1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/page-isolation.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/kfifo.h> 60 #include <linux/ratelimit.h> 61 #include "internal.h" 62 #include "ras/ras_event.h" 63 64 int sysctl_memory_failure_early_kill __read_mostly = 0; 65 66 int sysctl_memory_failure_recovery __read_mostly = 1; 67 68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 69 70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 71 72 u32 hwpoison_filter_enable = 0; 73 u32 hwpoison_filter_dev_major = ~0U; 74 u32 hwpoison_filter_dev_minor = ~0U; 75 u64 hwpoison_filter_flags_mask; 76 u64 hwpoison_filter_flags_value; 77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 82 83 static int hwpoison_filter_dev(struct page *p) 84 { 85 struct address_space *mapping; 86 dev_t dev; 87 88 if (hwpoison_filter_dev_major == ~0U && 89 hwpoison_filter_dev_minor == ~0U) 90 return 0; 91 92 /* 93 * page_mapping() does not accept slab pages. 94 */ 95 if (PageSlab(p)) 96 return -EINVAL; 97 98 mapping = page_mapping(p); 99 if (mapping == NULL || mapping->host == NULL) 100 return -EINVAL; 101 102 dev = mapping->host->i_sb->s_dev; 103 if (hwpoison_filter_dev_major != ~0U && 104 hwpoison_filter_dev_major != MAJOR(dev)) 105 return -EINVAL; 106 if (hwpoison_filter_dev_minor != ~0U && 107 hwpoison_filter_dev_minor != MINOR(dev)) 108 return -EINVAL; 109 110 return 0; 111 } 112 113 static int hwpoison_filter_flags(struct page *p) 114 { 115 if (!hwpoison_filter_flags_mask) 116 return 0; 117 118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 119 hwpoison_filter_flags_value) 120 return 0; 121 else 122 return -EINVAL; 123 } 124 125 /* 126 * This allows stress tests to limit test scope to a collection of tasks 127 * by putting them under some memcg. This prevents killing unrelated/important 128 * processes such as /sbin/init. Note that the target task may share clean 129 * pages with init (eg. libc text), which is harmless. If the target task 130 * share _dirty_ pages with another task B, the test scheme must make sure B 131 * is also included in the memcg. At last, due to race conditions this filter 132 * can only guarantee that the page either belongs to the memcg tasks, or is 133 * a freed page. 134 */ 135 #ifdef CONFIG_MEMCG 136 u64 hwpoison_filter_memcg; 137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 138 static int hwpoison_filter_task(struct page *p) 139 { 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 144 return -EINVAL; 145 146 return 0; 147 } 148 #else 149 static int hwpoison_filter_task(struct page *p) { return 0; } 150 #endif 151 152 int hwpoison_filter(struct page *p) 153 { 154 if (!hwpoison_filter_enable) 155 return 0; 156 157 if (hwpoison_filter_dev(p)) 158 return -EINVAL; 159 160 if (hwpoison_filter_flags(p)) 161 return -EINVAL; 162 163 if (hwpoison_filter_task(p)) 164 return -EINVAL; 165 166 return 0; 167 } 168 #else 169 int hwpoison_filter(struct page *p) 170 { 171 return 0; 172 } 173 #endif 174 175 EXPORT_SYMBOL_GPL(hwpoison_filter); 176 177 /* 178 * Send all the processes who have the page mapped a signal. 179 * ``action optional'' if they are not immediately affected by the error 180 * ``action required'' if error happened in current execution context 181 */ 182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 183 unsigned long pfn, struct page *page, int flags) 184 { 185 struct siginfo si; 186 int ret; 187 188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 189 pfn, t->comm, t->pid); 190 si.si_signo = SIGBUS; 191 si.si_errno = 0; 192 si.si_addr = (void *)addr; 193 #ifdef __ARCH_SI_TRAPNO 194 si.si_trapno = trapno; 195 #endif 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 197 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 199 si.si_code = BUS_MCEERR_AR; 200 ret = force_sig_info(SIGBUS, &si, current); 201 } else { 202 /* 203 * Don't use force here, it's convenient if the signal 204 * can be temporarily blocked. 205 * This could cause a loop when the user sets SIGBUS 206 * to SIG_IGN, but hopefully no one will do that? 207 */ 208 si.si_code = BUS_MCEERR_AO; 209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 210 } 211 if (ret < 0) 212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 213 t->comm, t->pid, ret); 214 return ret; 215 } 216 217 /* 218 * When a unknown page type is encountered drain as many buffers as possible 219 * in the hope to turn the page into a LRU or free page, which we can handle. 220 */ 221 void shake_page(struct page *p, int access) 222 { 223 if (PageHuge(p)) 224 return; 225 226 if (!PageSlab(p)) { 227 lru_add_drain_all(); 228 if (PageLRU(p)) 229 return; 230 drain_all_pages(page_zone(p)); 231 if (PageLRU(p) || is_free_buddy_page(p)) 232 return; 233 } 234 235 /* 236 * Only call shrink_node_slabs here (which would also shrink 237 * other caches) if access is not potentially fatal. 238 */ 239 if (access) 240 drop_slab_node(page_to_nid(p)); 241 } 242 EXPORT_SYMBOL_GPL(shake_page); 243 244 /* 245 * Kill all processes that have a poisoned page mapped and then isolate 246 * the page. 247 * 248 * General strategy: 249 * Find all processes having the page mapped and kill them. 250 * But we keep a page reference around so that the page is not 251 * actually freed yet. 252 * Then stash the page away 253 * 254 * There's no convenient way to get back to mapped processes 255 * from the VMAs. So do a brute-force search over all 256 * running processes. 257 * 258 * Remember that machine checks are not common (or rather 259 * if they are common you have other problems), so this shouldn't 260 * be a performance issue. 261 * 262 * Also there are some races possible while we get from the 263 * error detection to actually handle it. 264 */ 265 266 struct to_kill { 267 struct list_head nd; 268 struct task_struct *tsk; 269 unsigned long addr; 270 char addr_valid; 271 }; 272 273 /* 274 * Failure handling: if we can't find or can't kill a process there's 275 * not much we can do. We just print a message and ignore otherwise. 276 */ 277 278 /* 279 * Schedule a process for later kill. 280 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 281 * TBD would GFP_NOIO be enough? 282 */ 283 static void add_to_kill(struct task_struct *tsk, struct page *p, 284 struct vm_area_struct *vma, 285 struct list_head *to_kill, 286 struct to_kill **tkc) 287 { 288 struct to_kill *tk; 289 290 if (*tkc) { 291 tk = *tkc; 292 *tkc = NULL; 293 } else { 294 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 295 if (!tk) { 296 pr_err("Memory failure: Out of memory while machine check handling\n"); 297 return; 298 } 299 } 300 tk->addr = page_address_in_vma(p, vma); 301 tk->addr_valid = 1; 302 303 /* 304 * In theory we don't have to kill when the page was 305 * munmaped. But it could be also a mremap. Since that's 306 * likely very rare kill anyways just out of paranoia, but use 307 * a SIGKILL because the error is not contained anymore. 308 */ 309 if (tk->addr == -EFAULT) { 310 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 311 page_to_pfn(p), tsk->comm); 312 tk->addr_valid = 0; 313 } 314 get_task_struct(tsk); 315 tk->tsk = tsk; 316 list_add_tail(&tk->nd, to_kill); 317 } 318 319 /* 320 * Kill the processes that have been collected earlier. 321 * 322 * Only do anything when DOIT is set, otherwise just free the list 323 * (this is used for clean pages which do not need killing) 324 * Also when FAIL is set do a force kill because something went 325 * wrong earlier. 326 */ 327 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 328 bool fail, struct page *page, unsigned long pfn, 329 int flags) 330 { 331 struct to_kill *tk, *next; 332 333 list_for_each_entry_safe (tk, next, to_kill, nd) { 334 if (forcekill) { 335 /* 336 * In case something went wrong with munmapping 337 * make sure the process doesn't catch the 338 * signal and then access the memory. Just kill it. 339 */ 340 if (fail || tk->addr_valid == 0) { 341 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 342 pfn, tk->tsk->comm, tk->tsk->pid); 343 force_sig(SIGKILL, tk->tsk); 344 } 345 346 /* 347 * In theory the process could have mapped 348 * something else on the address in-between. We could 349 * check for that, but we need to tell the 350 * process anyways. 351 */ 352 else if (kill_proc(tk->tsk, tk->addr, trapno, 353 pfn, page, flags) < 0) 354 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 355 pfn, tk->tsk->comm, tk->tsk->pid); 356 } 357 put_task_struct(tk->tsk); 358 kfree(tk); 359 } 360 } 361 362 /* 363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 364 * on behalf of the thread group. Return task_struct of the (first found) 365 * dedicated thread if found, and return NULL otherwise. 366 * 367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 368 * have to call rcu_read_lock/unlock() in this function. 369 */ 370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 371 { 372 struct task_struct *t; 373 374 for_each_thread(tsk, t) 375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 376 return t; 377 return NULL; 378 } 379 380 /* 381 * Determine whether a given process is "early kill" process which expects 382 * to be signaled when some page under the process is hwpoisoned. 383 * Return task_struct of the dedicated thread (main thread unless explicitly 384 * specified) if the process is "early kill," and otherwise returns NULL. 385 */ 386 static struct task_struct *task_early_kill(struct task_struct *tsk, 387 int force_early) 388 { 389 struct task_struct *t; 390 if (!tsk->mm) 391 return NULL; 392 if (force_early) 393 return tsk; 394 t = find_early_kill_thread(tsk); 395 if (t) 396 return t; 397 if (sysctl_memory_failure_early_kill) 398 return tsk; 399 return NULL; 400 } 401 402 /* 403 * Collect processes when the error hit an anonymous page. 404 */ 405 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 406 struct to_kill **tkc, int force_early) 407 { 408 struct vm_area_struct *vma; 409 struct task_struct *tsk; 410 struct anon_vma *av; 411 pgoff_t pgoff; 412 413 av = page_lock_anon_vma_read(page); 414 if (av == NULL) /* Not actually mapped anymore */ 415 return; 416 417 pgoff = page_to_pgoff(page); 418 read_lock(&tasklist_lock); 419 for_each_process (tsk) { 420 struct anon_vma_chain *vmac; 421 struct task_struct *t = task_early_kill(tsk, force_early); 422 423 if (!t) 424 continue; 425 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 426 pgoff, pgoff) { 427 vma = vmac->vma; 428 if (!page_mapped_in_vma(page, vma)) 429 continue; 430 if (vma->vm_mm == t->mm) 431 add_to_kill(t, page, vma, to_kill, tkc); 432 } 433 } 434 read_unlock(&tasklist_lock); 435 page_unlock_anon_vma_read(av); 436 } 437 438 /* 439 * Collect processes when the error hit a file mapped page. 440 */ 441 static void collect_procs_file(struct page *page, struct list_head *to_kill, 442 struct to_kill **tkc, int force_early) 443 { 444 struct vm_area_struct *vma; 445 struct task_struct *tsk; 446 struct address_space *mapping = page->mapping; 447 448 i_mmap_lock_read(mapping); 449 read_lock(&tasklist_lock); 450 for_each_process(tsk) { 451 pgoff_t pgoff = page_to_pgoff(page); 452 struct task_struct *t = task_early_kill(tsk, force_early); 453 454 if (!t) 455 continue; 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 457 pgoff) { 458 /* 459 * Send early kill signal to tasks where a vma covers 460 * the page but the corrupted page is not necessarily 461 * mapped it in its pte. 462 * Assume applications who requested early kill want 463 * to be informed of all such data corruptions. 464 */ 465 if (vma->vm_mm == t->mm) 466 add_to_kill(t, page, vma, to_kill, tkc); 467 } 468 } 469 read_unlock(&tasklist_lock); 470 i_mmap_unlock_read(mapping); 471 } 472 473 /* 474 * Collect the processes who have the corrupted page mapped to kill. 475 * This is done in two steps for locking reasons. 476 * First preallocate one tokill structure outside the spin locks, 477 * so that we can kill at least one process reasonably reliable. 478 */ 479 static void collect_procs(struct page *page, struct list_head *tokill, 480 int force_early) 481 { 482 struct to_kill *tk; 483 484 if (!page->mapping) 485 return; 486 487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 488 if (!tk) 489 return; 490 if (PageAnon(page)) 491 collect_procs_anon(page, tokill, &tk, force_early); 492 else 493 collect_procs_file(page, tokill, &tk, force_early); 494 kfree(tk); 495 } 496 497 static const char *action_name[] = { 498 [MF_IGNORED] = "Ignored", 499 [MF_FAILED] = "Failed", 500 [MF_DELAYED] = "Delayed", 501 [MF_RECOVERED] = "Recovered", 502 }; 503 504 static const char * const action_page_types[] = { 505 [MF_MSG_KERNEL] = "reserved kernel page", 506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 507 [MF_MSG_SLAB] = "kernel slab page", 508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 510 [MF_MSG_HUGE] = "huge page", 511 [MF_MSG_FREE_HUGE] = "free huge page", 512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 519 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 520 [MF_MSG_CLEAN_LRU] = "clean LRU page", 521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 522 [MF_MSG_BUDDY] = "free buddy page", 523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 524 [MF_MSG_UNKNOWN] = "unknown page", 525 }; 526 527 /* 528 * XXX: It is possible that a page is isolated from LRU cache, 529 * and then kept in swap cache or failed to remove from page cache. 530 * The page count will stop it from being freed by unpoison. 531 * Stress tests should be aware of this memory leak problem. 532 */ 533 static int delete_from_lru_cache(struct page *p) 534 { 535 if (!isolate_lru_page(p)) { 536 /* 537 * Clear sensible page flags, so that the buddy system won't 538 * complain when the page is unpoison-and-freed. 539 */ 540 ClearPageActive(p); 541 ClearPageUnevictable(p); 542 /* 543 * drop the page count elevated by isolate_lru_page() 544 */ 545 put_page(p); 546 return 0; 547 } 548 return -EIO; 549 } 550 551 /* 552 * Error hit kernel page. 553 * Do nothing, try to be lucky and not touch this instead. For a few cases we 554 * could be more sophisticated. 555 */ 556 static int me_kernel(struct page *p, unsigned long pfn) 557 { 558 return MF_IGNORED; 559 } 560 561 /* 562 * Page in unknown state. Do nothing. 563 */ 564 static int me_unknown(struct page *p, unsigned long pfn) 565 { 566 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 567 return MF_FAILED; 568 } 569 570 /* 571 * Clean (or cleaned) page cache page. 572 */ 573 static int me_pagecache_clean(struct page *p, unsigned long pfn) 574 { 575 int err; 576 int ret = MF_FAILED; 577 struct address_space *mapping; 578 579 delete_from_lru_cache(p); 580 581 /* 582 * For anonymous pages we're done the only reference left 583 * should be the one m_f() holds. 584 */ 585 if (PageAnon(p)) 586 return MF_RECOVERED; 587 588 /* 589 * Now truncate the page in the page cache. This is really 590 * more like a "temporary hole punch" 591 * Don't do this for block devices when someone else 592 * has a reference, because it could be file system metadata 593 * and that's not safe to truncate. 594 */ 595 mapping = page_mapping(p); 596 if (!mapping) { 597 /* 598 * Page has been teared down in the meanwhile 599 */ 600 return MF_FAILED; 601 } 602 603 /* 604 * Truncation is a bit tricky. Enable it per file system for now. 605 * 606 * Open: to take i_mutex or not for this? Right now we don't. 607 */ 608 if (mapping->a_ops->error_remove_page) { 609 err = mapping->a_ops->error_remove_page(mapping, p); 610 if (err != 0) { 611 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 612 pfn, err); 613 } else if (page_has_private(p) && 614 !try_to_release_page(p, GFP_NOIO)) { 615 pr_info("Memory failure: %#lx: failed to release buffers\n", 616 pfn); 617 } else { 618 ret = MF_RECOVERED; 619 } 620 } else { 621 /* 622 * If the file system doesn't support it just invalidate 623 * This fails on dirty or anything with private pages 624 */ 625 if (invalidate_inode_page(p)) 626 ret = MF_RECOVERED; 627 else 628 pr_info("Memory failure: %#lx: Failed to invalidate\n", 629 pfn); 630 } 631 return ret; 632 } 633 634 /* 635 * Dirty pagecache page 636 * Issues: when the error hit a hole page the error is not properly 637 * propagated. 638 */ 639 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 640 { 641 struct address_space *mapping = page_mapping(p); 642 643 SetPageError(p); 644 /* TBD: print more information about the file. */ 645 if (mapping) { 646 /* 647 * IO error will be reported by write(), fsync(), etc. 648 * who check the mapping. 649 * This way the application knows that something went 650 * wrong with its dirty file data. 651 * 652 * There's one open issue: 653 * 654 * The EIO will be only reported on the next IO 655 * operation and then cleared through the IO map. 656 * Normally Linux has two mechanisms to pass IO error 657 * first through the AS_EIO flag in the address space 658 * and then through the PageError flag in the page. 659 * Since we drop pages on memory failure handling the 660 * only mechanism open to use is through AS_AIO. 661 * 662 * This has the disadvantage that it gets cleared on 663 * the first operation that returns an error, while 664 * the PageError bit is more sticky and only cleared 665 * when the page is reread or dropped. If an 666 * application assumes it will always get error on 667 * fsync, but does other operations on the fd before 668 * and the page is dropped between then the error 669 * will not be properly reported. 670 * 671 * This can already happen even without hwpoisoned 672 * pages: first on metadata IO errors (which only 673 * report through AS_EIO) or when the page is dropped 674 * at the wrong time. 675 * 676 * So right now we assume that the application DTRT on 677 * the first EIO, but we're not worse than other parts 678 * of the kernel. 679 */ 680 mapping_set_error(mapping, EIO); 681 } 682 683 return me_pagecache_clean(p, pfn); 684 } 685 686 /* 687 * Clean and dirty swap cache. 688 * 689 * Dirty swap cache page is tricky to handle. The page could live both in page 690 * cache and swap cache(ie. page is freshly swapped in). So it could be 691 * referenced concurrently by 2 types of PTEs: 692 * normal PTEs and swap PTEs. We try to handle them consistently by calling 693 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 694 * and then 695 * - clear dirty bit to prevent IO 696 * - remove from LRU 697 * - but keep in the swap cache, so that when we return to it on 698 * a later page fault, we know the application is accessing 699 * corrupted data and shall be killed (we installed simple 700 * interception code in do_swap_page to catch it). 701 * 702 * Clean swap cache pages can be directly isolated. A later page fault will 703 * bring in the known good data from disk. 704 */ 705 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 706 { 707 ClearPageDirty(p); 708 /* Trigger EIO in shmem: */ 709 ClearPageUptodate(p); 710 711 if (!delete_from_lru_cache(p)) 712 return MF_DELAYED; 713 else 714 return MF_FAILED; 715 } 716 717 static int me_swapcache_clean(struct page *p, unsigned long pfn) 718 { 719 delete_from_swap_cache(p); 720 721 if (!delete_from_lru_cache(p)) 722 return MF_RECOVERED; 723 else 724 return MF_FAILED; 725 } 726 727 /* 728 * Huge pages. Needs work. 729 * Issues: 730 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 731 * To narrow down kill region to one page, we need to break up pmd. 732 */ 733 static int me_huge_page(struct page *p, unsigned long pfn) 734 { 735 int res = 0; 736 struct page *hpage = compound_head(p); 737 738 if (!PageHuge(hpage)) 739 return MF_DELAYED; 740 741 /* 742 * We can safely recover from error on free or reserved (i.e. 743 * not in-use) hugepage by dequeuing it from freelist. 744 * To check whether a hugepage is in-use or not, we can't use 745 * page->lru because it can be used in other hugepage operations, 746 * such as __unmap_hugepage_range() and gather_surplus_pages(). 747 * So instead we use page_mapping() and PageAnon(). 748 */ 749 if (!(page_mapping(hpage) || PageAnon(hpage))) { 750 res = dequeue_hwpoisoned_huge_page(hpage); 751 if (!res) 752 return MF_RECOVERED; 753 } 754 return MF_DELAYED; 755 } 756 757 /* 758 * Various page states we can handle. 759 * 760 * A page state is defined by its current page->flags bits. 761 * The table matches them in order and calls the right handler. 762 * 763 * This is quite tricky because we can access page at any time 764 * in its live cycle, so all accesses have to be extremely careful. 765 * 766 * This is not complete. More states could be added. 767 * For any missing state don't attempt recovery. 768 */ 769 770 #define dirty (1UL << PG_dirty) 771 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 772 #define unevict (1UL << PG_unevictable) 773 #define mlock (1UL << PG_mlocked) 774 #define writeback (1UL << PG_writeback) 775 #define lru (1UL << PG_lru) 776 #define head (1UL << PG_head) 777 #define slab (1UL << PG_slab) 778 #define reserved (1UL << PG_reserved) 779 780 static struct page_state { 781 unsigned long mask; 782 unsigned long res; 783 enum mf_action_page_type type; 784 int (*action)(struct page *p, unsigned long pfn); 785 } error_states[] = { 786 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 787 /* 788 * free pages are specially detected outside this table: 789 * PG_buddy pages only make a small fraction of all free pages. 790 */ 791 792 /* 793 * Could in theory check if slab page is free or if we can drop 794 * currently unused objects without touching them. But just 795 * treat it as standard kernel for now. 796 */ 797 { slab, slab, MF_MSG_SLAB, me_kernel }, 798 799 { head, head, MF_MSG_HUGE, me_huge_page }, 800 801 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 802 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 803 804 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 805 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 806 807 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 808 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 809 810 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 811 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 812 813 /* 814 * Catchall entry: must be at end. 815 */ 816 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 817 }; 818 819 #undef dirty 820 #undef sc 821 #undef unevict 822 #undef mlock 823 #undef writeback 824 #undef lru 825 #undef head 826 #undef slab 827 #undef reserved 828 829 /* 830 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 831 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 832 */ 833 static void action_result(unsigned long pfn, enum mf_action_page_type type, 834 enum mf_result result) 835 { 836 trace_memory_failure_event(pfn, type, result); 837 838 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 839 pfn, action_page_types[type], action_name[result]); 840 } 841 842 static int page_action(struct page_state *ps, struct page *p, 843 unsigned long pfn) 844 { 845 int result; 846 int count; 847 848 result = ps->action(p, pfn); 849 850 count = page_count(p) - 1; 851 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 852 count--; 853 if (count != 0) { 854 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 855 pfn, action_page_types[ps->type], count); 856 result = MF_FAILED; 857 } 858 action_result(pfn, ps->type, result); 859 860 /* Could do more checks here if page looks ok */ 861 /* 862 * Could adjust zone counters here to correct for the missing page. 863 */ 864 865 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 866 } 867 868 /** 869 * get_hwpoison_page() - Get refcount for memory error handling: 870 * @page: raw error page (hit by memory error) 871 * 872 * Return: return 0 if failed to grab the refcount, otherwise true (some 873 * non-zero value.) 874 */ 875 int get_hwpoison_page(struct page *page) 876 { 877 struct page *head = compound_head(page); 878 879 if (!PageHuge(head) && PageTransHuge(head)) { 880 /* 881 * Non anonymous thp exists only in allocation/free time. We 882 * can't handle such a case correctly, so let's give it up. 883 * This should be better than triggering BUG_ON when kernel 884 * tries to touch the "partially handled" page. 885 */ 886 if (!PageAnon(head)) { 887 pr_err("Memory failure: %#lx: non anonymous thp\n", 888 page_to_pfn(page)); 889 return 0; 890 } 891 } 892 893 if (get_page_unless_zero(head)) { 894 if (head == compound_head(page)) 895 return 1; 896 897 pr_info("Memory failure: %#lx cannot catch tail\n", 898 page_to_pfn(page)); 899 put_page(head); 900 } 901 902 return 0; 903 } 904 EXPORT_SYMBOL_GPL(get_hwpoison_page); 905 906 /* 907 * Do all that is necessary to remove user space mappings. Unmap 908 * the pages and send SIGBUS to the processes if the data was dirty. 909 */ 910 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 911 int trapno, int flags, struct page **hpagep) 912 { 913 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 914 struct address_space *mapping; 915 LIST_HEAD(tokill); 916 bool unmap_success; 917 int kill = 1, forcekill; 918 struct page *hpage = *hpagep; 919 bool mlocked = PageMlocked(hpage); 920 921 /* 922 * Here we are interested only in user-mapped pages, so skip any 923 * other types of pages. 924 */ 925 if (PageReserved(p) || PageSlab(p)) 926 return true; 927 if (!(PageLRU(hpage) || PageHuge(p))) 928 return true; 929 930 /* 931 * This check implies we don't kill processes if their pages 932 * are in the swap cache early. Those are always late kills. 933 */ 934 if (!page_mapped(hpage)) 935 return true; 936 937 if (PageKsm(p)) { 938 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 939 return false; 940 } 941 942 if (PageSwapCache(p)) { 943 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 944 pfn); 945 ttu |= TTU_IGNORE_HWPOISON; 946 } 947 948 /* 949 * Propagate the dirty bit from PTEs to struct page first, because we 950 * need this to decide if we should kill or just drop the page. 951 * XXX: the dirty test could be racy: set_page_dirty() may not always 952 * be called inside page lock (it's recommended but not enforced). 953 */ 954 mapping = page_mapping(hpage); 955 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 956 mapping_cap_writeback_dirty(mapping)) { 957 if (page_mkclean(hpage)) { 958 SetPageDirty(hpage); 959 } else { 960 kill = 0; 961 ttu |= TTU_IGNORE_HWPOISON; 962 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 963 pfn); 964 } 965 } 966 967 /* 968 * First collect all the processes that have the page 969 * mapped in dirty form. This has to be done before try_to_unmap, 970 * because ttu takes the rmap data structures down. 971 * 972 * Error handling: We ignore errors here because 973 * there's nothing that can be done. 974 */ 975 if (kill) 976 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 977 978 unmap_success = try_to_unmap(hpage, ttu); 979 if (!unmap_success) 980 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 981 pfn, page_mapcount(hpage)); 982 983 /* 984 * try_to_unmap() might put mlocked page in lru cache, so call 985 * shake_page() again to ensure that it's flushed. 986 */ 987 if (mlocked) 988 shake_page(hpage, 0); 989 990 /* 991 * Now that the dirty bit has been propagated to the 992 * struct page and all unmaps done we can decide if 993 * killing is needed or not. Only kill when the page 994 * was dirty or the process is not restartable, 995 * otherwise the tokill list is merely 996 * freed. When there was a problem unmapping earlier 997 * use a more force-full uncatchable kill to prevent 998 * any accesses to the poisoned memory. 999 */ 1000 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1001 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags); 1002 1003 return unmap_success; 1004 } 1005 1006 static void set_page_hwpoison_huge_page(struct page *hpage) 1007 { 1008 int i; 1009 int nr_pages = 1 << compound_order(hpage); 1010 for (i = 0; i < nr_pages; i++) 1011 SetPageHWPoison(hpage + i); 1012 } 1013 1014 static void clear_page_hwpoison_huge_page(struct page *hpage) 1015 { 1016 int i; 1017 int nr_pages = 1 << compound_order(hpage); 1018 for (i = 0; i < nr_pages; i++) 1019 ClearPageHWPoison(hpage + i); 1020 } 1021 1022 /** 1023 * memory_failure - Handle memory failure of a page. 1024 * @pfn: Page Number of the corrupted page 1025 * @trapno: Trap number reported in the signal to user space. 1026 * @flags: fine tune action taken 1027 * 1028 * This function is called by the low level machine check code 1029 * of an architecture when it detects hardware memory corruption 1030 * of a page. It tries its best to recover, which includes 1031 * dropping pages, killing processes etc. 1032 * 1033 * The function is primarily of use for corruptions that 1034 * happen outside the current execution context (e.g. when 1035 * detected by a background scrubber) 1036 * 1037 * Must run in process context (e.g. a work queue) with interrupts 1038 * enabled and no spinlocks hold. 1039 */ 1040 int memory_failure(unsigned long pfn, int trapno, int flags) 1041 { 1042 struct page_state *ps; 1043 struct page *p; 1044 struct page *hpage; 1045 struct page *orig_head; 1046 int res; 1047 unsigned int nr_pages; 1048 unsigned long page_flags; 1049 1050 if (!sysctl_memory_failure_recovery) 1051 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1052 1053 if (!pfn_valid(pfn)) { 1054 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1055 pfn); 1056 return -ENXIO; 1057 } 1058 1059 p = pfn_to_page(pfn); 1060 orig_head = hpage = compound_head(p); 1061 if (TestSetPageHWPoison(p)) { 1062 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1063 pfn); 1064 return 0; 1065 } 1066 1067 /* 1068 * Currently errors on hugetlbfs pages are measured in hugepage units, 1069 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1070 * transparent hugepages, they are supposed to be split and error 1071 * measurement is done in normal page units. So nr_pages should be one 1072 * in this case. 1073 */ 1074 if (PageHuge(p)) 1075 nr_pages = 1 << compound_order(hpage); 1076 else /* normal page or thp */ 1077 nr_pages = 1; 1078 num_poisoned_pages_add(nr_pages); 1079 1080 /* 1081 * We need/can do nothing about count=0 pages. 1082 * 1) it's a free page, and therefore in safe hand: 1083 * prep_new_page() will be the gate keeper. 1084 * 2) it's a free hugepage, which is also safe: 1085 * an affected hugepage will be dequeued from hugepage freelist, 1086 * so there's no concern about reusing it ever after. 1087 * 3) it's part of a non-compound high order page. 1088 * Implies some kernel user: cannot stop them from 1089 * R/W the page; let's pray that the page has been 1090 * used and will be freed some time later. 1091 * In fact it's dangerous to directly bump up page count from 0, 1092 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1093 */ 1094 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1095 if (is_free_buddy_page(p)) { 1096 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1097 return 0; 1098 } else if (PageHuge(hpage)) { 1099 /* 1100 * Check "filter hit" and "race with other subpage." 1101 */ 1102 lock_page(hpage); 1103 if (PageHWPoison(hpage)) { 1104 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1105 || (p != hpage && TestSetPageHWPoison(hpage))) { 1106 num_poisoned_pages_sub(nr_pages); 1107 unlock_page(hpage); 1108 return 0; 1109 } 1110 } 1111 set_page_hwpoison_huge_page(hpage); 1112 res = dequeue_hwpoisoned_huge_page(hpage); 1113 action_result(pfn, MF_MSG_FREE_HUGE, 1114 res ? MF_IGNORED : MF_DELAYED); 1115 unlock_page(hpage); 1116 return res; 1117 } else { 1118 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1119 return -EBUSY; 1120 } 1121 } 1122 1123 if (!PageHuge(p) && PageTransHuge(hpage)) { 1124 lock_page(p); 1125 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1126 unlock_page(p); 1127 if (!PageAnon(p)) 1128 pr_err("Memory failure: %#lx: non anonymous thp\n", 1129 pfn); 1130 else 1131 pr_err("Memory failure: %#lx: thp split failed\n", 1132 pfn); 1133 if (TestClearPageHWPoison(p)) 1134 num_poisoned_pages_sub(nr_pages); 1135 put_hwpoison_page(p); 1136 return -EBUSY; 1137 } 1138 unlock_page(p); 1139 VM_BUG_ON_PAGE(!page_count(p), p); 1140 hpage = compound_head(p); 1141 } 1142 1143 /* 1144 * We ignore non-LRU pages for good reasons. 1145 * - PG_locked is only well defined for LRU pages and a few others 1146 * - to avoid races with __SetPageLocked() 1147 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1148 * The check (unnecessarily) ignores LRU pages being isolated and 1149 * walked by the page reclaim code, however that's not a big loss. 1150 */ 1151 shake_page(p, 0); 1152 /* shake_page could have turned it free. */ 1153 if (!PageLRU(p) && is_free_buddy_page(p)) { 1154 if (flags & MF_COUNT_INCREASED) 1155 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1156 else 1157 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1158 return 0; 1159 } 1160 1161 lock_page(hpage); 1162 1163 /* 1164 * The page could have changed compound pages during the locking. 1165 * If this happens just bail out. 1166 */ 1167 if (PageCompound(p) && compound_head(p) != orig_head) { 1168 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1169 res = -EBUSY; 1170 goto out; 1171 } 1172 1173 /* 1174 * We use page flags to determine what action should be taken, but 1175 * the flags can be modified by the error containment action. One 1176 * example is an mlocked page, where PG_mlocked is cleared by 1177 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1178 * correctly, we save a copy of the page flags at this time. 1179 */ 1180 page_flags = p->flags; 1181 1182 /* 1183 * unpoison always clear PG_hwpoison inside page lock 1184 */ 1185 if (!PageHWPoison(p)) { 1186 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1187 num_poisoned_pages_sub(nr_pages); 1188 unlock_page(hpage); 1189 put_hwpoison_page(hpage); 1190 return 0; 1191 } 1192 if (hwpoison_filter(p)) { 1193 if (TestClearPageHWPoison(p)) 1194 num_poisoned_pages_sub(nr_pages); 1195 unlock_page(hpage); 1196 put_hwpoison_page(hpage); 1197 return 0; 1198 } 1199 1200 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1201 goto identify_page_state; 1202 1203 /* 1204 * For error on the tail page, we should set PG_hwpoison 1205 * on the head page to show that the hugepage is hwpoisoned 1206 */ 1207 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1208 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1209 unlock_page(hpage); 1210 put_hwpoison_page(hpage); 1211 return 0; 1212 } 1213 /* 1214 * Set PG_hwpoison on all pages in an error hugepage, 1215 * because containment is done in hugepage unit for now. 1216 * Since we have done TestSetPageHWPoison() for the head page with 1217 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1218 */ 1219 if (PageHuge(p)) 1220 set_page_hwpoison_huge_page(hpage); 1221 1222 /* 1223 * It's very difficult to mess with pages currently under IO 1224 * and in many cases impossible, so we just avoid it here. 1225 */ 1226 wait_on_page_writeback(p); 1227 1228 /* 1229 * Now take care of user space mappings. 1230 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1231 * 1232 * When the raw error page is thp tail page, hpage points to the raw 1233 * page after thp split. 1234 */ 1235 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) { 1236 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1237 res = -EBUSY; 1238 goto out; 1239 } 1240 1241 /* 1242 * Torn down by someone else? 1243 */ 1244 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1245 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1246 res = -EBUSY; 1247 goto out; 1248 } 1249 1250 identify_page_state: 1251 res = -EBUSY; 1252 /* 1253 * The first check uses the current page flags which may not have any 1254 * relevant information. The second check with the saved page flagss is 1255 * carried out only if the first check can't determine the page status. 1256 */ 1257 for (ps = error_states;; ps++) 1258 if ((p->flags & ps->mask) == ps->res) 1259 break; 1260 1261 page_flags |= (p->flags & (1UL << PG_dirty)); 1262 1263 if (!ps->mask) 1264 for (ps = error_states;; ps++) 1265 if ((page_flags & ps->mask) == ps->res) 1266 break; 1267 res = page_action(ps, p, pfn); 1268 out: 1269 unlock_page(hpage); 1270 return res; 1271 } 1272 EXPORT_SYMBOL_GPL(memory_failure); 1273 1274 #define MEMORY_FAILURE_FIFO_ORDER 4 1275 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1276 1277 struct memory_failure_entry { 1278 unsigned long pfn; 1279 int trapno; 1280 int flags; 1281 }; 1282 1283 struct memory_failure_cpu { 1284 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1285 MEMORY_FAILURE_FIFO_SIZE); 1286 spinlock_t lock; 1287 struct work_struct work; 1288 }; 1289 1290 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1291 1292 /** 1293 * memory_failure_queue - Schedule handling memory failure of a page. 1294 * @pfn: Page Number of the corrupted page 1295 * @trapno: Trap number reported in the signal to user space. 1296 * @flags: Flags for memory failure handling 1297 * 1298 * This function is called by the low level hardware error handler 1299 * when it detects hardware memory corruption of a page. It schedules 1300 * the recovering of error page, including dropping pages, killing 1301 * processes etc. 1302 * 1303 * The function is primarily of use for corruptions that 1304 * happen outside the current execution context (e.g. when 1305 * detected by a background scrubber) 1306 * 1307 * Can run in IRQ context. 1308 */ 1309 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1310 { 1311 struct memory_failure_cpu *mf_cpu; 1312 unsigned long proc_flags; 1313 struct memory_failure_entry entry = { 1314 .pfn = pfn, 1315 .trapno = trapno, 1316 .flags = flags, 1317 }; 1318 1319 mf_cpu = &get_cpu_var(memory_failure_cpu); 1320 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1321 if (kfifo_put(&mf_cpu->fifo, entry)) 1322 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1323 else 1324 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1325 pfn); 1326 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1327 put_cpu_var(memory_failure_cpu); 1328 } 1329 EXPORT_SYMBOL_GPL(memory_failure_queue); 1330 1331 static void memory_failure_work_func(struct work_struct *work) 1332 { 1333 struct memory_failure_cpu *mf_cpu; 1334 struct memory_failure_entry entry = { 0, }; 1335 unsigned long proc_flags; 1336 int gotten; 1337 1338 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1339 for (;;) { 1340 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1341 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1342 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1343 if (!gotten) 1344 break; 1345 if (entry.flags & MF_SOFT_OFFLINE) 1346 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1347 else 1348 memory_failure(entry.pfn, entry.trapno, entry.flags); 1349 } 1350 } 1351 1352 static int __init memory_failure_init(void) 1353 { 1354 struct memory_failure_cpu *mf_cpu; 1355 int cpu; 1356 1357 for_each_possible_cpu(cpu) { 1358 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1359 spin_lock_init(&mf_cpu->lock); 1360 INIT_KFIFO(mf_cpu->fifo); 1361 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1362 } 1363 1364 return 0; 1365 } 1366 core_initcall(memory_failure_init); 1367 1368 #define unpoison_pr_info(fmt, pfn, rs) \ 1369 ({ \ 1370 if (__ratelimit(rs)) \ 1371 pr_info(fmt, pfn); \ 1372 }) 1373 1374 /** 1375 * unpoison_memory - Unpoison a previously poisoned page 1376 * @pfn: Page number of the to be unpoisoned page 1377 * 1378 * Software-unpoison a page that has been poisoned by 1379 * memory_failure() earlier. 1380 * 1381 * This is only done on the software-level, so it only works 1382 * for linux injected failures, not real hardware failures 1383 * 1384 * Returns 0 for success, otherwise -errno. 1385 */ 1386 int unpoison_memory(unsigned long pfn) 1387 { 1388 struct page *page; 1389 struct page *p; 1390 int freeit = 0; 1391 unsigned int nr_pages; 1392 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1393 DEFAULT_RATELIMIT_BURST); 1394 1395 if (!pfn_valid(pfn)) 1396 return -ENXIO; 1397 1398 p = pfn_to_page(pfn); 1399 page = compound_head(p); 1400 1401 if (!PageHWPoison(p)) { 1402 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1403 pfn, &unpoison_rs); 1404 return 0; 1405 } 1406 1407 if (page_count(page) > 1) { 1408 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1409 pfn, &unpoison_rs); 1410 return 0; 1411 } 1412 1413 if (page_mapped(page)) { 1414 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1415 pfn, &unpoison_rs); 1416 return 0; 1417 } 1418 1419 if (page_mapping(page)) { 1420 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1421 pfn, &unpoison_rs); 1422 return 0; 1423 } 1424 1425 /* 1426 * unpoison_memory() can encounter thp only when the thp is being 1427 * worked by memory_failure() and the page lock is not held yet. 1428 * In such case, we yield to memory_failure() and make unpoison fail. 1429 */ 1430 if (!PageHuge(page) && PageTransHuge(page)) { 1431 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1432 pfn, &unpoison_rs); 1433 return 0; 1434 } 1435 1436 nr_pages = 1 << compound_order(page); 1437 1438 if (!get_hwpoison_page(p)) { 1439 /* 1440 * Since HWPoisoned hugepage should have non-zero refcount, 1441 * race between memory failure and unpoison seems to happen. 1442 * In such case unpoison fails and memory failure runs 1443 * to the end. 1444 */ 1445 if (PageHuge(page)) { 1446 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n", 1447 pfn, &unpoison_rs); 1448 return 0; 1449 } 1450 if (TestClearPageHWPoison(p)) 1451 num_poisoned_pages_dec(); 1452 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1453 pfn, &unpoison_rs); 1454 return 0; 1455 } 1456 1457 lock_page(page); 1458 /* 1459 * This test is racy because PG_hwpoison is set outside of page lock. 1460 * That's acceptable because that won't trigger kernel panic. Instead, 1461 * the PG_hwpoison page will be caught and isolated on the entrance to 1462 * the free buddy page pool. 1463 */ 1464 if (TestClearPageHWPoison(page)) { 1465 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1466 pfn, &unpoison_rs); 1467 num_poisoned_pages_sub(nr_pages); 1468 freeit = 1; 1469 if (PageHuge(page)) 1470 clear_page_hwpoison_huge_page(page); 1471 } 1472 unlock_page(page); 1473 1474 put_hwpoison_page(page); 1475 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1476 put_hwpoison_page(page); 1477 1478 return 0; 1479 } 1480 EXPORT_SYMBOL(unpoison_memory); 1481 1482 static struct page *new_page(struct page *p, unsigned long private, int **x) 1483 { 1484 int nid = page_to_nid(p); 1485 if (PageHuge(p)) 1486 return alloc_huge_page_node(page_hstate(compound_head(p)), 1487 nid); 1488 else 1489 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1490 } 1491 1492 /* 1493 * Safely get reference count of an arbitrary page. 1494 * Returns 0 for a free page, -EIO for a zero refcount page 1495 * that is not free, and 1 for any other page type. 1496 * For 1 the page is returned with increased page count, otherwise not. 1497 */ 1498 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1499 { 1500 int ret; 1501 1502 if (flags & MF_COUNT_INCREASED) 1503 return 1; 1504 1505 /* 1506 * When the target page is a free hugepage, just remove it 1507 * from free hugepage list. 1508 */ 1509 if (!get_hwpoison_page(p)) { 1510 if (PageHuge(p)) { 1511 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1512 ret = 0; 1513 } else if (is_free_buddy_page(p)) { 1514 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1515 ret = 0; 1516 } else { 1517 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1518 __func__, pfn, p->flags); 1519 ret = -EIO; 1520 } 1521 } else { 1522 /* Not a free page */ 1523 ret = 1; 1524 } 1525 return ret; 1526 } 1527 1528 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1529 { 1530 int ret = __get_any_page(page, pfn, flags); 1531 1532 if (ret == 1 && !PageHuge(page) && 1533 !PageLRU(page) && !__PageMovable(page)) { 1534 /* 1535 * Try to free it. 1536 */ 1537 put_hwpoison_page(page); 1538 shake_page(page, 1); 1539 1540 /* 1541 * Did it turn free? 1542 */ 1543 ret = __get_any_page(page, pfn, 0); 1544 if (ret == 1 && !PageLRU(page)) { 1545 /* Drop page reference which is from __get_any_page() */ 1546 put_hwpoison_page(page); 1547 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1548 pfn, page->flags, &page->flags); 1549 return -EIO; 1550 } 1551 } 1552 return ret; 1553 } 1554 1555 static int soft_offline_huge_page(struct page *page, int flags) 1556 { 1557 int ret; 1558 unsigned long pfn = page_to_pfn(page); 1559 struct page *hpage = compound_head(page); 1560 LIST_HEAD(pagelist); 1561 1562 /* 1563 * This double-check of PageHWPoison is to avoid the race with 1564 * memory_failure(). See also comment in __soft_offline_page(). 1565 */ 1566 lock_page(hpage); 1567 if (PageHWPoison(hpage)) { 1568 unlock_page(hpage); 1569 put_hwpoison_page(hpage); 1570 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1571 return -EBUSY; 1572 } 1573 unlock_page(hpage); 1574 1575 ret = isolate_huge_page(hpage, &pagelist); 1576 /* 1577 * get_any_page() and isolate_huge_page() takes a refcount each, 1578 * so need to drop one here. 1579 */ 1580 put_hwpoison_page(hpage); 1581 if (!ret) { 1582 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1583 return -EBUSY; 1584 } 1585 1586 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1587 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1588 if (ret) { 1589 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1590 pfn, ret, page->flags, &page->flags); 1591 /* 1592 * We know that soft_offline_huge_page() tries to migrate 1593 * only one hugepage pointed to by hpage, so we need not 1594 * run through the pagelist here. 1595 */ 1596 putback_active_hugepage(hpage); 1597 if (ret > 0) 1598 ret = -EIO; 1599 } else { 1600 /* overcommit hugetlb page will be freed to buddy */ 1601 if (PageHuge(page)) { 1602 set_page_hwpoison_huge_page(hpage); 1603 dequeue_hwpoisoned_huge_page(hpage); 1604 num_poisoned_pages_add(1 << compound_order(hpage)); 1605 } else { 1606 SetPageHWPoison(page); 1607 num_poisoned_pages_inc(); 1608 } 1609 } 1610 return ret; 1611 } 1612 1613 static int __soft_offline_page(struct page *page, int flags) 1614 { 1615 int ret; 1616 unsigned long pfn = page_to_pfn(page); 1617 1618 /* 1619 * Check PageHWPoison again inside page lock because PageHWPoison 1620 * is set by memory_failure() outside page lock. Note that 1621 * memory_failure() also double-checks PageHWPoison inside page lock, 1622 * so there's no race between soft_offline_page() and memory_failure(). 1623 */ 1624 lock_page(page); 1625 wait_on_page_writeback(page); 1626 if (PageHWPoison(page)) { 1627 unlock_page(page); 1628 put_hwpoison_page(page); 1629 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1630 return -EBUSY; 1631 } 1632 /* 1633 * Try to invalidate first. This should work for 1634 * non dirty unmapped page cache pages. 1635 */ 1636 ret = invalidate_inode_page(page); 1637 unlock_page(page); 1638 /* 1639 * RED-PEN would be better to keep it isolated here, but we 1640 * would need to fix isolation locking first. 1641 */ 1642 if (ret == 1) { 1643 put_hwpoison_page(page); 1644 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1645 SetPageHWPoison(page); 1646 num_poisoned_pages_inc(); 1647 return 0; 1648 } 1649 1650 /* 1651 * Simple invalidation didn't work. 1652 * Try to migrate to a new page instead. migrate.c 1653 * handles a large number of cases for us. 1654 */ 1655 if (PageLRU(page)) 1656 ret = isolate_lru_page(page); 1657 else 1658 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1659 /* 1660 * Drop page reference which is came from get_any_page() 1661 * successful isolate_lru_page() already took another one. 1662 */ 1663 put_hwpoison_page(page); 1664 if (!ret) { 1665 LIST_HEAD(pagelist); 1666 /* 1667 * After isolated lru page, the PageLRU will be cleared, 1668 * so use !__PageMovable instead for LRU page's mapping 1669 * cannot have PAGE_MAPPING_MOVABLE. 1670 */ 1671 if (!__PageMovable(page)) 1672 inc_node_page_state(page, NR_ISOLATED_ANON + 1673 page_is_file_cache(page)); 1674 list_add(&page->lru, &pagelist); 1675 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1676 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1677 if (ret) { 1678 if (!list_empty(&pagelist)) 1679 putback_movable_pages(&pagelist); 1680 1681 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1682 pfn, ret, page->flags, &page->flags); 1683 if (ret > 0) 1684 ret = -EIO; 1685 } 1686 } else { 1687 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1688 pfn, ret, page_count(page), page->flags, &page->flags); 1689 } 1690 return ret; 1691 } 1692 1693 static int soft_offline_in_use_page(struct page *page, int flags) 1694 { 1695 int ret; 1696 struct page *hpage = compound_head(page); 1697 1698 if (!PageHuge(page) && PageTransHuge(hpage)) { 1699 lock_page(hpage); 1700 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1701 unlock_page(hpage); 1702 if (!PageAnon(hpage)) 1703 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1704 else 1705 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1706 put_hwpoison_page(hpage); 1707 return -EBUSY; 1708 } 1709 unlock_page(hpage); 1710 get_hwpoison_page(page); 1711 put_hwpoison_page(hpage); 1712 } 1713 1714 if (PageHuge(page)) 1715 ret = soft_offline_huge_page(page, flags); 1716 else 1717 ret = __soft_offline_page(page, flags); 1718 1719 return ret; 1720 } 1721 1722 static void soft_offline_free_page(struct page *page) 1723 { 1724 if (PageHuge(page)) { 1725 struct page *hpage = compound_head(page); 1726 1727 set_page_hwpoison_huge_page(hpage); 1728 if (!dequeue_hwpoisoned_huge_page(hpage)) 1729 num_poisoned_pages_add(1 << compound_order(hpage)); 1730 } else { 1731 if (!TestSetPageHWPoison(page)) 1732 num_poisoned_pages_inc(); 1733 } 1734 } 1735 1736 /** 1737 * soft_offline_page - Soft offline a page. 1738 * @page: page to offline 1739 * @flags: flags. Same as memory_failure(). 1740 * 1741 * Returns 0 on success, otherwise negated errno. 1742 * 1743 * Soft offline a page, by migration or invalidation, 1744 * without killing anything. This is for the case when 1745 * a page is not corrupted yet (so it's still valid to access), 1746 * but has had a number of corrected errors and is better taken 1747 * out. 1748 * 1749 * The actual policy on when to do that is maintained by 1750 * user space. 1751 * 1752 * This should never impact any application or cause data loss, 1753 * however it might take some time. 1754 * 1755 * This is not a 100% solution for all memory, but tries to be 1756 * ``good enough'' for the majority of memory. 1757 */ 1758 int soft_offline_page(struct page *page, int flags) 1759 { 1760 int ret; 1761 unsigned long pfn = page_to_pfn(page); 1762 1763 if (PageHWPoison(page)) { 1764 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1765 if (flags & MF_COUNT_INCREASED) 1766 put_hwpoison_page(page); 1767 return -EBUSY; 1768 } 1769 1770 get_online_mems(); 1771 ret = get_any_page(page, pfn, flags); 1772 put_online_mems(); 1773 1774 if (ret > 0) 1775 ret = soft_offline_in_use_page(page, flags); 1776 else if (ret == 0) 1777 soft_offline_free_page(page); 1778 1779 return ret; 1780 } 1781