1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include <linux/sched/isolation.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "swap.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 /* Active memory cgroup to use from an interrupt context */ 83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 85 86 /* Socket memory accounting disabled? */ 87 static bool cgroup_memory_nosocket __ro_after_init; 88 89 /* Kernel memory accounting disabled? */ 90 static bool cgroup_memory_nokmem __ro_after_init; 91 92 /* BPF memory accounting disabled? */ 93 static bool cgroup_memory_nobpf __ro_after_init; 94 95 #ifdef CONFIG_CGROUP_WRITEBACK 96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 97 #endif 98 99 /* Whether legacy memory+swap accounting is active */ 100 static bool do_memsw_account(void) 101 { 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 103 } 104 105 #define THRESHOLDS_EVENTS_TARGET 128 106 #define SOFTLIMIT_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 /* for encoding cft->private value on file */ 207 enum res_type { 208 _MEM, 209 _MEMSWAP, 210 _KMEM, 211 _TCP, 212 }; 213 214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 216 #define MEMFILE_ATTR(val) ((val) & 0xffff) 217 218 /* 219 * Iteration constructs for visiting all cgroups (under a tree). If 220 * loops are exited prematurely (break), mem_cgroup_iter_break() must 221 * be used for reference counting. 222 */ 223 #define for_each_mem_cgroup_tree(iter, root) \ 224 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 225 iter != NULL; \ 226 iter = mem_cgroup_iter(root, iter, NULL)) 227 228 #define for_each_mem_cgroup(iter) \ 229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(NULL, iter, NULL)) 232 233 static inline bool task_is_dying(void) 234 { 235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 236 (current->flags & PF_EXITING); 237 } 238 239 /* Some nice accessors for the vmpressure. */ 240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 241 { 242 if (!memcg) 243 memcg = root_mem_cgroup; 244 return &memcg->vmpressure; 245 } 246 247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 248 { 249 return container_of(vmpr, struct mem_cgroup, vmpressure); 250 } 251 252 #define CURRENT_OBJCG_UPDATE_BIT 0 253 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 254 255 #ifdef CONFIG_MEMCG_KMEM 256 static DEFINE_SPINLOCK(objcg_lock); 257 258 bool mem_cgroup_kmem_disabled(void) 259 { 260 return cgroup_memory_nokmem; 261 } 262 263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 264 unsigned int nr_pages); 265 266 static void obj_cgroup_release(struct percpu_ref *ref) 267 { 268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 269 unsigned int nr_bytes; 270 unsigned int nr_pages; 271 unsigned long flags; 272 273 /* 274 * At this point all allocated objects are freed, and 275 * objcg->nr_charged_bytes can't have an arbitrary byte value. 276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 277 * 278 * The following sequence can lead to it: 279 * 1) CPU0: objcg == stock->cached_objcg 280 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 281 * PAGE_SIZE bytes are charged 282 * 3) CPU1: a process from another memcg is allocating something, 283 * the stock if flushed, 284 * objcg->nr_charged_bytes = PAGE_SIZE - 92 285 * 5) CPU0: we do release this object, 286 * 92 bytes are added to stock->nr_bytes 287 * 6) CPU0: stock is flushed, 288 * 92 bytes are added to objcg->nr_charged_bytes 289 * 290 * In the result, nr_charged_bytes == PAGE_SIZE. 291 * This page will be uncharged in obj_cgroup_release(). 292 */ 293 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 295 nr_pages = nr_bytes >> PAGE_SHIFT; 296 297 if (nr_pages) 298 obj_cgroup_uncharge_pages(objcg, nr_pages); 299 300 spin_lock_irqsave(&objcg_lock, flags); 301 list_del(&objcg->list); 302 spin_unlock_irqrestore(&objcg_lock, flags); 303 304 percpu_ref_exit(ref); 305 kfree_rcu(objcg, rcu); 306 } 307 308 static struct obj_cgroup *obj_cgroup_alloc(void) 309 { 310 struct obj_cgroup *objcg; 311 int ret; 312 313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 314 if (!objcg) 315 return NULL; 316 317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 318 GFP_KERNEL); 319 if (ret) { 320 kfree(objcg); 321 return NULL; 322 } 323 INIT_LIST_HEAD(&objcg->list); 324 return objcg; 325 } 326 327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 328 struct mem_cgroup *parent) 329 { 330 struct obj_cgroup *objcg, *iter; 331 332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 333 334 spin_lock_irq(&objcg_lock); 335 336 /* 1) Ready to reparent active objcg. */ 337 list_add(&objcg->list, &memcg->objcg_list); 338 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 339 list_for_each_entry(iter, &memcg->objcg_list, list) 340 WRITE_ONCE(iter->memcg, parent); 341 /* 3) Move already reparented objcgs to the parent's list */ 342 list_splice(&memcg->objcg_list, &parent->objcg_list); 343 344 spin_unlock_irq(&objcg_lock); 345 346 percpu_ref_kill(&objcg->refcnt); 347 } 348 349 /* 350 * A lot of the calls to the cache allocation functions are expected to be 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 352 * conditional to this static branch, we'll have to allow modules that does 353 * kmem_cache_alloc and the such to see this symbol as well 354 */ 355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 356 EXPORT_SYMBOL(memcg_kmem_online_key); 357 358 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 359 EXPORT_SYMBOL(memcg_bpf_enabled_key); 360 #endif 361 362 /** 363 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 364 * @folio: folio of interest 365 * 366 * If memcg is bound to the default hierarchy, css of the memcg associated 367 * with @folio is returned. The returned css remains associated with @folio 368 * until it is released. 369 * 370 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 371 * is returned. 372 */ 373 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 374 { 375 struct mem_cgroup *memcg = folio_memcg(folio); 376 377 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 378 memcg = root_mem_cgroup; 379 380 return &memcg->css; 381 } 382 383 /** 384 * page_cgroup_ino - return inode number of the memcg a page is charged to 385 * @page: the page 386 * 387 * Look up the closest online ancestor of the memory cgroup @page is charged to 388 * and return its inode number or 0 if @page is not charged to any cgroup. It 389 * is safe to call this function without holding a reference to @page. 390 * 391 * Note, this function is inherently racy, because there is nothing to prevent 392 * the cgroup inode from getting torn down and potentially reallocated a moment 393 * after page_cgroup_ino() returns, so it only should be used by callers that 394 * do not care (such as procfs interfaces). 395 */ 396 ino_t page_cgroup_ino(struct page *page) 397 { 398 struct mem_cgroup *memcg; 399 unsigned long ino = 0; 400 401 rcu_read_lock(); 402 /* page_folio() is racy here, but the entire function is racy anyway */ 403 memcg = folio_memcg_check(page_folio(page)); 404 405 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 406 memcg = parent_mem_cgroup(memcg); 407 if (memcg) 408 ino = cgroup_ino(memcg->css.cgroup); 409 rcu_read_unlock(); 410 return ino; 411 } 412 413 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 414 struct mem_cgroup_tree_per_node *mctz, 415 unsigned long new_usage_in_excess) 416 { 417 struct rb_node **p = &mctz->rb_root.rb_node; 418 struct rb_node *parent = NULL; 419 struct mem_cgroup_per_node *mz_node; 420 bool rightmost = true; 421 422 if (mz->on_tree) 423 return; 424 425 mz->usage_in_excess = new_usage_in_excess; 426 if (!mz->usage_in_excess) 427 return; 428 while (*p) { 429 parent = *p; 430 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 431 tree_node); 432 if (mz->usage_in_excess < mz_node->usage_in_excess) { 433 p = &(*p)->rb_left; 434 rightmost = false; 435 } else { 436 p = &(*p)->rb_right; 437 } 438 } 439 440 if (rightmost) 441 mctz->rb_rightmost = &mz->tree_node; 442 443 rb_link_node(&mz->tree_node, parent, p); 444 rb_insert_color(&mz->tree_node, &mctz->rb_root); 445 mz->on_tree = true; 446 } 447 448 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 449 struct mem_cgroup_tree_per_node *mctz) 450 { 451 if (!mz->on_tree) 452 return; 453 454 if (&mz->tree_node == mctz->rb_rightmost) 455 mctz->rb_rightmost = rb_prev(&mz->tree_node); 456 457 rb_erase(&mz->tree_node, &mctz->rb_root); 458 mz->on_tree = false; 459 } 460 461 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 462 struct mem_cgroup_tree_per_node *mctz) 463 { 464 unsigned long flags; 465 466 spin_lock_irqsave(&mctz->lock, flags); 467 __mem_cgroup_remove_exceeded(mz, mctz); 468 spin_unlock_irqrestore(&mctz->lock, flags); 469 } 470 471 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 472 { 473 unsigned long nr_pages = page_counter_read(&memcg->memory); 474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 475 unsigned long excess = 0; 476 477 if (nr_pages > soft_limit) 478 excess = nr_pages - soft_limit; 479 480 return excess; 481 } 482 483 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 484 { 485 unsigned long excess; 486 struct mem_cgroup_per_node *mz; 487 struct mem_cgroup_tree_per_node *mctz; 488 489 if (lru_gen_enabled()) { 490 if (soft_limit_excess(memcg)) 491 lru_gen_soft_reclaim(memcg, nid); 492 return; 493 } 494 495 mctz = soft_limit_tree.rb_tree_per_node[nid]; 496 if (!mctz) 497 return; 498 /* 499 * Necessary to update all ancestors when hierarchy is used. 500 * because their event counter is not touched. 501 */ 502 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 503 mz = memcg->nodeinfo[nid]; 504 excess = soft_limit_excess(memcg); 505 /* 506 * We have to update the tree if mz is on RB-tree or 507 * mem is over its softlimit. 508 */ 509 if (excess || mz->on_tree) { 510 unsigned long flags; 511 512 spin_lock_irqsave(&mctz->lock, flags); 513 /* if on-tree, remove it */ 514 if (mz->on_tree) 515 __mem_cgroup_remove_exceeded(mz, mctz); 516 /* 517 * Insert again. mz->usage_in_excess will be updated. 518 * If excess is 0, no tree ops. 519 */ 520 __mem_cgroup_insert_exceeded(mz, mctz, excess); 521 spin_unlock_irqrestore(&mctz->lock, flags); 522 } 523 } 524 } 525 526 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 527 { 528 struct mem_cgroup_tree_per_node *mctz; 529 struct mem_cgroup_per_node *mz; 530 int nid; 531 532 for_each_node(nid) { 533 mz = memcg->nodeinfo[nid]; 534 mctz = soft_limit_tree.rb_tree_per_node[nid]; 535 if (mctz) 536 mem_cgroup_remove_exceeded(mz, mctz); 537 } 538 } 539 540 static struct mem_cgroup_per_node * 541 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 542 { 543 struct mem_cgroup_per_node *mz; 544 545 retry: 546 mz = NULL; 547 if (!mctz->rb_rightmost) 548 goto done; /* Nothing to reclaim from */ 549 550 mz = rb_entry(mctz->rb_rightmost, 551 struct mem_cgroup_per_node, tree_node); 552 /* 553 * Remove the node now but someone else can add it back, 554 * we will to add it back at the end of reclaim to its correct 555 * position in the tree. 556 */ 557 __mem_cgroup_remove_exceeded(mz, mctz); 558 if (!soft_limit_excess(mz->memcg) || 559 !css_tryget(&mz->memcg->css)) 560 goto retry; 561 done: 562 return mz; 563 } 564 565 static struct mem_cgroup_per_node * 566 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 567 { 568 struct mem_cgroup_per_node *mz; 569 570 spin_lock_irq(&mctz->lock); 571 mz = __mem_cgroup_largest_soft_limit_node(mctz); 572 spin_unlock_irq(&mctz->lock); 573 return mz; 574 } 575 576 /* 577 * memcg and lruvec stats flushing 578 * 579 * Many codepaths leading to stats update or read are performance sensitive and 580 * adding stats flushing in such codepaths is not desirable. So, to optimize the 581 * flushing the kernel does: 582 * 583 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 584 * rstat update tree grow unbounded. 585 * 586 * 2) Flush the stats synchronously on reader side only when there are more than 587 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 588 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 589 * only for 2 seconds due to (1). 590 */ 591 static void flush_memcg_stats_dwork(struct work_struct *w); 592 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 593 static DEFINE_PER_CPU(unsigned int, stats_updates); 594 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0); 595 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 596 static u64 flush_next_time; 597 598 #define FLUSH_TIME (2UL*HZ) 599 600 /* 601 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 602 * not rely on this as part of an acquired spinlock_t lock. These functions are 603 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 604 * is sufficient. 605 */ 606 static void memcg_stats_lock(void) 607 { 608 preempt_disable_nested(); 609 VM_WARN_ON_IRQS_ENABLED(); 610 } 611 612 static void __memcg_stats_lock(void) 613 { 614 preempt_disable_nested(); 615 } 616 617 static void memcg_stats_unlock(void) 618 { 619 preempt_enable_nested(); 620 } 621 622 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 623 { 624 unsigned int x; 625 626 if (!val) 627 return; 628 629 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 630 631 x = __this_cpu_add_return(stats_updates, abs(val)); 632 if (x > MEMCG_CHARGE_BATCH) { 633 /* 634 * If stats_flush_threshold exceeds the threshold 635 * (>num_online_cpus()), cgroup stats update will be triggered 636 * in __mem_cgroup_flush_stats(). Increasing this var further 637 * is redundant and simply adds overhead in atomic update. 638 */ 639 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 640 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 641 __this_cpu_write(stats_updates, 0); 642 } 643 } 644 645 static void do_flush_stats(void) 646 { 647 /* 648 * We always flush the entire tree, so concurrent flushers can just 649 * skip. This avoids a thundering herd problem on the rstat global lock 650 * from memcg flushers (e.g. reclaim, refault, etc). 651 */ 652 if (atomic_read(&stats_flush_ongoing) || 653 atomic_xchg(&stats_flush_ongoing, 1)) 654 return; 655 656 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME); 657 658 cgroup_rstat_flush(root_mem_cgroup->css.cgroup); 659 660 atomic_set(&stats_flush_threshold, 0); 661 atomic_set(&stats_flush_ongoing, 0); 662 } 663 664 void mem_cgroup_flush_stats(void) 665 { 666 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 667 do_flush_stats(); 668 } 669 670 void mem_cgroup_flush_stats_ratelimited(void) 671 { 672 if (time_after64(jiffies_64, READ_ONCE(flush_next_time))) 673 mem_cgroup_flush_stats(); 674 } 675 676 static void flush_memcg_stats_dwork(struct work_struct *w) 677 { 678 /* 679 * Always flush here so that flushing in latency-sensitive paths is 680 * as cheap as possible. 681 */ 682 do_flush_stats(); 683 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 684 } 685 686 /* Subset of vm_event_item to report for memcg event stats */ 687 static const unsigned int memcg_vm_event_stat[] = { 688 PGPGIN, 689 PGPGOUT, 690 PGSCAN_KSWAPD, 691 PGSCAN_DIRECT, 692 PGSCAN_KHUGEPAGED, 693 PGSTEAL_KSWAPD, 694 PGSTEAL_DIRECT, 695 PGSTEAL_KHUGEPAGED, 696 PGFAULT, 697 PGMAJFAULT, 698 PGREFILL, 699 PGACTIVATE, 700 PGDEACTIVATE, 701 PGLAZYFREE, 702 PGLAZYFREED, 703 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 704 ZSWPIN, 705 ZSWPOUT, 706 #endif 707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 708 THP_FAULT_ALLOC, 709 THP_COLLAPSE_ALLOC, 710 THP_SWPOUT, 711 THP_SWPOUT_FALLBACK, 712 #endif 713 }; 714 715 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 716 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 717 718 static void init_memcg_events(void) 719 { 720 int i; 721 722 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 723 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 724 } 725 726 static inline int memcg_events_index(enum vm_event_item idx) 727 { 728 return mem_cgroup_events_index[idx] - 1; 729 } 730 731 struct memcg_vmstats_percpu { 732 /* Local (CPU and cgroup) page state & events */ 733 long state[MEMCG_NR_STAT]; 734 unsigned long events[NR_MEMCG_EVENTS]; 735 736 /* Delta calculation for lockless upward propagation */ 737 long state_prev[MEMCG_NR_STAT]; 738 unsigned long events_prev[NR_MEMCG_EVENTS]; 739 740 /* Cgroup1: threshold notifications & softlimit tree updates */ 741 unsigned long nr_page_events; 742 unsigned long targets[MEM_CGROUP_NTARGETS]; 743 }; 744 745 struct memcg_vmstats { 746 /* Aggregated (CPU and subtree) page state & events */ 747 long state[MEMCG_NR_STAT]; 748 unsigned long events[NR_MEMCG_EVENTS]; 749 750 /* Non-hierarchical (CPU aggregated) page state & events */ 751 long state_local[MEMCG_NR_STAT]; 752 unsigned long events_local[NR_MEMCG_EVENTS]; 753 754 /* Pending child counts during tree propagation */ 755 long state_pending[MEMCG_NR_STAT]; 756 unsigned long events_pending[NR_MEMCG_EVENTS]; 757 }; 758 759 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 760 { 761 long x = READ_ONCE(memcg->vmstats->state[idx]); 762 #ifdef CONFIG_SMP 763 if (x < 0) 764 x = 0; 765 #endif 766 return x; 767 } 768 769 static int memcg_page_state_unit(int item); 770 771 /* 772 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 773 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 774 */ 775 static int memcg_state_val_in_pages(int idx, int val) 776 { 777 int unit = memcg_page_state_unit(idx); 778 779 if (!val || unit == PAGE_SIZE) 780 return val; 781 else 782 return max(val * unit / PAGE_SIZE, 1UL); 783 } 784 785 /** 786 * __mod_memcg_state - update cgroup memory statistics 787 * @memcg: the memory cgroup 788 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 789 * @val: delta to add to the counter, can be negative 790 */ 791 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 792 { 793 if (mem_cgroup_disabled()) 794 return; 795 796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 797 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 798 } 799 800 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 801 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 802 { 803 long x = READ_ONCE(memcg->vmstats->state_local[idx]); 804 805 #ifdef CONFIG_SMP 806 if (x < 0) 807 x = 0; 808 #endif 809 return x; 810 } 811 812 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 813 int val) 814 { 815 struct mem_cgroup_per_node *pn; 816 struct mem_cgroup *memcg; 817 818 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 819 memcg = pn->memcg; 820 821 /* 822 * The caller from rmap relies on disabled preemption because they never 823 * update their counter from in-interrupt context. For these two 824 * counters we check that the update is never performed from an 825 * interrupt context while other caller need to have disabled interrupt. 826 */ 827 __memcg_stats_lock(); 828 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 829 switch (idx) { 830 case NR_ANON_MAPPED: 831 case NR_FILE_MAPPED: 832 case NR_ANON_THPS: 833 case NR_SHMEM_PMDMAPPED: 834 case NR_FILE_PMDMAPPED: 835 WARN_ON_ONCE(!in_task()); 836 break; 837 default: 838 VM_WARN_ON_IRQS_ENABLED(); 839 } 840 } 841 842 /* Update memcg */ 843 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 844 845 /* Update lruvec */ 846 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 847 848 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 849 memcg_stats_unlock(); 850 } 851 852 /** 853 * __mod_lruvec_state - update lruvec memory statistics 854 * @lruvec: the lruvec 855 * @idx: the stat item 856 * @val: delta to add to the counter, can be negative 857 * 858 * The lruvec is the intersection of the NUMA node and a cgroup. This 859 * function updates the all three counters that are affected by a 860 * change of state at this level: per-node, per-cgroup, per-lruvec. 861 */ 862 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 863 int val) 864 { 865 /* Update node */ 866 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 867 868 /* Update memcg and lruvec */ 869 if (!mem_cgroup_disabled()) 870 __mod_memcg_lruvec_state(lruvec, idx, val); 871 } 872 873 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 874 int val) 875 { 876 struct page *head = compound_head(page); /* rmap on tail pages */ 877 struct mem_cgroup *memcg; 878 pg_data_t *pgdat = page_pgdat(page); 879 struct lruvec *lruvec; 880 881 rcu_read_lock(); 882 memcg = page_memcg(head); 883 /* Untracked pages have no memcg, no lruvec. Update only the node */ 884 if (!memcg) { 885 rcu_read_unlock(); 886 __mod_node_page_state(pgdat, idx, val); 887 return; 888 } 889 890 lruvec = mem_cgroup_lruvec(memcg, pgdat); 891 __mod_lruvec_state(lruvec, idx, val); 892 rcu_read_unlock(); 893 } 894 EXPORT_SYMBOL(__mod_lruvec_page_state); 895 896 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 897 { 898 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 899 struct mem_cgroup *memcg; 900 struct lruvec *lruvec; 901 902 rcu_read_lock(); 903 memcg = mem_cgroup_from_slab_obj(p); 904 905 /* 906 * Untracked pages have no memcg, no lruvec. Update only the 907 * node. If we reparent the slab objects to the root memcg, 908 * when we free the slab object, we need to update the per-memcg 909 * vmstats to keep it correct for the root memcg. 910 */ 911 if (!memcg) { 912 __mod_node_page_state(pgdat, idx, val); 913 } else { 914 lruvec = mem_cgroup_lruvec(memcg, pgdat); 915 __mod_lruvec_state(lruvec, idx, val); 916 } 917 rcu_read_unlock(); 918 } 919 920 /** 921 * __count_memcg_events - account VM events in a cgroup 922 * @memcg: the memory cgroup 923 * @idx: the event item 924 * @count: the number of events that occurred 925 */ 926 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 927 unsigned long count) 928 { 929 int index = memcg_events_index(idx); 930 931 if (mem_cgroup_disabled() || index < 0) 932 return; 933 934 memcg_stats_lock(); 935 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 936 memcg_rstat_updated(memcg, count); 937 memcg_stats_unlock(); 938 } 939 940 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 941 { 942 int index = memcg_events_index(event); 943 944 if (index < 0) 945 return 0; 946 return READ_ONCE(memcg->vmstats->events[index]); 947 } 948 949 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 950 { 951 int index = memcg_events_index(event); 952 953 if (index < 0) 954 return 0; 955 956 return READ_ONCE(memcg->vmstats->events_local[index]); 957 } 958 959 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 960 int nr_pages) 961 { 962 /* pagein of a big page is an event. So, ignore page size */ 963 if (nr_pages > 0) 964 __count_memcg_events(memcg, PGPGIN, 1); 965 else { 966 __count_memcg_events(memcg, PGPGOUT, 1); 967 nr_pages = -nr_pages; /* for event */ 968 } 969 970 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 971 } 972 973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 974 enum mem_cgroup_events_target target) 975 { 976 unsigned long val, next; 977 978 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 979 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 980 /* from time_after() in jiffies.h */ 981 if ((long)(next - val) < 0) { 982 switch (target) { 983 case MEM_CGROUP_TARGET_THRESH: 984 next = val + THRESHOLDS_EVENTS_TARGET; 985 break; 986 case MEM_CGROUP_TARGET_SOFTLIMIT: 987 next = val + SOFTLIMIT_EVENTS_TARGET; 988 break; 989 default: 990 break; 991 } 992 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 993 return true; 994 } 995 return false; 996 } 997 998 /* 999 * Check events in order. 1000 * 1001 */ 1002 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 1003 { 1004 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1005 return; 1006 1007 /* threshold event is triggered in finer grain than soft limit */ 1008 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1009 MEM_CGROUP_TARGET_THRESH))) { 1010 bool do_softlimit; 1011 1012 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1013 MEM_CGROUP_TARGET_SOFTLIMIT); 1014 mem_cgroup_threshold(memcg); 1015 if (unlikely(do_softlimit)) 1016 mem_cgroup_update_tree(memcg, nid); 1017 } 1018 } 1019 1020 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1021 { 1022 /* 1023 * mm_update_next_owner() may clear mm->owner to NULL 1024 * if it races with swapoff, page migration, etc. 1025 * So this can be called with p == NULL. 1026 */ 1027 if (unlikely(!p)) 1028 return NULL; 1029 1030 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1031 } 1032 EXPORT_SYMBOL(mem_cgroup_from_task); 1033 1034 static __always_inline struct mem_cgroup *active_memcg(void) 1035 { 1036 if (!in_task()) 1037 return this_cpu_read(int_active_memcg); 1038 else 1039 return current->active_memcg; 1040 } 1041 1042 /** 1043 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1044 * @mm: mm from which memcg should be extracted. It can be NULL. 1045 * 1046 * Obtain a reference on mm->memcg and returns it if successful. If mm 1047 * is NULL, then the memcg is chosen as follows: 1048 * 1) The active memcg, if set. 1049 * 2) current->mm->memcg, if available 1050 * 3) root memcg 1051 * If mem_cgroup is disabled, NULL is returned. 1052 */ 1053 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1054 { 1055 struct mem_cgroup *memcg; 1056 1057 if (mem_cgroup_disabled()) 1058 return NULL; 1059 1060 /* 1061 * Page cache insertions can happen without an 1062 * actual mm context, e.g. during disk probing 1063 * on boot, loopback IO, acct() writes etc. 1064 * 1065 * No need to css_get on root memcg as the reference 1066 * counting is disabled on the root level in the 1067 * cgroup core. See CSS_NO_REF. 1068 */ 1069 if (unlikely(!mm)) { 1070 memcg = active_memcg(); 1071 if (unlikely(memcg)) { 1072 /* remote memcg must hold a ref */ 1073 css_get(&memcg->css); 1074 return memcg; 1075 } 1076 mm = current->mm; 1077 if (unlikely(!mm)) 1078 return root_mem_cgroup; 1079 } 1080 1081 rcu_read_lock(); 1082 do { 1083 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1084 if (unlikely(!memcg)) 1085 memcg = root_mem_cgroup; 1086 } while (!css_tryget(&memcg->css)); 1087 rcu_read_unlock(); 1088 return memcg; 1089 } 1090 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1091 1092 /** 1093 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 1094 */ 1095 struct mem_cgroup *get_mem_cgroup_from_current(void) 1096 { 1097 struct mem_cgroup *memcg; 1098 1099 if (mem_cgroup_disabled()) 1100 return NULL; 1101 1102 again: 1103 rcu_read_lock(); 1104 memcg = mem_cgroup_from_task(current); 1105 if (!css_tryget(&memcg->css)) { 1106 rcu_read_unlock(); 1107 goto again; 1108 } 1109 rcu_read_unlock(); 1110 return memcg; 1111 } 1112 1113 /** 1114 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1115 * @root: hierarchy root 1116 * @prev: previously returned memcg, NULL on first invocation 1117 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1118 * 1119 * Returns references to children of the hierarchy below @root, or 1120 * @root itself, or %NULL after a full round-trip. 1121 * 1122 * Caller must pass the return value in @prev on subsequent 1123 * invocations for reference counting, or use mem_cgroup_iter_break() 1124 * to cancel a hierarchy walk before the round-trip is complete. 1125 * 1126 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1127 * in the hierarchy among all concurrent reclaimers operating on the 1128 * same node. 1129 */ 1130 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1131 struct mem_cgroup *prev, 1132 struct mem_cgroup_reclaim_cookie *reclaim) 1133 { 1134 struct mem_cgroup_reclaim_iter *iter; 1135 struct cgroup_subsys_state *css = NULL; 1136 struct mem_cgroup *memcg = NULL; 1137 struct mem_cgroup *pos = NULL; 1138 1139 if (mem_cgroup_disabled()) 1140 return NULL; 1141 1142 if (!root) 1143 root = root_mem_cgroup; 1144 1145 rcu_read_lock(); 1146 1147 if (reclaim) { 1148 struct mem_cgroup_per_node *mz; 1149 1150 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1151 iter = &mz->iter; 1152 1153 /* 1154 * On start, join the current reclaim iteration cycle. 1155 * Exit when a concurrent walker completes it. 1156 */ 1157 if (!prev) 1158 reclaim->generation = iter->generation; 1159 else if (reclaim->generation != iter->generation) 1160 goto out_unlock; 1161 1162 while (1) { 1163 pos = READ_ONCE(iter->position); 1164 if (!pos || css_tryget(&pos->css)) 1165 break; 1166 /* 1167 * css reference reached zero, so iter->position will 1168 * be cleared by ->css_released. However, we should not 1169 * rely on this happening soon, because ->css_released 1170 * is called from a work queue, and by busy-waiting we 1171 * might block it. So we clear iter->position right 1172 * away. 1173 */ 1174 (void)cmpxchg(&iter->position, pos, NULL); 1175 } 1176 } else if (prev) { 1177 pos = prev; 1178 } 1179 1180 if (pos) 1181 css = &pos->css; 1182 1183 for (;;) { 1184 css = css_next_descendant_pre(css, &root->css); 1185 if (!css) { 1186 /* 1187 * Reclaimers share the hierarchy walk, and a 1188 * new one might jump in right at the end of 1189 * the hierarchy - make sure they see at least 1190 * one group and restart from the beginning. 1191 */ 1192 if (!prev) 1193 continue; 1194 break; 1195 } 1196 1197 /* 1198 * Verify the css and acquire a reference. The root 1199 * is provided by the caller, so we know it's alive 1200 * and kicking, and don't take an extra reference. 1201 */ 1202 if (css == &root->css || css_tryget(css)) { 1203 memcg = mem_cgroup_from_css(css); 1204 break; 1205 } 1206 } 1207 1208 if (reclaim) { 1209 /* 1210 * The position could have already been updated by a competing 1211 * thread, so check that the value hasn't changed since we read 1212 * it to avoid reclaiming from the same cgroup twice. 1213 */ 1214 (void)cmpxchg(&iter->position, pos, memcg); 1215 1216 if (pos) 1217 css_put(&pos->css); 1218 1219 if (!memcg) 1220 iter->generation++; 1221 } 1222 1223 out_unlock: 1224 rcu_read_unlock(); 1225 if (prev && prev != root) 1226 css_put(&prev->css); 1227 1228 return memcg; 1229 } 1230 1231 /** 1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1233 * @root: hierarchy root 1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1235 */ 1236 void mem_cgroup_iter_break(struct mem_cgroup *root, 1237 struct mem_cgroup *prev) 1238 { 1239 if (!root) 1240 root = root_mem_cgroup; 1241 if (prev && prev != root) 1242 css_put(&prev->css); 1243 } 1244 1245 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1246 struct mem_cgroup *dead_memcg) 1247 { 1248 struct mem_cgroup_reclaim_iter *iter; 1249 struct mem_cgroup_per_node *mz; 1250 int nid; 1251 1252 for_each_node(nid) { 1253 mz = from->nodeinfo[nid]; 1254 iter = &mz->iter; 1255 cmpxchg(&iter->position, dead_memcg, NULL); 1256 } 1257 } 1258 1259 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1260 { 1261 struct mem_cgroup *memcg = dead_memcg; 1262 struct mem_cgroup *last; 1263 1264 do { 1265 __invalidate_reclaim_iterators(memcg, dead_memcg); 1266 last = memcg; 1267 } while ((memcg = parent_mem_cgroup(memcg))); 1268 1269 /* 1270 * When cgroup1 non-hierarchy mode is used, 1271 * parent_mem_cgroup() does not walk all the way up to the 1272 * cgroup root (root_mem_cgroup). So we have to handle 1273 * dead_memcg from cgroup root separately. 1274 */ 1275 if (!mem_cgroup_is_root(last)) 1276 __invalidate_reclaim_iterators(root_mem_cgroup, 1277 dead_memcg); 1278 } 1279 1280 /** 1281 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1282 * @memcg: hierarchy root 1283 * @fn: function to call for each task 1284 * @arg: argument passed to @fn 1285 * 1286 * This function iterates over tasks attached to @memcg or to any of its 1287 * descendants and calls @fn for each task. If @fn returns a non-zero 1288 * value, the function breaks the iteration loop. Otherwise, it will iterate 1289 * over all tasks and return 0. 1290 * 1291 * This function must not be called for the root memory cgroup. 1292 */ 1293 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1294 int (*fn)(struct task_struct *, void *), void *arg) 1295 { 1296 struct mem_cgroup *iter; 1297 int ret = 0; 1298 1299 BUG_ON(mem_cgroup_is_root(memcg)); 1300 1301 for_each_mem_cgroup_tree(iter, memcg) { 1302 struct css_task_iter it; 1303 struct task_struct *task; 1304 1305 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1306 while (!ret && (task = css_task_iter_next(&it))) 1307 ret = fn(task, arg); 1308 css_task_iter_end(&it); 1309 if (ret) { 1310 mem_cgroup_iter_break(memcg, iter); 1311 break; 1312 } 1313 } 1314 } 1315 1316 #ifdef CONFIG_DEBUG_VM 1317 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1318 { 1319 struct mem_cgroup *memcg; 1320 1321 if (mem_cgroup_disabled()) 1322 return; 1323 1324 memcg = folio_memcg(folio); 1325 1326 if (!memcg) 1327 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1328 else 1329 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1330 } 1331 #endif 1332 1333 /** 1334 * folio_lruvec_lock - Lock the lruvec for a folio. 1335 * @folio: Pointer to the folio. 1336 * 1337 * These functions are safe to use under any of the following conditions: 1338 * - folio locked 1339 * - folio_test_lru false 1340 * - folio_memcg_lock() 1341 * - folio frozen (refcount of 0) 1342 * 1343 * Return: The lruvec this folio is on with its lock held. 1344 */ 1345 struct lruvec *folio_lruvec_lock(struct folio *folio) 1346 { 1347 struct lruvec *lruvec = folio_lruvec(folio); 1348 1349 spin_lock(&lruvec->lru_lock); 1350 lruvec_memcg_debug(lruvec, folio); 1351 1352 return lruvec; 1353 } 1354 1355 /** 1356 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1357 * @folio: Pointer to the folio. 1358 * 1359 * These functions are safe to use under any of the following conditions: 1360 * - folio locked 1361 * - folio_test_lru false 1362 * - folio_memcg_lock() 1363 * - folio frozen (refcount of 0) 1364 * 1365 * Return: The lruvec this folio is on with its lock held and interrupts 1366 * disabled. 1367 */ 1368 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1369 { 1370 struct lruvec *lruvec = folio_lruvec(folio); 1371 1372 spin_lock_irq(&lruvec->lru_lock); 1373 lruvec_memcg_debug(lruvec, folio); 1374 1375 return lruvec; 1376 } 1377 1378 /** 1379 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1380 * @folio: Pointer to the folio. 1381 * @flags: Pointer to irqsave flags. 1382 * 1383 * These functions are safe to use under any of the following conditions: 1384 * - folio locked 1385 * - folio_test_lru false 1386 * - folio_memcg_lock() 1387 * - folio frozen (refcount of 0) 1388 * 1389 * Return: The lruvec this folio is on with its lock held and interrupts 1390 * disabled. 1391 */ 1392 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1393 unsigned long *flags) 1394 { 1395 struct lruvec *lruvec = folio_lruvec(folio); 1396 1397 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1398 lruvec_memcg_debug(lruvec, folio); 1399 1400 return lruvec; 1401 } 1402 1403 /** 1404 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1405 * @lruvec: mem_cgroup per zone lru vector 1406 * @lru: index of lru list the page is sitting on 1407 * @zid: zone id of the accounted pages 1408 * @nr_pages: positive when adding or negative when removing 1409 * 1410 * This function must be called under lru_lock, just before a page is added 1411 * to or just after a page is removed from an lru list. 1412 */ 1413 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1414 int zid, int nr_pages) 1415 { 1416 struct mem_cgroup_per_node *mz; 1417 unsigned long *lru_size; 1418 long size; 1419 1420 if (mem_cgroup_disabled()) 1421 return; 1422 1423 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1424 lru_size = &mz->lru_zone_size[zid][lru]; 1425 1426 if (nr_pages < 0) 1427 *lru_size += nr_pages; 1428 1429 size = *lru_size; 1430 if (WARN_ONCE(size < 0, 1431 "%s(%p, %d, %d): lru_size %ld\n", 1432 __func__, lruvec, lru, nr_pages, size)) { 1433 VM_BUG_ON(1); 1434 *lru_size = 0; 1435 } 1436 1437 if (nr_pages > 0) 1438 *lru_size += nr_pages; 1439 } 1440 1441 /** 1442 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1443 * @memcg: the memory cgroup 1444 * 1445 * Returns the maximum amount of memory @mem can be charged with, in 1446 * pages. 1447 */ 1448 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1449 { 1450 unsigned long margin = 0; 1451 unsigned long count; 1452 unsigned long limit; 1453 1454 count = page_counter_read(&memcg->memory); 1455 limit = READ_ONCE(memcg->memory.max); 1456 if (count < limit) 1457 margin = limit - count; 1458 1459 if (do_memsw_account()) { 1460 count = page_counter_read(&memcg->memsw); 1461 limit = READ_ONCE(memcg->memsw.max); 1462 if (count < limit) 1463 margin = min(margin, limit - count); 1464 else 1465 margin = 0; 1466 } 1467 1468 return margin; 1469 } 1470 1471 /* 1472 * A routine for checking "mem" is under move_account() or not. 1473 * 1474 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1475 * moving cgroups. This is for waiting at high-memory pressure 1476 * caused by "move". 1477 */ 1478 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1479 { 1480 struct mem_cgroup *from; 1481 struct mem_cgroup *to; 1482 bool ret = false; 1483 /* 1484 * Unlike task_move routines, we access mc.to, mc.from not under 1485 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1486 */ 1487 spin_lock(&mc.lock); 1488 from = mc.from; 1489 to = mc.to; 1490 if (!from) 1491 goto unlock; 1492 1493 ret = mem_cgroup_is_descendant(from, memcg) || 1494 mem_cgroup_is_descendant(to, memcg); 1495 unlock: 1496 spin_unlock(&mc.lock); 1497 return ret; 1498 } 1499 1500 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1501 { 1502 if (mc.moving_task && current != mc.moving_task) { 1503 if (mem_cgroup_under_move(memcg)) { 1504 DEFINE_WAIT(wait); 1505 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1506 /* moving charge context might have finished. */ 1507 if (mc.moving_task) 1508 schedule(); 1509 finish_wait(&mc.waitq, &wait); 1510 return true; 1511 } 1512 } 1513 return false; 1514 } 1515 1516 struct memory_stat { 1517 const char *name; 1518 unsigned int idx; 1519 }; 1520 1521 static const struct memory_stat memory_stats[] = { 1522 { "anon", NR_ANON_MAPPED }, 1523 { "file", NR_FILE_PAGES }, 1524 { "kernel", MEMCG_KMEM }, 1525 { "kernel_stack", NR_KERNEL_STACK_KB }, 1526 { "pagetables", NR_PAGETABLE }, 1527 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1528 { "percpu", MEMCG_PERCPU_B }, 1529 { "sock", MEMCG_SOCK }, 1530 { "vmalloc", MEMCG_VMALLOC }, 1531 { "shmem", NR_SHMEM }, 1532 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1533 { "zswap", MEMCG_ZSWAP_B }, 1534 { "zswapped", MEMCG_ZSWAPPED }, 1535 #endif 1536 { "file_mapped", NR_FILE_MAPPED }, 1537 { "file_dirty", NR_FILE_DIRTY }, 1538 { "file_writeback", NR_WRITEBACK }, 1539 #ifdef CONFIG_SWAP 1540 { "swapcached", NR_SWAPCACHE }, 1541 #endif 1542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1543 { "anon_thp", NR_ANON_THPS }, 1544 { "file_thp", NR_FILE_THPS }, 1545 { "shmem_thp", NR_SHMEM_THPS }, 1546 #endif 1547 { "inactive_anon", NR_INACTIVE_ANON }, 1548 { "active_anon", NR_ACTIVE_ANON }, 1549 { "inactive_file", NR_INACTIVE_FILE }, 1550 { "active_file", NR_ACTIVE_FILE }, 1551 { "unevictable", NR_UNEVICTABLE }, 1552 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1553 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1554 1555 /* The memory events */ 1556 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1557 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1558 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1559 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1560 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1561 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1562 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1563 }; 1564 1565 /* The actual unit of the state item, not the same as the output unit */ 1566 static int memcg_page_state_unit(int item) 1567 { 1568 switch (item) { 1569 case MEMCG_PERCPU_B: 1570 case MEMCG_ZSWAP_B: 1571 case NR_SLAB_RECLAIMABLE_B: 1572 case NR_SLAB_UNRECLAIMABLE_B: 1573 return 1; 1574 case NR_KERNEL_STACK_KB: 1575 return SZ_1K; 1576 default: 1577 return PAGE_SIZE; 1578 } 1579 } 1580 1581 /* Translate stat items to the correct unit for memory.stat output */ 1582 static int memcg_page_state_output_unit(int item) 1583 { 1584 /* 1585 * Workingset state is actually in pages, but we export it to userspace 1586 * as a scalar count of events, so special case it here. 1587 */ 1588 switch (item) { 1589 case WORKINGSET_REFAULT_ANON: 1590 case WORKINGSET_REFAULT_FILE: 1591 case WORKINGSET_ACTIVATE_ANON: 1592 case WORKINGSET_ACTIVATE_FILE: 1593 case WORKINGSET_RESTORE_ANON: 1594 case WORKINGSET_RESTORE_FILE: 1595 case WORKINGSET_NODERECLAIM: 1596 return 1; 1597 default: 1598 return memcg_page_state_unit(item); 1599 } 1600 } 1601 1602 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1603 int item) 1604 { 1605 return memcg_page_state(memcg, item) * 1606 memcg_page_state_output_unit(item); 1607 } 1608 1609 static inline unsigned long memcg_page_state_local_output( 1610 struct mem_cgroup *memcg, int item) 1611 { 1612 return memcg_page_state_local(memcg, item) * 1613 memcg_page_state_output_unit(item); 1614 } 1615 1616 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1617 { 1618 int i; 1619 1620 /* 1621 * Provide statistics on the state of the memory subsystem as 1622 * well as cumulative event counters that show past behavior. 1623 * 1624 * This list is ordered following a combination of these gradients: 1625 * 1) generic big picture -> specifics and details 1626 * 2) reflecting userspace activity -> reflecting kernel heuristics 1627 * 1628 * Current memory state: 1629 */ 1630 mem_cgroup_flush_stats(); 1631 1632 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1633 u64 size; 1634 1635 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1636 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1637 1638 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1639 size += memcg_page_state_output(memcg, 1640 NR_SLAB_RECLAIMABLE_B); 1641 seq_buf_printf(s, "slab %llu\n", size); 1642 } 1643 } 1644 1645 /* Accumulated memory events */ 1646 seq_buf_printf(s, "pgscan %lu\n", 1647 memcg_events(memcg, PGSCAN_KSWAPD) + 1648 memcg_events(memcg, PGSCAN_DIRECT) + 1649 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1650 seq_buf_printf(s, "pgsteal %lu\n", 1651 memcg_events(memcg, PGSTEAL_KSWAPD) + 1652 memcg_events(memcg, PGSTEAL_DIRECT) + 1653 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1654 1655 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1656 if (memcg_vm_event_stat[i] == PGPGIN || 1657 memcg_vm_event_stat[i] == PGPGOUT) 1658 continue; 1659 1660 seq_buf_printf(s, "%s %lu\n", 1661 vm_event_name(memcg_vm_event_stat[i]), 1662 memcg_events(memcg, memcg_vm_event_stat[i])); 1663 } 1664 1665 /* The above should easily fit into one page */ 1666 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1667 } 1668 1669 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1670 1671 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1672 { 1673 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1674 memcg_stat_format(memcg, s); 1675 else 1676 memcg1_stat_format(memcg, s); 1677 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1678 } 1679 1680 /** 1681 * mem_cgroup_print_oom_context: Print OOM information relevant to 1682 * memory controller. 1683 * @memcg: The memory cgroup that went over limit 1684 * @p: Task that is going to be killed 1685 * 1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1687 * enabled 1688 */ 1689 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1690 { 1691 rcu_read_lock(); 1692 1693 if (memcg) { 1694 pr_cont(",oom_memcg="); 1695 pr_cont_cgroup_path(memcg->css.cgroup); 1696 } else 1697 pr_cont(",global_oom"); 1698 if (p) { 1699 pr_cont(",task_memcg="); 1700 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1701 } 1702 rcu_read_unlock(); 1703 } 1704 1705 /** 1706 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1707 * memory controller. 1708 * @memcg: The memory cgroup that went over limit 1709 */ 1710 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1711 { 1712 /* Use static buffer, for the caller is holding oom_lock. */ 1713 static char buf[PAGE_SIZE]; 1714 struct seq_buf s; 1715 1716 lockdep_assert_held(&oom_lock); 1717 1718 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1719 K((u64)page_counter_read(&memcg->memory)), 1720 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1721 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1722 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1723 K((u64)page_counter_read(&memcg->swap)), 1724 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1725 else { 1726 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1727 K((u64)page_counter_read(&memcg->memsw)), 1728 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1729 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1730 K((u64)page_counter_read(&memcg->kmem)), 1731 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1732 } 1733 1734 pr_info("Memory cgroup stats for "); 1735 pr_cont_cgroup_path(memcg->css.cgroup); 1736 pr_cont(":"); 1737 seq_buf_init(&s, buf, sizeof(buf)); 1738 memory_stat_format(memcg, &s); 1739 seq_buf_do_printk(&s, KERN_INFO); 1740 } 1741 1742 /* 1743 * Return the memory (and swap, if configured) limit for a memcg. 1744 */ 1745 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1746 { 1747 unsigned long max = READ_ONCE(memcg->memory.max); 1748 1749 if (do_memsw_account()) { 1750 if (mem_cgroup_swappiness(memcg)) { 1751 /* Calculate swap excess capacity from memsw limit */ 1752 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1753 1754 max += min(swap, (unsigned long)total_swap_pages); 1755 } 1756 } else { 1757 if (mem_cgroup_swappiness(memcg)) 1758 max += min(READ_ONCE(memcg->swap.max), 1759 (unsigned long)total_swap_pages); 1760 } 1761 return max; 1762 } 1763 1764 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1765 { 1766 return page_counter_read(&memcg->memory); 1767 } 1768 1769 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1770 int order) 1771 { 1772 struct oom_control oc = { 1773 .zonelist = NULL, 1774 .nodemask = NULL, 1775 .memcg = memcg, 1776 .gfp_mask = gfp_mask, 1777 .order = order, 1778 }; 1779 bool ret = true; 1780 1781 if (mutex_lock_killable(&oom_lock)) 1782 return true; 1783 1784 if (mem_cgroup_margin(memcg) >= (1 << order)) 1785 goto unlock; 1786 1787 /* 1788 * A few threads which were not waiting at mutex_lock_killable() can 1789 * fail to bail out. Therefore, check again after holding oom_lock. 1790 */ 1791 ret = task_is_dying() || out_of_memory(&oc); 1792 1793 unlock: 1794 mutex_unlock(&oom_lock); 1795 return ret; 1796 } 1797 1798 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1799 pg_data_t *pgdat, 1800 gfp_t gfp_mask, 1801 unsigned long *total_scanned) 1802 { 1803 struct mem_cgroup *victim = NULL; 1804 int total = 0; 1805 int loop = 0; 1806 unsigned long excess; 1807 unsigned long nr_scanned; 1808 struct mem_cgroup_reclaim_cookie reclaim = { 1809 .pgdat = pgdat, 1810 }; 1811 1812 excess = soft_limit_excess(root_memcg); 1813 1814 while (1) { 1815 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1816 if (!victim) { 1817 loop++; 1818 if (loop >= 2) { 1819 /* 1820 * If we have not been able to reclaim 1821 * anything, it might because there are 1822 * no reclaimable pages under this hierarchy 1823 */ 1824 if (!total) 1825 break; 1826 /* 1827 * We want to do more targeted reclaim. 1828 * excess >> 2 is not to excessive so as to 1829 * reclaim too much, nor too less that we keep 1830 * coming back to reclaim from this cgroup 1831 */ 1832 if (total >= (excess >> 2) || 1833 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1834 break; 1835 } 1836 continue; 1837 } 1838 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1839 pgdat, &nr_scanned); 1840 *total_scanned += nr_scanned; 1841 if (!soft_limit_excess(root_memcg)) 1842 break; 1843 } 1844 mem_cgroup_iter_break(root_memcg, victim); 1845 return total; 1846 } 1847 1848 #ifdef CONFIG_LOCKDEP 1849 static struct lockdep_map memcg_oom_lock_dep_map = { 1850 .name = "memcg_oom_lock", 1851 }; 1852 #endif 1853 1854 static DEFINE_SPINLOCK(memcg_oom_lock); 1855 1856 /* 1857 * Check OOM-Killer is already running under our hierarchy. 1858 * If someone is running, return false. 1859 */ 1860 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1861 { 1862 struct mem_cgroup *iter, *failed = NULL; 1863 1864 spin_lock(&memcg_oom_lock); 1865 1866 for_each_mem_cgroup_tree(iter, memcg) { 1867 if (iter->oom_lock) { 1868 /* 1869 * this subtree of our hierarchy is already locked 1870 * so we cannot give a lock. 1871 */ 1872 failed = iter; 1873 mem_cgroup_iter_break(memcg, iter); 1874 break; 1875 } else 1876 iter->oom_lock = true; 1877 } 1878 1879 if (failed) { 1880 /* 1881 * OK, we failed to lock the whole subtree so we have 1882 * to clean up what we set up to the failing subtree 1883 */ 1884 for_each_mem_cgroup_tree(iter, memcg) { 1885 if (iter == failed) { 1886 mem_cgroup_iter_break(memcg, iter); 1887 break; 1888 } 1889 iter->oom_lock = false; 1890 } 1891 } else 1892 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1893 1894 spin_unlock(&memcg_oom_lock); 1895 1896 return !failed; 1897 } 1898 1899 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1900 { 1901 struct mem_cgroup *iter; 1902 1903 spin_lock(&memcg_oom_lock); 1904 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1905 for_each_mem_cgroup_tree(iter, memcg) 1906 iter->oom_lock = false; 1907 spin_unlock(&memcg_oom_lock); 1908 } 1909 1910 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1911 { 1912 struct mem_cgroup *iter; 1913 1914 spin_lock(&memcg_oom_lock); 1915 for_each_mem_cgroup_tree(iter, memcg) 1916 iter->under_oom++; 1917 spin_unlock(&memcg_oom_lock); 1918 } 1919 1920 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1921 { 1922 struct mem_cgroup *iter; 1923 1924 /* 1925 * Be careful about under_oom underflows because a child memcg 1926 * could have been added after mem_cgroup_mark_under_oom. 1927 */ 1928 spin_lock(&memcg_oom_lock); 1929 for_each_mem_cgroup_tree(iter, memcg) 1930 if (iter->under_oom > 0) 1931 iter->under_oom--; 1932 spin_unlock(&memcg_oom_lock); 1933 } 1934 1935 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1936 1937 struct oom_wait_info { 1938 struct mem_cgroup *memcg; 1939 wait_queue_entry_t wait; 1940 }; 1941 1942 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1943 unsigned mode, int sync, void *arg) 1944 { 1945 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1946 struct mem_cgroup *oom_wait_memcg; 1947 struct oom_wait_info *oom_wait_info; 1948 1949 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1950 oom_wait_memcg = oom_wait_info->memcg; 1951 1952 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1953 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1954 return 0; 1955 return autoremove_wake_function(wait, mode, sync, arg); 1956 } 1957 1958 static void memcg_oom_recover(struct mem_cgroup *memcg) 1959 { 1960 /* 1961 * For the following lockless ->under_oom test, the only required 1962 * guarantee is that it must see the state asserted by an OOM when 1963 * this function is called as a result of userland actions 1964 * triggered by the notification of the OOM. This is trivially 1965 * achieved by invoking mem_cgroup_mark_under_oom() before 1966 * triggering notification. 1967 */ 1968 if (memcg && memcg->under_oom) 1969 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1970 } 1971 1972 /* 1973 * Returns true if successfully killed one or more processes. Though in some 1974 * corner cases it can return true even without killing any process. 1975 */ 1976 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1977 { 1978 bool locked, ret; 1979 1980 if (order > PAGE_ALLOC_COSTLY_ORDER) 1981 return false; 1982 1983 memcg_memory_event(memcg, MEMCG_OOM); 1984 1985 /* 1986 * We are in the middle of the charge context here, so we 1987 * don't want to block when potentially sitting on a callstack 1988 * that holds all kinds of filesystem and mm locks. 1989 * 1990 * cgroup1 allows disabling the OOM killer and waiting for outside 1991 * handling until the charge can succeed; remember the context and put 1992 * the task to sleep at the end of the page fault when all locks are 1993 * released. 1994 * 1995 * On the other hand, in-kernel OOM killer allows for an async victim 1996 * memory reclaim (oom_reaper) and that means that we are not solely 1997 * relying on the oom victim to make a forward progress and we can 1998 * invoke the oom killer here. 1999 * 2000 * Please note that mem_cgroup_out_of_memory might fail to find a 2001 * victim and then we have to bail out from the charge path. 2002 */ 2003 if (READ_ONCE(memcg->oom_kill_disable)) { 2004 if (current->in_user_fault) { 2005 css_get(&memcg->css); 2006 current->memcg_in_oom = memcg; 2007 current->memcg_oom_gfp_mask = mask; 2008 current->memcg_oom_order = order; 2009 } 2010 return false; 2011 } 2012 2013 mem_cgroup_mark_under_oom(memcg); 2014 2015 locked = mem_cgroup_oom_trylock(memcg); 2016 2017 if (locked) 2018 mem_cgroup_oom_notify(memcg); 2019 2020 mem_cgroup_unmark_under_oom(memcg); 2021 ret = mem_cgroup_out_of_memory(memcg, mask, order); 2022 2023 if (locked) 2024 mem_cgroup_oom_unlock(memcg); 2025 2026 return ret; 2027 } 2028 2029 /** 2030 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2031 * @handle: actually kill/wait or just clean up the OOM state 2032 * 2033 * This has to be called at the end of a page fault if the memcg OOM 2034 * handler was enabled. 2035 * 2036 * Memcg supports userspace OOM handling where failed allocations must 2037 * sleep on a waitqueue until the userspace task resolves the 2038 * situation. Sleeping directly in the charge context with all kinds 2039 * of locks held is not a good idea, instead we remember an OOM state 2040 * in the task and mem_cgroup_oom_synchronize() has to be called at 2041 * the end of the page fault to complete the OOM handling. 2042 * 2043 * Returns %true if an ongoing memcg OOM situation was detected and 2044 * completed, %false otherwise. 2045 */ 2046 bool mem_cgroup_oom_synchronize(bool handle) 2047 { 2048 struct mem_cgroup *memcg = current->memcg_in_oom; 2049 struct oom_wait_info owait; 2050 bool locked; 2051 2052 /* OOM is global, do not handle */ 2053 if (!memcg) 2054 return false; 2055 2056 if (!handle) 2057 goto cleanup; 2058 2059 owait.memcg = memcg; 2060 owait.wait.flags = 0; 2061 owait.wait.func = memcg_oom_wake_function; 2062 owait.wait.private = current; 2063 INIT_LIST_HEAD(&owait.wait.entry); 2064 2065 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2066 mem_cgroup_mark_under_oom(memcg); 2067 2068 locked = mem_cgroup_oom_trylock(memcg); 2069 2070 if (locked) 2071 mem_cgroup_oom_notify(memcg); 2072 2073 schedule(); 2074 mem_cgroup_unmark_under_oom(memcg); 2075 finish_wait(&memcg_oom_waitq, &owait.wait); 2076 2077 if (locked) 2078 mem_cgroup_oom_unlock(memcg); 2079 cleanup: 2080 current->memcg_in_oom = NULL; 2081 css_put(&memcg->css); 2082 return true; 2083 } 2084 2085 /** 2086 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2087 * @victim: task to be killed by the OOM killer 2088 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2089 * 2090 * Returns a pointer to a memory cgroup, which has to be cleaned up 2091 * by killing all belonging OOM-killable tasks. 2092 * 2093 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2094 */ 2095 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2096 struct mem_cgroup *oom_domain) 2097 { 2098 struct mem_cgroup *oom_group = NULL; 2099 struct mem_cgroup *memcg; 2100 2101 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2102 return NULL; 2103 2104 if (!oom_domain) 2105 oom_domain = root_mem_cgroup; 2106 2107 rcu_read_lock(); 2108 2109 memcg = mem_cgroup_from_task(victim); 2110 if (mem_cgroup_is_root(memcg)) 2111 goto out; 2112 2113 /* 2114 * If the victim task has been asynchronously moved to a different 2115 * memory cgroup, we might end up killing tasks outside oom_domain. 2116 * In this case it's better to ignore memory.group.oom. 2117 */ 2118 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2119 goto out; 2120 2121 /* 2122 * Traverse the memory cgroup hierarchy from the victim task's 2123 * cgroup up to the OOMing cgroup (or root) to find the 2124 * highest-level memory cgroup with oom.group set. 2125 */ 2126 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2127 if (READ_ONCE(memcg->oom_group)) 2128 oom_group = memcg; 2129 2130 if (memcg == oom_domain) 2131 break; 2132 } 2133 2134 if (oom_group) 2135 css_get(&oom_group->css); 2136 out: 2137 rcu_read_unlock(); 2138 2139 return oom_group; 2140 } 2141 2142 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2143 { 2144 pr_info("Tasks in "); 2145 pr_cont_cgroup_path(memcg->css.cgroup); 2146 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2147 } 2148 2149 /** 2150 * folio_memcg_lock - Bind a folio to its memcg. 2151 * @folio: The folio. 2152 * 2153 * This function prevents unlocked LRU folios from being moved to 2154 * another cgroup. 2155 * 2156 * It ensures lifetime of the bound memcg. The caller is responsible 2157 * for the lifetime of the folio. 2158 */ 2159 void folio_memcg_lock(struct folio *folio) 2160 { 2161 struct mem_cgroup *memcg; 2162 unsigned long flags; 2163 2164 /* 2165 * The RCU lock is held throughout the transaction. The fast 2166 * path can get away without acquiring the memcg->move_lock 2167 * because page moving starts with an RCU grace period. 2168 */ 2169 rcu_read_lock(); 2170 2171 if (mem_cgroup_disabled()) 2172 return; 2173 again: 2174 memcg = folio_memcg(folio); 2175 if (unlikely(!memcg)) 2176 return; 2177 2178 #ifdef CONFIG_PROVE_LOCKING 2179 local_irq_save(flags); 2180 might_lock(&memcg->move_lock); 2181 local_irq_restore(flags); 2182 #endif 2183 2184 if (atomic_read(&memcg->moving_account) <= 0) 2185 return; 2186 2187 spin_lock_irqsave(&memcg->move_lock, flags); 2188 if (memcg != folio_memcg(folio)) { 2189 spin_unlock_irqrestore(&memcg->move_lock, flags); 2190 goto again; 2191 } 2192 2193 /* 2194 * When charge migration first begins, we can have multiple 2195 * critical sections holding the fast-path RCU lock and one 2196 * holding the slowpath move_lock. Track the task who has the 2197 * move_lock for folio_memcg_unlock(). 2198 */ 2199 memcg->move_lock_task = current; 2200 memcg->move_lock_flags = flags; 2201 } 2202 2203 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2204 { 2205 if (memcg && memcg->move_lock_task == current) { 2206 unsigned long flags = memcg->move_lock_flags; 2207 2208 memcg->move_lock_task = NULL; 2209 memcg->move_lock_flags = 0; 2210 2211 spin_unlock_irqrestore(&memcg->move_lock, flags); 2212 } 2213 2214 rcu_read_unlock(); 2215 } 2216 2217 /** 2218 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2219 * @folio: The folio. 2220 * 2221 * This releases the binding created by folio_memcg_lock(). This does 2222 * not change the accounting of this folio to its memcg, but it does 2223 * permit others to change it. 2224 */ 2225 void folio_memcg_unlock(struct folio *folio) 2226 { 2227 __folio_memcg_unlock(folio_memcg(folio)); 2228 } 2229 2230 struct memcg_stock_pcp { 2231 local_lock_t stock_lock; 2232 struct mem_cgroup *cached; /* this never be root cgroup */ 2233 unsigned int nr_pages; 2234 2235 #ifdef CONFIG_MEMCG_KMEM 2236 struct obj_cgroup *cached_objcg; 2237 struct pglist_data *cached_pgdat; 2238 unsigned int nr_bytes; 2239 int nr_slab_reclaimable_b; 2240 int nr_slab_unreclaimable_b; 2241 #endif 2242 2243 struct work_struct work; 2244 unsigned long flags; 2245 #define FLUSHING_CACHED_CHARGE 0 2246 }; 2247 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2248 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2249 }; 2250 static DEFINE_MUTEX(percpu_charge_mutex); 2251 2252 #ifdef CONFIG_MEMCG_KMEM 2253 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2254 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2255 struct mem_cgroup *root_memcg); 2256 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2257 2258 #else 2259 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2260 { 2261 return NULL; 2262 } 2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2264 struct mem_cgroup *root_memcg) 2265 { 2266 return false; 2267 } 2268 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2269 { 2270 } 2271 #endif 2272 2273 /** 2274 * consume_stock: Try to consume stocked charge on this cpu. 2275 * @memcg: memcg to consume from. 2276 * @nr_pages: how many pages to charge. 2277 * 2278 * The charges will only happen if @memcg matches the current cpu's memcg 2279 * stock, and at least @nr_pages are available in that stock. Failure to 2280 * service an allocation will refill the stock. 2281 * 2282 * returns true if successful, false otherwise. 2283 */ 2284 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2285 { 2286 struct memcg_stock_pcp *stock; 2287 unsigned long flags; 2288 bool ret = false; 2289 2290 if (nr_pages > MEMCG_CHARGE_BATCH) 2291 return ret; 2292 2293 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2294 2295 stock = this_cpu_ptr(&memcg_stock); 2296 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) { 2297 stock->nr_pages -= nr_pages; 2298 ret = true; 2299 } 2300 2301 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2302 2303 return ret; 2304 } 2305 2306 /* 2307 * Returns stocks cached in percpu and reset cached information. 2308 */ 2309 static void drain_stock(struct memcg_stock_pcp *stock) 2310 { 2311 struct mem_cgroup *old = READ_ONCE(stock->cached); 2312 2313 if (!old) 2314 return; 2315 2316 if (stock->nr_pages) { 2317 page_counter_uncharge(&old->memory, stock->nr_pages); 2318 if (do_memsw_account()) 2319 page_counter_uncharge(&old->memsw, stock->nr_pages); 2320 stock->nr_pages = 0; 2321 } 2322 2323 css_put(&old->css); 2324 WRITE_ONCE(stock->cached, NULL); 2325 } 2326 2327 static void drain_local_stock(struct work_struct *dummy) 2328 { 2329 struct memcg_stock_pcp *stock; 2330 struct obj_cgroup *old = NULL; 2331 unsigned long flags; 2332 2333 /* 2334 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2335 * drain_stock races is that we always operate on local CPU stock 2336 * here with IRQ disabled 2337 */ 2338 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2339 2340 stock = this_cpu_ptr(&memcg_stock); 2341 old = drain_obj_stock(stock); 2342 drain_stock(stock); 2343 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2344 2345 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2346 if (old) 2347 obj_cgroup_put(old); 2348 } 2349 2350 /* 2351 * Cache charges(val) to local per_cpu area. 2352 * This will be consumed by consume_stock() function, later. 2353 */ 2354 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2355 { 2356 struct memcg_stock_pcp *stock; 2357 2358 stock = this_cpu_ptr(&memcg_stock); 2359 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2360 drain_stock(stock); 2361 css_get(&memcg->css); 2362 WRITE_ONCE(stock->cached, memcg); 2363 } 2364 stock->nr_pages += nr_pages; 2365 2366 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2367 drain_stock(stock); 2368 } 2369 2370 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2371 { 2372 unsigned long flags; 2373 2374 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2375 __refill_stock(memcg, nr_pages); 2376 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2377 } 2378 2379 /* 2380 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2381 * of the hierarchy under it. 2382 */ 2383 static void drain_all_stock(struct mem_cgroup *root_memcg) 2384 { 2385 int cpu, curcpu; 2386 2387 /* If someone's already draining, avoid adding running more workers. */ 2388 if (!mutex_trylock(&percpu_charge_mutex)) 2389 return; 2390 /* 2391 * Notify other cpus that system-wide "drain" is running 2392 * We do not care about races with the cpu hotplug because cpu down 2393 * as well as workers from this path always operate on the local 2394 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2395 */ 2396 migrate_disable(); 2397 curcpu = smp_processor_id(); 2398 for_each_online_cpu(cpu) { 2399 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2400 struct mem_cgroup *memcg; 2401 bool flush = false; 2402 2403 rcu_read_lock(); 2404 memcg = READ_ONCE(stock->cached); 2405 if (memcg && stock->nr_pages && 2406 mem_cgroup_is_descendant(memcg, root_memcg)) 2407 flush = true; 2408 else if (obj_stock_flush_required(stock, root_memcg)) 2409 flush = true; 2410 rcu_read_unlock(); 2411 2412 if (flush && 2413 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2414 if (cpu == curcpu) 2415 drain_local_stock(&stock->work); 2416 else if (!cpu_is_isolated(cpu)) 2417 schedule_work_on(cpu, &stock->work); 2418 } 2419 } 2420 migrate_enable(); 2421 mutex_unlock(&percpu_charge_mutex); 2422 } 2423 2424 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2425 { 2426 struct memcg_stock_pcp *stock; 2427 2428 stock = &per_cpu(memcg_stock, cpu); 2429 drain_stock(stock); 2430 2431 return 0; 2432 } 2433 2434 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2435 unsigned int nr_pages, 2436 gfp_t gfp_mask) 2437 { 2438 unsigned long nr_reclaimed = 0; 2439 2440 do { 2441 unsigned long pflags; 2442 2443 if (page_counter_read(&memcg->memory) <= 2444 READ_ONCE(memcg->memory.high)) 2445 continue; 2446 2447 memcg_memory_event(memcg, MEMCG_HIGH); 2448 2449 psi_memstall_enter(&pflags); 2450 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2451 gfp_mask, 2452 MEMCG_RECLAIM_MAY_SWAP); 2453 psi_memstall_leave(&pflags); 2454 } while ((memcg = parent_mem_cgroup(memcg)) && 2455 !mem_cgroup_is_root(memcg)); 2456 2457 return nr_reclaimed; 2458 } 2459 2460 static void high_work_func(struct work_struct *work) 2461 { 2462 struct mem_cgroup *memcg; 2463 2464 memcg = container_of(work, struct mem_cgroup, high_work); 2465 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2466 } 2467 2468 /* 2469 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2470 * enough to still cause a significant slowdown in most cases, while still 2471 * allowing diagnostics and tracing to proceed without becoming stuck. 2472 */ 2473 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2474 2475 /* 2476 * When calculating the delay, we use these either side of the exponentiation to 2477 * maintain precision and scale to a reasonable number of jiffies (see the table 2478 * below. 2479 * 2480 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2481 * overage ratio to a delay. 2482 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2483 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2484 * to produce a reasonable delay curve. 2485 * 2486 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2487 * reasonable delay curve compared to precision-adjusted overage, not 2488 * penalising heavily at first, but still making sure that growth beyond the 2489 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2490 * example, with a high of 100 megabytes: 2491 * 2492 * +-------+------------------------+ 2493 * | usage | time to allocate in ms | 2494 * +-------+------------------------+ 2495 * | 100M | 0 | 2496 * | 101M | 6 | 2497 * | 102M | 25 | 2498 * | 103M | 57 | 2499 * | 104M | 102 | 2500 * | 105M | 159 | 2501 * | 106M | 230 | 2502 * | 107M | 313 | 2503 * | 108M | 409 | 2504 * | 109M | 518 | 2505 * | 110M | 639 | 2506 * | 111M | 774 | 2507 * | 112M | 921 | 2508 * | 113M | 1081 | 2509 * | 114M | 1254 | 2510 * | 115M | 1439 | 2511 * | 116M | 1638 | 2512 * | 117M | 1849 | 2513 * | 118M | 2000 | 2514 * | 119M | 2000 | 2515 * | 120M | 2000 | 2516 * +-------+------------------------+ 2517 */ 2518 #define MEMCG_DELAY_PRECISION_SHIFT 20 2519 #define MEMCG_DELAY_SCALING_SHIFT 14 2520 2521 static u64 calculate_overage(unsigned long usage, unsigned long high) 2522 { 2523 u64 overage; 2524 2525 if (usage <= high) 2526 return 0; 2527 2528 /* 2529 * Prevent division by 0 in overage calculation by acting as if 2530 * it was a threshold of 1 page 2531 */ 2532 high = max(high, 1UL); 2533 2534 overage = usage - high; 2535 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2536 return div64_u64(overage, high); 2537 } 2538 2539 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2540 { 2541 u64 overage, max_overage = 0; 2542 2543 do { 2544 overage = calculate_overage(page_counter_read(&memcg->memory), 2545 READ_ONCE(memcg->memory.high)); 2546 max_overage = max(overage, max_overage); 2547 } while ((memcg = parent_mem_cgroup(memcg)) && 2548 !mem_cgroup_is_root(memcg)); 2549 2550 return max_overage; 2551 } 2552 2553 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2554 { 2555 u64 overage, max_overage = 0; 2556 2557 do { 2558 overage = calculate_overage(page_counter_read(&memcg->swap), 2559 READ_ONCE(memcg->swap.high)); 2560 if (overage) 2561 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2562 max_overage = max(overage, max_overage); 2563 } while ((memcg = parent_mem_cgroup(memcg)) && 2564 !mem_cgroup_is_root(memcg)); 2565 2566 return max_overage; 2567 } 2568 2569 /* 2570 * Get the number of jiffies that we should penalise a mischievous cgroup which 2571 * is exceeding its memory.high by checking both it and its ancestors. 2572 */ 2573 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2574 unsigned int nr_pages, 2575 u64 max_overage) 2576 { 2577 unsigned long penalty_jiffies; 2578 2579 if (!max_overage) 2580 return 0; 2581 2582 /* 2583 * We use overage compared to memory.high to calculate the number of 2584 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2585 * fairly lenient on small overages, and increasingly harsh when the 2586 * memcg in question makes it clear that it has no intention of stopping 2587 * its crazy behaviour, so we exponentially increase the delay based on 2588 * overage amount. 2589 */ 2590 penalty_jiffies = max_overage * max_overage * HZ; 2591 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2592 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2593 2594 /* 2595 * Factor in the task's own contribution to the overage, such that four 2596 * N-sized allocations are throttled approximately the same as one 2597 * 4N-sized allocation. 2598 * 2599 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2600 * larger the current charge patch is than that. 2601 */ 2602 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2603 } 2604 2605 /* 2606 * Scheduled by try_charge() to be executed from the userland return path 2607 * and reclaims memory over the high limit. 2608 */ 2609 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2610 { 2611 unsigned long penalty_jiffies; 2612 unsigned long pflags; 2613 unsigned long nr_reclaimed; 2614 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2615 int nr_retries = MAX_RECLAIM_RETRIES; 2616 struct mem_cgroup *memcg; 2617 bool in_retry = false; 2618 2619 if (likely(!nr_pages)) 2620 return; 2621 2622 memcg = get_mem_cgroup_from_mm(current->mm); 2623 current->memcg_nr_pages_over_high = 0; 2624 2625 retry_reclaim: 2626 /* 2627 * The allocating task should reclaim at least the batch size, but for 2628 * subsequent retries we only want to do what's necessary to prevent oom 2629 * or breaching resource isolation. 2630 * 2631 * This is distinct from memory.max or page allocator behaviour because 2632 * memory.high is currently batched, whereas memory.max and the page 2633 * allocator run every time an allocation is made. 2634 */ 2635 nr_reclaimed = reclaim_high(memcg, 2636 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2637 gfp_mask); 2638 2639 /* 2640 * memory.high is breached and reclaim is unable to keep up. Throttle 2641 * allocators proactively to slow down excessive growth. 2642 */ 2643 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2644 mem_find_max_overage(memcg)); 2645 2646 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2647 swap_find_max_overage(memcg)); 2648 2649 /* 2650 * Clamp the max delay per usermode return so as to still keep the 2651 * application moving forwards and also permit diagnostics, albeit 2652 * extremely slowly. 2653 */ 2654 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2655 2656 /* 2657 * Don't sleep if the amount of jiffies this memcg owes us is so low 2658 * that it's not even worth doing, in an attempt to be nice to those who 2659 * go only a small amount over their memory.high value and maybe haven't 2660 * been aggressively reclaimed enough yet. 2661 */ 2662 if (penalty_jiffies <= HZ / 100) 2663 goto out; 2664 2665 /* 2666 * If reclaim is making forward progress but we're still over 2667 * memory.high, we want to encourage that rather than doing allocator 2668 * throttling. 2669 */ 2670 if (nr_reclaimed || nr_retries--) { 2671 in_retry = true; 2672 goto retry_reclaim; 2673 } 2674 2675 /* 2676 * If we exit early, we're guaranteed to die (since 2677 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2678 * need to account for any ill-begotten jiffies to pay them off later. 2679 */ 2680 psi_memstall_enter(&pflags); 2681 schedule_timeout_killable(penalty_jiffies); 2682 psi_memstall_leave(&pflags); 2683 2684 out: 2685 css_put(&memcg->css); 2686 } 2687 2688 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2689 unsigned int nr_pages) 2690 { 2691 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2692 int nr_retries = MAX_RECLAIM_RETRIES; 2693 struct mem_cgroup *mem_over_limit; 2694 struct page_counter *counter; 2695 unsigned long nr_reclaimed; 2696 bool passed_oom = false; 2697 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2698 bool drained = false; 2699 bool raised_max_event = false; 2700 unsigned long pflags; 2701 2702 retry: 2703 if (consume_stock(memcg, nr_pages)) 2704 return 0; 2705 2706 if (!do_memsw_account() || 2707 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2708 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2709 goto done_restock; 2710 if (do_memsw_account()) 2711 page_counter_uncharge(&memcg->memsw, batch); 2712 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2713 } else { 2714 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2715 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2716 } 2717 2718 if (batch > nr_pages) { 2719 batch = nr_pages; 2720 goto retry; 2721 } 2722 2723 /* 2724 * Prevent unbounded recursion when reclaim operations need to 2725 * allocate memory. This might exceed the limits temporarily, 2726 * but we prefer facilitating memory reclaim and getting back 2727 * under the limit over triggering OOM kills in these cases. 2728 */ 2729 if (unlikely(current->flags & PF_MEMALLOC)) 2730 goto force; 2731 2732 if (unlikely(task_in_memcg_oom(current))) 2733 goto nomem; 2734 2735 if (!gfpflags_allow_blocking(gfp_mask)) 2736 goto nomem; 2737 2738 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2739 raised_max_event = true; 2740 2741 psi_memstall_enter(&pflags); 2742 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2743 gfp_mask, reclaim_options); 2744 psi_memstall_leave(&pflags); 2745 2746 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2747 goto retry; 2748 2749 if (!drained) { 2750 drain_all_stock(mem_over_limit); 2751 drained = true; 2752 goto retry; 2753 } 2754 2755 if (gfp_mask & __GFP_NORETRY) 2756 goto nomem; 2757 /* 2758 * Even though the limit is exceeded at this point, reclaim 2759 * may have been able to free some pages. Retry the charge 2760 * before killing the task. 2761 * 2762 * Only for regular pages, though: huge pages are rather 2763 * unlikely to succeed so close to the limit, and we fall back 2764 * to regular pages anyway in case of failure. 2765 */ 2766 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2767 goto retry; 2768 /* 2769 * At task move, charge accounts can be doubly counted. So, it's 2770 * better to wait until the end of task_move if something is going on. 2771 */ 2772 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2773 goto retry; 2774 2775 if (nr_retries--) 2776 goto retry; 2777 2778 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2779 goto nomem; 2780 2781 /* Avoid endless loop for tasks bypassed by the oom killer */ 2782 if (passed_oom && task_is_dying()) 2783 goto nomem; 2784 2785 /* 2786 * keep retrying as long as the memcg oom killer is able to make 2787 * a forward progress or bypass the charge if the oom killer 2788 * couldn't make any progress. 2789 */ 2790 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2791 get_order(nr_pages * PAGE_SIZE))) { 2792 passed_oom = true; 2793 nr_retries = MAX_RECLAIM_RETRIES; 2794 goto retry; 2795 } 2796 nomem: 2797 /* 2798 * Memcg doesn't have a dedicated reserve for atomic 2799 * allocations. But like the global atomic pool, we need to 2800 * put the burden of reclaim on regular allocation requests 2801 * and let these go through as privileged allocations. 2802 */ 2803 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2804 return -ENOMEM; 2805 force: 2806 /* 2807 * If the allocation has to be enforced, don't forget to raise 2808 * a MEMCG_MAX event. 2809 */ 2810 if (!raised_max_event) 2811 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2812 2813 /* 2814 * The allocation either can't fail or will lead to more memory 2815 * being freed very soon. Allow memory usage go over the limit 2816 * temporarily by force charging it. 2817 */ 2818 page_counter_charge(&memcg->memory, nr_pages); 2819 if (do_memsw_account()) 2820 page_counter_charge(&memcg->memsw, nr_pages); 2821 2822 return 0; 2823 2824 done_restock: 2825 if (batch > nr_pages) 2826 refill_stock(memcg, batch - nr_pages); 2827 2828 /* 2829 * If the hierarchy is above the normal consumption range, schedule 2830 * reclaim on returning to userland. We can perform reclaim here 2831 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2832 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2833 * not recorded as it most likely matches current's and won't 2834 * change in the meantime. As high limit is checked again before 2835 * reclaim, the cost of mismatch is negligible. 2836 */ 2837 do { 2838 bool mem_high, swap_high; 2839 2840 mem_high = page_counter_read(&memcg->memory) > 2841 READ_ONCE(memcg->memory.high); 2842 swap_high = page_counter_read(&memcg->swap) > 2843 READ_ONCE(memcg->swap.high); 2844 2845 /* Don't bother a random interrupted task */ 2846 if (!in_task()) { 2847 if (mem_high) { 2848 schedule_work(&memcg->high_work); 2849 break; 2850 } 2851 continue; 2852 } 2853 2854 if (mem_high || swap_high) { 2855 /* 2856 * The allocating tasks in this cgroup will need to do 2857 * reclaim or be throttled to prevent further growth 2858 * of the memory or swap footprints. 2859 * 2860 * Target some best-effort fairness between the tasks, 2861 * and distribute reclaim work and delay penalties 2862 * based on how much each task is actually allocating. 2863 */ 2864 current->memcg_nr_pages_over_high += batch; 2865 set_notify_resume(current); 2866 break; 2867 } 2868 } while ((memcg = parent_mem_cgroup(memcg))); 2869 2870 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2871 !(current->flags & PF_MEMALLOC) && 2872 gfpflags_allow_blocking(gfp_mask)) { 2873 mem_cgroup_handle_over_high(gfp_mask); 2874 } 2875 return 0; 2876 } 2877 2878 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2879 unsigned int nr_pages) 2880 { 2881 if (mem_cgroup_is_root(memcg)) 2882 return 0; 2883 2884 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2885 } 2886 2887 /** 2888 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2889 * @memcg: memcg previously charged. 2890 * @nr_pages: number of pages previously charged. 2891 */ 2892 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2893 { 2894 if (mem_cgroup_is_root(memcg)) 2895 return; 2896 2897 page_counter_uncharge(&memcg->memory, nr_pages); 2898 if (do_memsw_account()) 2899 page_counter_uncharge(&memcg->memsw, nr_pages); 2900 } 2901 2902 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2903 { 2904 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2905 /* 2906 * Any of the following ensures page's memcg stability: 2907 * 2908 * - the page lock 2909 * - LRU isolation 2910 * - folio_memcg_lock() 2911 * - exclusive reference 2912 * - mem_cgroup_trylock_pages() 2913 */ 2914 folio->memcg_data = (unsigned long)memcg; 2915 } 2916 2917 /** 2918 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2919 * @folio: folio to commit the charge to. 2920 * @memcg: memcg previously charged. 2921 */ 2922 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2923 { 2924 css_get(&memcg->css); 2925 commit_charge(folio, memcg); 2926 2927 local_irq_disable(); 2928 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 2929 memcg_check_events(memcg, folio_nid(folio)); 2930 local_irq_enable(); 2931 } 2932 2933 #ifdef CONFIG_MEMCG_KMEM 2934 /* 2935 * The allocated objcg pointers array is not accounted directly. 2936 * Moreover, it should not come from DMA buffer and is not readily 2937 * reclaimable. So those GFP bits should be masked off. 2938 */ 2939 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2940 __GFP_ACCOUNT | __GFP_NOFAIL) 2941 2942 /* 2943 * mod_objcg_mlstate() may be called with irq enabled, so 2944 * mod_memcg_lruvec_state() should be used. 2945 */ 2946 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2947 struct pglist_data *pgdat, 2948 enum node_stat_item idx, int nr) 2949 { 2950 struct mem_cgroup *memcg; 2951 struct lruvec *lruvec; 2952 2953 rcu_read_lock(); 2954 memcg = obj_cgroup_memcg(objcg); 2955 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2956 mod_memcg_lruvec_state(lruvec, idx, nr); 2957 rcu_read_unlock(); 2958 } 2959 2960 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2961 gfp_t gfp, bool new_slab) 2962 { 2963 unsigned int objects = objs_per_slab(s, slab); 2964 unsigned long memcg_data; 2965 void *vec; 2966 2967 gfp &= ~OBJCGS_CLEAR_MASK; 2968 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2969 slab_nid(slab)); 2970 if (!vec) 2971 return -ENOMEM; 2972 2973 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2974 if (new_slab) { 2975 /* 2976 * If the slab is brand new and nobody can yet access its 2977 * memcg_data, no synchronization is required and memcg_data can 2978 * be simply assigned. 2979 */ 2980 slab->memcg_data = memcg_data; 2981 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2982 /* 2983 * If the slab is already in use, somebody can allocate and 2984 * assign obj_cgroups in parallel. In this case the existing 2985 * objcg vector should be reused. 2986 */ 2987 kfree(vec); 2988 return 0; 2989 } 2990 2991 kmemleak_not_leak(vec); 2992 return 0; 2993 } 2994 2995 static __always_inline 2996 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2997 { 2998 /* 2999 * Slab objects are accounted individually, not per-page. 3000 * Memcg membership data for each individual object is saved in 3001 * slab->memcg_data. 3002 */ 3003 if (folio_test_slab(folio)) { 3004 struct obj_cgroup **objcgs; 3005 struct slab *slab; 3006 unsigned int off; 3007 3008 slab = folio_slab(folio); 3009 objcgs = slab_objcgs(slab); 3010 if (!objcgs) 3011 return NULL; 3012 3013 off = obj_to_index(slab->slab_cache, slab, p); 3014 if (objcgs[off]) 3015 return obj_cgroup_memcg(objcgs[off]); 3016 3017 return NULL; 3018 } 3019 3020 /* 3021 * folio_memcg_check() is used here, because in theory we can encounter 3022 * a folio where the slab flag has been cleared already, but 3023 * slab->memcg_data has not been freed yet 3024 * folio_memcg_check() will guarantee that a proper memory 3025 * cgroup pointer or NULL will be returned. 3026 */ 3027 return folio_memcg_check(folio); 3028 } 3029 3030 /* 3031 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3032 * 3033 * A passed kernel object can be a slab object, vmalloc object or a generic 3034 * kernel page, so different mechanisms for getting the memory cgroup pointer 3035 * should be used. 3036 * 3037 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 3038 * can not know for sure how the kernel object is implemented. 3039 * mem_cgroup_from_obj() can be safely used in such cases. 3040 * 3041 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3042 * cgroup_mutex, etc. 3043 */ 3044 struct mem_cgroup *mem_cgroup_from_obj(void *p) 3045 { 3046 struct folio *folio; 3047 3048 if (mem_cgroup_disabled()) 3049 return NULL; 3050 3051 if (unlikely(is_vmalloc_addr(p))) 3052 folio = page_folio(vmalloc_to_page(p)); 3053 else 3054 folio = virt_to_folio(p); 3055 3056 return mem_cgroup_from_obj_folio(folio, p); 3057 } 3058 3059 /* 3060 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3061 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3062 * allocated using vmalloc(). 3063 * 3064 * A passed kernel object must be a slab object or a generic kernel page. 3065 * 3066 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3067 * cgroup_mutex, etc. 3068 */ 3069 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3070 { 3071 if (mem_cgroup_disabled()) 3072 return NULL; 3073 3074 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3075 } 3076 3077 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3078 { 3079 struct obj_cgroup *objcg = NULL; 3080 3081 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3082 objcg = rcu_dereference(memcg->objcg); 3083 if (likely(objcg && obj_cgroup_tryget(objcg))) 3084 break; 3085 objcg = NULL; 3086 } 3087 return objcg; 3088 } 3089 3090 static struct obj_cgroup *current_objcg_update(void) 3091 { 3092 struct mem_cgroup *memcg; 3093 struct obj_cgroup *old, *objcg = NULL; 3094 3095 do { 3096 /* Atomically drop the update bit. */ 3097 old = xchg(¤t->objcg, NULL); 3098 if (old) { 3099 old = (struct obj_cgroup *) 3100 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 3101 if (old) 3102 obj_cgroup_put(old); 3103 3104 old = NULL; 3105 } 3106 3107 /* If new objcg is NULL, no reason for the second atomic update. */ 3108 if (!current->mm || (current->flags & PF_KTHREAD)) 3109 return NULL; 3110 3111 /* 3112 * Release the objcg pointer from the previous iteration, 3113 * if try_cmpxcg() below fails. 3114 */ 3115 if (unlikely(objcg)) { 3116 obj_cgroup_put(objcg); 3117 objcg = NULL; 3118 } 3119 3120 /* 3121 * Obtain the new objcg pointer. The current task can be 3122 * asynchronously moved to another memcg and the previous 3123 * memcg can be offlined. So let's get the memcg pointer 3124 * and try get a reference to objcg under a rcu read lock. 3125 */ 3126 3127 rcu_read_lock(); 3128 memcg = mem_cgroup_from_task(current); 3129 objcg = __get_obj_cgroup_from_memcg(memcg); 3130 rcu_read_unlock(); 3131 3132 /* 3133 * Try set up a new objcg pointer atomically. If it 3134 * fails, it means the update flag was set concurrently, so 3135 * the whole procedure should be repeated. 3136 */ 3137 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 3138 3139 return objcg; 3140 } 3141 3142 __always_inline struct obj_cgroup *current_obj_cgroup(void) 3143 { 3144 struct mem_cgroup *memcg; 3145 struct obj_cgroup *objcg; 3146 3147 if (in_task()) { 3148 memcg = current->active_memcg; 3149 if (unlikely(memcg)) 3150 goto from_memcg; 3151 3152 objcg = READ_ONCE(current->objcg); 3153 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 3154 objcg = current_objcg_update(); 3155 /* 3156 * Objcg reference is kept by the task, so it's safe 3157 * to use the objcg by the current task. 3158 */ 3159 return objcg; 3160 } 3161 3162 memcg = this_cpu_read(int_active_memcg); 3163 if (unlikely(memcg)) 3164 goto from_memcg; 3165 3166 return NULL; 3167 3168 from_memcg: 3169 objcg = NULL; 3170 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3171 /* 3172 * Memcg pointer is protected by scope (see set_active_memcg()) 3173 * and is pinning the corresponding objcg, so objcg can't go 3174 * away and can be used within the scope without any additional 3175 * protection. 3176 */ 3177 objcg = rcu_dereference_check(memcg->objcg, 1); 3178 if (likely(objcg)) 3179 break; 3180 } 3181 3182 return objcg; 3183 } 3184 3185 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 3186 { 3187 struct obj_cgroup *objcg; 3188 3189 if (!memcg_kmem_online()) 3190 return NULL; 3191 3192 if (folio_memcg_kmem(folio)) { 3193 objcg = __folio_objcg(folio); 3194 obj_cgroup_get(objcg); 3195 } else { 3196 struct mem_cgroup *memcg; 3197 3198 rcu_read_lock(); 3199 memcg = __folio_memcg(folio); 3200 if (memcg) 3201 objcg = __get_obj_cgroup_from_memcg(memcg); 3202 else 3203 objcg = NULL; 3204 rcu_read_unlock(); 3205 } 3206 return objcg; 3207 } 3208 3209 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3210 { 3211 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3212 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3213 if (nr_pages > 0) 3214 page_counter_charge(&memcg->kmem, nr_pages); 3215 else 3216 page_counter_uncharge(&memcg->kmem, -nr_pages); 3217 } 3218 } 3219 3220 3221 /* 3222 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3223 * @objcg: object cgroup to uncharge 3224 * @nr_pages: number of pages to uncharge 3225 */ 3226 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3227 unsigned int nr_pages) 3228 { 3229 struct mem_cgroup *memcg; 3230 3231 memcg = get_mem_cgroup_from_objcg(objcg); 3232 3233 memcg_account_kmem(memcg, -nr_pages); 3234 refill_stock(memcg, nr_pages); 3235 3236 css_put(&memcg->css); 3237 } 3238 3239 /* 3240 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3241 * @objcg: object cgroup to charge 3242 * @gfp: reclaim mode 3243 * @nr_pages: number of pages to charge 3244 * 3245 * Returns 0 on success, an error code on failure. 3246 */ 3247 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3248 unsigned int nr_pages) 3249 { 3250 struct mem_cgroup *memcg; 3251 int ret; 3252 3253 memcg = get_mem_cgroup_from_objcg(objcg); 3254 3255 ret = try_charge_memcg(memcg, gfp, nr_pages); 3256 if (ret) 3257 goto out; 3258 3259 memcg_account_kmem(memcg, nr_pages); 3260 out: 3261 css_put(&memcg->css); 3262 3263 return ret; 3264 } 3265 3266 /** 3267 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3268 * @page: page to charge 3269 * @gfp: reclaim mode 3270 * @order: allocation order 3271 * 3272 * Returns 0 on success, an error code on failure. 3273 */ 3274 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3275 { 3276 struct obj_cgroup *objcg; 3277 int ret = 0; 3278 3279 objcg = current_obj_cgroup(); 3280 if (objcg) { 3281 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3282 if (!ret) { 3283 obj_cgroup_get(objcg); 3284 page->memcg_data = (unsigned long)objcg | 3285 MEMCG_DATA_KMEM; 3286 return 0; 3287 } 3288 } 3289 return ret; 3290 } 3291 3292 /** 3293 * __memcg_kmem_uncharge_page: uncharge a kmem page 3294 * @page: page to uncharge 3295 * @order: allocation order 3296 */ 3297 void __memcg_kmem_uncharge_page(struct page *page, int order) 3298 { 3299 struct folio *folio = page_folio(page); 3300 struct obj_cgroup *objcg; 3301 unsigned int nr_pages = 1 << order; 3302 3303 if (!folio_memcg_kmem(folio)) 3304 return; 3305 3306 objcg = __folio_objcg(folio); 3307 obj_cgroup_uncharge_pages(objcg, nr_pages); 3308 folio->memcg_data = 0; 3309 obj_cgroup_put(objcg); 3310 } 3311 3312 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3313 enum node_stat_item idx, int nr) 3314 { 3315 struct memcg_stock_pcp *stock; 3316 struct obj_cgroup *old = NULL; 3317 unsigned long flags; 3318 int *bytes; 3319 3320 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3321 stock = this_cpu_ptr(&memcg_stock); 3322 3323 /* 3324 * Save vmstat data in stock and skip vmstat array update unless 3325 * accumulating over a page of vmstat data or when pgdat or idx 3326 * changes. 3327 */ 3328 if (READ_ONCE(stock->cached_objcg) != objcg) { 3329 old = drain_obj_stock(stock); 3330 obj_cgroup_get(objcg); 3331 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3332 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3333 WRITE_ONCE(stock->cached_objcg, objcg); 3334 stock->cached_pgdat = pgdat; 3335 } else if (stock->cached_pgdat != pgdat) { 3336 /* Flush the existing cached vmstat data */ 3337 struct pglist_data *oldpg = stock->cached_pgdat; 3338 3339 if (stock->nr_slab_reclaimable_b) { 3340 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3341 stock->nr_slab_reclaimable_b); 3342 stock->nr_slab_reclaimable_b = 0; 3343 } 3344 if (stock->nr_slab_unreclaimable_b) { 3345 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3346 stock->nr_slab_unreclaimable_b); 3347 stock->nr_slab_unreclaimable_b = 0; 3348 } 3349 stock->cached_pgdat = pgdat; 3350 } 3351 3352 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3353 : &stock->nr_slab_unreclaimable_b; 3354 /* 3355 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3356 * cached locally at least once before pushing it out. 3357 */ 3358 if (!*bytes) { 3359 *bytes = nr; 3360 nr = 0; 3361 } else { 3362 *bytes += nr; 3363 if (abs(*bytes) > PAGE_SIZE) { 3364 nr = *bytes; 3365 *bytes = 0; 3366 } else { 3367 nr = 0; 3368 } 3369 } 3370 if (nr) 3371 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3372 3373 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3374 if (old) 3375 obj_cgroup_put(old); 3376 } 3377 3378 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3379 { 3380 struct memcg_stock_pcp *stock; 3381 unsigned long flags; 3382 bool ret = false; 3383 3384 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3385 3386 stock = this_cpu_ptr(&memcg_stock); 3387 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3388 stock->nr_bytes -= nr_bytes; 3389 ret = true; 3390 } 3391 3392 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3393 3394 return ret; 3395 } 3396 3397 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3398 { 3399 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3400 3401 if (!old) 3402 return NULL; 3403 3404 if (stock->nr_bytes) { 3405 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3406 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3407 3408 if (nr_pages) { 3409 struct mem_cgroup *memcg; 3410 3411 memcg = get_mem_cgroup_from_objcg(old); 3412 3413 memcg_account_kmem(memcg, -nr_pages); 3414 __refill_stock(memcg, nr_pages); 3415 3416 css_put(&memcg->css); 3417 } 3418 3419 /* 3420 * The leftover is flushed to the centralized per-memcg value. 3421 * On the next attempt to refill obj stock it will be moved 3422 * to a per-cpu stock (probably, on an other CPU), see 3423 * refill_obj_stock(). 3424 * 3425 * How often it's flushed is a trade-off between the memory 3426 * limit enforcement accuracy and potential CPU contention, 3427 * so it might be changed in the future. 3428 */ 3429 atomic_add(nr_bytes, &old->nr_charged_bytes); 3430 stock->nr_bytes = 0; 3431 } 3432 3433 /* 3434 * Flush the vmstat data in current stock 3435 */ 3436 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3437 if (stock->nr_slab_reclaimable_b) { 3438 mod_objcg_mlstate(old, stock->cached_pgdat, 3439 NR_SLAB_RECLAIMABLE_B, 3440 stock->nr_slab_reclaimable_b); 3441 stock->nr_slab_reclaimable_b = 0; 3442 } 3443 if (stock->nr_slab_unreclaimable_b) { 3444 mod_objcg_mlstate(old, stock->cached_pgdat, 3445 NR_SLAB_UNRECLAIMABLE_B, 3446 stock->nr_slab_unreclaimable_b); 3447 stock->nr_slab_unreclaimable_b = 0; 3448 } 3449 stock->cached_pgdat = NULL; 3450 } 3451 3452 WRITE_ONCE(stock->cached_objcg, NULL); 3453 /* 3454 * The `old' objects needs to be released by the caller via 3455 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3456 */ 3457 return old; 3458 } 3459 3460 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3461 struct mem_cgroup *root_memcg) 3462 { 3463 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3464 struct mem_cgroup *memcg; 3465 3466 if (objcg) { 3467 memcg = obj_cgroup_memcg(objcg); 3468 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3469 return true; 3470 } 3471 3472 return false; 3473 } 3474 3475 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3476 bool allow_uncharge) 3477 { 3478 struct memcg_stock_pcp *stock; 3479 struct obj_cgroup *old = NULL; 3480 unsigned long flags; 3481 unsigned int nr_pages = 0; 3482 3483 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3484 3485 stock = this_cpu_ptr(&memcg_stock); 3486 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3487 old = drain_obj_stock(stock); 3488 obj_cgroup_get(objcg); 3489 WRITE_ONCE(stock->cached_objcg, objcg); 3490 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3491 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3492 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3493 } 3494 stock->nr_bytes += nr_bytes; 3495 3496 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3497 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3498 stock->nr_bytes &= (PAGE_SIZE - 1); 3499 } 3500 3501 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3502 if (old) 3503 obj_cgroup_put(old); 3504 3505 if (nr_pages) 3506 obj_cgroup_uncharge_pages(objcg, nr_pages); 3507 } 3508 3509 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3510 { 3511 unsigned int nr_pages, nr_bytes; 3512 int ret; 3513 3514 if (consume_obj_stock(objcg, size)) 3515 return 0; 3516 3517 /* 3518 * In theory, objcg->nr_charged_bytes can have enough 3519 * pre-charged bytes to satisfy the allocation. However, 3520 * flushing objcg->nr_charged_bytes requires two atomic 3521 * operations, and objcg->nr_charged_bytes can't be big. 3522 * The shared objcg->nr_charged_bytes can also become a 3523 * performance bottleneck if all tasks of the same memcg are 3524 * trying to update it. So it's better to ignore it and try 3525 * grab some new pages. The stock's nr_bytes will be flushed to 3526 * objcg->nr_charged_bytes later on when objcg changes. 3527 * 3528 * The stock's nr_bytes may contain enough pre-charged bytes 3529 * to allow one less page from being charged, but we can't rely 3530 * on the pre-charged bytes not being changed outside of 3531 * consume_obj_stock() or refill_obj_stock(). So ignore those 3532 * pre-charged bytes as well when charging pages. To avoid a 3533 * page uncharge right after a page charge, we set the 3534 * allow_uncharge flag to false when calling refill_obj_stock() 3535 * to temporarily allow the pre-charged bytes to exceed the page 3536 * size limit. The maximum reachable value of the pre-charged 3537 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3538 * race. 3539 */ 3540 nr_pages = size >> PAGE_SHIFT; 3541 nr_bytes = size & (PAGE_SIZE - 1); 3542 3543 if (nr_bytes) 3544 nr_pages += 1; 3545 3546 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3547 if (!ret && nr_bytes) 3548 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3549 3550 return ret; 3551 } 3552 3553 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3554 { 3555 refill_obj_stock(objcg, size, true); 3556 } 3557 3558 #endif /* CONFIG_MEMCG_KMEM */ 3559 3560 /* 3561 * Because page_memcg(head) is not set on tails, set it now. 3562 */ 3563 void split_page_memcg(struct page *head, unsigned int nr) 3564 { 3565 struct folio *folio = page_folio(head); 3566 struct mem_cgroup *memcg = folio_memcg(folio); 3567 int i; 3568 3569 if (mem_cgroup_disabled() || !memcg) 3570 return; 3571 3572 for (i = 1; i < nr; i++) 3573 folio_page(folio, i)->memcg_data = folio->memcg_data; 3574 3575 if (folio_memcg_kmem(folio)) 3576 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3577 else 3578 css_get_many(&memcg->css, nr - 1); 3579 } 3580 3581 #ifdef CONFIG_SWAP 3582 /** 3583 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3584 * @entry: swap entry to be moved 3585 * @from: mem_cgroup which the entry is moved from 3586 * @to: mem_cgroup which the entry is moved to 3587 * 3588 * It succeeds only when the swap_cgroup's record for this entry is the same 3589 * as the mem_cgroup's id of @from. 3590 * 3591 * Returns 0 on success, -EINVAL on failure. 3592 * 3593 * The caller must have charged to @to, IOW, called page_counter_charge() about 3594 * both res and memsw, and called css_get(). 3595 */ 3596 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3597 struct mem_cgroup *from, struct mem_cgroup *to) 3598 { 3599 unsigned short old_id, new_id; 3600 3601 old_id = mem_cgroup_id(from); 3602 new_id = mem_cgroup_id(to); 3603 3604 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3605 mod_memcg_state(from, MEMCG_SWAP, -1); 3606 mod_memcg_state(to, MEMCG_SWAP, 1); 3607 return 0; 3608 } 3609 return -EINVAL; 3610 } 3611 #else 3612 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3613 struct mem_cgroup *from, struct mem_cgroup *to) 3614 { 3615 return -EINVAL; 3616 } 3617 #endif 3618 3619 static DEFINE_MUTEX(memcg_max_mutex); 3620 3621 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3622 unsigned long max, bool memsw) 3623 { 3624 bool enlarge = false; 3625 bool drained = false; 3626 int ret; 3627 bool limits_invariant; 3628 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3629 3630 do { 3631 if (signal_pending(current)) { 3632 ret = -EINTR; 3633 break; 3634 } 3635 3636 mutex_lock(&memcg_max_mutex); 3637 /* 3638 * Make sure that the new limit (memsw or memory limit) doesn't 3639 * break our basic invariant rule memory.max <= memsw.max. 3640 */ 3641 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3642 max <= memcg->memsw.max; 3643 if (!limits_invariant) { 3644 mutex_unlock(&memcg_max_mutex); 3645 ret = -EINVAL; 3646 break; 3647 } 3648 if (max > counter->max) 3649 enlarge = true; 3650 ret = page_counter_set_max(counter, max); 3651 mutex_unlock(&memcg_max_mutex); 3652 3653 if (!ret) 3654 break; 3655 3656 if (!drained) { 3657 drain_all_stock(memcg); 3658 drained = true; 3659 continue; 3660 } 3661 3662 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3663 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3664 ret = -EBUSY; 3665 break; 3666 } 3667 } while (true); 3668 3669 if (!ret && enlarge) 3670 memcg_oom_recover(memcg); 3671 3672 return ret; 3673 } 3674 3675 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3676 gfp_t gfp_mask, 3677 unsigned long *total_scanned) 3678 { 3679 unsigned long nr_reclaimed = 0; 3680 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3681 unsigned long reclaimed; 3682 int loop = 0; 3683 struct mem_cgroup_tree_per_node *mctz; 3684 unsigned long excess; 3685 3686 if (lru_gen_enabled()) 3687 return 0; 3688 3689 if (order > 0) 3690 return 0; 3691 3692 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3693 3694 /* 3695 * Do not even bother to check the largest node if the root 3696 * is empty. Do it lockless to prevent lock bouncing. Races 3697 * are acceptable as soft limit is best effort anyway. 3698 */ 3699 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3700 return 0; 3701 3702 /* 3703 * This loop can run a while, specially if mem_cgroup's continuously 3704 * keep exceeding their soft limit and putting the system under 3705 * pressure 3706 */ 3707 do { 3708 if (next_mz) 3709 mz = next_mz; 3710 else 3711 mz = mem_cgroup_largest_soft_limit_node(mctz); 3712 if (!mz) 3713 break; 3714 3715 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3716 gfp_mask, total_scanned); 3717 nr_reclaimed += reclaimed; 3718 spin_lock_irq(&mctz->lock); 3719 3720 /* 3721 * If we failed to reclaim anything from this memory cgroup 3722 * it is time to move on to the next cgroup 3723 */ 3724 next_mz = NULL; 3725 if (!reclaimed) 3726 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3727 3728 excess = soft_limit_excess(mz->memcg); 3729 /* 3730 * One school of thought says that we should not add 3731 * back the node to the tree if reclaim returns 0. 3732 * But our reclaim could return 0, simply because due 3733 * to priority we are exposing a smaller subset of 3734 * memory to reclaim from. Consider this as a longer 3735 * term TODO. 3736 */ 3737 /* If excess == 0, no tree ops */ 3738 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3739 spin_unlock_irq(&mctz->lock); 3740 css_put(&mz->memcg->css); 3741 loop++; 3742 /* 3743 * Could not reclaim anything and there are no more 3744 * mem cgroups to try or we seem to be looping without 3745 * reclaiming anything. 3746 */ 3747 if (!nr_reclaimed && 3748 (next_mz == NULL || 3749 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3750 break; 3751 } while (!nr_reclaimed); 3752 if (next_mz) 3753 css_put(&next_mz->memcg->css); 3754 return nr_reclaimed; 3755 } 3756 3757 /* 3758 * Reclaims as many pages from the given memcg as possible. 3759 * 3760 * Caller is responsible for holding css reference for memcg. 3761 */ 3762 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3763 { 3764 int nr_retries = MAX_RECLAIM_RETRIES; 3765 3766 /* we call try-to-free pages for make this cgroup empty */ 3767 lru_add_drain_all(); 3768 3769 drain_all_stock(memcg); 3770 3771 /* try to free all pages in this cgroup */ 3772 while (nr_retries && page_counter_read(&memcg->memory)) { 3773 if (signal_pending(current)) 3774 return -EINTR; 3775 3776 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3777 MEMCG_RECLAIM_MAY_SWAP)) 3778 nr_retries--; 3779 } 3780 3781 return 0; 3782 } 3783 3784 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3785 char *buf, size_t nbytes, 3786 loff_t off) 3787 { 3788 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3789 3790 if (mem_cgroup_is_root(memcg)) 3791 return -EINVAL; 3792 return mem_cgroup_force_empty(memcg) ?: nbytes; 3793 } 3794 3795 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3796 struct cftype *cft) 3797 { 3798 return 1; 3799 } 3800 3801 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3802 struct cftype *cft, u64 val) 3803 { 3804 if (val == 1) 3805 return 0; 3806 3807 pr_warn_once("Non-hierarchical mode is deprecated. " 3808 "Please report your usecase to linux-mm@kvack.org if you " 3809 "depend on this functionality.\n"); 3810 3811 return -EINVAL; 3812 } 3813 3814 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3815 { 3816 unsigned long val; 3817 3818 if (mem_cgroup_is_root(memcg)) { 3819 /* 3820 * Approximate root's usage from global state. This isn't 3821 * perfect, but the root usage was always an approximation. 3822 */ 3823 val = global_node_page_state(NR_FILE_PAGES) + 3824 global_node_page_state(NR_ANON_MAPPED); 3825 if (swap) 3826 val += total_swap_pages - get_nr_swap_pages(); 3827 } else { 3828 if (!swap) 3829 val = page_counter_read(&memcg->memory); 3830 else 3831 val = page_counter_read(&memcg->memsw); 3832 } 3833 return val; 3834 } 3835 3836 enum { 3837 RES_USAGE, 3838 RES_LIMIT, 3839 RES_MAX_USAGE, 3840 RES_FAILCNT, 3841 RES_SOFT_LIMIT, 3842 }; 3843 3844 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3845 struct cftype *cft) 3846 { 3847 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3848 struct page_counter *counter; 3849 3850 switch (MEMFILE_TYPE(cft->private)) { 3851 case _MEM: 3852 counter = &memcg->memory; 3853 break; 3854 case _MEMSWAP: 3855 counter = &memcg->memsw; 3856 break; 3857 case _KMEM: 3858 counter = &memcg->kmem; 3859 break; 3860 case _TCP: 3861 counter = &memcg->tcpmem; 3862 break; 3863 default: 3864 BUG(); 3865 } 3866 3867 switch (MEMFILE_ATTR(cft->private)) { 3868 case RES_USAGE: 3869 if (counter == &memcg->memory) 3870 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3871 if (counter == &memcg->memsw) 3872 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3873 return (u64)page_counter_read(counter) * PAGE_SIZE; 3874 case RES_LIMIT: 3875 return (u64)counter->max * PAGE_SIZE; 3876 case RES_MAX_USAGE: 3877 return (u64)counter->watermark * PAGE_SIZE; 3878 case RES_FAILCNT: 3879 return counter->failcnt; 3880 case RES_SOFT_LIMIT: 3881 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 3882 default: 3883 BUG(); 3884 } 3885 } 3886 3887 /* 3888 * This function doesn't do anything useful. Its only job is to provide a read 3889 * handler for a file so that cgroup_file_mode() will add read permissions. 3890 */ 3891 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 3892 __always_unused void *v) 3893 { 3894 return -EINVAL; 3895 } 3896 3897 #ifdef CONFIG_MEMCG_KMEM 3898 static int memcg_online_kmem(struct mem_cgroup *memcg) 3899 { 3900 struct obj_cgroup *objcg; 3901 3902 if (mem_cgroup_kmem_disabled()) 3903 return 0; 3904 3905 if (unlikely(mem_cgroup_is_root(memcg))) 3906 return 0; 3907 3908 objcg = obj_cgroup_alloc(); 3909 if (!objcg) 3910 return -ENOMEM; 3911 3912 objcg->memcg = memcg; 3913 rcu_assign_pointer(memcg->objcg, objcg); 3914 obj_cgroup_get(objcg); 3915 memcg->orig_objcg = objcg; 3916 3917 static_branch_enable(&memcg_kmem_online_key); 3918 3919 memcg->kmemcg_id = memcg->id.id; 3920 3921 return 0; 3922 } 3923 3924 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3925 { 3926 struct mem_cgroup *parent; 3927 3928 if (mem_cgroup_kmem_disabled()) 3929 return; 3930 3931 if (unlikely(mem_cgroup_is_root(memcg))) 3932 return; 3933 3934 parent = parent_mem_cgroup(memcg); 3935 if (!parent) 3936 parent = root_mem_cgroup; 3937 3938 memcg_reparent_objcgs(memcg, parent); 3939 3940 /* 3941 * After we have finished memcg_reparent_objcgs(), all list_lrus 3942 * corresponding to this cgroup are guaranteed to remain empty. 3943 * The ordering is imposed by list_lru_node->lock taken by 3944 * memcg_reparent_list_lrus(). 3945 */ 3946 memcg_reparent_list_lrus(memcg, parent); 3947 } 3948 #else 3949 static int memcg_online_kmem(struct mem_cgroup *memcg) 3950 { 3951 return 0; 3952 } 3953 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3954 { 3955 } 3956 #endif /* CONFIG_MEMCG_KMEM */ 3957 3958 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3959 { 3960 int ret; 3961 3962 mutex_lock(&memcg_max_mutex); 3963 3964 ret = page_counter_set_max(&memcg->tcpmem, max); 3965 if (ret) 3966 goto out; 3967 3968 if (!memcg->tcpmem_active) { 3969 /* 3970 * The active flag needs to be written after the static_key 3971 * update. This is what guarantees that the socket activation 3972 * function is the last one to run. See mem_cgroup_sk_alloc() 3973 * for details, and note that we don't mark any socket as 3974 * belonging to this memcg until that flag is up. 3975 * 3976 * We need to do this, because static_keys will span multiple 3977 * sites, but we can't control their order. If we mark a socket 3978 * as accounted, but the accounting functions are not patched in 3979 * yet, we'll lose accounting. 3980 * 3981 * We never race with the readers in mem_cgroup_sk_alloc(), 3982 * because when this value change, the code to process it is not 3983 * patched in yet. 3984 */ 3985 static_branch_inc(&memcg_sockets_enabled_key); 3986 memcg->tcpmem_active = true; 3987 } 3988 out: 3989 mutex_unlock(&memcg_max_mutex); 3990 return ret; 3991 } 3992 3993 /* 3994 * The user of this function is... 3995 * RES_LIMIT. 3996 */ 3997 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3998 char *buf, size_t nbytes, loff_t off) 3999 { 4000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4001 unsigned long nr_pages; 4002 int ret; 4003 4004 buf = strstrip(buf); 4005 ret = page_counter_memparse(buf, "-1", &nr_pages); 4006 if (ret) 4007 return ret; 4008 4009 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4010 case RES_LIMIT: 4011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4012 ret = -EINVAL; 4013 break; 4014 } 4015 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4016 case _MEM: 4017 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 4018 break; 4019 case _MEMSWAP: 4020 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 4021 break; 4022 case _KMEM: 4023 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 4024 "Writing any value to this file has no effect. " 4025 "Please report your usecase to linux-mm@kvack.org if you " 4026 "depend on this functionality.\n"); 4027 ret = 0; 4028 break; 4029 case _TCP: 4030 ret = memcg_update_tcp_max(memcg, nr_pages); 4031 break; 4032 } 4033 break; 4034 case RES_SOFT_LIMIT: 4035 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4036 ret = -EOPNOTSUPP; 4037 } else { 4038 WRITE_ONCE(memcg->soft_limit, nr_pages); 4039 ret = 0; 4040 } 4041 break; 4042 } 4043 return ret ?: nbytes; 4044 } 4045 4046 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4047 size_t nbytes, loff_t off) 4048 { 4049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4050 struct page_counter *counter; 4051 4052 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4053 case _MEM: 4054 counter = &memcg->memory; 4055 break; 4056 case _MEMSWAP: 4057 counter = &memcg->memsw; 4058 break; 4059 case _KMEM: 4060 counter = &memcg->kmem; 4061 break; 4062 case _TCP: 4063 counter = &memcg->tcpmem; 4064 break; 4065 default: 4066 BUG(); 4067 } 4068 4069 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4070 case RES_MAX_USAGE: 4071 page_counter_reset_watermark(counter); 4072 break; 4073 case RES_FAILCNT: 4074 counter->failcnt = 0; 4075 break; 4076 default: 4077 BUG(); 4078 } 4079 4080 return nbytes; 4081 } 4082 4083 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4084 struct cftype *cft) 4085 { 4086 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4087 } 4088 4089 #ifdef CONFIG_MMU 4090 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4091 struct cftype *cft, u64 val) 4092 { 4093 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4094 4095 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 4096 "Please report your usecase to linux-mm@kvack.org if you " 4097 "depend on this functionality.\n"); 4098 4099 if (val & ~MOVE_MASK) 4100 return -EINVAL; 4101 4102 /* 4103 * No kind of locking is needed in here, because ->can_attach() will 4104 * check this value once in the beginning of the process, and then carry 4105 * on with stale data. This means that changes to this value will only 4106 * affect task migrations starting after the change. 4107 */ 4108 memcg->move_charge_at_immigrate = val; 4109 return 0; 4110 } 4111 #else 4112 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4113 struct cftype *cft, u64 val) 4114 { 4115 return -ENOSYS; 4116 } 4117 #endif 4118 4119 #ifdef CONFIG_NUMA 4120 4121 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 4122 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 4123 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 4124 4125 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 4126 int nid, unsigned int lru_mask, bool tree) 4127 { 4128 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4129 unsigned long nr = 0; 4130 enum lru_list lru; 4131 4132 VM_BUG_ON((unsigned)nid >= nr_node_ids); 4133 4134 for_each_lru(lru) { 4135 if (!(BIT(lru) & lru_mask)) 4136 continue; 4137 if (tree) 4138 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 4139 else 4140 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4141 } 4142 return nr; 4143 } 4144 4145 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4146 unsigned int lru_mask, 4147 bool tree) 4148 { 4149 unsigned long nr = 0; 4150 enum lru_list lru; 4151 4152 for_each_lru(lru) { 4153 if (!(BIT(lru) & lru_mask)) 4154 continue; 4155 if (tree) 4156 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4157 else 4158 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4159 } 4160 return nr; 4161 } 4162 4163 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4164 { 4165 struct numa_stat { 4166 const char *name; 4167 unsigned int lru_mask; 4168 }; 4169 4170 static const struct numa_stat stats[] = { 4171 { "total", LRU_ALL }, 4172 { "file", LRU_ALL_FILE }, 4173 { "anon", LRU_ALL_ANON }, 4174 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4175 }; 4176 const struct numa_stat *stat; 4177 int nid; 4178 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4179 4180 mem_cgroup_flush_stats(); 4181 4182 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4183 seq_printf(m, "%s=%lu", stat->name, 4184 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4185 false)); 4186 for_each_node_state(nid, N_MEMORY) 4187 seq_printf(m, " N%d=%lu", nid, 4188 mem_cgroup_node_nr_lru_pages(memcg, nid, 4189 stat->lru_mask, false)); 4190 seq_putc(m, '\n'); 4191 } 4192 4193 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4194 4195 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4196 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4197 true)); 4198 for_each_node_state(nid, N_MEMORY) 4199 seq_printf(m, " N%d=%lu", nid, 4200 mem_cgroup_node_nr_lru_pages(memcg, nid, 4201 stat->lru_mask, true)); 4202 seq_putc(m, '\n'); 4203 } 4204 4205 return 0; 4206 } 4207 #endif /* CONFIG_NUMA */ 4208 4209 static const unsigned int memcg1_stats[] = { 4210 NR_FILE_PAGES, 4211 NR_ANON_MAPPED, 4212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4213 NR_ANON_THPS, 4214 #endif 4215 NR_SHMEM, 4216 NR_FILE_MAPPED, 4217 NR_FILE_DIRTY, 4218 NR_WRITEBACK, 4219 WORKINGSET_REFAULT_ANON, 4220 WORKINGSET_REFAULT_FILE, 4221 #ifdef CONFIG_SWAP 4222 MEMCG_SWAP, 4223 NR_SWAPCACHE, 4224 #endif 4225 }; 4226 4227 static const char *const memcg1_stat_names[] = { 4228 "cache", 4229 "rss", 4230 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4231 "rss_huge", 4232 #endif 4233 "shmem", 4234 "mapped_file", 4235 "dirty", 4236 "writeback", 4237 "workingset_refault_anon", 4238 "workingset_refault_file", 4239 #ifdef CONFIG_SWAP 4240 "swap", 4241 "swapcached", 4242 #endif 4243 }; 4244 4245 /* Universal VM events cgroup1 shows, original sort order */ 4246 static const unsigned int memcg1_events[] = { 4247 PGPGIN, 4248 PGPGOUT, 4249 PGFAULT, 4250 PGMAJFAULT, 4251 }; 4252 4253 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4254 { 4255 unsigned long memory, memsw; 4256 struct mem_cgroup *mi; 4257 unsigned int i; 4258 4259 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4260 4261 mem_cgroup_flush_stats(); 4262 4263 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4264 unsigned long nr; 4265 4266 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 4267 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 4268 } 4269 4270 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4271 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4272 memcg_events_local(memcg, memcg1_events[i])); 4273 4274 for (i = 0; i < NR_LRU_LISTS; i++) 4275 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4276 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4277 PAGE_SIZE); 4278 4279 /* Hierarchical information */ 4280 memory = memsw = PAGE_COUNTER_MAX; 4281 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4282 memory = min(memory, READ_ONCE(mi->memory.max)); 4283 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4284 } 4285 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4286 (u64)memory * PAGE_SIZE); 4287 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4288 (u64)memsw * PAGE_SIZE); 4289 4290 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4291 unsigned long nr; 4292 4293 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 4294 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4295 (u64)nr); 4296 } 4297 4298 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4299 seq_buf_printf(s, "total_%s %llu\n", 4300 vm_event_name(memcg1_events[i]), 4301 (u64)memcg_events(memcg, memcg1_events[i])); 4302 4303 for (i = 0; i < NR_LRU_LISTS; i++) 4304 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4305 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4306 PAGE_SIZE); 4307 4308 #ifdef CONFIG_DEBUG_VM 4309 { 4310 pg_data_t *pgdat; 4311 struct mem_cgroup_per_node *mz; 4312 unsigned long anon_cost = 0; 4313 unsigned long file_cost = 0; 4314 4315 for_each_online_pgdat(pgdat) { 4316 mz = memcg->nodeinfo[pgdat->node_id]; 4317 4318 anon_cost += mz->lruvec.anon_cost; 4319 file_cost += mz->lruvec.file_cost; 4320 } 4321 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4322 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4323 } 4324 #endif 4325 } 4326 4327 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4328 struct cftype *cft) 4329 { 4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4331 4332 return mem_cgroup_swappiness(memcg); 4333 } 4334 4335 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4336 struct cftype *cft, u64 val) 4337 { 4338 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4339 4340 if (val > 200) 4341 return -EINVAL; 4342 4343 if (!mem_cgroup_is_root(memcg)) 4344 WRITE_ONCE(memcg->swappiness, val); 4345 else 4346 WRITE_ONCE(vm_swappiness, val); 4347 4348 return 0; 4349 } 4350 4351 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4352 { 4353 struct mem_cgroup_threshold_ary *t; 4354 unsigned long usage; 4355 int i; 4356 4357 rcu_read_lock(); 4358 if (!swap) 4359 t = rcu_dereference(memcg->thresholds.primary); 4360 else 4361 t = rcu_dereference(memcg->memsw_thresholds.primary); 4362 4363 if (!t) 4364 goto unlock; 4365 4366 usage = mem_cgroup_usage(memcg, swap); 4367 4368 /* 4369 * current_threshold points to threshold just below or equal to usage. 4370 * If it's not true, a threshold was crossed after last 4371 * call of __mem_cgroup_threshold(). 4372 */ 4373 i = t->current_threshold; 4374 4375 /* 4376 * Iterate backward over array of thresholds starting from 4377 * current_threshold and check if a threshold is crossed. 4378 * If none of thresholds below usage is crossed, we read 4379 * only one element of the array here. 4380 */ 4381 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4382 eventfd_signal(t->entries[i].eventfd, 1); 4383 4384 /* i = current_threshold + 1 */ 4385 i++; 4386 4387 /* 4388 * Iterate forward over array of thresholds starting from 4389 * current_threshold+1 and check if a threshold is crossed. 4390 * If none of thresholds above usage is crossed, we read 4391 * only one element of the array here. 4392 */ 4393 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4394 eventfd_signal(t->entries[i].eventfd, 1); 4395 4396 /* Update current_threshold */ 4397 t->current_threshold = i - 1; 4398 unlock: 4399 rcu_read_unlock(); 4400 } 4401 4402 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4403 { 4404 while (memcg) { 4405 __mem_cgroup_threshold(memcg, false); 4406 if (do_memsw_account()) 4407 __mem_cgroup_threshold(memcg, true); 4408 4409 memcg = parent_mem_cgroup(memcg); 4410 } 4411 } 4412 4413 static int compare_thresholds(const void *a, const void *b) 4414 { 4415 const struct mem_cgroup_threshold *_a = a; 4416 const struct mem_cgroup_threshold *_b = b; 4417 4418 if (_a->threshold > _b->threshold) 4419 return 1; 4420 4421 if (_a->threshold < _b->threshold) 4422 return -1; 4423 4424 return 0; 4425 } 4426 4427 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4428 { 4429 struct mem_cgroup_eventfd_list *ev; 4430 4431 spin_lock(&memcg_oom_lock); 4432 4433 list_for_each_entry(ev, &memcg->oom_notify, list) 4434 eventfd_signal(ev->eventfd, 1); 4435 4436 spin_unlock(&memcg_oom_lock); 4437 return 0; 4438 } 4439 4440 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4441 { 4442 struct mem_cgroup *iter; 4443 4444 for_each_mem_cgroup_tree(iter, memcg) 4445 mem_cgroup_oom_notify_cb(iter); 4446 } 4447 4448 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4449 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4450 { 4451 struct mem_cgroup_thresholds *thresholds; 4452 struct mem_cgroup_threshold_ary *new; 4453 unsigned long threshold; 4454 unsigned long usage; 4455 int i, size, ret; 4456 4457 ret = page_counter_memparse(args, "-1", &threshold); 4458 if (ret) 4459 return ret; 4460 4461 mutex_lock(&memcg->thresholds_lock); 4462 4463 if (type == _MEM) { 4464 thresholds = &memcg->thresholds; 4465 usage = mem_cgroup_usage(memcg, false); 4466 } else if (type == _MEMSWAP) { 4467 thresholds = &memcg->memsw_thresholds; 4468 usage = mem_cgroup_usage(memcg, true); 4469 } else 4470 BUG(); 4471 4472 /* Check if a threshold crossed before adding a new one */ 4473 if (thresholds->primary) 4474 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4475 4476 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4477 4478 /* Allocate memory for new array of thresholds */ 4479 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4480 if (!new) { 4481 ret = -ENOMEM; 4482 goto unlock; 4483 } 4484 new->size = size; 4485 4486 /* Copy thresholds (if any) to new array */ 4487 if (thresholds->primary) 4488 memcpy(new->entries, thresholds->primary->entries, 4489 flex_array_size(new, entries, size - 1)); 4490 4491 /* Add new threshold */ 4492 new->entries[size - 1].eventfd = eventfd; 4493 new->entries[size - 1].threshold = threshold; 4494 4495 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4496 sort(new->entries, size, sizeof(*new->entries), 4497 compare_thresholds, NULL); 4498 4499 /* Find current threshold */ 4500 new->current_threshold = -1; 4501 for (i = 0; i < size; i++) { 4502 if (new->entries[i].threshold <= usage) { 4503 /* 4504 * new->current_threshold will not be used until 4505 * rcu_assign_pointer(), so it's safe to increment 4506 * it here. 4507 */ 4508 ++new->current_threshold; 4509 } else 4510 break; 4511 } 4512 4513 /* Free old spare buffer and save old primary buffer as spare */ 4514 kfree(thresholds->spare); 4515 thresholds->spare = thresholds->primary; 4516 4517 rcu_assign_pointer(thresholds->primary, new); 4518 4519 /* To be sure that nobody uses thresholds */ 4520 synchronize_rcu(); 4521 4522 unlock: 4523 mutex_unlock(&memcg->thresholds_lock); 4524 4525 return ret; 4526 } 4527 4528 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4529 struct eventfd_ctx *eventfd, const char *args) 4530 { 4531 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4532 } 4533 4534 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4535 struct eventfd_ctx *eventfd, const char *args) 4536 { 4537 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4538 } 4539 4540 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4541 struct eventfd_ctx *eventfd, enum res_type type) 4542 { 4543 struct mem_cgroup_thresholds *thresholds; 4544 struct mem_cgroup_threshold_ary *new; 4545 unsigned long usage; 4546 int i, j, size, entries; 4547 4548 mutex_lock(&memcg->thresholds_lock); 4549 4550 if (type == _MEM) { 4551 thresholds = &memcg->thresholds; 4552 usage = mem_cgroup_usage(memcg, false); 4553 } else if (type == _MEMSWAP) { 4554 thresholds = &memcg->memsw_thresholds; 4555 usage = mem_cgroup_usage(memcg, true); 4556 } else 4557 BUG(); 4558 4559 if (!thresholds->primary) 4560 goto unlock; 4561 4562 /* Check if a threshold crossed before removing */ 4563 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4564 4565 /* Calculate new number of threshold */ 4566 size = entries = 0; 4567 for (i = 0; i < thresholds->primary->size; i++) { 4568 if (thresholds->primary->entries[i].eventfd != eventfd) 4569 size++; 4570 else 4571 entries++; 4572 } 4573 4574 new = thresholds->spare; 4575 4576 /* If no items related to eventfd have been cleared, nothing to do */ 4577 if (!entries) 4578 goto unlock; 4579 4580 /* Set thresholds array to NULL if we don't have thresholds */ 4581 if (!size) { 4582 kfree(new); 4583 new = NULL; 4584 goto swap_buffers; 4585 } 4586 4587 new->size = size; 4588 4589 /* Copy thresholds and find current threshold */ 4590 new->current_threshold = -1; 4591 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4592 if (thresholds->primary->entries[i].eventfd == eventfd) 4593 continue; 4594 4595 new->entries[j] = thresholds->primary->entries[i]; 4596 if (new->entries[j].threshold <= usage) { 4597 /* 4598 * new->current_threshold will not be used 4599 * until rcu_assign_pointer(), so it's safe to increment 4600 * it here. 4601 */ 4602 ++new->current_threshold; 4603 } 4604 j++; 4605 } 4606 4607 swap_buffers: 4608 /* Swap primary and spare array */ 4609 thresholds->spare = thresholds->primary; 4610 4611 rcu_assign_pointer(thresholds->primary, new); 4612 4613 /* To be sure that nobody uses thresholds */ 4614 synchronize_rcu(); 4615 4616 /* If all events are unregistered, free the spare array */ 4617 if (!new) { 4618 kfree(thresholds->spare); 4619 thresholds->spare = NULL; 4620 } 4621 unlock: 4622 mutex_unlock(&memcg->thresholds_lock); 4623 } 4624 4625 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4626 struct eventfd_ctx *eventfd) 4627 { 4628 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4629 } 4630 4631 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4632 struct eventfd_ctx *eventfd) 4633 { 4634 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4635 } 4636 4637 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4638 struct eventfd_ctx *eventfd, const char *args) 4639 { 4640 struct mem_cgroup_eventfd_list *event; 4641 4642 event = kmalloc(sizeof(*event), GFP_KERNEL); 4643 if (!event) 4644 return -ENOMEM; 4645 4646 spin_lock(&memcg_oom_lock); 4647 4648 event->eventfd = eventfd; 4649 list_add(&event->list, &memcg->oom_notify); 4650 4651 /* already in OOM ? */ 4652 if (memcg->under_oom) 4653 eventfd_signal(eventfd, 1); 4654 spin_unlock(&memcg_oom_lock); 4655 4656 return 0; 4657 } 4658 4659 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4660 struct eventfd_ctx *eventfd) 4661 { 4662 struct mem_cgroup_eventfd_list *ev, *tmp; 4663 4664 spin_lock(&memcg_oom_lock); 4665 4666 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4667 if (ev->eventfd == eventfd) { 4668 list_del(&ev->list); 4669 kfree(ev); 4670 } 4671 } 4672 4673 spin_unlock(&memcg_oom_lock); 4674 } 4675 4676 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4677 { 4678 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4679 4680 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4681 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4682 seq_printf(sf, "oom_kill %lu\n", 4683 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4684 return 0; 4685 } 4686 4687 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4688 struct cftype *cft, u64 val) 4689 { 4690 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4691 4692 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4693 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4694 return -EINVAL; 4695 4696 WRITE_ONCE(memcg->oom_kill_disable, val); 4697 if (!val) 4698 memcg_oom_recover(memcg); 4699 4700 return 0; 4701 } 4702 4703 #ifdef CONFIG_CGROUP_WRITEBACK 4704 4705 #include <trace/events/writeback.h> 4706 4707 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4708 { 4709 return wb_domain_init(&memcg->cgwb_domain, gfp); 4710 } 4711 4712 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4713 { 4714 wb_domain_exit(&memcg->cgwb_domain); 4715 } 4716 4717 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4718 { 4719 wb_domain_size_changed(&memcg->cgwb_domain); 4720 } 4721 4722 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4723 { 4724 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4725 4726 if (!memcg->css.parent) 4727 return NULL; 4728 4729 return &memcg->cgwb_domain; 4730 } 4731 4732 /** 4733 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4734 * @wb: bdi_writeback in question 4735 * @pfilepages: out parameter for number of file pages 4736 * @pheadroom: out parameter for number of allocatable pages according to memcg 4737 * @pdirty: out parameter for number of dirty pages 4738 * @pwriteback: out parameter for number of pages under writeback 4739 * 4740 * Determine the numbers of file, headroom, dirty, and writeback pages in 4741 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4742 * is a bit more involved. 4743 * 4744 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4745 * headroom is calculated as the lowest headroom of itself and the 4746 * ancestors. Note that this doesn't consider the actual amount of 4747 * available memory in the system. The caller should further cap 4748 * *@pheadroom accordingly. 4749 */ 4750 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4751 unsigned long *pheadroom, unsigned long *pdirty, 4752 unsigned long *pwriteback) 4753 { 4754 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4755 struct mem_cgroup *parent; 4756 4757 mem_cgroup_flush_stats(); 4758 4759 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4760 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4761 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4762 memcg_page_state(memcg, NR_ACTIVE_FILE); 4763 4764 *pheadroom = PAGE_COUNTER_MAX; 4765 while ((parent = parent_mem_cgroup(memcg))) { 4766 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4767 READ_ONCE(memcg->memory.high)); 4768 unsigned long used = page_counter_read(&memcg->memory); 4769 4770 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4771 memcg = parent; 4772 } 4773 } 4774 4775 /* 4776 * Foreign dirty flushing 4777 * 4778 * There's an inherent mismatch between memcg and writeback. The former 4779 * tracks ownership per-page while the latter per-inode. This was a 4780 * deliberate design decision because honoring per-page ownership in the 4781 * writeback path is complicated, may lead to higher CPU and IO overheads 4782 * and deemed unnecessary given that write-sharing an inode across 4783 * different cgroups isn't a common use-case. 4784 * 4785 * Combined with inode majority-writer ownership switching, this works well 4786 * enough in most cases but there are some pathological cases. For 4787 * example, let's say there are two cgroups A and B which keep writing to 4788 * different but confined parts of the same inode. B owns the inode and 4789 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4790 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4791 * triggering background writeback. A will be slowed down without a way to 4792 * make writeback of the dirty pages happen. 4793 * 4794 * Conditions like the above can lead to a cgroup getting repeatedly and 4795 * severely throttled after making some progress after each 4796 * dirty_expire_interval while the underlying IO device is almost 4797 * completely idle. 4798 * 4799 * Solving this problem completely requires matching the ownership tracking 4800 * granularities between memcg and writeback in either direction. However, 4801 * the more egregious behaviors can be avoided by simply remembering the 4802 * most recent foreign dirtying events and initiating remote flushes on 4803 * them when local writeback isn't enough to keep the memory clean enough. 4804 * 4805 * The following two functions implement such mechanism. When a foreign 4806 * page - a page whose memcg and writeback ownerships don't match - is 4807 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4808 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4809 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4810 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4811 * foreign bdi_writebacks which haven't expired. Both the numbers of 4812 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4813 * limited to MEMCG_CGWB_FRN_CNT. 4814 * 4815 * The mechanism only remembers IDs and doesn't hold any object references. 4816 * As being wrong occasionally doesn't matter, updates and accesses to the 4817 * records are lockless and racy. 4818 */ 4819 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4820 struct bdi_writeback *wb) 4821 { 4822 struct mem_cgroup *memcg = folio_memcg(folio); 4823 struct memcg_cgwb_frn *frn; 4824 u64 now = get_jiffies_64(); 4825 u64 oldest_at = now; 4826 int oldest = -1; 4827 int i; 4828 4829 trace_track_foreign_dirty(folio, wb); 4830 4831 /* 4832 * Pick the slot to use. If there is already a slot for @wb, keep 4833 * using it. If not replace the oldest one which isn't being 4834 * written out. 4835 */ 4836 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4837 frn = &memcg->cgwb_frn[i]; 4838 if (frn->bdi_id == wb->bdi->id && 4839 frn->memcg_id == wb->memcg_css->id) 4840 break; 4841 if (time_before64(frn->at, oldest_at) && 4842 atomic_read(&frn->done.cnt) == 1) { 4843 oldest = i; 4844 oldest_at = frn->at; 4845 } 4846 } 4847 4848 if (i < MEMCG_CGWB_FRN_CNT) { 4849 /* 4850 * Re-using an existing one. Update timestamp lazily to 4851 * avoid making the cacheline hot. We want them to be 4852 * reasonably up-to-date and significantly shorter than 4853 * dirty_expire_interval as that's what expires the record. 4854 * Use the shorter of 1s and dirty_expire_interval / 8. 4855 */ 4856 unsigned long update_intv = 4857 min_t(unsigned long, HZ, 4858 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4859 4860 if (time_before64(frn->at, now - update_intv)) 4861 frn->at = now; 4862 } else if (oldest >= 0) { 4863 /* replace the oldest free one */ 4864 frn = &memcg->cgwb_frn[oldest]; 4865 frn->bdi_id = wb->bdi->id; 4866 frn->memcg_id = wb->memcg_css->id; 4867 frn->at = now; 4868 } 4869 } 4870 4871 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4872 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4873 { 4874 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4875 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4876 u64 now = jiffies_64; 4877 int i; 4878 4879 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4880 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4881 4882 /* 4883 * If the record is older than dirty_expire_interval, 4884 * writeback on it has already started. No need to kick it 4885 * off again. Also, don't start a new one if there's 4886 * already one in flight. 4887 */ 4888 if (time_after64(frn->at, now - intv) && 4889 atomic_read(&frn->done.cnt) == 1) { 4890 frn->at = 0; 4891 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4892 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4893 WB_REASON_FOREIGN_FLUSH, 4894 &frn->done); 4895 } 4896 } 4897 } 4898 4899 #else /* CONFIG_CGROUP_WRITEBACK */ 4900 4901 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4902 { 4903 return 0; 4904 } 4905 4906 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4907 { 4908 } 4909 4910 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4911 { 4912 } 4913 4914 #endif /* CONFIG_CGROUP_WRITEBACK */ 4915 4916 /* 4917 * DO NOT USE IN NEW FILES. 4918 * 4919 * "cgroup.event_control" implementation. 4920 * 4921 * This is way over-engineered. It tries to support fully configurable 4922 * events for each user. Such level of flexibility is completely 4923 * unnecessary especially in the light of the planned unified hierarchy. 4924 * 4925 * Please deprecate this and replace with something simpler if at all 4926 * possible. 4927 */ 4928 4929 /* 4930 * Unregister event and free resources. 4931 * 4932 * Gets called from workqueue. 4933 */ 4934 static void memcg_event_remove(struct work_struct *work) 4935 { 4936 struct mem_cgroup_event *event = 4937 container_of(work, struct mem_cgroup_event, remove); 4938 struct mem_cgroup *memcg = event->memcg; 4939 4940 remove_wait_queue(event->wqh, &event->wait); 4941 4942 event->unregister_event(memcg, event->eventfd); 4943 4944 /* Notify userspace the event is going away. */ 4945 eventfd_signal(event->eventfd, 1); 4946 4947 eventfd_ctx_put(event->eventfd); 4948 kfree(event); 4949 css_put(&memcg->css); 4950 } 4951 4952 /* 4953 * Gets called on EPOLLHUP on eventfd when user closes it. 4954 * 4955 * Called with wqh->lock held and interrupts disabled. 4956 */ 4957 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4958 int sync, void *key) 4959 { 4960 struct mem_cgroup_event *event = 4961 container_of(wait, struct mem_cgroup_event, wait); 4962 struct mem_cgroup *memcg = event->memcg; 4963 __poll_t flags = key_to_poll(key); 4964 4965 if (flags & EPOLLHUP) { 4966 /* 4967 * If the event has been detached at cgroup removal, we 4968 * can simply return knowing the other side will cleanup 4969 * for us. 4970 * 4971 * We can't race against event freeing since the other 4972 * side will require wqh->lock via remove_wait_queue(), 4973 * which we hold. 4974 */ 4975 spin_lock(&memcg->event_list_lock); 4976 if (!list_empty(&event->list)) { 4977 list_del_init(&event->list); 4978 /* 4979 * We are in atomic context, but cgroup_event_remove() 4980 * may sleep, so we have to call it in workqueue. 4981 */ 4982 schedule_work(&event->remove); 4983 } 4984 spin_unlock(&memcg->event_list_lock); 4985 } 4986 4987 return 0; 4988 } 4989 4990 static void memcg_event_ptable_queue_proc(struct file *file, 4991 wait_queue_head_t *wqh, poll_table *pt) 4992 { 4993 struct mem_cgroup_event *event = 4994 container_of(pt, struct mem_cgroup_event, pt); 4995 4996 event->wqh = wqh; 4997 add_wait_queue(wqh, &event->wait); 4998 } 4999 5000 /* 5001 * DO NOT USE IN NEW FILES. 5002 * 5003 * Parse input and register new cgroup event handler. 5004 * 5005 * Input must be in format '<event_fd> <control_fd> <args>'. 5006 * Interpretation of args is defined by control file implementation. 5007 */ 5008 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5009 char *buf, size_t nbytes, loff_t off) 5010 { 5011 struct cgroup_subsys_state *css = of_css(of); 5012 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5013 struct mem_cgroup_event *event; 5014 struct cgroup_subsys_state *cfile_css; 5015 unsigned int efd, cfd; 5016 struct fd efile; 5017 struct fd cfile; 5018 struct dentry *cdentry; 5019 const char *name; 5020 char *endp; 5021 int ret; 5022 5023 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 5024 return -EOPNOTSUPP; 5025 5026 buf = strstrip(buf); 5027 5028 efd = simple_strtoul(buf, &endp, 10); 5029 if (*endp != ' ') 5030 return -EINVAL; 5031 buf = endp + 1; 5032 5033 cfd = simple_strtoul(buf, &endp, 10); 5034 if ((*endp != ' ') && (*endp != '\0')) 5035 return -EINVAL; 5036 buf = endp + 1; 5037 5038 event = kzalloc(sizeof(*event), GFP_KERNEL); 5039 if (!event) 5040 return -ENOMEM; 5041 5042 event->memcg = memcg; 5043 INIT_LIST_HEAD(&event->list); 5044 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5045 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5046 INIT_WORK(&event->remove, memcg_event_remove); 5047 5048 efile = fdget(efd); 5049 if (!efile.file) { 5050 ret = -EBADF; 5051 goto out_kfree; 5052 } 5053 5054 event->eventfd = eventfd_ctx_fileget(efile.file); 5055 if (IS_ERR(event->eventfd)) { 5056 ret = PTR_ERR(event->eventfd); 5057 goto out_put_efile; 5058 } 5059 5060 cfile = fdget(cfd); 5061 if (!cfile.file) { 5062 ret = -EBADF; 5063 goto out_put_eventfd; 5064 } 5065 5066 /* the process need read permission on control file */ 5067 /* AV: shouldn't we check that it's been opened for read instead? */ 5068 ret = file_permission(cfile.file, MAY_READ); 5069 if (ret < 0) 5070 goto out_put_cfile; 5071 5072 /* 5073 * The control file must be a regular cgroup1 file. As a regular cgroup 5074 * file can't be renamed, it's safe to access its name afterwards. 5075 */ 5076 cdentry = cfile.file->f_path.dentry; 5077 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 5078 ret = -EINVAL; 5079 goto out_put_cfile; 5080 } 5081 5082 /* 5083 * Determine the event callbacks and set them in @event. This used 5084 * to be done via struct cftype but cgroup core no longer knows 5085 * about these events. The following is crude but the whole thing 5086 * is for compatibility anyway. 5087 * 5088 * DO NOT ADD NEW FILES. 5089 */ 5090 name = cdentry->d_name.name; 5091 5092 if (!strcmp(name, "memory.usage_in_bytes")) { 5093 event->register_event = mem_cgroup_usage_register_event; 5094 event->unregister_event = mem_cgroup_usage_unregister_event; 5095 } else if (!strcmp(name, "memory.oom_control")) { 5096 event->register_event = mem_cgroup_oom_register_event; 5097 event->unregister_event = mem_cgroup_oom_unregister_event; 5098 } else if (!strcmp(name, "memory.pressure_level")) { 5099 event->register_event = vmpressure_register_event; 5100 event->unregister_event = vmpressure_unregister_event; 5101 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5102 event->register_event = memsw_cgroup_usage_register_event; 5103 event->unregister_event = memsw_cgroup_usage_unregister_event; 5104 } else { 5105 ret = -EINVAL; 5106 goto out_put_cfile; 5107 } 5108 5109 /* 5110 * Verify @cfile should belong to @css. Also, remaining events are 5111 * automatically removed on cgroup destruction but the removal is 5112 * asynchronous, so take an extra ref on @css. 5113 */ 5114 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 5115 &memory_cgrp_subsys); 5116 ret = -EINVAL; 5117 if (IS_ERR(cfile_css)) 5118 goto out_put_cfile; 5119 if (cfile_css != css) { 5120 css_put(cfile_css); 5121 goto out_put_cfile; 5122 } 5123 5124 ret = event->register_event(memcg, event->eventfd, buf); 5125 if (ret) 5126 goto out_put_css; 5127 5128 vfs_poll(efile.file, &event->pt); 5129 5130 spin_lock_irq(&memcg->event_list_lock); 5131 list_add(&event->list, &memcg->event_list); 5132 spin_unlock_irq(&memcg->event_list_lock); 5133 5134 fdput(cfile); 5135 fdput(efile); 5136 5137 return nbytes; 5138 5139 out_put_css: 5140 css_put(css); 5141 out_put_cfile: 5142 fdput(cfile); 5143 out_put_eventfd: 5144 eventfd_ctx_put(event->eventfd); 5145 out_put_efile: 5146 fdput(efile); 5147 out_kfree: 5148 kfree(event); 5149 5150 return ret; 5151 } 5152 5153 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5154 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5155 { 5156 /* 5157 * Deprecated. 5158 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5159 */ 5160 return 0; 5161 } 5162 #endif 5163 5164 static int memory_stat_show(struct seq_file *m, void *v); 5165 5166 static struct cftype mem_cgroup_legacy_files[] = { 5167 { 5168 .name = "usage_in_bytes", 5169 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5170 .read_u64 = mem_cgroup_read_u64, 5171 }, 5172 { 5173 .name = "max_usage_in_bytes", 5174 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5175 .write = mem_cgroup_reset, 5176 .read_u64 = mem_cgroup_read_u64, 5177 }, 5178 { 5179 .name = "limit_in_bytes", 5180 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5181 .write = mem_cgroup_write, 5182 .read_u64 = mem_cgroup_read_u64, 5183 }, 5184 { 5185 .name = "soft_limit_in_bytes", 5186 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5187 .write = mem_cgroup_write, 5188 .read_u64 = mem_cgroup_read_u64, 5189 }, 5190 { 5191 .name = "failcnt", 5192 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5193 .write = mem_cgroup_reset, 5194 .read_u64 = mem_cgroup_read_u64, 5195 }, 5196 { 5197 .name = "stat", 5198 .seq_show = memory_stat_show, 5199 }, 5200 { 5201 .name = "force_empty", 5202 .write = mem_cgroup_force_empty_write, 5203 }, 5204 { 5205 .name = "use_hierarchy", 5206 .write_u64 = mem_cgroup_hierarchy_write, 5207 .read_u64 = mem_cgroup_hierarchy_read, 5208 }, 5209 { 5210 .name = "cgroup.event_control", /* XXX: for compat */ 5211 .write = memcg_write_event_control, 5212 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5213 }, 5214 { 5215 .name = "swappiness", 5216 .read_u64 = mem_cgroup_swappiness_read, 5217 .write_u64 = mem_cgroup_swappiness_write, 5218 }, 5219 { 5220 .name = "move_charge_at_immigrate", 5221 .read_u64 = mem_cgroup_move_charge_read, 5222 .write_u64 = mem_cgroup_move_charge_write, 5223 }, 5224 { 5225 .name = "oom_control", 5226 .seq_show = mem_cgroup_oom_control_read, 5227 .write_u64 = mem_cgroup_oom_control_write, 5228 }, 5229 { 5230 .name = "pressure_level", 5231 .seq_show = mem_cgroup_dummy_seq_show, 5232 }, 5233 #ifdef CONFIG_NUMA 5234 { 5235 .name = "numa_stat", 5236 .seq_show = memcg_numa_stat_show, 5237 }, 5238 #endif 5239 { 5240 .name = "kmem.limit_in_bytes", 5241 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5242 .write = mem_cgroup_write, 5243 .read_u64 = mem_cgroup_read_u64, 5244 }, 5245 { 5246 .name = "kmem.usage_in_bytes", 5247 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5248 .read_u64 = mem_cgroup_read_u64, 5249 }, 5250 { 5251 .name = "kmem.failcnt", 5252 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5253 .write = mem_cgroup_reset, 5254 .read_u64 = mem_cgroup_read_u64, 5255 }, 5256 { 5257 .name = "kmem.max_usage_in_bytes", 5258 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5259 .write = mem_cgroup_reset, 5260 .read_u64 = mem_cgroup_read_u64, 5261 }, 5262 #if defined(CONFIG_MEMCG_KMEM) && \ 5263 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5264 { 5265 .name = "kmem.slabinfo", 5266 .seq_show = mem_cgroup_slab_show, 5267 }, 5268 #endif 5269 { 5270 .name = "kmem.tcp.limit_in_bytes", 5271 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5272 .write = mem_cgroup_write, 5273 .read_u64 = mem_cgroup_read_u64, 5274 }, 5275 { 5276 .name = "kmem.tcp.usage_in_bytes", 5277 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5278 .read_u64 = mem_cgroup_read_u64, 5279 }, 5280 { 5281 .name = "kmem.tcp.failcnt", 5282 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5283 .write = mem_cgroup_reset, 5284 .read_u64 = mem_cgroup_read_u64, 5285 }, 5286 { 5287 .name = "kmem.tcp.max_usage_in_bytes", 5288 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5289 .write = mem_cgroup_reset, 5290 .read_u64 = mem_cgroup_read_u64, 5291 }, 5292 { }, /* terminate */ 5293 }; 5294 5295 /* 5296 * Private memory cgroup IDR 5297 * 5298 * Swap-out records and page cache shadow entries need to store memcg 5299 * references in constrained space, so we maintain an ID space that is 5300 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5301 * memory-controlled cgroups to 64k. 5302 * 5303 * However, there usually are many references to the offline CSS after 5304 * the cgroup has been destroyed, such as page cache or reclaimable 5305 * slab objects, that don't need to hang on to the ID. We want to keep 5306 * those dead CSS from occupying IDs, or we might quickly exhaust the 5307 * relatively small ID space and prevent the creation of new cgroups 5308 * even when there are much fewer than 64k cgroups - possibly none. 5309 * 5310 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5311 * be freed and recycled when it's no longer needed, which is usually 5312 * when the CSS is offlined. 5313 * 5314 * The only exception to that are records of swapped out tmpfs/shmem 5315 * pages that need to be attributed to live ancestors on swapin. But 5316 * those references are manageable from userspace. 5317 */ 5318 5319 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 5320 static DEFINE_IDR(mem_cgroup_idr); 5321 5322 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5323 { 5324 if (memcg->id.id > 0) { 5325 idr_remove(&mem_cgroup_idr, memcg->id.id); 5326 memcg->id.id = 0; 5327 } 5328 } 5329 5330 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5331 unsigned int n) 5332 { 5333 refcount_add(n, &memcg->id.ref); 5334 } 5335 5336 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5337 { 5338 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5339 mem_cgroup_id_remove(memcg); 5340 5341 /* Memcg ID pins CSS */ 5342 css_put(&memcg->css); 5343 } 5344 } 5345 5346 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5347 { 5348 mem_cgroup_id_put_many(memcg, 1); 5349 } 5350 5351 /** 5352 * mem_cgroup_from_id - look up a memcg from a memcg id 5353 * @id: the memcg id to look up 5354 * 5355 * Caller must hold rcu_read_lock(). 5356 */ 5357 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5358 { 5359 WARN_ON_ONCE(!rcu_read_lock_held()); 5360 return idr_find(&mem_cgroup_idr, id); 5361 } 5362 5363 #ifdef CONFIG_SHRINKER_DEBUG 5364 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5365 { 5366 struct cgroup *cgrp; 5367 struct cgroup_subsys_state *css; 5368 struct mem_cgroup *memcg; 5369 5370 cgrp = cgroup_get_from_id(ino); 5371 if (IS_ERR(cgrp)) 5372 return ERR_CAST(cgrp); 5373 5374 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5375 if (css) 5376 memcg = container_of(css, struct mem_cgroup, css); 5377 else 5378 memcg = ERR_PTR(-ENOENT); 5379 5380 cgroup_put(cgrp); 5381 5382 return memcg; 5383 } 5384 #endif 5385 5386 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5387 { 5388 struct mem_cgroup_per_node *pn; 5389 5390 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5391 if (!pn) 5392 return 1; 5393 5394 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5395 GFP_KERNEL_ACCOUNT); 5396 if (!pn->lruvec_stats_percpu) { 5397 kfree(pn); 5398 return 1; 5399 } 5400 5401 lruvec_init(&pn->lruvec); 5402 pn->memcg = memcg; 5403 5404 memcg->nodeinfo[node] = pn; 5405 return 0; 5406 } 5407 5408 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5409 { 5410 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5411 5412 if (!pn) 5413 return; 5414 5415 free_percpu(pn->lruvec_stats_percpu); 5416 kfree(pn); 5417 } 5418 5419 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5420 { 5421 int node; 5422 5423 if (memcg->orig_objcg) 5424 obj_cgroup_put(memcg->orig_objcg); 5425 5426 for_each_node(node) 5427 free_mem_cgroup_per_node_info(memcg, node); 5428 kfree(memcg->vmstats); 5429 free_percpu(memcg->vmstats_percpu); 5430 kfree(memcg); 5431 } 5432 5433 static void mem_cgroup_free(struct mem_cgroup *memcg) 5434 { 5435 lru_gen_exit_memcg(memcg); 5436 memcg_wb_domain_exit(memcg); 5437 __mem_cgroup_free(memcg); 5438 } 5439 5440 static struct mem_cgroup *mem_cgroup_alloc(void) 5441 { 5442 struct mem_cgroup *memcg; 5443 int node; 5444 int __maybe_unused i; 5445 long error = -ENOMEM; 5446 5447 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5448 if (!memcg) 5449 return ERR_PTR(error); 5450 5451 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5452 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5453 if (memcg->id.id < 0) { 5454 error = memcg->id.id; 5455 goto fail; 5456 } 5457 5458 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5459 if (!memcg->vmstats) 5460 goto fail; 5461 5462 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5463 GFP_KERNEL_ACCOUNT); 5464 if (!memcg->vmstats_percpu) 5465 goto fail; 5466 5467 for_each_node(node) 5468 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5469 goto fail; 5470 5471 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5472 goto fail; 5473 5474 INIT_WORK(&memcg->high_work, high_work_func); 5475 INIT_LIST_HEAD(&memcg->oom_notify); 5476 mutex_init(&memcg->thresholds_lock); 5477 spin_lock_init(&memcg->move_lock); 5478 vmpressure_init(&memcg->vmpressure); 5479 INIT_LIST_HEAD(&memcg->event_list); 5480 spin_lock_init(&memcg->event_list_lock); 5481 memcg->socket_pressure = jiffies; 5482 #ifdef CONFIG_MEMCG_KMEM 5483 memcg->kmemcg_id = -1; 5484 INIT_LIST_HEAD(&memcg->objcg_list); 5485 #endif 5486 #ifdef CONFIG_CGROUP_WRITEBACK 5487 INIT_LIST_HEAD(&memcg->cgwb_list); 5488 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5489 memcg->cgwb_frn[i].done = 5490 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5491 #endif 5492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5493 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5494 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5495 memcg->deferred_split_queue.split_queue_len = 0; 5496 #endif 5497 lru_gen_init_memcg(memcg); 5498 return memcg; 5499 fail: 5500 mem_cgroup_id_remove(memcg); 5501 __mem_cgroup_free(memcg); 5502 return ERR_PTR(error); 5503 } 5504 5505 static struct cgroup_subsys_state * __ref 5506 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5507 { 5508 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5509 struct mem_cgroup *memcg, *old_memcg; 5510 5511 old_memcg = set_active_memcg(parent); 5512 memcg = mem_cgroup_alloc(); 5513 set_active_memcg(old_memcg); 5514 if (IS_ERR(memcg)) 5515 return ERR_CAST(memcg); 5516 5517 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5518 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5519 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5520 memcg->zswap_max = PAGE_COUNTER_MAX; 5521 #endif 5522 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5523 if (parent) { 5524 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5525 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5526 5527 page_counter_init(&memcg->memory, &parent->memory); 5528 page_counter_init(&memcg->swap, &parent->swap); 5529 page_counter_init(&memcg->kmem, &parent->kmem); 5530 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5531 } else { 5532 init_memcg_events(); 5533 page_counter_init(&memcg->memory, NULL); 5534 page_counter_init(&memcg->swap, NULL); 5535 page_counter_init(&memcg->kmem, NULL); 5536 page_counter_init(&memcg->tcpmem, NULL); 5537 5538 root_mem_cgroup = memcg; 5539 return &memcg->css; 5540 } 5541 5542 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5543 static_branch_inc(&memcg_sockets_enabled_key); 5544 5545 #if defined(CONFIG_MEMCG_KMEM) 5546 if (!cgroup_memory_nobpf) 5547 static_branch_inc(&memcg_bpf_enabled_key); 5548 #endif 5549 5550 return &memcg->css; 5551 } 5552 5553 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5554 { 5555 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5556 5557 if (memcg_online_kmem(memcg)) 5558 goto remove_id; 5559 5560 /* 5561 * A memcg must be visible for expand_shrinker_info() 5562 * by the time the maps are allocated. So, we allocate maps 5563 * here, when for_each_mem_cgroup() can't skip it. 5564 */ 5565 if (alloc_shrinker_info(memcg)) 5566 goto offline_kmem; 5567 5568 if (unlikely(mem_cgroup_is_root(memcg))) 5569 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5570 FLUSH_TIME); 5571 lru_gen_online_memcg(memcg); 5572 5573 /* Online state pins memcg ID, memcg ID pins CSS */ 5574 refcount_set(&memcg->id.ref, 1); 5575 css_get(css); 5576 5577 /* 5578 * Ensure mem_cgroup_from_id() works once we're fully online. 5579 * 5580 * We could do this earlier and require callers to filter with 5581 * css_tryget_online(). But right now there are no users that 5582 * need earlier access, and the workingset code relies on the 5583 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 5584 * publish it here at the end of onlining. This matches the 5585 * regular ID destruction during offlining. 5586 */ 5587 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5588 5589 return 0; 5590 offline_kmem: 5591 memcg_offline_kmem(memcg); 5592 remove_id: 5593 mem_cgroup_id_remove(memcg); 5594 return -ENOMEM; 5595 } 5596 5597 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5598 { 5599 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5600 struct mem_cgroup_event *event, *tmp; 5601 5602 /* 5603 * Unregister events and notify userspace. 5604 * Notify userspace about cgroup removing only after rmdir of cgroup 5605 * directory to avoid race between userspace and kernelspace. 5606 */ 5607 spin_lock_irq(&memcg->event_list_lock); 5608 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5609 list_del_init(&event->list); 5610 schedule_work(&event->remove); 5611 } 5612 spin_unlock_irq(&memcg->event_list_lock); 5613 5614 page_counter_set_min(&memcg->memory, 0); 5615 page_counter_set_low(&memcg->memory, 0); 5616 5617 memcg_offline_kmem(memcg); 5618 reparent_shrinker_deferred(memcg); 5619 wb_memcg_offline(memcg); 5620 lru_gen_offline_memcg(memcg); 5621 5622 drain_all_stock(memcg); 5623 5624 mem_cgroup_id_put(memcg); 5625 } 5626 5627 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5628 { 5629 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5630 5631 invalidate_reclaim_iterators(memcg); 5632 lru_gen_release_memcg(memcg); 5633 } 5634 5635 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5636 { 5637 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5638 int __maybe_unused i; 5639 5640 #ifdef CONFIG_CGROUP_WRITEBACK 5641 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5642 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5643 #endif 5644 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5645 static_branch_dec(&memcg_sockets_enabled_key); 5646 5647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5648 static_branch_dec(&memcg_sockets_enabled_key); 5649 5650 #if defined(CONFIG_MEMCG_KMEM) 5651 if (!cgroup_memory_nobpf) 5652 static_branch_dec(&memcg_bpf_enabled_key); 5653 #endif 5654 5655 vmpressure_cleanup(&memcg->vmpressure); 5656 cancel_work_sync(&memcg->high_work); 5657 mem_cgroup_remove_from_trees(memcg); 5658 free_shrinker_info(memcg); 5659 mem_cgroup_free(memcg); 5660 } 5661 5662 /** 5663 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5664 * @css: the target css 5665 * 5666 * Reset the states of the mem_cgroup associated with @css. This is 5667 * invoked when the userland requests disabling on the default hierarchy 5668 * but the memcg is pinned through dependency. The memcg should stop 5669 * applying policies and should revert to the vanilla state as it may be 5670 * made visible again. 5671 * 5672 * The current implementation only resets the essential configurations. 5673 * This needs to be expanded to cover all the visible parts. 5674 */ 5675 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5676 { 5677 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5678 5679 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5680 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5681 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5682 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5683 page_counter_set_min(&memcg->memory, 0); 5684 page_counter_set_low(&memcg->memory, 0); 5685 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5686 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5687 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5688 memcg_wb_domain_size_changed(memcg); 5689 } 5690 5691 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5692 { 5693 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5694 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5695 struct memcg_vmstats_percpu *statc; 5696 long delta, delta_cpu, v; 5697 int i, nid; 5698 5699 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5700 5701 for (i = 0; i < MEMCG_NR_STAT; i++) { 5702 /* 5703 * Collect the aggregated propagation counts of groups 5704 * below us. We're in a per-cpu loop here and this is 5705 * a global counter, so the first cycle will get them. 5706 */ 5707 delta = memcg->vmstats->state_pending[i]; 5708 if (delta) 5709 memcg->vmstats->state_pending[i] = 0; 5710 5711 /* Add CPU changes on this level since the last flush */ 5712 delta_cpu = 0; 5713 v = READ_ONCE(statc->state[i]); 5714 if (v != statc->state_prev[i]) { 5715 delta_cpu = v - statc->state_prev[i]; 5716 delta += delta_cpu; 5717 statc->state_prev[i] = v; 5718 } 5719 5720 /* Aggregate counts on this level and propagate upwards */ 5721 if (delta_cpu) 5722 memcg->vmstats->state_local[i] += delta_cpu; 5723 5724 if (delta) { 5725 memcg->vmstats->state[i] += delta; 5726 if (parent) 5727 parent->vmstats->state_pending[i] += delta; 5728 } 5729 } 5730 5731 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5732 delta = memcg->vmstats->events_pending[i]; 5733 if (delta) 5734 memcg->vmstats->events_pending[i] = 0; 5735 5736 delta_cpu = 0; 5737 v = READ_ONCE(statc->events[i]); 5738 if (v != statc->events_prev[i]) { 5739 delta_cpu = v - statc->events_prev[i]; 5740 delta += delta_cpu; 5741 statc->events_prev[i] = v; 5742 } 5743 5744 if (delta_cpu) 5745 memcg->vmstats->events_local[i] += delta_cpu; 5746 5747 if (delta) { 5748 memcg->vmstats->events[i] += delta; 5749 if (parent) 5750 parent->vmstats->events_pending[i] += delta; 5751 } 5752 } 5753 5754 for_each_node_state(nid, N_MEMORY) { 5755 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5756 struct mem_cgroup_per_node *ppn = NULL; 5757 struct lruvec_stats_percpu *lstatc; 5758 5759 if (parent) 5760 ppn = parent->nodeinfo[nid]; 5761 5762 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5763 5764 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5765 delta = pn->lruvec_stats.state_pending[i]; 5766 if (delta) 5767 pn->lruvec_stats.state_pending[i] = 0; 5768 5769 delta_cpu = 0; 5770 v = READ_ONCE(lstatc->state[i]); 5771 if (v != lstatc->state_prev[i]) { 5772 delta_cpu = v - lstatc->state_prev[i]; 5773 delta += delta_cpu; 5774 lstatc->state_prev[i] = v; 5775 } 5776 5777 if (delta_cpu) 5778 pn->lruvec_stats.state_local[i] += delta_cpu; 5779 5780 if (delta) { 5781 pn->lruvec_stats.state[i] += delta; 5782 if (ppn) 5783 ppn->lruvec_stats.state_pending[i] += delta; 5784 } 5785 } 5786 } 5787 } 5788 5789 #ifdef CONFIG_MMU 5790 /* Handlers for move charge at task migration. */ 5791 static int mem_cgroup_do_precharge(unsigned long count) 5792 { 5793 int ret; 5794 5795 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5796 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5797 if (!ret) { 5798 mc.precharge += count; 5799 return ret; 5800 } 5801 5802 /* Try charges one by one with reclaim, but do not retry */ 5803 while (count--) { 5804 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5805 if (ret) 5806 return ret; 5807 mc.precharge++; 5808 cond_resched(); 5809 } 5810 return 0; 5811 } 5812 5813 union mc_target { 5814 struct page *page; 5815 swp_entry_t ent; 5816 }; 5817 5818 enum mc_target_type { 5819 MC_TARGET_NONE = 0, 5820 MC_TARGET_PAGE, 5821 MC_TARGET_SWAP, 5822 MC_TARGET_DEVICE, 5823 }; 5824 5825 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5826 unsigned long addr, pte_t ptent) 5827 { 5828 struct page *page = vm_normal_page(vma, addr, ptent); 5829 5830 if (!page) 5831 return NULL; 5832 if (PageAnon(page)) { 5833 if (!(mc.flags & MOVE_ANON)) 5834 return NULL; 5835 } else { 5836 if (!(mc.flags & MOVE_FILE)) 5837 return NULL; 5838 } 5839 get_page(page); 5840 5841 return page; 5842 } 5843 5844 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5845 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5846 pte_t ptent, swp_entry_t *entry) 5847 { 5848 struct page *page = NULL; 5849 swp_entry_t ent = pte_to_swp_entry(ptent); 5850 5851 if (!(mc.flags & MOVE_ANON)) 5852 return NULL; 5853 5854 /* 5855 * Handle device private pages that are not accessible by the CPU, but 5856 * stored as special swap entries in the page table. 5857 */ 5858 if (is_device_private_entry(ent)) { 5859 page = pfn_swap_entry_to_page(ent); 5860 if (!get_page_unless_zero(page)) 5861 return NULL; 5862 return page; 5863 } 5864 5865 if (non_swap_entry(ent)) 5866 return NULL; 5867 5868 /* 5869 * Because swap_cache_get_folio() updates some statistics counter, 5870 * we call find_get_page() with swapper_space directly. 5871 */ 5872 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5873 entry->val = ent.val; 5874 5875 return page; 5876 } 5877 #else 5878 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5879 pte_t ptent, swp_entry_t *entry) 5880 { 5881 return NULL; 5882 } 5883 #endif 5884 5885 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5886 unsigned long addr, pte_t ptent) 5887 { 5888 unsigned long index; 5889 struct folio *folio; 5890 5891 if (!vma->vm_file) /* anonymous vma */ 5892 return NULL; 5893 if (!(mc.flags & MOVE_FILE)) 5894 return NULL; 5895 5896 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5897 /* shmem/tmpfs may report page out on swap: account for that too. */ 5898 index = linear_page_index(vma, addr); 5899 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5900 if (IS_ERR(folio)) 5901 return NULL; 5902 return folio_file_page(folio, index); 5903 } 5904 5905 /** 5906 * mem_cgroup_move_account - move account of the page 5907 * @page: the page 5908 * @compound: charge the page as compound or small page 5909 * @from: mem_cgroup which the page is moved from. 5910 * @to: mem_cgroup which the page is moved to. @from != @to. 5911 * 5912 * The page must be locked and not on the LRU. 5913 * 5914 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5915 * from old cgroup. 5916 */ 5917 static int mem_cgroup_move_account(struct page *page, 5918 bool compound, 5919 struct mem_cgroup *from, 5920 struct mem_cgroup *to) 5921 { 5922 struct folio *folio = page_folio(page); 5923 struct lruvec *from_vec, *to_vec; 5924 struct pglist_data *pgdat; 5925 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5926 int nid, ret; 5927 5928 VM_BUG_ON(from == to); 5929 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5930 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5931 VM_BUG_ON(compound && !folio_test_large(folio)); 5932 5933 ret = -EINVAL; 5934 if (folio_memcg(folio) != from) 5935 goto out; 5936 5937 pgdat = folio_pgdat(folio); 5938 from_vec = mem_cgroup_lruvec(from, pgdat); 5939 to_vec = mem_cgroup_lruvec(to, pgdat); 5940 5941 folio_memcg_lock(folio); 5942 5943 if (folio_test_anon(folio)) { 5944 if (folio_mapped(folio)) { 5945 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5946 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5947 if (folio_test_pmd_mappable(folio)) { 5948 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5949 -nr_pages); 5950 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5951 nr_pages); 5952 } 5953 } 5954 } else { 5955 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5956 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5957 5958 if (folio_test_swapbacked(folio)) { 5959 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5960 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5961 } 5962 5963 if (folio_mapped(folio)) { 5964 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5965 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5966 } 5967 5968 if (folio_test_dirty(folio)) { 5969 struct address_space *mapping = folio_mapping(folio); 5970 5971 if (mapping_can_writeback(mapping)) { 5972 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5973 -nr_pages); 5974 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5975 nr_pages); 5976 } 5977 } 5978 } 5979 5980 #ifdef CONFIG_SWAP 5981 if (folio_test_swapcache(folio)) { 5982 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5983 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5984 } 5985 #endif 5986 if (folio_test_writeback(folio)) { 5987 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5988 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5989 } 5990 5991 /* 5992 * All state has been migrated, let's switch to the new memcg. 5993 * 5994 * It is safe to change page's memcg here because the page 5995 * is referenced, charged, isolated, and locked: we can't race 5996 * with (un)charging, migration, LRU putback, or anything else 5997 * that would rely on a stable page's memory cgroup. 5998 * 5999 * Note that folio_memcg_lock is a memcg lock, not a page lock, 6000 * to save space. As soon as we switch page's memory cgroup to a 6001 * new memcg that isn't locked, the above state can change 6002 * concurrently again. Make sure we're truly done with it. 6003 */ 6004 smp_mb(); 6005 6006 css_get(&to->css); 6007 css_put(&from->css); 6008 6009 folio->memcg_data = (unsigned long)to; 6010 6011 __folio_memcg_unlock(from); 6012 6013 ret = 0; 6014 nid = folio_nid(folio); 6015 6016 local_irq_disable(); 6017 mem_cgroup_charge_statistics(to, nr_pages); 6018 memcg_check_events(to, nid); 6019 mem_cgroup_charge_statistics(from, -nr_pages); 6020 memcg_check_events(from, nid); 6021 local_irq_enable(); 6022 out: 6023 return ret; 6024 } 6025 6026 /** 6027 * get_mctgt_type - get target type of moving charge 6028 * @vma: the vma the pte to be checked belongs 6029 * @addr: the address corresponding to the pte to be checked 6030 * @ptent: the pte to be checked 6031 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6032 * 6033 * Context: Called with pte lock held. 6034 * Return: 6035 * * MC_TARGET_NONE - If the pte is not a target for move charge. 6036 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 6037 * move charge. If @target is not NULL, the page is stored in target->page 6038 * with extra refcnt taken (Caller should release it). 6039 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 6040 * target for charge migration. If @target is not NULL, the entry is 6041 * stored in target->ent. 6042 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 6043 * thus not on the lru. For now such page is charged like a regular page 6044 * would be as it is just special memory taking the place of a regular page. 6045 * See Documentations/vm/hmm.txt and include/linux/hmm.h 6046 */ 6047 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6048 unsigned long addr, pte_t ptent, union mc_target *target) 6049 { 6050 struct page *page = NULL; 6051 enum mc_target_type ret = MC_TARGET_NONE; 6052 swp_entry_t ent = { .val = 0 }; 6053 6054 if (pte_present(ptent)) 6055 page = mc_handle_present_pte(vma, addr, ptent); 6056 else if (pte_none_mostly(ptent)) 6057 /* 6058 * PTE markers should be treated as a none pte here, separated 6059 * from other swap handling below. 6060 */ 6061 page = mc_handle_file_pte(vma, addr, ptent); 6062 else if (is_swap_pte(ptent)) 6063 page = mc_handle_swap_pte(vma, ptent, &ent); 6064 6065 if (target && page) { 6066 if (!trylock_page(page)) { 6067 put_page(page); 6068 return ret; 6069 } 6070 /* 6071 * page_mapped() must be stable during the move. This 6072 * pte is locked, so if it's present, the page cannot 6073 * become unmapped. If it isn't, we have only partial 6074 * control over the mapped state: the page lock will 6075 * prevent new faults against pagecache and swapcache, 6076 * so an unmapped page cannot become mapped. However, 6077 * if the page is already mapped elsewhere, it can 6078 * unmap, and there is nothing we can do about it. 6079 * Alas, skip moving the page in this case. 6080 */ 6081 if (!pte_present(ptent) && page_mapped(page)) { 6082 unlock_page(page); 6083 put_page(page); 6084 return ret; 6085 } 6086 } 6087 6088 if (!page && !ent.val) 6089 return ret; 6090 if (page) { 6091 /* 6092 * Do only loose check w/o serialization. 6093 * mem_cgroup_move_account() checks the page is valid or 6094 * not under LRU exclusion. 6095 */ 6096 if (page_memcg(page) == mc.from) { 6097 ret = MC_TARGET_PAGE; 6098 if (is_device_private_page(page) || 6099 is_device_coherent_page(page)) 6100 ret = MC_TARGET_DEVICE; 6101 if (target) 6102 target->page = page; 6103 } 6104 if (!ret || !target) { 6105 if (target) 6106 unlock_page(page); 6107 put_page(page); 6108 } 6109 } 6110 /* 6111 * There is a swap entry and a page doesn't exist or isn't charged. 6112 * But we cannot move a tail-page in a THP. 6113 */ 6114 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 6115 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6116 ret = MC_TARGET_SWAP; 6117 if (target) 6118 target->ent = ent; 6119 } 6120 return ret; 6121 } 6122 6123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6124 /* 6125 * We don't consider PMD mapped swapping or file mapped pages because THP does 6126 * not support them for now. 6127 * Caller should make sure that pmd_trans_huge(pmd) is true. 6128 */ 6129 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6130 unsigned long addr, pmd_t pmd, union mc_target *target) 6131 { 6132 struct page *page = NULL; 6133 enum mc_target_type ret = MC_TARGET_NONE; 6134 6135 if (unlikely(is_swap_pmd(pmd))) { 6136 VM_BUG_ON(thp_migration_supported() && 6137 !is_pmd_migration_entry(pmd)); 6138 return ret; 6139 } 6140 page = pmd_page(pmd); 6141 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6142 if (!(mc.flags & MOVE_ANON)) 6143 return ret; 6144 if (page_memcg(page) == mc.from) { 6145 ret = MC_TARGET_PAGE; 6146 if (target) { 6147 get_page(page); 6148 if (!trylock_page(page)) { 6149 put_page(page); 6150 return MC_TARGET_NONE; 6151 } 6152 target->page = page; 6153 } 6154 } 6155 return ret; 6156 } 6157 #else 6158 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6159 unsigned long addr, pmd_t pmd, union mc_target *target) 6160 { 6161 return MC_TARGET_NONE; 6162 } 6163 #endif 6164 6165 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6166 unsigned long addr, unsigned long end, 6167 struct mm_walk *walk) 6168 { 6169 struct vm_area_struct *vma = walk->vma; 6170 pte_t *pte; 6171 spinlock_t *ptl; 6172 6173 ptl = pmd_trans_huge_lock(pmd, vma); 6174 if (ptl) { 6175 /* 6176 * Note their can not be MC_TARGET_DEVICE for now as we do not 6177 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6178 * this might change. 6179 */ 6180 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6181 mc.precharge += HPAGE_PMD_NR; 6182 spin_unlock(ptl); 6183 return 0; 6184 } 6185 6186 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6187 if (!pte) 6188 return 0; 6189 for (; addr != end; pte++, addr += PAGE_SIZE) 6190 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6191 mc.precharge++; /* increment precharge temporarily */ 6192 pte_unmap_unlock(pte - 1, ptl); 6193 cond_resched(); 6194 6195 return 0; 6196 } 6197 6198 static const struct mm_walk_ops precharge_walk_ops = { 6199 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6200 .walk_lock = PGWALK_RDLOCK, 6201 }; 6202 6203 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6204 { 6205 unsigned long precharge; 6206 6207 mmap_read_lock(mm); 6208 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6209 mmap_read_unlock(mm); 6210 6211 precharge = mc.precharge; 6212 mc.precharge = 0; 6213 6214 return precharge; 6215 } 6216 6217 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6218 { 6219 unsigned long precharge = mem_cgroup_count_precharge(mm); 6220 6221 VM_BUG_ON(mc.moving_task); 6222 mc.moving_task = current; 6223 return mem_cgroup_do_precharge(precharge); 6224 } 6225 6226 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6227 static void __mem_cgroup_clear_mc(void) 6228 { 6229 struct mem_cgroup *from = mc.from; 6230 struct mem_cgroup *to = mc.to; 6231 6232 /* we must uncharge all the leftover precharges from mc.to */ 6233 if (mc.precharge) { 6234 mem_cgroup_cancel_charge(mc.to, mc.precharge); 6235 mc.precharge = 0; 6236 } 6237 /* 6238 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6239 * we must uncharge here. 6240 */ 6241 if (mc.moved_charge) { 6242 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6243 mc.moved_charge = 0; 6244 } 6245 /* we must fixup refcnts and charges */ 6246 if (mc.moved_swap) { 6247 /* uncharge swap account from the old cgroup */ 6248 if (!mem_cgroup_is_root(mc.from)) 6249 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6250 6251 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6252 6253 /* 6254 * we charged both to->memory and to->memsw, so we 6255 * should uncharge to->memory. 6256 */ 6257 if (!mem_cgroup_is_root(mc.to)) 6258 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6259 6260 mc.moved_swap = 0; 6261 } 6262 memcg_oom_recover(from); 6263 memcg_oom_recover(to); 6264 wake_up_all(&mc.waitq); 6265 } 6266 6267 static void mem_cgroup_clear_mc(void) 6268 { 6269 struct mm_struct *mm = mc.mm; 6270 6271 /* 6272 * we must clear moving_task before waking up waiters at the end of 6273 * task migration. 6274 */ 6275 mc.moving_task = NULL; 6276 __mem_cgroup_clear_mc(); 6277 spin_lock(&mc.lock); 6278 mc.from = NULL; 6279 mc.to = NULL; 6280 mc.mm = NULL; 6281 spin_unlock(&mc.lock); 6282 6283 mmput(mm); 6284 } 6285 6286 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6287 { 6288 struct cgroup_subsys_state *css; 6289 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6290 struct mem_cgroup *from; 6291 struct task_struct *leader, *p; 6292 struct mm_struct *mm; 6293 unsigned long move_flags; 6294 int ret = 0; 6295 6296 /* charge immigration isn't supported on the default hierarchy */ 6297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6298 return 0; 6299 6300 /* 6301 * Multi-process migrations only happen on the default hierarchy 6302 * where charge immigration is not used. Perform charge 6303 * immigration if @tset contains a leader and whine if there are 6304 * multiple. 6305 */ 6306 p = NULL; 6307 cgroup_taskset_for_each_leader(leader, css, tset) { 6308 WARN_ON_ONCE(p); 6309 p = leader; 6310 memcg = mem_cgroup_from_css(css); 6311 } 6312 if (!p) 6313 return 0; 6314 6315 /* 6316 * We are now committed to this value whatever it is. Changes in this 6317 * tunable will only affect upcoming migrations, not the current one. 6318 * So we need to save it, and keep it going. 6319 */ 6320 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6321 if (!move_flags) 6322 return 0; 6323 6324 from = mem_cgroup_from_task(p); 6325 6326 VM_BUG_ON(from == memcg); 6327 6328 mm = get_task_mm(p); 6329 if (!mm) 6330 return 0; 6331 /* We move charges only when we move a owner of the mm */ 6332 if (mm->owner == p) { 6333 VM_BUG_ON(mc.from); 6334 VM_BUG_ON(mc.to); 6335 VM_BUG_ON(mc.precharge); 6336 VM_BUG_ON(mc.moved_charge); 6337 VM_BUG_ON(mc.moved_swap); 6338 6339 spin_lock(&mc.lock); 6340 mc.mm = mm; 6341 mc.from = from; 6342 mc.to = memcg; 6343 mc.flags = move_flags; 6344 spin_unlock(&mc.lock); 6345 /* We set mc.moving_task later */ 6346 6347 ret = mem_cgroup_precharge_mc(mm); 6348 if (ret) 6349 mem_cgroup_clear_mc(); 6350 } else { 6351 mmput(mm); 6352 } 6353 return ret; 6354 } 6355 6356 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6357 { 6358 if (mc.to) 6359 mem_cgroup_clear_mc(); 6360 } 6361 6362 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6363 unsigned long addr, unsigned long end, 6364 struct mm_walk *walk) 6365 { 6366 int ret = 0; 6367 struct vm_area_struct *vma = walk->vma; 6368 pte_t *pte; 6369 spinlock_t *ptl; 6370 enum mc_target_type target_type; 6371 union mc_target target; 6372 struct page *page; 6373 6374 ptl = pmd_trans_huge_lock(pmd, vma); 6375 if (ptl) { 6376 if (mc.precharge < HPAGE_PMD_NR) { 6377 spin_unlock(ptl); 6378 return 0; 6379 } 6380 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6381 if (target_type == MC_TARGET_PAGE) { 6382 page = target.page; 6383 if (isolate_lru_page(page)) { 6384 if (!mem_cgroup_move_account(page, true, 6385 mc.from, mc.to)) { 6386 mc.precharge -= HPAGE_PMD_NR; 6387 mc.moved_charge += HPAGE_PMD_NR; 6388 } 6389 putback_lru_page(page); 6390 } 6391 unlock_page(page); 6392 put_page(page); 6393 } else if (target_type == MC_TARGET_DEVICE) { 6394 page = target.page; 6395 if (!mem_cgroup_move_account(page, true, 6396 mc.from, mc.to)) { 6397 mc.precharge -= HPAGE_PMD_NR; 6398 mc.moved_charge += HPAGE_PMD_NR; 6399 } 6400 unlock_page(page); 6401 put_page(page); 6402 } 6403 spin_unlock(ptl); 6404 return 0; 6405 } 6406 6407 retry: 6408 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6409 if (!pte) 6410 return 0; 6411 for (; addr != end; addr += PAGE_SIZE) { 6412 pte_t ptent = ptep_get(pte++); 6413 bool device = false; 6414 swp_entry_t ent; 6415 6416 if (!mc.precharge) 6417 break; 6418 6419 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6420 case MC_TARGET_DEVICE: 6421 device = true; 6422 fallthrough; 6423 case MC_TARGET_PAGE: 6424 page = target.page; 6425 /* 6426 * We can have a part of the split pmd here. Moving it 6427 * can be done but it would be too convoluted so simply 6428 * ignore such a partial THP and keep it in original 6429 * memcg. There should be somebody mapping the head. 6430 */ 6431 if (PageTransCompound(page)) 6432 goto put; 6433 if (!device && !isolate_lru_page(page)) 6434 goto put; 6435 if (!mem_cgroup_move_account(page, false, 6436 mc.from, mc.to)) { 6437 mc.precharge--; 6438 /* we uncharge from mc.from later. */ 6439 mc.moved_charge++; 6440 } 6441 if (!device) 6442 putback_lru_page(page); 6443 put: /* get_mctgt_type() gets & locks the page */ 6444 unlock_page(page); 6445 put_page(page); 6446 break; 6447 case MC_TARGET_SWAP: 6448 ent = target.ent; 6449 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6450 mc.precharge--; 6451 mem_cgroup_id_get_many(mc.to, 1); 6452 /* we fixup other refcnts and charges later. */ 6453 mc.moved_swap++; 6454 } 6455 break; 6456 default: 6457 break; 6458 } 6459 } 6460 pte_unmap_unlock(pte - 1, ptl); 6461 cond_resched(); 6462 6463 if (addr != end) { 6464 /* 6465 * We have consumed all precharges we got in can_attach(). 6466 * We try charge one by one, but don't do any additional 6467 * charges to mc.to if we have failed in charge once in attach() 6468 * phase. 6469 */ 6470 ret = mem_cgroup_do_precharge(1); 6471 if (!ret) 6472 goto retry; 6473 } 6474 6475 return ret; 6476 } 6477 6478 static const struct mm_walk_ops charge_walk_ops = { 6479 .pmd_entry = mem_cgroup_move_charge_pte_range, 6480 .walk_lock = PGWALK_RDLOCK, 6481 }; 6482 6483 static void mem_cgroup_move_charge(void) 6484 { 6485 lru_add_drain_all(); 6486 /* 6487 * Signal folio_memcg_lock() to take the memcg's move_lock 6488 * while we're moving its pages to another memcg. Then wait 6489 * for already started RCU-only updates to finish. 6490 */ 6491 atomic_inc(&mc.from->moving_account); 6492 synchronize_rcu(); 6493 retry: 6494 if (unlikely(!mmap_read_trylock(mc.mm))) { 6495 /* 6496 * Someone who are holding the mmap_lock might be waiting in 6497 * waitq. So we cancel all extra charges, wake up all waiters, 6498 * and retry. Because we cancel precharges, we might not be able 6499 * to move enough charges, but moving charge is a best-effort 6500 * feature anyway, so it wouldn't be a big problem. 6501 */ 6502 __mem_cgroup_clear_mc(); 6503 cond_resched(); 6504 goto retry; 6505 } 6506 /* 6507 * When we have consumed all precharges and failed in doing 6508 * additional charge, the page walk just aborts. 6509 */ 6510 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6511 mmap_read_unlock(mc.mm); 6512 atomic_dec(&mc.from->moving_account); 6513 } 6514 6515 static void mem_cgroup_move_task(void) 6516 { 6517 if (mc.to) { 6518 mem_cgroup_move_charge(); 6519 mem_cgroup_clear_mc(); 6520 } 6521 } 6522 6523 #else /* !CONFIG_MMU */ 6524 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6525 { 6526 return 0; 6527 } 6528 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6529 { 6530 } 6531 static void mem_cgroup_move_task(void) 6532 { 6533 } 6534 #endif 6535 6536 #ifdef CONFIG_MEMCG_KMEM 6537 static void mem_cgroup_fork(struct task_struct *task) 6538 { 6539 /* 6540 * Set the update flag to cause task->objcg to be initialized lazily 6541 * on the first allocation. It can be done without any synchronization 6542 * because it's always performed on the current task, so does 6543 * current_objcg_update(). 6544 */ 6545 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 6546 } 6547 6548 static void mem_cgroup_exit(struct task_struct *task) 6549 { 6550 struct obj_cgroup *objcg = task->objcg; 6551 6552 objcg = (struct obj_cgroup *) 6553 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 6554 if (objcg) 6555 obj_cgroup_put(objcg); 6556 6557 /* 6558 * Some kernel allocations can happen after this point, 6559 * but let's ignore them. It can be done without any synchronization 6560 * because it's always performed on the current task, so does 6561 * current_objcg_update(). 6562 */ 6563 task->objcg = NULL; 6564 } 6565 #endif 6566 6567 #ifdef CONFIG_LRU_GEN 6568 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 6569 { 6570 struct task_struct *task; 6571 struct cgroup_subsys_state *css; 6572 6573 /* find the first leader if there is any */ 6574 cgroup_taskset_for_each_leader(task, css, tset) 6575 break; 6576 6577 if (!task) 6578 return; 6579 6580 task_lock(task); 6581 if (task->mm && READ_ONCE(task->mm->owner) == task) 6582 lru_gen_migrate_mm(task->mm); 6583 task_unlock(task); 6584 } 6585 #else 6586 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 6587 #endif /* CONFIG_LRU_GEN */ 6588 6589 #ifdef CONFIG_MEMCG_KMEM 6590 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 6591 { 6592 struct task_struct *task; 6593 struct cgroup_subsys_state *css; 6594 6595 cgroup_taskset_for_each(task, css, tset) { 6596 /* atomically set the update bit */ 6597 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 6598 } 6599 } 6600 #else 6601 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} 6602 #endif /* CONFIG_MEMCG_KMEM */ 6603 6604 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 6605 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6606 { 6607 mem_cgroup_lru_gen_attach(tset); 6608 mem_cgroup_kmem_attach(tset); 6609 } 6610 #endif 6611 6612 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6613 { 6614 if (value == PAGE_COUNTER_MAX) 6615 seq_puts(m, "max\n"); 6616 else 6617 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6618 6619 return 0; 6620 } 6621 6622 static u64 memory_current_read(struct cgroup_subsys_state *css, 6623 struct cftype *cft) 6624 { 6625 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6626 6627 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6628 } 6629 6630 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6631 struct cftype *cft) 6632 { 6633 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6634 6635 return (u64)memcg->memory.watermark * PAGE_SIZE; 6636 } 6637 6638 static int memory_min_show(struct seq_file *m, void *v) 6639 { 6640 return seq_puts_memcg_tunable(m, 6641 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6642 } 6643 6644 static ssize_t memory_min_write(struct kernfs_open_file *of, 6645 char *buf, size_t nbytes, loff_t off) 6646 { 6647 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6648 unsigned long min; 6649 int err; 6650 6651 buf = strstrip(buf); 6652 err = page_counter_memparse(buf, "max", &min); 6653 if (err) 6654 return err; 6655 6656 page_counter_set_min(&memcg->memory, min); 6657 6658 return nbytes; 6659 } 6660 6661 static int memory_low_show(struct seq_file *m, void *v) 6662 { 6663 return seq_puts_memcg_tunable(m, 6664 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6665 } 6666 6667 static ssize_t memory_low_write(struct kernfs_open_file *of, 6668 char *buf, size_t nbytes, loff_t off) 6669 { 6670 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6671 unsigned long low; 6672 int err; 6673 6674 buf = strstrip(buf); 6675 err = page_counter_memparse(buf, "max", &low); 6676 if (err) 6677 return err; 6678 6679 page_counter_set_low(&memcg->memory, low); 6680 6681 return nbytes; 6682 } 6683 6684 static int memory_high_show(struct seq_file *m, void *v) 6685 { 6686 return seq_puts_memcg_tunable(m, 6687 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6688 } 6689 6690 static ssize_t memory_high_write(struct kernfs_open_file *of, 6691 char *buf, size_t nbytes, loff_t off) 6692 { 6693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6694 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6695 bool drained = false; 6696 unsigned long high; 6697 int err; 6698 6699 buf = strstrip(buf); 6700 err = page_counter_memparse(buf, "max", &high); 6701 if (err) 6702 return err; 6703 6704 page_counter_set_high(&memcg->memory, high); 6705 6706 for (;;) { 6707 unsigned long nr_pages = page_counter_read(&memcg->memory); 6708 unsigned long reclaimed; 6709 6710 if (nr_pages <= high) 6711 break; 6712 6713 if (signal_pending(current)) 6714 break; 6715 6716 if (!drained) { 6717 drain_all_stock(memcg); 6718 drained = true; 6719 continue; 6720 } 6721 6722 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6723 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6724 6725 if (!reclaimed && !nr_retries--) 6726 break; 6727 } 6728 6729 memcg_wb_domain_size_changed(memcg); 6730 return nbytes; 6731 } 6732 6733 static int memory_max_show(struct seq_file *m, void *v) 6734 { 6735 return seq_puts_memcg_tunable(m, 6736 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6737 } 6738 6739 static ssize_t memory_max_write(struct kernfs_open_file *of, 6740 char *buf, size_t nbytes, loff_t off) 6741 { 6742 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6743 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6744 bool drained = false; 6745 unsigned long max; 6746 int err; 6747 6748 buf = strstrip(buf); 6749 err = page_counter_memparse(buf, "max", &max); 6750 if (err) 6751 return err; 6752 6753 xchg(&memcg->memory.max, max); 6754 6755 for (;;) { 6756 unsigned long nr_pages = page_counter_read(&memcg->memory); 6757 6758 if (nr_pages <= max) 6759 break; 6760 6761 if (signal_pending(current)) 6762 break; 6763 6764 if (!drained) { 6765 drain_all_stock(memcg); 6766 drained = true; 6767 continue; 6768 } 6769 6770 if (nr_reclaims) { 6771 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6772 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6773 nr_reclaims--; 6774 continue; 6775 } 6776 6777 memcg_memory_event(memcg, MEMCG_OOM); 6778 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6779 break; 6780 } 6781 6782 memcg_wb_domain_size_changed(memcg); 6783 return nbytes; 6784 } 6785 6786 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6787 { 6788 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6789 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6790 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6791 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6792 seq_printf(m, "oom_kill %lu\n", 6793 atomic_long_read(&events[MEMCG_OOM_KILL])); 6794 seq_printf(m, "oom_group_kill %lu\n", 6795 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6796 } 6797 6798 static int memory_events_show(struct seq_file *m, void *v) 6799 { 6800 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6801 6802 __memory_events_show(m, memcg->memory_events); 6803 return 0; 6804 } 6805 6806 static int memory_events_local_show(struct seq_file *m, void *v) 6807 { 6808 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6809 6810 __memory_events_show(m, memcg->memory_events_local); 6811 return 0; 6812 } 6813 6814 static int memory_stat_show(struct seq_file *m, void *v) 6815 { 6816 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6817 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6818 struct seq_buf s; 6819 6820 if (!buf) 6821 return -ENOMEM; 6822 seq_buf_init(&s, buf, PAGE_SIZE); 6823 memory_stat_format(memcg, &s); 6824 seq_puts(m, buf); 6825 kfree(buf); 6826 return 0; 6827 } 6828 6829 #ifdef CONFIG_NUMA 6830 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6831 int item) 6832 { 6833 return lruvec_page_state(lruvec, item) * 6834 memcg_page_state_output_unit(item); 6835 } 6836 6837 static int memory_numa_stat_show(struct seq_file *m, void *v) 6838 { 6839 int i; 6840 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6841 6842 mem_cgroup_flush_stats(); 6843 6844 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6845 int nid; 6846 6847 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6848 continue; 6849 6850 seq_printf(m, "%s", memory_stats[i].name); 6851 for_each_node_state(nid, N_MEMORY) { 6852 u64 size; 6853 struct lruvec *lruvec; 6854 6855 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6856 size = lruvec_page_state_output(lruvec, 6857 memory_stats[i].idx); 6858 seq_printf(m, " N%d=%llu", nid, size); 6859 } 6860 seq_putc(m, '\n'); 6861 } 6862 6863 return 0; 6864 } 6865 #endif 6866 6867 static int memory_oom_group_show(struct seq_file *m, void *v) 6868 { 6869 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6870 6871 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 6872 6873 return 0; 6874 } 6875 6876 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6877 char *buf, size_t nbytes, loff_t off) 6878 { 6879 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6880 int ret, oom_group; 6881 6882 buf = strstrip(buf); 6883 if (!buf) 6884 return -EINVAL; 6885 6886 ret = kstrtoint(buf, 0, &oom_group); 6887 if (ret) 6888 return ret; 6889 6890 if (oom_group != 0 && oom_group != 1) 6891 return -EINVAL; 6892 6893 WRITE_ONCE(memcg->oom_group, oom_group); 6894 6895 return nbytes; 6896 } 6897 6898 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6899 size_t nbytes, loff_t off) 6900 { 6901 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6902 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6903 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6904 unsigned int reclaim_options; 6905 int err; 6906 6907 buf = strstrip(buf); 6908 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6909 if (err) 6910 return err; 6911 6912 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6913 while (nr_reclaimed < nr_to_reclaim) { 6914 unsigned long reclaimed; 6915 6916 if (signal_pending(current)) 6917 return -EINTR; 6918 6919 /* 6920 * This is the final attempt, drain percpu lru caches in the 6921 * hope of introducing more evictable pages for 6922 * try_to_free_mem_cgroup_pages(). 6923 */ 6924 if (!nr_retries) 6925 lru_add_drain_all(); 6926 6927 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6928 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX), 6929 GFP_KERNEL, reclaim_options); 6930 6931 if (!reclaimed && !nr_retries--) 6932 return -EAGAIN; 6933 6934 nr_reclaimed += reclaimed; 6935 } 6936 6937 return nbytes; 6938 } 6939 6940 static struct cftype memory_files[] = { 6941 { 6942 .name = "current", 6943 .flags = CFTYPE_NOT_ON_ROOT, 6944 .read_u64 = memory_current_read, 6945 }, 6946 { 6947 .name = "peak", 6948 .flags = CFTYPE_NOT_ON_ROOT, 6949 .read_u64 = memory_peak_read, 6950 }, 6951 { 6952 .name = "min", 6953 .flags = CFTYPE_NOT_ON_ROOT, 6954 .seq_show = memory_min_show, 6955 .write = memory_min_write, 6956 }, 6957 { 6958 .name = "low", 6959 .flags = CFTYPE_NOT_ON_ROOT, 6960 .seq_show = memory_low_show, 6961 .write = memory_low_write, 6962 }, 6963 { 6964 .name = "high", 6965 .flags = CFTYPE_NOT_ON_ROOT, 6966 .seq_show = memory_high_show, 6967 .write = memory_high_write, 6968 }, 6969 { 6970 .name = "max", 6971 .flags = CFTYPE_NOT_ON_ROOT, 6972 .seq_show = memory_max_show, 6973 .write = memory_max_write, 6974 }, 6975 { 6976 .name = "events", 6977 .flags = CFTYPE_NOT_ON_ROOT, 6978 .file_offset = offsetof(struct mem_cgroup, events_file), 6979 .seq_show = memory_events_show, 6980 }, 6981 { 6982 .name = "events.local", 6983 .flags = CFTYPE_NOT_ON_ROOT, 6984 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6985 .seq_show = memory_events_local_show, 6986 }, 6987 { 6988 .name = "stat", 6989 .seq_show = memory_stat_show, 6990 }, 6991 #ifdef CONFIG_NUMA 6992 { 6993 .name = "numa_stat", 6994 .seq_show = memory_numa_stat_show, 6995 }, 6996 #endif 6997 { 6998 .name = "oom.group", 6999 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 7000 .seq_show = memory_oom_group_show, 7001 .write = memory_oom_group_write, 7002 }, 7003 { 7004 .name = "reclaim", 7005 .flags = CFTYPE_NS_DELEGATABLE, 7006 .write = memory_reclaim, 7007 }, 7008 { } /* terminate */ 7009 }; 7010 7011 struct cgroup_subsys memory_cgrp_subsys = { 7012 .css_alloc = mem_cgroup_css_alloc, 7013 .css_online = mem_cgroup_css_online, 7014 .css_offline = mem_cgroup_css_offline, 7015 .css_released = mem_cgroup_css_released, 7016 .css_free = mem_cgroup_css_free, 7017 .css_reset = mem_cgroup_css_reset, 7018 .css_rstat_flush = mem_cgroup_css_rstat_flush, 7019 .can_attach = mem_cgroup_can_attach, 7020 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 7021 .attach = mem_cgroup_attach, 7022 #endif 7023 .cancel_attach = mem_cgroup_cancel_attach, 7024 .post_attach = mem_cgroup_move_task, 7025 #ifdef CONFIG_MEMCG_KMEM 7026 .fork = mem_cgroup_fork, 7027 .exit = mem_cgroup_exit, 7028 #endif 7029 .dfl_cftypes = memory_files, 7030 .legacy_cftypes = mem_cgroup_legacy_files, 7031 .early_init = 0, 7032 }; 7033 7034 /* 7035 * This function calculates an individual cgroup's effective 7036 * protection which is derived from its own memory.min/low, its 7037 * parent's and siblings' settings, as well as the actual memory 7038 * distribution in the tree. 7039 * 7040 * The following rules apply to the effective protection values: 7041 * 7042 * 1. At the first level of reclaim, effective protection is equal to 7043 * the declared protection in memory.min and memory.low. 7044 * 7045 * 2. To enable safe delegation of the protection configuration, at 7046 * subsequent levels the effective protection is capped to the 7047 * parent's effective protection. 7048 * 7049 * 3. To make complex and dynamic subtrees easier to configure, the 7050 * user is allowed to overcommit the declared protection at a given 7051 * level. If that is the case, the parent's effective protection is 7052 * distributed to the children in proportion to how much protection 7053 * they have declared and how much of it they are utilizing. 7054 * 7055 * This makes distribution proportional, but also work-conserving: 7056 * if one cgroup claims much more protection than it uses memory, 7057 * the unused remainder is available to its siblings. 7058 * 7059 * 4. Conversely, when the declared protection is undercommitted at a 7060 * given level, the distribution of the larger parental protection 7061 * budget is NOT proportional. A cgroup's protection from a sibling 7062 * is capped to its own memory.min/low setting. 7063 * 7064 * 5. However, to allow protecting recursive subtrees from each other 7065 * without having to declare each individual cgroup's fixed share 7066 * of the ancestor's claim to protection, any unutilized - 7067 * "floating" - protection from up the tree is distributed in 7068 * proportion to each cgroup's *usage*. This makes the protection 7069 * neutral wrt sibling cgroups and lets them compete freely over 7070 * the shared parental protection budget, but it protects the 7071 * subtree as a whole from neighboring subtrees. 7072 * 7073 * Note that 4. and 5. are not in conflict: 4. is about protecting 7074 * against immediate siblings whereas 5. is about protecting against 7075 * neighboring subtrees. 7076 */ 7077 static unsigned long effective_protection(unsigned long usage, 7078 unsigned long parent_usage, 7079 unsigned long setting, 7080 unsigned long parent_effective, 7081 unsigned long siblings_protected) 7082 { 7083 unsigned long protected; 7084 unsigned long ep; 7085 7086 protected = min(usage, setting); 7087 /* 7088 * If all cgroups at this level combined claim and use more 7089 * protection than what the parent affords them, distribute 7090 * shares in proportion to utilization. 7091 * 7092 * We are using actual utilization rather than the statically 7093 * claimed protection in order to be work-conserving: claimed 7094 * but unused protection is available to siblings that would 7095 * otherwise get a smaller chunk than what they claimed. 7096 */ 7097 if (siblings_protected > parent_effective) 7098 return protected * parent_effective / siblings_protected; 7099 7100 /* 7101 * Ok, utilized protection of all children is within what the 7102 * parent affords them, so we know whatever this child claims 7103 * and utilizes is effectively protected. 7104 * 7105 * If there is unprotected usage beyond this value, reclaim 7106 * will apply pressure in proportion to that amount. 7107 * 7108 * If there is unutilized protection, the cgroup will be fully 7109 * shielded from reclaim, but we do return a smaller value for 7110 * protection than what the group could enjoy in theory. This 7111 * is okay. With the overcommit distribution above, effective 7112 * protection is always dependent on how memory is actually 7113 * consumed among the siblings anyway. 7114 */ 7115 ep = protected; 7116 7117 /* 7118 * If the children aren't claiming (all of) the protection 7119 * afforded to them by the parent, distribute the remainder in 7120 * proportion to the (unprotected) memory of each cgroup. That 7121 * way, cgroups that aren't explicitly prioritized wrt each 7122 * other compete freely over the allowance, but they are 7123 * collectively protected from neighboring trees. 7124 * 7125 * We're using unprotected memory for the weight so that if 7126 * some cgroups DO claim explicit protection, we don't protect 7127 * the same bytes twice. 7128 * 7129 * Check both usage and parent_usage against the respective 7130 * protected values. One should imply the other, but they 7131 * aren't read atomically - make sure the division is sane. 7132 */ 7133 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 7134 return ep; 7135 if (parent_effective > siblings_protected && 7136 parent_usage > siblings_protected && 7137 usage > protected) { 7138 unsigned long unclaimed; 7139 7140 unclaimed = parent_effective - siblings_protected; 7141 unclaimed *= usage - protected; 7142 unclaimed /= parent_usage - siblings_protected; 7143 7144 ep += unclaimed; 7145 } 7146 7147 return ep; 7148 } 7149 7150 /** 7151 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 7152 * @root: the top ancestor of the sub-tree being checked 7153 * @memcg: the memory cgroup to check 7154 * 7155 * WARNING: This function is not stateless! It can only be used as part 7156 * of a top-down tree iteration, not for isolated queries. 7157 */ 7158 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 7159 struct mem_cgroup *memcg) 7160 { 7161 unsigned long usage, parent_usage; 7162 struct mem_cgroup *parent; 7163 7164 if (mem_cgroup_disabled()) 7165 return; 7166 7167 if (!root) 7168 root = root_mem_cgroup; 7169 7170 /* 7171 * Effective values of the reclaim targets are ignored so they 7172 * can be stale. Have a look at mem_cgroup_protection for more 7173 * details. 7174 * TODO: calculation should be more robust so that we do not need 7175 * that special casing. 7176 */ 7177 if (memcg == root) 7178 return; 7179 7180 usage = page_counter_read(&memcg->memory); 7181 if (!usage) 7182 return; 7183 7184 parent = parent_mem_cgroup(memcg); 7185 7186 if (parent == root) { 7187 memcg->memory.emin = READ_ONCE(memcg->memory.min); 7188 memcg->memory.elow = READ_ONCE(memcg->memory.low); 7189 return; 7190 } 7191 7192 parent_usage = page_counter_read(&parent->memory); 7193 7194 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 7195 READ_ONCE(memcg->memory.min), 7196 READ_ONCE(parent->memory.emin), 7197 atomic_long_read(&parent->memory.children_min_usage))); 7198 7199 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 7200 READ_ONCE(memcg->memory.low), 7201 READ_ONCE(parent->memory.elow), 7202 atomic_long_read(&parent->memory.children_low_usage))); 7203 } 7204 7205 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 7206 gfp_t gfp) 7207 { 7208 int ret; 7209 7210 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 7211 if (ret) 7212 goto out; 7213 7214 mem_cgroup_commit_charge(folio, memcg); 7215 out: 7216 return ret; 7217 } 7218 7219 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7220 { 7221 struct mem_cgroup *memcg; 7222 int ret; 7223 7224 memcg = get_mem_cgroup_from_mm(mm); 7225 ret = charge_memcg(folio, memcg, gfp); 7226 css_put(&memcg->css); 7227 7228 return ret; 7229 } 7230 7231 /** 7232 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 7233 * @memcg: memcg to charge. 7234 * @gfp: reclaim mode. 7235 * @nr_pages: number of pages to charge. 7236 * 7237 * This function is called when allocating a huge page folio to determine if 7238 * the memcg has the capacity for it. It does not commit the charge yet, 7239 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 7240 * 7241 * Once we have obtained the hugetlb folio, we can call 7242 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 7243 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 7244 * of try_charge(). 7245 * 7246 * Returns 0 on success. Otherwise, an error code is returned. 7247 */ 7248 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 7249 long nr_pages) 7250 { 7251 /* 7252 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 7253 * but do not attempt to commit charge later (or cancel on error) either. 7254 */ 7255 if (mem_cgroup_disabled() || !memcg || 7256 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 7257 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 7258 return -EOPNOTSUPP; 7259 7260 if (try_charge(memcg, gfp, nr_pages)) 7261 return -ENOMEM; 7262 7263 return 0; 7264 } 7265 7266 /** 7267 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7268 * @folio: folio to charge. 7269 * @mm: mm context of the victim 7270 * @gfp: reclaim mode 7271 * @entry: swap entry for which the folio is allocated 7272 * 7273 * This function charges a folio allocated for swapin. Please call this before 7274 * adding the folio to the swapcache. 7275 * 7276 * Returns 0 on success. Otherwise, an error code is returned. 7277 */ 7278 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7279 gfp_t gfp, swp_entry_t entry) 7280 { 7281 struct mem_cgroup *memcg; 7282 unsigned short id; 7283 int ret; 7284 7285 if (mem_cgroup_disabled()) 7286 return 0; 7287 7288 id = lookup_swap_cgroup_id(entry); 7289 rcu_read_lock(); 7290 memcg = mem_cgroup_from_id(id); 7291 if (!memcg || !css_tryget_online(&memcg->css)) 7292 memcg = get_mem_cgroup_from_mm(mm); 7293 rcu_read_unlock(); 7294 7295 ret = charge_memcg(folio, memcg, gfp); 7296 7297 css_put(&memcg->css); 7298 return ret; 7299 } 7300 7301 /* 7302 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7303 * @entry: swap entry for which the page is charged 7304 * 7305 * Call this function after successfully adding the charged page to swapcache. 7306 * 7307 * Note: This function assumes the page for which swap slot is being uncharged 7308 * is order 0 page. 7309 */ 7310 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7311 { 7312 /* 7313 * Cgroup1's unified memory+swap counter has been charged with the 7314 * new swapcache page, finish the transfer by uncharging the swap 7315 * slot. The swap slot would also get uncharged when it dies, but 7316 * it can stick around indefinitely and we'd count the page twice 7317 * the entire time. 7318 * 7319 * Cgroup2 has separate resource counters for memory and swap, 7320 * so this is a non-issue here. Memory and swap charge lifetimes 7321 * correspond 1:1 to page and swap slot lifetimes: we charge the 7322 * page to memory here, and uncharge swap when the slot is freed. 7323 */ 7324 if (!mem_cgroup_disabled() && do_memsw_account()) { 7325 /* 7326 * The swap entry might not get freed for a long time, 7327 * let's not wait for it. The page already received a 7328 * memory+swap charge, drop the swap entry duplicate. 7329 */ 7330 mem_cgroup_uncharge_swap(entry, 1); 7331 } 7332 } 7333 7334 struct uncharge_gather { 7335 struct mem_cgroup *memcg; 7336 unsigned long nr_memory; 7337 unsigned long pgpgout; 7338 unsigned long nr_kmem; 7339 int nid; 7340 }; 7341 7342 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7343 { 7344 memset(ug, 0, sizeof(*ug)); 7345 } 7346 7347 static void uncharge_batch(const struct uncharge_gather *ug) 7348 { 7349 unsigned long flags; 7350 7351 if (ug->nr_memory) { 7352 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7353 if (do_memsw_account()) 7354 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7355 if (ug->nr_kmem) 7356 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7357 memcg_oom_recover(ug->memcg); 7358 } 7359 7360 local_irq_save(flags); 7361 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7362 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7363 memcg_check_events(ug->memcg, ug->nid); 7364 local_irq_restore(flags); 7365 7366 /* drop reference from uncharge_folio */ 7367 css_put(&ug->memcg->css); 7368 } 7369 7370 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7371 { 7372 long nr_pages; 7373 struct mem_cgroup *memcg; 7374 struct obj_cgroup *objcg; 7375 7376 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7377 7378 /* 7379 * Nobody should be changing or seriously looking at 7380 * folio memcg or objcg at this point, we have fully 7381 * exclusive access to the folio. 7382 */ 7383 if (folio_memcg_kmem(folio)) { 7384 objcg = __folio_objcg(folio); 7385 /* 7386 * This get matches the put at the end of the function and 7387 * kmem pages do not hold memcg references anymore. 7388 */ 7389 memcg = get_mem_cgroup_from_objcg(objcg); 7390 } else { 7391 memcg = __folio_memcg(folio); 7392 } 7393 7394 if (!memcg) 7395 return; 7396 7397 if (ug->memcg != memcg) { 7398 if (ug->memcg) { 7399 uncharge_batch(ug); 7400 uncharge_gather_clear(ug); 7401 } 7402 ug->memcg = memcg; 7403 ug->nid = folio_nid(folio); 7404 7405 /* pairs with css_put in uncharge_batch */ 7406 css_get(&memcg->css); 7407 } 7408 7409 nr_pages = folio_nr_pages(folio); 7410 7411 if (folio_memcg_kmem(folio)) { 7412 ug->nr_memory += nr_pages; 7413 ug->nr_kmem += nr_pages; 7414 7415 folio->memcg_data = 0; 7416 obj_cgroup_put(objcg); 7417 } else { 7418 /* LRU pages aren't accounted at the root level */ 7419 if (!mem_cgroup_is_root(memcg)) 7420 ug->nr_memory += nr_pages; 7421 ug->pgpgout++; 7422 7423 folio->memcg_data = 0; 7424 } 7425 7426 css_put(&memcg->css); 7427 } 7428 7429 void __mem_cgroup_uncharge(struct folio *folio) 7430 { 7431 struct uncharge_gather ug; 7432 7433 /* Don't touch folio->lru of any random page, pre-check: */ 7434 if (!folio_memcg(folio)) 7435 return; 7436 7437 uncharge_gather_clear(&ug); 7438 uncharge_folio(folio, &ug); 7439 uncharge_batch(&ug); 7440 } 7441 7442 /** 7443 * __mem_cgroup_uncharge_list - uncharge a list of page 7444 * @page_list: list of pages to uncharge 7445 * 7446 * Uncharge a list of pages previously charged with 7447 * __mem_cgroup_charge(). 7448 */ 7449 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7450 { 7451 struct uncharge_gather ug; 7452 struct folio *folio; 7453 7454 uncharge_gather_clear(&ug); 7455 list_for_each_entry(folio, page_list, lru) 7456 uncharge_folio(folio, &ug); 7457 if (ug.memcg) 7458 uncharge_batch(&ug); 7459 } 7460 7461 /** 7462 * mem_cgroup_replace_folio - Charge a folio's replacement. 7463 * @old: Currently circulating folio. 7464 * @new: Replacement folio. 7465 * 7466 * Charge @new as a replacement folio for @old. @old will 7467 * be uncharged upon free. This is only used by the page cache 7468 * (in replace_page_cache_folio()). 7469 * 7470 * Both folios must be locked, @new->mapping must be set up. 7471 */ 7472 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 7473 { 7474 struct mem_cgroup *memcg; 7475 long nr_pages = folio_nr_pages(new); 7476 unsigned long flags; 7477 7478 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7479 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7480 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7481 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7482 7483 if (mem_cgroup_disabled()) 7484 return; 7485 7486 /* Page cache replacement: new folio already charged? */ 7487 if (folio_memcg(new)) 7488 return; 7489 7490 memcg = folio_memcg(old); 7491 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7492 if (!memcg) 7493 return; 7494 7495 /* Force-charge the new page. The old one will be freed soon */ 7496 if (!mem_cgroup_is_root(memcg)) { 7497 page_counter_charge(&memcg->memory, nr_pages); 7498 if (do_memsw_account()) 7499 page_counter_charge(&memcg->memsw, nr_pages); 7500 } 7501 7502 css_get(&memcg->css); 7503 commit_charge(new, memcg); 7504 7505 local_irq_save(flags); 7506 mem_cgroup_charge_statistics(memcg, nr_pages); 7507 memcg_check_events(memcg, folio_nid(new)); 7508 local_irq_restore(flags); 7509 } 7510 7511 /** 7512 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 7513 * @old: Currently circulating folio. 7514 * @new: Replacement folio. 7515 * 7516 * Transfer the memcg data from the old folio to the new folio for migration. 7517 * The old folio's data info will be cleared. Note that the memory counters 7518 * will remain unchanged throughout the process. 7519 * 7520 * Both folios must be locked, @new->mapping must be set up. 7521 */ 7522 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7523 { 7524 struct mem_cgroup *memcg; 7525 7526 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7527 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7528 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7529 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 7530 7531 if (mem_cgroup_disabled()) 7532 return; 7533 7534 memcg = folio_memcg(old); 7535 /* 7536 * Note that it is normal to see !memcg for a hugetlb folio. 7537 * For e.g, itt could have been allocated when memory_hugetlb_accounting 7538 * was not selected. 7539 */ 7540 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 7541 if (!memcg) 7542 return; 7543 7544 /* Transfer the charge and the css ref */ 7545 commit_charge(new, memcg); 7546 old->memcg_data = 0; 7547 } 7548 7549 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7550 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7551 7552 void mem_cgroup_sk_alloc(struct sock *sk) 7553 { 7554 struct mem_cgroup *memcg; 7555 7556 if (!mem_cgroup_sockets_enabled) 7557 return; 7558 7559 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7560 if (!in_task()) 7561 return; 7562 7563 rcu_read_lock(); 7564 memcg = mem_cgroup_from_task(current); 7565 if (mem_cgroup_is_root(memcg)) 7566 goto out; 7567 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7568 goto out; 7569 if (css_tryget(&memcg->css)) 7570 sk->sk_memcg = memcg; 7571 out: 7572 rcu_read_unlock(); 7573 } 7574 7575 void mem_cgroup_sk_free(struct sock *sk) 7576 { 7577 if (sk->sk_memcg) 7578 css_put(&sk->sk_memcg->css); 7579 } 7580 7581 /** 7582 * mem_cgroup_charge_skmem - charge socket memory 7583 * @memcg: memcg to charge 7584 * @nr_pages: number of pages to charge 7585 * @gfp_mask: reclaim mode 7586 * 7587 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7588 * @memcg's configured limit, %false if it doesn't. 7589 */ 7590 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7591 gfp_t gfp_mask) 7592 { 7593 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7594 struct page_counter *fail; 7595 7596 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7597 memcg->tcpmem_pressure = 0; 7598 return true; 7599 } 7600 memcg->tcpmem_pressure = 1; 7601 if (gfp_mask & __GFP_NOFAIL) { 7602 page_counter_charge(&memcg->tcpmem, nr_pages); 7603 return true; 7604 } 7605 return false; 7606 } 7607 7608 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7609 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7610 return true; 7611 } 7612 7613 return false; 7614 } 7615 7616 /** 7617 * mem_cgroup_uncharge_skmem - uncharge socket memory 7618 * @memcg: memcg to uncharge 7619 * @nr_pages: number of pages to uncharge 7620 */ 7621 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7622 { 7623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7624 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7625 return; 7626 } 7627 7628 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7629 7630 refill_stock(memcg, nr_pages); 7631 } 7632 7633 static int __init cgroup_memory(char *s) 7634 { 7635 char *token; 7636 7637 while ((token = strsep(&s, ",")) != NULL) { 7638 if (!*token) 7639 continue; 7640 if (!strcmp(token, "nosocket")) 7641 cgroup_memory_nosocket = true; 7642 if (!strcmp(token, "nokmem")) 7643 cgroup_memory_nokmem = true; 7644 if (!strcmp(token, "nobpf")) 7645 cgroup_memory_nobpf = true; 7646 } 7647 return 1; 7648 } 7649 __setup("cgroup.memory=", cgroup_memory); 7650 7651 /* 7652 * subsys_initcall() for memory controller. 7653 * 7654 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7655 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7656 * basically everything that doesn't depend on a specific mem_cgroup structure 7657 * should be initialized from here. 7658 */ 7659 static int __init mem_cgroup_init(void) 7660 { 7661 int cpu, node; 7662 7663 /* 7664 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7665 * used for per-memcg-per-cpu caching of per-node statistics. In order 7666 * to work fine, we should make sure that the overfill threshold can't 7667 * exceed S32_MAX / PAGE_SIZE. 7668 */ 7669 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7670 7671 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7672 memcg_hotplug_cpu_dead); 7673 7674 for_each_possible_cpu(cpu) 7675 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7676 drain_local_stock); 7677 7678 for_each_node(node) { 7679 struct mem_cgroup_tree_per_node *rtpn; 7680 7681 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 7682 7683 rtpn->rb_root = RB_ROOT; 7684 rtpn->rb_rightmost = NULL; 7685 spin_lock_init(&rtpn->lock); 7686 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7687 } 7688 7689 return 0; 7690 } 7691 subsys_initcall(mem_cgroup_init); 7692 7693 #ifdef CONFIG_SWAP 7694 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7695 { 7696 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7697 /* 7698 * The root cgroup cannot be destroyed, so it's refcount must 7699 * always be >= 1. 7700 */ 7701 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7702 VM_BUG_ON(1); 7703 break; 7704 } 7705 memcg = parent_mem_cgroup(memcg); 7706 if (!memcg) 7707 memcg = root_mem_cgroup; 7708 } 7709 return memcg; 7710 } 7711 7712 /** 7713 * mem_cgroup_swapout - transfer a memsw charge to swap 7714 * @folio: folio whose memsw charge to transfer 7715 * @entry: swap entry to move the charge to 7716 * 7717 * Transfer the memsw charge of @folio to @entry. 7718 */ 7719 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7720 { 7721 struct mem_cgroup *memcg, *swap_memcg; 7722 unsigned int nr_entries; 7723 unsigned short oldid; 7724 7725 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7726 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7727 7728 if (mem_cgroup_disabled()) 7729 return; 7730 7731 if (!do_memsw_account()) 7732 return; 7733 7734 memcg = folio_memcg(folio); 7735 7736 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7737 if (!memcg) 7738 return; 7739 7740 /* 7741 * In case the memcg owning these pages has been offlined and doesn't 7742 * have an ID allocated to it anymore, charge the closest online 7743 * ancestor for the swap instead and transfer the memory+swap charge. 7744 */ 7745 swap_memcg = mem_cgroup_id_get_online(memcg); 7746 nr_entries = folio_nr_pages(folio); 7747 /* Get references for the tail pages, too */ 7748 if (nr_entries > 1) 7749 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7750 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7751 nr_entries); 7752 VM_BUG_ON_FOLIO(oldid, folio); 7753 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7754 7755 folio->memcg_data = 0; 7756 7757 if (!mem_cgroup_is_root(memcg)) 7758 page_counter_uncharge(&memcg->memory, nr_entries); 7759 7760 if (memcg != swap_memcg) { 7761 if (!mem_cgroup_is_root(swap_memcg)) 7762 page_counter_charge(&swap_memcg->memsw, nr_entries); 7763 page_counter_uncharge(&memcg->memsw, nr_entries); 7764 } 7765 7766 /* 7767 * Interrupts should be disabled here because the caller holds the 7768 * i_pages lock which is taken with interrupts-off. It is 7769 * important here to have the interrupts disabled because it is the 7770 * only synchronisation we have for updating the per-CPU variables. 7771 */ 7772 memcg_stats_lock(); 7773 mem_cgroup_charge_statistics(memcg, -nr_entries); 7774 memcg_stats_unlock(); 7775 memcg_check_events(memcg, folio_nid(folio)); 7776 7777 css_put(&memcg->css); 7778 } 7779 7780 /** 7781 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7782 * @folio: folio being added to swap 7783 * @entry: swap entry to charge 7784 * 7785 * Try to charge @folio's memcg for the swap space at @entry. 7786 * 7787 * Returns 0 on success, -ENOMEM on failure. 7788 */ 7789 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7790 { 7791 unsigned int nr_pages = folio_nr_pages(folio); 7792 struct page_counter *counter; 7793 struct mem_cgroup *memcg; 7794 unsigned short oldid; 7795 7796 if (do_memsw_account()) 7797 return 0; 7798 7799 memcg = folio_memcg(folio); 7800 7801 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7802 if (!memcg) 7803 return 0; 7804 7805 if (!entry.val) { 7806 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7807 return 0; 7808 } 7809 7810 memcg = mem_cgroup_id_get_online(memcg); 7811 7812 if (!mem_cgroup_is_root(memcg) && 7813 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7814 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7815 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7816 mem_cgroup_id_put(memcg); 7817 return -ENOMEM; 7818 } 7819 7820 /* Get references for the tail pages, too */ 7821 if (nr_pages > 1) 7822 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7823 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7824 VM_BUG_ON_FOLIO(oldid, folio); 7825 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7826 7827 return 0; 7828 } 7829 7830 /** 7831 * __mem_cgroup_uncharge_swap - uncharge swap space 7832 * @entry: swap entry to uncharge 7833 * @nr_pages: the amount of swap space to uncharge 7834 */ 7835 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7836 { 7837 struct mem_cgroup *memcg; 7838 unsigned short id; 7839 7840 id = swap_cgroup_record(entry, 0, nr_pages); 7841 rcu_read_lock(); 7842 memcg = mem_cgroup_from_id(id); 7843 if (memcg) { 7844 if (!mem_cgroup_is_root(memcg)) { 7845 if (do_memsw_account()) 7846 page_counter_uncharge(&memcg->memsw, nr_pages); 7847 else 7848 page_counter_uncharge(&memcg->swap, nr_pages); 7849 } 7850 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7851 mem_cgroup_id_put_many(memcg, nr_pages); 7852 } 7853 rcu_read_unlock(); 7854 } 7855 7856 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7857 { 7858 long nr_swap_pages = get_nr_swap_pages(); 7859 7860 if (mem_cgroup_disabled() || do_memsw_account()) 7861 return nr_swap_pages; 7862 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7863 nr_swap_pages = min_t(long, nr_swap_pages, 7864 READ_ONCE(memcg->swap.max) - 7865 page_counter_read(&memcg->swap)); 7866 return nr_swap_pages; 7867 } 7868 7869 bool mem_cgroup_swap_full(struct folio *folio) 7870 { 7871 struct mem_cgroup *memcg; 7872 7873 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7874 7875 if (vm_swap_full()) 7876 return true; 7877 if (do_memsw_account()) 7878 return false; 7879 7880 memcg = folio_memcg(folio); 7881 if (!memcg) 7882 return false; 7883 7884 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7885 unsigned long usage = page_counter_read(&memcg->swap); 7886 7887 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7888 usage * 2 >= READ_ONCE(memcg->swap.max)) 7889 return true; 7890 } 7891 7892 return false; 7893 } 7894 7895 static int __init setup_swap_account(char *s) 7896 { 7897 pr_warn_once("The swapaccount= commandline option is deprecated. " 7898 "Please report your usecase to linux-mm@kvack.org if you " 7899 "depend on this functionality.\n"); 7900 return 1; 7901 } 7902 __setup("swapaccount=", setup_swap_account); 7903 7904 static u64 swap_current_read(struct cgroup_subsys_state *css, 7905 struct cftype *cft) 7906 { 7907 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7908 7909 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7910 } 7911 7912 static u64 swap_peak_read(struct cgroup_subsys_state *css, 7913 struct cftype *cft) 7914 { 7915 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7916 7917 return (u64)memcg->swap.watermark * PAGE_SIZE; 7918 } 7919 7920 static int swap_high_show(struct seq_file *m, void *v) 7921 { 7922 return seq_puts_memcg_tunable(m, 7923 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7924 } 7925 7926 static ssize_t swap_high_write(struct kernfs_open_file *of, 7927 char *buf, size_t nbytes, loff_t off) 7928 { 7929 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7930 unsigned long high; 7931 int err; 7932 7933 buf = strstrip(buf); 7934 err = page_counter_memparse(buf, "max", &high); 7935 if (err) 7936 return err; 7937 7938 page_counter_set_high(&memcg->swap, high); 7939 7940 return nbytes; 7941 } 7942 7943 static int swap_max_show(struct seq_file *m, void *v) 7944 { 7945 return seq_puts_memcg_tunable(m, 7946 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7947 } 7948 7949 static ssize_t swap_max_write(struct kernfs_open_file *of, 7950 char *buf, size_t nbytes, loff_t off) 7951 { 7952 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7953 unsigned long max; 7954 int err; 7955 7956 buf = strstrip(buf); 7957 err = page_counter_memparse(buf, "max", &max); 7958 if (err) 7959 return err; 7960 7961 xchg(&memcg->swap.max, max); 7962 7963 return nbytes; 7964 } 7965 7966 static int swap_events_show(struct seq_file *m, void *v) 7967 { 7968 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7969 7970 seq_printf(m, "high %lu\n", 7971 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7972 seq_printf(m, "max %lu\n", 7973 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7974 seq_printf(m, "fail %lu\n", 7975 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7976 7977 return 0; 7978 } 7979 7980 static struct cftype swap_files[] = { 7981 { 7982 .name = "swap.current", 7983 .flags = CFTYPE_NOT_ON_ROOT, 7984 .read_u64 = swap_current_read, 7985 }, 7986 { 7987 .name = "swap.high", 7988 .flags = CFTYPE_NOT_ON_ROOT, 7989 .seq_show = swap_high_show, 7990 .write = swap_high_write, 7991 }, 7992 { 7993 .name = "swap.max", 7994 .flags = CFTYPE_NOT_ON_ROOT, 7995 .seq_show = swap_max_show, 7996 .write = swap_max_write, 7997 }, 7998 { 7999 .name = "swap.peak", 8000 .flags = CFTYPE_NOT_ON_ROOT, 8001 .read_u64 = swap_peak_read, 8002 }, 8003 { 8004 .name = "swap.events", 8005 .flags = CFTYPE_NOT_ON_ROOT, 8006 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 8007 .seq_show = swap_events_show, 8008 }, 8009 { } /* terminate */ 8010 }; 8011 8012 static struct cftype memsw_files[] = { 8013 { 8014 .name = "memsw.usage_in_bytes", 8015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 8016 .read_u64 = mem_cgroup_read_u64, 8017 }, 8018 { 8019 .name = "memsw.max_usage_in_bytes", 8020 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 8021 .write = mem_cgroup_reset, 8022 .read_u64 = mem_cgroup_read_u64, 8023 }, 8024 { 8025 .name = "memsw.limit_in_bytes", 8026 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 8027 .write = mem_cgroup_write, 8028 .read_u64 = mem_cgroup_read_u64, 8029 }, 8030 { 8031 .name = "memsw.failcnt", 8032 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 8033 .write = mem_cgroup_reset, 8034 .read_u64 = mem_cgroup_read_u64, 8035 }, 8036 { }, /* terminate */ 8037 }; 8038 8039 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8040 /** 8041 * obj_cgroup_may_zswap - check if this cgroup can zswap 8042 * @objcg: the object cgroup 8043 * 8044 * Check if the hierarchical zswap limit has been reached. 8045 * 8046 * This doesn't check for specific headroom, and it is not atomic 8047 * either. But with zswap, the size of the allocation is only known 8048 * once compression has occurred, and this optimistic pre-check avoids 8049 * spending cycles on compression when there is already no room left 8050 * or zswap is disabled altogether somewhere in the hierarchy. 8051 */ 8052 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 8053 { 8054 struct mem_cgroup *memcg, *original_memcg; 8055 bool ret = true; 8056 8057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8058 return true; 8059 8060 original_memcg = get_mem_cgroup_from_objcg(objcg); 8061 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 8062 memcg = parent_mem_cgroup(memcg)) { 8063 unsigned long max = READ_ONCE(memcg->zswap_max); 8064 unsigned long pages; 8065 8066 if (max == PAGE_COUNTER_MAX) 8067 continue; 8068 if (max == 0) { 8069 ret = false; 8070 break; 8071 } 8072 8073 cgroup_rstat_flush(memcg->css.cgroup); 8074 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 8075 if (pages < max) 8076 continue; 8077 ret = false; 8078 break; 8079 } 8080 mem_cgroup_put(original_memcg); 8081 return ret; 8082 } 8083 8084 /** 8085 * obj_cgroup_charge_zswap - charge compression backend memory 8086 * @objcg: the object cgroup 8087 * @size: size of compressed object 8088 * 8089 * This forces the charge after obj_cgroup_may_zswap() allowed 8090 * compression and storage in zwap for this cgroup to go ahead. 8091 */ 8092 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 8093 { 8094 struct mem_cgroup *memcg; 8095 8096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8097 return; 8098 8099 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 8100 8101 /* PF_MEMALLOC context, charging must succeed */ 8102 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 8103 VM_WARN_ON_ONCE(1); 8104 8105 rcu_read_lock(); 8106 memcg = obj_cgroup_memcg(objcg); 8107 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 8108 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 8109 rcu_read_unlock(); 8110 } 8111 8112 /** 8113 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 8114 * @objcg: the object cgroup 8115 * @size: size of compressed object 8116 * 8117 * Uncharges zswap memory on page in. 8118 */ 8119 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 8120 { 8121 struct mem_cgroup *memcg; 8122 8123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8124 return; 8125 8126 obj_cgroup_uncharge(objcg, size); 8127 8128 rcu_read_lock(); 8129 memcg = obj_cgroup_memcg(objcg); 8130 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 8131 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 8132 rcu_read_unlock(); 8133 } 8134 8135 static u64 zswap_current_read(struct cgroup_subsys_state *css, 8136 struct cftype *cft) 8137 { 8138 cgroup_rstat_flush(css->cgroup); 8139 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 8140 } 8141 8142 static int zswap_max_show(struct seq_file *m, void *v) 8143 { 8144 return seq_puts_memcg_tunable(m, 8145 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 8146 } 8147 8148 static ssize_t zswap_max_write(struct kernfs_open_file *of, 8149 char *buf, size_t nbytes, loff_t off) 8150 { 8151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8152 unsigned long max; 8153 int err; 8154 8155 buf = strstrip(buf); 8156 err = page_counter_memparse(buf, "max", &max); 8157 if (err) 8158 return err; 8159 8160 xchg(&memcg->zswap_max, max); 8161 8162 return nbytes; 8163 } 8164 8165 static struct cftype zswap_files[] = { 8166 { 8167 .name = "zswap.current", 8168 .flags = CFTYPE_NOT_ON_ROOT, 8169 .read_u64 = zswap_current_read, 8170 }, 8171 { 8172 .name = "zswap.max", 8173 .flags = CFTYPE_NOT_ON_ROOT, 8174 .seq_show = zswap_max_show, 8175 .write = zswap_max_write, 8176 }, 8177 { } /* terminate */ 8178 }; 8179 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 8180 8181 static int __init mem_cgroup_swap_init(void) 8182 { 8183 if (mem_cgroup_disabled()) 8184 return 0; 8185 8186 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 8187 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 8188 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8189 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 8190 #endif 8191 return 0; 8192 } 8193 subsys_initcall(mem_cgroup_swap_init); 8194 8195 #endif /* CONFIG_SWAP */ 8196