xref: /linux/mm/memory-failure.c (revision 163e9fc6957fc24d1d6c0a30a3febfd2ecade039)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 	{ }
145 };
146 
147 /*
148  * Return values:
149  *   1:   the page is dissolved (if needed) and taken off from buddy,
150  *   0:   the page is dissolved (if needed) and not taken off from buddy,
151  *   < 0: failed to dissolve.
152  */
153 static int __page_handle_poison(struct page *page)
154 {
155 	int ret;
156 
157 	/*
158 	 * zone_pcp_disable() can't be used here. It will
159 	 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
160 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
161 	 * optimization is enabled. This will break current lock dependency
162 	 * chain and leads to deadlock.
163 	 * Disabling pcp before dissolving the page was a deterministic
164 	 * approach because we made sure that those pages cannot end up in any
165 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
166 	 * but nothing guarantees that those pages do not get back to a PCP
167 	 * queue if we need to refill those.
168 	 */
169 	ret = dissolve_free_huge_page(page);
170 	if (!ret) {
171 		drain_all_pages(page_zone(page));
172 		ret = take_page_off_buddy(page);
173 	}
174 
175 	return ret;
176 }
177 
178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179 {
180 	if (hugepage_or_freepage) {
181 		/*
182 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
183 		 * returns 0 for non-hugetlb pages as well.
184 		 */
185 		if (__page_handle_poison(page) <= 0)
186 			/*
187 			 * We could fail to take off the target page from buddy
188 			 * for example due to racy page allocation, but that's
189 			 * acceptable because soft-offlined page is not broken
190 			 * and if someone really want to use it, they should
191 			 * take it.
192 			 */
193 			return false;
194 	}
195 
196 	SetPageHWPoison(page);
197 	if (release)
198 		put_page(page);
199 	page_ref_inc(page);
200 	num_poisoned_pages_inc(page_to_pfn(page));
201 
202 	return true;
203 }
204 
205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206 
207 u32 hwpoison_filter_enable = 0;
208 u32 hwpoison_filter_dev_major = ~0U;
209 u32 hwpoison_filter_dev_minor = ~0U;
210 u64 hwpoison_filter_flags_mask;
211 u64 hwpoison_filter_flags_value;
212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217 
218 static int hwpoison_filter_dev(struct page *p)
219 {
220 	struct address_space *mapping;
221 	dev_t dev;
222 
223 	if (hwpoison_filter_dev_major == ~0U &&
224 	    hwpoison_filter_dev_minor == ~0U)
225 		return 0;
226 
227 	mapping = page_mapping(p);
228 	if (mapping == NULL || mapping->host == NULL)
229 		return -EINVAL;
230 
231 	dev = mapping->host->i_sb->s_dev;
232 	if (hwpoison_filter_dev_major != ~0U &&
233 	    hwpoison_filter_dev_major != MAJOR(dev))
234 		return -EINVAL;
235 	if (hwpoison_filter_dev_minor != ~0U &&
236 	    hwpoison_filter_dev_minor != MINOR(dev))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
242 static int hwpoison_filter_flags(struct page *p)
243 {
244 	if (!hwpoison_filter_flags_mask)
245 		return 0;
246 
247 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 				    hwpoison_filter_flags_value)
249 		return 0;
250 	else
251 		return -EINVAL;
252 }
253 
254 /*
255  * This allows stress tests to limit test scope to a collection of tasks
256  * by putting them under some memcg. This prevents killing unrelated/important
257  * processes such as /sbin/init. Note that the target task may share clean
258  * pages with init (eg. libc text), which is harmless. If the target task
259  * share _dirty_ pages with another task B, the test scheme must make sure B
260  * is also included in the memcg. At last, due to race conditions this filter
261  * can only guarantee that the page either belongs to the memcg tasks, or is
262  * a freed page.
263  */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267 static int hwpoison_filter_task(struct page *p)
268 {
269 	if (!hwpoison_filter_memcg)
270 		return 0;
271 
272 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 		return -EINVAL;
274 
275 	return 0;
276 }
277 #else
278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280 
281 int hwpoison_filter(struct page *p)
282 {
283 	if (!hwpoison_filter_enable)
284 		return 0;
285 
286 	if (hwpoison_filter_dev(p))
287 		return -EINVAL;
288 
289 	if (hwpoison_filter_flags(p))
290 		return -EINVAL;
291 
292 	if (hwpoison_filter_task(p))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 #else
298 int hwpoison_filter(struct page *p)
299 {
300 	return 0;
301 }
302 #endif
303 
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305 
306 /*
307  * Kill all processes that have a poisoned page mapped and then isolate
308  * the page.
309  *
310  * General strategy:
311  * Find all processes having the page mapped and kill them.
312  * But we keep a page reference around so that the page is not
313  * actually freed yet.
314  * Then stash the page away
315  *
316  * There's no convenient way to get back to mapped processes
317  * from the VMAs. So do a brute-force search over all
318  * running processes.
319  *
320  * Remember that machine checks are not common (or rather
321  * if they are common you have other problems), so this shouldn't
322  * be a performance issue.
323  *
324  * Also there are some races possible while we get from the
325  * error detection to actually handle it.
326  */
327 
328 struct to_kill {
329 	struct list_head nd;
330 	struct task_struct *tsk;
331 	unsigned long addr;
332 	short size_shift;
333 };
334 
335 /*
336  * Send all the processes who have the page mapped a signal.
337  * ``action optional'' if they are not immediately affected by the error
338  * ``action required'' if error happened in current execution context
339  */
340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 	struct task_struct *t = tk->tsk;
343 	short addr_lsb = tk->size_shift;
344 	int ret = 0;
345 
346 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 			pfn, t->comm, t->pid);
348 
349 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 		ret = force_sig_mceerr(BUS_MCEERR_AR,
351 				 (void __user *)tk->addr, addr_lsb);
352 	else
353 		/*
354 		 * Signal other processes sharing the page if they have
355 		 * PF_MCE_EARLY set.
356 		 * Don't use force here, it's convenient if the signal
357 		 * can be temporarily blocked.
358 		 * This could cause a loop when the user sets SIGBUS
359 		 * to SIG_IGN, but hopefully no one will do that?
360 		 */
361 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 				      addr_lsb, t);
363 	if (ret < 0)
364 		pr_info("Error sending signal to %s:%d: %d\n",
365 			t->comm, t->pid, ret);
366 	return ret;
367 }
368 
369 /*
370  * Unknown page type encountered. Try to check whether it can turn PageLRU by
371  * lru_add_drain_all.
372  */
373 void shake_page(struct page *p)
374 {
375 	if (PageHuge(p))
376 		return;
377 	/*
378 	 * TODO: Could shrink slab caches here if a lightweight range-based
379 	 * shrinker will be available.
380 	 */
381 	if (PageSlab(p))
382 		return;
383 
384 	lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_page);
387 
388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
389 		unsigned long address)
390 {
391 	unsigned long ret = 0;
392 	pgd_t *pgd;
393 	p4d_t *p4d;
394 	pud_t *pud;
395 	pmd_t *pmd;
396 	pte_t *pte;
397 	pte_t ptent;
398 
399 	VM_BUG_ON_VMA(address == -EFAULT, vma);
400 	pgd = pgd_offset(vma->vm_mm, address);
401 	if (!pgd_present(*pgd))
402 		return 0;
403 	p4d = p4d_offset(pgd, address);
404 	if (!p4d_present(*p4d))
405 		return 0;
406 	pud = pud_offset(p4d, address);
407 	if (!pud_present(*pud))
408 		return 0;
409 	if (pud_devmap(*pud))
410 		return PUD_SHIFT;
411 	pmd = pmd_offset(pud, address);
412 	if (!pmd_present(*pmd))
413 		return 0;
414 	if (pmd_devmap(*pmd))
415 		return PMD_SHIFT;
416 	pte = pte_offset_map(pmd, address);
417 	if (!pte)
418 		return 0;
419 	ptent = ptep_get(pte);
420 	if (pte_present(ptent) && pte_devmap(ptent))
421 		ret = PAGE_SHIFT;
422 	pte_unmap(pte);
423 	return ret;
424 }
425 
426 /*
427  * Failure handling: if we can't find or can't kill a process there's
428  * not much we can do.	We just print a message and ignore otherwise.
429  */
430 
431 #define FSDAX_INVALID_PGOFF ULONG_MAX
432 
433 /*
434  * Schedule a process for later kill.
435  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
436  *
437  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
438  * filesystem with a memory failure handler has claimed the
439  * memory_failure event. In all other cases, page->index and
440  * page->mapping are sufficient for mapping the page back to its
441  * corresponding user virtual address.
442  */
443 static void __add_to_kill(struct task_struct *tsk, struct page *p,
444 			  struct vm_area_struct *vma, struct list_head *to_kill,
445 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446 {
447 	struct to_kill *tk;
448 
449 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
450 	if (!tk) {
451 		pr_err("Out of memory while machine check handling\n");
452 		return;
453 	}
454 
455 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
456 	if (is_zone_device_page(p)) {
457 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
458 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
459 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
460 	} else
461 		tk->size_shift = page_shift(compound_head(p));
462 
463 	/*
464 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
465 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
466 	 * so "tk->size_shift == 0" effectively checks no mapping on
467 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
468 	 * to a process' address space, it's possible not all N VMAs
469 	 * contain mappings for the page, but at least one VMA does.
470 	 * Only deliver SIGBUS with payload derived from the VMA that
471 	 * has a mapping for the page.
472 	 */
473 	if (tk->addr == -EFAULT) {
474 		pr_info("Unable to find user space address %lx in %s\n",
475 			page_to_pfn(p), tsk->comm);
476 	} else if (tk->size_shift == 0) {
477 		kfree(tk);
478 		return;
479 	}
480 
481 	get_task_struct(tsk);
482 	tk->tsk = tsk;
483 	list_add_tail(&tk->nd, to_kill);
484 }
485 
486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
487 				  struct vm_area_struct *vma,
488 				  struct list_head *to_kill)
489 {
490 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491 }
492 
493 #ifdef CONFIG_KSM
494 static bool task_in_to_kill_list(struct list_head *to_kill,
495 				 struct task_struct *tsk)
496 {
497 	struct to_kill *tk, *next;
498 
499 	list_for_each_entry_safe(tk, next, to_kill, nd) {
500 		if (tk->tsk == tsk)
501 			return true;
502 	}
503 
504 	return false;
505 }
506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
507 		     struct vm_area_struct *vma, struct list_head *to_kill,
508 		     unsigned long ksm_addr)
509 {
510 	if (!task_in_to_kill_list(to_kill, tsk))
511 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512 }
513 #endif
514 /*
515  * Kill the processes that have been collected earlier.
516  *
517  * Only do anything when FORCEKILL is set, otherwise just free the
518  * list (this is used for clean pages which do not need killing)
519  * Also when FAIL is set do a force kill because something went
520  * wrong earlier.
521  */
522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
523 		unsigned long pfn, int flags)
524 {
525 	struct to_kill *tk, *next;
526 
527 	list_for_each_entry_safe(tk, next, to_kill, nd) {
528 		if (forcekill) {
529 			/*
530 			 * In case something went wrong with munmapping
531 			 * make sure the process doesn't catch the
532 			 * signal and then access the memory. Just kill it.
533 			 */
534 			if (fail || tk->addr == -EFAULT) {
535 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
536 				       pfn, tk->tsk->comm, tk->tsk->pid);
537 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
538 						 tk->tsk, PIDTYPE_PID);
539 			}
540 
541 			/*
542 			 * In theory the process could have mapped
543 			 * something else on the address in-between. We could
544 			 * check for that, but we need to tell the
545 			 * process anyways.
546 			 */
547 			else if (kill_proc(tk, pfn, flags) < 0)
548 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
549 				       pfn, tk->tsk->comm, tk->tsk->pid);
550 		}
551 		list_del(&tk->nd);
552 		put_task_struct(tk->tsk);
553 		kfree(tk);
554 	}
555 }
556 
557 /*
558  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
559  * on behalf of the thread group. Return task_struct of the (first found)
560  * dedicated thread if found, and return NULL otherwise.
561  *
562  * We already hold rcu lock in the caller, so we don't have to call
563  * rcu_read_lock/unlock() in this function.
564  */
565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 {
567 	struct task_struct *t;
568 
569 	for_each_thread(tsk, t) {
570 		if (t->flags & PF_MCE_PROCESS) {
571 			if (t->flags & PF_MCE_EARLY)
572 				return t;
573 		} else {
574 			if (sysctl_memory_failure_early_kill)
575 				return t;
576 		}
577 	}
578 	return NULL;
579 }
580 
581 /*
582  * Determine whether a given process is "early kill" process which expects
583  * to be signaled when some page under the process is hwpoisoned.
584  * Return task_struct of the dedicated thread (main thread unless explicitly
585  * specified) if the process is "early kill" and otherwise returns NULL.
586  *
587  * Note that the above is true for Action Optional case. For Action Required
588  * case, it's only meaningful to the current thread which need to be signaled
589  * with SIGBUS, this error is Action Optional for other non current
590  * processes sharing the same error page,if the process is "early kill", the
591  * task_struct of the dedicated thread will also be returned.
592  */
593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594 {
595 	if (!tsk->mm)
596 		return NULL;
597 	/*
598 	 * Comparing ->mm here because current task might represent
599 	 * a subthread, while tsk always points to the main thread.
600 	 */
601 	if (force_early && tsk->mm == current->mm)
602 		return current;
603 
604 	return find_early_kill_thread(tsk);
605 }
606 
607 /*
608  * Collect processes when the error hit an anonymous page.
609  */
610 static void collect_procs_anon(struct folio *folio, struct page *page,
611 		struct list_head *to_kill, int force_early)
612 {
613 	struct vm_area_struct *vma;
614 	struct task_struct *tsk;
615 	struct anon_vma *av;
616 	pgoff_t pgoff;
617 
618 	av = folio_lock_anon_vma_read(folio, NULL);
619 	if (av == NULL)	/* Not actually mapped anymore */
620 		return;
621 
622 	pgoff = page_to_pgoff(page);
623 	rcu_read_lock();
624 	for_each_process(tsk) {
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 
628 		if (!t)
629 			continue;
630 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 					       pgoff, pgoff) {
632 			vma = vmac->vma;
633 			if (vma->vm_mm != t->mm)
634 				continue;
635 			if (!page_mapped_in_vma(page, vma))
636 				continue;
637 			add_to_kill_anon_file(t, page, vma, to_kill);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
647 static void collect_procs_file(struct folio *folio, struct page *page,
648 		struct list_head *to_kill, int force_early)
649 {
650 	struct vm_area_struct *vma;
651 	struct task_struct *tsk;
652 	struct address_space *mapping = folio->mapping;
653 	pgoff_t pgoff;
654 
655 	i_mmap_lock_read(mapping);
656 	rcu_read_lock();
657 	pgoff = page_to_pgoff(page);
658 	for_each_process(tsk) {
659 		struct task_struct *t = task_early_kill(tsk, force_early);
660 
661 		if (!t)
662 			continue;
663 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 				      pgoff) {
665 			/*
666 			 * Send early kill signal to tasks where a vma covers
667 			 * the page but the corrupted page is not necessarily
668 			 * mapped in its pte.
669 			 * Assume applications who requested early kill want
670 			 * to be informed of all such data corruptions.
671 			 */
672 			if (vma->vm_mm == t->mm)
673 				add_to_kill_anon_file(t, page, vma, to_kill);
674 		}
675 	}
676 	rcu_read_unlock();
677 	i_mmap_unlock_read(mapping);
678 }
679 
680 #ifdef CONFIG_FS_DAX
681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
682 			      struct vm_area_struct *vma,
683 			      struct list_head *to_kill, pgoff_t pgoff)
684 {
685 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
686 }
687 
688 /*
689  * Collect processes when the error hit a fsdax page.
690  */
691 static void collect_procs_fsdax(struct page *page,
692 		struct address_space *mapping, pgoff_t pgoff,
693 		struct list_head *to_kill, bool pre_remove)
694 {
695 	struct vm_area_struct *vma;
696 	struct task_struct *tsk;
697 
698 	i_mmap_lock_read(mapping);
699 	rcu_read_lock();
700 	for_each_process(tsk) {
701 		struct task_struct *t = tsk;
702 
703 		/*
704 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
705 		 * the current may not be the one accessing the fsdax page.
706 		 * Otherwise, search for the current task.
707 		 */
708 		if (!pre_remove)
709 			t = task_early_kill(tsk, true);
710 		if (!t)
711 			continue;
712 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
713 			if (vma->vm_mm == t->mm)
714 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
715 		}
716 	}
717 	rcu_read_unlock();
718 	i_mmap_unlock_read(mapping);
719 }
720 #endif /* CONFIG_FS_DAX */
721 
722 /*
723  * Collect the processes who have the corrupted page mapped to kill.
724  */
725 static void collect_procs(struct folio *folio, struct page *page,
726 		struct list_head *tokill, int force_early)
727 {
728 	if (!folio->mapping)
729 		return;
730 	if (unlikely(PageKsm(page)))
731 		collect_procs_ksm(page, tokill, force_early);
732 	else if (PageAnon(page))
733 		collect_procs_anon(folio, page, tokill, force_early);
734 	else
735 		collect_procs_file(folio, page, tokill, force_early);
736 }
737 
738 struct hwpoison_walk {
739 	struct to_kill tk;
740 	unsigned long pfn;
741 	int flags;
742 };
743 
744 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
745 {
746 	tk->addr = addr;
747 	tk->size_shift = shift;
748 }
749 
750 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
751 				unsigned long poisoned_pfn, struct to_kill *tk)
752 {
753 	unsigned long pfn = 0;
754 
755 	if (pte_present(pte)) {
756 		pfn = pte_pfn(pte);
757 	} else {
758 		swp_entry_t swp = pte_to_swp_entry(pte);
759 
760 		if (is_hwpoison_entry(swp))
761 			pfn = swp_offset_pfn(swp);
762 	}
763 
764 	if (!pfn || pfn != poisoned_pfn)
765 		return 0;
766 
767 	set_to_kill(tk, addr, shift);
768 	return 1;
769 }
770 
771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
772 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
773 				      struct hwpoison_walk *hwp)
774 {
775 	pmd_t pmd = *pmdp;
776 	unsigned long pfn;
777 	unsigned long hwpoison_vaddr;
778 
779 	if (!pmd_present(pmd))
780 		return 0;
781 	pfn = pmd_pfn(pmd);
782 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
783 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
784 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
785 		return 1;
786 	}
787 	return 0;
788 }
789 #else
790 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
791 				      struct hwpoison_walk *hwp)
792 {
793 	return 0;
794 }
795 #endif
796 
797 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
798 			      unsigned long end, struct mm_walk *walk)
799 {
800 	struct hwpoison_walk *hwp = walk->private;
801 	int ret = 0;
802 	pte_t *ptep, *mapped_pte;
803 	spinlock_t *ptl;
804 
805 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
806 	if (ptl) {
807 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
808 		spin_unlock(ptl);
809 		goto out;
810 	}
811 
812 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
813 						addr, &ptl);
814 	if (!ptep)
815 		goto out;
816 
817 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
818 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
819 					     hwp->pfn, &hwp->tk);
820 		if (ret == 1)
821 			break;
822 	}
823 	pte_unmap_unlock(mapped_pte, ptl);
824 out:
825 	cond_resched();
826 	return ret;
827 }
828 
829 #ifdef CONFIG_HUGETLB_PAGE
830 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
831 			    unsigned long addr, unsigned long end,
832 			    struct mm_walk *walk)
833 {
834 	struct hwpoison_walk *hwp = walk->private;
835 	pte_t pte = huge_ptep_get(ptep);
836 	struct hstate *h = hstate_vma(walk->vma);
837 
838 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
839 				      hwp->pfn, &hwp->tk);
840 }
841 #else
842 #define hwpoison_hugetlb_range	NULL
843 #endif
844 
845 static const struct mm_walk_ops hwpoison_walk_ops = {
846 	.pmd_entry = hwpoison_pte_range,
847 	.hugetlb_entry = hwpoison_hugetlb_range,
848 	.walk_lock = PGWALK_RDLOCK,
849 };
850 
851 /*
852  * Sends SIGBUS to the current process with error info.
853  *
854  * This function is intended to handle "Action Required" MCEs on already
855  * hardware poisoned pages. They could happen, for example, when
856  * memory_failure() failed to unmap the error page at the first call, or
857  * when multiple local machine checks happened on different CPUs.
858  *
859  * MCE handler currently has no easy access to the error virtual address,
860  * so this function walks page table to find it. The returned virtual address
861  * is proper in most cases, but it could be wrong when the application
862  * process has multiple entries mapping the error page.
863  */
864 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
865 				  int flags)
866 {
867 	int ret;
868 	struct hwpoison_walk priv = {
869 		.pfn = pfn,
870 	};
871 	priv.tk.tsk = p;
872 
873 	if (!p->mm)
874 		return -EFAULT;
875 
876 	mmap_read_lock(p->mm);
877 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
878 			      (void *)&priv);
879 	if (ret == 1 && priv.tk.addr)
880 		kill_proc(&priv.tk, pfn, flags);
881 	else
882 		ret = 0;
883 	mmap_read_unlock(p->mm);
884 	return ret > 0 ? -EHWPOISON : -EFAULT;
885 }
886 
887 static const char *action_name[] = {
888 	[MF_IGNORED] = "Ignored",
889 	[MF_FAILED] = "Failed",
890 	[MF_DELAYED] = "Delayed",
891 	[MF_RECOVERED] = "Recovered",
892 };
893 
894 static const char * const action_page_types[] = {
895 	[MF_MSG_KERNEL]			= "reserved kernel page",
896 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
897 	[MF_MSG_SLAB]			= "kernel slab page",
898 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
899 	[MF_MSG_HUGE]			= "huge page",
900 	[MF_MSG_FREE_HUGE]		= "free huge page",
901 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
902 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
903 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
904 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
905 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
906 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
907 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
908 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
909 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
910 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
911 	[MF_MSG_BUDDY]			= "free buddy page",
912 	[MF_MSG_DAX]			= "dax page",
913 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
914 	[MF_MSG_UNKNOWN]		= "unknown page",
915 };
916 
917 /*
918  * XXX: It is possible that a page is isolated from LRU cache,
919  * and then kept in swap cache or failed to remove from page cache.
920  * The page count will stop it from being freed by unpoison.
921  * Stress tests should be aware of this memory leak problem.
922  */
923 static int delete_from_lru_cache(struct folio *folio)
924 {
925 	if (folio_isolate_lru(folio)) {
926 		/*
927 		 * Clear sensible page flags, so that the buddy system won't
928 		 * complain when the folio is unpoison-and-freed.
929 		 */
930 		folio_clear_active(folio);
931 		folio_clear_unevictable(folio);
932 
933 		/*
934 		 * Poisoned page might never drop its ref count to 0 so we have
935 		 * to uncharge it manually from its memcg.
936 		 */
937 		mem_cgroup_uncharge(folio);
938 
939 		/*
940 		 * drop the refcount elevated by folio_isolate_lru()
941 		 */
942 		folio_put(folio);
943 		return 0;
944 	}
945 	return -EIO;
946 }
947 
948 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
949 				struct address_space *mapping)
950 {
951 	int ret = MF_FAILED;
952 
953 	if (mapping->a_ops->error_remove_folio) {
954 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
955 
956 		if (err != 0)
957 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
958 		else if (!filemap_release_folio(folio, GFP_NOIO))
959 			pr_info("%#lx: failed to release buffers\n", pfn);
960 		else
961 			ret = MF_RECOVERED;
962 	} else {
963 		/*
964 		 * If the file system doesn't support it just invalidate
965 		 * This fails on dirty or anything with private pages
966 		 */
967 		if (mapping_evict_folio(mapping, folio))
968 			ret = MF_RECOVERED;
969 		else
970 			pr_info("%#lx: Failed to invalidate\n",	pfn);
971 	}
972 
973 	return ret;
974 }
975 
976 struct page_state {
977 	unsigned long mask;
978 	unsigned long res;
979 	enum mf_action_page_type type;
980 
981 	/* Callback ->action() has to unlock the relevant page inside it. */
982 	int (*action)(struct page_state *ps, struct page *p);
983 };
984 
985 /*
986  * Return true if page is still referenced by others, otherwise return
987  * false.
988  *
989  * The extra_pins is true when one extra refcount is expected.
990  */
991 static bool has_extra_refcount(struct page_state *ps, struct page *p,
992 			       bool extra_pins)
993 {
994 	int count = page_count(p) - 1;
995 
996 	if (extra_pins)
997 		count -= folio_nr_pages(page_folio(p));
998 
999 	if (count > 0) {
1000 		pr_err("%#lx: %s still referenced by %d users\n",
1001 		       page_to_pfn(p), action_page_types[ps->type], count);
1002 		return true;
1003 	}
1004 
1005 	return false;
1006 }
1007 
1008 /*
1009  * Error hit kernel page.
1010  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1011  * could be more sophisticated.
1012  */
1013 static int me_kernel(struct page_state *ps, struct page *p)
1014 {
1015 	unlock_page(p);
1016 	return MF_IGNORED;
1017 }
1018 
1019 /*
1020  * Page in unknown state. Do nothing.
1021  */
1022 static int me_unknown(struct page_state *ps, struct page *p)
1023 {
1024 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1025 	unlock_page(p);
1026 	return MF_FAILED;
1027 }
1028 
1029 /*
1030  * Clean (or cleaned) page cache page.
1031  */
1032 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1033 {
1034 	struct folio *folio = page_folio(p);
1035 	int ret;
1036 	struct address_space *mapping;
1037 	bool extra_pins;
1038 
1039 	delete_from_lru_cache(folio);
1040 
1041 	/*
1042 	 * For anonymous folios the only reference left
1043 	 * should be the one m_f() holds.
1044 	 */
1045 	if (folio_test_anon(folio)) {
1046 		ret = MF_RECOVERED;
1047 		goto out;
1048 	}
1049 
1050 	/*
1051 	 * Now truncate the page in the page cache. This is really
1052 	 * more like a "temporary hole punch"
1053 	 * Don't do this for block devices when someone else
1054 	 * has a reference, because it could be file system metadata
1055 	 * and that's not safe to truncate.
1056 	 */
1057 	mapping = folio_mapping(folio);
1058 	if (!mapping) {
1059 		/* Folio has been torn down in the meantime */
1060 		ret = MF_FAILED;
1061 		goto out;
1062 	}
1063 
1064 	/*
1065 	 * The shmem page is kept in page cache instead of truncating
1066 	 * so is expected to have an extra refcount after error-handling.
1067 	 */
1068 	extra_pins = shmem_mapping(mapping);
1069 
1070 	/*
1071 	 * Truncation is a bit tricky. Enable it per file system for now.
1072 	 *
1073 	 * Open: to take i_rwsem or not for this? Right now we don't.
1074 	 */
1075 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1076 	if (has_extra_refcount(ps, p, extra_pins))
1077 		ret = MF_FAILED;
1078 
1079 out:
1080 	folio_unlock(folio);
1081 
1082 	return ret;
1083 }
1084 
1085 /*
1086  * Dirty pagecache page
1087  * Issues: when the error hit a hole page the error is not properly
1088  * propagated.
1089  */
1090 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1091 {
1092 	struct address_space *mapping = page_mapping(p);
1093 
1094 	SetPageError(p);
1095 	/* TBD: print more information about the file. */
1096 	if (mapping) {
1097 		/*
1098 		 * IO error will be reported by write(), fsync(), etc.
1099 		 * who check the mapping.
1100 		 * This way the application knows that something went
1101 		 * wrong with its dirty file data.
1102 		 *
1103 		 * There's one open issue:
1104 		 *
1105 		 * The EIO will be only reported on the next IO
1106 		 * operation and then cleared through the IO map.
1107 		 * Normally Linux has two mechanisms to pass IO error
1108 		 * first through the AS_EIO flag in the address space
1109 		 * and then through the PageError flag in the page.
1110 		 * Since we drop pages on memory failure handling the
1111 		 * only mechanism open to use is through AS_AIO.
1112 		 *
1113 		 * This has the disadvantage that it gets cleared on
1114 		 * the first operation that returns an error, while
1115 		 * the PageError bit is more sticky and only cleared
1116 		 * when the page is reread or dropped.  If an
1117 		 * application assumes it will always get error on
1118 		 * fsync, but does other operations on the fd before
1119 		 * and the page is dropped between then the error
1120 		 * will not be properly reported.
1121 		 *
1122 		 * This can already happen even without hwpoisoned
1123 		 * pages: first on metadata IO errors (which only
1124 		 * report through AS_EIO) or when the page is dropped
1125 		 * at the wrong time.
1126 		 *
1127 		 * So right now we assume that the application DTRT on
1128 		 * the first EIO, but we're not worse than other parts
1129 		 * of the kernel.
1130 		 */
1131 		mapping_set_error(mapping, -EIO);
1132 	}
1133 
1134 	return me_pagecache_clean(ps, p);
1135 }
1136 
1137 /*
1138  * Clean and dirty swap cache.
1139  *
1140  * Dirty swap cache page is tricky to handle. The page could live both in page
1141  * cache and swap cache(ie. page is freshly swapped in). So it could be
1142  * referenced concurrently by 2 types of PTEs:
1143  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145  * and then
1146  *      - clear dirty bit to prevent IO
1147  *      - remove from LRU
1148  *      - but keep in the swap cache, so that when we return to it on
1149  *        a later page fault, we know the application is accessing
1150  *        corrupted data and shall be killed (we installed simple
1151  *        interception code in do_swap_page to catch it).
1152  *
1153  * Clean swap cache pages can be directly isolated. A later page fault will
1154  * bring in the known good data from disk.
1155  */
1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157 {
1158 	struct folio *folio = page_folio(p);
1159 	int ret;
1160 	bool extra_pins = false;
1161 
1162 	folio_clear_dirty(folio);
1163 	/* Trigger EIO in shmem: */
1164 	folio_clear_uptodate(folio);
1165 
1166 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167 	folio_unlock(folio);
1168 
1169 	if (ret == MF_DELAYED)
1170 		extra_pins = true;
1171 
1172 	if (has_extra_refcount(ps, p, extra_pins))
1173 		ret = MF_FAILED;
1174 
1175 	return ret;
1176 }
1177 
1178 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1179 {
1180 	struct folio *folio = page_folio(p);
1181 	int ret;
1182 
1183 	delete_from_swap_cache(folio);
1184 
1185 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186 	folio_unlock(folio);
1187 
1188 	if (has_extra_refcount(ps, p, false))
1189 		ret = MF_FAILED;
1190 
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Huge pages. Needs work.
1196  * Issues:
1197  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198  *   To narrow down kill region to one page, we need to break up pmd.
1199  */
1200 static int me_huge_page(struct page_state *ps, struct page *p)
1201 {
1202 	struct folio *folio = page_folio(p);
1203 	int res;
1204 	struct address_space *mapping;
1205 	bool extra_pins = false;
1206 
1207 	mapping = folio_mapping(folio);
1208 	if (mapping) {
1209 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210 		/* The page is kept in page cache. */
1211 		extra_pins = true;
1212 		folio_unlock(folio);
1213 	} else {
1214 		folio_unlock(folio);
1215 		/*
1216 		 * migration entry prevents later access on error hugepage,
1217 		 * so we can free and dissolve it into buddy to save healthy
1218 		 * subpages.
1219 		 */
1220 		folio_put(folio);
1221 		if (__page_handle_poison(p) >= 0) {
1222 			page_ref_inc(p);
1223 			res = MF_RECOVERED;
1224 		} else {
1225 			res = MF_FAILED;
1226 		}
1227 	}
1228 
1229 	if (has_extra_refcount(ps, p, extra_pins))
1230 		res = MF_FAILED;
1231 
1232 	return res;
1233 }
1234 
1235 /*
1236  * Various page states we can handle.
1237  *
1238  * A page state is defined by its current page->flags bits.
1239  * The table matches them in order and calls the right handler.
1240  *
1241  * This is quite tricky because we can access page at any time
1242  * in its live cycle, so all accesses have to be extremely careful.
1243  *
1244  * This is not complete. More states could be added.
1245  * For any missing state don't attempt recovery.
1246  */
1247 
1248 #define dirty		(1UL << PG_dirty)
1249 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250 #define unevict		(1UL << PG_unevictable)
1251 #define mlock		(1UL << PG_mlocked)
1252 #define lru		(1UL << PG_lru)
1253 #define head		(1UL << PG_head)
1254 #define slab		(1UL << PG_slab)
1255 #define reserved	(1UL << PG_reserved)
1256 
1257 static struct page_state error_states[] = {
1258 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1259 	/*
1260 	 * free pages are specially detected outside this table:
1261 	 * PG_buddy pages only make a small fraction of all free pages.
1262 	 */
1263 
1264 	/*
1265 	 * Could in theory check if slab page is free or if we can drop
1266 	 * currently unused objects without touching them. But just
1267 	 * treat it as standard kernel for now.
1268 	 */
1269 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1270 
1271 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1272 
1273 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1274 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1275 
1276 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1277 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1278 
1279 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1280 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1281 
1282 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1283 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1284 
1285 	/*
1286 	 * Catchall entry: must be at end.
1287 	 */
1288 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1289 };
1290 
1291 #undef dirty
1292 #undef sc
1293 #undef unevict
1294 #undef mlock
1295 #undef lru
1296 #undef head
1297 #undef slab
1298 #undef reserved
1299 
1300 static void update_per_node_mf_stats(unsigned long pfn,
1301 				     enum mf_result result)
1302 {
1303 	int nid = MAX_NUMNODES;
1304 	struct memory_failure_stats *mf_stats = NULL;
1305 
1306 	nid = pfn_to_nid(pfn);
1307 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1308 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1309 		return;
1310 	}
1311 
1312 	mf_stats = &NODE_DATA(nid)->mf_stats;
1313 	switch (result) {
1314 	case MF_IGNORED:
1315 		++mf_stats->ignored;
1316 		break;
1317 	case MF_FAILED:
1318 		++mf_stats->failed;
1319 		break;
1320 	case MF_DELAYED:
1321 		++mf_stats->delayed;
1322 		break;
1323 	case MF_RECOVERED:
1324 		++mf_stats->recovered;
1325 		break;
1326 	default:
1327 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1328 		break;
1329 	}
1330 	++mf_stats->total;
1331 }
1332 
1333 /*
1334  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1335  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1336  */
1337 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1338 			 enum mf_result result)
1339 {
1340 	trace_memory_failure_event(pfn, type, result);
1341 
1342 	num_poisoned_pages_inc(pfn);
1343 
1344 	update_per_node_mf_stats(pfn, result);
1345 
1346 	pr_err("%#lx: recovery action for %s: %s\n",
1347 		pfn, action_page_types[type], action_name[result]);
1348 
1349 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1350 }
1351 
1352 static int page_action(struct page_state *ps, struct page *p,
1353 			unsigned long pfn)
1354 {
1355 	int result;
1356 
1357 	/* page p should be unlocked after returning from ps->action().  */
1358 	result = ps->action(ps, p);
1359 
1360 	/* Could do more checks here if page looks ok */
1361 	/*
1362 	 * Could adjust zone counters here to correct for the missing page.
1363 	 */
1364 
1365 	return action_result(pfn, ps->type, result);
1366 }
1367 
1368 static inline bool PageHWPoisonTakenOff(struct page *page)
1369 {
1370 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1371 }
1372 
1373 void SetPageHWPoisonTakenOff(struct page *page)
1374 {
1375 	set_page_private(page, MAGIC_HWPOISON);
1376 }
1377 
1378 void ClearPageHWPoisonTakenOff(struct page *page)
1379 {
1380 	if (PageHWPoison(page))
1381 		set_page_private(page, 0);
1382 }
1383 
1384 /*
1385  * Return true if a page type of a given page is supported by hwpoison
1386  * mechanism (while handling could fail), otherwise false.  This function
1387  * does not return true for hugetlb or device memory pages, so it's assumed
1388  * to be called only in the context where we never have such pages.
1389  */
1390 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1391 {
1392 	if (PageSlab(page))
1393 		return false;
1394 
1395 	/* Soft offline could migrate non-LRU movable pages */
1396 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1397 		return true;
1398 
1399 	return PageLRU(page) || is_free_buddy_page(page);
1400 }
1401 
1402 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1403 {
1404 	struct folio *folio = page_folio(page);
1405 	int ret = 0;
1406 	bool hugetlb = false;
1407 
1408 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1409 	if (hugetlb) {
1410 		/* Make sure hugetlb demotion did not happen from under us. */
1411 		if (folio == page_folio(page))
1412 			return ret;
1413 		if (ret > 0) {
1414 			folio_put(folio);
1415 			folio = page_folio(page);
1416 		}
1417 	}
1418 
1419 	/*
1420 	 * This check prevents from calling folio_try_get() for any
1421 	 * unsupported type of folio in order to reduce the risk of unexpected
1422 	 * races caused by taking a folio refcount.
1423 	 */
1424 	if (!HWPoisonHandlable(&folio->page, flags))
1425 		return -EBUSY;
1426 
1427 	if (folio_try_get(folio)) {
1428 		if (folio == page_folio(page))
1429 			return 1;
1430 
1431 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1432 		folio_put(folio);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int get_any_page(struct page *p, unsigned long flags)
1439 {
1440 	int ret = 0, pass = 0;
1441 	bool count_increased = false;
1442 
1443 	if (flags & MF_COUNT_INCREASED)
1444 		count_increased = true;
1445 
1446 try_again:
1447 	if (!count_increased) {
1448 		ret = __get_hwpoison_page(p, flags);
1449 		if (!ret) {
1450 			if (page_count(p)) {
1451 				/* We raced with an allocation, retry. */
1452 				if (pass++ < 3)
1453 					goto try_again;
1454 				ret = -EBUSY;
1455 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1456 				/* We raced with put_page, retry. */
1457 				if (pass++ < 3)
1458 					goto try_again;
1459 				ret = -EIO;
1460 			}
1461 			goto out;
1462 		} else if (ret == -EBUSY) {
1463 			/*
1464 			 * We raced with (possibly temporary) unhandlable
1465 			 * page, retry.
1466 			 */
1467 			if (pass++ < 3) {
1468 				shake_page(p);
1469 				goto try_again;
1470 			}
1471 			ret = -EIO;
1472 			goto out;
1473 		}
1474 	}
1475 
1476 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1477 		ret = 1;
1478 	} else {
1479 		/*
1480 		 * A page we cannot handle. Check whether we can turn
1481 		 * it into something we can handle.
1482 		 */
1483 		if (pass++ < 3) {
1484 			put_page(p);
1485 			shake_page(p);
1486 			count_increased = false;
1487 			goto try_again;
1488 		}
1489 		put_page(p);
1490 		ret = -EIO;
1491 	}
1492 out:
1493 	if (ret == -EIO)
1494 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1495 
1496 	return ret;
1497 }
1498 
1499 static int __get_unpoison_page(struct page *page)
1500 {
1501 	struct folio *folio = page_folio(page);
1502 	int ret = 0;
1503 	bool hugetlb = false;
1504 
1505 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1506 	if (hugetlb) {
1507 		/* Make sure hugetlb demotion did not happen from under us. */
1508 		if (folio == page_folio(page))
1509 			return ret;
1510 		if (ret > 0)
1511 			folio_put(folio);
1512 	}
1513 
1514 	/*
1515 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1516 	 * but also isolated from buddy freelist, so need to identify the
1517 	 * state and have to cancel both operations to unpoison.
1518 	 */
1519 	if (PageHWPoisonTakenOff(page))
1520 		return -EHWPOISON;
1521 
1522 	return get_page_unless_zero(page) ? 1 : 0;
1523 }
1524 
1525 /**
1526  * get_hwpoison_page() - Get refcount for memory error handling
1527  * @p:		Raw error page (hit by memory error)
1528  * @flags:	Flags controlling behavior of error handling
1529  *
1530  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1531  * error on it, after checking that the error page is in a well-defined state
1532  * (defined as a page-type we can successfully handle the memory error on it,
1533  * such as LRU page and hugetlb page).
1534  *
1535  * Memory error handling could be triggered at any time on any type of page,
1536  * so it's prone to race with typical memory management lifecycle (like
1537  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1538  * extra care for the error page's state (as done in __get_hwpoison_page()),
1539  * and has some retry logic in get_any_page().
1540  *
1541  * When called from unpoison_memory(), the caller should already ensure that
1542  * the given page has PG_hwpoison. So it's never reused for other page
1543  * allocations, and __get_unpoison_page() never races with them.
1544  *
1545  * Return: 0 on failure,
1546  *         1 on success for in-use pages in a well-defined state,
1547  *         -EIO for pages on which we can not handle memory errors,
1548  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1549  *         operations like allocation and free,
1550  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1551  */
1552 static int get_hwpoison_page(struct page *p, unsigned long flags)
1553 {
1554 	int ret;
1555 
1556 	zone_pcp_disable(page_zone(p));
1557 	if (flags & MF_UNPOISON)
1558 		ret = __get_unpoison_page(p);
1559 	else
1560 		ret = get_any_page(p, flags);
1561 	zone_pcp_enable(page_zone(p));
1562 
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Do all that is necessary to remove user space mappings. Unmap
1568  * the pages and send SIGBUS to the processes if the data was dirty.
1569  */
1570 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1571 				  int flags, struct page *hpage)
1572 {
1573 	struct folio *folio = page_folio(hpage);
1574 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1575 	struct address_space *mapping;
1576 	LIST_HEAD(tokill);
1577 	bool unmap_success;
1578 	int forcekill;
1579 	bool mlocked = PageMlocked(hpage);
1580 
1581 	/*
1582 	 * Here we are interested only in user-mapped pages, so skip any
1583 	 * other types of pages.
1584 	 */
1585 	if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1586 		return true;
1587 	if (!(PageLRU(hpage) || PageHuge(p)))
1588 		return true;
1589 
1590 	/*
1591 	 * This check implies we don't kill processes if their pages
1592 	 * are in the swap cache early. Those are always late kills.
1593 	 */
1594 	if (!page_mapped(p))
1595 		return true;
1596 
1597 	if (PageSwapCache(p)) {
1598 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1599 		ttu &= ~TTU_HWPOISON;
1600 	}
1601 
1602 	/*
1603 	 * Propagate the dirty bit from PTEs to struct page first, because we
1604 	 * need this to decide if we should kill or just drop the page.
1605 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1606 	 * be called inside page lock (it's recommended but not enforced).
1607 	 */
1608 	mapping = page_mapping(hpage);
1609 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1610 	    mapping_can_writeback(mapping)) {
1611 		if (page_mkclean(hpage)) {
1612 			SetPageDirty(hpage);
1613 		} else {
1614 			ttu &= ~TTU_HWPOISON;
1615 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1616 				pfn);
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * First collect all the processes that have the page
1622 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1623 	 * because ttu takes the rmap data structures down.
1624 	 */
1625 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1626 
1627 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1628 		/*
1629 		 * For hugetlb pages in shared mappings, try_to_unmap
1630 		 * could potentially call huge_pmd_unshare.  Because of
1631 		 * this, take semaphore in write mode here and set
1632 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1633 		 * at this higher level.
1634 		 */
1635 		mapping = hugetlb_page_mapping_lock_write(hpage);
1636 		if (mapping) {
1637 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1638 			i_mmap_unlock_write(mapping);
1639 		} else
1640 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1641 	} else {
1642 		try_to_unmap(folio, ttu);
1643 	}
1644 
1645 	unmap_success = !page_mapped(p);
1646 	if (!unmap_success)
1647 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1648 		       pfn, page_mapcount(p));
1649 
1650 	/*
1651 	 * try_to_unmap() might put mlocked page in lru cache, so call
1652 	 * shake_page() again to ensure that it's flushed.
1653 	 */
1654 	if (mlocked)
1655 		shake_page(hpage);
1656 
1657 	/*
1658 	 * Now that the dirty bit has been propagated to the
1659 	 * struct page and all unmaps done we can decide if
1660 	 * killing is needed or not.  Only kill when the page
1661 	 * was dirty or the process is not restartable,
1662 	 * otherwise the tokill list is merely
1663 	 * freed.  When there was a problem unmapping earlier
1664 	 * use a more force-full uncatchable kill to prevent
1665 	 * any accesses to the poisoned memory.
1666 	 */
1667 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1668 		    !unmap_success;
1669 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1670 
1671 	return unmap_success;
1672 }
1673 
1674 static int identify_page_state(unsigned long pfn, struct page *p,
1675 				unsigned long page_flags)
1676 {
1677 	struct page_state *ps;
1678 
1679 	/*
1680 	 * The first check uses the current page flags which may not have any
1681 	 * relevant information. The second check with the saved page flags is
1682 	 * carried out only if the first check can't determine the page status.
1683 	 */
1684 	for (ps = error_states;; ps++)
1685 		if ((p->flags & ps->mask) == ps->res)
1686 			break;
1687 
1688 	page_flags |= (p->flags & (1UL << PG_dirty));
1689 
1690 	if (!ps->mask)
1691 		for (ps = error_states;; ps++)
1692 			if ((page_flags & ps->mask) == ps->res)
1693 				break;
1694 	return page_action(ps, p, pfn);
1695 }
1696 
1697 static int try_to_split_thp_page(struct page *page)
1698 {
1699 	int ret;
1700 
1701 	lock_page(page);
1702 	ret = split_huge_page(page);
1703 	unlock_page(page);
1704 
1705 	if (unlikely(ret))
1706 		put_page(page);
1707 
1708 	return ret;
1709 }
1710 
1711 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1712 		struct address_space *mapping, pgoff_t index, int flags)
1713 {
1714 	struct to_kill *tk;
1715 	unsigned long size = 0;
1716 
1717 	list_for_each_entry(tk, to_kill, nd)
1718 		if (tk->size_shift)
1719 			size = max(size, 1UL << tk->size_shift);
1720 
1721 	if (size) {
1722 		/*
1723 		 * Unmap the largest mapping to avoid breaking up device-dax
1724 		 * mappings which are constant size. The actual size of the
1725 		 * mapping being torn down is communicated in siginfo, see
1726 		 * kill_proc()
1727 		 */
1728 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1729 
1730 		unmap_mapping_range(mapping, start, size, 0);
1731 	}
1732 
1733 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1734 }
1735 
1736 /*
1737  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1738  * either do not claim or fails to claim a hwpoison event, or devdax.
1739  * The fsdax pages are initialized per base page, and the devdax pages
1740  * could be initialized either as base pages, or as compound pages with
1741  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1742  * hwpoison, such that, if a subpage of a compound page is poisoned,
1743  * simply mark the compound head page is by far sufficient.
1744  */
1745 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1746 		struct dev_pagemap *pgmap)
1747 {
1748 	struct folio *folio = pfn_folio(pfn);
1749 	LIST_HEAD(to_kill);
1750 	dax_entry_t cookie;
1751 	int rc = 0;
1752 
1753 	/*
1754 	 * Prevent the inode from being freed while we are interrogating
1755 	 * the address_space, typically this would be handled by
1756 	 * lock_page(), but dax pages do not use the page lock. This
1757 	 * also prevents changes to the mapping of this pfn until
1758 	 * poison signaling is complete.
1759 	 */
1760 	cookie = dax_lock_folio(folio);
1761 	if (!cookie)
1762 		return -EBUSY;
1763 
1764 	if (hwpoison_filter(&folio->page)) {
1765 		rc = -EOPNOTSUPP;
1766 		goto unlock;
1767 	}
1768 
1769 	switch (pgmap->type) {
1770 	case MEMORY_DEVICE_PRIVATE:
1771 	case MEMORY_DEVICE_COHERENT:
1772 		/*
1773 		 * TODO: Handle device pages which may need coordination
1774 		 * with device-side memory.
1775 		 */
1776 		rc = -ENXIO;
1777 		goto unlock;
1778 	default:
1779 		break;
1780 	}
1781 
1782 	/*
1783 	 * Use this flag as an indication that the dax page has been
1784 	 * remapped UC to prevent speculative consumption of poison.
1785 	 */
1786 	SetPageHWPoison(&folio->page);
1787 
1788 	/*
1789 	 * Unlike System-RAM there is no possibility to swap in a
1790 	 * different physical page at a given virtual address, so all
1791 	 * userspace consumption of ZONE_DEVICE memory necessitates
1792 	 * SIGBUS (i.e. MF_MUST_KILL)
1793 	 */
1794 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1795 	collect_procs(folio, &folio->page, &to_kill, true);
1796 
1797 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1798 unlock:
1799 	dax_unlock_folio(folio, cookie);
1800 	return rc;
1801 }
1802 
1803 #ifdef CONFIG_FS_DAX
1804 /**
1805  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1806  * @mapping:	address_space of the file in use
1807  * @index:	start pgoff of the range within the file
1808  * @count:	length of the range, in unit of PAGE_SIZE
1809  * @mf_flags:	memory failure flags
1810  */
1811 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1812 		unsigned long count, int mf_flags)
1813 {
1814 	LIST_HEAD(to_kill);
1815 	dax_entry_t cookie;
1816 	struct page *page;
1817 	size_t end = index + count;
1818 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1819 
1820 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1821 
1822 	for (; index < end; index++) {
1823 		page = NULL;
1824 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1825 		if (!cookie)
1826 			return -EBUSY;
1827 		if (!page)
1828 			goto unlock;
1829 
1830 		if (!pre_remove)
1831 			SetPageHWPoison(page);
1832 
1833 		/*
1834 		 * The pre_remove case is revoking access, the memory is still
1835 		 * good and could theoretically be put back into service.
1836 		 */
1837 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1838 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1839 				index, mf_flags);
1840 unlock:
1841 		dax_unlock_mapping_entry(mapping, index, cookie);
1842 	}
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1846 #endif /* CONFIG_FS_DAX */
1847 
1848 #ifdef CONFIG_HUGETLB_PAGE
1849 
1850 /*
1851  * Struct raw_hwp_page represents information about "raw error page",
1852  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1853  */
1854 struct raw_hwp_page {
1855 	struct llist_node node;
1856 	struct page *page;
1857 };
1858 
1859 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1860 {
1861 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1862 }
1863 
1864 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1865 {
1866 	struct llist_head *raw_hwp_head;
1867 	struct raw_hwp_page *p;
1868 	struct folio *folio = page_folio(page);
1869 	bool ret = false;
1870 
1871 	if (!folio_test_hwpoison(folio))
1872 		return false;
1873 
1874 	if (!folio_test_hugetlb(folio))
1875 		return PageHWPoison(page);
1876 
1877 	/*
1878 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1879 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1880 	 */
1881 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1882 		return true;
1883 
1884 	mutex_lock(&mf_mutex);
1885 
1886 	raw_hwp_head = raw_hwp_list_head(folio);
1887 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1888 		if (page == p->page) {
1889 			ret = true;
1890 			break;
1891 		}
1892 	}
1893 
1894 	mutex_unlock(&mf_mutex);
1895 
1896 	return ret;
1897 }
1898 
1899 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1900 {
1901 	struct llist_node *head;
1902 	struct raw_hwp_page *p, *next;
1903 	unsigned long count = 0;
1904 
1905 	head = llist_del_all(raw_hwp_list_head(folio));
1906 	llist_for_each_entry_safe(p, next, head, node) {
1907 		if (move_flag)
1908 			SetPageHWPoison(p->page);
1909 		else
1910 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1911 		kfree(p);
1912 		count++;
1913 	}
1914 	return count;
1915 }
1916 
1917 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1918 {
1919 	struct llist_head *head;
1920 	struct raw_hwp_page *raw_hwp;
1921 	struct raw_hwp_page *p, *next;
1922 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1923 
1924 	/*
1925 	 * Once the hwpoison hugepage has lost reliable raw error info,
1926 	 * there is little meaning to keep additional error info precisely,
1927 	 * so skip to add additional raw error info.
1928 	 */
1929 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1930 		return -EHWPOISON;
1931 	head = raw_hwp_list_head(folio);
1932 	llist_for_each_entry_safe(p, next, head->first, node) {
1933 		if (p->page == page)
1934 			return -EHWPOISON;
1935 	}
1936 
1937 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1938 	if (raw_hwp) {
1939 		raw_hwp->page = page;
1940 		llist_add(&raw_hwp->node, head);
1941 		/* the first error event will be counted in action_result(). */
1942 		if (ret)
1943 			num_poisoned_pages_inc(page_to_pfn(page));
1944 	} else {
1945 		/*
1946 		 * Failed to save raw error info.  We no longer trace all
1947 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1948 		 * this hwpoisoned hugepage.
1949 		 */
1950 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1951 		/*
1952 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1953 		 * used any more, so free it.
1954 		 */
1955 		__folio_free_raw_hwp(folio, false);
1956 	}
1957 	return ret;
1958 }
1959 
1960 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1961 {
1962 	/*
1963 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1964 	 * pages for tail pages are required but they don't exist.
1965 	 */
1966 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1967 		return 0;
1968 
1969 	/*
1970 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1971 	 * definition.
1972 	 */
1973 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1974 		return 0;
1975 
1976 	return __folio_free_raw_hwp(folio, move_flag);
1977 }
1978 
1979 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1980 {
1981 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1982 		return;
1983 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1984 		return;
1985 	folio_clear_hwpoison(folio);
1986 	folio_free_raw_hwp(folio, true);
1987 }
1988 
1989 /*
1990  * Called from hugetlb code with hugetlb_lock held.
1991  *
1992  * Return values:
1993  *   0             - free hugepage
1994  *   1             - in-use hugepage
1995  *   2             - not a hugepage
1996  *   -EBUSY        - the hugepage is busy (try to retry)
1997  *   -EHWPOISON    - the hugepage is already hwpoisoned
1998  */
1999 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2000 				 bool *migratable_cleared)
2001 {
2002 	struct page *page = pfn_to_page(pfn);
2003 	struct folio *folio = page_folio(page);
2004 	int ret = 2;	/* fallback to normal page handling */
2005 	bool count_increased = false;
2006 
2007 	if (!folio_test_hugetlb(folio))
2008 		goto out;
2009 
2010 	if (flags & MF_COUNT_INCREASED) {
2011 		ret = 1;
2012 		count_increased = true;
2013 	} else if (folio_test_hugetlb_freed(folio)) {
2014 		ret = 0;
2015 	} else if (folio_test_hugetlb_migratable(folio)) {
2016 		ret = folio_try_get(folio);
2017 		if (ret)
2018 			count_increased = true;
2019 	} else {
2020 		ret = -EBUSY;
2021 		if (!(flags & MF_NO_RETRY))
2022 			goto out;
2023 	}
2024 
2025 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2026 		ret = -EHWPOISON;
2027 		goto out;
2028 	}
2029 
2030 	/*
2031 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2032 	 * from being migrated by memory hotremove.
2033 	 */
2034 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2035 		folio_clear_hugetlb_migratable(folio);
2036 		*migratable_cleared = true;
2037 	}
2038 
2039 	return ret;
2040 out:
2041 	if (count_increased)
2042 		folio_put(folio);
2043 	return ret;
2044 }
2045 
2046 /*
2047  * Taking refcount of hugetlb pages needs extra care about race conditions
2048  * with basic operations like hugepage allocation/free/demotion.
2049  * So some of prechecks for hwpoison (pinning, and testing/setting
2050  * PageHWPoison) should be done in single hugetlb_lock range.
2051  */
2052 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2053 {
2054 	int res;
2055 	struct page *p = pfn_to_page(pfn);
2056 	struct folio *folio;
2057 	unsigned long page_flags;
2058 	bool migratable_cleared = false;
2059 
2060 	*hugetlb = 1;
2061 retry:
2062 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2063 	if (res == 2) { /* fallback to normal page handling */
2064 		*hugetlb = 0;
2065 		return 0;
2066 	} else if (res == -EHWPOISON) {
2067 		pr_err("%#lx: already hardware poisoned\n", pfn);
2068 		if (flags & MF_ACTION_REQUIRED) {
2069 			folio = page_folio(p);
2070 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2071 		}
2072 		return res;
2073 	} else if (res == -EBUSY) {
2074 		if (!(flags & MF_NO_RETRY)) {
2075 			flags |= MF_NO_RETRY;
2076 			goto retry;
2077 		}
2078 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2079 	}
2080 
2081 	folio = page_folio(p);
2082 	folio_lock(folio);
2083 
2084 	if (hwpoison_filter(p)) {
2085 		folio_clear_hugetlb_hwpoison(folio);
2086 		if (migratable_cleared)
2087 			folio_set_hugetlb_migratable(folio);
2088 		folio_unlock(folio);
2089 		if (res == 1)
2090 			folio_put(folio);
2091 		return -EOPNOTSUPP;
2092 	}
2093 
2094 	/*
2095 	 * Handling free hugepage.  The possible race with hugepage allocation
2096 	 * or demotion can be prevented by PageHWPoison flag.
2097 	 */
2098 	if (res == 0) {
2099 		folio_unlock(folio);
2100 		if (__page_handle_poison(p) >= 0) {
2101 			page_ref_inc(p);
2102 			res = MF_RECOVERED;
2103 		} else {
2104 			res = MF_FAILED;
2105 		}
2106 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2107 	}
2108 
2109 	page_flags = folio->flags;
2110 
2111 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2112 		folio_unlock(folio);
2113 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2114 	}
2115 
2116 	return identify_page_state(pfn, p, page_flags);
2117 }
2118 
2119 #else
2120 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2121 {
2122 	return 0;
2123 }
2124 
2125 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2126 {
2127 	return 0;
2128 }
2129 #endif	/* CONFIG_HUGETLB_PAGE */
2130 
2131 /* Drop the extra refcount in case we come from madvise() */
2132 static void put_ref_page(unsigned long pfn, int flags)
2133 {
2134 	struct page *page;
2135 
2136 	if (!(flags & MF_COUNT_INCREASED))
2137 		return;
2138 
2139 	page = pfn_to_page(pfn);
2140 	if (page)
2141 		put_page(page);
2142 }
2143 
2144 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2145 		struct dev_pagemap *pgmap)
2146 {
2147 	int rc = -ENXIO;
2148 
2149 	/* device metadata space is not recoverable */
2150 	if (!pgmap_pfn_valid(pgmap, pfn))
2151 		goto out;
2152 
2153 	/*
2154 	 * Call driver's implementation to handle the memory failure, otherwise
2155 	 * fall back to generic handler.
2156 	 */
2157 	if (pgmap_has_memory_failure(pgmap)) {
2158 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2159 		/*
2160 		 * Fall back to generic handler too if operation is not
2161 		 * supported inside the driver/device/filesystem.
2162 		 */
2163 		if (rc != -EOPNOTSUPP)
2164 			goto out;
2165 	}
2166 
2167 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2168 out:
2169 	/* drop pgmap ref acquired in caller */
2170 	put_dev_pagemap(pgmap);
2171 	if (rc != -EOPNOTSUPP)
2172 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2173 	return rc;
2174 }
2175 
2176 /**
2177  * memory_failure - Handle memory failure of a page.
2178  * @pfn: Page Number of the corrupted page
2179  * @flags: fine tune action taken
2180  *
2181  * This function is called by the low level machine check code
2182  * of an architecture when it detects hardware memory corruption
2183  * of a page. It tries its best to recover, which includes
2184  * dropping pages, killing processes etc.
2185  *
2186  * The function is primarily of use for corruptions that
2187  * happen outside the current execution context (e.g. when
2188  * detected by a background scrubber)
2189  *
2190  * Must run in process context (e.g. a work queue) with interrupts
2191  * enabled and no spinlocks held.
2192  *
2193  * Return: 0 for successfully handled the memory error,
2194  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2195  *         < 0(except -EOPNOTSUPP) on failure.
2196  */
2197 int memory_failure(unsigned long pfn, int flags)
2198 {
2199 	struct page *p;
2200 	struct page *hpage;
2201 	struct dev_pagemap *pgmap;
2202 	int res = 0;
2203 	unsigned long page_flags;
2204 	bool retry = true;
2205 	int hugetlb = 0;
2206 
2207 	if (!sysctl_memory_failure_recovery)
2208 		panic("Memory failure on page %lx", pfn);
2209 
2210 	mutex_lock(&mf_mutex);
2211 
2212 	if (!(flags & MF_SW_SIMULATED))
2213 		hw_memory_failure = true;
2214 
2215 	p = pfn_to_online_page(pfn);
2216 	if (!p) {
2217 		res = arch_memory_failure(pfn, flags);
2218 		if (res == 0)
2219 			goto unlock_mutex;
2220 
2221 		if (pfn_valid(pfn)) {
2222 			pgmap = get_dev_pagemap(pfn, NULL);
2223 			put_ref_page(pfn, flags);
2224 			if (pgmap) {
2225 				res = memory_failure_dev_pagemap(pfn, flags,
2226 								 pgmap);
2227 				goto unlock_mutex;
2228 			}
2229 		}
2230 		pr_err("%#lx: memory outside kernel control\n", pfn);
2231 		res = -ENXIO;
2232 		goto unlock_mutex;
2233 	}
2234 
2235 try_again:
2236 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2237 	if (hugetlb)
2238 		goto unlock_mutex;
2239 
2240 	if (TestSetPageHWPoison(p)) {
2241 		pr_err("%#lx: already hardware poisoned\n", pfn);
2242 		res = -EHWPOISON;
2243 		if (flags & MF_ACTION_REQUIRED)
2244 			res = kill_accessing_process(current, pfn, flags);
2245 		if (flags & MF_COUNT_INCREASED)
2246 			put_page(p);
2247 		goto unlock_mutex;
2248 	}
2249 
2250 	/*
2251 	 * We need/can do nothing about count=0 pages.
2252 	 * 1) it's a free page, and therefore in safe hand:
2253 	 *    check_new_page() will be the gate keeper.
2254 	 * 2) it's part of a non-compound high order page.
2255 	 *    Implies some kernel user: cannot stop them from
2256 	 *    R/W the page; let's pray that the page has been
2257 	 *    used and will be freed some time later.
2258 	 * In fact it's dangerous to directly bump up page count from 0,
2259 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2260 	 */
2261 	if (!(flags & MF_COUNT_INCREASED)) {
2262 		res = get_hwpoison_page(p, flags);
2263 		if (!res) {
2264 			if (is_free_buddy_page(p)) {
2265 				if (take_page_off_buddy(p)) {
2266 					page_ref_inc(p);
2267 					res = MF_RECOVERED;
2268 				} else {
2269 					/* We lost the race, try again */
2270 					if (retry) {
2271 						ClearPageHWPoison(p);
2272 						retry = false;
2273 						goto try_again;
2274 					}
2275 					res = MF_FAILED;
2276 				}
2277 				res = action_result(pfn, MF_MSG_BUDDY, res);
2278 			} else {
2279 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2280 			}
2281 			goto unlock_mutex;
2282 		} else if (res < 0) {
2283 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2284 			goto unlock_mutex;
2285 		}
2286 	}
2287 
2288 	hpage = compound_head(p);
2289 	if (PageTransHuge(hpage)) {
2290 		/*
2291 		 * The flag must be set after the refcount is bumped
2292 		 * otherwise it may race with THP split.
2293 		 * And the flag can't be set in get_hwpoison_page() since
2294 		 * it is called by soft offline too and it is just called
2295 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2296 		 * place.
2297 		 *
2298 		 * Don't need care about the above error handling paths for
2299 		 * get_hwpoison_page() since they handle either free page
2300 		 * or unhandlable page.  The refcount is bumped iff the
2301 		 * page is a valid handlable page.
2302 		 */
2303 		SetPageHasHWPoisoned(hpage);
2304 		if (try_to_split_thp_page(p) < 0) {
2305 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2306 			goto unlock_mutex;
2307 		}
2308 		VM_BUG_ON_PAGE(!page_count(p), p);
2309 	}
2310 
2311 	/*
2312 	 * We ignore non-LRU pages for good reasons.
2313 	 * - PG_locked is only well defined for LRU pages and a few others
2314 	 * - to avoid races with __SetPageLocked()
2315 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2316 	 * The check (unnecessarily) ignores LRU pages being isolated and
2317 	 * walked by the page reclaim code, however that's not a big loss.
2318 	 */
2319 	shake_page(p);
2320 
2321 	lock_page(p);
2322 
2323 	/*
2324 	 * We're only intended to deal with the non-Compound page here.
2325 	 * However, the page could have changed compound pages due to
2326 	 * race window. If this happens, we could try again to hopefully
2327 	 * handle the page next round.
2328 	 */
2329 	if (PageCompound(p)) {
2330 		if (retry) {
2331 			ClearPageHWPoison(p);
2332 			unlock_page(p);
2333 			put_page(p);
2334 			flags &= ~MF_COUNT_INCREASED;
2335 			retry = false;
2336 			goto try_again;
2337 		}
2338 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2339 		goto unlock_page;
2340 	}
2341 
2342 	/*
2343 	 * We use page flags to determine what action should be taken, but
2344 	 * the flags can be modified by the error containment action.  One
2345 	 * example is an mlocked page, where PG_mlocked is cleared by
2346 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2347 	 * status correctly, we save a copy of the page flags at this time.
2348 	 */
2349 	page_flags = p->flags;
2350 
2351 	if (hwpoison_filter(p)) {
2352 		ClearPageHWPoison(p);
2353 		unlock_page(p);
2354 		put_page(p);
2355 		res = -EOPNOTSUPP;
2356 		goto unlock_mutex;
2357 	}
2358 
2359 	/*
2360 	 * __munlock_folio() may clear a writeback page's LRU flag without
2361 	 * page_lock. We need wait writeback completion for this page or it
2362 	 * may trigger vfs BUG while evict inode.
2363 	 */
2364 	if (!PageLRU(p) && !PageWriteback(p))
2365 		goto identify_page_state;
2366 
2367 	/*
2368 	 * It's very difficult to mess with pages currently under IO
2369 	 * and in many cases impossible, so we just avoid it here.
2370 	 */
2371 	wait_on_page_writeback(p);
2372 
2373 	/*
2374 	 * Now take care of user space mappings.
2375 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2376 	 */
2377 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2378 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2379 		goto unlock_page;
2380 	}
2381 
2382 	/*
2383 	 * Torn down by someone else?
2384 	 */
2385 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2386 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2387 		goto unlock_page;
2388 	}
2389 
2390 identify_page_state:
2391 	res = identify_page_state(pfn, p, page_flags);
2392 	mutex_unlock(&mf_mutex);
2393 	return res;
2394 unlock_page:
2395 	unlock_page(p);
2396 unlock_mutex:
2397 	mutex_unlock(&mf_mutex);
2398 	return res;
2399 }
2400 EXPORT_SYMBOL_GPL(memory_failure);
2401 
2402 #define MEMORY_FAILURE_FIFO_ORDER	4
2403 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2404 
2405 struct memory_failure_entry {
2406 	unsigned long pfn;
2407 	int flags;
2408 };
2409 
2410 struct memory_failure_cpu {
2411 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2412 		      MEMORY_FAILURE_FIFO_SIZE);
2413 	spinlock_t lock;
2414 	struct work_struct work;
2415 };
2416 
2417 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2418 
2419 /**
2420  * memory_failure_queue - Schedule handling memory failure of a page.
2421  * @pfn: Page Number of the corrupted page
2422  * @flags: Flags for memory failure handling
2423  *
2424  * This function is called by the low level hardware error handler
2425  * when it detects hardware memory corruption of a page. It schedules
2426  * the recovering of error page, including dropping pages, killing
2427  * processes etc.
2428  *
2429  * The function is primarily of use for corruptions that
2430  * happen outside the current execution context (e.g. when
2431  * detected by a background scrubber)
2432  *
2433  * Can run in IRQ context.
2434  */
2435 void memory_failure_queue(unsigned long pfn, int flags)
2436 {
2437 	struct memory_failure_cpu *mf_cpu;
2438 	unsigned long proc_flags;
2439 	struct memory_failure_entry entry = {
2440 		.pfn =		pfn,
2441 		.flags =	flags,
2442 	};
2443 
2444 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2445 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2446 	if (kfifo_put(&mf_cpu->fifo, entry))
2447 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2448 	else
2449 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2450 		       pfn);
2451 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2452 	put_cpu_var(memory_failure_cpu);
2453 }
2454 EXPORT_SYMBOL_GPL(memory_failure_queue);
2455 
2456 static void memory_failure_work_func(struct work_struct *work)
2457 {
2458 	struct memory_failure_cpu *mf_cpu;
2459 	struct memory_failure_entry entry = { 0, };
2460 	unsigned long proc_flags;
2461 	int gotten;
2462 
2463 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2464 	for (;;) {
2465 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2466 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2467 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468 		if (!gotten)
2469 			break;
2470 		if (entry.flags & MF_SOFT_OFFLINE)
2471 			soft_offline_page(entry.pfn, entry.flags);
2472 		else
2473 			memory_failure(entry.pfn, entry.flags);
2474 	}
2475 }
2476 
2477 /*
2478  * Process memory_failure work queued on the specified CPU.
2479  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2480  */
2481 void memory_failure_queue_kick(int cpu)
2482 {
2483 	struct memory_failure_cpu *mf_cpu;
2484 
2485 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2486 	cancel_work_sync(&mf_cpu->work);
2487 	memory_failure_work_func(&mf_cpu->work);
2488 }
2489 
2490 static int __init memory_failure_init(void)
2491 {
2492 	struct memory_failure_cpu *mf_cpu;
2493 	int cpu;
2494 
2495 	for_each_possible_cpu(cpu) {
2496 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2497 		spin_lock_init(&mf_cpu->lock);
2498 		INIT_KFIFO(mf_cpu->fifo);
2499 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2500 	}
2501 
2502 	register_sysctl_init("vm", memory_failure_table);
2503 
2504 	return 0;
2505 }
2506 core_initcall(memory_failure_init);
2507 
2508 #undef pr_fmt
2509 #define pr_fmt(fmt)	"" fmt
2510 #define unpoison_pr_info(fmt, pfn, rs)			\
2511 ({							\
2512 	if (__ratelimit(rs))				\
2513 		pr_info(fmt, pfn);			\
2514 })
2515 
2516 /**
2517  * unpoison_memory - Unpoison a previously poisoned page
2518  * @pfn: Page number of the to be unpoisoned page
2519  *
2520  * Software-unpoison a page that has been poisoned by
2521  * memory_failure() earlier.
2522  *
2523  * This is only done on the software-level, so it only works
2524  * for linux injected failures, not real hardware failures
2525  *
2526  * Returns 0 for success, otherwise -errno.
2527  */
2528 int unpoison_memory(unsigned long pfn)
2529 {
2530 	struct folio *folio;
2531 	struct page *p;
2532 	int ret = -EBUSY, ghp;
2533 	unsigned long count = 1;
2534 	bool huge = false;
2535 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2536 					DEFAULT_RATELIMIT_BURST);
2537 
2538 	if (!pfn_valid(pfn))
2539 		return -ENXIO;
2540 
2541 	p = pfn_to_page(pfn);
2542 	folio = page_folio(p);
2543 
2544 	mutex_lock(&mf_mutex);
2545 
2546 	if (hw_memory_failure) {
2547 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2548 				 pfn, &unpoison_rs);
2549 		ret = -EOPNOTSUPP;
2550 		goto unlock_mutex;
2551 	}
2552 
2553 	if (!PageHWPoison(p)) {
2554 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2555 				 pfn, &unpoison_rs);
2556 		goto unlock_mutex;
2557 	}
2558 
2559 	if (folio_ref_count(folio) > 1) {
2560 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2561 				 pfn, &unpoison_rs);
2562 		goto unlock_mutex;
2563 	}
2564 
2565 	if (folio_test_slab(folio) || PageTable(&folio->page) ||
2566 	    folio_test_reserved(folio) || PageOffline(&folio->page))
2567 		goto unlock_mutex;
2568 
2569 	/*
2570 	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2571 	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2572 	 */
2573 	if (folio_mapped(folio)) {
2574 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2575 				 pfn, &unpoison_rs);
2576 		goto unlock_mutex;
2577 	}
2578 
2579 	if (folio_mapping(folio)) {
2580 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2581 				 pfn, &unpoison_rs);
2582 		goto unlock_mutex;
2583 	}
2584 
2585 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2586 	if (!ghp) {
2587 		if (PageHuge(p)) {
2588 			huge = true;
2589 			count = folio_free_raw_hwp(folio, false);
2590 			if (count == 0)
2591 				goto unlock_mutex;
2592 		}
2593 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2594 	} else if (ghp < 0) {
2595 		if (ghp == -EHWPOISON) {
2596 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2597 		} else {
2598 			ret = ghp;
2599 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2600 					 pfn, &unpoison_rs);
2601 		}
2602 	} else {
2603 		if (PageHuge(p)) {
2604 			huge = true;
2605 			count = folio_free_raw_hwp(folio, false);
2606 			if (count == 0) {
2607 				folio_put(folio);
2608 				goto unlock_mutex;
2609 			}
2610 		}
2611 
2612 		folio_put(folio);
2613 		if (TestClearPageHWPoison(p)) {
2614 			folio_put(folio);
2615 			ret = 0;
2616 		}
2617 	}
2618 
2619 unlock_mutex:
2620 	mutex_unlock(&mf_mutex);
2621 	if (!ret) {
2622 		if (!huge)
2623 			num_poisoned_pages_sub(pfn, 1);
2624 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2625 				 page_to_pfn(p), &unpoison_rs);
2626 	}
2627 	return ret;
2628 }
2629 EXPORT_SYMBOL(unpoison_memory);
2630 
2631 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2632 {
2633 	bool isolated = false;
2634 
2635 	if (folio_test_hugetlb(folio)) {
2636 		isolated = isolate_hugetlb(folio, pagelist);
2637 	} else {
2638 		bool lru = !__folio_test_movable(folio);
2639 
2640 		if (lru)
2641 			isolated = folio_isolate_lru(folio);
2642 		else
2643 			isolated = isolate_movable_page(&folio->page,
2644 							ISOLATE_UNEVICTABLE);
2645 
2646 		if (isolated) {
2647 			list_add(&folio->lru, pagelist);
2648 			if (lru)
2649 				node_stat_add_folio(folio, NR_ISOLATED_ANON +
2650 						    folio_is_file_lru(folio));
2651 		}
2652 	}
2653 
2654 	/*
2655 	 * If we succeed to isolate the folio, we grabbed another refcount on
2656 	 * the folio, so we can safely drop the one we got from get_any_page().
2657 	 * If we failed to isolate the folio, it means that we cannot go further
2658 	 * and we will return an error, so drop the reference we got from
2659 	 * get_any_page() as well.
2660 	 */
2661 	folio_put(folio);
2662 	return isolated;
2663 }
2664 
2665 /*
2666  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2667  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2668  * If the page is mapped, it migrates the contents over.
2669  */
2670 static int soft_offline_in_use_page(struct page *page)
2671 {
2672 	long ret = 0;
2673 	unsigned long pfn = page_to_pfn(page);
2674 	struct folio *folio = page_folio(page);
2675 	char const *msg_page[] = {"page", "hugepage"};
2676 	bool huge = folio_test_hugetlb(folio);
2677 	LIST_HEAD(pagelist);
2678 	struct migration_target_control mtc = {
2679 		.nid = NUMA_NO_NODE,
2680 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2681 	};
2682 
2683 	if (!huge && folio_test_large(folio)) {
2684 		if (try_to_split_thp_page(page)) {
2685 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2686 			return -EBUSY;
2687 		}
2688 		folio = page_folio(page);
2689 	}
2690 
2691 	folio_lock(folio);
2692 	if (!huge)
2693 		folio_wait_writeback(folio);
2694 	if (PageHWPoison(page)) {
2695 		folio_unlock(folio);
2696 		folio_put(folio);
2697 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2698 		return 0;
2699 	}
2700 
2701 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2702 		/*
2703 		 * Try to invalidate first. This should work for
2704 		 * non dirty unmapped page cache pages.
2705 		 */
2706 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2707 	folio_unlock(folio);
2708 
2709 	if (ret) {
2710 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2711 		page_handle_poison(page, false, true);
2712 		return 0;
2713 	}
2714 
2715 	if (mf_isolate_folio(folio, &pagelist)) {
2716 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2717 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2718 		if (!ret) {
2719 			bool release = !huge;
2720 
2721 			if (!page_handle_poison(page, huge, release))
2722 				ret = -EBUSY;
2723 		} else {
2724 			if (!list_empty(&pagelist))
2725 				putback_movable_pages(&pagelist);
2726 
2727 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2728 				pfn, msg_page[huge], ret, &page->flags);
2729 			if (ret > 0)
2730 				ret = -EBUSY;
2731 		}
2732 	} else {
2733 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2734 			pfn, msg_page[huge], page_count(page), &page->flags);
2735 		ret = -EBUSY;
2736 	}
2737 	return ret;
2738 }
2739 
2740 /**
2741  * soft_offline_page - Soft offline a page.
2742  * @pfn: pfn to soft-offline
2743  * @flags: flags. Same as memory_failure().
2744  *
2745  * Returns 0 on success
2746  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2747  *         < 0 otherwise negated errno.
2748  *
2749  * Soft offline a page, by migration or invalidation,
2750  * without killing anything. This is for the case when
2751  * a page is not corrupted yet (so it's still valid to access),
2752  * but has had a number of corrected errors and is better taken
2753  * out.
2754  *
2755  * The actual policy on when to do that is maintained by
2756  * user space.
2757  *
2758  * This should never impact any application or cause data loss,
2759  * however it might take some time.
2760  *
2761  * This is not a 100% solution for all memory, but tries to be
2762  * ``good enough'' for the majority of memory.
2763  */
2764 int soft_offline_page(unsigned long pfn, int flags)
2765 {
2766 	int ret;
2767 	bool try_again = true;
2768 	struct page *page;
2769 
2770 	if (!pfn_valid(pfn)) {
2771 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2772 		return -ENXIO;
2773 	}
2774 
2775 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2776 	page = pfn_to_online_page(pfn);
2777 	if (!page) {
2778 		put_ref_page(pfn, flags);
2779 		return -EIO;
2780 	}
2781 
2782 	mutex_lock(&mf_mutex);
2783 
2784 	if (PageHWPoison(page)) {
2785 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2786 		put_ref_page(pfn, flags);
2787 		mutex_unlock(&mf_mutex);
2788 		return 0;
2789 	}
2790 
2791 retry:
2792 	get_online_mems();
2793 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2794 	put_online_mems();
2795 
2796 	if (hwpoison_filter(page)) {
2797 		if (ret > 0)
2798 			put_page(page);
2799 
2800 		mutex_unlock(&mf_mutex);
2801 		return -EOPNOTSUPP;
2802 	}
2803 
2804 	if (ret > 0) {
2805 		ret = soft_offline_in_use_page(page);
2806 	} else if (ret == 0) {
2807 		if (!page_handle_poison(page, true, false)) {
2808 			if (try_again) {
2809 				try_again = false;
2810 				flags &= ~MF_COUNT_INCREASED;
2811 				goto retry;
2812 			}
2813 			ret = -EBUSY;
2814 		}
2815 	}
2816 
2817 	mutex_unlock(&mf_mutex);
2818 
2819 	return ret;
2820 }
2821