1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 763 struct mem_cgroup *memcg; 764 struct lruvec *lruvec; 765 766 rcu_read_lock(); 767 memcg = mem_cgroup_from_obj(p); 768 769 /* Untracked pages have no memcg, no lruvec. Update only the node */ 770 if (!memcg || memcg == root_mem_cgroup) { 771 __mod_node_page_state(pgdat, idx, val); 772 } else { 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 } 776 rcu_read_unlock(); 777 } 778 779 void mod_memcg_obj_state(void *p, int idx, int val) 780 { 781 struct mem_cgroup *memcg; 782 783 rcu_read_lock(); 784 memcg = mem_cgroup_from_obj(p); 785 if (memcg) 786 mod_memcg_state(memcg, idx, val); 787 rcu_read_unlock(); 788 } 789 790 /** 791 * __count_memcg_events - account VM events in a cgroup 792 * @memcg: the memory cgroup 793 * @idx: the event item 794 * @count: the number of events that occured 795 */ 796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 797 unsigned long count) 798 { 799 unsigned long x; 800 801 if (mem_cgroup_disabled()) 802 return; 803 804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 805 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 806 struct mem_cgroup *mi; 807 808 /* 809 * Batch local counters to keep them in sync with 810 * the hierarchical ones. 811 */ 812 __this_cpu_add(memcg->vmstats_local->events[idx], x); 813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 814 atomic_long_add(x, &mi->vmevents[idx]); 815 x = 0; 816 } 817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 818 } 819 820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 821 { 822 return atomic_long_read(&memcg->vmevents[event]); 823 } 824 825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 826 { 827 long x = 0; 828 int cpu; 829 830 for_each_possible_cpu(cpu) 831 x += per_cpu(memcg->vmstats_local->events[event], cpu); 832 return x; 833 } 834 835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 836 struct page *page, 837 bool compound, int nr_pages) 838 { 839 /* 840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 841 * counted as CACHE even if it's on ANON LRU. 842 */ 843 if (PageAnon(page)) 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 845 else { 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 847 if (PageSwapBacked(page)) 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 849 } 850 851 if (compound) { 852 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 854 } 855 856 /* pagein of a big page is an event. So, ignore page size */ 857 if (nr_pages > 0) 858 __count_memcg_events(memcg, PGPGIN, 1); 859 else { 860 __count_memcg_events(memcg, PGPGOUT, 1); 861 nr_pages = -nr_pages; /* for event */ 862 } 863 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 865 } 866 867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 868 enum mem_cgroup_events_target target) 869 { 870 unsigned long val, next; 871 872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 874 /* from time_after() in jiffies.h */ 875 if ((long)(next - val) < 0) { 876 switch (target) { 877 case MEM_CGROUP_TARGET_THRESH: 878 next = val + THRESHOLDS_EVENTS_TARGET; 879 break; 880 case MEM_CGROUP_TARGET_SOFTLIMIT: 881 next = val + SOFTLIMIT_EVENTS_TARGET; 882 break; 883 default: 884 break; 885 } 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 887 return true; 888 } 889 return false; 890 } 891 892 /* 893 * Check events in order. 894 * 895 */ 896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 897 { 898 /* threshold event is triggered in finer grain than soft limit */ 899 if (unlikely(mem_cgroup_event_ratelimit(memcg, 900 MEM_CGROUP_TARGET_THRESH))) { 901 bool do_softlimit; 902 903 do_softlimit = mem_cgroup_event_ratelimit(memcg, 904 MEM_CGROUP_TARGET_SOFTLIMIT); 905 mem_cgroup_threshold(memcg); 906 if (unlikely(do_softlimit)) 907 mem_cgroup_update_tree(memcg, page); 908 } 909 } 910 911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 912 { 913 /* 914 * mm_update_next_owner() may clear mm->owner to NULL 915 * if it races with swapoff, page migration, etc. 916 * So this can be called with p == NULL. 917 */ 918 if (unlikely(!p)) 919 return NULL; 920 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 922 } 923 EXPORT_SYMBOL(mem_cgroup_from_task); 924 925 /** 926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 927 * @mm: mm from which memcg should be extracted. It can be NULL. 928 * 929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 931 * returned. 932 */ 933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 934 { 935 struct mem_cgroup *memcg; 936 937 if (mem_cgroup_disabled()) 938 return NULL; 939 940 rcu_read_lock(); 941 do { 942 /* 943 * Page cache insertions can happen withou an 944 * actual mm context, e.g. during disk probing 945 * on boot, loopback IO, acct() writes etc. 946 */ 947 if (unlikely(!mm)) 948 memcg = root_mem_cgroup; 949 else { 950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 951 if (unlikely(!memcg)) 952 memcg = root_mem_cgroup; 953 } 954 } while (!css_tryget(&memcg->css)); 955 rcu_read_unlock(); 956 return memcg; 957 } 958 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 959 960 /** 961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 962 * @page: page from which memcg should be extracted. 963 * 964 * Obtain a reference on page->memcg and returns it if successful. Otherwise 965 * root_mem_cgroup is returned. 966 */ 967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 968 { 969 struct mem_cgroup *memcg = page->mem_cgroup; 970 971 if (mem_cgroup_disabled()) 972 return NULL; 973 974 rcu_read_lock(); 975 /* Page should not get uncharged and freed memcg under us. */ 976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 977 memcg = root_mem_cgroup; 978 rcu_read_unlock(); 979 return memcg; 980 } 981 EXPORT_SYMBOL(get_mem_cgroup_from_page); 982 983 /** 984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 985 */ 986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 987 { 988 if (unlikely(current->active_memcg)) { 989 struct mem_cgroup *memcg; 990 991 rcu_read_lock(); 992 /* current->active_memcg must hold a ref. */ 993 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css))) 994 memcg = root_mem_cgroup; 995 else 996 memcg = current->active_memcg; 997 rcu_read_unlock(); 998 return memcg; 999 } 1000 return get_mem_cgroup_from_mm(current->mm); 1001 } 1002 1003 /** 1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1005 * @root: hierarchy root 1006 * @prev: previously returned memcg, NULL on first invocation 1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1008 * 1009 * Returns references to children of the hierarchy below @root, or 1010 * @root itself, or %NULL after a full round-trip. 1011 * 1012 * Caller must pass the return value in @prev on subsequent 1013 * invocations for reference counting, or use mem_cgroup_iter_break() 1014 * to cancel a hierarchy walk before the round-trip is complete. 1015 * 1016 * Reclaimers can specify a node and a priority level in @reclaim to 1017 * divide up the memcgs in the hierarchy among all concurrent 1018 * reclaimers operating on the same node and priority. 1019 */ 1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1021 struct mem_cgroup *prev, 1022 struct mem_cgroup_reclaim_cookie *reclaim) 1023 { 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1025 struct cgroup_subsys_state *css = NULL; 1026 struct mem_cgroup *memcg = NULL; 1027 struct mem_cgroup *pos = NULL; 1028 1029 if (mem_cgroup_disabled()) 1030 return NULL; 1031 1032 if (!root) 1033 root = root_mem_cgroup; 1034 1035 if (prev && !reclaim) 1036 pos = prev; 1037 1038 if (!root->use_hierarchy && root != root_mem_cgroup) { 1039 if (prev) 1040 goto out; 1041 return root; 1042 } 1043 1044 rcu_read_lock(); 1045 1046 if (reclaim) { 1047 struct mem_cgroup_per_node *mz; 1048 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1050 iter = &mz->iter; 1051 1052 if (prev && reclaim->generation != iter->generation) 1053 goto out_unlock; 1054 1055 while (1) { 1056 pos = READ_ONCE(iter->position); 1057 if (!pos || css_tryget(&pos->css)) 1058 break; 1059 /* 1060 * css reference reached zero, so iter->position will 1061 * be cleared by ->css_released. However, we should not 1062 * rely on this happening soon, because ->css_released 1063 * is called from a work queue, and by busy-waiting we 1064 * might block it. So we clear iter->position right 1065 * away. 1066 */ 1067 (void)cmpxchg(&iter->position, pos, NULL); 1068 } 1069 } 1070 1071 if (pos) 1072 css = &pos->css; 1073 1074 for (;;) { 1075 css = css_next_descendant_pre(css, &root->css); 1076 if (!css) { 1077 /* 1078 * Reclaimers share the hierarchy walk, and a 1079 * new one might jump in right at the end of 1080 * the hierarchy - make sure they see at least 1081 * one group and restart from the beginning. 1082 */ 1083 if (!prev) 1084 continue; 1085 break; 1086 } 1087 1088 /* 1089 * Verify the css and acquire a reference. The root 1090 * is provided by the caller, so we know it's alive 1091 * and kicking, and don't take an extra reference. 1092 */ 1093 memcg = mem_cgroup_from_css(css); 1094 1095 if (css == &root->css) 1096 break; 1097 1098 if (css_tryget(css)) 1099 break; 1100 1101 memcg = NULL; 1102 } 1103 1104 if (reclaim) { 1105 /* 1106 * The position could have already been updated by a competing 1107 * thread, so check that the value hasn't changed since we read 1108 * it to avoid reclaiming from the same cgroup twice. 1109 */ 1110 (void)cmpxchg(&iter->position, pos, memcg); 1111 1112 if (pos) 1113 css_put(&pos->css); 1114 1115 if (!memcg) 1116 iter->generation++; 1117 else if (!prev) 1118 reclaim->generation = iter->generation; 1119 } 1120 1121 out_unlock: 1122 rcu_read_unlock(); 1123 out: 1124 if (prev && prev != root) 1125 css_put(&prev->css); 1126 1127 return memcg; 1128 } 1129 1130 /** 1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1132 * @root: hierarchy root 1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1134 */ 1135 void mem_cgroup_iter_break(struct mem_cgroup *root, 1136 struct mem_cgroup *prev) 1137 { 1138 if (!root) 1139 root = root_mem_cgroup; 1140 if (prev && prev != root) 1141 css_put(&prev->css); 1142 } 1143 1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1145 struct mem_cgroup *dead_memcg) 1146 { 1147 struct mem_cgroup_reclaim_iter *iter; 1148 struct mem_cgroup_per_node *mz; 1149 int nid; 1150 1151 for_each_node(nid) { 1152 mz = mem_cgroup_nodeinfo(from, nid); 1153 iter = &mz->iter; 1154 cmpxchg(&iter->position, dead_memcg, NULL); 1155 } 1156 } 1157 1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1159 { 1160 struct mem_cgroup *memcg = dead_memcg; 1161 struct mem_cgroup *last; 1162 1163 do { 1164 __invalidate_reclaim_iterators(memcg, dead_memcg); 1165 last = memcg; 1166 } while ((memcg = parent_mem_cgroup(memcg))); 1167 1168 /* 1169 * When cgruop1 non-hierarchy mode is used, 1170 * parent_mem_cgroup() does not walk all the way up to the 1171 * cgroup root (root_mem_cgroup). So we have to handle 1172 * dead_memcg from cgroup root separately. 1173 */ 1174 if (last != root_mem_cgroup) 1175 __invalidate_reclaim_iterators(root_mem_cgroup, 1176 dead_memcg); 1177 } 1178 1179 /** 1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1181 * @memcg: hierarchy root 1182 * @fn: function to call for each task 1183 * @arg: argument passed to @fn 1184 * 1185 * This function iterates over tasks attached to @memcg or to any of its 1186 * descendants and calls @fn for each task. If @fn returns a non-zero 1187 * value, the function breaks the iteration loop and returns the value. 1188 * Otherwise, it will iterate over all tasks and return 0. 1189 * 1190 * This function must not be called for the root memory cgroup. 1191 */ 1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1193 int (*fn)(struct task_struct *, void *), void *arg) 1194 { 1195 struct mem_cgroup *iter; 1196 int ret = 0; 1197 1198 BUG_ON(memcg == root_mem_cgroup); 1199 1200 for_each_mem_cgroup_tree(iter, memcg) { 1201 struct css_task_iter it; 1202 struct task_struct *task; 1203 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1205 while (!ret && (task = css_task_iter_next(&it))) 1206 ret = fn(task, arg); 1207 css_task_iter_end(&it); 1208 if (ret) { 1209 mem_cgroup_iter_break(memcg, iter); 1210 break; 1211 } 1212 } 1213 return ret; 1214 } 1215 1216 /** 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1218 * @page: the page 1219 * @pgdat: pgdat of the page 1220 * 1221 * This function is only safe when following the LRU page isolation 1222 * and putback protocol: the LRU lock must be held, and the page must 1223 * either be PageLRU() or the caller must have isolated/allocated it. 1224 */ 1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1226 { 1227 struct mem_cgroup_per_node *mz; 1228 struct mem_cgroup *memcg; 1229 struct lruvec *lruvec; 1230 1231 if (mem_cgroup_disabled()) { 1232 lruvec = &pgdat->__lruvec; 1233 goto out; 1234 } 1235 1236 memcg = page->mem_cgroup; 1237 /* 1238 * Swapcache readahead pages are added to the LRU - and 1239 * possibly migrated - before they are charged. 1240 */ 1241 if (!memcg) 1242 memcg = root_mem_cgroup; 1243 1244 mz = mem_cgroup_page_nodeinfo(memcg, page); 1245 lruvec = &mz->lruvec; 1246 out: 1247 /* 1248 * Since a node can be onlined after the mem_cgroup was created, 1249 * we have to be prepared to initialize lruvec->zone here; 1250 * and if offlined then reonlined, we need to reinitialize it. 1251 */ 1252 if (unlikely(lruvec->pgdat != pgdat)) 1253 lruvec->pgdat = pgdat; 1254 return lruvec; 1255 } 1256 1257 /** 1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1259 * @lruvec: mem_cgroup per zone lru vector 1260 * @lru: index of lru list the page is sitting on 1261 * @zid: zone id of the accounted pages 1262 * @nr_pages: positive when adding or negative when removing 1263 * 1264 * This function must be called under lru_lock, just before a page is added 1265 * to or just after a page is removed from an lru list (that ordering being 1266 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1267 */ 1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1269 int zid, int nr_pages) 1270 { 1271 struct mem_cgroup_per_node *mz; 1272 unsigned long *lru_size; 1273 long size; 1274 1275 if (mem_cgroup_disabled()) 1276 return; 1277 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1279 lru_size = &mz->lru_zone_size[zid][lru]; 1280 1281 if (nr_pages < 0) 1282 *lru_size += nr_pages; 1283 1284 size = *lru_size; 1285 if (WARN_ONCE(size < 0, 1286 "%s(%p, %d, %d): lru_size %ld\n", 1287 __func__, lruvec, lru, nr_pages, size)) { 1288 VM_BUG_ON(1); 1289 *lru_size = 0; 1290 } 1291 1292 if (nr_pages > 0) 1293 *lru_size += nr_pages; 1294 } 1295 1296 /** 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1298 * @memcg: the memory cgroup 1299 * 1300 * Returns the maximum amount of memory @mem can be charged with, in 1301 * pages. 1302 */ 1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1304 { 1305 unsigned long margin = 0; 1306 unsigned long count; 1307 unsigned long limit; 1308 1309 count = page_counter_read(&memcg->memory); 1310 limit = READ_ONCE(memcg->memory.max); 1311 if (count < limit) 1312 margin = limit - count; 1313 1314 if (do_memsw_account()) { 1315 count = page_counter_read(&memcg->memsw); 1316 limit = READ_ONCE(memcg->memsw.max); 1317 if (count <= limit) 1318 margin = min(margin, limit - count); 1319 else 1320 margin = 0; 1321 } 1322 1323 return margin; 1324 } 1325 1326 /* 1327 * A routine for checking "mem" is under move_account() or not. 1328 * 1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1330 * moving cgroups. This is for waiting at high-memory pressure 1331 * caused by "move". 1332 */ 1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1334 { 1335 struct mem_cgroup *from; 1336 struct mem_cgroup *to; 1337 bool ret = false; 1338 /* 1339 * Unlike task_move routines, we access mc.to, mc.from not under 1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1341 */ 1342 spin_lock(&mc.lock); 1343 from = mc.from; 1344 to = mc.to; 1345 if (!from) 1346 goto unlock; 1347 1348 ret = mem_cgroup_is_descendant(from, memcg) || 1349 mem_cgroup_is_descendant(to, memcg); 1350 unlock: 1351 spin_unlock(&mc.lock); 1352 return ret; 1353 } 1354 1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1356 { 1357 if (mc.moving_task && current != mc.moving_task) { 1358 if (mem_cgroup_under_move(memcg)) { 1359 DEFINE_WAIT(wait); 1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1361 /* moving charge context might have finished. */ 1362 if (mc.moving_task) 1363 schedule(); 1364 finish_wait(&mc.waitq, &wait); 1365 return true; 1366 } 1367 } 1368 return false; 1369 } 1370 1371 static char *memory_stat_format(struct mem_cgroup *memcg) 1372 { 1373 struct seq_buf s; 1374 int i; 1375 1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1377 if (!s.buffer) 1378 return NULL; 1379 1380 /* 1381 * Provide statistics on the state of the memory subsystem as 1382 * well as cumulative event counters that show past behavior. 1383 * 1384 * This list is ordered following a combination of these gradients: 1385 * 1) generic big picture -> specifics and details 1386 * 2) reflecting userspace activity -> reflecting kernel heuristics 1387 * 1388 * Current memory state: 1389 */ 1390 1391 seq_buf_printf(&s, "anon %llu\n", 1392 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1393 PAGE_SIZE); 1394 seq_buf_printf(&s, "file %llu\n", 1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1396 PAGE_SIZE); 1397 seq_buf_printf(&s, "kernel_stack %llu\n", 1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1399 1024); 1400 seq_buf_printf(&s, "slab %llu\n", 1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1403 PAGE_SIZE); 1404 seq_buf_printf(&s, "sock %llu\n", 1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1406 PAGE_SIZE); 1407 1408 seq_buf_printf(&s, "shmem %llu\n", 1409 (u64)memcg_page_state(memcg, NR_SHMEM) * 1410 PAGE_SIZE); 1411 seq_buf_printf(&s, "file_mapped %llu\n", 1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1413 PAGE_SIZE); 1414 seq_buf_printf(&s, "file_dirty %llu\n", 1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1416 PAGE_SIZE); 1417 seq_buf_printf(&s, "file_writeback %llu\n", 1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1419 PAGE_SIZE); 1420 1421 /* 1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1424 * arse because it requires migrating the work out of rmap to a place 1425 * where the page->mem_cgroup is set up and stable. 1426 */ 1427 seq_buf_printf(&s, "anon_thp %llu\n", 1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1429 PAGE_SIZE); 1430 1431 for (i = 0; i < NR_LRU_LISTS; i++) 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1434 PAGE_SIZE); 1435 1436 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1438 PAGE_SIZE); 1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1441 PAGE_SIZE); 1442 1443 /* Accumulated memory events */ 1444 1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1446 memcg_events(memcg, PGFAULT)); 1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1448 memcg_events(memcg, PGMAJFAULT)); 1449 1450 seq_buf_printf(&s, "workingset_refault %lu\n", 1451 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1452 seq_buf_printf(&s, "workingset_activate %lu\n", 1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1456 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1458 memcg_events(memcg, PGREFILL)); 1459 seq_buf_printf(&s, "pgscan %lu\n", 1460 memcg_events(memcg, PGSCAN_KSWAPD) + 1461 memcg_events(memcg, PGSCAN_DIRECT)); 1462 seq_buf_printf(&s, "pgsteal %lu\n", 1463 memcg_events(memcg, PGSTEAL_KSWAPD) + 1464 memcg_events(memcg, PGSTEAL_DIRECT)); 1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1466 memcg_events(memcg, PGACTIVATE)); 1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1468 memcg_events(memcg, PGDEACTIVATE)); 1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1470 memcg_events(memcg, PGLAZYFREE)); 1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1472 memcg_events(memcg, PGLAZYFREED)); 1473 1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1476 memcg_events(memcg, THP_FAULT_ALLOC)); 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1478 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1480 1481 /* The above should easily fit into one page */ 1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1483 1484 return s.buffer; 1485 } 1486 1487 #define K(x) ((x) << (PAGE_SHIFT-10)) 1488 /** 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to 1490 * memory controller. 1491 * @memcg: The memory cgroup that went over limit 1492 * @p: Task that is going to be killed 1493 * 1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1495 * enabled 1496 */ 1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1498 { 1499 rcu_read_lock(); 1500 1501 if (memcg) { 1502 pr_cont(",oom_memcg="); 1503 pr_cont_cgroup_path(memcg->css.cgroup); 1504 } else 1505 pr_cont(",global_oom"); 1506 if (p) { 1507 pr_cont(",task_memcg="); 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1509 } 1510 rcu_read_unlock(); 1511 } 1512 1513 /** 1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1515 * memory controller. 1516 * @memcg: The memory cgroup that went over limit 1517 */ 1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1519 { 1520 char *buf; 1521 1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1523 K((u64)page_counter_read(&memcg->memory)), 1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1527 K((u64)page_counter_read(&memcg->swap)), 1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1529 else { 1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1531 K((u64)page_counter_read(&memcg->memsw)), 1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1534 K((u64)page_counter_read(&memcg->kmem)), 1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1536 } 1537 1538 pr_info("Memory cgroup stats for "); 1539 pr_cont_cgroup_path(memcg->css.cgroup); 1540 pr_cont(":"); 1541 buf = memory_stat_format(memcg); 1542 if (!buf) 1543 return; 1544 pr_info("%s", buf); 1545 kfree(buf); 1546 } 1547 1548 /* 1549 * Return the memory (and swap, if configured) limit for a memcg. 1550 */ 1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1552 { 1553 unsigned long max; 1554 1555 max = READ_ONCE(memcg->memory.max); 1556 if (mem_cgroup_swappiness(memcg)) { 1557 unsigned long memsw_max; 1558 unsigned long swap_max; 1559 1560 memsw_max = memcg->memsw.max; 1561 swap_max = READ_ONCE(memcg->swap.max); 1562 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1563 max = min(max + swap_max, memsw_max); 1564 } 1565 return max; 1566 } 1567 1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1569 { 1570 return page_counter_read(&memcg->memory); 1571 } 1572 1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1574 int order) 1575 { 1576 struct oom_control oc = { 1577 .zonelist = NULL, 1578 .nodemask = NULL, 1579 .memcg = memcg, 1580 .gfp_mask = gfp_mask, 1581 .order = order, 1582 }; 1583 bool ret; 1584 1585 if (mutex_lock_killable(&oom_lock)) 1586 return true; 1587 /* 1588 * A few threads which were not waiting at mutex_lock_killable() can 1589 * fail to bail out. Therefore, check again after holding oom_lock. 1590 */ 1591 ret = should_force_charge() || out_of_memory(&oc); 1592 mutex_unlock(&oom_lock); 1593 return ret; 1594 } 1595 1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1597 pg_data_t *pgdat, 1598 gfp_t gfp_mask, 1599 unsigned long *total_scanned) 1600 { 1601 struct mem_cgroup *victim = NULL; 1602 int total = 0; 1603 int loop = 0; 1604 unsigned long excess; 1605 unsigned long nr_scanned; 1606 struct mem_cgroup_reclaim_cookie reclaim = { 1607 .pgdat = pgdat, 1608 }; 1609 1610 excess = soft_limit_excess(root_memcg); 1611 1612 while (1) { 1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1614 if (!victim) { 1615 loop++; 1616 if (loop >= 2) { 1617 /* 1618 * If we have not been able to reclaim 1619 * anything, it might because there are 1620 * no reclaimable pages under this hierarchy 1621 */ 1622 if (!total) 1623 break; 1624 /* 1625 * We want to do more targeted reclaim. 1626 * excess >> 2 is not to excessive so as to 1627 * reclaim too much, nor too less that we keep 1628 * coming back to reclaim from this cgroup 1629 */ 1630 if (total >= (excess >> 2) || 1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1632 break; 1633 } 1634 continue; 1635 } 1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1637 pgdat, &nr_scanned); 1638 *total_scanned += nr_scanned; 1639 if (!soft_limit_excess(root_memcg)) 1640 break; 1641 } 1642 mem_cgroup_iter_break(root_memcg, victim); 1643 return total; 1644 } 1645 1646 #ifdef CONFIG_LOCKDEP 1647 static struct lockdep_map memcg_oom_lock_dep_map = { 1648 .name = "memcg_oom_lock", 1649 }; 1650 #endif 1651 1652 static DEFINE_SPINLOCK(memcg_oom_lock); 1653 1654 /* 1655 * Check OOM-Killer is already running under our hierarchy. 1656 * If someone is running, return false. 1657 */ 1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1659 { 1660 struct mem_cgroup *iter, *failed = NULL; 1661 1662 spin_lock(&memcg_oom_lock); 1663 1664 for_each_mem_cgroup_tree(iter, memcg) { 1665 if (iter->oom_lock) { 1666 /* 1667 * this subtree of our hierarchy is already locked 1668 * so we cannot give a lock. 1669 */ 1670 failed = iter; 1671 mem_cgroup_iter_break(memcg, iter); 1672 break; 1673 } else 1674 iter->oom_lock = true; 1675 } 1676 1677 if (failed) { 1678 /* 1679 * OK, we failed to lock the whole subtree so we have 1680 * to clean up what we set up to the failing subtree 1681 */ 1682 for_each_mem_cgroup_tree(iter, memcg) { 1683 if (iter == failed) { 1684 mem_cgroup_iter_break(memcg, iter); 1685 break; 1686 } 1687 iter->oom_lock = false; 1688 } 1689 } else 1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1691 1692 spin_unlock(&memcg_oom_lock); 1693 1694 return !failed; 1695 } 1696 1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1698 { 1699 struct mem_cgroup *iter; 1700 1701 spin_lock(&memcg_oom_lock); 1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1703 for_each_mem_cgroup_tree(iter, memcg) 1704 iter->oom_lock = false; 1705 spin_unlock(&memcg_oom_lock); 1706 } 1707 1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1709 { 1710 struct mem_cgroup *iter; 1711 1712 spin_lock(&memcg_oom_lock); 1713 for_each_mem_cgroup_tree(iter, memcg) 1714 iter->under_oom++; 1715 spin_unlock(&memcg_oom_lock); 1716 } 1717 1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1719 { 1720 struct mem_cgroup *iter; 1721 1722 /* 1723 * When a new child is created while the hierarchy is under oom, 1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1725 */ 1726 spin_lock(&memcg_oom_lock); 1727 for_each_mem_cgroup_tree(iter, memcg) 1728 if (iter->under_oom > 0) 1729 iter->under_oom--; 1730 spin_unlock(&memcg_oom_lock); 1731 } 1732 1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1734 1735 struct oom_wait_info { 1736 struct mem_cgroup *memcg; 1737 wait_queue_entry_t wait; 1738 }; 1739 1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1741 unsigned mode, int sync, void *arg) 1742 { 1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1744 struct mem_cgroup *oom_wait_memcg; 1745 struct oom_wait_info *oom_wait_info; 1746 1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1748 oom_wait_memcg = oom_wait_info->memcg; 1749 1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1752 return 0; 1753 return autoremove_wake_function(wait, mode, sync, arg); 1754 } 1755 1756 static void memcg_oom_recover(struct mem_cgroup *memcg) 1757 { 1758 /* 1759 * For the following lockless ->under_oom test, the only required 1760 * guarantee is that it must see the state asserted by an OOM when 1761 * this function is called as a result of userland actions 1762 * triggered by the notification of the OOM. This is trivially 1763 * achieved by invoking mem_cgroup_mark_under_oom() before 1764 * triggering notification. 1765 */ 1766 if (memcg && memcg->under_oom) 1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1768 } 1769 1770 enum oom_status { 1771 OOM_SUCCESS, 1772 OOM_FAILED, 1773 OOM_ASYNC, 1774 OOM_SKIPPED 1775 }; 1776 1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1778 { 1779 enum oom_status ret; 1780 bool locked; 1781 1782 if (order > PAGE_ALLOC_COSTLY_ORDER) 1783 return OOM_SKIPPED; 1784 1785 memcg_memory_event(memcg, MEMCG_OOM); 1786 1787 /* 1788 * We are in the middle of the charge context here, so we 1789 * don't want to block when potentially sitting on a callstack 1790 * that holds all kinds of filesystem and mm locks. 1791 * 1792 * cgroup1 allows disabling the OOM killer and waiting for outside 1793 * handling until the charge can succeed; remember the context and put 1794 * the task to sleep at the end of the page fault when all locks are 1795 * released. 1796 * 1797 * On the other hand, in-kernel OOM killer allows for an async victim 1798 * memory reclaim (oom_reaper) and that means that we are not solely 1799 * relying on the oom victim to make a forward progress and we can 1800 * invoke the oom killer here. 1801 * 1802 * Please note that mem_cgroup_out_of_memory might fail to find a 1803 * victim and then we have to bail out from the charge path. 1804 */ 1805 if (memcg->oom_kill_disable) { 1806 if (!current->in_user_fault) 1807 return OOM_SKIPPED; 1808 css_get(&memcg->css); 1809 current->memcg_in_oom = memcg; 1810 current->memcg_oom_gfp_mask = mask; 1811 current->memcg_oom_order = order; 1812 1813 return OOM_ASYNC; 1814 } 1815 1816 mem_cgroup_mark_under_oom(memcg); 1817 1818 locked = mem_cgroup_oom_trylock(memcg); 1819 1820 if (locked) 1821 mem_cgroup_oom_notify(memcg); 1822 1823 mem_cgroup_unmark_under_oom(memcg); 1824 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1825 ret = OOM_SUCCESS; 1826 else 1827 ret = OOM_FAILED; 1828 1829 if (locked) 1830 mem_cgroup_oom_unlock(memcg); 1831 1832 return ret; 1833 } 1834 1835 /** 1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1837 * @handle: actually kill/wait or just clean up the OOM state 1838 * 1839 * This has to be called at the end of a page fault if the memcg OOM 1840 * handler was enabled. 1841 * 1842 * Memcg supports userspace OOM handling where failed allocations must 1843 * sleep on a waitqueue until the userspace task resolves the 1844 * situation. Sleeping directly in the charge context with all kinds 1845 * of locks held is not a good idea, instead we remember an OOM state 1846 * in the task and mem_cgroup_oom_synchronize() has to be called at 1847 * the end of the page fault to complete the OOM handling. 1848 * 1849 * Returns %true if an ongoing memcg OOM situation was detected and 1850 * completed, %false otherwise. 1851 */ 1852 bool mem_cgroup_oom_synchronize(bool handle) 1853 { 1854 struct mem_cgroup *memcg = current->memcg_in_oom; 1855 struct oom_wait_info owait; 1856 bool locked; 1857 1858 /* OOM is global, do not handle */ 1859 if (!memcg) 1860 return false; 1861 1862 if (!handle) 1863 goto cleanup; 1864 1865 owait.memcg = memcg; 1866 owait.wait.flags = 0; 1867 owait.wait.func = memcg_oom_wake_function; 1868 owait.wait.private = current; 1869 INIT_LIST_HEAD(&owait.wait.entry); 1870 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1872 mem_cgroup_mark_under_oom(memcg); 1873 1874 locked = mem_cgroup_oom_trylock(memcg); 1875 1876 if (locked) 1877 mem_cgroup_oom_notify(memcg); 1878 1879 if (locked && !memcg->oom_kill_disable) { 1880 mem_cgroup_unmark_under_oom(memcg); 1881 finish_wait(&memcg_oom_waitq, &owait.wait); 1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1883 current->memcg_oom_order); 1884 } else { 1885 schedule(); 1886 mem_cgroup_unmark_under_oom(memcg); 1887 finish_wait(&memcg_oom_waitq, &owait.wait); 1888 } 1889 1890 if (locked) { 1891 mem_cgroup_oom_unlock(memcg); 1892 /* 1893 * There is no guarantee that an OOM-lock contender 1894 * sees the wakeups triggered by the OOM kill 1895 * uncharges. Wake any sleepers explicitely. 1896 */ 1897 memcg_oom_recover(memcg); 1898 } 1899 cleanup: 1900 current->memcg_in_oom = NULL; 1901 css_put(&memcg->css); 1902 return true; 1903 } 1904 1905 /** 1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1907 * @victim: task to be killed by the OOM killer 1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1909 * 1910 * Returns a pointer to a memory cgroup, which has to be cleaned up 1911 * by killing all belonging OOM-killable tasks. 1912 * 1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1914 */ 1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1916 struct mem_cgroup *oom_domain) 1917 { 1918 struct mem_cgroup *oom_group = NULL; 1919 struct mem_cgroup *memcg; 1920 1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1922 return NULL; 1923 1924 if (!oom_domain) 1925 oom_domain = root_mem_cgroup; 1926 1927 rcu_read_lock(); 1928 1929 memcg = mem_cgroup_from_task(victim); 1930 if (memcg == root_mem_cgroup) 1931 goto out; 1932 1933 /* 1934 * If the victim task has been asynchronously moved to a different 1935 * memory cgroup, we might end up killing tasks outside oom_domain. 1936 * In this case it's better to ignore memory.group.oom. 1937 */ 1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1939 goto out; 1940 1941 /* 1942 * Traverse the memory cgroup hierarchy from the victim task's 1943 * cgroup up to the OOMing cgroup (or root) to find the 1944 * highest-level memory cgroup with oom.group set. 1945 */ 1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1947 if (memcg->oom_group) 1948 oom_group = memcg; 1949 1950 if (memcg == oom_domain) 1951 break; 1952 } 1953 1954 if (oom_group) 1955 css_get(&oom_group->css); 1956 out: 1957 rcu_read_unlock(); 1958 1959 return oom_group; 1960 } 1961 1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1963 { 1964 pr_info("Tasks in "); 1965 pr_cont_cgroup_path(memcg->css.cgroup); 1966 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1967 } 1968 1969 /** 1970 * lock_page_memcg - lock a page->mem_cgroup binding 1971 * @page: the page 1972 * 1973 * This function protects unlocked LRU pages from being moved to 1974 * another cgroup. 1975 * 1976 * It ensures lifetime of the returned memcg. Caller is responsible 1977 * for the lifetime of the page; __unlock_page_memcg() is available 1978 * when @page might get freed inside the locked section. 1979 */ 1980 struct mem_cgroup *lock_page_memcg(struct page *page) 1981 { 1982 struct mem_cgroup *memcg; 1983 unsigned long flags; 1984 1985 /* 1986 * The RCU lock is held throughout the transaction. The fast 1987 * path can get away without acquiring the memcg->move_lock 1988 * because page moving starts with an RCU grace period. 1989 * 1990 * The RCU lock also protects the memcg from being freed when 1991 * the page state that is going to change is the only thing 1992 * preventing the page itself from being freed. E.g. writeback 1993 * doesn't hold a page reference and relies on PG_writeback to 1994 * keep off truncation, migration and so forth. 1995 */ 1996 rcu_read_lock(); 1997 1998 if (mem_cgroup_disabled()) 1999 return NULL; 2000 again: 2001 memcg = page->mem_cgroup; 2002 if (unlikely(!memcg)) 2003 return NULL; 2004 2005 if (atomic_read(&memcg->moving_account) <= 0) 2006 return memcg; 2007 2008 spin_lock_irqsave(&memcg->move_lock, flags); 2009 if (memcg != page->mem_cgroup) { 2010 spin_unlock_irqrestore(&memcg->move_lock, flags); 2011 goto again; 2012 } 2013 2014 /* 2015 * When charge migration first begins, we can have locked and 2016 * unlocked page stat updates happening concurrently. Track 2017 * the task who has the lock for unlock_page_memcg(). 2018 */ 2019 memcg->move_lock_task = current; 2020 memcg->move_lock_flags = flags; 2021 2022 return memcg; 2023 } 2024 EXPORT_SYMBOL(lock_page_memcg); 2025 2026 /** 2027 * __unlock_page_memcg - unlock and unpin a memcg 2028 * @memcg: the memcg 2029 * 2030 * Unlock and unpin a memcg returned by lock_page_memcg(). 2031 */ 2032 void __unlock_page_memcg(struct mem_cgroup *memcg) 2033 { 2034 if (memcg && memcg->move_lock_task == current) { 2035 unsigned long flags = memcg->move_lock_flags; 2036 2037 memcg->move_lock_task = NULL; 2038 memcg->move_lock_flags = 0; 2039 2040 spin_unlock_irqrestore(&memcg->move_lock, flags); 2041 } 2042 2043 rcu_read_unlock(); 2044 } 2045 2046 /** 2047 * unlock_page_memcg - unlock a page->mem_cgroup binding 2048 * @page: the page 2049 */ 2050 void unlock_page_memcg(struct page *page) 2051 { 2052 __unlock_page_memcg(page->mem_cgroup); 2053 } 2054 EXPORT_SYMBOL(unlock_page_memcg); 2055 2056 struct memcg_stock_pcp { 2057 struct mem_cgroup *cached; /* this never be root cgroup */ 2058 unsigned int nr_pages; 2059 struct work_struct work; 2060 unsigned long flags; 2061 #define FLUSHING_CACHED_CHARGE 0 2062 }; 2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2064 static DEFINE_MUTEX(percpu_charge_mutex); 2065 2066 /** 2067 * consume_stock: Try to consume stocked charge on this cpu. 2068 * @memcg: memcg to consume from. 2069 * @nr_pages: how many pages to charge. 2070 * 2071 * The charges will only happen if @memcg matches the current cpu's memcg 2072 * stock, and at least @nr_pages are available in that stock. Failure to 2073 * service an allocation will refill the stock. 2074 * 2075 * returns true if successful, false otherwise. 2076 */ 2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2078 { 2079 struct memcg_stock_pcp *stock; 2080 unsigned long flags; 2081 bool ret = false; 2082 2083 if (nr_pages > MEMCG_CHARGE_BATCH) 2084 return ret; 2085 2086 local_irq_save(flags); 2087 2088 stock = this_cpu_ptr(&memcg_stock); 2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2090 stock->nr_pages -= nr_pages; 2091 ret = true; 2092 } 2093 2094 local_irq_restore(flags); 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * Returns stocks cached in percpu and reset cached information. 2101 */ 2102 static void drain_stock(struct memcg_stock_pcp *stock) 2103 { 2104 struct mem_cgroup *old = stock->cached; 2105 2106 if (stock->nr_pages) { 2107 page_counter_uncharge(&old->memory, stock->nr_pages); 2108 if (do_memsw_account()) 2109 page_counter_uncharge(&old->memsw, stock->nr_pages); 2110 css_put_many(&old->css, stock->nr_pages); 2111 stock->nr_pages = 0; 2112 } 2113 stock->cached = NULL; 2114 } 2115 2116 static void drain_local_stock(struct work_struct *dummy) 2117 { 2118 struct memcg_stock_pcp *stock; 2119 unsigned long flags; 2120 2121 /* 2122 * The only protection from memory hotplug vs. drain_stock races is 2123 * that we always operate on local CPU stock here with IRQ disabled 2124 */ 2125 local_irq_save(flags); 2126 2127 stock = this_cpu_ptr(&memcg_stock); 2128 drain_stock(stock); 2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2130 2131 local_irq_restore(flags); 2132 } 2133 2134 /* 2135 * Cache charges(val) to local per_cpu area. 2136 * This will be consumed by consume_stock() function, later. 2137 */ 2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2139 { 2140 struct memcg_stock_pcp *stock; 2141 unsigned long flags; 2142 2143 local_irq_save(flags); 2144 2145 stock = this_cpu_ptr(&memcg_stock); 2146 if (stock->cached != memcg) { /* reset if necessary */ 2147 drain_stock(stock); 2148 stock->cached = memcg; 2149 } 2150 stock->nr_pages += nr_pages; 2151 2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2153 drain_stock(stock); 2154 2155 local_irq_restore(flags); 2156 } 2157 2158 /* 2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2160 * of the hierarchy under it. 2161 */ 2162 static void drain_all_stock(struct mem_cgroup *root_memcg) 2163 { 2164 int cpu, curcpu; 2165 2166 /* If someone's already draining, avoid adding running more workers. */ 2167 if (!mutex_trylock(&percpu_charge_mutex)) 2168 return; 2169 /* 2170 * Notify other cpus that system-wide "drain" is running 2171 * We do not care about races with the cpu hotplug because cpu down 2172 * as well as workers from this path always operate on the local 2173 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2174 */ 2175 curcpu = get_cpu(); 2176 for_each_online_cpu(cpu) { 2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2178 struct mem_cgroup *memcg; 2179 bool flush = false; 2180 2181 rcu_read_lock(); 2182 memcg = stock->cached; 2183 if (memcg && stock->nr_pages && 2184 mem_cgroup_is_descendant(memcg, root_memcg)) 2185 flush = true; 2186 rcu_read_unlock(); 2187 2188 if (flush && 2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2190 if (cpu == curcpu) 2191 drain_local_stock(&stock->work); 2192 else 2193 schedule_work_on(cpu, &stock->work); 2194 } 2195 } 2196 put_cpu(); 2197 mutex_unlock(&percpu_charge_mutex); 2198 } 2199 2200 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2201 { 2202 struct memcg_stock_pcp *stock; 2203 struct mem_cgroup *memcg, *mi; 2204 2205 stock = &per_cpu(memcg_stock, cpu); 2206 drain_stock(stock); 2207 2208 for_each_mem_cgroup(memcg) { 2209 int i; 2210 2211 for (i = 0; i < MEMCG_NR_STAT; i++) { 2212 int nid; 2213 long x; 2214 2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2216 if (x) 2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2218 atomic_long_add(x, &memcg->vmstats[i]); 2219 2220 if (i >= NR_VM_NODE_STAT_ITEMS) 2221 continue; 2222 2223 for_each_node(nid) { 2224 struct mem_cgroup_per_node *pn; 2225 2226 pn = mem_cgroup_nodeinfo(memcg, nid); 2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2228 if (x) 2229 do { 2230 atomic_long_add(x, &pn->lruvec_stat[i]); 2231 } while ((pn = parent_nodeinfo(pn, nid))); 2232 } 2233 } 2234 2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2236 long x; 2237 2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2239 if (x) 2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2241 atomic_long_add(x, &memcg->vmevents[i]); 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 static void reclaim_high(struct mem_cgroup *memcg, 2249 unsigned int nr_pages, 2250 gfp_t gfp_mask) 2251 { 2252 do { 2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high)) 2254 continue; 2255 memcg_memory_event(memcg, MEMCG_HIGH); 2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2257 } while ((memcg = parent_mem_cgroup(memcg))); 2258 } 2259 2260 static void high_work_func(struct work_struct *work) 2261 { 2262 struct mem_cgroup *memcg; 2263 2264 memcg = container_of(work, struct mem_cgroup, high_work); 2265 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2266 } 2267 2268 /* 2269 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2270 * enough to still cause a significant slowdown in most cases, while still 2271 * allowing diagnostics and tracing to proceed without becoming stuck. 2272 */ 2273 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2274 2275 /* 2276 * When calculating the delay, we use these either side of the exponentiation to 2277 * maintain precision and scale to a reasonable number of jiffies (see the table 2278 * below. 2279 * 2280 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2281 * overage ratio to a delay. 2282 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2283 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2284 * to produce a reasonable delay curve. 2285 * 2286 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2287 * reasonable delay curve compared to precision-adjusted overage, not 2288 * penalising heavily at first, but still making sure that growth beyond the 2289 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2290 * example, with a high of 100 megabytes: 2291 * 2292 * +-------+------------------------+ 2293 * | usage | time to allocate in ms | 2294 * +-------+------------------------+ 2295 * | 100M | 0 | 2296 * | 101M | 6 | 2297 * | 102M | 25 | 2298 * | 103M | 57 | 2299 * | 104M | 102 | 2300 * | 105M | 159 | 2301 * | 106M | 230 | 2302 * | 107M | 313 | 2303 * | 108M | 409 | 2304 * | 109M | 518 | 2305 * | 110M | 639 | 2306 * | 111M | 774 | 2307 * | 112M | 921 | 2308 * | 113M | 1081 | 2309 * | 114M | 1254 | 2310 * | 115M | 1439 | 2311 * | 116M | 1638 | 2312 * | 117M | 1849 | 2313 * | 118M | 2000 | 2314 * | 119M | 2000 | 2315 * | 120M | 2000 | 2316 * +-------+------------------------+ 2317 */ 2318 #define MEMCG_DELAY_PRECISION_SHIFT 20 2319 #define MEMCG_DELAY_SCALING_SHIFT 14 2320 2321 /* 2322 * Get the number of jiffies that we should penalise a mischievous cgroup which 2323 * is exceeding its memory.high by checking both it and its ancestors. 2324 */ 2325 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2326 unsigned int nr_pages) 2327 { 2328 unsigned long penalty_jiffies; 2329 u64 max_overage = 0; 2330 2331 do { 2332 unsigned long usage, high; 2333 u64 overage; 2334 2335 usage = page_counter_read(&memcg->memory); 2336 high = READ_ONCE(memcg->high); 2337 2338 /* 2339 * Prevent division by 0 in overage calculation by acting as if 2340 * it was a threshold of 1 page 2341 */ 2342 high = max(high, 1UL); 2343 2344 overage = usage - high; 2345 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2346 overage = div64_u64(overage, high); 2347 2348 if (overage > max_overage) 2349 max_overage = overage; 2350 } while ((memcg = parent_mem_cgroup(memcg)) && 2351 !mem_cgroup_is_root(memcg)); 2352 2353 if (!max_overage) 2354 return 0; 2355 2356 /* 2357 * We use overage compared to memory.high to calculate the number of 2358 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2359 * fairly lenient on small overages, and increasingly harsh when the 2360 * memcg in question makes it clear that it has no intention of stopping 2361 * its crazy behaviour, so we exponentially increase the delay based on 2362 * overage amount. 2363 */ 2364 penalty_jiffies = max_overage * max_overage * HZ; 2365 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2366 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2367 2368 /* 2369 * Factor in the task's own contribution to the overage, such that four 2370 * N-sized allocations are throttled approximately the same as one 2371 * 4N-sized allocation. 2372 * 2373 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2374 * larger the current charge patch is than that. 2375 */ 2376 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2377 2378 /* 2379 * Clamp the max delay per usermode return so as to still keep the 2380 * application moving forwards and also permit diagnostics, albeit 2381 * extremely slowly. 2382 */ 2383 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2384 } 2385 2386 /* 2387 * Scheduled by try_charge() to be executed from the userland return path 2388 * and reclaims memory over the high limit. 2389 */ 2390 void mem_cgroup_handle_over_high(void) 2391 { 2392 unsigned long penalty_jiffies; 2393 unsigned long pflags; 2394 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2395 struct mem_cgroup *memcg; 2396 2397 if (likely(!nr_pages)) 2398 return; 2399 2400 memcg = get_mem_cgroup_from_mm(current->mm); 2401 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2402 current->memcg_nr_pages_over_high = 0; 2403 2404 /* 2405 * memory.high is breached and reclaim is unable to keep up. Throttle 2406 * allocators proactively to slow down excessive growth. 2407 */ 2408 penalty_jiffies = calculate_high_delay(memcg, nr_pages); 2409 2410 /* 2411 * Don't sleep if the amount of jiffies this memcg owes us is so low 2412 * that it's not even worth doing, in an attempt to be nice to those who 2413 * go only a small amount over their memory.high value and maybe haven't 2414 * been aggressively reclaimed enough yet. 2415 */ 2416 if (penalty_jiffies <= HZ / 100) 2417 goto out; 2418 2419 /* 2420 * If we exit early, we're guaranteed to die (since 2421 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2422 * need to account for any ill-begotten jiffies to pay them off later. 2423 */ 2424 psi_memstall_enter(&pflags); 2425 schedule_timeout_killable(penalty_jiffies); 2426 psi_memstall_leave(&pflags); 2427 2428 out: 2429 css_put(&memcg->css); 2430 } 2431 2432 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2433 unsigned int nr_pages) 2434 { 2435 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2436 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2437 struct mem_cgroup *mem_over_limit; 2438 struct page_counter *counter; 2439 unsigned long nr_reclaimed; 2440 bool may_swap = true; 2441 bool drained = false; 2442 enum oom_status oom_status; 2443 2444 if (mem_cgroup_is_root(memcg)) 2445 return 0; 2446 retry: 2447 if (consume_stock(memcg, nr_pages)) 2448 return 0; 2449 2450 if (!do_memsw_account() || 2451 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2452 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2453 goto done_restock; 2454 if (do_memsw_account()) 2455 page_counter_uncharge(&memcg->memsw, batch); 2456 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2457 } else { 2458 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2459 may_swap = false; 2460 } 2461 2462 if (batch > nr_pages) { 2463 batch = nr_pages; 2464 goto retry; 2465 } 2466 2467 /* 2468 * Memcg doesn't have a dedicated reserve for atomic 2469 * allocations. But like the global atomic pool, we need to 2470 * put the burden of reclaim on regular allocation requests 2471 * and let these go through as privileged allocations. 2472 */ 2473 if (gfp_mask & __GFP_ATOMIC) 2474 goto force; 2475 2476 /* 2477 * Unlike in global OOM situations, memcg is not in a physical 2478 * memory shortage. Allow dying and OOM-killed tasks to 2479 * bypass the last charges so that they can exit quickly and 2480 * free their memory. 2481 */ 2482 if (unlikely(should_force_charge())) 2483 goto force; 2484 2485 /* 2486 * Prevent unbounded recursion when reclaim operations need to 2487 * allocate memory. This might exceed the limits temporarily, 2488 * but we prefer facilitating memory reclaim and getting back 2489 * under the limit over triggering OOM kills in these cases. 2490 */ 2491 if (unlikely(current->flags & PF_MEMALLOC)) 2492 goto force; 2493 2494 if (unlikely(task_in_memcg_oom(current))) 2495 goto nomem; 2496 2497 if (!gfpflags_allow_blocking(gfp_mask)) 2498 goto nomem; 2499 2500 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2501 2502 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2503 gfp_mask, may_swap); 2504 2505 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2506 goto retry; 2507 2508 if (!drained) { 2509 drain_all_stock(mem_over_limit); 2510 drained = true; 2511 goto retry; 2512 } 2513 2514 if (gfp_mask & __GFP_NORETRY) 2515 goto nomem; 2516 /* 2517 * Even though the limit is exceeded at this point, reclaim 2518 * may have been able to free some pages. Retry the charge 2519 * before killing the task. 2520 * 2521 * Only for regular pages, though: huge pages are rather 2522 * unlikely to succeed so close to the limit, and we fall back 2523 * to regular pages anyway in case of failure. 2524 */ 2525 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2526 goto retry; 2527 /* 2528 * At task move, charge accounts can be doubly counted. So, it's 2529 * better to wait until the end of task_move if something is going on. 2530 */ 2531 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2532 goto retry; 2533 2534 if (nr_retries--) 2535 goto retry; 2536 2537 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2538 goto nomem; 2539 2540 if (gfp_mask & __GFP_NOFAIL) 2541 goto force; 2542 2543 if (fatal_signal_pending(current)) 2544 goto force; 2545 2546 /* 2547 * keep retrying as long as the memcg oom killer is able to make 2548 * a forward progress or bypass the charge if the oom killer 2549 * couldn't make any progress. 2550 */ 2551 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2552 get_order(nr_pages * PAGE_SIZE)); 2553 switch (oom_status) { 2554 case OOM_SUCCESS: 2555 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2556 goto retry; 2557 case OOM_FAILED: 2558 goto force; 2559 default: 2560 goto nomem; 2561 } 2562 nomem: 2563 if (!(gfp_mask & __GFP_NOFAIL)) 2564 return -ENOMEM; 2565 force: 2566 /* 2567 * The allocation either can't fail or will lead to more memory 2568 * being freed very soon. Allow memory usage go over the limit 2569 * temporarily by force charging it. 2570 */ 2571 page_counter_charge(&memcg->memory, nr_pages); 2572 if (do_memsw_account()) 2573 page_counter_charge(&memcg->memsw, nr_pages); 2574 css_get_many(&memcg->css, nr_pages); 2575 2576 return 0; 2577 2578 done_restock: 2579 css_get_many(&memcg->css, batch); 2580 if (batch > nr_pages) 2581 refill_stock(memcg, batch - nr_pages); 2582 2583 /* 2584 * If the hierarchy is above the normal consumption range, schedule 2585 * reclaim on returning to userland. We can perform reclaim here 2586 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2587 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2588 * not recorded as it most likely matches current's and won't 2589 * change in the meantime. As high limit is checked again before 2590 * reclaim, the cost of mismatch is negligible. 2591 */ 2592 do { 2593 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) { 2594 /* Don't bother a random interrupted task */ 2595 if (in_interrupt()) { 2596 schedule_work(&memcg->high_work); 2597 break; 2598 } 2599 current->memcg_nr_pages_over_high += batch; 2600 set_notify_resume(current); 2601 break; 2602 } 2603 } while ((memcg = parent_mem_cgroup(memcg))); 2604 2605 return 0; 2606 } 2607 2608 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2609 { 2610 if (mem_cgroup_is_root(memcg)) 2611 return; 2612 2613 page_counter_uncharge(&memcg->memory, nr_pages); 2614 if (do_memsw_account()) 2615 page_counter_uncharge(&memcg->memsw, nr_pages); 2616 2617 css_put_many(&memcg->css, nr_pages); 2618 } 2619 2620 static void lock_page_lru(struct page *page, int *isolated) 2621 { 2622 pg_data_t *pgdat = page_pgdat(page); 2623 2624 spin_lock_irq(&pgdat->lru_lock); 2625 if (PageLRU(page)) { 2626 struct lruvec *lruvec; 2627 2628 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2629 ClearPageLRU(page); 2630 del_page_from_lru_list(page, lruvec, page_lru(page)); 2631 *isolated = 1; 2632 } else 2633 *isolated = 0; 2634 } 2635 2636 static void unlock_page_lru(struct page *page, int isolated) 2637 { 2638 pg_data_t *pgdat = page_pgdat(page); 2639 2640 if (isolated) { 2641 struct lruvec *lruvec; 2642 2643 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2644 VM_BUG_ON_PAGE(PageLRU(page), page); 2645 SetPageLRU(page); 2646 add_page_to_lru_list(page, lruvec, page_lru(page)); 2647 } 2648 spin_unlock_irq(&pgdat->lru_lock); 2649 } 2650 2651 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2652 bool lrucare) 2653 { 2654 int isolated; 2655 2656 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2657 2658 /* 2659 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2660 * may already be on some other mem_cgroup's LRU. Take care of it. 2661 */ 2662 if (lrucare) 2663 lock_page_lru(page, &isolated); 2664 2665 /* 2666 * Nobody should be changing or seriously looking at 2667 * page->mem_cgroup at this point: 2668 * 2669 * - the page is uncharged 2670 * 2671 * - the page is off-LRU 2672 * 2673 * - an anonymous fault has exclusive page access, except for 2674 * a locked page table 2675 * 2676 * - a page cache insertion, a swapin fault, or a migration 2677 * have the page locked 2678 */ 2679 page->mem_cgroup = memcg; 2680 2681 if (lrucare) 2682 unlock_page_lru(page, isolated); 2683 } 2684 2685 #ifdef CONFIG_MEMCG_KMEM 2686 /* 2687 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2688 * 2689 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2690 * cgroup_mutex, etc. 2691 */ 2692 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2693 { 2694 struct page *page; 2695 2696 if (mem_cgroup_disabled()) 2697 return NULL; 2698 2699 page = virt_to_head_page(p); 2700 2701 /* 2702 * Slab pages don't have page->mem_cgroup set because corresponding 2703 * kmem caches can be reparented during the lifetime. That's why 2704 * memcg_from_slab_page() should be used instead. 2705 */ 2706 if (PageSlab(page)) 2707 return memcg_from_slab_page(page); 2708 2709 /* All other pages use page->mem_cgroup */ 2710 return page->mem_cgroup; 2711 } 2712 2713 static int memcg_alloc_cache_id(void) 2714 { 2715 int id, size; 2716 int err; 2717 2718 id = ida_simple_get(&memcg_cache_ida, 2719 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2720 if (id < 0) 2721 return id; 2722 2723 if (id < memcg_nr_cache_ids) 2724 return id; 2725 2726 /* 2727 * There's no space for the new id in memcg_caches arrays, 2728 * so we have to grow them. 2729 */ 2730 down_write(&memcg_cache_ids_sem); 2731 2732 size = 2 * (id + 1); 2733 if (size < MEMCG_CACHES_MIN_SIZE) 2734 size = MEMCG_CACHES_MIN_SIZE; 2735 else if (size > MEMCG_CACHES_MAX_SIZE) 2736 size = MEMCG_CACHES_MAX_SIZE; 2737 2738 err = memcg_update_all_caches(size); 2739 if (!err) 2740 err = memcg_update_all_list_lrus(size); 2741 if (!err) 2742 memcg_nr_cache_ids = size; 2743 2744 up_write(&memcg_cache_ids_sem); 2745 2746 if (err) { 2747 ida_simple_remove(&memcg_cache_ida, id); 2748 return err; 2749 } 2750 return id; 2751 } 2752 2753 static void memcg_free_cache_id(int id) 2754 { 2755 ida_simple_remove(&memcg_cache_ida, id); 2756 } 2757 2758 struct memcg_kmem_cache_create_work { 2759 struct mem_cgroup *memcg; 2760 struct kmem_cache *cachep; 2761 struct work_struct work; 2762 }; 2763 2764 static void memcg_kmem_cache_create_func(struct work_struct *w) 2765 { 2766 struct memcg_kmem_cache_create_work *cw = 2767 container_of(w, struct memcg_kmem_cache_create_work, work); 2768 struct mem_cgroup *memcg = cw->memcg; 2769 struct kmem_cache *cachep = cw->cachep; 2770 2771 memcg_create_kmem_cache(memcg, cachep); 2772 2773 css_put(&memcg->css); 2774 kfree(cw); 2775 } 2776 2777 /* 2778 * Enqueue the creation of a per-memcg kmem_cache. 2779 */ 2780 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2781 struct kmem_cache *cachep) 2782 { 2783 struct memcg_kmem_cache_create_work *cw; 2784 2785 if (!css_tryget_online(&memcg->css)) 2786 return; 2787 2788 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2789 if (!cw) 2790 return; 2791 2792 cw->memcg = memcg; 2793 cw->cachep = cachep; 2794 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2795 2796 queue_work(memcg_kmem_cache_wq, &cw->work); 2797 } 2798 2799 static inline bool memcg_kmem_bypass(void) 2800 { 2801 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2802 return true; 2803 return false; 2804 } 2805 2806 /** 2807 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2808 * @cachep: the original global kmem cache 2809 * 2810 * Return the kmem_cache we're supposed to use for a slab allocation. 2811 * We try to use the current memcg's version of the cache. 2812 * 2813 * If the cache does not exist yet, if we are the first user of it, we 2814 * create it asynchronously in a workqueue and let the current allocation 2815 * go through with the original cache. 2816 * 2817 * This function takes a reference to the cache it returns to assure it 2818 * won't get destroyed while we are working with it. Once the caller is 2819 * done with it, memcg_kmem_put_cache() must be called to release the 2820 * reference. 2821 */ 2822 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2823 { 2824 struct mem_cgroup *memcg; 2825 struct kmem_cache *memcg_cachep; 2826 struct memcg_cache_array *arr; 2827 int kmemcg_id; 2828 2829 VM_BUG_ON(!is_root_cache(cachep)); 2830 2831 if (memcg_kmem_bypass()) 2832 return cachep; 2833 2834 rcu_read_lock(); 2835 2836 if (unlikely(current->active_memcg)) 2837 memcg = current->active_memcg; 2838 else 2839 memcg = mem_cgroup_from_task(current); 2840 2841 if (!memcg || memcg == root_mem_cgroup) 2842 goto out_unlock; 2843 2844 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2845 if (kmemcg_id < 0) 2846 goto out_unlock; 2847 2848 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2849 2850 /* 2851 * Make sure we will access the up-to-date value. The code updating 2852 * memcg_caches issues a write barrier to match the data dependency 2853 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2854 */ 2855 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2856 2857 /* 2858 * If we are in a safe context (can wait, and not in interrupt 2859 * context), we could be be predictable and return right away. 2860 * This would guarantee that the allocation being performed 2861 * already belongs in the new cache. 2862 * 2863 * However, there are some clashes that can arrive from locking. 2864 * For instance, because we acquire the slab_mutex while doing 2865 * memcg_create_kmem_cache, this means no further allocation 2866 * could happen with the slab_mutex held. So it's better to 2867 * defer everything. 2868 * 2869 * If the memcg is dying or memcg_cache is about to be released, 2870 * don't bother creating new kmem_caches. Because memcg_cachep 2871 * is ZEROed as the fist step of kmem offlining, we don't need 2872 * percpu_ref_tryget_live() here. css_tryget_online() check in 2873 * memcg_schedule_kmem_cache_create() will prevent us from 2874 * creation of a new kmem_cache. 2875 */ 2876 if (unlikely(!memcg_cachep)) 2877 memcg_schedule_kmem_cache_create(memcg, cachep); 2878 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2879 cachep = memcg_cachep; 2880 out_unlock: 2881 rcu_read_unlock(); 2882 return cachep; 2883 } 2884 2885 /** 2886 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2887 * @cachep: the cache returned by memcg_kmem_get_cache 2888 */ 2889 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2890 { 2891 if (!is_root_cache(cachep)) 2892 percpu_ref_put(&cachep->memcg_params.refcnt); 2893 } 2894 2895 /** 2896 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 2897 * @memcg: memory cgroup to charge 2898 * @gfp: reclaim mode 2899 * @nr_pages: number of pages to charge 2900 * 2901 * Returns 0 on success, an error code on failure. 2902 */ 2903 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 2904 unsigned int nr_pages) 2905 { 2906 struct page_counter *counter; 2907 int ret; 2908 2909 ret = try_charge(memcg, gfp, nr_pages); 2910 if (ret) 2911 return ret; 2912 2913 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2914 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2915 2916 /* 2917 * Enforce __GFP_NOFAIL allocation because callers are not 2918 * prepared to see failures and likely do not have any failure 2919 * handling code. 2920 */ 2921 if (gfp & __GFP_NOFAIL) { 2922 page_counter_charge(&memcg->kmem, nr_pages); 2923 return 0; 2924 } 2925 cancel_charge(memcg, nr_pages); 2926 return -ENOMEM; 2927 } 2928 return 0; 2929 } 2930 2931 /** 2932 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 2933 * @memcg: memcg to uncharge 2934 * @nr_pages: number of pages to uncharge 2935 */ 2936 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 2937 { 2938 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2939 page_counter_uncharge(&memcg->kmem, nr_pages); 2940 2941 page_counter_uncharge(&memcg->memory, nr_pages); 2942 if (do_memsw_account()) 2943 page_counter_uncharge(&memcg->memsw, nr_pages); 2944 } 2945 2946 /** 2947 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2948 * @page: page to charge 2949 * @gfp: reclaim mode 2950 * @order: allocation order 2951 * 2952 * Returns 0 on success, an error code on failure. 2953 */ 2954 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2955 { 2956 struct mem_cgroup *memcg; 2957 int ret = 0; 2958 2959 if (memcg_kmem_bypass()) 2960 return 0; 2961 2962 memcg = get_mem_cgroup_from_current(); 2963 if (!mem_cgroup_is_root(memcg)) { 2964 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 2965 if (!ret) { 2966 page->mem_cgroup = memcg; 2967 __SetPageKmemcg(page); 2968 } 2969 } 2970 css_put(&memcg->css); 2971 return ret; 2972 } 2973 2974 /** 2975 * __memcg_kmem_uncharge_page: uncharge a kmem page 2976 * @page: page to uncharge 2977 * @order: allocation order 2978 */ 2979 void __memcg_kmem_uncharge_page(struct page *page, int order) 2980 { 2981 struct mem_cgroup *memcg = page->mem_cgroup; 2982 unsigned int nr_pages = 1 << order; 2983 2984 if (!memcg) 2985 return; 2986 2987 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2988 __memcg_kmem_uncharge(memcg, nr_pages); 2989 page->mem_cgroup = NULL; 2990 2991 /* slab pages do not have PageKmemcg flag set */ 2992 if (PageKmemcg(page)) 2993 __ClearPageKmemcg(page); 2994 2995 css_put_many(&memcg->css, nr_pages); 2996 } 2997 #endif /* CONFIG_MEMCG_KMEM */ 2998 2999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3000 3001 /* 3002 * Because tail pages are not marked as "used", set it. We're under 3003 * pgdat->lru_lock and migration entries setup in all page mappings. 3004 */ 3005 void mem_cgroup_split_huge_fixup(struct page *head) 3006 { 3007 int i; 3008 3009 if (mem_cgroup_disabled()) 3010 return; 3011 3012 for (i = 1; i < HPAGE_PMD_NR; i++) 3013 head[i].mem_cgroup = head->mem_cgroup; 3014 3015 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3016 } 3017 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3018 3019 #ifdef CONFIG_MEMCG_SWAP 3020 /** 3021 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3022 * @entry: swap entry to be moved 3023 * @from: mem_cgroup which the entry is moved from 3024 * @to: mem_cgroup which the entry is moved to 3025 * 3026 * It succeeds only when the swap_cgroup's record for this entry is the same 3027 * as the mem_cgroup's id of @from. 3028 * 3029 * Returns 0 on success, -EINVAL on failure. 3030 * 3031 * The caller must have charged to @to, IOW, called page_counter_charge() about 3032 * both res and memsw, and called css_get(). 3033 */ 3034 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3035 struct mem_cgroup *from, struct mem_cgroup *to) 3036 { 3037 unsigned short old_id, new_id; 3038 3039 old_id = mem_cgroup_id(from); 3040 new_id = mem_cgroup_id(to); 3041 3042 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3043 mod_memcg_state(from, MEMCG_SWAP, -1); 3044 mod_memcg_state(to, MEMCG_SWAP, 1); 3045 return 0; 3046 } 3047 return -EINVAL; 3048 } 3049 #else 3050 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3051 struct mem_cgroup *from, struct mem_cgroup *to) 3052 { 3053 return -EINVAL; 3054 } 3055 #endif 3056 3057 static DEFINE_MUTEX(memcg_max_mutex); 3058 3059 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3060 unsigned long max, bool memsw) 3061 { 3062 bool enlarge = false; 3063 bool drained = false; 3064 int ret; 3065 bool limits_invariant; 3066 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3067 3068 do { 3069 if (signal_pending(current)) { 3070 ret = -EINTR; 3071 break; 3072 } 3073 3074 mutex_lock(&memcg_max_mutex); 3075 /* 3076 * Make sure that the new limit (memsw or memory limit) doesn't 3077 * break our basic invariant rule memory.max <= memsw.max. 3078 */ 3079 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3080 max <= memcg->memsw.max; 3081 if (!limits_invariant) { 3082 mutex_unlock(&memcg_max_mutex); 3083 ret = -EINVAL; 3084 break; 3085 } 3086 if (max > counter->max) 3087 enlarge = true; 3088 ret = page_counter_set_max(counter, max); 3089 mutex_unlock(&memcg_max_mutex); 3090 3091 if (!ret) 3092 break; 3093 3094 if (!drained) { 3095 drain_all_stock(memcg); 3096 drained = true; 3097 continue; 3098 } 3099 3100 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3101 GFP_KERNEL, !memsw)) { 3102 ret = -EBUSY; 3103 break; 3104 } 3105 } while (true); 3106 3107 if (!ret && enlarge) 3108 memcg_oom_recover(memcg); 3109 3110 return ret; 3111 } 3112 3113 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3114 gfp_t gfp_mask, 3115 unsigned long *total_scanned) 3116 { 3117 unsigned long nr_reclaimed = 0; 3118 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3119 unsigned long reclaimed; 3120 int loop = 0; 3121 struct mem_cgroup_tree_per_node *mctz; 3122 unsigned long excess; 3123 unsigned long nr_scanned; 3124 3125 if (order > 0) 3126 return 0; 3127 3128 mctz = soft_limit_tree_node(pgdat->node_id); 3129 3130 /* 3131 * Do not even bother to check the largest node if the root 3132 * is empty. Do it lockless to prevent lock bouncing. Races 3133 * are acceptable as soft limit is best effort anyway. 3134 */ 3135 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3136 return 0; 3137 3138 /* 3139 * This loop can run a while, specially if mem_cgroup's continuously 3140 * keep exceeding their soft limit and putting the system under 3141 * pressure 3142 */ 3143 do { 3144 if (next_mz) 3145 mz = next_mz; 3146 else 3147 mz = mem_cgroup_largest_soft_limit_node(mctz); 3148 if (!mz) 3149 break; 3150 3151 nr_scanned = 0; 3152 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3153 gfp_mask, &nr_scanned); 3154 nr_reclaimed += reclaimed; 3155 *total_scanned += nr_scanned; 3156 spin_lock_irq(&mctz->lock); 3157 __mem_cgroup_remove_exceeded(mz, mctz); 3158 3159 /* 3160 * If we failed to reclaim anything from this memory cgroup 3161 * it is time to move on to the next cgroup 3162 */ 3163 next_mz = NULL; 3164 if (!reclaimed) 3165 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3166 3167 excess = soft_limit_excess(mz->memcg); 3168 /* 3169 * One school of thought says that we should not add 3170 * back the node to the tree if reclaim returns 0. 3171 * But our reclaim could return 0, simply because due 3172 * to priority we are exposing a smaller subset of 3173 * memory to reclaim from. Consider this as a longer 3174 * term TODO. 3175 */ 3176 /* If excess == 0, no tree ops */ 3177 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3178 spin_unlock_irq(&mctz->lock); 3179 css_put(&mz->memcg->css); 3180 loop++; 3181 /* 3182 * Could not reclaim anything and there are no more 3183 * mem cgroups to try or we seem to be looping without 3184 * reclaiming anything. 3185 */ 3186 if (!nr_reclaimed && 3187 (next_mz == NULL || 3188 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3189 break; 3190 } while (!nr_reclaimed); 3191 if (next_mz) 3192 css_put(&next_mz->memcg->css); 3193 return nr_reclaimed; 3194 } 3195 3196 /* 3197 * Test whether @memcg has children, dead or alive. Note that this 3198 * function doesn't care whether @memcg has use_hierarchy enabled and 3199 * returns %true if there are child csses according to the cgroup 3200 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3201 */ 3202 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3203 { 3204 bool ret; 3205 3206 rcu_read_lock(); 3207 ret = css_next_child(NULL, &memcg->css); 3208 rcu_read_unlock(); 3209 return ret; 3210 } 3211 3212 /* 3213 * Reclaims as many pages from the given memcg as possible. 3214 * 3215 * Caller is responsible for holding css reference for memcg. 3216 */ 3217 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3218 { 3219 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3220 3221 /* we call try-to-free pages for make this cgroup empty */ 3222 lru_add_drain_all(); 3223 3224 drain_all_stock(memcg); 3225 3226 /* try to free all pages in this cgroup */ 3227 while (nr_retries && page_counter_read(&memcg->memory)) { 3228 int progress; 3229 3230 if (signal_pending(current)) 3231 return -EINTR; 3232 3233 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3234 GFP_KERNEL, true); 3235 if (!progress) { 3236 nr_retries--; 3237 /* maybe some writeback is necessary */ 3238 congestion_wait(BLK_RW_ASYNC, HZ/10); 3239 } 3240 3241 } 3242 3243 return 0; 3244 } 3245 3246 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3247 char *buf, size_t nbytes, 3248 loff_t off) 3249 { 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3251 3252 if (mem_cgroup_is_root(memcg)) 3253 return -EINVAL; 3254 return mem_cgroup_force_empty(memcg) ?: nbytes; 3255 } 3256 3257 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3258 struct cftype *cft) 3259 { 3260 return mem_cgroup_from_css(css)->use_hierarchy; 3261 } 3262 3263 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3264 struct cftype *cft, u64 val) 3265 { 3266 int retval = 0; 3267 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3268 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3269 3270 if (memcg->use_hierarchy == val) 3271 return 0; 3272 3273 /* 3274 * If parent's use_hierarchy is set, we can't make any modifications 3275 * in the child subtrees. If it is unset, then the change can 3276 * occur, provided the current cgroup has no children. 3277 * 3278 * For the root cgroup, parent_mem is NULL, we allow value to be 3279 * set if there are no children. 3280 */ 3281 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3282 (val == 1 || val == 0)) { 3283 if (!memcg_has_children(memcg)) 3284 memcg->use_hierarchy = val; 3285 else 3286 retval = -EBUSY; 3287 } else 3288 retval = -EINVAL; 3289 3290 return retval; 3291 } 3292 3293 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3294 { 3295 unsigned long val; 3296 3297 if (mem_cgroup_is_root(memcg)) { 3298 val = memcg_page_state(memcg, MEMCG_CACHE) + 3299 memcg_page_state(memcg, MEMCG_RSS); 3300 if (swap) 3301 val += memcg_page_state(memcg, MEMCG_SWAP); 3302 } else { 3303 if (!swap) 3304 val = page_counter_read(&memcg->memory); 3305 else 3306 val = page_counter_read(&memcg->memsw); 3307 } 3308 return val; 3309 } 3310 3311 enum { 3312 RES_USAGE, 3313 RES_LIMIT, 3314 RES_MAX_USAGE, 3315 RES_FAILCNT, 3316 RES_SOFT_LIMIT, 3317 }; 3318 3319 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3320 struct cftype *cft) 3321 { 3322 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3323 struct page_counter *counter; 3324 3325 switch (MEMFILE_TYPE(cft->private)) { 3326 case _MEM: 3327 counter = &memcg->memory; 3328 break; 3329 case _MEMSWAP: 3330 counter = &memcg->memsw; 3331 break; 3332 case _KMEM: 3333 counter = &memcg->kmem; 3334 break; 3335 case _TCP: 3336 counter = &memcg->tcpmem; 3337 break; 3338 default: 3339 BUG(); 3340 } 3341 3342 switch (MEMFILE_ATTR(cft->private)) { 3343 case RES_USAGE: 3344 if (counter == &memcg->memory) 3345 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3346 if (counter == &memcg->memsw) 3347 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3348 return (u64)page_counter_read(counter) * PAGE_SIZE; 3349 case RES_LIMIT: 3350 return (u64)counter->max * PAGE_SIZE; 3351 case RES_MAX_USAGE: 3352 return (u64)counter->watermark * PAGE_SIZE; 3353 case RES_FAILCNT: 3354 return counter->failcnt; 3355 case RES_SOFT_LIMIT: 3356 return (u64)memcg->soft_limit * PAGE_SIZE; 3357 default: 3358 BUG(); 3359 } 3360 } 3361 3362 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3363 { 3364 unsigned long stat[MEMCG_NR_STAT] = {0}; 3365 struct mem_cgroup *mi; 3366 int node, cpu, i; 3367 3368 for_each_online_cpu(cpu) 3369 for (i = 0; i < MEMCG_NR_STAT; i++) 3370 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3371 3372 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3373 for (i = 0; i < MEMCG_NR_STAT; i++) 3374 atomic_long_add(stat[i], &mi->vmstats[i]); 3375 3376 for_each_node(node) { 3377 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3378 struct mem_cgroup_per_node *pi; 3379 3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3381 stat[i] = 0; 3382 3383 for_each_online_cpu(cpu) 3384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3385 stat[i] += per_cpu( 3386 pn->lruvec_stat_cpu->count[i], cpu); 3387 3388 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3389 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3390 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3391 } 3392 } 3393 3394 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3395 { 3396 unsigned long events[NR_VM_EVENT_ITEMS]; 3397 struct mem_cgroup *mi; 3398 int cpu, i; 3399 3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3401 events[i] = 0; 3402 3403 for_each_online_cpu(cpu) 3404 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3405 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3406 cpu); 3407 3408 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3409 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3410 atomic_long_add(events[i], &mi->vmevents[i]); 3411 } 3412 3413 #ifdef CONFIG_MEMCG_KMEM 3414 static int memcg_online_kmem(struct mem_cgroup *memcg) 3415 { 3416 int memcg_id; 3417 3418 if (cgroup_memory_nokmem) 3419 return 0; 3420 3421 BUG_ON(memcg->kmemcg_id >= 0); 3422 BUG_ON(memcg->kmem_state); 3423 3424 memcg_id = memcg_alloc_cache_id(); 3425 if (memcg_id < 0) 3426 return memcg_id; 3427 3428 static_branch_inc(&memcg_kmem_enabled_key); 3429 /* 3430 * A memory cgroup is considered kmem-online as soon as it gets 3431 * kmemcg_id. Setting the id after enabling static branching will 3432 * guarantee no one starts accounting before all call sites are 3433 * patched. 3434 */ 3435 memcg->kmemcg_id = memcg_id; 3436 memcg->kmem_state = KMEM_ONLINE; 3437 INIT_LIST_HEAD(&memcg->kmem_caches); 3438 3439 return 0; 3440 } 3441 3442 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3443 { 3444 struct cgroup_subsys_state *css; 3445 struct mem_cgroup *parent, *child; 3446 int kmemcg_id; 3447 3448 if (memcg->kmem_state != KMEM_ONLINE) 3449 return; 3450 /* 3451 * Clear the online state before clearing memcg_caches array 3452 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3453 * guarantees that no cache will be created for this cgroup 3454 * after we are done (see memcg_create_kmem_cache()). 3455 */ 3456 memcg->kmem_state = KMEM_ALLOCATED; 3457 3458 parent = parent_mem_cgroup(memcg); 3459 if (!parent) 3460 parent = root_mem_cgroup; 3461 3462 /* 3463 * Deactivate and reparent kmem_caches. 3464 */ 3465 memcg_deactivate_kmem_caches(memcg, parent); 3466 3467 kmemcg_id = memcg->kmemcg_id; 3468 BUG_ON(kmemcg_id < 0); 3469 3470 /* 3471 * Change kmemcg_id of this cgroup and all its descendants to the 3472 * parent's id, and then move all entries from this cgroup's list_lrus 3473 * to ones of the parent. After we have finished, all list_lrus 3474 * corresponding to this cgroup are guaranteed to remain empty. The 3475 * ordering is imposed by list_lru_node->lock taken by 3476 * memcg_drain_all_list_lrus(). 3477 */ 3478 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3479 css_for_each_descendant_pre(css, &memcg->css) { 3480 child = mem_cgroup_from_css(css); 3481 BUG_ON(child->kmemcg_id != kmemcg_id); 3482 child->kmemcg_id = parent->kmemcg_id; 3483 if (!memcg->use_hierarchy) 3484 break; 3485 } 3486 rcu_read_unlock(); 3487 3488 memcg_drain_all_list_lrus(kmemcg_id, parent); 3489 3490 memcg_free_cache_id(kmemcg_id); 3491 } 3492 3493 static void memcg_free_kmem(struct mem_cgroup *memcg) 3494 { 3495 /* css_alloc() failed, offlining didn't happen */ 3496 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3497 memcg_offline_kmem(memcg); 3498 3499 if (memcg->kmem_state == KMEM_ALLOCATED) { 3500 WARN_ON(!list_empty(&memcg->kmem_caches)); 3501 static_branch_dec(&memcg_kmem_enabled_key); 3502 } 3503 } 3504 #else 3505 static int memcg_online_kmem(struct mem_cgroup *memcg) 3506 { 3507 return 0; 3508 } 3509 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3510 { 3511 } 3512 static void memcg_free_kmem(struct mem_cgroup *memcg) 3513 { 3514 } 3515 #endif /* CONFIG_MEMCG_KMEM */ 3516 3517 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3518 unsigned long max) 3519 { 3520 int ret; 3521 3522 mutex_lock(&memcg_max_mutex); 3523 ret = page_counter_set_max(&memcg->kmem, max); 3524 mutex_unlock(&memcg_max_mutex); 3525 return ret; 3526 } 3527 3528 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3529 { 3530 int ret; 3531 3532 mutex_lock(&memcg_max_mutex); 3533 3534 ret = page_counter_set_max(&memcg->tcpmem, max); 3535 if (ret) 3536 goto out; 3537 3538 if (!memcg->tcpmem_active) { 3539 /* 3540 * The active flag needs to be written after the static_key 3541 * update. This is what guarantees that the socket activation 3542 * function is the last one to run. See mem_cgroup_sk_alloc() 3543 * for details, and note that we don't mark any socket as 3544 * belonging to this memcg until that flag is up. 3545 * 3546 * We need to do this, because static_keys will span multiple 3547 * sites, but we can't control their order. If we mark a socket 3548 * as accounted, but the accounting functions are not patched in 3549 * yet, we'll lose accounting. 3550 * 3551 * We never race with the readers in mem_cgroup_sk_alloc(), 3552 * because when this value change, the code to process it is not 3553 * patched in yet. 3554 */ 3555 static_branch_inc(&memcg_sockets_enabled_key); 3556 memcg->tcpmem_active = true; 3557 } 3558 out: 3559 mutex_unlock(&memcg_max_mutex); 3560 return ret; 3561 } 3562 3563 /* 3564 * The user of this function is... 3565 * RES_LIMIT. 3566 */ 3567 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3568 char *buf, size_t nbytes, loff_t off) 3569 { 3570 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3571 unsigned long nr_pages; 3572 int ret; 3573 3574 buf = strstrip(buf); 3575 ret = page_counter_memparse(buf, "-1", &nr_pages); 3576 if (ret) 3577 return ret; 3578 3579 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3580 case RES_LIMIT: 3581 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3582 ret = -EINVAL; 3583 break; 3584 } 3585 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3586 case _MEM: 3587 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3588 break; 3589 case _MEMSWAP: 3590 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3591 break; 3592 case _KMEM: 3593 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3594 "Please report your usecase to linux-mm@kvack.org if you " 3595 "depend on this functionality.\n"); 3596 ret = memcg_update_kmem_max(memcg, nr_pages); 3597 break; 3598 case _TCP: 3599 ret = memcg_update_tcp_max(memcg, nr_pages); 3600 break; 3601 } 3602 break; 3603 case RES_SOFT_LIMIT: 3604 memcg->soft_limit = nr_pages; 3605 ret = 0; 3606 break; 3607 } 3608 return ret ?: nbytes; 3609 } 3610 3611 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3612 size_t nbytes, loff_t off) 3613 { 3614 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3615 struct page_counter *counter; 3616 3617 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3618 case _MEM: 3619 counter = &memcg->memory; 3620 break; 3621 case _MEMSWAP: 3622 counter = &memcg->memsw; 3623 break; 3624 case _KMEM: 3625 counter = &memcg->kmem; 3626 break; 3627 case _TCP: 3628 counter = &memcg->tcpmem; 3629 break; 3630 default: 3631 BUG(); 3632 } 3633 3634 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3635 case RES_MAX_USAGE: 3636 page_counter_reset_watermark(counter); 3637 break; 3638 case RES_FAILCNT: 3639 counter->failcnt = 0; 3640 break; 3641 default: 3642 BUG(); 3643 } 3644 3645 return nbytes; 3646 } 3647 3648 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3649 struct cftype *cft) 3650 { 3651 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3652 } 3653 3654 #ifdef CONFIG_MMU 3655 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3656 struct cftype *cft, u64 val) 3657 { 3658 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3659 3660 if (val & ~MOVE_MASK) 3661 return -EINVAL; 3662 3663 /* 3664 * No kind of locking is needed in here, because ->can_attach() will 3665 * check this value once in the beginning of the process, and then carry 3666 * on with stale data. This means that changes to this value will only 3667 * affect task migrations starting after the change. 3668 */ 3669 memcg->move_charge_at_immigrate = val; 3670 return 0; 3671 } 3672 #else 3673 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3674 struct cftype *cft, u64 val) 3675 { 3676 return -ENOSYS; 3677 } 3678 #endif 3679 3680 #ifdef CONFIG_NUMA 3681 3682 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3683 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3684 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3685 3686 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3687 int nid, unsigned int lru_mask) 3688 { 3689 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3690 unsigned long nr = 0; 3691 enum lru_list lru; 3692 3693 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3694 3695 for_each_lru(lru) { 3696 if (!(BIT(lru) & lru_mask)) 3697 continue; 3698 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3699 } 3700 return nr; 3701 } 3702 3703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3704 unsigned int lru_mask) 3705 { 3706 unsigned long nr = 0; 3707 enum lru_list lru; 3708 3709 for_each_lru(lru) { 3710 if (!(BIT(lru) & lru_mask)) 3711 continue; 3712 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3713 } 3714 return nr; 3715 } 3716 3717 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3718 { 3719 struct numa_stat { 3720 const char *name; 3721 unsigned int lru_mask; 3722 }; 3723 3724 static const struct numa_stat stats[] = { 3725 { "total", LRU_ALL }, 3726 { "file", LRU_ALL_FILE }, 3727 { "anon", LRU_ALL_ANON }, 3728 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3729 }; 3730 const struct numa_stat *stat; 3731 int nid; 3732 unsigned long nr; 3733 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3734 3735 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3736 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3737 seq_printf(m, "%s=%lu", stat->name, nr); 3738 for_each_node_state(nid, N_MEMORY) { 3739 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3740 stat->lru_mask); 3741 seq_printf(m, " N%d=%lu", nid, nr); 3742 } 3743 seq_putc(m, '\n'); 3744 } 3745 3746 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3747 struct mem_cgroup *iter; 3748 3749 nr = 0; 3750 for_each_mem_cgroup_tree(iter, memcg) 3751 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3752 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3753 for_each_node_state(nid, N_MEMORY) { 3754 nr = 0; 3755 for_each_mem_cgroup_tree(iter, memcg) 3756 nr += mem_cgroup_node_nr_lru_pages( 3757 iter, nid, stat->lru_mask); 3758 seq_printf(m, " N%d=%lu", nid, nr); 3759 } 3760 seq_putc(m, '\n'); 3761 } 3762 3763 return 0; 3764 } 3765 #endif /* CONFIG_NUMA */ 3766 3767 static const unsigned int memcg1_stats[] = { 3768 MEMCG_CACHE, 3769 MEMCG_RSS, 3770 MEMCG_RSS_HUGE, 3771 NR_SHMEM, 3772 NR_FILE_MAPPED, 3773 NR_FILE_DIRTY, 3774 NR_WRITEBACK, 3775 MEMCG_SWAP, 3776 }; 3777 3778 static const char *const memcg1_stat_names[] = { 3779 "cache", 3780 "rss", 3781 "rss_huge", 3782 "shmem", 3783 "mapped_file", 3784 "dirty", 3785 "writeback", 3786 "swap", 3787 }; 3788 3789 /* Universal VM events cgroup1 shows, original sort order */ 3790 static const unsigned int memcg1_events[] = { 3791 PGPGIN, 3792 PGPGOUT, 3793 PGFAULT, 3794 PGMAJFAULT, 3795 }; 3796 3797 static int memcg_stat_show(struct seq_file *m, void *v) 3798 { 3799 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3800 unsigned long memory, memsw; 3801 struct mem_cgroup *mi; 3802 unsigned int i; 3803 3804 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3805 3806 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3807 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3808 continue; 3809 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3810 memcg_page_state_local(memcg, memcg1_stats[i]) * 3811 PAGE_SIZE); 3812 } 3813 3814 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3815 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3816 memcg_events_local(memcg, memcg1_events[i])); 3817 3818 for (i = 0; i < NR_LRU_LISTS; i++) 3819 seq_printf(m, "%s %lu\n", lru_list_name(i), 3820 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3821 PAGE_SIZE); 3822 3823 /* Hierarchical information */ 3824 memory = memsw = PAGE_COUNTER_MAX; 3825 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3826 memory = min(memory, READ_ONCE(mi->memory.max)); 3827 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3828 } 3829 seq_printf(m, "hierarchical_memory_limit %llu\n", 3830 (u64)memory * PAGE_SIZE); 3831 if (do_memsw_account()) 3832 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3833 (u64)memsw * PAGE_SIZE); 3834 3835 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3836 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3837 continue; 3838 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3839 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3840 PAGE_SIZE); 3841 } 3842 3843 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3844 seq_printf(m, "total_%s %llu\n", 3845 vm_event_name(memcg1_events[i]), 3846 (u64)memcg_events(memcg, memcg1_events[i])); 3847 3848 for (i = 0; i < NR_LRU_LISTS; i++) 3849 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3850 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3851 PAGE_SIZE); 3852 3853 #ifdef CONFIG_DEBUG_VM 3854 { 3855 pg_data_t *pgdat; 3856 struct mem_cgroup_per_node *mz; 3857 struct zone_reclaim_stat *rstat; 3858 unsigned long recent_rotated[2] = {0, 0}; 3859 unsigned long recent_scanned[2] = {0, 0}; 3860 3861 for_each_online_pgdat(pgdat) { 3862 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3863 rstat = &mz->lruvec.reclaim_stat; 3864 3865 recent_rotated[0] += rstat->recent_rotated[0]; 3866 recent_rotated[1] += rstat->recent_rotated[1]; 3867 recent_scanned[0] += rstat->recent_scanned[0]; 3868 recent_scanned[1] += rstat->recent_scanned[1]; 3869 } 3870 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3871 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3872 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3873 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3874 } 3875 #endif 3876 3877 return 0; 3878 } 3879 3880 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3881 struct cftype *cft) 3882 { 3883 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3884 3885 return mem_cgroup_swappiness(memcg); 3886 } 3887 3888 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3889 struct cftype *cft, u64 val) 3890 { 3891 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3892 3893 if (val > 100) 3894 return -EINVAL; 3895 3896 if (css->parent) 3897 memcg->swappiness = val; 3898 else 3899 vm_swappiness = val; 3900 3901 return 0; 3902 } 3903 3904 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3905 { 3906 struct mem_cgroup_threshold_ary *t; 3907 unsigned long usage; 3908 int i; 3909 3910 rcu_read_lock(); 3911 if (!swap) 3912 t = rcu_dereference(memcg->thresholds.primary); 3913 else 3914 t = rcu_dereference(memcg->memsw_thresholds.primary); 3915 3916 if (!t) 3917 goto unlock; 3918 3919 usage = mem_cgroup_usage(memcg, swap); 3920 3921 /* 3922 * current_threshold points to threshold just below or equal to usage. 3923 * If it's not true, a threshold was crossed after last 3924 * call of __mem_cgroup_threshold(). 3925 */ 3926 i = t->current_threshold; 3927 3928 /* 3929 * Iterate backward over array of thresholds starting from 3930 * current_threshold and check if a threshold is crossed. 3931 * If none of thresholds below usage is crossed, we read 3932 * only one element of the array here. 3933 */ 3934 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3935 eventfd_signal(t->entries[i].eventfd, 1); 3936 3937 /* i = current_threshold + 1 */ 3938 i++; 3939 3940 /* 3941 * Iterate forward over array of thresholds starting from 3942 * current_threshold+1 and check if a threshold is crossed. 3943 * If none of thresholds above usage is crossed, we read 3944 * only one element of the array here. 3945 */ 3946 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3947 eventfd_signal(t->entries[i].eventfd, 1); 3948 3949 /* Update current_threshold */ 3950 t->current_threshold = i - 1; 3951 unlock: 3952 rcu_read_unlock(); 3953 } 3954 3955 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3956 { 3957 while (memcg) { 3958 __mem_cgroup_threshold(memcg, false); 3959 if (do_memsw_account()) 3960 __mem_cgroup_threshold(memcg, true); 3961 3962 memcg = parent_mem_cgroup(memcg); 3963 } 3964 } 3965 3966 static int compare_thresholds(const void *a, const void *b) 3967 { 3968 const struct mem_cgroup_threshold *_a = a; 3969 const struct mem_cgroup_threshold *_b = b; 3970 3971 if (_a->threshold > _b->threshold) 3972 return 1; 3973 3974 if (_a->threshold < _b->threshold) 3975 return -1; 3976 3977 return 0; 3978 } 3979 3980 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3981 { 3982 struct mem_cgroup_eventfd_list *ev; 3983 3984 spin_lock(&memcg_oom_lock); 3985 3986 list_for_each_entry(ev, &memcg->oom_notify, list) 3987 eventfd_signal(ev->eventfd, 1); 3988 3989 spin_unlock(&memcg_oom_lock); 3990 return 0; 3991 } 3992 3993 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3994 { 3995 struct mem_cgroup *iter; 3996 3997 for_each_mem_cgroup_tree(iter, memcg) 3998 mem_cgroup_oom_notify_cb(iter); 3999 } 4000 4001 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4002 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4003 { 4004 struct mem_cgroup_thresholds *thresholds; 4005 struct mem_cgroup_threshold_ary *new; 4006 unsigned long threshold; 4007 unsigned long usage; 4008 int i, size, ret; 4009 4010 ret = page_counter_memparse(args, "-1", &threshold); 4011 if (ret) 4012 return ret; 4013 4014 mutex_lock(&memcg->thresholds_lock); 4015 4016 if (type == _MEM) { 4017 thresholds = &memcg->thresholds; 4018 usage = mem_cgroup_usage(memcg, false); 4019 } else if (type == _MEMSWAP) { 4020 thresholds = &memcg->memsw_thresholds; 4021 usage = mem_cgroup_usage(memcg, true); 4022 } else 4023 BUG(); 4024 4025 /* Check if a threshold crossed before adding a new one */ 4026 if (thresholds->primary) 4027 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4028 4029 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4030 4031 /* Allocate memory for new array of thresholds */ 4032 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4033 if (!new) { 4034 ret = -ENOMEM; 4035 goto unlock; 4036 } 4037 new->size = size; 4038 4039 /* Copy thresholds (if any) to new array */ 4040 if (thresholds->primary) { 4041 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4042 sizeof(struct mem_cgroup_threshold)); 4043 } 4044 4045 /* Add new threshold */ 4046 new->entries[size - 1].eventfd = eventfd; 4047 new->entries[size - 1].threshold = threshold; 4048 4049 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4050 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4051 compare_thresholds, NULL); 4052 4053 /* Find current threshold */ 4054 new->current_threshold = -1; 4055 for (i = 0; i < size; i++) { 4056 if (new->entries[i].threshold <= usage) { 4057 /* 4058 * new->current_threshold will not be used until 4059 * rcu_assign_pointer(), so it's safe to increment 4060 * it here. 4061 */ 4062 ++new->current_threshold; 4063 } else 4064 break; 4065 } 4066 4067 /* Free old spare buffer and save old primary buffer as spare */ 4068 kfree(thresholds->spare); 4069 thresholds->spare = thresholds->primary; 4070 4071 rcu_assign_pointer(thresholds->primary, new); 4072 4073 /* To be sure that nobody uses thresholds */ 4074 synchronize_rcu(); 4075 4076 unlock: 4077 mutex_unlock(&memcg->thresholds_lock); 4078 4079 return ret; 4080 } 4081 4082 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4083 struct eventfd_ctx *eventfd, const char *args) 4084 { 4085 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4086 } 4087 4088 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4089 struct eventfd_ctx *eventfd, const char *args) 4090 { 4091 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4092 } 4093 4094 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4095 struct eventfd_ctx *eventfd, enum res_type type) 4096 { 4097 struct mem_cgroup_thresholds *thresholds; 4098 struct mem_cgroup_threshold_ary *new; 4099 unsigned long usage; 4100 int i, j, size, entries; 4101 4102 mutex_lock(&memcg->thresholds_lock); 4103 4104 if (type == _MEM) { 4105 thresholds = &memcg->thresholds; 4106 usage = mem_cgroup_usage(memcg, false); 4107 } else if (type == _MEMSWAP) { 4108 thresholds = &memcg->memsw_thresholds; 4109 usage = mem_cgroup_usage(memcg, true); 4110 } else 4111 BUG(); 4112 4113 if (!thresholds->primary) 4114 goto unlock; 4115 4116 /* Check if a threshold crossed before removing */ 4117 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4118 4119 /* Calculate new number of threshold */ 4120 size = entries = 0; 4121 for (i = 0; i < thresholds->primary->size; i++) { 4122 if (thresholds->primary->entries[i].eventfd != eventfd) 4123 size++; 4124 else 4125 entries++; 4126 } 4127 4128 new = thresholds->spare; 4129 4130 /* If no items related to eventfd have been cleared, nothing to do */ 4131 if (!entries) 4132 goto unlock; 4133 4134 /* Set thresholds array to NULL if we don't have thresholds */ 4135 if (!size) { 4136 kfree(new); 4137 new = NULL; 4138 goto swap_buffers; 4139 } 4140 4141 new->size = size; 4142 4143 /* Copy thresholds and find current threshold */ 4144 new->current_threshold = -1; 4145 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4146 if (thresholds->primary->entries[i].eventfd == eventfd) 4147 continue; 4148 4149 new->entries[j] = thresholds->primary->entries[i]; 4150 if (new->entries[j].threshold <= usage) { 4151 /* 4152 * new->current_threshold will not be used 4153 * until rcu_assign_pointer(), so it's safe to increment 4154 * it here. 4155 */ 4156 ++new->current_threshold; 4157 } 4158 j++; 4159 } 4160 4161 swap_buffers: 4162 /* Swap primary and spare array */ 4163 thresholds->spare = thresholds->primary; 4164 4165 rcu_assign_pointer(thresholds->primary, new); 4166 4167 /* To be sure that nobody uses thresholds */ 4168 synchronize_rcu(); 4169 4170 /* If all events are unregistered, free the spare array */ 4171 if (!new) { 4172 kfree(thresholds->spare); 4173 thresholds->spare = NULL; 4174 } 4175 unlock: 4176 mutex_unlock(&memcg->thresholds_lock); 4177 } 4178 4179 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4180 struct eventfd_ctx *eventfd) 4181 { 4182 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4183 } 4184 4185 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4186 struct eventfd_ctx *eventfd) 4187 { 4188 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4189 } 4190 4191 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4192 struct eventfd_ctx *eventfd, const char *args) 4193 { 4194 struct mem_cgroup_eventfd_list *event; 4195 4196 event = kmalloc(sizeof(*event), GFP_KERNEL); 4197 if (!event) 4198 return -ENOMEM; 4199 4200 spin_lock(&memcg_oom_lock); 4201 4202 event->eventfd = eventfd; 4203 list_add(&event->list, &memcg->oom_notify); 4204 4205 /* already in OOM ? */ 4206 if (memcg->under_oom) 4207 eventfd_signal(eventfd, 1); 4208 spin_unlock(&memcg_oom_lock); 4209 4210 return 0; 4211 } 4212 4213 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4214 struct eventfd_ctx *eventfd) 4215 { 4216 struct mem_cgroup_eventfd_list *ev, *tmp; 4217 4218 spin_lock(&memcg_oom_lock); 4219 4220 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4221 if (ev->eventfd == eventfd) { 4222 list_del(&ev->list); 4223 kfree(ev); 4224 } 4225 } 4226 4227 spin_unlock(&memcg_oom_lock); 4228 } 4229 4230 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4231 { 4232 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4233 4234 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4235 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4236 seq_printf(sf, "oom_kill %lu\n", 4237 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4238 return 0; 4239 } 4240 4241 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4242 struct cftype *cft, u64 val) 4243 { 4244 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4245 4246 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4247 if (!css->parent || !((val == 0) || (val == 1))) 4248 return -EINVAL; 4249 4250 memcg->oom_kill_disable = val; 4251 if (!val) 4252 memcg_oom_recover(memcg); 4253 4254 return 0; 4255 } 4256 4257 #ifdef CONFIG_CGROUP_WRITEBACK 4258 4259 #include <trace/events/writeback.h> 4260 4261 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4262 { 4263 return wb_domain_init(&memcg->cgwb_domain, gfp); 4264 } 4265 4266 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4267 { 4268 wb_domain_exit(&memcg->cgwb_domain); 4269 } 4270 4271 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4272 { 4273 wb_domain_size_changed(&memcg->cgwb_domain); 4274 } 4275 4276 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4277 { 4278 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4279 4280 if (!memcg->css.parent) 4281 return NULL; 4282 4283 return &memcg->cgwb_domain; 4284 } 4285 4286 /* 4287 * idx can be of type enum memcg_stat_item or node_stat_item. 4288 * Keep in sync with memcg_exact_page(). 4289 */ 4290 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4291 { 4292 long x = atomic_long_read(&memcg->vmstats[idx]); 4293 int cpu; 4294 4295 for_each_online_cpu(cpu) 4296 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4297 if (x < 0) 4298 x = 0; 4299 return x; 4300 } 4301 4302 /** 4303 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4304 * @wb: bdi_writeback in question 4305 * @pfilepages: out parameter for number of file pages 4306 * @pheadroom: out parameter for number of allocatable pages according to memcg 4307 * @pdirty: out parameter for number of dirty pages 4308 * @pwriteback: out parameter for number of pages under writeback 4309 * 4310 * Determine the numbers of file, headroom, dirty, and writeback pages in 4311 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4312 * is a bit more involved. 4313 * 4314 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4315 * headroom is calculated as the lowest headroom of itself and the 4316 * ancestors. Note that this doesn't consider the actual amount of 4317 * available memory in the system. The caller should further cap 4318 * *@pheadroom accordingly. 4319 */ 4320 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4321 unsigned long *pheadroom, unsigned long *pdirty, 4322 unsigned long *pwriteback) 4323 { 4324 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4325 struct mem_cgroup *parent; 4326 4327 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4328 4329 /* this should eventually include NR_UNSTABLE_NFS */ 4330 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4331 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4332 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4333 *pheadroom = PAGE_COUNTER_MAX; 4334 4335 while ((parent = parent_mem_cgroup(memcg))) { 4336 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4337 READ_ONCE(memcg->high)); 4338 unsigned long used = page_counter_read(&memcg->memory); 4339 4340 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4341 memcg = parent; 4342 } 4343 } 4344 4345 /* 4346 * Foreign dirty flushing 4347 * 4348 * There's an inherent mismatch between memcg and writeback. The former 4349 * trackes ownership per-page while the latter per-inode. This was a 4350 * deliberate design decision because honoring per-page ownership in the 4351 * writeback path is complicated, may lead to higher CPU and IO overheads 4352 * and deemed unnecessary given that write-sharing an inode across 4353 * different cgroups isn't a common use-case. 4354 * 4355 * Combined with inode majority-writer ownership switching, this works well 4356 * enough in most cases but there are some pathological cases. For 4357 * example, let's say there are two cgroups A and B which keep writing to 4358 * different but confined parts of the same inode. B owns the inode and 4359 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4360 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4361 * triggering background writeback. A will be slowed down without a way to 4362 * make writeback of the dirty pages happen. 4363 * 4364 * Conditions like the above can lead to a cgroup getting repatedly and 4365 * severely throttled after making some progress after each 4366 * dirty_expire_interval while the underyling IO device is almost 4367 * completely idle. 4368 * 4369 * Solving this problem completely requires matching the ownership tracking 4370 * granularities between memcg and writeback in either direction. However, 4371 * the more egregious behaviors can be avoided by simply remembering the 4372 * most recent foreign dirtying events and initiating remote flushes on 4373 * them when local writeback isn't enough to keep the memory clean enough. 4374 * 4375 * The following two functions implement such mechanism. When a foreign 4376 * page - a page whose memcg and writeback ownerships don't match - is 4377 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4378 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4379 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4380 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4381 * foreign bdi_writebacks which haven't expired. Both the numbers of 4382 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4383 * limited to MEMCG_CGWB_FRN_CNT. 4384 * 4385 * The mechanism only remembers IDs and doesn't hold any object references. 4386 * As being wrong occasionally doesn't matter, updates and accesses to the 4387 * records are lockless and racy. 4388 */ 4389 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4390 struct bdi_writeback *wb) 4391 { 4392 struct mem_cgroup *memcg = page->mem_cgroup; 4393 struct memcg_cgwb_frn *frn; 4394 u64 now = get_jiffies_64(); 4395 u64 oldest_at = now; 4396 int oldest = -1; 4397 int i; 4398 4399 trace_track_foreign_dirty(page, wb); 4400 4401 /* 4402 * Pick the slot to use. If there is already a slot for @wb, keep 4403 * using it. If not replace the oldest one which isn't being 4404 * written out. 4405 */ 4406 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4407 frn = &memcg->cgwb_frn[i]; 4408 if (frn->bdi_id == wb->bdi->id && 4409 frn->memcg_id == wb->memcg_css->id) 4410 break; 4411 if (time_before64(frn->at, oldest_at) && 4412 atomic_read(&frn->done.cnt) == 1) { 4413 oldest = i; 4414 oldest_at = frn->at; 4415 } 4416 } 4417 4418 if (i < MEMCG_CGWB_FRN_CNT) { 4419 /* 4420 * Re-using an existing one. Update timestamp lazily to 4421 * avoid making the cacheline hot. We want them to be 4422 * reasonably up-to-date and significantly shorter than 4423 * dirty_expire_interval as that's what expires the record. 4424 * Use the shorter of 1s and dirty_expire_interval / 8. 4425 */ 4426 unsigned long update_intv = 4427 min_t(unsigned long, HZ, 4428 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4429 4430 if (time_before64(frn->at, now - update_intv)) 4431 frn->at = now; 4432 } else if (oldest >= 0) { 4433 /* replace the oldest free one */ 4434 frn = &memcg->cgwb_frn[oldest]; 4435 frn->bdi_id = wb->bdi->id; 4436 frn->memcg_id = wb->memcg_css->id; 4437 frn->at = now; 4438 } 4439 } 4440 4441 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4442 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4443 { 4444 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4445 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4446 u64 now = jiffies_64; 4447 int i; 4448 4449 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4450 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4451 4452 /* 4453 * If the record is older than dirty_expire_interval, 4454 * writeback on it has already started. No need to kick it 4455 * off again. Also, don't start a new one if there's 4456 * already one in flight. 4457 */ 4458 if (time_after64(frn->at, now - intv) && 4459 atomic_read(&frn->done.cnt) == 1) { 4460 frn->at = 0; 4461 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4462 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4463 WB_REASON_FOREIGN_FLUSH, 4464 &frn->done); 4465 } 4466 } 4467 } 4468 4469 #else /* CONFIG_CGROUP_WRITEBACK */ 4470 4471 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4472 { 4473 return 0; 4474 } 4475 4476 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4477 { 4478 } 4479 4480 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4481 { 4482 } 4483 4484 #endif /* CONFIG_CGROUP_WRITEBACK */ 4485 4486 /* 4487 * DO NOT USE IN NEW FILES. 4488 * 4489 * "cgroup.event_control" implementation. 4490 * 4491 * This is way over-engineered. It tries to support fully configurable 4492 * events for each user. Such level of flexibility is completely 4493 * unnecessary especially in the light of the planned unified hierarchy. 4494 * 4495 * Please deprecate this and replace with something simpler if at all 4496 * possible. 4497 */ 4498 4499 /* 4500 * Unregister event and free resources. 4501 * 4502 * Gets called from workqueue. 4503 */ 4504 static void memcg_event_remove(struct work_struct *work) 4505 { 4506 struct mem_cgroup_event *event = 4507 container_of(work, struct mem_cgroup_event, remove); 4508 struct mem_cgroup *memcg = event->memcg; 4509 4510 remove_wait_queue(event->wqh, &event->wait); 4511 4512 event->unregister_event(memcg, event->eventfd); 4513 4514 /* Notify userspace the event is going away. */ 4515 eventfd_signal(event->eventfd, 1); 4516 4517 eventfd_ctx_put(event->eventfd); 4518 kfree(event); 4519 css_put(&memcg->css); 4520 } 4521 4522 /* 4523 * Gets called on EPOLLHUP on eventfd when user closes it. 4524 * 4525 * Called with wqh->lock held and interrupts disabled. 4526 */ 4527 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4528 int sync, void *key) 4529 { 4530 struct mem_cgroup_event *event = 4531 container_of(wait, struct mem_cgroup_event, wait); 4532 struct mem_cgroup *memcg = event->memcg; 4533 __poll_t flags = key_to_poll(key); 4534 4535 if (flags & EPOLLHUP) { 4536 /* 4537 * If the event has been detached at cgroup removal, we 4538 * can simply return knowing the other side will cleanup 4539 * for us. 4540 * 4541 * We can't race against event freeing since the other 4542 * side will require wqh->lock via remove_wait_queue(), 4543 * which we hold. 4544 */ 4545 spin_lock(&memcg->event_list_lock); 4546 if (!list_empty(&event->list)) { 4547 list_del_init(&event->list); 4548 /* 4549 * We are in atomic context, but cgroup_event_remove() 4550 * may sleep, so we have to call it in workqueue. 4551 */ 4552 schedule_work(&event->remove); 4553 } 4554 spin_unlock(&memcg->event_list_lock); 4555 } 4556 4557 return 0; 4558 } 4559 4560 static void memcg_event_ptable_queue_proc(struct file *file, 4561 wait_queue_head_t *wqh, poll_table *pt) 4562 { 4563 struct mem_cgroup_event *event = 4564 container_of(pt, struct mem_cgroup_event, pt); 4565 4566 event->wqh = wqh; 4567 add_wait_queue(wqh, &event->wait); 4568 } 4569 4570 /* 4571 * DO NOT USE IN NEW FILES. 4572 * 4573 * Parse input and register new cgroup event handler. 4574 * 4575 * Input must be in format '<event_fd> <control_fd> <args>'. 4576 * Interpretation of args is defined by control file implementation. 4577 */ 4578 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4579 char *buf, size_t nbytes, loff_t off) 4580 { 4581 struct cgroup_subsys_state *css = of_css(of); 4582 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4583 struct mem_cgroup_event *event; 4584 struct cgroup_subsys_state *cfile_css; 4585 unsigned int efd, cfd; 4586 struct fd efile; 4587 struct fd cfile; 4588 const char *name; 4589 char *endp; 4590 int ret; 4591 4592 buf = strstrip(buf); 4593 4594 efd = simple_strtoul(buf, &endp, 10); 4595 if (*endp != ' ') 4596 return -EINVAL; 4597 buf = endp + 1; 4598 4599 cfd = simple_strtoul(buf, &endp, 10); 4600 if ((*endp != ' ') && (*endp != '\0')) 4601 return -EINVAL; 4602 buf = endp + 1; 4603 4604 event = kzalloc(sizeof(*event), GFP_KERNEL); 4605 if (!event) 4606 return -ENOMEM; 4607 4608 event->memcg = memcg; 4609 INIT_LIST_HEAD(&event->list); 4610 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4611 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4612 INIT_WORK(&event->remove, memcg_event_remove); 4613 4614 efile = fdget(efd); 4615 if (!efile.file) { 4616 ret = -EBADF; 4617 goto out_kfree; 4618 } 4619 4620 event->eventfd = eventfd_ctx_fileget(efile.file); 4621 if (IS_ERR(event->eventfd)) { 4622 ret = PTR_ERR(event->eventfd); 4623 goto out_put_efile; 4624 } 4625 4626 cfile = fdget(cfd); 4627 if (!cfile.file) { 4628 ret = -EBADF; 4629 goto out_put_eventfd; 4630 } 4631 4632 /* the process need read permission on control file */ 4633 /* AV: shouldn't we check that it's been opened for read instead? */ 4634 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4635 if (ret < 0) 4636 goto out_put_cfile; 4637 4638 /* 4639 * Determine the event callbacks and set them in @event. This used 4640 * to be done via struct cftype but cgroup core no longer knows 4641 * about these events. The following is crude but the whole thing 4642 * is for compatibility anyway. 4643 * 4644 * DO NOT ADD NEW FILES. 4645 */ 4646 name = cfile.file->f_path.dentry->d_name.name; 4647 4648 if (!strcmp(name, "memory.usage_in_bytes")) { 4649 event->register_event = mem_cgroup_usage_register_event; 4650 event->unregister_event = mem_cgroup_usage_unregister_event; 4651 } else if (!strcmp(name, "memory.oom_control")) { 4652 event->register_event = mem_cgroup_oom_register_event; 4653 event->unregister_event = mem_cgroup_oom_unregister_event; 4654 } else if (!strcmp(name, "memory.pressure_level")) { 4655 event->register_event = vmpressure_register_event; 4656 event->unregister_event = vmpressure_unregister_event; 4657 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4658 event->register_event = memsw_cgroup_usage_register_event; 4659 event->unregister_event = memsw_cgroup_usage_unregister_event; 4660 } else { 4661 ret = -EINVAL; 4662 goto out_put_cfile; 4663 } 4664 4665 /* 4666 * Verify @cfile should belong to @css. Also, remaining events are 4667 * automatically removed on cgroup destruction but the removal is 4668 * asynchronous, so take an extra ref on @css. 4669 */ 4670 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4671 &memory_cgrp_subsys); 4672 ret = -EINVAL; 4673 if (IS_ERR(cfile_css)) 4674 goto out_put_cfile; 4675 if (cfile_css != css) { 4676 css_put(cfile_css); 4677 goto out_put_cfile; 4678 } 4679 4680 ret = event->register_event(memcg, event->eventfd, buf); 4681 if (ret) 4682 goto out_put_css; 4683 4684 vfs_poll(efile.file, &event->pt); 4685 4686 spin_lock(&memcg->event_list_lock); 4687 list_add(&event->list, &memcg->event_list); 4688 spin_unlock(&memcg->event_list_lock); 4689 4690 fdput(cfile); 4691 fdput(efile); 4692 4693 return nbytes; 4694 4695 out_put_css: 4696 css_put(css); 4697 out_put_cfile: 4698 fdput(cfile); 4699 out_put_eventfd: 4700 eventfd_ctx_put(event->eventfd); 4701 out_put_efile: 4702 fdput(efile); 4703 out_kfree: 4704 kfree(event); 4705 4706 return ret; 4707 } 4708 4709 static struct cftype mem_cgroup_legacy_files[] = { 4710 { 4711 .name = "usage_in_bytes", 4712 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4713 .read_u64 = mem_cgroup_read_u64, 4714 }, 4715 { 4716 .name = "max_usage_in_bytes", 4717 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4718 .write = mem_cgroup_reset, 4719 .read_u64 = mem_cgroup_read_u64, 4720 }, 4721 { 4722 .name = "limit_in_bytes", 4723 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4724 .write = mem_cgroup_write, 4725 .read_u64 = mem_cgroup_read_u64, 4726 }, 4727 { 4728 .name = "soft_limit_in_bytes", 4729 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4730 .write = mem_cgroup_write, 4731 .read_u64 = mem_cgroup_read_u64, 4732 }, 4733 { 4734 .name = "failcnt", 4735 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4736 .write = mem_cgroup_reset, 4737 .read_u64 = mem_cgroup_read_u64, 4738 }, 4739 { 4740 .name = "stat", 4741 .seq_show = memcg_stat_show, 4742 }, 4743 { 4744 .name = "force_empty", 4745 .write = mem_cgroup_force_empty_write, 4746 }, 4747 { 4748 .name = "use_hierarchy", 4749 .write_u64 = mem_cgroup_hierarchy_write, 4750 .read_u64 = mem_cgroup_hierarchy_read, 4751 }, 4752 { 4753 .name = "cgroup.event_control", /* XXX: for compat */ 4754 .write = memcg_write_event_control, 4755 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4756 }, 4757 { 4758 .name = "swappiness", 4759 .read_u64 = mem_cgroup_swappiness_read, 4760 .write_u64 = mem_cgroup_swappiness_write, 4761 }, 4762 { 4763 .name = "move_charge_at_immigrate", 4764 .read_u64 = mem_cgroup_move_charge_read, 4765 .write_u64 = mem_cgroup_move_charge_write, 4766 }, 4767 { 4768 .name = "oom_control", 4769 .seq_show = mem_cgroup_oom_control_read, 4770 .write_u64 = mem_cgroup_oom_control_write, 4771 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4772 }, 4773 { 4774 .name = "pressure_level", 4775 }, 4776 #ifdef CONFIG_NUMA 4777 { 4778 .name = "numa_stat", 4779 .seq_show = memcg_numa_stat_show, 4780 }, 4781 #endif 4782 { 4783 .name = "kmem.limit_in_bytes", 4784 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4785 .write = mem_cgroup_write, 4786 .read_u64 = mem_cgroup_read_u64, 4787 }, 4788 { 4789 .name = "kmem.usage_in_bytes", 4790 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4791 .read_u64 = mem_cgroup_read_u64, 4792 }, 4793 { 4794 .name = "kmem.failcnt", 4795 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4796 .write = mem_cgroup_reset, 4797 .read_u64 = mem_cgroup_read_u64, 4798 }, 4799 { 4800 .name = "kmem.max_usage_in_bytes", 4801 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4802 .write = mem_cgroup_reset, 4803 .read_u64 = mem_cgroup_read_u64, 4804 }, 4805 #if defined(CONFIG_MEMCG_KMEM) && \ 4806 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4807 { 4808 .name = "kmem.slabinfo", 4809 .seq_start = memcg_slab_start, 4810 .seq_next = memcg_slab_next, 4811 .seq_stop = memcg_slab_stop, 4812 .seq_show = memcg_slab_show, 4813 }, 4814 #endif 4815 { 4816 .name = "kmem.tcp.limit_in_bytes", 4817 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4818 .write = mem_cgroup_write, 4819 .read_u64 = mem_cgroup_read_u64, 4820 }, 4821 { 4822 .name = "kmem.tcp.usage_in_bytes", 4823 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4824 .read_u64 = mem_cgroup_read_u64, 4825 }, 4826 { 4827 .name = "kmem.tcp.failcnt", 4828 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4829 .write = mem_cgroup_reset, 4830 .read_u64 = mem_cgroup_read_u64, 4831 }, 4832 { 4833 .name = "kmem.tcp.max_usage_in_bytes", 4834 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4835 .write = mem_cgroup_reset, 4836 .read_u64 = mem_cgroup_read_u64, 4837 }, 4838 { }, /* terminate */ 4839 }; 4840 4841 /* 4842 * Private memory cgroup IDR 4843 * 4844 * Swap-out records and page cache shadow entries need to store memcg 4845 * references in constrained space, so we maintain an ID space that is 4846 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4847 * memory-controlled cgroups to 64k. 4848 * 4849 * However, there usually are many references to the oflline CSS after 4850 * the cgroup has been destroyed, such as page cache or reclaimable 4851 * slab objects, that don't need to hang on to the ID. We want to keep 4852 * those dead CSS from occupying IDs, or we might quickly exhaust the 4853 * relatively small ID space and prevent the creation of new cgroups 4854 * even when there are much fewer than 64k cgroups - possibly none. 4855 * 4856 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4857 * be freed and recycled when it's no longer needed, which is usually 4858 * when the CSS is offlined. 4859 * 4860 * The only exception to that are records of swapped out tmpfs/shmem 4861 * pages that need to be attributed to live ancestors on swapin. But 4862 * those references are manageable from userspace. 4863 */ 4864 4865 static DEFINE_IDR(mem_cgroup_idr); 4866 4867 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4868 { 4869 if (memcg->id.id > 0) { 4870 idr_remove(&mem_cgroup_idr, memcg->id.id); 4871 memcg->id.id = 0; 4872 } 4873 } 4874 4875 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 4876 unsigned int n) 4877 { 4878 refcount_add(n, &memcg->id.ref); 4879 } 4880 4881 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4882 { 4883 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4884 mem_cgroup_id_remove(memcg); 4885 4886 /* Memcg ID pins CSS */ 4887 css_put(&memcg->css); 4888 } 4889 } 4890 4891 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4892 { 4893 mem_cgroup_id_put_many(memcg, 1); 4894 } 4895 4896 /** 4897 * mem_cgroup_from_id - look up a memcg from a memcg id 4898 * @id: the memcg id to look up 4899 * 4900 * Caller must hold rcu_read_lock(). 4901 */ 4902 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4903 { 4904 WARN_ON_ONCE(!rcu_read_lock_held()); 4905 return idr_find(&mem_cgroup_idr, id); 4906 } 4907 4908 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4909 { 4910 struct mem_cgroup_per_node *pn; 4911 int tmp = node; 4912 /* 4913 * This routine is called against possible nodes. 4914 * But it's BUG to call kmalloc() against offline node. 4915 * 4916 * TODO: this routine can waste much memory for nodes which will 4917 * never be onlined. It's better to use memory hotplug callback 4918 * function. 4919 */ 4920 if (!node_state(node, N_NORMAL_MEMORY)) 4921 tmp = -1; 4922 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4923 if (!pn) 4924 return 1; 4925 4926 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4927 if (!pn->lruvec_stat_local) { 4928 kfree(pn); 4929 return 1; 4930 } 4931 4932 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4933 if (!pn->lruvec_stat_cpu) { 4934 free_percpu(pn->lruvec_stat_local); 4935 kfree(pn); 4936 return 1; 4937 } 4938 4939 lruvec_init(&pn->lruvec); 4940 pn->usage_in_excess = 0; 4941 pn->on_tree = false; 4942 pn->memcg = memcg; 4943 4944 memcg->nodeinfo[node] = pn; 4945 return 0; 4946 } 4947 4948 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4949 { 4950 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4951 4952 if (!pn) 4953 return; 4954 4955 free_percpu(pn->lruvec_stat_cpu); 4956 free_percpu(pn->lruvec_stat_local); 4957 kfree(pn); 4958 } 4959 4960 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4961 { 4962 int node; 4963 4964 for_each_node(node) 4965 free_mem_cgroup_per_node_info(memcg, node); 4966 free_percpu(memcg->vmstats_percpu); 4967 free_percpu(memcg->vmstats_local); 4968 kfree(memcg); 4969 } 4970 4971 static void mem_cgroup_free(struct mem_cgroup *memcg) 4972 { 4973 memcg_wb_domain_exit(memcg); 4974 /* 4975 * Flush percpu vmstats and vmevents to guarantee the value correctness 4976 * on parent's and all ancestor levels. 4977 */ 4978 memcg_flush_percpu_vmstats(memcg); 4979 memcg_flush_percpu_vmevents(memcg); 4980 __mem_cgroup_free(memcg); 4981 } 4982 4983 static struct mem_cgroup *mem_cgroup_alloc(void) 4984 { 4985 struct mem_cgroup *memcg; 4986 unsigned int size; 4987 int node; 4988 int __maybe_unused i; 4989 4990 size = sizeof(struct mem_cgroup); 4991 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4992 4993 memcg = kzalloc(size, GFP_KERNEL); 4994 if (!memcg) 4995 return NULL; 4996 4997 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4998 1, MEM_CGROUP_ID_MAX, 4999 GFP_KERNEL); 5000 if (memcg->id.id < 0) 5001 goto fail; 5002 5003 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5004 if (!memcg->vmstats_local) 5005 goto fail; 5006 5007 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5008 if (!memcg->vmstats_percpu) 5009 goto fail; 5010 5011 for_each_node(node) 5012 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5013 goto fail; 5014 5015 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5016 goto fail; 5017 5018 INIT_WORK(&memcg->high_work, high_work_func); 5019 INIT_LIST_HEAD(&memcg->oom_notify); 5020 mutex_init(&memcg->thresholds_lock); 5021 spin_lock_init(&memcg->move_lock); 5022 vmpressure_init(&memcg->vmpressure); 5023 INIT_LIST_HEAD(&memcg->event_list); 5024 spin_lock_init(&memcg->event_list_lock); 5025 memcg->socket_pressure = jiffies; 5026 #ifdef CONFIG_MEMCG_KMEM 5027 memcg->kmemcg_id = -1; 5028 #endif 5029 #ifdef CONFIG_CGROUP_WRITEBACK 5030 INIT_LIST_HEAD(&memcg->cgwb_list); 5031 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5032 memcg->cgwb_frn[i].done = 5033 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5034 #endif 5035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5036 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5037 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5038 memcg->deferred_split_queue.split_queue_len = 0; 5039 #endif 5040 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5041 return memcg; 5042 fail: 5043 mem_cgroup_id_remove(memcg); 5044 __mem_cgroup_free(memcg); 5045 return NULL; 5046 } 5047 5048 static struct cgroup_subsys_state * __ref 5049 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5050 { 5051 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5052 struct mem_cgroup *memcg; 5053 long error = -ENOMEM; 5054 5055 memcg = mem_cgroup_alloc(); 5056 if (!memcg) 5057 return ERR_PTR(error); 5058 5059 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX); 5060 memcg->soft_limit = PAGE_COUNTER_MAX; 5061 if (parent) { 5062 memcg->swappiness = mem_cgroup_swappiness(parent); 5063 memcg->oom_kill_disable = parent->oom_kill_disable; 5064 } 5065 if (parent && parent->use_hierarchy) { 5066 memcg->use_hierarchy = true; 5067 page_counter_init(&memcg->memory, &parent->memory); 5068 page_counter_init(&memcg->swap, &parent->swap); 5069 page_counter_init(&memcg->memsw, &parent->memsw); 5070 page_counter_init(&memcg->kmem, &parent->kmem); 5071 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5072 } else { 5073 page_counter_init(&memcg->memory, NULL); 5074 page_counter_init(&memcg->swap, NULL); 5075 page_counter_init(&memcg->memsw, NULL); 5076 page_counter_init(&memcg->kmem, NULL); 5077 page_counter_init(&memcg->tcpmem, NULL); 5078 /* 5079 * Deeper hierachy with use_hierarchy == false doesn't make 5080 * much sense so let cgroup subsystem know about this 5081 * unfortunate state in our controller. 5082 */ 5083 if (parent != root_mem_cgroup) 5084 memory_cgrp_subsys.broken_hierarchy = true; 5085 } 5086 5087 /* The following stuff does not apply to the root */ 5088 if (!parent) { 5089 #ifdef CONFIG_MEMCG_KMEM 5090 INIT_LIST_HEAD(&memcg->kmem_caches); 5091 #endif 5092 root_mem_cgroup = memcg; 5093 return &memcg->css; 5094 } 5095 5096 error = memcg_online_kmem(memcg); 5097 if (error) 5098 goto fail; 5099 5100 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5101 static_branch_inc(&memcg_sockets_enabled_key); 5102 5103 return &memcg->css; 5104 fail: 5105 mem_cgroup_id_remove(memcg); 5106 mem_cgroup_free(memcg); 5107 return ERR_PTR(-ENOMEM); 5108 } 5109 5110 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5111 { 5112 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5113 5114 /* 5115 * A memcg must be visible for memcg_expand_shrinker_maps() 5116 * by the time the maps are allocated. So, we allocate maps 5117 * here, when for_each_mem_cgroup() can't skip it. 5118 */ 5119 if (memcg_alloc_shrinker_maps(memcg)) { 5120 mem_cgroup_id_remove(memcg); 5121 return -ENOMEM; 5122 } 5123 5124 /* Online state pins memcg ID, memcg ID pins CSS */ 5125 refcount_set(&memcg->id.ref, 1); 5126 css_get(css); 5127 return 0; 5128 } 5129 5130 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5131 { 5132 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5133 struct mem_cgroup_event *event, *tmp; 5134 5135 /* 5136 * Unregister events and notify userspace. 5137 * Notify userspace about cgroup removing only after rmdir of cgroup 5138 * directory to avoid race between userspace and kernelspace. 5139 */ 5140 spin_lock(&memcg->event_list_lock); 5141 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5142 list_del_init(&event->list); 5143 schedule_work(&event->remove); 5144 } 5145 spin_unlock(&memcg->event_list_lock); 5146 5147 page_counter_set_min(&memcg->memory, 0); 5148 page_counter_set_low(&memcg->memory, 0); 5149 5150 memcg_offline_kmem(memcg); 5151 wb_memcg_offline(memcg); 5152 5153 drain_all_stock(memcg); 5154 5155 mem_cgroup_id_put(memcg); 5156 } 5157 5158 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5159 { 5160 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5161 5162 invalidate_reclaim_iterators(memcg); 5163 } 5164 5165 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5166 { 5167 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5168 int __maybe_unused i; 5169 5170 #ifdef CONFIG_CGROUP_WRITEBACK 5171 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5172 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5173 #endif 5174 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5175 static_branch_dec(&memcg_sockets_enabled_key); 5176 5177 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5178 static_branch_dec(&memcg_sockets_enabled_key); 5179 5180 vmpressure_cleanup(&memcg->vmpressure); 5181 cancel_work_sync(&memcg->high_work); 5182 mem_cgroup_remove_from_trees(memcg); 5183 memcg_free_shrinker_maps(memcg); 5184 memcg_free_kmem(memcg); 5185 mem_cgroup_free(memcg); 5186 } 5187 5188 /** 5189 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5190 * @css: the target css 5191 * 5192 * Reset the states of the mem_cgroup associated with @css. This is 5193 * invoked when the userland requests disabling on the default hierarchy 5194 * but the memcg is pinned through dependency. The memcg should stop 5195 * applying policies and should revert to the vanilla state as it may be 5196 * made visible again. 5197 * 5198 * The current implementation only resets the essential configurations. 5199 * This needs to be expanded to cover all the visible parts. 5200 */ 5201 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5202 { 5203 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5204 5205 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5206 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5207 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5208 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5209 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5210 page_counter_set_min(&memcg->memory, 0); 5211 page_counter_set_low(&memcg->memory, 0); 5212 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX); 5213 memcg->soft_limit = PAGE_COUNTER_MAX; 5214 memcg_wb_domain_size_changed(memcg); 5215 } 5216 5217 #ifdef CONFIG_MMU 5218 /* Handlers for move charge at task migration. */ 5219 static int mem_cgroup_do_precharge(unsigned long count) 5220 { 5221 int ret; 5222 5223 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5224 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5225 if (!ret) { 5226 mc.precharge += count; 5227 return ret; 5228 } 5229 5230 /* Try charges one by one with reclaim, but do not retry */ 5231 while (count--) { 5232 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5233 if (ret) 5234 return ret; 5235 mc.precharge++; 5236 cond_resched(); 5237 } 5238 return 0; 5239 } 5240 5241 union mc_target { 5242 struct page *page; 5243 swp_entry_t ent; 5244 }; 5245 5246 enum mc_target_type { 5247 MC_TARGET_NONE = 0, 5248 MC_TARGET_PAGE, 5249 MC_TARGET_SWAP, 5250 MC_TARGET_DEVICE, 5251 }; 5252 5253 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5254 unsigned long addr, pte_t ptent) 5255 { 5256 struct page *page = vm_normal_page(vma, addr, ptent); 5257 5258 if (!page || !page_mapped(page)) 5259 return NULL; 5260 if (PageAnon(page)) { 5261 if (!(mc.flags & MOVE_ANON)) 5262 return NULL; 5263 } else { 5264 if (!(mc.flags & MOVE_FILE)) 5265 return NULL; 5266 } 5267 if (!get_page_unless_zero(page)) 5268 return NULL; 5269 5270 return page; 5271 } 5272 5273 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5274 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5275 pte_t ptent, swp_entry_t *entry) 5276 { 5277 struct page *page = NULL; 5278 swp_entry_t ent = pte_to_swp_entry(ptent); 5279 5280 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5281 return NULL; 5282 5283 /* 5284 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5285 * a device and because they are not accessible by CPU they are store 5286 * as special swap entry in the CPU page table. 5287 */ 5288 if (is_device_private_entry(ent)) { 5289 page = device_private_entry_to_page(ent); 5290 /* 5291 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5292 * a refcount of 1 when free (unlike normal page) 5293 */ 5294 if (!page_ref_add_unless(page, 1, 1)) 5295 return NULL; 5296 return page; 5297 } 5298 5299 /* 5300 * Because lookup_swap_cache() updates some statistics counter, 5301 * we call find_get_page() with swapper_space directly. 5302 */ 5303 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5304 if (do_memsw_account()) 5305 entry->val = ent.val; 5306 5307 return page; 5308 } 5309 #else 5310 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5311 pte_t ptent, swp_entry_t *entry) 5312 { 5313 return NULL; 5314 } 5315 #endif 5316 5317 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5318 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5319 { 5320 struct page *page = NULL; 5321 struct address_space *mapping; 5322 pgoff_t pgoff; 5323 5324 if (!vma->vm_file) /* anonymous vma */ 5325 return NULL; 5326 if (!(mc.flags & MOVE_FILE)) 5327 return NULL; 5328 5329 mapping = vma->vm_file->f_mapping; 5330 pgoff = linear_page_index(vma, addr); 5331 5332 /* page is moved even if it's not RSS of this task(page-faulted). */ 5333 #ifdef CONFIG_SWAP 5334 /* shmem/tmpfs may report page out on swap: account for that too. */ 5335 if (shmem_mapping(mapping)) { 5336 page = find_get_entry(mapping, pgoff); 5337 if (xa_is_value(page)) { 5338 swp_entry_t swp = radix_to_swp_entry(page); 5339 if (do_memsw_account()) 5340 *entry = swp; 5341 page = find_get_page(swap_address_space(swp), 5342 swp_offset(swp)); 5343 } 5344 } else 5345 page = find_get_page(mapping, pgoff); 5346 #else 5347 page = find_get_page(mapping, pgoff); 5348 #endif 5349 return page; 5350 } 5351 5352 /** 5353 * mem_cgroup_move_account - move account of the page 5354 * @page: the page 5355 * @compound: charge the page as compound or small page 5356 * @from: mem_cgroup which the page is moved from. 5357 * @to: mem_cgroup which the page is moved to. @from != @to. 5358 * 5359 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5360 * 5361 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5362 * from old cgroup. 5363 */ 5364 static int mem_cgroup_move_account(struct page *page, 5365 bool compound, 5366 struct mem_cgroup *from, 5367 struct mem_cgroup *to) 5368 { 5369 struct lruvec *from_vec, *to_vec; 5370 struct pglist_data *pgdat; 5371 unsigned long flags; 5372 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5373 int ret; 5374 bool anon; 5375 5376 VM_BUG_ON(from == to); 5377 VM_BUG_ON_PAGE(PageLRU(page), page); 5378 VM_BUG_ON(compound && !PageTransHuge(page)); 5379 5380 /* 5381 * Prevent mem_cgroup_migrate() from looking at 5382 * page->mem_cgroup of its source page while we change it. 5383 */ 5384 ret = -EBUSY; 5385 if (!trylock_page(page)) 5386 goto out; 5387 5388 ret = -EINVAL; 5389 if (page->mem_cgroup != from) 5390 goto out_unlock; 5391 5392 anon = PageAnon(page); 5393 5394 pgdat = page_pgdat(page); 5395 from_vec = mem_cgroup_lruvec(from, pgdat); 5396 to_vec = mem_cgroup_lruvec(to, pgdat); 5397 5398 spin_lock_irqsave(&from->move_lock, flags); 5399 5400 if (!anon && page_mapped(page)) { 5401 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5402 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5403 } 5404 5405 /* 5406 * move_lock grabbed above and caller set from->moving_account, so 5407 * mod_memcg_page_state will serialize updates to PageDirty. 5408 * So mapping should be stable for dirty pages. 5409 */ 5410 if (!anon && PageDirty(page)) { 5411 struct address_space *mapping = page_mapping(page); 5412 5413 if (mapping_cap_account_dirty(mapping)) { 5414 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5415 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5416 } 5417 } 5418 5419 if (PageWriteback(page)) { 5420 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5421 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5422 } 5423 5424 /* 5425 * It is safe to change page->mem_cgroup here because the page 5426 * is referenced, charged, and isolated - we can't race with 5427 * uncharging, charging, migration, or LRU putback. 5428 */ 5429 5430 /* caller should have done css_get */ 5431 page->mem_cgroup = to; 5432 5433 spin_unlock_irqrestore(&from->move_lock, flags); 5434 5435 ret = 0; 5436 5437 local_irq_disable(); 5438 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5439 memcg_check_events(to, page); 5440 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5441 memcg_check_events(from, page); 5442 local_irq_enable(); 5443 out_unlock: 5444 unlock_page(page); 5445 out: 5446 return ret; 5447 } 5448 5449 /** 5450 * get_mctgt_type - get target type of moving charge 5451 * @vma: the vma the pte to be checked belongs 5452 * @addr: the address corresponding to the pte to be checked 5453 * @ptent: the pte to be checked 5454 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5455 * 5456 * Returns 5457 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5458 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5459 * move charge. if @target is not NULL, the page is stored in target->page 5460 * with extra refcnt got(Callers should handle it). 5461 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5462 * target for charge migration. if @target is not NULL, the entry is stored 5463 * in target->ent. 5464 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5465 * (so ZONE_DEVICE page and thus not on the lru). 5466 * For now we such page is charge like a regular page would be as for all 5467 * intent and purposes it is just special memory taking the place of a 5468 * regular page. 5469 * 5470 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5471 * 5472 * Called with pte lock held. 5473 */ 5474 5475 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5476 unsigned long addr, pte_t ptent, union mc_target *target) 5477 { 5478 struct page *page = NULL; 5479 enum mc_target_type ret = MC_TARGET_NONE; 5480 swp_entry_t ent = { .val = 0 }; 5481 5482 if (pte_present(ptent)) 5483 page = mc_handle_present_pte(vma, addr, ptent); 5484 else if (is_swap_pte(ptent)) 5485 page = mc_handle_swap_pte(vma, ptent, &ent); 5486 else if (pte_none(ptent)) 5487 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5488 5489 if (!page && !ent.val) 5490 return ret; 5491 if (page) { 5492 /* 5493 * Do only loose check w/o serialization. 5494 * mem_cgroup_move_account() checks the page is valid or 5495 * not under LRU exclusion. 5496 */ 5497 if (page->mem_cgroup == mc.from) { 5498 ret = MC_TARGET_PAGE; 5499 if (is_device_private_page(page)) 5500 ret = MC_TARGET_DEVICE; 5501 if (target) 5502 target->page = page; 5503 } 5504 if (!ret || !target) 5505 put_page(page); 5506 } 5507 /* 5508 * There is a swap entry and a page doesn't exist or isn't charged. 5509 * But we cannot move a tail-page in a THP. 5510 */ 5511 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5512 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5513 ret = MC_TARGET_SWAP; 5514 if (target) 5515 target->ent = ent; 5516 } 5517 return ret; 5518 } 5519 5520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5521 /* 5522 * We don't consider PMD mapped swapping or file mapped pages because THP does 5523 * not support them for now. 5524 * Caller should make sure that pmd_trans_huge(pmd) is true. 5525 */ 5526 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5527 unsigned long addr, pmd_t pmd, union mc_target *target) 5528 { 5529 struct page *page = NULL; 5530 enum mc_target_type ret = MC_TARGET_NONE; 5531 5532 if (unlikely(is_swap_pmd(pmd))) { 5533 VM_BUG_ON(thp_migration_supported() && 5534 !is_pmd_migration_entry(pmd)); 5535 return ret; 5536 } 5537 page = pmd_page(pmd); 5538 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5539 if (!(mc.flags & MOVE_ANON)) 5540 return ret; 5541 if (page->mem_cgroup == mc.from) { 5542 ret = MC_TARGET_PAGE; 5543 if (target) { 5544 get_page(page); 5545 target->page = page; 5546 } 5547 } 5548 return ret; 5549 } 5550 #else 5551 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5552 unsigned long addr, pmd_t pmd, union mc_target *target) 5553 { 5554 return MC_TARGET_NONE; 5555 } 5556 #endif 5557 5558 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5559 unsigned long addr, unsigned long end, 5560 struct mm_walk *walk) 5561 { 5562 struct vm_area_struct *vma = walk->vma; 5563 pte_t *pte; 5564 spinlock_t *ptl; 5565 5566 ptl = pmd_trans_huge_lock(pmd, vma); 5567 if (ptl) { 5568 /* 5569 * Note their can not be MC_TARGET_DEVICE for now as we do not 5570 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5571 * this might change. 5572 */ 5573 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5574 mc.precharge += HPAGE_PMD_NR; 5575 spin_unlock(ptl); 5576 return 0; 5577 } 5578 5579 if (pmd_trans_unstable(pmd)) 5580 return 0; 5581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5582 for (; addr != end; pte++, addr += PAGE_SIZE) 5583 if (get_mctgt_type(vma, addr, *pte, NULL)) 5584 mc.precharge++; /* increment precharge temporarily */ 5585 pte_unmap_unlock(pte - 1, ptl); 5586 cond_resched(); 5587 5588 return 0; 5589 } 5590 5591 static const struct mm_walk_ops precharge_walk_ops = { 5592 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5593 }; 5594 5595 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5596 { 5597 unsigned long precharge; 5598 5599 down_read(&mm->mmap_sem); 5600 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5601 up_read(&mm->mmap_sem); 5602 5603 precharge = mc.precharge; 5604 mc.precharge = 0; 5605 5606 return precharge; 5607 } 5608 5609 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5610 { 5611 unsigned long precharge = mem_cgroup_count_precharge(mm); 5612 5613 VM_BUG_ON(mc.moving_task); 5614 mc.moving_task = current; 5615 return mem_cgroup_do_precharge(precharge); 5616 } 5617 5618 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5619 static void __mem_cgroup_clear_mc(void) 5620 { 5621 struct mem_cgroup *from = mc.from; 5622 struct mem_cgroup *to = mc.to; 5623 5624 /* we must uncharge all the leftover precharges from mc.to */ 5625 if (mc.precharge) { 5626 cancel_charge(mc.to, mc.precharge); 5627 mc.precharge = 0; 5628 } 5629 /* 5630 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5631 * we must uncharge here. 5632 */ 5633 if (mc.moved_charge) { 5634 cancel_charge(mc.from, mc.moved_charge); 5635 mc.moved_charge = 0; 5636 } 5637 /* we must fixup refcnts and charges */ 5638 if (mc.moved_swap) { 5639 /* uncharge swap account from the old cgroup */ 5640 if (!mem_cgroup_is_root(mc.from)) 5641 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5642 5643 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5644 5645 /* 5646 * we charged both to->memory and to->memsw, so we 5647 * should uncharge to->memory. 5648 */ 5649 if (!mem_cgroup_is_root(mc.to)) 5650 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5651 5652 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5653 css_put_many(&mc.to->css, mc.moved_swap); 5654 5655 mc.moved_swap = 0; 5656 } 5657 memcg_oom_recover(from); 5658 memcg_oom_recover(to); 5659 wake_up_all(&mc.waitq); 5660 } 5661 5662 static void mem_cgroup_clear_mc(void) 5663 { 5664 struct mm_struct *mm = mc.mm; 5665 5666 /* 5667 * we must clear moving_task before waking up waiters at the end of 5668 * task migration. 5669 */ 5670 mc.moving_task = NULL; 5671 __mem_cgroup_clear_mc(); 5672 spin_lock(&mc.lock); 5673 mc.from = NULL; 5674 mc.to = NULL; 5675 mc.mm = NULL; 5676 spin_unlock(&mc.lock); 5677 5678 mmput(mm); 5679 } 5680 5681 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5682 { 5683 struct cgroup_subsys_state *css; 5684 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5685 struct mem_cgroup *from; 5686 struct task_struct *leader, *p; 5687 struct mm_struct *mm; 5688 unsigned long move_flags; 5689 int ret = 0; 5690 5691 /* charge immigration isn't supported on the default hierarchy */ 5692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5693 return 0; 5694 5695 /* 5696 * Multi-process migrations only happen on the default hierarchy 5697 * where charge immigration is not used. Perform charge 5698 * immigration if @tset contains a leader and whine if there are 5699 * multiple. 5700 */ 5701 p = NULL; 5702 cgroup_taskset_for_each_leader(leader, css, tset) { 5703 WARN_ON_ONCE(p); 5704 p = leader; 5705 memcg = mem_cgroup_from_css(css); 5706 } 5707 if (!p) 5708 return 0; 5709 5710 /* 5711 * We are now commited to this value whatever it is. Changes in this 5712 * tunable will only affect upcoming migrations, not the current one. 5713 * So we need to save it, and keep it going. 5714 */ 5715 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5716 if (!move_flags) 5717 return 0; 5718 5719 from = mem_cgroup_from_task(p); 5720 5721 VM_BUG_ON(from == memcg); 5722 5723 mm = get_task_mm(p); 5724 if (!mm) 5725 return 0; 5726 /* We move charges only when we move a owner of the mm */ 5727 if (mm->owner == p) { 5728 VM_BUG_ON(mc.from); 5729 VM_BUG_ON(mc.to); 5730 VM_BUG_ON(mc.precharge); 5731 VM_BUG_ON(mc.moved_charge); 5732 VM_BUG_ON(mc.moved_swap); 5733 5734 spin_lock(&mc.lock); 5735 mc.mm = mm; 5736 mc.from = from; 5737 mc.to = memcg; 5738 mc.flags = move_flags; 5739 spin_unlock(&mc.lock); 5740 /* We set mc.moving_task later */ 5741 5742 ret = mem_cgroup_precharge_mc(mm); 5743 if (ret) 5744 mem_cgroup_clear_mc(); 5745 } else { 5746 mmput(mm); 5747 } 5748 return ret; 5749 } 5750 5751 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5752 { 5753 if (mc.to) 5754 mem_cgroup_clear_mc(); 5755 } 5756 5757 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5758 unsigned long addr, unsigned long end, 5759 struct mm_walk *walk) 5760 { 5761 int ret = 0; 5762 struct vm_area_struct *vma = walk->vma; 5763 pte_t *pte; 5764 spinlock_t *ptl; 5765 enum mc_target_type target_type; 5766 union mc_target target; 5767 struct page *page; 5768 5769 ptl = pmd_trans_huge_lock(pmd, vma); 5770 if (ptl) { 5771 if (mc.precharge < HPAGE_PMD_NR) { 5772 spin_unlock(ptl); 5773 return 0; 5774 } 5775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5776 if (target_type == MC_TARGET_PAGE) { 5777 page = target.page; 5778 if (!isolate_lru_page(page)) { 5779 if (!mem_cgroup_move_account(page, true, 5780 mc.from, mc.to)) { 5781 mc.precharge -= HPAGE_PMD_NR; 5782 mc.moved_charge += HPAGE_PMD_NR; 5783 } 5784 putback_lru_page(page); 5785 } 5786 put_page(page); 5787 } else if (target_type == MC_TARGET_DEVICE) { 5788 page = target.page; 5789 if (!mem_cgroup_move_account(page, true, 5790 mc.from, mc.to)) { 5791 mc.precharge -= HPAGE_PMD_NR; 5792 mc.moved_charge += HPAGE_PMD_NR; 5793 } 5794 put_page(page); 5795 } 5796 spin_unlock(ptl); 5797 return 0; 5798 } 5799 5800 if (pmd_trans_unstable(pmd)) 5801 return 0; 5802 retry: 5803 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5804 for (; addr != end; addr += PAGE_SIZE) { 5805 pte_t ptent = *(pte++); 5806 bool device = false; 5807 swp_entry_t ent; 5808 5809 if (!mc.precharge) 5810 break; 5811 5812 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5813 case MC_TARGET_DEVICE: 5814 device = true; 5815 /* fall through */ 5816 case MC_TARGET_PAGE: 5817 page = target.page; 5818 /* 5819 * We can have a part of the split pmd here. Moving it 5820 * can be done but it would be too convoluted so simply 5821 * ignore such a partial THP and keep it in original 5822 * memcg. There should be somebody mapping the head. 5823 */ 5824 if (PageTransCompound(page)) 5825 goto put; 5826 if (!device && isolate_lru_page(page)) 5827 goto put; 5828 if (!mem_cgroup_move_account(page, false, 5829 mc.from, mc.to)) { 5830 mc.precharge--; 5831 /* we uncharge from mc.from later. */ 5832 mc.moved_charge++; 5833 } 5834 if (!device) 5835 putback_lru_page(page); 5836 put: /* get_mctgt_type() gets the page */ 5837 put_page(page); 5838 break; 5839 case MC_TARGET_SWAP: 5840 ent = target.ent; 5841 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5842 mc.precharge--; 5843 /* we fixup refcnts and charges later. */ 5844 mc.moved_swap++; 5845 } 5846 break; 5847 default: 5848 break; 5849 } 5850 } 5851 pte_unmap_unlock(pte - 1, ptl); 5852 cond_resched(); 5853 5854 if (addr != end) { 5855 /* 5856 * We have consumed all precharges we got in can_attach(). 5857 * We try charge one by one, but don't do any additional 5858 * charges to mc.to if we have failed in charge once in attach() 5859 * phase. 5860 */ 5861 ret = mem_cgroup_do_precharge(1); 5862 if (!ret) 5863 goto retry; 5864 } 5865 5866 return ret; 5867 } 5868 5869 static const struct mm_walk_ops charge_walk_ops = { 5870 .pmd_entry = mem_cgroup_move_charge_pte_range, 5871 }; 5872 5873 static void mem_cgroup_move_charge(void) 5874 { 5875 lru_add_drain_all(); 5876 /* 5877 * Signal lock_page_memcg() to take the memcg's move_lock 5878 * while we're moving its pages to another memcg. Then wait 5879 * for already started RCU-only updates to finish. 5880 */ 5881 atomic_inc(&mc.from->moving_account); 5882 synchronize_rcu(); 5883 retry: 5884 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5885 /* 5886 * Someone who are holding the mmap_sem might be waiting in 5887 * waitq. So we cancel all extra charges, wake up all waiters, 5888 * and retry. Because we cancel precharges, we might not be able 5889 * to move enough charges, but moving charge is a best-effort 5890 * feature anyway, so it wouldn't be a big problem. 5891 */ 5892 __mem_cgroup_clear_mc(); 5893 cond_resched(); 5894 goto retry; 5895 } 5896 /* 5897 * When we have consumed all precharges and failed in doing 5898 * additional charge, the page walk just aborts. 5899 */ 5900 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5901 NULL); 5902 5903 up_read(&mc.mm->mmap_sem); 5904 atomic_dec(&mc.from->moving_account); 5905 } 5906 5907 static void mem_cgroup_move_task(void) 5908 { 5909 if (mc.to) { 5910 mem_cgroup_move_charge(); 5911 mem_cgroup_clear_mc(); 5912 } 5913 } 5914 #else /* !CONFIG_MMU */ 5915 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5916 { 5917 return 0; 5918 } 5919 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5920 { 5921 } 5922 static void mem_cgroup_move_task(void) 5923 { 5924 } 5925 #endif 5926 5927 /* 5928 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5929 * to verify whether we're attached to the default hierarchy on each mount 5930 * attempt. 5931 */ 5932 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5933 { 5934 /* 5935 * use_hierarchy is forced on the default hierarchy. cgroup core 5936 * guarantees that @root doesn't have any children, so turning it 5937 * on for the root memcg is enough. 5938 */ 5939 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5940 root_mem_cgroup->use_hierarchy = true; 5941 else 5942 root_mem_cgroup->use_hierarchy = false; 5943 } 5944 5945 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5946 { 5947 if (value == PAGE_COUNTER_MAX) 5948 seq_puts(m, "max\n"); 5949 else 5950 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5951 5952 return 0; 5953 } 5954 5955 static u64 memory_current_read(struct cgroup_subsys_state *css, 5956 struct cftype *cft) 5957 { 5958 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5959 5960 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5961 } 5962 5963 static int memory_min_show(struct seq_file *m, void *v) 5964 { 5965 return seq_puts_memcg_tunable(m, 5966 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5967 } 5968 5969 static ssize_t memory_min_write(struct kernfs_open_file *of, 5970 char *buf, size_t nbytes, loff_t off) 5971 { 5972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5973 unsigned long min; 5974 int err; 5975 5976 buf = strstrip(buf); 5977 err = page_counter_memparse(buf, "max", &min); 5978 if (err) 5979 return err; 5980 5981 page_counter_set_min(&memcg->memory, min); 5982 5983 return nbytes; 5984 } 5985 5986 static int memory_low_show(struct seq_file *m, void *v) 5987 { 5988 return seq_puts_memcg_tunable(m, 5989 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5990 } 5991 5992 static ssize_t memory_low_write(struct kernfs_open_file *of, 5993 char *buf, size_t nbytes, loff_t off) 5994 { 5995 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5996 unsigned long low; 5997 int err; 5998 5999 buf = strstrip(buf); 6000 err = page_counter_memparse(buf, "max", &low); 6001 if (err) 6002 return err; 6003 6004 page_counter_set_low(&memcg->memory, low); 6005 6006 return nbytes; 6007 } 6008 6009 static int memory_high_show(struct seq_file *m, void *v) 6010 { 6011 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6012 } 6013 6014 static ssize_t memory_high_write(struct kernfs_open_file *of, 6015 char *buf, size_t nbytes, loff_t off) 6016 { 6017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6018 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 6019 bool drained = false; 6020 unsigned long high; 6021 int err; 6022 6023 buf = strstrip(buf); 6024 err = page_counter_memparse(buf, "max", &high); 6025 if (err) 6026 return err; 6027 6028 WRITE_ONCE(memcg->high, high); 6029 6030 for (;;) { 6031 unsigned long nr_pages = page_counter_read(&memcg->memory); 6032 unsigned long reclaimed; 6033 6034 if (nr_pages <= high) 6035 break; 6036 6037 if (signal_pending(current)) 6038 break; 6039 6040 if (!drained) { 6041 drain_all_stock(memcg); 6042 drained = true; 6043 continue; 6044 } 6045 6046 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6047 GFP_KERNEL, true); 6048 6049 if (!reclaimed && !nr_retries--) 6050 break; 6051 } 6052 6053 return nbytes; 6054 } 6055 6056 static int memory_max_show(struct seq_file *m, void *v) 6057 { 6058 return seq_puts_memcg_tunable(m, 6059 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6060 } 6061 6062 static ssize_t memory_max_write(struct kernfs_open_file *of, 6063 char *buf, size_t nbytes, loff_t off) 6064 { 6065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6066 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6067 bool drained = false; 6068 unsigned long max; 6069 int err; 6070 6071 buf = strstrip(buf); 6072 err = page_counter_memparse(buf, "max", &max); 6073 if (err) 6074 return err; 6075 6076 xchg(&memcg->memory.max, max); 6077 6078 for (;;) { 6079 unsigned long nr_pages = page_counter_read(&memcg->memory); 6080 6081 if (nr_pages <= max) 6082 break; 6083 6084 if (signal_pending(current)) 6085 break; 6086 6087 if (!drained) { 6088 drain_all_stock(memcg); 6089 drained = true; 6090 continue; 6091 } 6092 6093 if (nr_reclaims) { 6094 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6095 GFP_KERNEL, true)) 6096 nr_reclaims--; 6097 continue; 6098 } 6099 6100 memcg_memory_event(memcg, MEMCG_OOM); 6101 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6102 break; 6103 } 6104 6105 memcg_wb_domain_size_changed(memcg); 6106 return nbytes; 6107 } 6108 6109 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6110 { 6111 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6112 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6113 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6114 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6115 seq_printf(m, "oom_kill %lu\n", 6116 atomic_long_read(&events[MEMCG_OOM_KILL])); 6117 } 6118 6119 static int memory_events_show(struct seq_file *m, void *v) 6120 { 6121 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6122 6123 __memory_events_show(m, memcg->memory_events); 6124 return 0; 6125 } 6126 6127 static int memory_events_local_show(struct seq_file *m, void *v) 6128 { 6129 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6130 6131 __memory_events_show(m, memcg->memory_events_local); 6132 return 0; 6133 } 6134 6135 static int memory_stat_show(struct seq_file *m, void *v) 6136 { 6137 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6138 char *buf; 6139 6140 buf = memory_stat_format(memcg); 6141 if (!buf) 6142 return -ENOMEM; 6143 seq_puts(m, buf); 6144 kfree(buf); 6145 return 0; 6146 } 6147 6148 static int memory_oom_group_show(struct seq_file *m, void *v) 6149 { 6150 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6151 6152 seq_printf(m, "%d\n", memcg->oom_group); 6153 6154 return 0; 6155 } 6156 6157 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6158 char *buf, size_t nbytes, loff_t off) 6159 { 6160 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6161 int ret, oom_group; 6162 6163 buf = strstrip(buf); 6164 if (!buf) 6165 return -EINVAL; 6166 6167 ret = kstrtoint(buf, 0, &oom_group); 6168 if (ret) 6169 return ret; 6170 6171 if (oom_group != 0 && oom_group != 1) 6172 return -EINVAL; 6173 6174 memcg->oom_group = oom_group; 6175 6176 return nbytes; 6177 } 6178 6179 static struct cftype memory_files[] = { 6180 { 6181 .name = "current", 6182 .flags = CFTYPE_NOT_ON_ROOT, 6183 .read_u64 = memory_current_read, 6184 }, 6185 { 6186 .name = "min", 6187 .flags = CFTYPE_NOT_ON_ROOT, 6188 .seq_show = memory_min_show, 6189 .write = memory_min_write, 6190 }, 6191 { 6192 .name = "low", 6193 .flags = CFTYPE_NOT_ON_ROOT, 6194 .seq_show = memory_low_show, 6195 .write = memory_low_write, 6196 }, 6197 { 6198 .name = "high", 6199 .flags = CFTYPE_NOT_ON_ROOT, 6200 .seq_show = memory_high_show, 6201 .write = memory_high_write, 6202 }, 6203 { 6204 .name = "max", 6205 .flags = CFTYPE_NOT_ON_ROOT, 6206 .seq_show = memory_max_show, 6207 .write = memory_max_write, 6208 }, 6209 { 6210 .name = "events", 6211 .flags = CFTYPE_NOT_ON_ROOT, 6212 .file_offset = offsetof(struct mem_cgroup, events_file), 6213 .seq_show = memory_events_show, 6214 }, 6215 { 6216 .name = "events.local", 6217 .flags = CFTYPE_NOT_ON_ROOT, 6218 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6219 .seq_show = memory_events_local_show, 6220 }, 6221 { 6222 .name = "stat", 6223 .flags = CFTYPE_NOT_ON_ROOT, 6224 .seq_show = memory_stat_show, 6225 }, 6226 { 6227 .name = "oom.group", 6228 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6229 .seq_show = memory_oom_group_show, 6230 .write = memory_oom_group_write, 6231 }, 6232 { } /* terminate */ 6233 }; 6234 6235 struct cgroup_subsys memory_cgrp_subsys = { 6236 .css_alloc = mem_cgroup_css_alloc, 6237 .css_online = mem_cgroup_css_online, 6238 .css_offline = mem_cgroup_css_offline, 6239 .css_released = mem_cgroup_css_released, 6240 .css_free = mem_cgroup_css_free, 6241 .css_reset = mem_cgroup_css_reset, 6242 .can_attach = mem_cgroup_can_attach, 6243 .cancel_attach = mem_cgroup_cancel_attach, 6244 .post_attach = mem_cgroup_move_task, 6245 .bind = mem_cgroup_bind, 6246 .dfl_cftypes = memory_files, 6247 .legacy_cftypes = mem_cgroup_legacy_files, 6248 .early_init = 0, 6249 }; 6250 6251 /* 6252 * This function calculates an individual cgroup's effective 6253 * protection which is derived from its own memory.min/low, its 6254 * parent's and siblings' settings, as well as the actual memory 6255 * distribution in the tree. 6256 * 6257 * The following rules apply to the effective protection values: 6258 * 6259 * 1. At the first level of reclaim, effective protection is equal to 6260 * the declared protection in memory.min and memory.low. 6261 * 6262 * 2. To enable safe delegation of the protection configuration, at 6263 * subsequent levels the effective protection is capped to the 6264 * parent's effective protection. 6265 * 6266 * 3. To make complex and dynamic subtrees easier to configure, the 6267 * user is allowed to overcommit the declared protection at a given 6268 * level. If that is the case, the parent's effective protection is 6269 * distributed to the children in proportion to how much protection 6270 * they have declared and how much of it they are utilizing. 6271 * 6272 * This makes distribution proportional, but also work-conserving: 6273 * if one cgroup claims much more protection than it uses memory, 6274 * the unused remainder is available to its siblings. 6275 * 6276 * 4. Conversely, when the declared protection is undercommitted at a 6277 * given level, the distribution of the larger parental protection 6278 * budget is NOT proportional. A cgroup's protection from a sibling 6279 * is capped to its own memory.min/low setting. 6280 * 6281 * 5. However, to allow protecting recursive subtrees from each other 6282 * without having to declare each individual cgroup's fixed share 6283 * of the ancestor's claim to protection, any unutilized - 6284 * "floating" - protection from up the tree is distributed in 6285 * proportion to each cgroup's *usage*. This makes the protection 6286 * neutral wrt sibling cgroups and lets them compete freely over 6287 * the shared parental protection budget, but it protects the 6288 * subtree as a whole from neighboring subtrees. 6289 * 6290 * Note that 4. and 5. are not in conflict: 4. is about protecting 6291 * against immediate siblings whereas 5. is about protecting against 6292 * neighboring subtrees. 6293 */ 6294 static unsigned long effective_protection(unsigned long usage, 6295 unsigned long parent_usage, 6296 unsigned long setting, 6297 unsigned long parent_effective, 6298 unsigned long siblings_protected) 6299 { 6300 unsigned long protected; 6301 unsigned long ep; 6302 6303 protected = min(usage, setting); 6304 /* 6305 * If all cgroups at this level combined claim and use more 6306 * protection then what the parent affords them, distribute 6307 * shares in proportion to utilization. 6308 * 6309 * We are using actual utilization rather than the statically 6310 * claimed protection in order to be work-conserving: claimed 6311 * but unused protection is available to siblings that would 6312 * otherwise get a smaller chunk than what they claimed. 6313 */ 6314 if (siblings_protected > parent_effective) 6315 return protected * parent_effective / siblings_protected; 6316 6317 /* 6318 * Ok, utilized protection of all children is within what the 6319 * parent affords them, so we know whatever this child claims 6320 * and utilizes is effectively protected. 6321 * 6322 * If there is unprotected usage beyond this value, reclaim 6323 * will apply pressure in proportion to that amount. 6324 * 6325 * If there is unutilized protection, the cgroup will be fully 6326 * shielded from reclaim, but we do return a smaller value for 6327 * protection than what the group could enjoy in theory. This 6328 * is okay. With the overcommit distribution above, effective 6329 * protection is always dependent on how memory is actually 6330 * consumed among the siblings anyway. 6331 */ 6332 ep = protected; 6333 6334 /* 6335 * If the children aren't claiming (all of) the protection 6336 * afforded to them by the parent, distribute the remainder in 6337 * proportion to the (unprotected) memory of each cgroup. That 6338 * way, cgroups that aren't explicitly prioritized wrt each 6339 * other compete freely over the allowance, but they are 6340 * collectively protected from neighboring trees. 6341 * 6342 * We're using unprotected memory for the weight so that if 6343 * some cgroups DO claim explicit protection, we don't protect 6344 * the same bytes twice. 6345 */ 6346 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6347 return ep; 6348 6349 if (parent_effective > siblings_protected && usage > protected) { 6350 unsigned long unclaimed; 6351 6352 unclaimed = parent_effective - siblings_protected; 6353 unclaimed *= usage - protected; 6354 unclaimed /= parent_usage - siblings_protected; 6355 6356 ep += unclaimed; 6357 } 6358 6359 return ep; 6360 } 6361 6362 /** 6363 * mem_cgroup_protected - check if memory consumption is in the normal range 6364 * @root: the top ancestor of the sub-tree being checked 6365 * @memcg: the memory cgroup to check 6366 * 6367 * WARNING: This function is not stateless! It can only be used as part 6368 * of a top-down tree iteration, not for isolated queries. 6369 * 6370 * Returns one of the following: 6371 * MEMCG_PROT_NONE: cgroup memory is not protected 6372 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6373 * an unprotected supply of reclaimable memory from other cgroups. 6374 * MEMCG_PROT_MIN: cgroup memory is protected 6375 */ 6376 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6377 struct mem_cgroup *memcg) 6378 { 6379 unsigned long usage, parent_usage; 6380 struct mem_cgroup *parent; 6381 6382 if (mem_cgroup_disabled()) 6383 return MEMCG_PROT_NONE; 6384 6385 if (!root) 6386 root = root_mem_cgroup; 6387 if (memcg == root) 6388 return MEMCG_PROT_NONE; 6389 6390 usage = page_counter_read(&memcg->memory); 6391 if (!usage) 6392 return MEMCG_PROT_NONE; 6393 6394 parent = parent_mem_cgroup(memcg); 6395 /* No parent means a non-hierarchical mode on v1 memcg */ 6396 if (!parent) 6397 return MEMCG_PROT_NONE; 6398 6399 if (parent == root) { 6400 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6401 memcg->memory.elow = memcg->memory.low; 6402 goto out; 6403 } 6404 6405 parent_usage = page_counter_read(&parent->memory); 6406 6407 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6408 READ_ONCE(memcg->memory.min), 6409 READ_ONCE(parent->memory.emin), 6410 atomic_long_read(&parent->memory.children_min_usage))); 6411 6412 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6413 memcg->memory.low, READ_ONCE(parent->memory.elow), 6414 atomic_long_read(&parent->memory.children_low_usage))); 6415 6416 out: 6417 if (usage <= memcg->memory.emin) 6418 return MEMCG_PROT_MIN; 6419 else if (usage <= memcg->memory.elow) 6420 return MEMCG_PROT_LOW; 6421 else 6422 return MEMCG_PROT_NONE; 6423 } 6424 6425 /** 6426 * mem_cgroup_try_charge - try charging a page 6427 * @page: page to charge 6428 * @mm: mm context of the victim 6429 * @gfp_mask: reclaim mode 6430 * @memcgp: charged memcg return 6431 * @compound: charge the page as compound or small page 6432 * 6433 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6434 * pages according to @gfp_mask if necessary. 6435 * 6436 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6437 * Otherwise, an error code is returned. 6438 * 6439 * After page->mapping has been set up, the caller must finalize the 6440 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6441 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6442 */ 6443 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6444 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6445 bool compound) 6446 { 6447 struct mem_cgroup *memcg = NULL; 6448 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6449 int ret = 0; 6450 6451 if (mem_cgroup_disabled()) 6452 goto out; 6453 6454 if (PageSwapCache(page)) { 6455 /* 6456 * Every swap fault against a single page tries to charge the 6457 * page, bail as early as possible. shmem_unuse() encounters 6458 * already charged pages, too. The USED bit is protected by 6459 * the page lock, which serializes swap cache removal, which 6460 * in turn serializes uncharging. 6461 */ 6462 VM_BUG_ON_PAGE(!PageLocked(page), page); 6463 if (compound_head(page)->mem_cgroup) 6464 goto out; 6465 6466 if (do_swap_account) { 6467 swp_entry_t ent = { .val = page_private(page), }; 6468 unsigned short id = lookup_swap_cgroup_id(ent); 6469 6470 rcu_read_lock(); 6471 memcg = mem_cgroup_from_id(id); 6472 if (memcg && !css_tryget_online(&memcg->css)) 6473 memcg = NULL; 6474 rcu_read_unlock(); 6475 } 6476 } 6477 6478 if (!memcg) 6479 memcg = get_mem_cgroup_from_mm(mm); 6480 6481 ret = try_charge(memcg, gfp_mask, nr_pages); 6482 6483 css_put(&memcg->css); 6484 out: 6485 *memcgp = memcg; 6486 return ret; 6487 } 6488 6489 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6490 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6491 bool compound) 6492 { 6493 struct mem_cgroup *memcg; 6494 int ret; 6495 6496 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6497 memcg = *memcgp; 6498 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6499 return ret; 6500 } 6501 6502 /** 6503 * mem_cgroup_commit_charge - commit a page charge 6504 * @page: page to charge 6505 * @memcg: memcg to charge the page to 6506 * @lrucare: page might be on LRU already 6507 * @compound: charge the page as compound or small page 6508 * 6509 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6510 * after page->mapping has been set up. This must happen atomically 6511 * as part of the page instantiation, i.e. under the page table lock 6512 * for anonymous pages, under the page lock for page and swap cache. 6513 * 6514 * In addition, the page must not be on the LRU during the commit, to 6515 * prevent racing with task migration. If it might be, use @lrucare. 6516 * 6517 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6518 */ 6519 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6520 bool lrucare, bool compound) 6521 { 6522 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6523 6524 VM_BUG_ON_PAGE(!page->mapping, page); 6525 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6526 6527 if (mem_cgroup_disabled()) 6528 return; 6529 /* 6530 * Swap faults will attempt to charge the same page multiple 6531 * times. But reuse_swap_page() might have removed the page 6532 * from swapcache already, so we can't check PageSwapCache(). 6533 */ 6534 if (!memcg) 6535 return; 6536 6537 commit_charge(page, memcg, lrucare); 6538 6539 local_irq_disable(); 6540 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6541 memcg_check_events(memcg, page); 6542 local_irq_enable(); 6543 6544 if (do_memsw_account() && PageSwapCache(page)) { 6545 swp_entry_t entry = { .val = page_private(page) }; 6546 /* 6547 * The swap entry might not get freed for a long time, 6548 * let's not wait for it. The page already received a 6549 * memory+swap charge, drop the swap entry duplicate. 6550 */ 6551 mem_cgroup_uncharge_swap(entry, nr_pages); 6552 } 6553 } 6554 6555 /** 6556 * mem_cgroup_cancel_charge - cancel a page charge 6557 * @page: page to charge 6558 * @memcg: memcg to charge the page to 6559 * @compound: charge the page as compound or small page 6560 * 6561 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6562 */ 6563 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6564 bool compound) 6565 { 6566 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6567 6568 if (mem_cgroup_disabled()) 6569 return; 6570 /* 6571 * Swap faults will attempt to charge the same page multiple 6572 * times. But reuse_swap_page() might have removed the page 6573 * from swapcache already, so we can't check PageSwapCache(). 6574 */ 6575 if (!memcg) 6576 return; 6577 6578 cancel_charge(memcg, nr_pages); 6579 } 6580 6581 struct uncharge_gather { 6582 struct mem_cgroup *memcg; 6583 unsigned long pgpgout; 6584 unsigned long nr_anon; 6585 unsigned long nr_file; 6586 unsigned long nr_kmem; 6587 unsigned long nr_huge; 6588 unsigned long nr_shmem; 6589 struct page *dummy_page; 6590 }; 6591 6592 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6593 { 6594 memset(ug, 0, sizeof(*ug)); 6595 } 6596 6597 static void uncharge_batch(const struct uncharge_gather *ug) 6598 { 6599 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6600 unsigned long flags; 6601 6602 if (!mem_cgroup_is_root(ug->memcg)) { 6603 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6604 if (do_memsw_account()) 6605 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6606 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6607 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6608 memcg_oom_recover(ug->memcg); 6609 } 6610 6611 local_irq_save(flags); 6612 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6613 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6614 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6615 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6616 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6617 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6618 memcg_check_events(ug->memcg, ug->dummy_page); 6619 local_irq_restore(flags); 6620 6621 if (!mem_cgroup_is_root(ug->memcg)) 6622 css_put_many(&ug->memcg->css, nr_pages); 6623 } 6624 6625 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6626 { 6627 VM_BUG_ON_PAGE(PageLRU(page), page); 6628 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6629 !PageHWPoison(page) , page); 6630 6631 if (!page->mem_cgroup) 6632 return; 6633 6634 /* 6635 * Nobody should be changing or seriously looking at 6636 * page->mem_cgroup at this point, we have fully 6637 * exclusive access to the page. 6638 */ 6639 6640 if (ug->memcg != page->mem_cgroup) { 6641 if (ug->memcg) { 6642 uncharge_batch(ug); 6643 uncharge_gather_clear(ug); 6644 } 6645 ug->memcg = page->mem_cgroup; 6646 } 6647 6648 if (!PageKmemcg(page)) { 6649 unsigned int nr_pages = 1; 6650 6651 if (PageTransHuge(page)) { 6652 nr_pages = compound_nr(page); 6653 ug->nr_huge += nr_pages; 6654 } 6655 if (PageAnon(page)) 6656 ug->nr_anon += nr_pages; 6657 else { 6658 ug->nr_file += nr_pages; 6659 if (PageSwapBacked(page)) 6660 ug->nr_shmem += nr_pages; 6661 } 6662 ug->pgpgout++; 6663 } else { 6664 ug->nr_kmem += compound_nr(page); 6665 __ClearPageKmemcg(page); 6666 } 6667 6668 ug->dummy_page = page; 6669 page->mem_cgroup = NULL; 6670 } 6671 6672 static void uncharge_list(struct list_head *page_list) 6673 { 6674 struct uncharge_gather ug; 6675 struct list_head *next; 6676 6677 uncharge_gather_clear(&ug); 6678 6679 /* 6680 * Note that the list can be a single page->lru; hence the 6681 * do-while loop instead of a simple list_for_each_entry(). 6682 */ 6683 next = page_list->next; 6684 do { 6685 struct page *page; 6686 6687 page = list_entry(next, struct page, lru); 6688 next = page->lru.next; 6689 6690 uncharge_page(page, &ug); 6691 } while (next != page_list); 6692 6693 if (ug.memcg) 6694 uncharge_batch(&ug); 6695 } 6696 6697 /** 6698 * mem_cgroup_uncharge - uncharge a page 6699 * @page: page to uncharge 6700 * 6701 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6702 * mem_cgroup_commit_charge(). 6703 */ 6704 void mem_cgroup_uncharge(struct page *page) 6705 { 6706 struct uncharge_gather ug; 6707 6708 if (mem_cgroup_disabled()) 6709 return; 6710 6711 /* Don't touch page->lru of any random page, pre-check: */ 6712 if (!page->mem_cgroup) 6713 return; 6714 6715 uncharge_gather_clear(&ug); 6716 uncharge_page(page, &ug); 6717 uncharge_batch(&ug); 6718 } 6719 6720 /** 6721 * mem_cgroup_uncharge_list - uncharge a list of page 6722 * @page_list: list of pages to uncharge 6723 * 6724 * Uncharge a list of pages previously charged with 6725 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6726 */ 6727 void mem_cgroup_uncharge_list(struct list_head *page_list) 6728 { 6729 if (mem_cgroup_disabled()) 6730 return; 6731 6732 if (!list_empty(page_list)) 6733 uncharge_list(page_list); 6734 } 6735 6736 /** 6737 * mem_cgroup_migrate - charge a page's replacement 6738 * @oldpage: currently circulating page 6739 * @newpage: replacement page 6740 * 6741 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6742 * be uncharged upon free. 6743 * 6744 * Both pages must be locked, @newpage->mapping must be set up. 6745 */ 6746 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6747 { 6748 struct mem_cgroup *memcg; 6749 unsigned int nr_pages; 6750 unsigned long flags; 6751 6752 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6753 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6754 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6755 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6756 newpage); 6757 6758 if (mem_cgroup_disabled()) 6759 return; 6760 6761 /* Page cache replacement: new page already charged? */ 6762 if (newpage->mem_cgroup) 6763 return; 6764 6765 /* Swapcache readahead pages can get replaced before being charged */ 6766 memcg = oldpage->mem_cgroup; 6767 if (!memcg) 6768 return; 6769 6770 /* Force-charge the new page. The old one will be freed soon */ 6771 nr_pages = hpage_nr_pages(newpage); 6772 6773 page_counter_charge(&memcg->memory, nr_pages); 6774 if (do_memsw_account()) 6775 page_counter_charge(&memcg->memsw, nr_pages); 6776 css_get_many(&memcg->css, nr_pages); 6777 6778 commit_charge(newpage, memcg, false); 6779 6780 local_irq_save(flags); 6781 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6782 nr_pages); 6783 memcg_check_events(memcg, newpage); 6784 local_irq_restore(flags); 6785 } 6786 6787 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6788 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6789 6790 void mem_cgroup_sk_alloc(struct sock *sk) 6791 { 6792 struct mem_cgroup *memcg; 6793 6794 if (!mem_cgroup_sockets_enabled) 6795 return; 6796 6797 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6798 if (in_interrupt()) 6799 return; 6800 6801 rcu_read_lock(); 6802 memcg = mem_cgroup_from_task(current); 6803 if (memcg == root_mem_cgroup) 6804 goto out; 6805 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6806 goto out; 6807 if (css_tryget(&memcg->css)) 6808 sk->sk_memcg = memcg; 6809 out: 6810 rcu_read_unlock(); 6811 } 6812 6813 void mem_cgroup_sk_free(struct sock *sk) 6814 { 6815 if (sk->sk_memcg) 6816 css_put(&sk->sk_memcg->css); 6817 } 6818 6819 /** 6820 * mem_cgroup_charge_skmem - charge socket memory 6821 * @memcg: memcg to charge 6822 * @nr_pages: number of pages to charge 6823 * 6824 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6825 * @memcg's configured limit, %false if the charge had to be forced. 6826 */ 6827 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6828 { 6829 gfp_t gfp_mask = GFP_KERNEL; 6830 6831 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6832 struct page_counter *fail; 6833 6834 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6835 memcg->tcpmem_pressure = 0; 6836 return true; 6837 } 6838 page_counter_charge(&memcg->tcpmem, nr_pages); 6839 memcg->tcpmem_pressure = 1; 6840 return false; 6841 } 6842 6843 /* Don't block in the packet receive path */ 6844 if (in_softirq()) 6845 gfp_mask = GFP_NOWAIT; 6846 6847 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6848 6849 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6850 return true; 6851 6852 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6853 return false; 6854 } 6855 6856 /** 6857 * mem_cgroup_uncharge_skmem - uncharge socket memory 6858 * @memcg: memcg to uncharge 6859 * @nr_pages: number of pages to uncharge 6860 */ 6861 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6862 { 6863 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6864 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6865 return; 6866 } 6867 6868 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6869 6870 refill_stock(memcg, nr_pages); 6871 } 6872 6873 static int __init cgroup_memory(char *s) 6874 { 6875 char *token; 6876 6877 while ((token = strsep(&s, ",")) != NULL) { 6878 if (!*token) 6879 continue; 6880 if (!strcmp(token, "nosocket")) 6881 cgroup_memory_nosocket = true; 6882 if (!strcmp(token, "nokmem")) 6883 cgroup_memory_nokmem = true; 6884 } 6885 return 0; 6886 } 6887 __setup("cgroup.memory=", cgroup_memory); 6888 6889 /* 6890 * subsys_initcall() for memory controller. 6891 * 6892 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6893 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6894 * basically everything that doesn't depend on a specific mem_cgroup structure 6895 * should be initialized from here. 6896 */ 6897 static int __init mem_cgroup_init(void) 6898 { 6899 int cpu, node; 6900 6901 #ifdef CONFIG_MEMCG_KMEM 6902 /* 6903 * Kmem cache creation is mostly done with the slab_mutex held, 6904 * so use a workqueue with limited concurrency to avoid stalling 6905 * all worker threads in case lots of cgroups are created and 6906 * destroyed simultaneously. 6907 */ 6908 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6909 BUG_ON(!memcg_kmem_cache_wq); 6910 #endif 6911 6912 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6913 memcg_hotplug_cpu_dead); 6914 6915 for_each_possible_cpu(cpu) 6916 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6917 drain_local_stock); 6918 6919 for_each_node(node) { 6920 struct mem_cgroup_tree_per_node *rtpn; 6921 6922 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6923 node_online(node) ? node : NUMA_NO_NODE); 6924 6925 rtpn->rb_root = RB_ROOT; 6926 rtpn->rb_rightmost = NULL; 6927 spin_lock_init(&rtpn->lock); 6928 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6929 } 6930 6931 return 0; 6932 } 6933 subsys_initcall(mem_cgroup_init); 6934 6935 #ifdef CONFIG_MEMCG_SWAP 6936 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6937 { 6938 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6939 /* 6940 * The root cgroup cannot be destroyed, so it's refcount must 6941 * always be >= 1. 6942 */ 6943 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6944 VM_BUG_ON(1); 6945 break; 6946 } 6947 memcg = parent_mem_cgroup(memcg); 6948 if (!memcg) 6949 memcg = root_mem_cgroup; 6950 } 6951 return memcg; 6952 } 6953 6954 /** 6955 * mem_cgroup_swapout - transfer a memsw charge to swap 6956 * @page: page whose memsw charge to transfer 6957 * @entry: swap entry to move the charge to 6958 * 6959 * Transfer the memsw charge of @page to @entry. 6960 */ 6961 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6962 { 6963 struct mem_cgroup *memcg, *swap_memcg; 6964 unsigned int nr_entries; 6965 unsigned short oldid; 6966 6967 VM_BUG_ON_PAGE(PageLRU(page), page); 6968 VM_BUG_ON_PAGE(page_count(page), page); 6969 6970 if (!do_memsw_account()) 6971 return; 6972 6973 memcg = page->mem_cgroup; 6974 6975 /* Readahead page, never charged */ 6976 if (!memcg) 6977 return; 6978 6979 /* 6980 * In case the memcg owning these pages has been offlined and doesn't 6981 * have an ID allocated to it anymore, charge the closest online 6982 * ancestor for the swap instead and transfer the memory+swap charge. 6983 */ 6984 swap_memcg = mem_cgroup_id_get_online(memcg); 6985 nr_entries = hpage_nr_pages(page); 6986 /* Get references for the tail pages, too */ 6987 if (nr_entries > 1) 6988 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6989 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6990 nr_entries); 6991 VM_BUG_ON_PAGE(oldid, page); 6992 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6993 6994 page->mem_cgroup = NULL; 6995 6996 if (!mem_cgroup_is_root(memcg)) 6997 page_counter_uncharge(&memcg->memory, nr_entries); 6998 6999 if (memcg != swap_memcg) { 7000 if (!mem_cgroup_is_root(swap_memcg)) 7001 page_counter_charge(&swap_memcg->memsw, nr_entries); 7002 page_counter_uncharge(&memcg->memsw, nr_entries); 7003 } 7004 7005 /* 7006 * Interrupts should be disabled here because the caller holds the 7007 * i_pages lock which is taken with interrupts-off. It is 7008 * important here to have the interrupts disabled because it is the 7009 * only synchronisation we have for updating the per-CPU variables. 7010 */ 7011 VM_BUG_ON(!irqs_disabled()); 7012 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 7013 -nr_entries); 7014 memcg_check_events(memcg, page); 7015 7016 if (!mem_cgroup_is_root(memcg)) 7017 css_put_many(&memcg->css, nr_entries); 7018 } 7019 7020 /** 7021 * mem_cgroup_try_charge_swap - try charging swap space for a page 7022 * @page: page being added to swap 7023 * @entry: swap entry to charge 7024 * 7025 * Try to charge @page's memcg for the swap space at @entry. 7026 * 7027 * Returns 0 on success, -ENOMEM on failure. 7028 */ 7029 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7030 { 7031 unsigned int nr_pages = hpage_nr_pages(page); 7032 struct page_counter *counter; 7033 struct mem_cgroup *memcg; 7034 unsigned short oldid; 7035 7036 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 7037 return 0; 7038 7039 memcg = page->mem_cgroup; 7040 7041 /* Readahead page, never charged */ 7042 if (!memcg) 7043 return 0; 7044 7045 if (!entry.val) { 7046 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7047 return 0; 7048 } 7049 7050 memcg = mem_cgroup_id_get_online(memcg); 7051 7052 if (!mem_cgroup_is_root(memcg) && 7053 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7054 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7055 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7056 mem_cgroup_id_put(memcg); 7057 return -ENOMEM; 7058 } 7059 7060 /* Get references for the tail pages, too */ 7061 if (nr_pages > 1) 7062 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7063 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7064 VM_BUG_ON_PAGE(oldid, page); 7065 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7066 7067 return 0; 7068 } 7069 7070 /** 7071 * mem_cgroup_uncharge_swap - uncharge swap space 7072 * @entry: swap entry to uncharge 7073 * @nr_pages: the amount of swap space to uncharge 7074 */ 7075 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7076 { 7077 struct mem_cgroup *memcg; 7078 unsigned short id; 7079 7080 if (!do_swap_account) 7081 return; 7082 7083 id = swap_cgroup_record(entry, 0, nr_pages); 7084 rcu_read_lock(); 7085 memcg = mem_cgroup_from_id(id); 7086 if (memcg) { 7087 if (!mem_cgroup_is_root(memcg)) { 7088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7089 page_counter_uncharge(&memcg->swap, nr_pages); 7090 else 7091 page_counter_uncharge(&memcg->memsw, nr_pages); 7092 } 7093 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7094 mem_cgroup_id_put_many(memcg, nr_pages); 7095 } 7096 rcu_read_unlock(); 7097 } 7098 7099 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7100 { 7101 long nr_swap_pages = get_nr_swap_pages(); 7102 7103 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7104 return nr_swap_pages; 7105 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7106 nr_swap_pages = min_t(long, nr_swap_pages, 7107 READ_ONCE(memcg->swap.max) - 7108 page_counter_read(&memcg->swap)); 7109 return nr_swap_pages; 7110 } 7111 7112 bool mem_cgroup_swap_full(struct page *page) 7113 { 7114 struct mem_cgroup *memcg; 7115 7116 VM_BUG_ON_PAGE(!PageLocked(page), page); 7117 7118 if (vm_swap_full()) 7119 return true; 7120 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7121 return false; 7122 7123 memcg = page->mem_cgroup; 7124 if (!memcg) 7125 return false; 7126 7127 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7128 if (page_counter_read(&memcg->swap) * 2 >= 7129 READ_ONCE(memcg->swap.max)) 7130 return true; 7131 7132 return false; 7133 } 7134 7135 /* for remember boot option*/ 7136 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7137 static int really_do_swap_account __initdata = 1; 7138 #else 7139 static int really_do_swap_account __initdata; 7140 #endif 7141 7142 static int __init enable_swap_account(char *s) 7143 { 7144 if (!strcmp(s, "1")) 7145 really_do_swap_account = 1; 7146 else if (!strcmp(s, "0")) 7147 really_do_swap_account = 0; 7148 return 1; 7149 } 7150 __setup("swapaccount=", enable_swap_account); 7151 7152 static u64 swap_current_read(struct cgroup_subsys_state *css, 7153 struct cftype *cft) 7154 { 7155 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7156 7157 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7158 } 7159 7160 static int swap_max_show(struct seq_file *m, void *v) 7161 { 7162 return seq_puts_memcg_tunable(m, 7163 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7164 } 7165 7166 static ssize_t swap_max_write(struct kernfs_open_file *of, 7167 char *buf, size_t nbytes, loff_t off) 7168 { 7169 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7170 unsigned long max; 7171 int err; 7172 7173 buf = strstrip(buf); 7174 err = page_counter_memparse(buf, "max", &max); 7175 if (err) 7176 return err; 7177 7178 xchg(&memcg->swap.max, max); 7179 7180 return nbytes; 7181 } 7182 7183 static int swap_events_show(struct seq_file *m, void *v) 7184 { 7185 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7186 7187 seq_printf(m, "max %lu\n", 7188 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7189 seq_printf(m, "fail %lu\n", 7190 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7191 7192 return 0; 7193 } 7194 7195 static struct cftype swap_files[] = { 7196 { 7197 .name = "swap.current", 7198 .flags = CFTYPE_NOT_ON_ROOT, 7199 .read_u64 = swap_current_read, 7200 }, 7201 { 7202 .name = "swap.max", 7203 .flags = CFTYPE_NOT_ON_ROOT, 7204 .seq_show = swap_max_show, 7205 .write = swap_max_write, 7206 }, 7207 { 7208 .name = "swap.events", 7209 .flags = CFTYPE_NOT_ON_ROOT, 7210 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7211 .seq_show = swap_events_show, 7212 }, 7213 { } /* terminate */ 7214 }; 7215 7216 static struct cftype memsw_cgroup_files[] = { 7217 { 7218 .name = "memsw.usage_in_bytes", 7219 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7220 .read_u64 = mem_cgroup_read_u64, 7221 }, 7222 { 7223 .name = "memsw.max_usage_in_bytes", 7224 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7225 .write = mem_cgroup_reset, 7226 .read_u64 = mem_cgroup_read_u64, 7227 }, 7228 { 7229 .name = "memsw.limit_in_bytes", 7230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7231 .write = mem_cgroup_write, 7232 .read_u64 = mem_cgroup_read_u64, 7233 }, 7234 { 7235 .name = "memsw.failcnt", 7236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7237 .write = mem_cgroup_reset, 7238 .read_u64 = mem_cgroup_read_u64, 7239 }, 7240 { }, /* terminate */ 7241 }; 7242 7243 static int __init mem_cgroup_swap_init(void) 7244 { 7245 if (!mem_cgroup_disabled() && really_do_swap_account) { 7246 do_swap_account = 1; 7247 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7248 swap_files)); 7249 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7250 memsw_cgroup_files)); 7251 } 7252 return 0; 7253 } 7254 subsys_initcall(mem_cgroup_swap_init); 7255 7256 #endif /* CONFIG_MEMCG_SWAP */ 7257