xref: /linux/mm/memcontrol.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85 
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90 	/*
91 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 	 */
93 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 	/* incremented at every  pagein/pageout */
101 	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 
104 	MEM_CGROUP_STAT_NSTATS,
105 };
106 
107 struct mem_cgroup_stat_cpu {
108 	s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110 
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115 	/*
116 	 * spin_lock to protect the per cgroup LRU
117 	 */
118 	struct list_head	lists[NR_LRU_LISTS];
119 	unsigned long		count[NR_LRU_LISTS];
120 
121 	struct zone_reclaim_stat reclaim_stat;
122 	struct rb_node		tree_node;	/* RB tree node */
123 	unsigned long long	usage_in_excess;/* Set to the value by which */
124 						/* the soft limit is exceeded*/
125 	bool			on_tree;
126 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127 						/* use container_of	   */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131 
132 struct mem_cgroup_per_node {
133 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135 
136 struct mem_cgroup_lru_info {
137 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139 
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144 
145 struct mem_cgroup_tree_per_zone {
146 	struct rb_root rb_root;
147 	spinlock_t lock;
148 };
149 
150 struct mem_cgroup_tree_per_node {
151 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_tree {
155 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157 
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159 
160 struct mem_cgroup_threshold {
161 	struct eventfd_ctx *eventfd;
162 	u64 threshold;
163 };
164 
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 	/* An array index points to threshold just below usage. */
168 	int current_threshold;
169 	/* Size of entries[] */
170 	unsigned int size;
171 	/* Array of thresholds */
172 	struct mem_cgroup_threshold entries[0];
173 };
174 
175 struct mem_cgroup_thresholds {
176 	/* Primary thresholds array */
177 	struct mem_cgroup_threshold_ary *primary;
178 	/*
179 	 * Spare threshold array.
180 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 	 * It must be able to store at least primary->size - 1 entries.
182 	 */
183 	struct mem_cgroup_threshold_ary *spare;
184 };
185 
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 	struct list_head list;
189 	struct eventfd_ctx *eventfd;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194 
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 	/*
209 	 * the counter to account for memory usage
210 	 */
211 	struct res_counter res;
212 	/*
213 	 * the counter to account for mem+swap usage.
214 	 */
215 	struct res_counter memsw;
216 	/*
217 	 * Per cgroup active and inactive list, similar to the
218 	 * per zone LRU lists.
219 	 */
220 	struct mem_cgroup_lru_info info;
221 
222 	/*
223 	  protect against reclaim related member.
224 	*/
225 	spinlock_t reclaim_param_lock;
226 
227 	/*
228 	 * While reclaiming in a hierarchy, we cache the last child we
229 	 * reclaimed from.
230 	 */
231 	int last_scanned_child;
232 	/*
233 	 * Should the accounting and control be hierarchical, per subtree?
234 	 */
235 	bool use_hierarchy;
236 	atomic_t	oom_lock;
237 	atomic_t	refcnt;
238 
239 	unsigned int	swappiness;
240 	/* OOM-Killer disable */
241 	int		oom_kill_disable;
242 
243 	/* set when res.limit == memsw.limit */
244 	bool		memsw_is_minimum;
245 
246 	/* protect arrays of thresholds */
247 	struct mutex thresholds_lock;
248 
249 	/* thresholds for memory usage. RCU-protected */
250 	struct mem_cgroup_thresholds thresholds;
251 
252 	/* thresholds for mem+swap usage. RCU-protected */
253 	struct mem_cgroup_thresholds memsw_thresholds;
254 
255 	/* For oom notifier event fd */
256 	struct list_head oom_notify;
257 
258 	/*
259 	 * Should we move charges of a task when a task is moved into this
260 	 * mem_cgroup ? And what type of charges should we move ?
261 	 */
262 	unsigned long 	move_charge_at_immigrate;
263 	/*
264 	 * percpu counter.
265 	 */
266 	struct mem_cgroup_stat_cpu *stat;
267 	/*
268 	 * used when a cpu is offlined or other synchronizations
269 	 * See mem_cgroup_read_stat().
270 	 */
271 	struct mem_cgroup_stat_cpu nocpu_base;
272 	spinlock_t pcp_counter_lock;
273 };
274 
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 	NR_MOVE_TYPE,
284 };
285 
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 	spinlock_t	  lock; /* for from, to */
289 	struct mem_cgroup *from;
290 	struct mem_cgroup *to;
291 	unsigned long precharge;
292 	unsigned long moved_charge;
293 	unsigned long moved_swap;
294 	struct task_struct *moving_task;	/* a task moving charges */
295 	wait_queue_head_t waitq;		/* a waitq for other context */
296 } mc = {
297 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300 
301 static bool move_anon(void)
302 {
303 	return test_bit(MOVE_CHARGE_TYPE_ANON,
304 					&mc.to->move_charge_at_immigrate);
305 }
306 
307 static bool move_file(void)
308 {
309 	return test_bit(MOVE_CHARGE_TYPE_FILE,
310 					&mc.to->move_charge_at_immigrate);
311 }
312 
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319 
320 enum charge_type {
321 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 	NR_CHARGE_TYPE,
328 };
329 
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE	(1UL << PCG_CACHE)
332 #define PCGF_USED	(1UL << PCG_USED)
333 #define PCGF_LOCK	(1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT	(1UL << PCG_ACCT)
336 
337 /* for encoding cft->private value on file */
338 #define _MEM			(0)
339 #define _MEMSWAP		(1)
340 #define _OOM_TYPE		(2)
341 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)	((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL		(0)
346 
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
355 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356 
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361 
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367 
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 	return &mem->css;
371 }
372 
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 	struct mem_cgroup *mem = pc->mem_cgroup;
377 	int nid = page_cgroup_nid(pc);
378 	int zid = page_cgroup_zid(pc);
379 
380 	if (!mem)
381 		return NULL;
382 
383 	return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385 
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391 
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 	int nid = page_to_nid(page);
396 	int zid = page_zonenum(page);
397 
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 				struct mem_cgroup_per_zone *mz,
404 				struct mem_cgroup_tree_per_zone *mctz,
405 				unsigned long long new_usage_in_excess)
406 {
407 	struct rb_node **p = &mctz->rb_root.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct mem_cgroup_per_zone *mz_node;
410 
411 	if (mz->on_tree)
412 		return;
413 
414 	mz->usage_in_excess = new_usage_in_excess;
415 	if (!mz->usage_in_excess)
416 		return;
417 	while (*p) {
418 		parent = *p;
419 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 					tree_node);
421 		if (mz->usage_in_excess < mz_node->usage_in_excess)
422 			p = &(*p)->rb_left;
423 		/*
424 		 * We can't avoid mem cgroups that are over their soft
425 		 * limit by the same amount
426 		 */
427 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 			p = &(*p)->rb_right;
429 	}
430 	rb_link_node(&mz->tree_node, parent, p);
431 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 	mz->on_tree = true;
433 }
434 
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 				struct mem_cgroup_per_zone *mz,
438 				struct mem_cgroup_tree_per_zone *mctz)
439 {
440 	if (!mz->on_tree)
441 		return;
442 	rb_erase(&mz->tree_node, &mctz->rb_root);
443 	mz->on_tree = false;
444 }
445 
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 				struct mem_cgroup_per_zone *mz,
449 				struct mem_cgroup_tree_per_zone *mctz)
450 {
451 	spin_lock(&mctz->lock);
452 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 	spin_unlock(&mctz->lock);
454 }
455 
456 
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 	unsigned long long excess;
460 	struct mem_cgroup_per_zone *mz;
461 	struct mem_cgroup_tree_per_zone *mctz;
462 	int nid = page_to_nid(page);
463 	int zid = page_zonenum(page);
464 	mctz = soft_limit_tree_from_page(page);
465 
466 	/*
467 	 * Necessary to update all ancestors when hierarchy is used.
468 	 * because their event counter is not touched.
469 	 */
470 	for (; mem; mem = parent_mem_cgroup(mem)) {
471 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 		excess = res_counter_soft_limit_excess(&mem->res);
473 		/*
474 		 * We have to update the tree if mz is on RB-tree or
475 		 * mem is over its softlimit.
476 		 */
477 		if (excess || mz->on_tree) {
478 			spin_lock(&mctz->lock);
479 			/* if on-tree, remove it */
480 			if (mz->on_tree)
481 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
482 			/*
483 			 * Insert again. mz->usage_in_excess will be updated.
484 			 * If excess is 0, no tree ops.
485 			 */
486 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 			spin_unlock(&mctz->lock);
488 		}
489 	}
490 }
491 
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 	int node, zone;
495 	struct mem_cgroup_per_zone *mz;
496 	struct mem_cgroup_tree_per_zone *mctz;
497 
498 	for_each_node_state(node, N_POSSIBLE) {
499 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 			mz = mem_cgroup_zoneinfo(mem, node, zone);
501 			mctz = soft_limit_tree_node_zone(node, zone);
502 			mem_cgroup_remove_exceeded(mem, mz, mctz);
503 		}
504 	}
505 }
506 
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511 
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 	struct rb_node *rightmost = NULL;
516 	struct mem_cgroup_per_zone *mz;
517 
518 retry:
519 	mz = NULL;
520 	rightmost = rb_last(&mctz->rb_root);
521 	if (!rightmost)
522 		goto done;		/* Nothing to reclaim from */
523 
524 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 	/*
526 	 * Remove the node now but someone else can add it back,
527 	 * we will to add it back at the end of reclaim to its correct
528 	 * position in the tree.
529 	 */
530 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 		!css_tryget(&mz->mem->css))
533 		goto retry;
534 done:
535 	return mz;
536 }
537 
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	struct mem_cgroup_per_zone *mz;
542 
543 	spin_lock(&mctz->lock);
544 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 	spin_unlock(&mctz->lock);
546 	return mz;
547 }
548 
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 		enum mem_cgroup_stat_index idx)
570 {
571 	int cpu;
572 	s64 val = 0;
573 
574 	get_online_cpus();
575 	for_each_online_cpu(cpu)
576 		val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 	spin_lock(&mem->pcp_counter_lock);
579 	val += mem->nocpu_base.count[idx];
580 	spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 	put_online_cpus();
583 	return val;
584 }
585 
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 	s64 ret;
589 
590 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 	return ret;
593 }
594 
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 					 bool charge)
597 {
598 	int val = (charge) ? 1 : -1;
599 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601 
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 					 bool file, int nr_pages)
604 {
605 	preempt_disable();
606 
607 	if (file)
608 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 	else
610 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611 
612 	/* pagein of a big page is an event. So, ignore page size */
613 	if (nr_pages > 0)
614 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 	else
616 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 
618 	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619 
620 	preempt_enable();
621 }
622 
623 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624 					enum lru_list idx)
625 {
626 	int nid, zid;
627 	struct mem_cgroup_per_zone *mz;
628 	u64 total = 0;
629 
630 	for_each_online_node(nid)
631 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
633 			total += MEM_CGROUP_ZSTAT(mz, idx);
634 		}
635 	return total;
636 }
637 
638 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639 {
640 	s64 val;
641 
642 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643 
644 	return !(val & ((1 << event_mask_shift) - 1));
645 }
646 
647 /*
648  * Check events in order.
649  *
650  */
651 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652 {
653 	/* threshold event is triggered in finer grain than soft limit */
654 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655 		mem_cgroup_threshold(mem);
656 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657 			mem_cgroup_update_tree(mem, page);
658 	}
659 }
660 
661 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662 {
663 	return container_of(cgroup_subsys_state(cont,
664 				mem_cgroup_subsys_id), struct mem_cgroup,
665 				css);
666 }
667 
668 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669 {
670 	/*
671 	 * mm_update_next_owner() may clear mm->owner to NULL
672 	 * if it races with swapoff, page migration, etc.
673 	 * So this can be called with p == NULL.
674 	 */
675 	if (unlikely(!p))
676 		return NULL;
677 
678 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679 				struct mem_cgroup, css);
680 }
681 
682 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683 {
684 	struct mem_cgroup *mem = NULL;
685 
686 	if (!mm)
687 		return NULL;
688 	/*
689 	 * Because we have no locks, mm->owner's may be being moved to other
690 	 * cgroup. We use css_tryget() here even if this looks
691 	 * pessimistic (rather than adding locks here).
692 	 */
693 	rcu_read_lock();
694 	do {
695 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 		if (unlikely(!mem))
697 			break;
698 	} while (!css_tryget(&mem->css));
699 	rcu_read_unlock();
700 	return mem;
701 }
702 
703 /* The caller has to guarantee "mem" exists before calling this */
704 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705 {
706 	struct cgroup_subsys_state *css;
707 	int found;
708 
709 	if (!mem) /* ROOT cgroup has the smallest ID */
710 		return root_mem_cgroup; /*css_put/get against root is ignored*/
711 	if (!mem->use_hierarchy) {
712 		if (css_tryget(&mem->css))
713 			return mem;
714 		return NULL;
715 	}
716 	rcu_read_lock();
717 	/*
718 	 * searching a memory cgroup which has the smallest ID under given
719 	 * ROOT cgroup. (ID >= 1)
720 	 */
721 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722 	if (css && css_tryget(css))
723 		mem = container_of(css, struct mem_cgroup, css);
724 	else
725 		mem = NULL;
726 	rcu_read_unlock();
727 	return mem;
728 }
729 
730 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731 					struct mem_cgroup *root,
732 					bool cond)
733 {
734 	int nextid = css_id(&iter->css) + 1;
735 	int found;
736 	int hierarchy_used;
737 	struct cgroup_subsys_state *css;
738 
739 	hierarchy_used = iter->use_hierarchy;
740 
741 	css_put(&iter->css);
742 	/* If no ROOT, walk all, ignore hierarchy */
743 	if (!cond || (root && !hierarchy_used))
744 		return NULL;
745 
746 	if (!root)
747 		root = root_mem_cgroup;
748 
749 	do {
750 		iter = NULL;
751 		rcu_read_lock();
752 
753 		css = css_get_next(&mem_cgroup_subsys, nextid,
754 				&root->css, &found);
755 		if (css && css_tryget(css))
756 			iter = container_of(css, struct mem_cgroup, css);
757 		rcu_read_unlock();
758 		/* If css is NULL, no more cgroups will be found */
759 		nextid = found + 1;
760 	} while (css && !iter);
761 
762 	return iter;
763 }
764 /*
765  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766  * be careful that "break" loop is not allowed. We have reference count.
767  * Instead of that modify "cond" to be false and "continue" to exit the loop.
768  */
769 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
770 	for (iter = mem_cgroup_start_loop(root);\
771 	     iter != NULL;\
772 	     iter = mem_cgroup_get_next(iter, root, cond))
773 
774 #define for_each_mem_cgroup_tree(iter, root) \
775 	for_each_mem_cgroup_tree_cond(iter, root, true)
776 
777 #define for_each_mem_cgroup_all(iter) \
778 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
779 
780 
781 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782 {
783 	return (mem == root_mem_cgroup);
784 }
785 
786 /*
787  * Following LRU functions are allowed to be used without PCG_LOCK.
788  * Operations are called by routine of global LRU independently from memcg.
789  * What we have to take care of here is validness of pc->mem_cgroup.
790  *
791  * Changes to pc->mem_cgroup happens when
792  * 1. charge
793  * 2. moving account
794  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795  * It is added to LRU before charge.
796  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797  * When moving account, the page is not on LRU. It's isolated.
798  */
799 
800 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801 {
802 	struct page_cgroup *pc;
803 	struct mem_cgroup_per_zone *mz;
804 
805 	if (mem_cgroup_disabled())
806 		return;
807 	pc = lookup_page_cgroup(page);
808 	/* can happen while we handle swapcache. */
809 	if (!TestClearPageCgroupAcctLRU(pc))
810 		return;
811 	VM_BUG_ON(!pc->mem_cgroup);
812 	/*
813 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814 	 * removed from global LRU.
815 	 */
816 	mz = page_cgroup_zoneinfo(pc);
817 	/* huge page split is done under lru_lock. so, we have no races. */
818 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 	if (mem_cgroup_is_root(pc->mem_cgroup))
820 		return;
821 	VM_BUG_ON(list_empty(&pc->lru));
822 	list_del_init(&pc->lru);
823 }
824 
825 void mem_cgroup_del_lru(struct page *page)
826 {
827 	mem_cgroup_del_lru_list(page, page_lru(page));
828 }
829 
830 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 {
832 	struct mem_cgroup_per_zone *mz;
833 	struct page_cgroup *pc;
834 
835 	if (mem_cgroup_disabled())
836 		return;
837 
838 	pc = lookup_page_cgroup(page);
839 	/* unused or root page is not rotated. */
840 	if (!PageCgroupUsed(pc))
841 		return;
842 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843 	smp_rmb();
844 	if (mem_cgroup_is_root(pc->mem_cgroup))
845 		return;
846 	mz = page_cgroup_zoneinfo(pc);
847 	list_move(&pc->lru, &mz->lists[lru]);
848 }
849 
850 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851 {
852 	struct page_cgroup *pc;
853 	struct mem_cgroup_per_zone *mz;
854 
855 	if (mem_cgroup_disabled())
856 		return;
857 	pc = lookup_page_cgroup(page);
858 	VM_BUG_ON(PageCgroupAcctLRU(pc));
859 	if (!PageCgroupUsed(pc))
860 		return;
861 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862 	smp_rmb();
863 	mz = page_cgroup_zoneinfo(pc);
864 	/* huge page split is done under lru_lock. so, we have no races. */
865 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866 	SetPageCgroupAcctLRU(pc);
867 	if (mem_cgroup_is_root(pc->mem_cgroup))
868 		return;
869 	list_add(&pc->lru, &mz->lists[lru]);
870 }
871 
872 /*
873  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874  * lru because the page may.be reused after it's fully uncharged (because of
875  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876  * it again. This function is only used to charge SwapCache. It's done under
877  * lock_page and expected that zone->lru_lock is never held.
878  */
879 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880 {
881 	unsigned long flags;
882 	struct zone *zone = page_zone(page);
883 	struct page_cgroup *pc = lookup_page_cgroup(page);
884 
885 	spin_lock_irqsave(&zone->lru_lock, flags);
886 	/*
887 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
888 	 * is guarded by lock_page() because the page is SwapCache.
889 	 */
890 	if (!PageCgroupUsed(pc))
891 		mem_cgroup_del_lru_list(page, page_lru(page));
892 	spin_unlock_irqrestore(&zone->lru_lock, flags);
893 }
894 
895 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896 {
897 	unsigned long flags;
898 	struct zone *zone = page_zone(page);
899 	struct page_cgroup *pc = lookup_page_cgroup(page);
900 
901 	spin_lock_irqsave(&zone->lru_lock, flags);
902 	/* link when the page is linked to LRU but page_cgroup isn't */
903 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904 		mem_cgroup_add_lru_list(page, page_lru(page));
905 	spin_unlock_irqrestore(&zone->lru_lock, flags);
906 }
907 
908 
909 void mem_cgroup_move_lists(struct page *page,
910 			   enum lru_list from, enum lru_list to)
911 {
912 	if (mem_cgroup_disabled())
913 		return;
914 	mem_cgroup_del_lru_list(page, from);
915 	mem_cgroup_add_lru_list(page, to);
916 }
917 
918 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919 {
920 	int ret;
921 	struct mem_cgroup *curr = NULL;
922 	struct task_struct *p;
923 
924 	p = find_lock_task_mm(task);
925 	if (!p)
926 		return 0;
927 	curr = try_get_mem_cgroup_from_mm(p->mm);
928 	task_unlock(p);
929 	if (!curr)
930 		return 0;
931 	/*
932 	 * We should check use_hierarchy of "mem" not "curr". Because checking
933 	 * use_hierarchy of "curr" here make this function true if hierarchy is
934 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935 	 * hierarchy(even if use_hierarchy is disabled in "mem").
936 	 */
937 	if (mem->use_hierarchy)
938 		ret = css_is_ancestor(&curr->css, &mem->css);
939 	else
940 		ret = (curr == mem);
941 	css_put(&curr->css);
942 	return ret;
943 }
944 
945 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946 {
947 	unsigned long active;
948 	unsigned long inactive;
949 	unsigned long gb;
950 	unsigned long inactive_ratio;
951 
952 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954 
955 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
956 	if (gb)
957 		inactive_ratio = int_sqrt(10 * gb);
958 	else
959 		inactive_ratio = 1;
960 
961 	if (present_pages) {
962 		present_pages[0] = inactive;
963 		present_pages[1] = active;
964 	}
965 
966 	return inactive_ratio;
967 }
968 
969 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970 {
971 	unsigned long active;
972 	unsigned long inactive;
973 	unsigned long present_pages[2];
974 	unsigned long inactive_ratio;
975 
976 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977 
978 	inactive = present_pages[0];
979 	active = present_pages[1];
980 
981 	if (inactive * inactive_ratio < active)
982 		return 1;
983 
984 	return 0;
985 }
986 
987 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988 {
989 	unsigned long active;
990 	unsigned long inactive;
991 
992 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994 
995 	return (active > inactive);
996 }
997 
998 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999 				       struct zone *zone,
1000 				       enum lru_list lru)
1001 {
1002 	int nid = zone_to_nid(zone);
1003 	int zid = zone_idx(zone);
1004 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005 
1006 	return MEM_CGROUP_ZSTAT(mz, lru);
1007 }
1008 
1009 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010 						      struct zone *zone)
1011 {
1012 	int nid = zone_to_nid(zone);
1013 	int zid = zone_idx(zone);
1014 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015 
1016 	return &mz->reclaim_stat;
1017 }
1018 
1019 struct zone_reclaim_stat *
1020 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021 {
1022 	struct page_cgroup *pc;
1023 	struct mem_cgroup_per_zone *mz;
1024 
1025 	if (mem_cgroup_disabled())
1026 		return NULL;
1027 
1028 	pc = lookup_page_cgroup(page);
1029 	if (!PageCgroupUsed(pc))
1030 		return NULL;
1031 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032 	smp_rmb();
1033 	mz = page_cgroup_zoneinfo(pc);
1034 	if (!mz)
1035 		return NULL;
1036 
1037 	return &mz->reclaim_stat;
1038 }
1039 
1040 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041 					struct list_head *dst,
1042 					unsigned long *scanned, int order,
1043 					int mode, struct zone *z,
1044 					struct mem_cgroup *mem_cont,
1045 					int active, int file)
1046 {
1047 	unsigned long nr_taken = 0;
1048 	struct page *page;
1049 	unsigned long scan;
1050 	LIST_HEAD(pc_list);
1051 	struct list_head *src;
1052 	struct page_cgroup *pc, *tmp;
1053 	int nid = zone_to_nid(z);
1054 	int zid = zone_idx(z);
1055 	struct mem_cgroup_per_zone *mz;
1056 	int lru = LRU_FILE * file + active;
1057 	int ret;
1058 
1059 	BUG_ON(!mem_cont);
1060 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061 	src = &mz->lists[lru];
1062 
1063 	scan = 0;
1064 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065 		if (scan >= nr_to_scan)
1066 			break;
1067 
1068 		page = pc->page;
1069 		if (unlikely(!PageCgroupUsed(pc)))
1070 			continue;
1071 		if (unlikely(!PageLRU(page)))
1072 			continue;
1073 
1074 		scan++;
1075 		ret = __isolate_lru_page(page, mode, file);
1076 		switch (ret) {
1077 		case 0:
1078 			list_move(&page->lru, dst);
1079 			mem_cgroup_del_lru(page);
1080 			nr_taken += hpage_nr_pages(page);
1081 			break;
1082 		case -EBUSY:
1083 			/* we don't affect global LRU but rotate in our LRU */
1084 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1085 			break;
1086 		default:
1087 			break;
1088 		}
1089 	}
1090 
1091 	*scanned = scan;
1092 
1093 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094 				      0, 0, 0, mode);
1095 
1096 	return nr_taken;
1097 }
1098 
1099 #define mem_cgroup_from_res_counter(counter, member)	\
1100 	container_of(counter, struct mem_cgroup, member)
1101 
1102 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103 {
1104 	if (do_swap_account) {
1105 		if (res_counter_check_under_limit(&mem->res) &&
1106 			res_counter_check_under_limit(&mem->memsw))
1107 			return true;
1108 	} else
1109 		if (res_counter_check_under_limit(&mem->res))
1110 			return true;
1111 	return false;
1112 }
1113 
1114 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1115 {
1116 	struct cgroup *cgrp = memcg->css.cgroup;
1117 	unsigned int swappiness;
1118 
1119 	/* root ? */
1120 	if (cgrp->parent == NULL)
1121 		return vm_swappiness;
1122 
1123 	spin_lock(&memcg->reclaim_param_lock);
1124 	swappiness = memcg->swappiness;
1125 	spin_unlock(&memcg->reclaim_param_lock);
1126 
1127 	return swappiness;
1128 }
1129 
1130 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1131 {
1132 	int cpu;
1133 
1134 	get_online_cpus();
1135 	spin_lock(&mem->pcp_counter_lock);
1136 	for_each_online_cpu(cpu)
1137 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1138 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1139 	spin_unlock(&mem->pcp_counter_lock);
1140 	put_online_cpus();
1141 
1142 	synchronize_rcu();
1143 }
1144 
1145 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1146 {
1147 	int cpu;
1148 
1149 	if (!mem)
1150 		return;
1151 	get_online_cpus();
1152 	spin_lock(&mem->pcp_counter_lock);
1153 	for_each_online_cpu(cpu)
1154 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1155 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1156 	spin_unlock(&mem->pcp_counter_lock);
1157 	put_online_cpus();
1158 }
1159 /*
1160  * 2 routines for checking "mem" is under move_account() or not.
1161  *
1162  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1163  *			  for avoiding race in accounting. If true,
1164  *			  pc->mem_cgroup may be overwritten.
1165  *
1166  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1167  *			  under hierarchy of moving cgroups. This is for
1168  *			  waiting at hith-memory prressure caused by "move".
1169  */
1170 
1171 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1172 {
1173 	VM_BUG_ON(!rcu_read_lock_held());
1174 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1175 }
1176 
1177 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1178 {
1179 	struct mem_cgroup *from;
1180 	struct mem_cgroup *to;
1181 	bool ret = false;
1182 	/*
1183 	 * Unlike task_move routines, we access mc.to, mc.from not under
1184 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1185 	 */
1186 	spin_lock(&mc.lock);
1187 	from = mc.from;
1188 	to = mc.to;
1189 	if (!from)
1190 		goto unlock;
1191 	if (from == mem || to == mem
1192 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1193 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1194 		ret = true;
1195 unlock:
1196 	spin_unlock(&mc.lock);
1197 	return ret;
1198 }
1199 
1200 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1201 {
1202 	if (mc.moving_task && current != mc.moving_task) {
1203 		if (mem_cgroup_under_move(mem)) {
1204 			DEFINE_WAIT(wait);
1205 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206 			/* moving charge context might have finished. */
1207 			if (mc.moving_task)
1208 				schedule();
1209 			finish_wait(&mc.waitq, &wait);
1210 			return true;
1211 		}
1212 	}
1213 	return false;
1214 }
1215 
1216 /**
1217  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1218  * @memcg: The memory cgroup that went over limit
1219  * @p: Task that is going to be killed
1220  *
1221  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1222  * enabled
1223  */
1224 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1225 {
1226 	struct cgroup *task_cgrp;
1227 	struct cgroup *mem_cgrp;
1228 	/*
1229 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1230 	 * on the assumption that OOM is serialized for memory controller.
1231 	 * If this assumption is broken, revisit this code.
1232 	 */
1233 	static char memcg_name[PATH_MAX];
1234 	int ret;
1235 
1236 	if (!memcg || !p)
1237 		return;
1238 
1239 
1240 	rcu_read_lock();
1241 
1242 	mem_cgrp = memcg->css.cgroup;
1243 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1244 
1245 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1246 	if (ret < 0) {
1247 		/*
1248 		 * Unfortunately, we are unable to convert to a useful name
1249 		 * But we'll still print out the usage information
1250 		 */
1251 		rcu_read_unlock();
1252 		goto done;
1253 	}
1254 	rcu_read_unlock();
1255 
1256 	printk(KERN_INFO "Task in %s killed", memcg_name);
1257 
1258 	rcu_read_lock();
1259 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1260 	if (ret < 0) {
1261 		rcu_read_unlock();
1262 		goto done;
1263 	}
1264 	rcu_read_unlock();
1265 
1266 	/*
1267 	 * Continues from above, so we don't need an KERN_ level
1268 	 */
1269 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1270 done:
1271 
1272 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1273 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1274 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1275 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1276 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1277 		"failcnt %llu\n",
1278 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1279 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1280 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1281 }
1282 
1283 /*
1284  * This function returns the number of memcg under hierarchy tree. Returns
1285  * 1(self count) if no children.
1286  */
1287 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1288 {
1289 	int num = 0;
1290 	struct mem_cgroup *iter;
1291 
1292 	for_each_mem_cgroup_tree(iter, mem)
1293 		num++;
1294 	return num;
1295 }
1296 
1297 /*
1298  * Return the memory (and swap, if configured) limit for a memcg.
1299  */
1300 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1301 {
1302 	u64 limit;
1303 	u64 memsw;
1304 
1305 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1306 	limit += total_swap_pages << PAGE_SHIFT;
1307 
1308 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1309 	/*
1310 	 * If memsw is finite and limits the amount of swap space available
1311 	 * to this memcg, return that limit.
1312 	 */
1313 	return min(limit, memsw);
1314 }
1315 
1316 /*
1317  * Visit the first child (need not be the first child as per the ordering
1318  * of the cgroup list, since we track last_scanned_child) of @mem and use
1319  * that to reclaim free pages from.
1320  */
1321 static struct mem_cgroup *
1322 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1323 {
1324 	struct mem_cgroup *ret = NULL;
1325 	struct cgroup_subsys_state *css;
1326 	int nextid, found;
1327 
1328 	if (!root_mem->use_hierarchy) {
1329 		css_get(&root_mem->css);
1330 		ret = root_mem;
1331 	}
1332 
1333 	while (!ret) {
1334 		rcu_read_lock();
1335 		nextid = root_mem->last_scanned_child + 1;
1336 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1337 				   &found);
1338 		if (css && css_tryget(css))
1339 			ret = container_of(css, struct mem_cgroup, css);
1340 
1341 		rcu_read_unlock();
1342 		/* Updates scanning parameter */
1343 		spin_lock(&root_mem->reclaim_param_lock);
1344 		if (!css) {
1345 			/* this means start scan from ID:1 */
1346 			root_mem->last_scanned_child = 0;
1347 		} else
1348 			root_mem->last_scanned_child = found;
1349 		spin_unlock(&root_mem->reclaim_param_lock);
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1357  * we reclaimed from, so that we don't end up penalizing one child extensively
1358  * based on its position in the children list.
1359  *
1360  * root_mem is the original ancestor that we've been reclaim from.
1361  *
1362  * We give up and return to the caller when we visit root_mem twice.
1363  * (other groups can be removed while we're walking....)
1364  *
1365  * If shrink==true, for avoiding to free too much, this returns immedieately.
1366  */
1367 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1368 						struct zone *zone,
1369 						gfp_t gfp_mask,
1370 						unsigned long reclaim_options)
1371 {
1372 	struct mem_cgroup *victim;
1373 	int ret, total = 0;
1374 	int loop = 0;
1375 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1376 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1377 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1378 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1379 
1380 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1381 	if (root_mem->memsw_is_minimum)
1382 		noswap = true;
1383 
1384 	while (1) {
1385 		victim = mem_cgroup_select_victim(root_mem);
1386 		if (victim == root_mem) {
1387 			loop++;
1388 			if (loop >= 1)
1389 				drain_all_stock_async();
1390 			if (loop >= 2) {
1391 				/*
1392 				 * If we have not been able to reclaim
1393 				 * anything, it might because there are
1394 				 * no reclaimable pages under this hierarchy
1395 				 */
1396 				if (!check_soft || !total) {
1397 					css_put(&victim->css);
1398 					break;
1399 				}
1400 				/*
1401 				 * We want to do more targetted reclaim.
1402 				 * excess >> 2 is not to excessive so as to
1403 				 * reclaim too much, nor too less that we keep
1404 				 * coming back to reclaim from this cgroup
1405 				 */
1406 				if (total >= (excess >> 2) ||
1407 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1408 					css_put(&victim->css);
1409 					break;
1410 				}
1411 			}
1412 		}
1413 		if (!mem_cgroup_local_usage(victim)) {
1414 			/* this cgroup's local usage == 0 */
1415 			css_put(&victim->css);
1416 			continue;
1417 		}
1418 		/* we use swappiness of local cgroup */
1419 		if (check_soft)
1420 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1421 				noswap, get_swappiness(victim), zone);
1422 		else
1423 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1424 						noswap, get_swappiness(victim));
1425 		css_put(&victim->css);
1426 		/*
1427 		 * At shrinking usage, we can't check we should stop here or
1428 		 * reclaim more. It's depends on callers. last_scanned_child
1429 		 * will work enough for keeping fairness under tree.
1430 		 */
1431 		if (shrink)
1432 			return ret;
1433 		total += ret;
1434 		if (check_soft) {
1435 			if (res_counter_check_under_soft_limit(&root_mem->res))
1436 				return total;
1437 		} else if (mem_cgroup_check_under_limit(root_mem))
1438 			return 1 + total;
1439 	}
1440 	return total;
1441 }
1442 
1443 /*
1444  * Check OOM-Killer is already running under our hierarchy.
1445  * If someone is running, return false.
1446  */
1447 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1448 {
1449 	int x, lock_count = 0;
1450 	struct mem_cgroup *iter;
1451 
1452 	for_each_mem_cgroup_tree(iter, mem) {
1453 		x = atomic_inc_return(&iter->oom_lock);
1454 		lock_count = max(x, lock_count);
1455 	}
1456 
1457 	if (lock_count == 1)
1458 		return true;
1459 	return false;
1460 }
1461 
1462 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1463 {
1464 	struct mem_cgroup *iter;
1465 
1466 	/*
1467 	 * When a new child is created while the hierarchy is under oom,
1468 	 * mem_cgroup_oom_lock() may not be called. We have to use
1469 	 * atomic_add_unless() here.
1470 	 */
1471 	for_each_mem_cgroup_tree(iter, mem)
1472 		atomic_add_unless(&iter->oom_lock, -1, 0);
1473 	return 0;
1474 }
1475 
1476 
1477 static DEFINE_MUTEX(memcg_oom_mutex);
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479 
1480 struct oom_wait_info {
1481 	struct mem_cgroup *mem;
1482 	wait_queue_t	wait;
1483 };
1484 
1485 static int memcg_oom_wake_function(wait_queue_t *wait,
1486 	unsigned mode, int sync, void *arg)
1487 {
1488 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1489 	struct oom_wait_info *oom_wait_info;
1490 
1491 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1492 
1493 	if (oom_wait_info->mem == wake_mem)
1494 		goto wakeup;
1495 	/* if no hierarchy, no match */
1496 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1497 		return 0;
1498 	/*
1499 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1500 	 * Then we can use css_is_ancestor without taking care of RCU.
1501 	 */
1502 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1503 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1504 		return 0;
1505 
1506 wakeup:
1507 	return autoremove_wake_function(wait, mode, sync, arg);
1508 }
1509 
1510 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1511 {
1512 	/* for filtering, pass "mem" as argument. */
1513 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1514 }
1515 
1516 static void memcg_oom_recover(struct mem_cgroup *mem)
1517 {
1518 	if (mem && atomic_read(&mem->oom_lock))
1519 		memcg_wakeup_oom(mem);
1520 }
1521 
1522 /*
1523  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1524  */
1525 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1526 {
1527 	struct oom_wait_info owait;
1528 	bool locked, need_to_kill;
1529 
1530 	owait.mem = mem;
1531 	owait.wait.flags = 0;
1532 	owait.wait.func = memcg_oom_wake_function;
1533 	owait.wait.private = current;
1534 	INIT_LIST_HEAD(&owait.wait.task_list);
1535 	need_to_kill = true;
1536 	/* At first, try to OOM lock hierarchy under mem.*/
1537 	mutex_lock(&memcg_oom_mutex);
1538 	locked = mem_cgroup_oom_lock(mem);
1539 	/*
1540 	 * Even if signal_pending(), we can't quit charge() loop without
1541 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1542 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1543 	 */
1544 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1545 	if (!locked || mem->oom_kill_disable)
1546 		need_to_kill = false;
1547 	if (locked)
1548 		mem_cgroup_oom_notify(mem);
1549 	mutex_unlock(&memcg_oom_mutex);
1550 
1551 	if (need_to_kill) {
1552 		finish_wait(&memcg_oom_waitq, &owait.wait);
1553 		mem_cgroup_out_of_memory(mem, mask);
1554 	} else {
1555 		schedule();
1556 		finish_wait(&memcg_oom_waitq, &owait.wait);
1557 	}
1558 	mutex_lock(&memcg_oom_mutex);
1559 	mem_cgroup_oom_unlock(mem);
1560 	memcg_wakeup_oom(mem);
1561 	mutex_unlock(&memcg_oom_mutex);
1562 
1563 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1564 		return false;
1565 	/* Give chance to dying process */
1566 	schedule_timeout(1);
1567 	return true;
1568 }
1569 
1570 /*
1571  * Currently used to update mapped file statistics, but the routine can be
1572  * generalized to update other statistics as well.
1573  *
1574  * Notes: Race condition
1575  *
1576  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1577  * it tends to be costly. But considering some conditions, we doesn't need
1578  * to do so _always_.
1579  *
1580  * Considering "charge", lock_page_cgroup() is not required because all
1581  * file-stat operations happen after a page is attached to radix-tree. There
1582  * are no race with "charge".
1583  *
1584  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1585  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1586  * if there are race with "uncharge". Statistics itself is properly handled
1587  * by flags.
1588  *
1589  * Considering "move", this is an only case we see a race. To make the race
1590  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1591  * possibility of race condition. If there is, we take a lock.
1592  */
1593 
1594 void mem_cgroup_update_page_stat(struct page *page,
1595 				 enum mem_cgroup_page_stat_item idx, int val)
1596 {
1597 	struct mem_cgroup *mem;
1598 	struct page_cgroup *pc = lookup_page_cgroup(page);
1599 	bool need_unlock = false;
1600 	unsigned long uninitialized_var(flags);
1601 
1602 	if (unlikely(!pc))
1603 		return;
1604 
1605 	rcu_read_lock();
1606 	mem = pc->mem_cgroup;
1607 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1608 		goto out;
1609 	/* pc->mem_cgroup is unstable ? */
1610 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1611 		/* take a lock against to access pc->mem_cgroup */
1612 		move_lock_page_cgroup(pc, &flags);
1613 		need_unlock = true;
1614 		mem = pc->mem_cgroup;
1615 		if (!mem || !PageCgroupUsed(pc))
1616 			goto out;
1617 	}
1618 
1619 	switch (idx) {
1620 	case MEMCG_NR_FILE_MAPPED:
1621 		if (val > 0)
1622 			SetPageCgroupFileMapped(pc);
1623 		else if (!page_mapped(page))
1624 			ClearPageCgroupFileMapped(pc);
1625 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1626 		break;
1627 	default:
1628 		BUG();
1629 	}
1630 
1631 	this_cpu_add(mem->stat->count[idx], val);
1632 
1633 out:
1634 	if (unlikely(need_unlock))
1635 		move_unlock_page_cgroup(pc, &flags);
1636 	rcu_read_unlock();
1637 	return;
1638 }
1639 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1640 
1641 /*
1642  * size of first charge trial. "32" comes from vmscan.c's magic value.
1643  * TODO: maybe necessary to use big numbers in big irons.
1644  */
1645 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1646 struct memcg_stock_pcp {
1647 	struct mem_cgroup *cached; /* this never be root cgroup */
1648 	int charge;
1649 	struct work_struct work;
1650 };
1651 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1652 static atomic_t memcg_drain_count;
1653 
1654 /*
1655  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1656  * from local stock and true is returned. If the stock is 0 or charges from a
1657  * cgroup which is not current target, returns false. This stock will be
1658  * refilled.
1659  */
1660 static bool consume_stock(struct mem_cgroup *mem)
1661 {
1662 	struct memcg_stock_pcp *stock;
1663 	bool ret = true;
1664 
1665 	stock = &get_cpu_var(memcg_stock);
1666 	if (mem == stock->cached && stock->charge)
1667 		stock->charge -= PAGE_SIZE;
1668 	else /* need to call res_counter_charge */
1669 		ret = false;
1670 	put_cpu_var(memcg_stock);
1671 	return ret;
1672 }
1673 
1674 /*
1675  * Returns stocks cached in percpu to res_counter and reset cached information.
1676  */
1677 static void drain_stock(struct memcg_stock_pcp *stock)
1678 {
1679 	struct mem_cgroup *old = stock->cached;
1680 
1681 	if (stock->charge) {
1682 		res_counter_uncharge(&old->res, stock->charge);
1683 		if (do_swap_account)
1684 			res_counter_uncharge(&old->memsw, stock->charge);
1685 	}
1686 	stock->cached = NULL;
1687 	stock->charge = 0;
1688 }
1689 
1690 /*
1691  * This must be called under preempt disabled or must be called by
1692  * a thread which is pinned to local cpu.
1693  */
1694 static void drain_local_stock(struct work_struct *dummy)
1695 {
1696 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1697 	drain_stock(stock);
1698 }
1699 
1700 /*
1701  * Cache charges(val) which is from res_counter, to local per_cpu area.
1702  * This will be consumed by consume_stock() function, later.
1703  */
1704 static void refill_stock(struct mem_cgroup *mem, int val)
1705 {
1706 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1707 
1708 	if (stock->cached != mem) { /* reset if necessary */
1709 		drain_stock(stock);
1710 		stock->cached = mem;
1711 	}
1712 	stock->charge += val;
1713 	put_cpu_var(memcg_stock);
1714 }
1715 
1716 /*
1717  * Tries to drain stocked charges in other cpus. This function is asynchronous
1718  * and just put a work per cpu for draining localy on each cpu. Caller can
1719  * expects some charges will be back to res_counter later but cannot wait for
1720  * it.
1721  */
1722 static void drain_all_stock_async(void)
1723 {
1724 	int cpu;
1725 	/* This function is for scheduling "drain" in asynchronous way.
1726 	 * The result of "drain" is not directly handled by callers. Then,
1727 	 * if someone is calling drain, we don't have to call drain more.
1728 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1729 	 * there is a race. We just do loose check here.
1730 	 */
1731 	if (atomic_read(&memcg_drain_count))
1732 		return;
1733 	/* Notify other cpus that system-wide "drain" is running */
1734 	atomic_inc(&memcg_drain_count);
1735 	get_online_cpus();
1736 	for_each_online_cpu(cpu) {
1737 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1738 		schedule_work_on(cpu, &stock->work);
1739 	}
1740  	put_online_cpus();
1741 	atomic_dec(&memcg_drain_count);
1742 	/* We don't wait for flush_work */
1743 }
1744 
1745 /* This is a synchronous drain interface. */
1746 static void drain_all_stock_sync(void)
1747 {
1748 	/* called when force_empty is called */
1749 	atomic_inc(&memcg_drain_count);
1750 	schedule_on_each_cpu(drain_local_stock);
1751 	atomic_dec(&memcg_drain_count);
1752 }
1753 
1754 /*
1755  * This function drains percpu counter value from DEAD cpu and
1756  * move it to local cpu. Note that this function can be preempted.
1757  */
1758 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1759 {
1760 	int i;
1761 
1762 	spin_lock(&mem->pcp_counter_lock);
1763 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1764 		s64 x = per_cpu(mem->stat->count[i], cpu);
1765 
1766 		per_cpu(mem->stat->count[i], cpu) = 0;
1767 		mem->nocpu_base.count[i] += x;
1768 	}
1769 	/* need to clear ON_MOVE value, works as a kind of lock. */
1770 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1771 	spin_unlock(&mem->pcp_counter_lock);
1772 }
1773 
1774 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1775 {
1776 	int idx = MEM_CGROUP_ON_MOVE;
1777 
1778 	spin_lock(&mem->pcp_counter_lock);
1779 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1780 	spin_unlock(&mem->pcp_counter_lock);
1781 }
1782 
1783 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1784 					unsigned long action,
1785 					void *hcpu)
1786 {
1787 	int cpu = (unsigned long)hcpu;
1788 	struct memcg_stock_pcp *stock;
1789 	struct mem_cgroup *iter;
1790 
1791 	if ((action == CPU_ONLINE)) {
1792 		for_each_mem_cgroup_all(iter)
1793 			synchronize_mem_cgroup_on_move(iter, cpu);
1794 		return NOTIFY_OK;
1795 	}
1796 
1797 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1798 		return NOTIFY_OK;
1799 
1800 	for_each_mem_cgroup_all(iter)
1801 		mem_cgroup_drain_pcp_counter(iter, cpu);
1802 
1803 	stock = &per_cpu(memcg_stock, cpu);
1804 	drain_stock(stock);
1805 	return NOTIFY_OK;
1806 }
1807 
1808 
1809 /* See __mem_cgroup_try_charge() for details */
1810 enum {
1811 	CHARGE_OK,		/* success */
1812 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1813 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1814 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1815 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1816 };
1817 
1818 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1819 				int csize, bool oom_check)
1820 {
1821 	struct mem_cgroup *mem_over_limit;
1822 	struct res_counter *fail_res;
1823 	unsigned long flags = 0;
1824 	int ret;
1825 
1826 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1827 
1828 	if (likely(!ret)) {
1829 		if (!do_swap_account)
1830 			return CHARGE_OK;
1831 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1832 		if (likely(!ret))
1833 			return CHARGE_OK;
1834 
1835 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1836 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1837 	} else
1838 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1839 
1840 	if (csize > PAGE_SIZE) /* change csize and retry */
1841 		return CHARGE_RETRY;
1842 
1843 	if (!(gfp_mask & __GFP_WAIT))
1844 		return CHARGE_WOULDBLOCK;
1845 
1846 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1847 					gfp_mask, flags);
1848 	/*
1849 	 * try_to_free_mem_cgroup_pages() might not give us a full
1850 	 * picture of reclaim. Some pages are reclaimed and might be
1851 	 * moved to swap cache or just unmapped from the cgroup.
1852 	 * Check the limit again to see if the reclaim reduced the
1853 	 * current usage of the cgroup before giving up
1854 	 */
1855 	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1856 		return CHARGE_RETRY;
1857 
1858 	/*
1859 	 * At task move, charge accounts can be doubly counted. So, it's
1860 	 * better to wait until the end of task_move if something is going on.
1861 	 */
1862 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1863 		return CHARGE_RETRY;
1864 
1865 	/* If we don't need to call oom-killer at el, return immediately */
1866 	if (!oom_check)
1867 		return CHARGE_NOMEM;
1868 	/* check OOM */
1869 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1870 		return CHARGE_OOM_DIE;
1871 
1872 	return CHARGE_RETRY;
1873 }
1874 
1875 /*
1876  * Unlike exported interface, "oom" parameter is added. if oom==true,
1877  * oom-killer can be invoked.
1878  */
1879 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1880 				   gfp_t gfp_mask,
1881 				   struct mem_cgroup **memcg, bool oom,
1882 				   int page_size)
1883 {
1884 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1885 	struct mem_cgroup *mem = NULL;
1886 	int ret;
1887 	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1888 
1889 	/*
1890 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1891 	 * in system level. So, allow to go ahead dying process in addition to
1892 	 * MEMDIE process.
1893 	 */
1894 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1895 		     || fatal_signal_pending(current)))
1896 		goto bypass;
1897 
1898 	/*
1899 	 * We always charge the cgroup the mm_struct belongs to.
1900 	 * The mm_struct's mem_cgroup changes on task migration if the
1901 	 * thread group leader migrates. It's possible that mm is not
1902 	 * set, if so charge the init_mm (happens for pagecache usage).
1903 	 */
1904 	if (!*memcg && !mm)
1905 		goto bypass;
1906 again:
1907 	if (*memcg) { /* css should be a valid one */
1908 		mem = *memcg;
1909 		VM_BUG_ON(css_is_removed(&mem->css));
1910 		if (mem_cgroup_is_root(mem))
1911 			goto done;
1912 		if (page_size == PAGE_SIZE && consume_stock(mem))
1913 			goto done;
1914 		css_get(&mem->css);
1915 	} else {
1916 		struct task_struct *p;
1917 
1918 		rcu_read_lock();
1919 		p = rcu_dereference(mm->owner);
1920 		/*
1921 		 * Because we don't have task_lock(), "p" can exit.
1922 		 * In that case, "mem" can point to root or p can be NULL with
1923 		 * race with swapoff. Then, we have small risk of mis-accouning.
1924 		 * But such kind of mis-account by race always happens because
1925 		 * we don't have cgroup_mutex(). It's overkill and we allo that
1926 		 * small race, here.
1927 		 * (*) swapoff at el will charge against mm-struct not against
1928 		 * task-struct. So, mm->owner can be NULL.
1929 		 */
1930 		mem = mem_cgroup_from_task(p);
1931 		if (!mem || mem_cgroup_is_root(mem)) {
1932 			rcu_read_unlock();
1933 			goto done;
1934 		}
1935 		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1936 			/*
1937 			 * It seems dagerous to access memcg without css_get().
1938 			 * But considering how consume_stok works, it's not
1939 			 * necessary. If consume_stock success, some charges
1940 			 * from this memcg are cached on this cpu. So, we
1941 			 * don't need to call css_get()/css_tryget() before
1942 			 * calling consume_stock().
1943 			 */
1944 			rcu_read_unlock();
1945 			goto done;
1946 		}
1947 		/* after here, we may be blocked. we need to get refcnt */
1948 		if (!css_tryget(&mem->css)) {
1949 			rcu_read_unlock();
1950 			goto again;
1951 		}
1952 		rcu_read_unlock();
1953 	}
1954 
1955 	do {
1956 		bool oom_check;
1957 
1958 		/* If killed, bypass charge */
1959 		if (fatal_signal_pending(current)) {
1960 			css_put(&mem->css);
1961 			goto bypass;
1962 		}
1963 
1964 		oom_check = false;
1965 		if (oom && !nr_oom_retries) {
1966 			oom_check = true;
1967 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1968 		}
1969 
1970 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1971 
1972 		switch (ret) {
1973 		case CHARGE_OK:
1974 			break;
1975 		case CHARGE_RETRY: /* not in OOM situation but retry */
1976 			csize = page_size;
1977 			css_put(&mem->css);
1978 			mem = NULL;
1979 			goto again;
1980 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1981 			css_put(&mem->css);
1982 			goto nomem;
1983 		case CHARGE_NOMEM: /* OOM routine works */
1984 			if (!oom) {
1985 				css_put(&mem->css);
1986 				goto nomem;
1987 			}
1988 			/* If oom, we never return -ENOMEM */
1989 			nr_oom_retries--;
1990 			break;
1991 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1992 			css_put(&mem->css);
1993 			goto bypass;
1994 		}
1995 	} while (ret != CHARGE_OK);
1996 
1997 	if (csize > page_size)
1998 		refill_stock(mem, csize - page_size);
1999 	css_put(&mem->css);
2000 done:
2001 	*memcg = mem;
2002 	return 0;
2003 nomem:
2004 	*memcg = NULL;
2005 	return -ENOMEM;
2006 bypass:
2007 	*memcg = NULL;
2008 	return 0;
2009 }
2010 
2011 /*
2012  * Somemtimes we have to undo a charge we got by try_charge().
2013  * This function is for that and do uncharge, put css's refcnt.
2014  * gotten by try_charge().
2015  */
2016 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2017 							unsigned long count)
2018 {
2019 	if (!mem_cgroup_is_root(mem)) {
2020 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2021 		if (do_swap_account)
2022 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2023 	}
2024 }
2025 
2026 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2027 				     int page_size)
2028 {
2029 	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2030 }
2031 
2032 /*
2033  * A helper function to get mem_cgroup from ID. must be called under
2034  * rcu_read_lock(). The caller must check css_is_removed() or some if
2035  * it's concern. (dropping refcnt from swap can be called against removed
2036  * memcg.)
2037  */
2038 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2039 {
2040 	struct cgroup_subsys_state *css;
2041 
2042 	/* ID 0 is unused ID */
2043 	if (!id)
2044 		return NULL;
2045 	css = css_lookup(&mem_cgroup_subsys, id);
2046 	if (!css)
2047 		return NULL;
2048 	return container_of(css, struct mem_cgroup, css);
2049 }
2050 
2051 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2052 {
2053 	struct mem_cgroup *mem = NULL;
2054 	struct page_cgroup *pc;
2055 	unsigned short id;
2056 	swp_entry_t ent;
2057 
2058 	VM_BUG_ON(!PageLocked(page));
2059 
2060 	pc = lookup_page_cgroup(page);
2061 	lock_page_cgroup(pc);
2062 	if (PageCgroupUsed(pc)) {
2063 		mem = pc->mem_cgroup;
2064 		if (mem && !css_tryget(&mem->css))
2065 			mem = NULL;
2066 	} else if (PageSwapCache(page)) {
2067 		ent.val = page_private(page);
2068 		id = lookup_swap_cgroup(ent);
2069 		rcu_read_lock();
2070 		mem = mem_cgroup_lookup(id);
2071 		if (mem && !css_tryget(&mem->css))
2072 			mem = NULL;
2073 		rcu_read_unlock();
2074 	}
2075 	unlock_page_cgroup(pc);
2076 	return mem;
2077 }
2078 
2079 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2080 				       struct page_cgroup *pc,
2081 				       enum charge_type ctype,
2082 				       int page_size)
2083 {
2084 	int nr_pages = page_size >> PAGE_SHIFT;
2085 
2086 	/* try_charge() can return NULL to *memcg, taking care of it. */
2087 	if (!mem)
2088 		return;
2089 
2090 	lock_page_cgroup(pc);
2091 	if (unlikely(PageCgroupUsed(pc))) {
2092 		unlock_page_cgroup(pc);
2093 		mem_cgroup_cancel_charge(mem, page_size);
2094 		return;
2095 	}
2096 	/*
2097 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2098 	 * accessed by any other context at this point.
2099 	 */
2100 	pc->mem_cgroup = mem;
2101 	/*
2102 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2103 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2104 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2105 	 * before USED bit, we need memory barrier here.
2106 	 * See mem_cgroup_add_lru_list(), etc.
2107  	 */
2108 	smp_wmb();
2109 	switch (ctype) {
2110 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2111 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2112 		SetPageCgroupCache(pc);
2113 		SetPageCgroupUsed(pc);
2114 		break;
2115 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2116 		ClearPageCgroupCache(pc);
2117 		SetPageCgroupUsed(pc);
2118 		break;
2119 	default:
2120 		break;
2121 	}
2122 
2123 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2124 	unlock_page_cgroup(pc);
2125 	/*
2126 	 * "charge_statistics" updated event counter. Then, check it.
2127 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2128 	 * if they exceeds softlimit.
2129 	 */
2130 	memcg_check_events(mem, pc->page);
2131 }
2132 
2133 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2134 
2135 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2136 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2137 /*
2138  * Because tail pages are not marked as "used", set it. We're under
2139  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2140  */
2141 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2142 {
2143 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2144 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2145 	unsigned long flags;
2146 
2147 	/*
2148 	 * We have no races with charge/uncharge but will have races with
2149 	 * page state accounting.
2150 	 */
2151 	move_lock_page_cgroup(head_pc, &flags);
2152 
2153 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2154 	smp_wmb(); /* see __commit_charge() */
2155 	if (PageCgroupAcctLRU(head_pc)) {
2156 		enum lru_list lru;
2157 		struct mem_cgroup_per_zone *mz;
2158 
2159 		/*
2160 		 * LRU flags cannot be copied because we need to add tail
2161 		 *.page to LRU by generic call and our hook will be called.
2162 		 * We hold lru_lock, then, reduce counter directly.
2163 		 */
2164 		lru = page_lru(head);
2165 		mz = page_cgroup_zoneinfo(head_pc);
2166 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2167 	}
2168 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2169 	move_unlock_page_cgroup(head_pc, &flags);
2170 }
2171 #endif
2172 
2173 /**
2174  * __mem_cgroup_move_account - move account of the page
2175  * @pc:	page_cgroup of the page.
2176  * @from: mem_cgroup which the page is moved from.
2177  * @to:	mem_cgroup which the page is moved to. @from != @to.
2178  * @uncharge: whether we should call uncharge and css_put against @from.
2179  *
2180  * The caller must confirm following.
2181  * - page is not on LRU (isolate_page() is useful.)
2182  * - the pc is locked, used, and ->mem_cgroup points to @from.
2183  *
2184  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2185  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2186  * true, this function does "uncharge" from old cgroup, but it doesn't if
2187  * @uncharge is false, so a caller should do "uncharge".
2188  */
2189 
2190 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2191 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2192 	int charge_size)
2193 {
2194 	int nr_pages = charge_size >> PAGE_SHIFT;
2195 
2196 	VM_BUG_ON(from == to);
2197 	VM_BUG_ON(PageLRU(pc->page));
2198 	VM_BUG_ON(!page_is_cgroup_locked(pc));
2199 	VM_BUG_ON(!PageCgroupUsed(pc));
2200 	VM_BUG_ON(pc->mem_cgroup != from);
2201 
2202 	if (PageCgroupFileMapped(pc)) {
2203 		/* Update mapped_file data for mem_cgroup */
2204 		preempt_disable();
2205 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2206 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2207 		preempt_enable();
2208 	}
2209 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2210 	if (uncharge)
2211 		/* This is not "cancel", but cancel_charge does all we need. */
2212 		mem_cgroup_cancel_charge(from, charge_size);
2213 
2214 	/* caller should have done css_get */
2215 	pc->mem_cgroup = to;
2216 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2217 	/*
2218 	 * We charges against "to" which may not have any tasks. Then, "to"
2219 	 * can be under rmdir(). But in current implementation, caller of
2220 	 * this function is just force_empty() and move charge, so it's
2221 	 * garanteed that "to" is never removed. So, we don't check rmdir
2222 	 * status here.
2223 	 */
2224 }
2225 
2226 /*
2227  * check whether the @pc is valid for moving account and call
2228  * __mem_cgroup_move_account()
2229  */
2230 static int mem_cgroup_move_account(struct page_cgroup *pc,
2231 		struct mem_cgroup *from, struct mem_cgroup *to,
2232 		bool uncharge, int charge_size)
2233 {
2234 	int ret = -EINVAL;
2235 	unsigned long flags;
2236 
2237 	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2238 		return -EBUSY;
2239 
2240 	lock_page_cgroup(pc);
2241 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2242 		move_lock_page_cgroup(pc, &flags);
2243 		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2244 		move_unlock_page_cgroup(pc, &flags);
2245 		ret = 0;
2246 	}
2247 	unlock_page_cgroup(pc);
2248 	/*
2249 	 * check events
2250 	 */
2251 	memcg_check_events(to, pc->page);
2252 	memcg_check_events(from, pc->page);
2253 	return ret;
2254 }
2255 
2256 /*
2257  * move charges to its parent.
2258  */
2259 
2260 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2261 				  struct mem_cgroup *child,
2262 				  gfp_t gfp_mask)
2263 {
2264 	struct page *page = pc->page;
2265 	struct cgroup *cg = child->css.cgroup;
2266 	struct cgroup *pcg = cg->parent;
2267 	struct mem_cgroup *parent;
2268 	int charge = PAGE_SIZE;
2269 	unsigned long flags;
2270 	int ret;
2271 
2272 	/* Is ROOT ? */
2273 	if (!pcg)
2274 		return -EINVAL;
2275 
2276 	ret = -EBUSY;
2277 	if (!get_page_unless_zero(page))
2278 		goto out;
2279 	if (isolate_lru_page(page))
2280 		goto put;
2281 	/* The page is isolated from LRU and we have no race with splitting */
2282 	charge = PAGE_SIZE << compound_order(page);
2283 
2284 	parent = mem_cgroup_from_cont(pcg);
2285 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
2286 	if (ret || !parent)
2287 		goto put_back;
2288 
2289 	if (charge > PAGE_SIZE)
2290 		flags = compound_lock_irqsave(page);
2291 
2292 	ret = mem_cgroup_move_account(pc, child, parent, true, charge);
2293 	if (ret)
2294 		mem_cgroup_cancel_charge(parent, charge);
2295 put_back:
2296 	if (charge > PAGE_SIZE)
2297 		compound_unlock_irqrestore(page, flags);
2298 	putback_lru_page(page);
2299 put:
2300 	put_page(page);
2301 out:
2302 	return ret;
2303 }
2304 
2305 /*
2306  * Charge the memory controller for page usage.
2307  * Return
2308  * 0 if the charge was successful
2309  * < 0 if the cgroup is over its limit
2310  */
2311 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2312 				gfp_t gfp_mask, enum charge_type ctype)
2313 {
2314 	struct mem_cgroup *mem = NULL;
2315 	struct page_cgroup *pc;
2316 	int ret;
2317 	int page_size = PAGE_SIZE;
2318 
2319 	if (PageTransHuge(page)) {
2320 		page_size <<= compound_order(page);
2321 		VM_BUG_ON(!PageTransHuge(page));
2322 	}
2323 
2324 	pc = lookup_page_cgroup(page);
2325 	/* can happen at boot */
2326 	if (unlikely(!pc))
2327 		return 0;
2328 	prefetchw(pc);
2329 
2330 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2331 	if (ret || !mem)
2332 		return ret;
2333 
2334 	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2335 	return 0;
2336 }
2337 
2338 int mem_cgroup_newpage_charge(struct page *page,
2339 			      struct mm_struct *mm, gfp_t gfp_mask)
2340 {
2341 	if (mem_cgroup_disabled())
2342 		return 0;
2343 	/*
2344 	 * If already mapped, we don't have to account.
2345 	 * If page cache, page->mapping has address_space.
2346 	 * But page->mapping may have out-of-use anon_vma pointer,
2347 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2348 	 * is NULL.
2349   	 */
2350 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2351 		return 0;
2352 	if (unlikely(!mm))
2353 		mm = &init_mm;
2354 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2355 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2356 }
2357 
2358 static void
2359 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2360 					enum charge_type ctype);
2361 
2362 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2363 				gfp_t gfp_mask)
2364 {
2365 	int ret;
2366 
2367 	if (mem_cgroup_disabled())
2368 		return 0;
2369 	if (PageCompound(page))
2370 		return 0;
2371 	/*
2372 	 * Corner case handling. This is called from add_to_page_cache()
2373 	 * in usual. But some FS (shmem) precharges this page before calling it
2374 	 * and call add_to_page_cache() with GFP_NOWAIT.
2375 	 *
2376 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2377 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2378 	 * charge twice. (It works but has to pay a bit larger cost.)
2379 	 * And when the page is SwapCache, it should take swap information
2380 	 * into account. This is under lock_page() now.
2381 	 */
2382 	if (!(gfp_mask & __GFP_WAIT)) {
2383 		struct page_cgroup *pc;
2384 
2385 		pc = lookup_page_cgroup(page);
2386 		if (!pc)
2387 			return 0;
2388 		lock_page_cgroup(pc);
2389 		if (PageCgroupUsed(pc)) {
2390 			unlock_page_cgroup(pc);
2391 			return 0;
2392 		}
2393 		unlock_page_cgroup(pc);
2394 	}
2395 
2396 	if (unlikely(!mm))
2397 		mm = &init_mm;
2398 
2399 	if (page_is_file_cache(page))
2400 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2401 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2402 
2403 	/* shmem */
2404 	if (PageSwapCache(page)) {
2405 		struct mem_cgroup *mem = NULL;
2406 
2407 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2408 		if (!ret)
2409 			__mem_cgroup_commit_charge_swapin(page, mem,
2410 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2411 	} else
2412 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2413 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2414 
2415 	return ret;
2416 }
2417 
2418 /*
2419  * While swap-in, try_charge -> commit or cancel, the page is locked.
2420  * And when try_charge() successfully returns, one refcnt to memcg without
2421  * struct page_cgroup is acquired. This refcnt will be consumed by
2422  * "commit()" or removed by "cancel()"
2423  */
2424 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2425 				 struct page *page,
2426 				 gfp_t mask, struct mem_cgroup **ptr)
2427 {
2428 	struct mem_cgroup *mem;
2429 	int ret;
2430 
2431 	if (mem_cgroup_disabled())
2432 		return 0;
2433 
2434 	if (!do_swap_account)
2435 		goto charge_cur_mm;
2436 	/*
2437 	 * A racing thread's fault, or swapoff, may have already updated
2438 	 * the pte, and even removed page from swap cache: in those cases
2439 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2440 	 * KSM case which does need to charge the page.
2441 	 */
2442 	if (!PageSwapCache(page))
2443 		goto charge_cur_mm;
2444 	mem = try_get_mem_cgroup_from_page(page);
2445 	if (!mem)
2446 		goto charge_cur_mm;
2447 	*ptr = mem;
2448 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2449 	css_put(&mem->css);
2450 	return ret;
2451 charge_cur_mm:
2452 	if (unlikely(!mm))
2453 		mm = &init_mm;
2454 	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2455 }
2456 
2457 static void
2458 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2459 					enum charge_type ctype)
2460 {
2461 	struct page_cgroup *pc;
2462 
2463 	if (mem_cgroup_disabled())
2464 		return;
2465 	if (!ptr)
2466 		return;
2467 	cgroup_exclude_rmdir(&ptr->css);
2468 	pc = lookup_page_cgroup(page);
2469 	mem_cgroup_lru_del_before_commit_swapcache(page);
2470 	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2471 	mem_cgroup_lru_add_after_commit_swapcache(page);
2472 	/*
2473 	 * Now swap is on-memory. This means this page may be
2474 	 * counted both as mem and swap....double count.
2475 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2476 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2477 	 * may call delete_from_swap_cache() before reach here.
2478 	 */
2479 	if (do_swap_account && PageSwapCache(page)) {
2480 		swp_entry_t ent = {.val = page_private(page)};
2481 		unsigned short id;
2482 		struct mem_cgroup *memcg;
2483 
2484 		id = swap_cgroup_record(ent, 0);
2485 		rcu_read_lock();
2486 		memcg = mem_cgroup_lookup(id);
2487 		if (memcg) {
2488 			/*
2489 			 * This recorded memcg can be obsolete one. So, avoid
2490 			 * calling css_tryget
2491 			 */
2492 			if (!mem_cgroup_is_root(memcg))
2493 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2494 			mem_cgroup_swap_statistics(memcg, false);
2495 			mem_cgroup_put(memcg);
2496 		}
2497 		rcu_read_unlock();
2498 	}
2499 	/*
2500 	 * At swapin, we may charge account against cgroup which has no tasks.
2501 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2502 	 * In that case, we need to call pre_destroy() again. check it here.
2503 	 */
2504 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2505 }
2506 
2507 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2508 {
2509 	__mem_cgroup_commit_charge_swapin(page, ptr,
2510 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2511 }
2512 
2513 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2514 {
2515 	if (mem_cgroup_disabled())
2516 		return;
2517 	if (!mem)
2518 		return;
2519 	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2520 }
2521 
2522 static void
2523 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2524 	      int page_size)
2525 {
2526 	struct memcg_batch_info *batch = NULL;
2527 	bool uncharge_memsw = true;
2528 	/* If swapout, usage of swap doesn't decrease */
2529 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2530 		uncharge_memsw = false;
2531 
2532 	batch = &current->memcg_batch;
2533 	/*
2534 	 * In usual, we do css_get() when we remember memcg pointer.
2535 	 * But in this case, we keep res->usage until end of a series of
2536 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2537 	 */
2538 	if (!batch->memcg)
2539 		batch->memcg = mem;
2540 	/*
2541 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2542 	 * In those cases, all pages freed continously can be expected to be in
2543 	 * the same cgroup and we have chance to coalesce uncharges.
2544 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2545 	 * because we want to do uncharge as soon as possible.
2546 	 */
2547 
2548 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2549 		goto direct_uncharge;
2550 
2551 	if (page_size != PAGE_SIZE)
2552 		goto direct_uncharge;
2553 
2554 	/*
2555 	 * In typical case, batch->memcg == mem. This means we can
2556 	 * merge a series of uncharges to an uncharge of res_counter.
2557 	 * If not, we uncharge res_counter ony by one.
2558 	 */
2559 	if (batch->memcg != mem)
2560 		goto direct_uncharge;
2561 	/* remember freed charge and uncharge it later */
2562 	batch->bytes += PAGE_SIZE;
2563 	if (uncharge_memsw)
2564 		batch->memsw_bytes += PAGE_SIZE;
2565 	return;
2566 direct_uncharge:
2567 	res_counter_uncharge(&mem->res, page_size);
2568 	if (uncharge_memsw)
2569 		res_counter_uncharge(&mem->memsw, page_size);
2570 	if (unlikely(batch->memcg != mem))
2571 		memcg_oom_recover(mem);
2572 	return;
2573 }
2574 
2575 /*
2576  * uncharge if !page_mapped(page)
2577  */
2578 static struct mem_cgroup *
2579 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2580 {
2581 	int count;
2582 	struct page_cgroup *pc;
2583 	struct mem_cgroup *mem = NULL;
2584 	int page_size = PAGE_SIZE;
2585 
2586 	if (mem_cgroup_disabled())
2587 		return NULL;
2588 
2589 	if (PageSwapCache(page))
2590 		return NULL;
2591 
2592 	if (PageTransHuge(page)) {
2593 		page_size <<= compound_order(page);
2594 		VM_BUG_ON(!PageTransHuge(page));
2595 	}
2596 
2597 	count = page_size >> PAGE_SHIFT;
2598 	/*
2599 	 * Check if our page_cgroup is valid
2600 	 */
2601 	pc = lookup_page_cgroup(page);
2602 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2603 		return NULL;
2604 
2605 	lock_page_cgroup(pc);
2606 
2607 	mem = pc->mem_cgroup;
2608 
2609 	if (!PageCgroupUsed(pc))
2610 		goto unlock_out;
2611 
2612 	switch (ctype) {
2613 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2614 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2615 		/* See mem_cgroup_prepare_migration() */
2616 		if (page_mapped(page) || PageCgroupMigration(pc))
2617 			goto unlock_out;
2618 		break;
2619 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2620 		if (!PageAnon(page)) {	/* Shared memory */
2621 			if (page->mapping && !page_is_file_cache(page))
2622 				goto unlock_out;
2623 		} else if (page_mapped(page)) /* Anon */
2624 				goto unlock_out;
2625 		break;
2626 	default:
2627 		break;
2628 	}
2629 
2630 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2631 
2632 	ClearPageCgroupUsed(pc);
2633 	/*
2634 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2635 	 * freed from LRU. This is safe because uncharged page is expected not
2636 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2637 	 * special functions.
2638 	 */
2639 
2640 	unlock_page_cgroup(pc);
2641 	/*
2642 	 * even after unlock, we have mem->res.usage here and this memcg
2643 	 * will never be freed.
2644 	 */
2645 	memcg_check_events(mem, page);
2646 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2647 		mem_cgroup_swap_statistics(mem, true);
2648 		mem_cgroup_get(mem);
2649 	}
2650 	if (!mem_cgroup_is_root(mem))
2651 		__do_uncharge(mem, ctype, page_size);
2652 
2653 	return mem;
2654 
2655 unlock_out:
2656 	unlock_page_cgroup(pc);
2657 	return NULL;
2658 }
2659 
2660 void mem_cgroup_uncharge_page(struct page *page)
2661 {
2662 	/* early check. */
2663 	if (page_mapped(page))
2664 		return;
2665 	if (page->mapping && !PageAnon(page))
2666 		return;
2667 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2668 }
2669 
2670 void mem_cgroup_uncharge_cache_page(struct page *page)
2671 {
2672 	VM_BUG_ON(page_mapped(page));
2673 	VM_BUG_ON(page->mapping);
2674 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2675 }
2676 
2677 /*
2678  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2679  * In that cases, pages are freed continuously and we can expect pages
2680  * are in the same memcg. All these calls itself limits the number of
2681  * pages freed at once, then uncharge_start/end() is called properly.
2682  * This may be called prural(2) times in a context,
2683  */
2684 
2685 void mem_cgroup_uncharge_start(void)
2686 {
2687 	current->memcg_batch.do_batch++;
2688 	/* We can do nest. */
2689 	if (current->memcg_batch.do_batch == 1) {
2690 		current->memcg_batch.memcg = NULL;
2691 		current->memcg_batch.bytes = 0;
2692 		current->memcg_batch.memsw_bytes = 0;
2693 	}
2694 }
2695 
2696 void mem_cgroup_uncharge_end(void)
2697 {
2698 	struct memcg_batch_info *batch = &current->memcg_batch;
2699 
2700 	if (!batch->do_batch)
2701 		return;
2702 
2703 	batch->do_batch--;
2704 	if (batch->do_batch) /* If stacked, do nothing. */
2705 		return;
2706 
2707 	if (!batch->memcg)
2708 		return;
2709 	/*
2710 	 * This "batch->memcg" is valid without any css_get/put etc...
2711 	 * bacause we hide charges behind us.
2712 	 */
2713 	if (batch->bytes)
2714 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2715 	if (batch->memsw_bytes)
2716 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2717 	memcg_oom_recover(batch->memcg);
2718 	/* forget this pointer (for sanity check) */
2719 	batch->memcg = NULL;
2720 }
2721 
2722 #ifdef CONFIG_SWAP
2723 /*
2724  * called after __delete_from_swap_cache() and drop "page" account.
2725  * memcg information is recorded to swap_cgroup of "ent"
2726  */
2727 void
2728 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2729 {
2730 	struct mem_cgroup *memcg;
2731 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2732 
2733 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2734 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2735 
2736 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2737 
2738 	/*
2739 	 * record memcg information,  if swapout && memcg != NULL,
2740 	 * mem_cgroup_get() was called in uncharge().
2741 	 */
2742 	if (do_swap_account && swapout && memcg)
2743 		swap_cgroup_record(ent, css_id(&memcg->css));
2744 }
2745 #endif
2746 
2747 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2748 /*
2749  * called from swap_entry_free(). remove record in swap_cgroup and
2750  * uncharge "memsw" account.
2751  */
2752 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2753 {
2754 	struct mem_cgroup *memcg;
2755 	unsigned short id;
2756 
2757 	if (!do_swap_account)
2758 		return;
2759 
2760 	id = swap_cgroup_record(ent, 0);
2761 	rcu_read_lock();
2762 	memcg = mem_cgroup_lookup(id);
2763 	if (memcg) {
2764 		/*
2765 		 * We uncharge this because swap is freed.
2766 		 * This memcg can be obsolete one. We avoid calling css_tryget
2767 		 */
2768 		if (!mem_cgroup_is_root(memcg))
2769 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2770 		mem_cgroup_swap_statistics(memcg, false);
2771 		mem_cgroup_put(memcg);
2772 	}
2773 	rcu_read_unlock();
2774 }
2775 
2776 /**
2777  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2778  * @entry: swap entry to be moved
2779  * @from:  mem_cgroup which the entry is moved from
2780  * @to:  mem_cgroup which the entry is moved to
2781  * @need_fixup: whether we should fixup res_counters and refcounts.
2782  *
2783  * It succeeds only when the swap_cgroup's record for this entry is the same
2784  * as the mem_cgroup's id of @from.
2785  *
2786  * Returns 0 on success, -EINVAL on failure.
2787  *
2788  * The caller must have charged to @to, IOW, called res_counter_charge() about
2789  * both res and memsw, and called css_get().
2790  */
2791 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2792 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2793 {
2794 	unsigned short old_id, new_id;
2795 
2796 	old_id = css_id(&from->css);
2797 	new_id = css_id(&to->css);
2798 
2799 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2800 		mem_cgroup_swap_statistics(from, false);
2801 		mem_cgroup_swap_statistics(to, true);
2802 		/*
2803 		 * This function is only called from task migration context now.
2804 		 * It postpones res_counter and refcount handling till the end
2805 		 * of task migration(mem_cgroup_clear_mc()) for performance
2806 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2807 		 * because if the process that has been moved to @to does
2808 		 * swap-in, the refcount of @to might be decreased to 0.
2809 		 */
2810 		mem_cgroup_get(to);
2811 		if (need_fixup) {
2812 			if (!mem_cgroup_is_root(from))
2813 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2814 			mem_cgroup_put(from);
2815 			/*
2816 			 * we charged both to->res and to->memsw, so we should
2817 			 * uncharge to->res.
2818 			 */
2819 			if (!mem_cgroup_is_root(to))
2820 				res_counter_uncharge(&to->res, PAGE_SIZE);
2821 		}
2822 		return 0;
2823 	}
2824 	return -EINVAL;
2825 }
2826 #else
2827 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2828 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2829 {
2830 	return -EINVAL;
2831 }
2832 #endif
2833 
2834 /*
2835  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2836  * page belongs to.
2837  */
2838 int mem_cgroup_prepare_migration(struct page *page,
2839 	struct page *newpage, struct mem_cgroup **ptr)
2840 {
2841 	struct page_cgroup *pc;
2842 	struct mem_cgroup *mem = NULL;
2843 	enum charge_type ctype;
2844 	int ret = 0;
2845 
2846 	VM_BUG_ON(PageTransHuge(page));
2847 	if (mem_cgroup_disabled())
2848 		return 0;
2849 
2850 	pc = lookup_page_cgroup(page);
2851 	lock_page_cgroup(pc);
2852 	if (PageCgroupUsed(pc)) {
2853 		mem = pc->mem_cgroup;
2854 		css_get(&mem->css);
2855 		/*
2856 		 * At migrating an anonymous page, its mapcount goes down
2857 		 * to 0 and uncharge() will be called. But, even if it's fully
2858 		 * unmapped, migration may fail and this page has to be
2859 		 * charged again. We set MIGRATION flag here and delay uncharge
2860 		 * until end_migration() is called
2861 		 *
2862 		 * Corner Case Thinking
2863 		 * A)
2864 		 * When the old page was mapped as Anon and it's unmap-and-freed
2865 		 * while migration was ongoing.
2866 		 * If unmap finds the old page, uncharge() of it will be delayed
2867 		 * until end_migration(). If unmap finds a new page, it's
2868 		 * uncharged when it make mapcount to be 1->0. If unmap code
2869 		 * finds swap_migration_entry, the new page will not be mapped
2870 		 * and end_migration() will find it(mapcount==0).
2871 		 *
2872 		 * B)
2873 		 * When the old page was mapped but migraion fails, the kernel
2874 		 * remaps it. A charge for it is kept by MIGRATION flag even
2875 		 * if mapcount goes down to 0. We can do remap successfully
2876 		 * without charging it again.
2877 		 *
2878 		 * C)
2879 		 * The "old" page is under lock_page() until the end of
2880 		 * migration, so, the old page itself will not be swapped-out.
2881 		 * If the new page is swapped out before end_migraton, our
2882 		 * hook to usual swap-out path will catch the event.
2883 		 */
2884 		if (PageAnon(page))
2885 			SetPageCgroupMigration(pc);
2886 	}
2887 	unlock_page_cgroup(pc);
2888 	/*
2889 	 * If the page is not charged at this point,
2890 	 * we return here.
2891 	 */
2892 	if (!mem)
2893 		return 0;
2894 
2895 	*ptr = mem;
2896 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2897 	css_put(&mem->css);/* drop extra refcnt */
2898 	if (ret || *ptr == NULL) {
2899 		if (PageAnon(page)) {
2900 			lock_page_cgroup(pc);
2901 			ClearPageCgroupMigration(pc);
2902 			unlock_page_cgroup(pc);
2903 			/*
2904 			 * The old page may be fully unmapped while we kept it.
2905 			 */
2906 			mem_cgroup_uncharge_page(page);
2907 		}
2908 		return -ENOMEM;
2909 	}
2910 	/*
2911 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2912 	 * is called before end_migration, we can catch all events on this new
2913 	 * page. In the case new page is migrated but not remapped, new page's
2914 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2915 	 */
2916 	pc = lookup_page_cgroup(newpage);
2917 	if (PageAnon(page))
2918 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2919 	else if (page_is_file_cache(page))
2920 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2921 	else
2922 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2923 	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2924 	return ret;
2925 }
2926 
2927 /* remove redundant charge if migration failed*/
2928 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2929 	struct page *oldpage, struct page *newpage, bool migration_ok)
2930 {
2931 	struct page *used, *unused;
2932 	struct page_cgroup *pc;
2933 
2934 	if (!mem)
2935 		return;
2936 	/* blocks rmdir() */
2937 	cgroup_exclude_rmdir(&mem->css);
2938 	if (!migration_ok) {
2939 		used = oldpage;
2940 		unused = newpage;
2941 	} else {
2942 		used = newpage;
2943 		unused = oldpage;
2944 	}
2945 	/*
2946 	 * We disallowed uncharge of pages under migration because mapcount
2947 	 * of the page goes down to zero, temporarly.
2948 	 * Clear the flag and check the page should be charged.
2949 	 */
2950 	pc = lookup_page_cgroup(oldpage);
2951 	lock_page_cgroup(pc);
2952 	ClearPageCgroupMigration(pc);
2953 	unlock_page_cgroup(pc);
2954 
2955 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2956 
2957 	/*
2958 	 * If a page is a file cache, radix-tree replacement is very atomic
2959 	 * and we can skip this check. When it was an Anon page, its mapcount
2960 	 * goes down to 0. But because we added MIGRATION flage, it's not
2961 	 * uncharged yet. There are several case but page->mapcount check
2962 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2963 	 * check. (see prepare_charge() also)
2964 	 */
2965 	if (PageAnon(used))
2966 		mem_cgroup_uncharge_page(used);
2967 	/*
2968 	 * At migration, we may charge account against cgroup which has no
2969 	 * tasks.
2970 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2971 	 * In that case, we need to call pre_destroy() again. check it here.
2972 	 */
2973 	cgroup_release_and_wakeup_rmdir(&mem->css);
2974 }
2975 
2976 /*
2977  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2978  * Calling hierarchical_reclaim is not enough because we should update
2979  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2980  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2981  * not from the memcg which this page would be charged to.
2982  * try_charge_swapin does all of these works properly.
2983  */
2984 int mem_cgroup_shmem_charge_fallback(struct page *page,
2985 			    struct mm_struct *mm,
2986 			    gfp_t gfp_mask)
2987 {
2988 	struct mem_cgroup *mem = NULL;
2989 	int ret;
2990 
2991 	if (mem_cgroup_disabled())
2992 		return 0;
2993 
2994 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2995 	if (!ret)
2996 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2997 
2998 	return ret;
2999 }
3000 
3001 static DEFINE_MUTEX(set_limit_mutex);
3002 
3003 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3004 				unsigned long long val)
3005 {
3006 	int retry_count;
3007 	u64 memswlimit, memlimit;
3008 	int ret = 0;
3009 	int children = mem_cgroup_count_children(memcg);
3010 	u64 curusage, oldusage;
3011 	int enlarge;
3012 
3013 	/*
3014 	 * For keeping hierarchical_reclaim simple, how long we should retry
3015 	 * is depends on callers. We set our retry-count to be function
3016 	 * of # of children which we should visit in this loop.
3017 	 */
3018 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3019 
3020 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3021 
3022 	enlarge = 0;
3023 	while (retry_count) {
3024 		if (signal_pending(current)) {
3025 			ret = -EINTR;
3026 			break;
3027 		}
3028 		/*
3029 		 * Rather than hide all in some function, I do this in
3030 		 * open coded manner. You see what this really does.
3031 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3032 		 */
3033 		mutex_lock(&set_limit_mutex);
3034 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3035 		if (memswlimit < val) {
3036 			ret = -EINVAL;
3037 			mutex_unlock(&set_limit_mutex);
3038 			break;
3039 		}
3040 
3041 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3042 		if (memlimit < val)
3043 			enlarge = 1;
3044 
3045 		ret = res_counter_set_limit(&memcg->res, val);
3046 		if (!ret) {
3047 			if (memswlimit == val)
3048 				memcg->memsw_is_minimum = true;
3049 			else
3050 				memcg->memsw_is_minimum = false;
3051 		}
3052 		mutex_unlock(&set_limit_mutex);
3053 
3054 		if (!ret)
3055 			break;
3056 
3057 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3058 						MEM_CGROUP_RECLAIM_SHRINK);
3059 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3060 		/* Usage is reduced ? */
3061   		if (curusage >= oldusage)
3062 			retry_count--;
3063 		else
3064 			oldusage = curusage;
3065 	}
3066 	if (!ret && enlarge)
3067 		memcg_oom_recover(memcg);
3068 
3069 	return ret;
3070 }
3071 
3072 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3073 					unsigned long long val)
3074 {
3075 	int retry_count;
3076 	u64 memlimit, memswlimit, oldusage, curusage;
3077 	int children = mem_cgroup_count_children(memcg);
3078 	int ret = -EBUSY;
3079 	int enlarge = 0;
3080 
3081 	/* see mem_cgroup_resize_res_limit */
3082  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3083 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3084 	while (retry_count) {
3085 		if (signal_pending(current)) {
3086 			ret = -EINTR;
3087 			break;
3088 		}
3089 		/*
3090 		 * Rather than hide all in some function, I do this in
3091 		 * open coded manner. You see what this really does.
3092 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3093 		 */
3094 		mutex_lock(&set_limit_mutex);
3095 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3096 		if (memlimit > val) {
3097 			ret = -EINVAL;
3098 			mutex_unlock(&set_limit_mutex);
3099 			break;
3100 		}
3101 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3102 		if (memswlimit < val)
3103 			enlarge = 1;
3104 		ret = res_counter_set_limit(&memcg->memsw, val);
3105 		if (!ret) {
3106 			if (memlimit == val)
3107 				memcg->memsw_is_minimum = true;
3108 			else
3109 				memcg->memsw_is_minimum = false;
3110 		}
3111 		mutex_unlock(&set_limit_mutex);
3112 
3113 		if (!ret)
3114 			break;
3115 
3116 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3117 						MEM_CGROUP_RECLAIM_NOSWAP |
3118 						MEM_CGROUP_RECLAIM_SHRINK);
3119 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3120 		/* Usage is reduced ? */
3121 		if (curusage >= oldusage)
3122 			retry_count--;
3123 		else
3124 			oldusage = curusage;
3125 	}
3126 	if (!ret && enlarge)
3127 		memcg_oom_recover(memcg);
3128 	return ret;
3129 }
3130 
3131 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3132 					    gfp_t gfp_mask)
3133 {
3134 	unsigned long nr_reclaimed = 0;
3135 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3136 	unsigned long reclaimed;
3137 	int loop = 0;
3138 	struct mem_cgroup_tree_per_zone *mctz;
3139 	unsigned long long excess;
3140 
3141 	if (order > 0)
3142 		return 0;
3143 
3144 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3145 	/*
3146 	 * This loop can run a while, specially if mem_cgroup's continuously
3147 	 * keep exceeding their soft limit and putting the system under
3148 	 * pressure
3149 	 */
3150 	do {
3151 		if (next_mz)
3152 			mz = next_mz;
3153 		else
3154 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3155 		if (!mz)
3156 			break;
3157 
3158 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3159 						gfp_mask,
3160 						MEM_CGROUP_RECLAIM_SOFT);
3161 		nr_reclaimed += reclaimed;
3162 		spin_lock(&mctz->lock);
3163 
3164 		/*
3165 		 * If we failed to reclaim anything from this memory cgroup
3166 		 * it is time to move on to the next cgroup
3167 		 */
3168 		next_mz = NULL;
3169 		if (!reclaimed) {
3170 			do {
3171 				/*
3172 				 * Loop until we find yet another one.
3173 				 *
3174 				 * By the time we get the soft_limit lock
3175 				 * again, someone might have aded the
3176 				 * group back on the RB tree. Iterate to
3177 				 * make sure we get a different mem.
3178 				 * mem_cgroup_largest_soft_limit_node returns
3179 				 * NULL if no other cgroup is present on
3180 				 * the tree
3181 				 */
3182 				next_mz =
3183 				__mem_cgroup_largest_soft_limit_node(mctz);
3184 				if (next_mz == mz) {
3185 					css_put(&next_mz->mem->css);
3186 					next_mz = NULL;
3187 				} else /* next_mz == NULL or other memcg */
3188 					break;
3189 			} while (1);
3190 		}
3191 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3192 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3193 		/*
3194 		 * One school of thought says that we should not add
3195 		 * back the node to the tree if reclaim returns 0.
3196 		 * But our reclaim could return 0, simply because due
3197 		 * to priority we are exposing a smaller subset of
3198 		 * memory to reclaim from. Consider this as a longer
3199 		 * term TODO.
3200 		 */
3201 		/* If excess == 0, no tree ops */
3202 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3203 		spin_unlock(&mctz->lock);
3204 		css_put(&mz->mem->css);
3205 		loop++;
3206 		/*
3207 		 * Could not reclaim anything and there are no more
3208 		 * mem cgroups to try or we seem to be looping without
3209 		 * reclaiming anything.
3210 		 */
3211 		if (!nr_reclaimed &&
3212 			(next_mz == NULL ||
3213 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3214 			break;
3215 	} while (!nr_reclaimed);
3216 	if (next_mz)
3217 		css_put(&next_mz->mem->css);
3218 	return nr_reclaimed;
3219 }
3220 
3221 /*
3222  * This routine traverse page_cgroup in given list and drop them all.
3223  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3224  */
3225 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3226 				int node, int zid, enum lru_list lru)
3227 {
3228 	struct zone *zone;
3229 	struct mem_cgroup_per_zone *mz;
3230 	struct page_cgroup *pc, *busy;
3231 	unsigned long flags, loop;
3232 	struct list_head *list;
3233 	int ret = 0;
3234 
3235 	zone = &NODE_DATA(node)->node_zones[zid];
3236 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3237 	list = &mz->lists[lru];
3238 
3239 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3240 	/* give some margin against EBUSY etc...*/
3241 	loop += 256;
3242 	busy = NULL;
3243 	while (loop--) {
3244 		ret = 0;
3245 		spin_lock_irqsave(&zone->lru_lock, flags);
3246 		if (list_empty(list)) {
3247 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3248 			break;
3249 		}
3250 		pc = list_entry(list->prev, struct page_cgroup, lru);
3251 		if (busy == pc) {
3252 			list_move(&pc->lru, list);
3253 			busy = NULL;
3254 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3255 			continue;
3256 		}
3257 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3258 
3259 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3260 		if (ret == -ENOMEM)
3261 			break;
3262 
3263 		if (ret == -EBUSY || ret == -EINVAL) {
3264 			/* found lock contention or "pc" is obsolete. */
3265 			busy = pc;
3266 			cond_resched();
3267 		} else
3268 			busy = NULL;
3269 	}
3270 
3271 	if (!ret && !list_empty(list))
3272 		return -EBUSY;
3273 	return ret;
3274 }
3275 
3276 /*
3277  * make mem_cgroup's charge to be 0 if there is no task.
3278  * This enables deleting this mem_cgroup.
3279  */
3280 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3281 {
3282 	int ret;
3283 	int node, zid, shrink;
3284 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3285 	struct cgroup *cgrp = mem->css.cgroup;
3286 
3287 	css_get(&mem->css);
3288 
3289 	shrink = 0;
3290 	/* should free all ? */
3291 	if (free_all)
3292 		goto try_to_free;
3293 move_account:
3294 	do {
3295 		ret = -EBUSY;
3296 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3297 			goto out;
3298 		ret = -EINTR;
3299 		if (signal_pending(current))
3300 			goto out;
3301 		/* This is for making all *used* pages to be on LRU. */
3302 		lru_add_drain_all();
3303 		drain_all_stock_sync();
3304 		ret = 0;
3305 		mem_cgroup_start_move(mem);
3306 		for_each_node_state(node, N_HIGH_MEMORY) {
3307 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3308 				enum lru_list l;
3309 				for_each_lru(l) {
3310 					ret = mem_cgroup_force_empty_list(mem,
3311 							node, zid, l);
3312 					if (ret)
3313 						break;
3314 				}
3315 			}
3316 			if (ret)
3317 				break;
3318 		}
3319 		mem_cgroup_end_move(mem);
3320 		memcg_oom_recover(mem);
3321 		/* it seems parent cgroup doesn't have enough mem */
3322 		if (ret == -ENOMEM)
3323 			goto try_to_free;
3324 		cond_resched();
3325 	/* "ret" should also be checked to ensure all lists are empty. */
3326 	} while (mem->res.usage > 0 || ret);
3327 out:
3328 	css_put(&mem->css);
3329 	return ret;
3330 
3331 try_to_free:
3332 	/* returns EBUSY if there is a task or if we come here twice. */
3333 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3334 		ret = -EBUSY;
3335 		goto out;
3336 	}
3337 	/* we call try-to-free pages for make this cgroup empty */
3338 	lru_add_drain_all();
3339 	/* try to free all pages in this cgroup */
3340 	shrink = 1;
3341 	while (nr_retries && mem->res.usage > 0) {
3342 		int progress;
3343 
3344 		if (signal_pending(current)) {
3345 			ret = -EINTR;
3346 			goto out;
3347 		}
3348 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3349 						false, get_swappiness(mem));
3350 		if (!progress) {
3351 			nr_retries--;
3352 			/* maybe some writeback is necessary */
3353 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3354 		}
3355 
3356 	}
3357 	lru_add_drain();
3358 	/* try move_account...there may be some *locked* pages. */
3359 	goto move_account;
3360 }
3361 
3362 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3363 {
3364 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3365 }
3366 
3367 
3368 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3369 {
3370 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3371 }
3372 
3373 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3374 					u64 val)
3375 {
3376 	int retval = 0;
3377 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3378 	struct cgroup *parent = cont->parent;
3379 	struct mem_cgroup *parent_mem = NULL;
3380 
3381 	if (parent)
3382 		parent_mem = mem_cgroup_from_cont(parent);
3383 
3384 	cgroup_lock();
3385 	/*
3386 	 * If parent's use_hierarchy is set, we can't make any modifications
3387 	 * in the child subtrees. If it is unset, then the change can
3388 	 * occur, provided the current cgroup has no children.
3389 	 *
3390 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3391 	 * set if there are no children.
3392 	 */
3393 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3394 				(val == 1 || val == 0)) {
3395 		if (list_empty(&cont->children))
3396 			mem->use_hierarchy = val;
3397 		else
3398 			retval = -EBUSY;
3399 	} else
3400 		retval = -EINVAL;
3401 	cgroup_unlock();
3402 
3403 	return retval;
3404 }
3405 
3406 
3407 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3408 				enum mem_cgroup_stat_index idx)
3409 {
3410 	struct mem_cgroup *iter;
3411 	s64 val = 0;
3412 
3413 	/* each per cpu's value can be minus.Then, use s64 */
3414 	for_each_mem_cgroup_tree(iter, mem)
3415 		val += mem_cgroup_read_stat(iter, idx);
3416 
3417 	if (val < 0) /* race ? */
3418 		val = 0;
3419 	return val;
3420 }
3421 
3422 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3423 {
3424 	u64 val;
3425 
3426 	if (!mem_cgroup_is_root(mem)) {
3427 		if (!swap)
3428 			return res_counter_read_u64(&mem->res, RES_USAGE);
3429 		else
3430 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3431 	}
3432 
3433 	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3434 	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3435 
3436 	if (swap)
3437 		val += mem_cgroup_get_recursive_idx_stat(mem,
3438 				MEM_CGROUP_STAT_SWAPOUT);
3439 
3440 	return val << PAGE_SHIFT;
3441 }
3442 
3443 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3444 {
3445 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3446 	u64 val;
3447 	int type, name;
3448 
3449 	type = MEMFILE_TYPE(cft->private);
3450 	name = MEMFILE_ATTR(cft->private);
3451 	switch (type) {
3452 	case _MEM:
3453 		if (name == RES_USAGE)
3454 			val = mem_cgroup_usage(mem, false);
3455 		else
3456 			val = res_counter_read_u64(&mem->res, name);
3457 		break;
3458 	case _MEMSWAP:
3459 		if (name == RES_USAGE)
3460 			val = mem_cgroup_usage(mem, true);
3461 		else
3462 			val = res_counter_read_u64(&mem->memsw, name);
3463 		break;
3464 	default:
3465 		BUG();
3466 		break;
3467 	}
3468 	return val;
3469 }
3470 /*
3471  * The user of this function is...
3472  * RES_LIMIT.
3473  */
3474 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3475 			    const char *buffer)
3476 {
3477 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3478 	int type, name;
3479 	unsigned long long val;
3480 	int ret;
3481 
3482 	type = MEMFILE_TYPE(cft->private);
3483 	name = MEMFILE_ATTR(cft->private);
3484 	switch (name) {
3485 	case RES_LIMIT:
3486 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3487 			ret = -EINVAL;
3488 			break;
3489 		}
3490 		/* This function does all necessary parse...reuse it */
3491 		ret = res_counter_memparse_write_strategy(buffer, &val);
3492 		if (ret)
3493 			break;
3494 		if (type == _MEM)
3495 			ret = mem_cgroup_resize_limit(memcg, val);
3496 		else
3497 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3498 		break;
3499 	case RES_SOFT_LIMIT:
3500 		ret = res_counter_memparse_write_strategy(buffer, &val);
3501 		if (ret)
3502 			break;
3503 		/*
3504 		 * For memsw, soft limits are hard to implement in terms
3505 		 * of semantics, for now, we support soft limits for
3506 		 * control without swap
3507 		 */
3508 		if (type == _MEM)
3509 			ret = res_counter_set_soft_limit(&memcg->res, val);
3510 		else
3511 			ret = -EINVAL;
3512 		break;
3513 	default:
3514 		ret = -EINVAL; /* should be BUG() ? */
3515 		break;
3516 	}
3517 	return ret;
3518 }
3519 
3520 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3521 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3522 {
3523 	struct cgroup *cgroup;
3524 	unsigned long long min_limit, min_memsw_limit, tmp;
3525 
3526 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3527 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3528 	cgroup = memcg->css.cgroup;
3529 	if (!memcg->use_hierarchy)
3530 		goto out;
3531 
3532 	while (cgroup->parent) {
3533 		cgroup = cgroup->parent;
3534 		memcg = mem_cgroup_from_cont(cgroup);
3535 		if (!memcg->use_hierarchy)
3536 			break;
3537 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3538 		min_limit = min(min_limit, tmp);
3539 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3540 		min_memsw_limit = min(min_memsw_limit, tmp);
3541 	}
3542 out:
3543 	*mem_limit = min_limit;
3544 	*memsw_limit = min_memsw_limit;
3545 	return;
3546 }
3547 
3548 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3549 {
3550 	struct mem_cgroup *mem;
3551 	int type, name;
3552 
3553 	mem = mem_cgroup_from_cont(cont);
3554 	type = MEMFILE_TYPE(event);
3555 	name = MEMFILE_ATTR(event);
3556 	switch (name) {
3557 	case RES_MAX_USAGE:
3558 		if (type == _MEM)
3559 			res_counter_reset_max(&mem->res);
3560 		else
3561 			res_counter_reset_max(&mem->memsw);
3562 		break;
3563 	case RES_FAILCNT:
3564 		if (type == _MEM)
3565 			res_counter_reset_failcnt(&mem->res);
3566 		else
3567 			res_counter_reset_failcnt(&mem->memsw);
3568 		break;
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3575 					struct cftype *cft)
3576 {
3577 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3578 }
3579 
3580 #ifdef CONFIG_MMU
3581 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3582 					struct cftype *cft, u64 val)
3583 {
3584 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3585 
3586 	if (val >= (1 << NR_MOVE_TYPE))
3587 		return -EINVAL;
3588 	/*
3589 	 * We check this value several times in both in can_attach() and
3590 	 * attach(), so we need cgroup lock to prevent this value from being
3591 	 * inconsistent.
3592 	 */
3593 	cgroup_lock();
3594 	mem->move_charge_at_immigrate = val;
3595 	cgroup_unlock();
3596 
3597 	return 0;
3598 }
3599 #else
3600 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3601 					struct cftype *cft, u64 val)
3602 {
3603 	return -ENOSYS;
3604 }
3605 #endif
3606 
3607 
3608 /* For read statistics */
3609 enum {
3610 	MCS_CACHE,
3611 	MCS_RSS,
3612 	MCS_FILE_MAPPED,
3613 	MCS_PGPGIN,
3614 	MCS_PGPGOUT,
3615 	MCS_SWAP,
3616 	MCS_INACTIVE_ANON,
3617 	MCS_ACTIVE_ANON,
3618 	MCS_INACTIVE_FILE,
3619 	MCS_ACTIVE_FILE,
3620 	MCS_UNEVICTABLE,
3621 	NR_MCS_STAT,
3622 };
3623 
3624 struct mcs_total_stat {
3625 	s64 stat[NR_MCS_STAT];
3626 };
3627 
3628 struct {
3629 	char *local_name;
3630 	char *total_name;
3631 } memcg_stat_strings[NR_MCS_STAT] = {
3632 	{"cache", "total_cache"},
3633 	{"rss", "total_rss"},
3634 	{"mapped_file", "total_mapped_file"},
3635 	{"pgpgin", "total_pgpgin"},
3636 	{"pgpgout", "total_pgpgout"},
3637 	{"swap", "total_swap"},
3638 	{"inactive_anon", "total_inactive_anon"},
3639 	{"active_anon", "total_active_anon"},
3640 	{"inactive_file", "total_inactive_file"},
3641 	{"active_file", "total_active_file"},
3642 	{"unevictable", "total_unevictable"}
3643 };
3644 
3645 
3646 static void
3647 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3648 {
3649 	s64 val;
3650 
3651 	/* per cpu stat */
3652 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3653 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3654 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3655 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3656 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3657 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3658 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3659 	s->stat[MCS_PGPGIN] += val;
3660 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3661 	s->stat[MCS_PGPGOUT] += val;
3662 	if (do_swap_account) {
3663 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3664 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3665 	}
3666 
3667 	/* per zone stat */
3668 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3669 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3670 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3671 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3672 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3673 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3674 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3675 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3676 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3677 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3678 }
3679 
3680 static void
3681 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3682 {
3683 	struct mem_cgroup *iter;
3684 
3685 	for_each_mem_cgroup_tree(iter, mem)
3686 		mem_cgroup_get_local_stat(iter, s);
3687 }
3688 
3689 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3690 				 struct cgroup_map_cb *cb)
3691 {
3692 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3693 	struct mcs_total_stat mystat;
3694 	int i;
3695 
3696 	memset(&mystat, 0, sizeof(mystat));
3697 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3698 
3699 	for (i = 0; i < NR_MCS_STAT; i++) {
3700 		if (i == MCS_SWAP && !do_swap_account)
3701 			continue;
3702 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3703 	}
3704 
3705 	/* Hierarchical information */
3706 	{
3707 		unsigned long long limit, memsw_limit;
3708 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3709 		cb->fill(cb, "hierarchical_memory_limit", limit);
3710 		if (do_swap_account)
3711 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3712 	}
3713 
3714 	memset(&mystat, 0, sizeof(mystat));
3715 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3716 	for (i = 0; i < NR_MCS_STAT; i++) {
3717 		if (i == MCS_SWAP && !do_swap_account)
3718 			continue;
3719 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3720 	}
3721 
3722 #ifdef CONFIG_DEBUG_VM
3723 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3724 
3725 	{
3726 		int nid, zid;
3727 		struct mem_cgroup_per_zone *mz;
3728 		unsigned long recent_rotated[2] = {0, 0};
3729 		unsigned long recent_scanned[2] = {0, 0};
3730 
3731 		for_each_online_node(nid)
3732 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3733 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3734 
3735 				recent_rotated[0] +=
3736 					mz->reclaim_stat.recent_rotated[0];
3737 				recent_rotated[1] +=
3738 					mz->reclaim_stat.recent_rotated[1];
3739 				recent_scanned[0] +=
3740 					mz->reclaim_stat.recent_scanned[0];
3741 				recent_scanned[1] +=
3742 					mz->reclaim_stat.recent_scanned[1];
3743 			}
3744 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3745 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3746 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3747 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3748 	}
3749 #endif
3750 
3751 	return 0;
3752 }
3753 
3754 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3755 {
3756 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3757 
3758 	return get_swappiness(memcg);
3759 }
3760 
3761 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3762 				       u64 val)
3763 {
3764 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3765 	struct mem_cgroup *parent;
3766 
3767 	if (val > 100)
3768 		return -EINVAL;
3769 
3770 	if (cgrp->parent == NULL)
3771 		return -EINVAL;
3772 
3773 	parent = mem_cgroup_from_cont(cgrp->parent);
3774 
3775 	cgroup_lock();
3776 
3777 	/* If under hierarchy, only empty-root can set this value */
3778 	if ((parent->use_hierarchy) ||
3779 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3780 		cgroup_unlock();
3781 		return -EINVAL;
3782 	}
3783 
3784 	spin_lock(&memcg->reclaim_param_lock);
3785 	memcg->swappiness = val;
3786 	spin_unlock(&memcg->reclaim_param_lock);
3787 
3788 	cgroup_unlock();
3789 
3790 	return 0;
3791 }
3792 
3793 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3794 {
3795 	struct mem_cgroup_threshold_ary *t;
3796 	u64 usage;
3797 	int i;
3798 
3799 	rcu_read_lock();
3800 	if (!swap)
3801 		t = rcu_dereference(memcg->thresholds.primary);
3802 	else
3803 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3804 
3805 	if (!t)
3806 		goto unlock;
3807 
3808 	usage = mem_cgroup_usage(memcg, swap);
3809 
3810 	/*
3811 	 * current_threshold points to threshold just below usage.
3812 	 * If it's not true, a threshold was crossed after last
3813 	 * call of __mem_cgroup_threshold().
3814 	 */
3815 	i = t->current_threshold;
3816 
3817 	/*
3818 	 * Iterate backward over array of thresholds starting from
3819 	 * current_threshold and check if a threshold is crossed.
3820 	 * If none of thresholds below usage is crossed, we read
3821 	 * only one element of the array here.
3822 	 */
3823 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3824 		eventfd_signal(t->entries[i].eventfd, 1);
3825 
3826 	/* i = current_threshold + 1 */
3827 	i++;
3828 
3829 	/*
3830 	 * Iterate forward over array of thresholds starting from
3831 	 * current_threshold+1 and check if a threshold is crossed.
3832 	 * If none of thresholds above usage is crossed, we read
3833 	 * only one element of the array here.
3834 	 */
3835 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3836 		eventfd_signal(t->entries[i].eventfd, 1);
3837 
3838 	/* Update current_threshold */
3839 	t->current_threshold = i - 1;
3840 unlock:
3841 	rcu_read_unlock();
3842 }
3843 
3844 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3845 {
3846 	while (memcg) {
3847 		__mem_cgroup_threshold(memcg, false);
3848 		if (do_swap_account)
3849 			__mem_cgroup_threshold(memcg, true);
3850 
3851 		memcg = parent_mem_cgroup(memcg);
3852 	}
3853 }
3854 
3855 static int compare_thresholds(const void *a, const void *b)
3856 {
3857 	const struct mem_cgroup_threshold *_a = a;
3858 	const struct mem_cgroup_threshold *_b = b;
3859 
3860 	return _a->threshold - _b->threshold;
3861 }
3862 
3863 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3864 {
3865 	struct mem_cgroup_eventfd_list *ev;
3866 
3867 	list_for_each_entry(ev, &mem->oom_notify, list)
3868 		eventfd_signal(ev->eventfd, 1);
3869 	return 0;
3870 }
3871 
3872 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3873 {
3874 	struct mem_cgroup *iter;
3875 
3876 	for_each_mem_cgroup_tree(iter, mem)
3877 		mem_cgroup_oom_notify_cb(iter);
3878 }
3879 
3880 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3881 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3882 {
3883 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3884 	struct mem_cgroup_thresholds *thresholds;
3885 	struct mem_cgroup_threshold_ary *new;
3886 	int type = MEMFILE_TYPE(cft->private);
3887 	u64 threshold, usage;
3888 	int i, size, ret;
3889 
3890 	ret = res_counter_memparse_write_strategy(args, &threshold);
3891 	if (ret)
3892 		return ret;
3893 
3894 	mutex_lock(&memcg->thresholds_lock);
3895 
3896 	if (type == _MEM)
3897 		thresholds = &memcg->thresholds;
3898 	else if (type == _MEMSWAP)
3899 		thresholds = &memcg->memsw_thresholds;
3900 	else
3901 		BUG();
3902 
3903 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3904 
3905 	/* Check if a threshold crossed before adding a new one */
3906 	if (thresholds->primary)
3907 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3908 
3909 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3910 
3911 	/* Allocate memory for new array of thresholds */
3912 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3913 			GFP_KERNEL);
3914 	if (!new) {
3915 		ret = -ENOMEM;
3916 		goto unlock;
3917 	}
3918 	new->size = size;
3919 
3920 	/* Copy thresholds (if any) to new array */
3921 	if (thresholds->primary) {
3922 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3923 				sizeof(struct mem_cgroup_threshold));
3924 	}
3925 
3926 	/* Add new threshold */
3927 	new->entries[size - 1].eventfd = eventfd;
3928 	new->entries[size - 1].threshold = threshold;
3929 
3930 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3931 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3932 			compare_thresholds, NULL);
3933 
3934 	/* Find current threshold */
3935 	new->current_threshold = -1;
3936 	for (i = 0; i < size; i++) {
3937 		if (new->entries[i].threshold < usage) {
3938 			/*
3939 			 * new->current_threshold will not be used until
3940 			 * rcu_assign_pointer(), so it's safe to increment
3941 			 * it here.
3942 			 */
3943 			++new->current_threshold;
3944 		}
3945 	}
3946 
3947 	/* Free old spare buffer and save old primary buffer as spare */
3948 	kfree(thresholds->spare);
3949 	thresholds->spare = thresholds->primary;
3950 
3951 	rcu_assign_pointer(thresholds->primary, new);
3952 
3953 	/* To be sure that nobody uses thresholds */
3954 	synchronize_rcu();
3955 
3956 unlock:
3957 	mutex_unlock(&memcg->thresholds_lock);
3958 
3959 	return ret;
3960 }
3961 
3962 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3963 	struct cftype *cft, struct eventfd_ctx *eventfd)
3964 {
3965 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3966 	struct mem_cgroup_thresholds *thresholds;
3967 	struct mem_cgroup_threshold_ary *new;
3968 	int type = MEMFILE_TYPE(cft->private);
3969 	u64 usage;
3970 	int i, j, size;
3971 
3972 	mutex_lock(&memcg->thresholds_lock);
3973 	if (type == _MEM)
3974 		thresholds = &memcg->thresholds;
3975 	else if (type == _MEMSWAP)
3976 		thresholds = &memcg->memsw_thresholds;
3977 	else
3978 		BUG();
3979 
3980 	/*
3981 	 * Something went wrong if we trying to unregister a threshold
3982 	 * if we don't have thresholds
3983 	 */
3984 	BUG_ON(!thresholds);
3985 
3986 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3987 
3988 	/* Check if a threshold crossed before removing */
3989 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3990 
3991 	/* Calculate new number of threshold */
3992 	size = 0;
3993 	for (i = 0; i < thresholds->primary->size; i++) {
3994 		if (thresholds->primary->entries[i].eventfd != eventfd)
3995 			size++;
3996 	}
3997 
3998 	new = thresholds->spare;
3999 
4000 	/* Set thresholds array to NULL if we don't have thresholds */
4001 	if (!size) {
4002 		kfree(new);
4003 		new = NULL;
4004 		goto swap_buffers;
4005 	}
4006 
4007 	new->size = size;
4008 
4009 	/* Copy thresholds and find current threshold */
4010 	new->current_threshold = -1;
4011 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4012 		if (thresholds->primary->entries[i].eventfd == eventfd)
4013 			continue;
4014 
4015 		new->entries[j] = thresholds->primary->entries[i];
4016 		if (new->entries[j].threshold < usage) {
4017 			/*
4018 			 * new->current_threshold will not be used
4019 			 * until rcu_assign_pointer(), so it's safe to increment
4020 			 * it here.
4021 			 */
4022 			++new->current_threshold;
4023 		}
4024 		j++;
4025 	}
4026 
4027 swap_buffers:
4028 	/* Swap primary and spare array */
4029 	thresholds->spare = thresholds->primary;
4030 	rcu_assign_pointer(thresholds->primary, new);
4031 
4032 	/* To be sure that nobody uses thresholds */
4033 	synchronize_rcu();
4034 
4035 	mutex_unlock(&memcg->thresholds_lock);
4036 }
4037 
4038 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4039 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4040 {
4041 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4042 	struct mem_cgroup_eventfd_list *event;
4043 	int type = MEMFILE_TYPE(cft->private);
4044 
4045 	BUG_ON(type != _OOM_TYPE);
4046 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4047 	if (!event)
4048 		return -ENOMEM;
4049 
4050 	mutex_lock(&memcg_oom_mutex);
4051 
4052 	event->eventfd = eventfd;
4053 	list_add(&event->list, &memcg->oom_notify);
4054 
4055 	/* already in OOM ? */
4056 	if (atomic_read(&memcg->oom_lock))
4057 		eventfd_signal(eventfd, 1);
4058 	mutex_unlock(&memcg_oom_mutex);
4059 
4060 	return 0;
4061 }
4062 
4063 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4064 	struct cftype *cft, struct eventfd_ctx *eventfd)
4065 {
4066 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4067 	struct mem_cgroup_eventfd_list *ev, *tmp;
4068 	int type = MEMFILE_TYPE(cft->private);
4069 
4070 	BUG_ON(type != _OOM_TYPE);
4071 
4072 	mutex_lock(&memcg_oom_mutex);
4073 
4074 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4075 		if (ev->eventfd == eventfd) {
4076 			list_del(&ev->list);
4077 			kfree(ev);
4078 		}
4079 	}
4080 
4081 	mutex_unlock(&memcg_oom_mutex);
4082 }
4083 
4084 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4085 	struct cftype *cft,  struct cgroup_map_cb *cb)
4086 {
4087 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4088 
4089 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4090 
4091 	if (atomic_read(&mem->oom_lock))
4092 		cb->fill(cb, "under_oom", 1);
4093 	else
4094 		cb->fill(cb, "under_oom", 0);
4095 	return 0;
4096 }
4097 
4098 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4099 	struct cftype *cft, u64 val)
4100 {
4101 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4102 	struct mem_cgroup *parent;
4103 
4104 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4105 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4106 		return -EINVAL;
4107 
4108 	parent = mem_cgroup_from_cont(cgrp->parent);
4109 
4110 	cgroup_lock();
4111 	/* oom-kill-disable is a flag for subhierarchy. */
4112 	if ((parent->use_hierarchy) ||
4113 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4114 		cgroup_unlock();
4115 		return -EINVAL;
4116 	}
4117 	mem->oom_kill_disable = val;
4118 	if (!val)
4119 		memcg_oom_recover(mem);
4120 	cgroup_unlock();
4121 	return 0;
4122 }
4123 
4124 static struct cftype mem_cgroup_files[] = {
4125 	{
4126 		.name = "usage_in_bytes",
4127 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4128 		.read_u64 = mem_cgroup_read,
4129 		.register_event = mem_cgroup_usage_register_event,
4130 		.unregister_event = mem_cgroup_usage_unregister_event,
4131 	},
4132 	{
4133 		.name = "max_usage_in_bytes",
4134 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4135 		.trigger = mem_cgroup_reset,
4136 		.read_u64 = mem_cgroup_read,
4137 	},
4138 	{
4139 		.name = "limit_in_bytes",
4140 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4141 		.write_string = mem_cgroup_write,
4142 		.read_u64 = mem_cgroup_read,
4143 	},
4144 	{
4145 		.name = "soft_limit_in_bytes",
4146 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4147 		.write_string = mem_cgroup_write,
4148 		.read_u64 = mem_cgroup_read,
4149 	},
4150 	{
4151 		.name = "failcnt",
4152 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4153 		.trigger = mem_cgroup_reset,
4154 		.read_u64 = mem_cgroup_read,
4155 	},
4156 	{
4157 		.name = "stat",
4158 		.read_map = mem_control_stat_show,
4159 	},
4160 	{
4161 		.name = "force_empty",
4162 		.trigger = mem_cgroup_force_empty_write,
4163 	},
4164 	{
4165 		.name = "use_hierarchy",
4166 		.write_u64 = mem_cgroup_hierarchy_write,
4167 		.read_u64 = mem_cgroup_hierarchy_read,
4168 	},
4169 	{
4170 		.name = "swappiness",
4171 		.read_u64 = mem_cgroup_swappiness_read,
4172 		.write_u64 = mem_cgroup_swappiness_write,
4173 	},
4174 	{
4175 		.name = "move_charge_at_immigrate",
4176 		.read_u64 = mem_cgroup_move_charge_read,
4177 		.write_u64 = mem_cgroup_move_charge_write,
4178 	},
4179 	{
4180 		.name = "oom_control",
4181 		.read_map = mem_cgroup_oom_control_read,
4182 		.write_u64 = mem_cgroup_oom_control_write,
4183 		.register_event = mem_cgroup_oom_register_event,
4184 		.unregister_event = mem_cgroup_oom_unregister_event,
4185 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4186 	},
4187 };
4188 
4189 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4190 static struct cftype memsw_cgroup_files[] = {
4191 	{
4192 		.name = "memsw.usage_in_bytes",
4193 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4194 		.read_u64 = mem_cgroup_read,
4195 		.register_event = mem_cgroup_usage_register_event,
4196 		.unregister_event = mem_cgroup_usage_unregister_event,
4197 	},
4198 	{
4199 		.name = "memsw.max_usage_in_bytes",
4200 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4201 		.trigger = mem_cgroup_reset,
4202 		.read_u64 = mem_cgroup_read,
4203 	},
4204 	{
4205 		.name = "memsw.limit_in_bytes",
4206 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4207 		.write_string = mem_cgroup_write,
4208 		.read_u64 = mem_cgroup_read,
4209 	},
4210 	{
4211 		.name = "memsw.failcnt",
4212 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4213 		.trigger = mem_cgroup_reset,
4214 		.read_u64 = mem_cgroup_read,
4215 	},
4216 };
4217 
4218 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4219 {
4220 	if (!do_swap_account)
4221 		return 0;
4222 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4223 				ARRAY_SIZE(memsw_cgroup_files));
4224 };
4225 #else
4226 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4227 {
4228 	return 0;
4229 }
4230 #endif
4231 
4232 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4233 {
4234 	struct mem_cgroup_per_node *pn;
4235 	struct mem_cgroup_per_zone *mz;
4236 	enum lru_list l;
4237 	int zone, tmp = node;
4238 	/*
4239 	 * This routine is called against possible nodes.
4240 	 * But it's BUG to call kmalloc() against offline node.
4241 	 *
4242 	 * TODO: this routine can waste much memory for nodes which will
4243 	 *       never be onlined. It's better to use memory hotplug callback
4244 	 *       function.
4245 	 */
4246 	if (!node_state(node, N_NORMAL_MEMORY))
4247 		tmp = -1;
4248 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4249 	if (!pn)
4250 		return 1;
4251 
4252 	mem->info.nodeinfo[node] = pn;
4253 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4254 		mz = &pn->zoneinfo[zone];
4255 		for_each_lru(l)
4256 			INIT_LIST_HEAD(&mz->lists[l]);
4257 		mz->usage_in_excess = 0;
4258 		mz->on_tree = false;
4259 		mz->mem = mem;
4260 	}
4261 	return 0;
4262 }
4263 
4264 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4265 {
4266 	kfree(mem->info.nodeinfo[node]);
4267 }
4268 
4269 static struct mem_cgroup *mem_cgroup_alloc(void)
4270 {
4271 	struct mem_cgroup *mem;
4272 	int size = sizeof(struct mem_cgroup);
4273 
4274 	/* Can be very big if MAX_NUMNODES is very big */
4275 	if (size < PAGE_SIZE)
4276 		mem = kzalloc(size, GFP_KERNEL);
4277 	else
4278 		mem = vzalloc(size);
4279 
4280 	if (!mem)
4281 		return NULL;
4282 
4283 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4284 	if (!mem->stat)
4285 		goto out_free;
4286 	spin_lock_init(&mem->pcp_counter_lock);
4287 	return mem;
4288 
4289 out_free:
4290 	if (size < PAGE_SIZE)
4291 		kfree(mem);
4292 	else
4293 		vfree(mem);
4294 	return NULL;
4295 }
4296 
4297 /*
4298  * At destroying mem_cgroup, references from swap_cgroup can remain.
4299  * (scanning all at force_empty is too costly...)
4300  *
4301  * Instead of clearing all references at force_empty, we remember
4302  * the number of reference from swap_cgroup and free mem_cgroup when
4303  * it goes down to 0.
4304  *
4305  * Removal of cgroup itself succeeds regardless of refs from swap.
4306  */
4307 
4308 static void __mem_cgroup_free(struct mem_cgroup *mem)
4309 {
4310 	int node;
4311 
4312 	mem_cgroup_remove_from_trees(mem);
4313 	free_css_id(&mem_cgroup_subsys, &mem->css);
4314 
4315 	for_each_node_state(node, N_POSSIBLE)
4316 		free_mem_cgroup_per_zone_info(mem, node);
4317 
4318 	free_percpu(mem->stat);
4319 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4320 		kfree(mem);
4321 	else
4322 		vfree(mem);
4323 }
4324 
4325 static void mem_cgroup_get(struct mem_cgroup *mem)
4326 {
4327 	atomic_inc(&mem->refcnt);
4328 }
4329 
4330 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4331 {
4332 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4333 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4334 		__mem_cgroup_free(mem);
4335 		if (parent)
4336 			mem_cgroup_put(parent);
4337 	}
4338 }
4339 
4340 static void mem_cgroup_put(struct mem_cgroup *mem)
4341 {
4342 	__mem_cgroup_put(mem, 1);
4343 }
4344 
4345 /*
4346  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4347  */
4348 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4349 {
4350 	if (!mem->res.parent)
4351 		return NULL;
4352 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4353 }
4354 
4355 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4356 static void __init enable_swap_cgroup(void)
4357 {
4358 	if (!mem_cgroup_disabled() && really_do_swap_account)
4359 		do_swap_account = 1;
4360 }
4361 #else
4362 static void __init enable_swap_cgroup(void)
4363 {
4364 }
4365 #endif
4366 
4367 static int mem_cgroup_soft_limit_tree_init(void)
4368 {
4369 	struct mem_cgroup_tree_per_node *rtpn;
4370 	struct mem_cgroup_tree_per_zone *rtpz;
4371 	int tmp, node, zone;
4372 
4373 	for_each_node_state(node, N_POSSIBLE) {
4374 		tmp = node;
4375 		if (!node_state(node, N_NORMAL_MEMORY))
4376 			tmp = -1;
4377 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4378 		if (!rtpn)
4379 			return 1;
4380 
4381 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4382 
4383 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4384 			rtpz = &rtpn->rb_tree_per_zone[zone];
4385 			rtpz->rb_root = RB_ROOT;
4386 			spin_lock_init(&rtpz->lock);
4387 		}
4388 	}
4389 	return 0;
4390 }
4391 
4392 static struct cgroup_subsys_state * __ref
4393 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4394 {
4395 	struct mem_cgroup *mem, *parent;
4396 	long error = -ENOMEM;
4397 	int node;
4398 
4399 	mem = mem_cgroup_alloc();
4400 	if (!mem)
4401 		return ERR_PTR(error);
4402 
4403 	for_each_node_state(node, N_POSSIBLE)
4404 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4405 			goto free_out;
4406 
4407 	/* root ? */
4408 	if (cont->parent == NULL) {
4409 		int cpu;
4410 		enable_swap_cgroup();
4411 		parent = NULL;
4412 		root_mem_cgroup = mem;
4413 		if (mem_cgroup_soft_limit_tree_init())
4414 			goto free_out;
4415 		for_each_possible_cpu(cpu) {
4416 			struct memcg_stock_pcp *stock =
4417 						&per_cpu(memcg_stock, cpu);
4418 			INIT_WORK(&stock->work, drain_local_stock);
4419 		}
4420 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4421 	} else {
4422 		parent = mem_cgroup_from_cont(cont->parent);
4423 		mem->use_hierarchy = parent->use_hierarchy;
4424 		mem->oom_kill_disable = parent->oom_kill_disable;
4425 	}
4426 
4427 	if (parent && parent->use_hierarchy) {
4428 		res_counter_init(&mem->res, &parent->res);
4429 		res_counter_init(&mem->memsw, &parent->memsw);
4430 		/*
4431 		 * We increment refcnt of the parent to ensure that we can
4432 		 * safely access it on res_counter_charge/uncharge.
4433 		 * This refcnt will be decremented when freeing this
4434 		 * mem_cgroup(see mem_cgroup_put).
4435 		 */
4436 		mem_cgroup_get(parent);
4437 	} else {
4438 		res_counter_init(&mem->res, NULL);
4439 		res_counter_init(&mem->memsw, NULL);
4440 	}
4441 	mem->last_scanned_child = 0;
4442 	spin_lock_init(&mem->reclaim_param_lock);
4443 	INIT_LIST_HEAD(&mem->oom_notify);
4444 
4445 	if (parent)
4446 		mem->swappiness = get_swappiness(parent);
4447 	atomic_set(&mem->refcnt, 1);
4448 	mem->move_charge_at_immigrate = 0;
4449 	mutex_init(&mem->thresholds_lock);
4450 	return &mem->css;
4451 free_out:
4452 	__mem_cgroup_free(mem);
4453 	root_mem_cgroup = NULL;
4454 	return ERR_PTR(error);
4455 }
4456 
4457 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4458 					struct cgroup *cont)
4459 {
4460 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4461 
4462 	return mem_cgroup_force_empty(mem, false);
4463 }
4464 
4465 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4466 				struct cgroup *cont)
4467 {
4468 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4469 
4470 	mem_cgroup_put(mem);
4471 }
4472 
4473 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4474 				struct cgroup *cont)
4475 {
4476 	int ret;
4477 
4478 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4479 				ARRAY_SIZE(mem_cgroup_files));
4480 
4481 	if (!ret)
4482 		ret = register_memsw_files(cont, ss);
4483 	return ret;
4484 }
4485 
4486 #ifdef CONFIG_MMU
4487 /* Handlers for move charge at task migration. */
4488 #define PRECHARGE_COUNT_AT_ONCE	256
4489 static int mem_cgroup_do_precharge(unsigned long count)
4490 {
4491 	int ret = 0;
4492 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4493 	struct mem_cgroup *mem = mc.to;
4494 
4495 	if (mem_cgroup_is_root(mem)) {
4496 		mc.precharge += count;
4497 		/* we don't need css_get for root */
4498 		return ret;
4499 	}
4500 	/* try to charge at once */
4501 	if (count > 1) {
4502 		struct res_counter *dummy;
4503 		/*
4504 		 * "mem" cannot be under rmdir() because we've already checked
4505 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4506 		 * are still under the same cgroup_mutex. So we can postpone
4507 		 * css_get().
4508 		 */
4509 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4510 			goto one_by_one;
4511 		if (do_swap_account && res_counter_charge(&mem->memsw,
4512 						PAGE_SIZE * count, &dummy)) {
4513 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4514 			goto one_by_one;
4515 		}
4516 		mc.precharge += count;
4517 		return ret;
4518 	}
4519 one_by_one:
4520 	/* fall back to one by one charge */
4521 	while (count--) {
4522 		if (signal_pending(current)) {
4523 			ret = -EINTR;
4524 			break;
4525 		}
4526 		if (!batch_count--) {
4527 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4528 			cond_resched();
4529 		}
4530 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4531 					      PAGE_SIZE);
4532 		if (ret || !mem)
4533 			/* mem_cgroup_clear_mc() will do uncharge later */
4534 			return -ENOMEM;
4535 		mc.precharge++;
4536 	}
4537 	return ret;
4538 }
4539 
4540 /**
4541  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4542  * @vma: the vma the pte to be checked belongs
4543  * @addr: the address corresponding to the pte to be checked
4544  * @ptent: the pte to be checked
4545  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4546  *
4547  * Returns
4548  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4549  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4550  *     move charge. if @target is not NULL, the page is stored in target->page
4551  *     with extra refcnt got(Callers should handle it).
4552  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4553  *     target for charge migration. if @target is not NULL, the entry is stored
4554  *     in target->ent.
4555  *
4556  * Called with pte lock held.
4557  */
4558 union mc_target {
4559 	struct page	*page;
4560 	swp_entry_t	ent;
4561 };
4562 
4563 enum mc_target_type {
4564 	MC_TARGET_NONE,	/* not used */
4565 	MC_TARGET_PAGE,
4566 	MC_TARGET_SWAP,
4567 };
4568 
4569 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4570 						unsigned long addr, pte_t ptent)
4571 {
4572 	struct page *page = vm_normal_page(vma, addr, ptent);
4573 
4574 	if (!page || !page_mapped(page))
4575 		return NULL;
4576 	if (PageAnon(page)) {
4577 		/* we don't move shared anon */
4578 		if (!move_anon() || page_mapcount(page) > 2)
4579 			return NULL;
4580 	} else if (!move_file())
4581 		/* we ignore mapcount for file pages */
4582 		return NULL;
4583 	if (!get_page_unless_zero(page))
4584 		return NULL;
4585 
4586 	return page;
4587 }
4588 
4589 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4590 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4591 {
4592 	int usage_count;
4593 	struct page *page = NULL;
4594 	swp_entry_t ent = pte_to_swp_entry(ptent);
4595 
4596 	if (!move_anon() || non_swap_entry(ent))
4597 		return NULL;
4598 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4599 	if (usage_count > 1) { /* we don't move shared anon */
4600 		if (page)
4601 			put_page(page);
4602 		return NULL;
4603 	}
4604 	if (do_swap_account)
4605 		entry->val = ent.val;
4606 
4607 	return page;
4608 }
4609 
4610 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4611 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4612 {
4613 	struct page *page = NULL;
4614 	struct inode *inode;
4615 	struct address_space *mapping;
4616 	pgoff_t pgoff;
4617 
4618 	if (!vma->vm_file) /* anonymous vma */
4619 		return NULL;
4620 	if (!move_file())
4621 		return NULL;
4622 
4623 	inode = vma->vm_file->f_path.dentry->d_inode;
4624 	mapping = vma->vm_file->f_mapping;
4625 	if (pte_none(ptent))
4626 		pgoff = linear_page_index(vma, addr);
4627 	else /* pte_file(ptent) is true */
4628 		pgoff = pte_to_pgoff(ptent);
4629 
4630 	/* page is moved even if it's not RSS of this task(page-faulted). */
4631 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4632 		page = find_get_page(mapping, pgoff);
4633 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4634 		swp_entry_t ent;
4635 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4636 		if (do_swap_account)
4637 			entry->val = ent.val;
4638 	}
4639 
4640 	return page;
4641 }
4642 
4643 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4644 		unsigned long addr, pte_t ptent, union mc_target *target)
4645 {
4646 	struct page *page = NULL;
4647 	struct page_cgroup *pc;
4648 	int ret = 0;
4649 	swp_entry_t ent = { .val = 0 };
4650 
4651 	if (pte_present(ptent))
4652 		page = mc_handle_present_pte(vma, addr, ptent);
4653 	else if (is_swap_pte(ptent))
4654 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4655 	else if (pte_none(ptent) || pte_file(ptent))
4656 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4657 
4658 	if (!page && !ent.val)
4659 		return 0;
4660 	if (page) {
4661 		pc = lookup_page_cgroup(page);
4662 		/*
4663 		 * Do only loose check w/o page_cgroup lock.
4664 		 * mem_cgroup_move_account() checks the pc is valid or not under
4665 		 * the lock.
4666 		 */
4667 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4668 			ret = MC_TARGET_PAGE;
4669 			if (target)
4670 				target->page = page;
4671 		}
4672 		if (!ret || !target)
4673 			put_page(page);
4674 	}
4675 	/* There is a swap entry and a page doesn't exist or isn't charged */
4676 	if (ent.val && !ret &&
4677 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4678 		ret = MC_TARGET_SWAP;
4679 		if (target)
4680 			target->ent = ent;
4681 	}
4682 	return ret;
4683 }
4684 
4685 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4686 					unsigned long addr, unsigned long end,
4687 					struct mm_walk *walk)
4688 {
4689 	struct vm_area_struct *vma = walk->private;
4690 	pte_t *pte;
4691 	spinlock_t *ptl;
4692 
4693 	VM_BUG_ON(pmd_trans_huge(*pmd));
4694 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4695 	for (; addr != end; pte++, addr += PAGE_SIZE)
4696 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4697 			mc.precharge++;	/* increment precharge temporarily */
4698 	pte_unmap_unlock(pte - 1, ptl);
4699 	cond_resched();
4700 
4701 	return 0;
4702 }
4703 
4704 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4705 {
4706 	unsigned long precharge;
4707 	struct vm_area_struct *vma;
4708 
4709 	down_read(&mm->mmap_sem);
4710 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4711 		struct mm_walk mem_cgroup_count_precharge_walk = {
4712 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4713 			.mm = mm,
4714 			.private = vma,
4715 		};
4716 		if (is_vm_hugetlb_page(vma))
4717 			continue;
4718 		walk_page_range(vma->vm_start, vma->vm_end,
4719 					&mem_cgroup_count_precharge_walk);
4720 	}
4721 	up_read(&mm->mmap_sem);
4722 
4723 	precharge = mc.precharge;
4724 	mc.precharge = 0;
4725 
4726 	return precharge;
4727 }
4728 
4729 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4730 {
4731 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4732 
4733 	VM_BUG_ON(mc.moving_task);
4734 	mc.moving_task = current;
4735 	return mem_cgroup_do_precharge(precharge);
4736 }
4737 
4738 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4739 static void __mem_cgroup_clear_mc(void)
4740 {
4741 	struct mem_cgroup *from = mc.from;
4742 	struct mem_cgroup *to = mc.to;
4743 
4744 	/* we must uncharge all the leftover precharges from mc.to */
4745 	if (mc.precharge) {
4746 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4747 		mc.precharge = 0;
4748 	}
4749 	/*
4750 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4751 	 * we must uncharge here.
4752 	 */
4753 	if (mc.moved_charge) {
4754 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4755 		mc.moved_charge = 0;
4756 	}
4757 	/* we must fixup refcnts and charges */
4758 	if (mc.moved_swap) {
4759 		/* uncharge swap account from the old cgroup */
4760 		if (!mem_cgroup_is_root(mc.from))
4761 			res_counter_uncharge(&mc.from->memsw,
4762 						PAGE_SIZE * mc.moved_swap);
4763 		__mem_cgroup_put(mc.from, mc.moved_swap);
4764 
4765 		if (!mem_cgroup_is_root(mc.to)) {
4766 			/*
4767 			 * we charged both to->res and to->memsw, so we should
4768 			 * uncharge to->res.
4769 			 */
4770 			res_counter_uncharge(&mc.to->res,
4771 						PAGE_SIZE * mc.moved_swap);
4772 		}
4773 		/* we've already done mem_cgroup_get(mc.to) */
4774 		mc.moved_swap = 0;
4775 	}
4776 	memcg_oom_recover(from);
4777 	memcg_oom_recover(to);
4778 	wake_up_all(&mc.waitq);
4779 }
4780 
4781 static void mem_cgroup_clear_mc(void)
4782 {
4783 	struct mem_cgroup *from = mc.from;
4784 
4785 	/*
4786 	 * we must clear moving_task before waking up waiters at the end of
4787 	 * task migration.
4788 	 */
4789 	mc.moving_task = NULL;
4790 	__mem_cgroup_clear_mc();
4791 	spin_lock(&mc.lock);
4792 	mc.from = NULL;
4793 	mc.to = NULL;
4794 	spin_unlock(&mc.lock);
4795 	mem_cgroup_end_move(from);
4796 }
4797 
4798 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4799 				struct cgroup *cgroup,
4800 				struct task_struct *p,
4801 				bool threadgroup)
4802 {
4803 	int ret = 0;
4804 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4805 
4806 	if (mem->move_charge_at_immigrate) {
4807 		struct mm_struct *mm;
4808 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4809 
4810 		VM_BUG_ON(from == mem);
4811 
4812 		mm = get_task_mm(p);
4813 		if (!mm)
4814 			return 0;
4815 		/* We move charges only when we move a owner of the mm */
4816 		if (mm->owner == p) {
4817 			VM_BUG_ON(mc.from);
4818 			VM_BUG_ON(mc.to);
4819 			VM_BUG_ON(mc.precharge);
4820 			VM_BUG_ON(mc.moved_charge);
4821 			VM_BUG_ON(mc.moved_swap);
4822 			mem_cgroup_start_move(from);
4823 			spin_lock(&mc.lock);
4824 			mc.from = from;
4825 			mc.to = mem;
4826 			spin_unlock(&mc.lock);
4827 			/* We set mc.moving_task later */
4828 
4829 			ret = mem_cgroup_precharge_mc(mm);
4830 			if (ret)
4831 				mem_cgroup_clear_mc();
4832 		}
4833 		mmput(mm);
4834 	}
4835 	return ret;
4836 }
4837 
4838 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4839 				struct cgroup *cgroup,
4840 				struct task_struct *p,
4841 				bool threadgroup)
4842 {
4843 	mem_cgroup_clear_mc();
4844 }
4845 
4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847 				unsigned long addr, unsigned long end,
4848 				struct mm_walk *walk)
4849 {
4850 	int ret = 0;
4851 	struct vm_area_struct *vma = walk->private;
4852 	pte_t *pte;
4853 	spinlock_t *ptl;
4854 
4855 retry:
4856 	VM_BUG_ON(pmd_trans_huge(*pmd));
4857 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4858 	for (; addr != end; addr += PAGE_SIZE) {
4859 		pte_t ptent = *(pte++);
4860 		union mc_target target;
4861 		int type;
4862 		struct page *page;
4863 		struct page_cgroup *pc;
4864 		swp_entry_t ent;
4865 
4866 		if (!mc.precharge)
4867 			break;
4868 
4869 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4870 		switch (type) {
4871 		case MC_TARGET_PAGE:
4872 			page = target.page;
4873 			if (isolate_lru_page(page))
4874 				goto put;
4875 			pc = lookup_page_cgroup(page);
4876 			if (!mem_cgroup_move_account(pc,
4877 					mc.from, mc.to, false, PAGE_SIZE)) {
4878 				mc.precharge--;
4879 				/* we uncharge from mc.from later. */
4880 				mc.moved_charge++;
4881 			}
4882 			putback_lru_page(page);
4883 put:			/* is_target_pte_for_mc() gets the page */
4884 			put_page(page);
4885 			break;
4886 		case MC_TARGET_SWAP:
4887 			ent = target.ent;
4888 			if (!mem_cgroup_move_swap_account(ent,
4889 						mc.from, mc.to, false)) {
4890 				mc.precharge--;
4891 				/* we fixup refcnts and charges later. */
4892 				mc.moved_swap++;
4893 			}
4894 			break;
4895 		default:
4896 			break;
4897 		}
4898 	}
4899 	pte_unmap_unlock(pte - 1, ptl);
4900 	cond_resched();
4901 
4902 	if (addr != end) {
4903 		/*
4904 		 * We have consumed all precharges we got in can_attach().
4905 		 * We try charge one by one, but don't do any additional
4906 		 * charges to mc.to if we have failed in charge once in attach()
4907 		 * phase.
4908 		 */
4909 		ret = mem_cgroup_do_precharge(1);
4910 		if (!ret)
4911 			goto retry;
4912 	}
4913 
4914 	return ret;
4915 }
4916 
4917 static void mem_cgroup_move_charge(struct mm_struct *mm)
4918 {
4919 	struct vm_area_struct *vma;
4920 
4921 	lru_add_drain_all();
4922 retry:
4923 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4924 		/*
4925 		 * Someone who are holding the mmap_sem might be waiting in
4926 		 * waitq. So we cancel all extra charges, wake up all waiters,
4927 		 * and retry. Because we cancel precharges, we might not be able
4928 		 * to move enough charges, but moving charge is a best-effort
4929 		 * feature anyway, so it wouldn't be a big problem.
4930 		 */
4931 		__mem_cgroup_clear_mc();
4932 		cond_resched();
4933 		goto retry;
4934 	}
4935 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4936 		int ret;
4937 		struct mm_walk mem_cgroup_move_charge_walk = {
4938 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4939 			.mm = mm,
4940 			.private = vma,
4941 		};
4942 		if (is_vm_hugetlb_page(vma))
4943 			continue;
4944 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4945 						&mem_cgroup_move_charge_walk);
4946 		if (ret)
4947 			/*
4948 			 * means we have consumed all precharges and failed in
4949 			 * doing additional charge. Just abandon here.
4950 			 */
4951 			break;
4952 	}
4953 	up_read(&mm->mmap_sem);
4954 }
4955 
4956 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4957 				struct cgroup *cont,
4958 				struct cgroup *old_cont,
4959 				struct task_struct *p,
4960 				bool threadgroup)
4961 {
4962 	struct mm_struct *mm;
4963 
4964 	if (!mc.to)
4965 		/* no need to move charge */
4966 		return;
4967 
4968 	mm = get_task_mm(p);
4969 	if (mm) {
4970 		mem_cgroup_move_charge(mm);
4971 		mmput(mm);
4972 	}
4973 	mem_cgroup_clear_mc();
4974 }
4975 #else	/* !CONFIG_MMU */
4976 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4977 				struct cgroup *cgroup,
4978 				struct task_struct *p,
4979 				bool threadgroup)
4980 {
4981 	return 0;
4982 }
4983 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4984 				struct cgroup *cgroup,
4985 				struct task_struct *p,
4986 				bool threadgroup)
4987 {
4988 }
4989 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4990 				struct cgroup *cont,
4991 				struct cgroup *old_cont,
4992 				struct task_struct *p,
4993 				bool threadgroup)
4994 {
4995 }
4996 #endif
4997 
4998 struct cgroup_subsys mem_cgroup_subsys = {
4999 	.name = "memory",
5000 	.subsys_id = mem_cgroup_subsys_id,
5001 	.create = mem_cgroup_create,
5002 	.pre_destroy = mem_cgroup_pre_destroy,
5003 	.destroy = mem_cgroup_destroy,
5004 	.populate = mem_cgroup_populate,
5005 	.can_attach = mem_cgroup_can_attach,
5006 	.cancel_attach = mem_cgroup_cancel_attach,
5007 	.attach = mem_cgroup_move_task,
5008 	.early_init = 0,
5009 	.use_id = 1,
5010 };
5011 
5012 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5013 static int __init enable_swap_account(char *s)
5014 {
5015 	/* consider enabled if no parameter or 1 is given */
5016 	if (!s || !strcmp(s, "1"))
5017 		really_do_swap_account = 1;
5018 	else if (!strcmp(s, "0"))
5019 		really_do_swap_account = 0;
5020 	return 1;
5021 }
5022 __setup("swapaccount", enable_swap_account);
5023 
5024 static int __init disable_swap_account(char *s)
5025 {
5026 	enable_swap_account("0");
5027 	return 1;
5028 }
5029 __setup("noswapaccount", disable_swap_account);
5030 #endif
5031