1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 70 71 u32 hwpoison_filter_enable = 0; 72 u32 hwpoison_filter_dev_major = ~0U; 73 u32 hwpoison_filter_dev_minor = ~0U; 74 u64 hwpoison_filter_flags_mask; 75 u64 hwpoison_filter_flags_value; 76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 81 82 static int hwpoison_filter_dev(struct page *p) 83 { 84 struct address_space *mapping; 85 dev_t dev; 86 87 if (hwpoison_filter_dev_major == ~0U && 88 hwpoison_filter_dev_minor == ~0U) 89 return 0; 90 91 /* 92 * page_mapping() does not accept slab pages. 93 */ 94 if (PageSlab(p)) 95 return -EINVAL; 96 97 mapping = page_mapping(p); 98 if (mapping == NULL || mapping->host == NULL) 99 return -EINVAL; 100 101 dev = mapping->host->i_sb->s_dev; 102 if (hwpoison_filter_dev_major != ~0U && 103 hwpoison_filter_dev_major != MAJOR(dev)) 104 return -EINVAL; 105 if (hwpoison_filter_dev_minor != ~0U && 106 hwpoison_filter_dev_minor != MINOR(dev)) 107 return -EINVAL; 108 109 return 0; 110 } 111 112 static int hwpoison_filter_flags(struct page *p) 113 { 114 if (!hwpoison_filter_flags_mask) 115 return 0; 116 117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 118 hwpoison_filter_flags_value) 119 return 0; 120 else 121 return -EINVAL; 122 } 123 124 /* 125 * This allows stress tests to limit test scope to a collection of tasks 126 * by putting them under some memcg. This prevents killing unrelated/important 127 * processes such as /sbin/init. Note that the target task may share clean 128 * pages with init (eg. libc text), which is harmless. If the target task 129 * share _dirty_ pages with another task B, the test scheme must make sure B 130 * is also included in the memcg. At last, due to race conditions this filter 131 * can only guarantee that the page either belongs to the memcg tasks, or is 132 * a freed page. 133 */ 134 #ifdef CONFIG_MEMCG 135 u64 hwpoison_filter_memcg; 136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 137 static int hwpoison_filter_task(struct page *p) 138 { 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 #else 168 int hwpoison_filter(struct page *p) 169 { 170 return 0; 171 } 172 #endif 173 174 EXPORT_SYMBOL_GPL(hwpoison_filter); 175 176 /* 177 * Send all the processes who have the page mapped a signal. 178 * ``action optional'' if they are not immediately affected by the error 179 * ``action required'' if error happened in current execution context 180 */ 181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 182 unsigned long pfn, struct page *page, int flags) 183 { 184 struct siginfo si; 185 int ret; 186 187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 188 pfn, t->comm, t->pid); 189 si.si_signo = SIGBUS; 190 si.si_errno = 0; 191 si.si_addr = (void *)addr; 192 #ifdef __ARCH_SI_TRAPNO 193 si.si_trapno = trapno; 194 #endif 195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 196 197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 198 si.si_code = BUS_MCEERR_AR; 199 ret = force_sig_info(SIGBUS, &si, current); 200 } else { 201 /* 202 * Don't use force here, it's convenient if the signal 203 * can be temporarily blocked. 204 * This could cause a loop when the user sets SIGBUS 205 * to SIG_IGN, but hopefully no one will do that? 206 */ 207 si.si_code = BUS_MCEERR_AO; 208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 209 } 210 if (ret < 0) 211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 212 t->comm, t->pid, ret); 213 return ret; 214 } 215 216 /* 217 * When a unknown page type is encountered drain as many buffers as possible 218 * in the hope to turn the page into a LRU or free page, which we can handle. 219 */ 220 void shake_page(struct page *p, int access) 221 { 222 if (PageHuge(p)) 223 return; 224 225 if (!PageSlab(p)) { 226 lru_add_drain_all(); 227 if (PageLRU(p)) 228 return; 229 drain_all_pages(page_zone(p)); 230 if (PageLRU(p) || is_free_buddy_page(p)) 231 return; 232 } 233 234 /* 235 * Only call shrink_node_slabs here (which would also shrink 236 * other caches) if access is not potentially fatal. 237 */ 238 if (access) 239 drop_slab_node(page_to_nid(p)); 240 } 241 EXPORT_SYMBOL_GPL(shake_page); 242 243 /* 244 * Kill all processes that have a poisoned page mapped and then isolate 245 * the page. 246 * 247 * General strategy: 248 * Find all processes having the page mapped and kill them. 249 * But we keep a page reference around so that the page is not 250 * actually freed yet. 251 * Then stash the page away 252 * 253 * There's no convenient way to get back to mapped processes 254 * from the VMAs. So do a brute-force search over all 255 * running processes. 256 * 257 * Remember that machine checks are not common (or rather 258 * if they are common you have other problems), so this shouldn't 259 * be a performance issue. 260 * 261 * Also there are some races possible while we get from the 262 * error detection to actually handle it. 263 */ 264 265 struct to_kill { 266 struct list_head nd; 267 struct task_struct *tsk; 268 unsigned long addr; 269 char addr_valid; 270 }; 271 272 /* 273 * Failure handling: if we can't find or can't kill a process there's 274 * not much we can do. We just print a message and ignore otherwise. 275 */ 276 277 /* 278 * Schedule a process for later kill. 279 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 280 * TBD would GFP_NOIO be enough? 281 */ 282 static void add_to_kill(struct task_struct *tsk, struct page *p, 283 struct vm_area_struct *vma, 284 struct list_head *to_kill, 285 struct to_kill **tkc) 286 { 287 struct to_kill *tk; 288 289 if (*tkc) { 290 tk = *tkc; 291 *tkc = NULL; 292 } else { 293 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 294 if (!tk) { 295 pr_err("Memory failure: Out of memory while machine check handling\n"); 296 return; 297 } 298 } 299 tk->addr = page_address_in_vma(p, vma); 300 tk->addr_valid = 1; 301 302 /* 303 * In theory we don't have to kill when the page was 304 * munmaped. But it could be also a mremap. Since that's 305 * likely very rare kill anyways just out of paranoia, but use 306 * a SIGKILL because the error is not contained anymore. 307 */ 308 if (tk->addr == -EFAULT) { 309 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 310 page_to_pfn(p), tsk->comm); 311 tk->addr_valid = 0; 312 } 313 get_task_struct(tsk); 314 tk->tsk = tsk; 315 list_add_tail(&tk->nd, to_kill); 316 } 317 318 /* 319 * Kill the processes that have been collected earlier. 320 * 321 * Only do anything when DOIT is set, otherwise just free the list 322 * (this is used for clean pages which do not need killing) 323 * Also when FAIL is set do a force kill because something went 324 * wrong earlier. 325 */ 326 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 327 bool fail, struct page *page, unsigned long pfn, 328 int flags) 329 { 330 struct to_kill *tk, *next; 331 332 list_for_each_entry_safe (tk, next, to_kill, nd) { 333 if (forcekill) { 334 /* 335 * In case something went wrong with munmapping 336 * make sure the process doesn't catch the 337 * signal and then access the memory. Just kill it. 338 */ 339 if (fail || tk->addr_valid == 0) { 340 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 341 pfn, tk->tsk->comm, tk->tsk->pid); 342 force_sig(SIGKILL, tk->tsk); 343 } 344 345 /* 346 * In theory the process could have mapped 347 * something else on the address in-between. We could 348 * check for that, but we need to tell the 349 * process anyways. 350 */ 351 else if (kill_proc(tk->tsk, tk->addr, trapno, 352 pfn, page, flags) < 0) 353 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 354 pfn, tk->tsk->comm, tk->tsk->pid); 355 } 356 put_task_struct(tk->tsk); 357 kfree(tk); 358 } 359 } 360 361 /* 362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 363 * on behalf of the thread group. Return task_struct of the (first found) 364 * dedicated thread if found, and return NULL otherwise. 365 * 366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 367 * have to call rcu_read_lock/unlock() in this function. 368 */ 369 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 370 { 371 struct task_struct *t; 372 373 for_each_thread(tsk, t) 374 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 375 return t; 376 return NULL; 377 } 378 379 /* 380 * Determine whether a given process is "early kill" process which expects 381 * to be signaled when some page under the process is hwpoisoned. 382 * Return task_struct of the dedicated thread (main thread unless explicitly 383 * specified) if the process is "early kill," and otherwise returns NULL. 384 */ 385 static struct task_struct *task_early_kill(struct task_struct *tsk, 386 int force_early) 387 { 388 struct task_struct *t; 389 if (!tsk->mm) 390 return NULL; 391 if (force_early) 392 return tsk; 393 t = find_early_kill_thread(tsk); 394 if (t) 395 return t; 396 if (sysctl_memory_failure_early_kill) 397 return tsk; 398 return NULL; 399 } 400 401 /* 402 * Collect processes when the error hit an anonymous page. 403 */ 404 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 405 struct to_kill **tkc, int force_early) 406 { 407 struct vm_area_struct *vma; 408 struct task_struct *tsk; 409 struct anon_vma *av; 410 pgoff_t pgoff; 411 412 av = page_lock_anon_vma_read(page); 413 if (av == NULL) /* Not actually mapped anymore */ 414 return; 415 416 pgoff = page_to_pgoff(page); 417 read_lock(&tasklist_lock); 418 for_each_process (tsk) { 419 struct anon_vma_chain *vmac; 420 struct task_struct *t = task_early_kill(tsk, force_early); 421 422 if (!t) 423 continue; 424 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 425 pgoff, pgoff) { 426 vma = vmac->vma; 427 if (!page_mapped_in_vma(page, vma)) 428 continue; 429 if (vma->vm_mm == t->mm) 430 add_to_kill(t, page, vma, to_kill, tkc); 431 } 432 } 433 read_unlock(&tasklist_lock); 434 page_unlock_anon_vma_read(av); 435 } 436 437 /* 438 * Collect processes when the error hit a file mapped page. 439 */ 440 static void collect_procs_file(struct page *page, struct list_head *to_kill, 441 struct to_kill **tkc, int force_early) 442 { 443 struct vm_area_struct *vma; 444 struct task_struct *tsk; 445 struct address_space *mapping = page->mapping; 446 447 i_mmap_lock_read(mapping); 448 read_lock(&tasklist_lock); 449 for_each_process(tsk) { 450 pgoff_t pgoff = page_to_pgoff(page); 451 struct task_struct *t = task_early_kill(tsk, force_early); 452 453 if (!t) 454 continue; 455 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 456 pgoff) { 457 /* 458 * Send early kill signal to tasks where a vma covers 459 * the page but the corrupted page is not necessarily 460 * mapped it in its pte. 461 * Assume applications who requested early kill want 462 * to be informed of all such data corruptions. 463 */ 464 if (vma->vm_mm == t->mm) 465 add_to_kill(t, page, vma, to_kill, tkc); 466 } 467 } 468 read_unlock(&tasklist_lock); 469 i_mmap_unlock_read(mapping); 470 } 471 472 /* 473 * Collect the processes who have the corrupted page mapped to kill. 474 * This is done in two steps for locking reasons. 475 * First preallocate one tokill structure outside the spin locks, 476 * so that we can kill at least one process reasonably reliable. 477 */ 478 static void collect_procs(struct page *page, struct list_head *tokill, 479 int force_early) 480 { 481 struct to_kill *tk; 482 483 if (!page->mapping) 484 return; 485 486 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 487 if (!tk) 488 return; 489 if (PageAnon(page)) 490 collect_procs_anon(page, tokill, &tk, force_early); 491 else 492 collect_procs_file(page, tokill, &tk, force_early); 493 kfree(tk); 494 } 495 496 static const char *action_name[] = { 497 [MF_IGNORED] = "Ignored", 498 [MF_FAILED] = "Failed", 499 [MF_DELAYED] = "Delayed", 500 [MF_RECOVERED] = "Recovered", 501 }; 502 503 static const char * const action_page_types[] = { 504 [MF_MSG_KERNEL] = "reserved kernel page", 505 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 506 [MF_MSG_SLAB] = "kernel slab page", 507 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 508 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 509 [MF_MSG_HUGE] = "huge page", 510 [MF_MSG_FREE_HUGE] = "free huge page", 511 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 512 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 513 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 514 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 515 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 516 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 517 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 518 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 519 [MF_MSG_CLEAN_LRU] = "clean LRU page", 520 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 521 [MF_MSG_BUDDY] = "free buddy page", 522 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 523 [MF_MSG_UNKNOWN] = "unknown page", 524 }; 525 526 /* 527 * XXX: It is possible that a page is isolated from LRU cache, 528 * and then kept in swap cache or failed to remove from page cache. 529 * The page count will stop it from being freed by unpoison. 530 * Stress tests should be aware of this memory leak problem. 531 */ 532 static int delete_from_lru_cache(struct page *p) 533 { 534 if (!isolate_lru_page(p)) { 535 /* 536 * Clear sensible page flags, so that the buddy system won't 537 * complain when the page is unpoison-and-freed. 538 */ 539 ClearPageActive(p); 540 ClearPageUnevictable(p); 541 542 /* 543 * Poisoned page might never drop its ref count to 0 so we have 544 * to uncharge it manually from its memcg. 545 */ 546 mem_cgroup_uncharge(p); 547 548 /* 549 * drop the page count elevated by isolate_lru_page() 550 */ 551 put_page(p); 552 return 0; 553 } 554 return -EIO; 555 } 556 557 static int truncate_error_page(struct page *p, unsigned long pfn, 558 struct address_space *mapping) 559 { 560 int ret = MF_FAILED; 561 562 if (mapping->a_ops->error_remove_page) { 563 int err = mapping->a_ops->error_remove_page(mapping, p); 564 565 if (err != 0) { 566 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 567 pfn, err); 568 } else if (page_has_private(p) && 569 !try_to_release_page(p, GFP_NOIO)) { 570 pr_info("Memory failure: %#lx: failed to release buffers\n", 571 pfn); 572 } else { 573 ret = MF_RECOVERED; 574 } 575 } else { 576 /* 577 * If the file system doesn't support it just invalidate 578 * This fails on dirty or anything with private pages 579 */ 580 if (invalidate_inode_page(p)) 581 ret = MF_RECOVERED; 582 else 583 pr_info("Memory failure: %#lx: Failed to invalidate\n", 584 pfn); 585 } 586 587 return ret; 588 } 589 590 /* 591 * Error hit kernel page. 592 * Do nothing, try to be lucky and not touch this instead. For a few cases we 593 * could be more sophisticated. 594 */ 595 static int me_kernel(struct page *p, unsigned long pfn) 596 { 597 return MF_IGNORED; 598 } 599 600 /* 601 * Page in unknown state. Do nothing. 602 */ 603 static int me_unknown(struct page *p, unsigned long pfn) 604 { 605 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 606 return MF_FAILED; 607 } 608 609 /* 610 * Clean (or cleaned) page cache page. 611 */ 612 static int me_pagecache_clean(struct page *p, unsigned long pfn) 613 { 614 struct address_space *mapping; 615 616 delete_from_lru_cache(p); 617 618 /* 619 * For anonymous pages we're done the only reference left 620 * should be the one m_f() holds. 621 */ 622 if (PageAnon(p)) 623 return MF_RECOVERED; 624 625 /* 626 * Now truncate the page in the page cache. This is really 627 * more like a "temporary hole punch" 628 * Don't do this for block devices when someone else 629 * has a reference, because it could be file system metadata 630 * and that's not safe to truncate. 631 */ 632 mapping = page_mapping(p); 633 if (!mapping) { 634 /* 635 * Page has been teared down in the meanwhile 636 */ 637 return MF_FAILED; 638 } 639 640 /* 641 * Truncation is a bit tricky. Enable it per file system for now. 642 * 643 * Open: to take i_mutex or not for this? Right now we don't. 644 */ 645 return truncate_error_page(p, pfn, mapping); 646 } 647 648 /* 649 * Dirty pagecache page 650 * Issues: when the error hit a hole page the error is not properly 651 * propagated. 652 */ 653 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 654 { 655 struct address_space *mapping = page_mapping(p); 656 657 SetPageError(p); 658 /* TBD: print more information about the file. */ 659 if (mapping) { 660 /* 661 * IO error will be reported by write(), fsync(), etc. 662 * who check the mapping. 663 * This way the application knows that something went 664 * wrong with its dirty file data. 665 * 666 * There's one open issue: 667 * 668 * The EIO will be only reported on the next IO 669 * operation and then cleared through the IO map. 670 * Normally Linux has two mechanisms to pass IO error 671 * first through the AS_EIO flag in the address space 672 * and then through the PageError flag in the page. 673 * Since we drop pages on memory failure handling the 674 * only mechanism open to use is through AS_AIO. 675 * 676 * This has the disadvantage that it gets cleared on 677 * the first operation that returns an error, while 678 * the PageError bit is more sticky and only cleared 679 * when the page is reread or dropped. If an 680 * application assumes it will always get error on 681 * fsync, but does other operations on the fd before 682 * and the page is dropped between then the error 683 * will not be properly reported. 684 * 685 * This can already happen even without hwpoisoned 686 * pages: first on metadata IO errors (which only 687 * report through AS_EIO) or when the page is dropped 688 * at the wrong time. 689 * 690 * So right now we assume that the application DTRT on 691 * the first EIO, but we're not worse than other parts 692 * of the kernel. 693 */ 694 mapping_set_error(mapping, -EIO); 695 } 696 697 return me_pagecache_clean(p, pfn); 698 } 699 700 /* 701 * Clean and dirty swap cache. 702 * 703 * Dirty swap cache page is tricky to handle. The page could live both in page 704 * cache and swap cache(ie. page is freshly swapped in). So it could be 705 * referenced concurrently by 2 types of PTEs: 706 * normal PTEs and swap PTEs. We try to handle them consistently by calling 707 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 708 * and then 709 * - clear dirty bit to prevent IO 710 * - remove from LRU 711 * - but keep in the swap cache, so that when we return to it on 712 * a later page fault, we know the application is accessing 713 * corrupted data and shall be killed (we installed simple 714 * interception code in do_swap_page to catch it). 715 * 716 * Clean swap cache pages can be directly isolated. A later page fault will 717 * bring in the known good data from disk. 718 */ 719 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 720 { 721 ClearPageDirty(p); 722 /* Trigger EIO in shmem: */ 723 ClearPageUptodate(p); 724 725 if (!delete_from_lru_cache(p)) 726 return MF_DELAYED; 727 else 728 return MF_FAILED; 729 } 730 731 static int me_swapcache_clean(struct page *p, unsigned long pfn) 732 { 733 delete_from_swap_cache(p); 734 735 if (!delete_from_lru_cache(p)) 736 return MF_RECOVERED; 737 else 738 return MF_FAILED; 739 } 740 741 /* 742 * Huge pages. Needs work. 743 * Issues: 744 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 745 * To narrow down kill region to one page, we need to break up pmd. 746 */ 747 static int me_huge_page(struct page *p, unsigned long pfn) 748 { 749 int res = 0; 750 struct page *hpage = compound_head(p); 751 struct address_space *mapping; 752 753 if (!PageHuge(hpage)) 754 return MF_DELAYED; 755 756 mapping = page_mapping(hpage); 757 if (mapping) { 758 res = truncate_error_page(hpage, pfn, mapping); 759 } else { 760 unlock_page(hpage); 761 /* 762 * migration entry prevents later access on error anonymous 763 * hugepage, so we can free and dissolve it into buddy to 764 * save healthy subpages. 765 */ 766 if (PageAnon(hpage)) 767 put_page(hpage); 768 dissolve_free_huge_page(p); 769 res = MF_RECOVERED; 770 lock_page(hpage); 771 } 772 773 return res; 774 } 775 776 /* 777 * Various page states we can handle. 778 * 779 * A page state is defined by its current page->flags bits. 780 * The table matches them in order and calls the right handler. 781 * 782 * This is quite tricky because we can access page at any time 783 * in its live cycle, so all accesses have to be extremely careful. 784 * 785 * This is not complete. More states could be added. 786 * For any missing state don't attempt recovery. 787 */ 788 789 #define dirty (1UL << PG_dirty) 790 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 791 #define unevict (1UL << PG_unevictable) 792 #define mlock (1UL << PG_mlocked) 793 #define writeback (1UL << PG_writeback) 794 #define lru (1UL << PG_lru) 795 #define head (1UL << PG_head) 796 #define slab (1UL << PG_slab) 797 #define reserved (1UL << PG_reserved) 798 799 static struct page_state { 800 unsigned long mask; 801 unsigned long res; 802 enum mf_action_page_type type; 803 int (*action)(struct page *p, unsigned long pfn); 804 } error_states[] = { 805 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 806 /* 807 * free pages are specially detected outside this table: 808 * PG_buddy pages only make a small fraction of all free pages. 809 */ 810 811 /* 812 * Could in theory check if slab page is free or if we can drop 813 * currently unused objects without touching them. But just 814 * treat it as standard kernel for now. 815 */ 816 { slab, slab, MF_MSG_SLAB, me_kernel }, 817 818 { head, head, MF_MSG_HUGE, me_huge_page }, 819 820 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 821 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 822 823 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 824 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 825 826 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 827 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 828 829 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 830 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 831 832 /* 833 * Catchall entry: must be at end. 834 */ 835 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 836 }; 837 838 #undef dirty 839 #undef sc 840 #undef unevict 841 #undef mlock 842 #undef writeback 843 #undef lru 844 #undef head 845 #undef slab 846 #undef reserved 847 848 /* 849 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 850 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 851 */ 852 static void action_result(unsigned long pfn, enum mf_action_page_type type, 853 enum mf_result result) 854 { 855 trace_memory_failure_event(pfn, type, result); 856 857 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 858 pfn, action_page_types[type], action_name[result]); 859 } 860 861 static int page_action(struct page_state *ps, struct page *p, 862 unsigned long pfn) 863 { 864 int result; 865 int count; 866 867 result = ps->action(p, pfn); 868 869 count = page_count(p) - 1; 870 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 871 count--; 872 if (count > 0) { 873 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 874 pfn, action_page_types[ps->type], count); 875 result = MF_FAILED; 876 } 877 action_result(pfn, ps->type, result); 878 879 /* Could do more checks here if page looks ok */ 880 /* 881 * Could adjust zone counters here to correct for the missing page. 882 */ 883 884 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 885 } 886 887 /** 888 * get_hwpoison_page() - Get refcount for memory error handling: 889 * @page: raw error page (hit by memory error) 890 * 891 * Return: return 0 if failed to grab the refcount, otherwise true (some 892 * non-zero value.) 893 */ 894 int get_hwpoison_page(struct page *page) 895 { 896 struct page *head = compound_head(page); 897 898 if (!PageHuge(head) && PageTransHuge(head)) { 899 /* 900 * Non anonymous thp exists only in allocation/free time. We 901 * can't handle such a case correctly, so let's give it up. 902 * This should be better than triggering BUG_ON when kernel 903 * tries to touch the "partially handled" page. 904 */ 905 if (!PageAnon(head)) { 906 pr_err("Memory failure: %#lx: non anonymous thp\n", 907 page_to_pfn(page)); 908 return 0; 909 } 910 } 911 912 if (get_page_unless_zero(head)) { 913 if (head == compound_head(page)) 914 return 1; 915 916 pr_info("Memory failure: %#lx cannot catch tail\n", 917 page_to_pfn(page)); 918 put_page(head); 919 } 920 921 return 0; 922 } 923 EXPORT_SYMBOL_GPL(get_hwpoison_page); 924 925 /* 926 * Do all that is necessary to remove user space mappings. Unmap 927 * the pages and send SIGBUS to the processes if the data was dirty. 928 */ 929 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 930 int trapno, int flags, struct page **hpagep) 931 { 932 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 933 struct address_space *mapping; 934 LIST_HEAD(tokill); 935 bool unmap_success; 936 int kill = 1, forcekill; 937 struct page *hpage = *hpagep; 938 bool mlocked = PageMlocked(hpage); 939 940 /* 941 * Here we are interested only in user-mapped pages, so skip any 942 * other types of pages. 943 */ 944 if (PageReserved(p) || PageSlab(p)) 945 return true; 946 if (!(PageLRU(hpage) || PageHuge(p))) 947 return true; 948 949 /* 950 * This check implies we don't kill processes if their pages 951 * are in the swap cache early. Those are always late kills. 952 */ 953 if (!page_mapped(hpage)) 954 return true; 955 956 if (PageKsm(p)) { 957 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 958 return false; 959 } 960 961 if (PageSwapCache(p)) { 962 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 963 pfn); 964 ttu |= TTU_IGNORE_HWPOISON; 965 } 966 967 /* 968 * Propagate the dirty bit from PTEs to struct page first, because we 969 * need this to decide if we should kill or just drop the page. 970 * XXX: the dirty test could be racy: set_page_dirty() may not always 971 * be called inside page lock (it's recommended but not enforced). 972 */ 973 mapping = page_mapping(hpage); 974 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 975 mapping_cap_writeback_dirty(mapping)) { 976 if (page_mkclean(hpage)) { 977 SetPageDirty(hpage); 978 } else { 979 kill = 0; 980 ttu |= TTU_IGNORE_HWPOISON; 981 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 982 pfn); 983 } 984 } 985 986 /* 987 * First collect all the processes that have the page 988 * mapped in dirty form. This has to be done before try_to_unmap, 989 * because ttu takes the rmap data structures down. 990 * 991 * Error handling: We ignore errors here because 992 * there's nothing that can be done. 993 */ 994 if (kill) 995 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 996 997 unmap_success = try_to_unmap(hpage, ttu); 998 if (!unmap_success) 999 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1000 pfn, page_mapcount(hpage)); 1001 1002 /* 1003 * try_to_unmap() might put mlocked page in lru cache, so call 1004 * shake_page() again to ensure that it's flushed. 1005 */ 1006 if (mlocked) 1007 shake_page(hpage, 0); 1008 1009 /* 1010 * Now that the dirty bit has been propagated to the 1011 * struct page and all unmaps done we can decide if 1012 * killing is needed or not. Only kill when the page 1013 * was dirty or the process is not restartable, 1014 * otherwise the tokill list is merely 1015 * freed. When there was a problem unmapping earlier 1016 * use a more force-full uncatchable kill to prevent 1017 * any accesses to the poisoned memory. 1018 */ 1019 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1020 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags); 1021 1022 return unmap_success; 1023 } 1024 1025 static int identify_page_state(unsigned long pfn, struct page *p, 1026 unsigned long page_flags) 1027 { 1028 struct page_state *ps; 1029 1030 /* 1031 * The first check uses the current page flags which may not have any 1032 * relevant information. The second check with the saved page flags is 1033 * carried out only if the first check can't determine the page status. 1034 */ 1035 for (ps = error_states;; ps++) 1036 if ((p->flags & ps->mask) == ps->res) 1037 break; 1038 1039 page_flags |= (p->flags & (1UL << PG_dirty)); 1040 1041 if (!ps->mask) 1042 for (ps = error_states;; ps++) 1043 if ((page_flags & ps->mask) == ps->res) 1044 break; 1045 return page_action(ps, p, pfn); 1046 } 1047 1048 static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags) 1049 { 1050 struct page *p = pfn_to_page(pfn); 1051 struct page *head = compound_head(p); 1052 int res; 1053 unsigned long page_flags; 1054 1055 if (TestSetPageHWPoison(head)) { 1056 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1057 pfn); 1058 return 0; 1059 } 1060 1061 num_poisoned_pages_inc(); 1062 1063 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1064 /* 1065 * Check "filter hit" and "race with other subpage." 1066 */ 1067 lock_page(head); 1068 if (PageHWPoison(head)) { 1069 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1070 || (p != head && TestSetPageHWPoison(head))) { 1071 num_poisoned_pages_dec(); 1072 unlock_page(head); 1073 return 0; 1074 } 1075 } 1076 unlock_page(head); 1077 dissolve_free_huge_page(p); 1078 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1079 return 0; 1080 } 1081 1082 lock_page(head); 1083 page_flags = head->flags; 1084 1085 if (!PageHWPoison(head)) { 1086 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1087 num_poisoned_pages_dec(); 1088 unlock_page(head); 1089 put_hwpoison_page(head); 1090 return 0; 1091 } 1092 1093 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) { 1094 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1095 res = -EBUSY; 1096 goto out; 1097 } 1098 1099 res = identify_page_state(pfn, p, page_flags); 1100 out: 1101 unlock_page(head); 1102 return res; 1103 } 1104 1105 /** 1106 * memory_failure - Handle memory failure of a page. 1107 * @pfn: Page Number of the corrupted page 1108 * @trapno: Trap number reported in the signal to user space. 1109 * @flags: fine tune action taken 1110 * 1111 * This function is called by the low level machine check code 1112 * of an architecture when it detects hardware memory corruption 1113 * of a page. It tries its best to recover, which includes 1114 * dropping pages, killing processes etc. 1115 * 1116 * The function is primarily of use for corruptions that 1117 * happen outside the current execution context (e.g. when 1118 * detected by a background scrubber) 1119 * 1120 * Must run in process context (e.g. a work queue) with interrupts 1121 * enabled and no spinlocks hold. 1122 */ 1123 int memory_failure(unsigned long pfn, int trapno, int flags) 1124 { 1125 struct page *p; 1126 struct page *hpage; 1127 struct page *orig_head; 1128 int res; 1129 unsigned long page_flags; 1130 1131 if (!sysctl_memory_failure_recovery) 1132 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1133 1134 if (!pfn_valid(pfn)) { 1135 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1136 pfn); 1137 return -ENXIO; 1138 } 1139 1140 p = pfn_to_page(pfn); 1141 if (PageHuge(p)) 1142 return memory_failure_hugetlb(pfn, trapno, flags); 1143 if (TestSetPageHWPoison(p)) { 1144 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1145 pfn); 1146 return 0; 1147 } 1148 1149 orig_head = hpage = compound_head(p); 1150 num_poisoned_pages_inc(); 1151 1152 /* 1153 * We need/can do nothing about count=0 pages. 1154 * 1) it's a free page, and therefore in safe hand: 1155 * prep_new_page() will be the gate keeper. 1156 * 2) it's part of a non-compound high order page. 1157 * Implies some kernel user: cannot stop them from 1158 * R/W the page; let's pray that the page has been 1159 * used and will be freed some time later. 1160 * In fact it's dangerous to directly bump up page count from 0, 1161 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1162 */ 1163 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1164 if (is_free_buddy_page(p)) { 1165 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1166 return 0; 1167 } else { 1168 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1169 return -EBUSY; 1170 } 1171 } 1172 1173 if (PageTransHuge(hpage)) { 1174 lock_page(p); 1175 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1176 unlock_page(p); 1177 if (!PageAnon(p)) 1178 pr_err("Memory failure: %#lx: non anonymous thp\n", 1179 pfn); 1180 else 1181 pr_err("Memory failure: %#lx: thp split failed\n", 1182 pfn); 1183 if (TestClearPageHWPoison(p)) 1184 num_poisoned_pages_dec(); 1185 put_hwpoison_page(p); 1186 return -EBUSY; 1187 } 1188 unlock_page(p); 1189 VM_BUG_ON_PAGE(!page_count(p), p); 1190 hpage = compound_head(p); 1191 } 1192 1193 /* 1194 * We ignore non-LRU pages for good reasons. 1195 * - PG_locked is only well defined for LRU pages and a few others 1196 * - to avoid races with __SetPageLocked() 1197 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1198 * The check (unnecessarily) ignores LRU pages being isolated and 1199 * walked by the page reclaim code, however that's not a big loss. 1200 */ 1201 shake_page(p, 0); 1202 /* shake_page could have turned it free. */ 1203 if (!PageLRU(p) && is_free_buddy_page(p)) { 1204 if (flags & MF_COUNT_INCREASED) 1205 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1206 else 1207 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1208 return 0; 1209 } 1210 1211 lock_page(p); 1212 1213 /* 1214 * The page could have changed compound pages during the locking. 1215 * If this happens just bail out. 1216 */ 1217 if (PageCompound(p) && compound_head(p) != orig_head) { 1218 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1219 res = -EBUSY; 1220 goto out; 1221 } 1222 1223 /* 1224 * We use page flags to determine what action should be taken, but 1225 * the flags can be modified by the error containment action. One 1226 * example is an mlocked page, where PG_mlocked is cleared by 1227 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1228 * correctly, we save a copy of the page flags at this time. 1229 */ 1230 if (PageHuge(p)) 1231 page_flags = hpage->flags; 1232 else 1233 page_flags = p->flags; 1234 1235 /* 1236 * unpoison always clear PG_hwpoison inside page lock 1237 */ 1238 if (!PageHWPoison(p)) { 1239 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1240 num_poisoned_pages_dec(); 1241 unlock_page(p); 1242 put_hwpoison_page(p); 1243 return 0; 1244 } 1245 if (hwpoison_filter(p)) { 1246 if (TestClearPageHWPoison(p)) 1247 num_poisoned_pages_dec(); 1248 unlock_page(p); 1249 put_hwpoison_page(p); 1250 return 0; 1251 } 1252 1253 if (!PageTransTail(p) && !PageLRU(p)) 1254 goto identify_page_state; 1255 1256 /* 1257 * It's very difficult to mess with pages currently under IO 1258 * and in many cases impossible, so we just avoid it here. 1259 */ 1260 wait_on_page_writeback(p); 1261 1262 /* 1263 * Now take care of user space mappings. 1264 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1265 * 1266 * When the raw error page is thp tail page, hpage points to the raw 1267 * page after thp split. 1268 */ 1269 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) { 1270 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1271 res = -EBUSY; 1272 goto out; 1273 } 1274 1275 /* 1276 * Torn down by someone else? 1277 */ 1278 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1279 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1280 res = -EBUSY; 1281 goto out; 1282 } 1283 1284 identify_page_state: 1285 res = identify_page_state(pfn, p, page_flags); 1286 out: 1287 unlock_page(p); 1288 return res; 1289 } 1290 EXPORT_SYMBOL_GPL(memory_failure); 1291 1292 #define MEMORY_FAILURE_FIFO_ORDER 4 1293 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1294 1295 struct memory_failure_entry { 1296 unsigned long pfn; 1297 int trapno; 1298 int flags; 1299 }; 1300 1301 struct memory_failure_cpu { 1302 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1303 MEMORY_FAILURE_FIFO_SIZE); 1304 spinlock_t lock; 1305 struct work_struct work; 1306 }; 1307 1308 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1309 1310 /** 1311 * memory_failure_queue - Schedule handling memory failure of a page. 1312 * @pfn: Page Number of the corrupted page 1313 * @trapno: Trap number reported in the signal to user space. 1314 * @flags: Flags for memory failure handling 1315 * 1316 * This function is called by the low level hardware error handler 1317 * when it detects hardware memory corruption of a page. It schedules 1318 * the recovering of error page, including dropping pages, killing 1319 * processes etc. 1320 * 1321 * The function is primarily of use for corruptions that 1322 * happen outside the current execution context (e.g. when 1323 * detected by a background scrubber) 1324 * 1325 * Can run in IRQ context. 1326 */ 1327 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1328 { 1329 struct memory_failure_cpu *mf_cpu; 1330 unsigned long proc_flags; 1331 struct memory_failure_entry entry = { 1332 .pfn = pfn, 1333 .trapno = trapno, 1334 .flags = flags, 1335 }; 1336 1337 mf_cpu = &get_cpu_var(memory_failure_cpu); 1338 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1339 if (kfifo_put(&mf_cpu->fifo, entry)) 1340 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1341 else 1342 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1343 pfn); 1344 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1345 put_cpu_var(memory_failure_cpu); 1346 } 1347 EXPORT_SYMBOL_GPL(memory_failure_queue); 1348 1349 static void memory_failure_work_func(struct work_struct *work) 1350 { 1351 struct memory_failure_cpu *mf_cpu; 1352 struct memory_failure_entry entry = { 0, }; 1353 unsigned long proc_flags; 1354 int gotten; 1355 1356 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1357 for (;;) { 1358 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1359 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1360 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1361 if (!gotten) 1362 break; 1363 if (entry.flags & MF_SOFT_OFFLINE) 1364 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1365 else 1366 memory_failure(entry.pfn, entry.trapno, entry.flags); 1367 } 1368 } 1369 1370 static int __init memory_failure_init(void) 1371 { 1372 struct memory_failure_cpu *mf_cpu; 1373 int cpu; 1374 1375 for_each_possible_cpu(cpu) { 1376 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1377 spin_lock_init(&mf_cpu->lock); 1378 INIT_KFIFO(mf_cpu->fifo); 1379 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1380 } 1381 1382 return 0; 1383 } 1384 core_initcall(memory_failure_init); 1385 1386 #define unpoison_pr_info(fmt, pfn, rs) \ 1387 ({ \ 1388 if (__ratelimit(rs)) \ 1389 pr_info(fmt, pfn); \ 1390 }) 1391 1392 /** 1393 * unpoison_memory - Unpoison a previously poisoned page 1394 * @pfn: Page number of the to be unpoisoned page 1395 * 1396 * Software-unpoison a page that has been poisoned by 1397 * memory_failure() earlier. 1398 * 1399 * This is only done on the software-level, so it only works 1400 * for linux injected failures, not real hardware failures 1401 * 1402 * Returns 0 for success, otherwise -errno. 1403 */ 1404 int unpoison_memory(unsigned long pfn) 1405 { 1406 struct page *page; 1407 struct page *p; 1408 int freeit = 0; 1409 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1410 DEFAULT_RATELIMIT_BURST); 1411 1412 if (!pfn_valid(pfn)) 1413 return -ENXIO; 1414 1415 p = pfn_to_page(pfn); 1416 page = compound_head(p); 1417 1418 if (!PageHWPoison(p)) { 1419 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1420 pfn, &unpoison_rs); 1421 return 0; 1422 } 1423 1424 if (page_count(page) > 1) { 1425 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1426 pfn, &unpoison_rs); 1427 return 0; 1428 } 1429 1430 if (page_mapped(page)) { 1431 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1432 pfn, &unpoison_rs); 1433 return 0; 1434 } 1435 1436 if (page_mapping(page)) { 1437 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1438 pfn, &unpoison_rs); 1439 return 0; 1440 } 1441 1442 /* 1443 * unpoison_memory() can encounter thp only when the thp is being 1444 * worked by memory_failure() and the page lock is not held yet. 1445 * In such case, we yield to memory_failure() and make unpoison fail. 1446 */ 1447 if (!PageHuge(page) && PageTransHuge(page)) { 1448 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1449 pfn, &unpoison_rs); 1450 return 0; 1451 } 1452 1453 if (!get_hwpoison_page(p)) { 1454 if (TestClearPageHWPoison(p)) 1455 num_poisoned_pages_dec(); 1456 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1457 pfn, &unpoison_rs); 1458 return 0; 1459 } 1460 1461 lock_page(page); 1462 /* 1463 * This test is racy because PG_hwpoison is set outside of page lock. 1464 * That's acceptable because that won't trigger kernel panic. Instead, 1465 * the PG_hwpoison page will be caught and isolated on the entrance to 1466 * the free buddy page pool. 1467 */ 1468 if (TestClearPageHWPoison(page)) { 1469 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1470 pfn, &unpoison_rs); 1471 num_poisoned_pages_dec(); 1472 freeit = 1; 1473 } 1474 unlock_page(page); 1475 1476 put_hwpoison_page(page); 1477 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1478 put_hwpoison_page(page); 1479 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(unpoison_memory); 1483 1484 static struct page *new_page(struct page *p, unsigned long private, int **x) 1485 { 1486 int nid = page_to_nid(p); 1487 1488 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1489 } 1490 1491 /* 1492 * Safely get reference count of an arbitrary page. 1493 * Returns 0 for a free page, -EIO for a zero refcount page 1494 * that is not free, and 1 for any other page type. 1495 * For 1 the page is returned with increased page count, otherwise not. 1496 */ 1497 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1498 { 1499 int ret; 1500 1501 if (flags & MF_COUNT_INCREASED) 1502 return 1; 1503 1504 /* 1505 * When the target page is a free hugepage, just remove it 1506 * from free hugepage list. 1507 */ 1508 if (!get_hwpoison_page(p)) { 1509 if (PageHuge(p)) { 1510 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1511 ret = 0; 1512 } else if (is_free_buddy_page(p)) { 1513 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1514 ret = 0; 1515 } else { 1516 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1517 __func__, pfn, p->flags); 1518 ret = -EIO; 1519 } 1520 } else { 1521 /* Not a free page */ 1522 ret = 1; 1523 } 1524 return ret; 1525 } 1526 1527 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1528 { 1529 int ret = __get_any_page(page, pfn, flags); 1530 1531 if (ret == 1 && !PageHuge(page) && 1532 !PageLRU(page) && !__PageMovable(page)) { 1533 /* 1534 * Try to free it. 1535 */ 1536 put_hwpoison_page(page); 1537 shake_page(page, 1); 1538 1539 /* 1540 * Did it turn free? 1541 */ 1542 ret = __get_any_page(page, pfn, 0); 1543 if (ret == 1 && !PageLRU(page)) { 1544 /* Drop page reference which is from __get_any_page() */ 1545 put_hwpoison_page(page); 1546 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1547 pfn, page->flags, &page->flags); 1548 return -EIO; 1549 } 1550 } 1551 return ret; 1552 } 1553 1554 static int soft_offline_huge_page(struct page *page, int flags) 1555 { 1556 int ret; 1557 unsigned long pfn = page_to_pfn(page); 1558 struct page *hpage = compound_head(page); 1559 LIST_HEAD(pagelist); 1560 1561 /* 1562 * This double-check of PageHWPoison is to avoid the race with 1563 * memory_failure(). See also comment in __soft_offline_page(). 1564 */ 1565 lock_page(hpage); 1566 if (PageHWPoison(hpage)) { 1567 unlock_page(hpage); 1568 put_hwpoison_page(hpage); 1569 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1570 return -EBUSY; 1571 } 1572 unlock_page(hpage); 1573 1574 ret = isolate_huge_page(hpage, &pagelist); 1575 /* 1576 * get_any_page() and isolate_huge_page() takes a refcount each, 1577 * so need to drop one here. 1578 */ 1579 put_hwpoison_page(hpage); 1580 if (!ret) { 1581 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1582 return -EBUSY; 1583 } 1584 1585 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1586 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1587 if (ret) { 1588 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1589 pfn, ret, page->flags, &page->flags); 1590 if (!list_empty(&pagelist)) 1591 putback_movable_pages(&pagelist); 1592 if (ret > 0) 1593 ret = -EIO; 1594 } else { 1595 if (PageHuge(page)) 1596 dissolve_free_huge_page(page); 1597 } 1598 return ret; 1599 } 1600 1601 static int __soft_offline_page(struct page *page, int flags) 1602 { 1603 int ret; 1604 unsigned long pfn = page_to_pfn(page); 1605 1606 /* 1607 * Check PageHWPoison again inside page lock because PageHWPoison 1608 * is set by memory_failure() outside page lock. Note that 1609 * memory_failure() also double-checks PageHWPoison inside page lock, 1610 * so there's no race between soft_offline_page() and memory_failure(). 1611 */ 1612 lock_page(page); 1613 wait_on_page_writeback(page); 1614 if (PageHWPoison(page)) { 1615 unlock_page(page); 1616 put_hwpoison_page(page); 1617 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1618 return -EBUSY; 1619 } 1620 /* 1621 * Try to invalidate first. This should work for 1622 * non dirty unmapped page cache pages. 1623 */ 1624 ret = invalidate_inode_page(page); 1625 unlock_page(page); 1626 /* 1627 * RED-PEN would be better to keep it isolated here, but we 1628 * would need to fix isolation locking first. 1629 */ 1630 if (ret == 1) { 1631 put_hwpoison_page(page); 1632 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1633 SetPageHWPoison(page); 1634 num_poisoned_pages_inc(); 1635 return 0; 1636 } 1637 1638 /* 1639 * Simple invalidation didn't work. 1640 * Try to migrate to a new page instead. migrate.c 1641 * handles a large number of cases for us. 1642 */ 1643 if (PageLRU(page)) 1644 ret = isolate_lru_page(page); 1645 else 1646 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1647 /* 1648 * Drop page reference which is came from get_any_page() 1649 * successful isolate_lru_page() already took another one. 1650 */ 1651 put_hwpoison_page(page); 1652 if (!ret) { 1653 LIST_HEAD(pagelist); 1654 /* 1655 * After isolated lru page, the PageLRU will be cleared, 1656 * so use !__PageMovable instead for LRU page's mapping 1657 * cannot have PAGE_MAPPING_MOVABLE. 1658 */ 1659 if (!__PageMovable(page)) 1660 inc_node_page_state(page, NR_ISOLATED_ANON + 1661 page_is_file_cache(page)); 1662 list_add(&page->lru, &pagelist); 1663 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1664 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1665 if (ret) { 1666 if (!list_empty(&pagelist)) 1667 putback_movable_pages(&pagelist); 1668 1669 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1670 pfn, ret, page->flags, &page->flags); 1671 if (ret > 0) 1672 ret = -EIO; 1673 } 1674 } else { 1675 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1676 pfn, ret, page_count(page), page->flags, &page->flags); 1677 } 1678 return ret; 1679 } 1680 1681 static int soft_offline_in_use_page(struct page *page, int flags) 1682 { 1683 int ret; 1684 struct page *hpage = compound_head(page); 1685 1686 if (!PageHuge(page) && PageTransHuge(hpage)) { 1687 lock_page(hpage); 1688 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1689 unlock_page(hpage); 1690 if (!PageAnon(hpage)) 1691 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1692 else 1693 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1694 put_hwpoison_page(hpage); 1695 return -EBUSY; 1696 } 1697 unlock_page(hpage); 1698 get_hwpoison_page(page); 1699 put_hwpoison_page(hpage); 1700 } 1701 1702 if (PageHuge(page)) 1703 ret = soft_offline_huge_page(page, flags); 1704 else 1705 ret = __soft_offline_page(page, flags); 1706 1707 return ret; 1708 } 1709 1710 static void soft_offline_free_page(struct page *page) 1711 { 1712 struct page *head = compound_head(page); 1713 1714 if (!TestSetPageHWPoison(head)) { 1715 num_poisoned_pages_inc(); 1716 if (PageHuge(head)) 1717 dissolve_free_huge_page(page); 1718 } 1719 } 1720 1721 /** 1722 * soft_offline_page - Soft offline a page. 1723 * @page: page to offline 1724 * @flags: flags. Same as memory_failure(). 1725 * 1726 * Returns 0 on success, otherwise negated errno. 1727 * 1728 * Soft offline a page, by migration or invalidation, 1729 * without killing anything. This is for the case when 1730 * a page is not corrupted yet (so it's still valid to access), 1731 * but has had a number of corrected errors and is better taken 1732 * out. 1733 * 1734 * The actual policy on when to do that is maintained by 1735 * user space. 1736 * 1737 * This should never impact any application or cause data loss, 1738 * however it might take some time. 1739 * 1740 * This is not a 100% solution for all memory, but tries to be 1741 * ``good enough'' for the majority of memory. 1742 */ 1743 int soft_offline_page(struct page *page, int flags) 1744 { 1745 int ret; 1746 unsigned long pfn = page_to_pfn(page); 1747 1748 if (PageHWPoison(page)) { 1749 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1750 if (flags & MF_COUNT_INCREASED) 1751 put_hwpoison_page(page); 1752 return -EBUSY; 1753 } 1754 1755 get_online_mems(); 1756 ret = get_any_page(page, pfn, flags); 1757 put_online_mems(); 1758 1759 if (ret > 0) 1760 ret = soft_offline_in_use_page(page, flags); 1761 else if (ret == 0) 1762 soft_offline_free_page(page); 1763 1764 return ret; 1765 } 1766