xref: /linux/mm/memory-failure.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68 
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70 
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 /*
78  * Return values:
79  *   1:   the page is dissolved (if needed) and taken off from buddy,
80  *   0:   the page is dissolved (if needed) and not taken off from buddy,
81  *   < 0: failed to dissolve.
82  */
83 static int __page_handle_poison(struct page *page)
84 {
85 	int ret;
86 
87 	zone_pcp_disable(page_zone(page));
88 	ret = dissolve_free_huge_page(page);
89 	if (!ret)
90 		ret = take_page_off_buddy(page);
91 	zone_pcp_enable(page_zone(page));
92 
93 	return ret;
94 }
95 
96 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
97 {
98 	if (hugepage_or_freepage) {
99 		/*
100 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
101 		 * returns 0 for non-hugetlb pages as well.
102 		 */
103 		if (__page_handle_poison(page) <= 0)
104 			/*
105 			 * We could fail to take off the target page from buddy
106 			 * for example due to racy page allocation, but that's
107 			 * acceptable because soft-offlined page is not broken
108 			 * and if someone really want to use it, they should
109 			 * take it.
110 			 */
111 			return false;
112 	}
113 
114 	SetPageHWPoison(page);
115 	if (release)
116 		put_page(page);
117 	page_ref_inc(page);
118 	num_poisoned_pages_inc();
119 
120 	return true;
121 }
122 
123 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
124 
125 u32 hwpoison_filter_enable = 0;
126 u32 hwpoison_filter_dev_major = ~0U;
127 u32 hwpoison_filter_dev_minor = ~0U;
128 u64 hwpoison_filter_flags_mask;
129 u64 hwpoison_filter_flags_value;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
131 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
132 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
133 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
134 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
135 
136 static int hwpoison_filter_dev(struct page *p)
137 {
138 	struct address_space *mapping;
139 	dev_t dev;
140 
141 	if (hwpoison_filter_dev_major == ~0U &&
142 	    hwpoison_filter_dev_minor == ~0U)
143 		return 0;
144 
145 	mapping = page_mapping(p);
146 	if (mapping == NULL || mapping->host == NULL)
147 		return -EINVAL;
148 
149 	dev = mapping->host->i_sb->s_dev;
150 	if (hwpoison_filter_dev_major != ~0U &&
151 	    hwpoison_filter_dev_major != MAJOR(dev))
152 		return -EINVAL;
153 	if (hwpoison_filter_dev_minor != ~0U &&
154 	    hwpoison_filter_dev_minor != MINOR(dev))
155 		return -EINVAL;
156 
157 	return 0;
158 }
159 
160 static int hwpoison_filter_flags(struct page *p)
161 {
162 	if (!hwpoison_filter_flags_mask)
163 		return 0;
164 
165 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
166 				    hwpoison_filter_flags_value)
167 		return 0;
168 	else
169 		return -EINVAL;
170 }
171 
172 /*
173  * This allows stress tests to limit test scope to a collection of tasks
174  * by putting them under some memcg. This prevents killing unrelated/important
175  * processes such as /sbin/init. Note that the target task may share clean
176  * pages with init (eg. libc text), which is harmless. If the target task
177  * share _dirty_ pages with another task B, the test scheme must make sure B
178  * is also included in the memcg. At last, due to race conditions this filter
179  * can only guarantee that the page either belongs to the memcg tasks, or is
180  * a freed page.
181  */
182 #ifdef CONFIG_MEMCG
183 u64 hwpoison_filter_memcg;
184 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
185 static int hwpoison_filter_task(struct page *p)
186 {
187 	if (!hwpoison_filter_memcg)
188 		return 0;
189 
190 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 #else
196 static int hwpoison_filter_task(struct page *p) { return 0; }
197 #endif
198 
199 int hwpoison_filter(struct page *p)
200 {
201 	if (!hwpoison_filter_enable)
202 		return 0;
203 
204 	if (hwpoison_filter_dev(p))
205 		return -EINVAL;
206 
207 	if (hwpoison_filter_flags(p))
208 		return -EINVAL;
209 
210 	if (hwpoison_filter_task(p))
211 		return -EINVAL;
212 
213 	return 0;
214 }
215 #else
216 int hwpoison_filter(struct page *p)
217 {
218 	return 0;
219 }
220 #endif
221 
222 EXPORT_SYMBOL_GPL(hwpoison_filter);
223 
224 /*
225  * Kill all processes that have a poisoned page mapped and then isolate
226  * the page.
227  *
228  * General strategy:
229  * Find all processes having the page mapped and kill them.
230  * But we keep a page reference around so that the page is not
231  * actually freed yet.
232  * Then stash the page away
233  *
234  * There's no convenient way to get back to mapped processes
235  * from the VMAs. So do a brute-force search over all
236  * running processes.
237  *
238  * Remember that machine checks are not common (or rather
239  * if they are common you have other problems), so this shouldn't
240  * be a performance issue.
241  *
242  * Also there are some races possible while we get from the
243  * error detection to actually handle it.
244  */
245 
246 struct to_kill {
247 	struct list_head nd;
248 	struct task_struct *tsk;
249 	unsigned long addr;
250 	short size_shift;
251 };
252 
253 /*
254  * Send all the processes who have the page mapped a signal.
255  * ``action optional'' if they are not immediately affected by the error
256  * ``action required'' if error happened in current execution context
257  */
258 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
259 {
260 	struct task_struct *t = tk->tsk;
261 	short addr_lsb = tk->size_shift;
262 	int ret = 0;
263 
264 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
265 			pfn, t->comm, t->pid);
266 
267 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
268 		ret = force_sig_mceerr(BUS_MCEERR_AR,
269 				 (void __user *)tk->addr, addr_lsb);
270 	else
271 		/*
272 		 * Signal other processes sharing the page if they have
273 		 * PF_MCE_EARLY set.
274 		 * Don't use force here, it's convenient if the signal
275 		 * can be temporarily blocked.
276 		 * This could cause a loop when the user sets SIGBUS
277 		 * to SIG_IGN, but hopefully no one will do that?
278 		 */
279 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
280 				      addr_lsb, t);  /* synchronous? */
281 	if (ret < 0)
282 		pr_info("Error sending signal to %s:%d: %d\n",
283 			t->comm, t->pid, ret);
284 	return ret;
285 }
286 
287 /*
288  * Unknown page type encountered. Try to check whether it can turn PageLRU by
289  * lru_add_drain_all.
290  */
291 void shake_page(struct page *p)
292 {
293 	if (PageHuge(p))
294 		return;
295 
296 	if (!PageSlab(p)) {
297 		lru_add_drain_all();
298 		if (PageLRU(p) || is_free_buddy_page(p))
299 			return;
300 	}
301 
302 	/*
303 	 * TODO: Could shrink slab caches here if a lightweight range-based
304 	 * shrinker will be available.
305 	 */
306 }
307 EXPORT_SYMBOL_GPL(shake_page);
308 
309 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
310 		unsigned long address)
311 {
312 	unsigned long ret = 0;
313 	pgd_t *pgd;
314 	p4d_t *p4d;
315 	pud_t *pud;
316 	pmd_t *pmd;
317 	pte_t *pte;
318 
319 	VM_BUG_ON_VMA(address == -EFAULT, vma);
320 	pgd = pgd_offset(vma->vm_mm, address);
321 	if (!pgd_present(*pgd))
322 		return 0;
323 	p4d = p4d_offset(pgd, address);
324 	if (!p4d_present(*p4d))
325 		return 0;
326 	pud = pud_offset(p4d, address);
327 	if (!pud_present(*pud))
328 		return 0;
329 	if (pud_devmap(*pud))
330 		return PUD_SHIFT;
331 	pmd = pmd_offset(pud, address);
332 	if (!pmd_present(*pmd))
333 		return 0;
334 	if (pmd_devmap(*pmd))
335 		return PMD_SHIFT;
336 	pte = pte_offset_map(pmd, address);
337 	if (pte_present(*pte) && pte_devmap(*pte))
338 		ret = PAGE_SHIFT;
339 	pte_unmap(pte);
340 	return ret;
341 }
342 
343 /*
344  * Failure handling: if we can't find or can't kill a process there's
345  * not much we can do.	We just print a message and ignore otherwise.
346  */
347 
348 /*
349  * Schedule a process for later kill.
350  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
351  *
352  * Notice: @fsdax_pgoff is used only when @p is a fsdax page.
353  *   In other cases, such as anonymous and file-backend page, the address to be
354  *   killed can be caculated by @p itself.
355  */
356 static void add_to_kill(struct task_struct *tsk, struct page *p,
357 			pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
358 			struct list_head *to_kill)
359 {
360 	struct to_kill *tk;
361 
362 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
363 	if (!tk) {
364 		pr_err("Out of memory while machine check handling\n");
365 		return;
366 	}
367 
368 	tk->addr = page_address_in_vma(p, vma);
369 	if (is_zone_device_page(p)) {
370 		/*
371 		 * Since page->mapping is not used for fsdax, we need
372 		 * calculate the address based on the vma.
373 		 */
374 		if (p->pgmap->type == MEMORY_DEVICE_FS_DAX)
375 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
376 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
377 	} else
378 		tk->size_shift = page_shift(compound_head(p));
379 
380 	/*
381 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
382 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
383 	 * so "tk->size_shift == 0" effectively checks no mapping on
384 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
385 	 * to a process' address space, it's possible not all N VMAs
386 	 * contain mappings for the page, but at least one VMA does.
387 	 * Only deliver SIGBUS with payload derived from the VMA that
388 	 * has a mapping for the page.
389 	 */
390 	if (tk->addr == -EFAULT) {
391 		pr_info("Unable to find user space address %lx in %s\n",
392 			page_to_pfn(p), tsk->comm);
393 	} else if (tk->size_shift == 0) {
394 		kfree(tk);
395 		return;
396 	}
397 
398 	get_task_struct(tsk);
399 	tk->tsk = tsk;
400 	list_add_tail(&tk->nd, to_kill);
401 }
402 
403 /*
404  * Kill the processes that have been collected earlier.
405  *
406  * Only do anything when FORCEKILL is set, otherwise just free the
407  * list (this is used for clean pages which do not need killing)
408  * Also when FAIL is set do a force kill because something went
409  * wrong earlier.
410  */
411 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
412 		unsigned long pfn, int flags)
413 {
414 	struct to_kill *tk, *next;
415 
416 	list_for_each_entry_safe (tk, next, to_kill, nd) {
417 		if (forcekill) {
418 			/*
419 			 * In case something went wrong with munmapping
420 			 * make sure the process doesn't catch the
421 			 * signal and then access the memory. Just kill it.
422 			 */
423 			if (fail || tk->addr == -EFAULT) {
424 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
425 				       pfn, tk->tsk->comm, tk->tsk->pid);
426 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
427 						 tk->tsk, PIDTYPE_PID);
428 			}
429 
430 			/*
431 			 * In theory the process could have mapped
432 			 * something else on the address in-between. We could
433 			 * check for that, but we need to tell the
434 			 * process anyways.
435 			 */
436 			else if (kill_proc(tk, pfn, flags) < 0)
437 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
438 				       pfn, tk->tsk->comm, tk->tsk->pid);
439 		}
440 		put_task_struct(tk->tsk);
441 		kfree(tk);
442 	}
443 }
444 
445 /*
446  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
447  * on behalf of the thread group. Return task_struct of the (first found)
448  * dedicated thread if found, and return NULL otherwise.
449  *
450  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
451  * have to call rcu_read_lock/unlock() in this function.
452  */
453 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
454 {
455 	struct task_struct *t;
456 
457 	for_each_thread(tsk, t) {
458 		if (t->flags & PF_MCE_PROCESS) {
459 			if (t->flags & PF_MCE_EARLY)
460 				return t;
461 		} else {
462 			if (sysctl_memory_failure_early_kill)
463 				return t;
464 		}
465 	}
466 	return NULL;
467 }
468 
469 /*
470  * Determine whether a given process is "early kill" process which expects
471  * to be signaled when some page under the process is hwpoisoned.
472  * Return task_struct of the dedicated thread (main thread unless explicitly
473  * specified) if the process is "early kill" and otherwise returns NULL.
474  *
475  * Note that the above is true for Action Optional case. For Action Required
476  * case, it's only meaningful to the current thread which need to be signaled
477  * with SIGBUS, this error is Action Optional for other non current
478  * processes sharing the same error page,if the process is "early kill", the
479  * task_struct of the dedicated thread will also be returned.
480  */
481 static struct task_struct *task_early_kill(struct task_struct *tsk,
482 					   int force_early)
483 {
484 	if (!tsk->mm)
485 		return NULL;
486 	/*
487 	 * Comparing ->mm here because current task might represent
488 	 * a subthread, while tsk always points to the main thread.
489 	 */
490 	if (force_early && tsk->mm == current->mm)
491 		return current;
492 
493 	return find_early_kill_thread(tsk);
494 }
495 
496 /*
497  * Collect processes when the error hit an anonymous page.
498  */
499 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
500 				int force_early)
501 {
502 	struct folio *folio = page_folio(page);
503 	struct vm_area_struct *vma;
504 	struct task_struct *tsk;
505 	struct anon_vma *av;
506 	pgoff_t pgoff;
507 
508 	av = folio_lock_anon_vma_read(folio, NULL);
509 	if (av == NULL)	/* Not actually mapped anymore */
510 		return;
511 
512 	pgoff = page_to_pgoff(page);
513 	read_lock(&tasklist_lock);
514 	for_each_process (tsk) {
515 		struct anon_vma_chain *vmac;
516 		struct task_struct *t = task_early_kill(tsk, force_early);
517 
518 		if (!t)
519 			continue;
520 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
521 					       pgoff, pgoff) {
522 			vma = vmac->vma;
523 			if (!page_mapped_in_vma(page, vma))
524 				continue;
525 			if (vma->vm_mm == t->mm)
526 				add_to_kill(t, page, 0, vma, to_kill);
527 		}
528 	}
529 	read_unlock(&tasklist_lock);
530 	page_unlock_anon_vma_read(av);
531 }
532 
533 /*
534  * Collect processes when the error hit a file mapped page.
535  */
536 static void collect_procs_file(struct page *page, struct list_head *to_kill,
537 				int force_early)
538 {
539 	struct vm_area_struct *vma;
540 	struct task_struct *tsk;
541 	struct address_space *mapping = page->mapping;
542 	pgoff_t pgoff;
543 
544 	i_mmap_lock_read(mapping);
545 	read_lock(&tasklist_lock);
546 	pgoff = page_to_pgoff(page);
547 	for_each_process(tsk) {
548 		struct task_struct *t = task_early_kill(tsk, force_early);
549 
550 		if (!t)
551 			continue;
552 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
553 				      pgoff) {
554 			/*
555 			 * Send early kill signal to tasks where a vma covers
556 			 * the page but the corrupted page is not necessarily
557 			 * mapped it in its pte.
558 			 * Assume applications who requested early kill want
559 			 * to be informed of all such data corruptions.
560 			 */
561 			if (vma->vm_mm == t->mm)
562 				add_to_kill(t, page, 0, vma, to_kill);
563 		}
564 	}
565 	read_unlock(&tasklist_lock);
566 	i_mmap_unlock_read(mapping);
567 }
568 
569 #ifdef CONFIG_FS_DAX
570 /*
571  * Collect processes when the error hit a fsdax page.
572  */
573 static void collect_procs_fsdax(struct page *page,
574 		struct address_space *mapping, pgoff_t pgoff,
575 		struct list_head *to_kill)
576 {
577 	struct vm_area_struct *vma;
578 	struct task_struct *tsk;
579 
580 	i_mmap_lock_read(mapping);
581 	read_lock(&tasklist_lock);
582 	for_each_process(tsk) {
583 		struct task_struct *t = task_early_kill(tsk, true);
584 
585 		if (!t)
586 			continue;
587 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
588 			if (vma->vm_mm == t->mm)
589 				add_to_kill(t, page, pgoff, vma, to_kill);
590 		}
591 	}
592 	read_unlock(&tasklist_lock);
593 	i_mmap_unlock_read(mapping);
594 }
595 #endif /* CONFIG_FS_DAX */
596 
597 /*
598  * Collect the processes who have the corrupted page mapped to kill.
599  */
600 static void collect_procs(struct page *page, struct list_head *tokill,
601 				int force_early)
602 {
603 	if (!page->mapping)
604 		return;
605 
606 	if (PageAnon(page))
607 		collect_procs_anon(page, tokill, force_early);
608 	else
609 		collect_procs_file(page, tokill, force_early);
610 }
611 
612 struct hwp_walk {
613 	struct to_kill tk;
614 	unsigned long pfn;
615 	int flags;
616 };
617 
618 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
619 {
620 	tk->addr = addr;
621 	tk->size_shift = shift;
622 }
623 
624 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
625 				unsigned long poisoned_pfn, struct to_kill *tk)
626 {
627 	unsigned long pfn = 0;
628 
629 	if (pte_present(pte)) {
630 		pfn = pte_pfn(pte);
631 	} else {
632 		swp_entry_t swp = pte_to_swp_entry(pte);
633 
634 		if (is_hwpoison_entry(swp))
635 			pfn = hwpoison_entry_to_pfn(swp);
636 	}
637 
638 	if (!pfn || pfn != poisoned_pfn)
639 		return 0;
640 
641 	set_to_kill(tk, addr, shift);
642 	return 1;
643 }
644 
645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
646 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
647 				      struct hwp_walk *hwp)
648 {
649 	pmd_t pmd = *pmdp;
650 	unsigned long pfn;
651 	unsigned long hwpoison_vaddr;
652 
653 	if (!pmd_present(pmd))
654 		return 0;
655 	pfn = pmd_pfn(pmd);
656 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
657 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
658 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
659 		return 1;
660 	}
661 	return 0;
662 }
663 #else
664 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
665 				      struct hwp_walk *hwp)
666 {
667 	return 0;
668 }
669 #endif
670 
671 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
672 			      unsigned long end, struct mm_walk *walk)
673 {
674 	struct hwp_walk *hwp = walk->private;
675 	int ret = 0;
676 	pte_t *ptep, *mapped_pte;
677 	spinlock_t *ptl;
678 
679 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
680 	if (ptl) {
681 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
682 		spin_unlock(ptl);
683 		goto out;
684 	}
685 
686 	if (pmd_trans_unstable(pmdp))
687 		goto out;
688 
689 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
690 						addr, &ptl);
691 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
692 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
693 					     hwp->pfn, &hwp->tk);
694 		if (ret == 1)
695 			break;
696 	}
697 	pte_unmap_unlock(mapped_pte, ptl);
698 out:
699 	cond_resched();
700 	return ret;
701 }
702 
703 #ifdef CONFIG_HUGETLB_PAGE
704 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
705 			    unsigned long addr, unsigned long end,
706 			    struct mm_walk *walk)
707 {
708 	struct hwp_walk *hwp = walk->private;
709 	pte_t pte = huge_ptep_get(ptep);
710 	struct hstate *h = hstate_vma(walk->vma);
711 
712 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
713 				      hwp->pfn, &hwp->tk);
714 }
715 #else
716 #define hwpoison_hugetlb_range	NULL
717 #endif
718 
719 static const struct mm_walk_ops hwp_walk_ops = {
720 	.pmd_entry = hwpoison_pte_range,
721 	.hugetlb_entry = hwpoison_hugetlb_range,
722 };
723 
724 /*
725  * Sends SIGBUS to the current process with error info.
726  *
727  * This function is intended to handle "Action Required" MCEs on already
728  * hardware poisoned pages. They could happen, for example, when
729  * memory_failure() failed to unmap the error page at the first call, or
730  * when multiple local machine checks happened on different CPUs.
731  *
732  * MCE handler currently has no easy access to the error virtual address,
733  * so this function walks page table to find it. The returned virtual address
734  * is proper in most cases, but it could be wrong when the application
735  * process has multiple entries mapping the error page.
736  */
737 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
738 				  int flags)
739 {
740 	int ret;
741 	struct hwp_walk priv = {
742 		.pfn = pfn,
743 	};
744 	priv.tk.tsk = p;
745 
746 	mmap_read_lock(p->mm);
747 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
748 			      (void *)&priv);
749 	if (ret == 1 && priv.tk.addr)
750 		kill_proc(&priv.tk, pfn, flags);
751 	else
752 		ret = 0;
753 	mmap_read_unlock(p->mm);
754 	return ret > 0 ? -EHWPOISON : -EFAULT;
755 }
756 
757 static const char *action_name[] = {
758 	[MF_IGNORED] = "Ignored",
759 	[MF_FAILED] = "Failed",
760 	[MF_DELAYED] = "Delayed",
761 	[MF_RECOVERED] = "Recovered",
762 };
763 
764 static const char * const action_page_types[] = {
765 	[MF_MSG_KERNEL]			= "reserved kernel page",
766 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
767 	[MF_MSG_SLAB]			= "kernel slab page",
768 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
769 	[MF_MSG_HUGE]			= "huge page",
770 	[MF_MSG_FREE_HUGE]		= "free huge page",
771 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
772 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
773 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
774 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
775 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
776 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
777 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
778 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
779 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
780 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
781 	[MF_MSG_BUDDY]			= "free buddy page",
782 	[MF_MSG_DAX]			= "dax page",
783 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
784 	[MF_MSG_UNKNOWN]		= "unknown page",
785 };
786 
787 /*
788  * XXX: It is possible that a page is isolated from LRU cache,
789  * and then kept in swap cache or failed to remove from page cache.
790  * The page count will stop it from being freed by unpoison.
791  * Stress tests should be aware of this memory leak problem.
792  */
793 static int delete_from_lru_cache(struct page *p)
794 {
795 	if (!isolate_lru_page(p)) {
796 		/*
797 		 * Clear sensible page flags, so that the buddy system won't
798 		 * complain when the page is unpoison-and-freed.
799 		 */
800 		ClearPageActive(p);
801 		ClearPageUnevictable(p);
802 
803 		/*
804 		 * Poisoned page might never drop its ref count to 0 so we have
805 		 * to uncharge it manually from its memcg.
806 		 */
807 		mem_cgroup_uncharge(page_folio(p));
808 
809 		/*
810 		 * drop the page count elevated by isolate_lru_page()
811 		 */
812 		put_page(p);
813 		return 0;
814 	}
815 	return -EIO;
816 }
817 
818 static int truncate_error_page(struct page *p, unsigned long pfn,
819 				struct address_space *mapping)
820 {
821 	int ret = MF_FAILED;
822 
823 	if (mapping->a_ops->error_remove_page) {
824 		int err = mapping->a_ops->error_remove_page(mapping, p);
825 
826 		if (err != 0) {
827 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
828 		} else if (page_has_private(p) &&
829 			   !try_to_release_page(p, GFP_NOIO)) {
830 			pr_info("%#lx: failed to release buffers\n", pfn);
831 		} else {
832 			ret = MF_RECOVERED;
833 		}
834 	} else {
835 		/*
836 		 * If the file system doesn't support it just invalidate
837 		 * This fails on dirty or anything with private pages
838 		 */
839 		if (invalidate_inode_page(p))
840 			ret = MF_RECOVERED;
841 		else
842 			pr_info("%#lx: Failed to invalidate\n",	pfn);
843 	}
844 
845 	return ret;
846 }
847 
848 struct page_state {
849 	unsigned long mask;
850 	unsigned long res;
851 	enum mf_action_page_type type;
852 
853 	/* Callback ->action() has to unlock the relevant page inside it. */
854 	int (*action)(struct page_state *ps, struct page *p);
855 };
856 
857 /*
858  * Return true if page is still referenced by others, otherwise return
859  * false.
860  *
861  * The extra_pins is true when one extra refcount is expected.
862  */
863 static bool has_extra_refcount(struct page_state *ps, struct page *p,
864 			       bool extra_pins)
865 {
866 	int count = page_count(p) - 1;
867 
868 	if (extra_pins)
869 		count -= 1;
870 
871 	if (count > 0) {
872 		pr_err("%#lx: %s still referenced by %d users\n",
873 		       page_to_pfn(p), action_page_types[ps->type], count);
874 		return true;
875 	}
876 
877 	return false;
878 }
879 
880 /*
881  * Error hit kernel page.
882  * Do nothing, try to be lucky and not touch this instead. For a few cases we
883  * could be more sophisticated.
884  */
885 static int me_kernel(struct page_state *ps, struct page *p)
886 {
887 	unlock_page(p);
888 	return MF_IGNORED;
889 }
890 
891 /*
892  * Page in unknown state. Do nothing.
893  */
894 static int me_unknown(struct page_state *ps, struct page *p)
895 {
896 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
897 	unlock_page(p);
898 	return MF_FAILED;
899 }
900 
901 /*
902  * Clean (or cleaned) page cache page.
903  */
904 static int me_pagecache_clean(struct page_state *ps, struct page *p)
905 {
906 	int ret;
907 	struct address_space *mapping;
908 	bool extra_pins;
909 
910 	delete_from_lru_cache(p);
911 
912 	/*
913 	 * For anonymous pages we're done the only reference left
914 	 * should be the one m_f() holds.
915 	 */
916 	if (PageAnon(p)) {
917 		ret = MF_RECOVERED;
918 		goto out;
919 	}
920 
921 	/*
922 	 * Now truncate the page in the page cache. This is really
923 	 * more like a "temporary hole punch"
924 	 * Don't do this for block devices when someone else
925 	 * has a reference, because it could be file system metadata
926 	 * and that's not safe to truncate.
927 	 */
928 	mapping = page_mapping(p);
929 	if (!mapping) {
930 		/*
931 		 * Page has been teared down in the meanwhile
932 		 */
933 		ret = MF_FAILED;
934 		goto out;
935 	}
936 
937 	/*
938 	 * The shmem page is kept in page cache instead of truncating
939 	 * so is expected to have an extra refcount after error-handling.
940 	 */
941 	extra_pins = shmem_mapping(mapping);
942 
943 	/*
944 	 * Truncation is a bit tricky. Enable it per file system for now.
945 	 *
946 	 * Open: to take i_rwsem or not for this? Right now we don't.
947 	 */
948 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
949 	if (has_extra_refcount(ps, p, extra_pins))
950 		ret = MF_FAILED;
951 
952 out:
953 	unlock_page(p);
954 
955 	return ret;
956 }
957 
958 /*
959  * Dirty pagecache page
960  * Issues: when the error hit a hole page the error is not properly
961  * propagated.
962  */
963 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
964 {
965 	struct address_space *mapping = page_mapping(p);
966 
967 	SetPageError(p);
968 	/* TBD: print more information about the file. */
969 	if (mapping) {
970 		/*
971 		 * IO error will be reported by write(), fsync(), etc.
972 		 * who check the mapping.
973 		 * This way the application knows that something went
974 		 * wrong with its dirty file data.
975 		 *
976 		 * There's one open issue:
977 		 *
978 		 * The EIO will be only reported on the next IO
979 		 * operation and then cleared through the IO map.
980 		 * Normally Linux has two mechanisms to pass IO error
981 		 * first through the AS_EIO flag in the address space
982 		 * and then through the PageError flag in the page.
983 		 * Since we drop pages on memory failure handling the
984 		 * only mechanism open to use is through AS_AIO.
985 		 *
986 		 * This has the disadvantage that it gets cleared on
987 		 * the first operation that returns an error, while
988 		 * the PageError bit is more sticky and only cleared
989 		 * when the page is reread or dropped.  If an
990 		 * application assumes it will always get error on
991 		 * fsync, but does other operations on the fd before
992 		 * and the page is dropped between then the error
993 		 * will not be properly reported.
994 		 *
995 		 * This can already happen even without hwpoisoned
996 		 * pages: first on metadata IO errors (which only
997 		 * report through AS_EIO) or when the page is dropped
998 		 * at the wrong time.
999 		 *
1000 		 * So right now we assume that the application DTRT on
1001 		 * the first EIO, but we're not worse than other parts
1002 		 * of the kernel.
1003 		 */
1004 		mapping_set_error(mapping, -EIO);
1005 	}
1006 
1007 	return me_pagecache_clean(ps, p);
1008 }
1009 
1010 /*
1011  * Clean and dirty swap cache.
1012  *
1013  * Dirty swap cache page is tricky to handle. The page could live both in page
1014  * cache and swap cache(ie. page is freshly swapped in). So it could be
1015  * referenced concurrently by 2 types of PTEs:
1016  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1017  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1018  * and then
1019  *      - clear dirty bit to prevent IO
1020  *      - remove from LRU
1021  *      - but keep in the swap cache, so that when we return to it on
1022  *        a later page fault, we know the application is accessing
1023  *        corrupted data and shall be killed (we installed simple
1024  *        interception code in do_swap_page to catch it).
1025  *
1026  * Clean swap cache pages can be directly isolated. A later page fault will
1027  * bring in the known good data from disk.
1028  */
1029 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1030 {
1031 	int ret;
1032 	bool extra_pins = false;
1033 
1034 	ClearPageDirty(p);
1035 	/* Trigger EIO in shmem: */
1036 	ClearPageUptodate(p);
1037 
1038 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1039 	unlock_page(p);
1040 
1041 	if (ret == MF_DELAYED)
1042 		extra_pins = true;
1043 
1044 	if (has_extra_refcount(ps, p, extra_pins))
1045 		ret = MF_FAILED;
1046 
1047 	return ret;
1048 }
1049 
1050 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1051 {
1052 	struct folio *folio = page_folio(p);
1053 	int ret;
1054 
1055 	delete_from_swap_cache(folio);
1056 
1057 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1058 	folio_unlock(folio);
1059 
1060 	if (has_extra_refcount(ps, p, false))
1061 		ret = MF_FAILED;
1062 
1063 	return ret;
1064 }
1065 
1066 /*
1067  * Huge pages. Needs work.
1068  * Issues:
1069  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1070  *   To narrow down kill region to one page, we need to break up pmd.
1071  */
1072 static int me_huge_page(struct page_state *ps, struct page *p)
1073 {
1074 	int res;
1075 	struct page *hpage = compound_head(p);
1076 	struct address_space *mapping;
1077 
1078 	if (!PageHuge(hpage))
1079 		return MF_DELAYED;
1080 
1081 	mapping = page_mapping(hpage);
1082 	if (mapping) {
1083 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1084 		unlock_page(hpage);
1085 	} else {
1086 		unlock_page(hpage);
1087 		/*
1088 		 * migration entry prevents later access on error hugepage,
1089 		 * so we can free and dissolve it into buddy to save healthy
1090 		 * subpages.
1091 		 */
1092 		put_page(hpage);
1093 		if (__page_handle_poison(p) >= 0) {
1094 			page_ref_inc(p);
1095 			res = MF_RECOVERED;
1096 		} else {
1097 			res = MF_FAILED;
1098 		}
1099 	}
1100 
1101 	if (has_extra_refcount(ps, p, false))
1102 		res = MF_FAILED;
1103 
1104 	return res;
1105 }
1106 
1107 /*
1108  * Various page states we can handle.
1109  *
1110  * A page state is defined by its current page->flags bits.
1111  * The table matches them in order and calls the right handler.
1112  *
1113  * This is quite tricky because we can access page at any time
1114  * in its live cycle, so all accesses have to be extremely careful.
1115  *
1116  * This is not complete. More states could be added.
1117  * For any missing state don't attempt recovery.
1118  */
1119 
1120 #define dirty		(1UL << PG_dirty)
1121 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1122 #define unevict		(1UL << PG_unevictable)
1123 #define mlock		(1UL << PG_mlocked)
1124 #define lru		(1UL << PG_lru)
1125 #define head		(1UL << PG_head)
1126 #define slab		(1UL << PG_slab)
1127 #define reserved	(1UL << PG_reserved)
1128 
1129 static struct page_state error_states[] = {
1130 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1131 	/*
1132 	 * free pages are specially detected outside this table:
1133 	 * PG_buddy pages only make a small fraction of all free pages.
1134 	 */
1135 
1136 	/*
1137 	 * Could in theory check if slab page is free or if we can drop
1138 	 * currently unused objects without touching them. But just
1139 	 * treat it as standard kernel for now.
1140 	 */
1141 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1142 
1143 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1144 
1145 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1146 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1147 
1148 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1149 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1150 
1151 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1152 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1153 
1154 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1155 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1156 
1157 	/*
1158 	 * Catchall entry: must be at end.
1159 	 */
1160 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1161 };
1162 
1163 #undef dirty
1164 #undef sc
1165 #undef unevict
1166 #undef mlock
1167 #undef lru
1168 #undef head
1169 #undef slab
1170 #undef reserved
1171 
1172 /*
1173  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1174  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1175  */
1176 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1177 			  enum mf_result result)
1178 {
1179 	trace_memory_failure_event(pfn, type, result);
1180 
1181 	num_poisoned_pages_inc();
1182 	pr_err("%#lx: recovery action for %s: %s\n",
1183 		pfn, action_page_types[type], action_name[result]);
1184 }
1185 
1186 static int page_action(struct page_state *ps, struct page *p,
1187 			unsigned long pfn)
1188 {
1189 	int result;
1190 
1191 	/* page p should be unlocked after returning from ps->action().  */
1192 	result = ps->action(ps, p);
1193 
1194 	action_result(pfn, ps->type, result);
1195 
1196 	/* Could do more checks here if page looks ok */
1197 	/*
1198 	 * Could adjust zone counters here to correct for the missing page.
1199 	 */
1200 
1201 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1202 }
1203 
1204 static inline bool PageHWPoisonTakenOff(struct page *page)
1205 {
1206 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1207 }
1208 
1209 void SetPageHWPoisonTakenOff(struct page *page)
1210 {
1211 	set_page_private(page, MAGIC_HWPOISON);
1212 }
1213 
1214 void ClearPageHWPoisonTakenOff(struct page *page)
1215 {
1216 	if (PageHWPoison(page))
1217 		set_page_private(page, 0);
1218 }
1219 
1220 /*
1221  * Return true if a page type of a given page is supported by hwpoison
1222  * mechanism (while handling could fail), otherwise false.  This function
1223  * does not return true for hugetlb or device memory pages, so it's assumed
1224  * to be called only in the context where we never have such pages.
1225  */
1226 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1227 {
1228 	/* Soft offline could migrate non-LRU movable pages */
1229 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1230 		return true;
1231 
1232 	return PageLRU(page) || is_free_buddy_page(page);
1233 }
1234 
1235 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1236 {
1237 	struct page *head = compound_head(page);
1238 	int ret = 0;
1239 	bool hugetlb = false;
1240 
1241 	ret = get_hwpoison_huge_page(head, &hugetlb);
1242 	if (hugetlb)
1243 		return ret;
1244 
1245 	/*
1246 	 * This check prevents from calling get_hwpoison_unless_zero()
1247 	 * for any unsupported type of page in order to reduce the risk of
1248 	 * unexpected races caused by taking a page refcount.
1249 	 */
1250 	if (!HWPoisonHandlable(head, flags))
1251 		return -EBUSY;
1252 
1253 	if (get_page_unless_zero(head)) {
1254 		if (head == compound_head(page))
1255 			return 1;
1256 
1257 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1258 		put_page(head);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static int get_any_page(struct page *p, unsigned long flags)
1265 {
1266 	int ret = 0, pass = 0;
1267 	bool count_increased = false;
1268 
1269 	if (flags & MF_COUNT_INCREASED)
1270 		count_increased = true;
1271 
1272 try_again:
1273 	if (!count_increased) {
1274 		ret = __get_hwpoison_page(p, flags);
1275 		if (!ret) {
1276 			if (page_count(p)) {
1277 				/* We raced with an allocation, retry. */
1278 				if (pass++ < 3)
1279 					goto try_again;
1280 				ret = -EBUSY;
1281 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1282 				/* We raced with put_page, retry. */
1283 				if (pass++ < 3)
1284 					goto try_again;
1285 				ret = -EIO;
1286 			}
1287 			goto out;
1288 		} else if (ret == -EBUSY) {
1289 			/*
1290 			 * We raced with (possibly temporary) unhandlable
1291 			 * page, retry.
1292 			 */
1293 			if (pass++ < 3) {
1294 				shake_page(p);
1295 				goto try_again;
1296 			}
1297 			ret = -EIO;
1298 			goto out;
1299 		}
1300 	}
1301 
1302 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1303 		ret = 1;
1304 	} else {
1305 		/*
1306 		 * A page we cannot handle. Check whether we can turn
1307 		 * it into something we can handle.
1308 		 */
1309 		if (pass++ < 3) {
1310 			put_page(p);
1311 			shake_page(p);
1312 			count_increased = false;
1313 			goto try_again;
1314 		}
1315 		put_page(p);
1316 		ret = -EIO;
1317 	}
1318 out:
1319 	if (ret == -EIO)
1320 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1321 
1322 	return ret;
1323 }
1324 
1325 static int __get_unpoison_page(struct page *page)
1326 {
1327 	struct page *head = compound_head(page);
1328 	int ret = 0;
1329 	bool hugetlb = false;
1330 
1331 	ret = get_hwpoison_huge_page(head, &hugetlb);
1332 	if (hugetlb)
1333 		return ret;
1334 
1335 	/*
1336 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1337 	 * but also isolated from buddy freelist, so need to identify the
1338 	 * state and have to cancel both operations to unpoison.
1339 	 */
1340 	if (PageHWPoisonTakenOff(page))
1341 		return -EHWPOISON;
1342 
1343 	return get_page_unless_zero(page) ? 1 : 0;
1344 }
1345 
1346 /**
1347  * get_hwpoison_page() - Get refcount for memory error handling
1348  * @p:		Raw error page (hit by memory error)
1349  * @flags:	Flags controlling behavior of error handling
1350  *
1351  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1352  * error on it, after checking that the error page is in a well-defined state
1353  * (defined as a page-type we can successfully handle the memory error on it,
1354  * such as LRU page and hugetlb page).
1355  *
1356  * Memory error handling could be triggered at any time on any type of page,
1357  * so it's prone to race with typical memory management lifecycle (like
1358  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1359  * extra care for the error page's state (as done in __get_hwpoison_page()),
1360  * and has some retry logic in get_any_page().
1361  *
1362  * When called from unpoison_memory(), the caller should already ensure that
1363  * the given page has PG_hwpoison. So it's never reused for other page
1364  * allocations, and __get_unpoison_page() never races with them.
1365  *
1366  * Return: 0 on failure,
1367  *         1 on success for in-use pages in a well-defined state,
1368  *         -EIO for pages on which we can not handle memory errors,
1369  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1370  *         operations like allocation and free,
1371  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1372  */
1373 static int get_hwpoison_page(struct page *p, unsigned long flags)
1374 {
1375 	int ret;
1376 
1377 	zone_pcp_disable(page_zone(p));
1378 	if (flags & MF_UNPOISON)
1379 		ret = __get_unpoison_page(p);
1380 	else
1381 		ret = get_any_page(p, flags);
1382 	zone_pcp_enable(page_zone(p));
1383 
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Do all that is necessary to remove user space mappings. Unmap
1389  * the pages and send SIGBUS to the processes if the data was dirty.
1390  */
1391 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1392 				  int flags, struct page *hpage)
1393 {
1394 	struct folio *folio = page_folio(hpage);
1395 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1396 	struct address_space *mapping;
1397 	LIST_HEAD(tokill);
1398 	bool unmap_success;
1399 	int kill = 1, forcekill;
1400 	bool mlocked = PageMlocked(hpage);
1401 
1402 	/*
1403 	 * Here we are interested only in user-mapped pages, so skip any
1404 	 * other types of pages.
1405 	 */
1406 	if (PageReserved(p) || PageSlab(p))
1407 		return true;
1408 	if (!(PageLRU(hpage) || PageHuge(p)))
1409 		return true;
1410 
1411 	/*
1412 	 * This check implies we don't kill processes if their pages
1413 	 * are in the swap cache early. Those are always late kills.
1414 	 */
1415 	if (!page_mapped(hpage))
1416 		return true;
1417 
1418 	if (PageKsm(p)) {
1419 		pr_err("%#lx: can't handle KSM pages.\n", pfn);
1420 		return false;
1421 	}
1422 
1423 	if (PageSwapCache(p)) {
1424 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1425 		ttu |= TTU_IGNORE_HWPOISON;
1426 	}
1427 
1428 	/*
1429 	 * Propagate the dirty bit from PTEs to struct page first, because we
1430 	 * need this to decide if we should kill or just drop the page.
1431 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1432 	 * be called inside page lock (it's recommended but not enforced).
1433 	 */
1434 	mapping = page_mapping(hpage);
1435 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1436 	    mapping_can_writeback(mapping)) {
1437 		if (page_mkclean(hpage)) {
1438 			SetPageDirty(hpage);
1439 		} else {
1440 			kill = 0;
1441 			ttu |= TTU_IGNORE_HWPOISON;
1442 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1443 				pfn);
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * First collect all the processes that have the page
1449 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1450 	 * because ttu takes the rmap data structures down.
1451 	 *
1452 	 * Error handling: We ignore errors here because
1453 	 * there's nothing that can be done.
1454 	 */
1455 	if (kill)
1456 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1457 
1458 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1459 		/*
1460 		 * For hugetlb pages in shared mappings, try_to_unmap
1461 		 * could potentially call huge_pmd_unshare.  Because of
1462 		 * this, take semaphore in write mode here and set
1463 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1464 		 * at this higher level.
1465 		 */
1466 		mapping = hugetlb_page_mapping_lock_write(hpage);
1467 		if (mapping) {
1468 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1469 			i_mmap_unlock_write(mapping);
1470 		} else
1471 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1472 	} else {
1473 		try_to_unmap(folio, ttu);
1474 	}
1475 
1476 	unmap_success = !page_mapped(hpage);
1477 	if (!unmap_success)
1478 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1479 		       pfn, page_mapcount(hpage));
1480 
1481 	/*
1482 	 * try_to_unmap() might put mlocked page in lru cache, so call
1483 	 * shake_page() again to ensure that it's flushed.
1484 	 */
1485 	if (mlocked)
1486 		shake_page(hpage);
1487 
1488 	/*
1489 	 * Now that the dirty bit has been propagated to the
1490 	 * struct page and all unmaps done we can decide if
1491 	 * killing is needed or not.  Only kill when the page
1492 	 * was dirty or the process is not restartable,
1493 	 * otherwise the tokill list is merely
1494 	 * freed.  When there was a problem unmapping earlier
1495 	 * use a more force-full uncatchable kill to prevent
1496 	 * any accesses to the poisoned memory.
1497 	 */
1498 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1499 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1500 
1501 	return unmap_success;
1502 }
1503 
1504 static int identify_page_state(unsigned long pfn, struct page *p,
1505 				unsigned long page_flags)
1506 {
1507 	struct page_state *ps;
1508 
1509 	/*
1510 	 * The first check uses the current page flags which may not have any
1511 	 * relevant information. The second check with the saved page flags is
1512 	 * carried out only if the first check can't determine the page status.
1513 	 */
1514 	for (ps = error_states;; ps++)
1515 		if ((p->flags & ps->mask) == ps->res)
1516 			break;
1517 
1518 	page_flags |= (p->flags & (1UL << PG_dirty));
1519 
1520 	if (!ps->mask)
1521 		for (ps = error_states;; ps++)
1522 			if ((page_flags & ps->mask) == ps->res)
1523 				break;
1524 	return page_action(ps, p, pfn);
1525 }
1526 
1527 static int try_to_split_thp_page(struct page *page, const char *msg)
1528 {
1529 	lock_page(page);
1530 	if (unlikely(split_huge_page(page))) {
1531 		unsigned long pfn = page_to_pfn(page);
1532 
1533 		unlock_page(page);
1534 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1535 		put_page(page);
1536 		return -EBUSY;
1537 	}
1538 	unlock_page(page);
1539 
1540 	return 0;
1541 }
1542 
1543 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1544 		struct address_space *mapping, pgoff_t index, int flags)
1545 {
1546 	struct to_kill *tk;
1547 	unsigned long size = 0;
1548 
1549 	list_for_each_entry(tk, to_kill, nd)
1550 		if (tk->size_shift)
1551 			size = max(size, 1UL << tk->size_shift);
1552 
1553 	if (size) {
1554 		/*
1555 		 * Unmap the largest mapping to avoid breaking up device-dax
1556 		 * mappings which are constant size. The actual size of the
1557 		 * mapping being torn down is communicated in siginfo, see
1558 		 * kill_proc()
1559 		 */
1560 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1561 
1562 		unmap_mapping_range(mapping, start, size, 0);
1563 	}
1564 
1565 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1566 }
1567 
1568 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1569 		struct dev_pagemap *pgmap)
1570 {
1571 	struct page *page = pfn_to_page(pfn);
1572 	LIST_HEAD(to_kill);
1573 	dax_entry_t cookie;
1574 	int rc = 0;
1575 
1576 	/*
1577 	 * Pages instantiated by device-dax (not filesystem-dax)
1578 	 * may be compound pages.
1579 	 */
1580 	page = compound_head(page);
1581 
1582 	/*
1583 	 * Prevent the inode from being freed while we are interrogating
1584 	 * the address_space, typically this would be handled by
1585 	 * lock_page(), but dax pages do not use the page lock. This
1586 	 * also prevents changes to the mapping of this pfn until
1587 	 * poison signaling is complete.
1588 	 */
1589 	cookie = dax_lock_page(page);
1590 	if (!cookie)
1591 		return -EBUSY;
1592 
1593 	if (hwpoison_filter(page)) {
1594 		rc = -EOPNOTSUPP;
1595 		goto unlock;
1596 	}
1597 
1598 	switch (pgmap->type) {
1599 	case MEMORY_DEVICE_PRIVATE:
1600 	case MEMORY_DEVICE_COHERENT:
1601 		/*
1602 		 * TODO: Handle device pages which may need coordination
1603 		 * with device-side memory.
1604 		 */
1605 		rc = -ENXIO;
1606 		goto unlock;
1607 	default:
1608 		break;
1609 	}
1610 
1611 	/*
1612 	 * Use this flag as an indication that the dax page has been
1613 	 * remapped UC to prevent speculative consumption of poison.
1614 	 */
1615 	SetPageHWPoison(page);
1616 
1617 	/*
1618 	 * Unlike System-RAM there is no possibility to swap in a
1619 	 * different physical page at a given virtual address, so all
1620 	 * userspace consumption of ZONE_DEVICE memory necessitates
1621 	 * SIGBUS (i.e. MF_MUST_KILL)
1622 	 */
1623 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1624 	collect_procs(page, &to_kill, true);
1625 
1626 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1627 unlock:
1628 	dax_unlock_page(page, cookie);
1629 	return rc;
1630 }
1631 
1632 #ifdef CONFIG_FS_DAX
1633 /**
1634  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1635  * @mapping:	address_space of the file in use
1636  * @index:	start pgoff of the range within the file
1637  * @count:	length of the range, in unit of PAGE_SIZE
1638  * @mf_flags:	memory failure flags
1639  */
1640 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1641 		unsigned long count, int mf_flags)
1642 {
1643 	LIST_HEAD(to_kill);
1644 	dax_entry_t cookie;
1645 	struct page *page;
1646 	size_t end = index + count;
1647 
1648 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1649 
1650 	for (; index < end; index++) {
1651 		page = NULL;
1652 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1653 		if (!cookie)
1654 			return -EBUSY;
1655 		if (!page)
1656 			goto unlock;
1657 
1658 		SetPageHWPoison(page);
1659 
1660 		collect_procs_fsdax(page, mapping, index, &to_kill);
1661 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1662 				index, mf_flags);
1663 unlock:
1664 		dax_unlock_mapping_entry(mapping, index, cookie);
1665 	}
1666 	return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1669 #endif /* CONFIG_FS_DAX */
1670 
1671 #ifdef CONFIG_HUGETLB_PAGE
1672 /*
1673  * Struct raw_hwp_page represents information about "raw error page",
1674  * constructing singly linked list originated from ->private field of
1675  * SUBPAGE_INDEX_HWPOISON-th tail page.
1676  */
1677 struct raw_hwp_page {
1678 	struct llist_node node;
1679 	struct page *page;
1680 };
1681 
1682 static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1683 {
1684 	return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON);
1685 }
1686 
1687 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1688 {
1689 	struct llist_head *head;
1690 	struct llist_node *t, *tnode;
1691 	unsigned long count = 0;
1692 
1693 	head = raw_hwp_list_head(hpage);
1694 	llist_for_each_safe(tnode, t, head->first) {
1695 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1696 
1697 		if (move_flag)
1698 			SetPageHWPoison(p->page);
1699 		kfree(p);
1700 		count++;
1701 	}
1702 	llist_del_all(head);
1703 	return count;
1704 }
1705 
1706 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1707 {
1708 	struct llist_head *head;
1709 	struct raw_hwp_page *raw_hwp;
1710 	struct llist_node *t, *tnode;
1711 	int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1712 
1713 	/*
1714 	 * Once the hwpoison hugepage has lost reliable raw error info,
1715 	 * there is little meaning to keep additional error info precisely,
1716 	 * so skip to add additional raw error info.
1717 	 */
1718 	if (HPageRawHwpUnreliable(hpage))
1719 		return -EHWPOISON;
1720 	head = raw_hwp_list_head(hpage);
1721 	llist_for_each_safe(tnode, t, head->first) {
1722 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1723 
1724 		if (p->page == page)
1725 			return -EHWPOISON;
1726 	}
1727 
1728 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1729 	if (raw_hwp) {
1730 		raw_hwp->page = page;
1731 		llist_add(&raw_hwp->node, head);
1732 		/* the first error event will be counted in action_result(). */
1733 		if (ret)
1734 			num_poisoned_pages_inc();
1735 	} else {
1736 		/*
1737 		 * Failed to save raw error info.  We no longer trace all
1738 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1739 		 * this hwpoisoned hugepage.
1740 		 */
1741 		SetHPageRawHwpUnreliable(hpage);
1742 		/*
1743 		 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1744 		 * used any more, so free it.
1745 		 */
1746 		__free_raw_hwp_pages(hpage, false);
1747 	}
1748 	return ret;
1749 }
1750 
1751 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1752 {
1753 	/*
1754 	 * HPageVmemmapOptimized hugepages can't be freed because struct
1755 	 * pages for tail pages are required but they don't exist.
1756 	 */
1757 	if (move_flag && HPageVmemmapOptimized(hpage))
1758 		return 0;
1759 
1760 	/*
1761 	 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1762 	 * definition.
1763 	 */
1764 	if (HPageRawHwpUnreliable(hpage))
1765 		return 0;
1766 
1767 	return __free_raw_hwp_pages(hpage, move_flag);
1768 }
1769 
1770 void hugetlb_clear_page_hwpoison(struct page *hpage)
1771 {
1772 	if (HPageRawHwpUnreliable(hpage))
1773 		return;
1774 	ClearPageHWPoison(hpage);
1775 	free_raw_hwp_pages(hpage, true);
1776 }
1777 
1778 /*
1779  * Called from hugetlb code with hugetlb_lock held.
1780  *
1781  * Return values:
1782  *   0             - free hugepage
1783  *   1             - in-use hugepage
1784  *   2             - not a hugepage
1785  *   -EBUSY        - the hugepage is busy (try to retry)
1786  *   -EHWPOISON    - the hugepage is already hwpoisoned
1787  */
1788 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1789 {
1790 	struct page *page = pfn_to_page(pfn);
1791 	struct page *head = compound_head(page);
1792 	int ret = 2;	/* fallback to normal page handling */
1793 	bool count_increased = false;
1794 
1795 	if (!PageHeadHuge(head))
1796 		goto out;
1797 
1798 	if (flags & MF_COUNT_INCREASED) {
1799 		ret = 1;
1800 		count_increased = true;
1801 	} else if (HPageFreed(head)) {
1802 		ret = 0;
1803 	} else if (HPageMigratable(head)) {
1804 		ret = get_page_unless_zero(head);
1805 		if (ret)
1806 			count_increased = true;
1807 	} else {
1808 		ret = -EBUSY;
1809 		if (!(flags & MF_NO_RETRY))
1810 			goto out;
1811 	}
1812 
1813 	if (hugetlb_set_page_hwpoison(head, page)) {
1814 		ret = -EHWPOISON;
1815 		goto out;
1816 	}
1817 
1818 	return ret;
1819 out:
1820 	if (count_increased)
1821 		put_page(head);
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Taking refcount of hugetlb pages needs extra care about race conditions
1827  * with basic operations like hugepage allocation/free/demotion.
1828  * So some of prechecks for hwpoison (pinning, and testing/setting
1829  * PageHWPoison) should be done in single hugetlb_lock range.
1830  */
1831 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1832 {
1833 	int res;
1834 	struct page *p = pfn_to_page(pfn);
1835 	struct page *head;
1836 	unsigned long page_flags;
1837 
1838 	*hugetlb = 1;
1839 retry:
1840 	res = get_huge_page_for_hwpoison(pfn, flags);
1841 	if (res == 2) { /* fallback to normal page handling */
1842 		*hugetlb = 0;
1843 		return 0;
1844 	} else if (res == -EHWPOISON) {
1845 		pr_err("%#lx: already hardware poisoned\n", pfn);
1846 		if (flags & MF_ACTION_REQUIRED) {
1847 			head = compound_head(p);
1848 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1849 		}
1850 		return res;
1851 	} else if (res == -EBUSY) {
1852 		if (!(flags & MF_NO_RETRY)) {
1853 			flags |= MF_NO_RETRY;
1854 			goto retry;
1855 		}
1856 		action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1857 		return res;
1858 	}
1859 
1860 	head = compound_head(p);
1861 	lock_page(head);
1862 
1863 	if (hwpoison_filter(p)) {
1864 		hugetlb_clear_page_hwpoison(head);
1865 		res = -EOPNOTSUPP;
1866 		goto out;
1867 	}
1868 
1869 	/*
1870 	 * Handling free hugepage.  The possible race with hugepage allocation
1871 	 * or demotion can be prevented by PageHWPoison flag.
1872 	 */
1873 	if (res == 0) {
1874 		unlock_page(head);
1875 		if (__page_handle_poison(p) >= 0) {
1876 			page_ref_inc(p);
1877 			res = MF_RECOVERED;
1878 		} else {
1879 			res = MF_FAILED;
1880 		}
1881 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1882 		return res == MF_RECOVERED ? 0 : -EBUSY;
1883 	}
1884 
1885 	page_flags = head->flags;
1886 
1887 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1888 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1889 		res = -EBUSY;
1890 		goto out;
1891 	}
1892 
1893 	return identify_page_state(pfn, p, page_flags);
1894 out:
1895 	unlock_page(head);
1896 	return res;
1897 }
1898 
1899 #else
1900 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1901 {
1902 	return 0;
1903 }
1904 
1905 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1906 {
1907 	return 0;
1908 }
1909 #endif	/* CONFIG_HUGETLB_PAGE */
1910 
1911 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1912 		struct dev_pagemap *pgmap)
1913 {
1914 	struct page *page = pfn_to_page(pfn);
1915 	int rc = -ENXIO;
1916 
1917 	if (flags & MF_COUNT_INCREASED)
1918 		/*
1919 		 * Drop the extra refcount in case we come from madvise().
1920 		 */
1921 		put_page(page);
1922 
1923 	/* device metadata space is not recoverable */
1924 	if (!pgmap_pfn_valid(pgmap, pfn))
1925 		goto out;
1926 
1927 	/*
1928 	 * Call driver's implementation to handle the memory failure, otherwise
1929 	 * fall back to generic handler.
1930 	 */
1931 	if (pgmap->ops->memory_failure) {
1932 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1933 		/*
1934 		 * Fall back to generic handler too if operation is not
1935 		 * supported inside the driver/device/filesystem.
1936 		 */
1937 		if (rc != -EOPNOTSUPP)
1938 			goto out;
1939 	}
1940 
1941 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
1942 out:
1943 	/* drop pgmap ref acquired in caller */
1944 	put_dev_pagemap(pgmap);
1945 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1946 	return rc;
1947 }
1948 
1949 static DEFINE_MUTEX(mf_mutex);
1950 
1951 /**
1952  * memory_failure - Handle memory failure of a page.
1953  * @pfn: Page Number of the corrupted page
1954  * @flags: fine tune action taken
1955  *
1956  * This function is called by the low level machine check code
1957  * of an architecture when it detects hardware memory corruption
1958  * of a page. It tries its best to recover, which includes
1959  * dropping pages, killing processes etc.
1960  *
1961  * The function is primarily of use for corruptions that
1962  * happen outside the current execution context (e.g. when
1963  * detected by a background scrubber)
1964  *
1965  * Must run in process context (e.g. a work queue) with interrupts
1966  * enabled and no spinlocks hold.
1967  *
1968  * Return: 0 for successfully handled the memory error,
1969  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1970  *         < 0(except -EOPNOTSUPP) on failure.
1971  */
1972 int memory_failure(unsigned long pfn, int flags)
1973 {
1974 	struct page *p;
1975 	struct page *hpage;
1976 	struct dev_pagemap *pgmap;
1977 	int res = 0;
1978 	unsigned long page_flags;
1979 	bool retry = true;
1980 	int hugetlb = 0;
1981 
1982 	if (!sysctl_memory_failure_recovery)
1983 		panic("Memory failure on page %lx", pfn);
1984 
1985 	mutex_lock(&mf_mutex);
1986 
1987 	if (!(flags & MF_SW_SIMULATED))
1988 		hw_memory_failure = true;
1989 
1990 	p = pfn_to_online_page(pfn);
1991 	if (!p) {
1992 		res = arch_memory_failure(pfn, flags);
1993 		if (res == 0)
1994 			goto unlock_mutex;
1995 
1996 		if (pfn_valid(pfn)) {
1997 			pgmap = get_dev_pagemap(pfn, NULL);
1998 			if (pgmap) {
1999 				res = memory_failure_dev_pagemap(pfn, flags,
2000 								 pgmap);
2001 				goto unlock_mutex;
2002 			}
2003 		}
2004 		pr_err("%#lx: memory outside kernel control\n", pfn);
2005 		res = -ENXIO;
2006 		goto unlock_mutex;
2007 	}
2008 
2009 try_again:
2010 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2011 	if (hugetlb)
2012 		goto unlock_mutex;
2013 
2014 	if (TestSetPageHWPoison(p)) {
2015 		pr_err("%#lx: already hardware poisoned\n", pfn);
2016 		res = -EHWPOISON;
2017 		if (flags & MF_ACTION_REQUIRED)
2018 			res = kill_accessing_process(current, pfn, flags);
2019 		if (flags & MF_COUNT_INCREASED)
2020 			put_page(p);
2021 		goto unlock_mutex;
2022 	}
2023 
2024 	hpage = compound_head(p);
2025 
2026 	/*
2027 	 * We need/can do nothing about count=0 pages.
2028 	 * 1) it's a free page, and therefore in safe hand:
2029 	 *    prep_new_page() will be the gate keeper.
2030 	 * 2) it's part of a non-compound high order page.
2031 	 *    Implies some kernel user: cannot stop them from
2032 	 *    R/W the page; let's pray that the page has been
2033 	 *    used and will be freed some time later.
2034 	 * In fact it's dangerous to directly bump up page count from 0,
2035 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2036 	 */
2037 	if (!(flags & MF_COUNT_INCREASED)) {
2038 		res = get_hwpoison_page(p, flags);
2039 		if (!res) {
2040 			if (is_free_buddy_page(p)) {
2041 				if (take_page_off_buddy(p)) {
2042 					page_ref_inc(p);
2043 					res = MF_RECOVERED;
2044 				} else {
2045 					/* We lost the race, try again */
2046 					if (retry) {
2047 						ClearPageHWPoison(p);
2048 						retry = false;
2049 						goto try_again;
2050 					}
2051 					res = MF_FAILED;
2052 				}
2053 				action_result(pfn, MF_MSG_BUDDY, res);
2054 				res = res == MF_RECOVERED ? 0 : -EBUSY;
2055 			} else {
2056 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2057 				res = -EBUSY;
2058 			}
2059 			goto unlock_mutex;
2060 		} else if (res < 0) {
2061 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2062 			res = -EBUSY;
2063 			goto unlock_mutex;
2064 		}
2065 	}
2066 
2067 	if (PageTransHuge(hpage)) {
2068 		/*
2069 		 * The flag must be set after the refcount is bumped
2070 		 * otherwise it may race with THP split.
2071 		 * And the flag can't be set in get_hwpoison_page() since
2072 		 * it is called by soft offline too and it is just called
2073 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2074 		 * place.
2075 		 *
2076 		 * Don't need care about the above error handling paths for
2077 		 * get_hwpoison_page() since they handle either free page
2078 		 * or unhandlable page.  The refcount is bumped iff the
2079 		 * page is a valid handlable page.
2080 		 */
2081 		SetPageHasHWPoisoned(hpage);
2082 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
2083 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2084 			res = -EBUSY;
2085 			goto unlock_mutex;
2086 		}
2087 		VM_BUG_ON_PAGE(!page_count(p), p);
2088 	}
2089 
2090 	/*
2091 	 * We ignore non-LRU pages for good reasons.
2092 	 * - PG_locked is only well defined for LRU pages and a few others
2093 	 * - to avoid races with __SetPageLocked()
2094 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2095 	 * The check (unnecessarily) ignores LRU pages being isolated and
2096 	 * walked by the page reclaim code, however that's not a big loss.
2097 	 */
2098 	shake_page(p);
2099 
2100 	lock_page(p);
2101 
2102 	/*
2103 	 * We're only intended to deal with the non-Compound page here.
2104 	 * However, the page could have changed compound pages due to
2105 	 * race window. If this happens, we could try again to hopefully
2106 	 * handle the page next round.
2107 	 */
2108 	if (PageCompound(p)) {
2109 		if (retry) {
2110 			ClearPageHWPoison(p);
2111 			unlock_page(p);
2112 			put_page(p);
2113 			flags &= ~MF_COUNT_INCREASED;
2114 			retry = false;
2115 			goto try_again;
2116 		}
2117 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2118 		res = -EBUSY;
2119 		goto unlock_page;
2120 	}
2121 
2122 	/*
2123 	 * We use page flags to determine what action should be taken, but
2124 	 * the flags can be modified by the error containment action.  One
2125 	 * example is an mlocked page, where PG_mlocked is cleared by
2126 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2127 	 * correctly, we save a copy of the page flags at this time.
2128 	 */
2129 	page_flags = p->flags;
2130 
2131 	if (hwpoison_filter(p)) {
2132 		TestClearPageHWPoison(p);
2133 		unlock_page(p);
2134 		put_page(p);
2135 		res = -EOPNOTSUPP;
2136 		goto unlock_mutex;
2137 	}
2138 
2139 	/*
2140 	 * __munlock_pagevec may clear a writeback page's LRU flag without
2141 	 * page_lock. We need wait writeback completion for this page or it
2142 	 * may trigger vfs BUG while evict inode.
2143 	 */
2144 	if (!PageLRU(p) && !PageWriteback(p))
2145 		goto identify_page_state;
2146 
2147 	/*
2148 	 * It's very difficult to mess with pages currently under IO
2149 	 * and in many cases impossible, so we just avoid it here.
2150 	 */
2151 	wait_on_page_writeback(p);
2152 
2153 	/*
2154 	 * Now take care of user space mappings.
2155 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2156 	 */
2157 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2158 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2159 		res = -EBUSY;
2160 		goto unlock_page;
2161 	}
2162 
2163 	/*
2164 	 * Torn down by someone else?
2165 	 */
2166 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2167 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2168 		res = -EBUSY;
2169 		goto unlock_page;
2170 	}
2171 
2172 identify_page_state:
2173 	res = identify_page_state(pfn, p, page_flags);
2174 	mutex_unlock(&mf_mutex);
2175 	return res;
2176 unlock_page:
2177 	unlock_page(p);
2178 unlock_mutex:
2179 	mutex_unlock(&mf_mutex);
2180 	return res;
2181 }
2182 EXPORT_SYMBOL_GPL(memory_failure);
2183 
2184 #define MEMORY_FAILURE_FIFO_ORDER	4
2185 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2186 
2187 struct memory_failure_entry {
2188 	unsigned long pfn;
2189 	int flags;
2190 };
2191 
2192 struct memory_failure_cpu {
2193 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2194 		      MEMORY_FAILURE_FIFO_SIZE);
2195 	spinlock_t lock;
2196 	struct work_struct work;
2197 };
2198 
2199 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2200 
2201 /**
2202  * memory_failure_queue - Schedule handling memory failure of a page.
2203  * @pfn: Page Number of the corrupted page
2204  * @flags: Flags for memory failure handling
2205  *
2206  * This function is called by the low level hardware error handler
2207  * when it detects hardware memory corruption of a page. It schedules
2208  * the recovering of error page, including dropping pages, killing
2209  * processes etc.
2210  *
2211  * The function is primarily of use for corruptions that
2212  * happen outside the current execution context (e.g. when
2213  * detected by a background scrubber)
2214  *
2215  * Can run in IRQ context.
2216  */
2217 void memory_failure_queue(unsigned long pfn, int flags)
2218 {
2219 	struct memory_failure_cpu *mf_cpu;
2220 	unsigned long proc_flags;
2221 	struct memory_failure_entry entry = {
2222 		.pfn =		pfn,
2223 		.flags =	flags,
2224 	};
2225 
2226 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2227 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2228 	if (kfifo_put(&mf_cpu->fifo, entry))
2229 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2230 	else
2231 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2232 		       pfn);
2233 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2234 	put_cpu_var(memory_failure_cpu);
2235 }
2236 EXPORT_SYMBOL_GPL(memory_failure_queue);
2237 
2238 static void memory_failure_work_func(struct work_struct *work)
2239 {
2240 	struct memory_failure_cpu *mf_cpu;
2241 	struct memory_failure_entry entry = { 0, };
2242 	unsigned long proc_flags;
2243 	int gotten;
2244 
2245 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2246 	for (;;) {
2247 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2248 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2249 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2250 		if (!gotten)
2251 			break;
2252 		if (entry.flags & MF_SOFT_OFFLINE)
2253 			soft_offline_page(entry.pfn, entry.flags);
2254 		else
2255 			memory_failure(entry.pfn, entry.flags);
2256 	}
2257 }
2258 
2259 /*
2260  * Process memory_failure work queued on the specified CPU.
2261  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2262  */
2263 void memory_failure_queue_kick(int cpu)
2264 {
2265 	struct memory_failure_cpu *mf_cpu;
2266 
2267 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2268 	cancel_work_sync(&mf_cpu->work);
2269 	memory_failure_work_func(&mf_cpu->work);
2270 }
2271 
2272 static int __init memory_failure_init(void)
2273 {
2274 	struct memory_failure_cpu *mf_cpu;
2275 	int cpu;
2276 
2277 	for_each_possible_cpu(cpu) {
2278 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2279 		spin_lock_init(&mf_cpu->lock);
2280 		INIT_KFIFO(mf_cpu->fifo);
2281 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2282 	}
2283 
2284 	return 0;
2285 }
2286 core_initcall(memory_failure_init);
2287 
2288 #undef pr_fmt
2289 #define pr_fmt(fmt)	"" fmt
2290 #define unpoison_pr_info(fmt, pfn, rs)			\
2291 ({							\
2292 	if (__ratelimit(rs))				\
2293 		pr_info(fmt, pfn);			\
2294 })
2295 
2296 /**
2297  * unpoison_memory - Unpoison a previously poisoned page
2298  * @pfn: Page number of the to be unpoisoned page
2299  *
2300  * Software-unpoison a page that has been poisoned by
2301  * memory_failure() earlier.
2302  *
2303  * This is only done on the software-level, so it only works
2304  * for linux injected failures, not real hardware failures
2305  *
2306  * Returns 0 for success, otherwise -errno.
2307  */
2308 int unpoison_memory(unsigned long pfn)
2309 {
2310 	struct page *page;
2311 	struct page *p;
2312 	int ret = -EBUSY;
2313 	int freeit = 0;
2314 	unsigned long count = 1;
2315 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2316 					DEFAULT_RATELIMIT_BURST);
2317 
2318 	if (!pfn_valid(pfn))
2319 		return -ENXIO;
2320 
2321 	p = pfn_to_page(pfn);
2322 	page = compound_head(p);
2323 
2324 	mutex_lock(&mf_mutex);
2325 
2326 	if (hw_memory_failure) {
2327 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2328 				 pfn, &unpoison_rs);
2329 		ret = -EOPNOTSUPP;
2330 		goto unlock_mutex;
2331 	}
2332 
2333 	if (!PageHWPoison(p)) {
2334 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2335 				 pfn, &unpoison_rs);
2336 		goto unlock_mutex;
2337 	}
2338 
2339 	if (page_count(page) > 1) {
2340 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2341 				 pfn, &unpoison_rs);
2342 		goto unlock_mutex;
2343 	}
2344 
2345 	if (page_mapped(page)) {
2346 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2347 				 pfn, &unpoison_rs);
2348 		goto unlock_mutex;
2349 	}
2350 
2351 	if (page_mapping(page)) {
2352 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2353 				 pfn, &unpoison_rs);
2354 		goto unlock_mutex;
2355 	}
2356 
2357 	if (PageSlab(page) || PageTable(page))
2358 		goto unlock_mutex;
2359 
2360 	ret = get_hwpoison_page(p, MF_UNPOISON);
2361 	if (!ret) {
2362 		if (PageHuge(p)) {
2363 			count = free_raw_hwp_pages(page, false);
2364 			if (count == 0) {
2365 				ret = -EBUSY;
2366 				goto unlock_mutex;
2367 			}
2368 		}
2369 		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2370 	} else if (ret < 0) {
2371 		if (ret == -EHWPOISON) {
2372 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2373 		} else
2374 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2375 					 pfn, &unpoison_rs);
2376 	} else {
2377 		if (PageHuge(p)) {
2378 			count = free_raw_hwp_pages(page, false);
2379 			if (count == 0) {
2380 				ret = -EBUSY;
2381 				goto unlock_mutex;
2382 			}
2383 		}
2384 		freeit = !!TestClearPageHWPoison(p);
2385 
2386 		put_page(page);
2387 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2388 			put_page(page);
2389 			ret = 0;
2390 		}
2391 	}
2392 
2393 unlock_mutex:
2394 	mutex_unlock(&mf_mutex);
2395 	if (!ret || freeit) {
2396 		num_poisoned_pages_sub(count);
2397 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2398 				 page_to_pfn(p), &unpoison_rs);
2399 	}
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL(unpoison_memory);
2403 
2404 static bool isolate_page(struct page *page, struct list_head *pagelist)
2405 {
2406 	bool isolated = false;
2407 	bool lru = PageLRU(page);
2408 
2409 	if (PageHuge(page)) {
2410 		isolated = !isolate_hugetlb(page, pagelist);
2411 	} else {
2412 		if (lru)
2413 			isolated = !isolate_lru_page(page);
2414 		else
2415 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2416 
2417 		if (isolated)
2418 			list_add(&page->lru, pagelist);
2419 	}
2420 
2421 	if (isolated && lru)
2422 		inc_node_page_state(page, NR_ISOLATED_ANON +
2423 				    page_is_file_lru(page));
2424 
2425 	/*
2426 	 * If we succeed to isolate the page, we grabbed another refcount on
2427 	 * the page, so we can safely drop the one we got from get_any_pages().
2428 	 * If we failed to isolate the page, it means that we cannot go further
2429 	 * and we will return an error, so drop the reference we got from
2430 	 * get_any_pages() as well.
2431 	 */
2432 	put_page(page);
2433 	return isolated;
2434 }
2435 
2436 /*
2437  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2438  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2439  * If the page is mapped, it migrates the contents over.
2440  */
2441 static int __soft_offline_page(struct page *page)
2442 {
2443 	long ret = 0;
2444 	unsigned long pfn = page_to_pfn(page);
2445 	struct page *hpage = compound_head(page);
2446 	char const *msg_page[] = {"page", "hugepage"};
2447 	bool huge = PageHuge(page);
2448 	LIST_HEAD(pagelist);
2449 	struct migration_target_control mtc = {
2450 		.nid = NUMA_NO_NODE,
2451 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2452 	};
2453 
2454 	lock_page(page);
2455 	if (!PageHuge(page))
2456 		wait_on_page_writeback(page);
2457 	if (PageHWPoison(page)) {
2458 		unlock_page(page);
2459 		put_page(page);
2460 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2461 		return 0;
2462 	}
2463 
2464 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2465 		/*
2466 		 * Try to invalidate first. This should work for
2467 		 * non dirty unmapped page cache pages.
2468 		 */
2469 		ret = invalidate_inode_page(page);
2470 	unlock_page(page);
2471 
2472 	if (ret) {
2473 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2474 		page_handle_poison(page, false, true);
2475 		return 0;
2476 	}
2477 
2478 	if (isolate_page(hpage, &pagelist)) {
2479 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2480 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2481 		if (!ret) {
2482 			bool release = !huge;
2483 
2484 			if (!page_handle_poison(page, huge, release))
2485 				ret = -EBUSY;
2486 		} else {
2487 			if (!list_empty(&pagelist))
2488 				putback_movable_pages(&pagelist);
2489 
2490 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2491 				pfn, msg_page[huge], ret, &page->flags);
2492 			if (ret > 0)
2493 				ret = -EBUSY;
2494 		}
2495 	} else {
2496 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2497 			pfn, msg_page[huge], page_count(page), &page->flags);
2498 		ret = -EBUSY;
2499 	}
2500 	return ret;
2501 }
2502 
2503 static int soft_offline_in_use_page(struct page *page)
2504 {
2505 	struct page *hpage = compound_head(page);
2506 
2507 	if (!PageHuge(page) && PageTransHuge(hpage))
2508 		if (try_to_split_thp_page(page, "soft offline") < 0)
2509 			return -EBUSY;
2510 	return __soft_offline_page(page);
2511 }
2512 
2513 static int soft_offline_free_page(struct page *page)
2514 {
2515 	int rc = 0;
2516 
2517 	if (!page_handle_poison(page, true, false))
2518 		rc = -EBUSY;
2519 
2520 	return rc;
2521 }
2522 
2523 static void put_ref_page(struct page *page)
2524 {
2525 	if (page)
2526 		put_page(page);
2527 }
2528 
2529 /**
2530  * soft_offline_page - Soft offline a page.
2531  * @pfn: pfn to soft-offline
2532  * @flags: flags. Same as memory_failure().
2533  *
2534  * Returns 0 on success
2535  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2536  *         < 0 otherwise negated errno.
2537  *
2538  * Soft offline a page, by migration or invalidation,
2539  * without killing anything. This is for the case when
2540  * a page is not corrupted yet (so it's still valid to access),
2541  * but has had a number of corrected errors and is better taken
2542  * out.
2543  *
2544  * The actual policy on when to do that is maintained by
2545  * user space.
2546  *
2547  * This should never impact any application or cause data loss,
2548  * however it might take some time.
2549  *
2550  * This is not a 100% solution for all memory, but tries to be
2551  * ``good enough'' for the majority of memory.
2552  */
2553 int soft_offline_page(unsigned long pfn, int flags)
2554 {
2555 	int ret;
2556 	bool try_again = true;
2557 	struct page *page, *ref_page = NULL;
2558 
2559 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2560 
2561 	if (!pfn_valid(pfn))
2562 		return -ENXIO;
2563 	if (flags & MF_COUNT_INCREASED)
2564 		ref_page = pfn_to_page(pfn);
2565 
2566 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2567 	page = pfn_to_online_page(pfn);
2568 	if (!page) {
2569 		put_ref_page(ref_page);
2570 		return -EIO;
2571 	}
2572 
2573 	mutex_lock(&mf_mutex);
2574 
2575 	if (PageHWPoison(page)) {
2576 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2577 		put_ref_page(ref_page);
2578 		mutex_unlock(&mf_mutex);
2579 		return 0;
2580 	}
2581 
2582 retry:
2583 	get_online_mems();
2584 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2585 	put_online_mems();
2586 
2587 	if (hwpoison_filter(page)) {
2588 		if (ret > 0)
2589 			put_page(page);
2590 		else
2591 			put_ref_page(ref_page);
2592 
2593 		mutex_unlock(&mf_mutex);
2594 		return -EOPNOTSUPP;
2595 	}
2596 
2597 	if (ret > 0) {
2598 		ret = soft_offline_in_use_page(page);
2599 	} else if (ret == 0) {
2600 		if (soft_offline_free_page(page) && try_again) {
2601 			try_again = false;
2602 			flags &= ~MF_COUNT_INCREASED;
2603 			goto retry;
2604 		}
2605 	}
2606 
2607 	mutex_unlock(&mf_mutex);
2608 
2609 	return ret;
2610 }
2611 
2612 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2613 {
2614 	int i;
2615 
2616 	/*
2617 	 * A further optimization is to have per section refcounted
2618 	 * num_poisoned_pages.  But that would need more space per memmap, so
2619 	 * for now just do a quick global check to speed up this routine in the
2620 	 * absence of bad pages.
2621 	 */
2622 	if (atomic_long_read(&num_poisoned_pages) == 0)
2623 		return;
2624 
2625 	for (i = 0; i < nr_pages; i++) {
2626 		if (PageHWPoison(&memmap[i])) {
2627 			num_poisoned_pages_dec();
2628 			ClearPageHWPoison(&memmap[i]);
2629 		}
2630 	}
2631 }
2632