1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/mutex.h> 37 #include <linux/rbtree.h> 38 #include <linux/slab.h> 39 #include <linux/swap.h> 40 #include <linux/swapops.h> 41 #include <linux/spinlock.h> 42 #include <linux/eventfd.h> 43 #include <linux/sort.h> 44 #include <linux/fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/vmalloc.h> 47 #include <linux/mm_inline.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/cpu.h> 50 #include <linux/oom.h> 51 #include "internal.h" 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/vmscan.h> 56 57 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 58 #define MEM_CGROUP_RECLAIM_RETRIES 5 59 struct mem_cgroup *root_mem_cgroup __read_mostly; 60 61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 63 int do_swap_account __read_mostly; 64 static int really_do_swap_account __initdata = 1; /* for remember boot option*/ 65 #else 66 #define do_swap_account (0) 67 #endif 68 69 /* 70 * Per memcg event counter is incremented at every pagein/pageout. This counter 71 * is used for trigger some periodic events. This is straightforward and better 72 * than using jiffies etc. to handle periodic memcg event. 73 * 74 * These values will be used as !((event) & ((1 <<(thresh)) - 1)) 75 */ 76 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */ 77 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */ 78 79 /* 80 * Statistics for memory cgroup. 81 */ 82 enum mem_cgroup_stat_index { 83 /* 84 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 85 */ 86 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 87 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 88 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 89 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 90 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 91 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 92 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ 93 /* incremented at every pagein/pageout */ 94 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA, 95 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ 96 97 MEM_CGROUP_STAT_NSTATS, 98 }; 99 100 struct mem_cgroup_stat_cpu { 101 s64 count[MEM_CGROUP_STAT_NSTATS]; 102 }; 103 104 /* 105 * per-zone information in memory controller. 106 */ 107 struct mem_cgroup_per_zone { 108 /* 109 * spin_lock to protect the per cgroup LRU 110 */ 111 struct list_head lists[NR_LRU_LISTS]; 112 unsigned long count[NR_LRU_LISTS]; 113 114 struct zone_reclaim_stat reclaim_stat; 115 struct rb_node tree_node; /* RB tree node */ 116 unsigned long long usage_in_excess;/* Set to the value by which */ 117 /* the soft limit is exceeded*/ 118 bool on_tree; 119 struct mem_cgroup *mem; /* Back pointer, we cannot */ 120 /* use container_of */ 121 }; 122 /* Macro for accessing counter */ 123 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 124 125 struct mem_cgroup_per_node { 126 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 127 }; 128 129 struct mem_cgroup_lru_info { 130 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 131 }; 132 133 /* 134 * Cgroups above their limits are maintained in a RB-Tree, independent of 135 * their hierarchy representation 136 */ 137 138 struct mem_cgroup_tree_per_zone { 139 struct rb_root rb_root; 140 spinlock_t lock; 141 }; 142 143 struct mem_cgroup_tree_per_node { 144 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 145 }; 146 147 struct mem_cgroup_tree { 148 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 149 }; 150 151 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 152 153 struct mem_cgroup_threshold { 154 struct eventfd_ctx *eventfd; 155 u64 threshold; 156 }; 157 158 /* For threshold */ 159 struct mem_cgroup_threshold_ary { 160 /* An array index points to threshold just below usage. */ 161 int current_threshold; 162 /* Size of entries[] */ 163 unsigned int size; 164 /* Array of thresholds */ 165 struct mem_cgroup_threshold entries[0]; 166 }; 167 168 struct mem_cgroup_thresholds { 169 /* Primary thresholds array */ 170 struct mem_cgroup_threshold_ary *primary; 171 /* 172 * Spare threshold array. 173 * This is needed to make mem_cgroup_unregister_event() "never fail". 174 * It must be able to store at least primary->size - 1 entries. 175 */ 176 struct mem_cgroup_threshold_ary *spare; 177 }; 178 179 /* for OOM */ 180 struct mem_cgroup_eventfd_list { 181 struct list_head list; 182 struct eventfd_ctx *eventfd; 183 }; 184 185 static void mem_cgroup_threshold(struct mem_cgroup *mem); 186 static void mem_cgroup_oom_notify(struct mem_cgroup *mem); 187 188 /* 189 * The memory controller data structure. The memory controller controls both 190 * page cache and RSS per cgroup. We would eventually like to provide 191 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 192 * to help the administrator determine what knobs to tune. 193 * 194 * TODO: Add a water mark for the memory controller. Reclaim will begin when 195 * we hit the water mark. May be even add a low water mark, such that 196 * no reclaim occurs from a cgroup at it's low water mark, this is 197 * a feature that will be implemented much later in the future. 198 */ 199 struct mem_cgroup { 200 struct cgroup_subsys_state css; 201 /* 202 * the counter to account for memory usage 203 */ 204 struct res_counter res; 205 /* 206 * the counter to account for mem+swap usage. 207 */ 208 struct res_counter memsw; 209 /* 210 * Per cgroup active and inactive list, similar to the 211 * per zone LRU lists. 212 */ 213 struct mem_cgroup_lru_info info; 214 215 /* 216 protect against reclaim related member. 217 */ 218 spinlock_t reclaim_param_lock; 219 220 /* 221 * While reclaiming in a hierarchy, we cache the last child we 222 * reclaimed from. 223 */ 224 int last_scanned_child; 225 /* 226 * Should the accounting and control be hierarchical, per subtree? 227 */ 228 bool use_hierarchy; 229 atomic_t oom_lock; 230 atomic_t refcnt; 231 232 unsigned int swappiness; 233 /* OOM-Killer disable */ 234 int oom_kill_disable; 235 236 /* set when res.limit == memsw.limit */ 237 bool memsw_is_minimum; 238 239 /* protect arrays of thresholds */ 240 struct mutex thresholds_lock; 241 242 /* thresholds for memory usage. RCU-protected */ 243 struct mem_cgroup_thresholds thresholds; 244 245 /* thresholds for mem+swap usage. RCU-protected */ 246 struct mem_cgroup_thresholds memsw_thresholds; 247 248 /* For oom notifier event fd */ 249 struct list_head oom_notify; 250 251 /* 252 * Should we move charges of a task when a task is moved into this 253 * mem_cgroup ? And what type of charges should we move ? 254 */ 255 unsigned long move_charge_at_immigrate; 256 /* 257 * percpu counter. 258 */ 259 struct mem_cgroup_stat_cpu *stat; 260 /* 261 * used when a cpu is offlined or other synchronizations 262 * See mem_cgroup_read_stat(). 263 */ 264 struct mem_cgroup_stat_cpu nocpu_base; 265 spinlock_t pcp_counter_lock; 266 }; 267 268 /* Stuffs for move charges at task migration. */ 269 /* 270 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 271 * left-shifted bitmap of these types. 272 */ 273 enum move_type { 274 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 275 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 276 NR_MOVE_TYPE, 277 }; 278 279 /* "mc" and its members are protected by cgroup_mutex */ 280 static struct move_charge_struct { 281 spinlock_t lock; /* for from, to, moving_task */ 282 struct mem_cgroup *from; 283 struct mem_cgroup *to; 284 unsigned long precharge; 285 unsigned long moved_charge; 286 unsigned long moved_swap; 287 struct task_struct *moving_task; /* a task moving charges */ 288 wait_queue_head_t waitq; /* a waitq for other context */ 289 } mc = { 290 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 291 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 292 }; 293 294 static bool move_anon(void) 295 { 296 return test_bit(MOVE_CHARGE_TYPE_ANON, 297 &mc.to->move_charge_at_immigrate); 298 } 299 300 static bool move_file(void) 301 { 302 return test_bit(MOVE_CHARGE_TYPE_FILE, 303 &mc.to->move_charge_at_immigrate); 304 } 305 306 /* 307 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 308 * limit reclaim to prevent infinite loops, if they ever occur. 309 */ 310 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 311 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 312 313 enum charge_type { 314 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 315 MEM_CGROUP_CHARGE_TYPE_MAPPED, 316 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 317 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 318 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 319 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 320 NR_CHARGE_TYPE, 321 }; 322 323 /* only for here (for easy reading.) */ 324 #define PCGF_CACHE (1UL << PCG_CACHE) 325 #define PCGF_USED (1UL << PCG_USED) 326 #define PCGF_LOCK (1UL << PCG_LOCK) 327 /* Not used, but added here for completeness */ 328 #define PCGF_ACCT (1UL << PCG_ACCT) 329 330 /* for encoding cft->private value on file */ 331 #define _MEM (0) 332 #define _MEMSWAP (1) 333 #define _OOM_TYPE (2) 334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 335 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 336 #define MEMFILE_ATTR(val) ((val) & 0xffff) 337 /* Used for OOM nofiier */ 338 #define OOM_CONTROL (0) 339 340 /* 341 * Reclaim flags for mem_cgroup_hierarchical_reclaim 342 */ 343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 344 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 346 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 347 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 348 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) 349 350 static void mem_cgroup_get(struct mem_cgroup *mem); 351 static void mem_cgroup_put(struct mem_cgroup *mem); 352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 353 static void drain_all_stock_async(void); 354 355 static struct mem_cgroup_per_zone * 356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 357 { 358 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 359 } 360 361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) 362 { 363 return &mem->css; 364 } 365 366 static struct mem_cgroup_per_zone * 367 page_cgroup_zoneinfo(struct page_cgroup *pc) 368 { 369 struct mem_cgroup *mem = pc->mem_cgroup; 370 int nid = page_cgroup_nid(pc); 371 int zid = page_cgroup_zid(pc); 372 373 if (!mem) 374 return NULL; 375 376 return mem_cgroup_zoneinfo(mem, nid, zid); 377 } 378 379 static struct mem_cgroup_tree_per_zone * 380 soft_limit_tree_node_zone(int nid, int zid) 381 { 382 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 383 } 384 385 static struct mem_cgroup_tree_per_zone * 386 soft_limit_tree_from_page(struct page *page) 387 { 388 int nid = page_to_nid(page); 389 int zid = page_zonenum(page); 390 391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 392 } 393 394 static void 395 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, 396 struct mem_cgroup_per_zone *mz, 397 struct mem_cgroup_tree_per_zone *mctz, 398 unsigned long long new_usage_in_excess) 399 { 400 struct rb_node **p = &mctz->rb_root.rb_node; 401 struct rb_node *parent = NULL; 402 struct mem_cgroup_per_zone *mz_node; 403 404 if (mz->on_tree) 405 return; 406 407 mz->usage_in_excess = new_usage_in_excess; 408 if (!mz->usage_in_excess) 409 return; 410 while (*p) { 411 parent = *p; 412 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 413 tree_node); 414 if (mz->usage_in_excess < mz_node->usage_in_excess) 415 p = &(*p)->rb_left; 416 /* 417 * We can't avoid mem cgroups that are over their soft 418 * limit by the same amount 419 */ 420 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 421 p = &(*p)->rb_right; 422 } 423 rb_link_node(&mz->tree_node, parent, p); 424 rb_insert_color(&mz->tree_node, &mctz->rb_root); 425 mz->on_tree = true; 426 } 427 428 static void 429 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 430 struct mem_cgroup_per_zone *mz, 431 struct mem_cgroup_tree_per_zone *mctz) 432 { 433 if (!mz->on_tree) 434 return; 435 rb_erase(&mz->tree_node, &mctz->rb_root); 436 mz->on_tree = false; 437 } 438 439 static void 440 mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 441 struct mem_cgroup_per_zone *mz, 442 struct mem_cgroup_tree_per_zone *mctz) 443 { 444 spin_lock(&mctz->lock); 445 __mem_cgroup_remove_exceeded(mem, mz, mctz); 446 spin_unlock(&mctz->lock); 447 } 448 449 450 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) 451 { 452 unsigned long long excess; 453 struct mem_cgroup_per_zone *mz; 454 struct mem_cgroup_tree_per_zone *mctz; 455 int nid = page_to_nid(page); 456 int zid = page_zonenum(page); 457 mctz = soft_limit_tree_from_page(page); 458 459 /* 460 * Necessary to update all ancestors when hierarchy is used. 461 * because their event counter is not touched. 462 */ 463 for (; mem; mem = parent_mem_cgroup(mem)) { 464 mz = mem_cgroup_zoneinfo(mem, nid, zid); 465 excess = res_counter_soft_limit_excess(&mem->res); 466 /* 467 * We have to update the tree if mz is on RB-tree or 468 * mem is over its softlimit. 469 */ 470 if (excess || mz->on_tree) { 471 spin_lock(&mctz->lock); 472 /* if on-tree, remove it */ 473 if (mz->on_tree) 474 __mem_cgroup_remove_exceeded(mem, mz, mctz); 475 /* 476 * Insert again. mz->usage_in_excess will be updated. 477 * If excess is 0, no tree ops. 478 */ 479 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); 480 spin_unlock(&mctz->lock); 481 } 482 } 483 } 484 485 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) 486 { 487 int node, zone; 488 struct mem_cgroup_per_zone *mz; 489 struct mem_cgroup_tree_per_zone *mctz; 490 491 for_each_node_state(node, N_POSSIBLE) { 492 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 493 mz = mem_cgroup_zoneinfo(mem, node, zone); 494 mctz = soft_limit_tree_node_zone(node, zone); 495 mem_cgroup_remove_exceeded(mem, mz, mctz); 496 } 497 } 498 } 499 500 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) 501 { 502 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; 503 } 504 505 static struct mem_cgroup_per_zone * 506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 507 { 508 struct rb_node *rightmost = NULL; 509 struct mem_cgroup_per_zone *mz; 510 511 retry: 512 mz = NULL; 513 rightmost = rb_last(&mctz->rb_root); 514 if (!rightmost) 515 goto done; /* Nothing to reclaim from */ 516 517 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 518 /* 519 * Remove the node now but someone else can add it back, 520 * we will to add it back at the end of reclaim to its correct 521 * position in the tree. 522 */ 523 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 524 if (!res_counter_soft_limit_excess(&mz->mem->res) || 525 !css_tryget(&mz->mem->css)) 526 goto retry; 527 done: 528 return mz; 529 } 530 531 static struct mem_cgroup_per_zone * 532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 533 { 534 struct mem_cgroup_per_zone *mz; 535 536 spin_lock(&mctz->lock); 537 mz = __mem_cgroup_largest_soft_limit_node(mctz); 538 spin_unlock(&mctz->lock); 539 return mz; 540 } 541 542 /* 543 * Implementation Note: reading percpu statistics for memcg. 544 * 545 * Both of vmstat[] and percpu_counter has threshold and do periodic 546 * synchronization to implement "quick" read. There are trade-off between 547 * reading cost and precision of value. Then, we may have a chance to implement 548 * a periodic synchronizion of counter in memcg's counter. 549 * 550 * But this _read() function is used for user interface now. The user accounts 551 * memory usage by memory cgroup and he _always_ requires exact value because 552 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 553 * have to visit all online cpus and make sum. So, for now, unnecessary 554 * synchronization is not implemented. (just implemented for cpu hotplug) 555 * 556 * If there are kernel internal actions which can make use of some not-exact 557 * value, and reading all cpu value can be performance bottleneck in some 558 * common workload, threashold and synchonization as vmstat[] should be 559 * implemented. 560 */ 561 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, 562 enum mem_cgroup_stat_index idx) 563 { 564 int cpu; 565 s64 val = 0; 566 567 get_online_cpus(); 568 for_each_online_cpu(cpu) 569 val += per_cpu(mem->stat->count[idx], cpu); 570 #ifdef CONFIG_HOTPLUG_CPU 571 spin_lock(&mem->pcp_counter_lock); 572 val += mem->nocpu_base.count[idx]; 573 spin_unlock(&mem->pcp_counter_lock); 574 #endif 575 put_online_cpus(); 576 return val; 577 } 578 579 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem) 580 { 581 s64 ret; 582 583 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); 584 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); 585 return ret; 586 } 587 588 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, 589 bool charge) 590 { 591 int val = (charge) ? 1 : -1; 592 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 593 } 594 595 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 596 struct page_cgroup *pc, 597 bool charge) 598 { 599 int val = (charge) ? 1 : -1; 600 601 preempt_disable(); 602 603 if (PageCgroupCache(pc)) 604 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val); 605 else 606 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val); 607 608 if (charge) 609 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]); 610 else 611 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]); 612 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]); 613 614 preempt_enable(); 615 } 616 617 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 618 enum lru_list idx) 619 { 620 int nid, zid; 621 struct mem_cgroup_per_zone *mz; 622 u64 total = 0; 623 624 for_each_online_node(nid) 625 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 626 mz = mem_cgroup_zoneinfo(mem, nid, zid); 627 total += MEM_CGROUP_ZSTAT(mz, idx); 628 } 629 return total; 630 } 631 632 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) 633 { 634 s64 val; 635 636 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]); 637 638 return !(val & ((1 << event_mask_shift) - 1)); 639 } 640 641 /* 642 * Check events in order. 643 * 644 */ 645 static void memcg_check_events(struct mem_cgroup *mem, struct page *page) 646 { 647 /* threshold event is triggered in finer grain than soft limit */ 648 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) { 649 mem_cgroup_threshold(mem); 650 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH))) 651 mem_cgroup_update_tree(mem, page); 652 } 653 } 654 655 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 656 { 657 return container_of(cgroup_subsys_state(cont, 658 mem_cgroup_subsys_id), struct mem_cgroup, 659 css); 660 } 661 662 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 663 { 664 /* 665 * mm_update_next_owner() may clear mm->owner to NULL 666 * if it races with swapoff, page migration, etc. 667 * So this can be called with p == NULL. 668 */ 669 if (unlikely(!p)) 670 return NULL; 671 672 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 673 struct mem_cgroup, css); 674 } 675 676 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 677 { 678 struct mem_cgroup *mem = NULL; 679 680 if (!mm) 681 return NULL; 682 /* 683 * Because we have no locks, mm->owner's may be being moved to other 684 * cgroup. We use css_tryget() here even if this looks 685 * pessimistic (rather than adding locks here). 686 */ 687 rcu_read_lock(); 688 do { 689 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 690 if (unlikely(!mem)) 691 break; 692 } while (!css_tryget(&mem->css)); 693 rcu_read_unlock(); 694 return mem; 695 } 696 697 /* The caller has to guarantee "mem" exists before calling this */ 698 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) 699 { 700 struct cgroup_subsys_state *css; 701 int found; 702 703 if (!mem) /* ROOT cgroup has the smallest ID */ 704 return root_mem_cgroup; /*css_put/get against root is ignored*/ 705 if (!mem->use_hierarchy) { 706 if (css_tryget(&mem->css)) 707 return mem; 708 return NULL; 709 } 710 rcu_read_lock(); 711 /* 712 * searching a memory cgroup which has the smallest ID under given 713 * ROOT cgroup. (ID >= 1) 714 */ 715 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); 716 if (css && css_tryget(css)) 717 mem = container_of(css, struct mem_cgroup, css); 718 else 719 mem = NULL; 720 rcu_read_unlock(); 721 return mem; 722 } 723 724 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, 725 struct mem_cgroup *root, 726 bool cond) 727 { 728 int nextid = css_id(&iter->css) + 1; 729 int found; 730 int hierarchy_used; 731 struct cgroup_subsys_state *css; 732 733 hierarchy_used = iter->use_hierarchy; 734 735 css_put(&iter->css); 736 /* If no ROOT, walk all, ignore hierarchy */ 737 if (!cond || (root && !hierarchy_used)) 738 return NULL; 739 740 if (!root) 741 root = root_mem_cgroup; 742 743 do { 744 iter = NULL; 745 rcu_read_lock(); 746 747 css = css_get_next(&mem_cgroup_subsys, nextid, 748 &root->css, &found); 749 if (css && css_tryget(css)) 750 iter = container_of(css, struct mem_cgroup, css); 751 rcu_read_unlock(); 752 /* If css is NULL, no more cgroups will be found */ 753 nextid = found + 1; 754 } while (css && !iter); 755 756 return iter; 757 } 758 /* 759 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please 760 * be careful that "break" loop is not allowed. We have reference count. 761 * Instead of that modify "cond" to be false and "continue" to exit the loop. 762 */ 763 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \ 764 for (iter = mem_cgroup_start_loop(root);\ 765 iter != NULL;\ 766 iter = mem_cgroup_get_next(iter, root, cond)) 767 768 #define for_each_mem_cgroup_tree(iter, root) \ 769 for_each_mem_cgroup_tree_cond(iter, root, true) 770 771 #define for_each_mem_cgroup_all(iter) \ 772 for_each_mem_cgroup_tree_cond(iter, NULL, true) 773 774 775 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) 776 { 777 return (mem == root_mem_cgroup); 778 } 779 780 /* 781 * Following LRU functions are allowed to be used without PCG_LOCK. 782 * Operations are called by routine of global LRU independently from memcg. 783 * What we have to take care of here is validness of pc->mem_cgroup. 784 * 785 * Changes to pc->mem_cgroup happens when 786 * 1. charge 787 * 2. moving account 788 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 789 * It is added to LRU before charge. 790 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 791 * When moving account, the page is not on LRU. It's isolated. 792 */ 793 794 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 795 { 796 struct page_cgroup *pc; 797 struct mem_cgroup_per_zone *mz; 798 799 if (mem_cgroup_disabled()) 800 return; 801 pc = lookup_page_cgroup(page); 802 /* can happen while we handle swapcache. */ 803 if (!TestClearPageCgroupAcctLRU(pc)) 804 return; 805 VM_BUG_ON(!pc->mem_cgroup); 806 /* 807 * We don't check PCG_USED bit. It's cleared when the "page" is finally 808 * removed from global LRU. 809 */ 810 mz = page_cgroup_zoneinfo(pc); 811 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 812 if (mem_cgroup_is_root(pc->mem_cgroup)) 813 return; 814 VM_BUG_ON(list_empty(&pc->lru)); 815 list_del_init(&pc->lru); 816 return; 817 } 818 819 void mem_cgroup_del_lru(struct page *page) 820 { 821 mem_cgroup_del_lru_list(page, page_lru(page)); 822 } 823 824 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 825 { 826 struct mem_cgroup_per_zone *mz; 827 struct page_cgroup *pc; 828 829 if (mem_cgroup_disabled()) 830 return; 831 832 pc = lookup_page_cgroup(page); 833 /* 834 * Used bit is set without atomic ops but after smp_wmb(). 835 * For making pc->mem_cgroup visible, insert smp_rmb() here. 836 */ 837 smp_rmb(); 838 /* unused or root page is not rotated. */ 839 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) 840 return; 841 mz = page_cgroup_zoneinfo(pc); 842 list_move(&pc->lru, &mz->lists[lru]); 843 } 844 845 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 846 { 847 struct page_cgroup *pc; 848 struct mem_cgroup_per_zone *mz; 849 850 if (mem_cgroup_disabled()) 851 return; 852 pc = lookup_page_cgroup(page); 853 VM_BUG_ON(PageCgroupAcctLRU(pc)); 854 /* 855 * Used bit is set without atomic ops but after smp_wmb(). 856 * For making pc->mem_cgroup visible, insert smp_rmb() here. 857 */ 858 smp_rmb(); 859 if (!PageCgroupUsed(pc)) 860 return; 861 862 mz = page_cgroup_zoneinfo(pc); 863 MEM_CGROUP_ZSTAT(mz, lru) += 1; 864 SetPageCgroupAcctLRU(pc); 865 if (mem_cgroup_is_root(pc->mem_cgroup)) 866 return; 867 list_add(&pc->lru, &mz->lists[lru]); 868 } 869 870 /* 871 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 872 * lru because the page may.be reused after it's fully uncharged (because of 873 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 874 * it again. This function is only used to charge SwapCache. It's done under 875 * lock_page and expected that zone->lru_lock is never held. 876 */ 877 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 878 { 879 unsigned long flags; 880 struct zone *zone = page_zone(page); 881 struct page_cgroup *pc = lookup_page_cgroup(page); 882 883 spin_lock_irqsave(&zone->lru_lock, flags); 884 /* 885 * Forget old LRU when this page_cgroup is *not* used. This Used bit 886 * is guarded by lock_page() because the page is SwapCache. 887 */ 888 if (!PageCgroupUsed(pc)) 889 mem_cgroup_del_lru_list(page, page_lru(page)); 890 spin_unlock_irqrestore(&zone->lru_lock, flags); 891 } 892 893 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 894 { 895 unsigned long flags; 896 struct zone *zone = page_zone(page); 897 struct page_cgroup *pc = lookup_page_cgroup(page); 898 899 spin_lock_irqsave(&zone->lru_lock, flags); 900 /* link when the page is linked to LRU but page_cgroup isn't */ 901 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) 902 mem_cgroup_add_lru_list(page, page_lru(page)); 903 spin_unlock_irqrestore(&zone->lru_lock, flags); 904 } 905 906 907 void mem_cgroup_move_lists(struct page *page, 908 enum lru_list from, enum lru_list to) 909 { 910 if (mem_cgroup_disabled()) 911 return; 912 mem_cgroup_del_lru_list(page, from); 913 mem_cgroup_add_lru_list(page, to); 914 } 915 916 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 917 { 918 int ret; 919 struct mem_cgroup *curr = NULL; 920 struct task_struct *p; 921 922 p = find_lock_task_mm(task); 923 if (!p) 924 return 0; 925 curr = try_get_mem_cgroup_from_mm(p->mm); 926 task_unlock(p); 927 if (!curr) 928 return 0; 929 /* 930 * We should check use_hierarchy of "mem" not "curr". Because checking 931 * use_hierarchy of "curr" here make this function true if hierarchy is 932 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* 933 * hierarchy(even if use_hierarchy is disabled in "mem"). 934 */ 935 if (mem->use_hierarchy) 936 ret = css_is_ancestor(&curr->css, &mem->css); 937 else 938 ret = (curr == mem); 939 css_put(&curr->css); 940 return ret; 941 } 942 943 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 944 { 945 unsigned long active; 946 unsigned long inactive; 947 unsigned long gb; 948 unsigned long inactive_ratio; 949 950 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 951 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 952 953 gb = (inactive + active) >> (30 - PAGE_SHIFT); 954 if (gb) 955 inactive_ratio = int_sqrt(10 * gb); 956 else 957 inactive_ratio = 1; 958 959 if (present_pages) { 960 present_pages[0] = inactive; 961 present_pages[1] = active; 962 } 963 964 return inactive_ratio; 965 } 966 967 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 968 { 969 unsigned long active; 970 unsigned long inactive; 971 unsigned long present_pages[2]; 972 unsigned long inactive_ratio; 973 974 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 975 976 inactive = present_pages[0]; 977 active = present_pages[1]; 978 979 if (inactive * inactive_ratio < active) 980 return 1; 981 982 return 0; 983 } 984 985 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) 986 { 987 unsigned long active; 988 unsigned long inactive; 989 990 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); 991 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); 992 993 return (active > inactive); 994 } 995 996 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 997 struct zone *zone, 998 enum lru_list lru) 999 { 1000 int nid = zone_to_nid(zone); 1001 int zid = zone_idx(zone); 1002 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1003 1004 return MEM_CGROUP_ZSTAT(mz, lru); 1005 } 1006 1007 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 1008 struct zone *zone) 1009 { 1010 int nid = zone_to_nid(zone); 1011 int zid = zone_idx(zone); 1012 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1013 1014 return &mz->reclaim_stat; 1015 } 1016 1017 struct zone_reclaim_stat * 1018 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 1019 { 1020 struct page_cgroup *pc; 1021 struct mem_cgroup_per_zone *mz; 1022 1023 if (mem_cgroup_disabled()) 1024 return NULL; 1025 1026 pc = lookup_page_cgroup(page); 1027 /* 1028 * Used bit is set without atomic ops but after smp_wmb(). 1029 * For making pc->mem_cgroup visible, insert smp_rmb() here. 1030 */ 1031 smp_rmb(); 1032 if (!PageCgroupUsed(pc)) 1033 return NULL; 1034 1035 mz = page_cgroup_zoneinfo(pc); 1036 if (!mz) 1037 return NULL; 1038 1039 return &mz->reclaim_stat; 1040 } 1041 1042 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 1043 struct list_head *dst, 1044 unsigned long *scanned, int order, 1045 int mode, struct zone *z, 1046 struct mem_cgroup *mem_cont, 1047 int active, int file) 1048 { 1049 unsigned long nr_taken = 0; 1050 struct page *page; 1051 unsigned long scan; 1052 LIST_HEAD(pc_list); 1053 struct list_head *src; 1054 struct page_cgroup *pc, *tmp; 1055 int nid = zone_to_nid(z); 1056 int zid = zone_idx(z); 1057 struct mem_cgroup_per_zone *mz; 1058 int lru = LRU_FILE * file + active; 1059 int ret; 1060 1061 BUG_ON(!mem_cont); 1062 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 1063 src = &mz->lists[lru]; 1064 1065 scan = 0; 1066 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 1067 if (scan >= nr_to_scan) 1068 break; 1069 1070 page = pc->page; 1071 if (unlikely(!PageCgroupUsed(pc))) 1072 continue; 1073 if (unlikely(!PageLRU(page))) 1074 continue; 1075 1076 scan++; 1077 ret = __isolate_lru_page(page, mode, file); 1078 switch (ret) { 1079 case 0: 1080 list_move(&page->lru, dst); 1081 mem_cgroup_del_lru(page); 1082 nr_taken++; 1083 break; 1084 case -EBUSY: 1085 /* we don't affect global LRU but rotate in our LRU */ 1086 mem_cgroup_rotate_lru_list(page, page_lru(page)); 1087 break; 1088 default: 1089 break; 1090 } 1091 } 1092 1093 *scanned = scan; 1094 1095 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, 1096 0, 0, 0, mode); 1097 1098 return nr_taken; 1099 } 1100 1101 #define mem_cgroup_from_res_counter(counter, member) \ 1102 container_of(counter, struct mem_cgroup, member) 1103 1104 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 1105 { 1106 if (do_swap_account) { 1107 if (res_counter_check_under_limit(&mem->res) && 1108 res_counter_check_under_limit(&mem->memsw)) 1109 return true; 1110 } else 1111 if (res_counter_check_under_limit(&mem->res)) 1112 return true; 1113 return false; 1114 } 1115 1116 static unsigned int get_swappiness(struct mem_cgroup *memcg) 1117 { 1118 struct cgroup *cgrp = memcg->css.cgroup; 1119 unsigned int swappiness; 1120 1121 /* root ? */ 1122 if (cgrp->parent == NULL) 1123 return vm_swappiness; 1124 1125 spin_lock(&memcg->reclaim_param_lock); 1126 swappiness = memcg->swappiness; 1127 spin_unlock(&memcg->reclaim_param_lock); 1128 1129 return swappiness; 1130 } 1131 1132 static void mem_cgroup_start_move(struct mem_cgroup *mem) 1133 { 1134 int cpu; 1135 1136 get_online_cpus(); 1137 spin_lock(&mem->pcp_counter_lock); 1138 for_each_online_cpu(cpu) 1139 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1140 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1141 spin_unlock(&mem->pcp_counter_lock); 1142 put_online_cpus(); 1143 1144 synchronize_rcu(); 1145 } 1146 1147 static void mem_cgroup_end_move(struct mem_cgroup *mem) 1148 { 1149 int cpu; 1150 1151 if (!mem) 1152 return; 1153 get_online_cpus(); 1154 spin_lock(&mem->pcp_counter_lock); 1155 for_each_online_cpu(cpu) 1156 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1157 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1158 spin_unlock(&mem->pcp_counter_lock); 1159 put_online_cpus(); 1160 } 1161 /* 1162 * 2 routines for checking "mem" is under move_account() or not. 1163 * 1164 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used 1165 * for avoiding race in accounting. If true, 1166 * pc->mem_cgroup may be overwritten. 1167 * 1168 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1169 * under hierarchy of moving cgroups. This is for 1170 * waiting at hith-memory prressure caused by "move". 1171 */ 1172 1173 static bool mem_cgroup_stealed(struct mem_cgroup *mem) 1174 { 1175 VM_BUG_ON(!rcu_read_lock_held()); 1176 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1177 } 1178 1179 static bool mem_cgroup_under_move(struct mem_cgroup *mem) 1180 { 1181 struct mem_cgroup *from; 1182 struct mem_cgroup *to; 1183 bool ret = false; 1184 /* 1185 * Unlike task_move routines, we access mc.to, mc.from not under 1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1187 */ 1188 spin_lock(&mc.lock); 1189 from = mc.from; 1190 to = mc.to; 1191 if (!from) 1192 goto unlock; 1193 if (from == mem || to == mem 1194 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) 1195 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) 1196 ret = true; 1197 unlock: 1198 spin_unlock(&mc.lock); 1199 return ret; 1200 } 1201 1202 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) 1203 { 1204 if (mc.moving_task && current != mc.moving_task) { 1205 if (mem_cgroup_under_move(mem)) { 1206 DEFINE_WAIT(wait); 1207 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1208 /* moving charge context might have finished. */ 1209 if (mc.moving_task) 1210 schedule(); 1211 finish_wait(&mc.waitq, &wait); 1212 return true; 1213 } 1214 } 1215 return false; 1216 } 1217 1218 /** 1219 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1220 * @memcg: The memory cgroup that went over limit 1221 * @p: Task that is going to be killed 1222 * 1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1224 * enabled 1225 */ 1226 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1227 { 1228 struct cgroup *task_cgrp; 1229 struct cgroup *mem_cgrp; 1230 /* 1231 * Need a buffer in BSS, can't rely on allocations. The code relies 1232 * on the assumption that OOM is serialized for memory controller. 1233 * If this assumption is broken, revisit this code. 1234 */ 1235 static char memcg_name[PATH_MAX]; 1236 int ret; 1237 1238 if (!memcg || !p) 1239 return; 1240 1241 1242 rcu_read_lock(); 1243 1244 mem_cgrp = memcg->css.cgroup; 1245 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1246 1247 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1248 if (ret < 0) { 1249 /* 1250 * Unfortunately, we are unable to convert to a useful name 1251 * But we'll still print out the usage information 1252 */ 1253 rcu_read_unlock(); 1254 goto done; 1255 } 1256 rcu_read_unlock(); 1257 1258 printk(KERN_INFO "Task in %s killed", memcg_name); 1259 1260 rcu_read_lock(); 1261 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1262 if (ret < 0) { 1263 rcu_read_unlock(); 1264 goto done; 1265 } 1266 rcu_read_unlock(); 1267 1268 /* 1269 * Continues from above, so we don't need an KERN_ level 1270 */ 1271 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1272 done: 1273 1274 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1275 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1276 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1277 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1278 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1279 "failcnt %llu\n", 1280 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1281 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1282 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1283 } 1284 1285 /* 1286 * This function returns the number of memcg under hierarchy tree. Returns 1287 * 1(self count) if no children. 1288 */ 1289 static int mem_cgroup_count_children(struct mem_cgroup *mem) 1290 { 1291 int num = 0; 1292 struct mem_cgroup *iter; 1293 1294 for_each_mem_cgroup_tree(iter, mem) 1295 num++; 1296 return num; 1297 } 1298 1299 /* 1300 * Return the memory (and swap, if configured) limit for a memcg. 1301 */ 1302 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1303 { 1304 u64 limit; 1305 u64 memsw; 1306 1307 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) + 1308 total_swap_pages; 1309 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1310 /* 1311 * If memsw is finite and limits the amount of swap space available 1312 * to this memcg, return that limit. 1313 */ 1314 return min(limit, memsw); 1315 } 1316 1317 /* 1318 * Visit the first child (need not be the first child as per the ordering 1319 * of the cgroup list, since we track last_scanned_child) of @mem and use 1320 * that to reclaim free pages from. 1321 */ 1322 static struct mem_cgroup * 1323 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 1324 { 1325 struct mem_cgroup *ret = NULL; 1326 struct cgroup_subsys_state *css; 1327 int nextid, found; 1328 1329 if (!root_mem->use_hierarchy) { 1330 css_get(&root_mem->css); 1331 ret = root_mem; 1332 } 1333 1334 while (!ret) { 1335 rcu_read_lock(); 1336 nextid = root_mem->last_scanned_child + 1; 1337 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 1338 &found); 1339 if (css && css_tryget(css)) 1340 ret = container_of(css, struct mem_cgroup, css); 1341 1342 rcu_read_unlock(); 1343 /* Updates scanning parameter */ 1344 spin_lock(&root_mem->reclaim_param_lock); 1345 if (!css) { 1346 /* this means start scan from ID:1 */ 1347 root_mem->last_scanned_child = 0; 1348 } else 1349 root_mem->last_scanned_child = found; 1350 spin_unlock(&root_mem->reclaim_param_lock); 1351 } 1352 1353 return ret; 1354 } 1355 1356 /* 1357 * Scan the hierarchy if needed to reclaim memory. We remember the last child 1358 * we reclaimed from, so that we don't end up penalizing one child extensively 1359 * based on its position in the children list. 1360 * 1361 * root_mem is the original ancestor that we've been reclaim from. 1362 * 1363 * We give up and return to the caller when we visit root_mem twice. 1364 * (other groups can be removed while we're walking....) 1365 * 1366 * If shrink==true, for avoiding to free too much, this returns immedieately. 1367 */ 1368 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 1369 struct zone *zone, 1370 gfp_t gfp_mask, 1371 unsigned long reclaim_options) 1372 { 1373 struct mem_cgroup *victim; 1374 int ret, total = 0; 1375 int loop = 0; 1376 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; 1377 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; 1378 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; 1379 unsigned long excess = mem_cgroup_get_excess(root_mem); 1380 1381 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 1382 if (root_mem->memsw_is_minimum) 1383 noswap = true; 1384 1385 while (1) { 1386 victim = mem_cgroup_select_victim(root_mem); 1387 if (victim == root_mem) { 1388 loop++; 1389 if (loop >= 1) 1390 drain_all_stock_async(); 1391 if (loop >= 2) { 1392 /* 1393 * If we have not been able to reclaim 1394 * anything, it might because there are 1395 * no reclaimable pages under this hierarchy 1396 */ 1397 if (!check_soft || !total) { 1398 css_put(&victim->css); 1399 break; 1400 } 1401 /* 1402 * We want to do more targetted reclaim. 1403 * excess >> 2 is not to excessive so as to 1404 * reclaim too much, nor too less that we keep 1405 * coming back to reclaim from this cgroup 1406 */ 1407 if (total >= (excess >> 2) || 1408 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { 1409 css_put(&victim->css); 1410 break; 1411 } 1412 } 1413 } 1414 if (!mem_cgroup_local_usage(victim)) { 1415 /* this cgroup's local usage == 0 */ 1416 css_put(&victim->css); 1417 continue; 1418 } 1419 /* we use swappiness of local cgroup */ 1420 if (check_soft) 1421 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, 1422 noswap, get_swappiness(victim), zone); 1423 else 1424 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, 1425 noswap, get_swappiness(victim)); 1426 css_put(&victim->css); 1427 /* 1428 * At shrinking usage, we can't check we should stop here or 1429 * reclaim more. It's depends on callers. last_scanned_child 1430 * will work enough for keeping fairness under tree. 1431 */ 1432 if (shrink) 1433 return ret; 1434 total += ret; 1435 if (check_soft) { 1436 if (res_counter_check_under_soft_limit(&root_mem->res)) 1437 return total; 1438 } else if (mem_cgroup_check_under_limit(root_mem)) 1439 return 1 + total; 1440 } 1441 return total; 1442 } 1443 1444 /* 1445 * Check OOM-Killer is already running under our hierarchy. 1446 * If someone is running, return false. 1447 */ 1448 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) 1449 { 1450 int x, lock_count = 0; 1451 struct mem_cgroup *iter; 1452 1453 for_each_mem_cgroup_tree(iter, mem) { 1454 x = atomic_inc_return(&iter->oom_lock); 1455 lock_count = max(x, lock_count); 1456 } 1457 1458 if (lock_count == 1) 1459 return true; 1460 return false; 1461 } 1462 1463 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) 1464 { 1465 struct mem_cgroup *iter; 1466 1467 /* 1468 * When a new child is created while the hierarchy is under oom, 1469 * mem_cgroup_oom_lock() may not be called. We have to use 1470 * atomic_add_unless() here. 1471 */ 1472 for_each_mem_cgroup_tree(iter, mem) 1473 atomic_add_unless(&iter->oom_lock, -1, 0); 1474 return 0; 1475 } 1476 1477 1478 static DEFINE_MUTEX(memcg_oom_mutex); 1479 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1480 1481 struct oom_wait_info { 1482 struct mem_cgroup *mem; 1483 wait_queue_t wait; 1484 }; 1485 1486 static int memcg_oom_wake_function(wait_queue_t *wait, 1487 unsigned mode, int sync, void *arg) 1488 { 1489 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; 1490 struct oom_wait_info *oom_wait_info; 1491 1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1493 1494 if (oom_wait_info->mem == wake_mem) 1495 goto wakeup; 1496 /* if no hierarchy, no match */ 1497 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) 1498 return 0; 1499 /* 1500 * Both of oom_wait_info->mem and wake_mem are stable under us. 1501 * Then we can use css_is_ancestor without taking care of RCU. 1502 */ 1503 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && 1504 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) 1505 return 0; 1506 1507 wakeup: 1508 return autoremove_wake_function(wait, mode, sync, arg); 1509 } 1510 1511 static void memcg_wakeup_oom(struct mem_cgroup *mem) 1512 { 1513 /* for filtering, pass "mem" as argument. */ 1514 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); 1515 } 1516 1517 static void memcg_oom_recover(struct mem_cgroup *mem) 1518 { 1519 if (mem && atomic_read(&mem->oom_lock)) 1520 memcg_wakeup_oom(mem); 1521 } 1522 1523 /* 1524 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1525 */ 1526 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) 1527 { 1528 struct oom_wait_info owait; 1529 bool locked, need_to_kill; 1530 1531 owait.mem = mem; 1532 owait.wait.flags = 0; 1533 owait.wait.func = memcg_oom_wake_function; 1534 owait.wait.private = current; 1535 INIT_LIST_HEAD(&owait.wait.task_list); 1536 need_to_kill = true; 1537 /* At first, try to OOM lock hierarchy under mem.*/ 1538 mutex_lock(&memcg_oom_mutex); 1539 locked = mem_cgroup_oom_lock(mem); 1540 /* 1541 * Even if signal_pending(), we can't quit charge() loop without 1542 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1543 * under OOM is always welcomed, use TASK_KILLABLE here. 1544 */ 1545 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1546 if (!locked || mem->oom_kill_disable) 1547 need_to_kill = false; 1548 if (locked) 1549 mem_cgroup_oom_notify(mem); 1550 mutex_unlock(&memcg_oom_mutex); 1551 1552 if (need_to_kill) { 1553 finish_wait(&memcg_oom_waitq, &owait.wait); 1554 mem_cgroup_out_of_memory(mem, mask); 1555 } else { 1556 schedule(); 1557 finish_wait(&memcg_oom_waitq, &owait.wait); 1558 } 1559 mutex_lock(&memcg_oom_mutex); 1560 mem_cgroup_oom_unlock(mem); 1561 memcg_wakeup_oom(mem); 1562 mutex_unlock(&memcg_oom_mutex); 1563 1564 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1565 return false; 1566 /* Give chance to dying process */ 1567 schedule_timeout(1); 1568 return true; 1569 } 1570 1571 /* 1572 * Currently used to update mapped file statistics, but the routine can be 1573 * generalized to update other statistics as well. 1574 * 1575 * Notes: Race condition 1576 * 1577 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1578 * it tends to be costly. But considering some conditions, we doesn't need 1579 * to do so _always_. 1580 * 1581 * Considering "charge", lock_page_cgroup() is not required because all 1582 * file-stat operations happen after a page is attached to radix-tree. There 1583 * are no race with "charge". 1584 * 1585 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1586 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1587 * if there are race with "uncharge". Statistics itself is properly handled 1588 * by flags. 1589 * 1590 * Considering "move", this is an only case we see a race. To make the race 1591 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are 1592 * possibility of race condition. If there is, we take a lock. 1593 */ 1594 1595 static void mem_cgroup_update_file_stat(struct page *page, int idx, int val) 1596 { 1597 struct mem_cgroup *mem; 1598 struct page_cgroup *pc = lookup_page_cgroup(page); 1599 bool need_unlock = false; 1600 1601 if (unlikely(!pc)) 1602 return; 1603 1604 rcu_read_lock(); 1605 mem = pc->mem_cgroup; 1606 if (unlikely(!mem || !PageCgroupUsed(pc))) 1607 goto out; 1608 /* pc->mem_cgroup is unstable ? */ 1609 if (unlikely(mem_cgroup_stealed(mem))) { 1610 /* take a lock against to access pc->mem_cgroup */ 1611 lock_page_cgroup(pc); 1612 need_unlock = true; 1613 mem = pc->mem_cgroup; 1614 if (!mem || !PageCgroupUsed(pc)) 1615 goto out; 1616 } 1617 1618 this_cpu_add(mem->stat->count[idx], val); 1619 1620 switch (idx) { 1621 case MEM_CGROUP_STAT_FILE_MAPPED: 1622 if (val > 0) 1623 SetPageCgroupFileMapped(pc); 1624 else if (!page_mapped(page)) 1625 ClearPageCgroupFileMapped(pc); 1626 break; 1627 default: 1628 BUG(); 1629 } 1630 1631 out: 1632 if (unlikely(need_unlock)) 1633 unlock_page_cgroup(pc); 1634 rcu_read_unlock(); 1635 return; 1636 } 1637 1638 void mem_cgroup_update_file_mapped(struct page *page, int val) 1639 { 1640 mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val); 1641 } 1642 1643 /* 1644 * size of first charge trial. "32" comes from vmscan.c's magic value. 1645 * TODO: maybe necessary to use big numbers in big irons. 1646 */ 1647 #define CHARGE_SIZE (32 * PAGE_SIZE) 1648 struct memcg_stock_pcp { 1649 struct mem_cgroup *cached; /* this never be root cgroup */ 1650 int charge; 1651 struct work_struct work; 1652 }; 1653 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1654 static atomic_t memcg_drain_count; 1655 1656 /* 1657 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed 1658 * from local stock and true is returned. If the stock is 0 or charges from a 1659 * cgroup which is not current target, returns false. This stock will be 1660 * refilled. 1661 */ 1662 static bool consume_stock(struct mem_cgroup *mem) 1663 { 1664 struct memcg_stock_pcp *stock; 1665 bool ret = true; 1666 1667 stock = &get_cpu_var(memcg_stock); 1668 if (mem == stock->cached && stock->charge) 1669 stock->charge -= PAGE_SIZE; 1670 else /* need to call res_counter_charge */ 1671 ret = false; 1672 put_cpu_var(memcg_stock); 1673 return ret; 1674 } 1675 1676 /* 1677 * Returns stocks cached in percpu to res_counter and reset cached information. 1678 */ 1679 static void drain_stock(struct memcg_stock_pcp *stock) 1680 { 1681 struct mem_cgroup *old = stock->cached; 1682 1683 if (stock->charge) { 1684 res_counter_uncharge(&old->res, stock->charge); 1685 if (do_swap_account) 1686 res_counter_uncharge(&old->memsw, stock->charge); 1687 } 1688 stock->cached = NULL; 1689 stock->charge = 0; 1690 } 1691 1692 /* 1693 * This must be called under preempt disabled or must be called by 1694 * a thread which is pinned to local cpu. 1695 */ 1696 static void drain_local_stock(struct work_struct *dummy) 1697 { 1698 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 1699 drain_stock(stock); 1700 } 1701 1702 /* 1703 * Cache charges(val) which is from res_counter, to local per_cpu area. 1704 * This will be consumed by consume_stock() function, later. 1705 */ 1706 static void refill_stock(struct mem_cgroup *mem, int val) 1707 { 1708 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1709 1710 if (stock->cached != mem) { /* reset if necessary */ 1711 drain_stock(stock); 1712 stock->cached = mem; 1713 } 1714 stock->charge += val; 1715 put_cpu_var(memcg_stock); 1716 } 1717 1718 /* 1719 * Tries to drain stocked charges in other cpus. This function is asynchronous 1720 * and just put a work per cpu for draining localy on each cpu. Caller can 1721 * expects some charges will be back to res_counter later but cannot wait for 1722 * it. 1723 */ 1724 static void drain_all_stock_async(void) 1725 { 1726 int cpu; 1727 /* This function is for scheduling "drain" in asynchronous way. 1728 * The result of "drain" is not directly handled by callers. Then, 1729 * if someone is calling drain, we don't have to call drain more. 1730 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if 1731 * there is a race. We just do loose check here. 1732 */ 1733 if (atomic_read(&memcg_drain_count)) 1734 return; 1735 /* Notify other cpus that system-wide "drain" is running */ 1736 atomic_inc(&memcg_drain_count); 1737 get_online_cpus(); 1738 for_each_online_cpu(cpu) { 1739 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1740 schedule_work_on(cpu, &stock->work); 1741 } 1742 put_online_cpus(); 1743 atomic_dec(&memcg_drain_count); 1744 /* We don't wait for flush_work */ 1745 } 1746 1747 /* This is a synchronous drain interface. */ 1748 static void drain_all_stock_sync(void) 1749 { 1750 /* called when force_empty is called */ 1751 atomic_inc(&memcg_drain_count); 1752 schedule_on_each_cpu(drain_local_stock); 1753 atomic_dec(&memcg_drain_count); 1754 } 1755 1756 /* 1757 * This function drains percpu counter value from DEAD cpu and 1758 * move it to local cpu. Note that this function can be preempted. 1759 */ 1760 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) 1761 { 1762 int i; 1763 1764 spin_lock(&mem->pcp_counter_lock); 1765 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 1766 s64 x = per_cpu(mem->stat->count[i], cpu); 1767 1768 per_cpu(mem->stat->count[i], cpu) = 0; 1769 mem->nocpu_base.count[i] += x; 1770 } 1771 /* need to clear ON_MOVE value, works as a kind of lock. */ 1772 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 1773 spin_unlock(&mem->pcp_counter_lock); 1774 } 1775 1776 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) 1777 { 1778 int idx = MEM_CGROUP_ON_MOVE; 1779 1780 spin_lock(&mem->pcp_counter_lock); 1781 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; 1782 spin_unlock(&mem->pcp_counter_lock); 1783 } 1784 1785 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 1786 unsigned long action, 1787 void *hcpu) 1788 { 1789 int cpu = (unsigned long)hcpu; 1790 struct memcg_stock_pcp *stock; 1791 struct mem_cgroup *iter; 1792 1793 if ((action == CPU_ONLINE)) { 1794 for_each_mem_cgroup_all(iter) 1795 synchronize_mem_cgroup_on_move(iter, cpu); 1796 return NOTIFY_OK; 1797 } 1798 1799 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) 1800 return NOTIFY_OK; 1801 1802 for_each_mem_cgroup_all(iter) 1803 mem_cgroup_drain_pcp_counter(iter, cpu); 1804 1805 stock = &per_cpu(memcg_stock, cpu); 1806 drain_stock(stock); 1807 return NOTIFY_OK; 1808 } 1809 1810 1811 /* See __mem_cgroup_try_charge() for details */ 1812 enum { 1813 CHARGE_OK, /* success */ 1814 CHARGE_RETRY, /* need to retry but retry is not bad */ 1815 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 1816 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 1817 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 1818 }; 1819 1820 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, 1821 int csize, bool oom_check) 1822 { 1823 struct mem_cgroup *mem_over_limit; 1824 struct res_counter *fail_res; 1825 unsigned long flags = 0; 1826 int ret; 1827 1828 ret = res_counter_charge(&mem->res, csize, &fail_res); 1829 1830 if (likely(!ret)) { 1831 if (!do_swap_account) 1832 return CHARGE_OK; 1833 ret = res_counter_charge(&mem->memsw, csize, &fail_res); 1834 if (likely(!ret)) 1835 return CHARGE_OK; 1836 1837 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 1838 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 1839 } else 1840 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 1841 1842 if (csize > PAGE_SIZE) /* change csize and retry */ 1843 return CHARGE_RETRY; 1844 1845 if (!(gfp_mask & __GFP_WAIT)) 1846 return CHARGE_WOULDBLOCK; 1847 1848 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, 1849 gfp_mask, flags); 1850 /* 1851 * try_to_free_mem_cgroup_pages() might not give us a full 1852 * picture of reclaim. Some pages are reclaimed and might be 1853 * moved to swap cache or just unmapped from the cgroup. 1854 * Check the limit again to see if the reclaim reduced the 1855 * current usage of the cgroup before giving up 1856 */ 1857 if (ret || mem_cgroup_check_under_limit(mem_over_limit)) 1858 return CHARGE_RETRY; 1859 1860 /* 1861 * At task move, charge accounts can be doubly counted. So, it's 1862 * better to wait until the end of task_move if something is going on. 1863 */ 1864 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1865 return CHARGE_RETRY; 1866 1867 /* If we don't need to call oom-killer at el, return immediately */ 1868 if (!oom_check) 1869 return CHARGE_NOMEM; 1870 /* check OOM */ 1871 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) 1872 return CHARGE_OOM_DIE; 1873 1874 return CHARGE_RETRY; 1875 } 1876 1877 /* 1878 * Unlike exported interface, "oom" parameter is added. if oom==true, 1879 * oom-killer can be invoked. 1880 */ 1881 static int __mem_cgroup_try_charge(struct mm_struct *mm, 1882 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) 1883 { 1884 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 1885 struct mem_cgroup *mem = NULL; 1886 int ret; 1887 int csize = CHARGE_SIZE; 1888 1889 /* 1890 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 1891 * in system level. So, allow to go ahead dying process in addition to 1892 * MEMDIE process. 1893 */ 1894 if (unlikely(test_thread_flag(TIF_MEMDIE) 1895 || fatal_signal_pending(current))) 1896 goto bypass; 1897 1898 /* 1899 * We always charge the cgroup the mm_struct belongs to. 1900 * The mm_struct's mem_cgroup changes on task migration if the 1901 * thread group leader migrates. It's possible that mm is not 1902 * set, if so charge the init_mm (happens for pagecache usage). 1903 */ 1904 if (!*memcg && !mm) 1905 goto bypass; 1906 again: 1907 if (*memcg) { /* css should be a valid one */ 1908 mem = *memcg; 1909 VM_BUG_ON(css_is_removed(&mem->css)); 1910 if (mem_cgroup_is_root(mem)) 1911 goto done; 1912 if (consume_stock(mem)) 1913 goto done; 1914 css_get(&mem->css); 1915 } else { 1916 struct task_struct *p; 1917 1918 rcu_read_lock(); 1919 p = rcu_dereference(mm->owner); 1920 VM_BUG_ON(!p); 1921 /* 1922 * because we don't have task_lock(), "p" can exit while 1923 * we're here. In that case, "mem" can point to root 1924 * cgroup but never be NULL. (and task_struct itself is freed 1925 * by RCU, cgroup itself is RCU safe.) Then, we have small 1926 * risk here to get wrong cgroup. But such kind of mis-account 1927 * by race always happens because we don't have cgroup_mutex(). 1928 * It's overkill and we allow that small race, here. 1929 */ 1930 mem = mem_cgroup_from_task(p); 1931 VM_BUG_ON(!mem); 1932 if (mem_cgroup_is_root(mem)) { 1933 rcu_read_unlock(); 1934 goto done; 1935 } 1936 if (consume_stock(mem)) { 1937 /* 1938 * It seems dagerous to access memcg without css_get(). 1939 * But considering how consume_stok works, it's not 1940 * necessary. If consume_stock success, some charges 1941 * from this memcg are cached on this cpu. So, we 1942 * don't need to call css_get()/css_tryget() before 1943 * calling consume_stock(). 1944 */ 1945 rcu_read_unlock(); 1946 goto done; 1947 } 1948 /* after here, we may be blocked. we need to get refcnt */ 1949 if (!css_tryget(&mem->css)) { 1950 rcu_read_unlock(); 1951 goto again; 1952 } 1953 rcu_read_unlock(); 1954 } 1955 1956 do { 1957 bool oom_check; 1958 1959 /* If killed, bypass charge */ 1960 if (fatal_signal_pending(current)) { 1961 css_put(&mem->css); 1962 goto bypass; 1963 } 1964 1965 oom_check = false; 1966 if (oom && !nr_oom_retries) { 1967 oom_check = true; 1968 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 1969 } 1970 1971 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); 1972 1973 switch (ret) { 1974 case CHARGE_OK: 1975 break; 1976 case CHARGE_RETRY: /* not in OOM situation but retry */ 1977 csize = PAGE_SIZE; 1978 css_put(&mem->css); 1979 mem = NULL; 1980 goto again; 1981 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 1982 css_put(&mem->css); 1983 goto nomem; 1984 case CHARGE_NOMEM: /* OOM routine works */ 1985 if (!oom) { 1986 css_put(&mem->css); 1987 goto nomem; 1988 } 1989 /* If oom, we never return -ENOMEM */ 1990 nr_oom_retries--; 1991 break; 1992 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 1993 css_put(&mem->css); 1994 goto bypass; 1995 } 1996 } while (ret != CHARGE_OK); 1997 1998 if (csize > PAGE_SIZE) 1999 refill_stock(mem, csize - PAGE_SIZE); 2000 css_put(&mem->css); 2001 done: 2002 *memcg = mem; 2003 return 0; 2004 nomem: 2005 *memcg = NULL; 2006 return -ENOMEM; 2007 bypass: 2008 *memcg = NULL; 2009 return 0; 2010 } 2011 2012 /* 2013 * Somemtimes we have to undo a charge we got by try_charge(). 2014 * This function is for that and do uncharge, put css's refcnt. 2015 * gotten by try_charge(). 2016 */ 2017 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, 2018 unsigned long count) 2019 { 2020 if (!mem_cgroup_is_root(mem)) { 2021 res_counter_uncharge(&mem->res, PAGE_SIZE * count); 2022 if (do_swap_account) 2023 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); 2024 } 2025 } 2026 2027 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) 2028 { 2029 __mem_cgroup_cancel_charge(mem, 1); 2030 } 2031 2032 /* 2033 * A helper function to get mem_cgroup from ID. must be called under 2034 * rcu_read_lock(). The caller must check css_is_removed() or some if 2035 * it's concern. (dropping refcnt from swap can be called against removed 2036 * memcg.) 2037 */ 2038 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2039 { 2040 struct cgroup_subsys_state *css; 2041 2042 /* ID 0 is unused ID */ 2043 if (!id) 2044 return NULL; 2045 css = css_lookup(&mem_cgroup_subsys, id); 2046 if (!css) 2047 return NULL; 2048 return container_of(css, struct mem_cgroup, css); 2049 } 2050 2051 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2052 { 2053 struct mem_cgroup *mem = NULL; 2054 struct page_cgroup *pc; 2055 unsigned short id; 2056 swp_entry_t ent; 2057 2058 VM_BUG_ON(!PageLocked(page)); 2059 2060 pc = lookup_page_cgroup(page); 2061 lock_page_cgroup(pc); 2062 if (PageCgroupUsed(pc)) { 2063 mem = pc->mem_cgroup; 2064 if (mem && !css_tryget(&mem->css)) 2065 mem = NULL; 2066 } else if (PageSwapCache(page)) { 2067 ent.val = page_private(page); 2068 id = lookup_swap_cgroup(ent); 2069 rcu_read_lock(); 2070 mem = mem_cgroup_lookup(id); 2071 if (mem && !css_tryget(&mem->css)) 2072 mem = NULL; 2073 rcu_read_unlock(); 2074 } 2075 unlock_page_cgroup(pc); 2076 return mem; 2077 } 2078 2079 /* 2080 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 2081 * USED state. If already USED, uncharge and return. 2082 */ 2083 2084 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 2085 struct page_cgroup *pc, 2086 enum charge_type ctype) 2087 { 2088 /* try_charge() can return NULL to *memcg, taking care of it. */ 2089 if (!mem) 2090 return; 2091 2092 lock_page_cgroup(pc); 2093 if (unlikely(PageCgroupUsed(pc))) { 2094 unlock_page_cgroup(pc); 2095 mem_cgroup_cancel_charge(mem); 2096 return; 2097 } 2098 2099 pc->mem_cgroup = mem; 2100 /* 2101 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2102 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2103 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2104 * before USED bit, we need memory barrier here. 2105 * See mem_cgroup_add_lru_list(), etc. 2106 */ 2107 smp_wmb(); 2108 switch (ctype) { 2109 case MEM_CGROUP_CHARGE_TYPE_CACHE: 2110 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 2111 SetPageCgroupCache(pc); 2112 SetPageCgroupUsed(pc); 2113 break; 2114 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2115 ClearPageCgroupCache(pc); 2116 SetPageCgroupUsed(pc); 2117 break; 2118 default: 2119 break; 2120 } 2121 2122 mem_cgroup_charge_statistics(mem, pc, true); 2123 2124 unlock_page_cgroup(pc); 2125 /* 2126 * "charge_statistics" updated event counter. Then, check it. 2127 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2128 * if they exceeds softlimit. 2129 */ 2130 memcg_check_events(mem, pc->page); 2131 } 2132 2133 /** 2134 * __mem_cgroup_move_account - move account of the page 2135 * @pc: page_cgroup of the page. 2136 * @from: mem_cgroup which the page is moved from. 2137 * @to: mem_cgroup which the page is moved to. @from != @to. 2138 * @uncharge: whether we should call uncharge and css_put against @from. 2139 * 2140 * The caller must confirm following. 2141 * - page is not on LRU (isolate_page() is useful.) 2142 * - the pc is locked, used, and ->mem_cgroup points to @from. 2143 * 2144 * This function doesn't do "charge" nor css_get to new cgroup. It should be 2145 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is 2146 * true, this function does "uncharge" from old cgroup, but it doesn't if 2147 * @uncharge is false, so a caller should do "uncharge". 2148 */ 2149 2150 static void __mem_cgroup_move_account(struct page_cgroup *pc, 2151 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) 2152 { 2153 VM_BUG_ON(from == to); 2154 VM_BUG_ON(PageLRU(pc->page)); 2155 VM_BUG_ON(!PageCgroupLocked(pc)); 2156 VM_BUG_ON(!PageCgroupUsed(pc)); 2157 VM_BUG_ON(pc->mem_cgroup != from); 2158 2159 if (PageCgroupFileMapped(pc)) { 2160 /* Update mapped_file data for mem_cgroup */ 2161 preempt_disable(); 2162 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2163 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2164 preempt_enable(); 2165 } 2166 mem_cgroup_charge_statistics(from, pc, false); 2167 if (uncharge) 2168 /* This is not "cancel", but cancel_charge does all we need. */ 2169 mem_cgroup_cancel_charge(from); 2170 2171 /* caller should have done css_get */ 2172 pc->mem_cgroup = to; 2173 mem_cgroup_charge_statistics(to, pc, true); 2174 /* 2175 * We charges against "to" which may not have any tasks. Then, "to" 2176 * can be under rmdir(). But in current implementation, caller of 2177 * this function is just force_empty() and move charge, so it's 2178 * garanteed that "to" is never removed. So, we don't check rmdir 2179 * status here. 2180 */ 2181 } 2182 2183 /* 2184 * check whether the @pc is valid for moving account and call 2185 * __mem_cgroup_move_account() 2186 */ 2187 static int mem_cgroup_move_account(struct page_cgroup *pc, 2188 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) 2189 { 2190 int ret = -EINVAL; 2191 lock_page_cgroup(pc); 2192 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { 2193 __mem_cgroup_move_account(pc, from, to, uncharge); 2194 ret = 0; 2195 } 2196 unlock_page_cgroup(pc); 2197 /* 2198 * check events 2199 */ 2200 memcg_check_events(to, pc->page); 2201 memcg_check_events(from, pc->page); 2202 return ret; 2203 } 2204 2205 /* 2206 * move charges to its parent. 2207 */ 2208 2209 static int mem_cgroup_move_parent(struct page_cgroup *pc, 2210 struct mem_cgroup *child, 2211 gfp_t gfp_mask) 2212 { 2213 struct page *page = pc->page; 2214 struct cgroup *cg = child->css.cgroup; 2215 struct cgroup *pcg = cg->parent; 2216 struct mem_cgroup *parent; 2217 int ret; 2218 2219 /* Is ROOT ? */ 2220 if (!pcg) 2221 return -EINVAL; 2222 2223 ret = -EBUSY; 2224 if (!get_page_unless_zero(page)) 2225 goto out; 2226 if (isolate_lru_page(page)) 2227 goto put; 2228 2229 parent = mem_cgroup_from_cont(pcg); 2230 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); 2231 if (ret || !parent) 2232 goto put_back; 2233 2234 ret = mem_cgroup_move_account(pc, child, parent, true); 2235 if (ret) 2236 mem_cgroup_cancel_charge(parent); 2237 put_back: 2238 putback_lru_page(page); 2239 put: 2240 put_page(page); 2241 out: 2242 return ret; 2243 } 2244 2245 /* 2246 * Charge the memory controller for page usage. 2247 * Return 2248 * 0 if the charge was successful 2249 * < 0 if the cgroup is over its limit 2250 */ 2251 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2252 gfp_t gfp_mask, enum charge_type ctype) 2253 { 2254 struct mem_cgroup *mem = NULL; 2255 struct page_cgroup *pc; 2256 int ret; 2257 2258 pc = lookup_page_cgroup(page); 2259 /* can happen at boot */ 2260 if (unlikely(!pc)) 2261 return 0; 2262 prefetchw(pc); 2263 2264 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); 2265 if (ret || !mem) 2266 return ret; 2267 2268 __mem_cgroup_commit_charge(mem, pc, ctype); 2269 return 0; 2270 } 2271 2272 int mem_cgroup_newpage_charge(struct page *page, 2273 struct mm_struct *mm, gfp_t gfp_mask) 2274 { 2275 if (mem_cgroup_disabled()) 2276 return 0; 2277 if (PageCompound(page)) 2278 return 0; 2279 /* 2280 * If already mapped, we don't have to account. 2281 * If page cache, page->mapping has address_space. 2282 * But page->mapping may have out-of-use anon_vma pointer, 2283 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 2284 * is NULL. 2285 */ 2286 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 2287 return 0; 2288 if (unlikely(!mm)) 2289 mm = &init_mm; 2290 return mem_cgroup_charge_common(page, mm, gfp_mask, 2291 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2292 } 2293 2294 static void 2295 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2296 enum charge_type ctype); 2297 2298 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2299 gfp_t gfp_mask) 2300 { 2301 int ret; 2302 2303 if (mem_cgroup_disabled()) 2304 return 0; 2305 if (PageCompound(page)) 2306 return 0; 2307 /* 2308 * Corner case handling. This is called from add_to_page_cache() 2309 * in usual. But some FS (shmem) precharges this page before calling it 2310 * and call add_to_page_cache() with GFP_NOWAIT. 2311 * 2312 * For GFP_NOWAIT case, the page may be pre-charged before calling 2313 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 2314 * charge twice. (It works but has to pay a bit larger cost.) 2315 * And when the page is SwapCache, it should take swap information 2316 * into account. This is under lock_page() now. 2317 */ 2318 if (!(gfp_mask & __GFP_WAIT)) { 2319 struct page_cgroup *pc; 2320 2321 pc = lookup_page_cgroup(page); 2322 if (!pc) 2323 return 0; 2324 lock_page_cgroup(pc); 2325 if (PageCgroupUsed(pc)) { 2326 unlock_page_cgroup(pc); 2327 return 0; 2328 } 2329 unlock_page_cgroup(pc); 2330 } 2331 2332 if (unlikely(!mm)) 2333 mm = &init_mm; 2334 2335 if (page_is_file_cache(page)) 2336 return mem_cgroup_charge_common(page, mm, gfp_mask, 2337 MEM_CGROUP_CHARGE_TYPE_CACHE); 2338 2339 /* shmem */ 2340 if (PageSwapCache(page)) { 2341 struct mem_cgroup *mem = NULL; 2342 2343 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2344 if (!ret) 2345 __mem_cgroup_commit_charge_swapin(page, mem, 2346 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2347 } else 2348 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 2349 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2350 2351 return ret; 2352 } 2353 2354 /* 2355 * While swap-in, try_charge -> commit or cancel, the page is locked. 2356 * And when try_charge() successfully returns, one refcnt to memcg without 2357 * struct page_cgroup is acquired. This refcnt will be consumed by 2358 * "commit()" or removed by "cancel()" 2359 */ 2360 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2361 struct page *page, 2362 gfp_t mask, struct mem_cgroup **ptr) 2363 { 2364 struct mem_cgroup *mem; 2365 int ret; 2366 2367 if (mem_cgroup_disabled()) 2368 return 0; 2369 2370 if (!do_swap_account) 2371 goto charge_cur_mm; 2372 /* 2373 * A racing thread's fault, or swapoff, may have already updated 2374 * the pte, and even removed page from swap cache: in those cases 2375 * do_swap_page()'s pte_same() test will fail; but there's also a 2376 * KSM case which does need to charge the page. 2377 */ 2378 if (!PageSwapCache(page)) 2379 goto charge_cur_mm; 2380 mem = try_get_mem_cgroup_from_page(page); 2381 if (!mem) 2382 goto charge_cur_mm; 2383 *ptr = mem; 2384 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); 2385 css_put(&mem->css); 2386 return ret; 2387 charge_cur_mm: 2388 if (unlikely(!mm)) 2389 mm = &init_mm; 2390 return __mem_cgroup_try_charge(mm, mask, ptr, true); 2391 } 2392 2393 static void 2394 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2395 enum charge_type ctype) 2396 { 2397 struct page_cgroup *pc; 2398 2399 if (mem_cgroup_disabled()) 2400 return; 2401 if (!ptr) 2402 return; 2403 cgroup_exclude_rmdir(&ptr->css); 2404 pc = lookup_page_cgroup(page); 2405 mem_cgroup_lru_del_before_commit_swapcache(page); 2406 __mem_cgroup_commit_charge(ptr, pc, ctype); 2407 mem_cgroup_lru_add_after_commit_swapcache(page); 2408 /* 2409 * Now swap is on-memory. This means this page may be 2410 * counted both as mem and swap....double count. 2411 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2412 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2413 * may call delete_from_swap_cache() before reach here. 2414 */ 2415 if (do_swap_account && PageSwapCache(page)) { 2416 swp_entry_t ent = {.val = page_private(page)}; 2417 unsigned short id; 2418 struct mem_cgroup *memcg; 2419 2420 id = swap_cgroup_record(ent, 0); 2421 rcu_read_lock(); 2422 memcg = mem_cgroup_lookup(id); 2423 if (memcg) { 2424 /* 2425 * This recorded memcg can be obsolete one. So, avoid 2426 * calling css_tryget 2427 */ 2428 if (!mem_cgroup_is_root(memcg)) 2429 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 2430 mem_cgroup_swap_statistics(memcg, false); 2431 mem_cgroup_put(memcg); 2432 } 2433 rcu_read_unlock(); 2434 } 2435 /* 2436 * At swapin, we may charge account against cgroup which has no tasks. 2437 * So, rmdir()->pre_destroy() can be called while we do this charge. 2438 * In that case, we need to call pre_destroy() again. check it here. 2439 */ 2440 cgroup_release_and_wakeup_rmdir(&ptr->css); 2441 } 2442 2443 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 2444 { 2445 __mem_cgroup_commit_charge_swapin(page, ptr, 2446 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2447 } 2448 2449 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 2450 { 2451 if (mem_cgroup_disabled()) 2452 return; 2453 if (!mem) 2454 return; 2455 mem_cgroup_cancel_charge(mem); 2456 } 2457 2458 static void 2459 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype) 2460 { 2461 struct memcg_batch_info *batch = NULL; 2462 bool uncharge_memsw = true; 2463 /* If swapout, usage of swap doesn't decrease */ 2464 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2465 uncharge_memsw = false; 2466 2467 batch = ¤t->memcg_batch; 2468 /* 2469 * In usual, we do css_get() when we remember memcg pointer. 2470 * But in this case, we keep res->usage until end of a series of 2471 * uncharges. Then, it's ok to ignore memcg's refcnt. 2472 */ 2473 if (!batch->memcg) 2474 batch->memcg = mem; 2475 /* 2476 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2477 * In those cases, all pages freed continously can be expected to be in 2478 * the same cgroup and we have chance to coalesce uncharges. 2479 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2480 * because we want to do uncharge as soon as possible. 2481 */ 2482 2483 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2484 goto direct_uncharge; 2485 2486 /* 2487 * In typical case, batch->memcg == mem. This means we can 2488 * merge a series of uncharges to an uncharge of res_counter. 2489 * If not, we uncharge res_counter ony by one. 2490 */ 2491 if (batch->memcg != mem) 2492 goto direct_uncharge; 2493 /* remember freed charge and uncharge it later */ 2494 batch->bytes += PAGE_SIZE; 2495 if (uncharge_memsw) 2496 batch->memsw_bytes += PAGE_SIZE; 2497 return; 2498 direct_uncharge: 2499 res_counter_uncharge(&mem->res, PAGE_SIZE); 2500 if (uncharge_memsw) 2501 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 2502 if (unlikely(batch->memcg != mem)) 2503 memcg_oom_recover(mem); 2504 return; 2505 } 2506 2507 /* 2508 * uncharge if !page_mapped(page) 2509 */ 2510 static struct mem_cgroup * 2511 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2512 { 2513 struct page_cgroup *pc; 2514 struct mem_cgroup *mem = NULL; 2515 2516 if (mem_cgroup_disabled()) 2517 return NULL; 2518 2519 if (PageSwapCache(page)) 2520 return NULL; 2521 2522 /* 2523 * Check if our page_cgroup is valid 2524 */ 2525 pc = lookup_page_cgroup(page); 2526 if (unlikely(!pc || !PageCgroupUsed(pc))) 2527 return NULL; 2528 2529 lock_page_cgroup(pc); 2530 2531 mem = pc->mem_cgroup; 2532 2533 if (!PageCgroupUsed(pc)) 2534 goto unlock_out; 2535 2536 switch (ctype) { 2537 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2538 case MEM_CGROUP_CHARGE_TYPE_DROP: 2539 /* See mem_cgroup_prepare_migration() */ 2540 if (page_mapped(page) || PageCgroupMigration(pc)) 2541 goto unlock_out; 2542 break; 2543 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2544 if (!PageAnon(page)) { /* Shared memory */ 2545 if (page->mapping && !page_is_file_cache(page)) 2546 goto unlock_out; 2547 } else if (page_mapped(page)) /* Anon */ 2548 goto unlock_out; 2549 break; 2550 default: 2551 break; 2552 } 2553 2554 mem_cgroup_charge_statistics(mem, pc, false); 2555 2556 ClearPageCgroupUsed(pc); 2557 /* 2558 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2559 * freed from LRU. This is safe because uncharged page is expected not 2560 * to be reused (freed soon). Exception is SwapCache, it's handled by 2561 * special functions. 2562 */ 2563 2564 unlock_page_cgroup(pc); 2565 /* 2566 * even after unlock, we have mem->res.usage here and this memcg 2567 * will never be freed. 2568 */ 2569 memcg_check_events(mem, page); 2570 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 2571 mem_cgroup_swap_statistics(mem, true); 2572 mem_cgroup_get(mem); 2573 } 2574 if (!mem_cgroup_is_root(mem)) 2575 __do_uncharge(mem, ctype); 2576 2577 return mem; 2578 2579 unlock_out: 2580 unlock_page_cgroup(pc); 2581 return NULL; 2582 } 2583 2584 void mem_cgroup_uncharge_page(struct page *page) 2585 { 2586 /* early check. */ 2587 if (page_mapped(page)) 2588 return; 2589 if (page->mapping && !PageAnon(page)) 2590 return; 2591 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 2592 } 2593 2594 void mem_cgroup_uncharge_cache_page(struct page *page) 2595 { 2596 VM_BUG_ON(page_mapped(page)); 2597 VM_BUG_ON(page->mapping); 2598 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 2599 } 2600 2601 /* 2602 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 2603 * In that cases, pages are freed continuously and we can expect pages 2604 * are in the same memcg. All these calls itself limits the number of 2605 * pages freed at once, then uncharge_start/end() is called properly. 2606 * This may be called prural(2) times in a context, 2607 */ 2608 2609 void mem_cgroup_uncharge_start(void) 2610 { 2611 current->memcg_batch.do_batch++; 2612 /* We can do nest. */ 2613 if (current->memcg_batch.do_batch == 1) { 2614 current->memcg_batch.memcg = NULL; 2615 current->memcg_batch.bytes = 0; 2616 current->memcg_batch.memsw_bytes = 0; 2617 } 2618 } 2619 2620 void mem_cgroup_uncharge_end(void) 2621 { 2622 struct memcg_batch_info *batch = ¤t->memcg_batch; 2623 2624 if (!batch->do_batch) 2625 return; 2626 2627 batch->do_batch--; 2628 if (batch->do_batch) /* If stacked, do nothing. */ 2629 return; 2630 2631 if (!batch->memcg) 2632 return; 2633 /* 2634 * This "batch->memcg" is valid without any css_get/put etc... 2635 * bacause we hide charges behind us. 2636 */ 2637 if (batch->bytes) 2638 res_counter_uncharge(&batch->memcg->res, batch->bytes); 2639 if (batch->memsw_bytes) 2640 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); 2641 memcg_oom_recover(batch->memcg); 2642 /* forget this pointer (for sanity check) */ 2643 batch->memcg = NULL; 2644 } 2645 2646 #ifdef CONFIG_SWAP 2647 /* 2648 * called after __delete_from_swap_cache() and drop "page" account. 2649 * memcg information is recorded to swap_cgroup of "ent" 2650 */ 2651 void 2652 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 2653 { 2654 struct mem_cgroup *memcg; 2655 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 2656 2657 if (!swapout) /* this was a swap cache but the swap is unused ! */ 2658 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 2659 2660 memcg = __mem_cgroup_uncharge_common(page, ctype); 2661 2662 /* 2663 * record memcg information, if swapout && memcg != NULL, 2664 * mem_cgroup_get() was called in uncharge(). 2665 */ 2666 if (do_swap_account && swapout && memcg) 2667 swap_cgroup_record(ent, css_id(&memcg->css)); 2668 } 2669 #endif 2670 2671 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2672 /* 2673 * called from swap_entry_free(). remove record in swap_cgroup and 2674 * uncharge "memsw" account. 2675 */ 2676 void mem_cgroup_uncharge_swap(swp_entry_t ent) 2677 { 2678 struct mem_cgroup *memcg; 2679 unsigned short id; 2680 2681 if (!do_swap_account) 2682 return; 2683 2684 id = swap_cgroup_record(ent, 0); 2685 rcu_read_lock(); 2686 memcg = mem_cgroup_lookup(id); 2687 if (memcg) { 2688 /* 2689 * We uncharge this because swap is freed. 2690 * This memcg can be obsolete one. We avoid calling css_tryget 2691 */ 2692 if (!mem_cgroup_is_root(memcg)) 2693 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 2694 mem_cgroup_swap_statistics(memcg, false); 2695 mem_cgroup_put(memcg); 2696 } 2697 rcu_read_unlock(); 2698 } 2699 2700 /** 2701 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2702 * @entry: swap entry to be moved 2703 * @from: mem_cgroup which the entry is moved from 2704 * @to: mem_cgroup which the entry is moved to 2705 * @need_fixup: whether we should fixup res_counters and refcounts. 2706 * 2707 * It succeeds only when the swap_cgroup's record for this entry is the same 2708 * as the mem_cgroup's id of @from. 2709 * 2710 * Returns 0 on success, -EINVAL on failure. 2711 * 2712 * The caller must have charged to @to, IOW, called res_counter_charge() about 2713 * both res and memsw, and called css_get(). 2714 */ 2715 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2716 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 2717 { 2718 unsigned short old_id, new_id; 2719 2720 old_id = css_id(&from->css); 2721 new_id = css_id(&to->css); 2722 2723 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2724 mem_cgroup_swap_statistics(from, false); 2725 mem_cgroup_swap_statistics(to, true); 2726 /* 2727 * This function is only called from task migration context now. 2728 * It postpones res_counter and refcount handling till the end 2729 * of task migration(mem_cgroup_clear_mc()) for performance 2730 * improvement. But we cannot postpone mem_cgroup_get(to) 2731 * because if the process that has been moved to @to does 2732 * swap-in, the refcount of @to might be decreased to 0. 2733 */ 2734 mem_cgroup_get(to); 2735 if (need_fixup) { 2736 if (!mem_cgroup_is_root(from)) 2737 res_counter_uncharge(&from->memsw, PAGE_SIZE); 2738 mem_cgroup_put(from); 2739 /* 2740 * we charged both to->res and to->memsw, so we should 2741 * uncharge to->res. 2742 */ 2743 if (!mem_cgroup_is_root(to)) 2744 res_counter_uncharge(&to->res, PAGE_SIZE); 2745 } 2746 return 0; 2747 } 2748 return -EINVAL; 2749 } 2750 #else 2751 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2752 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 2753 { 2754 return -EINVAL; 2755 } 2756 #endif 2757 2758 /* 2759 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 2760 * page belongs to. 2761 */ 2762 int mem_cgroup_prepare_migration(struct page *page, 2763 struct page *newpage, struct mem_cgroup **ptr) 2764 { 2765 struct page_cgroup *pc; 2766 struct mem_cgroup *mem = NULL; 2767 enum charge_type ctype; 2768 int ret = 0; 2769 2770 if (mem_cgroup_disabled()) 2771 return 0; 2772 2773 pc = lookup_page_cgroup(page); 2774 lock_page_cgroup(pc); 2775 if (PageCgroupUsed(pc)) { 2776 mem = pc->mem_cgroup; 2777 css_get(&mem->css); 2778 /* 2779 * At migrating an anonymous page, its mapcount goes down 2780 * to 0 and uncharge() will be called. But, even if it's fully 2781 * unmapped, migration may fail and this page has to be 2782 * charged again. We set MIGRATION flag here and delay uncharge 2783 * until end_migration() is called 2784 * 2785 * Corner Case Thinking 2786 * A) 2787 * When the old page was mapped as Anon and it's unmap-and-freed 2788 * while migration was ongoing. 2789 * If unmap finds the old page, uncharge() of it will be delayed 2790 * until end_migration(). If unmap finds a new page, it's 2791 * uncharged when it make mapcount to be 1->0. If unmap code 2792 * finds swap_migration_entry, the new page will not be mapped 2793 * and end_migration() will find it(mapcount==0). 2794 * 2795 * B) 2796 * When the old page was mapped but migraion fails, the kernel 2797 * remaps it. A charge for it is kept by MIGRATION flag even 2798 * if mapcount goes down to 0. We can do remap successfully 2799 * without charging it again. 2800 * 2801 * C) 2802 * The "old" page is under lock_page() until the end of 2803 * migration, so, the old page itself will not be swapped-out. 2804 * If the new page is swapped out before end_migraton, our 2805 * hook to usual swap-out path will catch the event. 2806 */ 2807 if (PageAnon(page)) 2808 SetPageCgroupMigration(pc); 2809 } 2810 unlock_page_cgroup(pc); 2811 /* 2812 * If the page is not charged at this point, 2813 * we return here. 2814 */ 2815 if (!mem) 2816 return 0; 2817 2818 *ptr = mem; 2819 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false); 2820 css_put(&mem->css);/* drop extra refcnt */ 2821 if (ret || *ptr == NULL) { 2822 if (PageAnon(page)) { 2823 lock_page_cgroup(pc); 2824 ClearPageCgroupMigration(pc); 2825 unlock_page_cgroup(pc); 2826 /* 2827 * The old page may be fully unmapped while we kept it. 2828 */ 2829 mem_cgroup_uncharge_page(page); 2830 } 2831 return -ENOMEM; 2832 } 2833 /* 2834 * We charge new page before it's used/mapped. So, even if unlock_page() 2835 * is called before end_migration, we can catch all events on this new 2836 * page. In the case new page is migrated but not remapped, new page's 2837 * mapcount will be finally 0 and we call uncharge in end_migration(). 2838 */ 2839 pc = lookup_page_cgroup(newpage); 2840 if (PageAnon(page)) 2841 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 2842 else if (page_is_file_cache(page)) 2843 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 2844 else 2845 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2846 __mem_cgroup_commit_charge(mem, pc, ctype); 2847 return ret; 2848 } 2849 2850 /* remove redundant charge if migration failed*/ 2851 void mem_cgroup_end_migration(struct mem_cgroup *mem, 2852 struct page *oldpage, struct page *newpage) 2853 { 2854 struct page *used, *unused; 2855 struct page_cgroup *pc; 2856 2857 if (!mem) 2858 return; 2859 /* blocks rmdir() */ 2860 cgroup_exclude_rmdir(&mem->css); 2861 /* at migration success, oldpage->mapping is NULL. */ 2862 if (oldpage->mapping) { 2863 used = oldpage; 2864 unused = newpage; 2865 } else { 2866 used = newpage; 2867 unused = oldpage; 2868 } 2869 /* 2870 * We disallowed uncharge of pages under migration because mapcount 2871 * of the page goes down to zero, temporarly. 2872 * Clear the flag and check the page should be charged. 2873 */ 2874 pc = lookup_page_cgroup(oldpage); 2875 lock_page_cgroup(pc); 2876 ClearPageCgroupMigration(pc); 2877 unlock_page_cgroup(pc); 2878 2879 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); 2880 2881 /* 2882 * If a page is a file cache, radix-tree replacement is very atomic 2883 * and we can skip this check. When it was an Anon page, its mapcount 2884 * goes down to 0. But because we added MIGRATION flage, it's not 2885 * uncharged yet. There are several case but page->mapcount check 2886 * and USED bit check in mem_cgroup_uncharge_page() will do enough 2887 * check. (see prepare_charge() also) 2888 */ 2889 if (PageAnon(used)) 2890 mem_cgroup_uncharge_page(used); 2891 /* 2892 * At migration, we may charge account against cgroup which has no 2893 * tasks. 2894 * So, rmdir()->pre_destroy() can be called while we do this charge. 2895 * In that case, we need to call pre_destroy() again. check it here. 2896 */ 2897 cgroup_release_and_wakeup_rmdir(&mem->css); 2898 } 2899 2900 /* 2901 * A call to try to shrink memory usage on charge failure at shmem's swapin. 2902 * Calling hierarchical_reclaim is not enough because we should update 2903 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 2904 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 2905 * not from the memcg which this page would be charged to. 2906 * try_charge_swapin does all of these works properly. 2907 */ 2908 int mem_cgroup_shmem_charge_fallback(struct page *page, 2909 struct mm_struct *mm, 2910 gfp_t gfp_mask) 2911 { 2912 struct mem_cgroup *mem = NULL; 2913 int ret; 2914 2915 if (mem_cgroup_disabled()) 2916 return 0; 2917 2918 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2919 if (!ret) 2920 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 2921 2922 return ret; 2923 } 2924 2925 static DEFINE_MUTEX(set_limit_mutex); 2926 2927 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2928 unsigned long long val) 2929 { 2930 int retry_count; 2931 u64 memswlimit, memlimit; 2932 int ret = 0; 2933 int children = mem_cgroup_count_children(memcg); 2934 u64 curusage, oldusage; 2935 int enlarge; 2936 2937 /* 2938 * For keeping hierarchical_reclaim simple, how long we should retry 2939 * is depends on callers. We set our retry-count to be function 2940 * of # of children which we should visit in this loop. 2941 */ 2942 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 2943 2944 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 2945 2946 enlarge = 0; 2947 while (retry_count) { 2948 if (signal_pending(current)) { 2949 ret = -EINTR; 2950 break; 2951 } 2952 /* 2953 * Rather than hide all in some function, I do this in 2954 * open coded manner. You see what this really does. 2955 * We have to guarantee mem->res.limit < mem->memsw.limit. 2956 */ 2957 mutex_lock(&set_limit_mutex); 2958 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2959 if (memswlimit < val) { 2960 ret = -EINVAL; 2961 mutex_unlock(&set_limit_mutex); 2962 break; 2963 } 2964 2965 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 2966 if (memlimit < val) 2967 enlarge = 1; 2968 2969 ret = res_counter_set_limit(&memcg->res, val); 2970 if (!ret) { 2971 if (memswlimit == val) 2972 memcg->memsw_is_minimum = true; 2973 else 2974 memcg->memsw_is_minimum = false; 2975 } 2976 mutex_unlock(&set_limit_mutex); 2977 2978 if (!ret) 2979 break; 2980 2981 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 2982 MEM_CGROUP_RECLAIM_SHRINK); 2983 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 2984 /* Usage is reduced ? */ 2985 if (curusage >= oldusage) 2986 retry_count--; 2987 else 2988 oldusage = curusage; 2989 } 2990 if (!ret && enlarge) 2991 memcg_oom_recover(memcg); 2992 2993 return ret; 2994 } 2995 2996 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2997 unsigned long long val) 2998 { 2999 int retry_count; 3000 u64 memlimit, memswlimit, oldusage, curusage; 3001 int children = mem_cgroup_count_children(memcg); 3002 int ret = -EBUSY; 3003 int enlarge = 0; 3004 3005 /* see mem_cgroup_resize_res_limit */ 3006 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3007 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3008 while (retry_count) { 3009 if (signal_pending(current)) { 3010 ret = -EINTR; 3011 break; 3012 } 3013 /* 3014 * Rather than hide all in some function, I do this in 3015 * open coded manner. You see what this really does. 3016 * We have to guarantee mem->res.limit < mem->memsw.limit. 3017 */ 3018 mutex_lock(&set_limit_mutex); 3019 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3020 if (memlimit > val) { 3021 ret = -EINVAL; 3022 mutex_unlock(&set_limit_mutex); 3023 break; 3024 } 3025 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3026 if (memswlimit < val) 3027 enlarge = 1; 3028 ret = res_counter_set_limit(&memcg->memsw, val); 3029 if (!ret) { 3030 if (memlimit == val) 3031 memcg->memsw_is_minimum = true; 3032 else 3033 memcg->memsw_is_minimum = false; 3034 } 3035 mutex_unlock(&set_limit_mutex); 3036 3037 if (!ret) 3038 break; 3039 3040 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 3041 MEM_CGROUP_RECLAIM_NOSWAP | 3042 MEM_CGROUP_RECLAIM_SHRINK); 3043 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3044 /* Usage is reduced ? */ 3045 if (curusage >= oldusage) 3046 retry_count--; 3047 else 3048 oldusage = curusage; 3049 } 3050 if (!ret && enlarge) 3051 memcg_oom_recover(memcg); 3052 return ret; 3053 } 3054 3055 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3056 gfp_t gfp_mask) 3057 { 3058 unsigned long nr_reclaimed = 0; 3059 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3060 unsigned long reclaimed; 3061 int loop = 0; 3062 struct mem_cgroup_tree_per_zone *mctz; 3063 unsigned long long excess; 3064 3065 if (order > 0) 3066 return 0; 3067 3068 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3069 /* 3070 * This loop can run a while, specially if mem_cgroup's continuously 3071 * keep exceeding their soft limit and putting the system under 3072 * pressure 3073 */ 3074 do { 3075 if (next_mz) 3076 mz = next_mz; 3077 else 3078 mz = mem_cgroup_largest_soft_limit_node(mctz); 3079 if (!mz) 3080 break; 3081 3082 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, 3083 gfp_mask, 3084 MEM_CGROUP_RECLAIM_SOFT); 3085 nr_reclaimed += reclaimed; 3086 spin_lock(&mctz->lock); 3087 3088 /* 3089 * If we failed to reclaim anything from this memory cgroup 3090 * it is time to move on to the next cgroup 3091 */ 3092 next_mz = NULL; 3093 if (!reclaimed) { 3094 do { 3095 /* 3096 * Loop until we find yet another one. 3097 * 3098 * By the time we get the soft_limit lock 3099 * again, someone might have aded the 3100 * group back on the RB tree. Iterate to 3101 * make sure we get a different mem. 3102 * mem_cgroup_largest_soft_limit_node returns 3103 * NULL if no other cgroup is present on 3104 * the tree 3105 */ 3106 next_mz = 3107 __mem_cgroup_largest_soft_limit_node(mctz); 3108 if (next_mz == mz) { 3109 css_put(&next_mz->mem->css); 3110 next_mz = NULL; 3111 } else /* next_mz == NULL or other memcg */ 3112 break; 3113 } while (1); 3114 } 3115 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 3116 excess = res_counter_soft_limit_excess(&mz->mem->res); 3117 /* 3118 * One school of thought says that we should not add 3119 * back the node to the tree if reclaim returns 0. 3120 * But our reclaim could return 0, simply because due 3121 * to priority we are exposing a smaller subset of 3122 * memory to reclaim from. Consider this as a longer 3123 * term TODO. 3124 */ 3125 /* If excess == 0, no tree ops */ 3126 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 3127 spin_unlock(&mctz->lock); 3128 css_put(&mz->mem->css); 3129 loop++; 3130 /* 3131 * Could not reclaim anything and there are no more 3132 * mem cgroups to try or we seem to be looping without 3133 * reclaiming anything. 3134 */ 3135 if (!nr_reclaimed && 3136 (next_mz == NULL || 3137 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3138 break; 3139 } while (!nr_reclaimed); 3140 if (next_mz) 3141 css_put(&next_mz->mem->css); 3142 return nr_reclaimed; 3143 } 3144 3145 /* 3146 * This routine traverse page_cgroup in given list and drop them all. 3147 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3148 */ 3149 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 3150 int node, int zid, enum lru_list lru) 3151 { 3152 struct zone *zone; 3153 struct mem_cgroup_per_zone *mz; 3154 struct page_cgroup *pc, *busy; 3155 unsigned long flags, loop; 3156 struct list_head *list; 3157 int ret = 0; 3158 3159 zone = &NODE_DATA(node)->node_zones[zid]; 3160 mz = mem_cgroup_zoneinfo(mem, node, zid); 3161 list = &mz->lists[lru]; 3162 3163 loop = MEM_CGROUP_ZSTAT(mz, lru); 3164 /* give some margin against EBUSY etc...*/ 3165 loop += 256; 3166 busy = NULL; 3167 while (loop--) { 3168 ret = 0; 3169 spin_lock_irqsave(&zone->lru_lock, flags); 3170 if (list_empty(list)) { 3171 spin_unlock_irqrestore(&zone->lru_lock, flags); 3172 break; 3173 } 3174 pc = list_entry(list->prev, struct page_cgroup, lru); 3175 if (busy == pc) { 3176 list_move(&pc->lru, list); 3177 busy = NULL; 3178 spin_unlock_irqrestore(&zone->lru_lock, flags); 3179 continue; 3180 } 3181 spin_unlock_irqrestore(&zone->lru_lock, flags); 3182 3183 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 3184 if (ret == -ENOMEM) 3185 break; 3186 3187 if (ret == -EBUSY || ret == -EINVAL) { 3188 /* found lock contention or "pc" is obsolete. */ 3189 busy = pc; 3190 cond_resched(); 3191 } else 3192 busy = NULL; 3193 } 3194 3195 if (!ret && !list_empty(list)) 3196 return -EBUSY; 3197 return ret; 3198 } 3199 3200 /* 3201 * make mem_cgroup's charge to be 0 if there is no task. 3202 * This enables deleting this mem_cgroup. 3203 */ 3204 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 3205 { 3206 int ret; 3207 int node, zid, shrink; 3208 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3209 struct cgroup *cgrp = mem->css.cgroup; 3210 3211 css_get(&mem->css); 3212 3213 shrink = 0; 3214 /* should free all ? */ 3215 if (free_all) 3216 goto try_to_free; 3217 move_account: 3218 do { 3219 ret = -EBUSY; 3220 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3221 goto out; 3222 ret = -EINTR; 3223 if (signal_pending(current)) 3224 goto out; 3225 /* This is for making all *used* pages to be on LRU. */ 3226 lru_add_drain_all(); 3227 drain_all_stock_sync(); 3228 ret = 0; 3229 mem_cgroup_start_move(mem); 3230 for_each_node_state(node, N_HIGH_MEMORY) { 3231 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3232 enum lru_list l; 3233 for_each_lru(l) { 3234 ret = mem_cgroup_force_empty_list(mem, 3235 node, zid, l); 3236 if (ret) 3237 break; 3238 } 3239 } 3240 if (ret) 3241 break; 3242 } 3243 mem_cgroup_end_move(mem); 3244 memcg_oom_recover(mem); 3245 /* it seems parent cgroup doesn't have enough mem */ 3246 if (ret == -ENOMEM) 3247 goto try_to_free; 3248 cond_resched(); 3249 /* "ret" should also be checked to ensure all lists are empty. */ 3250 } while (mem->res.usage > 0 || ret); 3251 out: 3252 css_put(&mem->css); 3253 return ret; 3254 3255 try_to_free: 3256 /* returns EBUSY if there is a task or if we come here twice. */ 3257 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3258 ret = -EBUSY; 3259 goto out; 3260 } 3261 /* we call try-to-free pages for make this cgroup empty */ 3262 lru_add_drain_all(); 3263 /* try to free all pages in this cgroup */ 3264 shrink = 1; 3265 while (nr_retries && mem->res.usage > 0) { 3266 int progress; 3267 3268 if (signal_pending(current)) { 3269 ret = -EINTR; 3270 goto out; 3271 } 3272 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 3273 false, get_swappiness(mem)); 3274 if (!progress) { 3275 nr_retries--; 3276 /* maybe some writeback is necessary */ 3277 congestion_wait(BLK_RW_ASYNC, HZ/10); 3278 } 3279 3280 } 3281 lru_add_drain(); 3282 /* try move_account...there may be some *locked* pages. */ 3283 goto move_account; 3284 } 3285 3286 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3287 { 3288 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3289 } 3290 3291 3292 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3293 { 3294 return mem_cgroup_from_cont(cont)->use_hierarchy; 3295 } 3296 3297 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3298 u64 val) 3299 { 3300 int retval = 0; 3301 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3302 struct cgroup *parent = cont->parent; 3303 struct mem_cgroup *parent_mem = NULL; 3304 3305 if (parent) 3306 parent_mem = mem_cgroup_from_cont(parent); 3307 3308 cgroup_lock(); 3309 /* 3310 * If parent's use_hierarchy is set, we can't make any modifications 3311 * in the child subtrees. If it is unset, then the change can 3312 * occur, provided the current cgroup has no children. 3313 * 3314 * For the root cgroup, parent_mem is NULL, we allow value to be 3315 * set if there are no children. 3316 */ 3317 if ((!parent_mem || !parent_mem->use_hierarchy) && 3318 (val == 1 || val == 0)) { 3319 if (list_empty(&cont->children)) 3320 mem->use_hierarchy = val; 3321 else 3322 retval = -EBUSY; 3323 } else 3324 retval = -EINVAL; 3325 cgroup_unlock(); 3326 3327 return retval; 3328 } 3329 3330 3331 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, 3332 enum mem_cgroup_stat_index idx) 3333 { 3334 struct mem_cgroup *iter; 3335 s64 val = 0; 3336 3337 /* each per cpu's value can be minus.Then, use s64 */ 3338 for_each_mem_cgroup_tree(iter, mem) 3339 val += mem_cgroup_read_stat(iter, idx); 3340 3341 if (val < 0) /* race ? */ 3342 val = 0; 3343 return val; 3344 } 3345 3346 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) 3347 { 3348 u64 val; 3349 3350 if (!mem_cgroup_is_root(mem)) { 3351 if (!swap) 3352 return res_counter_read_u64(&mem->res, RES_USAGE); 3353 else 3354 return res_counter_read_u64(&mem->memsw, RES_USAGE); 3355 } 3356 3357 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE); 3358 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS); 3359 3360 if (swap) 3361 val += mem_cgroup_get_recursive_idx_stat(mem, 3362 MEM_CGROUP_STAT_SWAPOUT); 3363 3364 return val << PAGE_SHIFT; 3365 } 3366 3367 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3368 { 3369 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3370 u64 val; 3371 int type, name; 3372 3373 type = MEMFILE_TYPE(cft->private); 3374 name = MEMFILE_ATTR(cft->private); 3375 switch (type) { 3376 case _MEM: 3377 if (name == RES_USAGE) 3378 val = mem_cgroup_usage(mem, false); 3379 else 3380 val = res_counter_read_u64(&mem->res, name); 3381 break; 3382 case _MEMSWAP: 3383 if (name == RES_USAGE) 3384 val = mem_cgroup_usage(mem, true); 3385 else 3386 val = res_counter_read_u64(&mem->memsw, name); 3387 break; 3388 default: 3389 BUG(); 3390 break; 3391 } 3392 return val; 3393 } 3394 /* 3395 * The user of this function is... 3396 * RES_LIMIT. 3397 */ 3398 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3399 const char *buffer) 3400 { 3401 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3402 int type, name; 3403 unsigned long long val; 3404 int ret; 3405 3406 type = MEMFILE_TYPE(cft->private); 3407 name = MEMFILE_ATTR(cft->private); 3408 switch (name) { 3409 case RES_LIMIT: 3410 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3411 ret = -EINVAL; 3412 break; 3413 } 3414 /* This function does all necessary parse...reuse it */ 3415 ret = res_counter_memparse_write_strategy(buffer, &val); 3416 if (ret) 3417 break; 3418 if (type == _MEM) 3419 ret = mem_cgroup_resize_limit(memcg, val); 3420 else 3421 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3422 break; 3423 case RES_SOFT_LIMIT: 3424 ret = res_counter_memparse_write_strategy(buffer, &val); 3425 if (ret) 3426 break; 3427 /* 3428 * For memsw, soft limits are hard to implement in terms 3429 * of semantics, for now, we support soft limits for 3430 * control without swap 3431 */ 3432 if (type == _MEM) 3433 ret = res_counter_set_soft_limit(&memcg->res, val); 3434 else 3435 ret = -EINVAL; 3436 break; 3437 default: 3438 ret = -EINVAL; /* should be BUG() ? */ 3439 break; 3440 } 3441 return ret; 3442 } 3443 3444 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3445 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3446 { 3447 struct cgroup *cgroup; 3448 unsigned long long min_limit, min_memsw_limit, tmp; 3449 3450 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3451 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3452 cgroup = memcg->css.cgroup; 3453 if (!memcg->use_hierarchy) 3454 goto out; 3455 3456 while (cgroup->parent) { 3457 cgroup = cgroup->parent; 3458 memcg = mem_cgroup_from_cont(cgroup); 3459 if (!memcg->use_hierarchy) 3460 break; 3461 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 3462 min_limit = min(min_limit, tmp); 3463 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3464 min_memsw_limit = min(min_memsw_limit, tmp); 3465 } 3466 out: 3467 *mem_limit = min_limit; 3468 *memsw_limit = min_memsw_limit; 3469 return; 3470 } 3471 3472 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3473 { 3474 struct mem_cgroup *mem; 3475 int type, name; 3476 3477 mem = mem_cgroup_from_cont(cont); 3478 type = MEMFILE_TYPE(event); 3479 name = MEMFILE_ATTR(event); 3480 switch (name) { 3481 case RES_MAX_USAGE: 3482 if (type == _MEM) 3483 res_counter_reset_max(&mem->res); 3484 else 3485 res_counter_reset_max(&mem->memsw); 3486 break; 3487 case RES_FAILCNT: 3488 if (type == _MEM) 3489 res_counter_reset_failcnt(&mem->res); 3490 else 3491 res_counter_reset_failcnt(&mem->memsw); 3492 break; 3493 } 3494 3495 return 0; 3496 } 3497 3498 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 3499 struct cftype *cft) 3500 { 3501 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 3502 } 3503 3504 #ifdef CONFIG_MMU 3505 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3506 struct cftype *cft, u64 val) 3507 { 3508 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 3509 3510 if (val >= (1 << NR_MOVE_TYPE)) 3511 return -EINVAL; 3512 /* 3513 * We check this value several times in both in can_attach() and 3514 * attach(), so we need cgroup lock to prevent this value from being 3515 * inconsistent. 3516 */ 3517 cgroup_lock(); 3518 mem->move_charge_at_immigrate = val; 3519 cgroup_unlock(); 3520 3521 return 0; 3522 } 3523 #else 3524 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3525 struct cftype *cft, u64 val) 3526 { 3527 return -ENOSYS; 3528 } 3529 #endif 3530 3531 3532 /* For read statistics */ 3533 enum { 3534 MCS_CACHE, 3535 MCS_RSS, 3536 MCS_FILE_MAPPED, 3537 MCS_PGPGIN, 3538 MCS_PGPGOUT, 3539 MCS_SWAP, 3540 MCS_INACTIVE_ANON, 3541 MCS_ACTIVE_ANON, 3542 MCS_INACTIVE_FILE, 3543 MCS_ACTIVE_FILE, 3544 MCS_UNEVICTABLE, 3545 NR_MCS_STAT, 3546 }; 3547 3548 struct mcs_total_stat { 3549 s64 stat[NR_MCS_STAT]; 3550 }; 3551 3552 struct { 3553 char *local_name; 3554 char *total_name; 3555 } memcg_stat_strings[NR_MCS_STAT] = { 3556 {"cache", "total_cache"}, 3557 {"rss", "total_rss"}, 3558 {"mapped_file", "total_mapped_file"}, 3559 {"pgpgin", "total_pgpgin"}, 3560 {"pgpgout", "total_pgpgout"}, 3561 {"swap", "total_swap"}, 3562 {"inactive_anon", "total_inactive_anon"}, 3563 {"active_anon", "total_active_anon"}, 3564 {"inactive_file", "total_inactive_file"}, 3565 {"active_file", "total_active_file"}, 3566 {"unevictable", "total_unevictable"} 3567 }; 3568 3569 3570 static void 3571 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 3572 { 3573 s64 val; 3574 3575 /* per cpu stat */ 3576 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); 3577 s->stat[MCS_CACHE] += val * PAGE_SIZE; 3578 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); 3579 s->stat[MCS_RSS] += val * PAGE_SIZE; 3580 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); 3581 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 3582 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT); 3583 s->stat[MCS_PGPGIN] += val; 3584 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT); 3585 s->stat[MCS_PGPGOUT] += val; 3586 if (do_swap_account) { 3587 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); 3588 s->stat[MCS_SWAP] += val * PAGE_SIZE; 3589 } 3590 3591 /* per zone stat */ 3592 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 3593 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 3594 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 3595 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 3596 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 3597 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 3598 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 3599 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 3600 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 3601 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 3602 } 3603 3604 static void 3605 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 3606 { 3607 struct mem_cgroup *iter; 3608 3609 for_each_mem_cgroup_tree(iter, mem) 3610 mem_cgroup_get_local_stat(iter, s); 3611 } 3612 3613 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 3614 struct cgroup_map_cb *cb) 3615 { 3616 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 3617 struct mcs_total_stat mystat; 3618 int i; 3619 3620 memset(&mystat, 0, sizeof(mystat)); 3621 mem_cgroup_get_local_stat(mem_cont, &mystat); 3622 3623 for (i = 0; i < NR_MCS_STAT; i++) { 3624 if (i == MCS_SWAP && !do_swap_account) 3625 continue; 3626 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 3627 } 3628 3629 /* Hierarchical information */ 3630 { 3631 unsigned long long limit, memsw_limit; 3632 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 3633 cb->fill(cb, "hierarchical_memory_limit", limit); 3634 if (do_swap_account) 3635 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 3636 } 3637 3638 memset(&mystat, 0, sizeof(mystat)); 3639 mem_cgroup_get_total_stat(mem_cont, &mystat); 3640 for (i = 0; i < NR_MCS_STAT; i++) { 3641 if (i == MCS_SWAP && !do_swap_account) 3642 continue; 3643 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 3644 } 3645 3646 #ifdef CONFIG_DEBUG_VM 3647 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 3648 3649 { 3650 int nid, zid; 3651 struct mem_cgroup_per_zone *mz; 3652 unsigned long recent_rotated[2] = {0, 0}; 3653 unsigned long recent_scanned[2] = {0, 0}; 3654 3655 for_each_online_node(nid) 3656 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3657 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 3658 3659 recent_rotated[0] += 3660 mz->reclaim_stat.recent_rotated[0]; 3661 recent_rotated[1] += 3662 mz->reclaim_stat.recent_rotated[1]; 3663 recent_scanned[0] += 3664 mz->reclaim_stat.recent_scanned[0]; 3665 recent_scanned[1] += 3666 mz->reclaim_stat.recent_scanned[1]; 3667 } 3668 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 3669 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 3670 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 3671 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 3672 } 3673 #endif 3674 3675 return 0; 3676 } 3677 3678 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 3679 { 3680 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3681 3682 return get_swappiness(memcg); 3683 } 3684 3685 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 3686 u64 val) 3687 { 3688 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3689 struct mem_cgroup *parent; 3690 3691 if (val > 100) 3692 return -EINVAL; 3693 3694 if (cgrp->parent == NULL) 3695 return -EINVAL; 3696 3697 parent = mem_cgroup_from_cont(cgrp->parent); 3698 3699 cgroup_lock(); 3700 3701 /* If under hierarchy, only empty-root can set this value */ 3702 if ((parent->use_hierarchy) || 3703 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 3704 cgroup_unlock(); 3705 return -EINVAL; 3706 } 3707 3708 spin_lock(&memcg->reclaim_param_lock); 3709 memcg->swappiness = val; 3710 spin_unlock(&memcg->reclaim_param_lock); 3711 3712 cgroup_unlock(); 3713 3714 return 0; 3715 } 3716 3717 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3718 { 3719 struct mem_cgroup_threshold_ary *t; 3720 u64 usage; 3721 int i; 3722 3723 rcu_read_lock(); 3724 if (!swap) 3725 t = rcu_dereference(memcg->thresholds.primary); 3726 else 3727 t = rcu_dereference(memcg->memsw_thresholds.primary); 3728 3729 if (!t) 3730 goto unlock; 3731 3732 usage = mem_cgroup_usage(memcg, swap); 3733 3734 /* 3735 * current_threshold points to threshold just below usage. 3736 * If it's not true, a threshold was crossed after last 3737 * call of __mem_cgroup_threshold(). 3738 */ 3739 i = t->current_threshold; 3740 3741 /* 3742 * Iterate backward over array of thresholds starting from 3743 * current_threshold and check if a threshold is crossed. 3744 * If none of thresholds below usage is crossed, we read 3745 * only one element of the array here. 3746 */ 3747 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3748 eventfd_signal(t->entries[i].eventfd, 1); 3749 3750 /* i = current_threshold + 1 */ 3751 i++; 3752 3753 /* 3754 * Iterate forward over array of thresholds starting from 3755 * current_threshold+1 and check if a threshold is crossed. 3756 * If none of thresholds above usage is crossed, we read 3757 * only one element of the array here. 3758 */ 3759 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3760 eventfd_signal(t->entries[i].eventfd, 1); 3761 3762 /* Update current_threshold */ 3763 t->current_threshold = i - 1; 3764 unlock: 3765 rcu_read_unlock(); 3766 } 3767 3768 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3769 { 3770 while (memcg) { 3771 __mem_cgroup_threshold(memcg, false); 3772 if (do_swap_account) 3773 __mem_cgroup_threshold(memcg, true); 3774 3775 memcg = parent_mem_cgroup(memcg); 3776 } 3777 } 3778 3779 static int compare_thresholds(const void *a, const void *b) 3780 { 3781 const struct mem_cgroup_threshold *_a = a; 3782 const struct mem_cgroup_threshold *_b = b; 3783 3784 return _a->threshold - _b->threshold; 3785 } 3786 3787 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) 3788 { 3789 struct mem_cgroup_eventfd_list *ev; 3790 3791 list_for_each_entry(ev, &mem->oom_notify, list) 3792 eventfd_signal(ev->eventfd, 1); 3793 return 0; 3794 } 3795 3796 static void mem_cgroup_oom_notify(struct mem_cgroup *mem) 3797 { 3798 struct mem_cgroup *iter; 3799 3800 for_each_mem_cgroup_tree(iter, mem) 3801 mem_cgroup_oom_notify_cb(iter); 3802 } 3803 3804 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 3805 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 3806 { 3807 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3808 struct mem_cgroup_thresholds *thresholds; 3809 struct mem_cgroup_threshold_ary *new; 3810 int type = MEMFILE_TYPE(cft->private); 3811 u64 threshold, usage; 3812 int i, size, ret; 3813 3814 ret = res_counter_memparse_write_strategy(args, &threshold); 3815 if (ret) 3816 return ret; 3817 3818 mutex_lock(&memcg->thresholds_lock); 3819 3820 if (type == _MEM) 3821 thresholds = &memcg->thresholds; 3822 else if (type == _MEMSWAP) 3823 thresholds = &memcg->memsw_thresholds; 3824 else 3825 BUG(); 3826 3827 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 3828 3829 /* Check if a threshold crossed before adding a new one */ 3830 if (thresholds->primary) 3831 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3832 3833 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3834 3835 /* Allocate memory for new array of thresholds */ 3836 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3837 GFP_KERNEL); 3838 if (!new) { 3839 ret = -ENOMEM; 3840 goto unlock; 3841 } 3842 new->size = size; 3843 3844 /* Copy thresholds (if any) to new array */ 3845 if (thresholds->primary) { 3846 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3847 sizeof(struct mem_cgroup_threshold)); 3848 } 3849 3850 /* Add new threshold */ 3851 new->entries[size - 1].eventfd = eventfd; 3852 new->entries[size - 1].threshold = threshold; 3853 3854 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3855 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3856 compare_thresholds, NULL); 3857 3858 /* Find current threshold */ 3859 new->current_threshold = -1; 3860 for (i = 0; i < size; i++) { 3861 if (new->entries[i].threshold < usage) { 3862 /* 3863 * new->current_threshold will not be used until 3864 * rcu_assign_pointer(), so it's safe to increment 3865 * it here. 3866 */ 3867 ++new->current_threshold; 3868 } 3869 } 3870 3871 /* Free old spare buffer and save old primary buffer as spare */ 3872 kfree(thresholds->spare); 3873 thresholds->spare = thresholds->primary; 3874 3875 rcu_assign_pointer(thresholds->primary, new); 3876 3877 /* To be sure that nobody uses thresholds */ 3878 synchronize_rcu(); 3879 3880 unlock: 3881 mutex_unlock(&memcg->thresholds_lock); 3882 3883 return ret; 3884 } 3885 3886 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 3887 struct cftype *cft, struct eventfd_ctx *eventfd) 3888 { 3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3890 struct mem_cgroup_thresholds *thresholds; 3891 struct mem_cgroup_threshold_ary *new; 3892 int type = MEMFILE_TYPE(cft->private); 3893 u64 usage; 3894 int i, j, size; 3895 3896 mutex_lock(&memcg->thresholds_lock); 3897 if (type == _MEM) 3898 thresholds = &memcg->thresholds; 3899 else if (type == _MEMSWAP) 3900 thresholds = &memcg->memsw_thresholds; 3901 else 3902 BUG(); 3903 3904 /* 3905 * Something went wrong if we trying to unregister a threshold 3906 * if we don't have thresholds 3907 */ 3908 BUG_ON(!thresholds); 3909 3910 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 3911 3912 /* Check if a threshold crossed before removing */ 3913 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3914 3915 /* Calculate new number of threshold */ 3916 size = 0; 3917 for (i = 0; i < thresholds->primary->size; i++) { 3918 if (thresholds->primary->entries[i].eventfd != eventfd) 3919 size++; 3920 } 3921 3922 new = thresholds->spare; 3923 3924 /* Set thresholds array to NULL if we don't have thresholds */ 3925 if (!size) { 3926 kfree(new); 3927 new = NULL; 3928 goto swap_buffers; 3929 } 3930 3931 new->size = size; 3932 3933 /* Copy thresholds and find current threshold */ 3934 new->current_threshold = -1; 3935 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3936 if (thresholds->primary->entries[i].eventfd == eventfd) 3937 continue; 3938 3939 new->entries[j] = thresholds->primary->entries[i]; 3940 if (new->entries[j].threshold < usage) { 3941 /* 3942 * new->current_threshold will not be used 3943 * until rcu_assign_pointer(), so it's safe to increment 3944 * it here. 3945 */ 3946 ++new->current_threshold; 3947 } 3948 j++; 3949 } 3950 3951 swap_buffers: 3952 /* Swap primary and spare array */ 3953 thresholds->spare = thresholds->primary; 3954 rcu_assign_pointer(thresholds->primary, new); 3955 3956 /* To be sure that nobody uses thresholds */ 3957 synchronize_rcu(); 3958 3959 mutex_unlock(&memcg->thresholds_lock); 3960 } 3961 3962 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 3963 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 3964 { 3965 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3966 struct mem_cgroup_eventfd_list *event; 3967 int type = MEMFILE_TYPE(cft->private); 3968 3969 BUG_ON(type != _OOM_TYPE); 3970 event = kmalloc(sizeof(*event), GFP_KERNEL); 3971 if (!event) 3972 return -ENOMEM; 3973 3974 mutex_lock(&memcg_oom_mutex); 3975 3976 event->eventfd = eventfd; 3977 list_add(&event->list, &memcg->oom_notify); 3978 3979 /* already in OOM ? */ 3980 if (atomic_read(&memcg->oom_lock)) 3981 eventfd_signal(eventfd, 1); 3982 mutex_unlock(&memcg_oom_mutex); 3983 3984 return 0; 3985 } 3986 3987 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 3988 struct cftype *cft, struct eventfd_ctx *eventfd) 3989 { 3990 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 3991 struct mem_cgroup_eventfd_list *ev, *tmp; 3992 int type = MEMFILE_TYPE(cft->private); 3993 3994 BUG_ON(type != _OOM_TYPE); 3995 3996 mutex_lock(&memcg_oom_mutex); 3997 3998 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { 3999 if (ev->eventfd == eventfd) { 4000 list_del(&ev->list); 4001 kfree(ev); 4002 } 4003 } 4004 4005 mutex_unlock(&memcg_oom_mutex); 4006 } 4007 4008 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4009 struct cftype *cft, struct cgroup_map_cb *cb) 4010 { 4011 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4012 4013 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); 4014 4015 if (atomic_read(&mem->oom_lock)) 4016 cb->fill(cb, "under_oom", 1); 4017 else 4018 cb->fill(cb, "under_oom", 0); 4019 return 0; 4020 } 4021 4022 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4023 struct cftype *cft, u64 val) 4024 { 4025 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4026 struct mem_cgroup *parent; 4027 4028 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4029 if (!cgrp->parent || !((val == 0) || (val == 1))) 4030 return -EINVAL; 4031 4032 parent = mem_cgroup_from_cont(cgrp->parent); 4033 4034 cgroup_lock(); 4035 /* oom-kill-disable is a flag for subhierarchy. */ 4036 if ((parent->use_hierarchy) || 4037 (mem->use_hierarchy && !list_empty(&cgrp->children))) { 4038 cgroup_unlock(); 4039 return -EINVAL; 4040 } 4041 mem->oom_kill_disable = val; 4042 if (!val) 4043 memcg_oom_recover(mem); 4044 cgroup_unlock(); 4045 return 0; 4046 } 4047 4048 static struct cftype mem_cgroup_files[] = { 4049 { 4050 .name = "usage_in_bytes", 4051 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4052 .read_u64 = mem_cgroup_read, 4053 .register_event = mem_cgroup_usage_register_event, 4054 .unregister_event = mem_cgroup_usage_unregister_event, 4055 }, 4056 { 4057 .name = "max_usage_in_bytes", 4058 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4059 .trigger = mem_cgroup_reset, 4060 .read_u64 = mem_cgroup_read, 4061 }, 4062 { 4063 .name = "limit_in_bytes", 4064 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4065 .write_string = mem_cgroup_write, 4066 .read_u64 = mem_cgroup_read, 4067 }, 4068 { 4069 .name = "soft_limit_in_bytes", 4070 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4071 .write_string = mem_cgroup_write, 4072 .read_u64 = mem_cgroup_read, 4073 }, 4074 { 4075 .name = "failcnt", 4076 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4077 .trigger = mem_cgroup_reset, 4078 .read_u64 = mem_cgroup_read, 4079 }, 4080 { 4081 .name = "stat", 4082 .read_map = mem_control_stat_show, 4083 }, 4084 { 4085 .name = "force_empty", 4086 .trigger = mem_cgroup_force_empty_write, 4087 }, 4088 { 4089 .name = "use_hierarchy", 4090 .write_u64 = mem_cgroup_hierarchy_write, 4091 .read_u64 = mem_cgroup_hierarchy_read, 4092 }, 4093 { 4094 .name = "swappiness", 4095 .read_u64 = mem_cgroup_swappiness_read, 4096 .write_u64 = mem_cgroup_swappiness_write, 4097 }, 4098 { 4099 .name = "move_charge_at_immigrate", 4100 .read_u64 = mem_cgroup_move_charge_read, 4101 .write_u64 = mem_cgroup_move_charge_write, 4102 }, 4103 { 4104 .name = "oom_control", 4105 .read_map = mem_cgroup_oom_control_read, 4106 .write_u64 = mem_cgroup_oom_control_write, 4107 .register_event = mem_cgroup_oom_register_event, 4108 .unregister_event = mem_cgroup_oom_unregister_event, 4109 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4110 }, 4111 }; 4112 4113 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4114 static struct cftype memsw_cgroup_files[] = { 4115 { 4116 .name = "memsw.usage_in_bytes", 4117 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4118 .read_u64 = mem_cgroup_read, 4119 .register_event = mem_cgroup_usage_register_event, 4120 .unregister_event = mem_cgroup_usage_unregister_event, 4121 }, 4122 { 4123 .name = "memsw.max_usage_in_bytes", 4124 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4125 .trigger = mem_cgroup_reset, 4126 .read_u64 = mem_cgroup_read, 4127 }, 4128 { 4129 .name = "memsw.limit_in_bytes", 4130 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4131 .write_string = mem_cgroup_write, 4132 .read_u64 = mem_cgroup_read, 4133 }, 4134 { 4135 .name = "memsw.failcnt", 4136 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4137 .trigger = mem_cgroup_reset, 4138 .read_u64 = mem_cgroup_read, 4139 }, 4140 }; 4141 4142 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4143 { 4144 if (!do_swap_account) 4145 return 0; 4146 return cgroup_add_files(cont, ss, memsw_cgroup_files, 4147 ARRAY_SIZE(memsw_cgroup_files)); 4148 }; 4149 #else 4150 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4151 { 4152 return 0; 4153 } 4154 #endif 4155 4156 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4157 { 4158 struct mem_cgroup_per_node *pn; 4159 struct mem_cgroup_per_zone *mz; 4160 enum lru_list l; 4161 int zone, tmp = node; 4162 /* 4163 * This routine is called against possible nodes. 4164 * But it's BUG to call kmalloc() against offline node. 4165 * 4166 * TODO: this routine can waste much memory for nodes which will 4167 * never be onlined. It's better to use memory hotplug callback 4168 * function. 4169 */ 4170 if (!node_state(node, N_NORMAL_MEMORY)) 4171 tmp = -1; 4172 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4173 if (!pn) 4174 return 1; 4175 4176 mem->info.nodeinfo[node] = pn; 4177 memset(pn, 0, sizeof(*pn)); 4178 4179 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4180 mz = &pn->zoneinfo[zone]; 4181 for_each_lru(l) 4182 INIT_LIST_HEAD(&mz->lists[l]); 4183 mz->usage_in_excess = 0; 4184 mz->on_tree = false; 4185 mz->mem = mem; 4186 } 4187 return 0; 4188 } 4189 4190 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4191 { 4192 kfree(mem->info.nodeinfo[node]); 4193 } 4194 4195 static struct mem_cgroup *mem_cgroup_alloc(void) 4196 { 4197 struct mem_cgroup *mem; 4198 int size = sizeof(struct mem_cgroup); 4199 4200 /* Can be very big if MAX_NUMNODES is very big */ 4201 if (size < PAGE_SIZE) 4202 mem = kmalloc(size, GFP_KERNEL); 4203 else 4204 mem = vmalloc(size); 4205 4206 if (!mem) 4207 return NULL; 4208 4209 memset(mem, 0, size); 4210 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4211 if (!mem->stat) { 4212 if (size < PAGE_SIZE) 4213 kfree(mem); 4214 else 4215 vfree(mem); 4216 mem = NULL; 4217 } 4218 spin_lock_init(&mem->pcp_counter_lock); 4219 return mem; 4220 } 4221 4222 /* 4223 * At destroying mem_cgroup, references from swap_cgroup can remain. 4224 * (scanning all at force_empty is too costly...) 4225 * 4226 * Instead of clearing all references at force_empty, we remember 4227 * the number of reference from swap_cgroup and free mem_cgroup when 4228 * it goes down to 0. 4229 * 4230 * Removal of cgroup itself succeeds regardless of refs from swap. 4231 */ 4232 4233 static void __mem_cgroup_free(struct mem_cgroup *mem) 4234 { 4235 int node; 4236 4237 mem_cgroup_remove_from_trees(mem); 4238 free_css_id(&mem_cgroup_subsys, &mem->css); 4239 4240 for_each_node_state(node, N_POSSIBLE) 4241 free_mem_cgroup_per_zone_info(mem, node); 4242 4243 free_percpu(mem->stat); 4244 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4245 kfree(mem); 4246 else 4247 vfree(mem); 4248 } 4249 4250 static void mem_cgroup_get(struct mem_cgroup *mem) 4251 { 4252 atomic_inc(&mem->refcnt); 4253 } 4254 4255 static void __mem_cgroup_put(struct mem_cgroup *mem, int count) 4256 { 4257 if (atomic_sub_and_test(count, &mem->refcnt)) { 4258 struct mem_cgroup *parent = parent_mem_cgroup(mem); 4259 __mem_cgroup_free(mem); 4260 if (parent) 4261 mem_cgroup_put(parent); 4262 } 4263 } 4264 4265 static void mem_cgroup_put(struct mem_cgroup *mem) 4266 { 4267 __mem_cgroup_put(mem, 1); 4268 } 4269 4270 /* 4271 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4272 */ 4273 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 4274 { 4275 if (!mem->res.parent) 4276 return NULL; 4277 return mem_cgroup_from_res_counter(mem->res.parent, res); 4278 } 4279 4280 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4281 static void __init enable_swap_cgroup(void) 4282 { 4283 if (!mem_cgroup_disabled() && really_do_swap_account) 4284 do_swap_account = 1; 4285 } 4286 #else 4287 static void __init enable_swap_cgroup(void) 4288 { 4289 } 4290 #endif 4291 4292 static int mem_cgroup_soft_limit_tree_init(void) 4293 { 4294 struct mem_cgroup_tree_per_node *rtpn; 4295 struct mem_cgroup_tree_per_zone *rtpz; 4296 int tmp, node, zone; 4297 4298 for_each_node_state(node, N_POSSIBLE) { 4299 tmp = node; 4300 if (!node_state(node, N_NORMAL_MEMORY)) 4301 tmp = -1; 4302 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4303 if (!rtpn) 4304 return 1; 4305 4306 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4307 4308 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4309 rtpz = &rtpn->rb_tree_per_zone[zone]; 4310 rtpz->rb_root = RB_ROOT; 4311 spin_lock_init(&rtpz->lock); 4312 } 4313 } 4314 return 0; 4315 } 4316 4317 static struct cgroup_subsys_state * __ref 4318 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4319 { 4320 struct mem_cgroup *mem, *parent; 4321 long error = -ENOMEM; 4322 int node; 4323 4324 mem = mem_cgroup_alloc(); 4325 if (!mem) 4326 return ERR_PTR(error); 4327 4328 for_each_node_state(node, N_POSSIBLE) 4329 if (alloc_mem_cgroup_per_zone_info(mem, node)) 4330 goto free_out; 4331 4332 /* root ? */ 4333 if (cont->parent == NULL) { 4334 int cpu; 4335 enable_swap_cgroup(); 4336 parent = NULL; 4337 root_mem_cgroup = mem; 4338 if (mem_cgroup_soft_limit_tree_init()) 4339 goto free_out; 4340 for_each_possible_cpu(cpu) { 4341 struct memcg_stock_pcp *stock = 4342 &per_cpu(memcg_stock, cpu); 4343 INIT_WORK(&stock->work, drain_local_stock); 4344 } 4345 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4346 } else { 4347 parent = mem_cgroup_from_cont(cont->parent); 4348 mem->use_hierarchy = parent->use_hierarchy; 4349 mem->oom_kill_disable = parent->oom_kill_disable; 4350 } 4351 4352 if (parent && parent->use_hierarchy) { 4353 res_counter_init(&mem->res, &parent->res); 4354 res_counter_init(&mem->memsw, &parent->memsw); 4355 /* 4356 * We increment refcnt of the parent to ensure that we can 4357 * safely access it on res_counter_charge/uncharge. 4358 * This refcnt will be decremented when freeing this 4359 * mem_cgroup(see mem_cgroup_put). 4360 */ 4361 mem_cgroup_get(parent); 4362 } else { 4363 res_counter_init(&mem->res, NULL); 4364 res_counter_init(&mem->memsw, NULL); 4365 } 4366 mem->last_scanned_child = 0; 4367 spin_lock_init(&mem->reclaim_param_lock); 4368 INIT_LIST_HEAD(&mem->oom_notify); 4369 4370 if (parent) 4371 mem->swappiness = get_swappiness(parent); 4372 atomic_set(&mem->refcnt, 1); 4373 mem->move_charge_at_immigrate = 0; 4374 mutex_init(&mem->thresholds_lock); 4375 return &mem->css; 4376 free_out: 4377 __mem_cgroup_free(mem); 4378 root_mem_cgroup = NULL; 4379 return ERR_PTR(error); 4380 } 4381 4382 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 4383 struct cgroup *cont) 4384 { 4385 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 4386 4387 return mem_cgroup_force_empty(mem, false); 4388 } 4389 4390 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 4391 struct cgroup *cont) 4392 { 4393 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 4394 4395 mem_cgroup_put(mem); 4396 } 4397 4398 static int mem_cgroup_populate(struct cgroup_subsys *ss, 4399 struct cgroup *cont) 4400 { 4401 int ret; 4402 4403 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 4404 ARRAY_SIZE(mem_cgroup_files)); 4405 4406 if (!ret) 4407 ret = register_memsw_files(cont, ss); 4408 return ret; 4409 } 4410 4411 #ifdef CONFIG_MMU 4412 /* Handlers for move charge at task migration. */ 4413 #define PRECHARGE_COUNT_AT_ONCE 256 4414 static int mem_cgroup_do_precharge(unsigned long count) 4415 { 4416 int ret = 0; 4417 int batch_count = PRECHARGE_COUNT_AT_ONCE; 4418 struct mem_cgroup *mem = mc.to; 4419 4420 if (mem_cgroup_is_root(mem)) { 4421 mc.precharge += count; 4422 /* we don't need css_get for root */ 4423 return ret; 4424 } 4425 /* try to charge at once */ 4426 if (count > 1) { 4427 struct res_counter *dummy; 4428 /* 4429 * "mem" cannot be under rmdir() because we've already checked 4430 * by cgroup_lock_live_cgroup() that it is not removed and we 4431 * are still under the same cgroup_mutex. So we can postpone 4432 * css_get(). 4433 */ 4434 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) 4435 goto one_by_one; 4436 if (do_swap_account && res_counter_charge(&mem->memsw, 4437 PAGE_SIZE * count, &dummy)) { 4438 res_counter_uncharge(&mem->res, PAGE_SIZE * count); 4439 goto one_by_one; 4440 } 4441 mc.precharge += count; 4442 return ret; 4443 } 4444 one_by_one: 4445 /* fall back to one by one charge */ 4446 while (count--) { 4447 if (signal_pending(current)) { 4448 ret = -EINTR; 4449 break; 4450 } 4451 if (!batch_count--) { 4452 batch_count = PRECHARGE_COUNT_AT_ONCE; 4453 cond_resched(); 4454 } 4455 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); 4456 if (ret || !mem) 4457 /* mem_cgroup_clear_mc() will do uncharge later */ 4458 return -ENOMEM; 4459 mc.precharge++; 4460 } 4461 return ret; 4462 } 4463 4464 /** 4465 * is_target_pte_for_mc - check a pte whether it is valid for move charge 4466 * @vma: the vma the pte to be checked belongs 4467 * @addr: the address corresponding to the pte to be checked 4468 * @ptent: the pte to be checked 4469 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4470 * 4471 * Returns 4472 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4473 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4474 * move charge. if @target is not NULL, the page is stored in target->page 4475 * with extra refcnt got(Callers should handle it). 4476 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4477 * target for charge migration. if @target is not NULL, the entry is stored 4478 * in target->ent. 4479 * 4480 * Called with pte lock held. 4481 */ 4482 union mc_target { 4483 struct page *page; 4484 swp_entry_t ent; 4485 }; 4486 4487 enum mc_target_type { 4488 MC_TARGET_NONE, /* not used */ 4489 MC_TARGET_PAGE, 4490 MC_TARGET_SWAP, 4491 }; 4492 4493 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4494 unsigned long addr, pte_t ptent) 4495 { 4496 struct page *page = vm_normal_page(vma, addr, ptent); 4497 4498 if (!page || !page_mapped(page)) 4499 return NULL; 4500 if (PageAnon(page)) { 4501 /* we don't move shared anon */ 4502 if (!move_anon() || page_mapcount(page) > 2) 4503 return NULL; 4504 } else if (!move_file()) 4505 /* we ignore mapcount for file pages */ 4506 return NULL; 4507 if (!get_page_unless_zero(page)) 4508 return NULL; 4509 4510 return page; 4511 } 4512 4513 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4514 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4515 { 4516 int usage_count; 4517 struct page *page = NULL; 4518 swp_entry_t ent = pte_to_swp_entry(ptent); 4519 4520 if (!move_anon() || non_swap_entry(ent)) 4521 return NULL; 4522 usage_count = mem_cgroup_count_swap_user(ent, &page); 4523 if (usage_count > 1) { /* we don't move shared anon */ 4524 if (page) 4525 put_page(page); 4526 return NULL; 4527 } 4528 if (do_swap_account) 4529 entry->val = ent.val; 4530 4531 return page; 4532 } 4533 4534 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4535 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4536 { 4537 struct page *page = NULL; 4538 struct inode *inode; 4539 struct address_space *mapping; 4540 pgoff_t pgoff; 4541 4542 if (!vma->vm_file) /* anonymous vma */ 4543 return NULL; 4544 if (!move_file()) 4545 return NULL; 4546 4547 inode = vma->vm_file->f_path.dentry->d_inode; 4548 mapping = vma->vm_file->f_mapping; 4549 if (pte_none(ptent)) 4550 pgoff = linear_page_index(vma, addr); 4551 else /* pte_file(ptent) is true */ 4552 pgoff = pte_to_pgoff(ptent); 4553 4554 /* page is moved even if it's not RSS of this task(page-faulted). */ 4555 if (!mapping_cap_swap_backed(mapping)) { /* normal file */ 4556 page = find_get_page(mapping, pgoff); 4557 } else { /* shmem/tmpfs file. we should take account of swap too. */ 4558 swp_entry_t ent; 4559 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); 4560 if (do_swap_account) 4561 entry->val = ent.val; 4562 } 4563 4564 return page; 4565 } 4566 4567 static int is_target_pte_for_mc(struct vm_area_struct *vma, 4568 unsigned long addr, pte_t ptent, union mc_target *target) 4569 { 4570 struct page *page = NULL; 4571 struct page_cgroup *pc; 4572 int ret = 0; 4573 swp_entry_t ent = { .val = 0 }; 4574 4575 if (pte_present(ptent)) 4576 page = mc_handle_present_pte(vma, addr, ptent); 4577 else if (is_swap_pte(ptent)) 4578 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4579 else if (pte_none(ptent) || pte_file(ptent)) 4580 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4581 4582 if (!page && !ent.val) 4583 return 0; 4584 if (page) { 4585 pc = lookup_page_cgroup(page); 4586 /* 4587 * Do only loose check w/o page_cgroup lock. 4588 * mem_cgroup_move_account() checks the pc is valid or not under 4589 * the lock. 4590 */ 4591 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 4592 ret = MC_TARGET_PAGE; 4593 if (target) 4594 target->page = page; 4595 } 4596 if (!ret || !target) 4597 put_page(page); 4598 } 4599 /* There is a swap entry and a page doesn't exist or isn't charged */ 4600 if (ent.val && !ret && 4601 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { 4602 ret = MC_TARGET_SWAP; 4603 if (target) 4604 target->ent = ent; 4605 } 4606 return ret; 4607 } 4608 4609 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4610 unsigned long addr, unsigned long end, 4611 struct mm_walk *walk) 4612 { 4613 struct vm_area_struct *vma = walk->private; 4614 pte_t *pte; 4615 spinlock_t *ptl; 4616 4617 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4618 for (; addr != end; pte++, addr += PAGE_SIZE) 4619 if (is_target_pte_for_mc(vma, addr, *pte, NULL)) 4620 mc.precharge++; /* increment precharge temporarily */ 4621 pte_unmap_unlock(pte - 1, ptl); 4622 cond_resched(); 4623 4624 return 0; 4625 } 4626 4627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4628 { 4629 unsigned long precharge; 4630 struct vm_area_struct *vma; 4631 4632 down_read(&mm->mmap_sem); 4633 for (vma = mm->mmap; vma; vma = vma->vm_next) { 4634 struct mm_walk mem_cgroup_count_precharge_walk = { 4635 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4636 .mm = mm, 4637 .private = vma, 4638 }; 4639 if (is_vm_hugetlb_page(vma)) 4640 continue; 4641 walk_page_range(vma->vm_start, vma->vm_end, 4642 &mem_cgroup_count_precharge_walk); 4643 } 4644 up_read(&mm->mmap_sem); 4645 4646 precharge = mc.precharge; 4647 mc.precharge = 0; 4648 4649 return precharge; 4650 } 4651 4652 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4653 { 4654 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm)); 4655 } 4656 4657 static void mem_cgroup_clear_mc(void) 4658 { 4659 struct mem_cgroup *from = mc.from; 4660 struct mem_cgroup *to = mc.to; 4661 4662 /* we must uncharge all the leftover precharges from mc.to */ 4663 if (mc.precharge) { 4664 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 4665 mc.precharge = 0; 4666 } 4667 /* 4668 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4669 * we must uncharge here. 4670 */ 4671 if (mc.moved_charge) { 4672 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 4673 mc.moved_charge = 0; 4674 } 4675 /* we must fixup refcnts and charges */ 4676 if (mc.moved_swap) { 4677 /* uncharge swap account from the old cgroup */ 4678 if (!mem_cgroup_is_root(mc.from)) 4679 res_counter_uncharge(&mc.from->memsw, 4680 PAGE_SIZE * mc.moved_swap); 4681 __mem_cgroup_put(mc.from, mc.moved_swap); 4682 4683 if (!mem_cgroup_is_root(mc.to)) { 4684 /* 4685 * we charged both to->res and to->memsw, so we should 4686 * uncharge to->res. 4687 */ 4688 res_counter_uncharge(&mc.to->res, 4689 PAGE_SIZE * mc.moved_swap); 4690 } 4691 /* we've already done mem_cgroup_get(mc.to) */ 4692 4693 mc.moved_swap = 0; 4694 } 4695 spin_lock(&mc.lock); 4696 mc.from = NULL; 4697 mc.to = NULL; 4698 mc.moving_task = NULL; 4699 spin_unlock(&mc.lock); 4700 mem_cgroup_end_move(from); 4701 memcg_oom_recover(from); 4702 memcg_oom_recover(to); 4703 wake_up_all(&mc.waitq); 4704 } 4705 4706 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 4707 struct cgroup *cgroup, 4708 struct task_struct *p, 4709 bool threadgroup) 4710 { 4711 int ret = 0; 4712 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); 4713 4714 if (mem->move_charge_at_immigrate) { 4715 struct mm_struct *mm; 4716 struct mem_cgroup *from = mem_cgroup_from_task(p); 4717 4718 VM_BUG_ON(from == mem); 4719 4720 mm = get_task_mm(p); 4721 if (!mm) 4722 return 0; 4723 /* We move charges only when we move a owner of the mm */ 4724 if (mm->owner == p) { 4725 VM_BUG_ON(mc.from); 4726 VM_BUG_ON(mc.to); 4727 VM_BUG_ON(mc.precharge); 4728 VM_BUG_ON(mc.moved_charge); 4729 VM_BUG_ON(mc.moved_swap); 4730 VM_BUG_ON(mc.moving_task); 4731 mem_cgroup_start_move(from); 4732 spin_lock(&mc.lock); 4733 mc.from = from; 4734 mc.to = mem; 4735 mc.precharge = 0; 4736 mc.moved_charge = 0; 4737 mc.moved_swap = 0; 4738 mc.moving_task = current; 4739 spin_unlock(&mc.lock); 4740 4741 ret = mem_cgroup_precharge_mc(mm); 4742 if (ret) 4743 mem_cgroup_clear_mc(); 4744 } 4745 mmput(mm); 4746 } 4747 return ret; 4748 } 4749 4750 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 4751 struct cgroup *cgroup, 4752 struct task_struct *p, 4753 bool threadgroup) 4754 { 4755 mem_cgroup_clear_mc(); 4756 } 4757 4758 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4759 unsigned long addr, unsigned long end, 4760 struct mm_walk *walk) 4761 { 4762 int ret = 0; 4763 struct vm_area_struct *vma = walk->private; 4764 pte_t *pte; 4765 spinlock_t *ptl; 4766 4767 retry: 4768 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4769 for (; addr != end; addr += PAGE_SIZE) { 4770 pte_t ptent = *(pte++); 4771 union mc_target target; 4772 int type; 4773 struct page *page; 4774 struct page_cgroup *pc; 4775 swp_entry_t ent; 4776 4777 if (!mc.precharge) 4778 break; 4779 4780 type = is_target_pte_for_mc(vma, addr, ptent, &target); 4781 switch (type) { 4782 case MC_TARGET_PAGE: 4783 page = target.page; 4784 if (isolate_lru_page(page)) 4785 goto put; 4786 pc = lookup_page_cgroup(page); 4787 if (!mem_cgroup_move_account(pc, 4788 mc.from, mc.to, false)) { 4789 mc.precharge--; 4790 /* we uncharge from mc.from later. */ 4791 mc.moved_charge++; 4792 } 4793 putback_lru_page(page); 4794 put: /* is_target_pte_for_mc() gets the page */ 4795 put_page(page); 4796 break; 4797 case MC_TARGET_SWAP: 4798 ent = target.ent; 4799 if (!mem_cgroup_move_swap_account(ent, 4800 mc.from, mc.to, false)) { 4801 mc.precharge--; 4802 /* we fixup refcnts and charges later. */ 4803 mc.moved_swap++; 4804 } 4805 break; 4806 default: 4807 break; 4808 } 4809 } 4810 pte_unmap_unlock(pte - 1, ptl); 4811 cond_resched(); 4812 4813 if (addr != end) { 4814 /* 4815 * We have consumed all precharges we got in can_attach(). 4816 * We try charge one by one, but don't do any additional 4817 * charges to mc.to if we have failed in charge once in attach() 4818 * phase. 4819 */ 4820 ret = mem_cgroup_do_precharge(1); 4821 if (!ret) 4822 goto retry; 4823 } 4824 4825 return ret; 4826 } 4827 4828 static void mem_cgroup_move_charge(struct mm_struct *mm) 4829 { 4830 struct vm_area_struct *vma; 4831 4832 lru_add_drain_all(); 4833 down_read(&mm->mmap_sem); 4834 for (vma = mm->mmap; vma; vma = vma->vm_next) { 4835 int ret; 4836 struct mm_walk mem_cgroup_move_charge_walk = { 4837 .pmd_entry = mem_cgroup_move_charge_pte_range, 4838 .mm = mm, 4839 .private = vma, 4840 }; 4841 if (is_vm_hugetlb_page(vma)) 4842 continue; 4843 ret = walk_page_range(vma->vm_start, vma->vm_end, 4844 &mem_cgroup_move_charge_walk); 4845 if (ret) 4846 /* 4847 * means we have consumed all precharges and failed in 4848 * doing additional charge. Just abandon here. 4849 */ 4850 break; 4851 } 4852 up_read(&mm->mmap_sem); 4853 } 4854 4855 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 4856 struct cgroup *cont, 4857 struct cgroup *old_cont, 4858 struct task_struct *p, 4859 bool threadgroup) 4860 { 4861 struct mm_struct *mm; 4862 4863 if (!mc.to) 4864 /* no need to move charge */ 4865 return; 4866 4867 mm = get_task_mm(p); 4868 if (mm) { 4869 mem_cgroup_move_charge(mm); 4870 mmput(mm); 4871 } 4872 mem_cgroup_clear_mc(); 4873 } 4874 #else /* !CONFIG_MMU */ 4875 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 4876 struct cgroup *cgroup, 4877 struct task_struct *p, 4878 bool threadgroup) 4879 { 4880 return 0; 4881 } 4882 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 4883 struct cgroup *cgroup, 4884 struct task_struct *p, 4885 bool threadgroup) 4886 { 4887 } 4888 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 4889 struct cgroup *cont, 4890 struct cgroup *old_cont, 4891 struct task_struct *p, 4892 bool threadgroup) 4893 { 4894 } 4895 #endif 4896 4897 struct cgroup_subsys mem_cgroup_subsys = { 4898 .name = "memory", 4899 .subsys_id = mem_cgroup_subsys_id, 4900 .create = mem_cgroup_create, 4901 .pre_destroy = mem_cgroup_pre_destroy, 4902 .destroy = mem_cgroup_destroy, 4903 .populate = mem_cgroup_populate, 4904 .can_attach = mem_cgroup_can_attach, 4905 .cancel_attach = mem_cgroup_cancel_attach, 4906 .attach = mem_cgroup_move_task, 4907 .early_init = 0, 4908 .use_id = 1, 4909 }; 4910 4911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4912 4913 static int __init disable_swap_account(char *s) 4914 { 4915 really_do_swap_account = 0; 4916 return 1; 4917 } 4918 __setup("noswapaccount", disable_swap_account); 4919 #endif 4920