xref: /linux/mm/memory-failure.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	ino = cgroup_ino(css->cgroup);
149 	css_put(css);
150 
151 	if (ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped a signal.
187  * ``action optional'' if they are not immediately affected by the error
188  * ``action required'' if error happened in current execution context
189  */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page, int flags)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 
207 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 		si.si_code = BUS_MCEERR_AR;
209 		ret = force_sig_info(SIGBUS, &si, current);
210 	} else {
211 		/*
212 		 * Don't use force here, it's convenient if the signal
213 		 * can be temporarily blocked.
214 		 * This could cause a loop when the user sets SIGBUS
215 		 * to SIG_IGN, but hopefully no one will do that?
216 		 */
217 		si.si_code = BUS_MCEERR_AO;
218 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219 	}
220 	if (ret < 0)
221 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 		       t->comm, t->pid, ret);
223 	return ret;
224 }
225 
226 /*
227  * When a unknown page type is encountered drain as many buffers as possible
228  * in the hope to turn the page into a LRU or free page, which we can handle.
229  */
230 void shake_page(struct page *p, int access)
231 {
232 	if (!PageSlab(p)) {
233 		lru_add_drain_all();
234 		if (PageLRU(p))
235 			return;
236 		drain_all_pages(page_zone(p));
237 		if (PageLRU(p) || is_free_buddy_page(p))
238 			return;
239 	}
240 
241 	/*
242 	 * Only call shrink_node_slabs here (which would also shrink
243 	 * other caches) if access is not potentially fatal.
244 	 */
245 	if (access)
246 		drop_slab_node(page_to_nid(p));
247 }
248 EXPORT_SYMBOL_GPL(shake_page);
249 
250 /*
251  * Kill all processes that have a poisoned page mapped and then isolate
252  * the page.
253  *
254  * General strategy:
255  * Find all processes having the page mapped and kill them.
256  * But we keep a page reference around so that the page is not
257  * actually freed yet.
258  * Then stash the page away
259  *
260  * There's no convenient way to get back to mapped processes
261  * from the VMAs. So do a brute-force search over all
262  * running processes.
263  *
264  * Remember that machine checks are not common (or rather
265  * if they are common you have other problems), so this shouldn't
266  * be a performance issue.
267  *
268  * Also there are some races possible while we get from the
269  * error detection to actually handle it.
270  */
271 
272 struct to_kill {
273 	struct list_head nd;
274 	struct task_struct *tsk;
275 	unsigned long addr;
276 	char addr_valid;
277 };
278 
279 /*
280  * Failure handling: if we can't find or can't kill a process there's
281  * not much we can do.	We just print a message and ignore otherwise.
282  */
283 
284 /*
285  * Schedule a process for later kill.
286  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287  * TBD would GFP_NOIO be enough?
288  */
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 		       struct vm_area_struct *vma,
291 		       struct list_head *to_kill,
292 		       struct to_kill **tkc)
293 {
294 	struct to_kill *tk;
295 
296 	if (*tkc) {
297 		tk = *tkc;
298 		*tkc = NULL;
299 	} else {
300 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 		if (!tk) {
302 			printk(KERN_ERR
303 		"MCE: Out of memory while machine check handling\n");
304 			return;
305 		}
306 	}
307 	tk->addr = page_address_in_vma(p, vma);
308 	tk->addr_valid = 1;
309 
310 	/*
311 	 * In theory we don't have to kill when the page was
312 	 * munmaped. But it could be also a mremap. Since that's
313 	 * likely very rare kill anyways just out of paranoia, but use
314 	 * a SIGKILL because the error is not contained anymore.
315 	 */
316 	if (tk->addr == -EFAULT) {
317 		pr_info("MCE: Unable to find user space address %lx in %s\n",
318 			page_to_pfn(p), tsk->comm);
319 		tk->addr_valid = 0;
320 	}
321 	get_task_struct(tsk);
322 	tk->tsk = tsk;
323 	list_add_tail(&tk->nd, to_kill);
324 }
325 
326 /*
327  * Kill the processes that have been collected earlier.
328  *
329  * Only do anything when DOIT is set, otherwise just free the list
330  * (this is used for clean pages which do not need killing)
331  * Also when FAIL is set do a force kill because something went
332  * wrong earlier.
333  */
334 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
335 			  int fail, struct page *page, unsigned long pfn,
336 			  int flags)
337 {
338 	struct to_kill *tk, *next;
339 
340 	list_for_each_entry_safe (tk, next, to_kill, nd) {
341 		if (forcekill) {
342 			/*
343 			 * In case something went wrong with munmapping
344 			 * make sure the process doesn't catch the
345 			 * signal and then access the memory. Just kill it.
346 			 */
347 			if (fail || tk->addr_valid == 0) {
348 				printk(KERN_ERR
349 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 					pfn, tk->tsk->comm, tk->tsk->pid);
351 				force_sig(SIGKILL, tk->tsk);
352 			}
353 
354 			/*
355 			 * In theory the process could have mapped
356 			 * something else on the address in-between. We could
357 			 * check for that, but we need to tell the
358 			 * process anyways.
359 			 */
360 			else if (kill_proc(tk->tsk, tk->addr, trapno,
361 					      pfn, page, flags) < 0)
362 				printk(KERN_ERR
363 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 					pfn, tk->tsk->comm, tk->tsk->pid);
365 		}
366 		put_task_struct(tk->tsk);
367 		kfree(tk);
368 	}
369 }
370 
371 /*
372  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373  * on behalf of the thread group. Return task_struct of the (first found)
374  * dedicated thread if found, and return NULL otherwise.
375  *
376  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377  * have to call rcu_read_lock/unlock() in this function.
378  */
379 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
380 {
381 	struct task_struct *t;
382 
383 	for_each_thread(tsk, t)
384 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
385 			return t;
386 	return NULL;
387 }
388 
389 /*
390  * Determine whether a given process is "early kill" process which expects
391  * to be signaled when some page under the process is hwpoisoned.
392  * Return task_struct of the dedicated thread (main thread unless explicitly
393  * specified) if the process is "early kill," and otherwise returns NULL.
394  */
395 static struct task_struct *task_early_kill(struct task_struct *tsk,
396 					   int force_early)
397 {
398 	struct task_struct *t;
399 	if (!tsk->mm)
400 		return NULL;
401 	if (force_early)
402 		return tsk;
403 	t = find_early_kill_thread(tsk);
404 	if (t)
405 		return t;
406 	if (sysctl_memory_failure_early_kill)
407 		return tsk;
408 	return NULL;
409 }
410 
411 /*
412  * Collect processes when the error hit an anonymous page.
413  */
414 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
415 			      struct to_kill **tkc, int force_early)
416 {
417 	struct vm_area_struct *vma;
418 	struct task_struct *tsk;
419 	struct anon_vma *av;
420 	pgoff_t pgoff;
421 
422 	av = page_lock_anon_vma_read(page);
423 	if (av == NULL)	/* Not actually mapped anymore */
424 		return;
425 
426 	pgoff = page_to_pgoff(page);
427 	read_lock(&tasklist_lock);
428 	for_each_process (tsk) {
429 		struct anon_vma_chain *vmac;
430 		struct task_struct *t = task_early_kill(tsk, force_early);
431 
432 		if (!t)
433 			continue;
434 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
435 					       pgoff, pgoff) {
436 			vma = vmac->vma;
437 			if (!page_mapped_in_vma(page, vma))
438 				continue;
439 			if (vma->vm_mm == t->mm)
440 				add_to_kill(t, page, vma, to_kill, tkc);
441 		}
442 	}
443 	read_unlock(&tasklist_lock);
444 	page_unlock_anon_vma_read(av);
445 }
446 
447 /*
448  * Collect processes when the error hit a file mapped page.
449  */
450 static void collect_procs_file(struct page *page, struct list_head *to_kill,
451 			      struct to_kill **tkc, int force_early)
452 {
453 	struct vm_area_struct *vma;
454 	struct task_struct *tsk;
455 	struct address_space *mapping = page->mapping;
456 
457 	i_mmap_lock_read(mapping);
458 	read_lock(&tasklist_lock);
459 	for_each_process(tsk) {
460 		pgoff_t pgoff = page_to_pgoff(page);
461 		struct task_struct *t = task_early_kill(tsk, force_early);
462 
463 		if (!t)
464 			continue;
465 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
466 				      pgoff) {
467 			/*
468 			 * Send early kill signal to tasks where a vma covers
469 			 * the page but the corrupted page is not necessarily
470 			 * mapped it in its pte.
471 			 * Assume applications who requested early kill want
472 			 * to be informed of all such data corruptions.
473 			 */
474 			if (vma->vm_mm == t->mm)
475 				add_to_kill(t, page, vma, to_kill, tkc);
476 		}
477 	}
478 	read_unlock(&tasklist_lock);
479 	i_mmap_unlock_read(mapping);
480 }
481 
482 /*
483  * Collect the processes who have the corrupted page mapped to kill.
484  * This is done in two steps for locking reasons.
485  * First preallocate one tokill structure outside the spin locks,
486  * so that we can kill at least one process reasonably reliable.
487  */
488 static void collect_procs(struct page *page, struct list_head *tokill,
489 				int force_early)
490 {
491 	struct to_kill *tk;
492 
493 	if (!page->mapping)
494 		return;
495 
496 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
497 	if (!tk)
498 		return;
499 	if (PageAnon(page))
500 		collect_procs_anon(page, tokill, &tk, force_early);
501 	else
502 		collect_procs_file(page, tokill, &tk, force_early);
503 	kfree(tk);
504 }
505 
506 /*
507  * Error handlers for various types of pages.
508  */
509 
510 enum outcome {
511 	IGNORED,	/* Error: cannot be handled */
512 	FAILED,		/* Error: handling failed */
513 	DELAYED,	/* Will be handled later */
514 	RECOVERED,	/* Successfully recovered */
515 };
516 
517 static const char *action_name[] = {
518 	[IGNORED] = "Ignored",
519 	[FAILED] = "Failed",
520 	[DELAYED] = "Delayed",
521 	[RECOVERED] = "Recovered",
522 };
523 
524 /*
525  * XXX: It is possible that a page is isolated from LRU cache,
526  * and then kept in swap cache or failed to remove from page cache.
527  * The page count will stop it from being freed by unpoison.
528  * Stress tests should be aware of this memory leak problem.
529  */
530 static int delete_from_lru_cache(struct page *p)
531 {
532 	if (!isolate_lru_page(p)) {
533 		/*
534 		 * Clear sensible page flags, so that the buddy system won't
535 		 * complain when the page is unpoison-and-freed.
536 		 */
537 		ClearPageActive(p);
538 		ClearPageUnevictable(p);
539 		/*
540 		 * drop the page count elevated by isolate_lru_page()
541 		 */
542 		page_cache_release(p);
543 		return 0;
544 	}
545 	return -EIO;
546 }
547 
548 /*
549  * Error hit kernel page.
550  * Do nothing, try to be lucky and not touch this instead. For a few cases we
551  * could be more sophisticated.
552  */
553 static int me_kernel(struct page *p, unsigned long pfn)
554 {
555 	return IGNORED;
556 }
557 
558 /*
559  * Page in unknown state. Do nothing.
560  */
561 static int me_unknown(struct page *p, unsigned long pfn)
562 {
563 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
564 	return FAILED;
565 }
566 
567 /*
568  * Clean (or cleaned) page cache page.
569  */
570 static int me_pagecache_clean(struct page *p, unsigned long pfn)
571 {
572 	int err;
573 	int ret = FAILED;
574 	struct address_space *mapping;
575 
576 	delete_from_lru_cache(p);
577 
578 	/*
579 	 * For anonymous pages we're done the only reference left
580 	 * should be the one m_f() holds.
581 	 */
582 	if (PageAnon(p))
583 		return RECOVERED;
584 
585 	/*
586 	 * Now truncate the page in the page cache. This is really
587 	 * more like a "temporary hole punch"
588 	 * Don't do this for block devices when someone else
589 	 * has a reference, because it could be file system metadata
590 	 * and that's not safe to truncate.
591 	 */
592 	mapping = page_mapping(p);
593 	if (!mapping) {
594 		/*
595 		 * Page has been teared down in the meanwhile
596 		 */
597 		return FAILED;
598 	}
599 
600 	/*
601 	 * Truncation is a bit tricky. Enable it per file system for now.
602 	 *
603 	 * Open: to take i_mutex or not for this? Right now we don't.
604 	 */
605 	if (mapping->a_ops->error_remove_page) {
606 		err = mapping->a_ops->error_remove_page(mapping, p);
607 		if (err != 0) {
608 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
609 					pfn, err);
610 		} else if (page_has_private(p) &&
611 				!try_to_release_page(p, GFP_NOIO)) {
612 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
613 		} else {
614 			ret = RECOVERED;
615 		}
616 	} else {
617 		/*
618 		 * If the file system doesn't support it just invalidate
619 		 * This fails on dirty or anything with private pages
620 		 */
621 		if (invalidate_inode_page(p))
622 			ret = RECOVERED;
623 		else
624 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
625 				pfn);
626 	}
627 	return ret;
628 }
629 
630 /*
631  * Dirty pagecache page
632  * Issues: when the error hit a hole page the error is not properly
633  * propagated.
634  */
635 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636 {
637 	struct address_space *mapping = page_mapping(p);
638 
639 	SetPageError(p);
640 	/* TBD: print more information about the file. */
641 	if (mapping) {
642 		/*
643 		 * IO error will be reported by write(), fsync(), etc.
644 		 * who check the mapping.
645 		 * This way the application knows that something went
646 		 * wrong with its dirty file data.
647 		 *
648 		 * There's one open issue:
649 		 *
650 		 * The EIO will be only reported on the next IO
651 		 * operation and then cleared through the IO map.
652 		 * Normally Linux has two mechanisms to pass IO error
653 		 * first through the AS_EIO flag in the address space
654 		 * and then through the PageError flag in the page.
655 		 * Since we drop pages on memory failure handling the
656 		 * only mechanism open to use is through AS_AIO.
657 		 *
658 		 * This has the disadvantage that it gets cleared on
659 		 * the first operation that returns an error, while
660 		 * the PageError bit is more sticky and only cleared
661 		 * when the page is reread or dropped.  If an
662 		 * application assumes it will always get error on
663 		 * fsync, but does other operations on the fd before
664 		 * and the page is dropped between then the error
665 		 * will not be properly reported.
666 		 *
667 		 * This can already happen even without hwpoisoned
668 		 * pages: first on metadata IO errors (which only
669 		 * report through AS_EIO) or when the page is dropped
670 		 * at the wrong time.
671 		 *
672 		 * So right now we assume that the application DTRT on
673 		 * the first EIO, but we're not worse than other parts
674 		 * of the kernel.
675 		 */
676 		mapping_set_error(mapping, EIO);
677 	}
678 
679 	return me_pagecache_clean(p, pfn);
680 }
681 
682 /*
683  * Clean and dirty swap cache.
684  *
685  * Dirty swap cache page is tricky to handle. The page could live both in page
686  * cache and swap cache(ie. page is freshly swapped in). So it could be
687  * referenced concurrently by 2 types of PTEs:
688  * normal PTEs and swap PTEs. We try to handle them consistently by calling
689  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690  * and then
691  *      - clear dirty bit to prevent IO
692  *      - remove from LRU
693  *      - but keep in the swap cache, so that when we return to it on
694  *        a later page fault, we know the application is accessing
695  *        corrupted data and shall be killed (we installed simple
696  *        interception code in do_swap_page to catch it).
697  *
698  * Clean swap cache pages can be directly isolated. A later page fault will
699  * bring in the known good data from disk.
700  */
701 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702 {
703 	ClearPageDirty(p);
704 	/* Trigger EIO in shmem: */
705 	ClearPageUptodate(p);
706 
707 	if (!delete_from_lru_cache(p))
708 		return DELAYED;
709 	else
710 		return FAILED;
711 }
712 
713 static int me_swapcache_clean(struct page *p, unsigned long pfn)
714 {
715 	delete_from_swap_cache(p);
716 
717 	if (!delete_from_lru_cache(p))
718 		return RECOVERED;
719 	else
720 		return FAILED;
721 }
722 
723 /*
724  * Huge pages. Needs work.
725  * Issues:
726  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727  *   To narrow down kill region to one page, we need to break up pmd.
728  */
729 static int me_huge_page(struct page *p, unsigned long pfn)
730 {
731 	int res = 0;
732 	struct page *hpage = compound_head(p);
733 	/*
734 	 * We can safely recover from error on free or reserved (i.e.
735 	 * not in-use) hugepage by dequeuing it from freelist.
736 	 * To check whether a hugepage is in-use or not, we can't use
737 	 * page->lru because it can be used in other hugepage operations,
738 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
739 	 * So instead we use page_mapping() and PageAnon().
740 	 * We assume that this function is called with page lock held,
741 	 * so there is no race between isolation and mapping/unmapping.
742 	 */
743 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
744 		res = dequeue_hwpoisoned_huge_page(hpage);
745 		if (!res)
746 			return RECOVERED;
747 	}
748 	return DELAYED;
749 }
750 
751 /*
752  * Various page states we can handle.
753  *
754  * A page state is defined by its current page->flags bits.
755  * The table matches them in order and calls the right handler.
756  *
757  * This is quite tricky because we can access page at any time
758  * in its live cycle, so all accesses have to be extremely careful.
759  *
760  * This is not complete. More states could be added.
761  * For any missing state don't attempt recovery.
762  */
763 
764 #define dirty		(1UL << PG_dirty)
765 #define sc		(1UL << PG_swapcache)
766 #define unevict		(1UL << PG_unevictable)
767 #define mlock		(1UL << PG_mlocked)
768 #define writeback	(1UL << PG_writeback)
769 #define lru		(1UL << PG_lru)
770 #define swapbacked	(1UL << PG_swapbacked)
771 #define head		(1UL << PG_head)
772 #define tail		(1UL << PG_tail)
773 #define compound	(1UL << PG_compound)
774 #define slab		(1UL << PG_slab)
775 #define reserved	(1UL << PG_reserved)
776 
777 static struct page_state {
778 	unsigned long mask;
779 	unsigned long res;
780 	char *msg;
781 	int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
784 	/*
785 	 * free pages are specially detected outside this table:
786 	 * PG_buddy pages only make a small fraction of all free pages.
787 	 */
788 
789 	/*
790 	 * Could in theory check if slab page is free or if we can drop
791 	 * currently unused objects without touching them. But just
792 	 * treat it as standard kernel for now.
793 	 */
794 	{ slab,		slab,		"kernel slab",	me_kernel },
795 
796 #ifdef CONFIG_PAGEFLAGS_EXTENDED
797 	{ head,		head,		"huge",		me_huge_page },
798 	{ tail,		tail,		"huge",		me_huge_page },
799 #else
800 	{ compound,	compound,	"huge",		me_huge_page },
801 #endif
802 
803 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
804 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
805 
806 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
807 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
808 
809 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
810 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
811 
812 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
813 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
814 
815 	/*
816 	 * Catchall entry: must be at end.
817 	 */
818 	{ 0,		0,		"unknown page state",	me_unknown },
819 };
820 
821 #undef dirty
822 #undef sc
823 #undef unevict
824 #undef mlock
825 #undef writeback
826 #undef lru
827 #undef swapbacked
828 #undef head
829 #undef tail
830 #undef compound
831 #undef slab
832 #undef reserved
833 
834 /*
835  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837  */
838 static void action_result(unsigned long pfn, char *msg, int result)
839 {
840 	pr_err("MCE %#lx: %s page recovery: %s\n",
841 		pfn, msg, action_name[result]);
842 }
843 
844 static int page_action(struct page_state *ps, struct page *p,
845 			unsigned long pfn)
846 {
847 	int result;
848 	int count;
849 
850 	result = ps->action(p, pfn);
851 
852 	count = page_count(p) - 1;
853 	if (ps->action == me_swapcache_dirty && result == DELAYED)
854 		count--;
855 	if (count != 0) {
856 		printk(KERN_ERR
857 		       "MCE %#lx: %s page still referenced by %d users\n",
858 		       pfn, ps->msg, count);
859 		result = FAILED;
860 	}
861 	action_result(pfn, ps->msg, result);
862 
863 	/* Could do more checks here if page looks ok */
864 	/*
865 	 * Could adjust zone counters here to correct for the missing page.
866 	 */
867 
868 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
869 }
870 
871 /*
872  * Do all that is necessary to remove user space mappings. Unmap
873  * the pages and send SIGBUS to the processes if the data was dirty.
874  */
875 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
876 				  int trapno, int flags, struct page **hpagep)
877 {
878 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
879 	struct address_space *mapping;
880 	LIST_HEAD(tokill);
881 	int ret;
882 	int kill = 1, forcekill;
883 	struct page *hpage = *hpagep;
884 	struct page *ppage;
885 
886 	/*
887 	 * Here we are interested only in user-mapped pages, so skip any
888 	 * other types of pages.
889 	 */
890 	if (PageReserved(p) || PageSlab(p))
891 		return SWAP_SUCCESS;
892 	if (!(PageLRU(hpage) || PageHuge(p)))
893 		return SWAP_SUCCESS;
894 
895 	/*
896 	 * This check implies we don't kill processes if their pages
897 	 * are in the swap cache early. Those are always late kills.
898 	 */
899 	if (!page_mapped(hpage))
900 		return SWAP_SUCCESS;
901 
902 	if (PageKsm(p)) {
903 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
904 		return SWAP_FAIL;
905 	}
906 
907 	if (PageSwapCache(p)) {
908 		printk(KERN_ERR
909 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
910 		ttu |= TTU_IGNORE_HWPOISON;
911 	}
912 
913 	/*
914 	 * Propagate the dirty bit from PTEs to struct page first, because we
915 	 * need this to decide if we should kill or just drop the page.
916 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
917 	 * be called inside page lock (it's recommended but not enforced).
918 	 */
919 	mapping = page_mapping(hpage);
920 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
921 	    mapping_cap_writeback_dirty(mapping)) {
922 		if (page_mkclean(hpage)) {
923 			SetPageDirty(hpage);
924 		} else {
925 			kill = 0;
926 			ttu |= TTU_IGNORE_HWPOISON;
927 			printk(KERN_INFO
928 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
929 				pfn);
930 		}
931 	}
932 
933 	/*
934 	 * ppage: poisoned page
935 	 *   if p is regular page(4k page)
936 	 *        ppage == real poisoned page;
937 	 *   else p is hugetlb or THP, ppage == head page.
938 	 */
939 	ppage = hpage;
940 
941 	if (PageTransHuge(hpage)) {
942 		/*
943 		 * Verify that this isn't a hugetlbfs head page, the check for
944 		 * PageAnon is just for avoid tripping a split_huge_page
945 		 * internal debug check, as split_huge_page refuses to deal with
946 		 * anything that isn't an anon page. PageAnon can't go away fro
947 		 * under us because we hold a refcount on the hpage, without a
948 		 * refcount on the hpage. split_huge_page can't be safely called
949 		 * in the first place, having a refcount on the tail isn't
950 		 * enough * to be safe.
951 		 */
952 		if (!PageHuge(hpage) && PageAnon(hpage)) {
953 			if (unlikely(split_huge_page(hpage))) {
954 				/*
955 				 * FIXME: if splitting THP is failed, it is
956 				 * better to stop the following operation rather
957 				 * than causing panic by unmapping. System might
958 				 * survive if the page is freed later.
959 				 */
960 				printk(KERN_INFO
961 					"MCE %#lx: failed to split THP\n", pfn);
962 
963 				BUG_ON(!PageHWPoison(p));
964 				return SWAP_FAIL;
965 			}
966 			/*
967 			 * We pinned the head page for hwpoison handling,
968 			 * now we split the thp and we are interested in
969 			 * the hwpoisoned raw page, so move the refcount
970 			 * to it. Similarly, page lock is shifted.
971 			 */
972 			if (hpage != p) {
973 				if (!(flags & MF_COUNT_INCREASED)) {
974 					put_page(hpage);
975 					get_page(p);
976 				}
977 				lock_page(p);
978 				unlock_page(hpage);
979 				*hpagep = p;
980 			}
981 			/* THP is split, so ppage should be the real poisoned page. */
982 			ppage = p;
983 		}
984 	}
985 
986 	/*
987 	 * First collect all the processes that have the page
988 	 * mapped in dirty form.  This has to be done before try_to_unmap,
989 	 * because ttu takes the rmap data structures down.
990 	 *
991 	 * Error handling: We ignore errors here because
992 	 * there's nothing that can be done.
993 	 */
994 	if (kill)
995 		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
996 
997 	ret = try_to_unmap(ppage, ttu);
998 	if (ret != SWAP_SUCCESS)
999 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1000 				pfn, page_mapcount(ppage));
1001 
1002 	/*
1003 	 * Now that the dirty bit has been propagated to the
1004 	 * struct page and all unmaps done we can decide if
1005 	 * killing is needed or not.  Only kill when the page
1006 	 * was dirty or the process is not restartable,
1007 	 * otherwise the tokill list is merely
1008 	 * freed.  When there was a problem unmapping earlier
1009 	 * use a more force-full uncatchable kill to prevent
1010 	 * any accesses to the poisoned memory.
1011 	 */
1012 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1013 	kill_procs(&tokill, forcekill, trapno,
1014 		      ret != SWAP_SUCCESS, p, pfn, flags);
1015 
1016 	return ret;
1017 }
1018 
1019 static void set_page_hwpoison_huge_page(struct page *hpage)
1020 {
1021 	int i;
1022 	int nr_pages = 1 << compound_order(hpage);
1023 	for (i = 0; i < nr_pages; i++)
1024 		SetPageHWPoison(hpage + i);
1025 }
1026 
1027 static void clear_page_hwpoison_huge_page(struct page *hpage)
1028 {
1029 	int i;
1030 	int nr_pages = 1 << compound_order(hpage);
1031 	for (i = 0; i < nr_pages; i++)
1032 		ClearPageHWPoison(hpage + i);
1033 }
1034 
1035 /**
1036  * memory_failure - Handle memory failure of a page.
1037  * @pfn: Page Number of the corrupted page
1038  * @trapno: Trap number reported in the signal to user space.
1039  * @flags: fine tune action taken
1040  *
1041  * This function is called by the low level machine check code
1042  * of an architecture when it detects hardware memory corruption
1043  * of a page. It tries its best to recover, which includes
1044  * dropping pages, killing processes etc.
1045  *
1046  * The function is primarily of use for corruptions that
1047  * happen outside the current execution context (e.g. when
1048  * detected by a background scrubber)
1049  *
1050  * Must run in process context (e.g. a work queue) with interrupts
1051  * enabled and no spinlocks hold.
1052  */
1053 int memory_failure(unsigned long pfn, int trapno, int flags)
1054 {
1055 	struct page_state *ps;
1056 	struct page *p;
1057 	struct page *hpage;
1058 	int res;
1059 	unsigned int nr_pages;
1060 	unsigned long page_flags;
1061 
1062 	if (!sysctl_memory_failure_recovery)
1063 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1064 
1065 	if (!pfn_valid(pfn)) {
1066 		printk(KERN_ERR
1067 		       "MCE %#lx: memory outside kernel control\n",
1068 		       pfn);
1069 		return -ENXIO;
1070 	}
1071 
1072 	p = pfn_to_page(pfn);
1073 	hpage = compound_head(p);
1074 	if (TestSetPageHWPoison(p)) {
1075 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1076 		return 0;
1077 	}
1078 
1079 	/*
1080 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1081 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1082 	 * transparent hugepages, they are supposed to be split and error
1083 	 * measurement is done in normal page units.  So nr_pages should be one
1084 	 * in this case.
1085 	 */
1086 	if (PageHuge(p))
1087 		nr_pages = 1 << compound_order(hpage);
1088 	else /* normal page or thp */
1089 		nr_pages = 1;
1090 	atomic_long_add(nr_pages, &num_poisoned_pages);
1091 
1092 	/*
1093 	 * We need/can do nothing about count=0 pages.
1094 	 * 1) it's a free page, and therefore in safe hand:
1095 	 *    prep_new_page() will be the gate keeper.
1096 	 * 2) it's a free hugepage, which is also safe:
1097 	 *    an affected hugepage will be dequeued from hugepage freelist,
1098 	 *    so there's no concern about reusing it ever after.
1099 	 * 3) it's part of a non-compound high order page.
1100 	 *    Implies some kernel user: cannot stop them from
1101 	 *    R/W the page; let's pray that the page has been
1102 	 *    used and will be freed some time later.
1103 	 * In fact it's dangerous to directly bump up page count from 0,
1104 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1105 	 */
1106 	if (!(flags & MF_COUNT_INCREASED) &&
1107 		!get_page_unless_zero(hpage)) {
1108 		if (is_free_buddy_page(p)) {
1109 			action_result(pfn, "free buddy", DELAYED);
1110 			return 0;
1111 		} else if (PageHuge(hpage)) {
1112 			/*
1113 			 * Check "filter hit" and "race with other subpage."
1114 			 */
1115 			lock_page(hpage);
1116 			if (PageHWPoison(hpage)) {
1117 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1118 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1119 					atomic_long_sub(nr_pages, &num_poisoned_pages);
1120 					unlock_page(hpage);
1121 					return 0;
1122 				}
1123 			}
1124 			set_page_hwpoison_huge_page(hpage);
1125 			res = dequeue_hwpoisoned_huge_page(hpage);
1126 			action_result(pfn, "free huge",
1127 				      res ? IGNORED : DELAYED);
1128 			unlock_page(hpage);
1129 			return res;
1130 		} else {
1131 			action_result(pfn, "high order kernel", IGNORED);
1132 			return -EBUSY;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * We ignore non-LRU pages for good reasons.
1138 	 * - PG_locked is only well defined for LRU pages and a few others
1139 	 * - to avoid races with __set_page_locked()
1140 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1141 	 * The check (unnecessarily) ignores LRU pages being isolated and
1142 	 * walked by the page reclaim code, however that's not a big loss.
1143 	 */
1144 	if (!PageHuge(p) && !PageTransTail(p)) {
1145 		if (!PageLRU(p))
1146 			shake_page(p, 0);
1147 		if (!PageLRU(p)) {
1148 			/*
1149 			 * shake_page could have turned it free.
1150 			 */
1151 			if (is_free_buddy_page(p)) {
1152 				if (flags & MF_COUNT_INCREASED)
1153 					action_result(pfn, "free buddy", DELAYED);
1154 				else
1155 					action_result(pfn, "free buddy, 2nd try", DELAYED);
1156 				return 0;
1157 			}
1158 		}
1159 	}
1160 
1161 	lock_page(hpage);
1162 
1163 	/*
1164 	 * The page could have changed compound pages during the locking.
1165 	 * If this happens just bail out.
1166 	 */
1167 	if (compound_head(p) != hpage) {
1168 		action_result(pfn, "different compound page after locking", IGNORED);
1169 		res = -EBUSY;
1170 		goto out;
1171 	}
1172 
1173 	/*
1174 	 * We use page flags to determine what action should be taken, but
1175 	 * the flags can be modified by the error containment action.  One
1176 	 * example is an mlocked page, where PG_mlocked is cleared by
1177 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1178 	 * correctly, we save a copy of the page flags at this time.
1179 	 */
1180 	page_flags = p->flags;
1181 
1182 	/*
1183 	 * unpoison always clear PG_hwpoison inside page lock
1184 	 */
1185 	if (!PageHWPoison(p)) {
1186 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1187 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1188 		put_page(hpage);
1189 		res = 0;
1190 		goto out;
1191 	}
1192 	if (hwpoison_filter(p)) {
1193 		if (TestClearPageHWPoison(p))
1194 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1195 		unlock_page(hpage);
1196 		put_page(hpage);
1197 		return 0;
1198 	}
1199 
1200 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1201 		goto identify_page_state;
1202 
1203 	/*
1204 	 * For error on the tail page, we should set PG_hwpoison
1205 	 * on the head page to show that the hugepage is hwpoisoned
1206 	 */
1207 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1208 		action_result(pfn, "hugepage already hardware poisoned",
1209 				IGNORED);
1210 		unlock_page(hpage);
1211 		put_page(hpage);
1212 		return 0;
1213 	}
1214 	/*
1215 	 * Set PG_hwpoison on all pages in an error hugepage,
1216 	 * because containment is done in hugepage unit for now.
1217 	 * Since we have done TestSetPageHWPoison() for the head page with
1218 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1219 	 */
1220 	if (PageHuge(p))
1221 		set_page_hwpoison_huge_page(hpage);
1222 
1223 	/*
1224 	 * It's very difficult to mess with pages currently under IO
1225 	 * and in many cases impossible, so we just avoid it here.
1226 	 */
1227 	wait_on_page_writeback(p);
1228 
1229 	/*
1230 	 * Now take care of user space mappings.
1231 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1232 	 *
1233 	 * When the raw error page is thp tail page, hpage points to the raw
1234 	 * page after thp split.
1235 	 */
1236 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1237 	    != SWAP_SUCCESS) {
1238 		action_result(pfn, "unmapping failed", IGNORED);
1239 		res = -EBUSY;
1240 		goto out;
1241 	}
1242 
1243 	/*
1244 	 * Torn down by someone else?
1245 	 */
1246 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1247 		action_result(pfn, "already truncated LRU", IGNORED);
1248 		res = -EBUSY;
1249 		goto out;
1250 	}
1251 
1252 identify_page_state:
1253 	res = -EBUSY;
1254 	/*
1255 	 * The first check uses the current page flags which may not have any
1256 	 * relevant information. The second check with the saved page flagss is
1257 	 * carried out only if the first check can't determine the page status.
1258 	 */
1259 	for (ps = error_states;; ps++)
1260 		if ((p->flags & ps->mask) == ps->res)
1261 			break;
1262 
1263 	page_flags |= (p->flags & (1UL << PG_dirty));
1264 
1265 	if (!ps->mask)
1266 		for (ps = error_states;; ps++)
1267 			if ((page_flags & ps->mask) == ps->res)
1268 				break;
1269 	res = page_action(ps, p, pfn);
1270 out:
1271 	unlock_page(hpage);
1272 	return res;
1273 }
1274 EXPORT_SYMBOL_GPL(memory_failure);
1275 
1276 #define MEMORY_FAILURE_FIFO_ORDER	4
1277 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1278 
1279 struct memory_failure_entry {
1280 	unsigned long pfn;
1281 	int trapno;
1282 	int flags;
1283 };
1284 
1285 struct memory_failure_cpu {
1286 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1287 		      MEMORY_FAILURE_FIFO_SIZE);
1288 	spinlock_t lock;
1289 	struct work_struct work;
1290 };
1291 
1292 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1293 
1294 /**
1295  * memory_failure_queue - Schedule handling memory failure of a page.
1296  * @pfn: Page Number of the corrupted page
1297  * @trapno: Trap number reported in the signal to user space.
1298  * @flags: Flags for memory failure handling
1299  *
1300  * This function is called by the low level hardware error handler
1301  * when it detects hardware memory corruption of a page. It schedules
1302  * the recovering of error page, including dropping pages, killing
1303  * processes etc.
1304  *
1305  * The function is primarily of use for corruptions that
1306  * happen outside the current execution context (e.g. when
1307  * detected by a background scrubber)
1308  *
1309  * Can run in IRQ context.
1310  */
1311 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1312 {
1313 	struct memory_failure_cpu *mf_cpu;
1314 	unsigned long proc_flags;
1315 	struct memory_failure_entry entry = {
1316 		.pfn =		pfn,
1317 		.trapno =	trapno,
1318 		.flags =	flags,
1319 	};
1320 
1321 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1322 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1323 	if (kfifo_put(&mf_cpu->fifo, entry))
1324 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1325 	else
1326 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1327 		       pfn);
1328 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1329 	put_cpu_var(memory_failure_cpu);
1330 }
1331 EXPORT_SYMBOL_GPL(memory_failure_queue);
1332 
1333 static void memory_failure_work_func(struct work_struct *work)
1334 {
1335 	struct memory_failure_cpu *mf_cpu;
1336 	struct memory_failure_entry entry = { 0, };
1337 	unsigned long proc_flags;
1338 	int gotten;
1339 
1340 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1341 	for (;;) {
1342 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1343 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1344 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1345 		if (!gotten)
1346 			break;
1347 		if (entry.flags & MF_SOFT_OFFLINE)
1348 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1349 		else
1350 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1351 	}
1352 }
1353 
1354 static int __init memory_failure_init(void)
1355 {
1356 	struct memory_failure_cpu *mf_cpu;
1357 	int cpu;
1358 
1359 	for_each_possible_cpu(cpu) {
1360 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1361 		spin_lock_init(&mf_cpu->lock);
1362 		INIT_KFIFO(mf_cpu->fifo);
1363 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1364 	}
1365 
1366 	return 0;
1367 }
1368 core_initcall(memory_failure_init);
1369 
1370 /**
1371  * unpoison_memory - Unpoison a previously poisoned page
1372  * @pfn: Page number of the to be unpoisoned page
1373  *
1374  * Software-unpoison a page that has been poisoned by
1375  * memory_failure() earlier.
1376  *
1377  * This is only done on the software-level, so it only works
1378  * for linux injected failures, not real hardware failures
1379  *
1380  * Returns 0 for success, otherwise -errno.
1381  */
1382 int unpoison_memory(unsigned long pfn)
1383 {
1384 	struct page *page;
1385 	struct page *p;
1386 	int freeit = 0;
1387 	unsigned int nr_pages;
1388 
1389 	if (!pfn_valid(pfn))
1390 		return -ENXIO;
1391 
1392 	p = pfn_to_page(pfn);
1393 	page = compound_head(p);
1394 
1395 	if (!PageHWPoison(p)) {
1396 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1397 		return 0;
1398 	}
1399 
1400 	/*
1401 	 * unpoison_memory() can encounter thp only when the thp is being
1402 	 * worked by memory_failure() and the page lock is not held yet.
1403 	 * In such case, we yield to memory_failure() and make unpoison fail.
1404 	 */
1405 	if (!PageHuge(page) && PageTransHuge(page)) {
1406 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1407 			return 0;
1408 	}
1409 
1410 	nr_pages = 1 << compound_order(page);
1411 
1412 	if (!get_page_unless_zero(page)) {
1413 		/*
1414 		 * Since HWPoisoned hugepage should have non-zero refcount,
1415 		 * race between memory failure and unpoison seems to happen.
1416 		 * In such case unpoison fails and memory failure runs
1417 		 * to the end.
1418 		 */
1419 		if (PageHuge(page)) {
1420 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1421 			return 0;
1422 		}
1423 		if (TestClearPageHWPoison(p))
1424 			atomic_long_dec(&num_poisoned_pages);
1425 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1426 		return 0;
1427 	}
1428 
1429 	lock_page(page);
1430 	/*
1431 	 * This test is racy because PG_hwpoison is set outside of page lock.
1432 	 * That's acceptable because that won't trigger kernel panic. Instead,
1433 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1434 	 * the free buddy page pool.
1435 	 */
1436 	if (TestClearPageHWPoison(page)) {
1437 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1438 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1439 		freeit = 1;
1440 		if (PageHuge(page))
1441 			clear_page_hwpoison_huge_page(page);
1442 	}
1443 	unlock_page(page);
1444 
1445 	put_page(page);
1446 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1447 		put_page(page);
1448 
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL(unpoison_memory);
1452 
1453 static struct page *new_page(struct page *p, unsigned long private, int **x)
1454 {
1455 	int nid = page_to_nid(p);
1456 	if (PageHuge(p))
1457 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1458 						   nid);
1459 	else
1460 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1461 }
1462 
1463 /*
1464  * Safely get reference count of an arbitrary page.
1465  * Returns 0 for a free page, -EIO for a zero refcount page
1466  * that is not free, and 1 for any other page type.
1467  * For 1 the page is returned with increased page count, otherwise not.
1468  */
1469 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1470 {
1471 	int ret;
1472 
1473 	if (flags & MF_COUNT_INCREASED)
1474 		return 1;
1475 
1476 	/*
1477 	 * When the target page is a free hugepage, just remove it
1478 	 * from free hugepage list.
1479 	 */
1480 	if (!get_page_unless_zero(compound_head(p))) {
1481 		if (PageHuge(p)) {
1482 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1483 			ret = 0;
1484 		} else if (is_free_buddy_page(p)) {
1485 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1486 			ret = 0;
1487 		} else {
1488 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1489 				__func__, pfn, p->flags);
1490 			ret = -EIO;
1491 		}
1492 	} else {
1493 		/* Not a free page */
1494 		ret = 1;
1495 	}
1496 	return ret;
1497 }
1498 
1499 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1500 {
1501 	int ret = __get_any_page(page, pfn, flags);
1502 
1503 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1504 		/*
1505 		 * Try to free it.
1506 		 */
1507 		put_page(page);
1508 		shake_page(page, 1);
1509 
1510 		/*
1511 		 * Did it turn free?
1512 		 */
1513 		ret = __get_any_page(page, pfn, 0);
1514 		if (!PageLRU(page)) {
1515 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1516 				pfn, page->flags);
1517 			return -EIO;
1518 		}
1519 	}
1520 	return ret;
1521 }
1522 
1523 static int soft_offline_huge_page(struct page *page, int flags)
1524 {
1525 	int ret;
1526 	unsigned long pfn = page_to_pfn(page);
1527 	struct page *hpage = compound_head(page);
1528 	LIST_HEAD(pagelist);
1529 
1530 	/*
1531 	 * This double-check of PageHWPoison is to avoid the race with
1532 	 * memory_failure(). See also comment in __soft_offline_page().
1533 	 */
1534 	lock_page(hpage);
1535 	if (PageHWPoison(hpage)) {
1536 		unlock_page(hpage);
1537 		put_page(hpage);
1538 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1539 		return -EBUSY;
1540 	}
1541 	unlock_page(hpage);
1542 
1543 	/* Keep page count to indicate a given hugepage is isolated. */
1544 	list_move(&hpage->lru, &pagelist);
1545 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1546 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1547 	if (ret) {
1548 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1549 			pfn, ret, page->flags);
1550 		/*
1551 		 * We know that soft_offline_huge_page() tries to migrate
1552 		 * only one hugepage pointed to by hpage, so we need not
1553 		 * run through the pagelist here.
1554 		 */
1555 		putback_active_hugepage(hpage);
1556 		if (ret > 0)
1557 			ret = -EIO;
1558 	} else {
1559 		/* overcommit hugetlb page will be freed to buddy */
1560 		if (PageHuge(page)) {
1561 			set_page_hwpoison_huge_page(hpage);
1562 			dequeue_hwpoisoned_huge_page(hpage);
1563 			atomic_long_add(1 << compound_order(hpage),
1564 					&num_poisoned_pages);
1565 		} else {
1566 			SetPageHWPoison(page);
1567 			atomic_long_inc(&num_poisoned_pages);
1568 		}
1569 	}
1570 	return ret;
1571 }
1572 
1573 static int __soft_offline_page(struct page *page, int flags)
1574 {
1575 	int ret;
1576 	unsigned long pfn = page_to_pfn(page);
1577 
1578 	/*
1579 	 * Check PageHWPoison again inside page lock because PageHWPoison
1580 	 * is set by memory_failure() outside page lock. Note that
1581 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1582 	 * so there's no race between soft_offline_page() and memory_failure().
1583 	 */
1584 	lock_page(page);
1585 	wait_on_page_writeback(page);
1586 	if (PageHWPoison(page)) {
1587 		unlock_page(page);
1588 		put_page(page);
1589 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1590 		return -EBUSY;
1591 	}
1592 	/*
1593 	 * Try to invalidate first. This should work for
1594 	 * non dirty unmapped page cache pages.
1595 	 */
1596 	ret = invalidate_inode_page(page);
1597 	unlock_page(page);
1598 	/*
1599 	 * RED-PEN would be better to keep it isolated here, but we
1600 	 * would need to fix isolation locking first.
1601 	 */
1602 	if (ret == 1) {
1603 		put_page(page);
1604 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1605 		SetPageHWPoison(page);
1606 		atomic_long_inc(&num_poisoned_pages);
1607 		return 0;
1608 	}
1609 
1610 	/*
1611 	 * Simple invalidation didn't work.
1612 	 * Try to migrate to a new page instead. migrate.c
1613 	 * handles a large number of cases for us.
1614 	 */
1615 	ret = isolate_lru_page(page);
1616 	/*
1617 	 * Drop page reference which is came from get_any_page()
1618 	 * successful isolate_lru_page() already took another one.
1619 	 */
1620 	put_page(page);
1621 	if (!ret) {
1622 		LIST_HEAD(pagelist);
1623 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1624 					page_is_file_cache(page));
1625 		list_add(&page->lru, &pagelist);
1626 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1627 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1628 		if (ret) {
1629 			if (!list_empty(&pagelist)) {
1630 				list_del(&page->lru);
1631 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1632 						page_is_file_cache(page));
1633 				putback_lru_page(page);
1634 			}
1635 
1636 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1637 				pfn, ret, page->flags);
1638 			if (ret > 0)
1639 				ret = -EIO;
1640 		} else {
1641 			/*
1642 			 * After page migration succeeds, the source page can
1643 			 * be trapped in pagevec and actual freeing is delayed.
1644 			 * Freeing code works differently based on PG_hwpoison,
1645 			 * so there's a race. We need to make sure that the
1646 			 * source page should be freed back to buddy before
1647 			 * setting PG_hwpoison.
1648 			 */
1649 			if (!is_free_buddy_page(page))
1650 				drain_all_pages(page_zone(page));
1651 			SetPageHWPoison(page);
1652 			if (!is_free_buddy_page(page))
1653 				pr_info("soft offline: %#lx: page leaked\n",
1654 					pfn);
1655 			atomic_long_inc(&num_poisoned_pages);
1656 		}
1657 	} else {
1658 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1659 			pfn, ret, page_count(page), page->flags);
1660 	}
1661 	return ret;
1662 }
1663 
1664 /**
1665  * soft_offline_page - Soft offline a page.
1666  * @page: page to offline
1667  * @flags: flags. Same as memory_failure().
1668  *
1669  * Returns 0 on success, otherwise negated errno.
1670  *
1671  * Soft offline a page, by migration or invalidation,
1672  * without killing anything. This is for the case when
1673  * a page is not corrupted yet (so it's still valid to access),
1674  * but has had a number of corrected errors and is better taken
1675  * out.
1676  *
1677  * The actual policy on when to do that is maintained by
1678  * user space.
1679  *
1680  * This should never impact any application or cause data loss,
1681  * however it might take some time.
1682  *
1683  * This is not a 100% solution for all memory, but tries to be
1684  * ``good enough'' for the majority of memory.
1685  */
1686 int soft_offline_page(struct page *page, int flags)
1687 {
1688 	int ret;
1689 	unsigned long pfn = page_to_pfn(page);
1690 	struct page *hpage = compound_head(page);
1691 
1692 	if (PageHWPoison(page)) {
1693 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1694 		return -EBUSY;
1695 	}
1696 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1697 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1698 			pr_info("soft offline: %#lx: failed to split THP\n",
1699 				pfn);
1700 			return -EBUSY;
1701 		}
1702 	}
1703 
1704 	get_online_mems();
1705 
1706 	/*
1707 	 * Isolate the page, so that it doesn't get reallocated if it
1708 	 * was free. This flag should be kept set until the source page
1709 	 * is freed and PG_hwpoison on it is set.
1710 	 */
1711 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1712 		set_migratetype_isolate(page, true);
1713 
1714 	ret = get_any_page(page, pfn, flags);
1715 	put_online_mems();
1716 	if (ret > 0) { /* for in-use pages */
1717 		if (PageHuge(page))
1718 			ret = soft_offline_huge_page(page, flags);
1719 		else
1720 			ret = __soft_offline_page(page, flags);
1721 	} else if (ret == 0) { /* for free pages */
1722 		if (PageHuge(page)) {
1723 			set_page_hwpoison_huge_page(hpage);
1724 			dequeue_hwpoisoned_huge_page(hpage);
1725 			atomic_long_add(1 << compound_order(hpage),
1726 					&num_poisoned_pages);
1727 		} else {
1728 			SetPageHWPoison(page);
1729 			atomic_long_inc(&num_poisoned_pages);
1730 		}
1731 	}
1732 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1733 	return ret;
1734 }
1735