
723 	ClearPageUptodate(p);
724 
725 	if (!delete_from_lru_cache(p))
726 		return MF_DELAYED;
727 	else
728 		return MF_FAILED;
729 }
730 
731 static int me_swapcache_clean(struct page *p, unsigned long pfn)
732 {
733 	delete_from_swap_cache(p);
734 
735 	if (!delete_from_lru_cache(p))
736 		return MF_RECOVERED;
737 	else
738 		return MF_FAILED;
739 }
740 
741 /*
742  * Huge pages. Needs work.
743  * Issues:
744  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
745  *   To narrow down kill region to one page, we need to break up pmd.
746  */
747 static int me_huge_page(struct page *p, unsigned long pfn)
748 {
749 	int res = 0;
750 	struct page *hpage = compound_head(p);
751 	struct address_space *mapping;
752 
753 	if (!PageHuge(hpage))
754 		return MF_DELAYED;
755 
756 	mapping = page_mapping(hpage);
757 	if (mapping) {
758 		res = truncate_error_page(hpage, pfn, mapping);
759 	} else {
760 		unlock_page(hpage);
761 		/*
762 		 * migration entry prevents later access on error anonymous
763 		 * hugepage, so we can free and dissolve it into buddy to
764 		 * save healthy subpages.
765 		 */
766 		if (PageAnon(hpage))
767 			put_page(hpage);
768 		dissolve_free_huge_page(p);
769 		res = MF_RECOVERED;
770 		lock_page(hpage);
771 	}
772 
773 	return res;
774 }
775 
776 /*
777  * Various page states we can handle.
778  *
779  * A page state is defined by its current page->flags bits.
780  * The table matches them in order and calls the right handler.
781  *
782  * This is quite tricky because we can access page at any time
783  * in its live cycle, so all accesses have to be extremely careful.
784  *
785  * This is not complete. More states could be added.
786  * For any missing state don't attempt recovery.
787  */
788 
789 #define dirty		(1UL << PG_dirty)
790 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
791 #define unevict		(1UL << PG_unevictable)
792 #define mlock		(1UL << PG_mlocked)
793 #define writeback	(1UL << PG_writeback)
794 #define lru		(1UL << PG_lru)
795 #define head		(1UL << PG_head)
796 #define slab		(1UL << PG_slab)
797 #define reserved	(1UL << PG_reserved)
798 
799 static struct page_state {
800 	unsigned long mask;
801 	unsigned long res;
802 	enum mf_action_page_type type;
803 	int (*action)(struct page *p, unsigned long pfn);
804 } error_states[] = {
805 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
806 	/*
807 	 * free pages are specially detected outside this table:
808 	 * PG_buddy pages only make a small fraction of all free pages.
809 	 */
810 
811 	/*
812 	 * Could in theory check if slab page is free or if we can drop
813 	 * currently unused objects without touching them. But just
814 	 * treat it as standard kernel for now.
815 	 */
816 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
817 
818 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
819 
820 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
821 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
822 
823 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
824 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
825 
826 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
827 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
828 
829 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
830 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
831 
832 	/*
833 	 * Catchall entry: must be at end.
834 	 */
835 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
836 };
837 
838 #undef dirty
839 #undef sc
840 #undef unevict
841 #undef mlock
842 #undef writeback
843 #undef lru
844 #undef head
845 #undef slab
846 #undef reserved
847 
848 /*
849  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
850  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
851  */
852 static void action_result(unsigned long pfn, enum mf_action_page_type type,
853 			  enum mf_result result)
854 {
855 	trace_memory_failure_event(pfn, type, result);
856 
857 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
858 		pfn, action_page_types[type], action_name[result]);
859 }
860 
861 static int page_action(struct page_state *ps, struct page *p,
862 			unsigned long pfn)
863 {
864 	int result;
865 	int count;
866 
867 	result = ps->action(p, pfn);
868 
869 	count = page_count(p) - 1;
870 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
871 		count--;
872 	if (count > 0) {
873 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
874 		       pfn, action_page_types[ps->type], count);
875 		result = MF_FAILED;
876 	}
877 	action_result(pfn, ps->type, result);
878 
879 	/* Could do more checks here if page looks ok */
880 	/*
881 	 * Could adjust zone counters here to correct for the missing page.
882 	 */
883 
884 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
885 }
886 
887 /**
888  * get_hwpoison_page() - Get refcount for memory error handling:
889  * @page:	raw error page (hit by memory error)
890  *
891  * Return: return 0 if failed to grab the refcount, otherwise true (some
892  * non-zero value.)
893  */
894 int get_hwpoison_page(struct page *page)
895 {
896 	struct page *head = compound_head(page);
897 
898 	if (!PageHuge(head) && PageTransHuge(head)) {
899 		/*
900 		 * Non anonymous thp exists only in allocation/free time. We
901 		 * can't handle such a case correctly, so let's give it up.
902 		 * This should be better than triggering BUG_ON when kernel
903 		 * tries to touch the "partially handled" page.
904 		 */
905 		if (!PageAnon(head)) {
906 			pr_err("Memory failure: %#lx: non anonymous thp\n",
907 				page_to_pfn(page));
908 			return 0;
909 		}
910 	}
911 
912 	if (get_page_unless_zero(head)) {
913 		if (head == compound_head(page))
914 			return 1;
915 
916 		pr_info("Memory failure: %#lx cannot catch tail\n",
917 			page_to_pfn(page));
918 		put_page(head);
919 	}
920 
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(get_hwpoison_page);
924 
925 /*
926  * Do all that is necessary to remove user space mappings. Unmap
927  * the pages and send SIGBUS to the processes if the data was dirty.
928  */
929 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
930 				  int trapno, int flags, struct page **hpagep)
931 {
932 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
933 	struct address_space *mapping;
934 	LIST_HEAD(tokill);
935 	bool unmap_success;
936 	int kill = 1, forcekill;
937 	struct page *hpage = *hpagep;
938 	bool mlocked = PageMlocked(hpage);
939 
940 	/*
941 	 * Here we are interested only in user-mapped pages, so skip any
942 	 * other types of pages.
943 	 */
944 	if (PageReserved(p) || PageSlab(p))
945 		return true;
946 	if (!(PageLRU(hpage) || PageHuge(p)))
947 		return true;
948 
949 	/*
950 	 * This check implies we don't kill processes if their pages
951 	 * are in the swap cache early. Those are always late kills.
952 	 */
953 	if (!page_mapped(hpage))
954 		return true;
955 
956 	if (PageKsm(p)) {
957 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
958 		return false;
959 	}
960 
961 	if (PageSwapCache(p)) {
962 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
963 			pfn);
964 		ttu |= TTU_IGNORE_HWPOISON;
965 	}
966 
967 	/*
968 	 * Propagate the dirty bit from PTEs to struct page first, because we
969 	 * need this to decide if we should kill or just drop the page.
970 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
971 	 * be called inside page lock (it's recommended but not enforced).
972 	 */
973 	mapping = page_mapping(hpage);
974 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
975 	    mapping_cap_writeback_dirty(mapping)) {
976 		if (page_mkclean(hpage)) {
977 			SetPageDirty(hpage);
978 		} else {
979 			kill = 0;
980 			ttu |= TTU_IGNORE_HWPOISON;
981 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
982 				pfn);
983 		}
984 	}
985 
986 	/*
987 	 * First collect all the processes that have the page
988 	 * mapped in dirty form.  This has to be done before try_to_unmap,
989 	 * because ttu takes the rmap data structures down.
990 	 *
991 	 * Error handling: We ignore errors here because
992 	 * there's nothing that can be done.
993 	 */
994 	if (kill)
995 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
996 
997 	unmap_success = try_to_unmap(hpage, ttu);
998 	if (!unmap_success)
999 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1000 		       pfn, page_mapcount(hpage));
1001 
1002 	/*
1003 	 * try_to_unmap() might put mlocked page in lru cache, so call
1004 	 * shake_page() again to ensure that it's flushed.
1005 	 */
1006 	if (mlocked)
1007 		shake_page(hpage, 0);
1008 
1009 	/*
1010 	 * Now that the dirty bit has been propagated to the
1011 	 * struct page and all unmaps done we can decide if
1012 	 * killing is needed or not.  Only kill when the page
1013 	 * was dirty or the process is not restartable,
1014 	 * otherwise the tokill list is merely
1015 	 * freed.  When there was a problem unmapping earlier
1016 	 * use a more force-full uncatchable kill to prevent
1017 	 * any accesses to the poisoned memory.
1018 	 */
1019 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1020 	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1021 
1022 	return unmap_success;
1023 }
1024 
1025 static int identify_page_state(unsigned long pfn, struct page *p,
1026 				unsigned long page_flags)
1027 {
1028 	struct page_state *ps;
1029 
1030 	/*
1031 	 * The first check uses the current page flags which may not have any
1032 	 * relevant information. The second check with the saved page flags is
1033 	 * carried out only if the first check can't determine the page status.
1034 	 */
1035 	for (ps = error_states;; ps++)
1036 		if ((p->flags & ps->mask) == ps->res)
1037 			break;
1038 
1039 	page_flags |= (p->flags & (1UL << PG_dirty));
1040 
1041 	if (!ps->mask)
1042 		for (ps = error_states;; ps++)
1043 			if ((page_flags & ps->mask) == ps->res)
1044 				break;
1045 	return page_action(ps, p, pfn);
1046 }
1047 
1048 static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1049 {
1050 	struct page *p = pfn_to_page(pfn);
1051 	struct page *head = compound_head(p);
1052 	int res;
1053 	unsigned long page_flags;
1054 
1055 	if (TestSetPageHWPoison(head)) {
1056 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1057 		       pfn);
1058 		return 0;
1059 	}
1060 
1061 	num_poisoned_pages_inc();
1062 
1063 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1064 		/*
1065 		 * Check "filter hit" and "race with other subpage."
1066 		 */
1067 		lock_page(head);
1068 		if (PageHWPoison(head)) {
1069 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1070 			    || (p != head && TestSetPageHWPoison(head))) {
1071 				num_poisoned_pages_dec();
1072 				unlock_page(head);
1073 				return 0;
1074 			}
1075 		}
1076 		unlock_page(head);
1077 		dissolve_free_huge_page(p);
1078 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1079 		return 0;
1080 	}
1081 
1082 	lock_page(head);
1083 	page_flags = head->flags;
1084 
1085 	if (!PageHWPoison(head)) {
1086 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1087 		num_poisoned_pages_dec();
1088 		unlock_page(head);
1089 		put_hwpoison_page(head);
1090 		return 0;
1091 	}
1092 
1093 	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1094 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1095 		res = -EBUSY;
1096 		goto out;
1097 	}
1098 
1099 	res = identify_page_state(pfn, p, page_flags);
1100 out:
1101 	unlock_page(head);
1102 	return res;
1103 }
1104 
1105 /**
1106  * memory_failure - Handle memory failure of a page.
1107  * @pfn: Page Number of the corrupted page
1108  * @trapno: Trap number reported in the signal to user space.
1109  * @flags: fine tune action taken
1110  *
1111  * This function is called by the low level machine check code
1112  * of an architecture when it detects hardware memory corruption
1113  * of a page. It tries its best to recover, which includes
1114  * dropping pages, killing processes etc.
1115  *
1116  * The function is primarily of use for corruptions that
1117  * happen outside the current execution context (e.g. when
1118  * detected by a background scrubber)
1119  *
1120  * Must run in process context (e.g. a work queue) with interrupts
1121  * enabled and no spinlocks hold.
1122  */
1123 int memory_failure(unsigned long pfn, int trapno, int flags)
1124 {
1125 	struct page *p;
1126 	struct page *hpage;
1127 	struct page *orig_head;
1128 	int res;
1129 	unsigned long page_flags;
1130 
1131 	if (!sysctl_memory_failure_recovery)
1132 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1133 
1134 	if (!pfn_valid(pfn)) {
1135 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1136 			pfn);
1137 		return -ENXIO;
1138 	}
1139 
1140 	p = pfn_to_page(pfn);
1141 	if (PageHuge(p))
1142 		return memory_failure_hugetlb(pfn, trapno, flags);
1143 	if (TestSetPageHWPoison(p)) {
1144 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1145 			pfn);
1146 		return 0;
1147 	}
1148 
1149 	orig_head = hpage = compound_head(p);
1150 	num_poisoned_pages_inc();
1151 
1152 	/*
1153 	 * We need/can do nothing about count=0 pages.
1154 	 * 1) it's a free page, and therefore in safe hand:
1155 	 *    prep_new_page() will be the gate keeper.
1156 	 * 2) it's part of a non-compound high order page.
1157 	 *    Implies some kernel user: cannot stop them from
1158 	 *    R/W the page; let's pray that the page has been
1159 	 *    used and will be freed some time later.
1160 	 * In fact it's dangerous to directly bump up page count from 0,
1161 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1162 	 */
1163 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1164 		if (is_free_buddy_page(p)) {
1165 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1166 			return 0;
1167 		} else {
1168 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1169 			return -EBUSY;
1170 		}
1171 	}
1172 
1173 	if (PageTransHuge(hpage)) {
1174 		lock_page(p);
1175 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1176 			unlock_page(p);
1177 			if (!PageAnon(p))
1178 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1179 					pfn);
1180 			else
1181 				pr_err("Memory failure: %#lx: thp split failed\n",
1182 					pfn);
1183 			if (TestClearPageHWPoison(p))
1184 				num_poisoned_pages_dec();
1185 			put_hwpoison_page(p);
1186 			return -EBUSY;
1187 		}
1188 		unlock_page(p);
1189 		VM_BUG_ON_PAGE(!page_count(p), p);
1190 		hpage = compound_head(p);
1191 	}
1192 
1193 	/*
1194 	 * We ignore non-LRU pages for good reasons.
1195 	 * - PG_locked is only well defined for LRU pages and a few others
1196 	 * - to avoid races with __SetPageLocked()
1197 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1198 	 * The check (unnecessarily) ignores LRU pages being isolated and
1199 	 * walked by the page reclaim code, however that's not a big loss.
1200 	 */
1201 	shake_page(p, 0);
1202 	/* shake_page could have turned it free. */
1203 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1204 		if (flags & MF_COUNT_INCREASED)
1205 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1206 		else
1207 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1208 		return 0;
1209 	}
1210 
1211 	lock_page(p);
1212 
1213 	/*
1214 	 * The page could have changed compound pages during the locking.
1215 	 * If this happens just bail out.
1216 	 */
1217 	if (PageCompound(p) && compound_head(p) != orig_head) {
1218 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1219 		res = -EBUSY;
1220 		goto out;
1221 	}
1222 
1223 	/*
1224 	 * We use page flags to determine what action should be taken, but
1225 	 * the flags can be modified by the error containment action.  One
1226 	 * example is an mlocked page, where PG_mlocked is cleared by
1227 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1228 	 * correctly, we save a copy of the page flags at this time.
1229 	 */
1230 	if (PageHuge(p))
1231 		page_flags = hpage->flags;
1232 	else
1233 		page_flags = p->flags;
1234 
1235 	/*
1236 	 * unpoison always clear PG_hwpoison inside page lock
1237 	 */
1238 	if (!PageHWPoison(p)) {
1239 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1240 		num_poisoned_pages_dec();
1241 		unlock_page(p);
1242 		put_hwpoison_page(p);
1243 		return 0;
1244 	}
1245 	if (hwpoison_filter(p)) {
1246 		if (TestClearPageHWPoison(p))
1247 			num_poisoned_pages_dec();
1248 		unlock_page(p);
1249 		put_hwpoison_page(p);
1250 		return 0;
1251 	}
1252 
1253 	if (!PageTransTail(p) && !PageLRU(p))
1254 		goto identify_page_state;
1255 
1256 	/*
1257 	 * It's very difficult to mess with pages currently under IO
1258 	 * and in many cases impossible, so we just avoid it here.
1259 	 */
1260 	wait_on_page_writeback(p);
1261 
1262 	/*
1263 	 * Now take care of user space mappings.
1264 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1265 	 *
1266 	 * When the raw error page is thp tail page, hpage points to the raw
1267 	 * page after thp split.
1268 	 */
1269 	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1270 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1271 		res = -EBUSY;
1272 		goto out;
1273 	}
1274 
1275 	/*
1276 	 * Torn down by someone else?
1277 	 */
1278 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1279 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1280 		res = -EBUSY;
1281 		goto out;
1282 	}
1283 
1284 identify_page_state:
1285 	res = identify_page_state(pfn, p, page_flags);
1286 out:
1287 	unlock_page(p);
1288 	return res;
1289 }
1290 EXPORT_SYMBOL_GPL(memory_failure);
1291 
1292 #define MEMORY_FAILURE_FIFO_ORDER	4
1293 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1294 
1295 struct memory_failure_entry {
1296 	unsigned long pfn;
1297 	int trapno;
1298 	int flags;
1299 };
1300 
1301 struct memory_failure_cpu {
1302 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1303 		      MEMORY_FAILURE_FIFO_SIZE);
1304 	spinlock_t lock;
1305 	struct work_struct work;
1306 };
1307 
1308 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1309 
1310 /**
1311  * memory_failure_queue - Schedule handling memory failure of a page.
1312  * @pfn: Page Number of the corrupted page
1313  * @trapno: Trap number reported in the signal to user space.
1314  * @flags: Flags for memory failure handling
1315  *
1316  * This function is called by the low level hardware error handler
1317  * when it detects hardware memory corruption of a page. It schedules
1318  * the recovering of error page, including dropping pages, killing
1319  * processes etc.
1320  *
1321  * The function is primarily of use for corruptions that
1322  * happen outside the current execution context (e.g. when
1323  * detected by a background scrubber)
1324  *
1325  * Can run in IRQ context.
1326  */
1327 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1328 {
1329 	struct memory_failure_cpu *mf_cpu;
1330 	unsigned long proc_flags;
1331 	struct memory_failure_entry entry = {
1332 		.pfn =		pfn,
1333 		.trapno =	trapno,
1334 		.flags =	flags,
1335 	};
1336 
1337 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1338 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339 	if (kfifo_put(&mf_cpu->fifo, entry))
1340 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1341 	else
1342 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1343 		       pfn);
1344 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1345 	put_cpu_var(memory_failure_cpu);
1346 }
1347 EXPORT_SYMBOL_GPL(memory_failure_queue);
1348 
1349 static void memory_failure_work_func(struct work_struct *work)
1350 {
1351 	struct memory_failure_cpu *mf_cpu;
1352 	struct memory_failure_entry entry = { 0, };
1353 	unsigned long proc_flags;
1354 	int gotten;
1355 
1356 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1357 	for (;;) {
1358 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1359 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1360 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1361 		if (!gotten)
1362 			break;
1363 		if (entry.flags & MF_SOFT_OFFLINE)
1364 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1365 		else
1366 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1367 	}
1368 }
1369 
1370 static int __init memory_failure_init(void)
1371 {
1372 	struct memory_failure_cpu *mf_cpu;
1373 	int cpu;
1374 
1375 	for_each_possible_cpu(cpu) {
1376 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1377 		spin_lock_init(&mf_cpu->lock);
1378 		INIT_KFIFO(mf_cpu->fifo);
1379 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1380 	}
1381 
1382 	return 0;
1383 }
1384 core_initcall(memory_failure_init);
1385 
1386 #define unpoison_pr_info(fmt, pfn, rs)			\
1387 ({							\
1388 	if (__ratelimit(rs))				\
1389 		pr_info(fmt, pfn);			\
1390 })
1391 
1392 /**
1393  * unpoison_memory - Unpoison a previously poisoned page
1394  * @pfn: Page number of the to be unpoisoned page
1395  *
1396  * Software-unpoison a page that has been poisoned by
1397  * memory_failure() earlier.
1398  *
1399  * This is only done on the software-level, so it only works
1400  * for linux injected failures, not real hardware failures
1401  *
1402  * Returns 0 for success, otherwise -errno.
1403  */
1404 int unpoison_memory(unsigned long pfn)
1405 {
1406 	struct page *page;
1407 	struct page *p;
1408 	int freeit = 0;
1409 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1410 					DEFAULT_RATELIMIT_BURST);
1411 
1412 	if (!pfn_valid(pfn))
1413 		return -ENXIO;
1414 
1415 	p = pfn_to_page(pfn);
1416 	page = compound_head(p);
1417 
1418 	if (!PageHWPoison(p)) {
1419 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1420 				 pfn, &unpoison_rs);
1421 		return 0;
1422 	}
1423 
1424 	if (page_count(page) > 1) {
1425 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1426 				 pfn, &unpoison_rs);
1427 		return 0;
1428 	}
1429 
1430 	if (page_mapped(page)) {
1431 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1432 				 pfn, &unpoison_rs);
1433 		return 0;
1434 	}
1435 
1436 	if (page_mapping(page)) {
1437 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1438 				 pfn, &unpoison_rs);
1439 		return 0;
1440 	}
1441 
1442 	/*
1443 	 * unpoison_memory() can encounter thp only when the thp is being
1444 	 * worked by memory_failure() and the page lock is not held yet.
1445 	 * In such case, we yield to memory_failure() and make unpoison fail.
1446 	 */
1447 	if (!PageHuge(page) && PageTransHuge(page)) {
1448 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1449 				 pfn, &unpoison_rs);
1450 		return 0;
1451 	}
1452 
1453 	if (!get_hwpoison_page(p)) {
1454 		if (TestClearPageHWPoison(p))
1455 			num_poisoned_pages_dec();
1456 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1457 				 pfn, &unpoison_rs);
1458 		return 0;
1459 	}
1460 
1461 	lock_page(page);
1462 	/*
1463 	 * This test is racy because PG_hwpoison is set outside of page lock.
1464 	 * That's acceptable because that won't trigger kernel panic. Instead,
1465 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1466 	 * the free buddy page pool.
1467 	 */
1468 	if (TestClearPageHWPoison(page)) {
1469 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1470 				 pfn, &unpoison_rs);
1471 		num_poisoned_pages_dec();
1472 		freeit = 1;
1473 	}
1474 	unlock_page(page);
1475 
1476 	put_hwpoison_page(page);
1477 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1478 		put_hwpoison_page(page);
1479 
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(unpoison_memory);
1483 
1484 static struct page *new_page(struct page *p, unsigned long private, int **x)
1485 {
1486 	int nid = page_to_nid(p);
1487 
1488 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1489 }
1490 
1491 /*
1492  * Safely get reference count of an arbitrary page.
1493  * Returns 0 for a free page, -EIO for a zero refcount page
1494  * that is not free, and 1 for any other page type.
1495  * For 1 the page is returned with increased page count, otherwise not.
1496  */
1497 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1498 {
1499 	int ret;
1500 
1501 	if (flags & MF_COUNT_INCREASED)
1502 		return 1;
1503 
1504 	/*
1505 	 * When the target page is a free hugepage, just remove it
1506 	 * from free hugepage list.
1507 	 */
1508 	if (!get_hwpoison_page(p)) {
1509 		if (PageHuge(p)) {
1510 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1511 			ret = 0;
1512 		} else if (is_free_buddy_page(p)) {
1513 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1514 			ret = 0;
1515 		} else {
1516 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1517 				__func__, pfn, p->flags);
1518 			ret = -EIO;
1519 		}
1520 	} else {
1521 		/* Not a free page */
1522 		ret = 1;
1523 	}
1524 	return ret;
1525 }
1526 
1527 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1528 {
1529 	int ret = __get_any_page(page, pfn, flags);
1530 
1531 	if (ret == 1 && !PageHuge(page) &&
1532 	    !PageLRU(page) && !__PageMovable(page)) {
1533 		/*
1534 		 * Try to free it.
1535 		 */
1536 		put_hwpoison_page(page);
1537 		shake_page(page, 1);
1538 
1539 		/*
1540 		 * Did it turn free?
1541 		 */
1542 		ret = __get_any_page(page, pfn, 0);
1543 		if (ret == 1 && !PageLRU(page)) {
1544 			/* Drop page reference which is from __get_any_page() */
1545 			put_hwpoison_page(page);
1546 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1547 				pfn, page->flags, &page->flags);
1548 			return -EIO;
1549 		}
1550 	}
1551 	return ret;
1552 }
1553 
1554 static int soft_offline_huge_page(struct page *page, int flags)
1555 {
1556 	int ret;
1557 	unsigned long pfn = page_to_pfn(page);
1558 	struct page *hpage = compound_head(page);
1559 	LIST_HEAD(pagelist);
1560 
1561 	/*
1562 	 * This double-check of PageHWPoison is to avoid the race with
1563 	 * memory_failure(). See also comment in __soft_offline_page().
1564 	 */
1565 	lock_page(hpage);
1566 	if (PageHWPoison(hpage)) {
1567 		unlock_page(hpage);
1568 		put_hwpoison_page(hpage);
1569 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1570 		return -EBUSY;
1571 	}
1572 	unlock_page(hpage);
1573 
1574 	ret = isolate_huge_page(hpage, &pagelist);
1575 	/*
1576 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1577 	 * so need to drop one here.
1578 	 */
1579 	put_hwpoison_page(hpage);
1580 	if (!ret) {
1581 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1582 		return -EBUSY;
1583 	}
1584 
1585 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1586 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1587 	if (ret) {
1588 		pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1589 			pfn, ret, page->flags, &page->flags);
1590 		if (!list_empty(&pagelist))
1591 			putback_movable_pages(&pagelist);
1592 		if (ret > 0)
1593 			ret = -EIO;
1594 	} else {
1595 		if (PageHuge(page))
1596 			dissolve_free_huge_page(page);
1597 	}
1598 	return ret;
1599 }
1600 
1601 static int __soft_offline_page(struct page *page, int flags)
1602 {
1603 	int ret;
1604 	unsigned long pfn = page_to_pfn(page);
1605 
1606 	/*
1607 	 * Check PageHWPoison again inside page lock because PageHWPoison
1608 	 * is set by memory_failure() outside page lock. Note that
1609 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1610 	 * so there's no race between soft_offline_page() and memory_failure().
1611 	 */
1612 	lock_page(page);
1613 	wait_on_page_writeback(page);
1614 	if (PageHWPoison(page)) {
1615 		unlock_page(page);
1616 		put_hwpoison_page(page);
1617 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1618 		return -EBUSY;
1619 	}
1620 	/*
1621 	 * Try to invalidate first. This should work for
1622 	 * non dirty unmapped page cache pages.
1623 	 */
1624 	ret = invalidate_inode_page(page);
1625 	unlock_page(page);
1626 	/*
1627 	 * RED-PEN would be better to keep it isolated here, but we
1628 	 * would need to fix isolation locking first.
1629 	 */
1630 	if (ret == 1) {
1631 		put_hwpoison_page(page);
1632 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1633 		SetPageHWPoison(page);
1634 		num_poisoned_pages_inc();
1635 		return 0;
1636 	}
1637 
1638 	/*
1639 	 * Simple invalidation didn't work.
1640 	 * Try to migrate to a new page instead. migrate.c
1641 	 * handles a large number of cases for us.
1642 	 */
1643 	if (PageLRU(page))
1644 		ret = isolate_lru_page(page);
1645 	else
1646 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1647 	/*
1648 	 * Drop page reference which is came from get_any_page()
1649 	 * successful isolate_lru_page() already took another one.
1650 	 */
1651 	put_hwpoison_page(page);
1652 	if (!ret) {
1653 		LIST_HEAD(pagelist);
1654 		/*
1655 		 * After isolated lru page, the PageLRU will be cleared,
1656 		 * so use !__PageMovable instead for LRU page's mapping
1657 		 * cannot have PAGE_MAPPING_MOVABLE.
1658 		 */
1659 		if (!__PageMovable(page))
1660 			inc_node_page_state(page, NR_ISOLATED_ANON +
1661 						page_is_file_cache(page));
1662 		list_add(&page->lru, &pagelist);
1663 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1664 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1665 		if (ret) {
1666 			if (!list_empty(&pagelist))
1667 				putback_movable_pages(&pagelist);
1668 
1669 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1670 				pfn, ret, page->flags, &page->flags);
1671 			if (ret > 0)
1672 				ret = -EIO;
1673 		}
1674 	} else {
1675 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1676 			pfn, ret, page_count(page), page->flags, &page->flags);
1677 	}
1678 	return ret;
1679 }
1680 
1681 static int soft_offline_in_use_page(struct page *page, int flags)
1682 {
1683 	int ret;
1684 	struct page *hpage = compound_head(page);
1685 
1686 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1687 		lock_page(hpage);
1688 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1689 			unlock_page(hpage);
1690 			if (!PageAnon(hpage))
1691 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1692 			else
1693 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1694 			put_hwpoison_page(hpage);
1695 			return -EBUSY;
1696 		}
1697 		unlock_page(hpage);
1698 		get_hwpoison_page(page);
1699 		put_hwpoison_page(hpage);
1700 	}
1701 
1702 	if (PageHuge(page))
1703 		ret = soft_offline_huge_page(page, flags);
1704 	else
1705 		ret = __soft_offline_page(page, flags);
1706 
1707 	return ret;
1708 }
1709 
1710 static void soft_offline_free_page(struct page *page)
1711 {
1712 	struct page *head = compound_head(page);
1713 
1714 	if (!TestSetPageHWPoison(head)) {
1715 		num_poisoned_pages_inc();
1716 		if (PageHuge(head))
1717 			dissolve_free_huge_page(page);
1718 	}
1719 }
1720 
1721 /**
1722  * soft_offline_page - Soft offline a page.
1723  * @page: page to offline
1724  * @flags: flags. Same as memory_failure().
1725  *
1726  * Returns 0 on success, otherwise negated errno.
1727  *
1728  * Soft offline a page, by migration or invalidation,
1729  * without killing anything. This is for the case when
1730  * a page is not corrupted yet (so it's still valid to access),
1731  * but has had a number of corrected errors and is better taken
1732  * out.
1733  *
1734  * The actual policy on when to do that is maintained by
1735  * user space.
1736  *
1737  * This should never impact any application or cause data loss,
1738  * however it might take some time.
1739  *
1740  * This is not a 100% solution for all memory, but tries to be
1741  * ``good enough'' for the majority of memory.
1742  */
1743 int soft_offline_page(struct page *page, int flags)
1744 {
1745 	int ret;
1746 	unsigned long pfn = page_to_pfn(page);
1747 
1748 	if (PageHWPoison(page)) {
1749 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1750 		if (flags & MF_COUNT_INCREASED)
1751 			put_hwpoison_page(page);
1752 		return -EBUSY;
1753 	}
1754 
1755 	get_online_mems();
1756 	ret = get_any_page(page, pfn, flags);
1757 	put_online_mems();
1758 
1759 	if (ret > 0)
1760 		ret = soft_offline_in_use_page(page, flags);
1761 	else if (ret == 0)
1762 		soft_offline_free_page(page);
1763 
1764 	return ret;
1765 }
1766