xref: /linux/mm/memory-failure.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef	CONFIG_MEMCG_SWAP
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	struct mem_cgroup *mem;
139 	struct cgroup_subsys_state *css;
140 	unsigned long ino;
141 
142 	if (!hwpoison_filter_memcg)
143 		return 0;
144 
145 	mem = try_get_mem_cgroup_from_page(p);
146 	if (!mem)
147 		return -EINVAL;
148 
149 	css = mem_cgroup_css(mem);
150 	ino = cgroup_ino(css->cgroup);
151 	css_put(css);
152 
153 	if (ino != hwpoison_filter_memcg)
154 		return -EINVAL;
155 
156 	return 0;
157 }
158 #else
159 static int hwpoison_filter_task(struct page *p) { return 0; }
160 #endif
161 
162 int hwpoison_filter(struct page *p)
163 {
164 	if (!hwpoison_filter_enable)
165 		return 0;
166 
167 	if (hwpoison_filter_dev(p))
168 		return -EINVAL;
169 
170 	if (hwpoison_filter_flags(p))
171 		return -EINVAL;
172 
173 	if (hwpoison_filter_task(p))
174 		return -EINVAL;
175 
176 	return 0;
177 }
178 #else
179 int hwpoison_filter(struct page *p)
180 {
181 	return 0;
182 }
183 #endif
184 
185 EXPORT_SYMBOL_GPL(hwpoison_filter);
186 
187 /*
188  * Send all the processes who have the page mapped a signal.
189  * ``action optional'' if they are not immediately affected by the error
190  * ``action required'' if error happened in current execution context
191  */
192 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
193 			unsigned long pfn, struct page *page, int flags)
194 {
195 	struct siginfo si;
196 	int ret;
197 
198 	printk(KERN_ERR
199 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
200 		pfn, t->comm, t->pid);
201 	si.si_signo = SIGBUS;
202 	si.si_errno = 0;
203 	si.si_addr = (void *)addr;
204 #ifdef __ARCH_SI_TRAPNO
205 	si.si_trapno = trapno;
206 #endif
207 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
208 
209 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
210 		si.si_code = BUS_MCEERR_AR;
211 		ret = force_sig_info(SIGBUS, &si, current);
212 	} else {
213 		/*
214 		 * Don't use force here, it's convenient if the signal
215 		 * can be temporarily blocked.
216 		 * This could cause a loop when the user sets SIGBUS
217 		 * to SIG_IGN, but hopefully no one will do that?
218 		 */
219 		si.si_code = BUS_MCEERR_AO;
220 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
221 	}
222 	if (ret < 0)
223 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
224 		       t->comm, t->pid, ret);
225 	return ret;
226 }
227 
228 /*
229  * When a unknown page type is encountered drain as many buffers as possible
230  * in the hope to turn the page into a LRU or free page, which we can handle.
231  */
232 void shake_page(struct page *p, int access)
233 {
234 	if (!PageSlab(p)) {
235 		lru_add_drain_all();
236 		if (PageLRU(p))
237 			return;
238 		drain_all_pages(page_zone(p));
239 		if (PageLRU(p) || is_free_buddy_page(p))
240 			return;
241 	}
242 
243 	/*
244 	 * Only call shrink_node_slabs here (which would also shrink
245 	 * other caches) if access is not potentially fatal.
246 	 */
247 	if (access)
248 		drop_slab_node(page_to_nid(p));
249 }
250 EXPORT_SYMBOL_GPL(shake_page);
251 
252 /*
253  * Kill all processes that have a poisoned page mapped and then isolate
254  * the page.
255  *
256  * General strategy:
257  * Find all processes having the page mapped and kill them.
258  * But we keep a page reference around so that the page is not
259  * actually freed yet.
260  * Then stash the page away
261  *
262  * There's no convenient way to get back to mapped processes
263  * from the VMAs. So do a brute-force search over all
264  * running processes.
265  *
266  * Remember that machine checks are not common (or rather
267  * if they are common you have other problems), so this shouldn't
268  * be a performance issue.
269  *
270  * Also there are some races possible while we get from the
271  * error detection to actually handle it.
272  */
273 
274 struct to_kill {
275 	struct list_head nd;
276 	struct task_struct *tsk;
277 	unsigned long addr;
278 	char addr_valid;
279 };
280 
281 /*
282  * Failure handling: if we can't find or can't kill a process there's
283  * not much we can do.	We just print a message and ignore otherwise.
284  */
285 
286 /*
287  * Schedule a process for later kill.
288  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
289  * TBD would GFP_NOIO be enough?
290  */
291 static void add_to_kill(struct task_struct *tsk, struct page *p,
292 		       struct vm_area_struct *vma,
293 		       struct list_head *to_kill,
294 		       struct to_kill **tkc)
295 {
296 	struct to_kill *tk;
297 
298 	if (*tkc) {
299 		tk = *tkc;
300 		*tkc = NULL;
301 	} else {
302 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
303 		if (!tk) {
304 			printk(KERN_ERR
305 		"MCE: Out of memory while machine check handling\n");
306 			return;
307 		}
308 	}
309 	tk->addr = page_address_in_vma(p, vma);
310 	tk->addr_valid = 1;
311 
312 	/*
313 	 * In theory we don't have to kill when the page was
314 	 * munmaped. But it could be also a mremap. Since that's
315 	 * likely very rare kill anyways just out of paranoia, but use
316 	 * a SIGKILL because the error is not contained anymore.
317 	 */
318 	if (tk->addr == -EFAULT) {
319 		pr_info("MCE: Unable to find user space address %lx in %s\n",
320 			page_to_pfn(p), tsk->comm);
321 		tk->addr_valid = 0;
322 	}
323 	get_task_struct(tsk);
324 	tk->tsk = tsk;
325 	list_add_tail(&tk->nd, to_kill);
326 }
327 
328 /*
329  * Kill the processes that have been collected earlier.
330  *
331  * Only do anything when DOIT is set, otherwise just free the list
332  * (this is used for clean pages which do not need killing)
333  * Also when FAIL is set do a force kill because something went
334  * wrong earlier.
335  */
336 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
337 			  int fail, struct page *page, unsigned long pfn,
338 			  int flags)
339 {
340 	struct to_kill *tk, *next;
341 
342 	list_for_each_entry_safe (tk, next, to_kill, nd) {
343 		if (forcekill) {
344 			/*
345 			 * In case something went wrong with munmapping
346 			 * make sure the process doesn't catch the
347 			 * signal and then access the memory. Just kill it.
348 			 */
349 			if (fail || tk->addr_valid == 0) {
350 				printk(KERN_ERR
351 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
352 					pfn, tk->tsk->comm, tk->tsk->pid);
353 				force_sig(SIGKILL, tk->tsk);
354 			}
355 
356 			/*
357 			 * In theory the process could have mapped
358 			 * something else on the address in-between. We could
359 			 * check for that, but we need to tell the
360 			 * process anyways.
361 			 */
362 			else if (kill_proc(tk->tsk, tk->addr, trapno,
363 					      pfn, page, flags) < 0)
364 				printk(KERN_ERR
365 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
366 					pfn, tk->tsk->comm, tk->tsk->pid);
367 		}
368 		put_task_struct(tk->tsk);
369 		kfree(tk);
370 	}
371 }
372 
373 /*
374  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
375  * on behalf of the thread group. Return task_struct of the (first found)
376  * dedicated thread if found, and return NULL otherwise.
377  *
378  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
379  * have to call rcu_read_lock/unlock() in this function.
380  */
381 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
382 {
383 	struct task_struct *t;
384 
385 	for_each_thread(tsk, t)
386 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
387 			return t;
388 	return NULL;
389 }
390 
391 /*
392  * Determine whether a given process is "early kill" process which expects
393  * to be signaled when some page under the process is hwpoisoned.
394  * Return task_struct of the dedicated thread (main thread unless explicitly
395  * specified) if the process is "early kill," and otherwise returns NULL.
396  */
397 static struct task_struct *task_early_kill(struct task_struct *tsk,
398 					   int force_early)
399 {
400 	struct task_struct *t;
401 	if (!tsk->mm)
402 		return NULL;
403 	if (force_early)
404 		return tsk;
405 	t = find_early_kill_thread(tsk);
406 	if (t)
407 		return t;
408 	if (sysctl_memory_failure_early_kill)
409 		return tsk;
410 	return NULL;
411 }
412 
413 /*
414  * Collect processes when the error hit an anonymous page.
415  */
416 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
417 			      struct to_kill **tkc, int force_early)
418 {
419 	struct vm_area_struct *vma;
420 	struct task_struct *tsk;
421 	struct anon_vma *av;
422 	pgoff_t pgoff;
423 
424 	av = page_lock_anon_vma_read(page);
425 	if (av == NULL)	/* Not actually mapped anymore */
426 		return;
427 
428 	pgoff = page_to_pgoff(page);
429 	read_lock(&tasklist_lock);
430 	for_each_process (tsk) {
431 		struct anon_vma_chain *vmac;
432 		struct task_struct *t = task_early_kill(tsk, force_early);
433 
434 		if (!t)
435 			continue;
436 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
437 					       pgoff, pgoff) {
438 			vma = vmac->vma;
439 			if (!page_mapped_in_vma(page, vma))
440 				continue;
441 			if (vma->vm_mm == t->mm)
442 				add_to_kill(t, page, vma, to_kill, tkc);
443 		}
444 	}
445 	read_unlock(&tasklist_lock);
446 	page_unlock_anon_vma_read(av);
447 }
448 
449 /*
450  * Collect processes when the error hit a file mapped page.
451  */
452 static void collect_procs_file(struct page *page, struct list_head *to_kill,
453 			      struct to_kill **tkc, int force_early)
454 {
455 	struct vm_area_struct *vma;
456 	struct task_struct *tsk;
457 	struct address_space *mapping = page->mapping;
458 
459 	i_mmap_lock_read(mapping);
460 	read_lock(&tasklist_lock);
461 	for_each_process(tsk) {
462 		pgoff_t pgoff = page_to_pgoff(page);
463 		struct task_struct *t = task_early_kill(tsk, force_early);
464 
465 		if (!t)
466 			continue;
467 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
468 				      pgoff) {
469 			/*
470 			 * Send early kill signal to tasks where a vma covers
471 			 * the page but the corrupted page is not necessarily
472 			 * mapped it in its pte.
473 			 * Assume applications who requested early kill want
474 			 * to be informed of all such data corruptions.
475 			 */
476 			if (vma->vm_mm == t->mm)
477 				add_to_kill(t, page, vma, to_kill, tkc);
478 		}
479 	}
480 	read_unlock(&tasklist_lock);
481 	i_mmap_unlock_read(mapping);
482 }
483 
484 /*
485  * Collect the processes who have the corrupted page mapped to kill.
486  * This is done in two steps for locking reasons.
487  * First preallocate one tokill structure outside the spin locks,
488  * so that we can kill at least one process reasonably reliable.
489  */
490 static void collect_procs(struct page *page, struct list_head *tokill,
491 				int force_early)
492 {
493 	struct to_kill *tk;
494 
495 	if (!page->mapping)
496 		return;
497 
498 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
499 	if (!tk)
500 		return;
501 	if (PageAnon(page))
502 		collect_procs_anon(page, tokill, &tk, force_early);
503 	else
504 		collect_procs_file(page, tokill, &tk, force_early);
505 	kfree(tk);
506 }
507 
508 static const char *action_name[] = {
509 	[MF_IGNORED] = "Ignored",
510 	[MF_FAILED] = "Failed",
511 	[MF_DELAYED] = "Delayed",
512 	[MF_RECOVERED] = "Recovered",
513 };
514 
515 static const char * const action_page_types[] = {
516 	[MF_MSG_KERNEL]			= "reserved kernel page",
517 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
518 	[MF_MSG_SLAB]			= "kernel slab page",
519 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
520 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
521 	[MF_MSG_HUGE]			= "huge page",
522 	[MF_MSG_FREE_HUGE]		= "free huge page",
523 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
524 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
525 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
526 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
527 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
528 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
529 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
530 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
531 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
532 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
533 	[MF_MSG_BUDDY]			= "free buddy page",
534 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
535 	[MF_MSG_UNKNOWN]		= "unknown page",
536 };
537 
538 /*
539  * XXX: It is possible that a page is isolated from LRU cache,
540  * and then kept in swap cache or failed to remove from page cache.
541  * The page count will stop it from being freed by unpoison.
542  * Stress tests should be aware of this memory leak problem.
543  */
544 static int delete_from_lru_cache(struct page *p)
545 {
546 	if (!isolate_lru_page(p)) {
547 		/*
548 		 * Clear sensible page flags, so that the buddy system won't
549 		 * complain when the page is unpoison-and-freed.
550 		 */
551 		ClearPageActive(p);
552 		ClearPageUnevictable(p);
553 		/*
554 		 * drop the page count elevated by isolate_lru_page()
555 		 */
556 		page_cache_release(p);
557 		return 0;
558 	}
559 	return -EIO;
560 }
561 
562 /*
563  * Error hit kernel page.
564  * Do nothing, try to be lucky and not touch this instead. For a few cases we
565  * could be more sophisticated.
566  */
567 static int me_kernel(struct page *p, unsigned long pfn)
568 {
569 	return MF_IGNORED;
570 }
571 
572 /*
573  * Page in unknown state. Do nothing.
574  */
575 static int me_unknown(struct page *p, unsigned long pfn)
576 {
577 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
578 	return MF_FAILED;
579 }
580 
581 /*
582  * Clean (or cleaned) page cache page.
583  */
584 static int me_pagecache_clean(struct page *p, unsigned long pfn)
585 {
586 	int err;
587 	int ret = MF_FAILED;
588 	struct address_space *mapping;
589 
590 	delete_from_lru_cache(p);
591 
592 	/*
593 	 * For anonymous pages we're done the only reference left
594 	 * should be the one m_f() holds.
595 	 */
596 	if (PageAnon(p))
597 		return MF_RECOVERED;
598 
599 	/*
600 	 * Now truncate the page in the page cache. This is really
601 	 * more like a "temporary hole punch"
602 	 * Don't do this for block devices when someone else
603 	 * has a reference, because it could be file system metadata
604 	 * and that's not safe to truncate.
605 	 */
606 	mapping = page_mapping(p);
607 	if (!mapping) {
608 		/*
609 		 * Page has been teared down in the meanwhile
610 		 */
611 		return MF_FAILED;
612 	}
613 
614 	/*
615 	 * Truncation is a bit tricky. Enable it per file system for now.
616 	 *
617 	 * Open: to take i_mutex or not for this? Right now we don't.
618 	 */
619 	if (mapping->a_ops->error_remove_page) {
620 		err = mapping->a_ops->error_remove_page(mapping, p);
621 		if (err != 0) {
622 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
623 					pfn, err);
624 		} else if (page_has_private(p) &&
625 				!try_to_release_page(p, GFP_NOIO)) {
626 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
627 		} else {
628 			ret = MF_RECOVERED;
629 		}
630 	} else {
631 		/*
632 		 * If the file system doesn't support it just invalidate
633 		 * This fails on dirty or anything with private pages
634 		 */
635 		if (invalidate_inode_page(p))
636 			ret = MF_RECOVERED;
637 		else
638 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
639 				pfn);
640 	}
641 	return ret;
642 }
643 
644 /*
645  * Dirty pagecache page
646  * Issues: when the error hit a hole page the error is not properly
647  * propagated.
648  */
649 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
650 {
651 	struct address_space *mapping = page_mapping(p);
652 
653 	SetPageError(p);
654 	/* TBD: print more information about the file. */
655 	if (mapping) {
656 		/*
657 		 * IO error will be reported by write(), fsync(), etc.
658 		 * who check the mapping.
659 		 * This way the application knows that something went
660 		 * wrong with its dirty file data.
661 		 *
662 		 * There's one open issue:
663 		 *
664 		 * The EIO will be only reported on the next IO
665 		 * operation and then cleared through the IO map.
666 		 * Normally Linux has two mechanisms to pass IO error
667 		 * first through the AS_EIO flag in the address space
668 		 * and then through the PageError flag in the page.
669 		 * Since we drop pages on memory failure handling the
670 		 * only mechanism open to use is through AS_AIO.
671 		 *
672 		 * This has the disadvantage that it gets cleared on
673 		 * the first operation that returns an error, while
674 		 * the PageError bit is more sticky and only cleared
675 		 * when the page is reread or dropped.  If an
676 		 * application assumes it will always get error on
677 		 * fsync, but does other operations on the fd before
678 		 * and the page is dropped between then the error
679 		 * will not be properly reported.
680 		 *
681 		 * This can already happen even without hwpoisoned
682 		 * pages: first on metadata IO errors (which only
683 		 * report through AS_EIO) or when the page is dropped
684 		 * at the wrong time.
685 		 *
686 		 * So right now we assume that the application DTRT on
687 		 * the first EIO, but we're not worse than other parts
688 		 * of the kernel.
689 		 */
690 		mapping_set_error(mapping, EIO);
691 	}
692 
693 	return me_pagecache_clean(p, pfn);
694 }
695 
696 /*
697  * Clean and dirty swap cache.
698  *
699  * Dirty swap cache page is tricky to handle. The page could live both in page
700  * cache and swap cache(ie. page is freshly swapped in). So it could be
701  * referenced concurrently by 2 types of PTEs:
702  * normal PTEs and swap PTEs. We try to handle them consistently by calling
703  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
704  * and then
705  *      - clear dirty bit to prevent IO
706  *      - remove from LRU
707  *      - but keep in the swap cache, so that when we return to it on
708  *        a later page fault, we know the application is accessing
709  *        corrupted data and shall be killed (we installed simple
710  *        interception code in do_swap_page to catch it).
711  *
712  * Clean swap cache pages can be directly isolated. A later page fault will
713  * bring in the known good data from disk.
714  */
715 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
716 {
717 	ClearPageDirty(p);
718 	/* Trigger EIO in shmem: */
719 	ClearPageUptodate(p);
720 
721 	if (!delete_from_lru_cache(p))
722 		return MF_DELAYED;
723 	else
724 		return MF_FAILED;
725 }
726 
727 static int me_swapcache_clean(struct page *p, unsigned long pfn)
728 {
729 	delete_from_swap_cache(p);
730 
731 	if (!delete_from_lru_cache(p))
732 		return MF_RECOVERED;
733 	else
734 		return MF_FAILED;
735 }
736 
737 /*
738  * Huge pages. Needs work.
739  * Issues:
740  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
741  *   To narrow down kill region to one page, we need to break up pmd.
742  */
743 static int me_huge_page(struct page *p, unsigned long pfn)
744 {
745 	int res = 0;
746 	struct page *hpage = compound_head(p);
747 
748 	if (!PageHuge(hpage))
749 		return MF_DELAYED;
750 
751 	/*
752 	 * We can safely recover from error on free or reserved (i.e.
753 	 * not in-use) hugepage by dequeuing it from freelist.
754 	 * To check whether a hugepage is in-use or not, we can't use
755 	 * page->lru because it can be used in other hugepage operations,
756 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
757 	 * So instead we use page_mapping() and PageAnon().
758 	 * We assume that this function is called with page lock held,
759 	 * so there is no race between isolation and mapping/unmapping.
760 	 */
761 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
762 		res = dequeue_hwpoisoned_huge_page(hpage);
763 		if (!res)
764 			return MF_RECOVERED;
765 	}
766 	return MF_DELAYED;
767 }
768 
769 /*
770  * Various page states we can handle.
771  *
772  * A page state is defined by its current page->flags bits.
773  * The table matches them in order and calls the right handler.
774  *
775  * This is quite tricky because we can access page at any time
776  * in its live cycle, so all accesses have to be extremely careful.
777  *
778  * This is not complete. More states could be added.
779  * For any missing state don't attempt recovery.
780  */
781 
782 #define dirty		(1UL << PG_dirty)
783 #define sc		(1UL << PG_swapcache)
784 #define unevict		(1UL << PG_unevictable)
785 #define mlock		(1UL << PG_mlocked)
786 #define writeback	(1UL << PG_writeback)
787 #define lru		(1UL << PG_lru)
788 #define swapbacked	(1UL << PG_swapbacked)
789 #define head		(1UL << PG_head)
790 #define tail		(1UL << PG_tail)
791 #define compound	(1UL << PG_compound)
792 #define slab		(1UL << PG_slab)
793 #define reserved	(1UL << PG_reserved)
794 
795 static struct page_state {
796 	unsigned long mask;
797 	unsigned long res;
798 	enum mf_action_page_type type;
799 	int (*action)(struct page *p, unsigned long pfn);
800 } error_states[] = {
801 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
802 	/*
803 	 * free pages are specially detected outside this table:
804 	 * PG_buddy pages only make a small fraction of all free pages.
805 	 */
806 
807 	/*
808 	 * Could in theory check if slab page is free or if we can drop
809 	 * currently unused objects without touching them. But just
810 	 * treat it as standard kernel for now.
811 	 */
812 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
813 
814 #ifdef CONFIG_PAGEFLAGS_EXTENDED
815 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
816 	{ tail,		tail,		MF_MSG_HUGE,		me_huge_page },
817 #else
818 	{ compound,	compound,	MF_MSG_HUGE,		me_huge_page },
819 #endif
820 
821 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
822 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
823 
824 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
825 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
826 
827 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
828 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
829 
830 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
831 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
832 
833 	/*
834 	 * Catchall entry: must be at end.
835 	 */
836 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
837 };
838 
839 #undef dirty
840 #undef sc
841 #undef unevict
842 #undef mlock
843 #undef writeback
844 #undef lru
845 #undef swapbacked
846 #undef head
847 #undef tail
848 #undef compound
849 #undef slab
850 #undef reserved
851 
852 /*
853  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
854  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
855  */
856 static void action_result(unsigned long pfn, enum mf_action_page_type type,
857 			  enum mf_result result)
858 {
859 	trace_memory_failure_event(pfn, type, result);
860 
861 	pr_err("MCE %#lx: recovery action for %s: %s\n",
862 		pfn, action_page_types[type], action_name[result]);
863 }
864 
865 static int page_action(struct page_state *ps, struct page *p,
866 			unsigned long pfn)
867 {
868 	int result;
869 	int count;
870 
871 	result = ps->action(p, pfn);
872 
873 	count = page_count(p) - 1;
874 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
875 		count--;
876 	if (count != 0) {
877 		printk(KERN_ERR
878 		       "MCE %#lx: %s still referenced by %d users\n",
879 		       pfn, action_page_types[ps->type], count);
880 		result = MF_FAILED;
881 	}
882 	action_result(pfn, ps->type, result);
883 
884 	/* Could do more checks here if page looks ok */
885 	/*
886 	 * Could adjust zone counters here to correct for the missing page.
887 	 */
888 
889 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
890 }
891 
892 /**
893  * get_hwpoison_page() - Get refcount for memory error handling:
894  * @page:	raw error page (hit by memory error)
895  *
896  * Return: return 0 if failed to grab the refcount, otherwise true (some
897  * non-zero value.)
898  */
899 int get_hwpoison_page(struct page *page)
900 {
901 	struct page *head = compound_head(page);
902 
903 	if (PageHuge(head))
904 		return get_page_unless_zero(head);
905 
906 	/*
907 	 * Thp tail page has special refcounting rule (refcount of tail pages
908 	 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
909 	 * directly for tail pages.
910 	 */
911 	if (PageTransHuge(head)) {
912 		if (get_page_unless_zero(head)) {
913 			if (PageTail(page))
914 				get_page(page);
915 			return 1;
916 		} else {
917 			return 0;
918 		}
919 	}
920 
921 	return get_page_unless_zero(page);
922 }
923 EXPORT_SYMBOL_GPL(get_hwpoison_page);
924 
925 /*
926  * Do all that is necessary to remove user space mappings. Unmap
927  * the pages and send SIGBUS to the processes if the data was dirty.
928  */
929 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
930 				  int trapno, int flags, struct page **hpagep)
931 {
932 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
933 	struct address_space *mapping;
934 	LIST_HEAD(tokill);
935 	int ret;
936 	int kill = 1, forcekill;
937 	struct page *hpage = *hpagep;
938 
939 	/*
940 	 * Here we are interested only in user-mapped pages, so skip any
941 	 * other types of pages.
942 	 */
943 	if (PageReserved(p) || PageSlab(p))
944 		return SWAP_SUCCESS;
945 	if (!(PageLRU(hpage) || PageHuge(p)))
946 		return SWAP_SUCCESS;
947 
948 	/*
949 	 * This check implies we don't kill processes if their pages
950 	 * are in the swap cache early. Those are always late kills.
951 	 */
952 	if (!page_mapped(hpage))
953 		return SWAP_SUCCESS;
954 
955 	if (PageKsm(p)) {
956 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
957 		return SWAP_FAIL;
958 	}
959 
960 	if (PageSwapCache(p)) {
961 		printk(KERN_ERR
962 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
963 		ttu |= TTU_IGNORE_HWPOISON;
964 	}
965 
966 	/*
967 	 * Propagate the dirty bit from PTEs to struct page first, because we
968 	 * need this to decide if we should kill or just drop the page.
969 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
970 	 * be called inside page lock (it's recommended but not enforced).
971 	 */
972 	mapping = page_mapping(hpage);
973 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
974 	    mapping_cap_writeback_dirty(mapping)) {
975 		if (page_mkclean(hpage)) {
976 			SetPageDirty(hpage);
977 		} else {
978 			kill = 0;
979 			ttu |= TTU_IGNORE_HWPOISON;
980 			printk(KERN_INFO
981 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
982 				pfn);
983 		}
984 	}
985 
986 	/*
987 	 * First collect all the processes that have the page
988 	 * mapped in dirty form.  This has to be done before try_to_unmap,
989 	 * because ttu takes the rmap data structures down.
990 	 *
991 	 * Error handling: We ignore errors here because
992 	 * there's nothing that can be done.
993 	 */
994 	if (kill)
995 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
996 
997 	ret = try_to_unmap(hpage, ttu);
998 	if (ret != SWAP_SUCCESS)
999 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1000 				pfn, page_mapcount(hpage));
1001 
1002 	/*
1003 	 * Now that the dirty bit has been propagated to the
1004 	 * struct page and all unmaps done we can decide if
1005 	 * killing is needed or not.  Only kill when the page
1006 	 * was dirty or the process is not restartable,
1007 	 * otherwise the tokill list is merely
1008 	 * freed.  When there was a problem unmapping earlier
1009 	 * use a more force-full uncatchable kill to prevent
1010 	 * any accesses to the poisoned memory.
1011 	 */
1012 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1013 	kill_procs(&tokill, forcekill, trapno,
1014 		      ret != SWAP_SUCCESS, p, pfn, flags);
1015 
1016 	return ret;
1017 }
1018 
1019 static void set_page_hwpoison_huge_page(struct page *hpage)
1020 {
1021 	int i;
1022 	int nr_pages = 1 << compound_order(hpage);
1023 	for (i = 0; i < nr_pages; i++)
1024 		SetPageHWPoison(hpage + i);
1025 }
1026 
1027 static void clear_page_hwpoison_huge_page(struct page *hpage)
1028 {
1029 	int i;
1030 	int nr_pages = 1 << compound_order(hpage);
1031 	for (i = 0; i < nr_pages; i++)
1032 		ClearPageHWPoison(hpage + i);
1033 }
1034 
1035 /**
1036  * memory_failure - Handle memory failure of a page.
1037  * @pfn: Page Number of the corrupted page
1038  * @trapno: Trap number reported in the signal to user space.
1039  * @flags: fine tune action taken
1040  *
1041  * This function is called by the low level machine check code
1042  * of an architecture when it detects hardware memory corruption
1043  * of a page. It tries its best to recover, which includes
1044  * dropping pages, killing processes etc.
1045  *
1046  * The function is primarily of use for corruptions that
1047  * happen outside the current execution context (e.g. when
1048  * detected by a background scrubber)
1049  *
1050  * Must run in process context (e.g. a work queue) with interrupts
1051  * enabled and no spinlocks hold.
1052  */
1053 int memory_failure(unsigned long pfn, int trapno, int flags)
1054 {
1055 	struct page_state *ps;
1056 	struct page *p;
1057 	struct page *hpage;
1058 	struct page *orig_head;
1059 	int res;
1060 	unsigned int nr_pages;
1061 	unsigned long page_flags;
1062 
1063 	if (!sysctl_memory_failure_recovery)
1064 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1065 
1066 	if (!pfn_valid(pfn)) {
1067 		printk(KERN_ERR
1068 		       "MCE %#lx: memory outside kernel control\n",
1069 		       pfn);
1070 		return -ENXIO;
1071 	}
1072 
1073 	p = pfn_to_page(pfn);
1074 	orig_head = hpage = compound_head(p);
1075 	if (TestSetPageHWPoison(p)) {
1076 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1077 		return 0;
1078 	}
1079 
1080 	/*
1081 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1082 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1083 	 * transparent hugepages, they are supposed to be split and error
1084 	 * measurement is done in normal page units.  So nr_pages should be one
1085 	 * in this case.
1086 	 */
1087 	if (PageHuge(p))
1088 		nr_pages = 1 << compound_order(hpage);
1089 	else /* normal page or thp */
1090 		nr_pages = 1;
1091 	atomic_long_add(nr_pages, &num_poisoned_pages);
1092 
1093 	/*
1094 	 * We need/can do nothing about count=0 pages.
1095 	 * 1) it's a free page, and therefore in safe hand:
1096 	 *    prep_new_page() will be the gate keeper.
1097 	 * 2) it's a free hugepage, which is also safe:
1098 	 *    an affected hugepage will be dequeued from hugepage freelist,
1099 	 *    so there's no concern about reusing it ever after.
1100 	 * 3) it's part of a non-compound high order page.
1101 	 *    Implies some kernel user: cannot stop them from
1102 	 *    R/W the page; let's pray that the page has been
1103 	 *    used and will be freed some time later.
1104 	 * In fact it's dangerous to directly bump up page count from 0,
1105 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1106 	 */
1107 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1108 		if (is_free_buddy_page(p)) {
1109 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1110 			return 0;
1111 		} else if (PageHuge(hpage)) {
1112 			/*
1113 			 * Check "filter hit" and "race with other subpage."
1114 			 */
1115 			lock_page(hpage);
1116 			if (PageHWPoison(hpage)) {
1117 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1118 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1119 					atomic_long_sub(nr_pages, &num_poisoned_pages);
1120 					unlock_page(hpage);
1121 					return 0;
1122 				}
1123 			}
1124 			set_page_hwpoison_huge_page(hpage);
1125 			res = dequeue_hwpoisoned_huge_page(hpage);
1126 			action_result(pfn, MF_MSG_FREE_HUGE,
1127 				      res ? MF_IGNORED : MF_DELAYED);
1128 			unlock_page(hpage);
1129 			return res;
1130 		} else {
1131 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1132 			return -EBUSY;
1133 		}
1134 	}
1135 
1136 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1137 		if (!PageAnon(hpage)) {
1138 			pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1139 			if (TestClearPageHWPoison(p))
1140 				atomic_long_sub(nr_pages, &num_poisoned_pages);
1141 			put_page(p);
1142 			if (p != hpage)
1143 				put_page(hpage);
1144 			return -EBUSY;
1145 		}
1146 		if (unlikely(split_huge_page(hpage))) {
1147 			pr_err("MCE: %#lx: thp split failed\n", pfn);
1148 			if (TestClearPageHWPoison(p))
1149 				atomic_long_sub(nr_pages, &num_poisoned_pages);
1150 			put_page(p);
1151 			if (p != hpage)
1152 				put_page(hpage);
1153 			return -EBUSY;
1154 		}
1155 		VM_BUG_ON_PAGE(!page_count(p), p);
1156 		hpage = compound_head(p);
1157 	}
1158 
1159 	/*
1160 	 * We ignore non-LRU pages for good reasons.
1161 	 * - PG_locked is only well defined for LRU pages and a few others
1162 	 * - to avoid races with __set_page_locked()
1163 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1164 	 * The check (unnecessarily) ignores LRU pages being isolated and
1165 	 * walked by the page reclaim code, however that's not a big loss.
1166 	 */
1167 	if (!PageHuge(p)) {
1168 		if (!PageLRU(p))
1169 			shake_page(p, 0);
1170 		if (!PageLRU(p)) {
1171 			/*
1172 			 * shake_page could have turned it free.
1173 			 */
1174 			if (is_free_buddy_page(p)) {
1175 				if (flags & MF_COUNT_INCREASED)
1176 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1177 				else
1178 					action_result(pfn, MF_MSG_BUDDY_2ND,
1179 						      MF_DELAYED);
1180 				return 0;
1181 			}
1182 		}
1183 	}
1184 
1185 	lock_page(hpage);
1186 
1187 	/*
1188 	 * The page could have changed compound pages during the locking.
1189 	 * If this happens just bail out.
1190 	 */
1191 	if (PageCompound(p) && compound_head(p) != orig_head) {
1192 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1193 		res = -EBUSY;
1194 		goto out;
1195 	}
1196 
1197 	/*
1198 	 * We use page flags to determine what action should be taken, but
1199 	 * the flags can be modified by the error containment action.  One
1200 	 * example is an mlocked page, where PG_mlocked is cleared by
1201 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1202 	 * correctly, we save a copy of the page flags at this time.
1203 	 */
1204 	page_flags = p->flags;
1205 
1206 	/*
1207 	 * unpoison always clear PG_hwpoison inside page lock
1208 	 */
1209 	if (!PageHWPoison(p)) {
1210 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1211 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1212 		put_page(hpage);
1213 		res = 0;
1214 		goto out;
1215 	}
1216 	if (hwpoison_filter(p)) {
1217 		if (TestClearPageHWPoison(p))
1218 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1219 		unlock_page(hpage);
1220 		put_page(hpage);
1221 		return 0;
1222 	}
1223 
1224 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1225 		goto identify_page_state;
1226 
1227 	/*
1228 	 * For error on the tail page, we should set PG_hwpoison
1229 	 * on the head page to show that the hugepage is hwpoisoned
1230 	 */
1231 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1232 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1233 		unlock_page(hpage);
1234 		put_page(hpage);
1235 		return 0;
1236 	}
1237 	/*
1238 	 * Set PG_hwpoison on all pages in an error hugepage,
1239 	 * because containment is done in hugepage unit for now.
1240 	 * Since we have done TestSetPageHWPoison() for the head page with
1241 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1242 	 */
1243 	if (PageHuge(p))
1244 		set_page_hwpoison_huge_page(hpage);
1245 
1246 	/*
1247 	 * It's very difficult to mess with pages currently under IO
1248 	 * and in many cases impossible, so we just avoid it here.
1249 	 */
1250 	wait_on_page_writeback(p);
1251 
1252 	/*
1253 	 * Now take care of user space mappings.
1254 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1255 	 *
1256 	 * When the raw error page is thp tail page, hpage points to the raw
1257 	 * page after thp split.
1258 	 */
1259 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1260 	    != SWAP_SUCCESS) {
1261 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1262 		res = -EBUSY;
1263 		goto out;
1264 	}
1265 
1266 	/*
1267 	 * Torn down by someone else?
1268 	 */
1269 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1270 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1271 		res = -EBUSY;
1272 		goto out;
1273 	}
1274 
1275 identify_page_state:
1276 	res = -EBUSY;
1277 	/*
1278 	 * The first check uses the current page flags which may not have any
1279 	 * relevant information. The second check with the saved page flagss is
1280 	 * carried out only if the first check can't determine the page status.
1281 	 */
1282 	for (ps = error_states;; ps++)
1283 		if ((p->flags & ps->mask) == ps->res)
1284 			break;
1285 
1286 	page_flags |= (p->flags & (1UL << PG_dirty));
1287 
1288 	if (!ps->mask)
1289 		for (ps = error_states;; ps++)
1290 			if ((page_flags & ps->mask) == ps->res)
1291 				break;
1292 	res = page_action(ps, p, pfn);
1293 out:
1294 	unlock_page(hpage);
1295 	return res;
1296 }
1297 EXPORT_SYMBOL_GPL(memory_failure);
1298 
1299 #define MEMORY_FAILURE_FIFO_ORDER	4
1300 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1301 
1302 struct memory_failure_entry {
1303 	unsigned long pfn;
1304 	int trapno;
1305 	int flags;
1306 };
1307 
1308 struct memory_failure_cpu {
1309 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1310 		      MEMORY_FAILURE_FIFO_SIZE);
1311 	spinlock_t lock;
1312 	struct work_struct work;
1313 };
1314 
1315 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1316 
1317 /**
1318  * memory_failure_queue - Schedule handling memory failure of a page.
1319  * @pfn: Page Number of the corrupted page
1320  * @trapno: Trap number reported in the signal to user space.
1321  * @flags: Flags for memory failure handling
1322  *
1323  * This function is called by the low level hardware error handler
1324  * when it detects hardware memory corruption of a page. It schedules
1325  * the recovering of error page, including dropping pages, killing
1326  * processes etc.
1327  *
1328  * The function is primarily of use for corruptions that
1329  * happen outside the current execution context (e.g. when
1330  * detected by a background scrubber)
1331  *
1332  * Can run in IRQ context.
1333  */
1334 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1335 {
1336 	struct memory_failure_cpu *mf_cpu;
1337 	unsigned long proc_flags;
1338 	struct memory_failure_entry entry = {
1339 		.pfn =		pfn,
1340 		.trapno =	trapno,
1341 		.flags =	flags,
1342 	};
1343 
1344 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1345 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1346 	if (kfifo_put(&mf_cpu->fifo, entry))
1347 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1348 	else
1349 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1350 		       pfn);
1351 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1352 	put_cpu_var(memory_failure_cpu);
1353 }
1354 EXPORT_SYMBOL_GPL(memory_failure_queue);
1355 
1356 static void memory_failure_work_func(struct work_struct *work)
1357 {
1358 	struct memory_failure_cpu *mf_cpu;
1359 	struct memory_failure_entry entry = { 0, };
1360 	unsigned long proc_flags;
1361 	int gotten;
1362 
1363 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1364 	for (;;) {
1365 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1366 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1367 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1368 		if (!gotten)
1369 			break;
1370 		if (entry.flags & MF_SOFT_OFFLINE)
1371 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1372 		else
1373 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1374 	}
1375 }
1376 
1377 static int __init memory_failure_init(void)
1378 {
1379 	struct memory_failure_cpu *mf_cpu;
1380 	int cpu;
1381 
1382 	for_each_possible_cpu(cpu) {
1383 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1384 		spin_lock_init(&mf_cpu->lock);
1385 		INIT_KFIFO(mf_cpu->fifo);
1386 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1387 	}
1388 
1389 	return 0;
1390 }
1391 core_initcall(memory_failure_init);
1392 
1393 /**
1394  * unpoison_memory - Unpoison a previously poisoned page
1395  * @pfn: Page number of the to be unpoisoned page
1396  *
1397  * Software-unpoison a page that has been poisoned by
1398  * memory_failure() earlier.
1399  *
1400  * This is only done on the software-level, so it only works
1401  * for linux injected failures, not real hardware failures
1402  *
1403  * Returns 0 for success, otherwise -errno.
1404  */
1405 int unpoison_memory(unsigned long pfn)
1406 {
1407 	struct page *page;
1408 	struct page *p;
1409 	int freeit = 0;
1410 	unsigned int nr_pages;
1411 
1412 	if (!pfn_valid(pfn))
1413 		return -ENXIO;
1414 
1415 	p = pfn_to_page(pfn);
1416 	page = compound_head(p);
1417 
1418 	if (!PageHWPoison(p)) {
1419 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1420 		return 0;
1421 	}
1422 
1423 	/*
1424 	 * unpoison_memory() can encounter thp only when the thp is being
1425 	 * worked by memory_failure() and the page lock is not held yet.
1426 	 * In such case, we yield to memory_failure() and make unpoison fail.
1427 	 */
1428 	if (!PageHuge(page) && PageTransHuge(page)) {
1429 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1430 		return 0;
1431 	}
1432 
1433 	nr_pages = 1 << compound_order(page);
1434 
1435 	if (!get_hwpoison_page(p)) {
1436 		/*
1437 		 * Since HWPoisoned hugepage should have non-zero refcount,
1438 		 * race between memory failure and unpoison seems to happen.
1439 		 * In such case unpoison fails and memory failure runs
1440 		 * to the end.
1441 		 */
1442 		if (PageHuge(page)) {
1443 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1444 			return 0;
1445 		}
1446 		if (TestClearPageHWPoison(p))
1447 			atomic_long_dec(&num_poisoned_pages);
1448 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1449 		return 0;
1450 	}
1451 
1452 	lock_page(page);
1453 	/*
1454 	 * This test is racy because PG_hwpoison is set outside of page lock.
1455 	 * That's acceptable because that won't trigger kernel panic. Instead,
1456 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1457 	 * the free buddy page pool.
1458 	 */
1459 	if (TestClearPageHWPoison(page)) {
1460 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1461 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1462 		freeit = 1;
1463 		if (PageHuge(page))
1464 			clear_page_hwpoison_huge_page(page);
1465 	}
1466 	unlock_page(page);
1467 
1468 	put_page(page);
1469 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1470 		put_page(page);
1471 
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL(unpoison_memory);
1475 
1476 static struct page *new_page(struct page *p, unsigned long private, int **x)
1477 {
1478 	int nid = page_to_nid(p);
1479 	if (PageHuge(p))
1480 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1481 						   nid);
1482 	else
1483 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1484 }
1485 
1486 /*
1487  * Safely get reference count of an arbitrary page.
1488  * Returns 0 for a free page, -EIO for a zero refcount page
1489  * that is not free, and 1 for any other page type.
1490  * For 1 the page is returned with increased page count, otherwise not.
1491  */
1492 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1493 {
1494 	int ret;
1495 
1496 	if (flags & MF_COUNT_INCREASED)
1497 		return 1;
1498 
1499 	/*
1500 	 * When the target page is a free hugepage, just remove it
1501 	 * from free hugepage list.
1502 	 */
1503 	if (!get_hwpoison_page(p)) {
1504 		if (PageHuge(p)) {
1505 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1506 			ret = 0;
1507 		} else if (is_free_buddy_page(p)) {
1508 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1509 			ret = 0;
1510 		} else {
1511 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1512 				__func__, pfn, p->flags);
1513 			ret = -EIO;
1514 		}
1515 	} else {
1516 		/* Not a free page */
1517 		ret = 1;
1518 	}
1519 	return ret;
1520 }
1521 
1522 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1523 {
1524 	int ret = __get_any_page(page, pfn, flags);
1525 
1526 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1527 		/*
1528 		 * Try to free it.
1529 		 */
1530 		put_page(page);
1531 		shake_page(page, 1);
1532 
1533 		/*
1534 		 * Did it turn free?
1535 		 */
1536 		ret = __get_any_page(page, pfn, 0);
1537 		if (!PageLRU(page)) {
1538 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1539 				pfn, page->flags);
1540 			return -EIO;
1541 		}
1542 	}
1543 	return ret;
1544 }
1545 
1546 static int soft_offline_huge_page(struct page *page, int flags)
1547 {
1548 	int ret;
1549 	unsigned long pfn = page_to_pfn(page);
1550 	struct page *hpage = compound_head(page);
1551 	LIST_HEAD(pagelist);
1552 
1553 	/*
1554 	 * This double-check of PageHWPoison is to avoid the race with
1555 	 * memory_failure(). See also comment in __soft_offline_page().
1556 	 */
1557 	lock_page(hpage);
1558 	if (PageHWPoison(hpage)) {
1559 		unlock_page(hpage);
1560 		put_page(hpage);
1561 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1562 		return -EBUSY;
1563 	}
1564 	unlock_page(hpage);
1565 
1566 	ret = isolate_huge_page(hpage, &pagelist);
1567 	if (ret) {
1568 		/*
1569 		 * get_any_page() and isolate_huge_page() takes a refcount each,
1570 		 * so need to drop one here.
1571 		 */
1572 		put_page(hpage);
1573 	} else {
1574 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1575 		return -EBUSY;
1576 	}
1577 
1578 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1579 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1580 	if (ret) {
1581 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1582 			pfn, ret, page->flags);
1583 		/*
1584 		 * We know that soft_offline_huge_page() tries to migrate
1585 		 * only one hugepage pointed to by hpage, so we need not
1586 		 * run through the pagelist here.
1587 		 */
1588 		putback_active_hugepage(hpage);
1589 		if (ret > 0)
1590 			ret = -EIO;
1591 	} else {
1592 		/* overcommit hugetlb page will be freed to buddy */
1593 		if (PageHuge(page)) {
1594 			set_page_hwpoison_huge_page(hpage);
1595 			dequeue_hwpoisoned_huge_page(hpage);
1596 			atomic_long_add(1 << compound_order(hpage),
1597 					&num_poisoned_pages);
1598 		} else {
1599 			SetPageHWPoison(page);
1600 			atomic_long_inc(&num_poisoned_pages);
1601 		}
1602 	}
1603 	return ret;
1604 }
1605 
1606 static int __soft_offline_page(struct page *page, int flags)
1607 {
1608 	int ret;
1609 	unsigned long pfn = page_to_pfn(page);
1610 
1611 	/*
1612 	 * Check PageHWPoison again inside page lock because PageHWPoison
1613 	 * is set by memory_failure() outside page lock. Note that
1614 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1615 	 * so there's no race between soft_offline_page() and memory_failure().
1616 	 */
1617 	lock_page(page);
1618 	wait_on_page_writeback(page);
1619 	if (PageHWPoison(page)) {
1620 		unlock_page(page);
1621 		put_page(page);
1622 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1623 		return -EBUSY;
1624 	}
1625 	/*
1626 	 * Try to invalidate first. This should work for
1627 	 * non dirty unmapped page cache pages.
1628 	 */
1629 	ret = invalidate_inode_page(page);
1630 	unlock_page(page);
1631 	/*
1632 	 * RED-PEN would be better to keep it isolated here, but we
1633 	 * would need to fix isolation locking first.
1634 	 */
1635 	if (ret == 1) {
1636 		put_page(page);
1637 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1638 		SetPageHWPoison(page);
1639 		atomic_long_inc(&num_poisoned_pages);
1640 		return 0;
1641 	}
1642 
1643 	/*
1644 	 * Simple invalidation didn't work.
1645 	 * Try to migrate to a new page instead. migrate.c
1646 	 * handles a large number of cases for us.
1647 	 */
1648 	ret = isolate_lru_page(page);
1649 	/*
1650 	 * Drop page reference which is came from get_any_page()
1651 	 * successful isolate_lru_page() already took another one.
1652 	 */
1653 	put_page(page);
1654 	if (!ret) {
1655 		LIST_HEAD(pagelist);
1656 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1657 					page_is_file_cache(page));
1658 		list_add(&page->lru, &pagelist);
1659 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1660 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1661 		if (ret) {
1662 			if (!list_empty(&pagelist)) {
1663 				list_del(&page->lru);
1664 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1665 						page_is_file_cache(page));
1666 				putback_lru_page(page);
1667 			}
1668 
1669 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1670 				pfn, ret, page->flags);
1671 			if (ret > 0)
1672 				ret = -EIO;
1673 		} else {
1674 			SetPageHWPoison(page);
1675 			atomic_long_inc(&num_poisoned_pages);
1676 		}
1677 	} else {
1678 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1679 			pfn, ret, page_count(page), page->flags);
1680 	}
1681 	return ret;
1682 }
1683 
1684 /**
1685  * soft_offline_page - Soft offline a page.
1686  * @page: page to offline
1687  * @flags: flags. Same as memory_failure().
1688  *
1689  * Returns 0 on success, otherwise negated errno.
1690  *
1691  * Soft offline a page, by migration or invalidation,
1692  * without killing anything. This is for the case when
1693  * a page is not corrupted yet (so it's still valid to access),
1694  * but has had a number of corrected errors and is better taken
1695  * out.
1696  *
1697  * The actual policy on when to do that is maintained by
1698  * user space.
1699  *
1700  * This should never impact any application or cause data loss,
1701  * however it might take some time.
1702  *
1703  * This is not a 100% solution for all memory, but tries to be
1704  * ``good enough'' for the majority of memory.
1705  */
1706 int soft_offline_page(struct page *page, int flags)
1707 {
1708 	int ret;
1709 	unsigned long pfn = page_to_pfn(page);
1710 	struct page *hpage = compound_head(page);
1711 
1712 	if (PageHWPoison(page)) {
1713 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1714 		return -EBUSY;
1715 	}
1716 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1717 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1718 			pr_info("soft offline: %#lx: failed to split THP\n",
1719 				pfn);
1720 			return -EBUSY;
1721 		}
1722 	}
1723 
1724 	get_online_mems();
1725 
1726 	ret = get_any_page(page, pfn, flags);
1727 	put_online_mems();
1728 	if (ret > 0) { /* for in-use pages */
1729 		if (PageHuge(page))
1730 			ret = soft_offline_huge_page(page, flags);
1731 		else
1732 			ret = __soft_offline_page(page, flags);
1733 	} else if (ret == 0) { /* for free pages */
1734 		if (PageHuge(page)) {
1735 			set_page_hwpoison_huge_page(hpage);
1736 			if (!dequeue_hwpoisoned_huge_page(hpage))
1737 				atomic_long_add(1 << compound_order(hpage),
1738 					&num_poisoned_pages);
1739 		} else {
1740 			if (!TestSetPageHWPoison(page))
1741 				atomic_long_inc(&num_poisoned_pages);
1742 		}
1743 	}
1744 	return ret;
1745 }
1746