1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/sched/mm.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/hugetlb.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swapops.h> 48 #include <linux/spinlock.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/parser.h> 52 #include <linux/vmpressure.h> 53 #include <linux/memremap.h> 54 #include <linux/mm_inline.h> 55 #include <linux/swap_cgroup.h> 56 #include <linux/cpu.h> 57 #include <linux/oom.h> 58 #include <linux/lockdep.h> 59 #include <linux/resume_user_mode.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/kmemleak.h> 64 #include "internal.h" 65 #include <net/sock.h> 66 #include <net/ip.h> 67 #include "slab.h" 68 #include "memcontrol-v1.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket __ro_after_init; 85 86 /* Kernel memory accounting disabled? */ 87 static bool cgroup_memory_nokmem __ro_after_init; 88 89 /* BPF memory accounting disabled? */ 90 static bool cgroup_memory_nobpf __ro_after_init; 91 92 #ifdef CONFIG_CGROUP_WRITEBACK 93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 94 #endif 95 96 #define THRESHOLDS_EVENTS_TARGET 128 97 #define SOFTLIMIT_EVENTS_TARGET 1024 98 99 static inline bool task_is_dying(void) 100 { 101 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 102 (current->flags & PF_EXITING); 103 } 104 105 /* Some nice accessors for the vmpressure. */ 106 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 107 { 108 if (!memcg) 109 memcg = root_mem_cgroup; 110 return &memcg->vmpressure; 111 } 112 113 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 114 { 115 return container_of(vmpr, struct mem_cgroup, vmpressure); 116 } 117 118 #define CURRENT_OBJCG_UPDATE_BIT 0 119 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 120 121 static DEFINE_SPINLOCK(objcg_lock); 122 123 bool mem_cgroup_kmem_disabled(void) 124 { 125 return cgroup_memory_nokmem; 126 } 127 128 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 129 unsigned int nr_pages); 130 131 static void obj_cgroup_release(struct percpu_ref *ref) 132 { 133 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 134 unsigned int nr_bytes; 135 unsigned int nr_pages; 136 unsigned long flags; 137 138 /* 139 * At this point all allocated objects are freed, and 140 * objcg->nr_charged_bytes can't have an arbitrary byte value. 141 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 142 * 143 * The following sequence can lead to it: 144 * 1) CPU0: objcg == stock->cached_objcg 145 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 146 * PAGE_SIZE bytes are charged 147 * 3) CPU1: a process from another memcg is allocating something, 148 * the stock if flushed, 149 * objcg->nr_charged_bytes = PAGE_SIZE - 92 150 * 5) CPU0: we do release this object, 151 * 92 bytes are added to stock->nr_bytes 152 * 6) CPU0: stock is flushed, 153 * 92 bytes are added to objcg->nr_charged_bytes 154 * 155 * In the result, nr_charged_bytes == PAGE_SIZE. 156 * This page will be uncharged in obj_cgroup_release(). 157 */ 158 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 159 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 160 nr_pages = nr_bytes >> PAGE_SHIFT; 161 162 if (nr_pages) 163 obj_cgroup_uncharge_pages(objcg, nr_pages); 164 165 spin_lock_irqsave(&objcg_lock, flags); 166 list_del(&objcg->list); 167 spin_unlock_irqrestore(&objcg_lock, flags); 168 169 percpu_ref_exit(ref); 170 kfree_rcu(objcg, rcu); 171 } 172 173 static struct obj_cgroup *obj_cgroup_alloc(void) 174 { 175 struct obj_cgroup *objcg; 176 int ret; 177 178 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 179 if (!objcg) 180 return NULL; 181 182 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 183 GFP_KERNEL); 184 if (ret) { 185 kfree(objcg); 186 return NULL; 187 } 188 INIT_LIST_HEAD(&objcg->list); 189 return objcg; 190 } 191 192 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 193 struct mem_cgroup *parent) 194 { 195 struct obj_cgroup *objcg, *iter; 196 197 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 198 199 spin_lock_irq(&objcg_lock); 200 201 /* 1) Ready to reparent active objcg. */ 202 list_add(&objcg->list, &memcg->objcg_list); 203 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 204 list_for_each_entry(iter, &memcg->objcg_list, list) 205 WRITE_ONCE(iter->memcg, parent); 206 /* 3) Move already reparented objcgs to the parent's list */ 207 list_splice(&memcg->objcg_list, &parent->objcg_list); 208 209 spin_unlock_irq(&objcg_lock); 210 211 percpu_ref_kill(&objcg->refcnt); 212 } 213 214 /* 215 * A lot of the calls to the cache allocation functions are expected to be 216 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 217 * conditional to this static branch, we'll have to allow modules that does 218 * kmem_cache_alloc and the such to see this symbol as well 219 */ 220 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 221 EXPORT_SYMBOL(memcg_kmem_online_key); 222 223 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 224 EXPORT_SYMBOL(memcg_bpf_enabled_key); 225 226 /** 227 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 228 * @folio: folio of interest 229 * 230 * If memcg is bound to the default hierarchy, css of the memcg associated 231 * with @folio is returned. The returned css remains associated with @folio 232 * until it is released. 233 * 234 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 235 * is returned. 236 */ 237 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 238 { 239 struct mem_cgroup *memcg = folio_memcg(folio); 240 241 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 242 memcg = root_mem_cgroup; 243 244 return &memcg->css; 245 } 246 247 /** 248 * page_cgroup_ino - return inode number of the memcg a page is charged to 249 * @page: the page 250 * 251 * Look up the closest online ancestor of the memory cgroup @page is charged to 252 * and return its inode number or 0 if @page is not charged to any cgroup. It 253 * is safe to call this function without holding a reference to @page. 254 * 255 * Note, this function is inherently racy, because there is nothing to prevent 256 * the cgroup inode from getting torn down and potentially reallocated a moment 257 * after page_cgroup_ino() returns, so it only should be used by callers that 258 * do not care (such as procfs interfaces). 259 */ 260 ino_t page_cgroup_ino(struct page *page) 261 { 262 struct mem_cgroup *memcg; 263 unsigned long ino = 0; 264 265 rcu_read_lock(); 266 /* page_folio() is racy here, but the entire function is racy anyway */ 267 memcg = folio_memcg_check(page_folio(page)); 268 269 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 270 memcg = parent_mem_cgroup(memcg); 271 if (memcg) 272 ino = cgroup_ino(memcg->css.cgroup); 273 rcu_read_unlock(); 274 return ino; 275 } 276 277 /* Subset of node_stat_item for memcg stats */ 278 static const unsigned int memcg_node_stat_items[] = { 279 NR_INACTIVE_ANON, 280 NR_ACTIVE_ANON, 281 NR_INACTIVE_FILE, 282 NR_ACTIVE_FILE, 283 NR_UNEVICTABLE, 284 NR_SLAB_RECLAIMABLE_B, 285 NR_SLAB_UNRECLAIMABLE_B, 286 WORKINGSET_REFAULT_ANON, 287 WORKINGSET_REFAULT_FILE, 288 WORKINGSET_ACTIVATE_ANON, 289 WORKINGSET_ACTIVATE_FILE, 290 WORKINGSET_RESTORE_ANON, 291 WORKINGSET_RESTORE_FILE, 292 WORKINGSET_NODERECLAIM, 293 NR_ANON_MAPPED, 294 NR_FILE_MAPPED, 295 NR_FILE_PAGES, 296 NR_FILE_DIRTY, 297 NR_WRITEBACK, 298 NR_SHMEM, 299 NR_SHMEM_THPS, 300 NR_FILE_THPS, 301 NR_ANON_THPS, 302 NR_KERNEL_STACK_KB, 303 NR_PAGETABLE, 304 NR_SECONDARY_PAGETABLE, 305 #ifdef CONFIG_SWAP 306 NR_SWAPCACHE, 307 #endif 308 }; 309 310 static const unsigned int memcg_stat_items[] = { 311 MEMCG_SWAP, 312 MEMCG_SOCK, 313 MEMCG_PERCPU_B, 314 MEMCG_VMALLOC, 315 MEMCG_KMEM, 316 MEMCG_ZSWAP_B, 317 MEMCG_ZSWAPPED, 318 }; 319 320 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 321 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 322 ARRAY_SIZE(memcg_stat_items)) 323 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 324 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 325 326 static void init_memcg_stats(void) 327 { 328 u8 i, j = 0; 329 330 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 331 332 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 333 334 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 335 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 336 337 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 338 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 339 } 340 341 static inline int memcg_stats_index(int idx) 342 { 343 return mem_cgroup_stats_index[idx]; 344 } 345 346 struct lruvec_stats_percpu { 347 /* Local (CPU and cgroup) state */ 348 long state[NR_MEMCG_NODE_STAT_ITEMS]; 349 350 /* Delta calculation for lockless upward propagation */ 351 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 352 }; 353 354 struct lruvec_stats { 355 /* Aggregated (CPU and subtree) state */ 356 long state[NR_MEMCG_NODE_STAT_ITEMS]; 357 358 /* Non-hierarchical (CPU aggregated) state */ 359 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 360 361 /* Pending child counts during tree propagation */ 362 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 363 }; 364 365 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 366 { 367 struct mem_cgroup_per_node *pn; 368 long x; 369 int i; 370 371 if (mem_cgroup_disabled()) 372 return node_page_state(lruvec_pgdat(lruvec), idx); 373 374 i = memcg_stats_index(idx); 375 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 376 return 0; 377 378 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 379 x = READ_ONCE(pn->lruvec_stats->state[i]); 380 #ifdef CONFIG_SMP 381 if (x < 0) 382 x = 0; 383 #endif 384 return x; 385 } 386 387 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 388 enum node_stat_item idx) 389 { 390 struct mem_cgroup_per_node *pn; 391 long x; 392 int i; 393 394 if (mem_cgroup_disabled()) 395 return node_page_state(lruvec_pgdat(lruvec), idx); 396 397 i = memcg_stats_index(idx); 398 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 399 return 0; 400 401 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 402 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 403 #ifdef CONFIG_SMP 404 if (x < 0) 405 x = 0; 406 #endif 407 return x; 408 } 409 410 /* Subset of vm_event_item to report for memcg event stats */ 411 static const unsigned int memcg_vm_event_stat[] = { 412 PGPGIN, 413 PGPGOUT, 414 PGSCAN_KSWAPD, 415 PGSCAN_DIRECT, 416 PGSCAN_KHUGEPAGED, 417 PGSTEAL_KSWAPD, 418 PGSTEAL_DIRECT, 419 PGSTEAL_KHUGEPAGED, 420 PGFAULT, 421 PGMAJFAULT, 422 PGREFILL, 423 PGACTIVATE, 424 PGDEACTIVATE, 425 PGLAZYFREE, 426 PGLAZYFREED, 427 #ifdef CONFIG_ZSWAP 428 ZSWPIN, 429 ZSWPOUT, 430 ZSWPWB, 431 #endif 432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 433 THP_FAULT_ALLOC, 434 THP_COLLAPSE_ALLOC, 435 THP_SWPOUT, 436 THP_SWPOUT_FALLBACK, 437 #endif 438 }; 439 440 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 441 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 442 443 static void init_memcg_events(void) 444 { 445 u8 i; 446 447 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 448 449 memset(mem_cgroup_events_index, U8_MAX, 450 sizeof(mem_cgroup_events_index)); 451 452 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 453 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 454 } 455 456 static inline int memcg_events_index(enum vm_event_item idx) 457 { 458 return mem_cgroup_events_index[idx]; 459 } 460 461 struct memcg_vmstats_percpu { 462 /* Stats updates since the last flush */ 463 unsigned int stats_updates; 464 465 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 466 struct memcg_vmstats_percpu *parent; 467 struct memcg_vmstats *vmstats; 468 469 /* The above should fit a single cacheline for memcg_rstat_updated() */ 470 471 /* Local (CPU and cgroup) page state & events */ 472 long state[MEMCG_VMSTAT_SIZE]; 473 unsigned long events[NR_MEMCG_EVENTS]; 474 475 /* Delta calculation for lockless upward propagation */ 476 long state_prev[MEMCG_VMSTAT_SIZE]; 477 unsigned long events_prev[NR_MEMCG_EVENTS]; 478 479 /* Cgroup1: threshold notifications & softlimit tree updates */ 480 unsigned long nr_page_events; 481 unsigned long targets[MEM_CGROUP_NTARGETS]; 482 } ____cacheline_aligned; 483 484 struct memcg_vmstats { 485 /* Aggregated (CPU and subtree) page state & events */ 486 long state[MEMCG_VMSTAT_SIZE]; 487 unsigned long events[NR_MEMCG_EVENTS]; 488 489 /* Non-hierarchical (CPU aggregated) page state & events */ 490 long state_local[MEMCG_VMSTAT_SIZE]; 491 unsigned long events_local[NR_MEMCG_EVENTS]; 492 493 /* Pending child counts during tree propagation */ 494 long state_pending[MEMCG_VMSTAT_SIZE]; 495 unsigned long events_pending[NR_MEMCG_EVENTS]; 496 497 /* Stats updates since the last flush */ 498 atomic64_t stats_updates; 499 }; 500 501 /* 502 * memcg and lruvec stats flushing 503 * 504 * Many codepaths leading to stats update or read are performance sensitive and 505 * adding stats flushing in such codepaths is not desirable. So, to optimize the 506 * flushing the kernel does: 507 * 508 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 509 * rstat update tree grow unbounded. 510 * 511 * 2) Flush the stats synchronously on reader side only when there are more than 512 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 513 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 514 * only for 2 seconds due to (1). 515 */ 516 static void flush_memcg_stats_dwork(struct work_struct *w); 517 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 518 static u64 flush_last_time; 519 520 #define FLUSH_TIME (2UL*HZ) 521 522 /* 523 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 524 * not rely on this as part of an acquired spinlock_t lock. These functions are 525 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 526 * is sufficient. 527 */ 528 static void memcg_stats_lock(void) 529 { 530 preempt_disable_nested(); 531 VM_WARN_ON_IRQS_ENABLED(); 532 } 533 534 static void __memcg_stats_lock(void) 535 { 536 preempt_disable_nested(); 537 } 538 539 static void memcg_stats_unlock(void) 540 { 541 preempt_enable_nested(); 542 } 543 544 545 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 546 { 547 return atomic64_read(&vmstats->stats_updates) > 548 MEMCG_CHARGE_BATCH * num_online_cpus(); 549 } 550 551 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 552 { 553 struct memcg_vmstats_percpu *statc; 554 int cpu = smp_processor_id(); 555 unsigned int stats_updates; 556 557 if (!val) 558 return; 559 560 cgroup_rstat_updated(memcg->css.cgroup, cpu); 561 statc = this_cpu_ptr(memcg->vmstats_percpu); 562 for (; statc; statc = statc->parent) { 563 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 564 WRITE_ONCE(statc->stats_updates, stats_updates); 565 if (stats_updates < MEMCG_CHARGE_BATCH) 566 continue; 567 568 /* 569 * If @memcg is already flush-able, increasing stats_updates is 570 * redundant. Avoid the overhead of the atomic update. 571 */ 572 if (!memcg_vmstats_needs_flush(statc->vmstats)) 573 atomic64_add(stats_updates, 574 &statc->vmstats->stats_updates); 575 WRITE_ONCE(statc->stats_updates, 0); 576 } 577 } 578 579 static void do_flush_stats(struct mem_cgroup *memcg) 580 { 581 if (mem_cgroup_is_root(memcg)) 582 WRITE_ONCE(flush_last_time, jiffies_64); 583 584 cgroup_rstat_flush(memcg->css.cgroup); 585 } 586 587 /* 588 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 589 * @memcg: root of the subtree to flush 590 * 591 * Flushing is serialized by the underlying global rstat lock. There is also a 592 * minimum amount of work to be done even if there are no stat updates to flush. 593 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 594 * avoids unnecessary work and contention on the underlying lock. 595 */ 596 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 597 { 598 if (mem_cgroup_disabled()) 599 return; 600 601 if (!memcg) 602 memcg = root_mem_cgroup; 603 604 if (memcg_vmstats_needs_flush(memcg->vmstats)) 605 do_flush_stats(memcg); 606 } 607 608 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 609 { 610 /* Only flush if the periodic flusher is one full cycle late */ 611 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 612 mem_cgroup_flush_stats(memcg); 613 } 614 615 static void flush_memcg_stats_dwork(struct work_struct *w) 616 { 617 /* 618 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 619 * in latency-sensitive paths is as cheap as possible. 620 */ 621 do_flush_stats(root_mem_cgroup); 622 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 623 } 624 625 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 626 { 627 long x; 628 int i = memcg_stats_index(idx); 629 630 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 631 return 0; 632 633 x = READ_ONCE(memcg->vmstats->state[i]); 634 #ifdef CONFIG_SMP 635 if (x < 0) 636 x = 0; 637 #endif 638 return x; 639 } 640 641 static int memcg_page_state_unit(int item); 642 643 /* 644 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 645 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 646 */ 647 static int memcg_state_val_in_pages(int idx, int val) 648 { 649 int unit = memcg_page_state_unit(idx); 650 651 if (!val || unit == PAGE_SIZE) 652 return val; 653 else 654 return max(val * unit / PAGE_SIZE, 1UL); 655 } 656 657 /** 658 * __mod_memcg_state - update cgroup memory statistics 659 * @memcg: the memory cgroup 660 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 661 * @val: delta to add to the counter, can be negative 662 */ 663 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 664 int val) 665 { 666 int i = memcg_stats_index(idx); 667 668 if (mem_cgroup_disabled()) 669 return; 670 671 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 672 return; 673 674 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 675 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 676 } 677 678 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 679 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 680 { 681 long x; 682 int i = memcg_stats_index(idx); 683 684 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 685 return 0; 686 687 x = READ_ONCE(memcg->vmstats->state_local[i]); 688 #ifdef CONFIG_SMP 689 if (x < 0) 690 x = 0; 691 #endif 692 return x; 693 } 694 695 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 696 enum node_stat_item idx, 697 int val) 698 { 699 struct mem_cgroup_per_node *pn; 700 struct mem_cgroup *memcg; 701 int i = memcg_stats_index(idx); 702 703 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 704 return; 705 706 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 707 memcg = pn->memcg; 708 709 /* 710 * The caller from rmap relies on disabled preemption because they never 711 * update their counter from in-interrupt context. For these two 712 * counters we check that the update is never performed from an 713 * interrupt context while other caller need to have disabled interrupt. 714 */ 715 __memcg_stats_lock(); 716 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 717 switch (idx) { 718 case NR_ANON_MAPPED: 719 case NR_FILE_MAPPED: 720 case NR_ANON_THPS: 721 WARN_ON_ONCE(!in_task()); 722 break; 723 default: 724 VM_WARN_ON_IRQS_ENABLED(); 725 } 726 } 727 728 /* Update memcg */ 729 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 730 731 /* Update lruvec */ 732 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 733 734 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 735 memcg_stats_unlock(); 736 } 737 738 /** 739 * __mod_lruvec_state - update lruvec memory statistics 740 * @lruvec: the lruvec 741 * @idx: the stat item 742 * @val: delta to add to the counter, can be negative 743 * 744 * The lruvec is the intersection of the NUMA node and a cgroup. This 745 * function updates the all three counters that are affected by a 746 * change of state at this level: per-node, per-cgroup, per-lruvec. 747 */ 748 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 749 int val) 750 { 751 /* Update node */ 752 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 753 754 /* Update memcg and lruvec */ 755 if (!mem_cgroup_disabled()) 756 __mod_memcg_lruvec_state(lruvec, idx, val); 757 } 758 759 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 760 int val) 761 { 762 struct mem_cgroup *memcg; 763 pg_data_t *pgdat = folio_pgdat(folio); 764 struct lruvec *lruvec; 765 766 rcu_read_lock(); 767 memcg = folio_memcg(folio); 768 /* Untracked pages have no memcg, no lruvec. Update only the node */ 769 if (!memcg) { 770 rcu_read_unlock(); 771 __mod_node_page_state(pgdat, idx, val); 772 return; 773 } 774 775 lruvec = mem_cgroup_lruvec(memcg, pgdat); 776 __mod_lruvec_state(lruvec, idx, val); 777 rcu_read_unlock(); 778 } 779 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 780 781 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 782 { 783 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 784 struct mem_cgroup *memcg; 785 struct lruvec *lruvec; 786 787 rcu_read_lock(); 788 memcg = mem_cgroup_from_slab_obj(p); 789 790 /* 791 * Untracked pages have no memcg, no lruvec. Update only the 792 * node. If we reparent the slab objects to the root memcg, 793 * when we free the slab object, we need to update the per-memcg 794 * vmstats to keep it correct for the root memcg. 795 */ 796 if (!memcg) { 797 __mod_node_page_state(pgdat, idx, val); 798 } else { 799 lruvec = mem_cgroup_lruvec(memcg, pgdat); 800 __mod_lruvec_state(lruvec, idx, val); 801 } 802 rcu_read_unlock(); 803 } 804 805 /** 806 * __count_memcg_events - account VM events in a cgroup 807 * @memcg: the memory cgroup 808 * @idx: the event item 809 * @count: the number of events that occurred 810 */ 811 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 812 unsigned long count) 813 { 814 int i = memcg_events_index(idx); 815 816 if (mem_cgroup_disabled()) 817 return; 818 819 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 820 return; 821 822 memcg_stats_lock(); 823 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 824 memcg_rstat_updated(memcg, count); 825 memcg_stats_unlock(); 826 } 827 828 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 829 { 830 int i = memcg_events_index(event); 831 832 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 833 return 0; 834 835 return READ_ONCE(memcg->vmstats->events[i]); 836 } 837 838 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 839 { 840 int i = memcg_events_index(event); 841 842 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 843 return 0; 844 845 return READ_ONCE(memcg->vmstats->events_local[i]); 846 } 847 848 void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, int nr_pages) 849 { 850 /* pagein of a big page is an event. So, ignore page size */ 851 if (nr_pages > 0) 852 __count_memcg_events(memcg, PGPGIN, 1); 853 else { 854 __count_memcg_events(memcg, PGPGOUT, 1); 855 nr_pages = -nr_pages; /* for event */ 856 } 857 858 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 859 } 860 861 bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 862 enum mem_cgroup_events_target target) 863 { 864 unsigned long val, next; 865 866 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 867 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 868 /* from time_after() in jiffies.h */ 869 if ((long)(next - val) < 0) { 870 switch (target) { 871 case MEM_CGROUP_TARGET_THRESH: 872 next = val + THRESHOLDS_EVENTS_TARGET; 873 break; 874 case MEM_CGROUP_TARGET_SOFTLIMIT: 875 next = val + SOFTLIMIT_EVENTS_TARGET; 876 break; 877 default: 878 break; 879 } 880 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 881 return true; 882 } 883 return false; 884 } 885 886 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 887 { 888 /* 889 * mm_update_next_owner() may clear mm->owner to NULL 890 * if it races with swapoff, page migration, etc. 891 * So this can be called with p == NULL. 892 */ 893 if (unlikely(!p)) 894 return NULL; 895 896 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 897 } 898 EXPORT_SYMBOL(mem_cgroup_from_task); 899 900 static __always_inline struct mem_cgroup *active_memcg(void) 901 { 902 if (!in_task()) 903 return this_cpu_read(int_active_memcg); 904 else 905 return current->active_memcg; 906 } 907 908 /** 909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 910 * @mm: mm from which memcg should be extracted. It can be NULL. 911 * 912 * Obtain a reference on mm->memcg and returns it if successful. If mm 913 * is NULL, then the memcg is chosen as follows: 914 * 1) The active memcg, if set. 915 * 2) current->mm->memcg, if available 916 * 3) root memcg 917 * If mem_cgroup is disabled, NULL is returned. 918 */ 919 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 920 { 921 struct mem_cgroup *memcg; 922 923 if (mem_cgroup_disabled()) 924 return NULL; 925 926 /* 927 * Page cache insertions can happen without an 928 * actual mm context, e.g. during disk probing 929 * on boot, loopback IO, acct() writes etc. 930 * 931 * No need to css_get on root memcg as the reference 932 * counting is disabled on the root level in the 933 * cgroup core. See CSS_NO_REF. 934 */ 935 if (unlikely(!mm)) { 936 memcg = active_memcg(); 937 if (unlikely(memcg)) { 938 /* remote memcg must hold a ref */ 939 css_get(&memcg->css); 940 return memcg; 941 } 942 mm = current->mm; 943 if (unlikely(!mm)) 944 return root_mem_cgroup; 945 } 946 947 rcu_read_lock(); 948 do { 949 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 950 if (unlikely(!memcg)) 951 memcg = root_mem_cgroup; 952 } while (!css_tryget(&memcg->css)); 953 rcu_read_unlock(); 954 return memcg; 955 } 956 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 957 958 /** 959 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 960 */ 961 struct mem_cgroup *get_mem_cgroup_from_current(void) 962 { 963 struct mem_cgroup *memcg; 964 965 if (mem_cgroup_disabled()) 966 return NULL; 967 968 again: 969 rcu_read_lock(); 970 memcg = mem_cgroup_from_task(current); 971 if (!css_tryget(&memcg->css)) { 972 rcu_read_unlock(); 973 goto again; 974 } 975 rcu_read_unlock(); 976 return memcg; 977 } 978 979 /** 980 * mem_cgroup_iter - iterate over memory cgroup hierarchy 981 * @root: hierarchy root 982 * @prev: previously returned memcg, NULL on first invocation 983 * @reclaim: cookie for shared reclaim walks, NULL for full walks 984 * 985 * Returns references to children of the hierarchy below @root, or 986 * @root itself, or %NULL after a full round-trip. 987 * 988 * Caller must pass the return value in @prev on subsequent 989 * invocations for reference counting, or use mem_cgroup_iter_break() 990 * to cancel a hierarchy walk before the round-trip is complete. 991 * 992 * Reclaimers can specify a node in @reclaim to divide up the memcgs 993 * in the hierarchy among all concurrent reclaimers operating on the 994 * same node. 995 */ 996 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 997 struct mem_cgroup *prev, 998 struct mem_cgroup_reclaim_cookie *reclaim) 999 { 1000 struct mem_cgroup_reclaim_iter *iter; 1001 struct cgroup_subsys_state *css = NULL; 1002 struct mem_cgroup *memcg = NULL; 1003 struct mem_cgroup *pos = NULL; 1004 1005 if (mem_cgroup_disabled()) 1006 return NULL; 1007 1008 if (!root) 1009 root = root_mem_cgroup; 1010 1011 rcu_read_lock(); 1012 1013 if (reclaim) { 1014 struct mem_cgroup_per_node *mz; 1015 1016 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1017 iter = &mz->iter; 1018 1019 /* 1020 * On start, join the current reclaim iteration cycle. 1021 * Exit when a concurrent walker completes it. 1022 */ 1023 if (!prev) 1024 reclaim->generation = iter->generation; 1025 else if (reclaim->generation != iter->generation) 1026 goto out_unlock; 1027 1028 while (1) { 1029 pos = READ_ONCE(iter->position); 1030 if (!pos || css_tryget(&pos->css)) 1031 break; 1032 /* 1033 * css reference reached zero, so iter->position will 1034 * be cleared by ->css_released. However, we should not 1035 * rely on this happening soon, because ->css_released 1036 * is called from a work queue, and by busy-waiting we 1037 * might block it. So we clear iter->position right 1038 * away. 1039 */ 1040 (void)cmpxchg(&iter->position, pos, NULL); 1041 } 1042 } else if (prev) { 1043 pos = prev; 1044 } 1045 1046 if (pos) 1047 css = &pos->css; 1048 1049 for (;;) { 1050 css = css_next_descendant_pre(css, &root->css); 1051 if (!css) { 1052 /* 1053 * Reclaimers share the hierarchy walk, and a 1054 * new one might jump in right at the end of 1055 * the hierarchy - make sure they see at least 1056 * one group and restart from the beginning. 1057 */ 1058 if (!prev) 1059 continue; 1060 break; 1061 } 1062 1063 /* 1064 * Verify the css and acquire a reference. The root 1065 * is provided by the caller, so we know it's alive 1066 * and kicking, and don't take an extra reference. 1067 */ 1068 if (css == &root->css || css_tryget(css)) { 1069 memcg = mem_cgroup_from_css(css); 1070 break; 1071 } 1072 } 1073 1074 if (reclaim) { 1075 /* 1076 * The position could have already been updated by a competing 1077 * thread, so check that the value hasn't changed since we read 1078 * it to avoid reclaiming from the same cgroup twice. 1079 */ 1080 (void)cmpxchg(&iter->position, pos, memcg); 1081 1082 if (pos) 1083 css_put(&pos->css); 1084 1085 if (!memcg) 1086 iter->generation++; 1087 } 1088 1089 out_unlock: 1090 rcu_read_unlock(); 1091 if (prev && prev != root) 1092 css_put(&prev->css); 1093 1094 return memcg; 1095 } 1096 1097 /** 1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1099 * @root: hierarchy root 1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1101 */ 1102 void mem_cgroup_iter_break(struct mem_cgroup *root, 1103 struct mem_cgroup *prev) 1104 { 1105 if (!root) 1106 root = root_mem_cgroup; 1107 if (prev && prev != root) 1108 css_put(&prev->css); 1109 } 1110 1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1112 struct mem_cgroup *dead_memcg) 1113 { 1114 struct mem_cgroup_reclaim_iter *iter; 1115 struct mem_cgroup_per_node *mz; 1116 int nid; 1117 1118 for_each_node(nid) { 1119 mz = from->nodeinfo[nid]; 1120 iter = &mz->iter; 1121 cmpxchg(&iter->position, dead_memcg, NULL); 1122 } 1123 } 1124 1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1126 { 1127 struct mem_cgroup *memcg = dead_memcg; 1128 struct mem_cgroup *last; 1129 1130 do { 1131 __invalidate_reclaim_iterators(memcg, dead_memcg); 1132 last = memcg; 1133 } while ((memcg = parent_mem_cgroup(memcg))); 1134 1135 /* 1136 * When cgroup1 non-hierarchy mode is used, 1137 * parent_mem_cgroup() does not walk all the way up to the 1138 * cgroup root (root_mem_cgroup). So we have to handle 1139 * dead_memcg from cgroup root separately. 1140 */ 1141 if (!mem_cgroup_is_root(last)) 1142 __invalidate_reclaim_iterators(root_mem_cgroup, 1143 dead_memcg); 1144 } 1145 1146 /** 1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1148 * @memcg: hierarchy root 1149 * @fn: function to call for each task 1150 * @arg: argument passed to @fn 1151 * 1152 * This function iterates over tasks attached to @memcg or to any of its 1153 * descendants and calls @fn for each task. If @fn returns a non-zero 1154 * value, the function breaks the iteration loop. Otherwise, it will iterate 1155 * over all tasks and return 0. 1156 * 1157 * This function must not be called for the root memory cgroup. 1158 */ 1159 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1160 int (*fn)(struct task_struct *, void *), void *arg) 1161 { 1162 struct mem_cgroup *iter; 1163 int ret = 0; 1164 1165 BUG_ON(mem_cgroup_is_root(memcg)); 1166 1167 for_each_mem_cgroup_tree(iter, memcg) { 1168 struct css_task_iter it; 1169 struct task_struct *task; 1170 1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1172 while (!ret && (task = css_task_iter_next(&it))) 1173 ret = fn(task, arg); 1174 css_task_iter_end(&it); 1175 if (ret) { 1176 mem_cgroup_iter_break(memcg, iter); 1177 break; 1178 } 1179 } 1180 } 1181 1182 #ifdef CONFIG_DEBUG_VM 1183 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1184 { 1185 struct mem_cgroup *memcg; 1186 1187 if (mem_cgroup_disabled()) 1188 return; 1189 1190 memcg = folio_memcg(folio); 1191 1192 if (!memcg) 1193 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1194 else 1195 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1196 } 1197 #endif 1198 1199 /** 1200 * folio_lruvec_lock - Lock the lruvec for a folio. 1201 * @folio: Pointer to the folio. 1202 * 1203 * These functions are safe to use under any of the following conditions: 1204 * - folio locked 1205 * - folio_test_lru false 1206 * - folio_memcg_lock() 1207 * - folio frozen (refcount of 0) 1208 * 1209 * Return: The lruvec this folio is on with its lock held. 1210 */ 1211 struct lruvec *folio_lruvec_lock(struct folio *folio) 1212 { 1213 struct lruvec *lruvec = folio_lruvec(folio); 1214 1215 spin_lock(&lruvec->lru_lock); 1216 lruvec_memcg_debug(lruvec, folio); 1217 1218 return lruvec; 1219 } 1220 1221 /** 1222 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1223 * @folio: Pointer to the folio. 1224 * 1225 * These functions are safe to use under any of the following conditions: 1226 * - folio locked 1227 * - folio_test_lru false 1228 * - folio_memcg_lock() 1229 * - folio frozen (refcount of 0) 1230 * 1231 * Return: The lruvec this folio is on with its lock held and interrupts 1232 * disabled. 1233 */ 1234 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1235 { 1236 struct lruvec *lruvec = folio_lruvec(folio); 1237 1238 spin_lock_irq(&lruvec->lru_lock); 1239 lruvec_memcg_debug(lruvec, folio); 1240 1241 return lruvec; 1242 } 1243 1244 /** 1245 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1246 * @folio: Pointer to the folio. 1247 * @flags: Pointer to irqsave flags. 1248 * 1249 * These functions are safe to use under any of the following conditions: 1250 * - folio locked 1251 * - folio_test_lru false 1252 * - folio_memcg_lock() 1253 * - folio frozen (refcount of 0) 1254 * 1255 * Return: The lruvec this folio is on with its lock held and interrupts 1256 * disabled. 1257 */ 1258 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1259 unsigned long *flags) 1260 { 1261 struct lruvec *lruvec = folio_lruvec(folio); 1262 1263 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1264 lruvec_memcg_debug(lruvec, folio); 1265 1266 return lruvec; 1267 } 1268 1269 /** 1270 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1271 * @lruvec: mem_cgroup per zone lru vector 1272 * @lru: index of lru list the page is sitting on 1273 * @zid: zone id of the accounted pages 1274 * @nr_pages: positive when adding or negative when removing 1275 * 1276 * This function must be called under lru_lock, just before a page is added 1277 * to or just after a page is removed from an lru list. 1278 */ 1279 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1280 int zid, int nr_pages) 1281 { 1282 struct mem_cgroup_per_node *mz; 1283 unsigned long *lru_size; 1284 long size; 1285 1286 if (mem_cgroup_disabled()) 1287 return; 1288 1289 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1290 lru_size = &mz->lru_zone_size[zid][lru]; 1291 1292 if (nr_pages < 0) 1293 *lru_size += nr_pages; 1294 1295 size = *lru_size; 1296 if (WARN_ONCE(size < 0, 1297 "%s(%p, %d, %d): lru_size %ld\n", 1298 __func__, lruvec, lru, nr_pages, size)) { 1299 VM_BUG_ON(1); 1300 *lru_size = 0; 1301 } 1302 1303 if (nr_pages > 0) 1304 *lru_size += nr_pages; 1305 } 1306 1307 /** 1308 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1309 * @memcg: the memory cgroup 1310 * 1311 * Returns the maximum amount of memory @mem can be charged with, in 1312 * pages. 1313 */ 1314 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1315 { 1316 unsigned long margin = 0; 1317 unsigned long count; 1318 unsigned long limit; 1319 1320 count = page_counter_read(&memcg->memory); 1321 limit = READ_ONCE(memcg->memory.max); 1322 if (count < limit) 1323 margin = limit - count; 1324 1325 if (do_memsw_account()) { 1326 count = page_counter_read(&memcg->memsw); 1327 limit = READ_ONCE(memcg->memsw.max); 1328 if (count < limit) 1329 margin = min(margin, limit - count); 1330 else 1331 margin = 0; 1332 } 1333 1334 return margin; 1335 } 1336 1337 struct memory_stat { 1338 const char *name; 1339 unsigned int idx; 1340 }; 1341 1342 static const struct memory_stat memory_stats[] = { 1343 { "anon", NR_ANON_MAPPED }, 1344 { "file", NR_FILE_PAGES }, 1345 { "kernel", MEMCG_KMEM }, 1346 { "kernel_stack", NR_KERNEL_STACK_KB }, 1347 { "pagetables", NR_PAGETABLE }, 1348 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1349 { "percpu", MEMCG_PERCPU_B }, 1350 { "sock", MEMCG_SOCK }, 1351 { "vmalloc", MEMCG_VMALLOC }, 1352 { "shmem", NR_SHMEM }, 1353 #ifdef CONFIG_ZSWAP 1354 { "zswap", MEMCG_ZSWAP_B }, 1355 { "zswapped", MEMCG_ZSWAPPED }, 1356 #endif 1357 { "file_mapped", NR_FILE_MAPPED }, 1358 { "file_dirty", NR_FILE_DIRTY }, 1359 { "file_writeback", NR_WRITEBACK }, 1360 #ifdef CONFIG_SWAP 1361 { "swapcached", NR_SWAPCACHE }, 1362 #endif 1363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1364 { "anon_thp", NR_ANON_THPS }, 1365 { "file_thp", NR_FILE_THPS }, 1366 { "shmem_thp", NR_SHMEM_THPS }, 1367 #endif 1368 { "inactive_anon", NR_INACTIVE_ANON }, 1369 { "active_anon", NR_ACTIVE_ANON }, 1370 { "inactive_file", NR_INACTIVE_FILE }, 1371 { "active_file", NR_ACTIVE_FILE }, 1372 { "unevictable", NR_UNEVICTABLE }, 1373 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1374 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1375 1376 /* The memory events */ 1377 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1378 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1379 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1380 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1381 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1382 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1383 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1384 }; 1385 1386 /* The actual unit of the state item, not the same as the output unit */ 1387 static int memcg_page_state_unit(int item) 1388 { 1389 switch (item) { 1390 case MEMCG_PERCPU_B: 1391 case MEMCG_ZSWAP_B: 1392 case NR_SLAB_RECLAIMABLE_B: 1393 case NR_SLAB_UNRECLAIMABLE_B: 1394 return 1; 1395 case NR_KERNEL_STACK_KB: 1396 return SZ_1K; 1397 default: 1398 return PAGE_SIZE; 1399 } 1400 } 1401 1402 /* Translate stat items to the correct unit for memory.stat output */ 1403 static int memcg_page_state_output_unit(int item) 1404 { 1405 /* 1406 * Workingset state is actually in pages, but we export it to userspace 1407 * as a scalar count of events, so special case it here. 1408 */ 1409 switch (item) { 1410 case WORKINGSET_REFAULT_ANON: 1411 case WORKINGSET_REFAULT_FILE: 1412 case WORKINGSET_ACTIVATE_ANON: 1413 case WORKINGSET_ACTIVATE_FILE: 1414 case WORKINGSET_RESTORE_ANON: 1415 case WORKINGSET_RESTORE_FILE: 1416 case WORKINGSET_NODERECLAIM: 1417 return 1; 1418 default: 1419 return memcg_page_state_unit(item); 1420 } 1421 } 1422 1423 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1424 { 1425 return memcg_page_state(memcg, item) * 1426 memcg_page_state_output_unit(item); 1427 } 1428 1429 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1430 { 1431 return memcg_page_state_local(memcg, item) * 1432 memcg_page_state_output_unit(item); 1433 } 1434 1435 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1436 { 1437 int i; 1438 1439 /* 1440 * Provide statistics on the state of the memory subsystem as 1441 * well as cumulative event counters that show past behavior. 1442 * 1443 * This list is ordered following a combination of these gradients: 1444 * 1) generic big picture -> specifics and details 1445 * 2) reflecting userspace activity -> reflecting kernel heuristics 1446 * 1447 * Current memory state: 1448 */ 1449 mem_cgroup_flush_stats(memcg); 1450 1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1452 u64 size; 1453 1454 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1455 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1456 1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1458 size += memcg_page_state_output(memcg, 1459 NR_SLAB_RECLAIMABLE_B); 1460 seq_buf_printf(s, "slab %llu\n", size); 1461 } 1462 } 1463 1464 /* Accumulated memory events */ 1465 seq_buf_printf(s, "pgscan %lu\n", 1466 memcg_events(memcg, PGSCAN_KSWAPD) + 1467 memcg_events(memcg, PGSCAN_DIRECT) + 1468 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1469 seq_buf_printf(s, "pgsteal %lu\n", 1470 memcg_events(memcg, PGSTEAL_KSWAPD) + 1471 memcg_events(memcg, PGSTEAL_DIRECT) + 1472 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1473 1474 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1475 if (memcg_vm_event_stat[i] == PGPGIN || 1476 memcg_vm_event_stat[i] == PGPGOUT) 1477 continue; 1478 1479 seq_buf_printf(s, "%s %lu\n", 1480 vm_event_name(memcg_vm_event_stat[i]), 1481 memcg_events(memcg, memcg_vm_event_stat[i])); 1482 } 1483 } 1484 1485 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1486 { 1487 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1488 memcg_stat_format(memcg, s); 1489 else 1490 memcg1_stat_format(memcg, s); 1491 if (seq_buf_has_overflowed(s)) 1492 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1493 } 1494 1495 /** 1496 * mem_cgroup_print_oom_context: Print OOM information relevant to 1497 * memory controller. 1498 * @memcg: The memory cgroup that went over limit 1499 * @p: Task that is going to be killed 1500 * 1501 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1502 * enabled 1503 */ 1504 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1505 { 1506 rcu_read_lock(); 1507 1508 if (memcg) { 1509 pr_cont(",oom_memcg="); 1510 pr_cont_cgroup_path(memcg->css.cgroup); 1511 } else 1512 pr_cont(",global_oom"); 1513 if (p) { 1514 pr_cont(",task_memcg="); 1515 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1516 } 1517 rcu_read_unlock(); 1518 } 1519 1520 /** 1521 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1522 * memory controller. 1523 * @memcg: The memory cgroup that went over limit 1524 */ 1525 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1526 { 1527 /* Use static buffer, for the caller is holding oom_lock. */ 1528 static char buf[PAGE_SIZE]; 1529 struct seq_buf s; 1530 1531 lockdep_assert_held(&oom_lock); 1532 1533 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1534 K((u64)page_counter_read(&memcg->memory)), 1535 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1536 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1537 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1538 K((u64)page_counter_read(&memcg->swap)), 1539 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1540 #ifdef CONFIG_MEMCG_V1 1541 else { 1542 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1543 K((u64)page_counter_read(&memcg->memsw)), 1544 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1545 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1546 K((u64)page_counter_read(&memcg->kmem)), 1547 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1548 } 1549 #endif 1550 1551 pr_info("Memory cgroup stats for "); 1552 pr_cont_cgroup_path(memcg->css.cgroup); 1553 pr_cont(":"); 1554 seq_buf_init(&s, buf, sizeof(buf)); 1555 memory_stat_format(memcg, &s); 1556 seq_buf_do_printk(&s, KERN_INFO); 1557 } 1558 1559 /* 1560 * Return the memory (and swap, if configured) limit for a memcg. 1561 */ 1562 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1563 { 1564 unsigned long max = READ_ONCE(memcg->memory.max); 1565 1566 if (do_memsw_account()) { 1567 if (mem_cgroup_swappiness(memcg)) { 1568 /* Calculate swap excess capacity from memsw limit */ 1569 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1570 1571 max += min(swap, (unsigned long)total_swap_pages); 1572 } 1573 } else { 1574 if (mem_cgroup_swappiness(memcg)) 1575 max += min(READ_ONCE(memcg->swap.max), 1576 (unsigned long)total_swap_pages); 1577 } 1578 return max; 1579 } 1580 1581 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1582 { 1583 return page_counter_read(&memcg->memory); 1584 } 1585 1586 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1587 int order) 1588 { 1589 struct oom_control oc = { 1590 .zonelist = NULL, 1591 .nodemask = NULL, 1592 .memcg = memcg, 1593 .gfp_mask = gfp_mask, 1594 .order = order, 1595 }; 1596 bool ret = true; 1597 1598 if (mutex_lock_killable(&oom_lock)) 1599 return true; 1600 1601 if (mem_cgroup_margin(memcg) >= (1 << order)) 1602 goto unlock; 1603 1604 /* 1605 * A few threads which were not waiting at mutex_lock_killable() can 1606 * fail to bail out. Therefore, check again after holding oom_lock. 1607 */ 1608 ret = task_is_dying() || out_of_memory(&oc); 1609 1610 unlock: 1611 mutex_unlock(&oom_lock); 1612 return ret; 1613 } 1614 1615 /* 1616 * Returns true if successfully killed one or more processes. Though in some 1617 * corner cases it can return true even without killing any process. 1618 */ 1619 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1620 { 1621 bool locked, ret; 1622 1623 if (order > PAGE_ALLOC_COSTLY_ORDER) 1624 return false; 1625 1626 memcg_memory_event(memcg, MEMCG_OOM); 1627 1628 if (!memcg1_oom_prepare(memcg, &locked)) 1629 return false; 1630 1631 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1632 1633 memcg1_oom_finish(memcg, locked); 1634 1635 return ret; 1636 } 1637 1638 /** 1639 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1640 * @victim: task to be killed by the OOM killer 1641 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1642 * 1643 * Returns a pointer to a memory cgroup, which has to be cleaned up 1644 * by killing all belonging OOM-killable tasks. 1645 * 1646 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1647 */ 1648 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1649 struct mem_cgroup *oom_domain) 1650 { 1651 struct mem_cgroup *oom_group = NULL; 1652 struct mem_cgroup *memcg; 1653 1654 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1655 return NULL; 1656 1657 if (!oom_domain) 1658 oom_domain = root_mem_cgroup; 1659 1660 rcu_read_lock(); 1661 1662 memcg = mem_cgroup_from_task(victim); 1663 if (mem_cgroup_is_root(memcg)) 1664 goto out; 1665 1666 /* 1667 * If the victim task has been asynchronously moved to a different 1668 * memory cgroup, we might end up killing tasks outside oom_domain. 1669 * In this case it's better to ignore memory.group.oom. 1670 */ 1671 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1672 goto out; 1673 1674 /* 1675 * Traverse the memory cgroup hierarchy from the victim task's 1676 * cgroup up to the OOMing cgroup (or root) to find the 1677 * highest-level memory cgroup with oom.group set. 1678 */ 1679 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1680 if (READ_ONCE(memcg->oom_group)) 1681 oom_group = memcg; 1682 1683 if (memcg == oom_domain) 1684 break; 1685 } 1686 1687 if (oom_group) 1688 css_get(&oom_group->css); 1689 out: 1690 rcu_read_unlock(); 1691 1692 return oom_group; 1693 } 1694 1695 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1696 { 1697 pr_info("Tasks in "); 1698 pr_cont_cgroup_path(memcg->css.cgroup); 1699 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1700 } 1701 1702 struct memcg_stock_pcp { 1703 local_lock_t stock_lock; 1704 struct mem_cgroup *cached; /* this never be root cgroup */ 1705 unsigned int nr_pages; 1706 1707 struct obj_cgroup *cached_objcg; 1708 struct pglist_data *cached_pgdat; 1709 unsigned int nr_bytes; 1710 int nr_slab_reclaimable_b; 1711 int nr_slab_unreclaimable_b; 1712 1713 struct work_struct work; 1714 unsigned long flags; 1715 #define FLUSHING_CACHED_CHARGE 0 1716 }; 1717 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1718 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1719 }; 1720 static DEFINE_MUTEX(percpu_charge_mutex); 1721 1722 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1723 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1724 struct mem_cgroup *root_memcg); 1725 1726 /** 1727 * consume_stock: Try to consume stocked charge on this cpu. 1728 * @memcg: memcg to consume from. 1729 * @nr_pages: how many pages to charge. 1730 * 1731 * The charges will only happen if @memcg matches the current cpu's memcg 1732 * stock, and at least @nr_pages are available in that stock. Failure to 1733 * service an allocation will refill the stock. 1734 * 1735 * returns true if successful, false otherwise. 1736 */ 1737 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1738 { 1739 struct memcg_stock_pcp *stock; 1740 unsigned int stock_pages; 1741 unsigned long flags; 1742 bool ret = false; 1743 1744 if (nr_pages > MEMCG_CHARGE_BATCH) 1745 return ret; 1746 1747 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1748 1749 stock = this_cpu_ptr(&memcg_stock); 1750 stock_pages = READ_ONCE(stock->nr_pages); 1751 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1752 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1753 ret = true; 1754 } 1755 1756 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1757 1758 return ret; 1759 } 1760 1761 /* 1762 * Returns stocks cached in percpu and reset cached information. 1763 */ 1764 static void drain_stock(struct memcg_stock_pcp *stock) 1765 { 1766 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1767 struct mem_cgroup *old = READ_ONCE(stock->cached); 1768 1769 if (!old) 1770 return; 1771 1772 if (stock_pages) { 1773 page_counter_uncharge(&old->memory, stock_pages); 1774 if (do_memsw_account()) 1775 page_counter_uncharge(&old->memsw, stock_pages); 1776 1777 WRITE_ONCE(stock->nr_pages, 0); 1778 } 1779 1780 css_put(&old->css); 1781 WRITE_ONCE(stock->cached, NULL); 1782 } 1783 1784 static void drain_local_stock(struct work_struct *dummy) 1785 { 1786 struct memcg_stock_pcp *stock; 1787 struct obj_cgroup *old = NULL; 1788 unsigned long flags; 1789 1790 /* 1791 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1792 * drain_stock races is that we always operate on local CPU stock 1793 * here with IRQ disabled 1794 */ 1795 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1796 1797 stock = this_cpu_ptr(&memcg_stock); 1798 old = drain_obj_stock(stock); 1799 drain_stock(stock); 1800 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1801 1802 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1803 obj_cgroup_put(old); 1804 } 1805 1806 /* 1807 * Cache charges(val) to local per_cpu area. 1808 * This will be consumed by consume_stock() function, later. 1809 */ 1810 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1811 { 1812 struct memcg_stock_pcp *stock; 1813 unsigned int stock_pages; 1814 1815 stock = this_cpu_ptr(&memcg_stock); 1816 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1817 drain_stock(stock); 1818 css_get(&memcg->css); 1819 WRITE_ONCE(stock->cached, memcg); 1820 } 1821 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1822 WRITE_ONCE(stock->nr_pages, stock_pages); 1823 1824 if (stock_pages > MEMCG_CHARGE_BATCH) 1825 drain_stock(stock); 1826 } 1827 1828 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1829 { 1830 unsigned long flags; 1831 1832 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1833 __refill_stock(memcg, nr_pages); 1834 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1835 } 1836 1837 /* 1838 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1839 * of the hierarchy under it. 1840 */ 1841 void drain_all_stock(struct mem_cgroup *root_memcg) 1842 { 1843 int cpu, curcpu; 1844 1845 /* If someone's already draining, avoid adding running more workers. */ 1846 if (!mutex_trylock(&percpu_charge_mutex)) 1847 return; 1848 /* 1849 * Notify other cpus that system-wide "drain" is running 1850 * We do not care about races with the cpu hotplug because cpu down 1851 * as well as workers from this path always operate on the local 1852 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1853 */ 1854 migrate_disable(); 1855 curcpu = smp_processor_id(); 1856 for_each_online_cpu(cpu) { 1857 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1858 struct mem_cgroup *memcg; 1859 bool flush = false; 1860 1861 rcu_read_lock(); 1862 memcg = READ_ONCE(stock->cached); 1863 if (memcg && READ_ONCE(stock->nr_pages) && 1864 mem_cgroup_is_descendant(memcg, root_memcg)) 1865 flush = true; 1866 else if (obj_stock_flush_required(stock, root_memcg)) 1867 flush = true; 1868 rcu_read_unlock(); 1869 1870 if (flush && 1871 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1872 if (cpu == curcpu) 1873 drain_local_stock(&stock->work); 1874 else if (!cpu_is_isolated(cpu)) 1875 schedule_work_on(cpu, &stock->work); 1876 } 1877 } 1878 migrate_enable(); 1879 mutex_unlock(&percpu_charge_mutex); 1880 } 1881 1882 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1883 { 1884 struct memcg_stock_pcp *stock; 1885 1886 stock = &per_cpu(memcg_stock, cpu); 1887 drain_stock(stock); 1888 1889 return 0; 1890 } 1891 1892 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1893 unsigned int nr_pages, 1894 gfp_t gfp_mask) 1895 { 1896 unsigned long nr_reclaimed = 0; 1897 1898 do { 1899 unsigned long pflags; 1900 1901 if (page_counter_read(&memcg->memory) <= 1902 READ_ONCE(memcg->memory.high)) 1903 continue; 1904 1905 memcg_memory_event(memcg, MEMCG_HIGH); 1906 1907 psi_memstall_enter(&pflags); 1908 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1909 gfp_mask, 1910 MEMCG_RECLAIM_MAY_SWAP, 1911 NULL); 1912 psi_memstall_leave(&pflags); 1913 } while ((memcg = parent_mem_cgroup(memcg)) && 1914 !mem_cgroup_is_root(memcg)); 1915 1916 return nr_reclaimed; 1917 } 1918 1919 static void high_work_func(struct work_struct *work) 1920 { 1921 struct mem_cgroup *memcg; 1922 1923 memcg = container_of(work, struct mem_cgroup, high_work); 1924 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1925 } 1926 1927 /* 1928 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1929 * enough to still cause a significant slowdown in most cases, while still 1930 * allowing diagnostics and tracing to proceed without becoming stuck. 1931 */ 1932 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1933 1934 /* 1935 * When calculating the delay, we use these either side of the exponentiation to 1936 * maintain precision and scale to a reasonable number of jiffies (see the table 1937 * below. 1938 * 1939 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1940 * overage ratio to a delay. 1941 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1942 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1943 * to produce a reasonable delay curve. 1944 * 1945 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1946 * reasonable delay curve compared to precision-adjusted overage, not 1947 * penalising heavily at first, but still making sure that growth beyond the 1948 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1949 * example, with a high of 100 megabytes: 1950 * 1951 * +-------+------------------------+ 1952 * | usage | time to allocate in ms | 1953 * +-------+------------------------+ 1954 * | 100M | 0 | 1955 * | 101M | 6 | 1956 * | 102M | 25 | 1957 * | 103M | 57 | 1958 * | 104M | 102 | 1959 * | 105M | 159 | 1960 * | 106M | 230 | 1961 * | 107M | 313 | 1962 * | 108M | 409 | 1963 * | 109M | 518 | 1964 * | 110M | 639 | 1965 * | 111M | 774 | 1966 * | 112M | 921 | 1967 * | 113M | 1081 | 1968 * | 114M | 1254 | 1969 * | 115M | 1439 | 1970 * | 116M | 1638 | 1971 * | 117M | 1849 | 1972 * | 118M | 2000 | 1973 * | 119M | 2000 | 1974 * | 120M | 2000 | 1975 * +-------+------------------------+ 1976 */ 1977 #define MEMCG_DELAY_PRECISION_SHIFT 20 1978 #define MEMCG_DELAY_SCALING_SHIFT 14 1979 1980 static u64 calculate_overage(unsigned long usage, unsigned long high) 1981 { 1982 u64 overage; 1983 1984 if (usage <= high) 1985 return 0; 1986 1987 /* 1988 * Prevent division by 0 in overage calculation by acting as if 1989 * it was a threshold of 1 page 1990 */ 1991 high = max(high, 1UL); 1992 1993 overage = usage - high; 1994 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 1995 return div64_u64(overage, high); 1996 } 1997 1998 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 1999 { 2000 u64 overage, max_overage = 0; 2001 2002 do { 2003 overage = calculate_overage(page_counter_read(&memcg->memory), 2004 READ_ONCE(memcg->memory.high)); 2005 max_overage = max(overage, max_overage); 2006 } while ((memcg = parent_mem_cgroup(memcg)) && 2007 !mem_cgroup_is_root(memcg)); 2008 2009 return max_overage; 2010 } 2011 2012 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2013 { 2014 u64 overage, max_overage = 0; 2015 2016 do { 2017 overage = calculate_overage(page_counter_read(&memcg->swap), 2018 READ_ONCE(memcg->swap.high)); 2019 if (overage) 2020 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2021 max_overage = max(overage, max_overage); 2022 } while ((memcg = parent_mem_cgroup(memcg)) && 2023 !mem_cgroup_is_root(memcg)); 2024 2025 return max_overage; 2026 } 2027 2028 /* 2029 * Get the number of jiffies that we should penalise a mischievous cgroup which 2030 * is exceeding its memory.high by checking both it and its ancestors. 2031 */ 2032 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2033 unsigned int nr_pages, 2034 u64 max_overage) 2035 { 2036 unsigned long penalty_jiffies; 2037 2038 if (!max_overage) 2039 return 0; 2040 2041 /* 2042 * We use overage compared to memory.high to calculate the number of 2043 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2044 * fairly lenient on small overages, and increasingly harsh when the 2045 * memcg in question makes it clear that it has no intention of stopping 2046 * its crazy behaviour, so we exponentially increase the delay based on 2047 * overage amount. 2048 */ 2049 penalty_jiffies = max_overage * max_overage * HZ; 2050 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2051 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2052 2053 /* 2054 * Factor in the task's own contribution to the overage, such that four 2055 * N-sized allocations are throttled approximately the same as one 2056 * 4N-sized allocation. 2057 * 2058 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2059 * larger the current charge patch is than that. 2060 */ 2061 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2062 } 2063 2064 /* 2065 * Reclaims memory over the high limit. Called directly from 2066 * try_charge() (context permitting), as well as from the userland 2067 * return path where reclaim is always able to block. 2068 */ 2069 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2070 { 2071 unsigned long penalty_jiffies; 2072 unsigned long pflags; 2073 unsigned long nr_reclaimed; 2074 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2075 int nr_retries = MAX_RECLAIM_RETRIES; 2076 struct mem_cgroup *memcg; 2077 bool in_retry = false; 2078 2079 if (likely(!nr_pages)) 2080 return; 2081 2082 memcg = get_mem_cgroup_from_mm(current->mm); 2083 current->memcg_nr_pages_over_high = 0; 2084 2085 retry_reclaim: 2086 /* 2087 * Bail if the task is already exiting. Unlike memory.max, 2088 * memory.high enforcement isn't as strict, and there is no 2089 * OOM killer involved, which means the excess could already 2090 * be much bigger (and still growing) than it could for 2091 * memory.max; the dying task could get stuck in fruitless 2092 * reclaim for a long time, which isn't desirable. 2093 */ 2094 if (task_is_dying()) 2095 goto out; 2096 2097 /* 2098 * The allocating task should reclaim at least the batch size, but for 2099 * subsequent retries we only want to do what's necessary to prevent oom 2100 * or breaching resource isolation. 2101 * 2102 * This is distinct from memory.max or page allocator behaviour because 2103 * memory.high is currently batched, whereas memory.max and the page 2104 * allocator run every time an allocation is made. 2105 */ 2106 nr_reclaimed = reclaim_high(memcg, 2107 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2108 gfp_mask); 2109 2110 /* 2111 * memory.high is breached and reclaim is unable to keep up. Throttle 2112 * allocators proactively to slow down excessive growth. 2113 */ 2114 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2115 mem_find_max_overage(memcg)); 2116 2117 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2118 swap_find_max_overage(memcg)); 2119 2120 /* 2121 * Clamp the max delay per usermode return so as to still keep the 2122 * application moving forwards and also permit diagnostics, albeit 2123 * extremely slowly. 2124 */ 2125 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2126 2127 /* 2128 * Don't sleep if the amount of jiffies this memcg owes us is so low 2129 * that it's not even worth doing, in an attempt to be nice to those who 2130 * go only a small amount over their memory.high value and maybe haven't 2131 * been aggressively reclaimed enough yet. 2132 */ 2133 if (penalty_jiffies <= HZ / 100) 2134 goto out; 2135 2136 /* 2137 * If reclaim is making forward progress but we're still over 2138 * memory.high, we want to encourage that rather than doing allocator 2139 * throttling. 2140 */ 2141 if (nr_reclaimed || nr_retries--) { 2142 in_retry = true; 2143 goto retry_reclaim; 2144 } 2145 2146 /* 2147 * Reclaim didn't manage to push usage below the limit, slow 2148 * this allocating task down. 2149 * 2150 * If we exit early, we're guaranteed to die (since 2151 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2152 * need to account for any ill-begotten jiffies to pay them off later. 2153 */ 2154 psi_memstall_enter(&pflags); 2155 schedule_timeout_killable(penalty_jiffies); 2156 psi_memstall_leave(&pflags); 2157 2158 out: 2159 css_put(&memcg->css); 2160 } 2161 2162 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2163 unsigned int nr_pages) 2164 { 2165 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2166 int nr_retries = MAX_RECLAIM_RETRIES; 2167 struct mem_cgroup *mem_over_limit; 2168 struct page_counter *counter; 2169 unsigned long nr_reclaimed; 2170 bool passed_oom = false; 2171 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2172 bool drained = false; 2173 bool raised_max_event = false; 2174 unsigned long pflags; 2175 2176 retry: 2177 if (consume_stock(memcg, nr_pages)) 2178 return 0; 2179 2180 if (!do_memsw_account() || 2181 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2182 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2183 goto done_restock; 2184 if (do_memsw_account()) 2185 page_counter_uncharge(&memcg->memsw, batch); 2186 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2187 } else { 2188 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2189 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2190 } 2191 2192 if (batch > nr_pages) { 2193 batch = nr_pages; 2194 goto retry; 2195 } 2196 2197 /* 2198 * Prevent unbounded recursion when reclaim operations need to 2199 * allocate memory. This might exceed the limits temporarily, 2200 * but we prefer facilitating memory reclaim and getting back 2201 * under the limit over triggering OOM kills in these cases. 2202 */ 2203 if (unlikely(current->flags & PF_MEMALLOC)) 2204 goto force; 2205 2206 if (unlikely(task_in_memcg_oom(current))) 2207 goto nomem; 2208 2209 if (!gfpflags_allow_blocking(gfp_mask)) 2210 goto nomem; 2211 2212 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2213 raised_max_event = true; 2214 2215 psi_memstall_enter(&pflags); 2216 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2217 gfp_mask, reclaim_options, NULL); 2218 psi_memstall_leave(&pflags); 2219 2220 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2221 goto retry; 2222 2223 if (!drained) { 2224 drain_all_stock(mem_over_limit); 2225 drained = true; 2226 goto retry; 2227 } 2228 2229 if (gfp_mask & __GFP_NORETRY) 2230 goto nomem; 2231 /* 2232 * Even though the limit is exceeded at this point, reclaim 2233 * may have been able to free some pages. Retry the charge 2234 * before killing the task. 2235 * 2236 * Only for regular pages, though: huge pages are rather 2237 * unlikely to succeed so close to the limit, and we fall back 2238 * to regular pages anyway in case of failure. 2239 */ 2240 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2241 goto retry; 2242 /* 2243 * At task move, charge accounts can be doubly counted. So, it's 2244 * better to wait until the end of task_move if something is going on. 2245 */ 2246 if (memcg1_wait_acct_move(mem_over_limit)) 2247 goto retry; 2248 2249 if (nr_retries--) 2250 goto retry; 2251 2252 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2253 goto nomem; 2254 2255 /* Avoid endless loop for tasks bypassed by the oom killer */ 2256 if (passed_oom && task_is_dying()) 2257 goto nomem; 2258 2259 /* 2260 * keep retrying as long as the memcg oom killer is able to make 2261 * a forward progress or bypass the charge if the oom killer 2262 * couldn't make any progress. 2263 */ 2264 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2265 get_order(nr_pages * PAGE_SIZE))) { 2266 passed_oom = true; 2267 nr_retries = MAX_RECLAIM_RETRIES; 2268 goto retry; 2269 } 2270 nomem: 2271 /* 2272 * Memcg doesn't have a dedicated reserve for atomic 2273 * allocations. But like the global atomic pool, we need to 2274 * put the burden of reclaim on regular allocation requests 2275 * and let these go through as privileged allocations. 2276 */ 2277 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2278 return -ENOMEM; 2279 force: 2280 /* 2281 * If the allocation has to be enforced, don't forget to raise 2282 * a MEMCG_MAX event. 2283 */ 2284 if (!raised_max_event) 2285 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2286 2287 /* 2288 * The allocation either can't fail or will lead to more memory 2289 * being freed very soon. Allow memory usage go over the limit 2290 * temporarily by force charging it. 2291 */ 2292 page_counter_charge(&memcg->memory, nr_pages); 2293 if (do_memsw_account()) 2294 page_counter_charge(&memcg->memsw, nr_pages); 2295 2296 return 0; 2297 2298 done_restock: 2299 if (batch > nr_pages) 2300 refill_stock(memcg, batch - nr_pages); 2301 2302 /* 2303 * If the hierarchy is above the normal consumption range, schedule 2304 * reclaim on returning to userland. We can perform reclaim here 2305 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2306 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2307 * not recorded as it most likely matches current's and won't 2308 * change in the meantime. As high limit is checked again before 2309 * reclaim, the cost of mismatch is negligible. 2310 */ 2311 do { 2312 bool mem_high, swap_high; 2313 2314 mem_high = page_counter_read(&memcg->memory) > 2315 READ_ONCE(memcg->memory.high); 2316 swap_high = page_counter_read(&memcg->swap) > 2317 READ_ONCE(memcg->swap.high); 2318 2319 /* Don't bother a random interrupted task */ 2320 if (!in_task()) { 2321 if (mem_high) { 2322 schedule_work(&memcg->high_work); 2323 break; 2324 } 2325 continue; 2326 } 2327 2328 if (mem_high || swap_high) { 2329 /* 2330 * The allocating tasks in this cgroup will need to do 2331 * reclaim or be throttled to prevent further growth 2332 * of the memory or swap footprints. 2333 * 2334 * Target some best-effort fairness between the tasks, 2335 * and distribute reclaim work and delay penalties 2336 * based on how much each task is actually allocating. 2337 */ 2338 current->memcg_nr_pages_over_high += batch; 2339 set_notify_resume(current); 2340 break; 2341 } 2342 } while ((memcg = parent_mem_cgroup(memcg))); 2343 2344 /* 2345 * Reclaim is set up above to be called from the userland 2346 * return path. But also attempt synchronous reclaim to avoid 2347 * excessive overrun while the task is still inside the 2348 * kernel. If this is successful, the return path will see it 2349 * when it rechecks the overage and simply bail out. 2350 */ 2351 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2352 !(current->flags & PF_MEMALLOC) && 2353 gfpflags_allow_blocking(gfp_mask)) 2354 mem_cgroup_handle_over_high(gfp_mask); 2355 return 0; 2356 } 2357 2358 /** 2359 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 2360 * @memcg: memcg previously charged. 2361 * @nr_pages: number of pages previously charged. 2362 */ 2363 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2364 { 2365 if (mem_cgroup_is_root(memcg)) 2366 return; 2367 2368 page_counter_uncharge(&memcg->memory, nr_pages); 2369 if (do_memsw_account()) 2370 page_counter_uncharge(&memcg->memsw, nr_pages); 2371 } 2372 2373 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2374 { 2375 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2376 /* 2377 * Any of the following ensures page's memcg stability: 2378 * 2379 * - the page lock 2380 * - LRU isolation 2381 * - folio_memcg_lock() 2382 * - exclusive reference 2383 * - mem_cgroup_trylock_pages() 2384 */ 2385 folio->memcg_data = (unsigned long)memcg; 2386 } 2387 2388 /** 2389 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 2390 * @folio: folio to commit the charge to. 2391 * @memcg: memcg previously charged. 2392 */ 2393 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2394 { 2395 css_get(&memcg->css); 2396 commit_charge(folio, memcg); 2397 2398 local_irq_disable(); 2399 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 2400 memcg1_check_events(memcg, folio_nid(folio)); 2401 local_irq_enable(); 2402 } 2403 2404 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2405 struct pglist_data *pgdat, 2406 enum node_stat_item idx, int nr) 2407 { 2408 struct mem_cgroup *memcg; 2409 struct lruvec *lruvec; 2410 2411 rcu_read_lock(); 2412 memcg = obj_cgroup_memcg(objcg); 2413 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2414 __mod_memcg_lruvec_state(lruvec, idx, nr); 2415 rcu_read_unlock(); 2416 } 2417 2418 static __always_inline 2419 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2420 { 2421 /* 2422 * Slab objects are accounted individually, not per-page. 2423 * Memcg membership data for each individual object is saved in 2424 * slab->obj_exts. 2425 */ 2426 if (folio_test_slab(folio)) { 2427 struct slabobj_ext *obj_exts; 2428 struct slab *slab; 2429 unsigned int off; 2430 2431 slab = folio_slab(folio); 2432 obj_exts = slab_obj_exts(slab); 2433 if (!obj_exts) 2434 return NULL; 2435 2436 off = obj_to_index(slab->slab_cache, slab, p); 2437 if (obj_exts[off].objcg) 2438 return obj_cgroup_memcg(obj_exts[off].objcg); 2439 2440 return NULL; 2441 } 2442 2443 /* 2444 * folio_memcg_check() is used here, because in theory we can encounter 2445 * a folio where the slab flag has been cleared already, but 2446 * slab->obj_exts has not been freed yet 2447 * folio_memcg_check() will guarantee that a proper memory 2448 * cgroup pointer or NULL will be returned. 2449 */ 2450 return folio_memcg_check(folio); 2451 } 2452 2453 /* 2454 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2455 * It is not suitable for objects allocated using vmalloc(). 2456 * 2457 * A passed kernel object must be a slab object or a generic kernel page. 2458 * 2459 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2460 * cgroup_mutex, etc. 2461 */ 2462 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2463 { 2464 if (mem_cgroup_disabled()) 2465 return NULL; 2466 2467 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2468 } 2469 2470 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2471 { 2472 struct obj_cgroup *objcg = NULL; 2473 2474 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2475 objcg = rcu_dereference(memcg->objcg); 2476 if (likely(objcg && obj_cgroup_tryget(objcg))) 2477 break; 2478 objcg = NULL; 2479 } 2480 return objcg; 2481 } 2482 2483 static struct obj_cgroup *current_objcg_update(void) 2484 { 2485 struct mem_cgroup *memcg; 2486 struct obj_cgroup *old, *objcg = NULL; 2487 2488 do { 2489 /* Atomically drop the update bit. */ 2490 old = xchg(¤t->objcg, NULL); 2491 if (old) { 2492 old = (struct obj_cgroup *) 2493 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2494 obj_cgroup_put(old); 2495 2496 old = NULL; 2497 } 2498 2499 /* If new objcg is NULL, no reason for the second atomic update. */ 2500 if (!current->mm || (current->flags & PF_KTHREAD)) 2501 return NULL; 2502 2503 /* 2504 * Release the objcg pointer from the previous iteration, 2505 * if try_cmpxcg() below fails. 2506 */ 2507 if (unlikely(objcg)) { 2508 obj_cgroup_put(objcg); 2509 objcg = NULL; 2510 } 2511 2512 /* 2513 * Obtain the new objcg pointer. The current task can be 2514 * asynchronously moved to another memcg and the previous 2515 * memcg can be offlined. So let's get the memcg pointer 2516 * and try get a reference to objcg under a rcu read lock. 2517 */ 2518 2519 rcu_read_lock(); 2520 memcg = mem_cgroup_from_task(current); 2521 objcg = __get_obj_cgroup_from_memcg(memcg); 2522 rcu_read_unlock(); 2523 2524 /* 2525 * Try set up a new objcg pointer atomically. If it 2526 * fails, it means the update flag was set concurrently, so 2527 * the whole procedure should be repeated. 2528 */ 2529 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2530 2531 return objcg; 2532 } 2533 2534 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2535 { 2536 struct mem_cgroup *memcg; 2537 struct obj_cgroup *objcg; 2538 2539 if (in_task()) { 2540 memcg = current->active_memcg; 2541 if (unlikely(memcg)) 2542 goto from_memcg; 2543 2544 objcg = READ_ONCE(current->objcg); 2545 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2546 objcg = current_objcg_update(); 2547 /* 2548 * Objcg reference is kept by the task, so it's safe 2549 * to use the objcg by the current task. 2550 */ 2551 return objcg; 2552 } 2553 2554 memcg = this_cpu_read(int_active_memcg); 2555 if (unlikely(memcg)) 2556 goto from_memcg; 2557 2558 return NULL; 2559 2560 from_memcg: 2561 objcg = NULL; 2562 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2563 /* 2564 * Memcg pointer is protected by scope (see set_active_memcg()) 2565 * and is pinning the corresponding objcg, so objcg can't go 2566 * away and can be used within the scope without any additional 2567 * protection. 2568 */ 2569 objcg = rcu_dereference_check(memcg->objcg, 1); 2570 if (likely(objcg)) 2571 break; 2572 } 2573 2574 return objcg; 2575 } 2576 2577 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2578 { 2579 struct obj_cgroup *objcg; 2580 2581 if (!memcg_kmem_online()) 2582 return NULL; 2583 2584 if (folio_memcg_kmem(folio)) { 2585 objcg = __folio_objcg(folio); 2586 obj_cgroup_get(objcg); 2587 } else { 2588 struct mem_cgroup *memcg; 2589 2590 rcu_read_lock(); 2591 memcg = __folio_memcg(folio); 2592 if (memcg) 2593 objcg = __get_obj_cgroup_from_memcg(memcg); 2594 else 2595 objcg = NULL; 2596 rcu_read_unlock(); 2597 } 2598 return objcg; 2599 } 2600 2601 /* 2602 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2603 * @objcg: object cgroup to uncharge 2604 * @nr_pages: number of pages to uncharge 2605 */ 2606 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2607 unsigned int nr_pages) 2608 { 2609 struct mem_cgroup *memcg; 2610 2611 memcg = get_mem_cgroup_from_objcg(objcg); 2612 2613 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2614 memcg1_account_kmem(memcg, -nr_pages); 2615 refill_stock(memcg, nr_pages); 2616 2617 css_put(&memcg->css); 2618 } 2619 2620 /* 2621 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2622 * @objcg: object cgroup to charge 2623 * @gfp: reclaim mode 2624 * @nr_pages: number of pages to charge 2625 * 2626 * Returns 0 on success, an error code on failure. 2627 */ 2628 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2629 unsigned int nr_pages) 2630 { 2631 struct mem_cgroup *memcg; 2632 int ret; 2633 2634 memcg = get_mem_cgroup_from_objcg(objcg); 2635 2636 ret = try_charge_memcg(memcg, gfp, nr_pages); 2637 if (ret) 2638 goto out; 2639 2640 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2641 memcg1_account_kmem(memcg, nr_pages); 2642 out: 2643 css_put(&memcg->css); 2644 2645 return ret; 2646 } 2647 2648 /** 2649 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2650 * @page: page to charge 2651 * @gfp: reclaim mode 2652 * @order: allocation order 2653 * 2654 * Returns 0 on success, an error code on failure. 2655 */ 2656 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2657 { 2658 struct obj_cgroup *objcg; 2659 int ret = 0; 2660 2661 objcg = current_obj_cgroup(); 2662 if (objcg) { 2663 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2664 if (!ret) { 2665 obj_cgroup_get(objcg); 2666 page->memcg_data = (unsigned long)objcg | 2667 MEMCG_DATA_KMEM; 2668 return 0; 2669 } 2670 } 2671 return ret; 2672 } 2673 2674 /** 2675 * __memcg_kmem_uncharge_page: uncharge a kmem page 2676 * @page: page to uncharge 2677 * @order: allocation order 2678 */ 2679 void __memcg_kmem_uncharge_page(struct page *page, int order) 2680 { 2681 struct folio *folio = page_folio(page); 2682 struct obj_cgroup *objcg; 2683 unsigned int nr_pages = 1 << order; 2684 2685 if (!folio_memcg_kmem(folio)) 2686 return; 2687 2688 objcg = __folio_objcg(folio); 2689 obj_cgroup_uncharge_pages(objcg, nr_pages); 2690 folio->memcg_data = 0; 2691 obj_cgroup_put(objcg); 2692 } 2693 2694 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2695 enum node_stat_item idx, int nr) 2696 { 2697 struct memcg_stock_pcp *stock; 2698 struct obj_cgroup *old = NULL; 2699 unsigned long flags; 2700 int *bytes; 2701 2702 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2703 stock = this_cpu_ptr(&memcg_stock); 2704 2705 /* 2706 * Save vmstat data in stock and skip vmstat array update unless 2707 * accumulating over a page of vmstat data or when pgdat or idx 2708 * changes. 2709 */ 2710 if (READ_ONCE(stock->cached_objcg) != objcg) { 2711 old = drain_obj_stock(stock); 2712 obj_cgroup_get(objcg); 2713 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2714 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2715 WRITE_ONCE(stock->cached_objcg, objcg); 2716 stock->cached_pgdat = pgdat; 2717 } else if (stock->cached_pgdat != pgdat) { 2718 /* Flush the existing cached vmstat data */ 2719 struct pglist_data *oldpg = stock->cached_pgdat; 2720 2721 if (stock->nr_slab_reclaimable_b) { 2722 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2723 stock->nr_slab_reclaimable_b); 2724 stock->nr_slab_reclaimable_b = 0; 2725 } 2726 if (stock->nr_slab_unreclaimable_b) { 2727 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2728 stock->nr_slab_unreclaimable_b); 2729 stock->nr_slab_unreclaimable_b = 0; 2730 } 2731 stock->cached_pgdat = pgdat; 2732 } 2733 2734 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2735 : &stock->nr_slab_unreclaimable_b; 2736 /* 2737 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2738 * cached locally at least once before pushing it out. 2739 */ 2740 if (!*bytes) { 2741 *bytes = nr; 2742 nr = 0; 2743 } else { 2744 *bytes += nr; 2745 if (abs(*bytes) > PAGE_SIZE) { 2746 nr = *bytes; 2747 *bytes = 0; 2748 } else { 2749 nr = 0; 2750 } 2751 } 2752 if (nr) 2753 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2754 2755 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2756 obj_cgroup_put(old); 2757 } 2758 2759 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2760 { 2761 struct memcg_stock_pcp *stock; 2762 unsigned long flags; 2763 bool ret = false; 2764 2765 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2766 2767 stock = this_cpu_ptr(&memcg_stock); 2768 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2769 stock->nr_bytes -= nr_bytes; 2770 ret = true; 2771 } 2772 2773 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2774 2775 return ret; 2776 } 2777 2778 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2779 { 2780 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2781 2782 if (!old) 2783 return NULL; 2784 2785 if (stock->nr_bytes) { 2786 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2787 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2788 2789 if (nr_pages) { 2790 struct mem_cgroup *memcg; 2791 2792 memcg = get_mem_cgroup_from_objcg(old); 2793 2794 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2795 memcg1_account_kmem(memcg, -nr_pages); 2796 __refill_stock(memcg, nr_pages); 2797 2798 css_put(&memcg->css); 2799 } 2800 2801 /* 2802 * The leftover is flushed to the centralized per-memcg value. 2803 * On the next attempt to refill obj stock it will be moved 2804 * to a per-cpu stock (probably, on an other CPU), see 2805 * refill_obj_stock(). 2806 * 2807 * How often it's flushed is a trade-off between the memory 2808 * limit enforcement accuracy and potential CPU contention, 2809 * so it might be changed in the future. 2810 */ 2811 atomic_add(nr_bytes, &old->nr_charged_bytes); 2812 stock->nr_bytes = 0; 2813 } 2814 2815 /* 2816 * Flush the vmstat data in current stock 2817 */ 2818 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2819 if (stock->nr_slab_reclaimable_b) { 2820 __mod_objcg_mlstate(old, stock->cached_pgdat, 2821 NR_SLAB_RECLAIMABLE_B, 2822 stock->nr_slab_reclaimable_b); 2823 stock->nr_slab_reclaimable_b = 0; 2824 } 2825 if (stock->nr_slab_unreclaimable_b) { 2826 __mod_objcg_mlstate(old, stock->cached_pgdat, 2827 NR_SLAB_UNRECLAIMABLE_B, 2828 stock->nr_slab_unreclaimable_b); 2829 stock->nr_slab_unreclaimable_b = 0; 2830 } 2831 stock->cached_pgdat = NULL; 2832 } 2833 2834 WRITE_ONCE(stock->cached_objcg, NULL); 2835 /* 2836 * The `old' objects needs to be released by the caller via 2837 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2838 */ 2839 return old; 2840 } 2841 2842 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2843 struct mem_cgroup *root_memcg) 2844 { 2845 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2846 struct mem_cgroup *memcg; 2847 2848 if (objcg) { 2849 memcg = obj_cgroup_memcg(objcg); 2850 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2851 return true; 2852 } 2853 2854 return false; 2855 } 2856 2857 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2858 bool allow_uncharge) 2859 { 2860 struct memcg_stock_pcp *stock; 2861 struct obj_cgroup *old = NULL; 2862 unsigned long flags; 2863 unsigned int nr_pages = 0; 2864 2865 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2866 2867 stock = this_cpu_ptr(&memcg_stock); 2868 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2869 old = drain_obj_stock(stock); 2870 obj_cgroup_get(objcg); 2871 WRITE_ONCE(stock->cached_objcg, objcg); 2872 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2873 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2874 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2875 } 2876 stock->nr_bytes += nr_bytes; 2877 2878 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2879 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2880 stock->nr_bytes &= (PAGE_SIZE - 1); 2881 } 2882 2883 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2884 obj_cgroup_put(old); 2885 2886 if (nr_pages) 2887 obj_cgroup_uncharge_pages(objcg, nr_pages); 2888 } 2889 2890 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2891 { 2892 unsigned int nr_pages, nr_bytes; 2893 int ret; 2894 2895 if (consume_obj_stock(objcg, size)) 2896 return 0; 2897 2898 /* 2899 * In theory, objcg->nr_charged_bytes can have enough 2900 * pre-charged bytes to satisfy the allocation. However, 2901 * flushing objcg->nr_charged_bytes requires two atomic 2902 * operations, and objcg->nr_charged_bytes can't be big. 2903 * The shared objcg->nr_charged_bytes can also become a 2904 * performance bottleneck if all tasks of the same memcg are 2905 * trying to update it. So it's better to ignore it and try 2906 * grab some new pages. The stock's nr_bytes will be flushed to 2907 * objcg->nr_charged_bytes later on when objcg changes. 2908 * 2909 * The stock's nr_bytes may contain enough pre-charged bytes 2910 * to allow one less page from being charged, but we can't rely 2911 * on the pre-charged bytes not being changed outside of 2912 * consume_obj_stock() or refill_obj_stock(). So ignore those 2913 * pre-charged bytes as well when charging pages. To avoid a 2914 * page uncharge right after a page charge, we set the 2915 * allow_uncharge flag to false when calling refill_obj_stock() 2916 * to temporarily allow the pre-charged bytes to exceed the page 2917 * size limit. The maximum reachable value of the pre-charged 2918 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2919 * race. 2920 */ 2921 nr_pages = size >> PAGE_SHIFT; 2922 nr_bytes = size & (PAGE_SIZE - 1); 2923 2924 if (nr_bytes) 2925 nr_pages += 1; 2926 2927 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2928 if (!ret && nr_bytes) 2929 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2930 2931 return ret; 2932 } 2933 2934 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2935 { 2936 refill_obj_stock(objcg, size, true); 2937 } 2938 2939 static inline size_t obj_full_size(struct kmem_cache *s) 2940 { 2941 /* 2942 * For each accounted object there is an extra space which is used 2943 * to store obj_cgroup membership. Charge it too. 2944 */ 2945 return s->size + sizeof(struct obj_cgroup *); 2946 } 2947 2948 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2949 gfp_t flags, size_t size, void **p) 2950 { 2951 struct obj_cgroup *objcg; 2952 struct slab *slab; 2953 unsigned long off; 2954 size_t i; 2955 2956 /* 2957 * The obtained objcg pointer is safe to use within the current scope, 2958 * defined by current task or set_active_memcg() pair. 2959 * obj_cgroup_get() is used to get a permanent reference. 2960 */ 2961 objcg = current_obj_cgroup(); 2962 if (!objcg) 2963 return true; 2964 2965 /* 2966 * slab_alloc_node() avoids the NULL check, so we might be called with a 2967 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2968 * the whole requested size. 2969 * return success as there's nothing to free back 2970 */ 2971 if (unlikely(*p == NULL)) 2972 return true; 2973 2974 flags &= gfp_allowed_mask; 2975 2976 if (lru) { 2977 int ret; 2978 struct mem_cgroup *memcg; 2979 2980 memcg = get_mem_cgroup_from_objcg(objcg); 2981 ret = memcg_list_lru_alloc(memcg, lru, flags); 2982 css_put(&memcg->css); 2983 2984 if (ret) 2985 return false; 2986 } 2987 2988 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2989 return false; 2990 2991 for (i = 0; i < size; i++) { 2992 slab = virt_to_slab(p[i]); 2993 2994 if (!slab_obj_exts(slab) && 2995 alloc_slab_obj_exts(slab, s, flags, false)) { 2996 obj_cgroup_uncharge(objcg, obj_full_size(s)); 2997 continue; 2998 } 2999 3000 off = obj_to_index(s, slab, p[i]); 3001 obj_cgroup_get(objcg); 3002 slab_obj_exts(slab)[off].objcg = objcg; 3003 mod_objcg_state(objcg, slab_pgdat(slab), 3004 cache_vmstat_idx(s), obj_full_size(s)); 3005 } 3006 3007 return true; 3008 } 3009 3010 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3011 void **p, int objects, struct slabobj_ext *obj_exts) 3012 { 3013 for (int i = 0; i < objects; i++) { 3014 struct obj_cgroup *objcg; 3015 unsigned int off; 3016 3017 off = obj_to_index(s, slab, p[i]); 3018 objcg = obj_exts[off].objcg; 3019 if (!objcg) 3020 continue; 3021 3022 obj_exts[off].objcg = NULL; 3023 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3024 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3025 -obj_full_size(s)); 3026 obj_cgroup_put(objcg); 3027 } 3028 } 3029 3030 /* 3031 * Because folio_memcg(head) is not set on tails, set it now. 3032 */ 3033 void split_page_memcg(struct page *head, int old_order, int new_order) 3034 { 3035 struct folio *folio = page_folio(head); 3036 struct mem_cgroup *memcg = folio_memcg(folio); 3037 int i; 3038 unsigned int old_nr = 1 << old_order; 3039 unsigned int new_nr = 1 << new_order; 3040 3041 if (mem_cgroup_disabled() || !memcg) 3042 return; 3043 3044 for (i = new_nr; i < old_nr; i += new_nr) 3045 folio_page(folio, i)->memcg_data = folio->memcg_data; 3046 3047 if (folio_memcg_kmem(folio)) 3048 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3049 else 3050 css_get_many(&memcg->css, old_nr / new_nr - 1); 3051 } 3052 3053 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3054 { 3055 unsigned long val; 3056 3057 if (mem_cgroup_is_root(memcg)) { 3058 /* 3059 * Approximate root's usage from global state. This isn't 3060 * perfect, but the root usage was always an approximation. 3061 */ 3062 val = global_node_page_state(NR_FILE_PAGES) + 3063 global_node_page_state(NR_ANON_MAPPED); 3064 if (swap) 3065 val += total_swap_pages - get_nr_swap_pages(); 3066 } else { 3067 if (!swap) 3068 val = page_counter_read(&memcg->memory); 3069 else 3070 val = page_counter_read(&memcg->memsw); 3071 } 3072 return val; 3073 } 3074 3075 static int memcg_online_kmem(struct mem_cgroup *memcg) 3076 { 3077 struct obj_cgroup *objcg; 3078 3079 if (mem_cgroup_kmem_disabled()) 3080 return 0; 3081 3082 if (unlikely(mem_cgroup_is_root(memcg))) 3083 return 0; 3084 3085 objcg = obj_cgroup_alloc(); 3086 if (!objcg) 3087 return -ENOMEM; 3088 3089 objcg->memcg = memcg; 3090 rcu_assign_pointer(memcg->objcg, objcg); 3091 obj_cgroup_get(objcg); 3092 memcg->orig_objcg = objcg; 3093 3094 static_branch_enable(&memcg_kmem_online_key); 3095 3096 memcg->kmemcg_id = memcg->id.id; 3097 3098 return 0; 3099 } 3100 3101 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3102 { 3103 struct mem_cgroup *parent; 3104 3105 if (mem_cgroup_kmem_disabled()) 3106 return; 3107 3108 if (unlikely(mem_cgroup_is_root(memcg))) 3109 return; 3110 3111 parent = parent_mem_cgroup(memcg); 3112 if (!parent) 3113 parent = root_mem_cgroup; 3114 3115 memcg_reparent_objcgs(memcg, parent); 3116 3117 /* 3118 * After we have finished memcg_reparent_objcgs(), all list_lrus 3119 * corresponding to this cgroup are guaranteed to remain empty. 3120 * The ordering is imposed by list_lru_node->lock taken by 3121 * memcg_reparent_list_lrus(). 3122 */ 3123 memcg_reparent_list_lrus(memcg, parent); 3124 } 3125 3126 #ifdef CONFIG_CGROUP_WRITEBACK 3127 3128 #include <trace/events/writeback.h> 3129 3130 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3131 { 3132 return wb_domain_init(&memcg->cgwb_domain, gfp); 3133 } 3134 3135 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3136 { 3137 wb_domain_exit(&memcg->cgwb_domain); 3138 } 3139 3140 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3141 { 3142 wb_domain_size_changed(&memcg->cgwb_domain); 3143 } 3144 3145 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3146 { 3147 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3148 3149 if (!memcg->css.parent) 3150 return NULL; 3151 3152 return &memcg->cgwb_domain; 3153 } 3154 3155 /** 3156 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3157 * @wb: bdi_writeback in question 3158 * @pfilepages: out parameter for number of file pages 3159 * @pheadroom: out parameter for number of allocatable pages according to memcg 3160 * @pdirty: out parameter for number of dirty pages 3161 * @pwriteback: out parameter for number of pages under writeback 3162 * 3163 * Determine the numbers of file, headroom, dirty, and writeback pages in 3164 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3165 * is a bit more involved. 3166 * 3167 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3168 * headroom is calculated as the lowest headroom of itself and the 3169 * ancestors. Note that this doesn't consider the actual amount of 3170 * available memory in the system. The caller should further cap 3171 * *@pheadroom accordingly. 3172 */ 3173 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3174 unsigned long *pheadroom, unsigned long *pdirty, 3175 unsigned long *pwriteback) 3176 { 3177 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3178 struct mem_cgroup *parent; 3179 3180 mem_cgroup_flush_stats_ratelimited(memcg); 3181 3182 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3183 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3184 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3185 memcg_page_state(memcg, NR_ACTIVE_FILE); 3186 3187 *pheadroom = PAGE_COUNTER_MAX; 3188 while ((parent = parent_mem_cgroup(memcg))) { 3189 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3190 READ_ONCE(memcg->memory.high)); 3191 unsigned long used = page_counter_read(&memcg->memory); 3192 3193 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3194 memcg = parent; 3195 } 3196 } 3197 3198 /* 3199 * Foreign dirty flushing 3200 * 3201 * There's an inherent mismatch between memcg and writeback. The former 3202 * tracks ownership per-page while the latter per-inode. This was a 3203 * deliberate design decision because honoring per-page ownership in the 3204 * writeback path is complicated, may lead to higher CPU and IO overheads 3205 * and deemed unnecessary given that write-sharing an inode across 3206 * different cgroups isn't a common use-case. 3207 * 3208 * Combined with inode majority-writer ownership switching, this works well 3209 * enough in most cases but there are some pathological cases. For 3210 * example, let's say there are two cgroups A and B which keep writing to 3211 * different but confined parts of the same inode. B owns the inode and 3212 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3213 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3214 * triggering background writeback. A will be slowed down without a way to 3215 * make writeback of the dirty pages happen. 3216 * 3217 * Conditions like the above can lead to a cgroup getting repeatedly and 3218 * severely throttled after making some progress after each 3219 * dirty_expire_interval while the underlying IO device is almost 3220 * completely idle. 3221 * 3222 * Solving this problem completely requires matching the ownership tracking 3223 * granularities between memcg and writeback in either direction. However, 3224 * the more egregious behaviors can be avoided by simply remembering the 3225 * most recent foreign dirtying events and initiating remote flushes on 3226 * them when local writeback isn't enough to keep the memory clean enough. 3227 * 3228 * The following two functions implement such mechanism. When a foreign 3229 * page - a page whose memcg and writeback ownerships don't match - is 3230 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3231 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3232 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3233 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3234 * foreign bdi_writebacks which haven't expired. Both the numbers of 3235 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3236 * limited to MEMCG_CGWB_FRN_CNT. 3237 * 3238 * The mechanism only remembers IDs and doesn't hold any object references. 3239 * As being wrong occasionally doesn't matter, updates and accesses to the 3240 * records are lockless and racy. 3241 */ 3242 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3243 struct bdi_writeback *wb) 3244 { 3245 struct mem_cgroup *memcg = folio_memcg(folio); 3246 struct memcg_cgwb_frn *frn; 3247 u64 now = get_jiffies_64(); 3248 u64 oldest_at = now; 3249 int oldest = -1; 3250 int i; 3251 3252 trace_track_foreign_dirty(folio, wb); 3253 3254 /* 3255 * Pick the slot to use. If there is already a slot for @wb, keep 3256 * using it. If not replace the oldest one which isn't being 3257 * written out. 3258 */ 3259 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3260 frn = &memcg->cgwb_frn[i]; 3261 if (frn->bdi_id == wb->bdi->id && 3262 frn->memcg_id == wb->memcg_css->id) 3263 break; 3264 if (time_before64(frn->at, oldest_at) && 3265 atomic_read(&frn->done.cnt) == 1) { 3266 oldest = i; 3267 oldest_at = frn->at; 3268 } 3269 } 3270 3271 if (i < MEMCG_CGWB_FRN_CNT) { 3272 /* 3273 * Re-using an existing one. Update timestamp lazily to 3274 * avoid making the cacheline hot. We want them to be 3275 * reasonably up-to-date and significantly shorter than 3276 * dirty_expire_interval as that's what expires the record. 3277 * Use the shorter of 1s and dirty_expire_interval / 8. 3278 */ 3279 unsigned long update_intv = 3280 min_t(unsigned long, HZ, 3281 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3282 3283 if (time_before64(frn->at, now - update_intv)) 3284 frn->at = now; 3285 } else if (oldest >= 0) { 3286 /* replace the oldest free one */ 3287 frn = &memcg->cgwb_frn[oldest]; 3288 frn->bdi_id = wb->bdi->id; 3289 frn->memcg_id = wb->memcg_css->id; 3290 frn->at = now; 3291 } 3292 } 3293 3294 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3295 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3296 { 3297 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3298 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3299 u64 now = jiffies_64; 3300 int i; 3301 3302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3303 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3304 3305 /* 3306 * If the record is older than dirty_expire_interval, 3307 * writeback on it has already started. No need to kick it 3308 * off again. Also, don't start a new one if there's 3309 * already one in flight. 3310 */ 3311 if (time_after64(frn->at, now - intv) && 3312 atomic_read(&frn->done.cnt) == 1) { 3313 frn->at = 0; 3314 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3315 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3316 WB_REASON_FOREIGN_FLUSH, 3317 &frn->done); 3318 } 3319 } 3320 } 3321 3322 #else /* CONFIG_CGROUP_WRITEBACK */ 3323 3324 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3325 { 3326 return 0; 3327 } 3328 3329 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3330 { 3331 } 3332 3333 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3334 { 3335 } 3336 3337 #endif /* CONFIG_CGROUP_WRITEBACK */ 3338 3339 /* 3340 * Private memory cgroup IDR 3341 * 3342 * Swap-out records and page cache shadow entries need to store memcg 3343 * references in constrained space, so we maintain an ID space that is 3344 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3345 * memory-controlled cgroups to 64k. 3346 * 3347 * However, there usually are many references to the offline CSS after 3348 * the cgroup has been destroyed, such as page cache or reclaimable 3349 * slab objects, that don't need to hang on to the ID. We want to keep 3350 * those dead CSS from occupying IDs, or we might quickly exhaust the 3351 * relatively small ID space and prevent the creation of new cgroups 3352 * even when there are much fewer than 64k cgroups - possibly none. 3353 * 3354 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3355 * be freed and recycled when it's no longer needed, which is usually 3356 * when the CSS is offlined. 3357 * 3358 * The only exception to that are records of swapped out tmpfs/shmem 3359 * pages that need to be attributed to live ancestors on swapin. But 3360 * those references are manageable from userspace. 3361 */ 3362 3363 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3364 static DEFINE_IDR(mem_cgroup_idr); 3365 static DEFINE_SPINLOCK(memcg_idr_lock); 3366 3367 static int mem_cgroup_alloc_id(void) 3368 { 3369 int ret; 3370 3371 idr_preload(GFP_KERNEL); 3372 spin_lock(&memcg_idr_lock); 3373 ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX + 1, 3374 GFP_NOWAIT); 3375 spin_unlock(&memcg_idr_lock); 3376 idr_preload_end(); 3377 return ret; 3378 } 3379 3380 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3381 { 3382 if (memcg->id.id > 0) { 3383 spin_lock(&memcg_idr_lock); 3384 idr_remove(&mem_cgroup_idr, memcg->id.id); 3385 spin_unlock(&memcg_idr_lock); 3386 3387 memcg->id.id = 0; 3388 } 3389 } 3390 3391 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3392 unsigned int n) 3393 { 3394 refcount_add(n, &memcg->id.ref); 3395 } 3396 3397 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3398 { 3399 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3400 mem_cgroup_id_remove(memcg); 3401 3402 /* Memcg ID pins CSS */ 3403 css_put(&memcg->css); 3404 } 3405 } 3406 3407 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3408 { 3409 mem_cgroup_id_put_many(memcg, 1); 3410 } 3411 3412 /** 3413 * mem_cgroup_from_id - look up a memcg from a memcg id 3414 * @id: the memcg id to look up 3415 * 3416 * Caller must hold rcu_read_lock(). 3417 */ 3418 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3419 { 3420 WARN_ON_ONCE(!rcu_read_lock_held()); 3421 return idr_find(&mem_cgroup_idr, id); 3422 } 3423 3424 #ifdef CONFIG_SHRINKER_DEBUG 3425 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3426 { 3427 struct cgroup *cgrp; 3428 struct cgroup_subsys_state *css; 3429 struct mem_cgroup *memcg; 3430 3431 cgrp = cgroup_get_from_id(ino); 3432 if (IS_ERR(cgrp)) 3433 return ERR_CAST(cgrp); 3434 3435 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3436 if (css) 3437 memcg = container_of(css, struct mem_cgroup, css); 3438 else 3439 memcg = ERR_PTR(-ENOENT); 3440 3441 cgroup_put(cgrp); 3442 3443 return memcg; 3444 } 3445 #endif 3446 3447 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3448 { 3449 struct mem_cgroup_per_node *pn; 3450 3451 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3452 if (!pn) 3453 return false; 3454 3455 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3456 GFP_KERNEL_ACCOUNT, node); 3457 if (!pn->lruvec_stats) 3458 goto fail; 3459 3460 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3461 GFP_KERNEL_ACCOUNT); 3462 if (!pn->lruvec_stats_percpu) 3463 goto fail; 3464 3465 lruvec_init(&pn->lruvec); 3466 pn->memcg = memcg; 3467 3468 memcg->nodeinfo[node] = pn; 3469 return true; 3470 fail: 3471 kfree(pn->lruvec_stats); 3472 kfree(pn); 3473 return false; 3474 } 3475 3476 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3477 { 3478 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3479 3480 if (!pn) 3481 return; 3482 3483 free_percpu(pn->lruvec_stats_percpu); 3484 kfree(pn->lruvec_stats); 3485 kfree(pn); 3486 } 3487 3488 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3489 { 3490 int node; 3491 3492 obj_cgroup_put(memcg->orig_objcg); 3493 3494 for_each_node(node) 3495 free_mem_cgroup_per_node_info(memcg, node); 3496 kfree(memcg->vmstats); 3497 free_percpu(memcg->vmstats_percpu); 3498 kfree(memcg); 3499 } 3500 3501 static void mem_cgroup_free(struct mem_cgroup *memcg) 3502 { 3503 lru_gen_exit_memcg(memcg); 3504 memcg_wb_domain_exit(memcg); 3505 __mem_cgroup_free(memcg); 3506 } 3507 3508 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3509 { 3510 struct memcg_vmstats_percpu *statc, *pstatc; 3511 struct mem_cgroup *memcg; 3512 int node, cpu; 3513 int __maybe_unused i; 3514 long error = -ENOMEM; 3515 3516 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3517 if (!memcg) 3518 return ERR_PTR(error); 3519 3520 memcg->id.id = mem_cgroup_alloc_id(); 3521 if (memcg->id.id < 0) { 3522 error = memcg->id.id; 3523 goto fail; 3524 } 3525 3526 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3527 GFP_KERNEL_ACCOUNT); 3528 if (!memcg->vmstats) 3529 goto fail; 3530 3531 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3532 GFP_KERNEL_ACCOUNT); 3533 if (!memcg->vmstats_percpu) 3534 goto fail; 3535 3536 for_each_possible_cpu(cpu) { 3537 if (parent) 3538 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3539 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3540 statc->parent = parent ? pstatc : NULL; 3541 statc->vmstats = memcg->vmstats; 3542 } 3543 3544 for_each_node(node) 3545 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3546 goto fail; 3547 3548 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3549 goto fail; 3550 3551 INIT_WORK(&memcg->high_work, high_work_func); 3552 vmpressure_init(&memcg->vmpressure); 3553 memcg->socket_pressure = jiffies; 3554 memcg1_memcg_init(memcg); 3555 memcg->kmemcg_id = -1; 3556 INIT_LIST_HEAD(&memcg->objcg_list); 3557 #ifdef CONFIG_CGROUP_WRITEBACK 3558 INIT_LIST_HEAD(&memcg->cgwb_list); 3559 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3560 memcg->cgwb_frn[i].done = 3561 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3562 #endif 3563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3564 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3565 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3566 memcg->deferred_split_queue.split_queue_len = 0; 3567 #endif 3568 lru_gen_init_memcg(memcg); 3569 return memcg; 3570 fail: 3571 mem_cgroup_id_remove(memcg); 3572 __mem_cgroup_free(memcg); 3573 return ERR_PTR(error); 3574 } 3575 3576 static struct cgroup_subsys_state * __ref 3577 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3578 { 3579 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3580 struct mem_cgroup *memcg, *old_memcg; 3581 3582 old_memcg = set_active_memcg(parent); 3583 memcg = mem_cgroup_alloc(parent); 3584 set_active_memcg(old_memcg); 3585 if (IS_ERR(memcg)) 3586 return ERR_CAST(memcg); 3587 3588 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3589 memcg1_soft_limit_reset(memcg); 3590 #ifdef CONFIG_ZSWAP 3591 memcg->zswap_max = PAGE_COUNTER_MAX; 3592 WRITE_ONCE(memcg->zswap_writeback, 3593 !parent || READ_ONCE(parent->zswap_writeback)); 3594 #endif 3595 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3596 if (parent) { 3597 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3598 3599 page_counter_init(&memcg->memory, &parent->memory); 3600 page_counter_init(&memcg->swap, &parent->swap); 3601 #ifdef CONFIG_MEMCG_V1 3602 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3603 page_counter_init(&memcg->kmem, &parent->kmem); 3604 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 3605 #endif 3606 } else { 3607 init_memcg_stats(); 3608 init_memcg_events(); 3609 page_counter_init(&memcg->memory, NULL); 3610 page_counter_init(&memcg->swap, NULL); 3611 #ifdef CONFIG_MEMCG_V1 3612 page_counter_init(&memcg->kmem, NULL); 3613 page_counter_init(&memcg->tcpmem, NULL); 3614 #endif 3615 root_mem_cgroup = memcg; 3616 return &memcg->css; 3617 } 3618 3619 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3620 static_branch_inc(&memcg_sockets_enabled_key); 3621 3622 if (!cgroup_memory_nobpf) 3623 static_branch_inc(&memcg_bpf_enabled_key); 3624 3625 return &memcg->css; 3626 } 3627 3628 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3629 { 3630 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3631 3632 if (memcg_online_kmem(memcg)) 3633 goto remove_id; 3634 3635 /* 3636 * A memcg must be visible for expand_shrinker_info() 3637 * by the time the maps are allocated. So, we allocate maps 3638 * here, when for_each_mem_cgroup() can't skip it. 3639 */ 3640 if (alloc_shrinker_info(memcg)) 3641 goto offline_kmem; 3642 3643 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3644 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3645 FLUSH_TIME); 3646 lru_gen_online_memcg(memcg); 3647 3648 /* Online state pins memcg ID, memcg ID pins CSS */ 3649 refcount_set(&memcg->id.ref, 1); 3650 css_get(css); 3651 3652 /* 3653 * Ensure mem_cgroup_from_id() works once we're fully online. 3654 * 3655 * We could do this earlier and require callers to filter with 3656 * css_tryget_online(). But right now there are no users that 3657 * need earlier access, and the workingset code relies on the 3658 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3659 * publish it here at the end of onlining. This matches the 3660 * regular ID destruction during offlining. 3661 */ 3662 spin_lock(&memcg_idr_lock); 3663 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 3664 spin_unlock(&memcg_idr_lock); 3665 3666 return 0; 3667 offline_kmem: 3668 memcg_offline_kmem(memcg); 3669 remove_id: 3670 mem_cgroup_id_remove(memcg); 3671 return -ENOMEM; 3672 } 3673 3674 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3675 { 3676 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3677 3678 memcg1_css_offline(memcg); 3679 3680 page_counter_set_min(&memcg->memory, 0); 3681 page_counter_set_low(&memcg->memory, 0); 3682 3683 zswap_memcg_offline_cleanup(memcg); 3684 3685 memcg_offline_kmem(memcg); 3686 reparent_shrinker_deferred(memcg); 3687 wb_memcg_offline(memcg); 3688 lru_gen_offline_memcg(memcg); 3689 3690 drain_all_stock(memcg); 3691 3692 mem_cgroup_id_put(memcg); 3693 } 3694 3695 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3696 { 3697 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3698 3699 invalidate_reclaim_iterators(memcg); 3700 lru_gen_release_memcg(memcg); 3701 } 3702 3703 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3704 { 3705 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3706 int __maybe_unused i; 3707 3708 #ifdef CONFIG_CGROUP_WRITEBACK 3709 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3710 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3711 #endif 3712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3713 static_branch_dec(&memcg_sockets_enabled_key); 3714 3715 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3716 static_branch_dec(&memcg_sockets_enabled_key); 3717 3718 if (!cgroup_memory_nobpf) 3719 static_branch_dec(&memcg_bpf_enabled_key); 3720 3721 vmpressure_cleanup(&memcg->vmpressure); 3722 cancel_work_sync(&memcg->high_work); 3723 memcg1_remove_from_trees(memcg); 3724 free_shrinker_info(memcg); 3725 mem_cgroup_free(memcg); 3726 } 3727 3728 /** 3729 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3730 * @css: the target css 3731 * 3732 * Reset the states of the mem_cgroup associated with @css. This is 3733 * invoked when the userland requests disabling on the default hierarchy 3734 * but the memcg is pinned through dependency. The memcg should stop 3735 * applying policies and should revert to the vanilla state as it may be 3736 * made visible again. 3737 * 3738 * The current implementation only resets the essential configurations. 3739 * This needs to be expanded to cover all the visible parts. 3740 */ 3741 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3742 { 3743 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3744 3745 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3746 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3747 #ifdef CONFIG_MEMCG_V1 3748 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3749 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3750 #endif 3751 page_counter_set_min(&memcg->memory, 0); 3752 page_counter_set_low(&memcg->memory, 0); 3753 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3754 memcg1_soft_limit_reset(memcg); 3755 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3756 memcg_wb_domain_size_changed(memcg); 3757 } 3758 3759 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3760 { 3761 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3762 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3763 struct memcg_vmstats_percpu *statc; 3764 long delta, delta_cpu, v; 3765 int i, nid; 3766 3767 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3768 3769 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 3770 /* 3771 * Collect the aggregated propagation counts of groups 3772 * below us. We're in a per-cpu loop here and this is 3773 * a global counter, so the first cycle will get them. 3774 */ 3775 delta = memcg->vmstats->state_pending[i]; 3776 if (delta) 3777 memcg->vmstats->state_pending[i] = 0; 3778 3779 /* Add CPU changes on this level since the last flush */ 3780 delta_cpu = 0; 3781 v = READ_ONCE(statc->state[i]); 3782 if (v != statc->state_prev[i]) { 3783 delta_cpu = v - statc->state_prev[i]; 3784 delta += delta_cpu; 3785 statc->state_prev[i] = v; 3786 } 3787 3788 /* Aggregate counts on this level and propagate upwards */ 3789 if (delta_cpu) 3790 memcg->vmstats->state_local[i] += delta_cpu; 3791 3792 if (delta) { 3793 memcg->vmstats->state[i] += delta; 3794 if (parent) 3795 parent->vmstats->state_pending[i] += delta; 3796 } 3797 } 3798 3799 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 3800 delta = memcg->vmstats->events_pending[i]; 3801 if (delta) 3802 memcg->vmstats->events_pending[i] = 0; 3803 3804 delta_cpu = 0; 3805 v = READ_ONCE(statc->events[i]); 3806 if (v != statc->events_prev[i]) { 3807 delta_cpu = v - statc->events_prev[i]; 3808 delta += delta_cpu; 3809 statc->events_prev[i] = v; 3810 } 3811 3812 if (delta_cpu) 3813 memcg->vmstats->events_local[i] += delta_cpu; 3814 3815 if (delta) { 3816 memcg->vmstats->events[i] += delta; 3817 if (parent) 3818 parent->vmstats->events_pending[i] += delta; 3819 } 3820 } 3821 3822 for_each_node_state(nid, N_MEMORY) { 3823 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3824 struct lruvec_stats *lstats = pn->lruvec_stats; 3825 struct lruvec_stats *plstats = NULL; 3826 struct lruvec_stats_percpu *lstatc; 3827 3828 if (parent) 3829 plstats = parent->nodeinfo[nid]->lruvec_stats; 3830 3831 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3832 3833 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 3834 delta = lstats->state_pending[i]; 3835 if (delta) 3836 lstats->state_pending[i] = 0; 3837 3838 delta_cpu = 0; 3839 v = READ_ONCE(lstatc->state[i]); 3840 if (v != lstatc->state_prev[i]) { 3841 delta_cpu = v - lstatc->state_prev[i]; 3842 delta += delta_cpu; 3843 lstatc->state_prev[i] = v; 3844 } 3845 3846 if (delta_cpu) 3847 lstats->state_local[i] += delta_cpu; 3848 3849 if (delta) { 3850 lstats->state[i] += delta; 3851 if (plstats) 3852 plstats->state_pending[i] += delta; 3853 } 3854 } 3855 } 3856 WRITE_ONCE(statc->stats_updates, 0); 3857 /* We are in a per-cpu loop here, only do the atomic write once */ 3858 if (atomic64_read(&memcg->vmstats->stats_updates)) 3859 atomic64_set(&memcg->vmstats->stats_updates, 0); 3860 } 3861 3862 static void mem_cgroup_fork(struct task_struct *task) 3863 { 3864 /* 3865 * Set the update flag to cause task->objcg to be initialized lazily 3866 * on the first allocation. It can be done without any synchronization 3867 * because it's always performed on the current task, so does 3868 * current_objcg_update(). 3869 */ 3870 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3871 } 3872 3873 static void mem_cgroup_exit(struct task_struct *task) 3874 { 3875 struct obj_cgroup *objcg = task->objcg; 3876 3877 objcg = (struct obj_cgroup *) 3878 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3879 obj_cgroup_put(objcg); 3880 3881 /* 3882 * Some kernel allocations can happen after this point, 3883 * but let's ignore them. It can be done without any synchronization 3884 * because it's always performed on the current task, so does 3885 * current_objcg_update(). 3886 */ 3887 task->objcg = NULL; 3888 } 3889 3890 #ifdef CONFIG_LRU_GEN 3891 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3892 { 3893 struct task_struct *task; 3894 struct cgroup_subsys_state *css; 3895 3896 /* find the first leader if there is any */ 3897 cgroup_taskset_for_each_leader(task, css, tset) 3898 break; 3899 3900 if (!task) 3901 return; 3902 3903 task_lock(task); 3904 if (task->mm && READ_ONCE(task->mm->owner) == task) 3905 lru_gen_migrate_mm(task->mm); 3906 task_unlock(task); 3907 } 3908 #else 3909 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3910 #endif /* CONFIG_LRU_GEN */ 3911 3912 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3913 { 3914 struct task_struct *task; 3915 struct cgroup_subsys_state *css; 3916 3917 cgroup_taskset_for_each(task, css, tset) { 3918 /* atomically set the update bit */ 3919 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3920 } 3921 } 3922 3923 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3924 { 3925 mem_cgroup_lru_gen_attach(tset); 3926 mem_cgroup_kmem_attach(tset); 3927 } 3928 3929 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3930 { 3931 if (value == PAGE_COUNTER_MAX) 3932 seq_puts(m, "max\n"); 3933 else 3934 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3935 3936 return 0; 3937 } 3938 3939 static u64 memory_current_read(struct cgroup_subsys_state *css, 3940 struct cftype *cft) 3941 { 3942 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3943 3944 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3945 } 3946 3947 static u64 memory_peak_read(struct cgroup_subsys_state *css, 3948 struct cftype *cft) 3949 { 3950 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3951 3952 return (u64)memcg->memory.watermark * PAGE_SIZE; 3953 } 3954 3955 static int memory_min_show(struct seq_file *m, void *v) 3956 { 3957 return seq_puts_memcg_tunable(m, 3958 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 3959 } 3960 3961 static ssize_t memory_min_write(struct kernfs_open_file *of, 3962 char *buf, size_t nbytes, loff_t off) 3963 { 3964 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3965 unsigned long min; 3966 int err; 3967 3968 buf = strstrip(buf); 3969 err = page_counter_memparse(buf, "max", &min); 3970 if (err) 3971 return err; 3972 3973 page_counter_set_min(&memcg->memory, min); 3974 3975 return nbytes; 3976 } 3977 3978 static int memory_low_show(struct seq_file *m, void *v) 3979 { 3980 return seq_puts_memcg_tunable(m, 3981 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 3982 } 3983 3984 static ssize_t memory_low_write(struct kernfs_open_file *of, 3985 char *buf, size_t nbytes, loff_t off) 3986 { 3987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3988 unsigned long low; 3989 int err; 3990 3991 buf = strstrip(buf); 3992 err = page_counter_memparse(buf, "max", &low); 3993 if (err) 3994 return err; 3995 3996 page_counter_set_low(&memcg->memory, low); 3997 3998 return nbytes; 3999 } 4000 4001 static int memory_high_show(struct seq_file *m, void *v) 4002 { 4003 return seq_puts_memcg_tunable(m, 4004 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4005 } 4006 4007 static ssize_t memory_high_write(struct kernfs_open_file *of, 4008 char *buf, size_t nbytes, loff_t off) 4009 { 4010 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4011 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4012 bool drained = false; 4013 unsigned long high; 4014 int err; 4015 4016 buf = strstrip(buf); 4017 err = page_counter_memparse(buf, "max", &high); 4018 if (err) 4019 return err; 4020 4021 page_counter_set_high(&memcg->memory, high); 4022 4023 for (;;) { 4024 unsigned long nr_pages = page_counter_read(&memcg->memory); 4025 unsigned long reclaimed; 4026 4027 if (nr_pages <= high) 4028 break; 4029 4030 if (signal_pending(current)) 4031 break; 4032 4033 if (!drained) { 4034 drain_all_stock(memcg); 4035 drained = true; 4036 continue; 4037 } 4038 4039 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4040 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4041 4042 if (!reclaimed && !nr_retries--) 4043 break; 4044 } 4045 4046 memcg_wb_domain_size_changed(memcg); 4047 return nbytes; 4048 } 4049 4050 static int memory_max_show(struct seq_file *m, void *v) 4051 { 4052 return seq_puts_memcg_tunable(m, 4053 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4054 } 4055 4056 static ssize_t memory_max_write(struct kernfs_open_file *of, 4057 char *buf, size_t nbytes, loff_t off) 4058 { 4059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4060 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4061 bool drained = false; 4062 unsigned long max; 4063 int err; 4064 4065 buf = strstrip(buf); 4066 err = page_counter_memparse(buf, "max", &max); 4067 if (err) 4068 return err; 4069 4070 xchg(&memcg->memory.max, max); 4071 4072 for (;;) { 4073 unsigned long nr_pages = page_counter_read(&memcg->memory); 4074 4075 if (nr_pages <= max) 4076 break; 4077 4078 if (signal_pending(current)) 4079 break; 4080 4081 if (!drained) { 4082 drain_all_stock(memcg); 4083 drained = true; 4084 continue; 4085 } 4086 4087 if (nr_reclaims) { 4088 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4089 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4090 nr_reclaims--; 4091 continue; 4092 } 4093 4094 memcg_memory_event(memcg, MEMCG_OOM); 4095 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4096 break; 4097 } 4098 4099 memcg_wb_domain_size_changed(memcg); 4100 return nbytes; 4101 } 4102 4103 /* 4104 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4105 * if any new events become available. 4106 */ 4107 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4108 { 4109 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4110 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4111 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4112 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4113 seq_printf(m, "oom_kill %lu\n", 4114 atomic_long_read(&events[MEMCG_OOM_KILL])); 4115 seq_printf(m, "oom_group_kill %lu\n", 4116 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4117 } 4118 4119 static int memory_events_show(struct seq_file *m, void *v) 4120 { 4121 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4122 4123 __memory_events_show(m, memcg->memory_events); 4124 return 0; 4125 } 4126 4127 static int memory_events_local_show(struct seq_file *m, void *v) 4128 { 4129 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4130 4131 __memory_events_show(m, memcg->memory_events_local); 4132 return 0; 4133 } 4134 4135 int memory_stat_show(struct seq_file *m, void *v) 4136 { 4137 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4138 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4139 struct seq_buf s; 4140 4141 if (!buf) 4142 return -ENOMEM; 4143 seq_buf_init(&s, buf, PAGE_SIZE); 4144 memory_stat_format(memcg, &s); 4145 seq_puts(m, buf); 4146 kfree(buf); 4147 return 0; 4148 } 4149 4150 #ifdef CONFIG_NUMA 4151 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4152 int item) 4153 { 4154 return lruvec_page_state(lruvec, item) * 4155 memcg_page_state_output_unit(item); 4156 } 4157 4158 static int memory_numa_stat_show(struct seq_file *m, void *v) 4159 { 4160 int i; 4161 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4162 4163 mem_cgroup_flush_stats(memcg); 4164 4165 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4166 int nid; 4167 4168 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4169 continue; 4170 4171 seq_printf(m, "%s", memory_stats[i].name); 4172 for_each_node_state(nid, N_MEMORY) { 4173 u64 size; 4174 struct lruvec *lruvec; 4175 4176 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4177 size = lruvec_page_state_output(lruvec, 4178 memory_stats[i].idx); 4179 seq_printf(m, " N%d=%llu", nid, size); 4180 } 4181 seq_putc(m, '\n'); 4182 } 4183 4184 return 0; 4185 } 4186 #endif 4187 4188 static int memory_oom_group_show(struct seq_file *m, void *v) 4189 { 4190 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4191 4192 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4193 4194 return 0; 4195 } 4196 4197 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4198 char *buf, size_t nbytes, loff_t off) 4199 { 4200 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4201 int ret, oom_group; 4202 4203 buf = strstrip(buf); 4204 if (!buf) 4205 return -EINVAL; 4206 4207 ret = kstrtoint(buf, 0, &oom_group); 4208 if (ret) 4209 return ret; 4210 4211 if (oom_group != 0 && oom_group != 1) 4212 return -EINVAL; 4213 4214 WRITE_ONCE(memcg->oom_group, oom_group); 4215 4216 return nbytes; 4217 } 4218 4219 enum { 4220 MEMORY_RECLAIM_SWAPPINESS = 0, 4221 MEMORY_RECLAIM_NULL, 4222 }; 4223 4224 static const match_table_t tokens = { 4225 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4226 { MEMORY_RECLAIM_NULL, NULL }, 4227 }; 4228 4229 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4230 size_t nbytes, loff_t off) 4231 { 4232 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4233 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4234 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4235 int swappiness = -1; 4236 unsigned int reclaim_options; 4237 char *old_buf, *start; 4238 substring_t args[MAX_OPT_ARGS]; 4239 4240 buf = strstrip(buf); 4241 4242 old_buf = buf; 4243 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4244 if (buf == old_buf) 4245 return -EINVAL; 4246 4247 buf = strstrip(buf); 4248 4249 while ((start = strsep(&buf, " ")) != NULL) { 4250 if (!strlen(start)) 4251 continue; 4252 switch (match_token(start, tokens, args)) { 4253 case MEMORY_RECLAIM_SWAPPINESS: 4254 if (match_int(&args[0], &swappiness)) 4255 return -EINVAL; 4256 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4257 return -EINVAL; 4258 break; 4259 default: 4260 return -EINVAL; 4261 } 4262 } 4263 4264 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4265 while (nr_reclaimed < nr_to_reclaim) { 4266 /* Will converge on zero, but reclaim enforces a minimum */ 4267 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4268 unsigned long reclaimed; 4269 4270 if (signal_pending(current)) 4271 return -EINTR; 4272 4273 /* 4274 * This is the final attempt, drain percpu lru caches in the 4275 * hope of introducing more evictable pages for 4276 * try_to_free_mem_cgroup_pages(). 4277 */ 4278 if (!nr_retries) 4279 lru_add_drain_all(); 4280 4281 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4282 batch_size, GFP_KERNEL, 4283 reclaim_options, 4284 swappiness == -1 ? NULL : &swappiness); 4285 4286 if (!reclaimed && !nr_retries--) 4287 return -EAGAIN; 4288 4289 nr_reclaimed += reclaimed; 4290 } 4291 4292 return nbytes; 4293 } 4294 4295 static struct cftype memory_files[] = { 4296 { 4297 .name = "current", 4298 .flags = CFTYPE_NOT_ON_ROOT, 4299 .read_u64 = memory_current_read, 4300 }, 4301 { 4302 .name = "peak", 4303 .flags = CFTYPE_NOT_ON_ROOT, 4304 .read_u64 = memory_peak_read, 4305 }, 4306 { 4307 .name = "min", 4308 .flags = CFTYPE_NOT_ON_ROOT, 4309 .seq_show = memory_min_show, 4310 .write = memory_min_write, 4311 }, 4312 { 4313 .name = "low", 4314 .flags = CFTYPE_NOT_ON_ROOT, 4315 .seq_show = memory_low_show, 4316 .write = memory_low_write, 4317 }, 4318 { 4319 .name = "high", 4320 .flags = CFTYPE_NOT_ON_ROOT, 4321 .seq_show = memory_high_show, 4322 .write = memory_high_write, 4323 }, 4324 { 4325 .name = "max", 4326 .flags = CFTYPE_NOT_ON_ROOT, 4327 .seq_show = memory_max_show, 4328 .write = memory_max_write, 4329 }, 4330 { 4331 .name = "events", 4332 .flags = CFTYPE_NOT_ON_ROOT, 4333 .file_offset = offsetof(struct mem_cgroup, events_file), 4334 .seq_show = memory_events_show, 4335 }, 4336 { 4337 .name = "events.local", 4338 .flags = CFTYPE_NOT_ON_ROOT, 4339 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4340 .seq_show = memory_events_local_show, 4341 }, 4342 { 4343 .name = "stat", 4344 .seq_show = memory_stat_show, 4345 }, 4346 #ifdef CONFIG_NUMA 4347 { 4348 .name = "numa_stat", 4349 .seq_show = memory_numa_stat_show, 4350 }, 4351 #endif 4352 { 4353 .name = "oom.group", 4354 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4355 .seq_show = memory_oom_group_show, 4356 .write = memory_oom_group_write, 4357 }, 4358 { 4359 .name = "reclaim", 4360 .flags = CFTYPE_NS_DELEGATABLE, 4361 .write = memory_reclaim, 4362 }, 4363 { } /* terminate */ 4364 }; 4365 4366 struct cgroup_subsys memory_cgrp_subsys = { 4367 .css_alloc = mem_cgroup_css_alloc, 4368 .css_online = mem_cgroup_css_online, 4369 .css_offline = mem_cgroup_css_offline, 4370 .css_released = mem_cgroup_css_released, 4371 .css_free = mem_cgroup_css_free, 4372 .css_reset = mem_cgroup_css_reset, 4373 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4374 .attach = mem_cgroup_attach, 4375 .fork = mem_cgroup_fork, 4376 .exit = mem_cgroup_exit, 4377 .dfl_cftypes = memory_files, 4378 #ifdef CONFIG_MEMCG_V1 4379 .can_attach = memcg1_can_attach, 4380 .cancel_attach = memcg1_cancel_attach, 4381 .post_attach = memcg1_move_task, 4382 .legacy_cftypes = mem_cgroup_legacy_files, 4383 #endif 4384 .early_init = 0, 4385 }; 4386 4387 /** 4388 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4389 * @root: the top ancestor of the sub-tree being checked 4390 * @memcg: the memory cgroup to check 4391 * 4392 * WARNING: This function is not stateless! It can only be used as part 4393 * of a top-down tree iteration, not for isolated queries. 4394 */ 4395 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4396 struct mem_cgroup *memcg) 4397 { 4398 bool recursive_protection = 4399 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4400 4401 if (mem_cgroup_disabled()) 4402 return; 4403 4404 if (!root) 4405 root = root_mem_cgroup; 4406 4407 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4408 } 4409 4410 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4411 gfp_t gfp) 4412 { 4413 int ret; 4414 4415 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4416 if (ret) 4417 goto out; 4418 4419 mem_cgroup_commit_charge(folio, memcg); 4420 out: 4421 return ret; 4422 } 4423 4424 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4425 { 4426 struct mem_cgroup *memcg; 4427 int ret; 4428 4429 memcg = get_mem_cgroup_from_mm(mm); 4430 ret = charge_memcg(folio, memcg, gfp); 4431 css_put(&memcg->css); 4432 4433 return ret; 4434 } 4435 4436 /** 4437 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 4438 * @memcg: memcg to charge. 4439 * @gfp: reclaim mode. 4440 * @nr_pages: number of pages to charge. 4441 * 4442 * This function is called when allocating a huge page folio to determine if 4443 * the memcg has the capacity for it. It does not commit the charge yet, 4444 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 4445 * 4446 * Once we have obtained the hugetlb folio, we can call 4447 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 4448 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 4449 * of try_charge(). 4450 * 4451 * Returns 0 on success. Otherwise, an error code is returned. 4452 */ 4453 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 4454 long nr_pages) 4455 { 4456 /* 4457 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 4458 * but do not attempt to commit charge later (or cancel on error) either. 4459 */ 4460 if (mem_cgroup_disabled() || !memcg || 4461 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 4462 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 4463 return -EOPNOTSUPP; 4464 4465 if (try_charge(memcg, gfp, nr_pages)) 4466 return -ENOMEM; 4467 4468 return 0; 4469 } 4470 4471 /** 4472 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4473 * @folio: folio to charge. 4474 * @mm: mm context of the victim 4475 * @gfp: reclaim mode 4476 * @entry: swap entry for which the folio is allocated 4477 * 4478 * This function charges a folio allocated for swapin. Please call this before 4479 * adding the folio to the swapcache. 4480 * 4481 * Returns 0 on success. Otherwise, an error code is returned. 4482 */ 4483 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4484 gfp_t gfp, swp_entry_t entry) 4485 { 4486 struct mem_cgroup *memcg; 4487 unsigned short id; 4488 int ret; 4489 4490 if (mem_cgroup_disabled()) 4491 return 0; 4492 4493 id = lookup_swap_cgroup_id(entry); 4494 rcu_read_lock(); 4495 memcg = mem_cgroup_from_id(id); 4496 if (!memcg || !css_tryget_online(&memcg->css)) 4497 memcg = get_mem_cgroup_from_mm(mm); 4498 rcu_read_unlock(); 4499 4500 ret = charge_memcg(folio, memcg, gfp); 4501 4502 css_put(&memcg->css); 4503 return ret; 4504 } 4505 4506 /* 4507 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4508 * @entry: swap entry for which the page is charged 4509 * 4510 * Call this function after successfully adding the charged page to swapcache. 4511 * 4512 * Note: This function assumes the page for which swap slot is being uncharged 4513 * is order 0 page. 4514 */ 4515 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 4516 { 4517 /* 4518 * Cgroup1's unified memory+swap counter has been charged with the 4519 * new swapcache page, finish the transfer by uncharging the swap 4520 * slot. The swap slot would also get uncharged when it dies, but 4521 * it can stick around indefinitely and we'd count the page twice 4522 * the entire time. 4523 * 4524 * Cgroup2 has separate resource counters for memory and swap, 4525 * so this is a non-issue here. Memory and swap charge lifetimes 4526 * correspond 1:1 to page and swap slot lifetimes: we charge the 4527 * page to memory here, and uncharge swap when the slot is freed. 4528 */ 4529 if (!mem_cgroup_disabled() && do_memsw_account()) { 4530 /* 4531 * The swap entry might not get freed for a long time, 4532 * let's not wait for it. The page already received a 4533 * memory+swap charge, drop the swap entry duplicate. 4534 */ 4535 mem_cgroup_uncharge_swap(entry, 1); 4536 } 4537 } 4538 4539 struct uncharge_gather { 4540 struct mem_cgroup *memcg; 4541 unsigned long nr_memory; 4542 unsigned long pgpgout; 4543 unsigned long nr_kmem; 4544 int nid; 4545 }; 4546 4547 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4548 { 4549 memset(ug, 0, sizeof(*ug)); 4550 } 4551 4552 static void uncharge_batch(const struct uncharge_gather *ug) 4553 { 4554 unsigned long flags; 4555 4556 if (ug->nr_memory) { 4557 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4558 if (do_memsw_account()) 4559 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4560 if (ug->nr_kmem) { 4561 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4562 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4563 } 4564 memcg1_oom_recover(ug->memcg); 4565 } 4566 4567 local_irq_save(flags); 4568 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 4569 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 4570 memcg1_check_events(ug->memcg, ug->nid); 4571 local_irq_restore(flags); 4572 4573 /* drop reference from uncharge_folio */ 4574 css_put(&ug->memcg->css); 4575 } 4576 4577 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4578 { 4579 long nr_pages; 4580 struct mem_cgroup *memcg; 4581 struct obj_cgroup *objcg; 4582 4583 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4584 VM_BUG_ON_FOLIO(folio_order(folio) > 1 && 4585 !folio_test_hugetlb(folio) && 4586 !list_empty(&folio->_deferred_list), folio); 4587 4588 /* 4589 * Nobody should be changing or seriously looking at 4590 * folio memcg or objcg at this point, we have fully 4591 * exclusive access to the folio. 4592 */ 4593 if (folio_memcg_kmem(folio)) { 4594 objcg = __folio_objcg(folio); 4595 /* 4596 * This get matches the put at the end of the function and 4597 * kmem pages do not hold memcg references anymore. 4598 */ 4599 memcg = get_mem_cgroup_from_objcg(objcg); 4600 } else { 4601 memcg = __folio_memcg(folio); 4602 } 4603 4604 if (!memcg) 4605 return; 4606 4607 if (ug->memcg != memcg) { 4608 if (ug->memcg) { 4609 uncharge_batch(ug); 4610 uncharge_gather_clear(ug); 4611 } 4612 ug->memcg = memcg; 4613 ug->nid = folio_nid(folio); 4614 4615 /* pairs with css_put in uncharge_batch */ 4616 css_get(&memcg->css); 4617 } 4618 4619 nr_pages = folio_nr_pages(folio); 4620 4621 if (folio_memcg_kmem(folio)) { 4622 ug->nr_memory += nr_pages; 4623 ug->nr_kmem += nr_pages; 4624 4625 folio->memcg_data = 0; 4626 obj_cgroup_put(objcg); 4627 } else { 4628 /* LRU pages aren't accounted at the root level */ 4629 if (!mem_cgroup_is_root(memcg)) 4630 ug->nr_memory += nr_pages; 4631 ug->pgpgout++; 4632 4633 folio->memcg_data = 0; 4634 } 4635 4636 css_put(&memcg->css); 4637 } 4638 4639 void __mem_cgroup_uncharge(struct folio *folio) 4640 { 4641 struct uncharge_gather ug; 4642 4643 /* Don't touch folio->lru of any random page, pre-check: */ 4644 if (!folio_memcg(folio)) 4645 return; 4646 4647 uncharge_gather_clear(&ug); 4648 uncharge_folio(folio, &ug); 4649 uncharge_batch(&ug); 4650 } 4651 4652 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4653 { 4654 struct uncharge_gather ug; 4655 unsigned int i; 4656 4657 uncharge_gather_clear(&ug); 4658 for (i = 0; i < folios->nr; i++) 4659 uncharge_folio(folios->folios[i], &ug); 4660 if (ug.memcg) 4661 uncharge_batch(&ug); 4662 } 4663 4664 /** 4665 * mem_cgroup_replace_folio - Charge a folio's replacement. 4666 * @old: Currently circulating folio. 4667 * @new: Replacement folio. 4668 * 4669 * Charge @new as a replacement folio for @old. @old will 4670 * be uncharged upon free. 4671 * 4672 * Both folios must be locked, @new->mapping must be set up. 4673 */ 4674 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4675 { 4676 struct mem_cgroup *memcg; 4677 long nr_pages = folio_nr_pages(new); 4678 unsigned long flags; 4679 4680 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4681 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4682 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4683 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4684 4685 if (mem_cgroup_disabled()) 4686 return; 4687 4688 /* Page cache replacement: new folio already charged? */ 4689 if (folio_memcg(new)) 4690 return; 4691 4692 memcg = folio_memcg(old); 4693 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4694 if (!memcg) 4695 return; 4696 4697 /* Force-charge the new page. The old one will be freed soon */ 4698 if (!mem_cgroup_is_root(memcg)) { 4699 page_counter_charge(&memcg->memory, nr_pages); 4700 if (do_memsw_account()) 4701 page_counter_charge(&memcg->memsw, nr_pages); 4702 } 4703 4704 css_get(&memcg->css); 4705 commit_charge(new, memcg); 4706 4707 local_irq_save(flags); 4708 mem_cgroup_charge_statistics(memcg, nr_pages); 4709 memcg1_check_events(memcg, folio_nid(new)); 4710 local_irq_restore(flags); 4711 } 4712 4713 /** 4714 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4715 * @old: Currently circulating folio. 4716 * @new: Replacement folio. 4717 * 4718 * Transfer the memcg data from the old folio to the new folio for migration. 4719 * The old folio's data info will be cleared. Note that the memory counters 4720 * will remain unchanged throughout the process. 4721 * 4722 * Both folios must be locked, @new->mapping must be set up. 4723 */ 4724 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4725 { 4726 struct mem_cgroup *memcg; 4727 4728 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4729 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4730 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4731 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4732 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4733 4734 if (mem_cgroup_disabled()) 4735 return; 4736 4737 memcg = folio_memcg(old); 4738 /* 4739 * Note that it is normal to see !memcg for a hugetlb folio. 4740 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4741 * was not selected. 4742 */ 4743 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4744 if (!memcg) 4745 return; 4746 4747 /* Transfer the charge and the css ref */ 4748 commit_charge(new, memcg); 4749 old->memcg_data = 0; 4750 } 4751 4752 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4753 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4754 4755 void mem_cgroup_sk_alloc(struct sock *sk) 4756 { 4757 struct mem_cgroup *memcg; 4758 4759 if (!mem_cgroup_sockets_enabled) 4760 return; 4761 4762 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4763 if (!in_task()) 4764 return; 4765 4766 rcu_read_lock(); 4767 memcg = mem_cgroup_from_task(current); 4768 if (mem_cgroup_is_root(memcg)) 4769 goto out; 4770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4771 goto out; 4772 if (css_tryget(&memcg->css)) 4773 sk->sk_memcg = memcg; 4774 out: 4775 rcu_read_unlock(); 4776 } 4777 4778 void mem_cgroup_sk_free(struct sock *sk) 4779 { 4780 if (sk->sk_memcg) 4781 css_put(&sk->sk_memcg->css); 4782 } 4783 4784 /** 4785 * mem_cgroup_charge_skmem - charge socket memory 4786 * @memcg: memcg to charge 4787 * @nr_pages: number of pages to charge 4788 * @gfp_mask: reclaim mode 4789 * 4790 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4791 * @memcg's configured limit, %false if it doesn't. 4792 */ 4793 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4794 gfp_t gfp_mask) 4795 { 4796 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4797 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4798 4799 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4800 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4801 return true; 4802 } 4803 4804 return false; 4805 } 4806 4807 /** 4808 * mem_cgroup_uncharge_skmem - uncharge socket memory 4809 * @memcg: memcg to uncharge 4810 * @nr_pages: number of pages to uncharge 4811 */ 4812 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4813 { 4814 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4815 memcg1_uncharge_skmem(memcg, nr_pages); 4816 return; 4817 } 4818 4819 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4820 4821 refill_stock(memcg, nr_pages); 4822 } 4823 4824 static int __init cgroup_memory(char *s) 4825 { 4826 char *token; 4827 4828 while ((token = strsep(&s, ",")) != NULL) { 4829 if (!*token) 4830 continue; 4831 if (!strcmp(token, "nosocket")) 4832 cgroup_memory_nosocket = true; 4833 if (!strcmp(token, "nokmem")) 4834 cgroup_memory_nokmem = true; 4835 if (!strcmp(token, "nobpf")) 4836 cgroup_memory_nobpf = true; 4837 } 4838 return 1; 4839 } 4840 __setup("cgroup.memory=", cgroup_memory); 4841 4842 /* 4843 * subsys_initcall() for memory controller. 4844 * 4845 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4846 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4847 * basically everything that doesn't depend on a specific mem_cgroup structure 4848 * should be initialized from here. 4849 */ 4850 static int __init mem_cgroup_init(void) 4851 { 4852 int cpu; 4853 4854 /* 4855 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4856 * used for per-memcg-per-cpu caching of per-node statistics. In order 4857 * to work fine, we should make sure that the overfill threshold can't 4858 * exceed S32_MAX / PAGE_SIZE. 4859 */ 4860 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4861 4862 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4863 memcg_hotplug_cpu_dead); 4864 4865 for_each_possible_cpu(cpu) 4866 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4867 drain_local_stock); 4868 4869 return 0; 4870 } 4871 subsys_initcall(mem_cgroup_init); 4872 4873 #ifdef CONFIG_SWAP 4874 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4875 { 4876 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4877 /* 4878 * The root cgroup cannot be destroyed, so it's refcount must 4879 * always be >= 1. 4880 */ 4881 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4882 VM_BUG_ON(1); 4883 break; 4884 } 4885 memcg = parent_mem_cgroup(memcg); 4886 if (!memcg) 4887 memcg = root_mem_cgroup; 4888 } 4889 return memcg; 4890 } 4891 4892 /** 4893 * mem_cgroup_swapout - transfer a memsw charge to swap 4894 * @folio: folio whose memsw charge to transfer 4895 * @entry: swap entry to move the charge to 4896 * 4897 * Transfer the memsw charge of @folio to @entry. 4898 */ 4899 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4900 { 4901 struct mem_cgroup *memcg, *swap_memcg; 4902 unsigned int nr_entries; 4903 unsigned short oldid; 4904 4905 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4906 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4907 4908 if (mem_cgroup_disabled()) 4909 return; 4910 4911 if (!do_memsw_account()) 4912 return; 4913 4914 memcg = folio_memcg(folio); 4915 4916 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4917 if (!memcg) 4918 return; 4919 4920 /* 4921 * In case the memcg owning these pages has been offlined and doesn't 4922 * have an ID allocated to it anymore, charge the closest online 4923 * ancestor for the swap instead and transfer the memory+swap charge. 4924 */ 4925 swap_memcg = mem_cgroup_id_get_online(memcg); 4926 nr_entries = folio_nr_pages(folio); 4927 /* Get references for the tail pages, too */ 4928 if (nr_entries > 1) 4929 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 4930 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 4931 nr_entries); 4932 VM_BUG_ON_FOLIO(oldid, folio); 4933 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 4934 4935 folio->memcg_data = 0; 4936 4937 if (!mem_cgroup_is_root(memcg)) 4938 page_counter_uncharge(&memcg->memory, nr_entries); 4939 4940 if (memcg != swap_memcg) { 4941 if (!mem_cgroup_is_root(swap_memcg)) 4942 page_counter_charge(&swap_memcg->memsw, nr_entries); 4943 page_counter_uncharge(&memcg->memsw, nr_entries); 4944 } 4945 4946 /* 4947 * Interrupts should be disabled here because the caller holds the 4948 * i_pages lock which is taken with interrupts-off. It is 4949 * important here to have the interrupts disabled because it is the 4950 * only synchronisation we have for updating the per-CPU variables. 4951 */ 4952 memcg_stats_lock(); 4953 mem_cgroup_charge_statistics(memcg, -nr_entries); 4954 memcg_stats_unlock(); 4955 memcg1_check_events(memcg, folio_nid(folio)); 4956 4957 css_put(&memcg->css); 4958 } 4959 4960 /** 4961 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 4962 * @folio: folio being added to swap 4963 * @entry: swap entry to charge 4964 * 4965 * Try to charge @folio's memcg for the swap space at @entry. 4966 * 4967 * Returns 0 on success, -ENOMEM on failure. 4968 */ 4969 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 4970 { 4971 unsigned int nr_pages = folio_nr_pages(folio); 4972 struct page_counter *counter; 4973 struct mem_cgroup *memcg; 4974 unsigned short oldid; 4975 4976 if (do_memsw_account()) 4977 return 0; 4978 4979 memcg = folio_memcg(folio); 4980 4981 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4982 if (!memcg) 4983 return 0; 4984 4985 if (!entry.val) { 4986 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 4987 return 0; 4988 } 4989 4990 memcg = mem_cgroup_id_get_online(memcg); 4991 4992 if (!mem_cgroup_is_root(memcg) && 4993 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 4994 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 4995 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 4996 mem_cgroup_id_put(memcg); 4997 return -ENOMEM; 4998 } 4999 5000 /* Get references for the tail pages, too */ 5001 if (nr_pages > 1) 5002 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5003 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 5004 VM_BUG_ON_FOLIO(oldid, folio); 5005 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5006 5007 return 0; 5008 } 5009 5010 /** 5011 * __mem_cgroup_uncharge_swap - uncharge swap space 5012 * @entry: swap entry to uncharge 5013 * @nr_pages: the amount of swap space to uncharge 5014 */ 5015 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5016 { 5017 struct mem_cgroup *memcg; 5018 unsigned short id; 5019 5020 id = swap_cgroup_record(entry, 0, nr_pages); 5021 rcu_read_lock(); 5022 memcg = mem_cgroup_from_id(id); 5023 if (memcg) { 5024 if (!mem_cgroup_is_root(memcg)) { 5025 if (do_memsw_account()) 5026 page_counter_uncharge(&memcg->memsw, nr_pages); 5027 else 5028 page_counter_uncharge(&memcg->swap, nr_pages); 5029 } 5030 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5031 mem_cgroup_id_put_many(memcg, nr_pages); 5032 } 5033 rcu_read_unlock(); 5034 } 5035 5036 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5037 { 5038 long nr_swap_pages = get_nr_swap_pages(); 5039 5040 if (mem_cgroup_disabled() || do_memsw_account()) 5041 return nr_swap_pages; 5042 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5043 nr_swap_pages = min_t(long, nr_swap_pages, 5044 READ_ONCE(memcg->swap.max) - 5045 page_counter_read(&memcg->swap)); 5046 return nr_swap_pages; 5047 } 5048 5049 bool mem_cgroup_swap_full(struct folio *folio) 5050 { 5051 struct mem_cgroup *memcg; 5052 5053 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5054 5055 if (vm_swap_full()) 5056 return true; 5057 if (do_memsw_account()) 5058 return false; 5059 5060 memcg = folio_memcg(folio); 5061 if (!memcg) 5062 return false; 5063 5064 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5065 unsigned long usage = page_counter_read(&memcg->swap); 5066 5067 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5068 usage * 2 >= READ_ONCE(memcg->swap.max)) 5069 return true; 5070 } 5071 5072 return false; 5073 } 5074 5075 static int __init setup_swap_account(char *s) 5076 { 5077 bool res; 5078 5079 if (!kstrtobool(s, &res) && !res) 5080 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5081 "in favor of configuring swap control via cgroupfs. " 5082 "Please report your usecase to linux-mm@kvack.org if you " 5083 "depend on this functionality.\n"); 5084 return 1; 5085 } 5086 __setup("swapaccount=", setup_swap_account); 5087 5088 static u64 swap_current_read(struct cgroup_subsys_state *css, 5089 struct cftype *cft) 5090 { 5091 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5092 5093 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5094 } 5095 5096 static u64 swap_peak_read(struct cgroup_subsys_state *css, 5097 struct cftype *cft) 5098 { 5099 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5100 5101 return (u64)memcg->swap.watermark * PAGE_SIZE; 5102 } 5103 5104 static int swap_high_show(struct seq_file *m, void *v) 5105 { 5106 return seq_puts_memcg_tunable(m, 5107 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5108 } 5109 5110 static ssize_t swap_high_write(struct kernfs_open_file *of, 5111 char *buf, size_t nbytes, loff_t off) 5112 { 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5114 unsigned long high; 5115 int err; 5116 5117 buf = strstrip(buf); 5118 err = page_counter_memparse(buf, "max", &high); 5119 if (err) 5120 return err; 5121 5122 page_counter_set_high(&memcg->swap, high); 5123 5124 return nbytes; 5125 } 5126 5127 static int swap_max_show(struct seq_file *m, void *v) 5128 { 5129 return seq_puts_memcg_tunable(m, 5130 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5131 } 5132 5133 static ssize_t swap_max_write(struct kernfs_open_file *of, 5134 char *buf, size_t nbytes, loff_t off) 5135 { 5136 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5137 unsigned long max; 5138 int err; 5139 5140 buf = strstrip(buf); 5141 err = page_counter_memparse(buf, "max", &max); 5142 if (err) 5143 return err; 5144 5145 xchg(&memcg->swap.max, max); 5146 5147 return nbytes; 5148 } 5149 5150 static int swap_events_show(struct seq_file *m, void *v) 5151 { 5152 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5153 5154 seq_printf(m, "high %lu\n", 5155 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5156 seq_printf(m, "max %lu\n", 5157 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5158 seq_printf(m, "fail %lu\n", 5159 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5160 5161 return 0; 5162 } 5163 5164 static struct cftype swap_files[] = { 5165 { 5166 .name = "swap.current", 5167 .flags = CFTYPE_NOT_ON_ROOT, 5168 .read_u64 = swap_current_read, 5169 }, 5170 { 5171 .name = "swap.high", 5172 .flags = CFTYPE_NOT_ON_ROOT, 5173 .seq_show = swap_high_show, 5174 .write = swap_high_write, 5175 }, 5176 { 5177 .name = "swap.max", 5178 .flags = CFTYPE_NOT_ON_ROOT, 5179 .seq_show = swap_max_show, 5180 .write = swap_max_write, 5181 }, 5182 { 5183 .name = "swap.peak", 5184 .flags = CFTYPE_NOT_ON_ROOT, 5185 .read_u64 = swap_peak_read, 5186 }, 5187 { 5188 .name = "swap.events", 5189 .flags = CFTYPE_NOT_ON_ROOT, 5190 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5191 .seq_show = swap_events_show, 5192 }, 5193 { } /* terminate */ 5194 }; 5195 5196 #ifdef CONFIG_ZSWAP 5197 /** 5198 * obj_cgroup_may_zswap - check if this cgroup can zswap 5199 * @objcg: the object cgroup 5200 * 5201 * Check if the hierarchical zswap limit has been reached. 5202 * 5203 * This doesn't check for specific headroom, and it is not atomic 5204 * either. But with zswap, the size of the allocation is only known 5205 * once compression has occurred, and this optimistic pre-check avoids 5206 * spending cycles on compression when there is already no room left 5207 * or zswap is disabled altogether somewhere in the hierarchy. 5208 */ 5209 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5210 { 5211 struct mem_cgroup *memcg, *original_memcg; 5212 bool ret = true; 5213 5214 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5215 return true; 5216 5217 original_memcg = get_mem_cgroup_from_objcg(objcg); 5218 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5219 memcg = parent_mem_cgroup(memcg)) { 5220 unsigned long max = READ_ONCE(memcg->zswap_max); 5221 unsigned long pages; 5222 5223 if (max == PAGE_COUNTER_MAX) 5224 continue; 5225 if (max == 0) { 5226 ret = false; 5227 break; 5228 } 5229 5230 /* 5231 * mem_cgroup_flush_stats() ignores small changes. Use 5232 * do_flush_stats() directly to get accurate stats for charging. 5233 */ 5234 do_flush_stats(memcg); 5235 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5236 if (pages < max) 5237 continue; 5238 ret = false; 5239 break; 5240 } 5241 mem_cgroup_put(original_memcg); 5242 return ret; 5243 } 5244 5245 /** 5246 * obj_cgroup_charge_zswap - charge compression backend memory 5247 * @objcg: the object cgroup 5248 * @size: size of compressed object 5249 * 5250 * This forces the charge after obj_cgroup_may_zswap() allowed 5251 * compression and storage in zwap for this cgroup to go ahead. 5252 */ 5253 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5254 { 5255 struct mem_cgroup *memcg; 5256 5257 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5258 return; 5259 5260 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5261 5262 /* PF_MEMALLOC context, charging must succeed */ 5263 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5264 VM_WARN_ON_ONCE(1); 5265 5266 rcu_read_lock(); 5267 memcg = obj_cgroup_memcg(objcg); 5268 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5269 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5270 rcu_read_unlock(); 5271 } 5272 5273 /** 5274 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5275 * @objcg: the object cgroup 5276 * @size: size of compressed object 5277 * 5278 * Uncharges zswap memory on page in. 5279 */ 5280 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5281 { 5282 struct mem_cgroup *memcg; 5283 5284 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5285 return; 5286 5287 obj_cgroup_uncharge(objcg, size); 5288 5289 rcu_read_lock(); 5290 memcg = obj_cgroup_memcg(objcg); 5291 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5292 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5293 rcu_read_unlock(); 5294 } 5295 5296 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5297 { 5298 /* if zswap is disabled, do not block pages going to the swapping device */ 5299 return !zswap_is_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 5300 } 5301 5302 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5303 struct cftype *cft) 5304 { 5305 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5306 5307 mem_cgroup_flush_stats(memcg); 5308 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5309 } 5310 5311 static int zswap_max_show(struct seq_file *m, void *v) 5312 { 5313 return seq_puts_memcg_tunable(m, 5314 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5315 } 5316 5317 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5318 char *buf, size_t nbytes, loff_t off) 5319 { 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5321 unsigned long max; 5322 int err; 5323 5324 buf = strstrip(buf); 5325 err = page_counter_memparse(buf, "max", &max); 5326 if (err) 5327 return err; 5328 5329 xchg(&memcg->zswap_max, max); 5330 5331 return nbytes; 5332 } 5333 5334 static int zswap_writeback_show(struct seq_file *m, void *v) 5335 { 5336 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5337 5338 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5339 return 0; 5340 } 5341 5342 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5343 char *buf, size_t nbytes, loff_t off) 5344 { 5345 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5346 int zswap_writeback; 5347 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5348 5349 if (parse_ret) 5350 return parse_ret; 5351 5352 if (zswap_writeback != 0 && zswap_writeback != 1) 5353 return -EINVAL; 5354 5355 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5356 return nbytes; 5357 } 5358 5359 static struct cftype zswap_files[] = { 5360 { 5361 .name = "zswap.current", 5362 .flags = CFTYPE_NOT_ON_ROOT, 5363 .read_u64 = zswap_current_read, 5364 }, 5365 { 5366 .name = "zswap.max", 5367 .flags = CFTYPE_NOT_ON_ROOT, 5368 .seq_show = zswap_max_show, 5369 .write = zswap_max_write, 5370 }, 5371 { 5372 .name = "zswap.writeback", 5373 .seq_show = zswap_writeback_show, 5374 .write = zswap_writeback_write, 5375 }, 5376 { } /* terminate */ 5377 }; 5378 #endif /* CONFIG_ZSWAP */ 5379 5380 static int __init mem_cgroup_swap_init(void) 5381 { 5382 if (mem_cgroup_disabled()) 5383 return 0; 5384 5385 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5386 #ifdef CONFIG_MEMCG_V1 5387 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5388 #endif 5389 #ifdef CONFIG_ZSWAP 5390 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5391 #endif 5392 return 0; 5393 } 5394 subsys_initcall(mem_cgroup_swap_init); 5395 5396 #endif /* CONFIG_SWAP */ 5397