xref: /linux/mm/memcontrol.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65 #else
66 #define do_swap_account		(0)
67 #endif
68 
69 /*
70  * Per memcg event counter is incremented at every pagein/pageout. This counter
71  * is used for trigger some periodic events. This is straightforward and better
72  * than using jiffies etc. to handle periodic memcg event.
73  *
74  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75  */
76 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78 
79 /*
80  * Statistics for memory cgroup.
81  */
82 enum mem_cgroup_stat_index {
83 	/*
84 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 	 */
86 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
90 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
93 	/* incremented at every  pagein/pageout */
94 	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
95 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
96 
97 	MEM_CGROUP_STAT_NSTATS,
98 };
99 
100 struct mem_cgroup_stat_cpu {
101 	s64 count[MEM_CGROUP_STAT_NSTATS];
102 };
103 
104 /*
105  * per-zone information in memory controller.
106  */
107 struct mem_cgroup_per_zone {
108 	/*
109 	 * spin_lock to protect the per cgroup LRU
110 	 */
111 	struct list_head	lists[NR_LRU_LISTS];
112 	unsigned long		count[NR_LRU_LISTS];
113 
114 	struct zone_reclaim_stat reclaim_stat;
115 	struct rb_node		tree_node;	/* RB tree node */
116 	unsigned long long	usage_in_excess;/* Set to the value by which */
117 						/* the soft limit is exceeded*/
118 	bool			on_tree;
119 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
120 						/* use container_of	   */
121 };
122 /* Macro for accessing counter */
123 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
124 
125 struct mem_cgroup_per_node {
126 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127 };
128 
129 struct mem_cgroup_lru_info {
130 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
131 };
132 
133 /*
134  * Cgroups above their limits are maintained in a RB-Tree, independent of
135  * their hierarchy representation
136  */
137 
138 struct mem_cgroup_tree_per_zone {
139 	struct rb_root rb_root;
140 	spinlock_t lock;
141 };
142 
143 struct mem_cgroup_tree_per_node {
144 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
145 };
146 
147 struct mem_cgroup_tree {
148 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
149 };
150 
151 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
152 
153 struct mem_cgroup_threshold {
154 	struct eventfd_ctx *eventfd;
155 	u64 threshold;
156 };
157 
158 /* For threshold */
159 struct mem_cgroup_threshold_ary {
160 	/* An array index points to threshold just below usage. */
161 	int current_threshold;
162 	/* Size of entries[] */
163 	unsigned int size;
164 	/* Array of thresholds */
165 	struct mem_cgroup_threshold entries[0];
166 };
167 
168 struct mem_cgroup_thresholds {
169 	/* Primary thresholds array */
170 	struct mem_cgroup_threshold_ary *primary;
171 	/*
172 	 * Spare threshold array.
173 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
174 	 * It must be able to store at least primary->size - 1 entries.
175 	 */
176 	struct mem_cgroup_threshold_ary *spare;
177 };
178 
179 /* for OOM */
180 struct mem_cgroup_eventfd_list {
181 	struct list_head list;
182 	struct eventfd_ctx *eventfd;
183 };
184 
185 static void mem_cgroup_threshold(struct mem_cgroup *mem);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
187 
188 /*
189  * The memory controller data structure. The memory controller controls both
190  * page cache and RSS per cgroup. We would eventually like to provide
191  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
192  * to help the administrator determine what knobs to tune.
193  *
194  * TODO: Add a water mark for the memory controller. Reclaim will begin when
195  * we hit the water mark. May be even add a low water mark, such that
196  * no reclaim occurs from a cgroup at it's low water mark, this is
197  * a feature that will be implemented much later in the future.
198  */
199 struct mem_cgroup {
200 	struct cgroup_subsys_state css;
201 	/*
202 	 * the counter to account for memory usage
203 	 */
204 	struct res_counter res;
205 	/*
206 	 * the counter to account for mem+swap usage.
207 	 */
208 	struct res_counter memsw;
209 	/*
210 	 * Per cgroup active and inactive list, similar to the
211 	 * per zone LRU lists.
212 	 */
213 	struct mem_cgroup_lru_info info;
214 
215 	/*
216 	  protect against reclaim related member.
217 	*/
218 	spinlock_t reclaim_param_lock;
219 
220 	/*
221 	 * While reclaiming in a hierarchy, we cache the last child we
222 	 * reclaimed from.
223 	 */
224 	int last_scanned_child;
225 	/*
226 	 * Should the accounting and control be hierarchical, per subtree?
227 	 */
228 	bool use_hierarchy;
229 	atomic_t	oom_lock;
230 	atomic_t	refcnt;
231 
232 	unsigned int	swappiness;
233 	/* OOM-Killer disable */
234 	int		oom_kill_disable;
235 
236 	/* set when res.limit == memsw.limit */
237 	bool		memsw_is_minimum;
238 
239 	/* protect arrays of thresholds */
240 	struct mutex thresholds_lock;
241 
242 	/* thresholds for memory usage. RCU-protected */
243 	struct mem_cgroup_thresholds thresholds;
244 
245 	/* thresholds for mem+swap usage. RCU-protected */
246 	struct mem_cgroup_thresholds memsw_thresholds;
247 
248 	/* For oom notifier event fd */
249 	struct list_head oom_notify;
250 
251 	/*
252 	 * Should we move charges of a task when a task is moved into this
253 	 * mem_cgroup ? And what type of charges should we move ?
254 	 */
255 	unsigned long 	move_charge_at_immigrate;
256 	/*
257 	 * percpu counter.
258 	 */
259 	struct mem_cgroup_stat_cpu *stat;
260 	/*
261 	 * used when a cpu is offlined or other synchronizations
262 	 * See mem_cgroup_read_stat().
263 	 */
264 	struct mem_cgroup_stat_cpu nocpu_base;
265 	spinlock_t pcp_counter_lock;
266 };
267 
268 /* Stuffs for move charges at task migration. */
269 /*
270  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
271  * left-shifted bitmap of these types.
272  */
273 enum move_type {
274 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
275 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
276 	NR_MOVE_TYPE,
277 };
278 
279 /* "mc" and its members are protected by cgroup_mutex */
280 static struct move_charge_struct {
281 	spinlock_t	  lock; /* for from, to, moving_task */
282 	struct mem_cgroup *from;
283 	struct mem_cgroup *to;
284 	unsigned long precharge;
285 	unsigned long moved_charge;
286 	unsigned long moved_swap;
287 	struct task_struct *moving_task;	/* a task moving charges */
288 	wait_queue_head_t waitq;		/* a waitq for other context */
289 } mc = {
290 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
291 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
292 };
293 
294 static bool move_anon(void)
295 {
296 	return test_bit(MOVE_CHARGE_TYPE_ANON,
297 					&mc.to->move_charge_at_immigrate);
298 }
299 
300 static bool move_file(void)
301 {
302 	return test_bit(MOVE_CHARGE_TYPE_FILE,
303 					&mc.to->move_charge_at_immigrate);
304 }
305 
306 /*
307  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
308  * limit reclaim to prevent infinite loops, if they ever occur.
309  */
310 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
311 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
312 
313 enum charge_type {
314 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
315 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
316 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
317 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
318 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
319 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
320 	NR_CHARGE_TYPE,
321 };
322 
323 /* only for here (for easy reading.) */
324 #define PCGF_CACHE	(1UL << PCG_CACHE)
325 #define PCGF_USED	(1UL << PCG_USED)
326 #define PCGF_LOCK	(1UL << PCG_LOCK)
327 /* Not used, but added here for completeness */
328 #define PCGF_ACCT	(1UL << PCG_ACCT)
329 
330 /* for encoding cft->private value on file */
331 #define _MEM			(0)
332 #define _MEMSWAP		(1)
333 #define _OOM_TYPE		(2)
334 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
335 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val)	((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL		(0)
339 
340 /*
341  * Reclaim flags for mem_cgroup_hierarchical_reclaim
342  */
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
348 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349 
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
354 
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357 {
358 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359 }
360 
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362 {
363 	return &mem->css;
364 }
365 
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct page_cgroup *pc)
368 {
369 	struct mem_cgroup *mem = pc->mem_cgroup;
370 	int nid = page_cgroup_nid(pc);
371 	int zid = page_cgroup_zid(pc);
372 
373 	if (!mem)
374 		return NULL;
375 
376 	return mem_cgroup_zoneinfo(mem, nid, zid);
377 }
378 
379 static struct mem_cgroup_tree_per_zone *
380 soft_limit_tree_node_zone(int nid, int zid)
381 {
382 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 }
384 
385 static struct mem_cgroup_tree_per_zone *
386 soft_limit_tree_from_page(struct page *page)
387 {
388 	int nid = page_to_nid(page);
389 	int zid = page_zonenum(page);
390 
391 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 }
393 
394 static void
395 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396 				struct mem_cgroup_per_zone *mz,
397 				struct mem_cgroup_tree_per_zone *mctz,
398 				unsigned long long new_usage_in_excess)
399 {
400 	struct rb_node **p = &mctz->rb_root.rb_node;
401 	struct rb_node *parent = NULL;
402 	struct mem_cgroup_per_zone *mz_node;
403 
404 	if (mz->on_tree)
405 		return;
406 
407 	mz->usage_in_excess = new_usage_in_excess;
408 	if (!mz->usage_in_excess)
409 		return;
410 	while (*p) {
411 		parent = *p;
412 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413 					tree_node);
414 		if (mz->usage_in_excess < mz_node->usage_in_excess)
415 			p = &(*p)->rb_left;
416 		/*
417 		 * We can't avoid mem cgroups that are over their soft
418 		 * limit by the same amount
419 		 */
420 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421 			p = &(*p)->rb_right;
422 	}
423 	rb_link_node(&mz->tree_node, parent, p);
424 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
425 	mz->on_tree = true;
426 }
427 
428 static void
429 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430 				struct mem_cgroup_per_zone *mz,
431 				struct mem_cgroup_tree_per_zone *mctz)
432 {
433 	if (!mz->on_tree)
434 		return;
435 	rb_erase(&mz->tree_node, &mctz->rb_root);
436 	mz->on_tree = false;
437 }
438 
439 static void
440 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 				struct mem_cgroup_per_zone *mz,
442 				struct mem_cgroup_tree_per_zone *mctz)
443 {
444 	spin_lock(&mctz->lock);
445 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
446 	spin_unlock(&mctz->lock);
447 }
448 
449 
450 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
451 {
452 	unsigned long long excess;
453 	struct mem_cgroup_per_zone *mz;
454 	struct mem_cgroup_tree_per_zone *mctz;
455 	int nid = page_to_nid(page);
456 	int zid = page_zonenum(page);
457 	mctz = soft_limit_tree_from_page(page);
458 
459 	/*
460 	 * Necessary to update all ancestors when hierarchy is used.
461 	 * because their event counter is not touched.
462 	 */
463 	for (; mem; mem = parent_mem_cgroup(mem)) {
464 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
465 		excess = res_counter_soft_limit_excess(&mem->res);
466 		/*
467 		 * We have to update the tree if mz is on RB-tree or
468 		 * mem is over its softlimit.
469 		 */
470 		if (excess || mz->on_tree) {
471 			spin_lock(&mctz->lock);
472 			/* if on-tree, remove it */
473 			if (mz->on_tree)
474 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
475 			/*
476 			 * Insert again. mz->usage_in_excess will be updated.
477 			 * If excess is 0, no tree ops.
478 			 */
479 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480 			spin_unlock(&mctz->lock);
481 		}
482 	}
483 }
484 
485 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
486 {
487 	int node, zone;
488 	struct mem_cgroup_per_zone *mz;
489 	struct mem_cgroup_tree_per_zone *mctz;
490 
491 	for_each_node_state(node, N_POSSIBLE) {
492 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493 			mz = mem_cgroup_zoneinfo(mem, node, zone);
494 			mctz = soft_limit_tree_node_zone(node, zone);
495 			mem_cgroup_remove_exceeded(mem, mz, mctz);
496 		}
497 	}
498 }
499 
500 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
501 {
502 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
503 }
504 
505 static struct mem_cgroup_per_zone *
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
507 {
508 	struct rb_node *rightmost = NULL;
509 	struct mem_cgroup_per_zone *mz;
510 
511 retry:
512 	mz = NULL;
513 	rightmost = rb_last(&mctz->rb_root);
514 	if (!rightmost)
515 		goto done;		/* Nothing to reclaim from */
516 
517 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
518 	/*
519 	 * Remove the node now but someone else can add it back,
520 	 * we will to add it back at the end of reclaim to its correct
521 	 * position in the tree.
522 	 */
523 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
524 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
525 		!css_tryget(&mz->mem->css))
526 		goto retry;
527 done:
528 	return mz;
529 }
530 
531 static struct mem_cgroup_per_zone *
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
533 {
534 	struct mem_cgroup_per_zone *mz;
535 
536 	spin_lock(&mctz->lock);
537 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
538 	spin_unlock(&mctz->lock);
539 	return mz;
540 }
541 
542 /*
543  * Implementation Note: reading percpu statistics for memcg.
544  *
545  * Both of vmstat[] and percpu_counter has threshold and do periodic
546  * synchronization to implement "quick" read. There are trade-off between
547  * reading cost and precision of value. Then, we may have a chance to implement
548  * a periodic synchronizion of counter in memcg's counter.
549  *
550  * But this _read() function is used for user interface now. The user accounts
551  * memory usage by memory cgroup and he _always_ requires exact value because
552  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553  * have to visit all online cpus and make sum. So, for now, unnecessary
554  * synchronization is not implemented. (just implemented for cpu hotplug)
555  *
556  * If there are kernel internal actions which can make use of some not-exact
557  * value, and reading all cpu value can be performance bottleneck in some
558  * common workload, threashold and synchonization as vmstat[] should be
559  * implemented.
560  */
561 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
562 		enum mem_cgroup_stat_index idx)
563 {
564 	int cpu;
565 	s64 val = 0;
566 
567 	get_online_cpus();
568 	for_each_online_cpu(cpu)
569 		val += per_cpu(mem->stat->count[idx], cpu);
570 #ifdef CONFIG_HOTPLUG_CPU
571 	spin_lock(&mem->pcp_counter_lock);
572 	val += mem->nocpu_base.count[idx];
573 	spin_unlock(&mem->pcp_counter_lock);
574 #endif
575 	put_online_cpus();
576 	return val;
577 }
578 
579 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
580 {
581 	s64 ret;
582 
583 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
584 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
585 	return ret;
586 }
587 
588 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
589 					 bool charge)
590 {
591 	int val = (charge) ? 1 : -1;
592 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
593 }
594 
595 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
596 					 struct page_cgroup *pc,
597 					 bool charge)
598 {
599 	int val = (charge) ? 1 : -1;
600 
601 	preempt_disable();
602 
603 	if (PageCgroupCache(pc))
604 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
605 	else
606 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
607 
608 	if (charge)
609 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
610 	else
611 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
612 	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
613 
614 	preempt_enable();
615 }
616 
617 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
618 					enum lru_list idx)
619 {
620 	int nid, zid;
621 	struct mem_cgroup_per_zone *mz;
622 	u64 total = 0;
623 
624 	for_each_online_node(nid)
625 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
626 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
627 			total += MEM_CGROUP_ZSTAT(mz, idx);
628 		}
629 	return total;
630 }
631 
632 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
633 {
634 	s64 val;
635 
636 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
637 
638 	return !(val & ((1 << event_mask_shift) - 1));
639 }
640 
641 /*
642  * Check events in order.
643  *
644  */
645 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
646 {
647 	/* threshold event is triggered in finer grain than soft limit */
648 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
649 		mem_cgroup_threshold(mem);
650 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
651 			mem_cgroup_update_tree(mem, page);
652 	}
653 }
654 
655 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
656 {
657 	return container_of(cgroup_subsys_state(cont,
658 				mem_cgroup_subsys_id), struct mem_cgroup,
659 				css);
660 }
661 
662 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
663 {
664 	/*
665 	 * mm_update_next_owner() may clear mm->owner to NULL
666 	 * if it races with swapoff, page migration, etc.
667 	 * So this can be called with p == NULL.
668 	 */
669 	if (unlikely(!p))
670 		return NULL;
671 
672 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
673 				struct mem_cgroup, css);
674 }
675 
676 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
677 {
678 	struct mem_cgroup *mem = NULL;
679 
680 	if (!mm)
681 		return NULL;
682 	/*
683 	 * Because we have no locks, mm->owner's may be being moved to other
684 	 * cgroup. We use css_tryget() here even if this looks
685 	 * pessimistic (rather than adding locks here).
686 	 */
687 	rcu_read_lock();
688 	do {
689 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
690 		if (unlikely(!mem))
691 			break;
692 	} while (!css_tryget(&mem->css));
693 	rcu_read_unlock();
694 	return mem;
695 }
696 
697 /* The caller has to guarantee "mem" exists before calling this */
698 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
699 {
700 	struct cgroup_subsys_state *css;
701 	int found;
702 
703 	if (!mem) /* ROOT cgroup has the smallest ID */
704 		return root_mem_cgroup; /*css_put/get against root is ignored*/
705 	if (!mem->use_hierarchy) {
706 		if (css_tryget(&mem->css))
707 			return mem;
708 		return NULL;
709 	}
710 	rcu_read_lock();
711 	/*
712 	 * searching a memory cgroup which has the smallest ID under given
713 	 * ROOT cgroup. (ID >= 1)
714 	 */
715 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
716 	if (css && css_tryget(css))
717 		mem = container_of(css, struct mem_cgroup, css);
718 	else
719 		mem = NULL;
720 	rcu_read_unlock();
721 	return mem;
722 }
723 
724 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
725 					struct mem_cgroup *root,
726 					bool cond)
727 {
728 	int nextid = css_id(&iter->css) + 1;
729 	int found;
730 	int hierarchy_used;
731 	struct cgroup_subsys_state *css;
732 
733 	hierarchy_used = iter->use_hierarchy;
734 
735 	css_put(&iter->css);
736 	/* If no ROOT, walk all, ignore hierarchy */
737 	if (!cond || (root && !hierarchy_used))
738 		return NULL;
739 
740 	if (!root)
741 		root = root_mem_cgroup;
742 
743 	do {
744 		iter = NULL;
745 		rcu_read_lock();
746 
747 		css = css_get_next(&mem_cgroup_subsys, nextid,
748 				&root->css, &found);
749 		if (css && css_tryget(css))
750 			iter = container_of(css, struct mem_cgroup, css);
751 		rcu_read_unlock();
752 		/* If css is NULL, no more cgroups will be found */
753 		nextid = found + 1;
754 	} while (css && !iter);
755 
756 	return iter;
757 }
758 /*
759  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
760  * be careful that "break" loop is not allowed. We have reference count.
761  * Instead of that modify "cond" to be false and "continue" to exit the loop.
762  */
763 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
764 	for (iter = mem_cgroup_start_loop(root);\
765 	     iter != NULL;\
766 	     iter = mem_cgroup_get_next(iter, root, cond))
767 
768 #define for_each_mem_cgroup_tree(iter, root) \
769 	for_each_mem_cgroup_tree_cond(iter, root, true)
770 
771 #define for_each_mem_cgroup_all(iter) \
772 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
773 
774 
775 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
776 {
777 	return (mem == root_mem_cgroup);
778 }
779 
780 /*
781  * Following LRU functions are allowed to be used without PCG_LOCK.
782  * Operations are called by routine of global LRU independently from memcg.
783  * What we have to take care of here is validness of pc->mem_cgroup.
784  *
785  * Changes to pc->mem_cgroup happens when
786  * 1. charge
787  * 2. moving account
788  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
789  * It is added to LRU before charge.
790  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
791  * When moving account, the page is not on LRU. It's isolated.
792  */
793 
794 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
795 {
796 	struct page_cgroup *pc;
797 	struct mem_cgroup_per_zone *mz;
798 
799 	if (mem_cgroup_disabled())
800 		return;
801 	pc = lookup_page_cgroup(page);
802 	/* can happen while we handle swapcache. */
803 	if (!TestClearPageCgroupAcctLRU(pc))
804 		return;
805 	VM_BUG_ON(!pc->mem_cgroup);
806 	/*
807 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
808 	 * removed from global LRU.
809 	 */
810 	mz = page_cgroup_zoneinfo(pc);
811 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
812 	if (mem_cgroup_is_root(pc->mem_cgroup))
813 		return;
814 	VM_BUG_ON(list_empty(&pc->lru));
815 	list_del_init(&pc->lru);
816 	return;
817 }
818 
819 void mem_cgroup_del_lru(struct page *page)
820 {
821 	mem_cgroup_del_lru_list(page, page_lru(page));
822 }
823 
824 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
825 {
826 	struct mem_cgroup_per_zone *mz;
827 	struct page_cgroup *pc;
828 
829 	if (mem_cgroup_disabled())
830 		return;
831 
832 	pc = lookup_page_cgroup(page);
833 	/*
834 	 * Used bit is set without atomic ops but after smp_wmb().
835 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
836 	 */
837 	smp_rmb();
838 	/* unused or root page is not rotated. */
839 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
840 		return;
841 	mz = page_cgroup_zoneinfo(pc);
842 	list_move(&pc->lru, &mz->lists[lru]);
843 }
844 
845 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
846 {
847 	struct page_cgroup *pc;
848 	struct mem_cgroup_per_zone *mz;
849 
850 	if (mem_cgroup_disabled())
851 		return;
852 	pc = lookup_page_cgroup(page);
853 	VM_BUG_ON(PageCgroupAcctLRU(pc));
854 	/*
855 	 * Used bit is set without atomic ops but after smp_wmb().
856 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
857 	 */
858 	smp_rmb();
859 	if (!PageCgroupUsed(pc))
860 		return;
861 
862 	mz = page_cgroup_zoneinfo(pc);
863 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
864 	SetPageCgroupAcctLRU(pc);
865 	if (mem_cgroup_is_root(pc->mem_cgroup))
866 		return;
867 	list_add(&pc->lru, &mz->lists[lru]);
868 }
869 
870 /*
871  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
872  * lru because the page may.be reused after it's fully uncharged (because of
873  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
874  * it again. This function is only used to charge SwapCache. It's done under
875  * lock_page and expected that zone->lru_lock is never held.
876  */
877 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
878 {
879 	unsigned long flags;
880 	struct zone *zone = page_zone(page);
881 	struct page_cgroup *pc = lookup_page_cgroup(page);
882 
883 	spin_lock_irqsave(&zone->lru_lock, flags);
884 	/*
885 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
886 	 * is guarded by lock_page() because the page is SwapCache.
887 	 */
888 	if (!PageCgroupUsed(pc))
889 		mem_cgroup_del_lru_list(page, page_lru(page));
890 	spin_unlock_irqrestore(&zone->lru_lock, flags);
891 }
892 
893 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
894 {
895 	unsigned long flags;
896 	struct zone *zone = page_zone(page);
897 	struct page_cgroup *pc = lookup_page_cgroup(page);
898 
899 	spin_lock_irqsave(&zone->lru_lock, flags);
900 	/* link when the page is linked to LRU but page_cgroup isn't */
901 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
902 		mem_cgroup_add_lru_list(page, page_lru(page));
903 	spin_unlock_irqrestore(&zone->lru_lock, flags);
904 }
905 
906 
907 void mem_cgroup_move_lists(struct page *page,
908 			   enum lru_list from, enum lru_list to)
909 {
910 	if (mem_cgroup_disabled())
911 		return;
912 	mem_cgroup_del_lru_list(page, from);
913 	mem_cgroup_add_lru_list(page, to);
914 }
915 
916 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
917 {
918 	int ret;
919 	struct mem_cgroup *curr = NULL;
920 	struct task_struct *p;
921 
922 	p = find_lock_task_mm(task);
923 	if (!p)
924 		return 0;
925 	curr = try_get_mem_cgroup_from_mm(p->mm);
926 	task_unlock(p);
927 	if (!curr)
928 		return 0;
929 	/*
930 	 * We should check use_hierarchy of "mem" not "curr". Because checking
931 	 * use_hierarchy of "curr" here make this function true if hierarchy is
932 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
933 	 * hierarchy(even if use_hierarchy is disabled in "mem").
934 	 */
935 	if (mem->use_hierarchy)
936 		ret = css_is_ancestor(&curr->css, &mem->css);
937 	else
938 		ret = (curr == mem);
939 	css_put(&curr->css);
940 	return ret;
941 }
942 
943 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
944 {
945 	unsigned long active;
946 	unsigned long inactive;
947 	unsigned long gb;
948 	unsigned long inactive_ratio;
949 
950 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
951 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
952 
953 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
954 	if (gb)
955 		inactive_ratio = int_sqrt(10 * gb);
956 	else
957 		inactive_ratio = 1;
958 
959 	if (present_pages) {
960 		present_pages[0] = inactive;
961 		present_pages[1] = active;
962 	}
963 
964 	return inactive_ratio;
965 }
966 
967 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
968 {
969 	unsigned long active;
970 	unsigned long inactive;
971 	unsigned long present_pages[2];
972 	unsigned long inactive_ratio;
973 
974 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
975 
976 	inactive = present_pages[0];
977 	active = present_pages[1];
978 
979 	if (inactive * inactive_ratio < active)
980 		return 1;
981 
982 	return 0;
983 }
984 
985 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
986 {
987 	unsigned long active;
988 	unsigned long inactive;
989 
990 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
991 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
992 
993 	return (active > inactive);
994 }
995 
996 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
997 				       struct zone *zone,
998 				       enum lru_list lru)
999 {
1000 	int nid = zone_to_nid(zone);
1001 	int zid = zone_idx(zone);
1002 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1003 
1004 	return MEM_CGROUP_ZSTAT(mz, lru);
1005 }
1006 
1007 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1008 						      struct zone *zone)
1009 {
1010 	int nid = zone_to_nid(zone);
1011 	int zid = zone_idx(zone);
1012 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1013 
1014 	return &mz->reclaim_stat;
1015 }
1016 
1017 struct zone_reclaim_stat *
1018 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1019 {
1020 	struct page_cgroup *pc;
1021 	struct mem_cgroup_per_zone *mz;
1022 
1023 	if (mem_cgroup_disabled())
1024 		return NULL;
1025 
1026 	pc = lookup_page_cgroup(page);
1027 	/*
1028 	 * Used bit is set without atomic ops but after smp_wmb().
1029 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1030 	 */
1031 	smp_rmb();
1032 	if (!PageCgroupUsed(pc))
1033 		return NULL;
1034 
1035 	mz = page_cgroup_zoneinfo(pc);
1036 	if (!mz)
1037 		return NULL;
1038 
1039 	return &mz->reclaim_stat;
1040 }
1041 
1042 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1043 					struct list_head *dst,
1044 					unsigned long *scanned, int order,
1045 					int mode, struct zone *z,
1046 					struct mem_cgroup *mem_cont,
1047 					int active, int file)
1048 {
1049 	unsigned long nr_taken = 0;
1050 	struct page *page;
1051 	unsigned long scan;
1052 	LIST_HEAD(pc_list);
1053 	struct list_head *src;
1054 	struct page_cgroup *pc, *tmp;
1055 	int nid = zone_to_nid(z);
1056 	int zid = zone_idx(z);
1057 	struct mem_cgroup_per_zone *mz;
1058 	int lru = LRU_FILE * file + active;
1059 	int ret;
1060 
1061 	BUG_ON(!mem_cont);
1062 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1063 	src = &mz->lists[lru];
1064 
1065 	scan = 0;
1066 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1067 		if (scan >= nr_to_scan)
1068 			break;
1069 
1070 		page = pc->page;
1071 		if (unlikely(!PageCgroupUsed(pc)))
1072 			continue;
1073 		if (unlikely(!PageLRU(page)))
1074 			continue;
1075 
1076 		scan++;
1077 		ret = __isolate_lru_page(page, mode, file);
1078 		switch (ret) {
1079 		case 0:
1080 			list_move(&page->lru, dst);
1081 			mem_cgroup_del_lru(page);
1082 			nr_taken++;
1083 			break;
1084 		case -EBUSY:
1085 			/* we don't affect global LRU but rotate in our LRU */
1086 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1087 			break;
1088 		default:
1089 			break;
1090 		}
1091 	}
1092 
1093 	*scanned = scan;
1094 
1095 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1096 				      0, 0, 0, mode);
1097 
1098 	return nr_taken;
1099 }
1100 
1101 #define mem_cgroup_from_res_counter(counter, member)	\
1102 	container_of(counter, struct mem_cgroup, member)
1103 
1104 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1105 {
1106 	if (do_swap_account) {
1107 		if (res_counter_check_under_limit(&mem->res) &&
1108 			res_counter_check_under_limit(&mem->memsw))
1109 			return true;
1110 	} else
1111 		if (res_counter_check_under_limit(&mem->res))
1112 			return true;
1113 	return false;
1114 }
1115 
1116 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1117 {
1118 	struct cgroup *cgrp = memcg->css.cgroup;
1119 	unsigned int swappiness;
1120 
1121 	/* root ? */
1122 	if (cgrp->parent == NULL)
1123 		return vm_swappiness;
1124 
1125 	spin_lock(&memcg->reclaim_param_lock);
1126 	swappiness = memcg->swappiness;
1127 	spin_unlock(&memcg->reclaim_param_lock);
1128 
1129 	return swappiness;
1130 }
1131 
1132 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1133 {
1134 	int cpu;
1135 
1136 	get_online_cpus();
1137 	spin_lock(&mem->pcp_counter_lock);
1138 	for_each_online_cpu(cpu)
1139 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1140 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1141 	spin_unlock(&mem->pcp_counter_lock);
1142 	put_online_cpus();
1143 
1144 	synchronize_rcu();
1145 }
1146 
1147 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1148 {
1149 	int cpu;
1150 
1151 	if (!mem)
1152 		return;
1153 	get_online_cpus();
1154 	spin_lock(&mem->pcp_counter_lock);
1155 	for_each_online_cpu(cpu)
1156 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1157 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1158 	spin_unlock(&mem->pcp_counter_lock);
1159 	put_online_cpus();
1160 }
1161 /*
1162  * 2 routines for checking "mem" is under move_account() or not.
1163  *
1164  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1165  *			  for avoiding race in accounting. If true,
1166  *			  pc->mem_cgroup may be overwritten.
1167  *
1168  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1169  *			  under hierarchy of moving cgroups. This is for
1170  *			  waiting at hith-memory prressure caused by "move".
1171  */
1172 
1173 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1174 {
1175 	VM_BUG_ON(!rcu_read_lock_held());
1176 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1177 }
1178 
1179 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1180 {
1181 	struct mem_cgroup *from;
1182 	struct mem_cgroup *to;
1183 	bool ret = false;
1184 	/*
1185 	 * Unlike task_move routines, we access mc.to, mc.from not under
1186 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1187 	 */
1188 	spin_lock(&mc.lock);
1189 	from = mc.from;
1190 	to = mc.to;
1191 	if (!from)
1192 		goto unlock;
1193 	if (from == mem || to == mem
1194 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1195 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1196 		ret = true;
1197 unlock:
1198 	spin_unlock(&mc.lock);
1199 	return ret;
1200 }
1201 
1202 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1203 {
1204 	if (mc.moving_task && current != mc.moving_task) {
1205 		if (mem_cgroup_under_move(mem)) {
1206 			DEFINE_WAIT(wait);
1207 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1208 			/* moving charge context might have finished. */
1209 			if (mc.moving_task)
1210 				schedule();
1211 			finish_wait(&mc.waitq, &wait);
1212 			return true;
1213 		}
1214 	}
1215 	return false;
1216 }
1217 
1218 /**
1219  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1220  * @memcg: The memory cgroup that went over limit
1221  * @p: Task that is going to be killed
1222  *
1223  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224  * enabled
1225  */
1226 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1227 {
1228 	struct cgroup *task_cgrp;
1229 	struct cgroup *mem_cgrp;
1230 	/*
1231 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1232 	 * on the assumption that OOM is serialized for memory controller.
1233 	 * If this assumption is broken, revisit this code.
1234 	 */
1235 	static char memcg_name[PATH_MAX];
1236 	int ret;
1237 
1238 	if (!memcg || !p)
1239 		return;
1240 
1241 
1242 	rcu_read_lock();
1243 
1244 	mem_cgrp = memcg->css.cgroup;
1245 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1246 
1247 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1248 	if (ret < 0) {
1249 		/*
1250 		 * Unfortunately, we are unable to convert to a useful name
1251 		 * But we'll still print out the usage information
1252 		 */
1253 		rcu_read_unlock();
1254 		goto done;
1255 	}
1256 	rcu_read_unlock();
1257 
1258 	printk(KERN_INFO "Task in %s killed", memcg_name);
1259 
1260 	rcu_read_lock();
1261 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1262 	if (ret < 0) {
1263 		rcu_read_unlock();
1264 		goto done;
1265 	}
1266 	rcu_read_unlock();
1267 
1268 	/*
1269 	 * Continues from above, so we don't need an KERN_ level
1270 	 */
1271 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1272 done:
1273 
1274 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1275 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1276 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1277 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1278 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1279 		"failcnt %llu\n",
1280 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1281 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1282 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1283 }
1284 
1285 /*
1286  * This function returns the number of memcg under hierarchy tree. Returns
1287  * 1(self count) if no children.
1288  */
1289 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1290 {
1291 	int num = 0;
1292 	struct mem_cgroup *iter;
1293 
1294 	for_each_mem_cgroup_tree(iter, mem)
1295 		num++;
1296 	return num;
1297 }
1298 
1299 /*
1300  * Return the memory (and swap, if configured) limit for a memcg.
1301  */
1302 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1303 {
1304 	u64 limit;
1305 	u64 memsw;
1306 
1307 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1308 			total_swap_pages;
1309 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1310 	/*
1311 	 * If memsw is finite and limits the amount of swap space available
1312 	 * to this memcg, return that limit.
1313 	 */
1314 	return min(limit, memsw);
1315 }
1316 
1317 /*
1318  * Visit the first child (need not be the first child as per the ordering
1319  * of the cgroup list, since we track last_scanned_child) of @mem and use
1320  * that to reclaim free pages from.
1321  */
1322 static struct mem_cgroup *
1323 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1324 {
1325 	struct mem_cgroup *ret = NULL;
1326 	struct cgroup_subsys_state *css;
1327 	int nextid, found;
1328 
1329 	if (!root_mem->use_hierarchy) {
1330 		css_get(&root_mem->css);
1331 		ret = root_mem;
1332 	}
1333 
1334 	while (!ret) {
1335 		rcu_read_lock();
1336 		nextid = root_mem->last_scanned_child + 1;
1337 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1338 				   &found);
1339 		if (css && css_tryget(css))
1340 			ret = container_of(css, struct mem_cgroup, css);
1341 
1342 		rcu_read_unlock();
1343 		/* Updates scanning parameter */
1344 		spin_lock(&root_mem->reclaim_param_lock);
1345 		if (!css) {
1346 			/* this means start scan from ID:1 */
1347 			root_mem->last_scanned_child = 0;
1348 		} else
1349 			root_mem->last_scanned_child = found;
1350 		spin_unlock(&root_mem->reclaim_param_lock);
1351 	}
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1358  * we reclaimed from, so that we don't end up penalizing one child extensively
1359  * based on its position in the children list.
1360  *
1361  * root_mem is the original ancestor that we've been reclaim from.
1362  *
1363  * We give up and return to the caller when we visit root_mem twice.
1364  * (other groups can be removed while we're walking....)
1365  *
1366  * If shrink==true, for avoiding to free too much, this returns immedieately.
1367  */
1368 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1369 						struct zone *zone,
1370 						gfp_t gfp_mask,
1371 						unsigned long reclaim_options)
1372 {
1373 	struct mem_cgroup *victim;
1374 	int ret, total = 0;
1375 	int loop = 0;
1376 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1377 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1378 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1379 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1380 
1381 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1382 	if (root_mem->memsw_is_minimum)
1383 		noswap = true;
1384 
1385 	while (1) {
1386 		victim = mem_cgroup_select_victim(root_mem);
1387 		if (victim == root_mem) {
1388 			loop++;
1389 			if (loop >= 1)
1390 				drain_all_stock_async();
1391 			if (loop >= 2) {
1392 				/*
1393 				 * If we have not been able to reclaim
1394 				 * anything, it might because there are
1395 				 * no reclaimable pages under this hierarchy
1396 				 */
1397 				if (!check_soft || !total) {
1398 					css_put(&victim->css);
1399 					break;
1400 				}
1401 				/*
1402 				 * We want to do more targetted reclaim.
1403 				 * excess >> 2 is not to excessive so as to
1404 				 * reclaim too much, nor too less that we keep
1405 				 * coming back to reclaim from this cgroup
1406 				 */
1407 				if (total >= (excess >> 2) ||
1408 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1409 					css_put(&victim->css);
1410 					break;
1411 				}
1412 			}
1413 		}
1414 		if (!mem_cgroup_local_usage(victim)) {
1415 			/* this cgroup's local usage == 0 */
1416 			css_put(&victim->css);
1417 			continue;
1418 		}
1419 		/* we use swappiness of local cgroup */
1420 		if (check_soft)
1421 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1422 				noswap, get_swappiness(victim), zone);
1423 		else
1424 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1425 						noswap, get_swappiness(victim));
1426 		css_put(&victim->css);
1427 		/*
1428 		 * At shrinking usage, we can't check we should stop here or
1429 		 * reclaim more. It's depends on callers. last_scanned_child
1430 		 * will work enough for keeping fairness under tree.
1431 		 */
1432 		if (shrink)
1433 			return ret;
1434 		total += ret;
1435 		if (check_soft) {
1436 			if (res_counter_check_under_soft_limit(&root_mem->res))
1437 				return total;
1438 		} else if (mem_cgroup_check_under_limit(root_mem))
1439 			return 1 + total;
1440 	}
1441 	return total;
1442 }
1443 
1444 /*
1445  * Check OOM-Killer is already running under our hierarchy.
1446  * If someone is running, return false.
1447  */
1448 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1449 {
1450 	int x, lock_count = 0;
1451 	struct mem_cgroup *iter;
1452 
1453 	for_each_mem_cgroup_tree(iter, mem) {
1454 		x = atomic_inc_return(&iter->oom_lock);
1455 		lock_count = max(x, lock_count);
1456 	}
1457 
1458 	if (lock_count == 1)
1459 		return true;
1460 	return false;
1461 }
1462 
1463 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1464 {
1465 	struct mem_cgroup *iter;
1466 
1467 	/*
1468 	 * When a new child is created while the hierarchy is under oom,
1469 	 * mem_cgroup_oom_lock() may not be called. We have to use
1470 	 * atomic_add_unless() here.
1471 	 */
1472 	for_each_mem_cgroup_tree(iter, mem)
1473 		atomic_add_unless(&iter->oom_lock, -1, 0);
1474 	return 0;
1475 }
1476 
1477 
1478 static DEFINE_MUTEX(memcg_oom_mutex);
1479 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1480 
1481 struct oom_wait_info {
1482 	struct mem_cgroup *mem;
1483 	wait_queue_t	wait;
1484 };
1485 
1486 static int memcg_oom_wake_function(wait_queue_t *wait,
1487 	unsigned mode, int sync, void *arg)
1488 {
1489 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1490 	struct oom_wait_info *oom_wait_info;
1491 
1492 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493 
1494 	if (oom_wait_info->mem == wake_mem)
1495 		goto wakeup;
1496 	/* if no hierarchy, no match */
1497 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1498 		return 0;
1499 	/*
1500 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1501 	 * Then we can use css_is_ancestor without taking care of RCU.
1502 	 */
1503 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1504 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1505 		return 0;
1506 
1507 wakeup:
1508 	return autoremove_wake_function(wait, mode, sync, arg);
1509 }
1510 
1511 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1512 {
1513 	/* for filtering, pass "mem" as argument. */
1514 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1515 }
1516 
1517 static void memcg_oom_recover(struct mem_cgroup *mem)
1518 {
1519 	if (mem && atomic_read(&mem->oom_lock))
1520 		memcg_wakeup_oom(mem);
1521 }
1522 
1523 /*
1524  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1525  */
1526 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1527 {
1528 	struct oom_wait_info owait;
1529 	bool locked, need_to_kill;
1530 
1531 	owait.mem = mem;
1532 	owait.wait.flags = 0;
1533 	owait.wait.func = memcg_oom_wake_function;
1534 	owait.wait.private = current;
1535 	INIT_LIST_HEAD(&owait.wait.task_list);
1536 	need_to_kill = true;
1537 	/* At first, try to OOM lock hierarchy under mem.*/
1538 	mutex_lock(&memcg_oom_mutex);
1539 	locked = mem_cgroup_oom_lock(mem);
1540 	/*
1541 	 * Even if signal_pending(), we can't quit charge() loop without
1542 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1543 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1544 	 */
1545 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1546 	if (!locked || mem->oom_kill_disable)
1547 		need_to_kill = false;
1548 	if (locked)
1549 		mem_cgroup_oom_notify(mem);
1550 	mutex_unlock(&memcg_oom_mutex);
1551 
1552 	if (need_to_kill) {
1553 		finish_wait(&memcg_oom_waitq, &owait.wait);
1554 		mem_cgroup_out_of_memory(mem, mask);
1555 	} else {
1556 		schedule();
1557 		finish_wait(&memcg_oom_waitq, &owait.wait);
1558 	}
1559 	mutex_lock(&memcg_oom_mutex);
1560 	mem_cgroup_oom_unlock(mem);
1561 	memcg_wakeup_oom(mem);
1562 	mutex_unlock(&memcg_oom_mutex);
1563 
1564 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1565 		return false;
1566 	/* Give chance to dying process */
1567 	schedule_timeout(1);
1568 	return true;
1569 }
1570 
1571 /*
1572  * Currently used to update mapped file statistics, but the routine can be
1573  * generalized to update other statistics as well.
1574  *
1575  * Notes: Race condition
1576  *
1577  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1578  * it tends to be costly. But considering some conditions, we doesn't need
1579  * to do so _always_.
1580  *
1581  * Considering "charge", lock_page_cgroup() is not required because all
1582  * file-stat operations happen after a page is attached to radix-tree. There
1583  * are no race with "charge".
1584  *
1585  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1586  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1587  * if there are race with "uncharge". Statistics itself is properly handled
1588  * by flags.
1589  *
1590  * Considering "move", this is an only case we see a race. To make the race
1591  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1592  * possibility of race condition. If there is, we take a lock.
1593  */
1594 
1595 static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1596 {
1597 	struct mem_cgroup *mem;
1598 	struct page_cgroup *pc = lookup_page_cgroup(page);
1599 	bool need_unlock = false;
1600 
1601 	if (unlikely(!pc))
1602 		return;
1603 
1604 	rcu_read_lock();
1605 	mem = pc->mem_cgroup;
1606 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1607 		goto out;
1608 	/* pc->mem_cgroup is unstable ? */
1609 	if (unlikely(mem_cgroup_stealed(mem))) {
1610 		/* take a lock against to access pc->mem_cgroup */
1611 		lock_page_cgroup(pc);
1612 		need_unlock = true;
1613 		mem = pc->mem_cgroup;
1614 		if (!mem || !PageCgroupUsed(pc))
1615 			goto out;
1616 	}
1617 
1618 	this_cpu_add(mem->stat->count[idx], val);
1619 
1620 	switch (idx) {
1621 	case MEM_CGROUP_STAT_FILE_MAPPED:
1622 		if (val > 0)
1623 			SetPageCgroupFileMapped(pc);
1624 		else if (!page_mapped(page))
1625 			ClearPageCgroupFileMapped(pc);
1626 		break;
1627 	default:
1628 		BUG();
1629 	}
1630 
1631 out:
1632 	if (unlikely(need_unlock))
1633 		unlock_page_cgroup(pc);
1634 	rcu_read_unlock();
1635 	return;
1636 }
1637 
1638 void mem_cgroup_update_file_mapped(struct page *page, int val)
1639 {
1640 	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
1641 }
1642 
1643 /*
1644  * size of first charge trial. "32" comes from vmscan.c's magic value.
1645  * TODO: maybe necessary to use big numbers in big irons.
1646  */
1647 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1648 struct memcg_stock_pcp {
1649 	struct mem_cgroup *cached; /* this never be root cgroup */
1650 	int charge;
1651 	struct work_struct work;
1652 };
1653 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1654 static atomic_t memcg_drain_count;
1655 
1656 /*
1657  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1658  * from local stock and true is returned. If the stock is 0 or charges from a
1659  * cgroup which is not current target, returns false. This stock will be
1660  * refilled.
1661  */
1662 static bool consume_stock(struct mem_cgroup *mem)
1663 {
1664 	struct memcg_stock_pcp *stock;
1665 	bool ret = true;
1666 
1667 	stock = &get_cpu_var(memcg_stock);
1668 	if (mem == stock->cached && stock->charge)
1669 		stock->charge -= PAGE_SIZE;
1670 	else /* need to call res_counter_charge */
1671 		ret = false;
1672 	put_cpu_var(memcg_stock);
1673 	return ret;
1674 }
1675 
1676 /*
1677  * Returns stocks cached in percpu to res_counter and reset cached information.
1678  */
1679 static void drain_stock(struct memcg_stock_pcp *stock)
1680 {
1681 	struct mem_cgroup *old = stock->cached;
1682 
1683 	if (stock->charge) {
1684 		res_counter_uncharge(&old->res, stock->charge);
1685 		if (do_swap_account)
1686 			res_counter_uncharge(&old->memsw, stock->charge);
1687 	}
1688 	stock->cached = NULL;
1689 	stock->charge = 0;
1690 }
1691 
1692 /*
1693  * This must be called under preempt disabled or must be called by
1694  * a thread which is pinned to local cpu.
1695  */
1696 static void drain_local_stock(struct work_struct *dummy)
1697 {
1698 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1699 	drain_stock(stock);
1700 }
1701 
1702 /*
1703  * Cache charges(val) which is from res_counter, to local per_cpu area.
1704  * This will be consumed by consume_stock() function, later.
1705  */
1706 static void refill_stock(struct mem_cgroup *mem, int val)
1707 {
1708 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1709 
1710 	if (stock->cached != mem) { /* reset if necessary */
1711 		drain_stock(stock);
1712 		stock->cached = mem;
1713 	}
1714 	stock->charge += val;
1715 	put_cpu_var(memcg_stock);
1716 }
1717 
1718 /*
1719  * Tries to drain stocked charges in other cpus. This function is asynchronous
1720  * and just put a work per cpu for draining localy on each cpu. Caller can
1721  * expects some charges will be back to res_counter later but cannot wait for
1722  * it.
1723  */
1724 static void drain_all_stock_async(void)
1725 {
1726 	int cpu;
1727 	/* This function is for scheduling "drain" in asynchronous way.
1728 	 * The result of "drain" is not directly handled by callers. Then,
1729 	 * if someone is calling drain, we don't have to call drain more.
1730 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1731 	 * there is a race. We just do loose check here.
1732 	 */
1733 	if (atomic_read(&memcg_drain_count))
1734 		return;
1735 	/* Notify other cpus that system-wide "drain" is running */
1736 	atomic_inc(&memcg_drain_count);
1737 	get_online_cpus();
1738 	for_each_online_cpu(cpu) {
1739 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1740 		schedule_work_on(cpu, &stock->work);
1741 	}
1742  	put_online_cpus();
1743 	atomic_dec(&memcg_drain_count);
1744 	/* We don't wait for flush_work */
1745 }
1746 
1747 /* This is a synchronous drain interface. */
1748 static void drain_all_stock_sync(void)
1749 {
1750 	/* called when force_empty is called */
1751 	atomic_inc(&memcg_drain_count);
1752 	schedule_on_each_cpu(drain_local_stock);
1753 	atomic_dec(&memcg_drain_count);
1754 }
1755 
1756 /*
1757  * This function drains percpu counter value from DEAD cpu and
1758  * move it to local cpu. Note that this function can be preempted.
1759  */
1760 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1761 {
1762 	int i;
1763 
1764 	spin_lock(&mem->pcp_counter_lock);
1765 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1766 		s64 x = per_cpu(mem->stat->count[i], cpu);
1767 
1768 		per_cpu(mem->stat->count[i], cpu) = 0;
1769 		mem->nocpu_base.count[i] += x;
1770 	}
1771 	/* need to clear ON_MOVE value, works as a kind of lock. */
1772 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1773 	spin_unlock(&mem->pcp_counter_lock);
1774 }
1775 
1776 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1777 {
1778 	int idx = MEM_CGROUP_ON_MOVE;
1779 
1780 	spin_lock(&mem->pcp_counter_lock);
1781 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1782 	spin_unlock(&mem->pcp_counter_lock);
1783 }
1784 
1785 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1786 					unsigned long action,
1787 					void *hcpu)
1788 {
1789 	int cpu = (unsigned long)hcpu;
1790 	struct memcg_stock_pcp *stock;
1791 	struct mem_cgroup *iter;
1792 
1793 	if ((action == CPU_ONLINE)) {
1794 		for_each_mem_cgroup_all(iter)
1795 			synchronize_mem_cgroup_on_move(iter, cpu);
1796 		return NOTIFY_OK;
1797 	}
1798 
1799 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1800 		return NOTIFY_OK;
1801 
1802 	for_each_mem_cgroup_all(iter)
1803 		mem_cgroup_drain_pcp_counter(iter, cpu);
1804 
1805 	stock = &per_cpu(memcg_stock, cpu);
1806 	drain_stock(stock);
1807 	return NOTIFY_OK;
1808 }
1809 
1810 
1811 /* See __mem_cgroup_try_charge() for details */
1812 enum {
1813 	CHARGE_OK,		/* success */
1814 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1815 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1816 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1817 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1818 };
1819 
1820 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1821 				int csize, bool oom_check)
1822 {
1823 	struct mem_cgroup *mem_over_limit;
1824 	struct res_counter *fail_res;
1825 	unsigned long flags = 0;
1826 	int ret;
1827 
1828 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1829 
1830 	if (likely(!ret)) {
1831 		if (!do_swap_account)
1832 			return CHARGE_OK;
1833 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1834 		if (likely(!ret))
1835 			return CHARGE_OK;
1836 
1837 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1838 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1839 	} else
1840 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1841 
1842 	if (csize > PAGE_SIZE) /* change csize and retry */
1843 		return CHARGE_RETRY;
1844 
1845 	if (!(gfp_mask & __GFP_WAIT))
1846 		return CHARGE_WOULDBLOCK;
1847 
1848 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1849 					gfp_mask, flags);
1850 	/*
1851 	 * try_to_free_mem_cgroup_pages() might not give us a full
1852 	 * picture of reclaim. Some pages are reclaimed and might be
1853 	 * moved to swap cache or just unmapped from the cgroup.
1854 	 * Check the limit again to see if the reclaim reduced the
1855 	 * current usage of the cgroup before giving up
1856 	 */
1857 	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1858 		return CHARGE_RETRY;
1859 
1860 	/*
1861 	 * At task move, charge accounts can be doubly counted. So, it's
1862 	 * better to wait until the end of task_move if something is going on.
1863 	 */
1864 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1865 		return CHARGE_RETRY;
1866 
1867 	/* If we don't need to call oom-killer at el, return immediately */
1868 	if (!oom_check)
1869 		return CHARGE_NOMEM;
1870 	/* check OOM */
1871 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1872 		return CHARGE_OOM_DIE;
1873 
1874 	return CHARGE_RETRY;
1875 }
1876 
1877 /*
1878  * Unlike exported interface, "oom" parameter is added. if oom==true,
1879  * oom-killer can be invoked.
1880  */
1881 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1882 		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1883 {
1884 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1885 	struct mem_cgroup *mem = NULL;
1886 	int ret;
1887 	int csize = CHARGE_SIZE;
1888 
1889 	/*
1890 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1891 	 * in system level. So, allow to go ahead dying process in addition to
1892 	 * MEMDIE process.
1893 	 */
1894 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1895 		     || fatal_signal_pending(current)))
1896 		goto bypass;
1897 
1898 	/*
1899 	 * We always charge the cgroup the mm_struct belongs to.
1900 	 * The mm_struct's mem_cgroup changes on task migration if the
1901 	 * thread group leader migrates. It's possible that mm is not
1902 	 * set, if so charge the init_mm (happens for pagecache usage).
1903 	 */
1904 	if (!*memcg && !mm)
1905 		goto bypass;
1906 again:
1907 	if (*memcg) { /* css should be a valid one */
1908 		mem = *memcg;
1909 		VM_BUG_ON(css_is_removed(&mem->css));
1910 		if (mem_cgroup_is_root(mem))
1911 			goto done;
1912 		if (consume_stock(mem))
1913 			goto done;
1914 		css_get(&mem->css);
1915 	} else {
1916 		struct task_struct *p;
1917 
1918 		rcu_read_lock();
1919 		p = rcu_dereference(mm->owner);
1920 		VM_BUG_ON(!p);
1921 		/*
1922 		 * because we don't have task_lock(), "p" can exit while
1923 		 * we're here. In that case, "mem" can point to root
1924 		 * cgroup but never be NULL. (and task_struct itself is freed
1925 		 * by RCU, cgroup itself is RCU safe.) Then, we have small
1926 		 * risk here to get wrong cgroup. But such kind of mis-account
1927 		 * by race always happens because we don't have cgroup_mutex().
1928 		 * It's overkill and we allow that small race, here.
1929 		 */
1930 		mem = mem_cgroup_from_task(p);
1931 		VM_BUG_ON(!mem);
1932 		if (mem_cgroup_is_root(mem)) {
1933 			rcu_read_unlock();
1934 			goto done;
1935 		}
1936 		if (consume_stock(mem)) {
1937 			/*
1938 			 * It seems dagerous to access memcg without css_get().
1939 			 * But considering how consume_stok works, it's not
1940 			 * necessary. If consume_stock success, some charges
1941 			 * from this memcg are cached on this cpu. So, we
1942 			 * don't need to call css_get()/css_tryget() before
1943 			 * calling consume_stock().
1944 			 */
1945 			rcu_read_unlock();
1946 			goto done;
1947 		}
1948 		/* after here, we may be blocked. we need to get refcnt */
1949 		if (!css_tryget(&mem->css)) {
1950 			rcu_read_unlock();
1951 			goto again;
1952 		}
1953 		rcu_read_unlock();
1954 	}
1955 
1956 	do {
1957 		bool oom_check;
1958 
1959 		/* If killed, bypass charge */
1960 		if (fatal_signal_pending(current)) {
1961 			css_put(&mem->css);
1962 			goto bypass;
1963 		}
1964 
1965 		oom_check = false;
1966 		if (oom && !nr_oom_retries) {
1967 			oom_check = true;
1968 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1969 		}
1970 
1971 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1972 
1973 		switch (ret) {
1974 		case CHARGE_OK:
1975 			break;
1976 		case CHARGE_RETRY: /* not in OOM situation but retry */
1977 			csize = PAGE_SIZE;
1978 			css_put(&mem->css);
1979 			mem = NULL;
1980 			goto again;
1981 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1982 			css_put(&mem->css);
1983 			goto nomem;
1984 		case CHARGE_NOMEM: /* OOM routine works */
1985 			if (!oom) {
1986 				css_put(&mem->css);
1987 				goto nomem;
1988 			}
1989 			/* If oom, we never return -ENOMEM */
1990 			nr_oom_retries--;
1991 			break;
1992 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1993 			css_put(&mem->css);
1994 			goto bypass;
1995 		}
1996 	} while (ret != CHARGE_OK);
1997 
1998 	if (csize > PAGE_SIZE)
1999 		refill_stock(mem, csize - PAGE_SIZE);
2000 	css_put(&mem->css);
2001 done:
2002 	*memcg = mem;
2003 	return 0;
2004 nomem:
2005 	*memcg = NULL;
2006 	return -ENOMEM;
2007 bypass:
2008 	*memcg = NULL;
2009 	return 0;
2010 }
2011 
2012 /*
2013  * Somemtimes we have to undo a charge we got by try_charge().
2014  * This function is for that and do uncharge, put css's refcnt.
2015  * gotten by try_charge().
2016  */
2017 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2018 							unsigned long count)
2019 {
2020 	if (!mem_cgroup_is_root(mem)) {
2021 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2022 		if (do_swap_account)
2023 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2024 	}
2025 }
2026 
2027 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
2028 {
2029 	__mem_cgroup_cancel_charge(mem, 1);
2030 }
2031 
2032 /*
2033  * A helper function to get mem_cgroup from ID. must be called under
2034  * rcu_read_lock(). The caller must check css_is_removed() or some if
2035  * it's concern. (dropping refcnt from swap can be called against removed
2036  * memcg.)
2037  */
2038 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2039 {
2040 	struct cgroup_subsys_state *css;
2041 
2042 	/* ID 0 is unused ID */
2043 	if (!id)
2044 		return NULL;
2045 	css = css_lookup(&mem_cgroup_subsys, id);
2046 	if (!css)
2047 		return NULL;
2048 	return container_of(css, struct mem_cgroup, css);
2049 }
2050 
2051 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2052 {
2053 	struct mem_cgroup *mem = NULL;
2054 	struct page_cgroup *pc;
2055 	unsigned short id;
2056 	swp_entry_t ent;
2057 
2058 	VM_BUG_ON(!PageLocked(page));
2059 
2060 	pc = lookup_page_cgroup(page);
2061 	lock_page_cgroup(pc);
2062 	if (PageCgroupUsed(pc)) {
2063 		mem = pc->mem_cgroup;
2064 		if (mem && !css_tryget(&mem->css))
2065 			mem = NULL;
2066 	} else if (PageSwapCache(page)) {
2067 		ent.val = page_private(page);
2068 		id = lookup_swap_cgroup(ent);
2069 		rcu_read_lock();
2070 		mem = mem_cgroup_lookup(id);
2071 		if (mem && !css_tryget(&mem->css))
2072 			mem = NULL;
2073 		rcu_read_unlock();
2074 	}
2075 	unlock_page_cgroup(pc);
2076 	return mem;
2077 }
2078 
2079 /*
2080  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2081  * USED state. If already USED, uncharge and return.
2082  */
2083 
2084 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2085 				     struct page_cgroup *pc,
2086 				     enum charge_type ctype)
2087 {
2088 	/* try_charge() can return NULL to *memcg, taking care of it. */
2089 	if (!mem)
2090 		return;
2091 
2092 	lock_page_cgroup(pc);
2093 	if (unlikely(PageCgroupUsed(pc))) {
2094 		unlock_page_cgroup(pc);
2095 		mem_cgroup_cancel_charge(mem);
2096 		return;
2097 	}
2098 
2099 	pc->mem_cgroup = mem;
2100 	/*
2101 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2102 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2103 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2104 	 * before USED bit, we need memory barrier here.
2105 	 * See mem_cgroup_add_lru_list(), etc.
2106  	 */
2107 	smp_wmb();
2108 	switch (ctype) {
2109 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2110 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2111 		SetPageCgroupCache(pc);
2112 		SetPageCgroupUsed(pc);
2113 		break;
2114 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2115 		ClearPageCgroupCache(pc);
2116 		SetPageCgroupUsed(pc);
2117 		break;
2118 	default:
2119 		break;
2120 	}
2121 
2122 	mem_cgroup_charge_statistics(mem, pc, true);
2123 
2124 	unlock_page_cgroup(pc);
2125 	/*
2126 	 * "charge_statistics" updated event counter. Then, check it.
2127 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2128 	 * if they exceeds softlimit.
2129 	 */
2130 	memcg_check_events(mem, pc->page);
2131 }
2132 
2133 /**
2134  * __mem_cgroup_move_account - move account of the page
2135  * @pc:	page_cgroup of the page.
2136  * @from: mem_cgroup which the page is moved from.
2137  * @to:	mem_cgroup which the page is moved to. @from != @to.
2138  * @uncharge: whether we should call uncharge and css_put against @from.
2139  *
2140  * The caller must confirm following.
2141  * - page is not on LRU (isolate_page() is useful.)
2142  * - the pc is locked, used, and ->mem_cgroup points to @from.
2143  *
2144  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2145  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2146  * true, this function does "uncharge" from old cgroup, but it doesn't if
2147  * @uncharge is false, so a caller should do "uncharge".
2148  */
2149 
2150 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2151 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2152 {
2153 	VM_BUG_ON(from == to);
2154 	VM_BUG_ON(PageLRU(pc->page));
2155 	VM_BUG_ON(!PageCgroupLocked(pc));
2156 	VM_BUG_ON(!PageCgroupUsed(pc));
2157 	VM_BUG_ON(pc->mem_cgroup != from);
2158 
2159 	if (PageCgroupFileMapped(pc)) {
2160 		/* Update mapped_file data for mem_cgroup */
2161 		preempt_disable();
2162 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2163 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2164 		preempt_enable();
2165 	}
2166 	mem_cgroup_charge_statistics(from, pc, false);
2167 	if (uncharge)
2168 		/* This is not "cancel", but cancel_charge does all we need. */
2169 		mem_cgroup_cancel_charge(from);
2170 
2171 	/* caller should have done css_get */
2172 	pc->mem_cgroup = to;
2173 	mem_cgroup_charge_statistics(to, pc, true);
2174 	/*
2175 	 * We charges against "to" which may not have any tasks. Then, "to"
2176 	 * can be under rmdir(). But in current implementation, caller of
2177 	 * this function is just force_empty() and move charge, so it's
2178 	 * garanteed that "to" is never removed. So, we don't check rmdir
2179 	 * status here.
2180 	 */
2181 }
2182 
2183 /*
2184  * check whether the @pc is valid for moving account and call
2185  * __mem_cgroup_move_account()
2186  */
2187 static int mem_cgroup_move_account(struct page_cgroup *pc,
2188 		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2189 {
2190 	int ret = -EINVAL;
2191 	lock_page_cgroup(pc);
2192 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2193 		__mem_cgroup_move_account(pc, from, to, uncharge);
2194 		ret = 0;
2195 	}
2196 	unlock_page_cgroup(pc);
2197 	/*
2198 	 * check events
2199 	 */
2200 	memcg_check_events(to, pc->page);
2201 	memcg_check_events(from, pc->page);
2202 	return ret;
2203 }
2204 
2205 /*
2206  * move charges to its parent.
2207  */
2208 
2209 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2210 				  struct mem_cgroup *child,
2211 				  gfp_t gfp_mask)
2212 {
2213 	struct page *page = pc->page;
2214 	struct cgroup *cg = child->css.cgroup;
2215 	struct cgroup *pcg = cg->parent;
2216 	struct mem_cgroup *parent;
2217 	int ret;
2218 
2219 	/* Is ROOT ? */
2220 	if (!pcg)
2221 		return -EINVAL;
2222 
2223 	ret = -EBUSY;
2224 	if (!get_page_unless_zero(page))
2225 		goto out;
2226 	if (isolate_lru_page(page))
2227 		goto put;
2228 
2229 	parent = mem_cgroup_from_cont(pcg);
2230 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2231 	if (ret || !parent)
2232 		goto put_back;
2233 
2234 	ret = mem_cgroup_move_account(pc, child, parent, true);
2235 	if (ret)
2236 		mem_cgroup_cancel_charge(parent);
2237 put_back:
2238 	putback_lru_page(page);
2239 put:
2240 	put_page(page);
2241 out:
2242 	return ret;
2243 }
2244 
2245 /*
2246  * Charge the memory controller for page usage.
2247  * Return
2248  * 0 if the charge was successful
2249  * < 0 if the cgroup is over its limit
2250  */
2251 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2252 				gfp_t gfp_mask, enum charge_type ctype)
2253 {
2254 	struct mem_cgroup *mem = NULL;
2255 	struct page_cgroup *pc;
2256 	int ret;
2257 
2258 	pc = lookup_page_cgroup(page);
2259 	/* can happen at boot */
2260 	if (unlikely(!pc))
2261 		return 0;
2262 	prefetchw(pc);
2263 
2264 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2265 	if (ret || !mem)
2266 		return ret;
2267 
2268 	__mem_cgroup_commit_charge(mem, pc, ctype);
2269 	return 0;
2270 }
2271 
2272 int mem_cgroup_newpage_charge(struct page *page,
2273 			      struct mm_struct *mm, gfp_t gfp_mask)
2274 {
2275 	if (mem_cgroup_disabled())
2276 		return 0;
2277 	if (PageCompound(page))
2278 		return 0;
2279 	/*
2280 	 * If already mapped, we don't have to account.
2281 	 * If page cache, page->mapping has address_space.
2282 	 * But page->mapping may have out-of-use anon_vma pointer,
2283 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2284 	 * is NULL.
2285   	 */
2286 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2287 		return 0;
2288 	if (unlikely(!mm))
2289 		mm = &init_mm;
2290 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2291 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2292 }
2293 
2294 static void
2295 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2296 					enum charge_type ctype);
2297 
2298 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2299 				gfp_t gfp_mask)
2300 {
2301 	int ret;
2302 
2303 	if (mem_cgroup_disabled())
2304 		return 0;
2305 	if (PageCompound(page))
2306 		return 0;
2307 	/*
2308 	 * Corner case handling. This is called from add_to_page_cache()
2309 	 * in usual. But some FS (shmem) precharges this page before calling it
2310 	 * and call add_to_page_cache() with GFP_NOWAIT.
2311 	 *
2312 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2313 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2314 	 * charge twice. (It works but has to pay a bit larger cost.)
2315 	 * And when the page is SwapCache, it should take swap information
2316 	 * into account. This is under lock_page() now.
2317 	 */
2318 	if (!(gfp_mask & __GFP_WAIT)) {
2319 		struct page_cgroup *pc;
2320 
2321 		pc = lookup_page_cgroup(page);
2322 		if (!pc)
2323 			return 0;
2324 		lock_page_cgroup(pc);
2325 		if (PageCgroupUsed(pc)) {
2326 			unlock_page_cgroup(pc);
2327 			return 0;
2328 		}
2329 		unlock_page_cgroup(pc);
2330 	}
2331 
2332 	if (unlikely(!mm))
2333 		mm = &init_mm;
2334 
2335 	if (page_is_file_cache(page))
2336 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2337 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2338 
2339 	/* shmem */
2340 	if (PageSwapCache(page)) {
2341 		struct mem_cgroup *mem = NULL;
2342 
2343 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2344 		if (!ret)
2345 			__mem_cgroup_commit_charge_swapin(page, mem,
2346 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2347 	} else
2348 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2349 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2350 
2351 	return ret;
2352 }
2353 
2354 /*
2355  * While swap-in, try_charge -> commit or cancel, the page is locked.
2356  * And when try_charge() successfully returns, one refcnt to memcg without
2357  * struct page_cgroup is acquired. This refcnt will be consumed by
2358  * "commit()" or removed by "cancel()"
2359  */
2360 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2361 				 struct page *page,
2362 				 gfp_t mask, struct mem_cgroup **ptr)
2363 {
2364 	struct mem_cgroup *mem;
2365 	int ret;
2366 
2367 	if (mem_cgroup_disabled())
2368 		return 0;
2369 
2370 	if (!do_swap_account)
2371 		goto charge_cur_mm;
2372 	/*
2373 	 * A racing thread's fault, or swapoff, may have already updated
2374 	 * the pte, and even removed page from swap cache: in those cases
2375 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2376 	 * KSM case which does need to charge the page.
2377 	 */
2378 	if (!PageSwapCache(page))
2379 		goto charge_cur_mm;
2380 	mem = try_get_mem_cgroup_from_page(page);
2381 	if (!mem)
2382 		goto charge_cur_mm;
2383 	*ptr = mem;
2384 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2385 	css_put(&mem->css);
2386 	return ret;
2387 charge_cur_mm:
2388 	if (unlikely(!mm))
2389 		mm = &init_mm;
2390 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2391 }
2392 
2393 static void
2394 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2395 					enum charge_type ctype)
2396 {
2397 	struct page_cgroup *pc;
2398 
2399 	if (mem_cgroup_disabled())
2400 		return;
2401 	if (!ptr)
2402 		return;
2403 	cgroup_exclude_rmdir(&ptr->css);
2404 	pc = lookup_page_cgroup(page);
2405 	mem_cgroup_lru_del_before_commit_swapcache(page);
2406 	__mem_cgroup_commit_charge(ptr, pc, ctype);
2407 	mem_cgroup_lru_add_after_commit_swapcache(page);
2408 	/*
2409 	 * Now swap is on-memory. This means this page may be
2410 	 * counted both as mem and swap....double count.
2411 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2412 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2413 	 * may call delete_from_swap_cache() before reach here.
2414 	 */
2415 	if (do_swap_account && PageSwapCache(page)) {
2416 		swp_entry_t ent = {.val = page_private(page)};
2417 		unsigned short id;
2418 		struct mem_cgroup *memcg;
2419 
2420 		id = swap_cgroup_record(ent, 0);
2421 		rcu_read_lock();
2422 		memcg = mem_cgroup_lookup(id);
2423 		if (memcg) {
2424 			/*
2425 			 * This recorded memcg can be obsolete one. So, avoid
2426 			 * calling css_tryget
2427 			 */
2428 			if (!mem_cgroup_is_root(memcg))
2429 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2430 			mem_cgroup_swap_statistics(memcg, false);
2431 			mem_cgroup_put(memcg);
2432 		}
2433 		rcu_read_unlock();
2434 	}
2435 	/*
2436 	 * At swapin, we may charge account against cgroup which has no tasks.
2437 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2438 	 * In that case, we need to call pre_destroy() again. check it here.
2439 	 */
2440 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2441 }
2442 
2443 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2444 {
2445 	__mem_cgroup_commit_charge_swapin(page, ptr,
2446 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2447 }
2448 
2449 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2450 {
2451 	if (mem_cgroup_disabled())
2452 		return;
2453 	if (!mem)
2454 		return;
2455 	mem_cgroup_cancel_charge(mem);
2456 }
2457 
2458 static void
2459 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2460 {
2461 	struct memcg_batch_info *batch = NULL;
2462 	bool uncharge_memsw = true;
2463 	/* If swapout, usage of swap doesn't decrease */
2464 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2465 		uncharge_memsw = false;
2466 
2467 	batch = &current->memcg_batch;
2468 	/*
2469 	 * In usual, we do css_get() when we remember memcg pointer.
2470 	 * But in this case, we keep res->usage until end of a series of
2471 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2472 	 */
2473 	if (!batch->memcg)
2474 		batch->memcg = mem;
2475 	/*
2476 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2477 	 * In those cases, all pages freed continously can be expected to be in
2478 	 * the same cgroup and we have chance to coalesce uncharges.
2479 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2480 	 * because we want to do uncharge as soon as possible.
2481 	 */
2482 
2483 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2484 		goto direct_uncharge;
2485 
2486 	/*
2487 	 * In typical case, batch->memcg == mem. This means we can
2488 	 * merge a series of uncharges to an uncharge of res_counter.
2489 	 * If not, we uncharge res_counter ony by one.
2490 	 */
2491 	if (batch->memcg != mem)
2492 		goto direct_uncharge;
2493 	/* remember freed charge and uncharge it later */
2494 	batch->bytes += PAGE_SIZE;
2495 	if (uncharge_memsw)
2496 		batch->memsw_bytes += PAGE_SIZE;
2497 	return;
2498 direct_uncharge:
2499 	res_counter_uncharge(&mem->res, PAGE_SIZE);
2500 	if (uncharge_memsw)
2501 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2502 	if (unlikely(batch->memcg != mem))
2503 		memcg_oom_recover(mem);
2504 	return;
2505 }
2506 
2507 /*
2508  * uncharge if !page_mapped(page)
2509  */
2510 static struct mem_cgroup *
2511 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2512 {
2513 	struct page_cgroup *pc;
2514 	struct mem_cgroup *mem = NULL;
2515 
2516 	if (mem_cgroup_disabled())
2517 		return NULL;
2518 
2519 	if (PageSwapCache(page))
2520 		return NULL;
2521 
2522 	/*
2523 	 * Check if our page_cgroup is valid
2524 	 */
2525 	pc = lookup_page_cgroup(page);
2526 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2527 		return NULL;
2528 
2529 	lock_page_cgroup(pc);
2530 
2531 	mem = pc->mem_cgroup;
2532 
2533 	if (!PageCgroupUsed(pc))
2534 		goto unlock_out;
2535 
2536 	switch (ctype) {
2537 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2538 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2539 		/* See mem_cgroup_prepare_migration() */
2540 		if (page_mapped(page) || PageCgroupMigration(pc))
2541 			goto unlock_out;
2542 		break;
2543 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2544 		if (!PageAnon(page)) {	/* Shared memory */
2545 			if (page->mapping && !page_is_file_cache(page))
2546 				goto unlock_out;
2547 		} else if (page_mapped(page)) /* Anon */
2548 				goto unlock_out;
2549 		break;
2550 	default:
2551 		break;
2552 	}
2553 
2554 	mem_cgroup_charge_statistics(mem, pc, false);
2555 
2556 	ClearPageCgroupUsed(pc);
2557 	/*
2558 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2559 	 * freed from LRU. This is safe because uncharged page is expected not
2560 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2561 	 * special functions.
2562 	 */
2563 
2564 	unlock_page_cgroup(pc);
2565 	/*
2566 	 * even after unlock, we have mem->res.usage here and this memcg
2567 	 * will never be freed.
2568 	 */
2569 	memcg_check_events(mem, page);
2570 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2571 		mem_cgroup_swap_statistics(mem, true);
2572 		mem_cgroup_get(mem);
2573 	}
2574 	if (!mem_cgroup_is_root(mem))
2575 		__do_uncharge(mem, ctype);
2576 
2577 	return mem;
2578 
2579 unlock_out:
2580 	unlock_page_cgroup(pc);
2581 	return NULL;
2582 }
2583 
2584 void mem_cgroup_uncharge_page(struct page *page)
2585 {
2586 	/* early check. */
2587 	if (page_mapped(page))
2588 		return;
2589 	if (page->mapping && !PageAnon(page))
2590 		return;
2591 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2592 }
2593 
2594 void mem_cgroup_uncharge_cache_page(struct page *page)
2595 {
2596 	VM_BUG_ON(page_mapped(page));
2597 	VM_BUG_ON(page->mapping);
2598 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2599 }
2600 
2601 /*
2602  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2603  * In that cases, pages are freed continuously and we can expect pages
2604  * are in the same memcg. All these calls itself limits the number of
2605  * pages freed at once, then uncharge_start/end() is called properly.
2606  * This may be called prural(2) times in a context,
2607  */
2608 
2609 void mem_cgroup_uncharge_start(void)
2610 {
2611 	current->memcg_batch.do_batch++;
2612 	/* We can do nest. */
2613 	if (current->memcg_batch.do_batch == 1) {
2614 		current->memcg_batch.memcg = NULL;
2615 		current->memcg_batch.bytes = 0;
2616 		current->memcg_batch.memsw_bytes = 0;
2617 	}
2618 }
2619 
2620 void mem_cgroup_uncharge_end(void)
2621 {
2622 	struct memcg_batch_info *batch = &current->memcg_batch;
2623 
2624 	if (!batch->do_batch)
2625 		return;
2626 
2627 	batch->do_batch--;
2628 	if (batch->do_batch) /* If stacked, do nothing. */
2629 		return;
2630 
2631 	if (!batch->memcg)
2632 		return;
2633 	/*
2634 	 * This "batch->memcg" is valid without any css_get/put etc...
2635 	 * bacause we hide charges behind us.
2636 	 */
2637 	if (batch->bytes)
2638 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2639 	if (batch->memsw_bytes)
2640 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2641 	memcg_oom_recover(batch->memcg);
2642 	/* forget this pointer (for sanity check) */
2643 	batch->memcg = NULL;
2644 }
2645 
2646 #ifdef CONFIG_SWAP
2647 /*
2648  * called after __delete_from_swap_cache() and drop "page" account.
2649  * memcg information is recorded to swap_cgroup of "ent"
2650  */
2651 void
2652 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2653 {
2654 	struct mem_cgroup *memcg;
2655 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2656 
2657 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2658 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2659 
2660 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2661 
2662 	/*
2663 	 * record memcg information,  if swapout && memcg != NULL,
2664 	 * mem_cgroup_get() was called in uncharge().
2665 	 */
2666 	if (do_swap_account && swapout && memcg)
2667 		swap_cgroup_record(ent, css_id(&memcg->css));
2668 }
2669 #endif
2670 
2671 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2672 /*
2673  * called from swap_entry_free(). remove record in swap_cgroup and
2674  * uncharge "memsw" account.
2675  */
2676 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2677 {
2678 	struct mem_cgroup *memcg;
2679 	unsigned short id;
2680 
2681 	if (!do_swap_account)
2682 		return;
2683 
2684 	id = swap_cgroup_record(ent, 0);
2685 	rcu_read_lock();
2686 	memcg = mem_cgroup_lookup(id);
2687 	if (memcg) {
2688 		/*
2689 		 * We uncharge this because swap is freed.
2690 		 * This memcg can be obsolete one. We avoid calling css_tryget
2691 		 */
2692 		if (!mem_cgroup_is_root(memcg))
2693 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2694 		mem_cgroup_swap_statistics(memcg, false);
2695 		mem_cgroup_put(memcg);
2696 	}
2697 	rcu_read_unlock();
2698 }
2699 
2700 /**
2701  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2702  * @entry: swap entry to be moved
2703  * @from:  mem_cgroup which the entry is moved from
2704  * @to:  mem_cgroup which the entry is moved to
2705  * @need_fixup: whether we should fixup res_counters and refcounts.
2706  *
2707  * It succeeds only when the swap_cgroup's record for this entry is the same
2708  * as the mem_cgroup's id of @from.
2709  *
2710  * Returns 0 on success, -EINVAL on failure.
2711  *
2712  * The caller must have charged to @to, IOW, called res_counter_charge() about
2713  * both res and memsw, and called css_get().
2714  */
2715 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2716 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2717 {
2718 	unsigned short old_id, new_id;
2719 
2720 	old_id = css_id(&from->css);
2721 	new_id = css_id(&to->css);
2722 
2723 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2724 		mem_cgroup_swap_statistics(from, false);
2725 		mem_cgroup_swap_statistics(to, true);
2726 		/*
2727 		 * This function is only called from task migration context now.
2728 		 * It postpones res_counter and refcount handling till the end
2729 		 * of task migration(mem_cgroup_clear_mc()) for performance
2730 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2731 		 * because if the process that has been moved to @to does
2732 		 * swap-in, the refcount of @to might be decreased to 0.
2733 		 */
2734 		mem_cgroup_get(to);
2735 		if (need_fixup) {
2736 			if (!mem_cgroup_is_root(from))
2737 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2738 			mem_cgroup_put(from);
2739 			/*
2740 			 * we charged both to->res and to->memsw, so we should
2741 			 * uncharge to->res.
2742 			 */
2743 			if (!mem_cgroup_is_root(to))
2744 				res_counter_uncharge(&to->res, PAGE_SIZE);
2745 		}
2746 		return 0;
2747 	}
2748 	return -EINVAL;
2749 }
2750 #else
2751 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2752 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2753 {
2754 	return -EINVAL;
2755 }
2756 #endif
2757 
2758 /*
2759  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2760  * page belongs to.
2761  */
2762 int mem_cgroup_prepare_migration(struct page *page,
2763 	struct page *newpage, struct mem_cgroup **ptr)
2764 {
2765 	struct page_cgroup *pc;
2766 	struct mem_cgroup *mem = NULL;
2767 	enum charge_type ctype;
2768 	int ret = 0;
2769 
2770 	if (mem_cgroup_disabled())
2771 		return 0;
2772 
2773 	pc = lookup_page_cgroup(page);
2774 	lock_page_cgroup(pc);
2775 	if (PageCgroupUsed(pc)) {
2776 		mem = pc->mem_cgroup;
2777 		css_get(&mem->css);
2778 		/*
2779 		 * At migrating an anonymous page, its mapcount goes down
2780 		 * to 0 and uncharge() will be called. But, even if it's fully
2781 		 * unmapped, migration may fail and this page has to be
2782 		 * charged again. We set MIGRATION flag here and delay uncharge
2783 		 * until end_migration() is called
2784 		 *
2785 		 * Corner Case Thinking
2786 		 * A)
2787 		 * When the old page was mapped as Anon and it's unmap-and-freed
2788 		 * while migration was ongoing.
2789 		 * If unmap finds the old page, uncharge() of it will be delayed
2790 		 * until end_migration(). If unmap finds a new page, it's
2791 		 * uncharged when it make mapcount to be 1->0. If unmap code
2792 		 * finds swap_migration_entry, the new page will not be mapped
2793 		 * and end_migration() will find it(mapcount==0).
2794 		 *
2795 		 * B)
2796 		 * When the old page was mapped but migraion fails, the kernel
2797 		 * remaps it. A charge for it is kept by MIGRATION flag even
2798 		 * if mapcount goes down to 0. We can do remap successfully
2799 		 * without charging it again.
2800 		 *
2801 		 * C)
2802 		 * The "old" page is under lock_page() until the end of
2803 		 * migration, so, the old page itself will not be swapped-out.
2804 		 * If the new page is swapped out before end_migraton, our
2805 		 * hook to usual swap-out path will catch the event.
2806 		 */
2807 		if (PageAnon(page))
2808 			SetPageCgroupMigration(pc);
2809 	}
2810 	unlock_page_cgroup(pc);
2811 	/*
2812 	 * If the page is not charged at this point,
2813 	 * we return here.
2814 	 */
2815 	if (!mem)
2816 		return 0;
2817 
2818 	*ptr = mem;
2819 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2820 	css_put(&mem->css);/* drop extra refcnt */
2821 	if (ret || *ptr == NULL) {
2822 		if (PageAnon(page)) {
2823 			lock_page_cgroup(pc);
2824 			ClearPageCgroupMigration(pc);
2825 			unlock_page_cgroup(pc);
2826 			/*
2827 			 * The old page may be fully unmapped while we kept it.
2828 			 */
2829 			mem_cgroup_uncharge_page(page);
2830 		}
2831 		return -ENOMEM;
2832 	}
2833 	/*
2834 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2835 	 * is called before end_migration, we can catch all events on this new
2836 	 * page. In the case new page is migrated but not remapped, new page's
2837 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2838 	 */
2839 	pc = lookup_page_cgroup(newpage);
2840 	if (PageAnon(page))
2841 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2842 	else if (page_is_file_cache(page))
2843 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2844 	else
2845 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2846 	__mem_cgroup_commit_charge(mem, pc, ctype);
2847 	return ret;
2848 }
2849 
2850 /* remove redundant charge if migration failed*/
2851 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2852 	struct page *oldpage, struct page *newpage)
2853 {
2854 	struct page *used, *unused;
2855 	struct page_cgroup *pc;
2856 
2857 	if (!mem)
2858 		return;
2859 	/* blocks rmdir() */
2860 	cgroup_exclude_rmdir(&mem->css);
2861 	/* at migration success, oldpage->mapping is NULL. */
2862 	if (oldpage->mapping) {
2863 		used = oldpage;
2864 		unused = newpage;
2865 	} else {
2866 		used = newpage;
2867 		unused = oldpage;
2868 	}
2869 	/*
2870 	 * We disallowed uncharge of pages under migration because mapcount
2871 	 * of the page goes down to zero, temporarly.
2872 	 * Clear the flag and check the page should be charged.
2873 	 */
2874 	pc = lookup_page_cgroup(oldpage);
2875 	lock_page_cgroup(pc);
2876 	ClearPageCgroupMigration(pc);
2877 	unlock_page_cgroup(pc);
2878 
2879 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2880 
2881 	/*
2882 	 * If a page is a file cache, radix-tree replacement is very atomic
2883 	 * and we can skip this check. When it was an Anon page, its mapcount
2884 	 * goes down to 0. But because we added MIGRATION flage, it's not
2885 	 * uncharged yet. There are several case but page->mapcount check
2886 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2887 	 * check. (see prepare_charge() also)
2888 	 */
2889 	if (PageAnon(used))
2890 		mem_cgroup_uncharge_page(used);
2891 	/*
2892 	 * At migration, we may charge account against cgroup which has no
2893 	 * tasks.
2894 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2895 	 * In that case, we need to call pre_destroy() again. check it here.
2896 	 */
2897 	cgroup_release_and_wakeup_rmdir(&mem->css);
2898 }
2899 
2900 /*
2901  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2902  * Calling hierarchical_reclaim is not enough because we should update
2903  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2904  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2905  * not from the memcg which this page would be charged to.
2906  * try_charge_swapin does all of these works properly.
2907  */
2908 int mem_cgroup_shmem_charge_fallback(struct page *page,
2909 			    struct mm_struct *mm,
2910 			    gfp_t gfp_mask)
2911 {
2912 	struct mem_cgroup *mem = NULL;
2913 	int ret;
2914 
2915 	if (mem_cgroup_disabled())
2916 		return 0;
2917 
2918 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2919 	if (!ret)
2920 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2921 
2922 	return ret;
2923 }
2924 
2925 static DEFINE_MUTEX(set_limit_mutex);
2926 
2927 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2928 				unsigned long long val)
2929 {
2930 	int retry_count;
2931 	u64 memswlimit, memlimit;
2932 	int ret = 0;
2933 	int children = mem_cgroup_count_children(memcg);
2934 	u64 curusage, oldusage;
2935 	int enlarge;
2936 
2937 	/*
2938 	 * For keeping hierarchical_reclaim simple, how long we should retry
2939 	 * is depends on callers. We set our retry-count to be function
2940 	 * of # of children which we should visit in this loop.
2941 	 */
2942 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2943 
2944 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2945 
2946 	enlarge = 0;
2947 	while (retry_count) {
2948 		if (signal_pending(current)) {
2949 			ret = -EINTR;
2950 			break;
2951 		}
2952 		/*
2953 		 * Rather than hide all in some function, I do this in
2954 		 * open coded manner. You see what this really does.
2955 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2956 		 */
2957 		mutex_lock(&set_limit_mutex);
2958 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2959 		if (memswlimit < val) {
2960 			ret = -EINVAL;
2961 			mutex_unlock(&set_limit_mutex);
2962 			break;
2963 		}
2964 
2965 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2966 		if (memlimit < val)
2967 			enlarge = 1;
2968 
2969 		ret = res_counter_set_limit(&memcg->res, val);
2970 		if (!ret) {
2971 			if (memswlimit == val)
2972 				memcg->memsw_is_minimum = true;
2973 			else
2974 				memcg->memsw_is_minimum = false;
2975 		}
2976 		mutex_unlock(&set_limit_mutex);
2977 
2978 		if (!ret)
2979 			break;
2980 
2981 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2982 						MEM_CGROUP_RECLAIM_SHRINK);
2983 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2984 		/* Usage is reduced ? */
2985   		if (curusage >= oldusage)
2986 			retry_count--;
2987 		else
2988 			oldusage = curusage;
2989 	}
2990 	if (!ret && enlarge)
2991 		memcg_oom_recover(memcg);
2992 
2993 	return ret;
2994 }
2995 
2996 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2997 					unsigned long long val)
2998 {
2999 	int retry_count;
3000 	u64 memlimit, memswlimit, oldusage, curusage;
3001 	int children = mem_cgroup_count_children(memcg);
3002 	int ret = -EBUSY;
3003 	int enlarge = 0;
3004 
3005 	/* see mem_cgroup_resize_res_limit */
3006  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3007 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3008 	while (retry_count) {
3009 		if (signal_pending(current)) {
3010 			ret = -EINTR;
3011 			break;
3012 		}
3013 		/*
3014 		 * Rather than hide all in some function, I do this in
3015 		 * open coded manner. You see what this really does.
3016 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3017 		 */
3018 		mutex_lock(&set_limit_mutex);
3019 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3020 		if (memlimit > val) {
3021 			ret = -EINVAL;
3022 			mutex_unlock(&set_limit_mutex);
3023 			break;
3024 		}
3025 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3026 		if (memswlimit < val)
3027 			enlarge = 1;
3028 		ret = res_counter_set_limit(&memcg->memsw, val);
3029 		if (!ret) {
3030 			if (memlimit == val)
3031 				memcg->memsw_is_minimum = true;
3032 			else
3033 				memcg->memsw_is_minimum = false;
3034 		}
3035 		mutex_unlock(&set_limit_mutex);
3036 
3037 		if (!ret)
3038 			break;
3039 
3040 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3041 						MEM_CGROUP_RECLAIM_NOSWAP |
3042 						MEM_CGROUP_RECLAIM_SHRINK);
3043 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3044 		/* Usage is reduced ? */
3045 		if (curusage >= oldusage)
3046 			retry_count--;
3047 		else
3048 			oldusage = curusage;
3049 	}
3050 	if (!ret && enlarge)
3051 		memcg_oom_recover(memcg);
3052 	return ret;
3053 }
3054 
3055 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3056 					    gfp_t gfp_mask)
3057 {
3058 	unsigned long nr_reclaimed = 0;
3059 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3060 	unsigned long reclaimed;
3061 	int loop = 0;
3062 	struct mem_cgroup_tree_per_zone *mctz;
3063 	unsigned long long excess;
3064 
3065 	if (order > 0)
3066 		return 0;
3067 
3068 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3069 	/*
3070 	 * This loop can run a while, specially if mem_cgroup's continuously
3071 	 * keep exceeding their soft limit and putting the system under
3072 	 * pressure
3073 	 */
3074 	do {
3075 		if (next_mz)
3076 			mz = next_mz;
3077 		else
3078 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3079 		if (!mz)
3080 			break;
3081 
3082 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3083 						gfp_mask,
3084 						MEM_CGROUP_RECLAIM_SOFT);
3085 		nr_reclaimed += reclaimed;
3086 		spin_lock(&mctz->lock);
3087 
3088 		/*
3089 		 * If we failed to reclaim anything from this memory cgroup
3090 		 * it is time to move on to the next cgroup
3091 		 */
3092 		next_mz = NULL;
3093 		if (!reclaimed) {
3094 			do {
3095 				/*
3096 				 * Loop until we find yet another one.
3097 				 *
3098 				 * By the time we get the soft_limit lock
3099 				 * again, someone might have aded the
3100 				 * group back on the RB tree. Iterate to
3101 				 * make sure we get a different mem.
3102 				 * mem_cgroup_largest_soft_limit_node returns
3103 				 * NULL if no other cgroup is present on
3104 				 * the tree
3105 				 */
3106 				next_mz =
3107 				__mem_cgroup_largest_soft_limit_node(mctz);
3108 				if (next_mz == mz) {
3109 					css_put(&next_mz->mem->css);
3110 					next_mz = NULL;
3111 				} else /* next_mz == NULL or other memcg */
3112 					break;
3113 			} while (1);
3114 		}
3115 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3116 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3117 		/*
3118 		 * One school of thought says that we should not add
3119 		 * back the node to the tree if reclaim returns 0.
3120 		 * But our reclaim could return 0, simply because due
3121 		 * to priority we are exposing a smaller subset of
3122 		 * memory to reclaim from. Consider this as a longer
3123 		 * term TODO.
3124 		 */
3125 		/* If excess == 0, no tree ops */
3126 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3127 		spin_unlock(&mctz->lock);
3128 		css_put(&mz->mem->css);
3129 		loop++;
3130 		/*
3131 		 * Could not reclaim anything and there are no more
3132 		 * mem cgroups to try or we seem to be looping without
3133 		 * reclaiming anything.
3134 		 */
3135 		if (!nr_reclaimed &&
3136 			(next_mz == NULL ||
3137 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3138 			break;
3139 	} while (!nr_reclaimed);
3140 	if (next_mz)
3141 		css_put(&next_mz->mem->css);
3142 	return nr_reclaimed;
3143 }
3144 
3145 /*
3146  * This routine traverse page_cgroup in given list and drop them all.
3147  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3148  */
3149 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3150 				int node, int zid, enum lru_list lru)
3151 {
3152 	struct zone *zone;
3153 	struct mem_cgroup_per_zone *mz;
3154 	struct page_cgroup *pc, *busy;
3155 	unsigned long flags, loop;
3156 	struct list_head *list;
3157 	int ret = 0;
3158 
3159 	zone = &NODE_DATA(node)->node_zones[zid];
3160 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3161 	list = &mz->lists[lru];
3162 
3163 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3164 	/* give some margin against EBUSY etc...*/
3165 	loop += 256;
3166 	busy = NULL;
3167 	while (loop--) {
3168 		ret = 0;
3169 		spin_lock_irqsave(&zone->lru_lock, flags);
3170 		if (list_empty(list)) {
3171 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3172 			break;
3173 		}
3174 		pc = list_entry(list->prev, struct page_cgroup, lru);
3175 		if (busy == pc) {
3176 			list_move(&pc->lru, list);
3177 			busy = NULL;
3178 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3179 			continue;
3180 		}
3181 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3182 
3183 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3184 		if (ret == -ENOMEM)
3185 			break;
3186 
3187 		if (ret == -EBUSY || ret == -EINVAL) {
3188 			/* found lock contention or "pc" is obsolete. */
3189 			busy = pc;
3190 			cond_resched();
3191 		} else
3192 			busy = NULL;
3193 	}
3194 
3195 	if (!ret && !list_empty(list))
3196 		return -EBUSY;
3197 	return ret;
3198 }
3199 
3200 /*
3201  * make mem_cgroup's charge to be 0 if there is no task.
3202  * This enables deleting this mem_cgroup.
3203  */
3204 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3205 {
3206 	int ret;
3207 	int node, zid, shrink;
3208 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3209 	struct cgroup *cgrp = mem->css.cgroup;
3210 
3211 	css_get(&mem->css);
3212 
3213 	shrink = 0;
3214 	/* should free all ? */
3215 	if (free_all)
3216 		goto try_to_free;
3217 move_account:
3218 	do {
3219 		ret = -EBUSY;
3220 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3221 			goto out;
3222 		ret = -EINTR;
3223 		if (signal_pending(current))
3224 			goto out;
3225 		/* This is for making all *used* pages to be on LRU. */
3226 		lru_add_drain_all();
3227 		drain_all_stock_sync();
3228 		ret = 0;
3229 		mem_cgroup_start_move(mem);
3230 		for_each_node_state(node, N_HIGH_MEMORY) {
3231 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3232 				enum lru_list l;
3233 				for_each_lru(l) {
3234 					ret = mem_cgroup_force_empty_list(mem,
3235 							node, zid, l);
3236 					if (ret)
3237 						break;
3238 				}
3239 			}
3240 			if (ret)
3241 				break;
3242 		}
3243 		mem_cgroup_end_move(mem);
3244 		memcg_oom_recover(mem);
3245 		/* it seems parent cgroup doesn't have enough mem */
3246 		if (ret == -ENOMEM)
3247 			goto try_to_free;
3248 		cond_resched();
3249 	/* "ret" should also be checked to ensure all lists are empty. */
3250 	} while (mem->res.usage > 0 || ret);
3251 out:
3252 	css_put(&mem->css);
3253 	return ret;
3254 
3255 try_to_free:
3256 	/* returns EBUSY if there is a task or if we come here twice. */
3257 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3258 		ret = -EBUSY;
3259 		goto out;
3260 	}
3261 	/* we call try-to-free pages for make this cgroup empty */
3262 	lru_add_drain_all();
3263 	/* try to free all pages in this cgroup */
3264 	shrink = 1;
3265 	while (nr_retries && mem->res.usage > 0) {
3266 		int progress;
3267 
3268 		if (signal_pending(current)) {
3269 			ret = -EINTR;
3270 			goto out;
3271 		}
3272 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3273 						false, get_swappiness(mem));
3274 		if (!progress) {
3275 			nr_retries--;
3276 			/* maybe some writeback is necessary */
3277 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3278 		}
3279 
3280 	}
3281 	lru_add_drain();
3282 	/* try move_account...there may be some *locked* pages. */
3283 	goto move_account;
3284 }
3285 
3286 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3287 {
3288 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3289 }
3290 
3291 
3292 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3293 {
3294 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3295 }
3296 
3297 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3298 					u64 val)
3299 {
3300 	int retval = 0;
3301 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3302 	struct cgroup *parent = cont->parent;
3303 	struct mem_cgroup *parent_mem = NULL;
3304 
3305 	if (parent)
3306 		parent_mem = mem_cgroup_from_cont(parent);
3307 
3308 	cgroup_lock();
3309 	/*
3310 	 * If parent's use_hierarchy is set, we can't make any modifications
3311 	 * in the child subtrees. If it is unset, then the change can
3312 	 * occur, provided the current cgroup has no children.
3313 	 *
3314 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3315 	 * set if there are no children.
3316 	 */
3317 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3318 				(val == 1 || val == 0)) {
3319 		if (list_empty(&cont->children))
3320 			mem->use_hierarchy = val;
3321 		else
3322 			retval = -EBUSY;
3323 	} else
3324 		retval = -EINVAL;
3325 	cgroup_unlock();
3326 
3327 	return retval;
3328 }
3329 
3330 
3331 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3332 				enum mem_cgroup_stat_index idx)
3333 {
3334 	struct mem_cgroup *iter;
3335 	s64 val = 0;
3336 
3337 	/* each per cpu's value can be minus.Then, use s64 */
3338 	for_each_mem_cgroup_tree(iter, mem)
3339 		val += mem_cgroup_read_stat(iter, idx);
3340 
3341 	if (val < 0) /* race ? */
3342 		val = 0;
3343 	return val;
3344 }
3345 
3346 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3347 {
3348 	u64 val;
3349 
3350 	if (!mem_cgroup_is_root(mem)) {
3351 		if (!swap)
3352 			return res_counter_read_u64(&mem->res, RES_USAGE);
3353 		else
3354 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3355 	}
3356 
3357 	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3358 	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3359 
3360 	if (swap)
3361 		val += mem_cgroup_get_recursive_idx_stat(mem,
3362 				MEM_CGROUP_STAT_SWAPOUT);
3363 
3364 	return val << PAGE_SHIFT;
3365 }
3366 
3367 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3368 {
3369 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3370 	u64 val;
3371 	int type, name;
3372 
3373 	type = MEMFILE_TYPE(cft->private);
3374 	name = MEMFILE_ATTR(cft->private);
3375 	switch (type) {
3376 	case _MEM:
3377 		if (name == RES_USAGE)
3378 			val = mem_cgroup_usage(mem, false);
3379 		else
3380 			val = res_counter_read_u64(&mem->res, name);
3381 		break;
3382 	case _MEMSWAP:
3383 		if (name == RES_USAGE)
3384 			val = mem_cgroup_usage(mem, true);
3385 		else
3386 			val = res_counter_read_u64(&mem->memsw, name);
3387 		break;
3388 	default:
3389 		BUG();
3390 		break;
3391 	}
3392 	return val;
3393 }
3394 /*
3395  * The user of this function is...
3396  * RES_LIMIT.
3397  */
3398 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3399 			    const char *buffer)
3400 {
3401 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3402 	int type, name;
3403 	unsigned long long val;
3404 	int ret;
3405 
3406 	type = MEMFILE_TYPE(cft->private);
3407 	name = MEMFILE_ATTR(cft->private);
3408 	switch (name) {
3409 	case RES_LIMIT:
3410 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3411 			ret = -EINVAL;
3412 			break;
3413 		}
3414 		/* This function does all necessary parse...reuse it */
3415 		ret = res_counter_memparse_write_strategy(buffer, &val);
3416 		if (ret)
3417 			break;
3418 		if (type == _MEM)
3419 			ret = mem_cgroup_resize_limit(memcg, val);
3420 		else
3421 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3422 		break;
3423 	case RES_SOFT_LIMIT:
3424 		ret = res_counter_memparse_write_strategy(buffer, &val);
3425 		if (ret)
3426 			break;
3427 		/*
3428 		 * For memsw, soft limits are hard to implement in terms
3429 		 * of semantics, for now, we support soft limits for
3430 		 * control without swap
3431 		 */
3432 		if (type == _MEM)
3433 			ret = res_counter_set_soft_limit(&memcg->res, val);
3434 		else
3435 			ret = -EINVAL;
3436 		break;
3437 	default:
3438 		ret = -EINVAL; /* should be BUG() ? */
3439 		break;
3440 	}
3441 	return ret;
3442 }
3443 
3444 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3445 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3446 {
3447 	struct cgroup *cgroup;
3448 	unsigned long long min_limit, min_memsw_limit, tmp;
3449 
3450 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3451 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3452 	cgroup = memcg->css.cgroup;
3453 	if (!memcg->use_hierarchy)
3454 		goto out;
3455 
3456 	while (cgroup->parent) {
3457 		cgroup = cgroup->parent;
3458 		memcg = mem_cgroup_from_cont(cgroup);
3459 		if (!memcg->use_hierarchy)
3460 			break;
3461 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3462 		min_limit = min(min_limit, tmp);
3463 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3464 		min_memsw_limit = min(min_memsw_limit, tmp);
3465 	}
3466 out:
3467 	*mem_limit = min_limit;
3468 	*memsw_limit = min_memsw_limit;
3469 	return;
3470 }
3471 
3472 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3473 {
3474 	struct mem_cgroup *mem;
3475 	int type, name;
3476 
3477 	mem = mem_cgroup_from_cont(cont);
3478 	type = MEMFILE_TYPE(event);
3479 	name = MEMFILE_ATTR(event);
3480 	switch (name) {
3481 	case RES_MAX_USAGE:
3482 		if (type == _MEM)
3483 			res_counter_reset_max(&mem->res);
3484 		else
3485 			res_counter_reset_max(&mem->memsw);
3486 		break;
3487 	case RES_FAILCNT:
3488 		if (type == _MEM)
3489 			res_counter_reset_failcnt(&mem->res);
3490 		else
3491 			res_counter_reset_failcnt(&mem->memsw);
3492 		break;
3493 	}
3494 
3495 	return 0;
3496 }
3497 
3498 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3499 					struct cftype *cft)
3500 {
3501 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3502 }
3503 
3504 #ifdef CONFIG_MMU
3505 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3506 					struct cftype *cft, u64 val)
3507 {
3508 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3509 
3510 	if (val >= (1 << NR_MOVE_TYPE))
3511 		return -EINVAL;
3512 	/*
3513 	 * We check this value several times in both in can_attach() and
3514 	 * attach(), so we need cgroup lock to prevent this value from being
3515 	 * inconsistent.
3516 	 */
3517 	cgroup_lock();
3518 	mem->move_charge_at_immigrate = val;
3519 	cgroup_unlock();
3520 
3521 	return 0;
3522 }
3523 #else
3524 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3525 					struct cftype *cft, u64 val)
3526 {
3527 	return -ENOSYS;
3528 }
3529 #endif
3530 
3531 
3532 /* For read statistics */
3533 enum {
3534 	MCS_CACHE,
3535 	MCS_RSS,
3536 	MCS_FILE_MAPPED,
3537 	MCS_PGPGIN,
3538 	MCS_PGPGOUT,
3539 	MCS_SWAP,
3540 	MCS_INACTIVE_ANON,
3541 	MCS_ACTIVE_ANON,
3542 	MCS_INACTIVE_FILE,
3543 	MCS_ACTIVE_FILE,
3544 	MCS_UNEVICTABLE,
3545 	NR_MCS_STAT,
3546 };
3547 
3548 struct mcs_total_stat {
3549 	s64 stat[NR_MCS_STAT];
3550 };
3551 
3552 struct {
3553 	char *local_name;
3554 	char *total_name;
3555 } memcg_stat_strings[NR_MCS_STAT] = {
3556 	{"cache", "total_cache"},
3557 	{"rss", "total_rss"},
3558 	{"mapped_file", "total_mapped_file"},
3559 	{"pgpgin", "total_pgpgin"},
3560 	{"pgpgout", "total_pgpgout"},
3561 	{"swap", "total_swap"},
3562 	{"inactive_anon", "total_inactive_anon"},
3563 	{"active_anon", "total_active_anon"},
3564 	{"inactive_file", "total_inactive_file"},
3565 	{"active_file", "total_active_file"},
3566 	{"unevictable", "total_unevictable"}
3567 };
3568 
3569 
3570 static void
3571 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3572 {
3573 	s64 val;
3574 
3575 	/* per cpu stat */
3576 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3577 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3578 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3579 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3580 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3581 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3582 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3583 	s->stat[MCS_PGPGIN] += val;
3584 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3585 	s->stat[MCS_PGPGOUT] += val;
3586 	if (do_swap_account) {
3587 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3588 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3589 	}
3590 
3591 	/* per zone stat */
3592 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3593 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3594 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3595 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3596 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3597 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3598 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3599 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3600 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3601 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3602 }
3603 
3604 static void
3605 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3606 {
3607 	struct mem_cgroup *iter;
3608 
3609 	for_each_mem_cgroup_tree(iter, mem)
3610 		mem_cgroup_get_local_stat(iter, s);
3611 }
3612 
3613 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3614 				 struct cgroup_map_cb *cb)
3615 {
3616 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3617 	struct mcs_total_stat mystat;
3618 	int i;
3619 
3620 	memset(&mystat, 0, sizeof(mystat));
3621 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3622 
3623 	for (i = 0; i < NR_MCS_STAT; i++) {
3624 		if (i == MCS_SWAP && !do_swap_account)
3625 			continue;
3626 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3627 	}
3628 
3629 	/* Hierarchical information */
3630 	{
3631 		unsigned long long limit, memsw_limit;
3632 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3633 		cb->fill(cb, "hierarchical_memory_limit", limit);
3634 		if (do_swap_account)
3635 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3636 	}
3637 
3638 	memset(&mystat, 0, sizeof(mystat));
3639 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3640 	for (i = 0; i < NR_MCS_STAT; i++) {
3641 		if (i == MCS_SWAP && !do_swap_account)
3642 			continue;
3643 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3644 	}
3645 
3646 #ifdef CONFIG_DEBUG_VM
3647 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3648 
3649 	{
3650 		int nid, zid;
3651 		struct mem_cgroup_per_zone *mz;
3652 		unsigned long recent_rotated[2] = {0, 0};
3653 		unsigned long recent_scanned[2] = {0, 0};
3654 
3655 		for_each_online_node(nid)
3656 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3657 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3658 
3659 				recent_rotated[0] +=
3660 					mz->reclaim_stat.recent_rotated[0];
3661 				recent_rotated[1] +=
3662 					mz->reclaim_stat.recent_rotated[1];
3663 				recent_scanned[0] +=
3664 					mz->reclaim_stat.recent_scanned[0];
3665 				recent_scanned[1] +=
3666 					mz->reclaim_stat.recent_scanned[1];
3667 			}
3668 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3669 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3670 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3671 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3672 	}
3673 #endif
3674 
3675 	return 0;
3676 }
3677 
3678 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3679 {
3680 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3681 
3682 	return get_swappiness(memcg);
3683 }
3684 
3685 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3686 				       u64 val)
3687 {
3688 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3689 	struct mem_cgroup *parent;
3690 
3691 	if (val > 100)
3692 		return -EINVAL;
3693 
3694 	if (cgrp->parent == NULL)
3695 		return -EINVAL;
3696 
3697 	parent = mem_cgroup_from_cont(cgrp->parent);
3698 
3699 	cgroup_lock();
3700 
3701 	/* If under hierarchy, only empty-root can set this value */
3702 	if ((parent->use_hierarchy) ||
3703 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3704 		cgroup_unlock();
3705 		return -EINVAL;
3706 	}
3707 
3708 	spin_lock(&memcg->reclaim_param_lock);
3709 	memcg->swappiness = val;
3710 	spin_unlock(&memcg->reclaim_param_lock);
3711 
3712 	cgroup_unlock();
3713 
3714 	return 0;
3715 }
3716 
3717 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3718 {
3719 	struct mem_cgroup_threshold_ary *t;
3720 	u64 usage;
3721 	int i;
3722 
3723 	rcu_read_lock();
3724 	if (!swap)
3725 		t = rcu_dereference(memcg->thresholds.primary);
3726 	else
3727 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3728 
3729 	if (!t)
3730 		goto unlock;
3731 
3732 	usage = mem_cgroup_usage(memcg, swap);
3733 
3734 	/*
3735 	 * current_threshold points to threshold just below usage.
3736 	 * If it's not true, a threshold was crossed after last
3737 	 * call of __mem_cgroup_threshold().
3738 	 */
3739 	i = t->current_threshold;
3740 
3741 	/*
3742 	 * Iterate backward over array of thresholds starting from
3743 	 * current_threshold and check if a threshold is crossed.
3744 	 * If none of thresholds below usage is crossed, we read
3745 	 * only one element of the array here.
3746 	 */
3747 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3748 		eventfd_signal(t->entries[i].eventfd, 1);
3749 
3750 	/* i = current_threshold + 1 */
3751 	i++;
3752 
3753 	/*
3754 	 * Iterate forward over array of thresholds starting from
3755 	 * current_threshold+1 and check if a threshold is crossed.
3756 	 * If none of thresholds above usage is crossed, we read
3757 	 * only one element of the array here.
3758 	 */
3759 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3760 		eventfd_signal(t->entries[i].eventfd, 1);
3761 
3762 	/* Update current_threshold */
3763 	t->current_threshold = i - 1;
3764 unlock:
3765 	rcu_read_unlock();
3766 }
3767 
3768 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3769 {
3770 	while (memcg) {
3771 		__mem_cgroup_threshold(memcg, false);
3772 		if (do_swap_account)
3773 			__mem_cgroup_threshold(memcg, true);
3774 
3775 		memcg = parent_mem_cgroup(memcg);
3776 	}
3777 }
3778 
3779 static int compare_thresholds(const void *a, const void *b)
3780 {
3781 	const struct mem_cgroup_threshold *_a = a;
3782 	const struct mem_cgroup_threshold *_b = b;
3783 
3784 	return _a->threshold - _b->threshold;
3785 }
3786 
3787 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3788 {
3789 	struct mem_cgroup_eventfd_list *ev;
3790 
3791 	list_for_each_entry(ev, &mem->oom_notify, list)
3792 		eventfd_signal(ev->eventfd, 1);
3793 	return 0;
3794 }
3795 
3796 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3797 {
3798 	struct mem_cgroup *iter;
3799 
3800 	for_each_mem_cgroup_tree(iter, mem)
3801 		mem_cgroup_oom_notify_cb(iter);
3802 }
3803 
3804 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3805 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3806 {
3807 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3808 	struct mem_cgroup_thresholds *thresholds;
3809 	struct mem_cgroup_threshold_ary *new;
3810 	int type = MEMFILE_TYPE(cft->private);
3811 	u64 threshold, usage;
3812 	int i, size, ret;
3813 
3814 	ret = res_counter_memparse_write_strategy(args, &threshold);
3815 	if (ret)
3816 		return ret;
3817 
3818 	mutex_lock(&memcg->thresholds_lock);
3819 
3820 	if (type == _MEM)
3821 		thresholds = &memcg->thresholds;
3822 	else if (type == _MEMSWAP)
3823 		thresholds = &memcg->memsw_thresholds;
3824 	else
3825 		BUG();
3826 
3827 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3828 
3829 	/* Check if a threshold crossed before adding a new one */
3830 	if (thresholds->primary)
3831 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3832 
3833 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3834 
3835 	/* Allocate memory for new array of thresholds */
3836 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3837 			GFP_KERNEL);
3838 	if (!new) {
3839 		ret = -ENOMEM;
3840 		goto unlock;
3841 	}
3842 	new->size = size;
3843 
3844 	/* Copy thresholds (if any) to new array */
3845 	if (thresholds->primary) {
3846 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3847 				sizeof(struct mem_cgroup_threshold));
3848 	}
3849 
3850 	/* Add new threshold */
3851 	new->entries[size - 1].eventfd = eventfd;
3852 	new->entries[size - 1].threshold = threshold;
3853 
3854 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3855 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3856 			compare_thresholds, NULL);
3857 
3858 	/* Find current threshold */
3859 	new->current_threshold = -1;
3860 	for (i = 0; i < size; i++) {
3861 		if (new->entries[i].threshold < usage) {
3862 			/*
3863 			 * new->current_threshold will not be used until
3864 			 * rcu_assign_pointer(), so it's safe to increment
3865 			 * it here.
3866 			 */
3867 			++new->current_threshold;
3868 		}
3869 	}
3870 
3871 	/* Free old spare buffer and save old primary buffer as spare */
3872 	kfree(thresholds->spare);
3873 	thresholds->spare = thresholds->primary;
3874 
3875 	rcu_assign_pointer(thresholds->primary, new);
3876 
3877 	/* To be sure that nobody uses thresholds */
3878 	synchronize_rcu();
3879 
3880 unlock:
3881 	mutex_unlock(&memcg->thresholds_lock);
3882 
3883 	return ret;
3884 }
3885 
3886 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3887 	struct cftype *cft, struct eventfd_ctx *eventfd)
3888 {
3889 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3890 	struct mem_cgroup_thresholds *thresholds;
3891 	struct mem_cgroup_threshold_ary *new;
3892 	int type = MEMFILE_TYPE(cft->private);
3893 	u64 usage;
3894 	int i, j, size;
3895 
3896 	mutex_lock(&memcg->thresholds_lock);
3897 	if (type == _MEM)
3898 		thresholds = &memcg->thresholds;
3899 	else if (type == _MEMSWAP)
3900 		thresholds = &memcg->memsw_thresholds;
3901 	else
3902 		BUG();
3903 
3904 	/*
3905 	 * Something went wrong if we trying to unregister a threshold
3906 	 * if we don't have thresholds
3907 	 */
3908 	BUG_ON(!thresholds);
3909 
3910 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3911 
3912 	/* Check if a threshold crossed before removing */
3913 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3914 
3915 	/* Calculate new number of threshold */
3916 	size = 0;
3917 	for (i = 0; i < thresholds->primary->size; i++) {
3918 		if (thresholds->primary->entries[i].eventfd != eventfd)
3919 			size++;
3920 	}
3921 
3922 	new = thresholds->spare;
3923 
3924 	/* Set thresholds array to NULL if we don't have thresholds */
3925 	if (!size) {
3926 		kfree(new);
3927 		new = NULL;
3928 		goto swap_buffers;
3929 	}
3930 
3931 	new->size = size;
3932 
3933 	/* Copy thresholds and find current threshold */
3934 	new->current_threshold = -1;
3935 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3936 		if (thresholds->primary->entries[i].eventfd == eventfd)
3937 			continue;
3938 
3939 		new->entries[j] = thresholds->primary->entries[i];
3940 		if (new->entries[j].threshold < usage) {
3941 			/*
3942 			 * new->current_threshold will not be used
3943 			 * until rcu_assign_pointer(), so it's safe to increment
3944 			 * it here.
3945 			 */
3946 			++new->current_threshold;
3947 		}
3948 		j++;
3949 	}
3950 
3951 swap_buffers:
3952 	/* Swap primary and spare array */
3953 	thresholds->spare = thresholds->primary;
3954 	rcu_assign_pointer(thresholds->primary, new);
3955 
3956 	/* To be sure that nobody uses thresholds */
3957 	synchronize_rcu();
3958 
3959 	mutex_unlock(&memcg->thresholds_lock);
3960 }
3961 
3962 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3963 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3964 {
3965 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3966 	struct mem_cgroup_eventfd_list *event;
3967 	int type = MEMFILE_TYPE(cft->private);
3968 
3969 	BUG_ON(type != _OOM_TYPE);
3970 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3971 	if (!event)
3972 		return -ENOMEM;
3973 
3974 	mutex_lock(&memcg_oom_mutex);
3975 
3976 	event->eventfd = eventfd;
3977 	list_add(&event->list, &memcg->oom_notify);
3978 
3979 	/* already in OOM ? */
3980 	if (atomic_read(&memcg->oom_lock))
3981 		eventfd_signal(eventfd, 1);
3982 	mutex_unlock(&memcg_oom_mutex);
3983 
3984 	return 0;
3985 }
3986 
3987 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3988 	struct cftype *cft, struct eventfd_ctx *eventfd)
3989 {
3990 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3991 	struct mem_cgroup_eventfd_list *ev, *tmp;
3992 	int type = MEMFILE_TYPE(cft->private);
3993 
3994 	BUG_ON(type != _OOM_TYPE);
3995 
3996 	mutex_lock(&memcg_oom_mutex);
3997 
3998 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3999 		if (ev->eventfd == eventfd) {
4000 			list_del(&ev->list);
4001 			kfree(ev);
4002 		}
4003 	}
4004 
4005 	mutex_unlock(&memcg_oom_mutex);
4006 }
4007 
4008 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4009 	struct cftype *cft,  struct cgroup_map_cb *cb)
4010 {
4011 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4012 
4013 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4014 
4015 	if (atomic_read(&mem->oom_lock))
4016 		cb->fill(cb, "under_oom", 1);
4017 	else
4018 		cb->fill(cb, "under_oom", 0);
4019 	return 0;
4020 }
4021 
4022 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4023 	struct cftype *cft, u64 val)
4024 {
4025 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4026 	struct mem_cgroup *parent;
4027 
4028 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4029 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4030 		return -EINVAL;
4031 
4032 	parent = mem_cgroup_from_cont(cgrp->parent);
4033 
4034 	cgroup_lock();
4035 	/* oom-kill-disable is a flag for subhierarchy. */
4036 	if ((parent->use_hierarchy) ||
4037 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4038 		cgroup_unlock();
4039 		return -EINVAL;
4040 	}
4041 	mem->oom_kill_disable = val;
4042 	if (!val)
4043 		memcg_oom_recover(mem);
4044 	cgroup_unlock();
4045 	return 0;
4046 }
4047 
4048 static struct cftype mem_cgroup_files[] = {
4049 	{
4050 		.name = "usage_in_bytes",
4051 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4052 		.read_u64 = mem_cgroup_read,
4053 		.register_event = mem_cgroup_usage_register_event,
4054 		.unregister_event = mem_cgroup_usage_unregister_event,
4055 	},
4056 	{
4057 		.name = "max_usage_in_bytes",
4058 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4059 		.trigger = mem_cgroup_reset,
4060 		.read_u64 = mem_cgroup_read,
4061 	},
4062 	{
4063 		.name = "limit_in_bytes",
4064 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4065 		.write_string = mem_cgroup_write,
4066 		.read_u64 = mem_cgroup_read,
4067 	},
4068 	{
4069 		.name = "soft_limit_in_bytes",
4070 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4071 		.write_string = mem_cgroup_write,
4072 		.read_u64 = mem_cgroup_read,
4073 	},
4074 	{
4075 		.name = "failcnt",
4076 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4077 		.trigger = mem_cgroup_reset,
4078 		.read_u64 = mem_cgroup_read,
4079 	},
4080 	{
4081 		.name = "stat",
4082 		.read_map = mem_control_stat_show,
4083 	},
4084 	{
4085 		.name = "force_empty",
4086 		.trigger = mem_cgroup_force_empty_write,
4087 	},
4088 	{
4089 		.name = "use_hierarchy",
4090 		.write_u64 = mem_cgroup_hierarchy_write,
4091 		.read_u64 = mem_cgroup_hierarchy_read,
4092 	},
4093 	{
4094 		.name = "swappiness",
4095 		.read_u64 = mem_cgroup_swappiness_read,
4096 		.write_u64 = mem_cgroup_swappiness_write,
4097 	},
4098 	{
4099 		.name = "move_charge_at_immigrate",
4100 		.read_u64 = mem_cgroup_move_charge_read,
4101 		.write_u64 = mem_cgroup_move_charge_write,
4102 	},
4103 	{
4104 		.name = "oom_control",
4105 		.read_map = mem_cgroup_oom_control_read,
4106 		.write_u64 = mem_cgroup_oom_control_write,
4107 		.register_event = mem_cgroup_oom_register_event,
4108 		.unregister_event = mem_cgroup_oom_unregister_event,
4109 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4110 	},
4111 };
4112 
4113 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4114 static struct cftype memsw_cgroup_files[] = {
4115 	{
4116 		.name = "memsw.usage_in_bytes",
4117 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4118 		.read_u64 = mem_cgroup_read,
4119 		.register_event = mem_cgroup_usage_register_event,
4120 		.unregister_event = mem_cgroup_usage_unregister_event,
4121 	},
4122 	{
4123 		.name = "memsw.max_usage_in_bytes",
4124 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4125 		.trigger = mem_cgroup_reset,
4126 		.read_u64 = mem_cgroup_read,
4127 	},
4128 	{
4129 		.name = "memsw.limit_in_bytes",
4130 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4131 		.write_string = mem_cgroup_write,
4132 		.read_u64 = mem_cgroup_read,
4133 	},
4134 	{
4135 		.name = "memsw.failcnt",
4136 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4137 		.trigger = mem_cgroup_reset,
4138 		.read_u64 = mem_cgroup_read,
4139 	},
4140 };
4141 
4142 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4143 {
4144 	if (!do_swap_account)
4145 		return 0;
4146 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4147 				ARRAY_SIZE(memsw_cgroup_files));
4148 };
4149 #else
4150 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4151 {
4152 	return 0;
4153 }
4154 #endif
4155 
4156 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4157 {
4158 	struct mem_cgroup_per_node *pn;
4159 	struct mem_cgroup_per_zone *mz;
4160 	enum lru_list l;
4161 	int zone, tmp = node;
4162 	/*
4163 	 * This routine is called against possible nodes.
4164 	 * But it's BUG to call kmalloc() against offline node.
4165 	 *
4166 	 * TODO: this routine can waste much memory for nodes which will
4167 	 *       never be onlined. It's better to use memory hotplug callback
4168 	 *       function.
4169 	 */
4170 	if (!node_state(node, N_NORMAL_MEMORY))
4171 		tmp = -1;
4172 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4173 	if (!pn)
4174 		return 1;
4175 
4176 	mem->info.nodeinfo[node] = pn;
4177 	memset(pn, 0, sizeof(*pn));
4178 
4179 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4180 		mz = &pn->zoneinfo[zone];
4181 		for_each_lru(l)
4182 			INIT_LIST_HEAD(&mz->lists[l]);
4183 		mz->usage_in_excess = 0;
4184 		mz->on_tree = false;
4185 		mz->mem = mem;
4186 	}
4187 	return 0;
4188 }
4189 
4190 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4191 {
4192 	kfree(mem->info.nodeinfo[node]);
4193 }
4194 
4195 static struct mem_cgroup *mem_cgroup_alloc(void)
4196 {
4197 	struct mem_cgroup *mem;
4198 	int size = sizeof(struct mem_cgroup);
4199 
4200 	/* Can be very big if MAX_NUMNODES is very big */
4201 	if (size < PAGE_SIZE)
4202 		mem = kmalloc(size, GFP_KERNEL);
4203 	else
4204 		mem = vmalloc(size);
4205 
4206 	if (!mem)
4207 		return NULL;
4208 
4209 	memset(mem, 0, size);
4210 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4211 	if (!mem->stat) {
4212 		if (size < PAGE_SIZE)
4213 			kfree(mem);
4214 		else
4215 			vfree(mem);
4216 		mem = NULL;
4217 	}
4218 	spin_lock_init(&mem->pcp_counter_lock);
4219 	return mem;
4220 }
4221 
4222 /*
4223  * At destroying mem_cgroup, references from swap_cgroup can remain.
4224  * (scanning all at force_empty is too costly...)
4225  *
4226  * Instead of clearing all references at force_empty, we remember
4227  * the number of reference from swap_cgroup and free mem_cgroup when
4228  * it goes down to 0.
4229  *
4230  * Removal of cgroup itself succeeds regardless of refs from swap.
4231  */
4232 
4233 static void __mem_cgroup_free(struct mem_cgroup *mem)
4234 {
4235 	int node;
4236 
4237 	mem_cgroup_remove_from_trees(mem);
4238 	free_css_id(&mem_cgroup_subsys, &mem->css);
4239 
4240 	for_each_node_state(node, N_POSSIBLE)
4241 		free_mem_cgroup_per_zone_info(mem, node);
4242 
4243 	free_percpu(mem->stat);
4244 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4245 		kfree(mem);
4246 	else
4247 		vfree(mem);
4248 }
4249 
4250 static void mem_cgroup_get(struct mem_cgroup *mem)
4251 {
4252 	atomic_inc(&mem->refcnt);
4253 }
4254 
4255 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4256 {
4257 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4258 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4259 		__mem_cgroup_free(mem);
4260 		if (parent)
4261 			mem_cgroup_put(parent);
4262 	}
4263 }
4264 
4265 static void mem_cgroup_put(struct mem_cgroup *mem)
4266 {
4267 	__mem_cgroup_put(mem, 1);
4268 }
4269 
4270 /*
4271  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4272  */
4273 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4274 {
4275 	if (!mem->res.parent)
4276 		return NULL;
4277 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4278 }
4279 
4280 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4281 static void __init enable_swap_cgroup(void)
4282 {
4283 	if (!mem_cgroup_disabled() && really_do_swap_account)
4284 		do_swap_account = 1;
4285 }
4286 #else
4287 static void __init enable_swap_cgroup(void)
4288 {
4289 }
4290 #endif
4291 
4292 static int mem_cgroup_soft_limit_tree_init(void)
4293 {
4294 	struct mem_cgroup_tree_per_node *rtpn;
4295 	struct mem_cgroup_tree_per_zone *rtpz;
4296 	int tmp, node, zone;
4297 
4298 	for_each_node_state(node, N_POSSIBLE) {
4299 		tmp = node;
4300 		if (!node_state(node, N_NORMAL_MEMORY))
4301 			tmp = -1;
4302 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4303 		if (!rtpn)
4304 			return 1;
4305 
4306 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4307 
4308 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4309 			rtpz = &rtpn->rb_tree_per_zone[zone];
4310 			rtpz->rb_root = RB_ROOT;
4311 			spin_lock_init(&rtpz->lock);
4312 		}
4313 	}
4314 	return 0;
4315 }
4316 
4317 static struct cgroup_subsys_state * __ref
4318 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4319 {
4320 	struct mem_cgroup *mem, *parent;
4321 	long error = -ENOMEM;
4322 	int node;
4323 
4324 	mem = mem_cgroup_alloc();
4325 	if (!mem)
4326 		return ERR_PTR(error);
4327 
4328 	for_each_node_state(node, N_POSSIBLE)
4329 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4330 			goto free_out;
4331 
4332 	/* root ? */
4333 	if (cont->parent == NULL) {
4334 		int cpu;
4335 		enable_swap_cgroup();
4336 		parent = NULL;
4337 		root_mem_cgroup = mem;
4338 		if (mem_cgroup_soft_limit_tree_init())
4339 			goto free_out;
4340 		for_each_possible_cpu(cpu) {
4341 			struct memcg_stock_pcp *stock =
4342 						&per_cpu(memcg_stock, cpu);
4343 			INIT_WORK(&stock->work, drain_local_stock);
4344 		}
4345 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4346 	} else {
4347 		parent = mem_cgroup_from_cont(cont->parent);
4348 		mem->use_hierarchy = parent->use_hierarchy;
4349 		mem->oom_kill_disable = parent->oom_kill_disable;
4350 	}
4351 
4352 	if (parent && parent->use_hierarchy) {
4353 		res_counter_init(&mem->res, &parent->res);
4354 		res_counter_init(&mem->memsw, &parent->memsw);
4355 		/*
4356 		 * We increment refcnt of the parent to ensure that we can
4357 		 * safely access it on res_counter_charge/uncharge.
4358 		 * This refcnt will be decremented when freeing this
4359 		 * mem_cgroup(see mem_cgroup_put).
4360 		 */
4361 		mem_cgroup_get(parent);
4362 	} else {
4363 		res_counter_init(&mem->res, NULL);
4364 		res_counter_init(&mem->memsw, NULL);
4365 	}
4366 	mem->last_scanned_child = 0;
4367 	spin_lock_init(&mem->reclaim_param_lock);
4368 	INIT_LIST_HEAD(&mem->oom_notify);
4369 
4370 	if (parent)
4371 		mem->swappiness = get_swappiness(parent);
4372 	atomic_set(&mem->refcnt, 1);
4373 	mem->move_charge_at_immigrate = 0;
4374 	mutex_init(&mem->thresholds_lock);
4375 	return &mem->css;
4376 free_out:
4377 	__mem_cgroup_free(mem);
4378 	root_mem_cgroup = NULL;
4379 	return ERR_PTR(error);
4380 }
4381 
4382 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4383 					struct cgroup *cont)
4384 {
4385 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4386 
4387 	return mem_cgroup_force_empty(mem, false);
4388 }
4389 
4390 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4391 				struct cgroup *cont)
4392 {
4393 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4394 
4395 	mem_cgroup_put(mem);
4396 }
4397 
4398 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4399 				struct cgroup *cont)
4400 {
4401 	int ret;
4402 
4403 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4404 				ARRAY_SIZE(mem_cgroup_files));
4405 
4406 	if (!ret)
4407 		ret = register_memsw_files(cont, ss);
4408 	return ret;
4409 }
4410 
4411 #ifdef CONFIG_MMU
4412 /* Handlers for move charge at task migration. */
4413 #define PRECHARGE_COUNT_AT_ONCE	256
4414 static int mem_cgroup_do_precharge(unsigned long count)
4415 {
4416 	int ret = 0;
4417 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4418 	struct mem_cgroup *mem = mc.to;
4419 
4420 	if (mem_cgroup_is_root(mem)) {
4421 		mc.precharge += count;
4422 		/* we don't need css_get for root */
4423 		return ret;
4424 	}
4425 	/* try to charge at once */
4426 	if (count > 1) {
4427 		struct res_counter *dummy;
4428 		/*
4429 		 * "mem" cannot be under rmdir() because we've already checked
4430 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4431 		 * are still under the same cgroup_mutex. So we can postpone
4432 		 * css_get().
4433 		 */
4434 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4435 			goto one_by_one;
4436 		if (do_swap_account && res_counter_charge(&mem->memsw,
4437 						PAGE_SIZE * count, &dummy)) {
4438 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4439 			goto one_by_one;
4440 		}
4441 		mc.precharge += count;
4442 		return ret;
4443 	}
4444 one_by_one:
4445 	/* fall back to one by one charge */
4446 	while (count--) {
4447 		if (signal_pending(current)) {
4448 			ret = -EINTR;
4449 			break;
4450 		}
4451 		if (!batch_count--) {
4452 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4453 			cond_resched();
4454 		}
4455 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4456 		if (ret || !mem)
4457 			/* mem_cgroup_clear_mc() will do uncharge later */
4458 			return -ENOMEM;
4459 		mc.precharge++;
4460 	}
4461 	return ret;
4462 }
4463 
4464 /**
4465  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4466  * @vma: the vma the pte to be checked belongs
4467  * @addr: the address corresponding to the pte to be checked
4468  * @ptent: the pte to be checked
4469  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4470  *
4471  * Returns
4472  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4473  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4474  *     move charge. if @target is not NULL, the page is stored in target->page
4475  *     with extra refcnt got(Callers should handle it).
4476  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4477  *     target for charge migration. if @target is not NULL, the entry is stored
4478  *     in target->ent.
4479  *
4480  * Called with pte lock held.
4481  */
4482 union mc_target {
4483 	struct page	*page;
4484 	swp_entry_t	ent;
4485 };
4486 
4487 enum mc_target_type {
4488 	MC_TARGET_NONE,	/* not used */
4489 	MC_TARGET_PAGE,
4490 	MC_TARGET_SWAP,
4491 };
4492 
4493 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4494 						unsigned long addr, pte_t ptent)
4495 {
4496 	struct page *page = vm_normal_page(vma, addr, ptent);
4497 
4498 	if (!page || !page_mapped(page))
4499 		return NULL;
4500 	if (PageAnon(page)) {
4501 		/* we don't move shared anon */
4502 		if (!move_anon() || page_mapcount(page) > 2)
4503 			return NULL;
4504 	} else if (!move_file())
4505 		/* we ignore mapcount for file pages */
4506 		return NULL;
4507 	if (!get_page_unless_zero(page))
4508 		return NULL;
4509 
4510 	return page;
4511 }
4512 
4513 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4514 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4515 {
4516 	int usage_count;
4517 	struct page *page = NULL;
4518 	swp_entry_t ent = pte_to_swp_entry(ptent);
4519 
4520 	if (!move_anon() || non_swap_entry(ent))
4521 		return NULL;
4522 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4523 	if (usage_count > 1) { /* we don't move shared anon */
4524 		if (page)
4525 			put_page(page);
4526 		return NULL;
4527 	}
4528 	if (do_swap_account)
4529 		entry->val = ent.val;
4530 
4531 	return page;
4532 }
4533 
4534 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4535 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4536 {
4537 	struct page *page = NULL;
4538 	struct inode *inode;
4539 	struct address_space *mapping;
4540 	pgoff_t pgoff;
4541 
4542 	if (!vma->vm_file) /* anonymous vma */
4543 		return NULL;
4544 	if (!move_file())
4545 		return NULL;
4546 
4547 	inode = vma->vm_file->f_path.dentry->d_inode;
4548 	mapping = vma->vm_file->f_mapping;
4549 	if (pte_none(ptent))
4550 		pgoff = linear_page_index(vma, addr);
4551 	else /* pte_file(ptent) is true */
4552 		pgoff = pte_to_pgoff(ptent);
4553 
4554 	/* page is moved even if it's not RSS of this task(page-faulted). */
4555 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4556 		page = find_get_page(mapping, pgoff);
4557 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4558 		swp_entry_t ent;
4559 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4560 		if (do_swap_account)
4561 			entry->val = ent.val;
4562 	}
4563 
4564 	return page;
4565 }
4566 
4567 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4568 		unsigned long addr, pte_t ptent, union mc_target *target)
4569 {
4570 	struct page *page = NULL;
4571 	struct page_cgroup *pc;
4572 	int ret = 0;
4573 	swp_entry_t ent = { .val = 0 };
4574 
4575 	if (pte_present(ptent))
4576 		page = mc_handle_present_pte(vma, addr, ptent);
4577 	else if (is_swap_pte(ptent))
4578 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4579 	else if (pte_none(ptent) || pte_file(ptent))
4580 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4581 
4582 	if (!page && !ent.val)
4583 		return 0;
4584 	if (page) {
4585 		pc = lookup_page_cgroup(page);
4586 		/*
4587 		 * Do only loose check w/o page_cgroup lock.
4588 		 * mem_cgroup_move_account() checks the pc is valid or not under
4589 		 * the lock.
4590 		 */
4591 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4592 			ret = MC_TARGET_PAGE;
4593 			if (target)
4594 				target->page = page;
4595 		}
4596 		if (!ret || !target)
4597 			put_page(page);
4598 	}
4599 	/* There is a swap entry and a page doesn't exist or isn't charged */
4600 	if (ent.val && !ret &&
4601 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4602 		ret = MC_TARGET_SWAP;
4603 		if (target)
4604 			target->ent = ent;
4605 	}
4606 	return ret;
4607 }
4608 
4609 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4610 					unsigned long addr, unsigned long end,
4611 					struct mm_walk *walk)
4612 {
4613 	struct vm_area_struct *vma = walk->private;
4614 	pte_t *pte;
4615 	spinlock_t *ptl;
4616 
4617 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4618 	for (; addr != end; pte++, addr += PAGE_SIZE)
4619 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4620 			mc.precharge++;	/* increment precharge temporarily */
4621 	pte_unmap_unlock(pte - 1, ptl);
4622 	cond_resched();
4623 
4624 	return 0;
4625 }
4626 
4627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4628 {
4629 	unsigned long precharge;
4630 	struct vm_area_struct *vma;
4631 
4632 	down_read(&mm->mmap_sem);
4633 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4634 		struct mm_walk mem_cgroup_count_precharge_walk = {
4635 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4636 			.mm = mm,
4637 			.private = vma,
4638 		};
4639 		if (is_vm_hugetlb_page(vma))
4640 			continue;
4641 		walk_page_range(vma->vm_start, vma->vm_end,
4642 					&mem_cgroup_count_precharge_walk);
4643 	}
4644 	up_read(&mm->mmap_sem);
4645 
4646 	precharge = mc.precharge;
4647 	mc.precharge = 0;
4648 
4649 	return precharge;
4650 }
4651 
4652 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4653 {
4654 	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4655 }
4656 
4657 static void mem_cgroup_clear_mc(void)
4658 {
4659 	struct mem_cgroup *from = mc.from;
4660 	struct mem_cgroup *to = mc.to;
4661 
4662 	/* we must uncharge all the leftover precharges from mc.to */
4663 	if (mc.precharge) {
4664 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4665 		mc.precharge = 0;
4666 	}
4667 	/*
4668 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4669 	 * we must uncharge here.
4670 	 */
4671 	if (mc.moved_charge) {
4672 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4673 		mc.moved_charge = 0;
4674 	}
4675 	/* we must fixup refcnts and charges */
4676 	if (mc.moved_swap) {
4677 		/* uncharge swap account from the old cgroup */
4678 		if (!mem_cgroup_is_root(mc.from))
4679 			res_counter_uncharge(&mc.from->memsw,
4680 						PAGE_SIZE * mc.moved_swap);
4681 		__mem_cgroup_put(mc.from, mc.moved_swap);
4682 
4683 		if (!mem_cgroup_is_root(mc.to)) {
4684 			/*
4685 			 * we charged both to->res and to->memsw, so we should
4686 			 * uncharge to->res.
4687 			 */
4688 			res_counter_uncharge(&mc.to->res,
4689 						PAGE_SIZE * mc.moved_swap);
4690 		}
4691 		/* we've already done mem_cgroup_get(mc.to) */
4692 
4693 		mc.moved_swap = 0;
4694 	}
4695 	spin_lock(&mc.lock);
4696 	mc.from = NULL;
4697 	mc.to = NULL;
4698 	mc.moving_task = NULL;
4699 	spin_unlock(&mc.lock);
4700 	mem_cgroup_end_move(from);
4701 	memcg_oom_recover(from);
4702 	memcg_oom_recover(to);
4703 	wake_up_all(&mc.waitq);
4704 }
4705 
4706 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4707 				struct cgroup *cgroup,
4708 				struct task_struct *p,
4709 				bool threadgroup)
4710 {
4711 	int ret = 0;
4712 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4713 
4714 	if (mem->move_charge_at_immigrate) {
4715 		struct mm_struct *mm;
4716 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4717 
4718 		VM_BUG_ON(from == mem);
4719 
4720 		mm = get_task_mm(p);
4721 		if (!mm)
4722 			return 0;
4723 		/* We move charges only when we move a owner of the mm */
4724 		if (mm->owner == p) {
4725 			VM_BUG_ON(mc.from);
4726 			VM_BUG_ON(mc.to);
4727 			VM_BUG_ON(mc.precharge);
4728 			VM_BUG_ON(mc.moved_charge);
4729 			VM_BUG_ON(mc.moved_swap);
4730 			VM_BUG_ON(mc.moving_task);
4731 			mem_cgroup_start_move(from);
4732 			spin_lock(&mc.lock);
4733 			mc.from = from;
4734 			mc.to = mem;
4735 			mc.precharge = 0;
4736 			mc.moved_charge = 0;
4737 			mc.moved_swap = 0;
4738 			mc.moving_task = current;
4739 			spin_unlock(&mc.lock);
4740 
4741 			ret = mem_cgroup_precharge_mc(mm);
4742 			if (ret)
4743 				mem_cgroup_clear_mc();
4744 		}
4745 		mmput(mm);
4746 	}
4747 	return ret;
4748 }
4749 
4750 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4751 				struct cgroup *cgroup,
4752 				struct task_struct *p,
4753 				bool threadgroup)
4754 {
4755 	mem_cgroup_clear_mc();
4756 }
4757 
4758 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4759 				unsigned long addr, unsigned long end,
4760 				struct mm_walk *walk)
4761 {
4762 	int ret = 0;
4763 	struct vm_area_struct *vma = walk->private;
4764 	pte_t *pte;
4765 	spinlock_t *ptl;
4766 
4767 retry:
4768 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4769 	for (; addr != end; addr += PAGE_SIZE) {
4770 		pte_t ptent = *(pte++);
4771 		union mc_target target;
4772 		int type;
4773 		struct page *page;
4774 		struct page_cgroup *pc;
4775 		swp_entry_t ent;
4776 
4777 		if (!mc.precharge)
4778 			break;
4779 
4780 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4781 		switch (type) {
4782 		case MC_TARGET_PAGE:
4783 			page = target.page;
4784 			if (isolate_lru_page(page))
4785 				goto put;
4786 			pc = lookup_page_cgroup(page);
4787 			if (!mem_cgroup_move_account(pc,
4788 						mc.from, mc.to, false)) {
4789 				mc.precharge--;
4790 				/* we uncharge from mc.from later. */
4791 				mc.moved_charge++;
4792 			}
4793 			putback_lru_page(page);
4794 put:			/* is_target_pte_for_mc() gets the page */
4795 			put_page(page);
4796 			break;
4797 		case MC_TARGET_SWAP:
4798 			ent = target.ent;
4799 			if (!mem_cgroup_move_swap_account(ent,
4800 						mc.from, mc.to, false)) {
4801 				mc.precharge--;
4802 				/* we fixup refcnts and charges later. */
4803 				mc.moved_swap++;
4804 			}
4805 			break;
4806 		default:
4807 			break;
4808 		}
4809 	}
4810 	pte_unmap_unlock(pte - 1, ptl);
4811 	cond_resched();
4812 
4813 	if (addr != end) {
4814 		/*
4815 		 * We have consumed all precharges we got in can_attach().
4816 		 * We try charge one by one, but don't do any additional
4817 		 * charges to mc.to if we have failed in charge once in attach()
4818 		 * phase.
4819 		 */
4820 		ret = mem_cgroup_do_precharge(1);
4821 		if (!ret)
4822 			goto retry;
4823 	}
4824 
4825 	return ret;
4826 }
4827 
4828 static void mem_cgroup_move_charge(struct mm_struct *mm)
4829 {
4830 	struct vm_area_struct *vma;
4831 
4832 	lru_add_drain_all();
4833 	down_read(&mm->mmap_sem);
4834 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4835 		int ret;
4836 		struct mm_walk mem_cgroup_move_charge_walk = {
4837 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4838 			.mm = mm,
4839 			.private = vma,
4840 		};
4841 		if (is_vm_hugetlb_page(vma))
4842 			continue;
4843 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4844 						&mem_cgroup_move_charge_walk);
4845 		if (ret)
4846 			/*
4847 			 * means we have consumed all precharges and failed in
4848 			 * doing additional charge. Just abandon here.
4849 			 */
4850 			break;
4851 	}
4852 	up_read(&mm->mmap_sem);
4853 }
4854 
4855 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4856 				struct cgroup *cont,
4857 				struct cgroup *old_cont,
4858 				struct task_struct *p,
4859 				bool threadgroup)
4860 {
4861 	struct mm_struct *mm;
4862 
4863 	if (!mc.to)
4864 		/* no need to move charge */
4865 		return;
4866 
4867 	mm = get_task_mm(p);
4868 	if (mm) {
4869 		mem_cgroup_move_charge(mm);
4870 		mmput(mm);
4871 	}
4872 	mem_cgroup_clear_mc();
4873 }
4874 #else	/* !CONFIG_MMU */
4875 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4876 				struct cgroup *cgroup,
4877 				struct task_struct *p,
4878 				bool threadgroup)
4879 {
4880 	return 0;
4881 }
4882 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4883 				struct cgroup *cgroup,
4884 				struct task_struct *p,
4885 				bool threadgroup)
4886 {
4887 }
4888 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4889 				struct cgroup *cont,
4890 				struct cgroup *old_cont,
4891 				struct task_struct *p,
4892 				bool threadgroup)
4893 {
4894 }
4895 #endif
4896 
4897 struct cgroup_subsys mem_cgroup_subsys = {
4898 	.name = "memory",
4899 	.subsys_id = mem_cgroup_subsys_id,
4900 	.create = mem_cgroup_create,
4901 	.pre_destroy = mem_cgroup_pre_destroy,
4902 	.destroy = mem_cgroup_destroy,
4903 	.populate = mem_cgroup_populate,
4904 	.can_attach = mem_cgroup_can_attach,
4905 	.cancel_attach = mem_cgroup_cancel_attach,
4906 	.attach = mem_cgroup_move_task,
4907 	.early_init = 0,
4908 	.use_id = 1,
4909 };
4910 
4911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4912 
4913 static int __init disable_swap_account(char *s)
4914 {
4915 	really_do_swap_account = 0;
4916 	return 1;
4917 }
4918 __setup("noswapaccount", disable_swap_account);
4919 #endif
4920