xref: /linux/mm/memcontrol.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33 
34 #include <asm/uaccess.h>
35 
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38 
39 /*
40  * Statistics for memory cgroup.
41  */
42 enum mem_cgroup_stat_index {
43 	/*
44 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 	 */
46 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
47 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
48 
49 	MEM_CGROUP_STAT_NSTATS,
50 };
51 
52 struct mem_cgroup_stat_cpu {
53 	s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55 
56 struct mem_cgroup_stat {
57 	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59 
60 /*
61  * For accounting under irq disable, no need for increment preempt count.
62  */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 		enum mem_cgroup_stat_index idx, int val)
65 {
66 	int cpu = smp_processor_id();
67 	stat->cpustat[cpu].count[idx] += val;
68 }
69 
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 		enum mem_cgroup_stat_index idx)
72 {
73 	int cpu;
74 	s64 ret = 0;
75 	for_each_possible_cpu(cpu)
76 		ret += stat->cpustat[cpu].count[idx];
77 	return ret;
78 }
79 
80 /*
81  * per-zone information in memory controller.
82  */
83 
84 enum mem_cgroup_zstat_index {
85 	MEM_CGROUP_ZSTAT_ACTIVE,
86 	MEM_CGROUP_ZSTAT_INACTIVE,
87 
88 	NR_MEM_CGROUP_ZSTAT,
89 };
90 
91 struct mem_cgroup_per_zone {
92 	/*
93 	 * spin_lock to protect the per cgroup LRU
94 	 */
95 	spinlock_t		lru_lock;
96 	struct list_head	active_list;
97 	struct list_head	inactive_list;
98 	unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
102 
103 struct mem_cgroup_per_node {
104 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106 
107 struct mem_cgroup_lru_info {
108 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110 
111 /*
112  * The memory controller data structure. The memory controller controls both
113  * page cache and RSS per cgroup. We would eventually like to provide
114  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115  * to help the administrator determine what knobs to tune.
116  *
117  * TODO: Add a water mark for the memory controller. Reclaim will begin when
118  * we hit the water mark. May be even add a low water mark, such that
119  * no reclaim occurs from a cgroup at it's low water mark, this is
120  * a feature that will be implemented much later in the future.
121  */
122 struct mem_cgroup {
123 	struct cgroup_subsys_state css;
124 	/*
125 	 * the counter to account for memory usage
126 	 */
127 	struct res_counter res;
128 	/*
129 	 * Per cgroup active and inactive list, similar to the
130 	 * per zone LRU lists.
131 	 */
132 	struct mem_cgroup_lru_info info;
133 
134 	int	prev_priority;	/* for recording reclaim priority */
135 	/*
136 	 * statistics.
137 	 */
138 	struct mem_cgroup_stat stat;
139 };
140 
141 /*
142  * We use the lower bit of the page->page_cgroup pointer as a bit spin
143  * lock. We need to ensure that page->page_cgroup is atleast two
144  * byte aligned (based on comments from Nick Piggin)
145  */
146 #define PAGE_CGROUP_LOCK_BIT 	0x0
147 #define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)
148 
149 /*
150  * A page_cgroup page is associated with every page descriptor. The
151  * page_cgroup helps us identify information about the cgroup
152  */
153 struct page_cgroup {
154 	struct list_head lru;		/* per cgroup LRU list */
155 	struct page *page;
156 	struct mem_cgroup *mem_cgroup;
157 	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
158 					/* mapped and cached states     */
159 	int	 flags;
160 };
161 #define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
162 #define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
163 
164 static inline int page_cgroup_nid(struct page_cgroup *pc)
165 {
166 	return page_to_nid(pc->page);
167 }
168 
169 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
170 {
171 	return page_zonenum(pc->page);
172 }
173 
174 enum {
175 	MEM_CGROUP_TYPE_UNSPEC = 0,
176 	MEM_CGROUP_TYPE_MAPPED,
177 	MEM_CGROUP_TYPE_CACHED,
178 	MEM_CGROUP_TYPE_ALL,
179 	MEM_CGROUP_TYPE_MAX,
180 };
181 
182 enum charge_type {
183 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
185 };
186 
187 
188 /*
189  * Always modified under lru lock. Then, not necessary to preempt_disable()
190  */
191 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 					bool charge)
193 {
194 	int val = (charge)? 1 : -1;
195 	struct mem_cgroup_stat *stat = &mem->stat;
196 	VM_BUG_ON(!irqs_disabled());
197 
198 	if (flags & PAGE_CGROUP_FLAG_CACHE)
199 		__mem_cgroup_stat_add_safe(stat,
200 					MEM_CGROUP_STAT_CACHE, val);
201 	else
202 		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
203 }
204 
205 static inline struct mem_cgroup_per_zone *
206 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207 {
208 	BUG_ON(!mem->info.nodeinfo[nid]);
209 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
210 }
211 
212 static inline struct mem_cgroup_per_zone *
213 page_cgroup_zoneinfo(struct page_cgroup *pc)
214 {
215 	struct mem_cgroup *mem = pc->mem_cgroup;
216 	int nid = page_cgroup_nid(pc);
217 	int zid = page_cgroup_zid(pc);
218 
219 	return mem_cgroup_zoneinfo(mem, nid, zid);
220 }
221 
222 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 					enum mem_cgroup_zstat_index idx)
224 {
225 	int nid, zid;
226 	struct mem_cgroup_per_zone *mz;
227 	u64 total = 0;
228 
229 	for_each_online_node(nid)
230 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 			total += MEM_CGROUP_ZSTAT(mz, idx);
233 		}
234 	return total;
235 }
236 
237 static struct mem_cgroup init_mem_cgroup;
238 
239 static inline
240 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
241 {
242 	return container_of(cgroup_subsys_state(cont,
243 				mem_cgroup_subsys_id), struct mem_cgroup,
244 				css);
245 }
246 
247 static inline
248 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
249 {
250 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 				struct mem_cgroup, css);
252 }
253 
254 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
255 {
256 	struct mem_cgroup *mem;
257 
258 	mem = mem_cgroup_from_task(p);
259 	css_get(&mem->css);
260 	mm->mem_cgroup = mem;
261 }
262 
263 void mm_free_cgroup(struct mm_struct *mm)
264 {
265 	css_put(&mm->mem_cgroup->css);
266 }
267 
268 static inline int page_cgroup_locked(struct page *page)
269 {
270 	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 					&page->page_cgroup);
272 }
273 
274 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
275 {
276 	int locked;
277 
278 	/*
279 	 * While resetting the page_cgroup we might not hold the
280 	 * page_cgroup lock. free_hot_cold_page() is an example
281 	 * of such a scenario
282 	 */
283 	if (pc)
284 		VM_BUG_ON(!page_cgroup_locked(page));
285 	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 	page->page_cgroup = ((unsigned long)pc | locked);
287 }
288 
289 struct page_cgroup *page_get_page_cgroup(struct page *page)
290 {
291 	return (struct page_cgroup *)
292 		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
293 }
294 
295 static void __always_inline lock_page_cgroup(struct page *page)
296 {
297 	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 	VM_BUG_ON(!page_cgroup_locked(page));
299 }
300 
301 static void __always_inline unlock_page_cgroup(struct page *page)
302 {
303 	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
304 }
305 
306 /*
307  * Tie new page_cgroup to struct page under lock_page_cgroup()
308  * This can fail if the page has been tied to a page_cgroup.
309  * If success, returns 0.
310  */
311 static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 						struct page_cgroup *pc)
313 {
314 	int ret = 0;
315 
316 	lock_page_cgroup(page);
317 	if (!page_get_page_cgroup(page))
318 		page_assign_page_cgroup(page, pc);
319 	else /* A page is tied to other pc. */
320 		ret = 1;
321 	unlock_page_cgroup(page);
322 	return ret;
323 }
324 
325 /*
326  * Clear page->page_cgroup member under lock_page_cgroup().
327  * If given "pc" value is different from one page->page_cgroup,
328  * page->cgroup is not cleared.
329  * Returns a value of page->page_cgroup at lock taken.
330  * A can can detect failure of clearing by following
331  *  clear_page_cgroup(page, pc) == pc
332  */
333 
334 static struct page_cgroup *clear_page_cgroup(struct page *page,
335 						struct page_cgroup *pc)
336 {
337 	struct page_cgroup *ret;
338 	/* lock and clear */
339 	lock_page_cgroup(page);
340 	ret = page_get_page_cgroup(page);
341 	if (likely(ret == pc))
342 		page_assign_page_cgroup(page, NULL);
343 	unlock_page_cgroup(page);
344 	return ret;
345 }
346 
347 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
348 {
349 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
351 
352 	if (from)
353 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 	else
355 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
356 
357 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 	list_del_init(&pc->lru);
359 }
360 
361 static void __mem_cgroup_add_list(struct page_cgroup *pc)
362 {
363 	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
365 
366 	if (!to) {
367 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
368 		list_add(&pc->lru, &mz->inactive_list);
369 	} else {
370 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
371 		list_add(&pc->lru, &mz->active_list);
372 	}
373 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
374 }
375 
376 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
377 {
378 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
380 
381 	if (from)
382 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 	else
384 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
385 
386 	if (active) {
387 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
388 		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
389 		list_move(&pc->lru, &mz->active_list);
390 	} else {
391 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
392 		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
393 		list_move(&pc->lru, &mz->inactive_list);
394 	}
395 }
396 
397 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
398 {
399 	int ret;
400 
401 	task_lock(task);
402 	ret = task->mm && vm_match_cgroup(task->mm, mem);
403 	task_unlock(task);
404 	return ret;
405 }
406 
407 /*
408  * This routine assumes that the appropriate zone's lru lock is already held
409  */
410 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
411 {
412 	struct mem_cgroup_per_zone *mz;
413 	unsigned long flags;
414 
415 	if (!pc)
416 		return;
417 
418 	mz = page_cgroup_zoneinfo(pc);
419 	spin_lock_irqsave(&mz->lru_lock, flags);
420 	__mem_cgroup_move_lists(pc, active);
421 	spin_unlock_irqrestore(&mz->lru_lock, flags);
422 }
423 
424 /*
425  * Calculate mapped_ratio under memory controller. This will be used in
426  * vmscan.c for deteremining we have to reclaim mapped pages.
427  */
428 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
429 {
430 	long total, rss;
431 
432 	/*
433 	 * usage is recorded in bytes. But, here, we assume the number of
434 	 * physical pages can be represented by "long" on any arch.
435 	 */
436 	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
437 	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
438 	return (int)((rss * 100L) / total);
439 }
440 /*
441  * This function is called from vmscan.c. In page reclaiming loop. balance
442  * between active and inactive list is calculated. For memory controller
443  * page reclaiming, we should use using mem_cgroup's imbalance rather than
444  * zone's global lru imbalance.
445  */
446 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
447 {
448 	unsigned long active, inactive;
449 	/* active and inactive are the number of pages. 'long' is ok.*/
450 	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
451 	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
452 	return (long) (active / (inactive + 1));
453 }
454 
455 /*
456  * prev_priority control...this will be used in memory reclaim path.
457  */
458 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
459 {
460 	return mem->prev_priority;
461 }
462 
463 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
464 {
465 	if (priority < mem->prev_priority)
466 		mem->prev_priority = priority;
467 }
468 
469 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
470 {
471 	mem->prev_priority = priority;
472 }
473 
474 /*
475  * Calculate # of pages to be scanned in this priority/zone.
476  * See also vmscan.c
477  *
478  * priority starts from "DEF_PRIORITY" and decremented in each loop.
479  * (see include/linux/mmzone.h)
480  */
481 
482 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
483 				   struct zone *zone, int priority)
484 {
485 	long nr_active;
486 	int nid = zone->zone_pgdat->node_id;
487 	int zid = zone_idx(zone);
488 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
489 
490 	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
491 	return (nr_active >> priority);
492 }
493 
494 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
495 					struct zone *zone, int priority)
496 {
497 	long nr_inactive;
498 	int nid = zone->zone_pgdat->node_id;
499 	int zid = zone_idx(zone);
500 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
501 
502 	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
503 
504 	return (nr_inactive >> priority);
505 }
506 
507 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
508 					struct list_head *dst,
509 					unsigned long *scanned, int order,
510 					int mode, struct zone *z,
511 					struct mem_cgroup *mem_cont,
512 					int active)
513 {
514 	unsigned long nr_taken = 0;
515 	struct page *page;
516 	unsigned long scan;
517 	LIST_HEAD(pc_list);
518 	struct list_head *src;
519 	struct page_cgroup *pc, *tmp;
520 	int nid = z->zone_pgdat->node_id;
521 	int zid = zone_idx(z);
522 	struct mem_cgroup_per_zone *mz;
523 
524 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
525 	if (active)
526 		src = &mz->active_list;
527 	else
528 		src = &mz->inactive_list;
529 
530 
531 	spin_lock(&mz->lru_lock);
532 	scan = 0;
533 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
534 		if (scan >= nr_to_scan)
535 			break;
536 		page = pc->page;
537 		VM_BUG_ON(!pc);
538 
539 		if (unlikely(!PageLRU(page)))
540 			continue;
541 
542 		if (PageActive(page) && !active) {
543 			__mem_cgroup_move_lists(pc, true);
544 			continue;
545 		}
546 		if (!PageActive(page) && active) {
547 			__mem_cgroup_move_lists(pc, false);
548 			continue;
549 		}
550 
551 		scan++;
552 		list_move(&pc->lru, &pc_list);
553 
554 		if (__isolate_lru_page(page, mode) == 0) {
555 			list_move(&page->lru, dst);
556 			nr_taken++;
557 		}
558 	}
559 
560 	list_splice(&pc_list, src);
561 	spin_unlock(&mz->lru_lock);
562 
563 	*scanned = scan;
564 	return nr_taken;
565 }
566 
567 /*
568  * Charge the memory controller for page usage.
569  * Return
570  * 0 if the charge was successful
571  * < 0 if the cgroup is over its limit
572  */
573 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
574 				gfp_t gfp_mask, enum charge_type ctype)
575 {
576 	struct mem_cgroup *mem;
577 	struct page_cgroup *pc;
578 	unsigned long flags;
579 	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
580 	struct mem_cgroup_per_zone *mz;
581 
582 	/*
583 	 * Should page_cgroup's go to their own slab?
584 	 * One could optimize the performance of the charging routine
585 	 * by saving a bit in the page_flags and using it as a lock
586 	 * to see if the cgroup page already has a page_cgroup associated
587 	 * with it
588 	 */
589 retry:
590 	if (page) {
591 		lock_page_cgroup(page);
592 		pc = page_get_page_cgroup(page);
593 		/*
594 		 * The page_cgroup exists and
595 		 * the page has already been accounted.
596 		 */
597 		if (pc) {
598 			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
599 				/* this page is under being uncharged ? */
600 				unlock_page_cgroup(page);
601 				cpu_relax();
602 				goto retry;
603 			} else {
604 				unlock_page_cgroup(page);
605 				goto done;
606 			}
607 		}
608 		unlock_page_cgroup(page);
609 	}
610 
611 	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
612 	if (pc == NULL)
613 		goto err;
614 
615 	/*
616 	 * We always charge the cgroup the mm_struct belongs to.
617 	 * The mm_struct's mem_cgroup changes on task migration if the
618 	 * thread group leader migrates. It's possible that mm is not
619 	 * set, if so charge the init_mm (happens for pagecache usage).
620 	 */
621 	if (!mm)
622 		mm = &init_mm;
623 
624 	rcu_read_lock();
625 	mem = rcu_dereference(mm->mem_cgroup);
626 	/*
627 	 * For every charge from the cgroup, increment reference
628 	 * count
629 	 */
630 	css_get(&mem->css);
631 	rcu_read_unlock();
632 
633 	/*
634 	 * If we created the page_cgroup, we should free it on exceeding
635 	 * the cgroup limit.
636 	 */
637 	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
638 		if (!(gfp_mask & __GFP_WAIT))
639 			goto out;
640 
641 		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
642 			continue;
643 
644 		/*
645  		 * try_to_free_mem_cgroup_pages() might not give us a full
646  		 * picture of reclaim. Some pages are reclaimed and might be
647  		 * moved to swap cache or just unmapped from the cgroup.
648  		 * Check the limit again to see if the reclaim reduced the
649  		 * current usage of the cgroup before giving up
650  		 */
651 		if (res_counter_check_under_limit(&mem->res))
652 			continue;
653 
654 		if (!nr_retries--) {
655 			mem_cgroup_out_of_memory(mem, gfp_mask);
656 			goto out;
657 		}
658 		congestion_wait(WRITE, HZ/10);
659 	}
660 
661 	atomic_set(&pc->ref_cnt, 1);
662 	pc->mem_cgroup = mem;
663 	pc->page = page;
664 	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
665 	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
666 		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
667 
668 	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
669 		/*
670 		 * Another charge has been added to this page already.
671 		 * We take lock_page_cgroup(page) again and read
672 		 * page->cgroup, increment refcnt.... just retry is OK.
673 		 */
674 		res_counter_uncharge(&mem->res, PAGE_SIZE);
675 		css_put(&mem->css);
676 		kfree(pc);
677 		if (!page)
678 			goto done;
679 		goto retry;
680 	}
681 
682 	mz = page_cgroup_zoneinfo(pc);
683 	spin_lock_irqsave(&mz->lru_lock, flags);
684 	/* Update statistics vector */
685 	__mem_cgroup_add_list(pc);
686 	spin_unlock_irqrestore(&mz->lru_lock, flags);
687 
688 done:
689 	return 0;
690 out:
691 	css_put(&mem->css);
692 	kfree(pc);
693 err:
694 	return -ENOMEM;
695 }
696 
697 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
698 			gfp_t gfp_mask)
699 {
700 	return mem_cgroup_charge_common(page, mm, gfp_mask,
701 			MEM_CGROUP_CHARGE_TYPE_MAPPED);
702 }
703 
704 /*
705  * See if the cached pages should be charged at all?
706  */
707 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
708 				gfp_t gfp_mask)
709 {
710 	int ret = 0;
711 	if (!mm)
712 		mm = &init_mm;
713 
714 	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
715 				MEM_CGROUP_CHARGE_TYPE_CACHE);
716 	return ret;
717 }
718 
719 /*
720  * Uncharging is always a welcome operation, we never complain, simply
721  * uncharge. This routine should be called with lock_page_cgroup held
722  */
723 void mem_cgroup_uncharge(struct page_cgroup *pc)
724 {
725 	struct mem_cgroup *mem;
726 	struct mem_cgroup_per_zone *mz;
727 	struct page *page;
728 	unsigned long flags;
729 
730 	/*
731 	 * Check if our page_cgroup is valid
732 	 */
733 	if (!pc)
734 		return;
735 
736 	if (atomic_dec_and_test(&pc->ref_cnt)) {
737 		page = pc->page;
738 		mz = page_cgroup_zoneinfo(pc);
739 		/*
740 		 * get page->cgroup and clear it under lock.
741 		 * force_empty can drop page->cgroup without checking refcnt.
742 		 */
743 		unlock_page_cgroup(page);
744 		if (clear_page_cgroup(page, pc) == pc) {
745 			mem = pc->mem_cgroup;
746 			css_put(&mem->css);
747 			res_counter_uncharge(&mem->res, PAGE_SIZE);
748 			spin_lock_irqsave(&mz->lru_lock, flags);
749 			__mem_cgroup_remove_list(pc);
750 			spin_unlock_irqrestore(&mz->lru_lock, flags);
751 			kfree(pc);
752 		}
753 		lock_page_cgroup(page);
754 	}
755 }
756 
757 void mem_cgroup_uncharge_page(struct page *page)
758 {
759 	lock_page_cgroup(page);
760 	mem_cgroup_uncharge(page_get_page_cgroup(page));
761 	unlock_page_cgroup(page);
762 }
763 
764 /*
765  * Returns non-zero if a page (under migration) has valid page_cgroup member.
766  * Refcnt of page_cgroup is incremented.
767  */
768 
769 int mem_cgroup_prepare_migration(struct page *page)
770 {
771 	struct page_cgroup *pc;
772 	int ret = 0;
773 	lock_page_cgroup(page);
774 	pc = page_get_page_cgroup(page);
775 	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
776 		ret = 1;
777 	unlock_page_cgroup(page);
778 	return ret;
779 }
780 
781 void mem_cgroup_end_migration(struct page *page)
782 {
783 	struct page_cgroup *pc;
784 
785 	lock_page_cgroup(page);
786 	pc = page_get_page_cgroup(page);
787 	mem_cgroup_uncharge(pc);
788 	unlock_page_cgroup(page);
789 }
790 /*
791  * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
792  * And no race with uncharge() routines because page_cgroup for *page*
793  * has extra one reference by mem_cgroup_prepare_migration.
794  */
795 
796 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
797 {
798 	struct page_cgroup *pc;
799 	struct mem_cgroup *mem;
800 	unsigned long flags;
801 	struct mem_cgroup_per_zone *mz;
802 retry:
803 	pc = page_get_page_cgroup(page);
804 	if (!pc)
805 		return;
806 	mem = pc->mem_cgroup;
807 	mz = page_cgroup_zoneinfo(pc);
808 	if (clear_page_cgroup(page, pc) != pc)
809 		goto retry;
810 	spin_lock_irqsave(&mz->lru_lock, flags);
811 
812 	__mem_cgroup_remove_list(pc);
813 	spin_unlock_irqrestore(&mz->lru_lock, flags);
814 
815 	pc->page = newpage;
816 	lock_page_cgroup(newpage);
817 	page_assign_page_cgroup(newpage, pc);
818 	unlock_page_cgroup(newpage);
819 
820 	mz = page_cgroup_zoneinfo(pc);
821 	spin_lock_irqsave(&mz->lru_lock, flags);
822 	__mem_cgroup_add_list(pc);
823 	spin_unlock_irqrestore(&mz->lru_lock, flags);
824 	return;
825 }
826 
827 /*
828  * This routine traverse page_cgroup in given list and drop them all.
829  * This routine ignores page_cgroup->ref_cnt.
830  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
831  */
832 #define FORCE_UNCHARGE_BATCH	(128)
833 static void
834 mem_cgroup_force_empty_list(struct mem_cgroup *mem,
835 			    struct mem_cgroup_per_zone *mz,
836 			    int active)
837 {
838 	struct page_cgroup *pc;
839 	struct page *page;
840 	int count;
841 	unsigned long flags;
842 	struct list_head *list;
843 
844 	if (active)
845 		list = &mz->active_list;
846 	else
847 		list = &mz->inactive_list;
848 
849 	if (list_empty(list))
850 		return;
851 retry:
852 	count = FORCE_UNCHARGE_BATCH;
853 	spin_lock_irqsave(&mz->lru_lock, flags);
854 
855 	while (--count && !list_empty(list)) {
856 		pc = list_entry(list->prev, struct page_cgroup, lru);
857 		page = pc->page;
858 		/* Avoid race with charge */
859 		atomic_set(&pc->ref_cnt, 0);
860 		if (clear_page_cgroup(page, pc) == pc) {
861 			css_put(&mem->css);
862 			res_counter_uncharge(&mem->res, PAGE_SIZE);
863 			__mem_cgroup_remove_list(pc);
864 			kfree(pc);
865 		} else 	/* being uncharged ? ...do relax */
866 			break;
867 	}
868 	spin_unlock_irqrestore(&mz->lru_lock, flags);
869 	if (!list_empty(list)) {
870 		cond_resched();
871 		goto retry;
872 	}
873 	return;
874 }
875 
876 /*
877  * make mem_cgroup's charge to be 0 if there is no task.
878  * This enables deleting this mem_cgroup.
879  */
880 
881 int mem_cgroup_force_empty(struct mem_cgroup *mem)
882 {
883 	int ret = -EBUSY;
884 	int node, zid;
885 	css_get(&mem->css);
886 	/*
887 	 * page reclaim code (kswapd etc..) will move pages between
888 `	 * active_list <-> inactive_list while we don't take a lock.
889 	 * So, we have to do loop here until all lists are empty.
890 	 */
891 	while (mem->res.usage > 0) {
892 		if (atomic_read(&mem->css.cgroup->count) > 0)
893 			goto out;
894 		for_each_node_state(node, N_POSSIBLE)
895 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
896 				struct mem_cgroup_per_zone *mz;
897 				mz = mem_cgroup_zoneinfo(mem, node, zid);
898 				/* drop all page_cgroup in active_list */
899 				mem_cgroup_force_empty_list(mem, mz, 1);
900 				/* drop all page_cgroup in inactive_list */
901 				mem_cgroup_force_empty_list(mem, mz, 0);
902 			}
903 	}
904 	ret = 0;
905 out:
906 	css_put(&mem->css);
907 	return ret;
908 }
909 
910 
911 
912 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
913 {
914 	*tmp = memparse(buf, &buf);
915 	if (*buf != '\0')
916 		return -EINVAL;
917 
918 	/*
919 	 * Round up the value to the closest page size
920 	 */
921 	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
922 	return 0;
923 }
924 
925 static ssize_t mem_cgroup_read(struct cgroup *cont,
926 			struct cftype *cft, struct file *file,
927 			char __user *userbuf, size_t nbytes, loff_t *ppos)
928 {
929 	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
930 				cft->private, userbuf, nbytes, ppos,
931 				NULL);
932 }
933 
934 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
935 				struct file *file, const char __user *userbuf,
936 				size_t nbytes, loff_t *ppos)
937 {
938 	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
939 				cft->private, userbuf, nbytes, ppos,
940 				mem_cgroup_write_strategy);
941 }
942 
943 static ssize_t mem_force_empty_write(struct cgroup *cont,
944 				struct cftype *cft, struct file *file,
945 				const char __user *userbuf,
946 				size_t nbytes, loff_t *ppos)
947 {
948 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
949 	int ret;
950 	ret = mem_cgroup_force_empty(mem);
951 	if (!ret)
952 		ret = nbytes;
953 	return ret;
954 }
955 
956 /*
957  * Note: This should be removed if cgroup supports write-only file.
958  */
959 
960 static ssize_t mem_force_empty_read(struct cgroup *cont,
961 				struct cftype *cft,
962 				struct file *file, char __user *userbuf,
963 				size_t nbytes, loff_t *ppos)
964 {
965 	return -EINVAL;
966 }
967 
968 
969 static const struct mem_cgroup_stat_desc {
970 	const char *msg;
971 	u64 unit;
972 } mem_cgroup_stat_desc[] = {
973 	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
974 	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
975 };
976 
977 static int mem_control_stat_show(struct seq_file *m, void *arg)
978 {
979 	struct cgroup *cont = m->private;
980 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
981 	struct mem_cgroup_stat *stat = &mem_cont->stat;
982 	int i;
983 
984 	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
985 		s64 val;
986 
987 		val = mem_cgroup_read_stat(stat, i);
988 		val *= mem_cgroup_stat_desc[i].unit;
989 		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
990 				(long long)val);
991 	}
992 	/* showing # of active pages */
993 	{
994 		unsigned long active, inactive;
995 
996 		inactive = mem_cgroup_get_all_zonestat(mem_cont,
997 						MEM_CGROUP_ZSTAT_INACTIVE);
998 		active = mem_cgroup_get_all_zonestat(mem_cont,
999 						MEM_CGROUP_ZSTAT_ACTIVE);
1000 		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
1001 		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1002 	}
1003 	return 0;
1004 }
1005 
1006 static const struct file_operations mem_control_stat_file_operations = {
1007 	.read = seq_read,
1008 	.llseek = seq_lseek,
1009 	.release = single_release,
1010 };
1011 
1012 static int mem_control_stat_open(struct inode *unused, struct file *file)
1013 {
1014 	/* XXX __d_cont */
1015 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1016 
1017 	file->f_op = &mem_control_stat_file_operations;
1018 	return single_open(file, mem_control_stat_show, cont);
1019 }
1020 
1021 
1022 
1023 static struct cftype mem_cgroup_files[] = {
1024 	{
1025 		.name = "usage_in_bytes",
1026 		.private = RES_USAGE,
1027 		.read = mem_cgroup_read,
1028 	},
1029 	{
1030 		.name = "limit_in_bytes",
1031 		.private = RES_LIMIT,
1032 		.write = mem_cgroup_write,
1033 		.read = mem_cgroup_read,
1034 	},
1035 	{
1036 		.name = "failcnt",
1037 		.private = RES_FAILCNT,
1038 		.read = mem_cgroup_read,
1039 	},
1040 	{
1041 		.name = "force_empty",
1042 		.write = mem_force_empty_write,
1043 		.read = mem_force_empty_read,
1044 	},
1045 	{
1046 		.name = "stat",
1047 		.open = mem_control_stat_open,
1048 	},
1049 };
1050 
1051 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1052 {
1053 	struct mem_cgroup_per_node *pn;
1054 	struct mem_cgroup_per_zone *mz;
1055 	int zone;
1056 	/*
1057 	 * This routine is called against possible nodes.
1058 	 * But it's BUG to call kmalloc() against offline node.
1059 	 *
1060 	 * TODO: this routine can waste much memory for nodes which will
1061 	 *       never be onlined. It's better to use memory hotplug callback
1062 	 *       function.
1063 	 */
1064 	if (node_state(node, N_HIGH_MEMORY))
1065 		pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1066 	else
1067 		pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1068 	if (!pn)
1069 		return 1;
1070 
1071 	mem->info.nodeinfo[node] = pn;
1072 	memset(pn, 0, sizeof(*pn));
1073 
1074 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1075 		mz = &pn->zoneinfo[zone];
1076 		INIT_LIST_HEAD(&mz->active_list);
1077 		INIT_LIST_HEAD(&mz->inactive_list);
1078 		spin_lock_init(&mz->lru_lock);
1079 	}
1080 	return 0;
1081 }
1082 
1083 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1084 {
1085 	kfree(mem->info.nodeinfo[node]);
1086 }
1087 
1088 
1089 static struct mem_cgroup init_mem_cgroup;
1090 
1091 static struct cgroup_subsys_state *
1092 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1093 {
1094 	struct mem_cgroup *mem;
1095 	int node;
1096 
1097 	if (unlikely((cont->parent) == NULL)) {
1098 		mem = &init_mem_cgroup;
1099 		init_mm.mem_cgroup = mem;
1100 	} else
1101 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1102 
1103 	if (mem == NULL)
1104 		return NULL;
1105 
1106 	res_counter_init(&mem->res);
1107 
1108 	memset(&mem->info, 0, sizeof(mem->info));
1109 
1110 	for_each_node_state(node, N_POSSIBLE)
1111 		if (alloc_mem_cgroup_per_zone_info(mem, node))
1112 			goto free_out;
1113 
1114 	return &mem->css;
1115 free_out:
1116 	for_each_node_state(node, N_POSSIBLE)
1117 		free_mem_cgroup_per_zone_info(mem, node);
1118 	if (cont->parent != NULL)
1119 		kfree(mem);
1120 	return NULL;
1121 }
1122 
1123 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1124 					struct cgroup *cont)
1125 {
1126 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1127 	mem_cgroup_force_empty(mem);
1128 }
1129 
1130 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1131 				struct cgroup *cont)
1132 {
1133 	int node;
1134 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1135 
1136 	for_each_node_state(node, N_POSSIBLE)
1137 		free_mem_cgroup_per_zone_info(mem, node);
1138 
1139 	kfree(mem_cgroup_from_cont(cont));
1140 }
1141 
1142 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1143 				struct cgroup *cont)
1144 {
1145 	return cgroup_add_files(cont, ss, mem_cgroup_files,
1146 					ARRAY_SIZE(mem_cgroup_files));
1147 }
1148 
1149 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1150 				struct cgroup *cont,
1151 				struct cgroup *old_cont,
1152 				struct task_struct *p)
1153 {
1154 	struct mm_struct *mm;
1155 	struct mem_cgroup *mem, *old_mem;
1156 
1157 	mm = get_task_mm(p);
1158 	if (mm == NULL)
1159 		return;
1160 
1161 	mem = mem_cgroup_from_cont(cont);
1162 	old_mem = mem_cgroup_from_cont(old_cont);
1163 
1164 	if (mem == old_mem)
1165 		goto out;
1166 
1167 	/*
1168 	 * Only thread group leaders are allowed to migrate, the mm_struct is
1169 	 * in effect owned by the leader
1170 	 */
1171 	if (p->tgid != p->pid)
1172 		goto out;
1173 
1174 	css_get(&mem->css);
1175 	rcu_assign_pointer(mm->mem_cgroup, mem);
1176 	css_put(&old_mem->css);
1177 
1178 out:
1179 	mmput(mm);
1180 	return;
1181 }
1182 
1183 struct cgroup_subsys mem_cgroup_subsys = {
1184 	.name = "memory",
1185 	.subsys_id = mem_cgroup_subsys_id,
1186 	.create = mem_cgroup_create,
1187 	.pre_destroy = mem_cgroup_pre_destroy,
1188 	.destroy = mem_cgroup_destroy,
1189 	.populate = mem_cgroup_populate,
1190 	.attach = mem_cgroup_move_task,
1191 	.early_init = 0,
1192 };
1193