1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include "internal.h" 63 #include "ras/ras_event.h" 64 65 int sysctl_memory_failure_early_kill __read_mostly = 0; 66 67 int sysctl_memory_failure_recovery __read_mostly = 1; 68 69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 70 71 static bool __page_handle_poison(struct page *page) 72 { 73 int ret; 74 75 zone_pcp_disable(page_zone(page)); 76 ret = dissolve_free_huge_page(page); 77 if (!ret) 78 ret = take_page_off_buddy(page); 79 zone_pcp_enable(page_zone(page)); 80 81 return ret > 0; 82 } 83 84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 85 { 86 if (hugepage_or_freepage) { 87 /* 88 * Doing this check for free pages is also fine since dissolve_free_huge_page 89 * returns 0 for non-hugetlb pages as well. 90 */ 91 if (!__page_handle_poison(page)) 92 /* 93 * We could fail to take off the target page from buddy 94 * for example due to racy page allocation, but that's 95 * acceptable because soft-offlined page is not broken 96 * and if someone really want to use it, they should 97 * take it. 98 */ 99 return false; 100 } 101 102 SetPageHWPoison(page); 103 if (release) 104 put_page(page); 105 page_ref_inc(page); 106 num_poisoned_pages_inc(); 107 108 return true; 109 } 110 111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 112 113 u32 hwpoison_filter_enable = 0; 114 u32 hwpoison_filter_dev_major = ~0U; 115 u32 hwpoison_filter_dev_minor = ~0U; 116 u64 hwpoison_filter_flags_mask; 117 u64 hwpoison_filter_flags_value; 118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 123 124 static int hwpoison_filter_dev(struct page *p) 125 { 126 struct address_space *mapping; 127 dev_t dev; 128 129 if (hwpoison_filter_dev_major == ~0U && 130 hwpoison_filter_dev_minor == ~0U) 131 return 0; 132 133 mapping = page_mapping(p); 134 if (mapping == NULL || mapping->host == NULL) 135 return -EINVAL; 136 137 dev = mapping->host->i_sb->s_dev; 138 if (hwpoison_filter_dev_major != ~0U && 139 hwpoison_filter_dev_major != MAJOR(dev)) 140 return -EINVAL; 141 if (hwpoison_filter_dev_minor != ~0U && 142 hwpoison_filter_dev_minor != MINOR(dev)) 143 return -EINVAL; 144 145 return 0; 146 } 147 148 static int hwpoison_filter_flags(struct page *p) 149 { 150 if (!hwpoison_filter_flags_mask) 151 return 0; 152 153 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 154 hwpoison_filter_flags_value) 155 return 0; 156 else 157 return -EINVAL; 158 } 159 160 /* 161 * This allows stress tests to limit test scope to a collection of tasks 162 * by putting them under some memcg. This prevents killing unrelated/important 163 * processes such as /sbin/init. Note that the target task may share clean 164 * pages with init (eg. libc text), which is harmless. If the target task 165 * share _dirty_ pages with another task B, the test scheme must make sure B 166 * is also included in the memcg. At last, due to race conditions this filter 167 * can only guarantee that the page either belongs to the memcg tasks, or is 168 * a freed page. 169 */ 170 #ifdef CONFIG_MEMCG 171 u64 hwpoison_filter_memcg; 172 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 173 static int hwpoison_filter_task(struct page *p) 174 { 175 if (!hwpoison_filter_memcg) 176 return 0; 177 178 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 179 return -EINVAL; 180 181 return 0; 182 } 183 #else 184 static int hwpoison_filter_task(struct page *p) { return 0; } 185 #endif 186 187 int hwpoison_filter(struct page *p) 188 { 189 if (!hwpoison_filter_enable) 190 return 0; 191 192 if (hwpoison_filter_dev(p)) 193 return -EINVAL; 194 195 if (hwpoison_filter_flags(p)) 196 return -EINVAL; 197 198 if (hwpoison_filter_task(p)) 199 return -EINVAL; 200 201 return 0; 202 } 203 #else 204 int hwpoison_filter(struct page *p) 205 { 206 return 0; 207 } 208 #endif 209 210 EXPORT_SYMBOL_GPL(hwpoison_filter); 211 212 /* 213 * Kill all processes that have a poisoned page mapped and then isolate 214 * the page. 215 * 216 * General strategy: 217 * Find all processes having the page mapped and kill them. 218 * But we keep a page reference around so that the page is not 219 * actually freed yet. 220 * Then stash the page away 221 * 222 * There's no convenient way to get back to mapped processes 223 * from the VMAs. So do a brute-force search over all 224 * running processes. 225 * 226 * Remember that machine checks are not common (or rather 227 * if they are common you have other problems), so this shouldn't 228 * be a performance issue. 229 * 230 * Also there are some races possible while we get from the 231 * error detection to actually handle it. 232 */ 233 234 struct to_kill { 235 struct list_head nd; 236 struct task_struct *tsk; 237 unsigned long addr; 238 short size_shift; 239 }; 240 241 /* 242 * Send all the processes who have the page mapped a signal. 243 * ``action optional'' if they are not immediately affected by the error 244 * ``action required'' if error happened in current execution context 245 */ 246 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 247 { 248 struct task_struct *t = tk->tsk; 249 short addr_lsb = tk->size_shift; 250 int ret = 0; 251 252 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 253 pfn, t->comm, t->pid); 254 255 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 256 ret = force_sig_mceerr(BUS_MCEERR_AR, 257 (void __user *)tk->addr, addr_lsb); 258 else 259 /* 260 * Signal other processes sharing the page if they have 261 * PF_MCE_EARLY set. 262 * Don't use force here, it's convenient if the signal 263 * can be temporarily blocked. 264 * This could cause a loop when the user sets SIGBUS 265 * to SIG_IGN, but hopefully no one will do that? 266 */ 267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 268 addr_lsb, t); /* synchronous? */ 269 if (ret < 0) 270 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 271 t->comm, t->pid, ret); 272 return ret; 273 } 274 275 /* 276 * Unknown page type encountered. Try to check whether it can turn PageLRU by 277 * lru_add_drain_all. 278 */ 279 void shake_page(struct page *p) 280 { 281 if (PageHuge(p)) 282 return; 283 284 if (!PageSlab(p)) { 285 lru_add_drain_all(); 286 if (PageLRU(p) || is_free_buddy_page(p)) 287 return; 288 } 289 290 /* 291 * TODO: Could shrink slab caches here if a lightweight range-based 292 * shrinker will be available. 293 */ 294 } 295 EXPORT_SYMBOL_GPL(shake_page); 296 297 static unsigned long dev_pagemap_mapping_shift(struct page *page, 298 struct vm_area_struct *vma) 299 { 300 unsigned long address = vma_address(page, vma); 301 unsigned long ret = 0; 302 pgd_t *pgd; 303 p4d_t *p4d; 304 pud_t *pud; 305 pmd_t *pmd; 306 pte_t *pte; 307 308 VM_BUG_ON_VMA(address == -EFAULT, vma); 309 pgd = pgd_offset(vma->vm_mm, address); 310 if (!pgd_present(*pgd)) 311 return 0; 312 p4d = p4d_offset(pgd, address); 313 if (!p4d_present(*p4d)) 314 return 0; 315 pud = pud_offset(p4d, address); 316 if (!pud_present(*pud)) 317 return 0; 318 if (pud_devmap(*pud)) 319 return PUD_SHIFT; 320 pmd = pmd_offset(pud, address); 321 if (!pmd_present(*pmd)) 322 return 0; 323 if (pmd_devmap(*pmd)) 324 return PMD_SHIFT; 325 pte = pte_offset_map(pmd, address); 326 if (pte_present(*pte) && pte_devmap(*pte)) 327 ret = PAGE_SHIFT; 328 pte_unmap(pte); 329 return ret; 330 } 331 332 /* 333 * Failure handling: if we can't find or can't kill a process there's 334 * not much we can do. We just print a message and ignore otherwise. 335 */ 336 337 /* 338 * Schedule a process for later kill. 339 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 340 */ 341 static void add_to_kill(struct task_struct *tsk, struct page *p, 342 struct vm_area_struct *vma, 343 struct list_head *to_kill) 344 { 345 struct to_kill *tk; 346 347 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 348 if (!tk) { 349 pr_err("Memory failure: Out of memory while machine check handling\n"); 350 return; 351 } 352 353 tk->addr = page_address_in_vma(p, vma); 354 if (is_zone_device_page(p)) 355 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 356 else 357 tk->size_shift = page_shift(compound_head(p)); 358 359 /* 360 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 361 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 362 * so "tk->size_shift == 0" effectively checks no mapping on 363 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 364 * to a process' address space, it's possible not all N VMAs 365 * contain mappings for the page, but at least one VMA does. 366 * Only deliver SIGBUS with payload derived from the VMA that 367 * has a mapping for the page. 368 */ 369 if (tk->addr == -EFAULT) { 370 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 371 page_to_pfn(p), tsk->comm); 372 } else if (tk->size_shift == 0) { 373 kfree(tk); 374 return; 375 } 376 377 get_task_struct(tsk); 378 tk->tsk = tsk; 379 list_add_tail(&tk->nd, to_kill); 380 } 381 382 /* 383 * Kill the processes that have been collected earlier. 384 * 385 * Only do anything when FORCEKILL is set, otherwise just free the 386 * list (this is used for clean pages which do not need killing) 387 * Also when FAIL is set do a force kill because something went 388 * wrong earlier. 389 */ 390 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 391 unsigned long pfn, int flags) 392 { 393 struct to_kill *tk, *next; 394 395 list_for_each_entry_safe (tk, next, to_kill, nd) { 396 if (forcekill) { 397 /* 398 * In case something went wrong with munmapping 399 * make sure the process doesn't catch the 400 * signal and then access the memory. Just kill it. 401 */ 402 if (fail || tk->addr == -EFAULT) { 403 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 404 pfn, tk->tsk->comm, tk->tsk->pid); 405 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 406 tk->tsk, PIDTYPE_PID); 407 } 408 409 /* 410 * In theory the process could have mapped 411 * something else on the address in-between. We could 412 * check for that, but we need to tell the 413 * process anyways. 414 */ 415 else if (kill_proc(tk, pfn, flags) < 0) 416 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 417 pfn, tk->tsk->comm, tk->tsk->pid); 418 } 419 put_task_struct(tk->tsk); 420 kfree(tk); 421 } 422 } 423 424 /* 425 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 426 * on behalf of the thread group. Return task_struct of the (first found) 427 * dedicated thread if found, and return NULL otherwise. 428 * 429 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 430 * have to call rcu_read_lock/unlock() in this function. 431 */ 432 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 433 { 434 struct task_struct *t; 435 436 for_each_thread(tsk, t) { 437 if (t->flags & PF_MCE_PROCESS) { 438 if (t->flags & PF_MCE_EARLY) 439 return t; 440 } else { 441 if (sysctl_memory_failure_early_kill) 442 return t; 443 } 444 } 445 return NULL; 446 } 447 448 /* 449 * Determine whether a given process is "early kill" process which expects 450 * to be signaled when some page under the process is hwpoisoned. 451 * Return task_struct of the dedicated thread (main thread unless explicitly 452 * specified) if the process is "early kill" and otherwise returns NULL. 453 * 454 * Note that the above is true for Action Optional case. For Action Required 455 * case, it's only meaningful to the current thread which need to be signaled 456 * with SIGBUS, this error is Action Optional for other non current 457 * processes sharing the same error page,if the process is "early kill", the 458 * task_struct of the dedicated thread will also be returned. 459 */ 460 static struct task_struct *task_early_kill(struct task_struct *tsk, 461 int force_early) 462 { 463 if (!tsk->mm) 464 return NULL; 465 /* 466 * Comparing ->mm here because current task might represent 467 * a subthread, while tsk always points to the main thread. 468 */ 469 if (force_early && tsk->mm == current->mm) 470 return current; 471 472 return find_early_kill_thread(tsk); 473 } 474 475 /* 476 * Collect processes when the error hit an anonymous page. 477 */ 478 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 479 int force_early) 480 { 481 struct folio *folio = page_folio(page); 482 struct vm_area_struct *vma; 483 struct task_struct *tsk; 484 struct anon_vma *av; 485 pgoff_t pgoff; 486 487 av = folio_lock_anon_vma_read(folio); 488 if (av == NULL) /* Not actually mapped anymore */ 489 return; 490 491 pgoff = page_to_pgoff(page); 492 read_lock(&tasklist_lock); 493 for_each_process (tsk) { 494 struct anon_vma_chain *vmac; 495 struct task_struct *t = task_early_kill(tsk, force_early); 496 497 if (!t) 498 continue; 499 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 500 pgoff, pgoff) { 501 vma = vmac->vma; 502 if (!page_mapped_in_vma(page, vma)) 503 continue; 504 if (vma->vm_mm == t->mm) 505 add_to_kill(t, page, vma, to_kill); 506 } 507 } 508 read_unlock(&tasklist_lock); 509 page_unlock_anon_vma_read(av); 510 } 511 512 /* 513 * Collect processes when the error hit a file mapped page. 514 */ 515 static void collect_procs_file(struct page *page, struct list_head *to_kill, 516 int force_early) 517 { 518 struct vm_area_struct *vma; 519 struct task_struct *tsk; 520 struct address_space *mapping = page->mapping; 521 pgoff_t pgoff; 522 523 i_mmap_lock_read(mapping); 524 read_lock(&tasklist_lock); 525 pgoff = page_to_pgoff(page); 526 for_each_process(tsk) { 527 struct task_struct *t = task_early_kill(tsk, force_early); 528 529 if (!t) 530 continue; 531 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 532 pgoff) { 533 /* 534 * Send early kill signal to tasks where a vma covers 535 * the page but the corrupted page is not necessarily 536 * mapped it in its pte. 537 * Assume applications who requested early kill want 538 * to be informed of all such data corruptions. 539 */ 540 if (vma->vm_mm == t->mm) 541 add_to_kill(t, page, vma, to_kill); 542 } 543 } 544 read_unlock(&tasklist_lock); 545 i_mmap_unlock_read(mapping); 546 } 547 548 /* 549 * Collect the processes who have the corrupted page mapped to kill. 550 */ 551 static void collect_procs(struct page *page, struct list_head *tokill, 552 int force_early) 553 { 554 if (!page->mapping) 555 return; 556 557 if (PageAnon(page)) 558 collect_procs_anon(page, tokill, force_early); 559 else 560 collect_procs_file(page, tokill, force_early); 561 } 562 563 struct hwp_walk { 564 struct to_kill tk; 565 unsigned long pfn; 566 int flags; 567 }; 568 569 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 570 { 571 tk->addr = addr; 572 tk->size_shift = shift; 573 } 574 575 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 576 unsigned long poisoned_pfn, struct to_kill *tk) 577 { 578 unsigned long pfn = 0; 579 580 if (pte_present(pte)) { 581 pfn = pte_pfn(pte); 582 } else { 583 swp_entry_t swp = pte_to_swp_entry(pte); 584 585 if (is_hwpoison_entry(swp)) 586 pfn = hwpoison_entry_to_pfn(swp); 587 } 588 589 if (!pfn || pfn != poisoned_pfn) 590 return 0; 591 592 set_to_kill(tk, addr, shift); 593 return 1; 594 } 595 596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 597 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 598 struct hwp_walk *hwp) 599 { 600 pmd_t pmd = *pmdp; 601 unsigned long pfn; 602 unsigned long hwpoison_vaddr; 603 604 if (!pmd_present(pmd)) 605 return 0; 606 pfn = pmd_pfn(pmd); 607 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 608 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 609 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 610 return 1; 611 } 612 return 0; 613 } 614 #else 615 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 616 struct hwp_walk *hwp) 617 { 618 return 0; 619 } 620 #endif 621 622 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 623 unsigned long end, struct mm_walk *walk) 624 { 625 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 626 int ret = 0; 627 pte_t *ptep, *mapped_pte; 628 spinlock_t *ptl; 629 630 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 631 if (ptl) { 632 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 633 spin_unlock(ptl); 634 goto out; 635 } 636 637 if (pmd_trans_unstable(pmdp)) 638 goto out; 639 640 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 641 addr, &ptl); 642 for (; addr != end; ptep++, addr += PAGE_SIZE) { 643 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 644 hwp->pfn, &hwp->tk); 645 if (ret == 1) 646 break; 647 } 648 pte_unmap_unlock(mapped_pte, ptl); 649 out: 650 cond_resched(); 651 return ret; 652 } 653 654 #ifdef CONFIG_HUGETLB_PAGE 655 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 656 unsigned long addr, unsigned long end, 657 struct mm_walk *walk) 658 { 659 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 660 pte_t pte = huge_ptep_get(ptep); 661 struct hstate *h = hstate_vma(walk->vma); 662 663 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 664 hwp->pfn, &hwp->tk); 665 } 666 #else 667 #define hwpoison_hugetlb_range NULL 668 #endif 669 670 static const struct mm_walk_ops hwp_walk_ops = { 671 .pmd_entry = hwpoison_pte_range, 672 .hugetlb_entry = hwpoison_hugetlb_range, 673 }; 674 675 /* 676 * Sends SIGBUS to the current process with error info. 677 * 678 * This function is intended to handle "Action Required" MCEs on already 679 * hardware poisoned pages. They could happen, for example, when 680 * memory_failure() failed to unmap the error page at the first call, or 681 * when multiple local machine checks happened on different CPUs. 682 * 683 * MCE handler currently has no easy access to the error virtual address, 684 * so this function walks page table to find it. The returned virtual address 685 * is proper in most cases, but it could be wrong when the application 686 * process has multiple entries mapping the error page. 687 */ 688 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 689 int flags) 690 { 691 int ret; 692 struct hwp_walk priv = { 693 .pfn = pfn, 694 }; 695 priv.tk.tsk = p; 696 697 mmap_read_lock(p->mm); 698 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 699 (void *)&priv); 700 if (ret == 1 && priv.tk.addr) 701 kill_proc(&priv.tk, pfn, flags); 702 else 703 ret = 0; 704 mmap_read_unlock(p->mm); 705 return ret > 0 ? -EHWPOISON : -EFAULT; 706 } 707 708 static const char *action_name[] = { 709 [MF_IGNORED] = "Ignored", 710 [MF_FAILED] = "Failed", 711 [MF_DELAYED] = "Delayed", 712 [MF_RECOVERED] = "Recovered", 713 }; 714 715 static const char * const action_page_types[] = { 716 [MF_MSG_KERNEL] = "reserved kernel page", 717 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 718 [MF_MSG_SLAB] = "kernel slab page", 719 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 720 [MF_MSG_HUGE] = "huge page", 721 [MF_MSG_FREE_HUGE] = "free huge page", 722 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 723 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 724 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 725 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 726 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 727 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 728 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 729 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 730 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 731 [MF_MSG_CLEAN_LRU] = "clean LRU page", 732 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 733 [MF_MSG_BUDDY] = "free buddy page", 734 [MF_MSG_DAX] = "dax page", 735 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 736 [MF_MSG_DIFFERENT_PAGE_SIZE] = "different page size", 737 [MF_MSG_UNKNOWN] = "unknown page", 738 }; 739 740 /* 741 * XXX: It is possible that a page is isolated from LRU cache, 742 * and then kept in swap cache or failed to remove from page cache. 743 * The page count will stop it from being freed by unpoison. 744 * Stress tests should be aware of this memory leak problem. 745 */ 746 static int delete_from_lru_cache(struct page *p) 747 { 748 if (!isolate_lru_page(p)) { 749 /* 750 * Clear sensible page flags, so that the buddy system won't 751 * complain when the page is unpoison-and-freed. 752 */ 753 ClearPageActive(p); 754 ClearPageUnevictable(p); 755 756 /* 757 * Poisoned page might never drop its ref count to 0 so we have 758 * to uncharge it manually from its memcg. 759 */ 760 mem_cgroup_uncharge(page_folio(p)); 761 762 /* 763 * drop the page count elevated by isolate_lru_page() 764 */ 765 put_page(p); 766 return 0; 767 } 768 return -EIO; 769 } 770 771 static int truncate_error_page(struct page *p, unsigned long pfn, 772 struct address_space *mapping) 773 { 774 int ret = MF_FAILED; 775 776 if (mapping->a_ops->error_remove_page) { 777 int err = mapping->a_ops->error_remove_page(mapping, p); 778 779 if (err != 0) { 780 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 781 pfn, err); 782 } else if (page_has_private(p) && 783 !try_to_release_page(p, GFP_NOIO)) { 784 pr_info("Memory failure: %#lx: failed to release buffers\n", 785 pfn); 786 } else { 787 ret = MF_RECOVERED; 788 } 789 } else { 790 /* 791 * If the file system doesn't support it just invalidate 792 * This fails on dirty or anything with private pages 793 */ 794 if (invalidate_inode_page(p)) 795 ret = MF_RECOVERED; 796 else 797 pr_info("Memory failure: %#lx: Failed to invalidate\n", 798 pfn); 799 } 800 801 return ret; 802 } 803 804 struct page_state { 805 unsigned long mask; 806 unsigned long res; 807 enum mf_action_page_type type; 808 809 /* Callback ->action() has to unlock the relevant page inside it. */ 810 int (*action)(struct page_state *ps, struct page *p); 811 }; 812 813 /* 814 * Return true if page is still referenced by others, otherwise return 815 * false. 816 * 817 * The extra_pins is true when one extra refcount is expected. 818 */ 819 static bool has_extra_refcount(struct page_state *ps, struct page *p, 820 bool extra_pins) 821 { 822 int count = page_count(p) - 1; 823 824 if (extra_pins) 825 count -= 1; 826 827 if (count > 0) { 828 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 829 page_to_pfn(p), action_page_types[ps->type], count); 830 return true; 831 } 832 833 return false; 834 } 835 836 /* 837 * Error hit kernel page. 838 * Do nothing, try to be lucky and not touch this instead. For a few cases we 839 * could be more sophisticated. 840 */ 841 static int me_kernel(struct page_state *ps, struct page *p) 842 { 843 unlock_page(p); 844 return MF_IGNORED; 845 } 846 847 /* 848 * Page in unknown state. Do nothing. 849 */ 850 static int me_unknown(struct page_state *ps, struct page *p) 851 { 852 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 853 unlock_page(p); 854 return MF_FAILED; 855 } 856 857 /* 858 * Clean (or cleaned) page cache page. 859 */ 860 static int me_pagecache_clean(struct page_state *ps, struct page *p) 861 { 862 int ret; 863 struct address_space *mapping; 864 bool extra_pins; 865 866 delete_from_lru_cache(p); 867 868 /* 869 * For anonymous pages we're done the only reference left 870 * should be the one m_f() holds. 871 */ 872 if (PageAnon(p)) { 873 ret = MF_RECOVERED; 874 goto out; 875 } 876 877 /* 878 * Now truncate the page in the page cache. This is really 879 * more like a "temporary hole punch" 880 * Don't do this for block devices when someone else 881 * has a reference, because it could be file system metadata 882 * and that's not safe to truncate. 883 */ 884 mapping = page_mapping(p); 885 if (!mapping) { 886 /* 887 * Page has been teared down in the meanwhile 888 */ 889 ret = MF_FAILED; 890 goto out; 891 } 892 893 /* 894 * The shmem page is kept in page cache instead of truncating 895 * so is expected to have an extra refcount after error-handling. 896 */ 897 extra_pins = shmem_mapping(mapping); 898 899 /* 900 * Truncation is a bit tricky. Enable it per file system for now. 901 * 902 * Open: to take i_rwsem or not for this? Right now we don't. 903 */ 904 ret = truncate_error_page(p, page_to_pfn(p), mapping); 905 if (has_extra_refcount(ps, p, extra_pins)) 906 ret = MF_FAILED; 907 908 out: 909 unlock_page(p); 910 911 return ret; 912 } 913 914 /* 915 * Dirty pagecache page 916 * Issues: when the error hit a hole page the error is not properly 917 * propagated. 918 */ 919 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 920 { 921 struct address_space *mapping = page_mapping(p); 922 923 SetPageError(p); 924 /* TBD: print more information about the file. */ 925 if (mapping) { 926 /* 927 * IO error will be reported by write(), fsync(), etc. 928 * who check the mapping. 929 * This way the application knows that something went 930 * wrong with its dirty file data. 931 * 932 * There's one open issue: 933 * 934 * The EIO will be only reported on the next IO 935 * operation and then cleared through the IO map. 936 * Normally Linux has two mechanisms to pass IO error 937 * first through the AS_EIO flag in the address space 938 * and then through the PageError flag in the page. 939 * Since we drop pages on memory failure handling the 940 * only mechanism open to use is through AS_AIO. 941 * 942 * This has the disadvantage that it gets cleared on 943 * the first operation that returns an error, while 944 * the PageError bit is more sticky and only cleared 945 * when the page is reread or dropped. If an 946 * application assumes it will always get error on 947 * fsync, but does other operations on the fd before 948 * and the page is dropped between then the error 949 * will not be properly reported. 950 * 951 * This can already happen even without hwpoisoned 952 * pages: first on metadata IO errors (which only 953 * report through AS_EIO) or when the page is dropped 954 * at the wrong time. 955 * 956 * So right now we assume that the application DTRT on 957 * the first EIO, but we're not worse than other parts 958 * of the kernel. 959 */ 960 mapping_set_error(mapping, -EIO); 961 } 962 963 return me_pagecache_clean(ps, p); 964 } 965 966 /* 967 * Clean and dirty swap cache. 968 * 969 * Dirty swap cache page is tricky to handle. The page could live both in page 970 * cache and swap cache(ie. page is freshly swapped in). So it could be 971 * referenced concurrently by 2 types of PTEs: 972 * normal PTEs and swap PTEs. We try to handle them consistently by calling 973 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 974 * and then 975 * - clear dirty bit to prevent IO 976 * - remove from LRU 977 * - but keep in the swap cache, so that when we return to it on 978 * a later page fault, we know the application is accessing 979 * corrupted data and shall be killed (we installed simple 980 * interception code in do_swap_page to catch it). 981 * 982 * Clean swap cache pages can be directly isolated. A later page fault will 983 * bring in the known good data from disk. 984 */ 985 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 986 { 987 int ret; 988 bool extra_pins = false; 989 990 ClearPageDirty(p); 991 /* Trigger EIO in shmem: */ 992 ClearPageUptodate(p); 993 994 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 995 unlock_page(p); 996 997 if (ret == MF_DELAYED) 998 extra_pins = true; 999 1000 if (has_extra_refcount(ps, p, extra_pins)) 1001 ret = MF_FAILED; 1002 1003 return ret; 1004 } 1005 1006 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1007 { 1008 int ret; 1009 1010 delete_from_swap_cache(p); 1011 1012 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1013 unlock_page(p); 1014 1015 if (has_extra_refcount(ps, p, false)) 1016 ret = MF_FAILED; 1017 1018 return ret; 1019 } 1020 1021 /* 1022 * Huge pages. Needs work. 1023 * Issues: 1024 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1025 * To narrow down kill region to one page, we need to break up pmd. 1026 */ 1027 static int me_huge_page(struct page_state *ps, struct page *p) 1028 { 1029 int res; 1030 struct page *hpage = compound_head(p); 1031 struct address_space *mapping; 1032 1033 if (!PageHuge(hpage)) 1034 return MF_DELAYED; 1035 1036 mapping = page_mapping(hpage); 1037 if (mapping) { 1038 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1039 unlock_page(hpage); 1040 } else { 1041 res = MF_FAILED; 1042 unlock_page(hpage); 1043 /* 1044 * migration entry prevents later access on error anonymous 1045 * hugepage, so we can free and dissolve it into buddy to 1046 * save healthy subpages. 1047 */ 1048 if (PageAnon(hpage)) 1049 put_page(hpage); 1050 if (__page_handle_poison(p)) { 1051 page_ref_inc(p); 1052 res = MF_RECOVERED; 1053 } 1054 } 1055 1056 if (has_extra_refcount(ps, p, false)) 1057 res = MF_FAILED; 1058 1059 return res; 1060 } 1061 1062 /* 1063 * Various page states we can handle. 1064 * 1065 * A page state is defined by its current page->flags bits. 1066 * The table matches them in order and calls the right handler. 1067 * 1068 * This is quite tricky because we can access page at any time 1069 * in its live cycle, so all accesses have to be extremely careful. 1070 * 1071 * This is not complete. More states could be added. 1072 * For any missing state don't attempt recovery. 1073 */ 1074 1075 #define dirty (1UL << PG_dirty) 1076 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1077 #define unevict (1UL << PG_unevictable) 1078 #define mlock (1UL << PG_mlocked) 1079 #define lru (1UL << PG_lru) 1080 #define head (1UL << PG_head) 1081 #define slab (1UL << PG_slab) 1082 #define reserved (1UL << PG_reserved) 1083 1084 static struct page_state error_states[] = { 1085 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1086 /* 1087 * free pages are specially detected outside this table: 1088 * PG_buddy pages only make a small fraction of all free pages. 1089 */ 1090 1091 /* 1092 * Could in theory check if slab page is free or if we can drop 1093 * currently unused objects without touching them. But just 1094 * treat it as standard kernel for now. 1095 */ 1096 { slab, slab, MF_MSG_SLAB, me_kernel }, 1097 1098 { head, head, MF_MSG_HUGE, me_huge_page }, 1099 1100 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1101 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1102 1103 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1104 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1105 1106 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1107 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1108 1109 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1110 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1111 1112 /* 1113 * Catchall entry: must be at end. 1114 */ 1115 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1116 }; 1117 1118 #undef dirty 1119 #undef sc 1120 #undef unevict 1121 #undef mlock 1122 #undef lru 1123 #undef head 1124 #undef slab 1125 #undef reserved 1126 1127 /* 1128 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1129 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1130 */ 1131 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1132 enum mf_result result) 1133 { 1134 trace_memory_failure_event(pfn, type, result); 1135 1136 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1137 pfn, action_page_types[type], action_name[result]); 1138 } 1139 1140 static int page_action(struct page_state *ps, struct page *p, 1141 unsigned long pfn) 1142 { 1143 int result; 1144 1145 /* page p should be unlocked after returning from ps->action(). */ 1146 result = ps->action(ps, p); 1147 1148 action_result(pfn, ps->type, result); 1149 1150 /* Could do more checks here if page looks ok */ 1151 /* 1152 * Could adjust zone counters here to correct for the missing page. 1153 */ 1154 1155 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1156 } 1157 1158 static inline bool PageHWPoisonTakenOff(struct page *page) 1159 { 1160 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1161 } 1162 1163 void SetPageHWPoisonTakenOff(struct page *page) 1164 { 1165 set_page_private(page, MAGIC_HWPOISON); 1166 } 1167 1168 void ClearPageHWPoisonTakenOff(struct page *page) 1169 { 1170 if (PageHWPoison(page)) 1171 set_page_private(page, 0); 1172 } 1173 1174 /* 1175 * Return true if a page type of a given page is supported by hwpoison 1176 * mechanism (while handling could fail), otherwise false. This function 1177 * does not return true for hugetlb or device memory pages, so it's assumed 1178 * to be called only in the context where we never have such pages. 1179 */ 1180 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1181 { 1182 bool movable = false; 1183 1184 /* Soft offline could mirgate non-LRU movable pages */ 1185 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1186 movable = true; 1187 1188 return movable || PageLRU(page) || is_free_buddy_page(page); 1189 } 1190 1191 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1192 { 1193 struct page *head = compound_head(page); 1194 int ret = 0; 1195 bool hugetlb = false; 1196 1197 ret = get_hwpoison_huge_page(head, &hugetlb); 1198 if (hugetlb) 1199 return ret; 1200 1201 /* 1202 * This check prevents from calling get_hwpoison_unless_zero() 1203 * for any unsupported type of page in order to reduce the risk of 1204 * unexpected races caused by taking a page refcount. 1205 */ 1206 if (!HWPoisonHandlable(head, flags)) 1207 return -EBUSY; 1208 1209 if (get_page_unless_zero(head)) { 1210 if (head == compound_head(page)) 1211 return 1; 1212 1213 pr_info("Memory failure: %#lx cannot catch tail\n", 1214 page_to_pfn(page)); 1215 put_page(head); 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int get_any_page(struct page *p, unsigned long flags) 1222 { 1223 int ret = 0, pass = 0; 1224 bool count_increased = false; 1225 1226 if (flags & MF_COUNT_INCREASED) 1227 count_increased = true; 1228 1229 try_again: 1230 if (!count_increased) { 1231 ret = __get_hwpoison_page(p, flags); 1232 if (!ret) { 1233 if (page_count(p)) { 1234 /* We raced with an allocation, retry. */ 1235 if (pass++ < 3) 1236 goto try_again; 1237 ret = -EBUSY; 1238 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1239 /* We raced with put_page, retry. */ 1240 if (pass++ < 3) 1241 goto try_again; 1242 ret = -EIO; 1243 } 1244 goto out; 1245 } else if (ret == -EBUSY) { 1246 /* 1247 * We raced with (possibly temporary) unhandlable 1248 * page, retry. 1249 */ 1250 if (pass++ < 3) { 1251 shake_page(p); 1252 goto try_again; 1253 } 1254 ret = -EIO; 1255 goto out; 1256 } 1257 } 1258 1259 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1260 ret = 1; 1261 } else { 1262 /* 1263 * A page we cannot handle. Check whether we can turn 1264 * it into something we can handle. 1265 */ 1266 if (pass++ < 3) { 1267 put_page(p); 1268 shake_page(p); 1269 count_increased = false; 1270 goto try_again; 1271 } 1272 put_page(p); 1273 ret = -EIO; 1274 } 1275 out: 1276 if (ret == -EIO) 1277 dump_page(p, "hwpoison: unhandlable page"); 1278 1279 return ret; 1280 } 1281 1282 static int __get_unpoison_page(struct page *page) 1283 { 1284 struct page *head = compound_head(page); 1285 int ret = 0; 1286 bool hugetlb = false; 1287 1288 ret = get_hwpoison_huge_page(head, &hugetlb); 1289 if (hugetlb) 1290 return ret; 1291 1292 /* 1293 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1294 * but also isolated from buddy freelist, so need to identify the 1295 * state and have to cancel both operations to unpoison. 1296 */ 1297 if (PageHWPoisonTakenOff(page)) 1298 return -EHWPOISON; 1299 1300 return get_page_unless_zero(page) ? 1 : 0; 1301 } 1302 1303 /** 1304 * get_hwpoison_page() - Get refcount for memory error handling 1305 * @p: Raw error page (hit by memory error) 1306 * @flags: Flags controlling behavior of error handling 1307 * 1308 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1309 * error on it, after checking that the error page is in a well-defined state 1310 * (defined as a page-type we can successfully handle the memory error on it, 1311 * such as LRU page and hugetlb page). 1312 * 1313 * Memory error handling could be triggered at any time on any type of page, 1314 * so it's prone to race with typical memory management lifecycle (like 1315 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1316 * extra care for the error page's state (as done in __get_hwpoison_page()), 1317 * and has some retry logic in get_any_page(). 1318 * 1319 * When called from unpoison_memory(), the caller should already ensure that 1320 * the given page has PG_hwpoison. So it's never reused for other page 1321 * allocations, and __get_unpoison_page() never races with them. 1322 * 1323 * Return: 0 on failure, 1324 * 1 on success for in-use pages in a well-defined state, 1325 * -EIO for pages on which we can not handle memory errors, 1326 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1327 * operations like allocation and free, 1328 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1329 */ 1330 static int get_hwpoison_page(struct page *p, unsigned long flags) 1331 { 1332 int ret; 1333 1334 zone_pcp_disable(page_zone(p)); 1335 if (flags & MF_UNPOISON) 1336 ret = __get_unpoison_page(p); 1337 else 1338 ret = get_any_page(p, flags); 1339 zone_pcp_enable(page_zone(p)); 1340 1341 return ret; 1342 } 1343 1344 /* 1345 * Do all that is necessary to remove user space mappings. Unmap 1346 * the pages and send SIGBUS to the processes if the data was dirty. 1347 */ 1348 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1349 int flags, struct page *hpage) 1350 { 1351 struct folio *folio = page_folio(hpage); 1352 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1353 struct address_space *mapping; 1354 LIST_HEAD(tokill); 1355 bool unmap_success; 1356 int kill = 1, forcekill; 1357 bool mlocked = PageMlocked(hpage); 1358 1359 /* 1360 * Here we are interested only in user-mapped pages, so skip any 1361 * other types of pages. 1362 */ 1363 if (PageReserved(p) || PageSlab(p)) 1364 return true; 1365 if (!(PageLRU(hpage) || PageHuge(p))) 1366 return true; 1367 1368 /* 1369 * This check implies we don't kill processes if their pages 1370 * are in the swap cache early. Those are always late kills. 1371 */ 1372 if (!page_mapped(hpage)) 1373 return true; 1374 1375 if (PageKsm(p)) { 1376 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1377 return false; 1378 } 1379 1380 if (PageSwapCache(p)) { 1381 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1382 pfn); 1383 ttu |= TTU_IGNORE_HWPOISON; 1384 } 1385 1386 /* 1387 * Propagate the dirty bit from PTEs to struct page first, because we 1388 * need this to decide if we should kill or just drop the page. 1389 * XXX: the dirty test could be racy: set_page_dirty() may not always 1390 * be called inside page lock (it's recommended but not enforced). 1391 */ 1392 mapping = page_mapping(hpage); 1393 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1394 mapping_can_writeback(mapping)) { 1395 if (page_mkclean(hpage)) { 1396 SetPageDirty(hpage); 1397 } else { 1398 kill = 0; 1399 ttu |= TTU_IGNORE_HWPOISON; 1400 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1401 pfn); 1402 } 1403 } 1404 1405 /* 1406 * First collect all the processes that have the page 1407 * mapped in dirty form. This has to be done before try_to_unmap, 1408 * because ttu takes the rmap data structures down. 1409 * 1410 * Error handling: We ignore errors here because 1411 * there's nothing that can be done. 1412 */ 1413 if (kill) 1414 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1415 1416 if (PageHuge(hpage) && !PageAnon(hpage)) { 1417 /* 1418 * For hugetlb pages in shared mappings, try_to_unmap 1419 * could potentially call huge_pmd_unshare. Because of 1420 * this, take semaphore in write mode here and set 1421 * TTU_RMAP_LOCKED to indicate we have taken the lock 1422 * at this higher level. 1423 */ 1424 mapping = hugetlb_page_mapping_lock_write(hpage); 1425 if (mapping) { 1426 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1427 i_mmap_unlock_write(mapping); 1428 } else 1429 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1430 } else { 1431 try_to_unmap(folio, ttu); 1432 } 1433 1434 unmap_success = !page_mapped(hpage); 1435 if (!unmap_success) 1436 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1437 pfn, page_mapcount(hpage)); 1438 1439 /* 1440 * try_to_unmap() might put mlocked page in lru cache, so call 1441 * shake_page() again to ensure that it's flushed. 1442 */ 1443 if (mlocked) 1444 shake_page(hpage); 1445 1446 /* 1447 * Now that the dirty bit has been propagated to the 1448 * struct page and all unmaps done we can decide if 1449 * killing is needed or not. Only kill when the page 1450 * was dirty or the process is not restartable, 1451 * otherwise the tokill list is merely 1452 * freed. When there was a problem unmapping earlier 1453 * use a more force-full uncatchable kill to prevent 1454 * any accesses to the poisoned memory. 1455 */ 1456 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1457 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1458 1459 return unmap_success; 1460 } 1461 1462 static int identify_page_state(unsigned long pfn, struct page *p, 1463 unsigned long page_flags) 1464 { 1465 struct page_state *ps; 1466 1467 /* 1468 * The first check uses the current page flags which may not have any 1469 * relevant information. The second check with the saved page flags is 1470 * carried out only if the first check can't determine the page status. 1471 */ 1472 for (ps = error_states;; ps++) 1473 if ((p->flags & ps->mask) == ps->res) 1474 break; 1475 1476 page_flags |= (p->flags & (1UL << PG_dirty)); 1477 1478 if (!ps->mask) 1479 for (ps = error_states;; ps++) 1480 if ((page_flags & ps->mask) == ps->res) 1481 break; 1482 return page_action(ps, p, pfn); 1483 } 1484 1485 static int try_to_split_thp_page(struct page *page, const char *msg) 1486 { 1487 lock_page(page); 1488 if (unlikely(split_huge_page(page))) { 1489 unsigned long pfn = page_to_pfn(page); 1490 1491 unlock_page(page); 1492 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1493 put_page(page); 1494 return -EBUSY; 1495 } 1496 unlock_page(page); 1497 1498 return 0; 1499 } 1500 1501 /* 1502 * Called from hugetlb code with hugetlb_lock held. 1503 * 1504 * Return values: 1505 * 0 - free hugepage 1506 * 1 - in-use hugepage 1507 * 2 - not a hugepage 1508 * -EBUSY - the hugepage is busy (try to retry) 1509 * -EHWPOISON - the hugepage is already hwpoisoned 1510 */ 1511 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1512 { 1513 struct page *page = pfn_to_page(pfn); 1514 struct page *head = compound_head(page); 1515 int ret = 2; /* fallback to normal page handling */ 1516 bool count_increased = false; 1517 1518 if (!PageHeadHuge(head)) 1519 goto out; 1520 1521 if (flags & MF_COUNT_INCREASED) { 1522 ret = 1; 1523 count_increased = true; 1524 } else if (HPageFreed(head) || HPageMigratable(head)) { 1525 ret = get_page_unless_zero(head); 1526 if (ret) 1527 count_increased = true; 1528 } else { 1529 ret = -EBUSY; 1530 goto out; 1531 } 1532 1533 if (TestSetPageHWPoison(head)) { 1534 ret = -EHWPOISON; 1535 goto out; 1536 } 1537 1538 return ret; 1539 out: 1540 if (count_increased) 1541 put_page(head); 1542 return ret; 1543 } 1544 1545 #ifdef CONFIG_HUGETLB_PAGE 1546 /* 1547 * Taking refcount of hugetlb pages needs extra care about race conditions 1548 * with basic operations like hugepage allocation/free/demotion. 1549 * So some of prechecks for hwpoison (pinning, and testing/setting 1550 * PageHWPoison) should be done in single hugetlb_lock range. 1551 */ 1552 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1553 { 1554 int res; 1555 struct page *p = pfn_to_page(pfn); 1556 struct page *head; 1557 unsigned long page_flags; 1558 bool retry = true; 1559 1560 *hugetlb = 1; 1561 retry: 1562 res = get_huge_page_for_hwpoison(pfn, flags); 1563 if (res == 2) { /* fallback to normal page handling */ 1564 *hugetlb = 0; 1565 return 0; 1566 } else if (res == -EHWPOISON) { 1567 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); 1568 if (flags & MF_ACTION_REQUIRED) { 1569 head = compound_head(p); 1570 res = kill_accessing_process(current, page_to_pfn(head), flags); 1571 } 1572 return res; 1573 } else if (res == -EBUSY) { 1574 if (retry) { 1575 retry = false; 1576 goto retry; 1577 } 1578 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1579 return res; 1580 } 1581 1582 head = compound_head(p); 1583 lock_page(head); 1584 1585 if (hwpoison_filter(p)) { 1586 ClearPageHWPoison(head); 1587 res = -EOPNOTSUPP; 1588 goto out; 1589 } 1590 1591 num_poisoned_pages_inc(); 1592 1593 /* 1594 * Handling free hugepage. The possible race with hugepage allocation 1595 * or demotion can be prevented by PageHWPoison flag. 1596 */ 1597 if (res == 0) { 1598 unlock_page(head); 1599 res = MF_FAILED; 1600 if (__page_handle_poison(p)) { 1601 page_ref_inc(p); 1602 res = MF_RECOVERED; 1603 } 1604 action_result(pfn, MF_MSG_FREE_HUGE, res); 1605 return res == MF_RECOVERED ? 0 : -EBUSY; 1606 } 1607 1608 /* 1609 * The page could have changed compound pages due to race window. 1610 * If this happens just bail out. 1611 */ 1612 if (!PageHuge(p) || compound_head(p) != head) { 1613 action_result(pfn, MF_MSG_DIFFERENT_PAGE_SIZE, MF_IGNORED); 1614 res = -EBUSY; 1615 goto out; 1616 } 1617 1618 page_flags = head->flags; 1619 1620 /* 1621 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1622 * simply disable it. In order to make it work properly, we need 1623 * make sure that: 1624 * - conversion of a pud that maps an error hugetlb into hwpoison 1625 * entry properly works, and 1626 * - other mm code walking over page table is aware of pud-aligned 1627 * hwpoison entries. 1628 */ 1629 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1630 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1631 res = -EBUSY; 1632 goto out; 1633 } 1634 1635 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1636 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1637 res = -EBUSY; 1638 goto out; 1639 } 1640 1641 return identify_page_state(pfn, p, page_flags); 1642 out: 1643 unlock_page(head); 1644 return res; 1645 } 1646 #else 1647 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1648 { 1649 return 0; 1650 } 1651 #endif 1652 1653 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1654 struct dev_pagemap *pgmap) 1655 { 1656 struct page *page = pfn_to_page(pfn); 1657 unsigned long size = 0; 1658 struct to_kill *tk; 1659 LIST_HEAD(tokill); 1660 int rc = -EBUSY; 1661 loff_t start; 1662 dax_entry_t cookie; 1663 1664 if (flags & MF_COUNT_INCREASED) 1665 /* 1666 * Drop the extra refcount in case we come from madvise(). 1667 */ 1668 put_page(page); 1669 1670 /* device metadata space is not recoverable */ 1671 if (!pgmap_pfn_valid(pgmap, pfn)) { 1672 rc = -ENXIO; 1673 goto out; 1674 } 1675 1676 /* 1677 * Pages instantiated by device-dax (not filesystem-dax) 1678 * may be compound pages. 1679 */ 1680 page = compound_head(page); 1681 1682 /* 1683 * Prevent the inode from being freed while we are interrogating 1684 * the address_space, typically this would be handled by 1685 * lock_page(), but dax pages do not use the page lock. This 1686 * also prevents changes to the mapping of this pfn until 1687 * poison signaling is complete. 1688 */ 1689 cookie = dax_lock_page(page); 1690 if (!cookie) 1691 goto out; 1692 1693 if (hwpoison_filter(page)) { 1694 rc = -EOPNOTSUPP; 1695 goto unlock; 1696 } 1697 1698 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1699 /* 1700 * TODO: Handle HMM pages which may need coordination 1701 * with device-side memory. 1702 */ 1703 goto unlock; 1704 } 1705 1706 /* 1707 * Use this flag as an indication that the dax page has been 1708 * remapped UC to prevent speculative consumption of poison. 1709 */ 1710 SetPageHWPoison(page); 1711 1712 /* 1713 * Unlike System-RAM there is no possibility to swap in a 1714 * different physical page at a given virtual address, so all 1715 * userspace consumption of ZONE_DEVICE memory necessitates 1716 * SIGBUS (i.e. MF_MUST_KILL) 1717 */ 1718 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1719 collect_procs(page, &tokill, true); 1720 1721 list_for_each_entry(tk, &tokill, nd) 1722 if (tk->size_shift) 1723 size = max(size, 1UL << tk->size_shift); 1724 if (size) { 1725 /* 1726 * Unmap the largest mapping to avoid breaking up 1727 * device-dax mappings which are constant size. The 1728 * actual size of the mapping being torn down is 1729 * communicated in siginfo, see kill_proc() 1730 */ 1731 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1732 unmap_mapping_range(page->mapping, start, size, 0); 1733 } 1734 kill_procs(&tokill, true, false, pfn, flags); 1735 rc = 0; 1736 unlock: 1737 dax_unlock_page(page, cookie); 1738 out: 1739 /* drop pgmap ref acquired in caller */ 1740 put_dev_pagemap(pgmap); 1741 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1742 return rc; 1743 } 1744 1745 static DEFINE_MUTEX(mf_mutex); 1746 1747 /** 1748 * memory_failure - Handle memory failure of a page. 1749 * @pfn: Page Number of the corrupted page 1750 * @flags: fine tune action taken 1751 * 1752 * This function is called by the low level machine check code 1753 * of an architecture when it detects hardware memory corruption 1754 * of a page. It tries its best to recover, which includes 1755 * dropping pages, killing processes etc. 1756 * 1757 * The function is primarily of use for corruptions that 1758 * happen outside the current execution context (e.g. when 1759 * detected by a background scrubber) 1760 * 1761 * Must run in process context (e.g. a work queue) with interrupts 1762 * enabled and no spinlocks hold. 1763 * 1764 * Return: 0 for successfully handled the memory error, 1765 * -EOPNOTSUPP for memory_filter() filtered the error event, 1766 * < 0(except -EOPNOTSUPP) on failure. 1767 */ 1768 int memory_failure(unsigned long pfn, int flags) 1769 { 1770 struct page *p; 1771 struct page *hpage; 1772 struct dev_pagemap *pgmap; 1773 int res = 0; 1774 unsigned long page_flags; 1775 bool retry = true; 1776 int hugetlb = 0; 1777 1778 if (!sysctl_memory_failure_recovery) 1779 panic("Memory failure on page %lx", pfn); 1780 1781 mutex_lock(&mf_mutex); 1782 1783 p = pfn_to_online_page(pfn); 1784 if (!p) { 1785 res = arch_memory_failure(pfn, flags); 1786 if (res == 0) 1787 goto unlock_mutex; 1788 1789 if (pfn_valid(pfn)) { 1790 pgmap = get_dev_pagemap(pfn, NULL); 1791 if (pgmap) { 1792 res = memory_failure_dev_pagemap(pfn, flags, 1793 pgmap); 1794 goto unlock_mutex; 1795 } 1796 } 1797 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1798 pfn); 1799 res = -ENXIO; 1800 goto unlock_mutex; 1801 } 1802 1803 try_again: 1804 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 1805 if (hugetlb) 1806 goto unlock_mutex; 1807 1808 if (TestSetPageHWPoison(p)) { 1809 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1810 pfn); 1811 res = -EHWPOISON; 1812 if (flags & MF_ACTION_REQUIRED) 1813 res = kill_accessing_process(current, pfn, flags); 1814 goto unlock_mutex; 1815 } 1816 1817 hpage = compound_head(p); 1818 num_poisoned_pages_inc(); 1819 1820 /* 1821 * We need/can do nothing about count=0 pages. 1822 * 1) it's a free page, and therefore in safe hand: 1823 * prep_new_page() will be the gate keeper. 1824 * 2) it's part of a non-compound high order page. 1825 * Implies some kernel user: cannot stop them from 1826 * R/W the page; let's pray that the page has been 1827 * used and will be freed some time later. 1828 * In fact it's dangerous to directly bump up page count from 0, 1829 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1830 */ 1831 if (!(flags & MF_COUNT_INCREASED)) { 1832 res = get_hwpoison_page(p, flags); 1833 if (!res) { 1834 if (is_free_buddy_page(p)) { 1835 if (take_page_off_buddy(p)) { 1836 page_ref_inc(p); 1837 res = MF_RECOVERED; 1838 } else { 1839 /* We lost the race, try again */ 1840 if (retry) { 1841 ClearPageHWPoison(p); 1842 num_poisoned_pages_dec(); 1843 retry = false; 1844 goto try_again; 1845 } 1846 res = MF_FAILED; 1847 } 1848 action_result(pfn, MF_MSG_BUDDY, res); 1849 res = res == MF_RECOVERED ? 0 : -EBUSY; 1850 } else { 1851 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1852 res = -EBUSY; 1853 } 1854 goto unlock_mutex; 1855 } else if (res < 0) { 1856 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1857 res = -EBUSY; 1858 goto unlock_mutex; 1859 } 1860 } 1861 1862 if (PageTransHuge(hpage)) { 1863 /* 1864 * Bail out before SetPageHasHWPoisoned() if hpage is 1865 * huge_zero_page, although PG_has_hwpoisoned is not 1866 * checked in set_huge_zero_page(). 1867 * 1868 * TODO: Handle memory failure of huge_zero_page thoroughly. 1869 */ 1870 if (is_huge_zero_page(hpage)) { 1871 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1872 res = -EBUSY; 1873 goto unlock_mutex; 1874 } 1875 1876 /* 1877 * The flag must be set after the refcount is bumped 1878 * otherwise it may race with THP split. 1879 * And the flag can't be set in get_hwpoison_page() since 1880 * it is called by soft offline too and it is just called 1881 * for !MF_COUNT_INCREASE. So here seems to be the best 1882 * place. 1883 * 1884 * Don't need care about the above error handling paths for 1885 * get_hwpoison_page() since they handle either free page 1886 * or unhandlable page. The refcount is bumped iff the 1887 * page is a valid handlable page. 1888 */ 1889 SetPageHasHWPoisoned(hpage); 1890 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1891 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1892 res = -EBUSY; 1893 goto unlock_mutex; 1894 } 1895 VM_BUG_ON_PAGE(!page_count(p), p); 1896 } 1897 1898 /* 1899 * We ignore non-LRU pages for good reasons. 1900 * - PG_locked is only well defined for LRU pages and a few others 1901 * - to avoid races with __SetPageLocked() 1902 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1903 * The check (unnecessarily) ignores LRU pages being isolated and 1904 * walked by the page reclaim code, however that's not a big loss. 1905 */ 1906 shake_page(p); 1907 1908 lock_page(p); 1909 1910 /* 1911 * We're only intended to deal with the non-Compound page here. 1912 * However, the page could have changed compound pages due to 1913 * race window. If this happens, we could try again to hopefully 1914 * handle the page next round. 1915 */ 1916 if (PageCompound(p)) { 1917 if (retry) { 1918 if (TestClearPageHWPoison(p)) 1919 num_poisoned_pages_dec(); 1920 unlock_page(p); 1921 put_page(p); 1922 flags &= ~MF_COUNT_INCREASED; 1923 retry = false; 1924 goto try_again; 1925 } 1926 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1927 res = -EBUSY; 1928 goto unlock_page; 1929 } 1930 1931 /* 1932 * We use page flags to determine what action should be taken, but 1933 * the flags can be modified by the error containment action. One 1934 * example is an mlocked page, where PG_mlocked is cleared by 1935 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1936 * correctly, we save a copy of the page flags at this time. 1937 */ 1938 page_flags = p->flags; 1939 1940 if (hwpoison_filter(p)) { 1941 if (TestClearPageHWPoison(p)) 1942 num_poisoned_pages_dec(); 1943 unlock_page(p); 1944 put_page(p); 1945 res = -EOPNOTSUPP; 1946 goto unlock_mutex; 1947 } 1948 1949 /* 1950 * __munlock_pagevec may clear a writeback page's LRU flag without 1951 * page_lock. We need wait writeback completion for this page or it 1952 * may trigger vfs BUG while evict inode. 1953 */ 1954 if (!PageLRU(p) && !PageWriteback(p)) 1955 goto identify_page_state; 1956 1957 /* 1958 * It's very difficult to mess with pages currently under IO 1959 * and in many cases impossible, so we just avoid it here. 1960 */ 1961 wait_on_page_writeback(p); 1962 1963 /* 1964 * Now take care of user space mappings. 1965 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1966 */ 1967 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1968 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1969 res = -EBUSY; 1970 goto unlock_page; 1971 } 1972 1973 /* 1974 * Torn down by someone else? 1975 */ 1976 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1977 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1978 res = -EBUSY; 1979 goto unlock_page; 1980 } 1981 1982 identify_page_state: 1983 res = identify_page_state(pfn, p, page_flags); 1984 mutex_unlock(&mf_mutex); 1985 return res; 1986 unlock_page: 1987 unlock_page(p); 1988 unlock_mutex: 1989 mutex_unlock(&mf_mutex); 1990 return res; 1991 } 1992 EXPORT_SYMBOL_GPL(memory_failure); 1993 1994 #define MEMORY_FAILURE_FIFO_ORDER 4 1995 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1996 1997 struct memory_failure_entry { 1998 unsigned long pfn; 1999 int flags; 2000 }; 2001 2002 struct memory_failure_cpu { 2003 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2004 MEMORY_FAILURE_FIFO_SIZE); 2005 spinlock_t lock; 2006 struct work_struct work; 2007 }; 2008 2009 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2010 2011 /** 2012 * memory_failure_queue - Schedule handling memory failure of a page. 2013 * @pfn: Page Number of the corrupted page 2014 * @flags: Flags for memory failure handling 2015 * 2016 * This function is called by the low level hardware error handler 2017 * when it detects hardware memory corruption of a page. It schedules 2018 * the recovering of error page, including dropping pages, killing 2019 * processes etc. 2020 * 2021 * The function is primarily of use for corruptions that 2022 * happen outside the current execution context (e.g. when 2023 * detected by a background scrubber) 2024 * 2025 * Can run in IRQ context. 2026 */ 2027 void memory_failure_queue(unsigned long pfn, int flags) 2028 { 2029 struct memory_failure_cpu *mf_cpu; 2030 unsigned long proc_flags; 2031 struct memory_failure_entry entry = { 2032 .pfn = pfn, 2033 .flags = flags, 2034 }; 2035 2036 mf_cpu = &get_cpu_var(memory_failure_cpu); 2037 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2038 if (kfifo_put(&mf_cpu->fifo, entry)) 2039 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2040 else 2041 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 2042 pfn); 2043 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2044 put_cpu_var(memory_failure_cpu); 2045 } 2046 EXPORT_SYMBOL_GPL(memory_failure_queue); 2047 2048 static void memory_failure_work_func(struct work_struct *work) 2049 { 2050 struct memory_failure_cpu *mf_cpu; 2051 struct memory_failure_entry entry = { 0, }; 2052 unsigned long proc_flags; 2053 int gotten; 2054 2055 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2056 for (;;) { 2057 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2058 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2059 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2060 if (!gotten) 2061 break; 2062 if (entry.flags & MF_SOFT_OFFLINE) 2063 soft_offline_page(entry.pfn, entry.flags); 2064 else 2065 memory_failure(entry.pfn, entry.flags); 2066 } 2067 } 2068 2069 /* 2070 * Process memory_failure work queued on the specified CPU. 2071 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2072 */ 2073 void memory_failure_queue_kick(int cpu) 2074 { 2075 struct memory_failure_cpu *mf_cpu; 2076 2077 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2078 cancel_work_sync(&mf_cpu->work); 2079 memory_failure_work_func(&mf_cpu->work); 2080 } 2081 2082 static int __init memory_failure_init(void) 2083 { 2084 struct memory_failure_cpu *mf_cpu; 2085 int cpu; 2086 2087 for_each_possible_cpu(cpu) { 2088 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2089 spin_lock_init(&mf_cpu->lock); 2090 INIT_KFIFO(mf_cpu->fifo); 2091 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2092 } 2093 2094 return 0; 2095 } 2096 core_initcall(memory_failure_init); 2097 2098 #define unpoison_pr_info(fmt, pfn, rs) \ 2099 ({ \ 2100 if (__ratelimit(rs)) \ 2101 pr_info(fmt, pfn); \ 2102 }) 2103 2104 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p) 2105 { 2106 if (TestClearPageHWPoison(p)) { 2107 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2108 page_to_pfn(p), rs); 2109 num_poisoned_pages_dec(); 2110 return 1; 2111 } 2112 return 0; 2113 } 2114 2115 static inline int unpoison_taken_off_page(struct ratelimit_state *rs, 2116 struct page *p) 2117 { 2118 if (put_page_back_buddy(p)) { 2119 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2120 page_to_pfn(p), rs); 2121 return 0; 2122 } 2123 return -EBUSY; 2124 } 2125 2126 /** 2127 * unpoison_memory - Unpoison a previously poisoned page 2128 * @pfn: Page number of the to be unpoisoned page 2129 * 2130 * Software-unpoison a page that has been poisoned by 2131 * memory_failure() earlier. 2132 * 2133 * This is only done on the software-level, so it only works 2134 * for linux injected failures, not real hardware failures 2135 * 2136 * Returns 0 for success, otherwise -errno. 2137 */ 2138 int unpoison_memory(unsigned long pfn) 2139 { 2140 struct page *page; 2141 struct page *p; 2142 int ret = -EBUSY; 2143 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2144 DEFAULT_RATELIMIT_BURST); 2145 2146 if (!pfn_valid(pfn)) 2147 return -ENXIO; 2148 2149 p = pfn_to_page(pfn); 2150 page = compound_head(p); 2151 2152 mutex_lock(&mf_mutex); 2153 2154 if (!PageHWPoison(p)) { 2155 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2156 pfn, &unpoison_rs); 2157 goto unlock_mutex; 2158 } 2159 2160 if (page_count(page) > 1) { 2161 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2162 pfn, &unpoison_rs); 2163 goto unlock_mutex; 2164 } 2165 2166 if (page_mapped(page)) { 2167 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2168 pfn, &unpoison_rs); 2169 goto unlock_mutex; 2170 } 2171 2172 if (page_mapping(page)) { 2173 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2174 pfn, &unpoison_rs); 2175 goto unlock_mutex; 2176 } 2177 2178 if (PageSlab(page) || PageTable(page)) 2179 goto unlock_mutex; 2180 2181 ret = get_hwpoison_page(p, MF_UNPOISON); 2182 if (!ret) { 2183 if (clear_page_hwpoison(&unpoison_rs, page)) 2184 ret = 0; 2185 else 2186 ret = -EBUSY; 2187 } else if (ret < 0) { 2188 if (ret == -EHWPOISON) { 2189 ret = unpoison_taken_off_page(&unpoison_rs, p); 2190 } else 2191 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2192 pfn, &unpoison_rs); 2193 } else { 2194 int freeit = clear_page_hwpoison(&unpoison_rs, p); 2195 2196 put_page(page); 2197 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2198 put_page(page); 2199 ret = 0; 2200 } 2201 } 2202 2203 unlock_mutex: 2204 mutex_unlock(&mf_mutex); 2205 return ret; 2206 } 2207 EXPORT_SYMBOL(unpoison_memory); 2208 2209 static bool isolate_page(struct page *page, struct list_head *pagelist) 2210 { 2211 bool isolated = false; 2212 bool lru = PageLRU(page); 2213 2214 if (PageHuge(page)) { 2215 isolated = isolate_huge_page(page, pagelist); 2216 } else { 2217 if (lru) 2218 isolated = !isolate_lru_page(page); 2219 else 2220 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2221 2222 if (isolated) 2223 list_add(&page->lru, pagelist); 2224 } 2225 2226 if (isolated && lru) 2227 inc_node_page_state(page, NR_ISOLATED_ANON + 2228 page_is_file_lru(page)); 2229 2230 /* 2231 * If we succeed to isolate the page, we grabbed another refcount on 2232 * the page, so we can safely drop the one we got from get_any_pages(). 2233 * If we failed to isolate the page, it means that we cannot go further 2234 * and we will return an error, so drop the reference we got from 2235 * get_any_pages() as well. 2236 */ 2237 put_page(page); 2238 return isolated; 2239 } 2240 2241 /* 2242 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2243 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2244 * If the page is mapped, it migrates the contents over. 2245 */ 2246 static int __soft_offline_page(struct page *page) 2247 { 2248 long ret = 0; 2249 unsigned long pfn = page_to_pfn(page); 2250 struct page *hpage = compound_head(page); 2251 char const *msg_page[] = {"page", "hugepage"}; 2252 bool huge = PageHuge(page); 2253 LIST_HEAD(pagelist); 2254 struct migration_target_control mtc = { 2255 .nid = NUMA_NO_NODE, 2256 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2257 }; 2258 2259 lock_page(page); 2260 if (!PageHuge(page)) 2261 wait_on_page_writeback(page); 2262 if (PageHWPoison(page)) { 2263 unlock_page(page); 2264 put_page(page); 2265 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2266 return 0; 2267 } 2268 2269 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2270 /* 2271 * Try to invalidate first. This should work for 2272 * non dirty unmapped page cache pages. 2273 */ 2274 ret = invalidate_inode_page(page); 2275 unlock_page(page); 2276 2277 if (ret) { 2278 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2279 page_handle_poison(page, false, true); 2280 return 0; 2281 } 2282 2283 if (isolate_page(hpage, &pagelist)) { 2284 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2285 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2286 if (!ret) { 2287 bool release = !huge; 2288 2289 if (!page_handle_poison(page, huge, release)) 2290 ret = -EBUSY; 2291 } else { 2292 if (!list_empty(&pagelist)) 2293 putback_movable_pages(&pagelist); 2294 2295 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2296 pfn, msg_page[huge], ret, &page->flags); 2297 if (ret > 0) 2298 ret = -EBUSY; 2299 } 2300 } else { 2301 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2302 pfn, msg_page[huge], page_count(page), &page->flags); 2303 ret = -EBUSY; 2304 } 2305 return ret; 2306 } 2307 2308 static int soft_offline_in_use_page(struct page *page) 2309 { 2310 struct page *hpage = compound_head(page); 2311 2312 if (!PageHuge(page) && PageTransHuge(hpage)) 2313 if (try_to_split_thp_page(page, "soft offline") < 0) 2314 return -EBUSY; 2315 return __soft_offline_page(page); 2316 } 2317 2318 static int soft_offline_free_page(struct page *page) 2319 { 2320 int rc = 0; 2321 2322 if (!page_handle_poison(page, true, false)) 2323 rc = -EBUSY; 2324 2325 return rc; 2326 } 2327 2328 static void put_ref_page(struct page *page) 2329 { 2330 if (page) 2331 put_page(page); 2332 } 2333 2334 /** 2335 * soft_offline_page - Soft offline a page. 2336 * @pfn: pfn to soft-offline 2337 * @flags: flags. Same as memory_failure(). 2338 * 2339 * Returns 0 on success, otherwise negated errno. 2340 * 2341 * Soft offline a page, by migration or invalidation, 2342 * without killing anything. This is for the case when 2343 * a page is not corrupted yet (so it's still valid to access), 2344 * but has had a number of corrected errors and is better taken 2345 * out. 2346 * 2347 * The actual policy on when to do that is maintained by 2348 * user space. 2349 * 2350 * This should never impact any application or cause data loss, 2351 * however it might take some time. 2352 * 2353 * This is not a 100% solution for all memory, but tries to be 2354 * ``good enough'' for the majority of memory. 2355 */ 2356 int soft_offline_page(unsigned long pfn, int flags) 2357 { 2358 int ret; 2359 bool try_again = true; 2360 struct page *page, *ref_page = NULL; 2361 2362 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2363 2364 if (!pfn_valid(pfn)) 2365 return -ENXIO; 2366 if (flags & MF_COUNT_INCREASED) 2367 ref_page = pfn_to_page(pfn); 2368 2369 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2370 page = pfn_to_online_page(pfn); 2371 if (!page) { 2372 put_ref_page(ref_page); 2373 return -EIO; 2374 } 2375 2376 mutex_lock(&mf_mutex); 2377 2378 if (PageHWPoison(page)) { 2379 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2380 put_ref_page(ref_page); 2381 mutex_unlock(&mf_mutex); 2382 return 0; 2383 } 2384 2385 retry: 2386 get_online_mems(); 2387 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2388 put_online_mems(); 2389 2390 if (ret > 0) { 2391 ret = soft_offline_in_use_page(page); 2392 } else if (ret == 0) { 2393 if (soft_offline_free_page(page) && try_again) { 2394 try_again = false; 2395 flags &= ~MF_COUNT_INCREASED; 2396 goto retry; 2397 } 2398 } 2399 2400 mutex_unlock(&mf_mutex); 2401 2402 return ret; 2403 } 2404