1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* BPF memory accounting disabled? */ 92 static bool cgroup_memory_nobpf __ro_after_init; 93 94 #ifdef CONFIG_CGROUP_WRITEBACK 95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 96 #endif 97 98 static inline bool task_is_dying(void) 99 { 100 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 101 (current->flags & PF_EXITING); 102 } 103 104 /* Some nice accessors for the vmpressure. */ 105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 106 { 107 if (!memcg) 108 memcg = root_mem_cgroup; 109 return &memcg->vmpressure; 110 } 111 112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 113 { 114 return container_of(vmpr, struct mem_cgroup, vmpressure); 115 } 116 117 #define CURRENT_OBJCG_UPDATE_BIT 0 118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 119 120 static DEFINE_SPINLOCK(objcg_lock); 121 122 bool mem_cgroup_kmem_disabled(void) 123 { 124 return cgroup_memory_nokmem; 125 } 126 127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 128 unsigned int nr_pages); 129 130 static void obj_cgroup_release(struct percpu_ref *ref) 131 { 132 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 133 unsigned int nr_bytes; 134 unsigned int nr_pages; 135 unsigned long flags; 136 137 /* 138 * At this point all allocated objects are freed, and 139 * objcg->nr_charged_bytes can't have an arbitrary byte value. 140 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 141 * 142 * The following sequence can lead to it: 143 * 1) CPU0: objcg == stock->cached_objcg 144 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 145 * PAGE_SIZE bytes are charged 146 * 3) CPU1: a process from another memcg is allocating something, 147 * the stock if flushed, 148 * objcg->nr_charged_bytes = PAGE_SIZE - 92 149 * 5) CPU0: we do release this object, 150 * 92 bytes are added to stock->nr_bytes 151 * 6) CPU0: stock is flushed, 152 * 92 bytes are added to objcg->nr_charged_bytes 153 * 154 * In the result, nr_charged_bytes == PAGE_SIZE. 155 * This page will be uncharged in obj_cgroup_release(). 156 */ 157 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 158 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 159 nr_pages = nr_bytes >> PAGE_SHIFT; 160 161 if (nr_pages) 162 obj_cgroup_uncharge_pages(objcg, nr_pages); 163 164 spin_lock_irqsave(&objcg_lock, flags); 165 list_del(&objcg->list); 166 spin_unlock_irqrestore(&objcg_lock, flags); 167 168 percpu_ref_exit(ref); 169 kfree_rcu(objcg, rcu); 170 } 171 172 static struct obj_cgroup *obj_cgroup_alloc(void) 173 { 174 struct obj_cgroup *objcg; 175 int ret; 176 177 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 178 if (!objcg) 179 return NULL; 180 181 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 182 GFP_KERNEL); 183 if (ret) { 184 kfree(objcg); 185 return NULL; 186 } 187 INIT_LIST_HEAD(&objcg->list); 188 return objcg; 189 } 190 191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 192 struct mem_cgroup *parent) 193 { 194 struct obj_cgroup *objcg, *iter; 195 196 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 197 198 spin_lock_irq(&objcg_lock); 199 200 /* 1) Ready to reparent active objcg. */ 201 list_add(&objcg->list, &memcg->objcg_list); 202 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 203 list_for_each_entry(iter, &memcg->objcg_list, list) 204 WRITE_ONCE(iter->memcg, parent); 205 /* 3) Move already reparented objcgs to the parent's list */ 206 list_splice(&memcg->objcg_list, &parent->objcg_list); 207 208 spin_unlock_irq(&objcg_lock); 209 210 percpu_ref_kill(&objcg->refcnt); 211 } 212 213 /* 214 * A lot of the calls to the cache allocation functions are expected to be 215 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 216 * conditional to this static branch, we'll have to allow modules that does 217 * kmem_cache_alloc and the such to see this symbol as well 218 */ 219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 220 EXPORT_SYMBOL(memcg_kmem_online_key); 221 222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 223 EXPORT_SYMBOL(memcg_bpf_enabled_key); 224 225 /** 226 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 227 * @folio: folio of interest 228 * 229 * If memcg is bound to the default hierarchy, css of the memcg associated 230 * with @folio is returned. The returned css remains associated with @folio 231 * until it is released. 232 * 233 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 234 * is returned. 235 */ 236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 237 { 238 struct mem_cgroup *memcg = folio_memcg(folio); 239 240 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 241 memcg = root_mem_cgroup; 242 243 return &memcg->css; 244 } 245 246 /** 247 * page_cgroup_ino - return inode number of the memcg a page is charged to 248 * @page: the page 249 * 250 * Look up the closest online ancestor of the memory cgroup @page is charged to 251 * and return its inode number or 0 if @page is not charged to any cgroup. It 252 * is safe to call this function without holding a reference to @page. 253 * 254 * Note, this function is inherently racy, because there is nothing to prevent 255 * the cgroup inode from getting torn down and potentially reallocated a moment 256 * after page_cgroup_ino() returns, so it only should be used by callers that 257 * do not care (such as procfs interfaces). 258 */ 259 ino_t page_cgroup_ino(struct page *page) 260 { 261 struct mem_cgroup *memcg; 262 unsigned long ino = 0; 263 264 rcu_read_lock(); 265 /* page_folio() is racy here, but the entire function is racy anyway */ 266 memcg = folio_memcg_check(page_folio(page)); 267 268 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 269 memcg = parent_mem_cgroup(memcg); 270 if (memcg) 271 ino = cgroup_ino(memcg->css.cgroup); 272 rcu_read_unlock(); 273 return ino; 274 } 275 276 /* Subset of node_stat_item for memcg stats */ 277 static const unsigned int memcg_node_stat_items[] = { 278 NR_INACTIVE_ANON, 279 NR_ACTIVE_ANON, 280 NR_INACTIVE_FILE, 281 NR_ACTIVE_FILE, 282 NR_UNEVICTABLE, 283 NR_SLAB_RECLAIMABLE_B, 284 NR_SLAB_UNRECLAIMABLE_B, 285 WORKINGSET_REFAULT_ANON, 286 WORKINGSET_REFAULT_FILE, 287 WORKINGSET_ACTIVATE_ANON, 288 WORKINGSET_ACTIVATE_FILE, 289 WORKINGSET_RESTORE_ANON, 290 WORKINGSET_RESTORE_FILE, 291 WORKINGSET_NODERECLAIM, 292 NR_ANON_MAPPED, 293 NR_FILE_MAPPED, 294 NR_FILE_PAGES, 295 NR_FILE_DIRTY, 296 NR_WRITEBACK, 297 NR_SHMEM, 298 NR_SHMEM_THPS, 299 NR_FILE_THPS, 300 NR_ANON_THPS, 301 NR_KERNEL_STACK_KB, 302 NR_PAGETABLE, 303 NR_SECONDARY_PAGETABLE, 304 #ifdef CONFIG_SWAP 305 NR_SWAPCACHE, 306 #endif 307 #ifdef CONFIG_NUMA_BALANCING 308 PGPROMOTE_SUCCESS, 309 #endif 310 PGDEMOTE_KSWAPD, 311 PGDEMOTE_DIRECT, 312 PGDEMOTE_KHUGEPAGED, 313 }; 314 315 static const unsigned int memcg_stat_items[] = { 316 MEMCG_SWAP, 317 MEMCG_SOCK, 318 MEMCG_PERCPU_B, 319 MEMCG_VMALLOC, 320 MEMCG_KMEM, 321 MEMCG_ZSWAP_B, 322 MEMCG_ZSWAPPED, 323 }; 324 325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 327 ARRAY_SIZE(memcg_stat_items)) 328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 330 331 static void init_memcg_stats(void) 332 { 333 u8 i, j = 0; 334 335 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 336 337 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 338 339 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 340 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 341 342 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 343 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 344 } 345 346 static inline int memcg_stats_index(int idx) 347 { 348 return mem_cgroup_stats_index[idx]; 349 } 350 351 struct lruvec_stats_percpu { 352 /* Local (CPU and cgroup) state */ 353 long state[NR_MEMCG_NODE_STAT_ITEMS]; 354 355 /* Delta calculation for lockless upward propagation */ 356 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 357 }; 358 359 struct lruvec_stats { 360 /* Aggregated (CPU and subtree) state */ 361 long state[NR_MEMCG_NODE_STAT_ITEMS]; 362 363 /* Non-hierarchical (CPU aggregated) state */ 364 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 365 366 /* Pending child counts during tree propagation */ 367 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 368 }; 369 370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 371 { 372 struct mem_cgroup_per_node *pn; 373 long x; 374 int i; 375 376 if (mem_cgroup_disabled()) 377 return node_page_state(lruvec_pgdat(lruvec), idx); 378 379 i = memcg_stats_index(idx); 380 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 381 return 0; 382 383 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 384 x = READ_ONCE(pn->lruvec_stats->state[i]); 385 #ifdef CONFIG_SMP 386 if (x < 0) 387 x = 0; 388 #endif 389 return x; 390 } 391 392 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 393 enum node_stat_item idx) 394 { 395 struct mem_cgroup_per_node *pn; 396 long x; 397 int i; 398 399 if (mem_cgroup_disabled()) 400 return node_page_state(lruvec_pgdat(lruvec), idx); 401 402 i = memcg_stats_index(idx); 403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 404 return 0; 405 406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 407 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 408 #ifdef CONFIG_SMP 409 if (x < 0) 410 x = 0; 411 #endif 412 return x; 413 } 414 415 /* Subset of vm_event_item to report for memcg event stats */ 416 static const unsigned int memcg_vm_event_stat[] = { 417 #ifdef CONFIG_MEMCG_V1 418 PGPGIN, 419 PGPGOUT, 420 #endif 421 PGSCAN_KSWAPD, 422 PGSCAN_DIRECT, 423 PGSCAN_KHUGEPAGED, 424 PGSTEAL_KSWAPD, 425 PGSTEAL_DIRECT, 426 PGSTEAL_KHUGEPAGED, 427 PGFAULT, 428 PGMAJFAULT, 429 PGREFILL, 430 PGACTIVATE, 431 PGDEACTIVATE, 432 PGLAZYFREE, 433 PGLAZYFREED, 434 #ifdef CONFIG_ZSWAP 435 ZSWPIN, 436 ZSWPOUT, 437 ZSWPWB, 438 #endif 439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 440 THP_FAULT_ALLOC, 441 THP_COLLAPSE_ALLOC, 442 THP_SWPOUT, 443 THP_SWPOUT_FALLBACK, 444 #endif 445 #ifdef CONFIG_NUMA_BALANCING 446 NUMA_PAGE_MIGRATE, 447 NUMA_PTE_UPDATES, 448 NUMA_HINT_FAULTS, 449 #endif 450 }; 451 452 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 453 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 454 455 static void init_memcg_events(void) 456 { 457 u8 i; 458 459 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 460 461 memset(mem_cgroup_events_index, U8_MAX, 462 sizeof(mem_cgroup_events_index)); 463 464 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 465 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 466 } 467 468 static inline int memcg_events_index(enum vm_event_item idx) 469 { 470 return mem_cgroup_events_index[idx]; 471 } 472 473 struct memcg_vmstats_percpu { 474 /* Stats updates since the last flush */ 475 unsigned int stats_updates; 476 477 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 478 struct memcg_vmstats_percpu *parent; 479 struct memcg_vmstats *vmstats; 480 481 /* The above should fit a single cacheline for memcg_rstat_updated() */ 482 483 /* Local (CPU and cgroup) page state & events */ 484 long state[MEMCG_VMSTAT_SIZE]; 485 unsigned long events[NR_MEMCG_EVENTS]; 486 487 /* Delta calculation for lockless upward propagation */ 488 long state_prev[MEMCG_VMSTAT_SIZE]; 489 unsigned long events_prev[NR_MEMCG_EVENTS]; 490 } ____cacheline_aligned; 491 492 struct memcg_vmstats { 493 /* Aggregated (CPU and subtree) page state & events */ 494 long state[MEMCG_VMSTAT_SIZE]; 495 unsigned long events[NR_MEMCG_EVENTS]; 496 497 /* Non-hierarchical (CPU aggregated) page state & events */ 498 long state_local[MEMCG_VMSTAT_SIZE]; 499 unsigned long events_local[NR_MEMCG_EVENTS]; 500 501 /* Pending child counts during tree propagation */ 502 long state_pending[MEMCG_VMSTAT_SIZE]; 503 unsigned long events_pending[NR_MEMCG_EVENTS]; 504 505 /* Stats updates since the last flush */ 506 atomic64_t stats_updates; 507 }; 508 509 /* 510 * memcg and lruvec stats flushing 511 * 512 * Many codepaths leading to stats update or read are performance sensitive and 513 * adding stats flushing in such codepaths is not desirable. So, to optimize the 514 * flushing the kernel does: 515 * 516 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 517 * rstat update tree grow unbounded. 518 * 519 * 2) Flush the stats synchronously on reader side only when there are more than 520 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 521 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 522 * only for 2 seconds due to (1). 523 */ 524 static void flush_memcg_stats_dwork(struct work_struct *w); 525 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 526 static u64 flush_last_time; 527 528 #define FLUSH_TIME (2UL*HZ) 529 530 /* 531 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 532 * not rely on this as part of an acquired spinlock_t lock. These functions are 533 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 534 * is sufficient. 535 */ 536 static void memcg_stats_lock(void) 537 { 538 preempt_disable_nested(); 539 VM_WARN_ON_IRQS_ENABLED(); 540 } 541 542 static void __memcg_stats_lock(void) 543 { 544 preempt_disable_nested(); 545 } 546 547 static void memcg_stats_unlock(void) 548 { 549 preempt_enable_nested(); 550 } 551 552 553 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 554 { 555 return atomic64_read(&vmstats->stats_updates) > 556 MEMCG_CHARGE_BATCH * num_online_cpus(); 557 } 558 559 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 560 { 561 struct memcg_vmstats_percpu *statc; 562 int cpu = smp_processor_id(); 563 unsigned int stats_updates; 564 565 if (!val) 566 return; 567 568 cgroup_rstat_updated(memcg->css.cgroup, cpu); 569 statc = this_cpu_ptr(memcg->vmstats_percpu); 570 for (; statc; statc = statc->parent) { 571 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 572 WRITE_ONCE(statc->stats_updates, stats_updates); 573 if (stats_updates < MEMCG_CHARGE_BATCH) 574 continue; 575 576 /* 577 * If @memcg is already flush-able, increasing stats_updates is 578 * redundant. Avoid the overhead of the atomic update. 579 */ 580 if (!memcg_vmstats_needs_flush(statc->vmstats)) 581 atomic64_add(stats_updates, 582 &statc->vmstats->stats_updates); 583 WRITE_ONCE(statc->stats_updates, 0); 584 } 585 } 586 587 static void do_flush_stats(struct mem_cgroup *memcg) 588 { 589 if (mem_cgroup_is_root(memcg)) 590 WRITE_ONCE(flush_last_time, jiffies_64); 591 592 cgroup_rstat_flush(memcg->css.cgroup); 593 } 594 595 /* 596 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 597 * @memcg: root of the subtree to flush 598 * 599 * Flushing is serialized by the underlying global rstat lock. There is also a 600 * minimum amount of work to be done even if there are no stat updates to flush. 601 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 602 * avoids unnecessary work and contention on the underlying lock. 603 */ 604 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 605 { 606 if (mem_cgroup_disabled()) 607 return; 608 609 if (!memcg) 610 memcg = root_mem_cgroup; 611 612 if (memcg_vmstats_needs_flush(memcg->vmstats)) 613 do_flush_stats(memcg); 614 } 615 616 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 617 { 618 /* Only flush if the periodic flusher is one full cycle late */ 619 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 620 mem_cgroup_flush_stats(memcg); 621 } 622 623 static void flush_memcg_stats_dwork(struct work_struct *w) 624 { 625 /* 626 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 627 * in latency-sensitive paths is as cheap as possible. 628 */ 629 do_flush_stats(root_mem_cgroup); 630 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 631 } 632 633 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 634 { 635 long x; 636 int i = memcg_stats_index(idx); 637 638 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 639 return 0; 640 641 x = READ_ONCE(memcg->vmstats->state[i]); 642 #ifdef CONFIG_SMP 643 if (x < 0) 644 x = 0; 645 #endif 646 return x; 647 } 648 649 static int memcg_page_state_unit(int item); 650 651 /* 652 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 653 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 654 */ 655 static int memcg_state_val_in_pages(int idx, int val) 656 { 657 int unit = memcg_page_state_unit(idx); 658 659 if (!val || unit == PAGE_SIZE) 660 return val; 661 else 662 return max(val * unit / PAGE_SIZE, 1UL); 663 } 664 665 /** 666 * __mod_memcg_state - update cgroup memory statistics 667 * @memcg: the memory cgroup 668 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 669 * @val: delta to add to the counter, can be negative 670 */ 671 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 672 int val) 673 { 674 int i = memcg_stats_index(idx); 675 676 if (mem_cgroup_disabled()) 677 return; 678 679 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 680 return; 681 682 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 683 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 684 } 685 686 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 687 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 688 { 689 long x; 690 int i = memcg_stats_index(idx); 691 692 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 693 return 0; 694 695 x = READ_ONCE(memcg->vmstats->state_local[i]); 696 #ifdef CONFIG_SMP 697 if (x < 0) 698 x = 0; 699 #endif 700 return x; 701 } 702 703 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 704 enum node_stat_item idx, 705 int val) 706 { 707 struct mem_cgroup_per_node *pn; 708 struct mem_cgroup *memcg; 709 int i = memcg_stats_index(idx); 710 711 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 712 return; 713 714 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 715 memcg = pn->memcg; 716 717 /* 718 * The caller from rmap relies on disabled preemption because they never 719 * update their counter from in-interrupt context. For these two 720 * counters we check that the update is never performed from an 721 * interrupt context while other caller need to have disabled interrupt. 722 */ 723 __memcg_stats_lock(); 724 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 725 switch (idx) { 726 case NR_ANON_MAPPED: 727 case NR_FILE_MAPPED: 728 case NR_ANON_THPS: 729 WARN_ON_ONCE(!in_task()); 730 break; 731 default: 732 VM_WARN_ON_IRQS_ENABLED(); 733 } 734 } 735 736 /* Update memcg */ 737 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 738 739 /* Update lruvec */ 740 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 741 742 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 743 memcg_stats_unlock(); 744 } 745 746 /** 747 * __mod_lruvec_state - update lruvec memory statistics 748 * @lruvec: the lruvec 749 * @idx: the stat item 750 * @val: delta to add to the counter, can be negative 751 * 752 * The lruvec is the intersection of the NUMA node and a cgroup. This 753 * function updates the all three counters that are affected by a 754 * change of state at this level: per-node, per-cgroup, per-lruvec. 755 */ 756 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 757 int val) 758 { 759 /* Update node */ 760 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 761 762 /* Update memcg and lruvec */ 763 if (!mem_cgroup_disabled()) 764 __mod_memcg_lruvec_state(lruvec, idx, val); 765 } 766 767 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 768 int val) 769 { 770 struct mem_cgroup *memcg; 771 pg_data_t *pgdat = folio_pgdat(folio); 772 struct lruvec *lruvec; 773 774 rcu_read_lock(); 775 memcg = folio_memcg(folio); 776 /* Untracked pages have no memcg, no lruvec. Update only the node */ 777 if (!memcg) { 778 rcu_read_unlock(); 779 __mod_node_page_state(pgdat, idx, val); 780 return; 781 } 782 783 lruvec = mem_cgroup_lruvec(memcg, pgdat); 784 __mod_lruvec_state(lruvec, idx, val); 785 rcu_read_unlock(); 786 } 787 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 788 789 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 790 { 791 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 792 struct mem_cgroup *memcg; 793 struct lruvec *lruvec; 794 795 rcu_read_lock(); 796 memcg = mem_cgroup_from_slab_obj(p); 797 798 /* 799 * Untracked pages have no memcg, no lruvec. Update only the 800 * node. If we reparent the slab objects to the root memcg, 801 * when we free the slab object, we need to update the per-memcg 802 * vmstats to keep it correct for the root memcg. 803 */ 804 if (!memcg) { 805 __mod_node_page_state(pgdat, idx, val); 806 } else { 807 lruvec = mem_cgroup_lruvec(memcg, pgdat); 808 __mod_lruvec_state(lruvec, idx, val); 809 } 810 rcu_read_unlock(); 811 } 812 813 /** 814 * __count_memcg_events - account VM events in a cgroup 815 * @memcg: the memory cgroup 816 * @idx: the event item 817 * @count: the number of events that occurred 818 */ 819 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 820 unsigned long count) 821 { 822 int i = memcg_events_index(idx); 823 824 if (mem_cgroup_disabled()) 825 return; 826 827 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 828 return; 829 830 memcg_stats_lock(); 831 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 832 memcg_rstat_updated(memcg, count); 833 memcg_stats_unlock(); 834 } 835 836 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 837 { 838 int i = memcg_events_index(event); 839 840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 841 return 0; 842 843 return READ_ONCE(memcg->vmstats->events[i]); 844 } 845 846 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 847 { 848 int i = memcg_events_index(event); 849 850 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 851 return 0; 852 853 return READ_ONCE(memcg->vmstats->events_local[i]); 854 } 855 856 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 857 { 858 /* 859 * mm_update_next_owner() may clear mm->owner to NULL 860 * if it races with swapoff, page migration, etc. 861 * So this can be called with p == NULL. 862 */ 863 if (unlikely(!p)) 864 return NULL; 865 866 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 867 } 868 EXPORT_SYMBOL(mem_cgroup_from_task); 869 870 static __always_inline struct mem_cgroup *active_memcg(void) 871 { 872 if (!in_task()) 873 return this_cpu_read(int_active_memcg); 874 else 875 return current->active_memcg; 876 } 877 878 /** 879 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 880 * @mm: mm from which memcg should be extracted. It can be NULL. 881 * 882 * Obtain a reference on mm->memcg and returns it if successful. If mm 883 * is NULL, then the memcg is chosen as follows: 884 * 1) The active memcg, if set. 885 * 2) current->mm->memcg, if available 886 * 3) root memcg 887 * If mem_cgroup is disabled, NULL is returned. 888 */ 889 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 890 { 891 struct mem_cgroup *memcg; 892 893 if (mem_cgroup_disabled()) 894 return NULL; 895 896 /* 897 * Page cache insertions can happen without an 898 * actual mm context, e.g. during disk probing 899 * on boot, loopback IO, acct() writes etc. 900 * 901 * No need to css_get on root memcg as the reference 902 * counting is disabled on the root level in the 903 * cgroup core. See CSS_NO_REF. 904 */ 905 if (unlikely(!mm)) { 906 memcg = active_memcg(); 907 if (unlikely(memcg)) { 908 /* remote memcg must hold a ref */ 909 css_get(&memcg->css); 910 return memcg; 911 } 912 mm = current->mm; 913 if (unlikely(!mm)) 914 return root_mem_cgroup; 915 } 916 917 rcu_read_lock(); 918 do { 919 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 920 if (unlikely(!memcg)) 921 memcg = root_mem_cgroup; 922 } while (!css_tryget(&memcg->css)); 923 rcu_read_unlock(); 924 return memcg; 925 } 926 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 927 928 /** 929 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 930 */ 931 struct mem_cgroup *get_mem_cgroup_from_current(void) 932 { 933 struct mem_cgroup *memcg; 934 935 if (mem_cgroup_disabled()) 936 return NULL; 937 938 again: 939 rcu_read_lock(); 940 memcg = mem_cgroup_from_task(current); 941 if (!css_tryget(&memcg->css)) { 942 rcu_read_unlock(); 943 goto again; 944 } 945 rcu_read_unlock(); 946 return memcg; 947 } 948 949 /** 950 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 951 * @folio: folio from which memcg should be extracted. 952 */ 953 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 954 { 955 struct mem_cgroup *memcg = folio_memcg(folio); 956 957 if (mem_cgroup_disabled()) 958 return NULL; 959 960 rcu_read_lock(); 961 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 962 memcg = root_mem_cgroup; 963 rcu_read_unlock(); 964 return memcg; 965 } 966 967 /** 968 * mem_cgroup_iter - iterate over memory cgroup hierarchy 969 * @root: hierarchy root 970 * @prev: previously returned memcg, NULL on first invocation 971 * @reclaim: cookie for shared reclaim walks, NULL for full walks 972 * 973 * Returns references to children of the hierarchy below @root, or 974 * @root itself, or %NULL after a full round-trip. 975 * 976 * Caller must pass the return value in @prev on subsequent 977 * invocations for reference counting, or use mem_cgroup_iter_break() 978 * to cancel a hierarchy walk before the round-trip is complete. 979 * 980 * Reclaimers can specify a node in @reclaim to divide up the memcgs 981 * in the hierarchy among all concurrent reclaimers operating on the 982 * same node. 983 */ 984 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 985 struct mem_cgroup *prev, 986 struct mem_cgroup_reclaim_cookie *reclaim) 987 { 988 struct mem_cgroup_reclaim_iter *iter; 989 struct cgroup_subsys_state *css = NULL; 990 struct mem_cgroup *memcg = NULL; 991 struct mem_cgroup *pos = NULL; 992 993 if (mem_cgroup_disabled()) 994 return NULL; 995 996 if (!root) 997 root = root_mem_cgroup; 998 999 rcu_read_lock(); 1000 1001 if (reclaim) { 1002 struct mem_cgroup_per_node *mz; 1003 1004 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1005 iter = &mz->iter; 1006 1007 /* 1008 * On start, join the current reclaim iteration cycle. 1009 * Exit when a concurrent walker completes it. 1010 */ 1011 if (!prev) 1012 reclaim->generation = iter->generation; 1013 else if (reclaim->generation != iter->generation) 1014 goto out_unlock; 1015 1016 while (1) { 1017 pos = READ_ONCE(iter->position); 1018 if (!pos || css_tryget(&pos->css)) 1019 break; 1020 /* 1021 * css reference reached zero, so iter->position will 1022 * be cleared by ->css_released. However, we should not 1023 * rely on this happening soon, because ->css_released 1024 * is called from a work queue, and by busy-waiting we 1025 * might block it. So we clear iter->position right 1026 * away. 1027 */ 1028 (void)cmpxchg(&iter->position, pos, NULL); 1029 } 1030 } else if (prev) { 1031 pos = prev; 1032 } 1033 1034 if (pos) 1035 css = &pos->css; 1036 1037 for (;;) { 1038 css = css_next_descendant_pre(css, &root->css); 1039 if (!css) { 1040 /* 1041 * Reclaimers share the hierarchy walk, and a 1042 * new one might jump in right at the end of 1043 * the hierarchy - make sure they see at least 1044 * one group and restart from the beginning. 1045 */ 1046 if (!prev) 1047 continue; 1048 break; 1049 } 1050 1051 /* 1052 * Verify the css and acquire a reference. The root 1053 * is provided by the caller, so we know it's alive 1054 * and kicking, and don't take an extra reference. 1055 */ 1056 if (css == &root->css || css_tryget(css)) { 1057 memcg = mem_cgroup_from_css(css); 1058 break; 1059 } 1060 } 1061 1062 if (reclaim) { 1063 /* 1064 * The position could have already been updated by a competing 1065 * thread, so check that the value hasn't changed since we read 1066 * it to avoid reclaiming from the same cgroup twice. 1067 */ 1068 (void)cmpxchg(&iter->position, pos, memcg); 1069 1070 if (pos) 1071 css_put(&pos->css); 1072 1073 if (!memcg) 1074 iter->generation++; 1075 } 1076 1077 out_unlock: 1078 rcu_read_unlock(); 1079 if (prev && prev != root) 1080 css_put(&prev->css); 1081 1082 return memcg; 1083 } 1084 1085 /** 1086 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1087 * @root: hierarchy root 1088 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1089 */ 1090 void mem_cgroup_iter_break(struct mem_cgroup *root, 1091 struct mem_cgroup *prev) 1092 { 1093 if (!root) 1094 root = root_mem_cgroup; 1095 if (prev && prev != root) 1096 css_put(&prev->css); 1097 } 1098 1099 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1100 struct mem_cgroup *dead_memcg) 1101 { 1102 struct mem_cgroup_reclaim_iter *iter; 1103 struct mem_cgroup_per_node *mz; 1104 int nid; 1105 1106 for_each_node(nid) { 1107 mz = from->nodeinfo[nid]; 1108 iter = &mz->iter; 1109 cmpxchg(&iter->position, dead_memcg, NULL); 1110 } 1111 } 1112 1113 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1114 { 1115 struct mem_cgroup *memcg = dead_memcg; 1116 struct mem_cgroup *last; 1117 1118 do { 1119 __invalidate_reclaim_iterators(memcg, dead_memcg); 1120 last = memcg; 1121 } while ((memcg = parent_mem_cgroup(memcg))); 1122 1123 /* 1124 * When cgroup1 non-hierarchy mode is used, 1125 * parent_mem_cgroup() does not walk all the way up to the 1126 * cgroup root (root_mem_cgroup). So we have to handle 1127 * dead_memcg from cgroup root separately. 1128 */ 1129 if (!mem_cgroup_is_root(last)) 1130 __invalidate_reclaim_iterators(root_mem_cgroup, 1131 dead_memcg); 1132 } 1133 1134 /** 1135 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1136 * @memcg: hierarchy root 1137 * @fn: function to call for each task 1138 * @arg: argument passed to @fn 1139 * 1140 * This function iterates over tasks attached to @memcg or to any of its 1141 * descendants and calls @fn for each task. If @fn returns a non-zero 1142 * value, the function breaks the iteration loop. Otherwise, it will iterate 1143 * over all tasks and return 0. 1144 * 1145 * This function must not be called for the root memory cgroup. 1146 */ 1147 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1148 int (*fn)(struct task_struct *, void *), void *arg) 1149 { 1150 struct mem_cgroup *iter; 1151 int ret = 0; 1152 1153 BUG_ON(mem_cgroup_is_root(memcg)); 1154 1155 for_each_mem_cgroup_tree(iter, memcg) { 1156 struct css_task_iter it; 1157 struct task_struct *task; 1158 1159 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1160 while (!ret && (task = css_task_iter_next(&it))) 1161 ret = fn(task, arg); 1162 css_task_iter_end(&it); 1163 if (ret) { 1164 mem_cgroup_iter_break(memcg, iter); 1165 break; 1166 } 1167 } 1168 } 1169 1170 #ifdef CONFIG_DEBUG_VM 1171 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1172 { 1173 struct mem_cgroup *memcg; 1174 1175 if (mem_cgroup_disabled()) 1176 return; 1177 1178 memcg = folio_memcg(folio); 1179 1180 if (!memcg) 1181 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1182 else 1183 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1184 } 1185 #endif 1186 1187 /** 1188 * folio_lruvec_lock - Lock the lruvec for a folio. 1189 * @folio: Pointer to the folio. 1190 * 1191 * These functions are safe to use under any of the following conditions: 1192 * - folio locked 1193 * - folio_test_lru false 1194 * - folio_memcg_lock() 1195 * - folio frozen (refcount of 0) 1196 * 1197 * Return: The lruvec this folio is on with its lock held. 1198 */ 1199 struct lruvec *folio_lruvec_lock(struct folio *folio) 1200 { 1201 struct lruvec *lruvec = folio_lruvec(folio); 1202 1203 spin_lock(&lruvec->lru_lock); 1204 lruvec_memcg_debug(lruvec, folio); 1205 1206 return lruvec; 1207 } 1208 1209 /** 1210 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1211 * @folio: Pointer to the folio. 1212 * 1213 * These functions are safe to use under any of the following conditions: 1214 * - folio locked 1215 * - folio_test_lru false 1216 * - folio_memcg_lock() 1217 * - folio frozen (refcount of 0) 1218 * 1219 * Return: The lruvec this folio is on with its lock held and interrupts 1220 * disabled. 1221 */ 1222 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1223 { 1224 struct lruvec *lruvec = folio_lruvec(folio); 1225 1226 spin_lock_irq(&lruvec->lru_lock); 1227 lruvec_memcg_debug(lruvec, folio); 1228 1229 return lruvec; 1230 } 1231 1232 /** 1233 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1234 * @folio: Pointer to the folio. 1235 * @flags: Pointer to irqsave flags. 1236 * 1237 * These functions are safe to use under any of the following conditions: 1238 * - folio locked 1239 * - folio_test_lru false 1240 * - folio_memcg_lock() 1241 * - folio frozen (refcount of 0) 1242 * 1243 * Return: The lruvec this folio is on with its lock held and interrupts 1244 * disabled. 1245 */ 1246 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1247 unsigned long *flags) 1248 { 1249 struct lruvec *lruvec = folio_lruvec(folio); 1250 1251 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1252 lruvec_memcg_debug(lruvec, folio); 1253 1254 return lruvec; 1255 } 1256 1257 /** 1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1259 * @lruvec: mem_cgroup per zone lru vector 1260 * @lru: index of lru list the page is sitting on 1261 * @zid: zone id of the accounted pages 1262 * @nr_pages: positive when adding or negative when removing 1263 * 1264 * This function must be called under lru_lock, just before a page is added 1265 * to or just after a page is removed from an lru list. 1266 */ 1267 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1268 int zid, int nr_pages) 1269 { 1270 struct mem_cgroup_per_node *mz; 1271 unsigned long *lru_size; 1272 long size; 1273 1274 if (mem_cgroup_disabled()) 1275 return; 1276 1277 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1278 lru_size = &mz->lru_zone_size[zid][lru]; 1279 1280 if (nr_pages < 0) 1281 *lru_size += nr_pages; 1282 1283 size = *lru_size; 1284 if (WARN_ONCE(size < 0, 1285 "%s(%p, %d, %d): lru_size %ld\n", 1286 __func__, lruvec, lru, nr_pages, size)) { 1287 VM_BUG_ON(1); 1288 *lru_size = 0; 1289 } 1290 1291 if (nr_pages > 0) 1292 *lru_size += nr_pages; 1293 } 1294 1295 /** 1296 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1297 * @memcg: the memory cgroup 1298 * 1299 * Returns the maximum amount of memory @mem can be charged with, in 1300 * pages. 1301 */ 1302 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1303 { 1304 unsigned long margin = 0; 1305 unsigned long count; 1306 unsigned long limit; 1307 1308 count = page_counter_read(&memcg->memory); 1309 limit = READ_ONCE(memcg->memory.max); 1310 if (count < limit) 1311 margin = limit - count; 1312 1313 if (do_memsw_account()) { 1314 count = page_counter_read(&memcg->memsw); 1315 limit = READ_ONCE(memcg->memsw.max); 1316 if (count < limit) 1317 margin = min(margin, limit - count); 1318 else 1319 margin = 0; 1320 } 1321 1322 return margin; 1323 } 1324 1325 struct memory_stat { 1326 const char *name; 1327 unsigned int idx; 1328 }; 1329 1330 static const struct memory_stat memory_stats[] = { 1331 { "anon", NR_ANON_MAPPED }, 1332 { "file", NR_FILE_PAGES }, 1333 { "kernel", MEMCG_KMEM }, 1334 { "kernel_stack", NR_KERNEL_STACK_KB }, 1335 { "pagetables", NR_PAGETABLE }, 1336 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1337 { "percpu", MEMCG_PERCPU_B }, 1338 { "sock", MEMCG_SOCK }, 1339 { "vmalloc", MEMCG_VMALLOC }, 1340 { "shmem", NR_SHMEM }, 1341 #ifdef CONFIG_ZSWAP 1342 { "zswap", MEMCG_ZSWAP_B }, 1343 { "zswapped", MEMCG_ZSWAPPED }, 1344 #endif 1345 { "file_mapped", NR_FILE_MAPPED }, 1346 { "file_dirty", NR_FILE_DIRTY }, 1347 { "file_writeback", NR_WRITEBACK }, 1348 #ifdef CONFIG_SWAP 1349 { "swapcached", NR_SWAPCACHE }, 1350 #endif 1351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1352 { "anon_thp", NR_ANON_THPS }, 1353 { "file_thp", NR_FILE_THPS }, 1354 { "shmem_thp", NR_SHMEM_THPS }, 1355 #endif 1356 { "inactive_anon", NR_INACTIVE_ANON }, 1357 { "active_anon", NR_ACTIVE_ANON }, 1358 { "inactive_file", NR_INACTIVE_FILE }, 1359 { "active_file", NR_ACTIVE_FILE }, 1360 { "unevictable", NR_UNEVICTABLE }, 1361 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1362 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1363 1364 /* The memory events */ 1365 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1366 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1367 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1368 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1369 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1370 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1371 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1372 1373 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1374 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1375 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1376 #ifdef CONFIG_NUMA_BALANCING 1377 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1378 #endif 1379 }; 1380 1381 /* The actual unit of the state item, not the same as the output unit */ 1382 static int memcg_page_state_unit(int item) 1383 { 1384 switch (item) { 1385 case MEMCG_PERCPU_B: 1386 case MEMCG_ZSWAP_B: 1387 case NR_SLAB_RECLAIMABLE_B: 1388 case NR_SLAB_UNRECLAIMABLE_B: 1389 return 1; 1390 case NR_KERNEL_STACK_KB: 1391 return SZ_1K; 1392 default: 1393 return PAGE_SIZE; 1394 } 1395 } 1396 1397 /* Translate stat items to the correct unit for memory.stat output */ 1398 static int memcg_page_state_output_unit(int item) 1399 { 1400 /* 1401 * Workingset state is actually in pages, but we export it to userspace 1402 * as a scalar count of events, so special case it here. 1403 * 1404 * Demotion and promotion activities are exported in pages, consistent 1405 * with their global counterparts. 1406 */ 1407 switch (item) { 1408 case WORKINGSET_REFAULT_ANON: 1409 case WORKINGSET_REFAULT_FILE: 1410 case WORKINGSET_ACTIVATE_ANON: 1411 case WORKINGSET_ACTIVATE_FILE: 1412 case WORKINGSET_RESTORE_ANON: 1413 case WORKINGSET_RESTORE_FILE: 1414 case WORKINGSET_NODERECLAIM: 1415 case PGDEMOTE_KSWAPD: 1416 case PGDEMOTE_DIRECT: 1417 case PGDEMOTE_KHUGEPAGED: 1418 #ifdef CONFIG_NUMA_BALANCING 1419 case PGPROMOTE_SUCCESS: 1420 #endif 1421 return 1; 1422 default: 1423 return memcg_page_state_unit(item); 1424 } 1425 } 1426 1427 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1428 { 1429 return memcg_page_state(memcg, item) * 1430 memcg_page_state_output_unit(item); 1431 } 1432 1433 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1434 { 1435 return memcg_page_state_local(memcg, item) * 1436 memcg_page_state_output_unit(item); 1437 } 1438 1439 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1440 { 1441 int i; 1442 1443 /* 1444 * Provide statistics on the state of the memory subsystem as 1445 * well as cumulative event counters that show past behavior. 1446 * 1447 * This list is ordered following a combination of these gradients: 1448 * 1) generic big picture -> specifics and details 1449 * 2) reflecting userspace activity -> reflecting kernel heuristics 1450 * 1451 * Current memory state: 1452 */ 1453 mem_cgroup_flush_stats(memcg); 1454 1455 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1456 u64 size; 1457 1458 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1459 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1460 1461 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1462 size += memcg_page_state_output(memcg, 1463 NR_SLAB_RECLAIMABLE_B); 1464 seq_buf_printf(s, "slab %llu\n", size); 1465 } 1466 } 1467 1468 /* Accumulated memory events */ 1469 seq_buf_printf(s, "pgscan %lu\n", 1470 memcg_events(memcg, PGSCAN_KSWAPD) + 1471 memcg_events(memcg, PGSCAN_DIRECT) + 1472 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1473 seq_buf_printf(s, "pgsteal %lu\n", 1474 memcg_events(memcg, PGSTEAL_KSWAPD) + 1475 memcg_events(memcg, PGSTEAL_DIRECT) + 1476 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1477 1478 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1479 #ifdef CONFIG_MEMCG_V1 1480 if (memcg_vm_event_stat[i] == PGPGIN || 1481 memcg_vm_event_stat[i] == PGPGOUT) 1482 continue; 1483 #endif 1484 seq_buf_printf(s, "%s %lu\n", 1485 vm_event_name(memcg_vm_event_stat[i]), 1486 memcg_events(memcg, memcg_vm_event_stat[i])); 1487 } 1488 } 1489 1490 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1491 { 1492 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1493 memcg_stat_format(memcg, s); 1494 else 1495 memcg1_stat_format(memcg, s); 1496 if (seq_buf_has_overflowed(s)) 1497 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1498 } 1499 1500 /** 1501 * mem_cgroup_print_oom_context: Print OOM information relevant to 1502 * memory controller. 1503 * @memcg: The memory cgroup that went over limit 1504 * @p: Task that is going to be killed 1505 * 1506 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1507 * enabled 1508 */ 1509 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1510 { 1511 rcu_read_lock(); 1512 1513 if (memcg) { 1514 pr_cont(",oom_memcg="); 1515 pr_cont_cgroup_path(memcg->css.cgroup); 1516 } else 1517 pr_cont(",global_oom"); 1518 if (p) { 1519 pr_cont(",task_memcg="); 1520 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1521 } 1522 rcu_read_unlock(); 1523 } 1524 1525 /** 1526 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1527 * memory controller. 1528 * @memcg: The memory cgroup that went over limit 1529 */ 1530 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1531 { 1532 /* Use static buffer, for the caller is holding oom_lock. */ 1533 static char buf[PAGE_SIZE]; 1534 struct seq_buf s; 1535 1536 lockdep_assert_held(&oom_lock); 1537 1538 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1539 K((u64)page_counter_read(&memcg->memory)), 1540 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1542 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1543 K((u64)page_counter_read(&memcg->swap)), 1544 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1545 #ifdef CONFIG_MEMCG_V1 1546 else { 1547 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1548 K((u64)page_counter_read(&memcg->memsw)), 1549 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1550 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1551 K((u64)page_counter_read(&memcg->kmem)), 1552 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1553 } 1554 #endif 1555 1556 pr_info("Memory cgroup stats for "); 1557 pr_cont_cgroup_path(memcg->css.cgroup); 1558 pr_cont(":"); 1559 seq_buf_init(&s, buf, sizeof(buf)); 1560 memory_stat_format(memcg, &s); 1561 seq_buf_do_printk(&s, KERN_INFO); 1562 } 1563 1564 /* 1565 * Return the memory (and swap, if configured) limit for a memcg. 1566 */ 1567 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1568 { 1569 unsigned long max = READ_ONCE(memcg->memory.max); 1570 1571 if (do_memsw_account()) { 1572 if (mem_cgroup_swappiness(memcg)) { 1573 /* Calculate swap excess capacity from memsw limit */ 1574 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1575 1576 max += min(swap, (unsigned long)total_swap_pages); 1577 } 1578 } else { 1579 if (mem_cgroup_swappiness(memcg)) 1580 max += min(READ_ONCE(memcg->swap.max), 1581 (unsigned long)total_swap_pages); 1582 } 1583 return max; 1584 } 1585 1586 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1587 { 1588 return page_counter_read(&memcg->memory); 1589 } 1590 1591 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1592 int order) 1593 { 1594 struct oom_control oc = { 1595 .zonelist = NULL, 1596 .nodemask = NULL, 1597 .memcg = memcg, 1598 .gfp_mask = gfp_mask, 1599 .order = order, 1600 }; 1601 bool ret = true; 1602 1603 if (mutex_lock_killable(&oom_lock)) 1604 return true; 1605 1606 if (mem_cgroup_margin(memcg) >= (1 << order)) 1607 goto unlock; 1608 1609 /* 1610 * A few threads which were not waiting at mutex_lock_killable() can 1611 * fail to bail out. Therefore, check again after holding oom_lock. 1612 */ 1613 ret = task_is_dying() || out_of_memory(&oc); 1614 1615 unlock: 1616 mutex_unlock(&oom_lock); 1617 return ret; 1618 } 1619 1620 /* 1621 * Returns true if successfully killed one or more processes. Though in some 1622 * corner cases it can return true even without killing any process. 1623 */ 1624 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1625 { 1626 bool locked, ret; 1627 1628 if (order > PAGE_ALLOC_COSTLY_ORDER) 1629 return false; 1630 1631 memcg_memory_event(memcg, MEMCG_OOM); 1632 1633 if (!memcg1_oom_prepare(memcg, &locked)) 1634 return false; 1635 1636 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1637 1638 memcg1_oom_finish(memcg, locked); 1639 1640 return ret; 1641 } 1642 1643 /** 1644 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1645 * @victim: task to be killed by the OOM killer 1646 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1647 * 1648 * Returns a pointer to a memory cgroup, which has to be cleaned up 1649 * by killing all belonging OOM-killable tasks. 1650 * 1651 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1652 */ 1653 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1654 struct mem_cgroup *oom_domain) 1655 { 1656 struct mem_cgroup *oom_group = NULL; 1657 struct mem_cgroup *memcg; 1658 1659 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1660 return NULL; 1661 1662 if (!oom_domain) 1663 oom_domain = root_mem_cgroup; 1664 1665 rcu_read_lock(); 1666 1667 memcg = mem_cgroup_from_task(victim); 1668 if (mem_cgroup_is_root(memcg)) 1669 goto out; 1670 1671 /* 1672 * If the victim task has been asynchronously moved to a different 1673 * memory cgroup, we might end up killing tasks outside oom_domain. 1674 * In this case it's better to ignore memory.group.oom. 1675 */ 1676 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1677 goto out; 1678 1679 /* 1680 * Traverse the memory cgroup hierarchy from the victim task's 1681 * cgroup up to the OOMing cgroup (or root) to find the 1682 * highest-level memory cgroup with oom.group set. 1683 */ 1684 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1685 if (READ_ONCE(memcg->oom_group)) 1686 oom_group = memcg; 1687 1688 if (memcg == oom_domain) 1689 break; 1690 } 1691 1692 if (oom_group) 1693 css_get(&oom_group->css); 1694 out: 1695 rcu_read_unlock(); 1696 1697 return oom_group; 1698 } 1699 1700 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1701 { 1702 pr_info("Tasks in "); 1703 pr_cont_cgroup_path(memcg->css.cgroup); 1704 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1705 } 1706 1707 struct memcg_stock_pcp { 1708 local_lock_t stock_lock; 1709 struct mem_cgroup *cached; /* this never be root cgroup */ 1710 unsigned int nr_pages; 1711 1712 struct obj_cgroup *cached_objcg; 1713 struct pglist_data *cached_pgdat; 1714 unsigned int nr_bytes; 1715 int nr_slab_reclaimable_b; 1716 int nr_slab_unreclaimable_b; 1717 1718 struct work_struct work; 1719 unsigned long flags; 1720 #define FLUSHING_CACHED_CHARGE 0 1721 }; 1722 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1723 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1724 }; 1725 static DEFINE_MUTEX(percpu_charge_mutex); 1726 1727 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1728 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1729 struct mem_cgroup *root_memcg); 1730 1731 /** 1732 * consume_stock: Try to consume stocked charge on this cpu. 1733 * @memcg: memcg to consume from. 1734 * @nr_pages: how many pages to charge. 1735 * 1736 * The charges will only happen if @memcg matches the current cpu's memcg 1737 * stock, and at least @nr_pages are available in that stock. Failure to 1738 * service an allocation will refill the stock. 1739 * 1740 * returns true if successful, false otherwise. 1741 */ 1742 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1743 { 1744 struct memcg_stock_pcp *stock; 1745 unsigned int stock_pages; 1746 unsigned long flags; 1747 bool ret = false; 1748 1749 if (nr_pages > MEMCG_CHARGE_BATCH) 1750 return ret; 1751 1752 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1753 1754 stock = this_cpu_ptr(&memcg_stock); 1755 stock_pages = READ_ONCE(stock->nr_pages); 1756 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1757 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1758 ret = true; 1759 } 1760 1761 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1762 1763 return ret; 1764 } 1765 1766 /* 1767 * Returns stocks cached in percpu and reset cached information. 1768 */ 1769 static void drain_stock(struct memcg_stock_pcp *stock) 1770 { 1771 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1772 struct mem_cgroup *old = READ_ONCE(stock->cached); 1773 1774 if (!old) 1775 return; 1776 1777 if (stock_pages) { 1778 page_counter_uncharge(&old->memory, stock_pages); 1779 if (do_memsw_account()) 1780 page_counter_uncharge(&old->memsw, stock_pages); 1781 1782 WRITE_ONCE(stock->nr_pages, 0); 1783 } 1784 1785 css_put(&old->css); 1786 WRITE_ONCE(stock->cached, NULL); 1787 } 1788 1789 static void drain_local_stock(struct work_struct *dummy) 1790 { 1791 struct memcg_stock_pcp *stock; 1792 struct obj_cgroup *old = NULL; 1793 unsigned long flags; 1794 1795 /* 1796 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1797 * drain_stock races is that we always operate on local CPU stock 1798 * here with IRQ disabled 1799 */ 1800 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1801 1802 stock = this_cpu_ptr(&memcg_stock); 1803 old = drain_obj_stock(stock); 1804 drain_stock(stock); 1805 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1806 1807 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1808 obj_cgroup_put(old); 1809 } 1810 1811 /* 1812 * Cache charges(val) to local per_cpu area. 1813 * This will be consumed by consume_stock() function, later. 1814 */ 1815 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1816 { 1817 struct memcg_stock_pcp *stock; 1818 unsigned int stock_pages; 1819 1820 stock = this_cpu_ptr(&memcg_stock); 1821 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1822 drain_stock(stock); 1823 css_get(&memcg->css); 1824 WRITE_ONCE(stock->cached, memcg); 1825 } 1826 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1827 WRITE_ONCE(stock->nr_pages, stock_pages); 1828 1829 if (stock_pages > MEMCG_CHARGE_BATCH) 1830 drain_stock(stock); 1831 } 1832 1833 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1834 { 1835 unsigned long flags; 1836 1837 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1838 __refill_stock(memcg, nr_pages); 1839 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1840 } 1841 1842 /* 1843 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1844 * of the hierarchy under it. 1845 */ 1846 void drain_all_stock(struct mem_cgroup *root_memcg) 1847 { 1848 int cpu, curcpu; 1849 1850 /* If someone's already draining, avoid adding running more workers. */ 1851 if (!mutex_trylock(&percpu_charge_mutex)) 1852 return; 1853 /* 1854 * Notify other cpus that system-wide "drain" is running 1855 * We do not care about races with the cpu hotplug because cpu down 1856 * as well as workers from this path always operate on the local 1857 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1858 */ 1859 migrate_disable(); 1860 curcpu = smp_processor_id(); 1861 for_each_online_cpu(cpu) { 1862 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1863 struct mem_cgroup *memcg; 1864 bool flush = false; 1865 1866 rcu_read_lock(); 1867 memcg = READ_ONCE(stock->cached); 1868 if (memcg && READ_ONCE(stock->nr_pages) && 1869 mem_cgroup_is_descendant(memcg, root_memcg)) 1870 flush = true; 1871 else if (obj_stock_flush_required(stock, root_memcg)) 1872 flush = true; 1873 rcu_read_unlock(); 1874 1875 if (flush && 1876 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1877 if (cpu == curcpu) 1878 drain_local_stock(&stock->work); 1879 else if (!cpu_is_isolated(cpu)) 1880 schedule_work_on(cpu, &stock->work); 1881 } 1882 } 1883 migrate_enable(); 1884 mutex_unlock(&percpu_charge_mutex); 1885 } 1886 1887 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1888 { 1889 struct memcg_stock_pcp *stock; 1890 1891 stock = &per_cpu(memcg_stock, cpu); 1892 drain_stock(stock); 1893 1894 return 0; 1895 } 1896 1897 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1898 unsigned int nr_pages, 1899 gfp_t gfp_mask) 1900 { 1901 unsigned long nr_reclaimed = 0; 1902 1903 do { 1904 unsigned long pflags; 1905 1906 if (page_counter_read(&memcg->memory) <= 1907 READ_ONCE(memcg->memory.high)) 1908 continue; 1909 1910 memcg_memory_event(memcg, MEMCG_HIGH); 1911 1912 psi_memstall_enter(&pflags); 1913 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1914 gfp_mask, 1915 MEMCG_RECLAIM_MAY_SWAP, 1916 NULL); 1917 psi_memstall_leave(&pflags); 1918 } while ((memcg = parent_mem_cgroup(memcg)) && 1919 !mem_cgroup_is_root(memcg)); 1920 1921 return nr_reclaimed; 1922 } 1923 1924 static void high_work_func(struct work_struct *work) 1925 { 1926 struct mem_cgroup *memcg; 1927 1928 memcg = container_of(work, struct mem_cgroup, high_work); 1929 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1930 } 1931 1932 /* 1933 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1934 * enough to still cause a significant slowdown in most cases, while still 1935 * allowing diagnostics and tracing to proceed without becoming stuck. 1936 */ 1937 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1938 1939 /* 1940 * When calculating the delay, we use these either side of the exponentiation to 1941 * maintain precision and scale to a reasonable number of jiffies (see the table 1942 * below. 1943 * 1944 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1945 * overage ratio to a delay. 1946 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1947 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1948 * to produce a reasonable delay curve. 1949 * 1950 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1951 * reasonable delay curve compared to precision-adjusted overage, not 1952 * penalising heavily at first, but still making sure that growth beyond the 1953 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1954 * example, with a high of 100 megabytes: 1955 * 1956 * +-------+------------------------+ 1957 * | usage | time to allocate in ms | 1958 * +-------+------------------------+ 1959 * | 100M | 0 | 1960 * | 101M | 6 | 1961 * | 102M | 25 | 1962 * | 103M | 57 | 1963 * | 104M | 102 | 1964 * | 105M | 159 | 1965 * | 106M | 230 | 1966 * | 107M | 313 | 1967 * | 108M | 409 | 1968 * | 109M | 518 | 1969 * | 110M | 639 | 1970 * | 111M | 774 | 1971 * | 112M | 921 | 1972 * | 113M | 1081 | 1973 * | 114M | 1254 | 1974 * | 115M | 1439 | 1975 * | 116M | 1638 | 1976 * | 117M | 1849 | 1977 * | 118M | 2000 | 1978 * | 119M | 2000 | 1979 * | 120M | 2000 | 1980 * +-------+------------------------+ 1981 */ 1982 #define MEMCG_DELAY_PRECISION_SHIFT 20 1983 #define MEMCG_DELAY_SCALING_SHIFT 14 1984 1985 static u64 calculate_overage(unsigned long usage, unsigned long high) 1986 { 1987 u64 overage; 1988 1989 if (usage <= high) 1990 return 0; 1991 1992 /* 1993 * Prevent division by 0 in overage calculation by acting as if 1994 * it was a threshold of 1 page 1995 */ 1996 high = max(high, 1UL); 1997 1998 overage = usage - high; 1999 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2000 return div64_u64(overage, high); 2001 } 2002 2003 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2004 { 2005 u64 overage, max_overage = 0; 2006 2007 do { 2008 overage = calculate_overage(page_counter_read(&memcg->memory), 2009 READ_ONCE(memcg->memory.high)); 2010 max_overage = max(overage, max_overage); 2011 } while ((memcg = parent_mem_cgroup(memcg)) && 2012 !mem_cgroup_is_root(memcg)); 2013 2014 return max_overage; 2015 } 2016 2017 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2018 { 2019 u64 overage, max_overage = 0; 2020 2021 do { 2022 overage = calculate_overage(page_counter_read(&memcg->swap), 2023 READ_ONCE(memcg->swap.high)); 2024 if (overage) 2025 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2026 max_overage = max(overage, max_overage); 2027 } while ((memcg = parent_mem_cgroup(memcg)) && 2028 !mem_cgroup_is_root(memcg)); 2029 2030 return max_overage; 2031 } 2032 2033 /* 2034 * Get the number of jiffies that we should penalise a mischievous cgroup which 2035 * is exceeding its memory.high by checking both it and its ancestors. 2036 */ 2037 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2038 unsigned int nr_pages, 2039 u64 max_overage) 2040 { 2041 unsigned long penalty_jiffies; 2042 2043 if (!max_overage) 2044 return 0; 2045 2046 /* 2047 * We use overage compared to memory.high to calculate the number of 2048 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2049 * fairly lenient on small overages, and increasingly harsh when the 2050 * memcg in question makes it clear that it has no intention of stopping 2051 * its crazy behaviour, so we exponentially increase the delay based on 2052 * overage amount. 2053 */ 2054 penalty_jiffies = max_overage * max_overage * HZ; 2055 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2056 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2057 2058 /* 2059 * Factor in the task's own contribution to the overage, such that four 2060 * N-sized allocations are throttled approximately the same as one 2061 * 4N-sized allocation. 2062 * 2063 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2064 * larger the current charge patch is than that. 2065 */ 2066 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2067 } 2068 2069 /* 2070 * Reclaims memory over the high limit. Called directly from 2071 * try_charge() (context permitting), as well as from the userland 2072 * return path where reclaim is always able to block. 2073 */ 2074 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2075 { 2076 unsigned long penalty_jiffies; 2077 unsigned long pflags; 2078 unsigned long nr_reclaimed; 2079 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2080 int nr_retries = MAX_RECLAIM_RETRIES; 2081 struct mem_cgroup *memcg; 2082 bool in_retry = false; 2083 2084 if (likely(!nr_pages)) 2085 return; 2086 2087 memcg = get_mem_cgroup_from_mm(current->mm); 2088 current->memcg_nr_pages_over_high = 0; 2089 2090 retry_reclaim: 2091 /* 2092 * Bail if the task is already exiting. Unlike memory.max, 2093 * memory.high enforcement isn't as strict, and there is no 2094 * OOM killer involved, which means the excess could already 2095 * be much bigger (and still growing) than it could for 2096 * memory.max; the dying task could get stuck in fruitless 2097 * reclaim for a long time, which isn't desirable. 2098 */ 2099 if (task_is_dying()) 2100 goto out; 2101 2102 /* 2103 * The allocating task should reclaim at least the batch size, but for 2104 * subsequent retries we only want to do what's necessary to prevent oom 2105 * or breaching resource isolation. 2106 * 2107 * This is distinct from memory.max or page allocator behaviour because 2108 * memory.high is currently batched, whereas memory.max and the page 2109 * allocator run every time an allocation is made. 2110 */ 2111 nr_reclaimed = reclaim_high(memcg, 2112 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2113 gfp_mask); 2114 2115 /* 2116 * memory.high is breached and reclaim is unable to keep up. Throttle 2117 * allocators proactively to slow down excessive growth. 2118 */ 2119 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2120 mem_find_max_overage(memcg)); 2121 2122 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2123 swap_find_max_overage(memcg)); 2124 2125 /* 2126 * Clamp the max delay per usermode return so as to still keep the 2127 * application moving forwards and also permit diagnostics, albeit 2128 * extremely slowly. 2129 */ 2130 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2131 2132 /* 2133 * Don't sleep if the amount of jiffies this memcg owes us is so low 2134 * that it's not even worth doing, in an attempt to be nice to those who 2135 * go only a small amount over their memory.high value and maybe haven't 2136 * been aggressively reclaimed enough yet. 2137 */ 2138 if (penalty_jiffies <= HZ / 100) 2139 goto out; 2140 2141 /* 2142 * If reclaim is making forward progress but we're still over 2143 * memory.high, we want to encourage that rather than doing allocator 2144 * throttling. 2145 */ 2146 if (nr_reclaimed || nr_retries--) { 2147 in_retry = true; 2148 goto retry_reclaim; 2149 } 2150 2151 /* 2152 * Reclaim didn't manage to push usage below the limit, slow 2153 * this allocating task down. 2154 * 2155 * If we exit early, we're guaranteed to die (since 2156 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2157 * need to account for any ill-begotten jiffies to pay them off later. 2158 */ 2159 psi_memstall_enter(&pflags); 2160 schedule_timeout_killable(penalty_jiffies); 2161 psi_memstall_leave(&pflags); 2162 2163 out: 2164 css_put(&memcg->css); 2165 } 2166 2167 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2168 unsigned int nr_pages) 2169 { 2170 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2171 int nr_retries = MAX_RECLAIM_RETRIES; 2172 struct mem_cgroup *mem_over_limit; 2173 struct page_counter *counter; 2174 unsigned long nr_reclaimed; 2175 bool passed_oom = false; 2176 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2177 bool drained = false; 2178 bool raised_max_event = false; 2179 unsigned long pflags; 2180 2181 retry: 2182 if (consume_stock(memcg, nr_pages)) 2183 return 0; 2184 2185 if (!do_memsw_account() || 2186 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2187 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2188 goto done_restock; 2189 if (do_memsw_account()) 2190 page_counter_uncharge(&memcg->memsw, batch); 2191 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2192 } else { 2193 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2194 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2195 } 2196 2197 if (batch > nr_pages) { 2198 batch = nr_pages; 2199 goto retry; 2200 } 2201 2202 /* 2203 * Prevent unbounded recursion when reclaim operations need to 2204 * allocate memory. This might exceed the limits temporarily, 2205 * but we prefer facilitating memory reclaim and getting back 2206 * under the limit over triggering OOM kills in these cases. 2207 */ 2208 if (unlikely(current->flags & PF_MEMALLOC)) 2209 goto force; 2210 2211 if (unlikely(task_in_memcg_oom(current))) 2212 goto nomem; 2213 2214 if (!gfpflags_allow_blocking(gfp_mask)) 2215 goto nomem; 2216 2217 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2218 raised_max_event = true; 2219 2220 psi_memstall_enter(&pflags); 2221 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2222 gfp_mask, reclaim_options, NULL); 2223 psi_memstall_leave(&pflags); 2224 2225 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2226 goto retry; 2227 2228 if (!drained) { 2229 drain_all_stock(mem_over_limit); 2230 drained = true; 2231 goto retry; 2232 } 2233 2234 if (gfp_mask & __GFP_NORETRY) 2235 goto nomem; 2236 /* 2237 * Even though the limit is exceeded at this point, reclaim 2238 * may have been able to free some pages. Retry the charge 2239 * before killing the task. 2240 * 2241 * Only for regular pages, though: huge pages are rather 2242 * unlikely to succeed so close to the limit, and we fall back 2243 * to regular pages anyway in case of failure. 2244 */ 2245 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2246 goto retry; 2247 /* 2248 * At task move, charge accounts can be doubly counted. So, it's 2249 * better to wait until the end of task_move if something is going on. 2250 */ 2251 if (memcg1_wait_acct_move(mem_over_limit)) 2252 goto retry; 2253 2254 if (nr_retries--) 2255 goto retry; 2256 2257 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2258 goto nomem; 2259 2260 /* Avoid endless loop for tasks bypassed by the oom killer */ 2261 if (passed_oom && task_is_dying()) 2262 goto nomem; 2263 2264 /* 2265 * keep retrying as long as the memcg oom killer is able to make 2266 * a forward progress or bypass the charge if the oom killer 2267 * couldn't make any progress. 2268 */ 2269 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2270 get_order(nr_pages * PAGE_SIZE))) { 2271 passed_oom = true; 2272 nr_retries = MAX_RECLAIM_RETRIES; 2273 goto retry; 2274 } 2275 nomem: 2276 /* 2277 * Memcg doesn't have a dedicated reserve for atomic 2278 * allocations. But like the global atomic pool, we need to 2279 * put the burden of reclaim on regular allocation requests 2280 * and let these go through as privileged allocations. 2281 */ 2282 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2283 return -ENOMEM; 2284 force: 2285 /* 2286 * If the allocation has to be enforced, don't forget to raise 2287 * a MEMCG_MAX event. 2288 */ 2289 if (!raised_max_event) 2290 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2291 2292 /* 2293 * The allocation either can't fail or will lead to more memory 2294 * being freed very soon. Allow memory usage go over the limit 2295 * temporarily by force charging it. 2296 */ 2297 page_counter_charge(&memcg->memory, nr_pages); 2298 if (do_memsw_account()) 2299 page_counter_charge(&memcg->memsw, nr_pages); 2300 2301 return 0; 2302 2303 done_restock: 2304 if (batch > nr_pages) 2305 refill_stock(memcg, batch - nr_pages); 2306 2307 /* 2308 * If the hierarchy is above the normal consumption range, schedule 2309 * reclaim on returning to userland. We can perform reclaim here 2310 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2311 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2312 * not recorded as it most likely matches current's and won't 2313 * change in the meantime. As high limit is checked again before 2314 * reclaim, the cost of mismatch is negligible. 2315 */ 2316 do { 2317 bool mem_high, swap_high; 2318 2319 mem_high = page_counter_read(&memcg->memory) > 2320 READ_ONCE(memcg->memory.high); 2321 swap_high = page_counter_read(&memcg->swap) > 2322 READ_ONCE(memcg->swap.high); 2323 2324 /* Don't bother a random interrupted task */ 2325 if (!in_task()) { 2326 if (mem_high) { 2327 schedule_work(&memcg->high_work); 2328 break; 2329 } 2330 continue; 2331 } 2332 2333 if (mem_high || swap_high) { 2334 /* 2335 * The allocating tasks in this cgroup will need to do 2336 * reclaim or be throttled to prevent further growth 2337 * of the memory or swap footprints. 2338 * 2339 * Target some best-effort fairness between the tasks, 2340 * and distribute reclaim work and delay penalties 2341 * based on how much each task is actually allocating. 2342 */ 2343 current->memcg_nr_pages_over_high += batch; 2344 set_notify_resume(current); 2345 break; 2346 } 2347 } while ((memcg = parent_mem_cgroup(memcg))); 2348 2349 /* 2350 * Reclaim is set up above to be called from the userland 2351 * return path. But also attempt synchronous reclaim to avoid 2352 * excessive overrun while the task is still inside the 2353 * kernel. If this is successful, the return path will see it 2354 * when it rechecks the overage and simply bail out. 2355 */ 2356 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2357 !(current->flags & PF_MEMALLOC) && 2358 gfpflags_allow_blocking(gfp_mask)) 2359 mem_cgroup_handle_over_high(gfp_mask); 2360 return 0; 2361 } 2362 2363 /** 2364 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2365 * @memcg: memcg previously charged. 2366 * @nr_pages: number of pages previously charged. 2367 */ 2368 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2369 { 2370 if (mem_cgroup_is_root(memcg)) 2371 return; 2372 2373 page_counter_uncharge(&memcg->memory, nr_pages); 2374 if (do_memsw_account()) 2375 page_counter_uncharge(&memcg->memsw, nr_pages); 2376 } 2377 2378 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2379 { 2380 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2381 /* 2382 * Any of the following ensures page's memcg stability: 2383 * 2384 * - the page lock 2385 * - LRU isolation 2386 * - folio_memcg_lock() 2387 * - exclusive reference 2388 * - mem_cgroup_trylock_pages() 2389 */ 2390 folio->memcg_data = (unsigned long)memcg; 2391 } 2392 2393 /** 2394 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2395 * @folio: folio to commit the charge to. 2396 * @memcg: memcg previously charged. 2397 */ 2398 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2399 { 2400 css_get(&memcg->css); 2401 commit_charge(folio, memcg); 2402 memcg1_commit_charge(folio, memcg); 2403 } 2404 2405 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2406 struct pglist_data *pgdat, 2407 enum node_stat_item idx, int nr) 2408 { 2409 struct mem_cgroup *memcg; 2410 struct lruvec *lruvec; 2411 2412 rcu_read_lock(); 2413 memcg = obj_cgroup_memcg(objcg); 2414 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2415 __mod_memcg_lruvec_state(lruvec, idx, nr); 2416 rcu_read_unlock(); 2417 } 2418 2419 static __always_inline 2420 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2421 { 2422 /* 2423 * Slab objects are accounted individually, not per-page. 2424 * Memcg membership data for each individual object is saved in 2425 * slab->obj_exts. 2426 */ 2427 if (folio_test_slab(folio)) { 2428 struct slabobj_ext *obj_exts; 2429 struct slab *slab; 2430 unsigned int off; 2431 2432 slab = folio_slab(folio); 2433 obj_exts = slab_obj_exts(slab); 2434 if (!obj_exts) 2435 return NULL; 2436 2437 off = obj_to_index(slab->slab_cache, slab, p); 2438 if (obj_exts[off].objcg) 2439 return obj_cgroup_memcg(obj_exts[off].objcg); 2440 2441 return NULL; 2442 } 2443 2444 /* 2445 * folio_memcg_check() is used here, because in theory we can encounter 2446 * a folio where the slab flag has been cleared already, but 2447 * slab->obj_exts has not been freed yet 2448 * folio_memcg_check() will guarantee that a proper memory 2449 * cgroup pointer or NULL will be returned. 2450 */ 2451 return folio_memcg_check(folio); 2452 } 2453 2454 /* 2455 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2456 * It is not suitable for objects allocated using vmalloc(). 2457 * 2458 * A passed kernel object must be a slab object or a generic kernel page. 2459 * 2460 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2461 * cgroup_mutex, etc. 2462 */ 2463 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2464 { 2465 if (mem_cgroup_disabled()) 2466 return NULL; 2467 2468 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2469 } 2470 2471 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2472 { 2473 struct obj_cgroup *objcg = NULL; 2474 2475 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2476 objcg = rcu_dereference(memcg->objcg); 2477 if (likely(objcg && obj_cgroup_tryget(objcg))) 2478 break; 2479 objcg = NULL; 2480 } 2481 return objcg; 2482 } 2483 2484 static struct obj_cgroup *current_objcg_update(void) 2485 { 2486 struct mem_cgroup *memcg; 2487 struct obj_cgroup *old, *objcg = NULL; 2488 2489 do { 2490 /* Atomically drop the update bit. */ 2491 old = xchg(¤t->objcg, NULL); 2492 if (old) { 2493 old = (struct obj_cgroup *) 2494 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2495 obj_cgroup_put(old); 2496 2497 old = NULL; 2498 } 2499 2500 /* If new objcg is NULL, no reason for the second atomic update. */ 2501 if (!current->mm || (current->flags & PF_KTHREAD)) 2502 return NULL; 2503 2504 /* 2505 * Release the objcg pointer from the previous iteration, 2506 * if try_cmpxcg() below fails. 2507 */ 2508 if (unlikely(objcg)) { 2509 obj_cgroup_put(objcg); 2510 objcg = NULL; 2511 } 2512 2513 /* 2514 * Obtain the new objcg pointer. The current task can be 2515 * asynchronously moved to another memcg and the previous 2516 * memcg can be offlined. So let's get the memcg pointer 2517 * and try get a reference to objcg under a rcu read lock. 2518 */ 2519 2520 rcu_read_lock(); 2521 memcg = mem_cgroup_from_task(current); 2522 objcg = __get_obj_cgroup_from_memcg(memcg); 2523 rcu_read_unlock(); 2524 2525 /* 2526 * Try set up a new objcg pointer atomically. If it 2527 * fails, it means the update flag was set concurrently, so 2528 * the whole procedure should be repeated. 2529 */ 2530 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2531 2532 return objcg; 2533 } 2534 2535 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2536 { 2537 struct mem_cgroup *memcg; 2538 struct obj_cgroup *objcg; 2539 2540 if (in_task()) { 2541 memcg = current->active_memcg; 2542 if (unlikely(memcg)) 2543 goto from_memcg; 2544 2545 objcg = READ_ONCE(current->objcg); 2546 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2547 objcg = current_objcg_update(); 2548 /* 2549 * Objcg reference is kept by the task, so it's safe 2550 * to use the objcg by the current task. 2551 */ 2552 return objcg; 2553 } 2554 2555 memcg = this_cpu_read(int_active_memcg); 2556 if (unlikely(memcg)) 2557 goto from_memcg; 2558 2559 return NULL; 2560 2561 from_memcg: 2562 objcg = NULL; 2563 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2564 /* 2565 * Memcg pointer is protected by scope (see set_active_memcg()) 2566 * and is pinning the corresponding objcg, so objcg can't go 2567 * away and can be used within the scope without any additional 2568 * protection. 2569 */ 2570 objcg = rcu_dereference_check(memcg->objcg, 1); 2571 if (likely(objcg)) 2572 break; 2573 } 2574 2575 return objcg; 2576 } 2577 2578 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2579 { 2580 struct obj_cgroup *objcg; 2581 2582 if (!memcg_kmem_online()) 2583 return NULL; 2584 2585 if (folio_memcg_kmem(folio)) { 2586 objcg = __folio_objcg(folio); 2587 obj_cgroup_get(objcg); 2588 } else { 2589 struct mem_cgroup *memcg; 2590 2591 rcu_read_lock(); 2592 memcg = __folio_memcg(folio); 2593 if (memcg) 2594 objcg = __get_obj_cgroup_from_memcg(memcg); 2595 else 2596 objcg = NULL; 2597 rcu_read_unlock(); 2598 } 2599 return objcg; 2600 } 2601 2602 /* 2603 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2604 * @objcg: object cgroup to uncharge 2605 * @nr_pages: number of pages to uncharge 2606 */ 2607 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2608 unsigned int nr_pages) 2609 { 2610 struct mem_cgroup *memcg; 2611 2612 memcg = get_mem_cgroup_from_objcg(objcg); 2613 2614 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2615 memcg1_account_kmem(memcg, -nr_pages); 2616 refill_stock(memcg, nr_pages); 2617 2618 css_put(&memcg->css); 2619 } 2620 2621 /* 2622 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2623 * @objcg: object cgroup to charge 2624 * @gfp: reclaim mode 2625 * @nr_pages: number of pages to charge 2626 * 2627 * Returns 0 on success, an error code on failure. 2628 */ 2629 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2630 unsigned int nr_pages) 2631 { 2632 struct mem_cgroup *memcg; 2633 int ret; 2634 2635 memcg = get_mem_cgroup_from_objcg(objcg); 2636 2637 ret = try_charge_memcg(memcg, gfp, nr_pages); 2638 if (ret) 2639 goto out; 2640 2641 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2642 memcg1_account_kmem(memcg, nr_pages); 2643 out: 2644 css_put(&memcg->css); 2645 2646 return ret; 2647 } 2648 2649 /** 2650 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2651 * @page: page to charge 2652 * @gfp: reclaim mode 2653 * @order: allocation order 2654 * 2655 * Returns 0 on success, an error code on failure. 2656 */ 2657 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2658 { 2659 struct obj_cgroup *objcg; 2660 int ret = 0; 2661 2662 objcg = current_obj_cgroup(); 2663 if (objcg) { 2664 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2665 if (!ret) { 2666 obj_cgroup_get(objcg); 2667 page->memcg_data = (unsigned long)objcg | 2668 MEMCG_DATA_KMEM; 2669 return 0; 2670 } 2671 } 2672 return ret; 2673 } 2674 2675 /** 2676 * __memcg_kmem_uncharge_page: uncharge a kmem page 2677 * @page: page to uncharge 2678 * @order: allocation order 2679 */ 2680 void __memcg_kmem_uncharge_page(struct page *page, int order) 2681 { 2682 struct folio *folio = page_folio(page); 2683 struct obj_cgroup *objcg; 2684 unsigned int nr_pages = 1 << order; 2685 2686 if (!folio_memcg_kmem(folio)) 2687 return; 2688 2689 objcg = __folio_objcg(folio); 2690 obj_cgroup_uncharge_pages(objcg, nr_pages); 2691 folio->memcg_data = 0; 2692 obj_cgroup_put(objcg); 2693 } 2694 2695 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2696 enum node_stat_item idx, int nr) 2697 { 2698 struct memcg_stock_pcp *stock; 2699 struct obj_cgroup *old = NULL; 2700 unsigned long flags; 2701 int *bytes; 2702 2703 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2704 stock = this_cpu_ptr(&memcg_stock); 2705 2706 /* 2707 * Save vmstat data in stock and skip vmstat array update unless 2708 * accumulating over a page of vmstat data or when pgdat or idx 2709 * changes. 2710 */ 2711 if (READ_ONCE(stock->cached_objcg) != objcg) { 2712 old = drain_obj_stock(stock); 2713 obj_cgroup_get(objcg); 2714 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2715 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2716 WRITE_ONCE(stock->cached_objcg, objcg); 2717 stock->cached_pgdat = pgdat; 2718 } else if (stock->cached_pgdat != pgdat) { 2719 /* Flush the existing cached vmstat data */ 2720 struct pglist_data *oldpg = stock->cached_pgdat; 2721 2722 if (stock->nr_slab_reclaimable_b) { 2723 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2724 stock->nr_slab_reclaimable_b); 2725 stock->nr_slab_reclaimable_b = 0; 2726 } 2727 if (stock->nr_slab_unreclaimable_b) { 2728 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2729 stock->nr_slab_unreclaimable_b); 2730 stock->nr_slab_unreclaimable_b = 0; 2731 } 2732 stock->cached_pgdat = pgdat; 2733 } 2734 2735 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2736 : &stock->nr_slab_unreclaimable_b; 2737 /* 2738 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2739 * cached locally at least once before pushing it out. 2740 */ 2741 if (!*bytes) { 2742 *bytes = nr; 2743 nr = 0; 2744 } else { 2745 *bytes += nr; 2746 if (abs(*bytes) > PAGE_SIZE) { 2747 nr = *bytes; 2748 *bytes = 0; 2749 } else { 2750 nr = 0; 2751 } 2752 } 2753 if (nr) 2754 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2755 2756 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2757 obj_cgroup_put(old); 2758 } 2759 2760 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2761 { 2762 struct memcg_stock_pcp *stock; 2763 unsigned long flags; 2764 bool ret = false; 2765 2766 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2767 2768 stock = this_cpu_ptr(&memcg_stock); 2769 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2770 stock->nr_bytes -= nr_bytes; 2771 ret = true; 2772 } 2773 2774 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2775 2776 return ret; 2777 } 2778 2779 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2780 { 2781 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2782 2783 if (!old) 2784 return NULL; 2785 2786 if (stock->nr_bytes) { 2787 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2788 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2789 2790 if (nr_pages) { 2791 struct mem_cgroup *memcg; 2792 2793 memcg = get_mem_cgroup_from_objcg(old); 2794 2795 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2796 memcg1_account_kmem(memcg, -nr_pages); 2797 __refill_stock(memcg, nr_pages); 2798 2799 css_put(&memcg->css); 2800 } 2801 2802 /* 2803 * The leftover is flushed to the centralized per-memcg value. 2804 * On the next attempt to refill obj stock it will be moved 2805 * to a per-cpu stock (probably, on an other CPU), see 2806 * refill_obj_stock(). 2807 * 2808 * How often it's flushed is a trade-off between the memory 2809 * limit enforcement accuracy and potential CPU contention, 2810 * so it might be changed in the future. 2811 */ 2812 atomic_add(nr_bytes, &old->nr_charged_bytes); 2813 stock->nr_bytes = 0; 2814 } 2815 2816 /* 2817 * Flush the vmstat data in current stock 2818 */ 2819 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2820 if (stock->nr_slab_reclaimable_b) { 2821 __mod_objcg_mlstate(old, stock->cached_pgdat, 2822 NR_SLAB_RECLAIMABLE_B, 2823 stock->nr_slab_reclaimable_b); 2824 stock->nr_slab_reclaimable_b = 0; 2825 } 2826 if (stock->nr_slab_unreclaimable_b) { 2827 __mod_objcg_mlstate(old, stock->cached_pgdat, 2828 NR_SLAB_UNRECLAIMABLE_B, 2829 stock->nr_slab_unreclaimable_b); 2830 stock->nr_slab_unreclaimable_b = 0; 2831 } 2832 stock->cached_pgdat = NULL; 2833 } 2834 2835 WRITE_ONCE(stock->cached_objcg, NULL); 2836 /* 2837 * The `old' objects needs to be released by the caller via 2838 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2839 */ 2840 return old; 2841 } 2842 2843 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2844 struct mem_cgroup *root_memcg) 2845 { 2846 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2847 struct mem_cgroup *memcg; 2848 2849 if (objcg) { 2850 memcg = obj_cgroup_memcg(objcg); 2851 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2852 return true; 2853 } 2854 2855 return false; 2856 } 2857 2858 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2859 bool allow_uncharge) 2860 { 2861 struct memcg_stock_pcp *stock; 2862 struct obj_cgroup *old = NULL; 2863 unsigned long flags; 2864 unsigned int nr_pages = 0; 2865 2866 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2867 2868 stock = this_cpu_ptr(&memcg_stock); 2869 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2870 old = drain_obj_stock(stock); 2871 obj_cgroup_get(objcg); 2872 WRITE_ONCE(stock->cached_objcg, objcg); 2873 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2874 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2875 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2876 } 2877 stock->nr_bytes += nr_bytes; 2878 2879 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2880 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2881 stock->nr_bytes &= (PAGE_SIZE - 1); 2882 } 2883 2884 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2885 obj_cgroup_put(old); 2886 2887 if (nr_pages) 2888 obj_cgroup_uncharge_pages(objcg, nr_pages); 2889 } 2890 2891 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2892 { 2893 unsigned int nr_pages, nr_bytes; 2894 int ret; 2895 2896 if (consume_obj_stock(objcg, size)) 2897 return 0; 2898 2899 /* 2900 * In theory, objcg->nr_charged_bytes can have enough 2901 * pre-charged bytes to satisfy the allocation. However, 2902 * flushing objcg->nr_charged_bytes requires two atomic 2903 * operations, and objcg->nr_charged_bytes can't be big. 2904 * The shared objcg->nr_charged_bytes can also become a 2905 * performance bottleneck if all tasks of the same memcg are 2906 * trying to update it. So it's better to ignore it and try 2907 * grab some new pages. The stock's nr_bytes will be flushed to 2908 * objcg->nr_charged_bytes later on when objcg changes. 2909 * 2910 * The stock's nr_bytes may contain enough pre-charged bytes 2911 * to allow one less page from being charged, but we can't rely 2912 * on the pre-charged bytes not being changed outside of 2913 * consume_obj_stock() or refill_obj_stock(). So ignore those 2914 * pre-charged bytes as well when charging pages. To avoid a 2915 * page uncharge right after a page charge, we set the 2916 * allow_uncharge flag to false when calling refill_obj_stock() 2917 * to temporarily allow the pre-charged bytes to exceed the page 2918 * size limit. The maximum reachable value of the pre-charged 2919 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2920 * race. 2921 */ 2922 nr_pages = size >> PAGE_SHIFT; 2923 nr_bytes = size & (PAGE_SIZE - 1); 2924 2925 if (nr_bytes) 2926 nr_pages += 1; 2927 2928 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2929 if (!ret && nr_bytes) 2930 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2931 2932 return ret; 2933 } 2934 2935 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2936 { 2937 refill_obj_stock(objcg, size, true); 2938 } 2939 2940 static inline size_t obj_full_size(struct kmem_cache *s) 2941 { 2942 /* 2943 * For each accounted object there is an extra space which is used 2944 * to store obj_cgroup membership. Charge it too. 2945 */ 2946 return s->size + sizeof(struct obj_cgroup *); 2947 } 2948 2949 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2950 gfp_t flags, size_t size, void **p) 2951 { 2952 struct obj_cgroup *objcg; 2953 struct slab *slab; 2954 unsigned long off; 2955 size_t i; 2956 2957 /* 2958 * The obtained objcg pointer is safe to use within the current scope, 2959 * defined by current task or set_active_memcg() pair. 2960 * obj_cgroup_get() is used to get a permanent reference. 2961 */ 2962 objcg = current_obj_cgroup(); 2963 if (!objcg) 2964 return true; 2965 2966 /* 2967 * slab_alloc_node() avoids the NULL check, so we might be called with a 2968 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2969 * the whole requested size. 2970 * return success as there's nothing to free back 2971 */ 2972 if (unlikely(*p == NULL)) 2973 return true; 2974 2975 flags &= gfp_allowed_mask; 2976 2977 if (lru) { 2978 int ret; 2979 struct mem_cgroup *memcg; 2980 2981 memcg = get_mem_cgroup_from_objcg(objcg); 2982 ret = memcg_list_lru_alloc(memcg, lru, flags); 2983 css_put(&memcg->css); 2984 2985 if (ret) 2986 return false; 2987 } 2988 2989 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2990 return false; 2991 2992 for (i = 0; i < size; i++) { 2993 slab = virt_to_slab(p[i]); 2994 2995 if (!slab_obj_exts(slab) && 2996 alloc_slab_obj_exts(slab, s, flags, false)) { 2997 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2998 continue; 2999 } 3000 3001 off = obj_to_index(s, slab, p[i]); 3002 obj_cgroup_get(objcg); 3003 slab_obj_exts(slab)[off].objcg = objcg; 3004 mod_objcg_state(objcg, slab_pgdat(slab), 3005 cache_vmstat_idx(s), obj_full_size(s)); 3006 } 3007 3008 return true; 3009 } 3010 3011 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3012 void **p, int objects, struct slabobj_ext *obj_exts) 3013 { 3014 for (int i = 0; i < objects; i++) { 3015 struct obj_cgroup *objcg; 3016 unsigned int off; 3017 3018 off = obj_to_index(s, slab, p[i]); 3019 objcg = obj_exts[off].objcg; 3020 if (!objcg) 3021 continue; 3022 3023 obj_exts[off].objcg = NULL; 3024 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3025 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3026 -obj_full_size(s)); 3027 obj_cgroup_put(objcg); 3028 } 3029 } 3030 3031 /* 3032 * Because folio_memcg(head) is not set on tails, set it now. 3033 */ 3034 void split_page_memcg(struct page *head, int old_order, int new_order) 3035 { 3036 struct folio *folio = page_folio(head); 3037 int i; 3038 unsigned int old_nr = 1 << old_order; 3039 unsigned int new_nr = 1 << new_order; 3040 3041 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3042 return; 3043 3044 for (i = new_nr; i < old_nr; i += new_nr) 3045 folio_page(folio, i)->memcg_data = folio->memcg_data; 3046 3047 if (folio_memcg_kmem(folio)) 3048 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3049 else 3050 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1); 3051 } 3052 3053 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3054 { 3055 unsigned long val; 3056 3057 if (mem_cgroup_is_root(memcg)) { 3058 /* 3059 * Approximate root's usage from global state. This isn't 3060 * perfect, but the root usage was always an approximation. 3061 */ 3062 val = global_node_page_state(NR_FILE_PAGES) + 3063 global_node_page_state(NR_ANON_MAPPED); 3064 if (swap) 3065 val += total_swap_pages - get_nr_swap_pages(); 3066 } else { 3067 if (!swap) 3068 val = page_counter_read(&memcg->memory); 3069 else 3070 val = page_counter_read(&memcg->memsw); 3071 } 3072 return val; 3073 } 3074 3075 static int memcg_online_kmem(struct mem_cgroup *memcg) 3076 { 3077 struct obj_cgroup *objcg; 3078 3079 if (mem_cgroup_kmem_disabled()) 3080 return 0; 3081 3082 if (unlikely(mem_cgroup_is_root(memcg))) 3083 return 0; 3084 3085 objcg = obj_cgroup_alloc(); 3086 if (!objcg) 3087 return -ENOMEM; 3088 3089 objcg->memcg = memcg; 3090 rcu_assign_pointer(memcg->objcg, objcg); 3091 obj_cgroup_get(objcg); 3092 memcg->orig_objcg = objcg; 3093 3094 static_branch_enable(&memcg_kmem_online_key); 3095 3096 memcg->kmemcg_id = memcg->id.id; 3097 3098 return 0; 3099 } 3100 3101 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3102 { 3103 struct mem_cgroup *parent; 3104 3105 if (mem_cgroup_kmem_disabled()) 3106 return; 3107 3108 if (unlikely(mem_cgroup_is_root(memcg))) 3109 return; 3110 3111 parent = parent_mem_cgroup(memcg); 3112 if (!parent) 3113 parent = root_mem_cgroup; 3114 3115 memcg_reparent_objcgs(memcg, parent); 3116 3117 /* 3118 * After we have finished memcg_reparent_objcgs(), all list_lrus 3119 * corresponding to this cgroup are guaranteed to remain empty. 3120 * The ordering is imposed by list_lru_node->lock taken by 3121 * memcg_reparent_list_lrus(). 3122 */ 3123 memcg_reparent_list_lrus(memcg, parent); 3124 } 3125 3126 #ifdef CONFIG_CGROUP_WRITEBACK 3127 3128 #include <trace/events/writeback.h> 3129 3130 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3131 { 3132 return wb_domain_init(&memcg->cgwb_domain, gfp); 3133 } 3134 3135 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3136 { 3137 wb_domain_exit(&memcg->cgwb_domain); 3138 } 3139 3140 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3141 { 3142 wb_domain_size_changed(&memcg->cgwb_domain); 3143 } 3144 3145 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3146 { 3147 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3148 3149 if (!memcg->css.parent) 3150 return NULL; 3151 3152 return &memcg->cgwb_domain; 3153 } 3154 3155 /** 3156 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3157 * @wb: bdi_writeback in question 3158 * @pfilepages: out parameter for number of file pages 3159 * @pheadroom: out parameter for number of allocatable pages according to memcg 3160 * @pdirty: out parameter for number of dirty pages 3161 * @pwriteback: out parameter for number of pages under writeback 3162 * 3163 * Determine the numbers of file, headroom, dirty, and writeback pages in 3164 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3165 * is a bit more involved. 3166 * 3167 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3168 * headroom is calculated as the lowest headroom of itself and the 3169 * ancestors. Note that this doesn't consider the actual amount of 3170 * available memory in the system. The caller should further cap 3171 * *@pheadroom accordingly. 3172 */ 3173 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3174 unsigned long *pheadroom, unsigned long *pdirty, 3175 unsigned long *pwriteback) 3176 { 3177 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3178 struct mem_cgroup *parent; 3179 3180 mem_cgroup_flush_stats_ratelimited(memcg); 3181 3182 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3183 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3184 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3185 memcg_page_state(memcg, NR_ACTIVE_FILE); 3186 3187 *pheadroom = PAGE_COUNTER_MAX; 3188 while ((parent = parent_mem_cgroup(memcg))) { 3189 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3190 READ_ONCE(memcg->memory.high)); 3191 unsigned long used = page_counter_read(&memcg->memory); 3192 3193 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3194 memcg = parent; 3195 } 3196 } 3197 3198 /* 3199 * Foreign dirty flushing 3200 * 3201 * There's an inherent mismatch between memcg and writeback. The former 3202 * tracks ownership per-page while the latter per-inode. This was a 3203 * deliberate design decision because honoring per-page ownership in the 3204 * writeback path is complicated, may lead to higher CPU and IO overheads 3205 * and deemed unnecessary given that write-sharing an inode across 3206 * different cgroups isn't a common use-case. 3207 * 3208 * Combined with inode majority-writer ownership switching, this works well 3209 * enough in most cases but there are some pathological cases. For 3210 * example, let's say there are two cgroups A and B which keep writing to 3211 * different but confined parts of the same inode. B owns the inode and 3212 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3213 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3214 * triggering background writeback. A will be slowed down without a way to 3215 * make writeback of the dirty pages happen. 3216 * 3217 * Conditions like the above can lead to a cgroup getting repeatedly and 3218 * severely throttled after making some progress after each 3219 * dirty_expire_interval while the underlying IO device is almost 3220 * completely idle. 3221 * 3222 * Solving this problem completely requires matching the ownership tracking 3223 * granularities between memcg and writeback in either direction. However, 3224 * the more egregious behaviors can be avoided by simply remembering the 3225 * most recent foreign dirtying events and initiating remote flushes on 3226 * them when local writeback isn't enough to keep the memory clean enough. 3227 * 3228 * The following two functions implement such mechanism. When a foreign 3229 * page - a page whose memcg and writeback ownerships don't match - is 3230 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3231 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3232 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3233 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3234 * foreign bdi_writebacks which haven't expired. Both the numbers of 3235 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3236 * limited to MEMCG_CGWB_FRN_CNT. 3237 * 3238 * The mechanism only remembers IDs and doesn't hold any object references. 3239 * As being wrong occasionally doesn't matter, updates and accesses to the 3240 * records are lockless and racy. 3241 */ 3242 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3243 struct bdi_writeback *wb) 3244 { 3245 struct mem_cgroup *memcg = folio_memcg(folio); 3246 struct memcg_cgwb_frn *frn; 3247 u64 now = get_jiffies_64(); 3248 u64 oldest_at = now; 3249 int oldest = -1; 3250 int i; 3251 3252 trace_track_foreign_dirty(folio, wb); 3253 3254 /* 3255 * Pick the slot to use. If there is already a slot for @wb, keep 3256 * using it. If not replace the oldest one which isn't being 3257 * written out. 3258 */ 3259 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3260 frn = &memcg->cgwb_frn[i]; 3261 if (frn->bdi_id == wb->bdi->id && 3262 frn->memcg_id == wb->memcg_css->id) 3263 break; 3264 if (time_before64(frn->at, oldest_at) && 3265 atomic_read(&frn->done.cnt) == 1) { 3266 oldest = i; 3267 oldest_at = frn->at; 3268 } 3269 } 3270 3271 if (i < MEMCG_CGWB_FRN_CNT) { 3272 /* 3273 * Re-using an existing one. Update timestamp lazily to 3274 * avoid making the cacheline hot. We want them to be 3275 * reasonably up-to-date and significantly shorter than 3276 * dirty_expire_interval as that's what expires the record. 3277 * Use the shorter of 1s and dirty_expire_interval / 8. 3278 */ 3279 unsigned long update_intv = 3280 min_t(unsigned long, HZ, 3281 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3282 3283 if (time_before64(frn->at, now - update_intv)) 3284 frn->at = now; 3285 } else if (oldest >= 0) { 3286 /* replace the oldest free one */ 3287 frn = &memcg->cgwb_frn[oldest]; 3288 frn->bdi_id = wb->bdi->id; 3289 frn->memcg_id = wb->memcg_css->id; 3290 frn->at = now; 3291 } 3292 } 3293 3294 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3295 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3296 { 3297 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3298 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3299 u64 now = jiffies_64; 3300 int i; 3301 3302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3303 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3304 3305 /* 3306 * If the record is older than dirty_expire_interval, 3307 * writeback on it has already started. No need to kick it 3308 * off again. Also, don't start a new one if there's 3309 * already one in flight. 3310 */ 3311 if (time_after64(frn->at, now - intv) && 3312 atomic_read(&frn->done.cnt) == 1) { 3313 frn->at = 0; 3314 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3315 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3316 WB_REASON_FOREIGN_FLUSH, 3317 &frn->done); 3318 } 3319 } 3320 } 3321 3322 #else /* CONFIG_CGROUP_WRITEBACK */ 3323 3324 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3325 { 3326 return 0; 3327 } 3328 3329 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3330 { 3331 } 3332 3333 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3334 { 3335 } 3336 3337 #endif /* CONFIG_CGROUP_WRITEBACK */ 3338 3339 /* 3340 * Private memory cgroup IDR 3341 * 3342 * Swap-out records and page cache shadow entries need to store memcg 3343 * references in constrained space, so we maintain an ID space that is 3344 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3345 * memory-controlled cgroups to 64k. 3346 * 3347 * However, there usually are many references to the offline CSS after 3348 * the cgroup has been destroyed, such as page cache or reclaimable 3349 * slab objects, that don't need to hang on to the ID. We want to keep 3350 * those dead CSS from occupying IDs, or we might quickly exhaust the 3351 * relatively small ID space and prevent the creation of new cgroups 3352 * even when there are much fewer than 64k cgroups - possibly none. 3353 * 3354 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3355 * be freed and recycled when it's no longer needed, which is usually 3356 * when the CSS is offlined. 3357 * 3358 * The only exception to that are records of swapped out tmpfs/shmem 3359 * pages that need to be attributed to live ancestors on swapin. But 3360 * those references are manageable from userspace. 3361 */ 3362 3363 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3364 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3365 3366 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3367 { 3368 if (memcg->id.id > 0) { 3369 xa_erase(&mem_cgroup_ids, memcg->id.id); 3370 memcg->id.id = 0; 3371 } 3372 } 3373 3374 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3375 unsigned int n) 3376 { 3377 refcount_add(n, &memcg->id.ref); 3378 } 3379 3380 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3381 { 3382 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3383 mem_cgroup_id_remove(memcg); 3384 3385 /* Memcg ID pins CSS */ 3386 css_put(&memcg->css); 3387 } 3388 } 3389 3390 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3391 { 3392 mem_cgroup_id_put_many(memcg, 1); 3393 } 3394 3395 /** 3396 * mem_cgroup_from_id - look up a memcg from a memcg id 3397 * @id: the memcg id to look up 3398 * 3399 * Caller must hold rcu_read_lock(). 3400 */ 3401 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3402 { 3403 WARN_ON_ONCE(!rcu_read_lock_held()); 3404 return xa_load(&mem_cgroup_ids, id); 3405 } 3406 3407 #ifdef CONFIG_SHRINKER_DEBUG 3408 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3409 { 3410 struct cgroup *cgrp; 3411 struct cgroup_subsys_state *css; 3412 struct mem_cgroup *memcg; 3413 3414 cgrp = cgroup_get_from_id(ino); 3415 if (IS_ERR(cgrp)) 3416 return ERR_CAST(cgrp); 3417 3418 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3419 if (css) 3420 memcg = container_of(css, struct mem_cgroup, css); 3421 else 3422 memcg = ERR_PTR(-ENOENT); 3423 3424 cgroup_put(cgrp); 3425 3426 return memcg; 3427 } 3428 #endif 3429 3430 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3431 { 3432 struct mem_cgroup_per_node *pn; 3433 3434 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3435 if (!pn) 3436 return false; 3437 3438 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3439 GFP_KERNEL_ACCOUNT, node); 3440 if (!pn->lruvec_stats) 3441 goto fail; 3442 3443 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3444 GFP_KERNEL_ACCOUNT); 3445 if (!pn->lruvec_stats_percpu) 3446 goto fail; 3447 3448 lruvec_init(&pn->lruvec); 3449 pn->memcg = memcg; 3450 3451 memcg->nodeinfo[node] = pn; 3452 return true; 3453 fail: 3454 kfree(pn->lruvec_stats); 3455 kfree(pn); 3456 return false; 3457 } 3458 3459 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3460 { 3461 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3462 3463 if (!pn) 3464 return; 3465 3466 free_percpu(pn->lruvec_stats_percpu); 3467 kfree(pn->lruvec_stats); 3468 kfree(pn); 3469 } 3470 3471 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3472 { 3473 int node; 3474 3475 obj_cgroup_put(memcg->orig_objcg); 3476 3477 for_each_node(node) 3478 free_mem_cgroup_per_node_info(memcg, node); 3479 memcg1_free_events(memcg); 3480 kfree(memcg->vmstats); 3481 free_percpu(memcg->vmstats_percpu); 3482 kfree(memcg); 3483 } 3484 3485 static void mem_cgroup_free(struct mem_cgroup *memcg) 3486 { 3487 lru_gen_exit_memcg(memcg); 3488 memcg_wb_domain_exit(memcg); 3489 __mem_cgroup_free(memcg); 3490 } 3491 3492 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3493 { 3494 struct memcg_vmstats_percpu *statc, *pstatc; 3495 struct mem_cgroup *memcg; 3496 int node, cpu; 3497 int __maybe_unused i; 3498 long error; 3499 3500 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3501 if (!memcg) 3502 return ERR_PTR(-ENOMEM); 3503 3504 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3505 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3506 if (error) 3507 goto fail; 3508 error = -ENOMEM; 3509 3510 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3511 GFP_KERNEL_ACCOUNT); 3512 if (!memcg->vmstats) 3513 goto fail; 3514 3515 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3516 GFP_KERNEL_ACCOUNT); 3517 if (!memcg->vmstats_percpu) 3518 goto fail; 3519 3520 if (!memcg1_alloc_events(memcg)) 3521 goto fail; 3522 3523 for_each_possible_cpu(cpu) { 3524 if (parent) 3525 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3526 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3527 statc->parent = parent ? pstatc : NULL; 3528 statc->vmstats = memcg->vmstats; 3529 } 3530 3531 for_each_node(node) 3532 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3533 goto fail; 3534 3535 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3536 goto fail; 3537 3538 INIT_WORK(&memcg->high_work, high_work_func); 3539 vmpressure_init(&memcg->vmpressure); 3540 INIT_LIST_HEAD(&memcg->memory_peaks); 3541 INIT_LIST_HEAD(&memcg->swap_peaks); 3542 spin_lock_init(&memcg->peaks_lock); 3543 memcg->socket_pressure = jiffies; 3544 memcg1_memcg_init(memcg); 3545 memcg->kmemcg_id = -1; 3546 INIT_LIST_HEAD(&memcg->objcg_list); 3547 #ifdef CONFIG_CGROUP_WRITEBACK 3548 INIT_LIST_HEAD(&memcg->cgwb_list); 3549 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3550 memcg->cgwb_frn[i].done = 3551 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3552 #endif 3553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3554 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3555 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3556 memcg->deferred_split_queue.split_queue_len = 0; 3557 #endif 3558 lru_gen_init_memcg(memcg); 3559 return memcg; 3560 fail: 3561 mem_cgroup_id_remove(memcg); 3562 __mem_cgroup_free(memcg); 3563 return ERR_PTR(error); 3564 } 3565 3566 static struct cgroup_subsys_state * __ref 3567 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3568 { 3569 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3570 struct mem_cgroup *memcg, *old_memcg; 3571 3572 old_memcg = set_active_memcg(parent); 3573 memcg = mem_cgroup_alloc(parent); 3574 set_active_memcg(old_memcg); 3575 if (IS_ERR(memcg)) 3576 return ERR_CAST(memcg); 3577 3578 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3579 memcg1_soft_limit_reset(memcg); 3580 #ifdef CONFIG_ZSWAP 3581 memcg->zswap_max = PAGE_COUNTER_MAX; 3582 WRITE_ONCE(memcg->zswap_writeback, 3583 !parent || READ_ONCE(parent->zswap_writeback)); 3584 #endif 3585 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3586 if (parent) { 3587 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3588 3589 page_counter_init(&memcg->memory, &parent->memory, true); 3590 page_counter_init(&memcg->swap, &parent->swap, false); 3591 #ifdef CONFIG_MEMCG_V1 3592 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3593 page_counter_init(&memcg->kmem, &parent->kmem, false); 3594 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3595 #endif 3596 } else { 3597 init_memcg_stats(); 3598 init_memcg_events(); 3599 page_counter_init(&memcg->memory, NULL, true); 3600 page_counter_init(&memcg->swap, NULL, false); 3601 #ifdef CONFIG_MEMCG_V1 3602 page_counter_init(&memcg->kmem, NULL, false); 3603 page_counter_init(&memcg->tcpmem, NULL, false); 3604 #endif 3605 root_mem_cgroup = memcg; 3606 return &memcg->css; 3607 } 3608 3609 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3610 static_branch_inc(&memcg_sockets_enabled_key); 3611 3612 if (!cgroup_memory_nobpf) 3613 static_branch_inc(&memcg_bpf_enabled_key); 3614 3615 return &memcg->css; 3616 } 3617 3618 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3619 { 3620 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3621 3622 if (memcg_online_kmem(memcg)) 3623 goto remove_id; 3624 3625 /* 3626 * A memcg must be visible for expand_shrinker_info() 3627 * by the time the maps are allocated. So, we allocate maps 3628 * here, when for_each_mem_cgroup() can't skip it. 3629 */ 3630 if (alloc_shrinker_info(memcg)) 3631 goto offline_kmem; 3632 3633 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3634 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3635 FLUSH_TIME); 3636 lru_gen_online_memcg(memcg); 3637 3638 /* Online state pins memcg ID, memcg ID pins CSS */ 3639 refcount_set(&memcg->id.ref, 1); 3640 css_get(css); 3641 3642 /* 3643 * Ensure mem_cgroup_from_id() works once we're fully online. 3644 * 3645 * We could do this earlier and require callers to filter with 3646 * css_tryget_online(). But right now there are no users that 3647 * need earlier access, and the workingset code relies on the 3648 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3649 * publish it here at the end of onlining. This matches the 3650 * regular ID destruction during offlining. 3651 */ 3652 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3653 3654 return 0; 3655 offline_kmem: 3656 memcg_offline_kmem(memcg); 3657 remove_id: 3658 mem_cgroup_id_remove(memcg); 3659 return -ENOMEM; 3660 } 3661 3662 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3663 { 3664 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3665 3666 memcg1_css_offline(memcg); 3667 3668 page_counter_set_min(&memcg->memory, 0); 3669 page_counter_set_low(&memcg->memory, 0); 3670 3671 zswap_memcg_offline_cleanup(memcg); 3672 3673 memcg_offline_kmem(memcg); 3674 reparent_shrinker_deferred(memcg); 3675 wb_memcg_offline(memcg); 3676 lru_gen_offline_memcg(memcg); 3677 3678 drain_all_stock(memcg); 3679 3680 mem_cgroup_id_put(memcg); 3681 } 3682 3683 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3684 { 3685 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3686 3687 invalidate_reclaim_iterators(memcg); 3688 lru_gen_release_memcg(memcg); 3689 } 3690 3691 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3692 { 3693 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3694 int __maybe_unused i; 3695 3696 #ifdef CONFIG_CGROUP_WRITEBACK 3697 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3698 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3699 #endif 3700 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3701 static_branch_dec(&memcg_sockets_enabled_key); 3702 3703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3704 static_branch_dec(&memcg_sockets_enabled_key); 3705 3706 if (!cgroup_memory_nobpf) 3707 static_branch_dec(&memcg_bpf_enabled_key); 3708 3709 vmpressure_cleanup(&memcg->vmpressure); 3710 cancel_work_sync(&memcg->high_work); 3711 memcg1_remove_from_trees(memcg); 3712 free_shrinker_info(memcg); 3713 mem_cgroup_free(memcg); 3714 } 3715 3716 /** 3717 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3718 * @css: the target css 3719 * 3720 * Reset the states of the mem_cgroup associated with @css. This is 3721 * invoked when the userland requests disabling on the default hierarchy 3722 * but the memcg is pinned through dependency. The memcg should stop 3723 * applying policies and should revert to the vanilla state as it may be 3724 * made visible again. 3725 * 3726 * The current implementation only resets the essential configurations. 3727 * This needs to be expanded to cover all the visible parts. 3728 */ 3729 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3730 { 3731 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3732 3733 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3734 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3735 #ifdef CONFIG_MEMCG_V1 3736 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3737 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3738 #endif 3739 page_counter_set_min(&memcg->memory, 0); 3740 page_counter_set_low(&memcg->memory, 0); 3741 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3742 memcg1_soft_limit_reset(memcg); 3743 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3744 memcg_wb_domain_size_changed(memcg); 3745 } 3746 3747 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3748 { 3749 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3750 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3751 struct memcg_vmstats_percpu *statc; 3752 long delta, delta_cpu, v; 3753 int i, nid; 3754 3755 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3756 3757 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 3758 /* 3759 * Collect the aggregated propagation counts of groups 3760 * below us. We're in a per-cpu loop here and this is 3761 * a global counter, so the first cycle will get them. 3762 */ 3763 delta = memcg->vmstats->state_pending[i]; 3764 if (delta) 3765 memcg->vmstats->state_pending[i] = 0; 3766 3767 /* Add CPU changes on this level since the last flush */ 3768 delta_cpu = 0; 3769 v = READ_ONCE(statc->state[i]); 3770 if (v != statc->state_prev[i]) { 3771 delta_cpu = v - statc->state_prev[i]; 3772 delta += delta_cpu; 3773 statc->state_prev[i] = v; 3774 } 3775 3776 /* Aggregate counts on this level and propagate upwards */ 3777 if (delta_cpu) 3778 memcg->vmstats->state_local[i] += delta_cpu; 3779 3780 if (delta) { 3781 memcg->vmstats->state[i] += delta; 3782 if (parent) 3783 parent->vmstats->state_pending[i] += delta; 3784 } 3785 } 3786 3787 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 3788 delta = memcg->vmstats->events_pending[i]; 3789 if (delta) 3790 memcg->vmstats->events_pending[i] = 0; 3791 3792 delta_cpu = 0; 3793 v = READ_ONCE(statc->events[i]); 3794 if (v != statc->events_prev[i]) { 3795 delta_cpu = v - statc->events_prev[i]; 3796 delta += delta_cpu; 3797 statc->events_prev[i] = v; 3798 } 3799 3800 if (delta_cpu) 3801 memcg->vmstats->events_local[i] += delta_cpu; 3802 3803 if (delta) { 3804 memcg->vmstats->events[i] += delta; 3805 if (parent) 3806 parent->vmstats->events_pending[i] += delta; 3807 } 3808 } 3809 3810 for_each_node_state(nid, N_MEMORY) { 3811 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3812 struct lruvec_stats *lstats = pn->lruvec_stats; 3813 struct lruvec_stats *plstats = NULL; 3814 struct lruvec_stats_percpu *lstatc; 3815 3816 if (parent) 3817 plstats = parent->nodeinfo[nid]->lruvec_stats; 3818 3819 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3820 3821 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 3822 delta = lstats->state_pending[i]; 3823 if (delta) 3824 lstats->state_pending[i] = 0; 3825 3826 delta_cpu = 0; 3827 v = READ_ONCE(lstatc->state[i]); 3828 if (v != lstatc->state_prev[i]) { 3829 delta_cpu = v - lstatc->state_prev[i]; 3830 delta += delta_cpu; 3831 lstatc->state_prev[i] = v; 3832 } 3833 3834 if (delta_cpu) 3835 lstats->state_local[i] += delta_cpu; 3836 3837 if (delta) { 3838 lstats->state[i] += delta; 3839 if (plstats) 3840 plstats->state_pending[i] += delta; 3841 } 3842 } 3843 } 3844 WRITE_ONCE(statc->stats_updates, 0); 3845 /* We are in a per-cpu loop here, only do the atomic write once */ 3846 if (atomic64_read(&memcg->vmstats->stats_updates)) 3847 atomic64_set(&memcg->vmstats->stats_updates, 0); 3848 } 3849 3850 static void mem_cgroup_fork(struct task_struct *task) 3851 { 3852 /* 3853 * Set the update flag to cause task->objcg to be initialized lazily 3854 * on the first allocation. It can be done without any synchronization 3855 * because it's always performed on the current task, so does 3856 * current_objcg_update(). 3857 */ 3858 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3859 } 3860 3861 static void mem_cgroup_exit(struct task_struct *task) 3862 { 3863 struct obj_cgroup *objcg = task->objcg; 3864 3865 objcg = (struct obj_cgroup *) 3866 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3867 obj_cgroup_put(objcg); 3868 3869 /* 3870 * Some kernel allocations can happen after this point, 3871 * but let's ignore them. It can be done without any synchronization 3872 * because it's always performed on the current task, so does 3873 * current_objcg_update(). 3874 */ 3875 task->objcg = NULL; 3876 } 3877 3878 #ifdef CONFIG_LRU_GEN 3879 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3880 { 3881 struct task_struct *task; 3882 struct cgroup_subsys_state *css; 3883 3884 /* find the first leader if there is any */ 3885 cgroup_taskset_for_each_leader(task, css, tset) 3886 break; 3887 3888 if (!task) 3889 return; 3890 3891 task_lock(task); 3892 if (task->mm && READ_ONCE(task->mm->owner) == task) 3893 lru_gen_migrate_mm(task->mm); 3894 task_unlock(task); 3895 } 3896 #else 3897 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3898 #endif /* CONFIG_LRU_GEN */ 3899 3900 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3901 { 3902 struct task_struct *task; 3903 struct cgroup_subsys_state *css; 3904 3905 cgroup_taskset_for_each(task, css, tset) { 3906 /* atomically set the update bit */ 3907 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3908 } 3909 } 3910 3911 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3912 { 3913 mem_cgroup_lru_gen_attach(tset); 3914 mem_cgroup_kmem_attach(tset); 3915 } 3916 3917 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3918 { 3919 if (value == PAGE_COUNTER_MAX) 3920 seq_puts(m, "max\n"); 3921 else 3922 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3923 3924 return 0; 3925 } 3926 3927 static u64 memory_current_read(struct cgroup_subsys_state *css, 3928 struct cftype *cft) 3929 { 3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3931 3932 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3933 } 3934 3935 #define OFP_PEAK_UNSET (((-1UL))) 3936 3937 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 3938 { 3939 struct cgroup_of_peak *ofp = of_peak(sf->private); 3940 u64 fd_peak = READ_ONCE(ofp->value), peak; 3941 3942 /* User wants global or local peak? */ 3943 if (fd_peak == OFP_PEAK_UNSET) 3944 peak = pc->watermark; 3945 else 3946 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 3947 3948 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 3949 return 0; 3950 } 3951 3952 static int memory_peak_show(struct seq_file *sf, void *v) 3953 { 3954 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3955 3956 return peak_show(sf, v, &memcg->memory); 3957 } 3958 3959 static int peak_open(struct kernfs_open_file *of) 3960 { 3961 struct cgroup_of_peak *ofp = of_peak(of); 3962 3963 ofp->value = OFP_PEAK_UNSET; 3964 return 0; 3965 } 3966 3967 static void peak_release(struct kernfs_open_file *of) 3968 { 3969 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3970 struct cgroup_of_peak *ofp = of_peak(of); 3971 3972 if (ofp->value == OFP_PEAK_UNSET) { 3973 /* fast path (no writes on this fd) */ 3974 return; 3975 } 3976 spin_lock(&memcg->peaks_lock); 3977 list_del(&ofp->list); 3978 spin_unlock(&memcg->peaks_lock); 3979 } 3980 3981 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 3982 loff_t off, struct page_counter *pc, 3983 struct list_head *watchers) 3984 { 3985 unsigned long usage; 3986 struct cgroup_of_peak *peer_ctx; 3987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3988 struct cgroup_of_peak *ofp = of_peak(of); 3989 3990 spin_lock(&memcg->peaks_lock); 3991 3992 usage = page_counter_read(pc); 3993 WRITE_ONCE(pc->local_watermark, usage); 3994 3995 list_for_each_entry(peer_ctx, watchers, list) 3996 if (usage > peer_ctx->value) 3997 WRITE_ONCE(peer_ctx->value, usage); 3998 3999 /* initial write, register watcher */ 4000 if (ofp->value == -1) 4001 list_add(&ofp->list, watchers); 4002 4003 WRITE_ONCE(ofp->value, usage); 4004 spin_unlock(&memcg->peaks_lock); 4005 4006 return nbytes; 4007 } 4008 4009 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4010 size_t nbytes, loff_t off) 4011 { 4012 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4013 4014 return peak_write(of, buf, nbytes, off, &memcg->memory, 4015 &memcg->memory_peaks); 4016 } 4017 4018 #undef OFP_PEAK_UNSET 4019 4020 static int memory_min_show(struct seq_file *m, void *v) 4021 { 4022 return seq_puts_memcg_tunable(m, 4023 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4024 } 4025 4026 static ssize_t memory_min_write(struct kernfs_open_file *of, 4027 char *buf, size_t nbytes, loff_t off) 4028 { 4029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4030 unsigned long min; 4031 int err; 4032 4033 buf = strstrip(buf); 4034 err = page_counter_memparse(buf, "max", &min); 4035 if (err) 4036 return err; 4037 4038 page_counter_set_min(&memcg->memory, min); 4039 4040 return nbytes; 4041 } 4042 4043 static int memory_low_show(struct seq_file *m, void *v) 4044 { 4045 return seq_puts_memcg_tunable(m, 4046 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4047 } 4048 4049 static ssize_t memory_low_write(struct kernfs_open_file *of, 4050 char *buf, size_t nbytes, loff_t off) 4051 { 4052 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4053 unsigned long low; 4054 int err; 4055 4056 buf = strstrip(buf); 4057 err = page_counter_memparse(buf, "max", &low); 4058 if (err) 4059 return err; 4060 4061 page_counter_set_low(&memcg->memory, low); 4062 4063 return nbytes; 4064 } 4065 4066 static int memory_high_show(struct seq_file *m, void *v) 4067 { 4068 return seq_puts_memcg_tunable(m, 4069 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4070 } 4071 4072 static ssize_t memory_high_write(struct kernfs_open_file *of, 4073 char *buf, size_t nbytes, loff_t off) 4074 { 4075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4076 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4077 bool drained = false; 4078 unsigned long high; 4079 int err; 4080 4081 buf = strstrip(buf); 4082 err = page_counter_memparse(buf, "max", &high); 4083 if (err) 4084 return err; 4085 4086 page_counter_set_high(&memcg->memory, high); 4087 4088 for (;;) { 4089 unsigned long nr_pages = page_counter_read(&memcg->memory); 4090 unsigned long reclaimed; 4091 4092 if (nr_pages <= high) 4093 break; 4094 4095 if (signal_pending(current)) 4096 break; 4097 4098 if (!drained) { 4099 drain_all_stock(memcg); 4100 drained = true; 4101 continue; 4102 } 4103 4104 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4105 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4106 4107 if (!reclaimed && !nr_retries--) 4108 break; 4109 } 4110 4111 memcg_wb_domain_size_changed(memcg); 4112 return nbytes; 4113 } 4114 4115 static int memory_max_show(struct seq_file *m, void *v) 4116 { 4117 return seq_puts_memcg_tunable(m, 4118 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4119 } 4120 4121 static ssize_t memory_max_write(struct kernfs_open_file *of, 4122 char *buf, size_t nbytes, loff_t off) 4123 { 4124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4125 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4126 bool drained = false; 4127 unsigned long max; 4128 int err; 4129 4130 buf = strstrip(buf); 4131 err = page_counter_memparse(buf, "max", &max); 4132 if (err) 4133 return err; 4134 4135 xchg(&memcg->memory.max, max); 4136 4137 for (;;) { 4138 unsigned long nr_pages = page_counter_read(&memcg->memory); 4139 4140 if (nr_pages <= max) 4141 break; 4142 4143 if (signal_pending(current)) 4144 break; 4145 4146 if (!drained) { 4147 drain_all_stock(memcg); 4148 drained = true; 4149 continue; 4150 } 4151 4152 if (nr_reclaims) { 4153 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4154 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4155 nr_reclaims--; 4156 continue; 4157 } 4158 4159 memcg_memory_event(memcg, MEMCG_OOM); 4160 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4161 break; 4162 } 4163 4164 memcg_wb_domain_size_changed(memcg); 4165 return nbytes; 4166 } 4167 4168 /* 4169 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4170 * if any new events become available. 4171 */ 4172 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4173 { 4174 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4175 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4176 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4177 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4178 seq_printf(m, "oom_kill %lu\n", 4179 atomic_long_read(&events[MEMCG_OOM_KILL])); 4180 seq_printf(m, "oom_group_kill %lu\n", 4181 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4182 } 4183 4184 static int memory_events_show(struct seq_file *m, void *v) 4185 { 4186 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4187 4188 __memory_events_show(m, memcg->memory_events); 4189 return 0; 4190 } 4191 4192 static int memory_events_local_show(struct seq_file *m, void *v) 4193 { 4194 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4195 4196 __memory_events_show(m, memcg->memory_events_local); 4197 return 0; 4198 } 4199 4200 int memory_stat_show(struct seq_file *m, void *v) 4201 { 4202 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4203 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4204 struct seq_buf s; 4205 4206 if (!buf) 4207 return -ENOMEM; 4208 seq_buf_init(&s, buf, PAGE_SIZE); 4209 memory_stat_format(memcg, &s); 4210 seq_puts(m, buf); 4211 kfree(buf); 4212 return 0; 4213 } 4214 4215 #ifdef CONFIG_NUMA 4216 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4217 int item) 4218 { 4219 return lruvec_page_state(lruvec, item) * 4220 memcg_page_state_output_unit(item); 4221 } 4222 4223 static int memory_numa_stat_show(struct seq_file *m, void *v) 4224 { 4225 int i; 4226 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4227 4228 mem_cgroup_flush_stats(memcg); 4229 4230 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4231 int nid; 4232 4233 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4234 continue; 4235 4236 seq_printf(m, "%s", memory_stats[i].name); 4237 for_each_node_state(nid, N_MEMORY) { 4238 u64 size; 4239 struct lruvec *lruvec; 4240 4241 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4242 size = lruvec_page_state_output(lruvec, 4243 memory_stats[i].idx); 4244 seq_printf(m, " N%d=%llu", nid, size); 4245 } 4246 seq_putc(m, '\n'); 4247 } 4248 4249 return 0; 4250 } 4251 #endif 4252 4253 static int memory_oom_group_show(struct seq_file *m, void *v) 4254 { 4255 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4256 4257 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4258 4259 return 0; 4260 } 4261 4262 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4263 char *buf, size_t nbytes, loff_t off) 4264 { 4265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4266 int ret, oom_group; 4267 4268 buf = strstrip(buf); 4269 if (!buf) 4270 return -EINVAL; 4271 4272 ret = kstrtoint(buf, 0, &oom_group); 4273 if (ret) 4274 return ret; 4275 4276 if (oom_group != 0 && oom_group != 1) 4277 return -EINVAL; 4278 4279 WRITE_ONCE(memcg->oom_group, oom_group); 4280 4281 return nbytes; 4282 } 4283 4284 enum { 4285 MEMORY_RECLAIM_SWAPPINESS = 0, 4286 MEMORY_RECLAIM_NULL, 4287 }; 4288 4289 static const match_table_t tokens = { 4290 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4291 { MEMORY_RECLAIM_NULL, NULL }, 4292 }; 4293 4294 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4295 size_t nbytes, loff_t off) 4296 { 4297 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4298 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4299 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4300 int swappiness = -1; 4301 unsigned int reclaim_options; 4302 char *old_buf, *start; 4303 substring_t args[MAX_OPT_ARGS]; 4304 4305 buf = strstrip(buf); 4306 4307 old_buf = buf; 4308 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4309 if (buf == old_buf) 4310 return -EINVAL; 4311 4312 buf = strstrip(buf); 4313 4314 while ((start = strsep(&buf, " ")) != NULL) { 4315 if (!strlen(start)) 4316 continue; 4317 switch (match_token(start, tokens, args)) { 4318 case MEMORY_RECLAIM_SWAPPINESS: 4319 if (match_int(&args[0], &swappiness)) 4320 return -EINVAL; 4321 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4322 return -EINVAL; 4323 break; 4324 default: 4325 return -EINVAL; 4326 } 4327 } 4328 4329 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4330 while (nr_reclaimed < nr_to_reclaim) { 4331 /* Will converge on zero, but reclaim enforces a minimum */ 4332 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4333 unsigned long reclaimed; 4334 4335 if (signal_pending(current)) 4336 return -EINTR; 4337 4338 /* 4339 * This is the final attempt, drain percpu lru caches in the 4340 * hope of introducing more evictable pages for 4341 * try_to_free_mem_cgroup_pages(). 4342 */ 4343 if (!nr_retries) 4344 lru_add_drain_all(); 4345 4346 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4347 batch_size, GFP_KERNEL, 4348 reclaim_options, 4349 swappiness == -1 ? NULL : &swappiness); 4350 4351 if (!reclaimed && !nr_retries--) 4352 return -EAGAIN; 4353 4354 nr_reclaimed += reclaimed; 4355 } 4356 4357 return nbytes; 4358 } 4359 4360 static struct cftype memory_files[] = { 4361 { 4362 .name = "current", 4363 .flags = CFTYPE_NOT_ON_ROOT, 4364 .read_u64 = memory_current_read, 4365 }, 4366 { 4367 .name = "peak", 4368 .flags = CFTYPE_NOT_ON_ROOT, 4369 .open = peak_open, 4370 .release = peak_release, 4371 .seq_show = memory_peak_show, 4372 .write = memory_peak_write, 4373 }, 4374 { 4375 .name = "min", 4376 .flags = CFTYPE_NOT_ON_ROOT, 4377 .seq_show = memory_min_show, 4378 .write = memory_min_write, 4379 }, 4380 { 4381 .name = "low", 4382 .flags = CFTYPE_NOT_ON_ROOT, 4383 .seq_show = memory_low_show, 4384 .write = memory_low_write, 4385 }, 4386 { 4387 .name = "high", 4388 .flags = CFTYPE_NOT_ON_ROOT, 4389 .seq_show = memory_high_show, 4390 .write = memory_high_write, 4391 }, 4392 { 4393 .name = "max", 4394 .flags = CFTYPE_NOT_ON_ROOT, 4395 .seq_show = memory_max_show, 4396 .write = memory_max_write, 4397 }, 4398 { 4399 .name = "events", 4400 .flags = CFTYPE_NOT_ON_ROOT, 4401 .file_offset = offsetof(struct mem_cgroup, events_file), 4402 .seq_show = memory_events_show, 4403 }, 4404 { 4405 .name = "events.local", 4406 .flags = CFTYPE_NOT_ON_ROOT, 4407 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4408 .seq_show = memory_events_local_show, 4409 }, 4410 { 4411 .name = "stat", 4412 .seq_show = memory_stat_show, 4413 }, 4414 #ifdef CONFIG_NUMA 4415 { 4416 .name = "numa_stat", 4417 .seq_show = memory_numa_stat_show, 4418 }, 4419 #endif 4420 { 4421 .name = "oom.group", 4422 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4423 .seq_show = memory_oom_group_show, 4424 .write = memory_oom_group_write, 4425 }, 4426 { 4427 .name = "reclaim", 4428 .flags = CFTYPE_NS_DELEGATABLE, 4429 .write = memory_reclaim, 4430 }, 4431 { } /* terminate */ 4432 }; 4433 4434 struct cgroup_subsys memory_cgrp_subsys = { 4435 .css_alloc = mem_cgroup_css_alloc, 4436 .css_online = mem_cgroup_css_online, 4437 .css_offline = mem_cgroup_css_offline, 4438 .css_released = mem_cgroup_css_released, 4439 .css_free = mem_cgroup_css_free, 4440 .css_reset = mem_cgroup_css_reset, 4441 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4442 .attach = mem_cgroup_attach, 4443 .fork = mem_cgroup_fork, 4444 .exit = mem_cgroup_exit, 4445 .dfl_cftypes = memory_files, 4446 #ifdef CONFIG_MEMCG_V1 4447 .can_attach = memcg1_can_attach, 4448 .cancel_attach = memcg1_cancel_attach, 4449 .post_attach = memcg1_move_task, 4450 .legacy_cftypes = mem_cgroup_legacy_files, 4451 #endif 4452 .early_init = 0, 4453 }; 4454 4455 /** 4456 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4457 * @root: the top ancestor of the sub-tree being checked 4458 * @memcg: the memory cgroup to check 4459 * 4460 * WARNING: This function is not stateless! It can only be used as part 4461 * of a top-down tree iteration, not for isolated queries. 4462 */ 4463 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4464 struct mem_cgroup *memcg) 4465 { 4466 bool recursive_protection = 4467 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4468 4469 if (mem_cgroup_disabled()) 4470 return; 4471 4472 if (!root) 4473 root = root_mem_cgroup; 4474 4475 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4476 } 4477 4478 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4479 gfp_t gfp) 4480 { 4481 int ret; 4482 4483 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4484 if (ret) 4485 goto out; 4486 4487 mem_cgroup_commit_charge(folio, memcg); 4488 out: 4489 return ret; 4490 } 4491 4492 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4493 { 4494 struct mem_cgroup *memcg; 4495 int ret; 4496 4497 memcg = get_mem_cgroup_from_mm(mm); 4498 ret = charge_memcg(folio, memcg, gfp); 4499 css_put(&memcg->css); 4500 4501 return ret; 4502 } 4503 4504 /** 4505 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 4506 * @memcg: memcg to charge. 4507 * @gfp: reclaim mode. 4508 * @nr_pages: number of pages to charge. 4509 * 4510 * This function is called when allocating a huge page folio to determine if 4511 * the memcg has the capacity for it. It does not commit the charge yet, 4512 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 4513 * 4514 * Once we have obtained the hugetlb folio, we can call 4515 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 4516 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 4517 * of try_charge(). 4518 * 4519 * Returns 0 on success. Otherwise, an error code is returned. 4520 */ 4521 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 4522 long nr_pages) 4523 { 4524 /* 4525 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 4526 * but do not attempt to commit charge later (or cancel on error) either. 4527 */ 4528 if (mem_cgroup_disabled() || !memcg || 4529 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 4530 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 4531 return -EOPNOTSUPP; 4532 4533 if (try_charge(memcg, gfp, nr_pages)) 4534 return -ENOMEM; 4535 4536 return 0; 4537 } 4538 4539 /** 4540 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4541 * @folio: folio to charge. 4542 * @mm: mm context of the victim 4543 * @gfp: reclaim mode 4544 * @entry: swap entry for which the folio is allocated 4545 * 4546 * This function charges a folio allocated for swapin. Please call this before 4547 * adding the folio to the swapcache. 4548 * 4549 * Returns 0 on success. Otherwise, an error code is returned. 4550 */ 4551 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4552 gfp_t gfp, swp_entry_t entry) 4553 { 4554 struct mem_cgroup *memcg; 4555 unsigned short id; 4556 int ret; 4557 4558 if (mem_cgroup_disabled()) 4559 return 0; 4560 4561 id = lookup_swap_cgroup_id(entry); 4562 rcu_read_lock(); 4563 memcg = mem_cgroup_from_id(id); 4564 if (!memcg || !css_tryget_online(&memcg->css)) 4565 memcg = get_mem_cgroup_from_mm(mm); 4566 rcu_read_unlock(); 4567 4568 ret = charge_memcg(folio, memcg, gfp); 4569 4570 css_put(&memcg->css); 4571 return ret; 4572 } 4573 4574 /* 4575 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4576 * @entry: swap entry for which the page is charged 4577 * 4578 * Call this function after successfully adding the charged page to swapcache. 4579 * 4580 * Note: This function assumes the page for which swap slot is being uncharged 4581 * is order 0 page. 4582 */ 4583 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 4584 { 4585 /* 4586 * Cgroup1's unified memory+swap counter has been charged with the 4587 * new swapcache page, finish the transfer by uncharging the swap 4588 * slot. The swap slot would also get uncharged when it dies, but 4589 * it can stick around indefinitely and we'd count the page twice 4590 * the entire time. 4591 * 4592 * Cgroup2 has separate resource counters for memory and swap, 4593 * so this is a non-issue here. Memory and swap charge lifetimes 4594 * correspond 1:1 to page and swap slot lifetimes: we charge the 4595 * page to memory here, and uncharge swap when the slot is freed. 4596 */ 4597 if (!mem_cgroup_disabled() && do_memsw_account()) { 4598 /* 4599 * The swap entry might not get freed for a long time, 4600 * let's not wait for it. The page already received a 4601 * memory+swap charge, drop the swap entry duplicate. 4602 */ 4603 mem_cgroup_uncharge_swap(entry, 1); 4604 } 4605 } 4606 4607 struct uncharge_gather { 4608 struct mem_cgroup *memcg; 4609 unsigned long nr_memory; 4610 unsigned long pgpgout; 4611 unsigned long nr_kmem; 4612 int nid; 4613 }; 4614 4615 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4616 { 4617 memset(ug, 0, sizeof(*ug)); 4618 } 4619 4620 static void uncharge_batch(const struct uncharge_gather *ug) 4621 { 4622 if (ug->nr_memory) { 4623 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4624 if (do_memsw_account()) 4625 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4626 if (ug->nr_kmem) { 4627 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4628 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4629 } 4630 memcg1_oom_recover(ug->memcg); 4631 } 4632 4633 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4634 4635 /* drop reference from uncharge_folio */ 4636 css_put(&ug->memcg->css); 4637 } 4638 4639 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4640 { 4641 long nr_pages; 4642 struct mem_cgroup *memcg; 4643 struct obj_cgroup *objcg; 4644 4645 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4646 VM_BUG_ON_FOLIO(folio_order(folio) > 1 && 4647 !folio_test_hugetlb(folio) && 4648 !list_empty(&folio->_deferred_list) && 4649 folio_test_partially_mapped(folio), folio); 4650 4651 /* 4652 * Nobody should be changing or seriously looking at 4653 * folio memcg or objcg at this point, we have fully 4654 * exclusive access to the folio. 4655 */ 4656 if (folio_memcg_kmem(folio)) { 4657 objcg = __folio_objcg(folio); 4658 /* 4659 * This get matches the put at the end of the function and 4660 * kmem pages do not hold memcg references anymore. 4661 */ 4662 memcg = get_mem_cgroup_from_objcg(objcg); 4663 } else { 4664 memcg = __folio_memcg(folio); 4665 } 4666 4667 if (!memcg) 4668 return; 4669 4670 if (ug->memcg != memcg) { 4671 if (ug->memcg) { 4672 uncharge_batch(ug); 4673 uncharge_gather_clear(ug); 4674 } 4675 ug->memcg = memcg; 4676 ug->nid = folio_nid(folio); 4677 4678 /* pairs with css_put in uncharge_batch */ 4679 css_get(&memcg->css); 4680 } 4681 4682 nr_pages = folio_nr_pages(folio); 4683 4684 if (folio_memcg_kmem(folio)) { 4685 ug->nr_memory += nr_pages; 4686 ug->nr_kmem += nr_pages; 4687 4688 folio->memcg_data = 0; 4689 obj_cgroup_put(objcg); 4690 } else { 4691 /* LRU pages aren't accounted at the root level */ 4692 if (!mem_cgroup_is_root(memcg)) 4693 ug->nr_memory += nr_pages; 4694 ug->pgpgout++; 4695 4696 folio->memcg_data = 0; 4697 } 4698 4699 css_put(&memcg->css); 4700 } 4701 4702 void __mem_cgroup_uncharge(struct folio *folio) 4703 { 4704 struct uncharge_gather ug; 4705 4706 /* Don't touch folio->lru of any random page, pre-check: */ 4707 if (!folio_memcg_charged(folio)) 4708 return; 4709 4710 uncharge_gather_clear(&ug); 4711 uncharge_folio(folio, &ug); 4712 uncharge_batch(&ug); 4713 } 4714 4715 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4716 { 4717 struct uncharge_gather ug; 4718 unsigned int i; 4719 4720 uncharge_gather_clear(&ug); 4721 for (i = 0; i < folios->nr; i++) 4722 uncharge_folio(folios->folios[i], &ug); 4723 if (ug.memcg) 4724 uncharge_batch(&ug); 4725 } 4726 4727 /** 4728 * mem_cgroup_replace_folio - Charge a folio's replacement. 4729 * @old: Currently circulating folio. 4730 * @new: Replacement folio. 4731 * 4732 * Charge @new as a replacement folio for @old. @old will 4733 * be uncharged upon free. 4734 * 4735 * Both folios must be locked, @new->mapping must be set up. 4736 */ 4737 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4738 { 4739 struct mem_cgroup *memcg; 4740 long nr_pages = folio_nr_pages(new); 4741 4742 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4743 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4744 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4745 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4746 4747 if (mem_cgroup_disabled()) 4748 return; 4749 4750 /* Page cache replacement: new folio already charged? */ 4751 if (folio_memcg_charged(new)) 4752 return; 4753 4754 memcg = folio_memcg(old); 4755 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4756 if (!memcg) 4757 return; 4758 4759 /* Force-charge the new page. The old one will be freed soon */ 4760 if (!mem_cgroup_is_root(memcg)) { 4761 page_counter_charge(&memcg->memory, nr_pages); 4762 if (do_memsw_account()) 4763 page_counter_charge(&memcg->memsw, nr_pages); 4764 } 4765 4766 css_get(&memcg->css); 4767 commit_charge(new, memcg); 4768 memcg1_commit_charge(new, memcg); 4769 } 4770 4771 /** 4772 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4773 * @old: Currently circulating folio. 4774 * @new: Replacement folio. 4775 * 4776 * Transfer the memcg data from the old folio to the new folio for migration. 4777 * The old folio's data info will be cleared. Note that the memory counters 4778 * will remain unchanged throughout the process. 4779 * 4780 * Both folios must be locked, @new->mapping must be set up. 4781 */ 4782 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4783 { 4784 struct mem_cgroup *memcg; 4785 4786 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4787 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4788 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4789 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4790 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4791 4792 if (mem_cgroup_disabled()) 4793 return; 4794 4795 memcg = folio_memcg(old); 4796 /* 4797 * Note that it is normal to see !memcg for a hugetlb folio. 4798 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4799 * was not selected. 4800 */ 4801 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4802 if (!memcg) 4803 return; 4804 4805 /* Transfer the charge and the css ref */ 4806 commit_charge(new, memcg); 4807 old->memcg_data = 0; 4808 } 4809 4810 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4811 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4812 4813 void mem_cgroup_sk_alloc(struct sock *sk) 4814 { 4815 struct mem_cgroup *memcg; 4816 4817 if (!mem_cgroup_sockets_enabled) 4818 return; 4819 4820 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4821 if (!in_task()) 4822 return; 4823 4824 rcu_read_lock(); 4825 memcg = mem_cgroup_from_task(current); 4826 if (mem_cgroup_is_root(memcg)) 4827 goto out; 4828 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4829 goto out; 4830 if (css_tryget(&memcg->css)) 4831 sk->sk_memcg = memcg; 4832 out: 4833 rcu_read_unlock(); 4834 } 4835 4836 void mem_cgroup_sk_free(struct sock *sk) 4837 { 4838 if (sk->sk_memcg) 4839 css_put(&sk->sk_memcg->css); 4840 } 4841 4842 /** 4843 * mem_cgroup_charge_skmem - charge socket memory 4844 * @memcg: memcg to charge 4845 * @nr_pages: number of pages to charge 4846 * @gfp_mask: reclaim mode 4847 * 4848 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4849 * @memcg's configured limit, %false if it doesn't. 4850 */ 4851 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4852 gfp_t gfp_mask) 4853 { 4854 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4855 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4856 4857 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4858 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4859 return true; 4860 } 4861 4862 return false; 4863 } 4864 4865 /** 4866 * mem_cgroup_uncharge_skmem - uncharge socket memory 4867 * @memcg: memcg to uncharge 4868 * @nr_pages: number of pages to uncharge 4869 */ 4870 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4871 { 4872 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4873 memcg1_uncharge_skmem(memcg, nr_pages); 4874 return; 4875 } 4876 4877 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4878 4879 refill_stock(memcg, nr_pages); 4880 } 4881 4882 static int __init cgroup_memory(char *s) 4883 { 4884 char *token; 4885 4886 while ((token = strsep(&s, ",")) != NULL) { 4887 if (!*token) 4888 continue; 4889 if (!strcmp(token, "nosocket")) 4890 cgroup_memory_nosocket = true; 4891 if (!strcmp(token, "nokmem")) 4892 cgroup_memory_nokmem = true; 4893 if (!strcmp(token, "nobpf")) 4894 cgroup_memory_nobpf = true; 4895 } 4896 return 1; 4897 } 4898 __setup("cgroup.memory=", cgroup_memory); 4899 4900 /* 4901 * subsys_initcall() for memory controller. 4902 * 4903 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4904 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4905 * basically everything that doesn't depend on a specific mem_cgroup structure 4906 * should be initialized from here. 4907 */ 4908 static int __init mem_cgroup_init(void) 4909 { 4910 int cpu; 4911 4912 /* 4913 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4914 * used for per-memcg-per-cpu caching of per-node statistics. In order 4915 * to work fine, we should make sure that the overfill threshold can't 4916 * exceed S32_MAX / PAGE_SIZE. 4917 */ 4918 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4919 4920 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4921 memcg_hotplug_cpu_dead); 4922 4923 for_each_possible_cpu(cpu) 4924 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4925 drain_local_stock); 4926 4927 return 0; 4928 } 4929 subsys_initcall(mem_cgroup_init); 4930 4931 #ifdef CONFIG_SWAP 4932 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4933 { 4934 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4935 /* 4936 * The root cgroup cannot be destroyed, so it's refcount must 4937 * always be >= 1. 4938 */ 4939 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4940 VM_BUG_ON(1); 4941 break; 4942 } 4943 memcg = parent_mem_cgroup(memcg); 4944 if (!memcg) 4945 memcg = root_mem_cgroup; 4946 } 4947 return memcg; 4948 } 4949 4950 /** 4951 * mem_cgroup_swapout - transfer a memsw charge to swap 4952 * @folio: folio whose memsw charge to transfer 4953 * @entry: swap entry to move the charge to 4954 * 4955 * Transfer the memsw charge of @folio to @entry. 4956 */ 4957 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4958 { 4959 struct mem_cgroup *memcg, *swap_memcg; 4960 unsigned int nr_entries; 4961 unsigned short oldid; 4962 4963 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4964 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4965 4966 if (mem_cgroup_disabled()) 4967 return; 4968 4969 if (!do_memsw_account()) 4970 return; 4971 4972 memcg = folio_memcg(folio); 4973 4974 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4975 if (!memcg) 4976 return; 4977 4978 /* 4979 * In case the memcg owning these pages has been offlined and doesn't 4980 * have an ID allocated to it anymore, charge the closest online 4981 * ancestor for the swap instead and transfer the memory+swap charge. 4982 */ 4983 swap_memcg = mem_cgroup_id_get_online(memcg); 4984 nr_entries = folio_nr_pages(folio); 4985 /* Get references for the tail pages, too */ 4986 if (nr_entries > 1) 4987 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 4988 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 4989 nr_entries); 4990 VM_BUG_ON_FOLIO(oldid, folio); 4991 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 4992 4993 folio->memcg_data = 0; 4994 4995 if (!mem_cgroup_is_root(memcg)) 4996 page_counter_uncharge(&memcg->memory, nr_entries); 4997 4998 if (memcg != swap_memcg) { 4999 if (!mem_cgroup_is_root(swap_memcg)) 5000 page_counter_charge(&swap_memcg->memsw, nr_entries); 5001 page_counter_uncharge(&memcg->memsw, nr_entries); 5002 } 5003 5004 memcg1_swapout(folio, memcg); 5005 css_put(&memcg->css); 5006 } 5007 5008 /** 5009 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5010 * @folio: folio being added to swap 5011 * @entry: swap entry to charge 5012 * 5013 * Try to charge @folio's memcg for the swap space at @entry. 5014 * 5015 * Returns 0 on success, -ENOMEM on failure. 5016 */ 5017 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5018 { 5019 unsigned int nr_pages = folio_nr_pages(folio); 5020 struct page_counter *counter; 5021 struct mem_cgroup *memcg; 5022 unsigned short oldid; 5023 5024 if (do_memsw_account()) 5025 return 0; 5026 5027 memcg = folio_memcg(folio); 5028 5029 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5030 if (!memcg) 5031 return 0; 5032 5033 if (!entry.val) { 5034 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5035 return 0; 5036 } 5037 5038 memcg = mem_cgroup_id_get_online(memcg); 5039 5040 if (!mem_cgroup_is_root(memcg) && 5041 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5042 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5043 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5044 mem_cgroup_id_put(memcg); 5045 return -ENOMEM; 5046 } 5047 5048 /* Get references for the tail pages, too */ 5049 if (nr_pages > 1) 5050 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5051 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5052 VM_BUG_ON_FOLIO(oldid, folio); 5053 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5054 5055 return 0; 5056 } 5057 5058 /** 5059 * __mem_cgroup_uncharge_swap - uncharge swap space 5060 * @entry: swap entry to uncharge 5061 * @nr_pages: the amount of swap space to uncharge 5062 */ 5063 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5064 { 5065 struct mem_cgroup *memcg; 5066 unsigned short id; 5067 5068 id = swap_cgroup_record(entry, 0, nr_pages); 5069 rcu_read_lock(); 5070 memcg = mem_cgroup_from_id(id); 5071 if (memcg) { 5072 if (!mem_cgroup_is_root(memcg)) { 5073 if (do_memsw_account()) 5074 page_counter_uncharge(&memcg->memsw, nr_pages); 5075 else 5076 page_counter_uncharge(&memcg->swap, nr_pages); 5077 } 5078 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5079 mem_cgroup_id_put_many(memcg, nr_pages); 5080 } 5081 rcu_read_unlock(); 5082 } 5083 5084 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5085 { 5086 long nr_swap_pages = get_nr_swap_pages(); 5087 5088 if (mem_cgroup_disabled() || do_memsw_account()) 5089 return nr_swap_pages; 5090 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5091 nr_swap_pages = min_t(long, nr_swap_pages, 5092 READ_ONCE(memcg->swap.max) - 5093 page_counter_read(&memcg->swap)); 5094 return nr_swap_pages; 5095 } 5096 5097 bool mem_cgroup_swap_full(struct folio *folio) 5098 { 5099 struct mem_cgroup *memcg; 5100 5101 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5102 5103 if (vm_swap_full()) 5104 return true; 5105 if (do_memsw_account()) 5106 return false; 5107 5108 memcg = folio_memcg(folio); 5109 if (!memcg) 5110 return false; 5111 5112 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5113 unsigned long usage = page_counter_read(&memcg->swap); 5114 5115 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5116 usage * 2 >= READ_ONCE(memcg->swap.max)) 5117 return true; 5118 } 5119 5120 return false; 5121 } 5122 5123 static int __init setup_swap_account(char *s) 5124 { 5125 bool res; 5126 5127 if (!kstrtobool(s, &res) && !res) 5128 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5129 "in favor of configuring swap control via cgroupfs. " 5130 "Please report your usecase to linux-mm@kvack.org if you " 5131 "depend on this functionality.\n"); 5132 return 1; 5133 } 5134 __setup("swapaccount=", setup_swap_account); 5135 5136 static u64 swap_current_read(struct cgroup_subsys_state *css, 5137 struct cftype *cft) 5138 { 5139 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5140 5141 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5142 } 5143 5144 static int swap_peak_show(struct seq_file *sf, void *v) 5145 { 5146 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5147 5148 return peak_show(sf, v, &memcg->swap); 5149 } 5150 5151 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5152 size_t nbytes, loff_t off) 5153 { 5154 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5155 5156 return peak_write(of, buf, nbytes, off, &memcg->swap, 5157 &memcg->swap_peaks); 5158 } 5159 5160 static int swap_high_show(struct seq_file *m, void *v) 5161 { 5162 return seq_puts_memcg_tunable(m, 5163 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5164 } 5165 5166 static ssize_t swap_high_write(struct kernfs_open_file *of, 5167 char *buf, size_t nbytes, loff_t off) 5168 { 5169 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5170 unsigned long high; 5171 int err; 5172 5173 buf = strstrip(buf); 5174 err = page_counter_memparse(buf, "max", &high); 5175 if (err) 5176 return err; 5177 5178 page_counter_set_high(&memcg->swap, high); 5179 5180 return nbytes; 5181 } 5182 5183 static int swap_max_show(struct seq_file *m, void *v) 5184 { 5185 return seq_puts_memcg_tunable(m, 5186 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5187 } 5188 5189 static ssize_t swap_max_write(struct kernfs_open_file *of, 5190 char *buf, size_t nbytes, loff_t off) 5191 { 5192 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5193 unsigned long max; 5194 int err; 5195 5196 buf = strstrip(buf); 5197 err = page_counter_memparse(buf, "max", &max); 5198 if (err) 5199 return err; 5200 5201 xchg(&memcg->swap.max, max); 5202 5203 return nbytes; 5204 } 5205 5206 static int swap_events_show(struct seq_file *m, void *v) 5207 { 5208 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5209 5210 seq_printf(m, "high %lu\n", 5211 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5212 seq_printf(m, "max %lu\n", 5213 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5214 seq_printf(m, "fail %lu\n", 5215 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5216 5217 return 0; 5218 } 5219 5220 static struct cftype swap_files[] = { 5221 { 5222 .name = "swap.current", 5223 .flags = CFTYPE_NOT_ON_ROOT, 5224 .read_u64 = swap_current_read, 5225 }, 5226 { 5227 .name = "swap.high", 5228 .flags = CFTYPE_NOT_ON_ROOT, 5229 .seq_show = swap_high_show, 5230 .write = swap_high_write, 5231 }, 5232 { 5233 .name = "swap.max", 5234 .flags = CFTYPE_NOT_ON_ROOT, 5235 .seq_show = swap_max_show, 5236 .write = swap_max_write, 5237 }, 5238 { 5239 .name = "swap.peak", 5240 .flags = CFTYPE_NOT_ON_ROOT, 5241 .open = peak_open, 5242 .release = peak_release, 5243 .seq_show = swap_peak_show, 5244 .write = swap_peak_write, 5245 }, 5246 { 5247 .name = "swap.events", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5250 .seq_show = swap_events_show, 5251 }, 5252 { } /* terminate */ 5253 }; 5254 5255 #ifdef CONFIG_ZSWAP 5256 /** 5257 * obj_cgroup_may_zswap - check if this cgroup can zswap 5258 * @objcg: the object cgroup 5259 * 5260 * Check if the hierarchical zswap limit has been reached. 5261 * 5262 * This doesn't check for specific headroom, and it is not atomic 5263 * either. But with zswap, the size of the allocation is only known 5264 * once compression has occurred, and this optimistic pre-check avoids 5265 * spending cycles on compression when there is already no room left 5266 * or zswap is disabled altogether somewhere in the hierarchy. 5267 */ 5268 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5269 { 5270 struct mem_cgroup *memcg, *original_memcg; 5271 bool ret = true; 5272 5273 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5274 return true; 5275 5276 original_memcg = get_mem_cgroup_from_objcg(objcg); 5277 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5278 memcg = parent_mem_cgroup(memcg)) { 5279 unsigned long max = READ_ONCE(memcg->zswap_max); 5280 unsigned long pages; 5281 5282 if (max == PAGE_COUNTER_MAX) 5283 continue; 5284 if (max == 0) { 5285 ret = false; 5286 break; 5287 } 5288 5289 /* 5290 * mem_cgroup_flush_stats() ignores small changes. Use 5291 * do_flush_stats() directly to get accurate stats for charging. 5292 */ 5293 do_flush_stats(memcg); 5294 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5295 if (pages < max) 5296 continue; 5297 ret = false; 5298 break; 5299 } 5300 mem_cgroup_put(original_memcg); 5301 return ret; 5302 } 5303 5304 /** 5305 * obj_cgroup_charge_zswap - charge compression backend memory 5306 * @objcg: the object cgroup 5307 * @size: size of compressed object 5308 * 5309 * This forces the charge after obj_cgroup_may_zswap() allowed 5310 * compression and storage in zwap for this cgroup to go ahead. 5311 */ 5312 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5313 { 5314 struct mem_cgroup *memcg; 5315 5316 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5317 return; 5318 5319 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5320 5321 /* PF_MEMALLOC context, charging must succeed */ 5322 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5323 VM_WARN_ON_ONCE(1); 5324 5325 rcu_read_lock(); 5326 memcg = obj_cgroup_memcg(objcg); 5327 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5328 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5329 rcu_read_unlock(); 5330 } 5331 5332 /** 5333 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5334 * @objcg: the object cgroup 5335 * @size: size of compressed object 5336 * 5337 * Uncharges zswap memory on page in. 5338 */ 5339 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5340 { 5341 struct mem_cgroup *memcg; 5342 5343 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5344 return; 5345 5346 obj_cgroup_uncharge(objcg, size); 5347 5348 rcu_read_lock(); 5349 memcg = obj_cgroup_memcg(objcg); 5350 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5351 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5352 rcu_read_unlock(); 5353 } 5354 5355 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5356 { 5357 /* if zswap is disabled, do not block pages going to the swapping device */ 5358 return !zswap_is_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 5359 } 5360 5361 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5362 struct cftype *cft) 5363 { 5364 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5365 5366 mem_cgroup_flush_stats(memcg); 5367 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5368 } 5369 5370 static int zswap_max_show(struct seq_file *m, void *v) 5371 { 5372 return seq_puts_memcg_tunable(m, 5373 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5374 } 5375 5376 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5377 char *buf, size_t nbytes, loff_t off) 5378 { 5379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5380 unsigned long max; 5381 int err; 5382 5383 buf = strstrip(buf); 5384 err = page_counter_memparse(buf, "max", &max); 5385 if (err) 5386 return err; 5387 5388 xchg(&memcg->zswap_max, max); 5389 5390 return nbytes; 5391 } 5392 5393 static int zswap_writeback_show(struct seq_file *m, void *v) 5394 { 5395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5396 5397 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5398 return 0; 5399 } 5400 5401 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5402 char *buf, size_t nbytes, loff_t off) 5403 { 5404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5405 int zswap_writeback; 5406 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5407 5408 if (parse_ret) 5409 return parse_ret; 5410 5411 if (zswap_writeback != 0 && zswap_writeback != 1) 5412 return -EINVAL; 5413 5414 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5415 return nbytes; 5416 } 5417 5418 static struct cftype zswap_files[] = { 5419 { 5420 .name = "zswap.current", 5421 .flags = CFTYPE_NOT_ON_ROOT, 5422 .read_u64 = zswap_current_read, 5423 }, 5424 { 5425 .name = "zswap.max", 5426 .flags = CFTYPE_NOT_ON_ROOT, 5427 .seq_show = zswap_max_show, 5428 .write = zswap_max_write, 5429 }, 5430 { 5431 .name = "zswap.writeback", 5432 .seq_show = zswap_writeback_show, 5433 .write = zswap_writeback_write, 5434 }, 5435 { } /* terminate */ 5436 }; 5437 #endif /* CONFIG_ZSWAP */ 5438 5439 static int __init mem_cgroup_swap_init(void) 5440 { 5441 if (mem_cgroup_disabled()) 5442 return 0; 5443 5444 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5445 #ifdef CONFIG_MEMCG_V1 5446 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5447 #endif 5448 #ifdef CONFIG_ZSWAP 5449 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5450 #endif 5451 return 0; 5452 } 5453 subsys_initcall(mem_cgroup_swap_init); 5454 5455 #endif /* CONFIG_SWAP */ 5456