xref: /linux/mm/memcontrol.c (revision d850acf975bee46e43c3cd80d2d287010195c63b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62 #include "slab.h"
63 
64 #include <asm/uaccess.h>
65 
66 #include <trace/events/vmscan.h>
67 
68 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
69 EXPORT_SYMBOL(mem_cgroup_subsys);
70 
71 #define MEM_CGROUP_RECLAIM_RETRIES	5
72 static struct mem_cgroup *root_mem_cgroup __read_mostly;
73 
74 #ifdef CONFIG_MEMCG_SWAP
75 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
76 int do_swap_account __read_mostly;
77 
78 /* for remember boot option*/
79 #ifdef CONFIG_MEMCG_SWAP_ENABLED
80 static int really_do_swap_account __initdata = 1;
81 #else
82 static int really_do_swap_account __initdata = 0;
83 #endif
84 
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 
90 static const char * const mem_cgroup_stat_names[] = {
91 	"cache",
92 	"rss",
93 	"rss_huge",
94 	"mapped_file",
95 	"writeback",
96 	"swap",
97 };
98 
99 enum mem_cgroup_events_index {
100 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
101 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
102 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
103 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
104 	MEM_CGROUP_EVENTS_NSTATS,
105 };
106 
107 static const char * const mem_cgroup_events_names[] = {
108 	"pgpgin",
109 	"pgpgout",
110 	"pgfault",
111 	"pgmajfault",
112 };
113 
114 static const char * const mem_cgroup_lru_names[] = {
115 	"inactive_anon",
116 	"active_anon",
117 	"inactive_file",
118 	"active_file",
119 	"unevictable",
120 };
121 
122 /*
123  * Per memcg event counter is incremented at every pagein/pageout. With THP,
124  * it will be incremated by the number of pages. This counter is used for
125  * for trigger some periodic events. This is straightforward and better
126  * than using jiffies etc. to handle periodic memcg event.
127  */
128 enum mem_cgroup_events_target {
129 	MEM_CGROUP_TARGET_THRESH,
130 	MEM_CGROUP_TARGET_SOFTLIMIT,
131 	MEM_CGROUP_TARGET_NUMAINFO,
132 	MEM_CGROUP_NTARGETS,
133 };
134 #define THRESHOLDS_EVENTS_TARGET 128
135 #define SOFTLIMIT_EVENTS_TARGET 1024
136 #define NUMAINFO_EVENTS_TARGET	1024
137 
138 struct mem_cgroup_stat_cpu {
139 	long count[MEM_CGROUP_STAT_NSTATS];
140 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
141 	unsigned long nr_page_events;
142 	unsigned long targets[MEM_CGROUP_NTARGETS];
143 };
144 
145 struct mem_cgroup_reclaim_iter {
146 	/*
147 	 * last scanned hierarchy member. Valid only if last_dead_count
148 	 * matches memcg->dead_count of the hierarchy root group.
149 	 */
150 	struct mem_cgroup *last_visited;
151 	unsigned long last_dead_count;
152 
153 	/* scan generation, increased every round-trip */
154 	unsigned int generation;
155 };
156 
157 /*
158  * per-zone information in memory controller.
159  */
160 struct mem_cgroup_per_zone {
161 	struct lruvec		lruvec;
162 	unsigned long		lru_size[NR_LRU_LISTS];
163 
164 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
165 
166 	struct rb_node		tree_node;	/* RB tree node */
167 	unsigned long long	usage_in_excess;/* Set to the value by which */
168 						/* the soft limit is exceeded*/
169 	bool			on_tree;
170 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
171 						/* use container_of	   */
172 };
173 
174 struct mem_cgroup_per_node {
175 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
176 };
177 
178 /*
179  * Cgroups above their limits are maintained in a RB-Tree, independent of
180  * their hierarchy representation
181  */
182 
183 struct mem_cgroup_tree_per_zone {
184 	struct rb_root rb_root;
185 	spinlock_t lock;
186 };
187 
188 struct mem_cgroup_tree_per_node {
189 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190 };
191 
192 struct mem_cgroup_tree {
193 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194 };
195 
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197 
198 struct mem_cgroup_threshold {
199 	struct eventfd_ctx *eventfd;
200 	u64 threshold;
201 };
202 
203 /* For threshold */
204 struct mem_cgroup_threshold_ary {
205 	/* An array index points to threshold just below or equal to usage. */
206 	int current_threshold;
207 	/* Size of entries[] */
208 	unsigned int size;
209 	/* Array of thresholds */
210 	struct mem_cgroup_threshold entries[0];
211 };
212 
213 struct mem_cgroup_thresholds {
214 	/* Primary thresholds array */
215 	struct mem_cgroup_threshold_ary *primary;
216 	/*
217 	 * Spare threshold array.
218 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 	 * It must be able to store at least primary->size - 1 entries.
220 	 */
221 	struct mem_cgroup_threshold_ary *spare;
222 };
223 
224 /* for OOM */
225 struct mem_cgroup_eventfd_list {
226 	struct list_head list;
227 	struct eventfd_ctx *eventfd;
228 };
229 
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232 
233 /*
234  * The memory controller data structure. The memory controller controls both
235  * page cache and RSS per cgroup. We would eventually like to provide
236  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237  * to help the administrator determine what knobs to tune.
238  *
239  * TODO: Add a water mark for the memory controller. Reclaim will begin when
240  * we hit the water mark. May be even add a low water mark, such that
241  * no reclaim occurs from a cgroup at it's low water mark, this is
242  * a feature that will be implemented much later in the future.
243  */
244 struct mem_cgroup {
245 	struct cgroup_subsys_state css;
246 	/*
247 	 * the counter to account for memory usage
248 	 */
249 	struct res_counter res;
250 
251 	/* vmpressure notifications */
252 	struct vmpressure vmpressure;
253 
254 	/*
255 	 * the counter to account for mem+swap usage.
256 	 */
257 	struct res_counter memsw;
258 
259 	/*
260 	 * the counter to account for kernel memory usage.
261 	 */
262 	struct res_counter kmem;
263 	/*
264 	 * Should the accounting and control be hierarchical, per subtree?
265 	 */
266 	bool use_hierarchy;
267 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
268 
269 	bool		oom_lock;
270 	atomic_t	under_oom;
271 	atomic_t	oom_wakeups;
272 
273 	int	swappiness;
274 	/* OOM-Killer disable */
275 	int		oom_kill_disable;
276 
277 	/* set when res.limit == memsw.limit */
278 	bool		memsw_is_minimum;
279 
280 	/* protect arrays of thresholds */
281 	struct mutex thresholds_lock;
282 
283 	/* thresholds for memory usage. RCU-protected */
284 	struct mem_cgroup_thresholds thresholds;
285 
286 	/* thresholds for mem+swap usage. RCU-protected */
287 	struct mem_cgroup_thresholds memsw_thresholds;
288 
289 	/* For oom notifier event fd */
290 	struct list_head oom_notify;
291 
292 	/*
293 	 * Should we move charges of a task when a task is moved into this
294 	 * mem_cgroup ? And what type of charges should we move ?
295 	 */
296 	unsigned long move_charge_at_immigrate;
297 	/*
298 	 * set > 0 if pages under this cgroup are moving to other cgroup.
299 	 */
300 	atomic_t	moving_account;
301 	/* taken only while moving_account > 0 */
302 	spinlock_t	move_lock;
303 	/*
304 	 * percpu counter.
305 	 */
306 	struct mem_cgroup_stat_cpu __percpu *stat;
307 	/*
308 	 * used when a cpu is offlined or other synchronizations
309 	 * See mem_cgroup_read_stat().
310 	 */
311 	struct mem_cgroup_stat_cpu nocpu_base;
312 	spinlock_t pcp_counter_lock;
313 
314 	atomic_t	dead_count;
315 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
316 	struct cg_proto tcp_mem;
317 #endif
318 #if defined(CONFIG_MEMCG_KMEM)
319 	/* analogous to slab_common's slab_caches list. per-memcg */
320 	struct list_head memcg_slab_caches;
321 	/* Not a spinlock, we can take a lot of time walking the list */
322 	struct mutex slab_caches_mutex;
323         /* Index in the kmem_cache->memcg_params->memcg_caches array */
324 	int kmemcg_id;
325 #endif
326 
327 	int last_scanned_node;
328 #if MAX_NUMNODES > 1
329 	nodemask_t	scan_nodes;
330 	atomic_t	numainfo_events;
331 	atomic_t	numainfo_updating;
332 #endif
333 
334 	struct mem_cgroup_per_node *nodeinfo[0];
335 	/* WARNING: nodeinfo must be the last member here */
336 };
337 
338 static size_t memcg_size(void)
339 {
340 	return sizeof(struct mem_cgroup) +
341 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
342 }
343 
344 /* internal only representation about the status of kmem accounting. */
345 enum {
346 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
347 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
348 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
349 };
350 
351 /* We account when limit is on, but only after call sites are patched */
352 #define KMEM_ACCOUNTED_MASK \
353 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
354 
355 #ifdef CONFIG_MEMCG_KMEM
356 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
357 {
358 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
359 }
360 
361 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
362 {
363 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
364 }
365 
366 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
367 {
368 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
369 }
370 
371 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
372 {
373 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
374 }
375 
376 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
377 {
378 	/*
379 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
380 	 * will call css_put() if it sees the memcg is dead.
381 	 */
382 	smp_wmb();
383 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
384 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
385 }
386 
387 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
388 {
389 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
390 				  &memcg->kmem_account_flags);
391 }
392 #endif
393 
394 /* Stuffs for move charges at task migration. */
395 /*
396  * Types of charges to be moved. "move_charge_at_immitgrate" and
397  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
398  */
399 enum move_type {
400 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
401 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
402 	NR_MOVE_TYPE,
403 };
404 
405 /* "mc" and its members are protected by cgroup_mutex */
406 static struct move_charge_struct {
407 	spinlock_t	  lock; /* for from, to */
408 	struct mem_cgroup *from;
409 	struct mem_cgroup *to;
410 	unsigned long immigrate_flags;
411 	unsigned long precharge;
412 	unsigned long moved_charge;
413 	unsigned long moved_swap;
414 	struct task_struct *moving_task;	/* a task moving charges */
415 	wait_queue_head_t waitq;		/* a waitq for other context */
416 } mc = {
417 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
418 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
419 };
420 
421 static bool move_anon(void)
422 {
423 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
424 }
425 
426 static bool move_file(void)
427 {
428 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
429 }
430 
431 /*
432  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
433  * limit reclaim to prevent infinite loops, if they ever occur.
434  */
435 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
436 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
437 
438 enum charge_type {
439 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
440 	MEM_CGROUP_CHARGE_TYPE_ANON,
441 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
442 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
443 	NR_CHARGE_TYPE,
444 };
445 
446 /* for encoding cft->private value on file */
447 enum res_type {
448 	_MEM,
449 	_MEMSWAP,
450 	_OOM_TYPE,
451 	_KMEM,
452 };
453 
454 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
455 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
456 #define MEMFILE_ATTR(val)	((val) & 0xffff)
457 /* Used for OOM nofiier */
458 #define OOM_CONTROL		(0)
459 
460 /*
461  * Reclaim flags for mem_cgroup_hierarchical_reclaim
462  */
463 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
464 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
465 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
466 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
467 
468 /*
469  * The memcg_create_mutex will be held whenever a new cgroup is created.
470  * As a consequence, any change that needs to protect against new child cgroups
471  * appearing has to hold it as well.
472  */
473 static DEFINE_MUTEX(memcg_create_mutex);
474 
475 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
476 {
477 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
478 }
479 
480 /* Some nice accessors for the vmpressure. */
481 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
482 {
483 	if (!memcg)
484 		memcg = root_mem_cgroup;
485 	return &memcg->vmpressure;
486 }
487 
488 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
489 {
490 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
491 }
492 
493 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
494 {
495 	return &mem_cgroup_from_css(css)->vmpressure;
496 }
497 
498 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
499 {
500 	return (memcg == root_mem_cgroup);
501 }
502 
503 /*
504  * We restrict the id in the range of [1, 65535], so it can fit into
505  * an unsigned short.
506  */
507 #define MEM_CGROUP_ID_MAX	USHRT_MAX
508 
509 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
510 {
511 	/*
512 	 * The ID of the root cgroup is 0, but memcg treat 0 as an
513 	 * invalid ID, so we return (cgroup_id + 1).
514 	 */
515 	return memcg->css.cgroup->id + 1;
516 }
517 
518 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
519 {
520 	struct cgroup_subsys_state *css;
521 
522 	css = css_from_id(id - 1, &mem_cgroup_subsys);
523 	return mem_cgroup_from_css(css);
524 }
525 
526 /* Writing them here to avoid exposing memcg's inner layout */
527 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
528 
529 void sock_update_memcg(struct sock *sk)
530 {
531 	if (mem_cgroup_sockets_enabled) {
532 		struct mem_cgroup *memcg;
533 		struct cg_proto *cg_proto;
534 
535 		BUG_ON(!sk->sk_prot->proto_cgroup);
536 
537 		/* Socket cloning can throw us here with sk_cgrp already
538 		 * filled. It won't however, necessarily happen from
539 		 * process context. So the test for root memcg given
540 		 * the current task's memcg won't help us in this case.
541 		 *
542 		 * Respecting the original socket's memcg is a better
543 		 * decision in this case.
544 		 */
545 		if (sk->sk_cgrp) {
546 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
547 			css_get(&sk->sk_cgrp->memcg->css);
548 			return;
549 		}
550 
551 		rcu_read_lock();
552 		memcg = mem_cgroup_from_task(current);
553 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
554 		if (!mem_cgroup_is_root(memcg) &&
555 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
556 			sk->sk_cgrp = cg_proto;
557 		}
558 		rcu_read_unlock();
559 	}
560 }
561 EXPORT_SYMBOL(sock_update_memcg);
562 
563 void sock_release_memcg(struct sock *sk)
564 {
565 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
566 		struct mem_cgroup *memcg;
567 		WARN_ON(!sk->sk_cgrp->memcg);
568 		memcg = sk->sk_cgrp->memcg;
569 		css_put(&sk->sk_cgrp->memcg->css);
570 	}
571 }
572 
573 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
574 {
575 	if (!memcg || mem_cgroup_is_root(memcg))
576 		return NULL;
577 
578 	return &memcg->tcp_mem;
579 }
580 EXPORT_SYMBOL(tcp_proto_cgroup);
581 
582 static void disarm_sock_keys(struct mem_cgroup *memcg)
583 {
584 	if (!memcg_proto_activated(&memcg->tcp_mem))
585 		return;
586 	static_key_slow_dec(&memcg_socket_limit_enabled);
587 }
588 #else
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 }
592 #endif
593 
594 #ifdef CONFIG_MEMCG_KMEM
595 /*
596  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
597  * The main reason for not using cgroup id for this:
598  *  this works better in sparse environments, where we have a lot of memcgs,
599  *  but only a few kmem-limited. Or also, if we have, for instance, 200
600  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
601  *  200 entry array for that.
602  *
603  * The current size of the caches array is stored in
604  * memcg_limited_groups_array_size.  It will double each time we have to
605  * increase it.
606  */
607 static DEFINE_IDA(kmem_limited_groups);
608 int memcg_limited_groups_array_size;
609 
610 /*
611  * MIN_SIZE is different than 1, because we would like to avoid going through
612  * the alloc/free process all the time. In a small machine, 4 kmem-limited
613  * cgroups is a reasonable guess. In the future, it could be a parameter or
614  * tunable, but that is strictly not necessary.
615  *
616  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
617  * this constant directly from cgroup, but it is understandable that this is
618  * better kept as an internal representation in cgroup.c. In any case, the
619  * cgrp_id space is not getting any smaller, and we don't have to necessarily
620  * increase ours as well if it increases.
621  */
622 #define MEMCG_CACHES_MIN_SIZE 4
623 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
624 
625 /*
626  * A lot of the calls to the cache allocation functions are expected to be
627  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
628  * conditional to this static branch, we'll have to allow modules that does
629  * kmem_cache_alloc and the such to see this symbol as well
630  */
631 struct static_key memcg_kmem_enabled_key;
632 EXPORT_SYMBOL(memcg_kmem_enabled_key);
633 
634 static void disarm_kmem_keys(struct mem_cgroup *memcg)
635 {
636 	if (memcg_kmem_is_active(memcg)) {
637 		static_key_slow_dec(&memcg_kmem_enabled_key);
638 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
639 	}
640 	/*
641 	 * This check can't live in kmem destruction function,
642 	 * since the charges will outlive the cgroup
643 	 */
644 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
645 }
646 #else
647 static void disarm_kmem_keys(struct mem_cgroup *memcg)
648 {
649 }
650 #endif /* CONFIG_MEMCG_KMEM */
651 
652 static void disarm_static_keys(struct mem_cgroup *memcg)
653 {
654 	disarm_sock_keys(memcg);
655 	disarm_kmem_keys(memcg);
656 }
657 
658 static void drain_all_stock_async(struct mem_cgroup *memcg);
659 
660 static struct mem_cgroup_per_zone *
661 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
662 {
663 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
664 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
665 }
666 
667 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
668 {
669 	return &memcg->css;
670 }
671 
672 static struct mem_cgroup_per_zone *
673 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
674 {
675 	int nid = page_to_nid(page);
676 	int zid = page_zonenum(page);
677 
678 	return mem_cgroup_zoneinfo(memcg, nid, zid);
679 }
680 
681 static struct mem_cgroup_tree_per_zone *
682 soft_limit_tree_node_zone(int nid, int zid)
683 {
684 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
685 }
686 
687 static struct mem_cgroup_tree_per_zone *
688 soft_limit_tree_from_page(struct page *page)
689 {
690 	int nid = page_to_nid(page);
691 	int zid = page_zonenum(page);
692 
693 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
694 }
695 
696 static void
697 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
698 				struct mem_cgroup_per_zone *mz,
699 				struct mem_cgroup_tree_per_zone *mctz,
700 				unsigned long long new_usage_in_excess)
701 {
702 	struct rb_node **p = &mctz->rb_root.rb_node;
703 	struct rb_node *parent = NULL;
704 	struct mem_cgroup_per_zone *mz_node;
705 
706 	if (mz->on_tree)
707 		return;
708 
709 	mz->usage_in_excess = new_usage_in_excess;
710 	if (!mz->usage_in_excess)
711 		return;
712 	while (*p) {
713 		parent = *p;
714 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
715 					tree_node);
716 		if (mz->usage_in_excess < mz_node->usage_in_excess)
717 			p = &(*p)->rb_left;
718 		/*
719 		 * We can't avoid mem cgroups that are over their soft
720 		 * limit by the same amount
721 		 */
722 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
723 			p = &(*p)->rb_right;
724 	}
725 	rb_link_node(&mz->tree_node, parent, p);
726 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
727 	mz->on_tree = true;
728 }
729 
730 static void
731 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
732 				struct mem_cgroup_per_zone *mz,
733 				struct mem_cgroup_tree_per_zone *mctz)
734 {
735 	if (!mz->on_tree)
736 		return;
737 	rb_erase(&mz->tree_node, &mctz->rb_root);
738 	mz->on_tree = false;
739 }
740 
741 static void
742 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
743 				struct mem_cgroup_per_zone *mz,
744 				struct mem_cgroup_tree_per_zone *mctz)
745 {
746 	spin_lock(&mctz->lock);
747 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
748 	spin_unlock(&mctz->lock);
749 }
750 
751 
752 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
753 {
754 	unsigned long long excess;
755 	struct mem_cgroup_per_zone *mz;
756 	struct mem_cgroup_tree_per_zone *mctz;
757 	int nid = page_to_nid(page);
758 	int zid = page_zonenum(page);
759 	mctz = soft_limit_tree_from_page(page);
760 
761 	/*
762 	 * Necessary to update all ancestors when hierarchy is used.
763 	 * because their event counter is not touched.
764 	 */
765 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
766 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
767 		excess = res_counter_soft_limit_excess(&memcg->res);
768 		/*
769 		 * We have to update the tree if mz is on RB-tree or
770 		 * mem is over its softlimit.
771 		 */
772 		if (excess || mz->on_tree) {
773 			spin_lock(&mctz->lock);
774 			/* if on-tree, remove it */
775 			if (mz->on_tree)
776 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
777 			/*
778 			 * Insert again. mz->usage_in_excess will be updated.
779 			 * If excess is 0, no tree ops.
780 			 */
781 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
782 			spin_unlock(&mctz->lock);
783 		}
784 	}
785 }
786 
787 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
788 {
789 	int node, zone;
790 	struct mem_cgroup_per_zone *mz;
791 	struct mem_cgroup_tree_per_zone *mctz;
792 
793 	for_each_node(node) {
794 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
795 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
796 			mctz = soft_limit_tree_node_zone(node, zone);
797 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
798 		}
799 	}
800 }
801 
802 static struct mem_cgroup_per_zone *
803 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804 {
805 	struct rb_node *rightmost = NULL;
806 	struct mem_cgroup_per_zone *mz;
807 
808 retry:
809 	mz = NULL;
810 	rightmost = rb_last(&mctz->rb_root);
811 	if (!rightmost)
812 		goto done;		/* Nothing to reclaim from */
813 
814 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
815 	/*
816 	 * Remove the node now but someone else can add it back,
817 	 * we will to add it back at the end of reclaim to its correct
818 	 * position in the tree.
819 	 */
820 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
821 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
822 		!css_tryget(&mz->memcg->css))
823 		goto retry;
824 done:
825 	return mz;
826 }
827 
828 static struct mem_cgroup_per_zone *
829 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
830 {
831 	struct mem_cgroup_per_zone *mz;
832 
833 	spin_lock(&mctz->lock);
834 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
835 	spin_unlock(&mctz->lock);
836 	return mz;
837 }
838 
839 /*
840  * Implementation Note: reading percpu statistics for memcg.
841  *
842  * Both of vmstat[] and percpu_counter has threshold and do periodic
843  * synchronization to implement "quick" read. There are trade-off between
844  * reading cost and precision of value. Then, we may have a chance to implement
845  * a periodic synchronizion of counter in memcg's counter.
846  *
847  * But this _read() function is used for user interface now. The user accounts
848  * memory usage by memory cgroup and he _always_ requires exact value because
849  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
850  * have to visit all online cpus and make sum. So, for now, unnecessary
851  * synchronization is not implemented. (just implemented for cpu hotplug)
852  *
853  * If there are kernel internal actions which can make use of some not-exact
854  * value, and reading all cpu value can be performance bottleneck in some
855  * common workload, threashold and synchonization as vmstat[] should be
856  * implemented.
857  */
858 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
859 				 enum mem_cgroup_stat_index idx)
860 {
861 	long val = 0;
862 	int cpu;
863 
864 	get_online_cpus();
865 	for_each_online_cpu(cpu)
866 		val += per_cpu(memcg->stat->count[idx], cpu);
867 #ifdef CONFIG_HOTPLUG_CPU
868 	spin_lock(&memcg->pcp_counter_lock);
869 	val += memcg->nocpu_base.count[idx];
870 	spin_unlock(&memcg->pcp_counter_lock);
871 #endif
872 	put_online_cpus();
873 	return val;
874 }
875 
876 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
877 					 bool charge)
878 {
879 	int val = (charge) ? 1 : -1;
880 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
881 }
882 
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 					    enum mem_cgroup_events_index idx)
885 {
886 	unsigned long val = 0;
887 	int cpu;
888 
889 	get_online_cpus();
890 	for_each_online_cpu(cpu)
891 		val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 	spin_lock(&memcg->pcp_counter_lock);
894 	val += memcg->nocpu_base.events[idx];
895 	spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 	put_online_cpus();
898 	return val;
899 }
900 
901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 					 struct page *page,
903 					 bool anon, int nr_pages)
904 {
905 	preempt_disable();
906 
907 	/*
908 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
909 	 * counted as CACHE even if it's on ANON LRU.
910 	 */
911 	if (anon)
912 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
913 				nr_pages);
914 	else
915 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
916 				nr_pages);
917 
918 	if (PageTransHuge(page))
919 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
920 				nr_pages);
921 
922 	/* pagein of a big page is an event. So, ignore page size */
923 	if (nr_pages > 0)
924 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
925 	else {
926 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
927 		nr_pages = -nr_pages; /* for event */
928 	}
929 
930 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
931 
932 	preempt_enable();
933 }
934 
935 unsigned long
936 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
937 {
938 	struct mem_cgroup_per_zone *mz;
939 
940 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
941 	return mz->lru_size[lru];
942 }
943 
944 static unsigned long
945 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
946 			unsigned int lru_mask)
947 {
948 	struct mem_cgroup_per_zone *mz;
949 	enum lru_list lru;
950 	unsigned long ret = 0;
951 
952 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
953 
954 	for_each_lru(lru) {
955 		if (BIT(lru) & lru_mask)
956 			ret += mz->lru_size[lru];
957 	}
958 	return ret;
959 }
960 
961 static unsigned long
962 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
963 			int nid, unsigned int lru_mask)
964 {
965 	u64 total = 0;
966 	int zid;
967 
968 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
969 		total += mem_cgroup_zone_nr_lru_pages(memcg,
970 						nid, zid, lru_mask);
971 
972 	return total;
973 }
974 
975 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
976 			unsigned int lru_mask)
977 {
978 	int nid;
979 	u64 total = 0;
980 
981 	for_each_node_state(nid, N_MEMORY)
982 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
983 	return total;
984 }
985 
986 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
987 				       enum mem_cgroup_events_target target)
988 {
989 	unsigned long val, next;
990 
991 	val = __this_cpu_read(memcg->stat->nr_page_events);
992 	next = __this_cpu_read(memcg->stat->targets[target]);
993 	/* from time_after() in jiffies.h */
994 	if ((long)next - (long)val < 0) {
995 		switch (target) {
996 		case MEM_CGROUP_TARGET_THRESH:
997 			next = val + THRESHOLDS_EVENTS_TARGET;
998 			break;
999 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1000 			next = val + SOFTLIMIT_EVENTS_TARGET;
1001 			break;
1002 		case MEM_CGROUP_TARGET_NUMAINFO:
1003 			next = val + NUMAINFO_EVENTS_TARGET;
1004 			break;
1005 		default:
1006 			break;
1007 		}
1008 		__this_cpu_write(memcg->stat->targets[target], next);
1009 		return true;
1010 	}
1011 	return false;
1012 }
1013 
1014 /*
1015  * Check events in order.
1016  *
1017  */
1018 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1019 {
1020 	preempt_disable();
1021 	/* threshold event is triggered in finer grain than soft limit */
1022 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1023 						MEM_CGROUP_TARGET_THRESH))) {
1024 		bool do_softlimit;
1025 		bool do_numainfo __maybe_unused;
1026 
1027 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1028 						MEM_CGROUP_TARGET_SOFTLIMIT);
1029 #if MAX_NUMNODES > 1
1030 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1031 						MEM_CGROUP_TARGET_NUMAINFO);
1032 #endif
1033 		preempt_enable();
1034 
1035 		mem_cgroup_threshold(memcg);
1036 		if (unlikely(do_softlimit))
1037 			mem_cgroup_update_tree(memcg, page);
1038 #if MAX_NUMNODES > 1
1039 		if (unlikely(do_numainfo))
1040 			atomic_inc(&memcg->numainfo_events);
1041 #endif
1042 	} else
1043 		preempt_enable();
1044 }
1045 
1046 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047 {
1048 	/*
1049 	 * mm_update_next_owner() may clear mm->owner to NULL
1050 	 * if it races with swapoff, page migration, etc.
1051 	 * So this can be called with p == NULL.
1052 	 */
1053 	if (unlikely(!p))
1054 		return NULL;
1055 
1056 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1057 }
1058 
1059 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1060 {
1061 	struct mem_cgroup *memcg = NULL;
1062 
1063 	if (!mm)
1064 		return NULL;
1065 	/*
1066 	 * Because we have no locks, mm->owner's may be being moved to other
1067 	 * cgroup. We use css_tryget() here even if this looks
1068 	 * pessimistic (rather than adding locks here).
1069 	 */
1070 	rcu_read_lock();
1071 	do {
1072 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 		if (unlikely(!memcg))
1074 			break;
1075 	} while (!css_tryget(&memcg->css));
1076 	rcu_read_unlock();
1077 	return memcg;
1078 }
1079 
1080 /*
1081  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1082  * ref. count) or NULL if the whole root's subtree has been visited.
1083  *
1084  * helper function to be used by mem_cgroup_iter
1085  */
1086 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1087 		struct mem_cgroup *last_visited)
1088 {
1089 	struct cgroup_subsys_state *prev_css, *next_css;
1090 
1091 	prev_css = last_visited ? &last_visited->css : NULL;
1092 skip_node:
1093 	next_css = css_next_descendant_pre(prev_css, &root->css);
1094 
1095 	/*
1096 	 * Even if we found a group we have to make sure it is
1097 	 * alive. css && !memcg means that the groups should be
1098 	 * skipped and we should continue the tree walk.
1099 	 * last_visited css is safe to use because it is
1100 	 * protected by css_get and the tree walk is rcu safe.
1101 	 */
1102 	if (next_css) {
1103 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1104 
1105 		if (css_tryget(&mem->css))
1106 			return mem;
1107 		else {
1108 			prev_css = next_css;
1109 			goto skip_node;
1110 		}
1111 	}
1112 
1113 	return NULL;
1114 }
1115 
1116 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1117 {
1118 	/*
1119 	 * When a group in the hierarchy below root is destroyed, the
1120 	 * hierarchy iterator can no longer be trusted since it might
1121 	 * have pointed to the destroyed group.  Invalidate it.
1122 	 */
1123 	atomic_inc(&root->dead_count);
1124 }
1125 
1126 static struct mem_cgroup *
1127 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1128 		     struct mem_cgroup *root,
1129 		     int *sequence)
1130 {
1131 	struct mem_cgroup *position = NULL;
1132 	/*
1133 	 * A cgroup destruction happens in two stages: offlining and
1134 	 * release.  They are separated by a RCU grace period.
1135 	 *
1136 	 * If the iterator is valid, we may still race with an
1137 	 * offlining.  The RCU lock ensures the object won't be
1138 	 * released, tryget will fail if we lost the race.
1139 	 */
1140 	*sequence = atomic_read(&root->dead_count);
1141 	if (iter->last_dead_count == *sequence) {
1142 		smp_rmb();
1143 		position = iter->last_visited;
1144 		if (position && !css_tryget(&position->css))
1145 			position = NULL;
1146 	}
1147 	return position;
1148 }
1149 
1150 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1151 				   struct mem_cgroup *last_visited,
1152 				   struct mem_cgroup *new_position,
1153 				   int sequence)
1154 {
1155 	if (last_visited)
1156 		css_put(&last_visited->css);
1157 	/*
1158 	 * We store the sequence count from the time @last_visited was
1159 	 * loaded successfully instead of rereading it here so that we
1160 	 * don't lose destruction events in between.  We could have
1161 	 * raced with the destruction of @new_position after all.
1162 	 */
1163 	iter->last_visited = new_position;
1164 	smp_wmb();
1165 	iter->last_dead_count = sequence;
1166 }
1167 
1168 /**
1169  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1170  * @root: hierarchy root
1171  * @prev: previously returned memcg, NULL on first invocation
1172  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1173  *
1174  * Returns references to children of the hierarchy below @root, or
1175  * @root itself, or %NULL after a full round-trip.
1176  *
1177  * Caller must pass the return value in @prev on subsequent
1178  * invocations for reference counting, or use mem_cgroup_iter_break()
1179  * to cancel a hierarchy walk before the round-trip is complete.
1180  *
1181  * Reclaimers can specify a zone and a priority level in @reclaim to
1182  * divide up the memcgs in the hierarchy among all concurrent
1183  * reclaimers operating on the same zone and priority.
1184  */
1185 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1186 				   struct mem_cgroup *prev,
1187 				   struct mem_cgroup_reclaim_cookie *reclaim)
1188 {
1189 	struct mem_cgroup *memcg = NULL;
1190 	struct mem_cgroup *last_visited = NULL;
1191 
1192 	if (mem_cgroup_disabled())
1193 		return NULL;
1194 
1195 	if (!root)
1196 		root = root_mem_cgroup;
1197 
1198 	if (prev && !reclaim)
1199 		last_visited = prev;
1200 
1201 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1202 		if (prev)
1203 			goto out_css_put;
1204 		return root;
1205 	}
1206 
1207 	rcu_read_lock();
1208 	while (!memcg) {
1209 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1210 		int uninitialized_var(seq);
1211 
1212 		if (reclaim) {
1213 			int nid = zone_to_nid(reclaim->zone);
1214 			int zid = zone_idx(reclaim->zone);
1215 			struct mem_cgroup_per_zone *mz;
1216 
1217 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1218 			iter = &mz->reclaim_iter[reclaim->priority];
1219 			if (prev && reclaim->generation != iter->generation) {
1220 				iter->last_visited = NULL;
1221 				goto out_unlock;
1222 			}
1223 
1224 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1225 		}
1226 
1227 		memcg = __mem_cgroup_iter_next(root, last_visited);
1228 
1229 		if (reclaim) {
1230 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1231 
1232 			if (!memcg)
1233 				iter->generation++;
1234 			else if (!prev && memcg)
1235 				reclaim->generation = iter->generation;
1236 		}
1237 
1238 		if (prev && !memcg)
1239 			goto out_unlock;
1240 	}
1241 out_unlock:
1242 	rcu_read_unlock();
1243 out_css_put:
1244 	if (prev && prev != root)
1245 		css_put(&prev->css);
1246 
1247 	return memcg;
1248 }
1249 
1250 /**
1251  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1252  * @root: hierarchy root
1253  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1254  */
1255 void mem_cgroup_iter_break(struct mem_cgroup *root,
1256 			   struct mem_cgroup *prev)
1257 {
1258 	if (!root)
1259 		root = root_mem_cgroup;
1260 	if (prev && prev != root)
1261 		css_put(&prev->css);
1262 }
1263 
1264 /*
1265  * Iteration constructs for visiting all cgroups (under a tree).  If
1266  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1267  * be used for reference counting.
1268  */
1269 #define for_each_mem_cgroup_tree(iter, root)		\
1270 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1271 	     iter != NULL;				\
1272 	     iter = mem_cgroup_iter(root, iter, NULL))
1273 
1274 #define for_each_mem_cgroup(iter)			\
1275 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1276 	     iter != NULL;				\
1277 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1278 
1279 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1280 {
1281 	struct mem_cgroup *memcg;
1282 
1283 	rcu_read_lock();
1284 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1285 	if (unlikely(!memcg))
1286 		goto out;
1287 
1288 	switch (idx) {
1289 	case PGFAULT:
1290 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1291 		break;
1292 	case PGMAJFAULT:
1293 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1294 		break;
1295 	default:
1296 		BUG();
1297 	}
1298 out:
1299 	rcu_read_unlock();
1300 }
1301 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1302 
1303 /**
1304  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1305  * @zone: zone of the wanted lruvec
1306  * @memcg: memcg of the wanted lruvec
1307  *
1308  * Returns the lru list vector holding pages for the given @zone and
1309  * @mem.  This can be the global zone lruvec, if the memory controller
1310  * is disabled.
1311  */
1312 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1313 				      struct mem_cgroup *memcg)
1314 {
1315 	struct mem_cgroup_per_zone *mz;
1316 	struct lruvec *lruvec;
1317 
1318 	if (mem_cgroup_disabled()) {
1319 		lruvec = &zone->lruvec;
1320 		goto out;
1321 	}
1322 
1323 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1324 	lruvec = &mz->lruvec;
1325 out:
1326 	/*
1327 	 * Since a node can be onlined after the mem_cgroup was created,
1328 	 * we have to be prepared to initialize lruvec->zone here;
1329 	 * and if offlined then reonlined, we need to reinitialize it.
1330 	 */
1331 	if (unlikely(lruvec->zone != zone))
1332 		lruvec->zone = zone;
1333 	return lruvec;
1334 }
1335 
1336 /*
1337  * Following LRU functions are allowed to be used without PCG_LOCK.
1338  * Operations are called by routine of global LRU independently from memcg.
1339  * What we have to take care of here is validness of pc->mem_cgroup.
1340  *
1341  * Changes to pc->mem_cgroup happens when
1342  * 1. charge
1343  * 2. moving account
1344  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1345  * It is added to LRU before charge.
1346  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1347  * When moving account, the page is not on LRU. It's isolated.
1348  */
1349 
1350 /**
1351  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1352  * @page: the page
1353  * @zone: zone of the page
1354  */
1355 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1356 {
1357 	struct mem_cgroup_per_zone *mz;
1358 	struct mem_cgroup *memcg;
1359 	struct page_cgroup *pc;
1360 	struct lruvec *lruvec;
1361 
1362 	if (mem_cgroup_disabled()) {
1363 		lruvec = &zone->lruvec;
1364 		goto out;
1365 	}
1366 
1367 	pc = lookup_page_cgroup(page);
1368 	memcg = pc->mem_cgroup;
1369 
1370 	/*
1371 	 * Surreptitiously switch any uncharged offlist page to root:
1372 	 * an uncharged page off lru does nothing to secure
1373 	 * its former mem_cgroup from sudden removal.
1374 	 *
1375 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1376 	 * under page_cgroup lock: between them, they make all uses
1377 	 * of pc->mem_cgroup safe.
1378 	 */
1379 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1380 		pc->mem_cgroup = memcg = root_mem_cgroup;
1381 
1382 	mz = page_cgroup_zoneinfo(memcg, page);
1383 	lruvec = &mz->lruvec;
1384 out:
1385 	/*
1386 	 * Since a node can be onlined after the mem_cgroup was created,
1387 	 * we have to be prepared to initialize lruvec->zone here;
1388 	 * and if offlined then reonlined, we need to reinitialize it.
1389 	 */
1390 	if (unlikely(lruvec->zone != zone))
1391 		lruvec->zone = zone;
1392 	return lruvec;
1393 }
1394 
1395 /**
1396  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397  * @lruvec: mem_cgroup per zone lru vector
1398  * @lru: index of lru list the page is sitting on
1399  * @nr_pages: positive when adding or negative when removing
1400  *
1401  * This function must be called when a page is added to or removed from an
1402  * lru list.
1403  */
1404 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1405 				int nr_pages)
1406 {
1407 	struct mem_cgroup_per_zone *mz;
1408 	unsigned long *lru_size;
1409 
1410 	if (mem_cgroup_disabled())
1411 		return;
1412 
1413 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1414 	lru_size = mz->lru_size + lru;
1415 	*lru_size += nr_pages;
1416 	VM_BUG_ON((long)(*lru_size) < 0);
1417 }
1418 
1419 /*
1420  * Checks whether given mem is same or in the root_mem_cgroup's
1421  * hierarchy subtree
1422  */
1423 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1424 				  struct mem_cgroup *memcg)
1425 {
1426 	if (root_memcg == memcg)
1427 		return true;
1428 	if (!root_memcg->use_hierarchy || !memcg)
1429 		return false;
1430 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1431 }
1432 
1433 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1434 				       struct mem_cgroup *memcg)
1435 {
1436 	bool ret;
1437 
1438 	rcu_read_lock();
1439 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1440 	rcu_read_unlock();
1441 	return ret;
1442 }
1443 
1444 bool task_in_mem_cgroup(struct task_struct *task,
1445 			const struct mem_cgroup *memcg)
1446 {
1447 	struct mem_cgroup *curr = NULL;
1448 	struct task_struct *p;
1449 	bool ret;
1450 
1451 	p = find_lock_task_mm(task);
1452 	if (p) {
1453 		curr = try_get_mem_cgroup_from_mm(p->mm);
1454 		task_unlock(p);
1455 	} else {
1456 		/*
1457 		 * All threads may have already detached their mm's, but the oom
1458 		 * killer still needs to detect if they have already been oom
1459 		 * killed to prevent needlessly killing additional tasks.
1460 		 */
1461 		rcu_read_lock();
1462 		curr = mem_cgroup_from_task(task);
1463 		if (curr)
1464 			css_get(&curr->css);
1465 		rcu_read_unlock();
1466 	}
1467 	if (!curr)
1468 		return false;
1469 	/*
1470 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1471 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1472 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1473 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1474 	 */
1475 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1476 	css_put(&curr->css);
1477 	return ret;
1478 }
1479 
1480 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1481 {
1482 	unsigned long inactive_ratio;
1483 	unsigned long inactive;
1484 	unsigned long active;
1485 	unsigned long gb;
1486 
1487 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1488 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1489 
1490 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1491 	if (gb)
1492 		inactive_ratio = int_sqrt(10 * gb);
1493 	else
1494 		inactive_ratio = 1;
1495 
1496 	return inactive * inactive_ratio < active;
1497 }
1498 
1499 #define mem_cgroup_from_res_counter(counter, member)	\
1500 	container_of(counter, struct mem_cgroup, member)
1501 
1502 /**
1503  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1504  * @memcg: the memory cgroup
1505  *
1506  * Returns the maximum amount of memory @mem can be charged with, in
1507  * pages.
1508  */
1509 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1510 {
1511 	unsigned long long margin;
1512 
1513 	margin = res_counter_margin(&memcg->res);
1514 	if (do_swap_account)
1515 		margin = min(margin, res_counter_margin(&memcg->memsw));
1516 	return margin >> PAGE_SHIFT;
1517 }
1518 
1519 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1520 {
1521 	/* root ? */
1522 	if (!css_parent(&memcg->css))
1523 		return vm_swappiness;
1524 
1525 	return memcg->swappiness;
1526 }
1527 
1528 /*
1529  * memcg->moving_account is used for checking possibility that some thread is
1530  * calling move_account(). When a thread on CPU-A starts moving pages under
1531  * a memcg, other threads should check memcg->moving_account under
1532  * rcu_read_lock(), like this:
1533  *
1534  *         CPU-A                                    CPU-B
1535  *                                              rcu_read_lock()
1536  *         memcg->moving_account+1              if (memcg->mocing_account)
1537  *                                                   take heavy locks.
1538  *         synchronize_rcu()                    update something.
1539  *                                              rcu_read_unlock()
1540  *         start move here.
1541  */
1542 
1543 /* for quick checking without looking up memcg */
1544 atomic_t memcg_moving __read_mostly;
1545 
1546 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1547 {
1548 	atomic_inc(&memcg_moving);
1549 	atomic_inc(&memcg->moving_account);
1550 	synchronize_rcu();
1551 }
1552 
1553 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1554 {
1555 	/*
1556 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1557 	 * We check NULL in callee rather than caller.
1558 	 */
1559 	if (memcg) {
1560 		atomic_dec(&memcg_moving);
1561 		atomic_dec(&memcg->moving_account);
1562 	}
1563 }
1564 
1565 /*
1566  * 2 routines for checking "mem" is under move_account() or not.
1567  *
1568  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1569  *			  is used for avoiding races in accounting.  If true,
1570  *			  pc->mem_cgroup may be overwritten.
1571  *
1572  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1573  *			  under hierarchy of moving cgroups. This is for
1574  *			  waiting at hith-memory prressure caused by "move".
1575  */
1576 
1577 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1578 {
1579 	VM_BUG_ON(!rcu_read_lock_held());
1580 	return atomic_read(&memcg->moving_account) > 0;
1581 }
1582 
1583 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1584 {
1585 	struct mem_cgroup *from;
1586 	struct mem_cgroup *to;
1587 	bool ret = false;
1588 	/*
1589 	 * Unlike task_move routines, we access mc.to, mc.from not under
1590 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1591 	 */
1592 	spin_lock(&mc.lock);
1593 	from = mc.from;
1594 	to = mc.to;
1595 	if (!from)
1596 		goto unlock;
1597 
1598 	ret = mem_cgroup_same_or_subtree(memcg, from)
1599 		|| mem_cgroup_same_or_subtree(memcg, to);
1600 unlock:
1601 	spin_unlock(&mc.lock);
1602 	return ret;
1603 }
1604 
1605 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1606 {
1607 	if (mc.moving_task && current != mc.moving_task) {
1608 		if (mem_cgroup_under_move(memcg)) {
1609 			DEFINE_WAIT(wait);
1610 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1611 			/* moving charge context might have finished. */
1612 			if (mc.moving_task)
1613 				schedule();
1614 			finish_wait(&mc.waitq, &wait);
1615 			return true;
1616 		}
1617 	}
1618 	return false;
1619 }
1620 
1621 /*
1622  * Take this lock when
1623  * - a code tries to modify page's memcg while it's USED.
1624  * - a code tries to modify page state accounting in a memcg.
1625  * see mem_cgroup_stolen(), too.
1626  */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 				  unsigned long *flags)
1629 {
1630 	spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632 
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 				unsigned long *flags)
1635 {
1636 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638 
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642  * @memcg: The memory cgroup that went over limit
1643  * @p: Task that is going to be killed
1644  *
1645  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646  * enabled
1647  */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 	struct cgroup *task_cgrp;
1651 	struct cgroup *mem_cgrp;
1652 	/*
1653 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1654 	 * on the assumption that OOM is serialized for memory controller.
1655 	 * If this assumption is broken, revisit this code.
1656 	 */
1657 	static char memcg_name[PATH_MAX];
1658 	int ret;
1659 	struct mem_cgroup *iter;
1660 	unsigned int i;
1661 
1662 	if (!p)
1663 		return;
1664 
1665 	rcu_read_lock();
1666 
1667 	mem_cgrp = memcg->css.cgroup;
1668 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1669 
1670 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1671 	if (ret < 0) {
1672 		/*
1673 		 * Unfortunately, we are unable to convert to a useful name
1674 		 * But we'll still print out the usage information
1675 		 */
1676 		rcu_read_unlock();
1677 		goto done;
1678 	}
1679 	rcu_read_unlock();
1680 
1681 	pr_info("Task in %s killed", memcg_name);
1682 
1683 	rcu_read_lock();
1684 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1685 	if (ret < 0) {
1686 		rcu_read_unlock();
1687 		goto done;
1688 	}
1689 	rcu_read_unlock();
1690 
1691 	/*
1692 	 * Continues from above, so we don't need an KERN_ level
1693 	 */
1694 	pr_cont(" as a result of limit of %s\n", memcg_name);
1695 done:
1696 
1697 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1698 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1699 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1700 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1701 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1702 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1703 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1704 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1705 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1706 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1707 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1708 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1709 
1710 	for_each_mem_cgroup_tree(iter, memcg) {
1711 		pr_info("Memory cgroup stats");
1712 
1713 		rcu_read_lock();
1714 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1715 		if (!ret)
1716 			pr_cont(" for %s", memcg_name);
1717 		rcu_read_unlock();
1718 		pr_cont(":");
1719 
1720 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1721 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1722 				continue;
1723 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1724 				K(mem_cgroup_read_stat(iter, i)));
1725 		}
1726 
1727 		for (i = 0; i < NR_LRU_LISTS; i++)
1728 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1729 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1730 
1731 		pr_cont("\n");
1732 	}
1733 }
1734 
1735 /*
1736  * This function returns the number of memcg under hierarchy tree. Returns
1737  * 1(self count) if no children.
1738  */
1739 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740 {
1741 	int num = 0;
1742 	struct mem_cgroup *iter;
1743 
1744 	for_each_mem_cgroup_tree(iter, memcg)
1745 		num++;
1746 	return num;
1747 }
1748 
1749 /*
1750  * Return the memory (and swap, if configured) limit for a memcg.
1751  */
1752 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1753 {
1754 	u64 limit;
1755 
1756 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757 
1758 	/*
1759 	 * Do not consider swap space if we cannot swap due to swappiness
1760 	 */
1761 	if (mem_cgroup_swappiness(memcg)) {
1762 		u64 memsw;
1763 
1764 		limit += total_swap_pages << PAGE_SHIFT;
1765 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766 
1767 		/*
1768 		 * If memsw is finite and limits the amount of swap space
1769 		 * available to this memcg, return that limit.
1770 		 */
1771 		limit = min(limit, memsw);
1772 	}
1773 
1774 	return limit;
1775 }
1776 
1777 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 				     int order)
1779 {
1780 	struct mem_cgroup *iter;
1781 	unsigned long chosen_points = 0;
1782 	unsigned long totalpages;
1783 	unsigned int points = 0;
1784 	struct task_struct *chosen = NULL;
1785 
1786 	/*
1787 	 * If current has a pending SIGKILL or is exiting, then automatically
1788 	 * select it.  The goal is to allow it to allocate so that it may
1789 	 * quickly exit and free its memory.
1790 	 */
1791 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 		set_thread_flag(TIF_MEMDIE);
1793 		return;
1794 	}
1795 
1796 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 	for_each_mem_cgroup_tree(iter, memcg) {
1799 		struct css_task_iter it;
1800 		struct task_struct *task;
1801 
1802 		css_task_iter_start(&iter->css, &it);
1803 		while ((task = css_task_iter_next(&it))) {
1804 			switch (oom_scan_process_thread(task, totalpages, NULL,
1805 							false)) {
1806 			case OOM_SCAN_SELECT:
1807 				if (chosen)
1808 					put_task_struct(chosen);
1809 				chosen = task;
1810 				chosen_points = ULONG_MAX;
1811 				get_task_struct(chosen);
1812 				/* fall through */
1813 			case OOM_SCAN_CONTINUE:
1814 				continue;
1815 			case OOM_SCAN_ABORT:
1816 				css_task_iter_end(&it);
1817 				mem_cgroup_iter_break(memcg, iter);
1818 				if (chosen)
1819 					put_task_struct(chosen);
1820 				return;
1821 			case OOM_SCAN_OK:
1822 				break;
1823 			};
1824 			points = oom_badness(task, memcg, NULL, totalpages);
1825 			if (points > chosen_points) {
1826 				if (chosen)
1827 					put_task_struct(chosen);
1828 				chosen = task;
1829 				chosen_points = points;
1830 				get_task_struct(chosen);
1831 			}
1832 		}
1833 		css_task_iter_end(&it);
1834 	}
1835 
1836 	if (!chosen)
1837 		return;
1838 	points = chosen_points * 1000 / totalpages;
1839 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1840 			 NULL, "Memory cgroup out of memory");
1841 }
1842 
1843 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1844 					gfp_t gfp_mask,
1845 					unsigned long flags)
1846 {
1847 	unsigned long total = 0;
1848 	bool noswap = false;
1849 	int loop;
1850 
1851 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1852 		noswap = true;
1853 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1854 		noswap = true;
1855 
1856 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1857 		if (loop)
1858 			drain_all_stock_async(memcg);
1859 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1860 		/*
1861 		 * Allow limit shrinkers, which are triggered directly
1862 		 * by userspace, to catch signals and stop reclaim
1863 		 * after minimal progress, regardless of the margin.
1864 		 */
1865 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1866 			break;
1867 		if (mem_cgroup_margin(memcg))
1868 			break;
1869 		/*
1870 		 * If nothing was reclaimed after two attempts, there
1871 		 * may be no reclaimable pages in this hierarchy.
1872 		 */
1873 		if (loop && !total)
1874 			break;
1875 	}
1876 	return total;
1877 }
1878 
1879 /**
1880  * test_mem_cgroup_node_reclaimable
1881  * @memcg: the target memcg
1882  * @nid: the node ID to be checked.
1883  * @noswap : specify true here if the user wants flle only information.
1884  *
1885  * This function returns whether the specified memcg contains any
1886  * reclaimable pages on a node. Returns true if there are any reclaimable
1887  * pages in the node.
1888  */
1889 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1890 		int nid, bool noswap)
1891 {
1892 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1893 		return true;
1894 	if (noswap || !total_swap_pages)
1895 		return false;
1896 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1897 		return true;
1898 	return false;
1899 
1900 }
1901 #if MAX_NUMNODES > 1
1902 
1903 /*
1904  * Always updating the nodemask is not very good - even if we have an empty
1905  * list or the wrong list here, we can start from some node and traverse all
1906  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1907  *
1908  */
1909 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1910 {
1911 	int nid;
1912 	/*
1913 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1914 	 * pagein/pageout changes since the last update.
1915 	 */
1916 	if (!atomic_read(&memcg->numainfo_events))
1917 		return;
1918 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1919 		return;
1920 
1921 	/* make a nodemask where this memcg uses memory from */
1922 	memcg->scan_nodes = node_states[N_MEMORY];
1923 
1924 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1925 
1926 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1927 			node_clear(nid, memcg->scan_nodes);
1928 	}
1929 
1930 	atomic_set(&memcg->numainfo_events, 0);
1931 	atomic_set(&memcg->numainfo_updating, 0);
1932 }
1933 
1934 /*
1935  * Selecting a node where we start reclaim from. Because what we need is just
1936  * reducing usage counter, start from anywhere is O,K. Considering
1937  * memory reclaim from current node, there are pros. and cons.
1938  *
1939  * Freeing memory from current node means freeing memory from a node which
1940  * we'll use or we've used. So, it may make LRU bad. And if several threads
1941  * hit limits, it will see a contention on a node. But freeing from remote
1942  * node means more costs for memory reclaim because of memory latency.
1943  *
1944  * Now, we use round-robin. Better algorithm is welcomed.
1945  */
1946 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1947 {
1948 	int node;
1949 
1950 	mem_cgroup_may_update_nodemask(memcg);
1951 	node = memcg->last_scanned_node;
1952 
1953 	node = next_node(node, memcg->scan_nodes);
1954 	if (node == MAX_NUMNODES)
1955 		node = first_node(memcg->scan_nodes);
1956 	/*
1957 	 * We call this when we hit limit, not when pages are added to LRU.
1958 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1959 	 * memcg is too small and all pages are not on LRU. In that case,
1960 	 * we use curret node.
1961 	 */
1962 	if (unlikely(node == MAX_NUMNODES))
1963 		node = numa_node_id();
1964 
1965 	memcg->last_scanned_node = node;
1966 	return node;
1967 }
1968 
1969 /*
1970  * Check all nodes whether it contains reclaimable pages or not.
1971  * For quick scan, we make use of scan_nodes. This will allow us to skip
1972  * unused nodes. But scan_nodes is lazily updated and may not cotain
1973  * enough new information. We need to do double check.
1974  */
1975 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1976 {
1977 	int nid;
1978 
1979 	/*
1980 	 * quick check...making use of scan_node.
1981 	 * We can skip unused nodes.
1982 	 */
1983 	if (!nodes_empty(memcg->scan_nodes)) {
1984 		for (nid = first_node(memcg->scan_nodes);
1985 		     nid < MAX_NUMNODES;
1986 		     nid = next_node(nid, memcg->scan_nodes)) {
1987 
1988 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1989 				return true;
1990 		}
1991 	}
1992 	/*
1993 	 * Check rest of nodes.
1994 	 */
1995 	for_each_node_state(nid, N_MEMORY) {
1996 		if (node_isset(nid, memcg->scan_nodes))
1997 			continue;
1998 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 			return true;
2000 	}
2001 	return false;
2002 }
2003 
2004 #else
2005 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2006 {
2007 	return 0;
2008 }
2009 
2010 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2011 {
2012 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2013 }
2014 #endif
2015 
2016 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2017 				   struct zone *zone,
2018 				   gfp_t gfp_mask,
2019 				   unsigned long *total_scanned)
2020 {
2021 	struct mem_cgroup *victim = NULL;
2022 	int total = 0;
2023 	int loop = 0;
2024 	unsigned long excess;
2025 	unsigned long nr_scanned;
2026 	struct mem_cgroup_reclaim_cookie reclaim = {
2027 		.zone = zone,
2028 		.priority = 0,
2029 	};
2030 
2031 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2032 
2033 	while (1) {
2034 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2035 		if (!victim) {
2036 			loop++;
2037 			if (loop >= 2) {
2038 				/*
2039 				 * If we have not been able to reclaim
2040 				 * anything, it might because there are
2041 				 * no reclaimable pages under this hierarchy
2042 				 */
2043 				if (!total)
2044 					break;
2045 				/*
2046 				 * We want to do more targeted reclaim.
2047 				 * excess >> 2 is not to excessive so as to
2048 				 * reclaim too much, nor too less that we keep
2049 				 * coming back to reclaim from this cgroup
2050 				 */
2051 				if (total >= (excess >> 2) ||
2052 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2053 					break;
2054 			}
2055 			continue;
2056 		}
2057 		if (!mem_cgroup_reclaimable(victim, false))
2058 			continue;
2059 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2060 						     zone, &nr_scanned);
2061 		*total_scanned += nr_scanned;
2062 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2063 			break;
2064 	}
2065 	mem_cgroup_iter_break(root_memcg, victim);
2066 	return total;
2067 }
2068 
2069 #ifdef CONFIG_LOCKDEP
2070 static struct lockdep_map memcg_oom_lock_dep_map = {
2071 	.name = "memcg_oom_lock",
2072 };
2073 #endif
2074 
2075 static DEFINE_SPINLOCK(memcg_oom_lock);
2076 
2077 /*
2078  * Check OOM-Killer is already running under our hierarchy.
2079  * If someone is running, return false.
2080  */
2081 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2082 {
2083 	struct mem_cgroup *iter, *failed = NULL;
2084 
2085 	spin_lock(&memcg_oom_lock);
2086 
2087 	for_each_mem_cgroup_tree(iter, memcg) {
2088 		if (iter->oom_lock) {
2089 			/*
2090 			 * this subtree of our hierarchy is already locked
2091 			 * so we cannot give a lock.
2092 			 */
2093 			failed = iter;
2094 			mem_cgroup_iter_break(memcg, iter);
2095 			break;
2096 		} else
2097 			iter->oom_lock = true;
2098 	}
2099 
2100 	if (failed) {
2101 		/*
2102 		 * OK, we failed to lock the whole subtree so we have
2103 		 * to clean up what we set up to the failing subtree
2104 		 */
2105 		for_each_mem_cgroup_tree(iter, memcg) {
2106 			if (iter == failed) {
2107 				mem_cgroup_iter_break(memcg, iter);
2108 				break;
2109 			}
2110 			iter->oom_lock = false;
2111 		}
2112 	} else
2113 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2114 
2115 	spin_unlock(&memcg_oom_lock);
2116 
2117 	return !failed;
2118 }
2119 
2120 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2121 {
2122 	struct mem_cgroup *iter;
2123 
2124 	spin_lock(&memcg_oom_lock);
2125 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2126 	for_each_mem_cgroup_tree(iter, memcg)
2127 		iter->oom_lock = false;
2128 	spin_unlock(&memcg_oom_lock);
2129 }
2130 
2131 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132 {
2133 	struct mem_cgroup *iter;
2134 
2135 	for_each_mem_cgroup_tree(iter, memcg)
2136 		atomic_inc(&iter->under_oom);
2137 }
2138 
2139 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140 {
2141 	struct mem_cgroup *iter;
2142 
2143 	/*
2144 	 * When a new child is created while the hierarchy is under oom,
2145 	 * mem_cgroup_oom_lock() may not be called. We have to use
2146 	 * atomic_add_unless() here.
2147 	 */
2148 	for_each_mem_cgroup_tree(iter, memcg)
2149 		atomic_add_unless(&iter->under_oom, -1, 0);
2150 }
2151 
2152 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2153 
2154 struct oom_wait_info {
2155 	struct mem_cgroup *memcg;
2156 	wait_queue_t	wait;
2157 };
2158 
2159 static int memcg_oom_wake_function(wait_queue_t *wait,
2160 	unsigned mode, int sync, void *arg)
2161 {
2162 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 	struct mem_cgroup *oom_wait_memcg;
2164 	struct oom_wait_info *oom_wait_info;
2165 
2166 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167 	oom_wait_memcg = oom_wait_info->memcg;
2168 
2169 	/*
2170 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2171 	 * Then we can use css_is_ancestor without taking care of RCU.
2172 	 */
2173 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2175 		return 0;
2176 	return autoremove_wake_function(wait, mode, sync, arg);
2177 }
2178 
2179 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2180 {
2181 	atomic_inc(&memcg->oom_wakeups);
2182 	/* for filtering, pass "memcg" as argument. */
2183 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2184 }
2185 
2186 static void memcg_oom_recover(struct mem_cgroup *memcg)
2187 {
2188 	if (memcg && atomic_read(&memcg->under_oom))
2189 		memcg_wakeup_oom(memcg);
2190 }
2191 
2192 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2193 {
2194 	if (!current->memcg_oom.may_oom)
2195 		return;
2196 	/*
2197 	 * We are in the middle of the charge context here, so we
2198 	 * don't want to block when potentially sitting on a callstack
2199 	 * that holds all kinds of filesystem and mm locks.
2200 	 *
2201 	 * Also, the caller may handle a failed allocation gracefully
2202 	 * (like optional page cache readahead) and so an OOM killer
2203 	 * invocation might not even be necessary.
2204 	 *
2205 	 * That's why we don't do anything here except remember the
2206 	 * OOM context and then deal with it at the end of the page
2207 	 * fault when the stack is unwound, the locks are released,
2208 	 * and when we know whether the fault was overall successful.
2209 	 */
2210 	css_get(&memcg->css);
2211 	current->memcg_oom.memcg = memcg;
2212 	current->memcg_oom.gfp_mask = mask;
2213 	current->memcg_oom.order = order;
2214 }
2215 
2216 /**
2217  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2218  * @handle: actually kill/wait or just clean up the OOM state
2219  *
2220  * This has to be called at the end of a page fault if the memcg OOM
2221  * handler was enabled.
2222  *
2223  * Memcg supports userspace OOM handling where failed allocations must
2224  * sleep on a waitqueue until the userspace task resolves the
2225  * situation.  Sleeping directly in the charge context with all kinds
2226  * of locks held is not a good idea, instead we remember an OOM state
2227  * in the task and mem_cgroup_oom_synchronize() has to be called at
2228  * the end of the page fault to complete the OOM handling.
2229  *
2230  * Returns %true if an ongoing memcg OOM situation was detected and
2231  * completed, %false otherwise.
2232  */
2233 bool mem_cgroup_oom_synchronize(bool handle)
2234 {
2235 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2236 	struct oom_wait_info owait;
2237 	bool locked;
2238 
2239 	/* OOM is global, do not handle */
2240 	if (!memcg)
2241 		return false;
2242 
2243 	if (!handle)
2244 		goto cleanup;
2245 
2246 	owait.memcg = memcg;
2247 	owait.wait.flags = 0;
2248 	owait.wait.func = memcg_oom_wake_function;
2249 	owait.wait.private = current;
2250 	INIT_LIST_HEAD(&owait.wait.task_list);
2251 
2252 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2253 	mem_cgroup_mark_under_oom(memcg);
2254 
2255 	locked = mem_cgroup_oom_trylock(memcg);
2256 
2257 	if (locked)
2258 		mem_cgroup_oom_notify(memcg);
2259 
2260 	if (locked && !memcg->oom_kill_disable) {
2261 		mem_cgroup_unmark_under_oom(memcg);
2262 		finish_wait(&memcg_oom_waitq, &owait.wait);
2263 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2264 					 current->memcg_oom.order);
2265 	} else {
2266 		schedule();
2267 		mem_cgroup_unmark_under_oom(memcg);
2268 		finish_wait(&memcg_oom_waitq, &owait.wait);
2269 	}
2270 
2271 	if (locked) {
2272 		mem_cgroup_oom_unlock(memcg);
2273 		/*
2274 		 * There is no guarantee that an OOM-lock contender
2275 		 * sees the wakeups triggered by the OOM kill
2276 		 * uncharges.  Wake any sleepers explicitely.
2277 		 */
2278 		memcg_oom_recover(memcg);
2279 	}
2280 cleanup:
2281 	current->memcg_oom.memcg = NULL;
2282 	css_put(&memcg->css);
2283 	return true;
2284 }
2285 
2286 /*
2287  * Currently used to update mapped file statistics, but the routine can be
2288  * generalized to update other statistics as well.
2289  *
2290  * Notes: Race condition
2291  *
2292  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2293  * it tends to be costly. But considering some conditions, we doesn't need
2294  * to do so _always_.
2295  *
2296  * Considering "charge", lock_page_cgroup() is not required because all
2297  * file-stat operations happen after a page is attached to radix-tree. There
2298  * are no race with "charge".
2299  *
2300  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2301  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2302  * if there are race with "uncharge". Statistics itself is properly handled
2303  * by flags.
2304  *
2305  * Considering "move", this is an only case we see a race. To make the race
2306  * small, we check mm->moving_account and detect there are possibility of race
2307  * If there is, we take a lock.
2308  */
2309 
2310 void __mem_cgroup_begin_update_page_stat(struct page *page,
2311 				bool *locked, unsigned long *flags)
2312 {
2313 	struct mem_cgroup *memcg;
2314 	struct page_cgroup *pc;
2315 
2316 	pc = lookup_page_cgroup(page);
2317 again:
2318 	memcg = pc->mem_cgroup;
2319 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320 		return;
2321 	/*
2322 	 * If this memory cgroup is not under account moving, we don't
2323 	 * need to take move_lock_mem_cgroup(). Because we already hold
2324 	 * rcu_read_lock(), any calls to move_account will be delayed until
2325 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2326 	 */
2327 	if (!mem_cgroup_stolen(memcg))
2328 		return;
2329 
2330 	move_lock_mem_cgroup(memcg, flags);
2331 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2332 		move_unlock_mem_cgroup(memcg, flags);
2333 		goto again;
2334 	}
2335 	*locked = true;
2336 }
2337 
2338 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2339 {
2340 	struct page_cgroup *pc = lookup_page_cgroup(page);
2341 
2342 	/*
2343 	 * It's guaranteed that pc->mem_cgroup never changes while
2344 	 * lock is held because a routine modifies pc->mem_cgroup
2345 	 * should take move_lock_mem_cgroup().
2346 	 */
2347 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2348 }
2349 
2350 void mem_cgroup_update_page_stat(struct page *page,
2351 				 enum mem_cgroup_stat_index idx, int val)
2352 {
2353 	struct mem_cgroup *memcg;
2354 	struct page_cgroup *pc = lookup_page_cgroup(page);
2355 	unsigned long uninitialized_var(flags);
2356 
2357 	if (mem_cgroup_disabled())
2358 		return;
2359 
2360 	VM_BUG_ON(!rcu_read_lock_held());
2361 	memcg = pc->mem_cgroup;
2362 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 		return;
2364 
2365 	this_cpu_add(memcg->stat->count[idx], val);
2366 }
2367 
2368 /*
2369  * size of first charge trial. "32" comes from vmscan.c's magic value.
2370  * TODO: maybe necessary to use big numbers in big irons.
2371  */
2372 #define CHARGE_BATCH	32U
2373 struct memcg_stock_pcp {
2374 	struct mem_cgroup *cached; /* this never be root cgroup */
2375 	unsigned int nr_pages;
2376 	struct work_struct work;
2377 	unsigned long flags;
2378 #define FLUSHING_CACHED_CHARGE	0
2379 };
2380 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2381 static DEFINE_MUTEX(percpu_charge_mutex);
2382 
2383 /**
2384  * consume_stock: Try to consume stocked charge on this cpu.
2385  * @memcg: memcg to consume from.
2386  * @nr_pages: how many pages to charge.
2387  *
2388  * The charges will only happen if @memcg matches the current cpu's memcg
2389  * stock, and at least @nr_pages are available in that stock.  Failure to
2390  * service an allocation will refill the stock.
2391  *
2392  * returns true if successful, false otherwise.
2393  */
2394 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2395 {
2396 	struct memcg_stock_pcp *stock;
2397 	bool ret = true;
2398 
2399 	if (nr_pages > CHARGE_BATCH)
2400 		return false;
2401 
2402 	stock = &get_cpu_var(memcg_stock);
2403 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2404 		stock->nr_pages -= nr_pages;
2405 	else /* need to call res_counter_charge */
2406 		ret = false;
2407 	put_cpu_var(memcg_stock);
2408 	return ret;
2409 }
2410 
2411 /*
2412  * Returns stocks cached in percpu to res_counter and reset cached information.
2413  */
2414 static void drain_stock(struct memcg_stock_pcp *stock)
2415 {
2416 	struct mem_cgroup *old = stock->cached;
2417 
2418 	if (stock->nr_pages) {
2419 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2420 
2421 		res_counter_uncharge(&old->res, bytes);
2422 		if (do_swap_account)
2423 			res_counter_uncharge(&old->memsw, bytes);
2424 		stock->nr_pages = 0;
2425 	}
2426 	stock->cached = NULL;
2427 }
2428 
2429 /*
2430  * This must be called under preempt disabled or must be called by
2431  * a thread which is pinned to local cpu.
2432  */
2433 static void drain_local_stock(struct work_struct *dummy)
2434 {
2435 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2436 	drain_stock(stock);
2437 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2438 }
2439 
2440 static void __init memcg_stock_init(void)
2441 {
2442 	int cpu;
2443 
2444 	for_each_possible_cpu(cpu) {
2445 		struct memcg_stock_pcp *stock =
2446 					&per_cpu(memcg_stock, cpu);
2447 		INIT_WORK(&stock->work, drain_local_stock);
2448 	}
2449 }
2450 
2451 /*
2452  * Cache charges(val) which is from res_counter, to local per_cpu area.
2453  * This will be consumed by consume_stock() function, later.
2454  */
2455 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2456 {
2457 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2458 
2459 	if (stock->cached != memcg) { /* reset if necessary */
2460 		drain_stock(stock);
2461 		stock->cached = memcg;
2462 	}
2463 	stock->nr_pages += nr_pages;
2464 	put_cpu_var(memcg_stock);
2465 }
2466 
2467 /*
2468  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2469  * of the hierarchy under it. sync flag says whether we should block
2470  * until the work is done.
2471  */
2472 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2473 {
2474 	int cpu, curcpu;
2475 
2476 	/* Notify other cpus that system-wide "drain" is running */
2477 	get_online_cpus();
2478 	curcpu = get_cpu();
2479 	for_each_online_cpu(cpu) {
2480 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2481 		struct mem_cgroup *memcg;
2482 
2483 		memcg = stock->cached;
2484 		if (!memcg || !stock->nr_pages)
2485 			continue;
2486 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2487 			continue;
2488 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2489 			if (cpu == curcpu)
2490 				drain_local_stock(&stock->work);
2491 			else
2492 				schedule_work_on(cpu, &stock->work);
2493 		}
2494 	}
2495 	put_cpu();
2496 
2497 	if (!sync)
2498 		goto out;
2499 
2500 	for_each_online_cpu(cpu) {
2501 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2502 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2503 			flush_work(&stock->work);
2504 	}
2505 out:
2506 	put_online_cpus();
2507 }
2508 
2509 /*
2510  * Tries to drain stocked charges in other cpus. This function is asynchronous
2511  * and just put a work per cpu for draining localy on each cpu. Caller can
2512  * expects some charges will be back to res_counter later but cannot wait for
2513  * it.
2514  */
2515 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2516 {
2517 	/*
2518 	 * If someone calls draining, avoid adding more kworker runs.
2519 	 */
2520 	if (!mutex_trylock(&percpu_charge_mutex))
2521 		return;
2522 	drain_all_stock(root_memcg, false);
2523 	mutex_unlock(&percpu_charge_mutex);
2524 }
2525 
2526 /* This is a synchronous drain interface. */
2527 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2528 {
2529 	/* called when force_empty is called */
2530 	mutex_lock(&percpu_charge_mutex);
2531 	drain_all_stock(root_memcg, true);
2532 	mutex_unlock(&percpu_charge_mutex);
2533 }
2534 
2535 /*
2536  * This function drains percpu counter value from DEAD cpu and
2537  * move it to local cpu. Note that this function can be preempted.
2538  */
2539 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2540 {
2541 	int i;
2542 
2543 	spin_lock(&memcg->pcp_counter_lock);
2544 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2545 		long x = per_cpu(memcg->stat->count[i], cpu);
2546 
2547 		per_cpu(memcg->stat->count[i], cpu) = 0;
2548 		memcg->nocpu_base.count[i] += x;
2549 	}
2550 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2551 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2552 
2553 		per_cpu(memcg->stat->events[i], cpu) = 0;
2554 		memcg->nocpu_base.events[i] += x;
2555 	}
2556 	spin_unlock(&memcg->pcp_counter_lock);
2557 }
2558 
2559 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2560 					unsigned long action,
2561 					void *hcpu)
2562 {
2563 	int cpu = (unsigned long)hcpu;
2564 	struct memcg_stock_pcp *stock;
2565 	struct mem_cgroup *iter;
2566 
2567 	if (action == CPU_ONLINE)
2568 		return NOTIFY_OK;
2569 
2570 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2571 		return NOTIFY_OK;
2572 
2573 	for_each_mem_cgroup(iter)
2574 		mem_cgroup_drain_pcp_counter(iter, cpu);
2575 
2576 	stock = &per_cpu(memcg_stock, cpu);
2577 	drain_stock(stock);
2578 	return NOTIFY_OK;
2579 }
2580 
2581 
2582 /* See __mem_cgroup_try_charge() for details */
2583 enum {
2584 	CHARGE_OK,		/* success */
2585 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2586 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2587 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2588 };
2589 
2590 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2591 				unsigned int nr_pages, unsigned int min_pages,
2592 				bool invoke_oom)
2593 {
2594 	unsigned long csize = nr_pages * PAGE_SIZE;
2595 	struct mem_cgroup *mem_over_limit;
2596 	struct res_counter *fail_res;
2597 	unsigned long flags = 0;
2598 	int ret;
2599 
2600 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2601 
2602 	if (likely(!ret)) {
2603 		if (!do_swap_account)
2604 			return CHARGE_OK;
2605 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2606 		if (likely(!ret))
2607 			return CHARGE_OK;
2608 
2609 		res_counter_uncharge(&memcg->res, csize);
2610 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2611 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2612 	} else
2613 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2614 	/*
2615 	 * Never reclaim on behalf of optional batching, retry with a
2616 	 * single page instead.
2617 	 */
2618 	if (nr_pages > min_pages)
2619 		return CHARGE_RETRY;
2620 
2621 	if (!(gfp_mask & __GFP_WAIT))
2622 		return CHARGE_WOULDBLOCK;
2623 
2624 	if (gfp_mask & __GFP_NORETRY)
2625 		return CHARGE_NOMEM;
2626 
2627 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2628 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2629 		return CHARGE_RETRY;
2630 	/*
2631 	 * Even though the limit is exceeded at this point, reclaim
2632 	 * may have been able to free some pages.  Retry the charge
2633 	 * before killing the task.
2634 	 *
2635 	 * Only for regular pages, though: huge pages are rather
2636 	 * unlikely to succeed so close to the limit, and we fall back
2637 	 * to regular pages anyway in case of failure.
2638 	 */
2639 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2640 		return CHARGE_RETRY;
2641 
2642 	/*
2643 	 * At task move, charge accounts can be doubly counted. So, it's
2644 	 * better to wait until the end of task_move if something is going on.
2645 	 */
2646 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2647 		return CHARGE_RETRY;
2648 
2649 	if (invoke_oom)
2650 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2651 
2652 	return CHARGE_NOMEM;
2653 }
2654 
2655 /*
2656  * __mem_cgroup_try_charge() does
2657  * 1. detect memcg to be charged against from passed *mm and *ptr,
2658  * 2. update res_counter
2659  * 3. call memory reclaim if necessary.
2660  *
2661  * In some special case, if the task is fatal, fatal_signal_pending() or
2662  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2663  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2664  * as possible without any hazards. 2: all pages should have a valid
2665  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2666  * pointer, that is treated as a charge to root_mem_cgroup.
2667  *
2668  * So __mem_cgroup_try_charge() will return
2669  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2670  *  -ENOMEM ...  charge failure because of resource limits.
2671  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2672  *
2673  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2674  * the oom-killer can be invoked.
2675  */
2676 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2677 				   gfp_t gfp_mask,
2678 				   unsigned int nr_pages,
2679 				   struct mem_cgroup **ptr,
2680 				   bool oom)
2681 {
2682 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2683 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2684 	struct mem_cgroup *memcg = NULL;
2685 	int ret;
2686 
2687 	/*
2688 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2689 	 * in system level. So, allow to go ahead dying process in addition to
2690 	 * MEMDIE process.
2691 	 */
2692 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2693 		     || fatal_signal_pending(current)))
2694 		goto bypass;
2695 
2696 	if (unlikely(task_in_memcg_oom(current)))
2697 		goto bypass;
2698 
2699 	/*
2700 	 * We always charge the cgroup the mm_struct belongs to.
2701 	 * The mm_struct's mem_cgroup changes on task migration if the
2702 	 * thread group leader migrates. It's possible that mm is not
2703 	 * set, if so charge the root memcg (happens for pagecache usage).
2704 	 */
2705 	if (!*ptr && !mm)
2706 		*ptr = root_mem_cgroup;
2707 again:
2708 	if (*ptr) { /* css should be a valid one */
2709 		memcg = *ptr;
2710 		if (mem_cgroup_is_root(memcg))
2711 			goto done;
2712 		if (consume_stock(memcg, nr_pages))
2713 			goto done;
2714 		css_get(&memcg->css);
2715 	} else {
2716 		struct task_struct *p;
2717 
2718 		rcu_read_lock();
2719 		p = rcu_dereference(mm->owner);
2720 		/*
2721 		 * Because we don't have task_lock(), "p" can exit.
2722 		 * In that case, "memcg" can point to root or p can be NULL with
2723 		 * race with swapoff. Then, we have small risk of mis-accouning.
2724 		 * But such kind of mis-account by race always happens because
2725 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2726 		 * small race, here.
2727 		 * (*) swapoff at el will charge against mm-struct not against
2728 		 * task-struct. So, mm->owner can be NULL.
2729 		 */
2730 		memcg = mem_cgroup_from_task(p);
2731 		if (!memcg)
2732 			memcg = root_mem_cgroup;
2733 		if (mem_cgroup_is_root(memcg)) {
2734 			rcu_read_unlock();
2735 			goto done;
2736 		}
2737 		if (consume_stock(memcg, nr_pages)) {
2738 			/*
2739 			 * It seems dagerous to access memcg without css_get().
2740 			 * But considering how consume_stok works, it's not
2741 			 * necessary. If consume_stock success, some charges
2742 			 * from this memcg are cached on this cpu. So, we
2743 			 * don't need to call css_get()/css_tryget() before
2744 			 * calling consume_stock().
2745 			 */
2746 			rcu_read_unlock();
2747 			goto done;
2748 		}
2749 		/* after here, we may be blocked. we need to get refcnt */
2750 		if (!css_tryget(&memcg->css)) {
2751 			rcu_read_unlock();
2752 			goto again;
2753 		}
2754 		rcu_read_unlock();
2755 	}
2756 
2757 	do {
2758 		bool invoke_oom = oom && !nr_oom_retries;
2759 
2760 		/* If killed, bypass charge */
2761 		if (fatal_signal_pending(current)) {
2762 			css_put(&memcg->css);
2763 			goto bypass;
2764 		}
2765 
2766 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2767 					   nr_pages, invoke_oom);
2768 		switch (ret) {
2769 		case CHARGE_OK:
2770 			break;
2771 		case CHARGE_RETRY: /* not in OOM situation but retry */
2772 			batch = nr_pages;
2773 			css_put(&memcg->css);
2774 			memcg = NULL;
2775 			goto again;
2776 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2777 			css_put(&memcg->css);
2778 			goto nomem;
2779 		case CHARGE_NOMEM: /* OOM routine works */
2780 			if (!oom || invoke_oom) {
2781 				css_put(&memcg->css);
2782 				goto nomem;
2783 			}
2784 			nr_oom_retries--;
2785 			break;
2786 		}
2787 	} while (ret != CHARGE_OK);
2788 
2789 	if (batch > nr_pages)
2790 		refill_stock(memcg, batch - nr_pages);
2791 	css_put(&memcg->css);
2792 done:
2793 	*ptr = memcg;
2794 	return 0;
2795 nomem:
2796 	if (!(gfp_mask & __GFP_NOFAIL)) {
2797 		*ptr = NULL;
2798 		return -ENOMEM;
2799 	}
2800 bypass:
2801 	*ptr = root_mem_cgroup;
2802 	return -EINTR;
2803 }
2804 
2805 /*
2806  * Somemtimes we have to undo a charge we got by try_charge().
2807  * This function is for that and do uncharge, put css's refcnt.
2808  * gotten by try_charge().
2809  */
2810 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2811 				       unsigned int nr_pages)
2812 {
2813 	if (!mem_cgroup_is_root(memcg)) {
2814 		unsigned long bytes = nr_pages * PAGE_SIZE;
2815 
2816 		res_counter_uncharge(&memcg->res, bytes);
2817 		if (do_swap_account)
2818 			res_counter_uncharge(&memcg->memsw, bytes);
2819 	}
2820 }
2821 
2822 /*
2823  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2824  * This is useful when moving usage to parent cgroup.
2825  */
2826 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2827 					unsigned int nr_pages)
2828 {
2829 	unsigned long bytes = nr_pages * PAGE_SIZE;
2830 
2831 	if (mem_cgroup_is_root(memcg))
2832 		return;
2833 
2834 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2835 	if (do_swap_account)
2836 		res_counter_uncharge_until(&memcg->memsw,
2837 						memcg->memsw.parent, bytes);
2838 }
2839 
2840 /*
2841  * A helper function to get mem_cgroup from ID. must be called under
2842  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2843  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2844  * called against removed memcg.)
2845  */
2846 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2847 {
2848 	/* ID 0 is unused ID */
2849 	if (!id)
2850 		return NULL;
2851 	return mem_cgroup_from_id(id);
2852 }
2853 
2854 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2855 {
2856 	struct mem_cgroup *memcg = NULL;
2857 	struct page_cgroup *pc;
2858 	unsigned short id;
2859 	swp_entry_t ent;
2860 
2861 	VM_BUG_ON(!PageLocked(page));
2862 
2863 	pc = lookup_page_cgroup(page);
2864 	lock_page_cgroup(pc);
2865 	if (PageCgroupUsed(pc)) {
2866 		memcg = pc->mem_cgroup;
2867 		if (memcg && !css_tryget(&memcg->css))
2868 			memcg = NULL;
2869 	} else if (PageSwapCache(page)) {
2870 		ent.val = page_private(page);
2871 		id = lookup_swap_cgroup_id(ent);
2872 		rcu_read_lock();
2873 		memcg = mem_cgroup_lookup(id);
2874 		if (memcg && !css_tryget(&memcg->css))
2875 			memcg = NULL;
2876 		rcu_read_unlock();
2877 	}
2878 	unlock_page_cgroup(pc);
2879 	return memcg;
2880 }
2881 
2882 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2883 				       struct page *page,
2884 				       unsigned int nr_pages,
2885 				       enum charge_type ctype,
2886 				       bool lrucare)
2887 {
2888 	struct page_cgroup *pc = lookup_page_cgroup(page);
2889 	struct zone *uninitialized_var(zone);
2890 	struct lruvec *lruvec;
2891 	bool was_on_lru = false;
2892 	bool anon;
2893 
2894 	lock_page_cgroup(pc);
2895 	VM_BUG_ON(PageCgroupUsed(pc));
2896 	/*
2897 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2898 	 * accessed by any other context at this point.
2899 	 */
2900 
2901 	/*
2902 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2903 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2904 	 */
2905 	if (lrucare) {
2906 		zone = page_zone(page);
2907 		spin_lock_irq(&zone->lru_lock);
2908 		if (PageLRU(page)) {
2909 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2910 			ClearPageLRU(page);
2911 			del_page_from_lru_list(page, lruvec, page_lru(page));
2912 			was_on_lru = true;
2913 		}
2914 	}
2915 
2916 	pc->mem_cgroup = memcg;
2917 	/*
2918 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2919 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2920 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2921 	 * before USED bit, we need memory barrier here.
2922 	 * See mem_cgroup_add_lru_list(), etc.
2923 	 */
2924 	smp_wmb();
2925 	SetPageCgroupUsed(pc);
2926 
2927 	if (lrucare) {
2928 		if (was_on_lru) {
2929 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2930 			VM_BUG_ON(PageLRU(page));
2931 			SetPageLRU(page);
2932 			add_page_to_lru_list(page, lruvec, page_lru(page));
2933 		}
2934 		spin_unlock_irq(&zone->lru_lock);
2935 	}
2936 
2937 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2938 		anon = true;
2939 	else
2940 		anon = false;
2941 
2942 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2943 	unlock_page_cgroup(pc);
2944 
2945 	/*
2946 	 * "charge_statistics" updated event counter. Then, check it.
2947 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2948 	 * if they exceeds softlimit.
2949 	 */
2950 	memcg_check_events(memcg, page);
2951 }
2952 
2953 static DEFINE_MUTEX(set_limit_mutex);
2954 
2955 #ifdef CONFIG_MEMCG_KMEM
2956 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2957 {
2958 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2959 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2960 }
2961 
2962 /*
2963  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2964  * in the memcg_cache_params struct.
2965  */
2966 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2967 {
2968 	struct kmem_cache *cachep;
2969 
2970 	VM_BUG_ON(p->is_root_cache);
2971 	cachep = p->root_cache;
2972 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2973 }
2974 
2975 #ifdef CONFIG_SLABINFO
2976 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2977 				    struct cftype *cft, struct seq_file *m)
2978 {
2979 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2980 	struct memcg_cache_params *params;
2981 
2982 	if (!memcg_can_account_kmem(memcg))
2983 		return -EIO;
2984 
2985 	print_slabinfo_header(m);
2986 
2987 	mutex_lock(&memcg->slab_caches_mutex);
2988 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2989 		cache_show(memcg_params_to_cache(params), m);
2990 	mutex_unlock(&memcg->slab_caches_mutex);
2991 
2992 	return 0;
2993 }
2994 #endif
2995 
2996 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2997 {
2998 	struct res_counter *fail_res;
2999 	struct mem_cgroup *_memcg;
3000 	int ret = 0;
3001 
3002 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3003 	if (ret)
3004 		return ret;
3005 
3006 	_memcg = memcg;
3007 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3008 				      &_memcg, oom_gfp_allowed(gfp));
3009 
3010 	if (ret == -EINTR)  {
3011 		/*
3012 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3013 		 * OOM kill or fatal signal.  Since our only options are to
3014 		 * either fail the allocation or charge it to this cgroup, do
3015 		 * it as a temporary condition. But we can't fail. From a
3016 		 * kmem/slab perspective, the cache has already been selected,
3017 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3018 		 * our minds.
3019 		 *
3020 		 * This condition will only trigger if the task entered
3021 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3022 		 * __mem_cgroup_try_charge() above. Tasks that were already
3023 		 * dying when the allocation triggers should have been already
3024 		 * directed to the root cgroup in memcontrol.h
3025 		 */
3026 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3027 		if (do_swap_account)
3028 			res_counter_charge_nofail(&memcg->memsw, size,
3029 						  &fail_res);
3030 		ret = 0;
3031 	} else if (ret)
3032 		res_counter_uncharge(&memcg->kmem, size);
3033 
3034 	return ret;
3035 }
3036 
3037 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3038 {
3039 	res_counter_uncharge(&memcg->res, size);
3040 	if (do_swap_account)
3041 		res_counter_uncharge(&memcg->memsw, size);
3042 
3043 	/* Not down to 0 */
3044 	if (res_counter_uncharge(&memcg->kmem, size))
3045 		return;
3046 
3047 	/*
3048 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3049 	 * this last uncharge is racing with the offlining code or it is
3050 	 * outliving the memcg existence.
3051 	 *
3052 	 * The memory barrier imposed by test&clear is paired with the
3053 	 * explicit one in memcg_kmem_mark_dead().
3054 	 */
3055 	if (memcg_kmem_test_and_clear_dead(memcg))
3056 		css_put(&memcg->css);
3057 }
3058 
3059 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3060 {
3061 	if (!memcg)
3062 		return;
3063 
3064 	mutex_lock(&memcg->slab_caches_mutex);
3065 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3066 	mutex_unlock(&memcg->slab_caches_mutex);
3067 }
3068 
3069 /*
3070  * helper for acessing a memcg's index. It will be used as an index in the
3071  * child cache array in kmem_cache, and also to derive its name. This function
3072  * will return -1 when this is not a kmem-limited memcg.
3073  */
3074 int memcg_cache_id(struct mem_cgroup *memcg)
3075 {
3076 	return memcg ? memcg->kmemcg_id : -1;
3077 }
3078 
3079 /*
3080  * This ends up being protected by the set_limit mutex, during normal
3081  * operation, because that is its main call site.
3082  *
3083  * But when we create a new cache, we can call this as well if its parent
3084  * is kmem-limited. That will have to hold set_limit_mutex as well.
3085  */
3086 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3087 {
3088 	int num, ret;
3089 
3090 	num = ida_simple_get(&kmem_limited_groups,
3091 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3092 	if (num < 0)
3093 		return num;
3094 	/*
3095 	 * After this point, kmem_accounted (that we test atomically in
3096 	 * the beginning of this conditional), is no longer 0. This
3097 	 * guarantees only one process will set the following boolean
3098 	 * to true. We don't need test_and_set because we're protected
3099 	 * by the set_limit_mutex anyway.
3100 	 */
3101 	memcg_kmem_set_activated(memcg);
3102 
3103 	ret = memcg_update_all_caches(num+1);
3104 	if (ret) {
3105 		ida_simple_remove(&kmem_limited_groups, num);
3106 		memcg_kmem_clear_activated(memcg);
3107 		return ret;
3108 	}
3109 
3110 	memcg->kmemcg_id = num;
3111 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3112 	mutex_init(&memcg->slab_caches_mutex);
3113 	return 0;
3114 }
3115 
3116 static size_t memcg_caches_array_size(int num_groups)
3117 {
3118 	ssize_t size;
3119 	if (num_groups <= 0)
3120 		return 0;
3121 
3122 	size = 2 * num_groups;
3123 	if (size < MEMCG_CACHES_MIN_SIZE)
3124 		size = MEMCG_CACHES_MIN_SIZE;
3125 	else if (size > MEMCG_CACHES_MAX_SIZE)
3126 		size = MEMCG_CACHES_MAX_SIZE;
3127 
3128 	return size;
3129 }
3130 
3131 /*
3132  * We should update the current array size iff all caches updates succeed. This
3133  * can only be done from the slab side. The slab mutex needs to be held when
3134  * calling this.
3135  */
3136 void memcg_update_array_size(int num)
3137 {
3138 	if (num > memcg_limited_groups_array_size)
3139 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3140 }
3141 
3142 static void kmem_cache_destroy_work_func(struct work_struct *w);
3143 
3144 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3145 {
3146 	struct memcg_cache_params *cur_params = s->memcg_params;
3147 
3148 	VM_BUG_ON(!is_root_cache(s));
3149 
3150 	if (num_groups > memcg_limited_groups_array_size) {
3151 		int i;
3152 		ssize_t size = memcg_caches_array_size(num_groups);
3153 
3154 		size *= sizeof(void *);
3155 		size += offsetof(struct memcg_cache_params, memcg_caches);
3156 
3157 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3158 		if (!s->memcg_params) {
3159 			s->memcg_params = cur_params;
3160 			return -ENOMEM;
3161 		}
3162 
3163 		s->memcg_params->is_root_cache = true;
3164 
3165 		/*
3166 		 * There is the chance it will be bigger than
3167 		 * memcg_limited_groups_array_size, if we failed an allocation
3168 		 * in a cache, in which case all caches updated before it, will
3169 		 * have a bigger array.
3170 		 *
3171 		 * But if that is the case, the data after
3172 		 * memcg_limited_groups_array_size is certainly unused
3173 		 */
3174 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3175 			if (!cur_params->memcg_caches[i])
3176 				continue;
3177 			s->memcg_params->memcg_caches[i] =
3178 						cur_params->memcg_caches[i];
3179 		}
3180 
3181 		/*
3182 		 * Ideally, we would wait until all caches succeed, and only
3183 		 * then free the old one. But this is not worth the extra
3184 		 * pointer per-cache we'd have to have for this.
3185 		 *
3186 		 * It is not a big deal if some caches are left with a size
3187 		 * bigger than the others. And all updates will reset this
3188 		 * anyway.
3189 		 */
3190 		kfree(cur_params);
3191 	}
3192 	return 0;
3193 }
3194 
3195 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3196 			 struct kmem_cache *root_cache)
3197 {
3198 	size_t size;
3199 
3200 	if (!memcg_kmem_enabled())
3201 		return 0;
3202 
3203 	if (!memcg) {
3204 		size = offsetof(struct memcg_cache_params, memcg_caches);
3205 		size += memcg_limited_groups_array_size * sizeof(void *);
3206 	} else
3207 		size = sizeof(struct memcg_cache_params);
3208 
3209 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3210 	if (!s->memcg_params)
3211 		return -ENOMEM;
3212 
3213 	if (memcg) {
3214 		s->memcg_params->memcg = memcg;
3215 		s->memcg_params->root_cache = root_cache;
3216 		INIT_WORK(&s->memcg_params->destroy,
3217 				kmem_cache_destroy_work_func);
3218 	} else
3219 		s->memcg_params->is_root_cache = true;
3220 
3221 	return 0;
3222 }
3223 
3224 void memcg_release_cache(struct kmem_cache *s)
3225 {
3226 	struct kmem_cache *root;
3227 	struct mem_cgroup *memcg;
3228 	int id;
3229 
3230 	/*
3231 	 * This happens, for instance, when a root cache goes away before we
3232 	 * add any memcg.
3233 	 */
3234 	if (!s->memcg_params)
3235 		return;
3236 
3237 	if (s->memcg_params->is_root_cache)
3238 		goto out;
3239 
3240 	memcg = s->memcg_params->memcg;
3241 	id  = memcg_cache_id(memcg);
3242 
3243 	root = s->memcg_params->root_cache;
3244 	root->memcg_params->memcg_caches[id] = NULL;
3245 
3246 	mutex_lock(&memcg->slab_caches_mutex);
3247 	list_del(&s->memcg_params->list);
3248 	mutex_unlock(&memcg->slab_caches_mutex);
3249 
3250 	css_put(&memcg->css);
3251 out:
3252 	kfree(s->memcg_params);
3253 }
3254 
3255 /*
3256  * During the creation a new cache, we need to disable our accounting mechanism
3257  * altogether. This is true even if we are not creating, but rather just
3258  * enqueing new caches to be created.
3259  *
3260  * This is because that process will trigger allocations; some visible, like
3261  * explicit kmallocs to auxiliary data structures, name strings and internal
3262  * cache structures; some well concealed, like INIT_WORK() that can allocate
3263  * objects during debug.
3264  *
3265  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3266  * to it. This may not be a bounded recursion: since the first cache creation
3267  * failed to complete (waiting on the allocation), we'll just try to create the
3268  * cache again, failing at the same point.
3269  *
3270  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3271  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3272  * inside the following two functions.
3273  */
3274 static inline void memcg_stop_kmem_account(void)
3275 {
3276 	VM_BUG_ON(!current->mm);
3277 	current->memcg_kmem_skip_account++;
3278 }
3279 
3280 static inline void memcg_resume_kmem_account(void)
3281 {
3282 	VM_BUG_ON(!current->mm);
3283 	current->memcg_kmem_skip_account--;
3284 }
3285 
3286 static void kmem_cache_destroy_work_func(struct work_struct *w)
3287 {
3288 	struct kmem_cache *cachep;
3289 	struct memcg_cache_params *p;
3290 
3291 	p = container_of(w, struct memcg_cache_params, destroy);
3292 
3293 	cachep = memcg_params_to_cache(p);
3294 
3295 	/*
3296 	 * If we get down to 0 after shrink, we could delete right away.
3297 	 * However, memcg_release_pages() already puts us back in the workqueue
3298 	 * in that case. If we proceed deleting, we'll get a dangling
3299 	 * reference, and removing the object from the workqueue in that case
3300 	 * is unnecessary complication. We are not a fast path.
3301 	 *
3302 	 * Note that this case is fundamentally different from racing with
3303 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3304 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3305 	 * into the queue, but doing so from inside the worker racing to
3306 	 * destroy it.
3307 	 *
3308 	 * So if we aren't down to zero, we'll just schedule a worker and try
3309 	 * again
3310 	 */
3311 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3312 		kmem_cache_shrink(cachep);
3313 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3314 			return;
3315 	} else
3316 		kmem_cache_destroy(cachep);
3317 }
3318 
3319 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3320 {
3321 	if (!cachep->memcg_params->dead)
3322 		return;
3323 
3324 	/*
3325 	 * There are many ways in which we can get here.
3326 	 *
3327 	 * We can get to a memory-pressure situation while the delayed work is
3328 	 * still pending to run. The vmscan shrinkers can then release all
3329 	 * cache memory and get us to destruction. If this is the case, we'll
3330 	 * be executed twice, which is a bug (the second time will execute over
3331 	 * bogus data). In this case, cancelling the work should be fine.
3332 	 *
3333 	 * But we can also get here from the worker itself, if
3334 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3335 	 * get the page count to 0. In this case, we'll deadlock if we try to
3336 	 * cancel the work (the worker runs with an internal lock held, which
3337 	 * is the same lock we would hold for cancel_work_sync().)
3338 	 *
3339 	 * Since we can't possibly know who got us here, just refrain from
3340 	 * running if there is already work pending
3341 	 */
3342 	if (work_pending(&cachep->memcg_params->destroy))
3343 		return;
3344 	/*
3345 	 * We have to defer the actual destroying to a workqueue, because
3346 	 * we might currently be in a context that cannot sleep.
3347 	 */
3348 	schedule_work(&cachep->memcg_params->destroy);
3349 }
3350 
3351 /*
3352  * This lock protects updaters, not readers. We want readers to be as fast as
3353  * they can, and they will either see NULL or a valid cache value. Our model
3354  * allow them to see NULL, in which case the root memcg will be selected.
3355  *
3356  * We need this lock because multiple allocations to the same cache from a non
3357  * will span more than one worker. Only one of them can create the cache.
3358  */
3359 static DEFINE_MUTEX(memcg_cache_mutex);
3360 
3361 /*
3362  * Called with memcg_cache_mutex held
3363  */
3364 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3365 					 struct kmem_cache *s)
3366 {
3367 	struct kmem_cache *new;
3368 	static char *tmp_name = NULL;
3369 
3370 	lockdep_assert_held(&memcg_cache_mutex);
3371 
3372 	/*
3373 	 * kmem_cache_create_memcg duplicates the given name and
3374 	 * cgroup_name for this name requires RCU context.
3375 	 * This static temporary buffer is used to prevent from
3376 	 * pointless shortliving allocation.
3377 	 */
3378 	if (!tmp_name) {
3379 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3380 		if (!tmp_name)
3381 			return NULL;
3382 	}
3383 
3384 	rcu_read_lock();
3385 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3386 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3387 	rcu_read_unlock();
3388 
3389 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3390 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3391 
3392 	if (new)
3393 		new->allocflags |= __GFP_KMEMCG;
3394 
3395 	return new;
3396 }
3397 
3398 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3399 						  struct kmem_cache *cachep)
3400 {
3401 	struct kmem_cache *new_cachep;
3402 	int idx;
3403 
3404 	BUG_ON(!memcg_can_account_kmem(memcg));
3405 
3406 	idx = memcg_cache_id(memcg);
3407 
3408 	mutex_lock(&memcg_cache_mutex);
3409 	new_cachep = cache_from_memcg_idx(cachep, idx);
3410 	if (new_cachep) {
3411 		css_put(&memcg->css);
3412 		goto out;
3413 	}
3414 
3415 	new_cachep = kmem_cache_dup(memcg, cachep);
3416 	if (new_cachep == NULL) {
3417 		new_cachep = cachep;
3418 		css_put(&memcg->css);
3419 		goto out;
3420 	}
3421 
3422 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3423 
3424 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3425 	/*
3426 	 * the readers won't lock, make sure everybody sees the updated value,
3427 	 * so they won't put stuff in the queue again for no reason
3428 	 */
3429 	wmb();
3430 out:
3431 	mutex_unlock(&memcg_cache_mutex);
3432 	return new_cachep;
3433 }
3434 
3435 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3436 {
3437 	struct kmem_cache *c;
3438 	int i;
3439 
3440 	if (!s->memcg_params)
3441 		return;
3442 	if (!s->memcg_params->is_root_cache)
3443 		return;
3444 
3445 	/*
3446 	 * If the cache is being destroyed, we trust that there is no one else
3447 	 * requesting objects from it. Even if there are, the sanity checks in
3448 	 * kmem_cache_destroy should caught this ill-case.
3449 	 *
3450 	 * Still, we don't want anyone else freeing memcg_caches under our
3451 	 * noses, which can happen if a new memcg comes to life. As usual,
3452 	 * we'll take the set_limit_mutex to protect ourselves against this.
3453 	 */
3454 	mutex_lock(&set_limit_mutex);
3455 	for_each_memcg_cache_index(i) {
3456 		c = cache_from_memcg_idx(s, i);
3457 		if (!c)
3458 			continue;
3459 
3460 		/*
3461 		 * We will now manually delete the caches, so to avoid races
3462 		 * we need to cancel all pending destruction workers and
3463 		 * proceed with destruction ourselves.
3464 		 *
3465 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3466 		 * and that could spawn the workers again: it is likely that
3467 		 * the cache still have active pages until this very moment.
3468 		 * This would lead us back to mem_cgroup_destroy_cache.
3469 		 *
3470 		 * But that will not execute at all if the "dead" flag is not
3471 		 * set, so flip it down to guarantee we are in control.
3472 		 */
3473 		c->memcg_params->dead = false;
3474 		cancel_work_sync(&c->memcg_params->destroy);
3475 		kmem_cache_destroy(c);
3476 	}
3477 	mutex_unlock(&set_limit_mutex);
3478 }
3479 
3480 struct create_work {
3481 	struct mem_cgroup *memcg;
3482 	struct kmem_cache *cachep;
3483 	struct work_struct work;
3484 };
3485 
3486 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3487 {
3488 	struct kmem_cache *cachep;
3489 	struct memcg_cache_params *params;
3490 
3491 	if (!memcg_kmem_is_active(memcg))
3492 		return;
3493 
3494 	mutex_lock(&memcg->slab_caches_mutex);
3495 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3496 		cachep = memcg_params_to_cache(params);
3497 		cachep->memcg_params->dead = true;
3498 		schedule_work(&cachep->memcg_params->destroy);
3499 	}
3500 	mutex_unlock(&memcg->slab_caches_mutex);
3501 }
3502 
3503 static void memcg_create_cache_work_func(struct work_struct *w)
3504 {
3505 	struct create_work *cw;
3506 
3507 	cw = container_of(w, struct create_work, work);
3508 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3509 	kfree(cw);
3510 }
3511 
3512 /*
3513  * Enqueue the creation of a per-memcg kmem_cache.
3514  */
3515 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3516 					 struct kmem_cache *cachep)
3517 {
3518 	struct create_work *cw;
3519 
3520 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3521 	if (cw == NULL) {
3522 		css_put(&memcg->css);
3523 		return;
3524 	}
3525 
3526 	cw->memcg = memcg;
3527 	cw->cachep = cachep;
3528 
3529 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3530 	schedule_work(&cw->work);
3531 }
3532 
3533 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3534 				       struct kmem_cache *cachep)
3535 {
3536 	/*
3537 	 * We need to stop accounting when we kmalloc, because if the
3538 	 * corresponding kmalloc cache is not yet created, the first allocation
3539 	 * in __memcg_create_cache_enqueue will recurse.
3540 	 *
3541 	 * However, it is better to enclose the whole function. Depending on
3542 	 * the debugging options enabled, INIT_WORK(), for instance, can
3543 	 * trigger an allocation. This too, will make us recurse. Because at
3544 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3545 	 * the safest choice is to do it like this, wrapping the whole function.
3546 	 */
3547 	memcg_stop_kmem_account();
3548 	__memcg_create_cache_enqueue(memcg, cachep);
3549 	memcg_resume_kmem_account();
3550 }
3551 /*
3552  * Return the kmem_cache we're supposed to use for a slab allocation.
3553  * We try to use the current memcg's version of the cache.
3554  *
3555  * If the cache does not exist yet, if we are the first user of it,
3556  * we either create it immediately, if possible, or create it asynchronously
3557  * in a workqueue.
3558  * In the latter case, we will let the current allocation go through with
3559  * the original cache.
3560  *
3561  * Can't be called in interrupt context or from kernel threads.
3562  * This function needs to be called with rcu_read_lock() held.
3563  */
3564 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3565 					  gfp_t gfp)
3566 {
3567 	struct mem_cgroup *memcg;
3568 	int idx;
3569 
3570 	VM_BUG_ON(!cachep->memcg_params);
3571 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3572 
3573 	if (!current->mm || current->memcg_kmem_skip_account)
3574 		return cachep;
3575 
3576 	rcu_read_lock();
3577 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3578 
3579 	if (!memcg_can_account_kmem(memcg))
3580 		goto out;
3581 
3582 	idx = memcg_cache_id(memcg);
3583 
3584 	/*
3585 	 * barrier to mare sure we're always seeing the up to date value.  The
3586 	 * code updating memcg_caches will issue a write barrier to match this.
3587 	 */
3588 	read_barrier_depends();
3589 	if (likely(cache_from_memcg_idx(cachep, idx))) {
3590 		cachep = cache_from_memcg_idx(cachep, idx);
3591 		goto out;
3592 	}
3593 
3594 	/* The corresponding put will be done in the workqueue. */
3595 	if (!css_tryget(&memcg->css))
3596 		goto out;
3597 	rcu_read_unlock();
3598 
3599 	/*
3600 	 * If we are in a safe context (can wait, and not in interrupt
3601 	 * context), we could be be predictable and return right away.
3602 	 * This would guarantee that the allocation being performed
3603 	 * already belongs in the new cache.
3604 	 *
3605 	 * However, there are some clashes that can arrive from locking.
3606 	 * For instance, because we acquire the slab_mutex while doing
3607 	 * kmem_cache_dup, this means no further allocation could happen
3608 	 * with the slab_mutex held.
3609 	 *
3610 	 * Also, because cache creation issue get_online_cpus(), this
3611 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3612 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3613 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3614 	 * better to defer everything.
3615 	 */
3616 	memcg_create_cache_enqueue(memcg, cachep);
3617 	return cachep;
3618 out:
3619 	rcu_read_unlock();
3620 	return cachep;
3621 }
3622 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3623 
3624 /*
3625  * We need to verify if the allocation against current->mm->owner's memcg is
3626  * possible for the given order. But the page is not allocated yet, so we'll
3627  * need a further commit step to do the final arrangements.
3628  *
3629  * It is possible for the task to switch cgroups in this mean time, so at
3630  * commit time, we can't rely on task conversion any longer.  We'll then use
3631  * the handle argument to return to the caller which cgroup we should commit
3632  * against. We could also return the memcg directly and avoid the pointer
3633  * passing, but a boolean return value gives better semantics considering
3634  * the compiled-out case as well.
3635  *
3636  * Returning true means the allocation is possible.
3637  */
3638 bool
3639 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3640 {
3641 	struct mem_cgroup *memcg;
3642 	int ret;
3643 
3644 	*_memcg = NULL;
3645 
3646 	/*
3647 	 * Disabling accounting is only relevant for some specific memcg
3648 	 * internal allocations. Therefore we would initially not have such
3649 	 * check here, since direct calls to the page allocator that are marked
3650 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3651 	 * concerned with cache allocations, and by having this test at
3652 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3653 	 * the root cache and bypass the memcg cache altogether.
3654 	 *
3655 	 * There is one exception, though: the SLUB allocator does not create
3656 	 * large order caches, but rather service large kmallocs directly from
3657 	 * the page allocator. Therefore, the following sequence when backed by
3658 	 * the SLUB allocator:
3659 	 *
3660 	 *	memcg_stop_kmem_account();
3661 	 *	kmalloc(<large_number>)
3662 	 *	memcg_resume_kmem_account();
3663 	 *
3664 	 * would effectively ignore the fact that we should skip accounting,
3665 	 * since it will drive us directly to this function without passing
3666 	 * through the cache selector memcg_kmem_get_cache. Such large
3667 	 * allocations are extremely rare but can happen, for instance, for the
3668 	 * cache arrays. We bring this test here.
3669 	 */
3670 	if (!current->mm || current->memcg_kmem_skip_account)
3671 		return true;
3672 
3673 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3674 
3675 	/*
3676 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3677 	 * isn't much we can do without complicating this too much, and it would
3678 	 * be gfp-dependent anyway. Just let it go
3679 	 */
3680 	if (unlikely(!memcg))
3681 		return true;
3682 
3683 	if (!memcg_can_account_kmem(memcg)) {
3684 		css_put(&memcg->css);
3685 		return true;
3686 	}
3687 
3688 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3689 	if (!ret)
3690 		*_memcg = memcg;
3691 
3692 	css_put(&memcg->css);
3693 	return (ret == 0);
3694 }
3695 
3696 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3697 			      int order)
3698 {
3699 	struct page_cgroup *pc;
3700 
3701 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3702 
3703 	/* The page allocation failed. Revert */
3704 	if (!page) {
3705 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3706 		return;
3707 	}
3708 
3709 	pc = lookup_page_cgroup(page);
3710 	lock_page_cgroup(pc);
3711 	pc->mem_cgroup = memcg;
3712 	SetPageCgroupUsed(pc);
3713 	unlock_page_cgroup(pc);
3714 }
3715 
3716 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3717 {
3718 	struct mem_cgroup *memcg = NULL;
3719 	struct page_cgroup *pc;
3720 
3721 
3722 	pc = lookup_page_cgroup(page);
3723 	/*
3724 	 * Fast unlocked return. Theoretically might have changed, have to
3725 	 * check again after locking.
3726 	 */
3727 	if (!PageCgroupUsed(pc))
3728 		return;
3729 
3730 	lock_page_cgroup(pc);
3731 	if (PageCgroupUsed(pc)) {
3732 		memcg = pc->mem_cgroup;
3733 		ClearPageCgroupUsed(pc);
3734 	}
3735 	unlock_page_cgroup(pc);
3736 
3737 	/*
3738 	 * We trust that only if there is a memcg associated with the page, it
3739 	 * is a valid allocation
3740 	 */
3741 	if (!memcg)
3742 		return;
3743 
3744 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3745 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3746 }
3747 #else
3748 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3749 {
3750 }
3751 #endif /* CONFIG_MEMCG_KMEM */
3752 
3753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3754 
3755 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3756 /*
3757  * Because tail pages are not marked as "used", set it. We're under
3758  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3759  * charge/uncharge will be never happen and move_account() is done under
3760  * compound_lock(), so we don't have to take care of races.
3761  */
3762 void mem_cgroup_split_huge_fixup(struct page *head)
3763 {
3764 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3765 	struct page_cgroup *pc;
3766 	struct mem_cgroup *memcg;
3767 	int i;
3768 
3769 	if (mem_cgroup_disabled())
3770 		return;
3771 
3772 	memcg = head_pc->mem_cgroup;
3773 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3774 		pc = head_pc + i;
3775 		pc->mem_cgroup = memcg;
3776 		smp_wmb();/* see __commit_charge() */
3777 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3778 	}
3779 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3780 		       HPAGE_PMD_NR);
3781 }
3782 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3783 
3784 static inline
3785 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3786 					struct mem_cgroup *to,
3787 					unsigned int nr_pages,
3788 					enum mem_cgroup_stat_index idx)
3789 {
3790 	/* Update stat data for mem_cgroup */
3791 	preempt_disable();
3792 	__this_cpu_sub(from->stat->count[idx], nr_pages);
3793 	__this_cpu_add(to->stat->count[idx], nr_pages);
3794 	preempt_enable();
3795 }
3796 
3797 /**
3798  * mem_cgroup_move_account - move account of the page
3799  * @page: the page
3800  * @nr_pages: number of regular pages (>1 for huge pages)
3801  * @pc:	page_cgroup of the page.
3802  * @from: mem_cgroup which the page is moved from.
3803  * @to:	mem_cgroup which the page is moved to. @from != @to.
3804  *
3805  * The caller must confirm following.
3806  * - page is not on LRU (isolate_page() is useful.)
3807  * - compound_lock is held when nr_pages > 1
3808  *
3809  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3810  * from old cgroup.
3811  */
3812 static int mem_cgroup_move_account(struct page *page,
3813 				   unsigned int nr_pages,
3814 				   struct page_cgroup *pc,
3815 				   struct mem_cgroup *from,
3816 				   struct mem_cgroup *to)
3817 {
3818 	unsigned long flags;
3819 	int ret;
3820 	bool anon = PageAnon(page);
3821 
3822 	VM_BUG_ON(from == to);
3823 	VM_BUG_ON(PageLRU(page));
3824 	/*
3825 	 * The page is isolated from LRU. So, collapse function
3826 	 * will not handle this page. But page splitting can happen.
3827 	 * Do this check under compound_page_lock(). The caller should
3828 	 * hold it.
3829 	 */
3830 	ret = -EBUSY;
3831 	if (nr_pages > 1 && !PageTransHuge(page))
3832 		goto out;
3833 
3834 	lock_page_cgroup(pc);
3835 
3836 	ret = -EINVAL;
3837 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3838 		goto unlock;
3839 
3840 	move_lock_mem_cgroup(from, &flags);
3841 
3842 	if (!anon && page_mapped(page))
3843 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3844 			MEM_CGROUP_STAT_FILE_MAPPED);
3845 
3846 	if (PageWriteback(page))
3847 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3848 			MEM_CGROUP_STAT_WRITEBACK);
3849 
3850 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3851 
3852 	/* caller should have done css_get */
3853 	pc->mem_cgroup = to;
3854 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3855 	move_unlock_mem_cgroup(from, &flags);
3856 	ret = 0;
3857 unlock:
3858 	unlock_page_cgroup(pc);
3859 	/*
3860 	 * check events
3861 	 */
3862 	memcg_check_events(to, page);
3863 	memcg_check_events(from, page);
3864 out:
3865 	return ret;
3866 }
3867 
3868 /**
3869  * mem_cgroup_move_parent - moves page to the parent group
3870  * @page: the page to move
3871  * @pc: page_cgroup of the page
3872  * @child: page's cgroup
3873  *
3874  * move charges to its parent or the root cgroup if the group has no
3875  * parent (aka use_hierarchy==0).
3876  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3877  * mem_cgroup_move_account fails) the failure is always temporary and
3878  * it signals a race with a page removal/uncharge or migration. In the
3879  * first case the page is on the way out and it will vanish from the LRU
3880  * on the next attempt and the call should be retried later.
3881  * Isolation from the LRU fails only if page has been isolated from
3882  * the LRU since we looked at it and that usually means either global
3883  * reclaim or migration going on. The page will either get back to the
3884  * LRU or vanish.
3885  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3886  * (!PageCgroupUsed) or moved to a different group. The page will
3887  * disappear in the next attempt.
3888  */
3889 static int mem_cgroup_move_parent(struct page *page,
3890 				  struct page_cgroup *pc,
3891 				  struct mem_cgroup *child)
3892 {
3893 	struct mem_cgroup *parent;
3894 	unsigned int nr_pages;
3895 	unsigned long uninitialized_var(flags);
3896 	int ret;
3897 
3898 	VM_BUG_ON(mem_cgroup_is_root(child));
3899 
3900 	ret = -EBUSY;
3901 	if (!get_page_unless_zero(page))
3902 		goto out;
3903 	if (isolate_lru_page(page))
3904 		goto put;
3905 
3906 	nr_pages = hpage_nr_pages(page);
3907 
3908 	parent = parent_mem_cgroup(child);
3909 	/*
3910 	 * If no parent, move charges to root cgroup.
3911 	 */
3912 	if (!parent)
3913 		parent = root_mem_cgroup;
3914 
3915 	if (nr_pages > 1) {
3916 		VM_BUG_ON(!PageTransHuge(page));
3917 		flags = compound_lock_irqsave(page);
3918 	}
3919 
3920 	ret = mem_cgroup_move_account(page, nr_pages,
3921 				pc, child, parent);
3922 	if (!ret)
3923 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3924 
3925 	if (nr_pages > 1)
3926 		compound_unlock_irqrestore(page, flags);
3927 	putback_lru_page(page);
3928 put:
3929 	put_page(page);
3930 out:
3931 	return ret;
3932 }
3933 
3934 /*
3935  * Charge the memory controller for page usage.
3936  * Return
3937  * 0 if the charge was successful
3938  * < 0 if the cgroup is over its limit
3939  */
3940 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3941 				gfp_t gfp_mask, enum charge_type ctype)
3942 {
3943 	struct mem_cgroup *memcg = NULL;
3944 	unsigned int nr_pages = 1;
3945 	bool oom = true;
3946 	int ret;
3947 
3948 	if (PageTransHuge(page)) {
3949 		nr_pages <<= compound_order(page);
3950 		VM_BUG_ON(!PageTransHuge(page));
3951 		/*
3952 		 * Never OOM-kill a process for a huge page.  The
3953 		 * fault handler will fall back to regular pages.
3954 		 */
3955 		oom = false;
3956 	}
3957 
3958 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3959 	if (ret == -ENOMEM)
3960 		return ret;
3961 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3962 	return 0;
3963 }
3964 
3965 int mem_cgroup_newpage_charge(struct page *page,
3966 			      struct mm_struct *mm, gfp_t gfp_mask)
3967 {
3968 	if (mem_cgroup_disabled())
3969 		return 0;
3970 	VM_BUG_ON(page_mapped(page));
3971 	VM_BUG_ON(page->mapping && !PageAnon(page));
3972 	VM_BUG_ON(!mm);
3973 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3974 					MEM_CGROUP_CHARGE_TYPE_ANON);
3975 }
3976 
3977 /*
3978  * While swap-in, try_charge -> commit or cancel, the page is locked.
3979  * And when try_charge() successfully returns, one refcnt to memcg without
3980  * struct page_cgroup is acquired. This refcnt will be consumed by
3981  * "commit()" or removed by "cancel()"
3982  */
3983 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3984 					  struct page *page,
3985 					  gfp_t mask,
3986 					  struct mem_cgroup **memcgp)
3987 {
3988 	struct mem_cgroup *memcg;
3989 	struct page_cgroup *pc;
3990 	int ret;
3991 
3992 	pc = lookup_page_cgroup(page);
3993 	/*
3994 	 * Every swap fault against a single page tries to charge the
3995 	 * page, bail as early as possible.  shmem_unuse() encounters
3996 	 * already charged pages, too.  The USED bit is protected by
3997 	 * the page lock, which serializes swap cache removal, which
3998 	 * in turn serializes uncharging.
3999 	 */
4000 	if (PageCgroupUsed(pc))
4001 		return 0;
4002 	if (!do_swap_account)
4003 		goto charge_cur_mm;
4004 	memcg = try_get_mem_cgroup_from_page(page);
4005 	if (!memcg)
4006 		goto charge_cur_mm;
4007 	*memcgp = memcg;
4008 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4009 	css_put(&memcg->css);
4010 	if (ret == -EINTR)
4011 		ret = 0;
4012 	return ret;
4013 charge_cur_mm:
4014 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4015 	if (ret == -EINTR)
4016 		ret = 0;
4017 	return ret;
4018 }
4019 
4020 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4021 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4022 {
4023 	*memcgp = NULL;
4024 	if (mem_cgroup_disabled())
4025 		return 0;
4026 	/*
4027 	 * A racing thread's fault, or swapoff, may have already
4028 	 * updated the pte, and even removed page from swap cache: in
4029 	 * those cases unuse_pte()'s pte_same() test will fail; but
4030 	 * there's also a KSM case which does need to charge the page.
4031 	 */
4032 	if (!PageSwapCache(page)) {
4033 		int ret;
4034 
4035 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4036 		if (ret == -EINTR)
4037 			ret = 0;
4038 		return ret;
4039 	}
4040 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4041 }
4042 
4043 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4044 {
4045 	if (mem_cgroup_disabled())
4046 		return;
4047 	if (!memcg)
4048 		return;
4049 	__mem_cgroup_cancel_charge(memcg, 1);
4050 }
4051 
4052 static void
4053 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4054 					enum charge_type ctype)
4055 {
4056 	if (mem_cgroup_disabled())
4057 		return;
4058 	if (!memcg)
4059 		return;
4060 
4061 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4062 	/*
4063 	 * Now swap is on-memory. This means this page may be
4064 	 * counted both as mem and swap....double count.
4065 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4066 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4067 	 * may call delete_from_swap_cache() before reach here.
4068 	 */
4069 	if (do_swap_account && PageSwapCache(page)) {
4070 		swp_entry_t ent = {.val = page_private(page)};
4071 		mem_cgroup_uncharge_swap(ent);
4072 	}
4073 }
4074 
4075 void mem_cgroup_commit_charge_swapin(struct page *page,
4076 				     struct mem_cgroup *memcg)
4077 {
4078 	__mem_cgroup_commit_charge_swapin(page, memcg,
4079 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4080 }
4081 
4082 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4083 				gfp_t gfp_mask)
4084 {
4085 	struct mem_cgroup *memcg = NULL;
4086 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4087 	int ret;
4088 
4089 	if (mem_cgroup_disabled())
4090 		return 0;
4091 	if (PageCompound(page))
4092 		return 0;
4093 
4094 	if (!PageSwapCache(page))
4095 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4096 	else { /* page is swapcache/shmem */
4097 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4098 						     gfp_mask, &memcg);
4099 		if (!ret)
4100 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4101 	}
4102 	return ret;
4103 }
4104 
4105 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4106 				   unsigned int nr_pages,
4107 				   const enum charge_type ctype)
4108 {
4109 	struct memcg_batch_info *batch = NULL;
4110 	bool uncharge_memsw = true;
4111 
4112 	/* If swapout, usage of swap doesn't decrease */
4113 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4114 		uncharge_memsw = false;
4115 
4116 	batch = &current->memcg_batch;
4117 	/*
4118 	 * In usual, we do css_get() when we remember memcg pointer.
4119 	 * But in this case, we keep res->usage until end of a series of
4120 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4121 	 */
4122 	if (!batch->memcg)
4123 		batch->memcg = memcg;
4124 	/*
4125 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4126 	 * In those cases, all pages freed continuously can be expected to be in
4127 	 * the same cgroup and we have chance to coalesce uncharges.
4128 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4129 	 * because we want to do uncharge as soon as possible.
4130 	 */
4131 
4132 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4133 		goto direct_uncharge;
4134 
4135 	if (nr_pages > 1)
4136 		goto direct_uncharge;
4137 
4138 	/*
4139 	 * In typical case, batch->memcg == mem. This means we can
4140 	 * merge a series of uncharges to an uncharge of res_counter.
4141 	 * If not, we uncharge res_counter ony by one.
4142 	 */
4143 	if (batch->memcg != memcg)
4144 		goto direct_uncharge;
4145 	/* remember freed charge and uncharge it later */
4146 	batch->nr_pages++;
4147 	if (uncharge_memsw)
4148 		batch->memsw_nr_pages++;
4149 	return;
4150 direct_uncharge:
4151 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4152 	if (uncharge_memsw)
4153 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4154 	if (unlikely(batch->memcg != memcg))
4155 		memcg_oom_recover(memcg);
4156 }
4157 
4158 /*
4159  * uncharge if !page_mapped(page)
4160  */
4161 static struct mem_cgroup *
4162 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4163 			     bool end_migration)
4164 {
4165 	struct mem_cgroup *memcg = NULL;
4166 	unsigned int nr_pages = 1;
4167 	struct page_cgroup *pc;
4168 	bool anon;
4169 
4170 	if (mem_cgroup_disabled())
4171 		return NULL;
4172 
4173 	if (PageTransHuge(page)) {
4174 		nr_pages <<= compound_order(page);
4175 		VM_BUG_ON(!PageTransHuge(page));
4176 	}
4177 	/*
4178 	 * Check if our page_cgroup is valid
4179 	 */
4180 	pc = lookup_page_cgroup(page);
4181 	if (unlikely(!PageCgroupUsed(pc)))
4182 		return NULL;
4183 
4184 	lock_page_cgroup(pc);
4185 
4186 	memcg = pc->mem_cgroup;
4187 
4188 	if (!PageCgroupUsed(pc))
4189 		goto unlock_out;
4190 
4191 	anon = PageAnon(page);
4192 
4193 	switch (ctype) {
4194 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4195 		/*
4196 		 * Generally PageAnon tells if it's the anon statistics to be
4197 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4198 		 * used before page reached the stage of being marked PageAnon.
4199 		 */
4200 		anon = true;
4201 		/* fallthrough */
4202 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4203 		/* See mem_cgroup_prepare_migration() */
4204 		if (page_mapped(page))
4205 			goto unlock_out;
4206 		/*
4207 		 * Pages under migration may not be uncharged.  But
4208 		 * end_migration() /must/ be the one uncharging the
4209 		 * unused post-migration page and so it has to call
4210 		 * here with the migration bit still set.  See the
4211 		 * res_counter handling below.
4212 		 */
4213 		if (!end_migration && PageCgroupMigration(pc))
4214 			goto unlock_out;
4215 		break;
4216 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4217 		if (!PageAnon(page)) {	/* Shared memory */
4218 			if (page->mapping && !page_is_file_cache(page))
4219 				goto unlock_out;
4220 		} else if (page_mapped(page)) /* Anon */
4221 				goto unlock_out;
4222 		break;
4223 	default:
4224 		break;
4225 	}
4226 
4227 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4228 
4229 	ClearPageCgroupUsed(pc);
4230 	/*
4231 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4232 	 * freed from LRU. This is safe because uncharged page is expected not
4233 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4234 	 * special functions.
4235 	 */
4236 
4237 	unlock_page_cgroup(pc);
4238 	/*
4239 	 * even after unlock, we have memcg->res.usage here and this memcg
4240 	 * will never be freed, so it's safe to call css_get().
4241 	 */
4242 	memcg_check_events(memcg, page);
4243 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4244 		mem_cgroup_swap_statistics(memcg, true);
4245 		css_get(&memcg->css);
4246 	}
4247 	/*
4248 	 * Migration does not charge the res_counter for the
4249 	 * replacement page, so leave it alone when phasing out the
4250 	 * page that is unused after the migration.
4251 	 */
4252 	if (!end_migration && !mem_cgroup_is_root(memcg))
4253 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4254 
4255 	return memcg;
4256 
4257 unlock_out:
4258 	unlock_page_cgroup(pc);
4259 	return NULL;
4260 }
4261 
4262 void mem_cgroup_uncharge_page(struct page *page)
4263 {
4264 	/* early check. */
4265 	if (page_mapped(page))
4266 		return;
4267 	VM_BUG_ON(page->mapping && !PageAnon(page));
4268 	/*
4269 	 * If the page is in swap cache, uncharge should be deferred
4270 	 * to the swap path, which also properly accounts swap usage
4271 	 * and handles memcg lifetime.
4272 	 *
4273 	 * Note that this check is not stable and reclaim may add the
4274 	 * page to swap cache at any time after this.  However, if the
4275 	 * page is not in swap cache by the time page->mapcount hits
4276 	 * 0, there won't be any page table references to the swap
4277 	 * slot, and reclaim will free it and not actually write the
4278 	 * page to disk.
4279 	 */
4280 	if (PageSwapCache(page))
4281 		return;
4282 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4283 }
4284 
4285 void mem_cgroup_uncharge_cache_page(struct page *page)
4286 {
4287 	VM_BUG_ON(page_mapped(page));
4288 	VM_BUG_ON(page->mapping);
4289 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4290 }
4291 
4292 /*
4293  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4294  * In that cases, pages are freed continuously and we can expect pages
4295  * are in the same memcg. All these calls itself limits the number of
4296  * pages freed at once, then uncharge_start/end() is called properly.
4297  * This may be called prural(2) times in a context,
4298  */
4299 
4300 void mem_cgroup_uncharge_start(void)
4301 {
4302 	current->memcg_batch.do_batch++;
4303 	/* We can do nest. */
4304 	if (current->memcg_batch.do_batch == 1) {
4305 		current->memcg_batch.memcg = NULL;
4306 		current->memcg_batch.nr_pages = 0;
4307 		current->memcg_batch.memsw_nr_pages = 0;
4308 	}
4309 }
4310 
4311 void mem_cgroup_uncharge_end(void)
4312 {
4313 	struct memcg_batch_info *batch = &current->memcg_batch;
4314 
4315 	if (!batch->do_batch)
4316 		return;
4317 
4318 	batch->do_batch--;
4319 	if (batch->do_batch) /* If stacked, do nothing. */
4320 		return;
4321 
4322 	if (!batch->memcg)
4323 		return;
4324 	/*
4325 	 * This "batch->memcg" is valid without any css_get/put etc...
4326 	 * bacause we hide charges behind us.
4327 	 */
4328 	if (batch->nr_pages)
4329 		res_counter_uncharge(&batch->memcg->res,
4330 				     batch->nr_pages * PAGE_SIZE);
4331 	if (batch->memsw_nr_pages)
4332 		res_counter_uncharge(&batch->memcg->memsw,
4333 				     batch->memsw_nr_pages * PAGE_SIZE);
4334 	memcg_oom_recover(batch->memcg);
4335 	/* forget this pointer (for sanity check) */
4336 	batch->memcg = NULL;
4337 }
4338 
4339 #ifdef CONFIG_SWAP
4340 /*
4341  * called after __delete_from_swap_cache() and drop "page" account.
4342  * memcg information is recorded to swap_cgroup of "ent"
4343  */
4344 void
4345 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4346 {
4347 	struct mem_cgroup *memcg;
4348 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4349 
4350 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4351 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4352 
4353 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4354 
4355 	/*
4356 	 * record memcg information,  if swapout && memcg != NULL,
4357 	 * css_get() was called in uncharge().
4358 	 */
4359 	if (do_swap_account && swapout && memcg)
4360 		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4361 }
4362 #endif
4363 
4364 #ifdef CONFIG_MEMCG_SWAP
4365 /*
4366  * called from swap_entry_free(). remove record in swap_cgroup and
4367  * uncharge "memsw" account.
4368  */
4369 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4370 {
4371 	struct mem_cgroup *memcg;
4372 	unsigned short id;
4373 
4374 	if (!do_swap_account)
4375 		return;
4376 
4377 	id = swap_cgroup_record(ent, 0);
4378 	rcu_read_lock();
4379 	memcg = mem_cgroup_lookup(id);
4380 	if (memcg) {
4381 		/*
4382 		 * We uncharge this because swap is freed.
4383 		 * This memcg can be obsolete one. We avoid calling css_tryget
4384 		 */
4385 		if (!mem_cgroup_is_root(memcg))
4386 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4387 		mem_cgroup_swap_statistics(memcg, false);
4388 		css_put(&memcg->css);
4389 	}
4390 	rcu_read_unlock();
4391 }
4392 
4393 /**
4394  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4395  * @entry: swap entry to be moved
4396  * @from:  mem_cgroup which the entry is moved from
4397  * @to:  mem_cgroup which the entry is moved to
4398  *
4399  * It succeeds only when the swap_cgroup's record for this entry is the same
4400  * as the mem_cgroup's id of @from.
4401  *
4402  * Returns 0 on success, -EINVAL on failure.
4403  *
4404  * The caller must have charged to @to, IOW, called res_counter_charge() about
4405  * both res and memsw, and called css_get().
4406  */
4407 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4408 				struct mem_cgroup *from, struct mem_cgroup *to)
4409 {
4410 	unsigned short old_id, new_id;
4411 
4412 	old_id = mem_cgroup_id(from);
4413 	new_id = mem_cgroup_id(to);
4414 
4415 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4416 		mem_cgroup_swap_statistics(from, false);
4417 		mem_cgroup_swap_statistics(to, true);
4418 		/*
4419 		 * This function is only called from task migration context now.
4420 		 * It postpones res_counter and refcount handling till the end
4421 		 * of task migration(mem_cgroup_clear_mc()) for performance
4422 		 * improvement. But we cannot postpone css_get(to)  because if
4423 		 * the process that has been moved to @to does swap-in, the
4424 		 * refcount of @to might be decreased to 0.
4425 		 *
4426 		 * We are in attach() phase, so the cgroup is guaranteed to be
4427 		 * alive, so we can just call css_get().
4428 		 */
4429 		css_get(&to->css);
4430 		return 0;
4431 	}
4432 	return -EINVAL;
4433 }
4434 #else
4435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4436 				struct mem_cgroup *from, struct mem_cgroup *to)
4437 {
4438 	return -EINVAL;
4439 }
4440 #endif
4441 
4442 /*
4443  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4444  * page belongs to.
4445  */
4446 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4447 				  struct mem_cgroup **memcgp)
4448 {
4449 	struct mem_cgroup *memcg = NULL;
4450 	unsigned int nr_pages = 1;
4451 	struct page_cgroup *pc;
4452 	enum charge_type ctype;
4453 
4454 	*memcgp = NULL;
4455 
4456 	if (mem_cgroup_disabled())
4457 		return;
4458 
4459 	if (PageTransHuge(page))
4460 		nr_pages <<= compound_order(page);
4461 
4462 	pc = lookup_page_cgroup(page);
4463 	lock_page_cgroup(pc);
4464 	if (PageCgroupUsed(pc)) {
4465 		memcg = pc->mem_cgroup;
4466 		css_get(&memcg->css);
4467 		/*
4468 		 * At migrating an anonymous page, its mapcount goes down
4469 		 * to 0 and uncharge() will be called. But, even if it's fully
4470 		 * unmapped, migration may fail and this page has to be
4471 		 * charged again. We set MIGRATION flag here and delay uncharge
4472 		 * until end_migration() is called
4473 		 *
4474 		 * Corner Case Thinking
4475 		 * A)
4476 		 * When the old page was mapped as Anon and it's unmap-and-freed
4477 		 * while migration was ongoing.
4478 		 * If unmap finds the old page, uncharge() of it will be delayed
4479 		 * until end_migration(). If unmap finds a new page, it's
4480 		 * uncharged when it make mapcount to be 1->0. If unmap code
4481 		 * finds swap_migration_entry, the new page will not be mapped
4482 		 * and end_migration() will find it(mapcount==0).
4483 		 *
4484 		 * B)
4485 		 * When the old page was mapped but migraion fails, the kernel
4486 		 * remaps it. A charge for it is kept by MIGRATION flag even
4487 		 * if mapcount goes down to 0. We can do remap successfully
4488 		 * without charging it again.
4489 		 *
4490 		 * C)
4491 		 * The "old" page is under lock_page() until the end of
4492 		 * migration, so, the old page itself will not be swapped-out.
4493 		 * If the new page is swapped out before end_migraton, our
4494 		 * hook to usual swap-out path will catch the event.
4495 		 */
4496 		if (PageAnon(page))
4497 			SetPageCgroupMigration(pc);
4498 	}
4499 	unlock_page_cgroup(pc);
4500 	/*
4501 	 * If the page is not charged at this point,
4502 	 * we return here.
4503 	 */
4504 	if (!memcg)
4505 		return;
4506 
4507 	*memcgp = memcg;
4508 	/*
4509 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4510 	 * is called before end_migration, we can catch all events on this new
4511 	 * page. In the case new page is migrated but not remapped, new page's
4512 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4513 	 */
4514 	if (PageAnon(page))
4515 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4516 	else
4517 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4518 	/*
4519 	 * The page is committed to the memcg, but it's not actually
4520 	 * charged to the res_counter since we plan on replacing the
4521 	 * old one and only one page is going to be left afterwards.
4522 	 */
4523 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4524 }
4525 
4526 /* remove redundant charge if migration failed*/
4527 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4528 	struct page *oldpage, struct page *newpage, bool migration_ok)
4529 {
4530 	struct page *used, *unused;
4531 	struct page_cgroup *pc;
4532 	bool anon;
4533 
4534 	if (!memcg)
4535 		return;
4536 
4537 	if (!migration_ok) {
4538 		used = oldpage;
4539 		unused = newpage;
4540 	} else {
4541 		used = newpage;
4542 		unused = oldpage;
4543 	}
4544 	anon = PageAnon(used);
4545 	__mem_cgroup_uncharge_common(unused,
4546 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4547 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4548 				     true);
4549 	css_put(&memcg->css);
4550 	/*
4551 	 * We disallowed uncharge of pages under migration because mapcount
4552 	 * of the page goes down to zero, temporarly.
4553 	 * Clear the flag and check the page should be charged.
4554 	 */
4555 	pc = lookup_page_cgroup(oldpage);
4556 	lock_page_cgroup(pc);
4557 	ClearPageCgroupMigration(pc);
4558 	unlock_page_cgroup(pc);
4559 
4560 	/*
4561 	 * If a page is a file cache, radix-tree replacement is very atomic
4562 	 * and we can skip this check. When it was an Anon page, its mapcount
4563 	 * goes down to 0. But because we added MIGRATION flage, it's not
4564 	 * uncharged yet. There are several case but page->mapcount check
4565 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4566 	 * check. (see prepare_charge() also)
4567 	 */
4568 	if (anon)
4569 		mem_cgroup_uncharge_page(used);
4570 }
4571 
4572 /*
4573  * At replace page cache, newpage is not under any memcg but it's on
4574  * LRU. So, this function doesn't touch res_counter but handles LRU
4575  * in correct way. Both pages are locked so we cannot race with uncharge.
4576  */
4577 void mem_cgroup_replace_page_cache(struct page *oldpage,
4578 				  struct page *newpage)
4579 {
4580 	struct mem_cgroup *memcg = NULL;
4581 	struct page_cgroup *pc;
4582 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4583 
4584 	if (mem_cgroup_disabled())
4585 		return;
4586 
4587 	pc = lookup_page_cgroup(oldpage);
4588 	/* fix accounting on old pages */
4589 	lock_page_cgroup(pc);
4590 	if (PageCgroupUsed(pc)) {
4591 		memcg = pc->mem_cgroup;
4592 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4593 		ClearPageCgroupUsed(pc);
4594 	}
4595 	unlock_page_cgroup(pc);
4596 
4597 	/*
4598 	 * When called from shmem_replace_page(), in some cases the
4599 	 * oldpage has already been charged, and in some cases not.
4600 	 */
4601 	if (!memcg)
4602 		return;
4603 	/*
4604 	 * Even if newpage->mapping was NULL before starting replacement,
4605 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4606 	 * LRU while we overwrite pc->mem_cgroup.
4607 	 */
4608 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4609 }
4610 
4611 #ifdef CONFIG_DEBUG_VM
4612 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4613 {
4614 	struct page_cgroup *pc;
4615 
4616 	pc = lookup_page_cgroup(page);
4617 	/*
4618 	 * Can be NULL while feeding pages into the page allocator for
4619 	 * the first time, i.e. during boot or memory hotplug;
4620 	 * or when mem_cgroup_disabled().
4621 	 */
4622 	if (likely(pc) && PageCgroupUsed(pc))
4623 		return pc;
4624 	return NULL;
4625 }
4626 
4627 bool mem_cgroup_bad_page_check(struct page *page)
4628 {
4629 	if (mem_cgroup_disabled())
4630 		return false;
4631 
4632 	return lookup_page_cgroup_used(page) != NULL;
4633 }
4634 
4635 void mem_cgroup_print_bad_page(struct page *page)
4636 {
4637 	struct page_cgroup *pc;
4638 
4639 	pc = lookup_page_cgroup_used(page);
4640 	if (pc) {
4641 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4642 			 pc, pc->flags, pc->mem_cgroup);
4643 	}
4644 }
4645 #endif
4646 
4647 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4648 				unsigned long long val)
4649 {
4650 	int retry_count;
4651 	u64 memswlimit, memlimit;
4652 	int ret = 0;
4653 	int children = mem_cgroup_count_children(memcg);
4654 	u64 curusage, oldusage;
4655 	int enlarge;
4656 
4657 	/*
4658 	 * For keeping hierarchical_reclaim simple, how long we should retry
4659 	 * is depends on callers. We set our retry-count to be function
4660 	 * of # of children which we should visit in this loop.
4661 	 */
4662 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4663 
4664 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4665 
4666 	enlarge = 0;
4667 	while (retry_count) {
4668 		if (signal_pending(current)) {
4669 			ret = -EINTR;
4670 			break;
4671 		}
4672 		/*
4673 		 * Rather than hide all in some function, I do this in
4674 		 * open coded manner. You see what this really does.
4675 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4676 		 */
4677 		mutex_lock(&set_limit_mutex);
4678 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4679 		if (memswlimit < val) {
4680 			ret = -EINVAL;
4681 			mutex_unlock(&set_limit_mutex);
4682 			break;
4683 		}
4684 
4685 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4686 		if (memlimit < val)
4687 			enlarge = 1;
4688 
4689 		ret = res_counter_set_limit(&memcg->res, val);
4690 		if (!ret) {
4691 			if (memswlimit == val)
4692 				memcg->memsw_is_minimum = true;
4693 			else
4694 				memcg->memsw_is_minimum = false;
4695 		}
4696 		mutex_unlock(&set_limit_mutex);
4697 
4698 		if (!ret)
4699 			break;
4700 
4701 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4702 				   MEM_CGROUP_RECLAIM_SHRINK);
4703 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4704 		/* Usage is reduced ? */
4705 		if (curusage >= oldusage)
4706 			retry_count--;
4707 		else
4708 			oldusage = curusage;
4709 	}
4710 	if (!ret && enlarge)
4711 		memcg_oom_recover(memcg);
4712 
4713 	return ret;
4714 }
4715 
4716 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4717 					unsigned long long val)
4718 {
4719 	int retry_count;
4720 	u64 memlimit, memswlimit, oldusage, curusage;
4721 	int children = mem_cgroup_count_children(memcg);
4722 	int ret = -EBUSY;
4723 	int enlarge = 0;
4724 
4725 	/* see mem_cgroup_resize_res_limit */
4726 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4727 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4728 	while (retry_count) {
4729 		if (signal_pending(current)) {
4730 			ret = -EINTR;
4731 			break;
4732 		}
4733 		/*
4734 		 * Rather than hide all in some function, I do this in
4735 		 * open coded manner. You see what this really does.
4736 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4737 		 */
4738 		mutex_lock(&set_limit_mutex);
4739 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4740 		if (memlimit > val) {
4741 			ret = -EINVAL;
4742 			mutex_unlock(&set_limit_mutex);
4743 			break;
4744 		}
4745 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4746 		if (memswlimit < val)
4747 			enlarge = 1;
4748 		ret = res_counter_set_limit(&memcg->memsw, val);
4749 		if (!ret) {
4750 			if (memlimit == val)
4751 				memcg->memsw_is_minimum = true;
4752 			else
4753 				memcg->memsw_is_minimum = false;
4754 		}
4755 		mutex_unlock(&set_limit_mutex);
4756 
4757 		if (!ret)
4758 			break;
4759 
4760 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4761 				   MEM_CGROUP_RECLAIM_NOSWAP |
4762 				   MEM_CGROUP_RECLAIM_SHRINK);
4763 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4764 		/* Usage is reduced ? */
4765 		if (curusage >= oldusage)
4766 			retry_count--;
4767 		else
4768 			oldusage = curusage;
4769 	}
4770 	if (!ret && enlarge)
4771 		memcg_oom_recover(memcg);
4772 	return ret;
4773 }
4774 
4775 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4776 					    gfp_t gfp_mask,
4777 					    unsigned long *total_scanned)
4778 {
4779 	unsigned long nr_reclaimed = 0;
4780 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4781 	unsigned long reclaimed;
4782 	int loop = 0;
4783 	struct mem_cgroup_tree_per_zone *mctz;
4784 	unsigned long long excess;
4785 	unsigned long nr_scanned;
4786 
4787 	if (order > 0)
4788 		return 0;
4789 
4790 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4791 	/*
4792 	 * This loop can run a while, specially if mem_cgroup's continuously
4793 	 * keep exceeding their soft limit and putting the system under
4794 	 * pressure
4795 	 */
4796 	do {
4797 		if (next_mz)
4798 			mz = next_mz;
4799 		else
4800 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4801 		if (!mz)
4802 			break;
4803 
4804 		nr_scanned = 0;
4805 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4806 						    gfp_mask, &nr_scanned);
4807 		nr_reclaimed += reclaimed;
4808 		*total_scanned += nr_scanned;
4809 		spin_lock(&mctz->lock);
4810 
4811 		/*
4812 		 * If we failed to reclaim anything from this memory cgroup
4813 		 * it is time to move on to the next cgroup
4814 		 */
4815 		next_mz = NULL;
4816 		if (!reclaimed) {
4817 			do {
4818 				/*
4819 				 * Loop until we find yet another one.
4820 				 *
4821 				 * By the time we get the soft_limit lock
4822 				 * again, someone might have aded the
4823 				 * group back on the RB tree. Iterate to
4824 				 * make sure we get a different mem.
4825 				 * mem_cgroup_largest_soft_limit_node returns
4826 				 * NULL if no other cgroup is present on
4827 				 * the tree
4828 				 */
4829 				next_mz =
4830 				__mem_cgroup_largest_soft_limit_node(mctz);
4831 				if (next_mz == mz)
4832 					css_put(&next_mz->memcg->css);
4833 				else /* next_mz == NULL or other memcg */
4834 					break;
4835 			} while (1);
4836 		}
4837 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4838 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4839 		/*
4840 		 * One school of thought says that we should not add
4841 		 * back the node to the tree if reclaim returns 0.
4842 		 * But our reclaim could return 0, simply because due
4843 		 * to priority we are exposing a smaller subset of
4844 		 * memory to reclaim from. Consider this as a longer
4845 		 * term TODO.
4846 		 */
4847 		/* If excess == 0, no tree ops */
4848 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4849 		spin_unlock(&mctz->lock);
4850 		css_put(&mz->memcg->css);
4851 		loop++;
4852 		/*
4853 		 * Could not reclaim anything and there are no more
4854 		 * mem cgroups to try or we seem to be looping without
4855 		 * reclaiming anything.
4856 		 */
4857 		if (!nr_reclaimed &&
4858 			(next_mz == NULL ||
4859 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4860 			break;
4861 	} while (!nr_reclaimed);
4862 	if (next_mz)
4863 		css_put(&next_mz->memcg->css);
4864 	return nr_reclaimed;
4865 }
4866 
4867 /**
4868  * mem_cgroup_force_empty_list - clears LRU of a group
4869  * @memcg: group to clear
4870  * @node: NUMA node
4871  * @zid: zone id
4872  * @lru: lru to to clear
4873  *
4874  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4875  * reclaim the pages page themselves - pages are moved to the parent (or root)
4876  * group.
4877  */
4878 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4879 				int node, int zid, enum lru_list lru)
4880 {
4881 	struct lruvec *lruvec;
4882 	unsigned long flags;
4883 	struct list_head *list;
4884 	struct page *busy;
4885 	struct zone *zone;
4886 
4887 	zone = &NODE_DATA(node)->node_zones[zid];
4888 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4889 	list = &lruvec->lists[lru];
4890 
4891 	busy = NULL;
4892 	do {
4893 		struct page_cgroup *pc;
4894 		struct page *page;
4895 
4896 		spin_lock_irqsave(&zone->lru_lock, flags);
4897 		if (list_empty(list)) {
4898 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4899 			break;
4900 		}
4901 		page = list_entry(list->prev, struct page, lru);
4902 		if (busy == page) {
4903 			list_move(&page->lru, list);
4904 			busy = NULL;
4905 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4906 			continue;
4907 		}
4908 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4909 
4910 		pc = lookup_page_cgroup(page);
4911 
4912 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4913 			/* found lock contention or "pc" is obsolete. */
4914 			busy = page;
4915 			cond_resched();
4916 		} else
4917 			busy = NULL;
4918 	} while (!list_empty(list));
4919 }
4920 
4921 /*
4922  * make mem_cgroup's charge to be 0 if there is no task by moving
4923  * all the charges and pages to the parent.
4924  * This enables deleting this mem_cgroup.
4925  *
4926  * Caller is responsible for holding css reference on the memcg.
4927  */
4928 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4929 {
4930 	int node, zid;
4931 	u64 usage;
4932 
4933 	do {
4934 		/* This is for making all *used* pages to be on LRU. */
4935 		lru_add_drain_all();
4936 		drain_all_stock_sync(memcg);
4937 		mem_cgroup_start_move(memcg);
4938 		for_each_node_state(node, N_MEMORY) {
4939 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4940 				enum lru_list lru;
4941 				for_each_lru(lru) {
4942 					mem_cgroup_force_empty_list(memcg,
4943 							node, zid, lru);
4944 				}
4945 			}
4946 		}
4947 		mem_cgroup_end_move(memcg);
4948 		memcg_oom_recover(memcg);
4949 		cond_resched();
4950 
4951 		/*
4952 		 * Kernel memory may not necessarily be trackable to a specific
4953 		 * process. So they are not migrated, and therefore we can't
4954 		 * expect their value to drop to 0 here.
4955 		 * Having res filled up with kmem only is enough.
4956 		 *
4957 		 * This is a safety check because mem_cgroup_force_empty_list
4958 		 * could have raced with mem_cgroup_replace_page_cache callers
4959 		 * so the lru seemed empty but the page could have been added
4960 		 * right after the check. RES_USAGE should be safe as we always
4961 		 * charge before adding to the LRU.
4962 		 */
4963 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4964 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4965 	} while (usage > 0);
4966 }
4967 
4968 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4969 {
4970 	lockdep_assert_held(&memcg_create_mutex);
4971 	/*
4972 	 * The lock does not prevent addition or deletion to the list
4973 	 * of children, but it prevents a new child from being
4974 	 * initialized based on this parent in css_online(), so it's
4975 	 * enough to decide whether hierarchically inherited
4976 	 * attributes can still be changed or not.
4977 	 */
4978 	return memcg->use_hierarchy &&
4979 		!list_empty(&memcg->css.cgroup->children);
4980 }
4981 
4982 /*
4983  * Reclaims as many pages from the given memcg as possible and moves
4984  * the rest to the parent.
4985  *
4986  * Caller is responsible for holding css reference for memcg.
4987  */
4988 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4989 {
4990 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4991 	struct cgroup *cgrp = memcg->css.cgroup;
4992 
4993 	/* returns EBUSY if there is a task or if we come here twice. */
4994 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4995 		return -EBUSY;
4996 
4997 	/* we call try-to-free pages for make this cgroup empty */
4998 	lru_add_drain_all();
4999 	/* try to free all pages in this cgroup */
5000 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5001 		int progress;
5002 
5003 		if (signal_pending(current))
5004 			return -EINTR;
5005 
5006 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5007 						false);
5008 		if (!progress) {
5009 			nr_retries--;
5010 			/* maybe some writeback is necessary */
5011 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5012 		}
5013 
5014 	}
5015 	lru_add_drain();
5016 	mem_cgroup_reparent_charges(memcg);
5017 
5018 	return 0;
5019 }
5020 
5021 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5022 					unsigned int event)
5023 {
5024 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5025 
5026 	if (mem_cgroup_is_root(memcg))
5027 		return -EINVAL;
5028 	return mem_cgroup_force_empty(memcg);
5029 }
5030 
5031 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5032 				     struct cftype *cft)
5033 {
5034 	return mem_cgroup_from_css(css)->use_hierarchy;
5035 }
5036 
5037 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5038 				      struct cftype *cft, u64 val)
5039 {
5040 	int retval = 0;
5041 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5042 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5043 
5044 	mutex_lock(&memcg_create_mutex);
5045 
5046 	if (memcg->use_hierarchy == val)
5047 		goto out;
5048 
5049 	/*
5050 	 * If parent's use_hierarchy is set, we can't make any modifications
5051 	 * in the child subtrees. If it is unset, then the change can
5052 	 * occur, provided the current cgroup has no children.
5053 	 *
5054 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5055 	 * set if there are no children.
5056 	 */
5057 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5058 				(val == 1 || val == 0)) {
5059 		if (list_empty(&memcg->css.cgroup->children))
5060 			memcg->use_hierarchy = val;
5061 		else
5062 			retval = -EBUSY;
5063 	} else
5064 		retval = -EINVAL;
5065 
5066 out:
5067 	mutex_unlock(&memcg_create_mutex);
5068 
5069 	return retval;
5070 }
5071 
5072 
5073 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5074 					       enum mem_cgroup_stat_index idx)
5075 {
5076 	struct mem_cgroup *iter;
5077 	long val = 0;
5078 
5079 	/* Per-cpu values can be negative, use a signed accumulator */
5080 	for_each_mem_cgroup_tree(iter, memcg)
5081 		val += mem_cgroup_read_stat(iter, idx);
5082 
5083 	if (val < 0) /* race ? */
5084 		val = 0;
5085 	return val;
5086 }
5087 
5088 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5089 {
5090 	u64 val;
5091 
5092 	if (!mem_cgroup_is_root(memcg)) {
5093 		if (!swap)
5094 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5095 		else
5096 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5097 	}
5098 
5099 	/*
5100 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5101 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5102 	 */
5103 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5104 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5105 
5106 	if (swap)
5107 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5108 
5109 	return val << PAGE_SHIFT;
5110 }
5111 
5112 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5113 			       struct cftype *cft, struct file *file,
5114 			       char __user *buf, size_t nbytes, loff_t *ppos)
5115 {
5116 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117 	char str[64];
5118 	u64 val;
5119 	int name, len;
5120 	enum res_type type;
5121 
5122 	type = MEMFILE_TYPE(cft->private);
5123 	name = MEMFILE_ATTR(cft->private);
5124 
5125 	switch (type) {
5126 	case _MEM:
5127 		if (name == RES_USAGE)
5128 			val = mem_cgroup_usage(memcg, false);
5129 		else
5130 			val = res_counter_read_u64(&memcg->res, name);
5131 		break;
5132 	case _MEMSWAP:
5133 		if (name == RES_USAGE)
5134 			val = mem_cgroup_usage(memcg, true);
5135 		else
5136 			val = res_counter_read_u64(&memcg->memsw, name);
5137 		break;
5138 	case _KMEM:
5139 		val = res_counter_read_u64(&memcg->kmem, name);
5140 		break;
5141 	default:
5142 		BUG();
5143 	}
5144 
5145 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5146 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5147 }
5148 
5149 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5150 {
5151 	int ret = -EINVAL;
5152 #ifdef CONFIG_MEMCG_KMEM
5153 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5154 	/*
5155 	 * For simplicity, we won't allow this to be disabled.  It also can't
5156 	 * be changed if the cgroup has children already, or if tasks had
5157 	 * already joined.
5158 	 *
5159 	 * If tasks join before we set the limit, a person looking at
5160 	 * kmem.usage_in_bytes will have no way to determine when it took
5161 	 * place, which makes the value quite meaningless.
5162 	 *
5163 	 * After it first became limited, changes in the value of the limit are
5164 	 * of course permitted.
5165 	 */
5166 	mutex_lock(&memcg_create_mutex);
5167 	mutex_lock(&set_limit_mutex);
5168 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5169 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5170 			ret = -EBUSY;
5171 			goto out;
5172 		}
5173 		ret = res_counter_set_limit(&memcg->kmem, val);
5174 		VM_BUG_ON(ret);
5175 
5176 		ret = memcg_update_cache_sizes(memcg);
5177 		if (ret) {
5178 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5179 			goto out;
5180 		}
5181 		static_key_slow_inc(&memcg_kmem_enabled_key);
5182 		/*
5183 		 * setting the active bit after the inc will guarantee no one
5184 		 * starts accounting before all call sites are patched
5185 		 */
5186 		memcg_kmem_set_active(memcg);
5187 	} else
5188 		ret = res_counter_set_limit(&memcg->kmem, val);
5189 out:
5190 	mutex_unlock(&set_limit_mutex);
5191 	mutex_unlock(&memcg_create_mutex);
5192 #endif
5193 	return ret;
5194 }
5195 
5196 #ifdef CONFIG_MEMCG_KMEM
5197 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5198 {
5199 	int ret = 0;
5200 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5201 	if (!parent)
5202 		goto out;
5203 
5204 	memcg->kmem_account_flags = parent->kmem_account_flags;
5205 	/*
5206 	 * When that happen, we need to disable the static branch only on those
5207 	 * memcgs that enabled it. To achieve this, we would be forced to
5208 	 * complicate the code by keeping track of which memcgs were the ones
5209 	 * that actually enabled limits, and which ones got it from its
5210 	 * parents.
5211 	 *
5212 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5213 	 * that is accounted.
5214 	 */
5215 	if (!memcg_kmem_is_active(memcg))
5216 		goto out;
5217 
5218 	/*
5219 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5220 	 * memcg is active already. If the later initialization fails then the
5221 	 * cgroup core triggers the cleanup so we do not have to do it here.
5222 	 */
5223 	static_key_slow_inc(&memcg_kmem_enabled_key);
5224 
5225 	mutex_lock(&set_limit_mutex);
5226 	memcg_stop_kmem_account();
5227 	ret = memcg_update_cache_sizes(memcg);
5228 	memcg_resume_kmem_account();
5229 	mutex_unlock(&set_limit_mutex);
5230 out:
5231 	return ret;
5232 }
5233 #endif /* CONFIG_MEMCG_KMEM */
5234 
5235 /*
5236  * The user of this function is...
5237  * RES_LIMIT.
5238  */
5239 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5240 			    const char *buffer)
5241 {
5242 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5243 	enum res_type type;
5244 	int name;
5245 	unsigned long long val;
5246 	int ret;
5247 
5248 	type = MEMFILE_TYPE(cft->private);
5249 	name = MEMFILE_ATTR(cft->private);
5250 
5251 	switch (name) {
5252 	case RES_LIMIT:
5253 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5254 			ret = -EINVAL;
5255 			break;
5256 		}
5257 		/* This function does all necessary parse...reuse it */
5258 		ret = res_counter_memparse_write_strategy(buffer, &val);
5259 		if (ret)
5260 			break;
5261 		if (type == _MEM)
5262 			ret = mem_cgroup_resize_limit(memcg, val);
5263 		else if (type == _MEMSWAP)
5264 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5265 		else if (type == _KMEM)
5266 			ret = memcg_update_kmem_limit(css, val);
5267 		else
5268 			return -EINVAL;
5269 		break;
5270 	case RES_SOFT_LIMIT:
5271 		ret = res_counter_memparse_write_strategy(buffer, &val);
5272 		if (ret)
5273 			break;
5274 		/*
5275 		 * For memsw, soft limits are hard to implement in terms
5276 		 * of semantics, for now, we support soft limits for
5277 		 * control without swap
5278 		 */
5279 		if (type == _MEM)
5280 			ret = res_counter_set_soft_limit(&memcg->res, val);
5281 		else
5282 			ret = -EINVAL;
5283 		break;
5284 	default:
5285 		ret = -EINVAL; /* should be BUG() ? */
5286 		break;
5287 	}
5288 	return ret;
5289 }
5290 
5291 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5292 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5293 {
5294 	unsigned long long min_limit, min_memsw_limit, tmp;
5295 
5296 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5297 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5298 	if (!memcg->use_hierarchy)
5299 		goto out;
5300 
5301 	while (css_parent(&memcg->css)) {
5302 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5303 		if (!memcg->use_hierarchy)
5304 			break;
5305 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5306 		min_limit = min(min_limit, tmp);
5307 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5308 		min_memsw_limit = min(min_memsw_limit, tmp);
5309 	}
5310 out:
5311 	*mem_limit = min_limit;
5312 	*memsw_limit = min_memsw_limit;
5313 }
5314 
5315 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5316 {
5317 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5318 	int name;
5319 	enum res_type type;
5320 
5321 	type = MEMFILE_TYPE(event);
5322 	name = MEMFILE_ATTR(event);
5323 
5324 	switch (name) {
5325 	case RES_MAX_USAGE:
5326 		if (type == _MEM)
5327 			res_counter_reset_max(&memcg->res);
5328 		else if (type == _MEMSWAP)
5329 			res_counter_reset_max(&memcg->memsw);
5330 		else if (type == _KMEM)
5331 			res_counter_reset_max(&memcg->kmem);
5332 		else
5333 			return -EINVAL;
5334 		break;
5335 	case RES_FAILCNT:
5336 		if (type == _MEM)
5337 			res_counter_reset_failcnt(&memcg->res);
5338 		else if (type == _MEMSWAP)
5339 			res_counter_reset_failcnt(&memcg->memsw);
5340 		else if (type == _KMEM)
5341 			res_counter_reset_failcnt(&memcg->kmem);
5342 		else
5343 			return -EINVAL;
5344 		break;
5345 	}
5346 
5347 	return 0;
5348 }
5349 
5350 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5351 					struct cftype *cft)
5352 {
5353 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5354 }
5355 
5356 #ifdef CONFIG_MMU
5357 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5358 					struct cftype *cft, u64 val)
5359 {
5360 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5361 
5362 	if (val >= (1 << NR_MOVE_TYPE))
5363 		return -EINVAL;
5364 
5365 	/*
5366 	 * No kind of locking is needed in here, because ->can_attach() will
5367 	 * check this value once in the beginning of the process, and then carry
5368 	 * on with stale data. This means that changes to this value will only
5369 	 * affect task migrations starting after the change.
5370 	 */
5371 	memcg->move_charge_at_immigrate = val;
5372 	return 0;
5373 }
5374 #else
5375 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5376 					struct cftype *cft, u64 val)
5377 {
5378 	return -ENOSYS;
5379 }
5380 #endif
5381 
5382 #ifdef CONFIG_NUMA
5383 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5384 				struct cftype *cft, struct seq_file *m)
5385 {
5386 	struct numa_stat {
5387 		const char *name;
5388 		unsigned int lru_mask;
5389 	};
5390 
5391 	static const struct numa_stat stats[] = {
5392 		{ "total", LRU_ALL },
5393 		{ "file", LRU_ALL_FILE },
5394 		{ "anon", LRU_ALL_ANON },
5395 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
5396 	};
5397 	const struct numa_stat *stat;
5398 	int nid;
5399 	unsigned long nr;
5400 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401 
5402 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5403 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5404 		seq_printf(m, "%s=%lu", stat->name, nr);
5405 		for_each_node_state(nid, N_MEMORY) {
5406 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 							  stat->lru_mask);
5408 			seq_printf(m, " N%d=%lu", nid, nr);
5409 		}
5410 		seq_putc(m, '\n');
5411 	}
5412 
5413 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5414 		struct mem_cgroup *iter;
5415 
5416 		nr = 0;
5417 		for_each_mem_cgroup_tree(iter, memcg)
5418 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5419 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5420 		for_each_node_state(nid, N_MEMORY) {
5421 			nr = 0;
5422 			for_each_mem_cgroup_tree(iter, memcg)
5423 				nr += mem_cgroup_node_nr_lru_pages(
5424 					iter, nid, stat->lru_mask);
5425 			seq_printf(m, " N%d=%lu", nid, nr);
5426 		}
5427 		seq_putc(m, '\n');
5428 	}
5429 
5430 	return 0;
5431 }
5432 #endif /* CONFIG_NUMA */
5433 
5434 static inline void mem_cgroup_lru_names_not_uptodate(void)
5435 {
5436 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5437 }
5438 
5439 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5440 				 struct seq_file *m)
5441 {
5442 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443 	struct mem_cgroup *mi;
5444 	unsigned int i;
5445 
5446 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5447 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5448 			continue;
5449 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5450 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5451 	}
5452 
5453 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5454 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5455 			   mem_cgroup_read_events(memcg, i));
5456 
5457 	for (i = 0; i < NR_LRU_LISTS; i++)
5458 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5459 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5460 
5461 	/* Hierarchical information */
5462 	{
5463 		unsigned long long limit, memsw_limit;
5464 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5465 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5466 		if (do_swap_account)
5467 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5468 				   memsw_limit);
5469 	}
5470 
5471 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5472 		long long val = 0;
5473 
5474 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5475 			continue;
5476 		for_each_mem_cgroup_tree(mi, memcg)
5477 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5478 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5479 	}
5480 
5481 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5482 		unsigned long long val = 0;
5483 
5484 		for_each_mem_cgroup_tree(mi, memcg)
5485 			val += mem_cgroup_read_events(mi, i);
5486 		seq_printf(m, "total_%s %llu\n",
5487 			   mem_cgroup_events_names[i], val);
5488 	}
5489 
5490 	for (i = 0; i < NR_LRU_LISTS; i++) {
5491 		unsigned long long val = 0;
5492 
5493 		for_each_mem_cgroup_tree(mi, memcg)
5494 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5495 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5496 	}
5497 
5498 #ifdef CONFIG_DEBUG_VM
5499 	{
5500 		int nid, zid;
5501 		struct mem_cgroup_per_zone *mz;
5502 		struct zone_reclaim_stat *rstat;
5503 		unsigned long recent_rotated[2] = {0, 0};
5504 		unsigned long recent_scanned[2] = {0, 0};
5505 
5506 		for_each_online_node(nid)
5507 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5508 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5509 				rstat = &mz->lruvec.reclaim_stat;
5510 
5511 				recent_rotated[0] += rstat->recent_rotated[0];
5512 				recent_rotated[1] += rstat->recent_rotated[1];
5513 				recent_scanned[0] += rstat->recent_scanned[0];
5514 				recent_scanned[1] += rstat->recent_scanned[1];
5515 			}
5516 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5517 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5518 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5519 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5520 	}
5521 #endif
5522 
5523 	return 0;
5524 }
5525 
5526 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5527 				      struct cftype *cft)
5528 {
5529 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5530 
5531 	return mem_cgroup_swappiness(memcg);
5532 }
5533 
5534 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5535 				       struct cftype *cft, u64 val)
5536 {
5537 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5538 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5539 
5540 	if (val > 100 || !parent)
5541 		return -EINVAL;
5542 
5543 	mutex_lock(&memcg_create_mutex);
5544 
5545 	/* If under hierarchy, only empty-root can set this value */
5546 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5547 		mutex_unlock(&memcg_create_mutex);
5548 		return -EINVAL;
5549 	}
5550 
5551 	memcg->swappiness = val;
5552 
5553 	mutex_unlock(&memcg_create_mutex);
5554 
5555 	return 0;
5556 }
5557 
5558 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5559 {
5560 	struct mem_cgroup_threshold_ary *t;
5561 	u64 usage;
5562 	int i;
5563 
5564 	rcu_read_lock();
5565 	if (!swap)
5566 		t = rcu_dereference(memcg->thresholds.primary);
5567 	else
5568 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5569 
5570 	if (!t)
5571 		goto unlock;
5572 
5573 	usage = mem_cgroup_usage(memcg, swap);
5574 
5575 	/*
5576 	 * current_threshold points to threshold just below or equal to usage.
5577 	 * If it's not true, a threshold was crossed after last
5578 	 * call of __mem_cgroup_threshold().
5579 	 */
5580 	i = t->current_threshold;
5581 
5582 	/*
5583 	 * Iterate backward over array of thresholds starting from
5584 	 * current_threshold and check if a threshold is crossed.
5585 	 * If none of thresholds below usage is crossed, we read
5586 	 * only one element of the array here.
5587 	 */
5588 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5589 		eventfd_signal(t->entries[i].eventfd, 1);
5590 
5591 	/* i = current_threshold + 1 */
5592 	i++;
5593 
5594 	/*
5595 	 * Iterate forward over array of thresholds starting from
5596 	 * current_threshold+1 and check if a threshold is crossed.
5597 	 * If none of thresholds above usage is crossed, we read
5598 	 * only one element of the array here.
5599 	 */
5600 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5601 		eventfd_signal(t->entries[i].eventfd, 1);
5602 
5603 	/* Update current_threshold */
5604 	t->current_threshold = i - 1;
5605 unlock:
5606 	rcu_read_unlock();
5607 }
5608 
5609 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5610 {
5611 	while (memcg) {
5612 		__mem_cgroup_threshold(memcg, false);
5613 		if (do_swap_account)
5614 			__mem_cgroup_threshold(memcg, true);
5615 
5616 		memcg = parent_mem_cgroup(memcg);
5617 	}
5618 }
5619 
5620 static int compare_thresholds(const void *a, const void *b)
5621 {
5622 	const struct mem_cgroup_threshold *_a = a;
5623 	const struct mem_cgroup_threshold *_b = b;
5624 
5625 	if (_a->threshold > _b->threshold)
5626 		return 1;
5627 
5628 	if (_a->threshold < _b->threshold)
5629 		return -1;
5630 
5631 	return 0;
5632 }
5633 
5634 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5635 {
5636 	struct mem_cgroup_eventfd_list *ev;
5637 
5638 	list_for_each_entry(ev, &memcg->oom_notify, list)
5639 		eventfd_signal(ev->eventfd, 1);
5640 	return 0;
5641 }
5642 
5643 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5644 {
5645 	struct mem_cgroup *iter;
5646 
5647 	for_each_mem_cgroup_tree(iter, memcg)
5648 		mem_cgroup_oom_notify_cb(iter);
5649 }
5650 
5651 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5652 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5653 {
5654 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5655 	struct mem_cgroup_thresholds *thresholds;
5656 	struct mem_cgroup_threshold_ary *new;
5657 	enum res_type type = MEMFILE_TYPE(cft->private);
5658 	u64 threshold, usage;
5659 	int i, size, ret;
5660 
5661 	ret = res_counter_memparse_write_strategy(args, &threshold);
5662 	if (ret)
5663 		return ret;
5664 
5665 	mutex_lock(&memcg->thresholds_lock);
5666 
5667 	if (type == _MEM)
5668 		thresholds = &memcg->thresholds;
5669 	else if (type == _MEMSWAP)
5670 		thresholds = &memcg->memsw_thresholds;
5671 	else
5672 		BUG();
5673 
5674 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5675 
5676 	/* Check if a threshold crossed before adding a new one */
5677 	if (thresholds->primary)
5678 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5679 
5680 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5681 
5682 	/* Allocate memory for new array of thresholds */
5683 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5684 			GFP_KERNEL);
5685 	if (!new) {
5686 		ret = -ENOMEM;
5687 		goto unlock;
5688 	}
5689 	new->size = size;
5690 
5691 	/* Copy thresholds (if any) to new array */
5692 	if (thresholds->primary) {
5693 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5694 				sizeof(struct mem_cgroup_threshold));
5695 	}
5696 
5697 	/* Add new threshold */
5698 	new->entries[size - 1].eventfd = eventfd;
5699 	new->entries[size - 1].threshold = threshold;
5700 
5701 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5702 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5703 			compare_thresholds, NULL);
5704 
5705 	/* Find current threshold */
5706 	new->current_threshold = -1;
5707 	for (i = 0; i < size; i++) {
5708 		if (new->entries[i].threshold <= usage) {
5709 			/*
5710 			 * new->current_threshold will not be used until
5711 			 * rcu_assign_pointer(), so it's safe to increment
5712 			 * it here.
5713 			 */
5714 			++new->current_threshold;
5715 		} else
5716 			break;
5717 	}
5718 
5719 	/* Free old spare buffer and save old primary buffer as spare */
5720 	kfree(thresholds->spare);
5721 	thresholds->spare = thresholds->primary;
5722 
5723 	rcu_assign_pointer(thresholds->primary, new);
5724 
5725 	/* To be sure that nobody uses thresholds */
5726 	synchronize_rcu();
5727 
5728 unlock:
5729 	mutex_unlock(&memcg->thresholds_lock);
5730 
5731 	return ret;
5732 }
5733 
5734 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5735 	struct cftype *cft, struct eventfd_ctx *eventfd)
5736 {
5737 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5738 	struct mem_cgroup_thresholds *thresholds;
5739 	struct mem_cgroup_threshold_ary *new;
5740 	enum res_type type = MEMFILE_TYPE(cft->private);
5741 	u64 usage;
5742 	int i, j, size;
5743 
5744 	mutex_lock(&memcg->thresholds_lock);
5745 	if (type == _MEM)
5746 		thresholds = &memcg->thresholds;
5747 	else if (type == _MEMSWAP)
5748 		thresholds = &memcg->memsw_thresholds;
5749 	else
5750 		BUG();
5751 
5752 	if (!thresholds->primary)
5753 		goto unlock;
5754 
5755 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5756 
5757 	/* Check if a threshold crossed before removing */
5758 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5759 
5760 	/* Calculate new number of threshold */
5761 	size = 0;
5762 	for (i = 0; i < thresholds->primary->size; i++) {
5763 		if (thresholds->primary->entries[i].eventfd != eventfd)
5764 			size++;
5765 	}
5766 
5767 	new = thresholds->spare;
5768 
5769 	/* Set thresholds array to NULL if we don't have thresholds */
5770 	if (!size) {
5771 		kfree(new);
5772 		new = NULL;
5773 		goto swap_buffers;
5774 	}
5775 
5776 	new->size = size;
5777 
5778 	/* Copy thresholds and find current threshold */
5779 	new->current_threshold = -1;
5780 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5781 		if (thresholds->primary->entries[i].eventfd == eventfd)
5782 			continue;
5783 
5784 		new->entries[j] = thresholds->primary->entries[i];
5785 		if (new->entries[j].threshold <= usage) {
5786 			/*
5787 			 * new->current_threshold will not be used
5788 			 * until rcu_assign_pointer(), so it's safe to increment
5789 			 * it here.
5790 			 */
5791 			++new->current_threshold;
5792 		}
5793 		j++;
5794 	}
5795 
5796 swap_buffers:
5797 	/* Swap primary and spare array */
5798 	thresholds->spare = thresholds->primary;
5799 	/* If all events are unregistered, free the spare array */
5800 	if (!new) {
5801 		kfree(thresholds->spare);
5802 		thresholds->spare = NULL;
5803 	}
5804 
5805 	rcu_assign_pointer(thresholds->primary, new);
5806 
5807 	/* To be sure that nobody uses thresholds */
5808 	synchronize_rcu();
5809 unlock:
5810 	mutex_unlock(&memcg->thresholds_lock);
5811 }
5812 
5813 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5814 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5815 {
5816 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5817 	struct mem_cgroup_eventfd_list *event;
5818 	enum res_type type = MEMFILE_TYPE(cft->private);
5819 
5820 	BUG_ON(type != _OOM_TYPE);
5821 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5822 	if (!event)
5823 		return -ENOMEM;
5824 
5825 	spin_lock(&memcg_oom_lock);
5826 
5827 	event->eventfd = eventfd;
5828 	list_add(&event->list, &memcg->oom_notify);
5829 
5830 	/* already in OOM ? */
5831 	if (atomic_read(&memcg->under_oom))
5832 		eventfd_signal(eventfd, 1);
5833 	spin_unlock(&memcg_oom_lock);
5834 
5835 	return 0;
5836 }
5837 
5838 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5839 	struct cftype *cft, struct eventfd_ctx *eventfd)
5840 {
5841 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5842 	struct mem_cgroup_eventfd_list *ev, *tmp;
5843 	enum res_type type = MEMFILE_TYPE(cft->private);
5844 
5845 	BUG_ON(type != _OOM_TYPE);
5846 
5847 	spin_lock(&memcg_oom_lock);
5848 
5849 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5850 		if (ev->eventfd == eventfd) {
5851 			list_del(&ev->list);
5852 			kfree(ev);
5853 		}
5854 	}
5855 
5856 	spin_unlock(&memcg_oom_lock);
5857 }
5858 
5859 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5860 	struct cftype *cft,  struct cgroup_map_cb *cb)
5861 {
5862 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5863 
5864 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5865 
5866 	if (atomic_read(&memcg->under_oom))
5867 		cb->fill(cb, "under_oom", 1);
5868 	else
5869 		cb->fill(cb, "under_oom", 0);
5870 	return 0;
5871 }
5872 
5873 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5874 	struct cftype *cft, u64 val)
5875 {
5876 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5878 
5879 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5880 	if (!parent || !((val == 0) || (val == 1)))
5881 		return -EINVAL;
5882 
5883 	mutex_lock(&memcg_create_mutex);
5884 	/* oom-kill-disable is a flag for subhierarchy. */
5885 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5886 		mutex_unlock(&memcg_create_mutex);
5887 		return -EINVAL;
5888 	}
5889 	memcg->oom_kill_disable = val;
5890 	if (!val)
5891 		memcg_oom_recover(memcg);
5892 	mutex_unlock(&memcg_create_mutex);
5893 	return 0;
5894 }
5895 
5896 #ifdef CONFIG_MEMCG_KMEM
5897 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5898 {
5899 	int ret;
5900 
5901 	memcg->kmemcg_id = -1;
5902 	ret = memcg_propagate_kmem(memcg);
5903 	if (ret)
5904 		return ret;
5905 
5906 	return mem_cgroup_sockets_init(memcg, ss);
5907 }
5908 
5909 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5910 {
5911 	mem_cgroup_sockets_destroy(memcg);
5912 }
5913 
5914 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5915 {
5916 	if (!memcg_kmem_is_active(memcg))
5917 		return;
5918 
5919 	/*
5920 	 * kmem charges can outlive the cgroup. In the case of slab
5921 	 * pages, for instance, a page contain objects from various
5922 	 * processes. As we prevent from taking a reference for every
5923 	 * such allocation we have to be careful when doing uncharge
5924 	 * (see memcg_uncharge_kmem) and here during offlining.
5925 	 *
5926 	 * The idea is that that only the _last_ uncharge which sees
5927 	 * the dead memcg will drop the last reference. An additional
5928 	 * reference is taken here before the group is marked dead
5929 	 * which is then paired with css_put during uncharge resp. here.
5930 	 *
5931 	 * Although this might sound strange as this path is called from
5932 	 * css_offline() when the referencemight have dropped down to 0
5933 	 * and shouldn't be incremented anymore (css_tryget would fail)
5934 	 * we do not have other options because of the kmem allocations
5935 	 * lifetime.
5936 	 */
5937 	css_get(&memcg->css);
5938 
5939 	memcg_kmem_mark_dead(memcg);
5940 
5941 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5942 		return;
5943 
5944 	if (memcg_kmem_test_and_clear_dead(memcg))
5945 		css_put(&memcg->css);
5946 }
5947 #else
5948 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5949 {
5950 	return 0;
5951 }
5952 
5953 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5954 {
5955 }
5956 
5957 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5958 {
5959 }
5960 #endif
5961 
5962 static struct cftype mem_cgroup_files[] = {
5963 	{
5964 		.name = "usage_in_bytes",
5965 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5966 		.read = mem_cgroup_read,
5967 		.register_event = mem_cgroup_usage_register_event,
5968 		.unregister_event = mem_cgroup_usage_unregister_event,
5969 	},
5970 	{
5971 		.name = "max_usage_in_bytes",
5972 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5973 		.trigger = mem_cgroup_reset,
5974 		.read = mem_cgroup_read,
5975 	},
5976 	{
5977 		.name = "limit_in_bytes",
5978 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5979 		.write_string = mem_cgroup_write,
5980 		.read = mem_cgroup_read,
5981 	},
5982 	{
5983 		.name = "soft_limit_in_bytes",
5984 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5985 		.write_string = mem_cgroup_write,
5986 		.read = mem_cgroup_read,
5987 	},
5988 	{
5989 		.name = "failcnt",
5990 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5991 		.trigger = mem_cgroup_reset,
5992 		.read = mem_cgroup_read,
5993 	},
5994 	{
5995 		.name = "stat",
5996 		.read_seq_string = memcg_stat_show,
5997 	},
5998 	{
5999 		.name = "force_empty",
6000 		.trigger = mem_cgroup_force_empty_write,
6001 	},
6002 	{
6003 		.name = "use_hierarchy",
6004 		.flags = CFTYPE_INSANE,
6005 		.write_u64 = mem_cgroup_hierarchy_write,
6006 		.read_u64 = mem_cgroup_hierarchy_read,
6007 	},
6008 	{
6009 		.name = "swappiness",
6010 		.read_u64 = mem_cgroup_swappiness_read,
6011 		.write_u64 = mem_cgroup_swappiness_write,
6012 	},
6013 	{
6014 		.name = "move_charge_at_immigrate",
6015 		.read_u64 = mem_cgroup_move_charge_read,
6016 		.write_u64 = mem_cgroup_move_charge_write,
6017 	},
6018 	{
6019 		.name = "oom_control",
6020 		.read_map = mem_cgroup_oom_control_read,
6021 		.write_u64 = mem_cgroup_oom_control_write,
6022 		.register_event = mem_cgroup_oom_register_event,
6023 		.unregister_event = mem_cgroup_oom_unregister_event,
6024 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6025 	},
6026 	{
6027 		.name = "pressure_level",
6028 		.register_event = vmpressure_register_event,
6029 		.unregister_event = vmpressure_unregister_event,
6030 	},
6031 #ifdef CONFIG_NUMA
6032 	{
6033 		.name = "numa_stat",
6034 		.read_seq_string = memcg_numa_stat_show,
6035 	},
6036 #endif
6037 #ifdef CONFIG_MEMCG_KMEM
6038 	{
6039 		.name = "kmem.limit_in_bytes",
6040 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6041 		.write_string = mem_cgroup_write,
6042 		.read = mem_cgroup_read,
6043 	},
6044 	{
6045 		.name = "kmem.usage_in_bytes",
6046 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6047 		.read = mem_cgroup_read,
6048 	},
6049 	{
6050 		.name = "kmem.failcnt",
6051 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6052 		.trigger = mem_cgroup_reset,
6053 		.read = mem_cgroup_read,
6054 	},
6055 	{
6056 		.name = "kmem.max_usage_in_bytes",
6057 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6058 		.trigger = mem_cgroup_reset,
6059 		.read = mem_cgroup_read,
6060 	},
6061 #ifdef CONFIG_SLABINFO
6062 	{
6063 		.name = "kmem.slabinfo",
6064 		.read_seq_string = mem_cgroup_slabinfo_read,
6065 	},
6066 #endif
6067 #endif
6068 	{ },	/* terminate */
6069 };
6070 
6071 #ifdef CONFIG_MEMCG_SWAP
6072 static struct cftype memsw_cgroup_files[] = {
6073 	{
6074 		.name = "memsw.usage_in_bytes",
6075 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6076 		.read = mem_cgroup_read,
6077 		.register_event = mem_cgroup_usage_register_event,
6078 		.unregister_event = mem_cgroup_usage_unregister_event,
6079 	},
6080 	{
6081 		.name = "memsw.max_usage_in_bytes",
6082 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 		.trigger = mem_cgroup_reset,
6084 		.read = mem_cgroup_read,
6085 	},
6086 	{
6087 		.name = "memsw.limit_in_bytes",
6088 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 		.write_string = mem_cgroup_write,
6090 		.read = mem_cgroup_read,
6091 	},
6092 	{
6093 		.name = "memsw.failcnt",
6094 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 		.trigger = mem_cgroup_reset,
6096 		.read = mem_cgroup_read,
6097 	},
6098 	{ },	/* terminate */
6099 };
6100 #endif
6101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6102 {
6103 	struct mem_cgroup_per_node *pn;
6104 	struct mem_cgroup_per_zone *mz;
6105 	int zone, tmp = node;
6106 	/*
6107 	 * This routine is called against possible nodes.
6108 	 * But it's BUG to call kmalloc() against offline node.
6109 	 *
6110 	 * TODO: this routine can waste much memory for nodes which will
6111 	 *       never be onlined. It's better to use memory hotplug callback
6112 	 *       function.
6113 	 */
6114 	if (!node_state(node, N_NORMAL_MEMORY))
6115 		tmp = -1;
6116 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6117 	if (!pn)
6118 		return 1;
6119 
6120 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6121 		mz = &pn->zoneinfo[zone];
6122 		lruvec_init(&mz->lruvec);
6123 		mz->usage_in_excess = 0;
6124 		mz->on_tree = false;
6125 		mz->memcg = memcg;
6126 	}
6127 	memcg->nodeinfo[node] = pn;
6128 	return 0;
6129 }
6130 
6131 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6132 {
6133 	kfree(memcg->nodeinfo[node]);
6134 }
6135 
6136 static struct mem_cgroup *mem_cgroup_alloc(void)
6137 {
6138 	struct mem_cgroup *memcg;
6139 	size_t size = memcg_size();
6140 
6141 	/* Can be very big if nr_node_ids is very big */
6142 	if (size < PAGE_SIZE)
6143 		memcg = kzalloc(size, GFP_KERNEL);
6144 	else
6145 		memcg = vzalloc(size);
6146 
6147 	if (!memcg)
6148 		return NULL;
6149 
6150 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6151 	if (!memcg->stat)
6152 		goto out_free;
6153 	spin_lock_init(&memcg->pcp_counter_lock);
6154 	return memcg;
6155 
6156 out_free:
6157 	if (size < PAGE_SIZE)
6158 		kfree(memcg);
6159 	else
6160 		vfree(memcg);
6161 	return NULL;
6162 }
6163 
6164 /*
6165  * At destroying mem_cgroup, references from swap_cgroup can remain.
6166  * (scanning all at force_empty is too costly...)
6167  *
6168  * Instead of clearing all references at force_empty, we remember
6169  * the number of reference from swap_cgroup and free mem_cgroup when
6170  * it goes down to 0.
6171  *
6172  * Removal of cgroup itself succeeds regardless of refs from swap.
6173  */
6174 
6175 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6176 {
6177 	int node;
6178 	size_t size = memcg_size();
6179 
6180 	mem_cgroup_remove_from_trees(memcg);
6181 
6182 	for_each_node(node)
6183 		free_mem_cgroup_per_zone_info(memcg, node);
6184 
6185 	free_percpu(memcg->stat);
6186 
6187 	/*
6188 	 * We need to make sure that (at least for now), the jump label
6189 	 * destruction code runs outside of the cgroup lock. This is because
6190 	 * get_online_cpus(), which is called from the static_branch update,
6191 	 * can't be called inside the cgroup_lock. cpusets are the ones
6192 	 * enforcing this dependency, so if they ever change, we might as well.
6193 	 *
6194 	 * schedule_work() will guarantee this happens. Be careful if you need
6195 	 * to move this code around, and make sure it is outside
6196 	 * the cgroup_lock.
6197 	 */
6198 	disarm_static_keys(memcg);
6199 	if (size < PAGE_SIZE)
6200 		kfree(memcg);
6201 	else
6202 		vfree(memcg);
6203 }
6204 
6205 /*
6206  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6207  */
6208 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6209 {
6210 	if (!memcg->res.parent)
6211 		return NULL;
6212 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6213 }
6214 EXPORT_SYMBOL(parent_mem_cgroup);
6215 
6216 static void __init mem_cgroup_soft_limit_tree_init(void)
6217 {
6218 	struct mem_cgroup_tree_per_node *rtpn;
6219 	struct mem_cgroup_tree_per_zone *rtpz;
6220 	int tmp, node, zone;
6221 
6222 	for_each_node(node) {
6223 		tmp = node;
6224 		if (!node_state(node, N_NORMAL_MEMORY))
6225 			tmp = -1;
6226 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6227 		BUG_ON(!rtpn);
6228 
6229 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6230 
6231 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6232 			rtpz = &rtpn->rb_tree_per_zone[zone];
6233 			rtpz->rb_root = RB_ROOT;
6234 			spin_lock_init(&rtpz->lock);
6235 		}
6236 	}
6237 }
6238 
6239 static struct cgroup_subsys_state * __ref
6240 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6241 {
6242 	struct mem_cgroup *memcg;
6243 	long error = -ENOMEM;
6244 	int node;
6245 
6246 	memcg = mem_cgroup_alloc();
6247 	if (!memcg)
6248 		return ERR_PTR(error);
6249 
6250 	for_each_node(node)
6251 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6252 			goto free_out;
6253 
6254 	/* root ? */
6255 	if (parent_css == NULL) {
6256 		root_mem_cgroup = memcg;
6257 		res_counter_init(&memcg->res, NULL);
6258 		res_counter_init(&memcg->memsw, NULL);
6259 		res_counter_init(&memcg->kmem, NULL);
6260 	}
6261 
6262 	memcg->last_scanned_node = MAX_NUMNODES;
6263 	INIT_LIST_HEAD(&memcg->oom_notify);
6264 	memcg->move_charge_at_immigrate = 0;
6265 	mutex_init(&memcg->thresholds_lock);
6266 	spin_lock_init(&memcg->move_lock);
6267 	vmpressure_init(&memcg->vmpressure);
6268 
6269 	return &memcg->css;
6270 
6271 free_out:
6272 	__mem_cgroup_free(memcg);
6273 	return ERR_PTR(error);
6274 }
6275 
6276 static int
6277 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6278 {
6279 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6280 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6281 	int error = 0;
6282 
6283 	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6284 		return -ENOSPC;
6285 
6286 	if (!parent)
6287 		return 0;
6288 
6289 	mutex_lock(&memcg_create_mutex);
6290 
6291 	memcg->use_hierarchy = parent->use_hierarchy;
6292 	memcg->oom_kill_disable = parent->oom_kill_disable;
6293 	memcg->swappiness = mem_cgroup_swappiness(parent);
6294 
6295 	if (parent->use_hierarchy) {
6296 		res_counter_init(&memcg->res, &parent->res);
6297 		res_counter_init(&memcg->memsw, &parent->memsw);
6298 		res_counter_init(&memcg->kmem, &parent->kmem);
6299 
6300 		/*
6301 		 * No need to take a reference to the parent because cgroup
6302 		 * core guarantees its existence.
6303 		 */
6304 	} else {
6305 		res_counter_init(&memcg->res, NULL);
6306 		res_counter_init(&memcg->memsw, NULL);
6307 		res_counter_init(&memcg->kmem, NULL);
6308 		/*
6309 		 * Deeper hierachy with use_hierarchy == false doesn't make
6310 		 * much sense so let cgroup subsystem know about this
6311 		 * unfortunate state in our controller.
6312 		 */
6313 		if (parent != root_mem_cgroup)
6314 			mem_cgroup_subsys.broken_hierarchy = true;
6315 	}
6316 
6317 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6318 	mutex_unlock(&memcg_create_mutex);
6319 	return error;
6320 }
6321 
6322 /*
6323  * Announce all parents that a group from their hierarchy is gone.
6324  */
6325 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6326 {
6327 	struct mem_cgroup *parent = memcg;
6328 
6329 	while ((parent = parent_mem_cgroup(parent)))
6330 		mem_cgroup_iter_invalidate(parent);
6331 
6332 	/*
6333 	 * if the root memcg is not hierarchical we have to check it
6334 	 * explicitely.
6335 	 */
6336 	if (!root_mem_cgroup->use_hierarchy)
6337 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6338 }
6339 
6340 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6341 {
6342 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6343 
6344 	kmem_cgroup_css_offline(memcg);
6345 
6346 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6347 	mem_cgroup_reparent_charges(memcg);
6348 	mem_cgroup_destroy_all_caches(memcg);
6349 	vmpressure_cleanup(&memcg->vmpressure);
6350 }
6351 
6352 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6353 {
6354 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6355 
6356 	memcg_destroy_kmem(memcg);
6357 	__mem_cgroup_free(memcg);
6358 }
6359 
6360 #ifdef CONFIG_MMU
6361 /* Handlers for move charge at task migration. */
6362 #define PRECHARGE_COUNT_AT_ONCE	256
6363 static int mem_cgroup_do_precharge(unsigned long count)
6364 {
6365 	int ret = 0;
6366 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6367 	struct mem_cgroup *memcg = mc.to;
6368 
6369 	if (mem_cgroup_is_root(memcg)) {
6370 		mc.precharge += count;
6371 		/* we don't need css_get for root */
6372 		return ret;
6373 	}
6374 	/* try to charge at once */
6375 	if (count > 1) {
6376 		struct res_counter *dummy;
6377 		/*
6378 		 * "memcg" cannot be under rmdir() because we've already checked
6379 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6380 		 * are still under the same cgroup_mutex. So we can postpone
6381 		 * css_get().
6382 		 */
6383 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6384 			goto one_by_one;
6385 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6386 						PAGE_SIZE * count, &dummy)) {
6387 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6388 			goto one_by_one;
6389 		}
6390 		mc.precharge += count;
6391 		return ret;
6392 	}
6393 one_by_one:
6394 	/* fall back to one by one charge */
6395 	while (count--) {
6396 		if (signal_pending(current)) {
6397 			ret = -EINTR;
6398 			break;
6399 		}
6400 		if (!batch_count--) {
6401 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6402 			cond_resched();
6403 		}
6404 		ret = __mem_cgroup_try_charge(NULL,
6405 					GFP_KERNEL, 1, &memcg, false);
6406 		if (ret)
6407 			/* mem_cgroup_clear_mc() will do uncharge later */
6408 			return ret;
6409 		mc.precharge++;
6410 	}
6411 	return ret;
6412 }
6413 
6414 /**
6415  * get_mctgt_type - get target type of moving charge
6416  * @vma: the vma the pte to be checked belongs
6417  * @addr: the address corresponding to the pte to be checked
6418  * @ptent: the pte to be checked
6419  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6420  *
6421  * Returns
6422  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6423  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6424  *     move charge. if @target is not NULL, the page is stored in target->page
6425  *     with extra refcnt got(Callers should handle it).
6426  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6427  *     target for charge migration. if @target is not NULL, the entry is stored
6428  *     in target->ent.
6429  *
6430  * Called with pte lock held.
6431  */
6432 union mc_target {
6433 	struct page	*page;
6434 	swp_entry_t	ent;
6435 };
6436 
6437 enum mc_target_type {
6438 	MC_TARGET_NONE = 0,
6439 	MC_TARGET_PAGE,
6440 	MC_TARGET_SWAP,
6441 };
6442 
6443 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6444 						unsigned long addr, pte_t ptent)
6445 {
6446 	struct page *page = vm_normal_page(vma, addr, ptent);
6447 
6448 	if (!page || !page_mapped(page))
6449 		return NULL;
6450 	if (PageAnon(page)) {
6451 		/* we don't move shared anon */
6452 		if (!move_anon())
6453 			return NULL;
6454 	} else if (!move_file())
6455 		/* we ignore mapcount for file pages */
6456 		return NULL;
6457 	if (!get_page_unless_zero(page))
6458 		return NULL;
6459 
6460 	return page;
6461 }
6462 
6463 #ifdef CONFIG_SWAP
6464 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6465 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6466 {
6467 	struct page *page = NULL;
6468 	swp_entry_t ent = pte_to_swp_entry(ptent);
6469 
6470 	if (!move_anon() || non_swap_entry(ent))
6471 		return NULL;
6472 	/*
6473 	 * Because lookup_swap_cache() updates some statistics counter,
6474 	 * we call find_get_page() with swapper_space directly.
6475 	 */
6476 	page = find_get_page(swap_address_space(ent), ent.val);
6477 	if (do_swap_account)
6478 		entry->val = ent.val;
6479 
6480 	return page;
6481 }
6482 #else
6483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6484 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6485 {
6486 	return NULL;
6487 }
6488 #endif
6489 
6490 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6491 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6492 {
6493 	struct page *page = NULL;
6494 	struct address_space *mapping;
6495 	pgoff_t pgoff;
6496 
6497 	if (!vma->vm_file) /* anonymous vma */
6498 		return NULL;
6499 	if (!move_file())
6500 		return NULL;
6501 
6502 	mapping = vma->vm_file->f_mapping;
6503 	if (pte_none(ptent))
6504 		pgoff = linear_page_index(vma, addr);
6505 	else /* pte_file(ptent) is true */
6506 		pgoff = pte_to_pgoff(ptent);
6507 
6508 	/* page is moved even if it's not RSS of this task(page-faulted). */
6509 	page = find_get_page(mapping, pgoff);
6510 
6511 #ifdef CONFIG_SWAP
6512 	/* shmem/tmpfs may report page out on swap: account for that too. */
6513 	if (radix_tree_exceptional_entry(page)) {
6514 		swp_entry_t swap = radix_to_swp_entry(page);
6515 		if (do_swap_account)
6516 			*entry = swap;
6517 		page = find_get_page(swap_address_space(swap), swap.val);
6518 	}
6519 #endif
6520 	return page;
6521 }
6522 
6523 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6524 		unsigned long addr, pte_t ptent, union mc_target *target)
6525 {
6526 	struct page *page = NULL;
6527 	struct page_cgroup *pc;
6528 	enum mc_target_type ret = MC_TARGET_NONE;
6529 	swp_entry_t ent = { .val = 0 };
6530 
6531 	if (pte_present(ptent))
6532 		page = mc_handle_present_pte(vma, addr, ptent);
6533 	else if (is_swap_pte(ptent))
6534 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6535 	else if (pte_none(ptent) || pte_file(ptent))
6536 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6537 
6538 	if (!page && !ent.val)
6539 		return ret;
6540 	if (page) {
6541 		pc = lookup_page_cgroup(page);
6542 		/*
6543 		 * Do only loose check w/o page_cgroup lock.
6544 		 * mem_cgroup_move_account() checks the pc is valid or not under
6545 		 * the lock.
6546 		 */
6547 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6548 			ret = MC_TARGET_PAGE;
6549 			if (target)
6550 				target->page = page;
6551 		}
6552 		if (!ret || !target)
6553 			put_page(page);
6554 	}
6555 	/* There is a swap entry and a page doesn't exist or isn't charged */
6556 	if (ent.val && !ret &&
6557 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6558 		ret = MC_TARGET_SWAP;
6559 		if (target)
6560 			target->ent = ent;
6561 	}
6562 	return ret;
6563 }
6564 
6565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6566 /*
6567  * We don't consider swapping or file mapped pages because THP does not
6568  * support them for now.
6569  * Caller should make sure that pmd_trans_huge(pmd) is true.
6570  */
6571 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6572 		unsigned long addr, pmd_t pmd, union mc_target *target)
6573 {
6574 	struct page *page = NULL;
6575 	struct page_cgroup *pc;
6576 	enum mc_target_type ret = MC_TARGET_NONE;
6577 
6578 	page = pmd_page(pmd);
6579 	VM_BUG_ON(!page || !PageHead(page));
6580 	if (!move_anon())
6581 		return ret;
6582 	pc = lookup_page_cgroup(page);
6583 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6584 		ret = MC_TARGET_PAGE;
6585 		if (target) {
6586 			get_page(page);
6587 			target->page = page;
6588 		}
6589 	}
6590 	return ret;
6591 }
6592 #else
6593 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6594 		unsigned long addr, pmd_t pmd, union mc_target *target)
6595 {
6596 	return MC_TARGET_NONE;
6597 }
6598 #endif
6599 
6600 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6601 					unsigned long addr, unsigned long end,
6602 					struct mm_walk *walk)
6603 {
6604 	struct vm_area_struct *vma = walk->private;
6605 	pte_t *pte;
6606 	spinlock_t *ptl;
6607 
6608 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6609 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6610 			mc.precharge += HPAGE_PMD_NR;
6611 		spin_unlock(ptl);
6612 		return 0;
6613 	}
6614 
6615 	if (pmd_trans_unstable(pmd))
6616 		return 0;
6617 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6618 	for (; addr != end; pte++, addr += PAGE_SIZE)
6619 		if (get_mctgt_type(vma, addr, *pte, NULL))
6620 			mc.precharge++;	/* increment precharge temporarily */
6621 	pte_unmap_unlock(pte - 1, ptl);
6622 	cond_resched();
6623 
6624 	return 0;
6625 }
6626 
6627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6628 {
6629 	unsigned long precharge;
6630 	struct vm_area_struct *vma;
6631 
6632 	down_read(&mm->mmap_sem);
6633 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6634 		struct mm_walk mem_cgroup_count_precharge_walk = {
6635 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6636 			.mm = mm,
6637 			.private = vma,
6638 		};
6639 		if (is_vm_hugetlb_page(vma))
6640 			continue;
6641 		walk_page_range(vma->vm_start, vma->vm_end,
6642 					&mem_cgroup_count_precharge_walk);
6643 	}
6644 	up_read(&mm->mmap_sem);
6645 
6646 	precharge = mc.precharge;
6647 	mc.precharge = 0;
6648 
6649 	return precharge;
6650 }
6651 
6652 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6653 {
6654 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6655 
6656 	VM_BUG_ON(mc.moving_task);
6657 	mc.moving_task = current;
6658 	return mem_cgroup_do_precharge(precharge);
6659 }
6660 
6661 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6662 static void __mem_cgroup_clear_mc(void)
6663 {
6664 	struct mem_cgroup *from = mc.from;
6665 	struct mem_cgroup *to = mc.to;
6666 	int i;
6667 
6668 	/* we must uncharge all the leftover precharges from mc.to */
6669 	if (mc.precharge) {
6670 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6671 		mc.precharge = 0;
6672 	}
6673 	/*
6674 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6675 	 * we must uncharge here.
6676 	 */
6677 	if (mc.moved_charge) {
6678 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6679 		mc.moved_charge = 0;
6680 	}
6681 	/* we must fixup refcnts and charges */
6682 	if (mc.moved_swap) {
6683 		/* uncharge swap account from the old cgroup */
6684 		if (!mem_cgroup_is_root(mc.from))
6685 			res_counter_uncharge(&mc.from->memsw,
6686 						PAGE_SIZE * mc.moved_swap);
6687 
6688 		for (i = 0; i < mc.moved_swap; i++)
6689 			css_put(&mc.from->css);
6690 
6691 		if (!mem_cgroup_is_root(mc.to)) {
6692 			/*
6693 			 * we charged both to->res and to->memsw, so we should
6694 			 * uncharge to->res.
6695 			 */
6696 			res_counter_uncharge(&mc.to->res,
6697 						PAGE_SIZE * mc.moved_swap);
6698 		}
6699 		/* we've already done css_get(mc.to) */
6700 		mc.moved_swap = 0;
6701 	}
6702 	memcg_oom_recover(from);
6703 	memcg_oom_recover(to);
6704 	wake_up_all(&mc.waitq);
6705 }
6706 
6707 static void mem_cgroup_clear_mc(void)
6708 {
6709 	struct mem_cgroup *from = mc.from;
6710 
6711 	/*
6712 	 * we must clear moving_task before waking up waiters at the end of
6713 	 * task migration.
6714 	 */
6715 	mc.moving_task = NULL;
6716 	__mem_cgroup_clear_mc();
6717 	spin_lock(&mc.lock);
6718 	mc.from = NULL;
6719 	mc.to = NULL;
6720 	spin_unlock(&mc.lock);
6721 	mem_cgroup_end_move(from);
6722 }
6723 
6724 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6725 				 struct cgroup_taskset *tset)
6726 {
6727 	struct task_struct *p = cgroup_taskset_first(tset);
6728 	int ret = 0;
6729 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6730 	unsigned long move_charge_at_immigrate;
6731 
6732 	/*
6733 	 * We are now commited to this value whatever it is. Changes in this
6734 	 * tunable will only affect upcoming migrations, not the current one.
6735 	 * So we need to save it, and keep it going.
6736 	 */
6737 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6738 	if (move_charge_at_immigrate) {
6739 		struct mm_struct *mm;
6740 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6741 
6742 		VM_BUG_ON(from == memcg);
6743 
6744 		mm = get_task_mm(p);
6745 		if (!mm)
6746 			return 0;
6747 		/* We move charges only when we move a owner of the mm */
6748 		if (mm->owner == p) {
6749 			VM_BUG_ON(mc.from);
6750 			VM_BUG_ON(mc.to);
6751 			VM_BUG_ON(mc.precharge);
6752 			VM_BUG_ON(mc.moved_charge);
6753 			VM_BUG_ON(mc.moved_swap);
6754 			mem_cgroup_start_move(from);
6755 			spin_lock(&mc.lock);
6756 			mc.from = from;
6757 			mc.to = memcg;
6758 			mc.immigrate_flags = move_charge_at_immigrate;
6759 			spin_unlock(&mc.lock);
6760 			/* We set mc.moving_task later */
6761 
6762 			ret = mem_cgroup_precharge_mc(mm);
6763 			if (ret)
6764 				mem_cgroup_clear_mc();
6765 		}
6766 		mmput(mm);
6767 	}
6768 	return ret;
6769 }
6770 
6771 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6772 				     struct cgroup_taskset *tset)
6773 {
6774 	mem_cgroup_clear_mc();
6775 }
6776 
6777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6778 				unsigned long addr, unsigned long end,
6779 				struct mm_walk *walk)
6780 {
6781 	int ret = 0;
6782 	struct vm_area_struct *vma = walk->private;
6783 	pte_t *pte;
6784 	spinlock_t *ptl;
6785 	enum mc_target_type target_type;
6786 	union mc_target target;
6787 	struct page *page;
6788 	struct page_cgroup *pc;
6789 
6790 	/*
6791 	 * We don't take compound_lock() here but no race with splitting thp
6792 	 * happens because:
6793 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6794 	 *    under splitting, which means there's no concurrent thp split,
6795 	 *  - if another thread runs into split_huge_page() just after we
6796 	 *    entered this if-block, the thread must wait for page table lock
6797 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6798 	 *    part of thp split is not executed yet.
6799 	 */
6800 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6801 		if (mc.precharge < HPAGE_PMD_NR) {
6802 			spin_unlock(ptl);
6803 			return 0;
6804 		}
6805 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6806 		if (target_type == MC_TARGET_PAGE) {
6807 			page = target.page;
6808 			if (!isolate_lru_page(page)) {
6809 				pc = lookup_page_cgroup(page);
6810 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6811 							pc, mc.from, mc.to)) {
6812 					mc.precharge -= HPAGE_PMD_NR;
6813 					mc.moved_charge += HPAGE_PMD_NR;
6814 				}
6815 				putback_lru_page(page);
6816 			}
6817 			put_page(page);
6818 		}
6819 		spin_unlock(ptl);
6820 		return 0;
6821 	}
6822 
6823 	if (pmd_trans_unstable(pmd))
6824 		return 0;
6825 retry:
6826 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6827 	for (; addr != end; addr += PAGE_SIZE) {
6828 		pte_t ptent = *(pte++);
6829 		swp_entry_t ent;
6830 
6831 		if (!mc.precharge)
6832 			break;
6833 
6834 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6835 		case MC_TARGET_PAGE:
6836 			page = target.page;
6837 			if (isolate_lru_page(page))
6838 				goto put;
6839 			pc = lookup_page_cgroup(page);
6840 			if (!mem_cgroup_move_account(page, 1, pc,
6841 						     mc.from, mc.to)) {
6842 				mc.precharge--;
6843 				/* we uncharge from mc.from later. */
6844 				mc.moved_charge++;
6845 			}
6846 			putback_lru_page(page);
6847 put:			/* get_mctgt_type() gets the page */
6848 			put_page(page);
6849 			break;
6850 		case MC_TARGET_SWAP:
6851 			ent = target.ent;
6852 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6853 				mc.precharge--;
6854 				/* we fixup refcnts and charges later. */
6855 				mc.moved_swap++;
6856 			}
6857 			break;
6858 		default:
6859 			break;
6860 		}
6861 	}
6862 	pte_unmap_unlock(pte - 1, ptl);
6863 	cond_resched();
6864 
6865 	if (addr != end) {
6866 		/*
6867 		 * We have consumed all precharges we got in can_attach().
6868 		 * We try charge one by one, but don't do any additional
6869 		 * charges to mc.to if we have failed in charge once in attach()
6870 		 * phase.
6871 		 */
6872 		ret = mem_cgroup_do_precharge(1);
6873 		if (!ret)
6874 			goto retry;
6875 	}
6876 
6877 	return ret;
6878 }
6879 
6880 static void mem_cgroup_move_charge(struct mm_struct *mm)
6881 {
6882 	struct vm_area_struct *vma;
6883 
6884 	lru_add_drain_all();
6885 retry:
6886 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6887 		/*
6888 		 * Someone who are holding the mmap_sem might be waiting in
6889 		 * waitq. So we cancel all extra charges, wake up all waiters,
6890 		 * and retry. Because we cancel precharges, we might not be able
6891 		 * to move enough charges, but moving charge is a best-effort
6892 		 * feature anyway, so it wouldn't be a big problem.
6893 		 */
6894 		__mem_cgroup_clear_mc();
6895 		cond_resched();
6896 		goto retry;
6897 	}
6898 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6899 		int ret;
6900 		struct mm_walk mem_cgroup_move_charge_walk = {
6901 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6902 			.mm = mm,
6903 			.private = vma,
6904 		};
6905 		if (is_vm_hugetlb_page(vma))
6906 			continue;
6907 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6908 						&mem_cgroup_move_charge_walk);
6909 		if (ret)
6910 			/*
6911 			 * means we have consumed all precharges and failed in
6912 			 * doing additional charge. Just abandon here.
6913 			 */
6914 			break;
6915 	}
6916 	up_read(&mm->mmap_sem);
6917 }
6918 
6919 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6920 				 struct cgroup_taskset *tset)
6921 {
6922 	struct task_struct *p = cgroup_taskset_first(tset);
6923 	struct mm_struct *mm = get_task_mm(p);
6924 
6925 	if (mm) {
6926 		if (mc.to)
6927 			mem_cgroup_move_charge(mm);
6928 		mmput(mm);
6929 	}
6930 	if (mc.to)
6931 		mem_cgroup_clear_mc();
6932 }
6933 #else	/* !CONFIG_MMU */
6934 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6935 				 struct cgroup_taskset *tset)
6936 {
6937 	return 0;
6938 }
6939 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6940 				     struct cgroup_taskset *tset)
6941 {
6942 }
6943 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6944 				 struct cgroup_taskset *tset)
6945 {
6946 }
6947 #endif
6948 
6949 /*
6950  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6951  * to verify sane_behavior flag on each mount attempt.
6952  */
6953 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6954 {
6955 	/*
6956 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6957 	 * guarantees that @root doesn't have any children, so turning it
6958 	 * on for the root memcg is enough.
6959 	 */
6960 	if (cgroup_sane_behavior(root_css->cgroup))
6961 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6962 }
6963 
6964 struct cgroup_subsys mem_cgroup_subsys = {
6965 	.name = "memory",
6966 	.subsys_id = mem_cgroup_subsys_id,
6967 	.css_alloc = mem_cgroup_css_alloc,
6968 	.css_online = mem_cgroup_css_online,
6969 	.css_offline = mem_cgroup_css_offline,
6970 	.css_free = mem_cgroup_css_free,
6971 	.can_attach = mem_cgroup_can_attach,
6972 	.cancel_attach = mem_cgroup_cancel_attach,
6973 	.attach = mem_cgroup_move_task,
6974 	.bind = mem_cgroup_bind,
6975 	.base_cftypes = mem_cgroup_files,
6976 	.early_init = 0,
6977 };
6978 
6979 #ifdef CONFIG_MEMCG_SWAP
6980 static int __init enable_swap_account(char *s)
6981 {
6982 	if (!strcmp(s, "1"))
6983 		really_do_swap_account = 1;
6984 	else if (!strcmp(s, "0"))
6985 		really_do_swap_account = 0;
6986 	return 1;
6987 }
6988 __setup("swapaccount=", enable_swap_account);
6989 
6990 static void __init memsw_file_init(void)
6991 {
6992 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6993 }
6994 
6995 static void __init enable_swap_cgroup(void)
6996 {
6997 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6998 		do_swap_account = 1;
6999 		memsw_file_init();
7000 	}
7001 }
7002 
7003 #else
7004 static void __init enable_swap_cgroup(void)
7005 {
7006 }
7007 #endif
7008 
7009 /*
7010  * subsys_initcall() for memory controller.
7011  *
7012  * Some parts like hotcpu_notifier() have to be initialized from this context
7013  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7014  * everything that doesn't depend on a specific mem_cgroup structure should
7015  * be initialized from here.
7016  */
7017 static int __init mem_cgroup_init(void)
7018 {
7019 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7020 	enable_swap_cgroup();
7021 	mem_cgroup_soft_limit_tree_init();
7022 	memcg_stock_init();
7023 	return 0;
7024 }
7025 subsys_initcall(mem_cgroup_init);
7026