1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/mm_inline.h> 53 #include <linux/page_cgroup.h> 54 #include <linux/cpu.h> 55 #include <linux/oom.h> 56 #include "internal.h" 57 #include <net/sock.h> 58 #include <net/ip.h> 59 #include <net/tcp_memcontrol.h> 60 61 #include <asm/uaccess.h> 62 63 #include <trace/events/vmscan.h> 64 65 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 66 EXPORT_SYMBOL(mem_cgroup_subsys); 67 68 #define MEM_CGROUP_RECLAIM_RETRIES 5 69 static struct mem_cgroup *root_mem_cgroup __read_mostly; 70 71 #ifdef CONFIG_MEMCG_SWAP 72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 73 int do_swap_account __read_mostly; 74 75 /* for remember boot option*/ 76 #ifdef CONFIG_MEMCG_SWAP_ENABLED 77 static int really_do_swap_account __initdata = 1; 78 #else 79 static int really_do_swap_account __initdata = 0; 80 #endif 81 82 #else 83 #define do_swap_account 0 84 #endif 85 86 87 /* 88 * Statistics for memory cgroup. 89 */ 90 enum mem_cgroup_stat_index { 91 /* 92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 93 */ 94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 98 MEM_CGROUP_STAT_NSTATS, 99 }; 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "mapped_file", 105 "swap", 106 }; 107 108 enum mem_cgroup_events_index { 109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 113 MEM_CGROUP_EVENTS_NSTATS, 114 }; 115 116 static const char * const mem_cgroup_events_names[] = { 117 "pgpgin", 118 "pgpgout", 119 "pgfault", 120 "pgmajfault", 121 }; 122 123 static const char * const mem_cgroup_lru_names[] = { 124 "inactive_anon", 125 "active_anon", 126 "inactive_file", 127 "active_file", 128 "unevictable", 129 }; 130 131 /* 132 * Per memcg event counter is incremented at every pagein/pageout. With THP, 133 * it will be incremated by the number of pages. This counter is used for 134 * for trigger some periodic events. This is straightforward and better 135 * than using jiffies etc. to handle periodic memcg event. 136 */ 137 enum mem_cgroup_events_target { 138 MEM_CGROUP_TARGET_THRESH, 139 MEM_CGROUP_TARGET_SOFTLIMIT, 140 MEM_CGROUP_TARGET_NUMAINFO, 141 MEM_CGROUP_NTARGETS, 142 }; 143 #define THRESHOLDS_EVENTS_TARGET 128 144 #define SOFTLIMIT_EVENTS_TARGET 1024 145 #define NUMAINFO_EVENTS_TARGET 1024 146 147 struct mem_cgroup_stat_cpu { 148 long count[MEM_CGROUP_STAT_NSTATS]; 149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 150 unsigned long nr_page_events; 151 unsigned long targets[MEM_CGROUP_NTARGETS]; 152 }; 153 154 struct mem_cgroup_reclaim_iter { 155 /* css_id of the last scanned hierarchy member */ 156 int position; 157 /* scan generation, increased every round-trip */ 158 unsigned int generation; 159 }; 160 161 /* 162 * per-zone information in memory controller. 163 */ 164 struct mem_cgroup_per_zone { 165 struct lruvec lruvec; 166 unsigned long lru_size[NR_LRU_LISTS]; 167 168 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 169 170 struct rb_node tree_node; /* RB tree node */ 171 unsigned long long usage_in_excess;/* Set to the value by which */ 172 /* the soft limit is exceeded*/ 173 bool on_tree; 174 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 175 /* use container_of */ 176 }; 177 178 struct mem_cgroup_per_node { 179 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 180 }; 181 182 struct mem_cgroup_lru_info { 183 struct mem_cgroup_per_node *nodeinfo[0]; 184 }; 185 186 /* 187 * Cgroups above their limits are maintained in a RB-Tree, independent of 188 * their hierarchy representation 189 */ 190 191 struct mem_cgroup_tree_per_zone { 192 struct rb_root rb_root; 193 spinlock_t lock; 194 }; 195 196 struct mem_cgroup_tree_per_node { 197 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 198 }; 199 200 struct mem_cgroup_tree { 201 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 202 }; 203 204 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 205 206 struct mem_cgroup_threshold { 207 struct eventfd_ctx *eventfd; 208 u64 threshold; 209 }; 210 211 /* For threshold */ 212 struct mem_cgroup_threshold_ary { 213 /* An array index points to threshold just below or equal to usage. */ 214 int current_threshold; 215 /* Size of entries[] */ 216 unsigned int size; 217 /* Array of thresholds */ 218 struct mem_cgroup_threshold entries[0]; 219 }; 220 221 struct mem_cgroup_thresholds { 222 /* Primary thresholds array */ 223 struct mem_cgroup_threshold_ary *primary; 224 /* 225 * Spare threshold array. 226 * This is needed to make mem_cgroup_unregister_event() "never fail". 227 * It must be able to store at least primary->size - 1 entries. 228 */ 229 struct mem_cgroup_threshold_ary *spare; 230 }; 231 232 /* for OOM */ 233 struct mem_cgroup_eventfd_list { 234 struct list_head list; 235 struct eventfd_ctx *eventfd; 236 }; 237 238 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 239 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 240 241 /* 242 * The memory controller data structure. The memory controller controls both 243 * page cache and RSS per cgroup. We would eventually like to provide 244 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 245 * to help the administrator determine what knobs to tune. 246 * 247 * TODO: Add a water mark for the memory controller. Reclaim will begin when 248 * we hit the water mark. May be even add a low water mark, such that 249 * no reclaim occurs from a cgroup at it's low water mark, this is 250 * a feature that will be implemented much later in the future. 251 */ 252 struct mem_cgroup { 253 struct cgroup_subsys_state css; 254 /* 255 * the counter to account for memory usage 256 */ 257 struct res_counter res; 258 259 union { 260 /* 261 * the counter to account for mem+swap usage. 262 */ 263 struct res_counter memsw; 264 265 /* 266 * rcu_freeing is used only when freeing struct mem_cgroup, 267 * so put it into a union to avoid wasting more memory. 268 * It must be disjoint from the css field. It could be 269 * in a union with the res field, but res plays a much 270 * larger part in mem_cgroup life than memsw, and might 271 * be of interest, even at time of free, when debugging. 272 * So share rcu_head with the less interesting memsw. 273 */ 274 struct rcu_head rcu_freeing; 275 /* 276 * We also need some space for a worker in deferred freeing. 277 * By the time we call it, rcu_freeing is no longer in use. 278 */ 279 struct work_struct work_freeing; 280 }; 281 282 /* 283 * the counter to account for kernel memory usage. 284 */ 285 struct res_counter kmem; 286 /* 287 * Should the accounting and control be hierarchical, per subtree? 288 */ 289 bool use_hierarchy; 290 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 291 292 bool oom_lock; 293 atomic_t under_oom; 294 295 atomic_t refcnt; 296 297 int swappiness; 298 /* OOM-Killer disable */ 299 int oom_kill_disable; 300 301 /* set when res.limit == memsw.limit */ 302 bool memsw_is_minimum; 303 304 /* protect arrays of thresholds */ 305 struct mutex thresholds_lock; 306 307 /* thresholds for memory usage. RCU-protected */ 308 struct mem_cgroup_thresholds thresholds; 309 310 /* thresholds for mem+swap usage. RCU-protected */ 311 struct mem_cgroup_thresholds memsw_thresholds; 312 313 /* For oom notifier event fd */ 314 struct list_head oom_notify; 315 316 /* 317 * Should we move charges of a task when a task is moved into this 318 * mem_cgroup ? And what type of charges should we move ? 319 */ 320 unsigned long move_charge_at_immigrate; 321 /* 322 * set > 0 if pages under this cgroup are moving to other cgroup. 323 */ 324 atomic_t moving_account; 325 /* taken only while moving_account > 0 */ 326 spinlock_t move_lock; 327 /* 328 * percpu counter. 329 */ 330 struct mem_cgroup_stat_cpu __percpu *stat; 331 /* 332 * used when a cpu is offlined or other synchronizations 333 * See mem_cgroup_read_stat(). 334 */ 335 struct mem_cgroup_stat_cpu nocpu_base; 336 spinlock_t pcp_counter_lock; 337 338 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 339 struct tcp_memcontrol tcp_mem; 340 #endif 341 #if defined(CONFIG_MEMCG_KMEM) 342 /* analogous to slab_common's slab_caches list. per-memcg */ 343 struct list_head memcg_slab_caches; 344 /* Not a spinlock, we can take a lot of time walking the list */ 345 struct mutex slab_caches_mutex; 346 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 347 int kmemcg_id; 348 #endif 349 350 int last_scanned_node; 351 #if MAX_NUMNODES > 1 352 nodemask_t scan_nodes; 353 atomic_t numainfo_events; 354 atomic_t numainfo_updating; 355 #endif 356 /* 357 * Per cgroup active and inactive list, similar to the 358 * per zone LRU lists. 359 * 360 * WARNING: This has to be the last element of the struct. Don't 361 * add new fields after this point. 362 */ 363 struct mem_cgroup_lru_info info; 364 }; 365 366 static size_t memcg_size(void) 367 { 368 return sizeof(struct mem_cgroup) + 369 nr_node_ids * sizeof(struct mem_cgroup_per_node); 370 } 371 372 /* internal only representation about the status of kmem accounting. */ 373 enum { 374 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 375 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 376 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 377 }; 378 379 /* We account when limit is on, but only after call sites are patched */ 380 #define KMEM_ACCOUNTED_MASK \ 381 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 382 383 #ifdef CONFIG_MEMCG_KMEM 384 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 385 { 386 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 387 } 388 389 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 390 { 391 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 392 } 393 394 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 395 { 396 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 397 } 398 399 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 400 { 401 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 402 } 403 404 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 405 { 406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 408 } 409 410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 411 { 412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 413 &memcg->kmem_account_flags); 414 } 415 #endif 416 417 /* Stuffs for move charges at task migration. */ 418 /* 419 * Types of charges to be moved. "move_charge_at_immitgrate" and 420 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 421 */ 422 enum move_type { 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 425 NR_MOVE_TYPE, 426 }; 427 428 /* "mc" and its members are protected by cgroup_mutex */ 429 static struct move_charge_struct { 430 spinlock_t lock; /* for from, to */ 431 struct mem_cgroup *from; 432 struct mem_cgroup *to; 433 unsigned long immigrate_flags; 434 unsigned long precharge; 435 unsigned long moved_charge; 436 unsigned long moved_swap; 437 struct task_struct *moving_task; /* a task moving charges */ 438 wait_queue_head_t waitq; /* a waitq for other context */ 439 } mc = { 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 442 }; 443 444 static bool move_anon(void) 445 { 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 447 } 448 449 static bool move_file(void) 450 { 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 452 } 453 454 /* 455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 456 * limit reclaim to prevent infinite loops, if they ever occur. 457 */ 458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 460 461 enum charge_type { 462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 463 MEM_CGROUP_CHARGE_TYPE_ANON, 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 466 NR_CHARGE_TYPE, 467 }; 468 469 /* for encoding cft->private value on file */ 470 enum res_type { 471 _MEM, 472 _MEMSWAP, 473 _OOM_TYPE, 474 _KMEM, 475 }; 476 477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 479 #define MEMFILE_ATTR(val) ((val) & 0xffff) 480 /* Used for OOM nofiier */ 481 #define OOM_CONTROL (0) 482 483 /* 484 * Reclaim flags for mem_cgroup_hierarchical_reclaim 485 */ 486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 490 491 /* 492 * The memcg_create_mutex will be held whenever a new cgroup is created. 493 * As a consequence, any change that needs to protect against new child cgroups 494 * appearing has to hold it as well. 495 */ 496 static DEFINE_MUTEX(memcg_create_mutex); 497 498 static void mem_cgroup_get(struct mem_cgroup *memcg); 499 static void mem_cgroup_put(struct mem_cgroup *memcg); 500 501 static inline 502 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 503 { 504 return container_of(s, struct mem_cgroup, css); 505 } 506 507 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 508 { 509 return (memcg == root_mem_cgroup); 510 } 511 512 /* Writing them here to avoid exposing memcg's inner layout */ 513 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 514 515 void sock_update_memcg(struct sock *sk) 516 { 517 if (mem_cgroup_sockets_enabled) { 518 struct mem_cgroup *memcg; 519 struct cg_proto *cg_proto; 520 521 BUG_ON(!sk->sk_prot->proto_cgroup); 522 523 /* Socket cloning can throw us here with sk_cgrp already 524 * filled. It won't however, necessarily happen from 525 * process context. So the test for root memcg given 526 * the current task's memcg won't help us in this case. 527 * 528 * Respecting the original socket's memcg is a better 529 * decision in this case. 530 */ 531 if (sk->sk_cgrp) { 532 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 533 mem_cgroup_get(sk->sk_cgrp->memcg); 534 return; 535 } 536 537 rcu_read_lock(); 538 memcg = mem_cgroup_from_task(current); 539 cg_proto = sk->sk_prot->proto_cgroup(memcg); 540 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 541 mem_cgroup_get(memcg); 542 sk->sk_cgrp = cg_proto; 543 } 544 rcu_read_unlock(); 545 } 546 } 547 EXPORT_SYMBOL(sock_update_memcg); 548 549 void sock_release_memcg(struct sock *sk) 550 { 551 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 552 struct mem_cgroup *memcg; 553 WARN_ON(!sk->sk_cgrp->memcg); 554 memcg = sk->sk_cgrp->memcg; 555 mem_cgroup_put(memcg); 556 } 557 } 558 559 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 560 { 561 if (!memcg || mem_cgroup_is_root(memcg)) 562 return NULL; 563 564 return &memcg->tcp_mem.cg_proto; 565 } 566 EXPORT_SYMBOL(tcp_proto_cgroup); 567 568 static void disarm_sock_keys(struct mem_cgroup *memcg) 569 { 570 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 571 return; 572 static_key_slow_dec(&memcg_socket_limit_enabled); 573 } 574 #else 575 static void disarm_sock_keys(struct mem_cgroup *memcg) 576 { 577 } 578 #endif 579 580 #ifdef CONFIG_MEMCG_KMEM 581 /* 582 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 583 * There are two main reasons for not using the css_id for this: 584 * 1) this works better in sparse environments, where we have a lot of memcgs, 585 * but only a few kmem-limited. Or also, if we have, for instance, 200 586 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 587 * 200 entry array for that. 588 * 589 * 2) In order not to violate the cgroup API, we would like to do all memory 590 * allocation in ->create(). At that point, we haven't yet allocated the 591 * css_id. Having a separate index prevents us from messing with the cgroup 592 * core for this 593 * 594 * The current size of the caches array is stored in 595 * memcg_limited_groups_array_size. It will double each time we have to 596 * increase it. 597 */ 598 static DEFINE_IDA(kmem_limited_groups); 599 int memcg_limited_groups_array_size; 600 601 /* 602 * MIN_SIZE is different than 1, because we would like to avoid going through 603 * the alloc/free process all the time. In a small machine, 4 kmem-limited 604 * cgroups is a reasonable guess. In the future, it could be a parameter or 605 * tunable, but that is strictly not necessary. 606 * 607 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 608 * this constant directly from cgroup, but it is understandable that this is 609 * better kept as an internal representation in cgroup.c. In any case, the 610 * css_id space is not getting any smaller, and we don't have to necessarily 611 * increase ours as well if it increases. 612 */ 613 #define MEMCG_CACHES_MIN_SIZE 4 614 #define MEMCG_CACHES_MAX_SIZE 65535 615 616 /* 617 * A lot of the calls to the cache allocation functions are expected to be 618 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 619 * conditional to this static branch, we'll have to allow modules that does 620 * kmem_cache_alloc and the such to see this symbol as well 621 */ 622 struct static_key memcg_kmem_enabled_key; 623 EXPORT_SYMBOL(memcg_kmem_enabled_key); 624 625 static void disarm_kmem_keys(struct mem_cgroup *memcg) 626 { 627 if (memcg_kmem_is_active(memcg)) { 628 static_key_slow_dec(&memcg_kmem_enabled_key); 629 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 630 } 631 /* 632 * This check can't live in kmem destruction function, 633 * since the charges will outlive the cgroup 634 */ 635 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 636 } 637 #else 638 static void disarm_kmem_keys(struct mem_cgroup *memcg) 639 { 640 } 641 #endif /* CONFIG_MEMCG_KMEM */ 642 643 static void disarm_static_keys(struct mem_cgroup *memcg) 644 { 645 disarm_sock_keys(memcg); 646 disarm_kmem_keys(memcg); 647 } 648 649 static void drain_all_stock_async(struct mem_cgroup *memcg); 650 651 static struct mem_cgroup_per_zone * 652 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 653 { 654 VM_BUG_ON((unsigned)nid >= nr_node_ids); 655 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 656 } 657 658 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 659 { 660 return &memcg->css; 661 } 662 663 static struct mem_cgroup_per_zone * 664 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 665 { 666 int nid = page_to_nid(page); 667 int zid = page_zonenum(page); 668 669 return mem_cgroup_zoneinfo(memcg, nid, zid); 670 } 671 672 static struct mem_cgroup_tree_per_zone * 673 soft_limit_tree_node_zone(int nid, int zid) 674 { 675 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 676 } 677 678 static struct mem_cgroup_tree_per_zone * 679 soft_limit_tree_from_page(struct page *page) 680 { 681 int nid = page_to_nid(page); 682 int zid = page_zonenum(page); 683 684 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 685 } 686 687 static void 688 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 689 struct mem_cgroup_per_zone *mz, 690 struct mem_cgroup_tree_per_zone *mctz, 691 unsigned long long new_usage_in_excess) 692 { 693 struct rb_node **p = &mctz->rb_root.rb_node; 694 struct rb_node *parent = NULL; 695 struct mem_cgroup_per_zone *mz_node; 696 697 if (mz->on_tree) 698 return; 699 700 mz->usage_in_excess = new_usage_in_excess; 701 if (!mz->usage_in_excess) 702 return; 703 while (*p) { 704 parent = *p; 705 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 706 tree_node); 707 if (mz->usage_in_excess < mz_node->usage_in_excess) 708 p = &(*p)->rb_left; 709 /* 710 * We can't avoid mem cgroups that are over their soft 711 * limit by the same amount 712 */ 713 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 714 p = &(*p)->rb_right; 715 } 716 rb_link_node(&mz->tree_node, parent, p); 717 rb_insert_color(&mz->tree_node, &mctz->rb_root); 718 mz->on_tree = true; 719 } 720 721 static void 722 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 723 struct mem_cgroup_per_zone *mz, 724 struct mem_cgroup_tree_per_zone *mctz) 725 { 726 if (!mz->on_tree) 727 return; 728 rb_erase(&mz->tree_node, &mctz->rb_root); 729 mz->on_tree = false; 730 } 731 732 static void 733 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 734 struct mem_cgroup_per_zone *mz, 735 struct mem_cgroup_tree_per_zone *mctz) 736 { 737 spin_lock(&mctz->lock); 738 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 739 spin_unlock(&mctz->lock); 740 } 741 742 743 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 744 { 745 unsigned long long excess; 746 struct mem_cgroup_per_zone *mz; 747 struct mem_cgroup_tree_per_zone *mctz; 748 int nid = page_to_nid(page); 749 int zid = page_zonenum(page); 750 mctz = soft_limit_tree_from_page(page); 751 752 /* 753 * Necessary to update all ancestors when hierarchy is used. 754 * because their event counter is not touched. 755 */ 756 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 757 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 758 excess = res_counter_soft_limit_excess(&memcg->res); 759 /* 760 * We have to update the tree if mz is on RB-tree or 761 * mem is over its softlimit. 762 */ 763 if (excess || mz->on_tree) { 764 spin_lock(&mctz->lock); 765 /* if on-tree, remove it */ 766 if (mz->on_tree) 767 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 768 /* 769 * Insert again. mz->usage_in_excess will be updated. 770 * If excess is 0, no tree ops. 771 */ 772 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 773 spin_unlock(&mctz->lock); 774 } 775 } 776 } 777 778 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 779 { 780 int node, zone; 781 struct mem_cgroup_per_zone *mz; 782 struct mem_cgroup_tree_per_zone *mctz; 783 784 for_each_node(node) { 785 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 786 mz = mem_cgroup_zoneinfo(memcg, node, zone); 787 mctz = soft_limit_tree_node_zone(node, zone); 788 mem_cgroup_remove_exceeded(memcg, mz, mctz); 789 } 790 } 791 } 792 793 static struct mem_cgroup_per_zone * 794 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 795 { 796 struct rb_node *rightmost = NULL; 797 struct mem_cgroup_per_zone *mz; 798 799 retry: 800 mz = NULL; 801 rightmost = rb_last(&mctz->rb_root); 802 if (!rightmost) 803 goto done; /* Nothing to reclaim from */ 804 805 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 806 /* 807 * Remove the node now but someone else can add it back, 808 * we will to add it back at the end of reclaim to its correct 809 * position in the tree. 810 */ 811 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 812 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 813 !css_tryget(&mz->memcg->css)) 814 goto retry; 815 done: 816 return mz; 817 } 818 819 static struct mem_cgroup_per_zone * 820 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 821 { 822 struct mem_cgroup_per_zone *mz; 823 824 spin_lock(&mctz->lock); 825 mz = __mem_cgroup_largest_soft_limit_node(mctz); 826 spin_unlock(&mctz->lock); 827 return mz; 828 } 829 830 /* 831 * Implementation Note: reading percpu statistics for memcg. 832 * 833 * Both of vmstat[] and percpu_counter has threshold and do periodic 834 * synchronization to implement "quick" read. There are trade-off between 835 * reading cost and precision of value. Then, we may have a chance to implement 836 * a periodic synchronizion of counter in memcg's counter. 837 * 838 * But this _read() function is used for user interface now. The user accounts 839 * memory usage by memory cgroup and he _always_ requires exact value because 840 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 841 * have to visit all online cpus and make sum. So, for now, unnecessary 842 * synchronization is not implemented. (just implemented for cpu hotplug) 843 * 844 * If there are kernel internal actions which can make use of some not-exact 845 * value, and reading all cpu value can be performance bottleneck in some 846 * common workload, threashold and synchonization as vmstat[] should be 847 * implemented. 848 */ 849 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 850 enum mem_cgroup_stat_index idx) 851 { 852 long val = 0; 853 int cpu; 854 855 get_online_cpus(); 856 for_each_online_cpu(cpu) 857 val += per_cpu(memcg->stat->count[idx], cpu); 858 #ifdef CONFIG_HOTPLUG_CPU 859 spin_lock(&memcg->pcp_counter_lock); 860 val += memcg->nocpu_base.count[idx]; 861 spin_unlock(&memcg->pcp_counter_lock); 862 #endif 863 put_online_cpus(); 864 return val; 865 } 866 867 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 868 bool charge) 869 { 870 int val = (charge) ? 1 : -1; 871 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 872 } 873 874 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 875 enum mem_cgroup_events_index idx) 876 { 877 unsigned long val = 0; 878 int cpu; 879 880 for_each_online_cpu(cpu) 881 val += per_cpu(memcg->stat->events[idx], cpu); 882 #ifdef CONFIG_HOTPLUG_CPU 883 spin_lock(&memcg->pcp_counter_lock); 884 val += memcg->nocpu_base.events[idx]; 885 spin_unlock(&memcg->pcp_counter_lock); 886 #endif 887 return val; 888 } 889 890 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 891 bool anon, int nr_pages) 892 { 893 preempt_disable(); 894 895 /* 896 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 897 * counted as CACHE even if it's on ANON LRU. 898 */ 899 if (anon) 900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 901 nr_pages); 902 else 903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 904 nr_pages); 905 906 /* pagein of a big page is an event. So, ignore page size */ 907 if (nr_pages > 0) 908 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 909 else { 910 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 911 nr_pages = -nr_pages; /* for event */ 912 } 913 914 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 915 916 preempt_enable(); 917 } 918 919 unsigned long 920 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 921 { 922 struct mem_cgroup_per_zone *mz; 923 924 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 925 return mz->lru_size[lru]; 926 } 927 928 static unsigned long 929 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 930 unsigned int lru_mask) 931 { 932 struct mem_cgroup_per_zone *mz; 933 enum lru_list lru; 934 unsigned long ret = 0; 935 936 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 937 938 for_each_lru(lru) { 939 if (BIT(lru) & lru_mask) 940 ret += mz->lru_size[lru]; 941 } 942 return ret; 943 } 944 945 static unsigned long 946 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 947 int nid, unsigned int lru_mask) 948 { 949 u64 total = 0; 950 int zid; 951 952 for (zid = 0; zid < MAX_NR_ZONES; zid++) 953 total += mem_cgroup_zone_nr_lru_pages(memcg, 954 nid, zid, lru_mask); 955 956 return total; 957 } 958 959 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 960 unsigned int lru_mask) 961 { 962 int nid; 963 u64 total = 0; 964 965 for_each_node_state(nid, N_MEMORY) 966 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 967 return total; 968 } 969 970 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 971 enum mem_cgroup_events_target target) 972 { 973 unsigned long val, next; 974 975 val = __this_cpu_read(memcg->stat->nr_page_events); 976 next = __this_cpu_read(memcg->stat->targets[target]); 977 /* from time_after() in jiffies.h */ 978 if ((long)next - (long)val < 0) { 979 switch (target) { 980 case MEM_CGROUP_TARGET_THRESH: 981 next = val + THRESHOLDS_EVENTS_TARGET; 982 break; 983 case MEM_CGROUP_TARGET_SOFTLIMIT: 984 next = val + SOFTLIMIT_EVENTS_TARGET; 985 break; 986 case MEM_CGROUP_TARGET_NUMAINFO: 987 next = val + NUMAINFO_EVENTS_TARGET; 988 break; 989 default: 990 break; 991 } 992 __this_cpu_write(memcg->stat->targets[target], next); 993 return true; 994 } 995 return false; 996 } 997 998 /* 999 * Check events in order. 1000 * 1001 */ 1002 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1003 { 1004 preempt_disable(); 1005 /* threshold event is triggered in finer grain than soft limit */ 1006 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1007 MEM_CGROUP_TARGET_THRESH))) { 1008 bool do_softlimit; 1009 bool do_numainfo __maybe_unused; 1010 1011 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1012 MEM_CGROUP_TARGET_SOFTLIMIT); 1013 #if MAX_NUMNODES > 1 1014 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1015 MEM_CGROUP_TARGET_NUMAINFO); 1016 #endif 1017 preempt_enable(); 1018 1019 mem_cgroup_threshold(memcg); 1020 if (unlikely(do_softlimit)) 1021 mem_cgroup_update_tree(memcg, page); 1022 #if MAX_NUMNODES > 1 1023 if (unlikely(do_numainfo)) 1024 atomic_inc(&memcg->numainfo_events); 1025 #endif 1026 } else 1027 preempt_enable(); 1028 } 1029 1030 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 1031 { 1032 return mem_cgroup_from_css( 1033 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 1034 } 1035 1036 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1037 { 1038 /* 1039 * mm_update_next_owner() may clear mm->owner to NULL 1040 * if it races with swapoff, page migration, etc. 1041 * So this can be called with p == NULL. 1042 */ 1043 if (unlikely(!p)) 1044 return NULL; 1045 1046 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 1047 } 1048 1049 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1050 { 1051 struct mem_cgroup *memcg = NULL; 1052 1053 if (!mm) 1054 return NULL; 1055 /* 1056 * Because we have no locks, mm->owner's may be being moved to other 1057 * cgroup. We use css_tryget() here even if this looks 1058 * pessimistic (rather than adding locks here). 1059 */ 1060 rcu_read_lock(); 1061 do { 1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1063 if (unlikely(!memcg)) 1064 break; 1065 } while (!css_tryget(&memcg->css)); 1066 rcu_read_unlock(); 1067 return memcg; 1068 } 1069 1070 /** 1071 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1072 * @root: hierarchy root 1073 * @prev: previously returned memcg, NULL on first invocation 1074 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1075 * 1076 * Returns references to children of the hierarchy below @root, or 1077 * @root itself, or %NULL after a full round-trip. 1078 * 1079 * Caller must pass the return value in @prev on subsequent 1080 * invocations for reference counting, or use mem_cgroup_iter_break() 1081 * to cancel a hierarchy walk before the round-trip is complete. 1082 * 1083 * Reclaimers can specify a zone and a priority level in @reclaim to 1084 * divide up the memcgs in the hierarchy among all concurrent 1085 * reclaimers operating on the same zone and priority. 1086 */ 1087 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1088 struct mem_cgroup *prev, 1089 struct mem_cgroup_reclaim_cookie *reclaim) 1090 { 1091 struct mem_cgroup *memcg = NULL; 1092 int id = 0; 1093 1094 if (mem_cgroup_disabled()) 1095 return NULL; 1096 1097 if (!root) 1098 root = root_mem_cgroup; 1099 1100 if (prev && !reclaim) 1101 id = css_id(&prev->css); 1102 1103 if (prev && prev != root) 1104 css_put(&prev->css); 1105 1106 if (!root->use_hierarchy && root != root_mem_cgroup) { 1107 if (prev) 1108 return NULL; 1109 return root; 1110 } 1111 1112 while (!memcg) { 1113 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1114 struct cgroup_subsys_state *css; 1115 1116 if (reclaim) { 1117 int nid = zone_to_nid(reclaim->zone); 1118 int zid = zone_idx(reclaim->zone); 1119 struct mem_cgroup_per_zone *mz; 1120 1121 mz = mem_cgroup_zoneinfo(root, nid, zid); 1122 iter = &mz->reclaim_iter[reclaim->priority]; 1123 if (prev && reclaim->generation != iter->generation) 1124 return NULL; 1125 id = iter->position; 1126 } 1127 1128 rcu_read_lock(); 1129 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 1130 if (css) { 1131 if (css == &root->css || css_tryget(css)) 1132 memcg = mem_cgroup_from_css(css); 1133 } else 1134 id = 0; 1135 rcu_read_unlock(); 1136 1137 if (reclaim) { 1138 iter->position = id; 1139 if (!css) 1140 iter->generation++; 1141 else if (!prev && memcg) 1142 reclaim->generation = iter->generation; 1143 } 1144 1145 if (prev && !css) 1146 return NULL; 1147 } 1148 return memcg; 1149 } 1150 1151 /** 1152 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1153 * @root: hierarchy root 1154 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1155 */ 1156 void mem_cgroup_iter_break(struct mem_cgroup *root, 1157 struct mem_cgroup *prev) 1158 { 1159 if (!root) 1160 root = root_mem_cgroup; 1161 if (prev && prev != root) 1162 css_put(&prev->css); 1163 } 1164 1165 /* 1166 * Iteration constructs for visiting all cgroups (under a tree). If 1167 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1168 * be used for reference counting. 1169 */ 1170 #define for_each_mem_cgroup_tree(iter, root) \ 1171 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1172 iter != NULL; \ 1173 iter = mem_cgroup_iter(root, iter, NULL)) 1174 1175 #define for_each_mem_cgroup(iter) \ 1176 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1177 iter != NULL; \ 1178 iter = mem_cgroup_iter(NULL, iter, NULL)) 1179 1180 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1181 { 1182 struct mem_cgroup *memcg; 1183 1184 rcu_read_lock(); 1185 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1186 if (unlikely(!memcg)) 1187 goto out; 1188 1189 switch (idx) { 1190 case PGFAULT: 1191 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1192 break; 1193 case PGMAJFAULT: 1194 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1195 break; 1196 default: 1197 BUG(); 1198 } 1199 out: 1200 rcu_read_unlock(); 1201 } 1202 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1203 1204 /** 1205 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1206 * @zone: zone of the wanted lruvec 1207 * @memcg: memcg of the wanted lruvec 1208 * 1209 * Returns the lru list vector holding pages for the given @zone and 1210 * @mem. This can be the global zone lruvec, if the memory controller 1211 * is disabled. 1212 */ 1213 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1214 struct mem_cgroup *memcg) 1215 { 1216 struct mem_cgroup_per_zone *mz; 1217 struct lruvec *lruvec; 1218 1219 if (mem_cgroup_disabled()) { 1220 lruvec = &zone->lruvec; 1221 goto out; 1222 } 1223 1224 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1225 lruvec = &mz->lruvec; 1226 out: 1227 /* 1228 * Since a node can be onlined after the mem_cgroup was created, 1229 * we have to be prepared to initialize lruvec->zone here; 1230 * and if offlined then reonlined, we need to reinitialize it. 1231 */ 1232 if (unlikely(lruvec->zone != zone)) 1233 lruvec->zone = zone; 1234 return lruvec; 1235 } 1236 1237 /* 1238 * Following LRU functions are allowed to be used without PCG_LOCK. 1239 * Operations are called by routine of global LRU independently from memcg. 1240 * What we have to take care of here is validness of pc->mem_cgroup. 1241 * 1242 * Changes to pc->mem_cgroup happens when 1243 * 1. charge 1244 * 2. moving account 1245 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1246 * It is added to LRU before charge. 1247 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1248 * When moving account, the page is not on LRU. It's isolated. 1249 */ 1250 1251 /** 1252 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1253 * @page: the page 1254 * @zone: zone of the page 1255 */ 1256 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1257 { 1258 struct mem_cgroup_per_zone *mz; 1259 struct mem_cgroup *memcg; 1260 struct page_cgroup *pc; 1261 struct lruvec *lruvec; 1262 1263 if (mem_cgroup_disabled()) { 1264 lruvec = &zone->lruvec; 1265 goto out; 1266 } 1267 1268 pc = lookup_page_cgroup(page); 1269 memcg = pc->mem_cgroup; 1270 1271 /* 1272 * Surreptitiously switch any uncharged offlist page to root: 1273 * an uncharged page off lru does nothing to secure 1274 * its former mem_cgroup from sudden removal. 1275 * 1276 * Our caller holds lru_lock, and PageCgroupUsed is updated 1277 * under page_cgroup lock: between them, they make all uses 1278 * of pc->mem_cgroup safe. 1279 */ 1280 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1281 pc->mem_cgroup = memcg = root_mem_cgroup; 1282 1283 mz = page_cgroup_zoneinfo(memcg, page); 1284 lruvec = &mz->lruvec; 1285 out: 1286 /* 1287 * Since a node can be onlined after the mem_cgroup was created, 1288 * we have to be prepared to initialize lruvec->zone here; 1289 * and if offlined then reonlined, we need to reinitialize it. 1290 */ 1291 if (unlikely(lruvec->zone != zone)) 1292 lruvec->zone = zone; 1293 return lruvec; 1294 } 1295 1296 /** 1297 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1298 * @lruvec: mem_cgroup per zone lru vector 1299 * @lru: index of lru list the page is sitting on 1300 * @nr_pages: positive when adding or negative when removing 1301 * 1302 * This function must be called when a page is added to or removed from an 1303 * lru list. 1304 */ 1305 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1306 int nr_pages) 1307 { 1308 struct mem_cgroup_per_zone *mz; 1309 unsigned long *lru_size; 1310 1311 if (mem_cgroup_disabled()) 1312 return; 1313 1314 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1315 lru_size = mz->lru_size + lru; 1316 *lru_size += nr_pages; 1317 VM_BUG_ON((long)(*lru_size) < 0); 1318 } 1319 1320 /* 1321 * Checks whether given mem is same or in the root_mem_cgroup's 1322 * hierarchy subtree 1323 */ 1324 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1325 struct mem_cgroup *memcg) 1326 { 1327 if (root_memcg == memcg) 1328 return true; 1329 if (!root_memcg->use_hierarchy || !memcg) 1330 return false; 1331 return css_is_ancestor(&memcg->css, &root_memcg->css); 1332 } 1333 1334 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1335 struct mem_cgroup *memcg) 1336 { 1337 bool ret; 1338 1339 rcu_read_lock(); 1340 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1341 rcu_read_unlock(); 1342 return ret; 1343 } 1344 1345 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1346 { 1347 int ret; 1348 struct mem_cgroup *curr = NULL; 1349 struct task_struct *p; 1350 1351 p = find_lock_task_mm(task); 1352 if (p) { 1353 curr = try_get_mem_cgroup_from_mm(p->mm); 1354 task_unlock(p); 1355 } else { 1356 /* 1357 * All threads may have already detached their mm's, but the oom 1358 * killer still needs to detect if they have already been oom 1359 * killed to prevent needlessly killing additional tasks. 1360 */ 1361 task_lock(task); 1362 curr = mem_cgroup_from_task(task); 1363 if (curr) 1364 css_get(&curr->css); 1365 task_unlock(task); 1366 } 1367 if (!curr) 1368 return 0; 1369 /* 1370 * We should check use_hierarchy of "memcg" not "curr". Because checking 1371 * use_hierarchy of "curr" here make this function true if hierarchy is 1372 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1373 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1374 */ 1375 ret = mem_cgroup_same_or_subtree(memcg, curr); 1376 css_put(&curr->css); 1377 return ret; 1378 } 1379 1380 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1381 { 1382 unsigned long inactive_ratio; 1383 unsigned long inactive; 1384 unsigned long active; 1385 unsigned long gb; 1386 1387 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1388 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1389 1390 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1391 if (gb) 1392 inactive_ratio = int_sqrt(10 * gb); 1393 else 1394 inactive_ratio = 1; 1395 1396 return inactive * inactive_ratio < active; 1397 } 1398 1399 #define mem_cgroup_from_res_counter(counter, member) \ 1400 container_of(counter, struct mem_cgroup, member) 1401 1402 /** 1403 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1404 * @memcg: the memory cgroup 1405 * 1406 * Returns the maximum amount of memory @mem can be charged with, in 1407 * pages. 1408 */ 1409 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1410 { 1411 unsigned long long margin; 1412 1413 margin = res_counter_margin(&memcg->res); 1414 if (do_swap_account) 1415 margin = min(margin, res_counter_margin(&memcg->memsw)); 1416 return margin >> PAGE_SHIFT; 1417 } 1418 1419 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1420 { 1421 struct cgroup *cgrp = memcg->css.cgroup; 1422 1423 /* root ? */ 1424 if (cgrp->parent == NULL) 1425 return vm_swappiness; 1426 1427 return memcg->swappiness; 1428 } 1429 1430 /* 1431 * memcg->moving_account is used for checking possibility that some thread is 1432 * calling move_account(). When a thread on CPU-A starts moving pages under 1433 * a memcg, other threads should check memcg->moving_account under 1434 * rcu_read_lock(), like this: 1435 * 1436 * CPU-A CPU-B 1437 * rcu_read_lock() 1438 * memcg->moving_account+1 if (memcg->mocing_account) 1439 * take heavy locks. 1440 * synchronize_rcu() update something. 1441 * rcu_read_unlock() 1442 * start move here. 1443 */ 1444 1445 /* for quick checking without looking up memcg */ 1446 atomic_t memcg_moving __read_mostly; 1447 1448 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1449 { 1450 atomic_inc(&memcg_moving); 1451 atomic_inc(&memcg->moving_account); 1452 synchronize_rcu(); 1453 } 1454 1455 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1456 { 1457 /* 1458 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1459 * We check NULL in callee rather than caller. 1460 */ 1461 if (memcg) { 1462 atomic_dec(&memcg_moving); 1463 atomic_dec(&memcg->moving_account); 1464 } 1465 } 1466 1467 /* 1468 * 2 routines for checking "mem" is under move_account() or not. 1469 * 1470 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1471 * is used for avoiding races in accounting. If true, 1472 * pc->mem_cgroup may be overwritten. 1473 * 1474 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1475 * under hierarchy of moving cgroups. This is for 1476 * waiting at hith-memory prressure caused by "move". 1477 */ 1478 1479 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1480 { 1481 VM_BUG_ON(!rcu_read_lock_held()); 1482 return atomic_read(&memcg->moving_account) > 0; 1483 } 1484 1485 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1486 { 1487 struct mem_cgroup *from; 1488 struct mem_cgroup *to; 1489 bool ret = false; 1490 /* 1491 * Unlike task_move routines, we access mc.to, mc.from not under 1492 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1493 */ 1494 spin_lock(&mc.lock); 1495 from = mc.from; 1496 to = mc.to; 1497 if (!from) 1498 goto unlock; 1499 1500 ret = mem_cgroup_same_or_subtree(memcg, from) 1501 || mem_cgroup_same_or_subtree(memcg, to); 1502 unlock: 1503 spin_unlock(&mc.lock); 1504 return ret; 1505 } 1506 1507 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1508 { 1509 if (mc.moving_task && current != mc.moving_task) { 1510 if (mem_cgroup_under_move(memcg)) { 1511 DEFINE_WAIT(wait); 1512 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1513 /* moving charge context might have finished. */ 1514 if (mc.moving_task) 1515 schedule(); 1516 finish_wait(&mc.waitq, &wait); 1517 return true; 1518 } 1519 } 1520 return false; 1521 } 1522 1523 /* 1524 * Take this lock when 1525 * - a code tries to modify page's memcg while it's USED. 1526 * - a code tries to modify page state accounting in a memcg. 1527 * see mem_cgroup_stolen(), too. 1528 */ 1529 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1530 unsigned long *flags) 1531 { 1532 spin_lock_irqsave(&memcg->move_lock, *flags); 1533 } 1534 1535 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1536 unsigned long *flags) 1537 { 1538 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1539 } 1540 1541 #define K(x) ((x) << (PAGE_SHIFT-10)) 1542 /** 1543 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1544 * @memcg: The memory cgroup that went over limit 1545 * @p: Task that is going to be killed 1546 * 1547 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1548 * enabled 1549 */ 1550 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1551 { 1552 struct cgroup *task_cgrp; 1553 struct cgroup *mem_cgrp; 1554 /* 1555 * Need a buffer in BSS, can't rely on allocations. The code relies 1556 * on the assumption that OOM is serialized for memory controller. 1557 * If this assumption is broken, revisit this code. 1558 */ 1559 static char memcg_name[PATH_MAX]; 1560 int ret; 1561 struct mem_cgroup *iter; 1562 unsigned int i; 1563 1564 if (!p) 1565 return; 1566 1567 rcu_read_lock(); 1568 1569 mem_cgrp = memcg->css.cgroup; 1570 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1571 1572 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1573 if (ret < 0) { 1574 /* 1575 * Unfortunately, we are unable to convert to a useful name 1576 * But we'll still print out the usage information 1577 */ 1578 rcu_read_unlock(); 1579 goto done; 1580 } 1581 rcu_read_unlock(); 1582 1583 pr_info("Task in %s killed", memcg_name); 1584 1585 rcu_read_lock(); 1586 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1587 if (ret < 0) { 1588 rcu_read_unlock(); 1589 goto done; 1590 } 1591 rcu_read_unlock(); 1592 1593 /* 1594 * Continues from above, so we don't need an KERN_ level 1595 */ 1596 pr_cont(" as a result of limit of %s\n", memcg_name); 1597 done: 1598 1599 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1600 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1601 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1602 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1603 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1604 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1605 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1606 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1607 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1608 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1609 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1610 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1611 1612 for_each_mem_cgroup_tree(iter, memcg) { 1613 pr_info("Memory cgroup stats"); 1614 1615 rcu_read_lock(); 1616 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1617 if (!ret) 1618 pr_cont(" for %s", memcg_name); 1619 rcu_read_unlock(); 1620 pr_cont(":"); 1621 1622 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1623 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1624 continue; 1625 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1626 K(mem_cgroup_read_stat(iter, i))); 1627 } 1628 1629 for (i = 0; i < NR_LRU_LISTS; i++) 1630 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1631 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1632 1633 pr_cont("\n"); 1634 } 1635 } 1636 1637 /* 1638 * This function returns the number of memcg under hierarchy tree. Returns 1639 * 1(self count) if no children. 1640 */ 1641 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1642 { 1643 int num = 0; 1644 struct mem_cgroup *iter; 1645 1646 for_each_mem_cgroup_tree(iter, memcg) 1647 num++; 1648 return num; 1649 } 1650 1651 /* 1652 * Return the memory (and swap, if configured) limit for a memcg. 1653 */ 1654 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1655 { 1656 u64 limit; 1657 1658 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1659 1660 /* 1661 * Do not consider swap space if we cannot swap due to swappiness 1662 */ 1663 if (mem_cgroup_swappiness(memcg)) { 1664 u64 memsw; 1665 1666 limit += total_swap_pages << PAGE_SHIFT; 1667 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1668 1669 /* 1670 * If memsw is finite and limits the amount of swap space 1671 * available to this memcg, return that limit. 1672 */ 1673 limit = min(limit, memsw); 1674 } 1675 1676 return limit; 1677 } 1678 1679 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1680 int order) 1681 { 1682 struct mem_cgroup *iter; 1683 unsigned long chosen_points = 0; 1684 unsigned long totalpages; 1685 unsigned int points = 0; 1686 struct task_struct *chosen = NULL; 1687 1688 /* 1689 * If current has a pending SIGKILL, then automatically select it. The 1690 * goal is to allow it to allocate so that it may quickly exit and free 1691 * its memory. 1692 */ 1693 if (fatal_signal_pending(current)) { 1694 set_thread_flag(TIF_MEMDIE); 1695 return; 1696 } 1697 1698 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1699 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1700 for_each_mem_cgroup_tree(iter, memcg) { 1701 struct cgroup *cgroup = iter->css.cgroup; 1702 struct cgroup_iter it; 1703 struct task_struct *task; 1704 1705 cgroup_iter_start(cgroup, &it); 1706 while ((task = cgroup_iter_next(cgroup, &it))) { 1707 switch (oom_scan_process_thread(task, totalpages, NULL, 1708 false)) { 1709 case OOM_SCAN_SELECT: 1710 if (chosen) 1711 put_task_struct(chosen); 1712 chosen = task; 1713 chosen_points = ULONG_MAX; 1714 get_task_struct(chosen); 1715 /* fall through */ 1716 case OOM_SCAN_CONTINUE: 1717 continue; 1718 case OOM_SCAN_ABORT: 1719 cgroup_iter_end(cgroup, &it); 1720 mem_cgroup_iter_break(memcg, iter); 1721 if (chosen) 1722 put_task_struct(chosen); 1723 return; 1724 case OOM_SCAN_OK: 1725 break; 1726 }; 1727 points = oom_badness(task, memcg, NULL, totalpages); 1728 if (points > chosen_points) { 1729 if (chosen) 1730 put_task_struct(chosen); 1731 chosen = task; 1732 chosen_points = points; 1733 get_task_struct(chosen); 1734 } 1735 } 1736 cgroup_iter_end(cgroup, &it); 1737 } 1738 1739 if (!chosen) 1740 return; 1741 points = chosen_points * 1000 / totalpages; 1742 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1743 NULL, "Memory cgroup out of memory"); 1744 } 1745 1746 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1747 gfp_t gfp_mask, 1748 unsigned long flags) 1749 { 1750 unsigned long total = 0; 1751 bool noswap = false; 1752 int loop; 1753 1754 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1755 noswap = true; 1756 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1757 noswap = true; 1758 1759 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1760 if (loop) 1761 drain_all_stock_async(memcg); 1762 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1763 /* 1764 * Allow limit shrinkers, which are triggered directly 1765 * by userspace, to catch signals and stop reclaim 1766 * after minimal progress, regardless of the margin. 1767 */ 1768 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1769 break; 1770 if (mem_cgroup_margin(memcg)) 1771 break; 1772 /* 1773 * If nothing was reclaimed after two attempts, there 1774 * may be no reclaimable pages in this hierarchy. 1775 */ 1776 if (loop && !total) 1777 break; 1778 } 1779 return total; 1780 } 1781 1782 /** 1783 * test_mem_cgroup_node_reclaimable 1784 * @memcg: the target memcg 1785 * @nid: the node ID to be checked. 1786 * @noswap : specify true here if the user wants flle only information. 1787 * 1788 * This function returns whether the specified memcg contains any 1789 * reclaimable pages on a node. Returns true if there are any reclaimable 1790 * pages in the node. 1791 */ 1792 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1793 int nid, bool noswap) 1794 { 1795 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1796 return true; 1797 if (noswap || !total_swap_pages) 1798 return false; 1799 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1800 return true; 1801 return false; 1802 1803 } 1804 #if MAX_NUMNODES > 1 1805 1806 /* 1807 * Always updating the nodemask is not very good - even if we have an empty 1808 * list or the wrong list here, we can start from some node and traverse all 1809 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1810 * 1811 */ 1812 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1813 { 1814 int nid; 1815 /* 1816 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1817 * pagein/pageout changes since the last update. 1818 */ 1819 if (!atomic_read(&memcg->numainfo_events)) 1820 return; 1821 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1822 return; 1823 1824 /* make a nodemask where this memcg uses memory from */ 1825 memcg->scan_nodes = node_states[N_MEMORY]; 1826 1827 for_each_node_mask(nid, node_states[N_MEMORY]) { 1828 1829 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1830 node_clear(nid, memcg->scan_nodes); 1831 } 1832 1833 atomic_set(&memcg->numainfo_events, 0); 1834 atomic_set(&memcg->numainfo_updating, 0); 1835 } 1836 1837 /* 1838 * Selecting a node where we start reclaim from. Because what we need is just 1839 * reducing usage counter, start from anywhere is O,K. Considering 1840 * memory reclaim from current node, there are pros. and cons. 1841 * 1842 * Freeing memory from current node means freeing memory from a node which 1843 * we'll use or we've used. So, it may make LRU bad. And if several threads 1844 * hit limits, it will see a contention on a node. But freeing from remote 1845 * node means more costs for memory reclaim because of memory latency. 1846 * 1847 * Now, we use round-robin. Better algorithm is welcomed. 1848 */ 1849 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1850 { 1851 int node; 1852 1853 mem_cgroup_may_update_nodemask(memcg); 1854 node = memcg->last_scanned_node; 1855 1856 node = next_node(node, memcg->scan_nodes); 1857 if (node == MAX_NUMNODES) 1858 node = first_node(memcg->scan_nodes); 1859 /* 1860 * We call this when we hit limit, not when pages are added to LRU. 1861 * No LRU may hold pages because all pages are UNEVICTABLE or 1862 * memcg is too small and all pages are not on LRU. In that case, 1863 * we use curret node. 1864 */ 1865 if (unlikely(node == MAX_NUMNODES)) 1866 node = numa_node_id(); 1867 1868 memcg->last_scanned_node = node; 1869 return node; 1870 } 1871 1872 /* 1873 * Check all nodes whether it contains reclaimable pages or not. 1874 * For quick scan, we make use of scan_nodes. This will allow us to skip 1875 * unused nodes. But scan_nodes is lazily updated and may not cotain 1876 * enough new information. We need to do double check. 1877 */ 1878 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1879 { 1880 int nid; 1881 1882 /* 1883 * quick check...making use of scan_node. 1884 * We can skip unused nodes. 1885 */ 1886 if (!nodes_empty(memcg->scan_nodes)) { 1887 for (nid = first_node(memcg->scan_nodes); 1888 nid < MAX_NUMNODES; 1889 nid = next_node(nid, memcg->scan_nodes)) { 1890 1891 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1892 return true; 1893 } 1894 } 1895 /* 1896 * Check rest of nodes. 1897 */ 1898 for_each_node_state(nid, N_MEMORY) { 1899 if (node_isset(nid, memcg->scan_nodes)) 1900 continue; 1901 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1902 return true; 1903 } 1904 return false; 1905 } 1906 1907 #else 1908 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1909 { 1910 return 0; 1911 } 1912 1913 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1914 { 1915 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1916 } 1917 #endif 1918 1919 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1920 struct zone *zone, 1921 gfp_t gfp_mask, 1922 unsigned long *total_scanned) 1923 { 1924 struct mem_cgroup *victim = NULL; 1925 int total = 0; 1926 int loop = 0; 1927 unsigned long excess; 1928 unsigned long nr_scanned; 1929 struct mem_cgroup_reclaim_cookie reclaim = { 1930 .zone = zone, 1931 .priority = 0, 1932 }; 1933 1934 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1935 1936 while (1) { 1937 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1938 if (!victim) { 1939 loop++; 1940 if (loop >= 2) { 1941 /* 1942 * If we have not been able to reclaim 1943 * anything, it might because there are 1944 * no reclaimable pages under this hierarchy 1945 */ 1946 if (!total) 1947 break; 1948 /* 1949 * We want to do more targeted reclaim. 1950 * excess >> 2 is not to excessive so as to 1951 * reclaim too much, nor too less that we keep 1952 * coming back to reclaim from this cgroup 1953 */ 1954 if (total >= (excess >> 2) || 1955 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1956 break; 1957 } 1958 continue; 1959 } 1960 if (!mem_cgroup_reclaimable(victim, false)) 1961 continue; 1962 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1963 zone, &nr_scanned); 1964 *total_scanned += nr_scanned; 1965 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1966 break; 1967 } 1968 mem_cgroup_iter_break(root_memcg, victim); 1969 return total; 1970 } 1971 1972 /* 1973 * Check OOM-Killer is already running under our hierarchy. 1974 * If someone is running, return false. 1975 * Has to be called with memcg_oom_lock 1976 */ 1977 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1978 { 1979 struct mem_cgroup *iter, *failed = NULL; 1980 1981 for_each_mem_cgroup_tree(iter, memcg) { 1982 if (iter->oom_lock) { 1983 /* 1984 * this subtree of our hierarchy is already locked 1985 * so we cannot give a lock. 1986 */ 1987 failed = iter; 1988 mem_cgroup_iter_break(memcg, iter); 1989 break; 1990 } else 1991 iter->oom_lock = true; 1992 } 1993 1994 if (!failed) 1995 return true; 1996 1997 /* 1998 * OK, we failed to lock the whole subtree so we have to clean up 1999 * what we set up to the failing subtree 2000 */ 2001 for_each_mem_cgroup_tree(iter, memcg) { 2002 if (iter == failed) { 2003 mem_cgroup_iter_break(memcg, iter); 2004 break; 2005 } 2006 iter->oom_lock = false; 2007 } 2008 return false; 2009 } 2010 2011 /* 2012 * Has to be called with memcg_oom_lock 2013 */ 2014 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2015 { 2016 struct mem_cgroup *iter; 2017 2018 for_each_mem_cgroup_tree(iter, memcg) 2019 iter->oom_lock = false; 2020 return 0; 2021 } 2022 2023 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2024 { 2025 struct mem_cgroup *iter; 2026 2027 for_each_mem_cgroup_tree(iter, memcg) 2028 atomic_inc(&iter->under_oom); 2029 } 2030 2031 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2032 { 2033 struct mem_cgroup *iter; 2034 2035 /* 2036 * When a new child is created while the hierarchy is under oom, 2037 * mem_cgroup_oom_lock() may not be called. We have to use 2038 * atomic_add_unless() here. 2039 */ 2040 for_each_mem_cgroup_tree(iter, memcg) 2041 atomic_add_unless(&iter->under_oom, -1, 0); 2042 } 2043 2044 static DEFINE_SPINLOCK(memcg_oom_lock); 2045 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2046 2047 struct oom_wait_info { 2048 struct mem_cgroup *memcg; 2049 wait_queue_t wait; 2050 }; 2051 2052 static int memcg_oom_wake_function(wait_queue_t *wait, 2053 unsigned mode, int sync, void *arg) 2054 { 2055 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2056 struct mem_cgroup *oom_wait_memcg; 2057 struct oom_wait_info *oom_wait_info; 2058 2059 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2060 oom_wait_memcg = oom_wait_info->memcg; 2061 2062 /* 2063 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2064 * Then we can use css_is_ancestor without taking care of RCU. 2065 */ 2066 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2067 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2068 return 0; 2069 return autoremove_wake_function(wait, mode, sync, arg); 2070 } 2071 2072 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2073 { 2074 /* for filtering, pass "memcg" as argument. */ 2075 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2076 } 2077 2078 static void memcg_oom_recover(struct mem_cgroup *memcg) 2079 { 2080 if (memcg && atomic_read(&memcg->under_oom)) 2081 memcg_wakeup_oom(memcg); 2082 } 2083 2084 /* 2085 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2086 */ 2087 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2088 int order) 2089 { 2090 struct oom_wait_info owait; 2091 bool locked, need_to_kill; 2092 2093 owait.memcg = memcg; 2094 owait.wait.flags = 0; 2095 owait.wait.func = memcg_oom_wake_function; 2096 owait.wait.private = current; 2097 INIT_LIST_HEAD(&owait.wait.task_list); 2098 need_to_kill = true; 2099 mem_cgroup_mark_under_oom(memcg); 2100 2101 /* At first, try to OOM lock hierarchy under memcg.*/ 2102 spin_lock(&memcg_oom_lock); 2103 locked = mem_cgroup_oom_lock(memcg); 2104 /* 2105 * Even if signal_pending(), we can't quit charge() loop without 2106 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2107 * under OOM is always welcomed, use TASK_KILLABLE here. 2108 */ 2109 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2110 if (!locked || memcg->oom_kill_disable) 2111 need_to_kill = false; 2112 if (locked) 2113 mem_cgroup_oom_notify(memcg); 2114 spin_unlock(&memcg_oom_lock); 2115 2116 if (need_to_kill) { 2117 finish_wait(&memcg_oom_waitq, &owait.wait); 2118 mem_cgroup_out_of_memory(memcg, mask, order); 2119 } else { 2120 schedule(); 2121 finish_wait(&memcg_oom_waitq, &owait.wait); 2122 } 2123 spin_lock(&memcg_oom_lock); 2124 if (locked) 2125 mem_cgroup_oom_unlock(memcg); 2126 memcg_wakeup_oom(memcg); 2127 spin_unlock(&memcg_oom_lock); 2128 2129 mem_cgroup_unmark_under_oom(memcg); 2130 2131 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2132 return false; 2133 /* Give chance to dying process */ 2134 schedule_timeout_uninterruptible(1); 2135 return true; 2136 } 2137 2138 /* 2139 * Currently used to update mapped file statistics, but the routine can be 2140 * generalized to update other statistics as well. 2141 * 2142 * Notes: Race condition 2143 * 2144 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2145 * it tends to be costly. But considering some conditions, we doesn't need 2146 * to do so _always_. 2147 * 2148 * Considering "charge", lock_page_cgroup() is not required because all 2149 * file-stat operations happen after a page is attached to radix-tree. There 2150 * are no race with "charge". 2151 * 2152 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2153 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2154 * if there are race with "uncharge". Statistics itself is properly handled 2155 * by flags. 2156 * 2157 * Considering "move", this is an only case we see a race. To make the race 2158 * small, we check mm->moving_account and detect there are possibility of race 2159 * If there is, we take a lock. 2160 */ 2161 2162 void __mem_cgroup_begin_update_page_stat(struct page *page, 2163 bool *locked, unsigned long *flags) 2164 { 2165 struct mem_cgroup *memcg; 2166 struct page_cgroup *pc; 2167 2168 pc = lookup_page_cgroup(page); 2169 again: 2170 memcg = pc->mem_cgroup; 2171 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2172 return; 2173 /* 2174 * If this memory cgroup is not under account moving, we don't 2175 * need to take move_lock_mem_cgroup(). Because we already hold 2176 * rcu_read_lock(), any calls to move_account will be delayed until 2177 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2178 */ 2179 if (!mem_cgroup_stolen(memcg)) 2180 return; 2181 2182 move_lock_mem_cgroup(memcg, flags); 2183 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2184 move_unlock_mem_cgroup(memcg, flags); 2185 goto again; 2186 } 2187 *locked = true; 2188 } 2189 2190 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2191 { 2192 struct page_cgroup *pc = lookup_page_cgroup(page); 2193 2194 /* 2195 * It's guaranteed that pc->mem_cgroup never changes while 2196 * lock is held because a routine modifies pc->mem_cgroup 2197 * should take move_lock_mem_cgroup(). 2198 */ 2199 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2200 } 2201 2202 void mem_cgroup_update_page_stat(struct page *page, 2203 enum mem_cgroup_page_stat_item idx, int val) 2204 { 2205 struct mem_cgroup *memcg; 2206 struct page_cgroup *pc = lookup_page_cgroup(page); 2207 unsigned long uninitialized_var(flags); 2208 2209 if (mem_cgroup_disabled()) 2210 return; 2211 2212 memcg = pc->mem_cgroup; 2213 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2214 return; 2215 2216 switch (idx) { 2217 case MEMCG_NR_FILE_MAPPED: 2218 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2219 break; 2220 default: 2221 BUG(); 2222 } 2223 2224 this_cpu_add(memcg->stat->count[idx], val); 2225 } 2226 2227 /* 2228 * size of first charge trial. "32" comes from vmscan.c's magic value. 2229 * TODO: maybe necessary to use big numbers in big irons. 2230 */ 2231 #define CHARGE_BATCH 32U 2232 struct memcg_stock_pcp { 2233 struct mem_cgroup *cached; /* this never be root cgroup */ 2234 unsigned int nr_pages; 2235 struct work_struct work; 2236 unsigned long flags; 2237 #define FLUSHING_CACHED_CHARGE 0 2238 }; 2239 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2240 static DEFINE_MUTEX(percpu_charge_mutex); 2241 2242 /** 2243 * consume_stock: Try to consume stocked charge on this cpu. 2244 * @memcg: memcg to consume from. 2245 * @nr_pages: how many pages to charge. 2246 * 2247 * The charges will only happen if @memcg matches the current cpu's memcg 2248 * stock, and at least @nr_pages are available in that stock. Failure to 2249 * service an allocation will refill the stock. 2250 * 2251 * returns true if successful, false otherwise. 2252 */ 2253 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2254 { 2255 struct memcg_stock_pcp *stock; 2256 bool ret = true; 2257 2258 if (nr_pages > CHARGE_BATCH) 2259 return false; 2260 2261 stock = &get_cpu_var(memcg_stock); 2262 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2263 stock->nr_pages -= nr_pages; 2264 else /* need to call res_counter_charge */ 2265 ret = false; 2266 put_cpu_var(memcg_stock); 2267 return ret; 2268 } 2269 2270 /* 2271 * Returns stocks cached in percpu to res_counter and reset cached information. 2272 */ 2273 static void drain_stock(struct memcg_stock_pcp *stock) 2274 { 2275 struct mem_cgroup *old = stock->cached; 2276 2277 if (stock->nr_pages) { 2278 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2279 2280 res_counter_uncharge(&old->res, bytes); 2281 if (do_swap_account) 2282 res_counter_uncharge(&old->memsw, bytes); 2283 stock->nr_pages = 0; 2284 } 2285 stock->cached = NULL; 2286 } 2287 2288 /* 2289 * This must be called under preempt disabled or must be called by 2290 * a thread which is pinned to local cpu. 2291 */ 2292 static void drain_local_stock(struct work_struct *dummy) 2293 { 2294 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2295 drain_stock(stock); 2296 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2297 } 2298 2299 static void __init memcg_stock_init(void) 2300 { 2301 int cpu; 2302 2303 for_each_possible_cpu(cpu) { 2304 struct memcg_stock_pcp *stock = 2305 &per_cpu(memcg_stock, cpu); 2306 INIT_WORK(&stock->work, drain_local_stock); 2307 } 2308 } 2309 2310 /* 2311 * Cache charges(val) which is from res_counter, to local per_cpu area. 2312 * This will be consumed by consume_stock() function, later. 2313 */ 2314 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2315 { 2316 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2317 2318 if (stock->cached != memcg) { /* reset if necessary */ 2319 drain_stock(stock); 2320 stock->cached = memcg; 2321 } 2322 stock->nr_pages += nr_pages; 2323 put_cpu_var(memcg_stock); 2324 } 2325 2326 /* 2327 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2328 * of the hierarchy under it. sync flag says whether we should block 2329 * until the work is done. 2330 */ 2331 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2332 { 2333 int cpu, curcpu; 2334 2335 /* Notify other cpus that system-wide "drain" is running */ 2336 get_online_cpus(); 2337 curcpu = get_cpu(); 2338 for_each_online_cpu(cpu) { 2339 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2340 struct mem_cgroup *memcg; 2341 2342 memcg = stock->cached; 2343 if (!memcg || !stock->nr_pages) 2344 continue; 2345 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2346 continue; 2347 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2348 if (cpu == curcpu) 2349 drain_local_stock(&stock->work); 2350 else 2351 schedule_work_on(cpu, &stock->work); 2352 } 2353 } 2354 put_cpu(); 2355 2356 if (!sync) 2357 goto out; 2358 2359 for_each_online_cpu(cpu) { 2360 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2361 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2362 flush_work(&stock->work); 2363 } 2364 out: 2365 put_online_cpus(); 2366 } 2367 2368 /* 2369 * Tries to drain stocked charges in other cpus. This function is asynchronous 2370 * and just put a work per cpu for draining localy on each cpu. Caller can 2371 * expects some charges will be back to res_counter later but cannot wait for 2372 * it. 2373 */ 2374 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2375 { 2376 /* 2377 * If someone calls draining, avoid adding more kworker runs. 2378 */ 2379 if (!mutex_trylock(&percpu_charge_mutex)) 2380 return; 2381 drain_all_stock(root_memcg, false); 2382 mutex_unlock(&percpu_charge_mutex); 2383 } 2384 2385 /* This is a synchronous drain interface. */ 2386 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2387 { 2388 /* called when force_empty is called */ 2389 mutex_lock(&percpu_charge_mutex); 2390 drain_all_stock(root_memcg, true); 2391 mutex_unlock(&percpu_charge_mutex); 2392 } 2393 2394 /* 2395 * This function drains percpu counter value from DEAD cpu and 2396 * move it to local cpu. Note that this function can be preempted. 2397 */ 2398 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2399 { 2400 int i; 2401 2402 spin_lock(&memcg->pcp_counter_lock); 2403 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2404 long x = per_cpu(memcg->stat->count[i], cpu); 2405 2406 per_cpu(memcg->stat->count[i], cpu) = 0; 2407 memcg->nocpu_base.count[i] += x; 2408 } 2409 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2410 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2411 2412 per_cpu(memcg->stat->events[i], cpu) = 0; 2413 memcg->nocpu_base.events[i] += x; 2414 } 2415 spin_unlock(&memcg->pcp_counter_lock); 2416 } 2417 2418 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2419 unsigned long action, 2420 void *hcpu) 2421 { 2422 int cpu = (unsigned long)hcpu; 2423 struct memcg_stock_pcp *stock; 2424 struct mem_cgroup *iter; 2425 2426 if (action == CPU_ONLINE) 2427 return NOTIFY_OK; 2428 2429 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2430 return NOTIFY_OK; 2431 2432 for_each_mem_cgroup(iter) 2433 mem_cgroup_drain_pcp_counter(iter, cpu); 2434 2435 stock = &per_cpu(memcg_stock, cpu); 2436 drain_stock(stock); 2437 return NOTIFY_OK; 2438 } 2439 2440 2441 /* See __mem_cgroup_try_charge() for details */ 2442 enum { 2443 CHARGE_OK, /* success */ 2444 CHARGE_RETRY, /* need to retry but retry is not bad */ 2445 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2446 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2447 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2448 }; 2449 2450 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2451 unsigned int nr_pages, unsigned int min_pages, 2452 bool oom_check) 2453 { 2454 unsigned long csize = nr_pages * PAGE_SIZE; 2455 struct mem_cgroup *mem_over_limit; 2456 struct res_counter *fail_res; 2457 unsigned long flags = 0; 2458 int ret; 2459 2460 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2461 2462 if (likely(!ret)) { 2463 if (!do_swap_account) 2464 return CHARGE_OK; 2465 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2466 if (likely(!ret)) 2467 return CHARGE_OK; 2468 2469 res_counter_uncharge(&memcg->res, csize); 2470 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2471 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2472 } else 2473 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2474 /* 2475 * Never reclaim on behalf of optional batching, retry with a 2476 * single page instead. 2477 */ 2478 if (nr_pages > min_pages) 2479 return CHARGE_RETRY; 2480 2481 if (!(gfp_mask & __GFP_WAIT)) 2482 return CHARGE_WOULDBLOCK; 2483 2484 if (gfp_mask & __GFP_NORETRY) 2485 return CHARGE_NOMEM; 2486 2487 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2488 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2489 return CHARGE_RETRY; 2490 /* 2491 * Even though the limit is exceeded at this point, reclaim 2492 * may have been able to free some pages. Retry the charge 2493 * before killing the task. 2494 * 2495 * Only for regular pages, though: huge pages are rather 2496 * unlikely to succeed so close to the limit, and we fall back 2497 * to regular pages anyway in case of failure. 2498 */ 2499 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2500 return CHARGE_RETRY; 2501 2502 /* 2503 * At task move, charge accounts can be doubly counted. So, it's 2504 * better to wait until the end of task_move if something is going on. 2505 */ 2506 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2507 return CHARGE_RETRY; 2508 2509 /* If we don't need to call oom-killer at el, return immediately */ 2510 if (!oom_check) 2511 return CHARGE_NOMEM; 2512 /* check OOM */ 2513 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2514 return CHARGE_OOM_DIE; 2515 2516 return CHARGE_RETRY; 2517 } 2518 2519 /* 2520 * __mem_cgroup_try_charge() does 2521 * 1. detect memcg to be charged against from passed *mm and *ptr, 2522 * 2. update res_counter 2523 * 3. call memory reclaim if necessary. 2524 * 2525 * In some special case, if the task is fatal, fatal_signal_pending() or 2526 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2527 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2528 * as possible without any hazards. 2: all pages should have a valid 2529 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2530 * pointer, that is treated as a charge to root_mem_cgroup. 2531 * 2532 * So __mem_cgroup_try_charge() will return 2533 * 0 ... on success, filling *ptr with a valid memcg pointer. 2534 * -ENOMEM ... charge failure because of resource limits. 2535 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2536 * 2537 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2538 * the oom-killer can be invoked. 2539 */ 2540 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2541 gfp_t gfp_mask, 2542 unsigned int nr_pages, 2543 struct mem_cgroup **ptr, 2544 bool oom) 2545 { 2546 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2547 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2548 struct mem_cgroup *memcg = NULL; 2549 int ret; 2550 2551 /* 2552 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2553 * in system level. So, allow to go ahead dying process in addition to 2554 * MEMDIE process. 2555 */ 2556 if (unlikely(test_thread_flag(TIF_MEMDIE) 2557 || fatal_signal_pending(current))) 2558 goto bypass; 2559 2560 /* 2561 * We always charge the cgroup the mm_struct belongs to. 2562 * The mm_struct's mem_cgroup changes on task migration if the 2563 * thread group leader migrates. It's possible that mm is not 2564 * set, if so charge the root memcg (happens for pagecache usage). 2565 */ 2566 if (!*ptr && !mm) 2567 *ptr = root_mem_cgroup; 2568 again: 2569 if (*ptr) { /* css should be a valid one */ 2570 memcg = *ptr; 2571 if (mem_cgroup_is_root(memcg)) 2572 goto done; 2573 if (consume_stock(memcg, nr_pages)) 2574 goto done; 2575 css_get(&memcg->css); 2576 } else { 2577 struct task_struct *p; 2578 2579 rcu_read_lock(); 2580 p = rcu_dereference(mm->owner); 2581 /* 2582 * Because we don't have task_lock(), "p" can exit. 2583 * In that case, "memcg" can point to root or p can be NULL with 2584 * race with swapoff. Then, we have small risk of mis-accouning. 2585 * But such kind of mis-account by race always happens because 2586 * we don't have cgroup_mutex(). It's overkill and we allo that 2587 * small race, here. 2588 * (*) swapoff at el will charge against mm-struct not against 2589 * task-struct. So, mm->owner can be NULL. 2590 */ 2591 memcg = mem_cgroup_from_task(p); 2592 if (!memcg) 2593 memcg = root_mem_cgroup; 2594 if (mem_cgroup_is_root(memcg)) { 2595 rcu_read_unlock(); 2596 goto done; 2597 } 2598 if (consume_stock(memcg, nr_pages)) { 2599 /* 2600 * It seems dagerous to access memcg without css_get(). 2601 * But considering how consume_stok works, it's not 2602 * necessary. If consume_stock success, some charges 2603 * from this memcg are cached on this cpu. So, we 2604 * don't need to call css_get()/css_tryget() before 2605 * calling consume_stock(). 2606 */ 2607 rcu_read_unlock(); 2608 goto done; 2609 } 2610 /* after here, we may be blocked. we need to get refcnt */ 2611 if (!css_tryget(&memcg->css)) { 2612 rcu_read_unlock(); 2613 goto again; 2614 } 2615 rcu_read_unlock(); 2616 } 2617 2618 do { 2619 bool oom_check; 2620 2621 /* If killed, bypass charge */ 2622 if (fatal_signal_pending(current)) { 2623 css_put(&memcg->css); 2624 goto bypass; 2625 } 2626 2627 oom_check = false; 2628 if (oom && !nr_oom_retries) { 2629 oom_check = true; 2630 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2631 } 2632 2633 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2634 oom_check); 2635 switch (ret) { 2636 case CHARGE_OK: 2637 break; 2638 case CHARGE_RETRY: /* not in OOM situation but retry */ 2639 batch = nr_pages; 2640 css_put(&memcg->css); 2641 memcg = NULL; 2642 goto again; 2643 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2644 css_put(&memcg->css); 2645 goto nomem; 2646 case CHARGE_NOMEM: /* OOM routine works */ 2647 if (!oom) { 2648 css_put(&memcg->css); 2649 goto nomem; 2650 } 2651 /* If oom, we never return -ENOMEM */ 2652 nr_oom_retries--; 2653 break; 2654 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2655 css_put(&memcg->css); 2656 goto bypass; 2657 } 2658 } while (ret != CHARGE_OK); 2659 2660 if (batch > nr_pages) 2661 refill_stock(memcg, batch - nr_pages); 2662 css_put(&memcg->css); 2663 done: 2664 *ptr = memcg; 2665 return 0; 2666 nomem: 2667 *ptr = NULL; 2668 return -ENOMEM; 2669 bypass: 2670 *ptr = root_mem_cgroup; 2671 return -EINTR; 2672 } 2673 2674 /* 2675 * Somemtimes we have to undo a charge we got by try_charge(). 2676 * This function is for that and do uncharge, put css's refcnt. 2677 * gotten by try_charge(). 2678 */ 2679 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2680 unsigned int nr_pages) 2681 { 2682 if (!mem_cgroup_is_root(memcg)) { 2683 unsigned long bytes = nr_pages * PAGE_SIZE; 2684 2685 res_counter_uncharge(&memcg->res, bytes); 2686 if (do_swap_account) 2687 res_counter_uncharge(&memcg->memsw, bytes); 2688 } 2689 } 2690 2691 /* 2692 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2693 * This is useful when moving usage to parent cgroup. 2694 */ 2695 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2696 unsigned int nr_pages) 2697 { 2698 unsigned long bytes = nr_pages * PAGE_SIZE; 2699 2700 if (mem_cgroup_is_root(memcg)) 2701 return; 2702 2703 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2704 if (do_swap_account) 2705 res_counter_uncharge_until(&memcg->memsw, 2706 memcg->memsw.parent, bytes); 2707 } 2708 2709 /* 2710 * A helper function to get mem_cgroup from ID. must be called under 2711 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2712 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2713 * called against removed memcg.) 2714 */ 2715 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2716 { 2717 struct cgroup_subsys_state *css; 2718 2719 /* ID 0 is unused ID */ 2720 if (!id) 2721 return NULL; 2722 css = css_lookup(&mem_cgroup_subsys, id); 2723 if (!css) 2724 return NULL; 2725 return mem_cgroup_from_css(css); 2726 } 2727 2728 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2729 { 2730 struct mem_cgroup *memcg = NULL; 2731 struct page_cgroup *pc; 2732 unsigned short id; 2733 swp_entry_t ent; 2734 2735 VM_BUG_ON(!PageLocked(page)); 2736 2737 pc = lookup_page_cgroup(page); 2738 lock_page_cgroup(pc); 2739 if (PageCgroupUsed(pc)) { 2740 memcg = pc->mem_cgroup; 2741 if (memcg && !css_tryget(&memcg->css)) 2742 memcg = NULL; 2743 } else if (PageSwapCache(page)) { 2744 ent.val = page_private(page); 2745 id = lookup_swap_cgroup_id(ent); 2746 rcu_read_lock(); 2747 memcg = mem_cgroup_lookup(id); 2748 if (memcg && !css_tryget(&memcg->css)) 2749 memcg = NULL; 2750 rcu_read_unlock(); 2751 } 2752 unlock_page_cgroup(pc); 2753 return memcg; 2754 } 2755 2756 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2757 struct page *page, 2758 unsigned int nr_pages, 2759 enum charge_type ctype, 2760 bool lrucare) 2761 { 2762 struct page_cgroup *pc = lookup_page_cgroup(page); 2763 struct zone *uninitialized_var(zone); 2764 struct lruvec *lruvec; 2765 bool was_on_lru = false; 2766 bool anon; 2767 2768 lock_page_cgroup(pc); 2769 VM_BUG_ON(PageCgroupUsed(pc)); 2770 /* 2771 * we don't need page_cgroup_lock about tail pages, becase they are not 2772 * accessed by any other context at this point. 2773 */ 2774 2775 /* 2776 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2777 * may already be on some other mem_cgroup's LRU. Take care of it. 2778 */ 2779 if (lrucare) { 2780 zone = page_zone(page); 2781 spin_lock_irq(&zone->lru_lock); 2782 if (PageLRU(page)) { 2783 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2784 ClearPageLRU(page); 2785 del_page_from_lru_list(page, lruvec, page_lru(page)); 2786 was_on_lru = true; 2787 } 2788 } 2789 2790 pc->mem_cgroup = memcg; 2791 /* 2792 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2793 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2794 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2795 * before USED bit, we need memory barrier here. 2796 * See mem_cgroup_add_lru_list(), etc. 2797 */ 2798 smp_wmb(); 2799 SetPageCgroupUsed(pc); 2800 2801 if (lrucare) { 2802 if (was_on_lru) { 2803 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2804 VM_BUG_ON(PageLRU(page)); 2805 SetPageLRU(page); 2806 add_page_to_lru_list(page, lruvec, page_lru(page)); 2807 } 2808 spin_unlock_irq(&zone->lru_lock); 2809 } 2810 2811 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2812 anon = true; 2813 else 2814 anon = false; 2815 2816 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2817 unlock_page_cgroup(pc); 2818 2819 /* 2820 * "charge_statistics" updated event counter. Then, check it. 2821 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2822 * if they exceeds softlimit. 2823 */ 2824 memcg_check_events(memcg, page); 2825 } 2826 2827 static DEFINE_MUTEX(set_limit_mutex); 2828 2829 #ifdef CONFIG_MEMCG_KMEM 2830 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2831 { 2832 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2833 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2834 } 2835 2836 /* 2837 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2838 * in the memcg_cache_params struct. 2839 */ 2840 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2841 { 2842 struct kmem_cache *cachep; 2843 2844 VM_BUG_ON(p->is_root_cache); 2845 cachep = p->root_cache; 2846 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2847 } 2848 2849 #ifdef CONFIG_SLABINFO 2850 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, 2851 struct seq_file *m) 2852 { 2853 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2854 struct memcg_cache_params *params; 2855 2856 if (!memcg_can_account_kmem(memcg)) 2857 return -EIO; 2858 2859 print_slabinfo_header(m); 2860 2861 mutex_lock(&memcg->slab_caches_mutex); 2862 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2863 cache_show(memcg_params_to_cache(params), m); 2864 mutex_unlock(&memcg->slab_caches_mutex); 2865 2866 return 0; 2867 } 2868 #endif 2869 2870 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2871 { 2872 struct res_counter *fail_res; 2873 struct mem_cgroup *_memcg; 2874 int ret = 0; 2875 bool may_oom; 2876 2877 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2878 if (ret) 2879 return ret; 2880 2881 /* 2882 * Conditions under which we can wait for the oom_killer. Those are 2883 * the same conditions tested by the core page allocator 2884 */ 2885 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2886 2887 _memcg = memcg; 2888 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2889 &_memcg, may_oom); 2890 2891 if (ret == -EINTR) { 2892 /* 2893 * __mem_cgroup_try_charge() chosed to bypass to root due to 2894 * OOM kill or fatal signal. Since our only options are to 2895 * either fail the allocation or charge it to this cgroup, do 2896 * it as a temporary condition. But we can't fail. From a 2897 * kmem/slab perspective, the cache has already been selected, 2898 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2899 * our minds. 2900 * 2901 * This condition will only trigger if the task entered 2902 * memcg_charge_kmem in a sane state, but was OOM-killed during 2903 * __mem_cgroup_try_charge() above. Tasks that were already 2904 * dying when the allocation triggers should have been already 2905 * directed to the root cgroup in memcontrol.h 2906 */ 2907 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2908 if (do_swap_account) 2909 res_counter_charge_nofail(&memcg->memsw, size, 2910 &fail_res); 2911 ret = 0; 2912 } else if (ret) 2913 res_counter_uncharge(&memcg->kmem, size); 2914 2915 return ret; 2916 } 2917 2918 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2919 { 2920 res_counter_uncharge(&memcg->res, size); 2921 if (do_swap_account) 2922 res_counter_uncharge(&memcg->memsw, size); 2923 2924 /* Not down to 0 */ 2925 if (res_counter_uncharge(&memcg->kmem, size)) 2926 return; 2927 2928 if (memcg_kmem_test_and_clear_dead(memcg)) 2929 mem_cgroup_put(memcg); 2930 } 2931 2932 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 2933 { 2934 if (!memcg) 2935 return; 2936 2937 mutex_lock(&memcg->slab_caches_mutex); 2938 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 2939 mutex_unlock(&memcg->slab_caches_mutex); 2940 } 2941 2942 /* 2943 * helper for acessing a memcg's index. It will be used as an index in the 2944 * child cache array in kmem_cache, and also to derive its name. This function 2945 * will return -1 when this is not a kmem-limited memcg. 2946 */ 2947 int memcg_cache_id(struct mem_cgroup *memcg) 2948 { 2949 return memcg ? memcg->kmemcg_id : -1; 2950 } 2951 2952 /* 2953 * This ends up being protected by the set_limit mutex, during normal 2954 * operation, because that is its main call site. 2955 * 2956 * But when we create a new cache, we can call this as well if its parent 2957 * is kmem-limited. That will have to hold set_limit_mutex as well. 2958 */ 2959 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 2960 { 2961 int num, ret; 2962 2963 num = ida_simple_get(&kmem_limited_groups, 2964 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2965 if (num < 0) 2966 return num; 2967 /* 2968 * After this point, kmem_accounted (that we test atomically in 2969 * the beginning of this conditional), is no longer 0. This 2970 * guarantees only one process will set the following boolean 2971 * to true. We don't need test_and_set because we're protected 2972 * by the set_limit_mutex anyway. 2973 */ 2974 memcg_kmem_set_activated(memcg); 2975 2976 ret = memcg_update_all_caches(num+1); 2977 if (ret) { 2978 ida_simple_remove(&kmem_limited_groups, num); 2979 memcg_kmem_clear_activated(memcg); 2980 return ret; 2981 } 2982 2983 memcg->kmemcg_id = num; 2984 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 2985 mutex_init(&memcg->slab_caches_mutex); 2986 return 0; 2987 } 2988 2989 static size_t memcg_caches_array_size(int num_groups) 2990 { 2991 ssize_t size; 2992 if (num_groups <= 0) 2993 return 0; 2994 2995 size = 2 * num_groups; 2996 if (size < MEMCG_CACHES_MIN_SIZE) 2997 size = MEMCG_CACHES_MIN_SIZE; 2998 else if (size > MEMCG_CACHES_MAX_SIZE) 2999 size = MEMCG_CACHES_MAX_SIZE; 3000 3001 return size; 3002 } 3003 3004 /* 3005 * We should update the current array size iff all caches updates succeed. This 3006 * can only be done from the slab side. The slab mutex needs to be held when 3007 * calling this. 3008 */ 3009 void memcg_update_array_size(int num) 3010 { 3011 if (num > memcg_limited_groups_array_size) 3012 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3013 } 3014 3015 static void kmem_cache_destroy_work_func(struct work_struct *w); 3016 3017 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3018 { 3019 struct memcg_cache_params *cur_params = s->memcg_params; 3020 3021 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3022 3023 if (num_groups > memcg_limited_groups_array_size) { 3024 int i; 3025 ssize_t size = memcg_caches_array_size(num_groups); 3026 3027 size *= sizeof(void *); 3028 size += sizeof(struct memcg_cache_params); 3029 3030 s->memcg_params = kzalloc(size, GFP_KERNEL); 3031 if (!s->memcg_params) { 3032 s->memcg_params = cur_params; 3033 return -ENOMEM; 3034 } 3035 3036 INIT_WORK(&s->memcg_params->destroy, 3037 kmem_cache_destroy_work_func); 3038 s->memcg_params->is_root_cache = true; 3039 3040 /* 3041 * There is the chance it will be bigger than 3042 * memcg_limited_groups_array_size, if we failed an allocation 3043 * in a cache, in which case all caches updated before it, will 3044 * have a bigger array. 3045 * 3046 * But if that is the case, the data after 3047 * memcg_limited_groups_array_size is certainly unused 3048 */ 3049 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3050 if (!cur_params->memcg_caches[i]) 3051 continue; 3052 s->memcg_params->memcg_caches[i] = 3053 cur_params->memcg_caches[i]; 3054 } 3055 3056 /* 3057 * Ideally, we would wait until all caches succeed, and only 3058 * then free the old one. But this is not worth the extra 3059 * pointer per-cache we'd have to have for this. 3060 * 3061 * It is not a big deal if some caches are left with a size 3062 * bigger than the others. And all updates will reset this 3063 * anyway. 3064 */ 3065 kfree(cur_params); 3066 } 3067 return 0; 3068 } 3069 3070 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3071 struct kmem_cache *root_cache) 3072 { 3073 size_t size = sizeof(struct memcg_cache_params); 3074 3075 if (!memcg_kmem_enabled()) 3076 return 0; 3077 3078 if (!memcg) 3079 size += memcg_limited_groups_array_size * sizeof(void *); 3080 3081 s->memcg_params = kzalloc(size, GFP_KERNEL); 3082 if (!s->memcg_params) 3083 return -ENOMEM; 3084 3085 INIT_WORK(&s->memcg_params->destroy, 3086 kmem_cache_destroy_work_func); 3087 if (memcg) { 3088 s->memcg_params->memcg = memcg; 3089 s->memcg_params->root_cache = root_cache; 3090 } else 3091 s->memcg_params->is_root_cache = true; 3092 3093 return 0; 3094 } 3095 3096 void memcg_release_cache(struct kmem_cache *s) 3097 { 3098 struct kmem_cache *root; 3099 struct mem_cgroup *memcg; 3100 int id; 3101 3102 /* 3103 * This happens, for instance, when a root cache goes away before we 3104 * add any memcg. 3105 */ 3106 if (!s->memcg_params) 3107 return; 3108 3109 if (s->memcg_params->is_root_cache) 3110 goto out; 3111 3112 memcg = s->memcg_params->memcg; 3113 id = memcg_cache_id(memcg); 3114 3115 root = s->memcg_params->root_cache; 3116 root->memcg_params->memcg_caches[id] = NULL; 3117 mem_cgroup_put(memcg); 3118 3119 mutex_lock(&memcg->slab_caches_mutex); 3120 list_del(&s->memcg_params->list); 3121 mutex_unlock(&memcg->slab_caches_mutex); 3122 3123 out: 3124 kfree(s->memcg_params); 3125 } 3126 3127 /* 3128 * During the creation a new cache, we need to disable our accounting mechanism 3129 * altogether. This is true even if we are not creating, but rather just 3130 * enqueing new caches to be created. 3131 * 3132 * This is because that process will trigger allocations; some visible, like 3133 * explicit kmallocs to auxiliary data structures, name strings and internal 3134 * cache structures; some well concealed, like INIT_WORK() that can allocate 3135 * objects during debug. 3136 * 3137 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3138 * to it. This may not be a bounded recursion: since the first cache creation 3139 * failed to complete (waiting on the allocation), we'll just try to create the 3140 * cache again, failing at the same point. 3141 * 3142 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3143 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3144 * inside the following two functions. 3145 */ 3146 static inline void memcg_stop_kmem_account(void) 3147 { 3148 VM_BUG_ON(!current->mm); 3149 current->memcg_kmem_skip_account++; 3150 } 3151 3152 static inline void memcg_resume_kmem_account(void) 3153 { 3154 VM_BUG_ON(!current->mm); 3155 current->memcg_kmem_skip_account--; 3156 } 3157 3158 static void kmem_cache_destroy_work_func(struct work_struct *w) 3159 { 3160 struct kmem_cache *cachep; 3161 struct memcg_cache_params *p; 3162 3163 p = container_of(w, struct memcg_cache_params, destroy); 3164 3165 cachep = memcg_params_to_cache(p); 3166 3167 /* 3168 * If we get down to 0 after shrink, we could delete right away. 3169 * However, memcg_release_pages() already puts us back in the workqueue 3170 * in that case. If we proceed deleting, we'll get a dangling 3171 * reference, and removing the object from the workqueue in that case 3172 * is unnecessary complication. We are not a fast path. 3173 * 3174 * Note that this case is fundamentally different from racing with 3175 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3176 * kmem_cache_shrink, not only we would be reinserting a dead cache 3177 * into the queue, but doing so from inside the worker racing to 3178 * destroy it. 3179 * 3180 * So if we aren't down to zero, we'll just schedule a worker and try 3181 * again 3182 */ 3183 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3184 kmem_cache_shrink(cachep); 3185 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3186 return; 3187 } else 3188 kmem_cache_destroy(cachep); 3189 } 3190 3191 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3192 { 3193 if (!cachep->memcg_params->dead) 3194 return; 3195 3196 /* 3197 * There are many ways in which we can get here. 3198 * 3199 * We can get to a memory-pressure situation while the delayed work is 3200 * still pending to run. The vmscan shrinkers can then release all 3201 * cache memory and get us to destruction. If this is the case, we'll 3202 * be executed twice, which is a bug (the second time will execute over 3203 * bogus data). In this case, cancelling the work should be fine. 3204 * 3205 * But we can also get here from the worker itself, if 3206 * kmem_cache_shrink is enough to shake all the remaining objects and 3207 * get the page count to 0. In this case, we'll deadlock if we try to 3208 * cancel the work (the worker runs with an internal lock held, which 3209 * is the same lock we would hold for cancel_work_sync().) 3210 * 3211 * Since we can't possibly know who got us here, just refrain from 3212 * running if there is already work pending 3213 */ 3214 if (work_pending(&cachep->memcg_params->destroy)) 3215 return; 3216 /* 3217 * We have to defer the actual destroying to a workqueue, because 3218 * we might currently be in a context that cannot sleep. 3219 */ 3220 schedule_work(&cachep->memcg_params->destroy); 3221 } 3222 3223 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s) 3224 { 3225 char *name; 3226 struct dentry *dentry; 3227 3228 rcu_read_lock(); 3229 dentry = rcu_dereference(memcg->css.cgroup->dentry); 3230 rcu_read_unlock(); 3231 3232 BUG_ON(dentry == NULL); 3233 3234 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name, 3235 memcg_cache_id(memcg), dentry->d_name.name); 3236 3237 return name; 3238 } 3239 3240 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3241 struct kmem_cache *s) 3242 { 3243 char *name; 3244 struct kmem_cache *new; 3245 3246 name = memcg_cache_name(memcg, s); 3247 if (!name) 3248 return NULL; 3249 3250 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align, 3251 (s->flags & ~SLAB_PANIC), s->ctor, s); 3252 3253 if (new) 3254 new->allocflags |= __GFP_KMEMCG; 3255 3256 kfree(name); 3257 return new; 3258 } 3259 3260 /* 3261 * This lock protects updaters, not readers. We want readers to be as fast as 3262 * they can, and they will either see NULL or a valid cache value. Our model 3263 * allow them to see NULL, in which case the root memcg will be selected. 3264 * 3265 * We need this lock because multiple allocations to the same cache from a non 3266 * will span more than one worker. Only one of them can create the cache. 3267 */ 3268 static DEFINE_MUTEX(memcg_cache_mutex); 3269 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3270 struct kmem_cache *cachep) 3271 { 3272 struct kmem_cache *new_cachep; 3273 int idx; 3274 3275 BUG_ON(!memcg_can_account_kmem(memcg)); 3276 3277 idx = memcg_cache_id(memcg); 3278 3279 mutex_lock(&memcg_cache_mutex); 3280 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3281 if (new_cachep) 3282 goto out; 3283 3284 new_cachep = kmem_cache_dup(memcg, cachep); 3285 if (new_cachep == NULL) { 3286 new_cachep = cachep; 3287 goto out; 3288 } 3289 3290 mem_cgroup_get(memcg); 3291 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3292 3293 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3294 /* 3295 * the readers won't lock, make sure everybody sees the updated value, 3296 * so they won't put stuff in the queue again for no reason 3297 */ 3298 wmb(); 3299 out: 3300 mutex_unlock(&memcg_cache_mutex); 3301 return new_cachep; 3302 } 3303 3304 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3305 { 3306 struct kmem_cache *c; 3307 int i; 3308 3309 if (!s->memcg_params) 3310 return; 3311 if (!s->memcg_params->is_root_cache) 3312 return; 3313 3314 /* 3315 * If the cache is being destroyed, we trust that there is no one else 3316 * requesting objects from it. Even if there are, the sanity checks in 3317 * kmem_cache_destroy should caught this ill-case. 3318 * 3319 * Still, we don't want anyone else freeing memcg_caches under our 3320 * noses, which can happen if a new memcg comes to life. As usual, 3321 * we'll take the set_limit_mutex to protect ourselves against this. 3322 */ 3323 mutex_lock(&set_limit_mutex); 3324 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3325 c = s->memcg_params->memcg_caches[i]; 3326 if (!c) 3327 continue; 3328 3329 /* 3330 * We will now manually delete the caches, so to avoid races 3331 * we need to cancel all pending destruction workers and 3332 * proceed with destruction ourselves. 3333 * 3334 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3335 * and that could spawn the workers again: it is likely that 3336 * the cache still have active pages until this very moment. 3337 * This would lead us back to mem_cgroup_destroy_cache. 3338 * 3339 * But that will not execute at all if the "dead" flag is not 3340 * set, so flip it down to guarantee we are in control. 3341 */ 3342 c->memcg_params->dead = false; 3343 cancel_work_sync(&c->memcg_params->destroy); 3344 kmem_cache_destroy(c); 3345 } 3346 mutex_unlock(&set_limit_mutex); 3347 } 3348 3349 struct create_work { 3350 struct mem_cgroup *memcg; 3351 struct kmem_cache *cachep; 3352 struct work_struct work; 3353 }; 3354 3355 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3356 { 3357 struct kmem_cache *cachep; 3358 struct memcg_cache_params *params; 3359 3360 if (!memcg_kmem_is_active(memcg)) 3361 return; 3362 3363 mutex_lock(&memcg->slab_caches_mutex); 3364 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3365 cachep = memcg_params_to_cache(params); 3366 cachep->memcg_params->dead = true; 3367 schedule_work(&cachep->memcg_params->destroy); 3368 } 3369 mutex_unlock(&memcg->slab_caches_mutex); 3370 } 3371 3372 static void memcg_create_cache_work_func(struct work_struct *w) 3373 { 3374 struct create_work *cw; 3375 3376 cw = container_of(w, struct create_work, work); 3377 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3378 /* Drop the reference gotten when we enqueued. */ 3379 css_put(&cw->memcg->css); 3380 kfree(cw); 3381 } 3382 3383 /* 3384 * Enqueue the creation of a per-memcg kmem_cache. 3385 * Called with rcu_read_lock. 3386 */ 3387 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3388 struct kmem_cache *cachep) 3389 { 3390 struct create_work *cw; 3391 3392 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3393 if (cw == NULL) 3394 return; 3395 3396 /* The corresponding put will be done in the workqueue. */ 3397 if (!css_tryget(&memcg->css)) { 3398 kfree(cw); 3399 return; 3400 } 3401 3402 cw->memcg = memcg; 3403 cw->cachep = cachep; 3404 3405 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3406 schedule_work(&cw->work); 3407 } 3408 3409 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3410 struct kmem_cache *cachep) 3411 { 3412 /* 3413 * We need to stop accounting when we kmalloc, because if the 3414 * corresponding kmalloc cache is not yet created, the first allocation 3415 * in __memcg_create_cache_enqueue will recurse. 3416 * 3417 * However, it is better to enclose the whole function. Depending on 3418 * the debugging options enabled, INIT_WORK(), for instance, can 3419 * trigger an allocation. This too, will make us recurse. Because at 3420 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3421 * the safest choice is to do it like this, wrapping the whole function. 3422 */ 3423 memcg_stop_kmem_account(); 3424 __memcg_create_cache_enqueue(memcg, cachep); 3425 memcg_resume_kmem_account(); 3426 } 3427 /* 3428 * Return the kmem_cache we're supposed to use for a slab allocation. 3429 * We try to use the current memcg's version of the cache. 3430 * 3431 * If the cache does not exist yet, if we are the first user of it, 3432 * we either create it immediately, if possible, or create it asynchronously 3433 * in a workqueue. 3434 * In the latter case, we will let the current allocation go through with 3435 * the original cache. 3436 * 3437 * Can't be called in interrupt context or from kernel threads. 3438 * This function needs to be called with rcu_read_lock() held. 3439 */ 3440 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3441 gfp_t gfp) 3442 { 3443 struct mem_cgroup *memcg; 3444 int idx; 3445 3446 VM_BUG_ON(!cachep->memcg_params); 3447 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3448 3449 if (!current->mm || current->memcg_kmem_skip_account) 3450 return cachep; 3451 3452 rcu_read_lock(); 3453 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3454 rcu_read_unlock(); 3455 3456 if (!memcg_can_account_kmem(memcg)) 3457 return cachep; 3458 3459 idx = memcg_cache_id(memcg); 3460 3461 /* 3462 * barrier to mare sure we're always seeing the up to date value. The 3463 * code updating memcg_caches will issue a write barrier to match this. 3464 */ 3465 read_barrier_depends(); 3466 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) { 3467 /* 3468 * If we are in a safe context (can wait, and not in interrupt 3469 * context), we could be be predictable and return right away. 3470 * This would guarantee that the allocation being performed 3471 * already belongs in the new cache. 3472 * 3473 * However, there are some clashes that can arrive from locking. 3474 * For instance, because we acquire the slab_mutex while doing 3475 * kmem_cache_dup, this means no further allocation could happen 3476 * with the slab_mutex held. 3477 * 3478 * Also, because cache creation issue get_online_cpus(), this 3479 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3480 * that ends up reversed during cpu hotplug. (cpuset allocates 3481 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3482 * better to defer everything. 3483 */ 3484 memcg_create_cache_enqueue(memcg, cachep); 3485 return cachep; 3486 } 3487 3488 return cachep->memcg_params->memcg_caches[idx]; 3489 } 3490 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3491 3492 /* 3493 * We need to verify if the allocation against current->mm->owner's memcg is 3494 * possible for the given order. But the page is not allocated yet, so we'll 3495 * need a further commit step to do the final arrangements. 3496 * 3497 * It is possible for the task to switch cgroups in this mean time, so at 3498 * commit time, we can't rely on task conversion any longer. We'll then use 3499 * the handle argument to return to the caller which cgroup we should commit 3500 * against. We could also return the memcg directly and avoid the pointer 3501 * passing, but a boolean return value gives better semantics considering 3502 * the compiled-out case as well. 3503 * 3504 * Returning true means the allocation is possible. 3505 */ 3506 bool 3507 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3508 { 3509 struct mem_cgroup *memcg; 3510 int ret; 3511 3512 *_memcg = NULL; 3513 memcg = try_get_mem_cgroup_from_mm(current->mm); 3514 3515 /* 3516 * very rare case described in mem_cgroup_from_task. Unfortunately there 3517 * isn't much we can do without complicating this too much, and it would 3518 * be gfp-dependent anyway. Just let it go 3519 */ 3520 if (unlikely(!memcg)) 3521 return true; 3522 3523 if (!memcg_can_account_kmem(memcg)) { 3524 css_put(&memcg->css); 3525 return true; 3526 } 3527 3528 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3529 if (!ret) 3530 *_memcg = memcg; 3531 3532 css_put(&memcg->css); 3533 return (ret == 0); 3534 } 3535 3536 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3537 int order) 3538 { 3539 struct page_cgroup *pc; 3540 3541 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3542 3543 /* The page allocation failed. Revert */ 3544 if (!page) { 3545 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3546 return; 3547 } 3548 3549 pc = lookup_page_cgroup(page); 3550 lock_page_cgroup(pc); 3551 pc->mem_cgroup = memcg; 3552 SetPageCgroupUsed(pc); 3553 unlock_page_cgroup(pc); 3554 } 3555 3556 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3557 { 3558 struct mem_cgroup *memcg = NULL; 3559 struct page_cgroup *pc; 3560 3561 3562 pc = lookup_page_cgroup(page); 3563 /* 3564 * Fast unlocked return. Theoretically might have changed, have to 3565 * check again after locking. 3566 */ 3567 if (!PageCgroupUsed(pc)) 3568 return; 3569 3570 lock_page_cgroup(pc); 3571 if (PageCgroupUsed(pc)) { 3572 memcg = pc->mem_cgroup; 3573 ClearPageCgroupUsed(pc); 3574 } 3575 unlock_page_cgroup(pc); 3576 3577 /* 3578 * We trust that only if there is a memcg associated with the page, it 3579 * is a valid allocation 3580 */ 3581 if (!memcg) 3582 return; 3583 3584 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3585 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3586 } 3587 #else 3588 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3589 { 3590 } 3591 #endif /* CONFIG_MEMCG_KMEM */ 3592 3593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3594 3595 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3596 /* 3597 * Because tail pages are not marked as "used", set it. We're under 3598 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3599 * charge/uncharge will be never happen and move_account() is done under 3600 * compound_lock(), so we don't have to take care of races. 3601 */ 3602 void mem_cgroup_split_huge_fixup(struct page *head) 3603 { 3604 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3605 struct page_cgroup *pc; 3606 int i; 3607 3608 if (mem_cgroup_disabled()) 3609 return; 3610 for (i = 1; i < HPAGE_PMD_NR; i++) { 3611 pc = head_pc + i; 3612 pc->mem_cgroup = head_pc->mem_cgroup; 3613 smp_wmb();/* see __commit_charge() */ 3614 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3615 } 3616 } 3617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3618 3619 /** 3620 * mem_cgroup_move_account - move account of the page 3621 * @page: the page 3622 * @nr_pages: number of regular pages (>1 for huge pages) 3623 * @pc: page_cgroup of the page. 3624 * @from: mem_cgroup which the page is moved from. 3625 * @to: mem_cgroup which the page is moved to. @from != @to. 3626 * 3627 * The caller must confirm following. 3628 * - page is not on LRU (isolate_page() is useful.) 3629 * - compound_lock is held when nr_pages > 1 3630 * 3631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3632 * from old cgroup. 3633 */ 3634 static int mem_cgroup_move_account(struct page *page, 3635 unsigned int nr_pages, 3636 struct page_cgroup *pc, 3637 struct mem_cgroup *from, 3638 struct mem_cgroup *to) 3639 { 3640 unsigned long flags; 3641 int ret; 3642 bool anon = PageAnon(page); 3643 3644 VM_BUG_ON(from == to); 3645 VM_BUG_ON(PageLRU(page)); 3646 /* 3647 * The page is isolated from LRU. So, collapse function 3648 * will not handle this page. But page splitting can happen. 3649 * Do this check under compound_page_lock(). The caller should 3650 * hold it. 3651 */ 3652 ret = -EBUSY; 3653 if (nr_pages > 1 && !PageTransHuge(page)) 3654 goto out; 3655 3656 lock_page_cgroup(pc); 3657 3658 ret = -EINVAL; 3659 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3660 goto unlock; 3661 3662 move_lock_mem_cgroup(from, &flags); 3663 3664 if (!anon && page_mapped(page)) { 3665 /* Update mapped_file data for mem_cgroup */ 3666 preempt_disable(); 3667 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3668 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3669 preempt_enable(); 3670 } 3671 mem_cgroup_charge_statistics(from, anon, -nr_pages); 3672 3673 /* caller should have done css_get */ 3674 pc->mem_cgroup = to; 3675 mem_cgroup_charge_statistics(to, anon, nr_pages); 3676 move_unlock_mem_cgroup(from, &flags); 3677 ret = 0; 3678 unlock: 3679 unlock_page_cgroup(pc); 3680 /* 3681 * check events 3682 */ 3683 memcg_check_events(to, page); 3684 memcg_check_events(from, page); 3685 out: 3686 return ret; 3687 } 3688 3689 /** 3690 * mem_cgroup_move_parent - moves page to the parent group 3691 * @page: the page to move 3692 * @pc: page_cgroup of the page 3693 * @child: page's cgroup 3694 * 3695 * move charges to its parent or the root cgroup if the group has no 3696 * parent (aka use_hierarchy==0). 3697 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3698 * mem_cgroup_move_account fails) the failure is always temporary and 3699 * it signals a race with a page removal/uncharge or migration. In the 3700 * first case the page is on the way out and it will vanish from the LRU 3701 * on the next attempt and the call should be retried later. 3702 * Isolation from the LRU fails only if page has been isolated from 3703 * the LRU since we looked at it and that usually means either global 3704 * reclaim or migration going on. The page will either get back to the 3705 * LRU or vanish. 3706 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3707 * (!PageCgroupUsed) or moved to a different group. The page will 3708 * disappear in the next attempt. 3709 */ 3710 static int mem_cgroup_move_parent(struct page *page, 3711 struct page_cgroup *pc, 3712 struct mem_cgroup *child) 3713 { 3714 struct mem_cgroup *parent; 3715 unsigned int nr_pages; 3716 unsigned long uninitialized_var(flags); 3717 int ret; 3718 3719 VM_BUG_ON(mem_cgroup_is_root(child)); 3720 3721 ret = -EBUSY; 3722 if (!get_page_unless_zero(page)) 3723 goto out; 3724 if (isolate_lru_page(page)) 3725 goto put; 3726 3727 nr_pages = hpage_nr_pages(page); 3728 3729 parent = parent_mem_cgroup(child); 3730 /* 3731 * If no parent, move charges to root cgroup. 3732 */ 3733 if (!parent) 3734 parent = root_mem_cgroup; 3735 3736 if (nr_pages > 1) { 3737 VM_BUG_ON(!PageTransHuge(page)); 3738 flags = compound_lock_irqsave(page); 3739 } 3740 3741 ret = mem_cgroup_move_account(page, nr_pages, 3742 pc, child, parent); 3743 if (!ret) 3744 __mem_cgroup_cancel_local_charge(child, nr_pages); 3745 3746 if (nr_pages > 1) 3747 compound_unlock_irqrestore(page, flags); 3748 putback_lru_page(page); 3749 put: 3750 put_page(page); 3751 out: 3752 return ret; 3753 } 3754 3755 /* 3756 * Charge the memory controller for page usage. 3757 * Return 3758 * 0 if the charge was successful 3759 * < 0 if the cgroup is over its limit 3760 */ 3761 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3762 gfp_t gfp_mask, enum charge_type ctype) 3763 { 3764 struct mem_cgroup *memcg = NULL; 3765 unsigned int nr_pages = 1; 3766 bool oom = true; 3767 int ret; 3768 3769 if (PageTransHuge(page)) { 3770 nr_pages <<= compound_order(page); 3771 VM_BUG_ON(!PageTransHuge(page)); 3772 /* 3773 * Never OOM-kill a process for a huge page. The 3774 * fault handler will fall back to regular pages. 3775 */ 3776 oom = false; 3777 } 3778 3779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3780 if (ret == -ENOMEM) 3781 return ret; 3782 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3783 return 0; 3784 } 3785 3786 int mem_cgroup_newpage_charge(struct page *page, 3787 struct mm_struct *mm, gfp_t gfp_mask) 3788 { 3789 if (mem_cgroup_disabled()) 3790 return 0; 3791 VM_BUG_ON(page_mapped(page)); 3792 VM_BUG_ON(page->mapping && !PageAnon(page)); 3793 VM_BUG_ON(!mm); 3794 return mem_cgroup_charge_common(page, mm, gfp_mask, 3795 MEM_CGROUP_CHARGE_TYPE_ANON); 3796 } 3797 3798 /* 3799 * While swap-in, try_charge -> commit or cancel, the page is locked. 3800 * And when try_charge() successfully returns, one refcnt to memcg without 3801 * struct page_cgroup is acquired. This refcnt will be consumed by 3802 * "commit()" or removed by "cancel()" 3803 */ 3804 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3805 struct page *page, 3806 gfp_t mask, 3807 struct mem_cgroup **memcgp) 3808 { 3809 struct mem_cgroup *memcg; 3810 struct page_cgroup *pc; 3811 int ret; 3812 3813 pc = lookup_page_cgroup(page); 3814 /* 3815 * Every swap fault against a single page tries to charge the 3816 * page, bail as early as possible. shmem_unuse() encounters 3817 * already charged pages, too. The USED bit is protected by 3818 * the page lock, which serializes swap cache removal, which 3819 * in turn serializes uncharging. 3820 */ 3821 if (PageCgroupUsed(pc)) 3822 return 0; 3823 if (!do_swap_account) 3824 goto charge_cur_mm; 3825 memcg = try_get_mem_cgroup_from_page(page); 3826 if (!memcg) 3827 goto charge_cur_mm; 3828 *memcgp = memcg; 3829 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3830 css_put(&memcg->css); 3831 if (ret == -EINTR) 3832 ret = 0; 3833 return ret; 3834 charge_cur_mm: 3835 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3836 if (ret == -EINTR) 3837 ret = 0; 3838 return ret; 3839 } 3840 3841 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3842 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3843 { 3844 *memcgp = NULL; 3845 if (mem_cgroup_disabled()) 3846 return 0; 3847 /* 3848 * A racing thread's fault, or swapoff, may have already 3849 * updated the pte, and even removed page from swap cache: in 3850 * those cases unuse_pte()'s pte_same() test will fail; but 3851 * there's also a KSM case which does need to charge the page. 3852 */ 3853 if (!PageSwapCache(page)) { 3854 int ret; 3855 3856 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3857 if (ret == -EINTR) 3858 ret = 0; 3859 return ret; 3860 } 3861 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3862 } 3863 3864 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3865 { 3866 if (mem_cgroup_disabled()) 3867 return; 3868 if (!memcg) 3869 return; 3870 __mem_cgroup_cancel_charge(memcg, 1); 3871 } 3872 3873 static void 3874 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3875 enum charge_type ctype) 3876 { 3877 if (mem_cgroup_disabled()) 3878 return; 3879 if (!memcg) 3880 return; 3881 3882 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3883 /* 3884 * Now swap is on-memory. This means this page may be 3885 * counted both as mem and swap....double count. 3886 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3887 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3888 * may call delete_from_swap_cache() before reach here. 3889 */ 3890 if (do_swap_account && PageSwapCache(page)) { 3891 swp_entry_t ent = {.val = page_private(page)}; 3892 mem_cgroup_uncharge_swap(ent); 3893 } 3894 } 3895 3896 void mem_cgroup_commit_charge_swapin(struct page *page, 3897 struct mem_cgroup *memcg) 3898 { 3899 __mem_cgroup_commit_charge_swapin(page, memcg, 3900 MEM_CGROUP_CHARGE_TYPE_ANON); 3901 } 3902 3903 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 3904 gfp_t gfp_mask) 3905 { 3906 struct mem_cgroup *memcg = NULL; 3907 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3908 int ret; 3909 3910 if (mem_cgroup_disabled()) 3911 return 0; 3912 if (PageCompound(page)) 3913 return 0; 3914 3915 if (!PageSwapCache(page)) 3916 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 3917 else { /* page is swapcache/shmem */ 3918 ret = __mem_cgroup_try_charge_swapin(mm, page, 3919 gfp_mask, &memcg); 3920 if (!ret) 3921 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3922 } 3923 return ret; 3924 } 3925 3926 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3927 unsigned int nr_pages, 3928 const enum charge_type ctype) 3929 { 3930 struct memcg_batch_info *batch = NULL; 3931 bool uncharge_memsw = true; 3932 3933 /* If swapout, usage of swap doesn't decrease */ 3934 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3935 uncharge_memsw = false; 3936 3937 batch = ¤t->memcg_batch; 3938 /* 3939 * In usual, we do css_get() when we remember memcg pointer. 3940 * But in this case, we keep res->usage until end of a series of 3941 * uncharges. Then, it's ok to ignore memcg's refcnt. 3942 */ 3943 if (!batch->memcg) 3944 batch->memcg = memcg; 3945 /* 3946 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 3947 * In those cases, all pages freed continuously can be expected to be in 3948 * the same cgroup and we have chance to coalesce uncharges. 3949 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 3950 * because we want to do uncharge as soon as possible. 3951 */ 3952 3953 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 3954 goto direct_uncharge; 3955 3956 if (nr_pages > 1) 3957 goto direct_uncharge; 3958 3959 /* 3960 * In typical case, batch->memcg == mem. This means we can 3961 * merge a series of uncharges to an uncharge of res_counter. 3962 * If not, we uncharge res_counter ony by one. 3963 */ 3964 if (batch->memcg != memcg) 3965 goto direct_uncharge; 3966 /* remember freed charge and uncharge it later */ 3967 batch->nr_pages++; 3968 if (uncharge_memsw) 3969 batch->memsw_nr_pages++; 3970 return; 3971 direct_uncharge: 3972 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 3973 if (uncharge_memsw) 3974 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 3975 if (unlikely(batch->memcg != memcg)) 3976 memcg_oom_recover(memcg); 3977 } 3978 3979 /* 3980 * uncharge if !page_mapped(page) 3981 */ 3982 static struct mem_cgroup * 3983 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 3984 bool end_migration) 3985 { 3986 struct mem_cgroup *memcg = NULL; 3987 unsigned int nr_pages = 1; 3988 struct page_cgroup *pc; 3989 bool anon; 3990 3991 if (mem_cgroup_disabled()) 3992 return NULL; 3993 3994 VM_BUG_ON(PageSwapCache(page)); 3995 3996 if (PageTransHuge(page)) { 3997 nr_pages <<= compound_order(page); 3998 VM_BUG_ON(!PageTransHuge(page)); 3999 } 4000 /* 4001 * Check if our page_cgroup is valid 4002 */ 4003 pc = lookup_page_cgroup(page); 4004 if (unlikely(!PageCgroupUsed(pc))) 4005 return NULL; 4006 4007 lock_page_cgroup(pc); 4008 4009 memcg = pc->mem_cgroup; 4010 4011 if (!PageCgroupUsed(pc)) 4012 goto unlock_out; 4013 4014 anon = PageAnon(page); 4015 4016 switch (ctype) { 4017 case MEM_CGROUP_CHARGE_TYPE_ANON: 4018 /* 4019 * Generally PageAnon tells if it's the anon statistics to be 4020 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4021 * used before page reached the stage of being marked PageAnon. 4022 */ 4023 anon = true; 4024 /* fallthrough */ 4025 case MEM_CGROUP_CHARGE_TYPE_DROP: 4026 /* See mem_cgroup_prepare_migration() */ 4027 if (page_mapped(page)) 4028 goto unlock_out; 4029 /* 4030 * Pages under migration may not be uncharged. But 4031 * end_migration() /must/ be the one uncharging the 4032 * unused post-migration page and so it has to call 4033 * here with the migration bit still set. See the 4034 * res_counter handling below. 4035 */ 4036 if (!end_migration && PageCgroupMigration(pc)) 4037 goto unlock_out; 4038 break; 4039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4040 if (!PageAnon(page)) { /* Shared memory */ 4041 if (page->mapping && !page_is_file_cache(page)) 4042 goto unlock_out; 4043 } else if (page_mapped(page)) /* Anon */ 4044 goto unlock_out; 4045 break; 4046 default: 4047 break; 4048 } 4049 4050 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 4051 4052 ClearPageCgroupUsed(pc); 4053 /* 4054 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4055 * freed from LRU. This is safe because uncharged page is expected not 4056 * to be reused (freed soon). Exception is SwapCache, it's handled by 4057 * special functions. 4058 */ 4059 4060 unlock_page_cgroup(pc); 4061 /* 4062 * even after unlock, we have memcg->res.usage here and this memcg 4063 * will never be freed. 4064 */ 4065 memcg_check_events(memcg, page); 4066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4067 mem_cgroup_swap_statistics(memcg, true); 4068 mem_cgroup_get(memcg); 4069 } 4070 /* 4071 * Migration does not charge the res_counter for the 4072 * replacement page, so leave it alone when phasing out the 4073 * page that is unused after the migration. 4074 */ 4075 if (!end_migration && !mem_cgroup_is_root(memcg)) 4076 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4077 4078 return memcg; 4079 4080 unlock_out: 4081 unlock_page_cgroup(pc); 4082 return NULL; 4083 } 4084 4085 void mem_cgroup_uncharge_page(struct page *page) 4086 { 4087 /* early check. */ 4088 if (page_mapped(page)) 4089 return; 4090 VM_BUG_ON(page->mapping && !PageAnon(page)); 4091 if (PageSwapCache(page)) 4092 return; 4093 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4094 } 4095 4096 void mem_cgroup_uncharge_cache_page(struct page *page) 4097 { 4098 VM_BUG_ON(page_mapped(page)); 4099 VM_BUG_ON(page->mapping); 4100 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4101 } 4102 4103 /* 4104 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4105 * In that cases, pages are freed continuously and we can expect pages 4106 * are in the same memcg. All these calls itself limits the number of 4107 * pages freed at once, then uncharge_start/end() is called properly. 4108 * This may be called prural(2) times in a context, 4109 */ 4110 4111 void mem_cgroup_uncharge_start(void) 4112 { 4113 current->memcg_batch.do_batch++; 4114 /* We can do nest. */ 4115 if (current->memcg_batch.do_batch == 1) { 4116 current->memcg_batch.memcg = NULL; 4117 current->memcg_batch.nr_pages = 0; 4118 current->memcg_batch.memsw_nr_pages = 0; 4119 } 4120 } 4121 4122 void mem_cgroup_uncharge_end(void) 4123 { 4124 struct memcg_batch_info *batch = ¤t->memcg_batch; 4125 4126 if (!batch->do_batch) 4127 return; 4128 4129 batch->do_batch--; 4130 if (batch->do_batch) /* If stacked, do nothing. */ 4131 return; 4132 4133 if (!batch->memcg) 4134 return; 4135 /* 4136 * This "batch->memcg" is valid without any css_get/put etc... 4137 * bacause we hide charges behind us. 4138 */ 4139 if (batch->nr_pages) 4140 res_counter_uncharge(&batch->memcg->res, 4141 batch->nr_pages * PAGE_SIZE); 4142 if (batch->memsw_nr_pages) 4143 res_counter_uncharge(&batch->memcg->memsw, 4144 batch->memsw_nr_pages * PAGE_SIZE); 4145 memcg_oom_recover(batch->memcg); 4146 /* forget this pointer (for sanity check) */ 4147 batch->memcg = NULL; 4148 } 4149 4150 #ifdef CONFIG_SWAP 4151 /* 4152 * called after __delete_from_swap_cache() and drop "page" account. 4153 * memcg information is recorded to swap_cgroup of "ent" 4154 */ 4155 void 4156 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4157 { 4158 struct mem_cgroup *memcg; 4159 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4160 4161 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4162 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4163 4164 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4165 4166 /* 4167 * record memcg information, if swapout && memcg != NULL, 4168 * mem_cgroup_get() was called in uncharge(). 4169 */ 4170 if (do_swap_account && swapout && memcg) 4171 swap_cgroup_record(ent, css_id(&memcg->css)); 4172 } 4173 #endif 4174 4175 #ifdef CONFIG_MEMCG_SWAP 4176 /* 4177 * called from swap_entry_free(). remove record in swap_cgroup and 4178 * uncharge "memsw" account. 4179 */ 4180 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4181 { 4182 struct mem_cgroup *memcg; 4183 unsigned short id; 4184 4185 if (!do_swap_account) 4186 return; 4187 4188 id = swap_cgroup_record(ent, 0); 4189 rcu_read_lock(); 4190 memcg = mem_cgroup_lookup(id); 4191 if (memcg) { 4192 /* 4193 * We uncharge this because swap is freed. 4194 * This memcg can be obsolete one. We avoid calling css_tryget 4195 */ 4196 if (!mem_cgroup_is_root(memcg)) 4197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4198 mem_cgroup_swap_statistics(memcg, false); 4199 mem_cgroup_put(memcg); 4200 } 4201 rcu_read_unlock(); 4202 } 4203 4204 /** 4205 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4206 * @entry: swap entry to be moved 4207 * @from: mem_cgroup which the entry is moved from 4208 * @to: mem_cgroup which the entry is moved to 4209 * 4210 * It succeeds only when the swap_cgroup's record for this entry is the same 4211 * as the mem_cgroup's id of @from. 4212 * 4213 * Returns 0 on success, -EINVAL on failure. 4214 * 4215 * The caller must have charged to @to, IOW, called res_counter_charge() about 4216 * both res and memsw, and called css_get(). 4217 */ 4218 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4219 struct mem_cgroup *from, struct mem_cgroup *to) 4220 { 4221 unsigned short old_id, new_id; 4222 4223 old_id = css_id(&from->css); 4224 new_id = css_id(&to->css); 4225 4226 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4227 mem_cgroup_swap_statistics(from, false); 4228 mem_cgroup_swap_statistics(to, true); 4229 /* 4230 * This function is only called from task migration context now. 4231 * It postpones res_counter and refcount handling till the end 4232 * of task migration(mem_cgroup_clear_mc()) for performance 4233 * improvement. But we cannot postpone mem_cgroup_get(to) 4234 * because if the process that has been moved to @to does 4235 * swap-in, the refcount of @to might be decreased to 0. 4236 */ 4237 mem_cgroup_get(to); 4238 return 0; 4239 } 4240 return -EINVAL; 4241 } 4242 #else 4243 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4244 struct mem_cgroup *from, struct mem_cgroup *to) 4245 { 4246 return -EINVAL; 4247 } 4248 #endif 4249 4250 /* 4251 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4252 * page belongs to. 4253 */ 4254 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4255 struct mem_cgroup **memcgp) 4256 { 4257 struct mem_cgroup *memcg = NULL; 4258 unsigned int nr_pages = 1; 4259 struct page_cgroup *pc; 4260 enum charge_type ctype; 4261 4262 *memcgp = NULL; 4263 4264 if (mem_cgroup_disabled()) 4265 return; 4266 4267 if (PageTransHuge(page)) 4268 nr_pages <<= compound_order(page); 4269 4270 pc = lookup_page_cgroup(page); 4271 lock_page_cgroup(pc); 4272 if (PageCgroupUsed(pc)) { 4273 memcg = pc->mem_cgroup; 4274 css_get(&memcg->css); 4275 /* 4276 * At migrating an anonymous page, its mapcount goes down 4277 * to 0 and uncharge() will be called. But, even if it's fully 4278 * unmapped, migration may fail and this page has to be 4279 * charged again. We set MIGRATION flag here and delay uncharge 4280 * until end_migration() is called 4281 * 4282 * Corner Case Thinking 4283 * A) 4284 * When the old page was mapped as Anon and it's unmap-and-freed 4285 * while migration was ongoing. 4286 * If unmap finds the old page, uncharge() of it will be delayed 4287 * until end_migration(). If unmap finds a new page, it's 4288 * uncharged when it make mapcount to be 1->0. If unmap code 4289 * finds swap_migration_entry, the new page will not be mapped 4290 * and end_migration() will find it(mapcount==0). 4291 * 4292 * B) 4293 * When the old page was mapped but migraion fails, the kernel 4294 * remaps it. A charge for it is kept by MIGRATION flag even 4295 * if mapcount goes down to 0. We can do remap successfully 4296 * without charging it again. 4297 * 4298 * C) 4299 * The "old" page is under lock_page() until the end of 4300 * migration, so, the old page itself will not be swapped-out. 4301 * If the new page is swapped out before end_migraton, our 4302 * hook to usual swap-out path will catch the event. 4303 */ 4304 if (PageAnon(page)) 4305 SetPageCgroupMigration(pc); 4306 } 4307 unlock_page_cgroup(pc); 4308 /* 4309 * If the page is not charged at this point, 4310 * we return here. 4311 */ 4312 if (!memcg) 4313 return; 4314 4315 *memcgp = memcg; 4316 /* 4317 * We charge new page before it's used/mapped. So, even if unlock_page() 4318 * is called before end_migration, we can catch all events on this new 4319 * page. In the case new page is migrated but not remapped, new page's 4320 * mapcount will be finally 0 and we call uncharge in end_migration(). 4321 */ 4322 if (PageAnon(page)) 4323 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4324 else 4325 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4326 /* 4327 * The page is committed to the memcg, but it's not actually 4328 * charged to the res_counter since we plan on replacing the 4329 * old one and only one page is going to be left afterwards. 4330 */ 4331 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4332 } 4333 4334 /* remove redundant charge if migration failed*/ 4335 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4336 struct page *oldpage, struct page *newpage, bool migration_ok) 4337 { 4338 struct page *used, *unused; 4339 struct page_cgroup *pc; 4340 bool anon; 4341 4342 if (!memcg) 4343 return; 4344 4345 if (!migration_ok) { 4346 used = oldpage; 4347 unused = newpage; 4348 } else { 4349 used = newpage; 4350 unused = oldpage; 4351 } 4352 anon = PageAnon(used); 4353 __mem_cgroup_uncharge_common(unused, 4354 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4355 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4356 true); 4357 css_put(&memcg->css); 4358 /* 4359 * We disallowed uncharge of pages under migration because mapcount 4360 * of the page goes down to zero, temporarly. 4361 * Clear the flag and check the page should be charged. 4362 */ 4363 pc = lookup_page_cgroup(oldpage); 4364 lock_page_cgroup(pc); 4365 ClearPageCgroupMigration(pc); 4366 unlock_page_cgroup(pc); 4367 4368 /* 4369 * If a page is a file cache, radix-tree replacement is very atomic 4370 * and we can skip this check. When it was an Anon page, its mapcount 4371 * goes down to 0. But because we added MIGRATION flage, it's not 4372 * uncharged yet. There are several case but page->mapcount check 4373 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4374 * check. (see prepare_charge() also) 4375 */ 4376 if (anon) 4377 mem_cgroup_uncharge_page(used); 4378 } 4379 4380 /* 4381 * At replace page cache, newpage is not under any memcg but it's on 4382 * LRU. So, this function doesn't touch res_counter but handles LRU 4383 * in correct way. Both pages are locked so we cannot race with uncharge. 4384 */ 4385 void mem_cgroup_replace_page_cache(struct page *oldpage, 4386 struct page *newpage) 4387 { 4388 struct mem_cgroup *memcg = NULL; 4389 struct page_cgroup *pc; 4390 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4391 4392 if (mem_cgroup_disabled()) 4393 return; 4394 4395 pc = lookup_page_cgroup(oldpage); 4396 /* fix accounting on old pages */ 4397 lock_page_cgroup(pc); 4398 if (PageCgroupUsed(pc)) { 4399 memcg = pc->mem_cgroup; 4400 mem_cgroup_charge_statistics(memcg, false, -1); 4401 ClearPageCgroupUsed(pc); 4402 } 4403 unlock_page_cgroup(pc); 4404 4405 /* 4406 * When called from shmem_replace_page(), in some cases the 4407 * oldpage has already been charged, and in some cases not. 4408 */ 4409 if (!memcg) 4410 return; 4411 /* 4412 * Even if newpage->mapping was NULL before starting replacement, 4413 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4414 * LRU while we overwrite pc->mem_cgroup. 4415 */ 4416 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4417 } 4418 4419 #ifdef CONFIG_DEBUG_VM 4420 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4421 { 4422 struct page_cgroup *pc; 4423 4424 pc = lookup_page_cgroup(page); 4425 /* 4426 * Can be NULL while feeding pages into the page allocator for 4427 * the first time, i.e. during boot or memory hotplug; 4428 * or when mem_cgroup_disabled(). 4429 */ 4430 if (likely(pc) && PageCgroupUsed(pc)) 4431 return pc; 4432 return NULL; 4433 } 4434 4435 bool mem_cgroup_bad_page_check(struct page *page) 4436 { 4437 if (mem_cgroup_disabled()) 4438 return false; 4439 4440 return lookup_page_cgroup_used(page) != NULL; 4441 } 4442 4443 void mem_cgroup_print_bad_page(struct page *page) 4444 { 4445 struct page_cgroup *pc; 4446 4447 pc = lookup_page_cgroup_used(page); 4448 if (pc) { 4449 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4450 pc, pc->flags, pc->mem_cgroup); 4451 } 4452 } 4453 #endif 4454 4455 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4456 unsigned long long val) 4457 { 4458 int retry_count; 4459 u64 memswlimit, memlimit; 4460 int ret = 0; 4461 int children = mem_cgroup_count_children(memcg); 4462 u64 curusage, oldusage; 4463 int enlarge; 4464 4465 /* 4466 * For keeping hierarchical_reclaim simple, how long we should retry 4467 * is depends on callers. We set our retry-count to be function 4468 * of # of children which we should visit in this loop. 4469 */ 4470 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4471 4472 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4473 4474 enlarge = 0; 4475 while (retry_count) { 4476 if (signal_pending(current)) { 4477 ret = -EINTR; 4478 break; 4479 } 4480 /* 4481 * Rather than hide all in some function, I do this in 4482 * open coded manner. You see what this really does. 4483 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4484 */ 4485 mutex_lock(&set_limit_mutex); 4486 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4487 if (memswlimit < val) { 4488 ret = -EINVAL; 4489 mutex_unlock(&set_limit_mutex); 4490 break; 4491 } 4492 4493 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4494 if (memlimit < val) 4495 enlarge = 1; 4496 4497 ret = res_counter_set_limit(&memcg->res, val); 4498 if (!ret) { 4499 if (memswlimit == val) 4500 memcg->memsw_is_minimum = true; 4501 else 4502 memcg->memsw_is_minimum = false; 4503 } 4504 mutex_unlock(&set_limit_mutex); 4505 4506 if (!ret) 4507 break; 4508 4509 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4510 MEM_CGROUP_RECLAIM_SHRINK); 4511 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4512 /* Usage is reduced ? */ 4513 if (curusage >= oldusage) 4514 retry_count--; 4515 else 4516 oldusage = curusage; 4517 } 4518 if (!ret && enlarge) 4519 memcg_oom_recover(memcg); 4520 4521 return ret; 4522 } 4523 4524 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4525 unsigned long long val) 4526 { 4527 int retry_count; 4528 u64 memlimit, memswlimit, oldusage, curusage; 4529 int children = mem_cgroup_count_children(memcg); 4530 int ret = -EBUSY; 4531 int enlarge = 0; 4532 4533 /* see mem_cgroup_resize_res_limit */ 4534 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4535 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4536 while (retry_count) { 4537 if (signal_pending(current)) { 4538 ret = -EINTR; 4539 break; 4540 } 4541 /* 4542 * Rather than hide all in some function, I do this in 4543 * open coded manner. You see what this really does. 4544 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4545 */ 4546 mutex_lock(&set_limit_mutex); 4547 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4548 if (memlimit > val) { 4549 ret = -EINVAL; 4550 mutex_unlock(&set_limit_mutex); 4551 break; 4552 } 4553 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4554 if (memswlimit < val) 4555 enlarge = 1; 4556 ret = res_counter_set_limit(&memcg->memsw, val); 4557 if (!ret) { 4558 if (memlimit == val) 4559 memcg->memsw_is_minimum = true; 4560 else 4561 memcg->memsw_is_minimum = false; 4562 } 4563 mutex_unlock(&set_limit_mutex); 4564 4565 if (!ret) 4566 break; 4567 4568 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4569 MEM_CGROUP_RECLAIM_NOSWAP | 4570 MEM_CGROUP_RECLAIM_SHRINK); 4571 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4572 /* Usage is reduced ? */ 4573 if (curusage >= oldusage) 4574 retry_count--; 4575 else 4576 oldusage = curusage; 4577 } 4578 if (!ret && enlarge) 4579 memcg_oom_recover(memcg); 4580 return ret; 4581 } 4582 4583 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4584 gfp_t gfp_mask, 4585 unsigned long *total_scanned) 4586 { 4587 unsigned long nr_reclaimed = 0; 4588 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4589 unsigned long reclaimed; 4590 int loop = 0; 4591 struct mem_cgroup_tree_per_zone *mctz; 4592 unsigned long long excess; 4593 unsigned long nr_scanned; 4594 4595 if (order > 0) 4596 return 0; 4597 4598 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4599 /* 4600 * This loop can run a while, specially if mem_cgroup's continuously 4601 * keep exceeding their soft limit and putting the system under 4602 * pressure 4603 */ 4604 do { 4605 if (next_mz) 4606 mz = next_mz; 4607 else 4608 mz = mem_cgroup_largest_soft_limit_node(mctz); 4609 if (!mz) 4610 break; 4611 4612 nr_scanned = 0; 4613 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4614 gfp_mask, &nr_scanned); 4615 nr_reclaimed += reclaimed; 4616 *total_scanned += nr_scanned; 4617 spin_lock(&mctz->lock); 4618 4619 /* 4620 * If we failed to reclaim anything from this memory cgroup 4621 * it is time to move on to the next cgroup 4622 */ 4623 next_mz = NULL; 4624 if (!reclaimed) { 4625 do { 4626 /* 4627 * Loop until we find yet another one. 4628 * 4629 * By the time we get the soft_limit lock 4630 * again, someone might have aded the 4631 * group back on the RB tree. Iterate to 4632 * make sure we get a different mem. 4633 * mem_cgroup_largest_soft_limit_node returns 4634 * NULL if no other cgroup is present on 4635 * the tree 4636 */ 4637 next_mz = 4638 __mem_cgroup_largest_soft_limit_node(mctz); 4639 if (next_mz == mz) 4640 css_put(&next_mz->memcg->css); 4641 else /* next_mz == NULL or other memcg */ 4642 break; 4643 } while (1); 4644 } 4645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4646 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4647 /* 4648 * One school of thought says that we should not add 4649 * back the node to the tree if reclaim returns 0. 4650 * But our reclaim could return 0, simply because due 4651 * to priority we are exposing a smaller subset of 4652 * memory to reclaim from. Consider this as a longer 4653 * term TODO. 4654 */ 4655 /* If excess == 0, no tree ops */ 4656 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4657 spin_unlock(&mctz->lock); 4658 css_put(&mz->memcg->css); 4659 loop++; 4660 /* 4661 * Could not reclaim anything and there are no more 4662 * mem cgroups to try or we seem to be looping without 4663 * reclaiming anything. 4664 */ 4665 if (!nr_reclaimed && 4666 (next_mz == NULL || 4667 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4668 break; 4669 } while (!nr_reclaimed); 4670 if (next_mz) 4671 css_put(&next_mz->memcg->css); 4672 return nr_reclaimed; 4673 } 4674 4675 /** 4676 * mem_cgroup_force_empty_list - clears LRU of a group 4677 * @memcg: group to clear 4678 * @node: NUMA node 4679 * @zid: zone id 4680 * @lru: lru to to clear 4681 * 4682 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4683 * reclaim the pages page themselves - pages are moved to the parent (or root) 4684 * group. 4685 */ 4686 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4687 int node, int zid, enum lru_list lru) 4688 { 4689 struct lruvec *lruvec; 4690 unsigned long flags; 4691 struct list_head *list; 4692 struct page *busy; 4693 struct zone *zone; 4694 4695 zone = &NODE_DATA(node)->node_zones[zid]; 4696 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4697 list = &lruvec->lists[lru]; 4698 4699 busy = NULL; 4700 do { 4701 struct page_cgroup *pc; 4702 struct page *page; 4703 4704 spin_lock_irqsave(&zone->lru_lock, flags); 4705 if (list_empty(list)) { 4706 spin_unlock_irqrestore(&zone->lru_lock, flags); 4707 break; 4708 } 4709 page = list_entry(list->prev, struct page, lru); 4710 if (busy == page) { 4711 list_move(&page->lru, list); 4712 busy = NULL; 4713 spin_unlock_irqrestore(&zone->lru_lock, flags); 4714 continue; 4715 } 4716 spin_unlock_irqrestore(&zone->lru_lock, flags); 4717 4718 pc = lookup_page_cgroup(page); 4719 4720 if (mem_cgroup_move_parent(page, pc, memcg)) { 4721 /* found lock contention or "pc" is obsolete. */ 4722 busy = page; 4723 cond_resched(); 4724 } else 4725 busy = NULL; 4726 } while (!list_empty(list)); 4727 } 4728 4729 /* 4730 * make mem_cgroup's charge to be 0 if there is no task by moving 4731 * all the charges and pages to the parent. 4732 * This enables deleting this mem_cgroup. 4733 * 4734 * Caller is responsible for holding css reference on the memcg. 4735 */ 4736 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4737 { 4738 int node, zid; 4739 u64 usage; 4740 4741 do { 4742 /* This is for making all *used* pages to be on LRU. */ 4743 lru_add_drain_all(); 4744 drain_all_stock_sync(memcg); 4745 mem_cgroup_start_move(memcg); 4746 for_each_node_state(node, N_MEMORY) { 4747 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4748 enum lru_list lru; 4749 for_each_lru(lru) { 4750 mem_cgroup_force_empty_list(memcg, 4751 node, zid, lru); 4752 } 4753 } 4754 } 4755 mem_cgroup_end_move(memcg); 4756 memcg_oom_recover(memcg); 4757 cond_resched(); 4758 4759 /* 4760 * Kernel memory may not necessarily be trackable to a specific 4761 * process. So they are not migrated, and therefore we can't 4762 * expect their value to drop to 0 here. 4763 * Having res filled up with kmem only is enough. 4764 * 4765 * This is a safety check because mem_cgroup_force_empty_list 4766 * could have raced with mem_cgroup_replace_page_cache callers 4767 * so the lru seemed empty but the page could have been added 4768 * right after the check. RES_USAGE should be safe as we always 4769 * charge before adding to the LRU. 4770 */ 4771 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4772 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4773 } while (usage > 0); 4774 } 4775 4776 /* 4777 * This mainly exists for tests during the setting of set of use_hierarchy. 4778 * Since this is the very setting we are changing, the current hierarchy value 4779 * is meaningless 4780 */ 4781 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4782 { 4783 struct cgroup *pos; 4784 4785 /* bounce at first found */ 4786 cgroup_for_each_child(pos, memcg->css.cgroup) 4787 return true; 4788 return false; 4789 } 4790 4791 /* 4792 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4793 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4794 * from mem_cgroup_count_children(), in the sense that we don't really care how 4795 * many children we have; we only need to know if we have any. It also counts 4796 * any memcg without hierarchy as infertile. 4797 */ 4798 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4799 { 4800 return memcg->use_hierarchy && __memcg_has_children(memcg); 4801 } 4802 4803 /* 4804 * Reclaims as many pages from the given memcg as possible and moves 4805 * the rest to the parent. 4806 * 4807 * Caller is responsible for holding css reference for memcg. 4808 */ 4809 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4810 { 4811 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4812 struct cgroup *cgrp = memcg->css.cgroup; 4813 4814 /* returns EBUSY if there is a task or if we come here twice. */ 4815 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4816 return -EBUSY; 4817 4818 /* we call try-to-free pages for make this cgroup empty */ 4819 lru_add_drain_all(); 4820 /* try to free all pages in this cgroup */ 4821 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4822 int progress; 4823 4824 if (signal_pending(current)) 4825 return -EINTR; 4826 4827 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4828 false); 4829 if (!progress) { 4830 nr_retries--; 4831 /* maybe some writeback is necessary */ 4832 congestion_wait(BLK_RW_ASYNC, HZ/10); 4833 } 4834 4835 } 4836 lru_add_drain(); 4837 mem_cgroup_reparent_charges(memcg); 4838 4839 return 0; 4840 } 4841 4842 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 4843 { 4844 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4845 int ret; 4846 4847 if (mem_cgroup_is_root(memcg)) 4848 return -EINVAL; 4849 css_get(&memcg->css); 4850 ret = mem_cgroup_force_empty(memcg); 4851 css_put(&memcg->css); 4852 4853 return ret; 4854 } 4855 4856 4857 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 4858 { 4859 return mem_cgroup_from_cont(cont)->use_hierarchy; 4860 } 4861 4862 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 4863 u64 val) 4864 { 4865 int retval = 0; 4866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4867 struct cgroup *parent = cont->parent; 4868 struct mem_cgroup *parent_memcg = NULL; 4869 4870 if (parent) 4871 parent_memcg = mem_cgroup_from_cont(parent); 4872 4873 mutex_lock(&memcg_create_mutex); 4874 4875 if (memcg->use_hierarchy == val) 4876 goto out; 4877 4878 /* 4879 * If parent's use_hierarchy is set, we can't make any modifications 4880 * in the child subtrees. If it is unset, then the change can 4881 * occur, provided the current cgroup has no children. 4882 * 4883 * For the root cgroup, parent_mem is NULL, we allow value to be 4884 * set if there are no children. 4885 */ 4886 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4887 (val == 1 || val == 0)) { 4888 if (!__memcg_has_children(memcg)) 4889 memcg->use_hierarchy = val; 4890 else 4891 retval = -EBUSY; 4892 } else 4893 retval = -EINVAL; 4894 4895 out: 4896 mutex_unlock(&memcg_create_mutex); 4897 4898 return retval; 4899 } 4900 4901 4902 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4903 enum mem_cgroup_stat_index idx) 4904 { 4905 struct mem_cgroup *iter; 4906 long val = 0; 4907 4908 /* Per-cpu values can be negative, use a signed accumulator */ 4909 for_each_mem_cgroup_tree(iter, memcg) 4910 val += mem_cgroup_read_stat(iter, idx); 4911 4912 if (val < 0) /* race ? */ 4913 val = 0; 4914 return val; 4915 } 4916 4917 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4918 { 4919 u64 val; 4920 4921 if (!mem_cgroup_is_root(memcg)) { 4922 if (!swap) 4923 return res_counter_read_u64(&memcg->res, RES_USAGE); 4924 else 4925 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4926 } 4927 4928 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4929 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4930 4931 if (swap) 4932 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4933 4934 return val << PAGE_SHIFT; 4935 } 4936 4937 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 4938 struct file *file, char __user *buf, 4939 size_t nbytes, loff_t *ppos) 4940 { 4941 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4942 char str[64]; 4943 u64 val; 4944 int name, len; 4945 enum res_type type; 4946 4947 type = MEMFILE_TYPE(cft->private); 4948 name = MEMFILE_ATTR(cft->private); 4949 4950 if (!do_swap_account && type == _MEMSWAP) 4951 return -EOPNOTSUPP; 4952 4953 switch (type) { 4954 case _MEM: 4955 if (name == RES_USAGE) 4956 val = mem_cgroup_usage(memcg, false); 4957 else 4958 val = res_counter_read_u64(&memcg->res, name); 4959 break; 4960 case _MEMSWAP: 4961 if (name == RES_USAGE) 4962 val = mem_cgroup_usage(memcg, true); 4963 else 4964 val = res_counter_read_u64(&memcg->memsw, name); 4965 break; 4966 case _KMEM: 4967 val = res_counter_read_u64(&memcg->kmem, name); 4968 break; 4969 default: 4970 BUG(); 4971 } 4972 4973 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 4974 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 4975 } 4976 4977 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) 4978 { 4979 int ret = -EINVAL; 4980 #ifdef CONFIG_MEMCG_KMEM 4981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4982 /* 4983 * For simplicity, we won't allow this to be disabled. It also can't 4984 * be changed if the cgroup has children already, or if tasks had 4985 * already joined. 4986 * 4987 * If tasks join before we set the limit, a person looking at 4988 * kmem.usage_in_bytes will have no way to determine when it took 4989 * place, which makes the value quite meaningless. 4990 * 4991 * After it first became limited, changes in the value of the limit are 4992 * of course permitted. 4993 */ 4994 mutex_lock(&memcg_create_mutex); 4995 mutex_lock(&set_limit_mutex); 4996 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 4997 if (cgroup_task_count(cont) || memcg_has_children(memcg)) { 4998 ret = -EBUSY; 4999 goto out; 5000 } 5001 ret = res_counter_set_limit(&memcg->kmem, val); 5002 VM_BUG_ON(ret); 5003 5004 ret = memcg_update_cache_sizes(memcg); 5005 if (ret) { 5006 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 5007 goto out; 5008 } 5009 static_key_slow_inc(&memcg_kmem_enabled_key); 5010 /* 5011 * setting the active bit after the inc will guarantee no one 5012 * starts accounting before all call sites are patched 5013 */ 5014 memcg_kmem_set_active(memcg); 5015 5016 /* 5017 * kmem charges can outlive the cgroup. In the case of slab 5018 * pages, for instance, a page contain objects from various 5019 * processes, so it is unfeasible to migrate them away. We 5020 * need to reference count the memcg because of that. 5021 */ 5022 mem_cgroup_get(memcg); 5023 } else 5024 ret = res_counter_set_limit(&memcg->kmem, val); 5025 out: 5026 mutex_unlock(&set_limit_mutex); 5027 mutex_unlock(&memcg_create_mutex); 5028 #endif 5029 return ret; 5030 } 5031 5032 #ifdef CONFIG_MEMCG_KMEM 5033 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5034 { 5035 int ret = 0; 5036 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5037 if (!parent) 5038 goto out; 5039 5040 memcg->kmem_account_flags = parent->kmem_account_flags; 5041 /* 5042 * When that happen, we need to disable the static branch only on those 5043 * memcgs that enabled it. To achieve this, we would be forced to 5044 * complicate the code by keeping track of which memcgs were the ones 5045 * that actually enabled limits, and which ones got it from its 5046 * parents. 5047 * 5048 * It is a lot simpler just to do static_key_slow_inc() on every child 5049 * that is accounted. 5050 */ 5051 if (!memcg_kmem_is_active(memcg)) 5052 goto out; 5053 5054 /* 5055 * destroy(), called if we fail, will issue static_key_slow_inc() and 5056 * mem_cgroup_put() if kmem is enabled. We have to either call them 5057 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find 5058 * this more consistent, since it always leads to the same destroy path 5059 */ 5060 mem_cgroup_get(memcg); 5061 static_key_slow_inc(&memcg_kmem_enabled_key); 5062 5063 mutex_lock(&set_limit_mutex); 5064 ret = memcg_update_cache_sizes(memcg); 5065 mutex_unlock(&set_limit_mutex); 5066 out: 5067 return ret; 5068 } 5069 #endif /* CONFIG_MEMCG_KMEM */ 5070 5071 /* 5072 * The user of this function is... 5073 * RES_LIMIT. 5074 */ 5075 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 5076 const char *buffer) 5077 { 5078 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5079 enum res_type type; 5080 int name; 5081 unsigned long long val; 5082 int ret; 5083 5084 type = MEMFILE_TYPE(cft->private); 5085 name = MEMFILE_ATTR(cft->private); 5086 5087 if (!do_swap_account && type == _MEMSWAP) 5088 return -EOPNOTSUPP; 5089 5090 switch (name) { 5091 case RES_LIMIT: 5092 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5093 ret = -EINVAL; 5094 break; 5095 } 5096 /* This function does all necessary parse...reuse it */ 5097 ret = res_counter_memparse_write_strategy(buffer, &val); 5098 if (ret) 5099 break; 5100 if (type == _MEM) 5101 ret = mem_cgroup_resize_limit(memcg, val); 5102 else if (type == _MEMSWAP) 5103 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5104 else if (type == _KMEM) 5105 ret = memcg_update_kmem_limit(cont, val); 5106 else 5107 return -EINVAL; 5108 break; 5109 case RES_SOFT_LIMIT: 5110 ret = res_counter_memparse_write_strategy(buffer, &val); 5111 if (ret) 5112 break; 5113 /* 5114 * For memsw, soft limits are hard to implement in terms 5115 * of semantics, for now, we support soft limits for 5116 * control without swap 5117 */ 5118 if (type == _MEM) 5119 ret = res_counter_set_soft_limit(&memcg->res, val); 5120 else 5121 ret = -EINVAL; 5122 break; 5123 default: 5124 ret = -EINVAL; /* should be BUG() ? */ 5125 break; 5126 } 5127 return ret; 5128 } 5129 5130 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5131 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5132 { 5133 struct cgroup *cgroup; 5134 unsigned long long min_limit, min_memsw_limit, tmp; 5135 5136 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5137 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5138 cgroup = memcg->css.cgroup; 5139 if (!memcg->use_hierarchy) 5140 goto out; 5141 5142 while (cgroup->parent) { 5143 cgroup = cgroup->parent; 5144 memcg = mem_cgroup_from_cont(cgroup); 5145 if (!memcg->use_hierarchy) 5146 break; 5147 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5148 min_limit = min(min_limit, tmp); 5149 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5150 min_memsw_limit = min(min_memsw_limit, tmp); 5151 } 5152 out: 5153 *mem_limit = min_limit; 5154 *memsw_limit = min_memsw_limit; 5155 } 5156 5157 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 5158 { 5159 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5160 int name; 5161 enum res_type type; 5162 5163 type = MEMFILE_TYPE(event); 5164 name = MEMFILE_ATTR(event); 5165 5166 if (!do_swap_account && type == _MEMSWAP) 5167 return -EOPNOTSUPP; 5168 5169 switch (name) { 5170 case RES_MAX_USAGE: 5171 if (type == _MEM) 5172 res_counter_reset_max(&memcg->res); 5173 else if (type == _MEMSWAP) 5174 res_counter_reset_max(&memcg->memsw); 5175 else if (type == _KMEM) 5176 res_counter_reset_max(&memcg->kmem); 5177 else 5178 return -EINVAL; 5179 break; 5180 case RES_FAILCNT: 5181 if (type == _MEM) 5182 res_counter_reset_failcnt(&memcg->res); 5183 else if (type == _MEMSWAP) 5184 res_counter_reset_failcnt(&memcg->memsw); 5185 else if (type == _KMEM) 5186 res_counter_reset_failcnt(&memcg->kmem); 5187 else 5188 return -EINVAL; 5189 break; 5190 } 5191 5192 return 0; 5193 } 5194 5195 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 5196 struct cftype *cft) 5197 { 5198 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 5199 } 5200 5201 #ifdef CONFIG_MMU 5202 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5203 struct cftype *cft, u64 val) 5204 { 5205 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5206 5207 if (val >= (1 << NR_MOVE_TYPE)) 5208 return -EINVAL; 5209 5210 /* 5211 * No kind of locking is needed in here, because ->can_attach() will 5212 * check this value once in the beginning of the process, and then carry 5213 * on with stale data. This means that changes to this value will only 5214 * affect task migrations starting after the change. 5215 */ 5216 memcg->move_charge_at_immigrate = val; 5217 return 0; 5218 } 5219 #else 5220 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5221 struct cftype *cft, u64 val) 5222 { 5223 return -ENOSYS; 5224 } 5225 #endif 5226 5227 #ifdef CONFIG_NUMA 5228 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 5229 struct seq_file *m) 5230 { 5231 int nid; 5232 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5233 unsigned long node_nr; 5234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5235 5236 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5237 seq_printf(m, "total=%lu", total_nr); 5238 for_each_node_state(nid, N_MEMORY) { 5239 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5240 seq_printf(m, " N%d=%lu", nid, node_nr); 5241 } 5242 seq_putc(m, '\n'); 5243 5244 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5245 seq_printf(m, "file=%lu", file_nr); 5246 for_each_node_state(nid, N_MEMORY) { 5247 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5248 LRU_ALL_FILE); 5249 seq_printf(m, " N%d=%lu", nid, node_nr); 5250 } 5251 seq_putc(m, '\n'); 5252 5253 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5254 seq_printf(m, "anon=%lu", anon_nr); 5255 for_each_node_state(nid, N_MEMORY) { 5256 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5257 LRU_ALL_ANON); 5258 seq_printf(m, " N%d=%lu", nid, node_nr); 5259 } 5260 seq_putc(m, '\n'); 5261 5262 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5263 seq_printf(m, "unevictable=%lu", unevictable_nr); 5264 for_each_node_state(nid, N_MEMORY) { 5265 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5266 BIT(LRU_UNEVICTABLE)); 5267 seq_printf(m, " N%d=%lu", nid, node_nr); 5268 } 5269 seq_putc(m, '\n'); 5270 return 0; 5271 } 5272 #endif /* CONFIG_NUMA */ 5273 5274 static inline void mem_cgroup_lru_names_not_uptodate(void) 5275 { 5276 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5277 } 5278 5279 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 5280 struct seq_file *m) 5281 { 5282 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5283 struct mem_cgroup *mi; 5284 unsigned int i; 5285 5286 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5287 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5288 continue; 5289 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5290 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5291 } 5292 5293 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5294 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5295 mem_cgroup_read_events(memcg, i)); 5296 5297 for (i = 0; i < NR_LRU_LISTS; i++) 5298 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5299 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5300 5301 /* Hierarchical information */ 5302 { 5303 unsigned long long limit, memsw_limit; 5304 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5305 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5306 if (do_swap_account) 5307 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5308 memsw_limit); 5309 } 5310 5311 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5312 long long val = 0; 5313 5314 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5315 continue; 5316 for_each_mem_cgroup_tree(mi, memcg) 5317 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5318 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5319 } 5320 5321 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5322 unsigned long long val = 0; 5323 5324 for_each_mem_cgroup_tree(mi, memcg) 5325 val += mem_cgroup_read_events(mi, i); 5326 seq_printf(m, "total_%s %llu\n", 5327 mem_cgroup_events_names[i], val); 5328 } 5329 5330 for (i = 0; i < NR_LRU_LISTS; i++) { 5331 unsigned long long val = 0; 5332 5333 for_each_mem_cgroup_tree(mi, memcg) 5334 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5335 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5336 } 5337 5338 #ifdef CONFIG_DEBUG_VM 5339 { 5340 int nid, zid; 5341 struct mem_cgroup_per_zone *mz; 5342 struct zone_reclaim_stat *rstat; 5343 unsigned long recent_rotated[2] = {0, 0}; 5344 unsigned long recent_scanned[2] = {0, 0}; 5345 5346 for_each_online_node(nid) 5347 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5348 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5349 rstat = &mz->lruvec.reclaim_stat; 5350 5351 recent_rotated[0] += rstat->recent_rotated[0]; 5352 recent_rotated[1] += rstat->recent_rotated[1]; 5353 recent_scanned[0] += rstat->recent_scanned[0]; 5354 recent_scanned[1] += rstat->recent_scanned[1]; 5355 } 5356 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5357 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5358 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5359 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5360 } 5361 #endif 5362 5363 return 0; 5364 } 5365 5366 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 5367 { 5368 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5369 5370 return mem_cgroup_swappiness(memcg); 5371 } 5372 5373 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 5374 u64 val) 5375 { 5376 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5377 struct mem_cgroup *parent; 5378 5379 if (val > 100) 5380 return -EINVAL; 5381 5382 if (cgrp->parent == NULL) 5383 return -EINVAL; 5384 5385 parent = mem_cgroup_from_cont(cgrp->parent); 5386 5387 mutex_lock(&memcg_create_mutex); 5388 5389 /* If under hierarchy, only empty-root can set this value */ 5390 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5391 mutex_unlock(&memcg_create_mutex); 5392 return -EINVAL; 5393 } 5394 5395 memcg->swappiness = val; 5396 5397 mutex_unlock(&memcg_create_mutex); 5398 5399 return 0; 5400 } 5401 5402 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5403 { 5404 struct mem_cgroup_threshold_ary *t; 5405 u64 usage; 5406 int i; 5407 5408 rcu_read_lock(); 5409 if (!swap) 5410 t = rcu_dereference(memcg->thresholds.primary); 5411 else 5412 t = rcu_dereference(memcg->memsw_thresholds.primary); 5413 5414 if (!t) 5415 goto unlock; 5416 5417 usage = mem_cgroup_usage(memcg, swap); 5418 5419 /* 5420 * current_threshold points to threshold just below or equal to usage. 5421 * If it's not true, a threshold was crossed after last 5422 * call of __mem_cgroup_threshold(). 5423 */ 5424 i = t->current_threshold; 5425 5426 /* 5427 * Iterate backward over array of thresholds starting from 5428 * current_threshold and check if a threshold is crossed. 5429 * If none of thresholds below usage is crossed, we read 5430 * only one element of the array here. 5431 */ 5432 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5433 eventfd_signal(t->entries[i].eventfd, 1); 5434 5435 /* i = current_threshold + 1 */ 5436 i++; 5437 5438 /* 5439 * Iterate forward over array of thresholds starting from 5440 * current_threshold+1 and check if a threshold is crossed. 5441 * If none of thresholds above usage is crossed, we read 5442 * only one element of the array here. 5443 */ 5444 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5445 eventfd_signal(t->entries[i].eventfd, 1); 5446 5447 /* Update current_threshold */ 5448 t->current_threshold = i - 1; 5449 unlock: 5450 rcu_read_unlock(); 5451 } 5452 5453 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5454 { 5455 while (memcg) { 5456 __mem_cgroup_threshold(memcg, false); 5457 if (do_swap_account) 5458 __mem_cgroup_threshold(memcg, true); 5459 5460 memcg = parent_mem_cgroup(memcg); 5461 } 5462 } 5463 5464 static int compare_thresholds(const void *a, const void *b) 5465 { 5466 const struct mem_cgroup_threshold *_a = a; 5467 const struct mem_cgroup_threshold *_b = b; 5468 5469 return _a->threshold - _b->threshold; 5470 } 5471 5472 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5473 { 5474 struct mem_cgroup_eventfd_list *ev; 5475 5476 list_for_each_entry(ev, &memcg->oom_notify, list) 5477 eventfd_signal(ev->eventfd, 1); 5478 return 0; 5479 } 5480 5481 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5482 { 5483 struct mem_cgroup *iter; 5484 5485 for_each_mem_cgroup_tree(iter, memcg) 5486 mem_cgroup_oom_notify_cb(iter); 5487 } 5488 5489 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 5490 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5491 { 5492 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5493 struct mem_cgroup_thresholds *thresholds; 5494 struct mem_cgroup_threshold_ary *new; 5495 enum res_type type = MEMFILE_TYPE(cft->private); 5496 u64 threshold, usage; 5497 int i, size, ret; 5498 5499 ret = res_counter_memparse_write_strategy(args, &threshold); 5500 if (ret) 5501 return ret; 5502 5503 mutex_lock(&memcg->thresholds_lock); 5504 5505 if (type == _MEM) 5506 thresholds = &memcg->thresholds; 5507 else if (type == _MEMSWAP) 5508 thresholds = &memcg->memsw_thresholds; 5509 else 5510 BUG(); 5511 5512 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5513 5514 /* Check if a threshold crossed before adding a new one */ 5515 if (thresholds->primary) 5516 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5517 5518 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5519 5520 /* Allocate memory for new array of thresholds */ 5521 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5522 GFP_KERNEL); 5523 if (!new) { 5524 ret = -ENOMEM; 5525 goto unlock; 5526 } 5527 new->size = size; 5528 5529 /* Copy thresholds (if any) to new array */ 5530 if (thresholds->primary) { 5531 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5532 sizeof(struct mem_cgroup_threshold)); 5533 } 5534 5535 /* Add new threshold */ 5536 new->entries[size - 1].eventfd = eventfd; 5537 new->entries[size - 1].threshold = threshold; 5538 5539 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5540 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5541 compare_thresholds, NULL); 5542 5543 /* Find current threshold */ 5544 new->current_threshold = -1; 5545 for (i = 0; i < size; i++) { 5546 if (new->entries[i].threshold <= usage) { 5547 /* 5548 * new->current_threshold will not be used until 5549 * rcu_assign_pointer(), so it's safe to increment 5550 * it here. 5551 */ 5552 ++new->current_threshold; 5553 } else 5554 break; 5555 } 5556 5557 /* Free old spare buffer and save old primary buffer as spare */ 5558 kfree(thresholds->spare); 5559 thresholds->spare = thresholds->primary; 5560 5561 rcu_assign_pointer(thresholds->primary, new); 5562 5563 /* To be sure that nobody uses thresholds */ 5564 synchronize_rcu(); 5565 5566 unlock: 5567 mutex_unlock(&memcg->thresholds_lock); 5568 5569 return ret; 5570 } 5571 5572 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 5573 struct cftype *cft, struct eventfd_ctx *eventfd) 5574 { 5575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5576 struct mem_cgroup_thresholds *thresholds; 5577 struct mem_cgroup_threshold_ary *new; 5578 enum res_type type = MEMFILE_TYPE(cft->private); 5579 u64 usage; 5580 int i, j, size; 5581 5582 mutex_lock(&memcg->thresholds_lock); 5583 if (type == _MEM) 5584 thresholds = &memcg->thresholds; 5585 else if (type == _MEMSWAP) 5586 thresholds = &memcg->memsw_thresholds; 5587 else 5588 BUG(); 5589 5590 if (!thresholds->primary) 5591 goto unlock; 5592 5593 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5594 5595 /* Check if a threshold crossed before removing */ 5596 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5597 5598 /* Calculate new number of threshold */ 5599 size = 0; 5600 for (i = 0; i < thresholds->primary->size; i++) { 5601 if (thresholds->primary->entries[i].eventfd != eventfd) 5602 size++; 5603 } 5604 5605 new = thresholds->spare; 5606 5607 /* Set thresholds array to NULL if we don't have thresholds */ 5608 if (!size) { 5609 kfree(new); 5610 new = NULL; 5611 goto swap_buffers; 5612 } 5613 5614 new->size = size; 5615 5616 /* Copy thresholds and find current threshold */ 5617 new->current_threshold = -1; 5618 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5619 if (thresholds->primary->entries[i].eventfd == eventfd) 5620 continue; 5621 5622 new->entries[j] = thresholds->primary->entries[i]; 5623 if (new->entries[j].threshold <= usage) { 5624 /* 5625 * new->current_threshold will not be used 5626 * until rcu_assign_pointer(), so it's safe to increment 5627 * it here. 5628 */ 5629 ++new->current_threshold; 5630 } 5631 j++; 5632 } 5633 5634 swap_buffers: 5635 /* Swap primary and spare array */ 5636 thresholds->spare = thresholds->primary; 5637 /* If all events are unregistered, free the spare array */ 5638 if (!new) { 5639 kfree(thresholds->spare); 5640 thresholds->spare = NULL; 5641 } 5642 5643 rcu_assign_pointer(thresholds->primary, new); 5644 5645 /* To be sure that nobody uses thresholds */ 5646 synchronize_rcu(); 5647 unlock: 5648 mutex_unlock(&memcg->thresholds_lock); 5649 } 5650 5651 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 5652 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5653 { 5654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5655 struct mem_cgroup_eventfd_list *event; 5656 enum res_type type = MEMFILE_TYPE(cft->private); 5657 5658 BUG_ON(type != _OOM_TYPE); 5659 event = kmalloc(sizeof(*event), GFP_KERNEL); 5660 if (!event) 5661 return -ENOMEM; 5662 5663 spin_lock(&memcg_oom_lock); 5664 5665 event->eventfd = eventfd; 5666 list_add(&event->list, &memcg->oom_notify); 5667 5668 /* already in OOM ? */ 5669 if (atomic_read(&memcg->under_oom)) 5670 eventfd_signal(eventfd, 1); 5671 spin_unlock(&memcg_oom_lock); 5672 5673 return 0; 5674 } 5675 5676 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 5677 struct cftype *cft, struct eventfd_ctx *eventfd) 5678 { 5679 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5680 struct mem_cgroup_eventfd_list *ev, *tmp; 5681 enum res_type type = MEMFILE_TYPE(cft->private); 5682 5683 BUG_ON(type != _OOM_TYPE); 5684 5685 spin_lock(&memcg_oom_lock); 5686 5687 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5688 if (ev->eventfd == eventfd) { 5689 list_del(&ev->list); 5690 kfree(ev); 5691 } 5692 } 5693 5694 spin_unlock(&memcg_oom_lock); 5695 } 5696 5697 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 5698 struct cftype *cft, struct cgroup_map_cb *cb) 5699 { 5700 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5701 5702 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5703 5704 if (atomic_read(&memcg->under_oom)) 5705 cb->fill(cb, "under_oom", 1); 5706 else 5707 cb->fill(cb, "under_oom", 0); 5708 return 0; 5709 } 5710 5711 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 5712 struct cftype *cft, u64 val) 5713 { 5714 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5715 struct mem_cgroup *parent; 5716 5717 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5718 if (!cgrp->parent || !((val == 0) || (val == 1))) 5719 return -EINVAL; 5720 5721 parent = mem_cgroup_from_cont(cgrp->parent); 5722 5723 mutex_lock(&memcg_create_mutex); 5724 /* oom-kill-disable is a flag for subhierarchy. */ 5725 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5726 mutex_unlock(&memcg_create_mutex); 5727 return -EINVAL; 5728 } 5729 memcg->oom_kill_disable = val; 5730 if (!val) 5731 memcg_oom_recover(memcg); 5732 mutex_unlock(&memcg_create_mutex); 5733 return 0; 5734 } 5735 5736 #ifdef CONFIG_MEMCG_KMEM 5737 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5738 { 5739 int ret; 5740 5741 memcg->kmemcg_id = -1; 5742 ret = memcg_propagate_kmem(memcg); 5743 if (ret) 5744 return ret; 5745 5746 return mem_cgroup_sockets_init(memcg, ss); 5747 }; 5748 5749 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5750 { 5751 mem_cgroup_sockets_destroy(memcg); 5752 5753 memcg_kmem_mark_dead(memcg); 5754 5755 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5756 return; 5757 5758 /* 5759 * Charges already down to 0, undo mem_cgroup_get() done in the charge 5760 * path here, being careful not to race with memcg_uncharge_kmem: it is 5761 * possible that the charges went down to 0 between mark_dead and the 5762 * res_counter read, so in that case, we don't need the put 5763 */ 5764 if (memcg_kmem_test_and_clear_dead(memcg)) 5765 mem_cgroup_put(memcg); 5766 } 5767 #else 5768 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5769 { 5770 return 0; 5771 } 5772 5773 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5774 { 5775 } 5776 #endif 5777 5778 static struct cftype mem_cgroup_files[] = { 5779 { 5780 .name = "usage_in_bytes", 5781 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5782 .read = mem_cgroup_read, 5783 .register_event = mem_cgroup_usage_register_event, 5784 .unregister_event = mem_cgroup_usage_unregister_event, 5785 }, 5786 { 5787 .name = "max_usage_in_bytes", 5788 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5789 .trigger = mem_cgroup_reset, 5790 .read = mem_cgroup_read, 5791 }, 5792 { 5793 .name = "limit_in_bytes", 5794 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5795 .write_string = mem_cgroup_write, 5796 .read = mem_cgroup_read, 5797 }, 5798 { 5799 .name = "soft_limit_in_bytes", 5800 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5801 .write_string = mem_cgroup_write, 5802 .read = mem_cgroup_read, 5803 }, 5804 { 5805 .name = "failcnt", 5806 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5807 .trigger = mem_cgroup_reset, 5808 .read = mem_cgroup_read, 5809 }, 5810 { 5811 .name = "stat", 5812 .read_seq_string = memcg_stat_show, 5813 }, 5814 { 5815 .name = "force_empty", 5816 .trigger = mem_cgroup_force_empty_write, 5817 }, 5818 { 5819 .name = "use_hierarchy", 5820 .write_u64 = mem_cgroup_hierarchy_write, 5821 .read_u64 = mem_cgroup_hierarchy_read, 5822 }, 5823 { 5824 .name = "swappiness", 5825 .read_u64 = mem_cgroup_swappiness_read, 5826 .write_u64 = mem_cgroup_swappiness_write, 5827 }, 5828 { 5829 .name = "move_charge_at_immigrate", 5830 .read_u64 = mem_cgroup_move_charge_read, 5831 .write_u64 = mem_cgroup_move_charge_write, 5832 }, 5833 { 5834 .name = "oom_control", 5835 .read_map = mem_cgroup_oom_control_read, 5836 .write_u64 = mem_cgroup_oom_control_write, 5837 .register_event = mem_cgroup_oom_register_event, 5838 .unregister_event = mem_cgroup_oom_unregister_event, 5839 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5840 }, 5841 #ifdef CONFIG_NUMA 5842 { 5843 .name = "numa_stat", 5844 .read_seq_string = memcg_numa_stat_show, 5845 }, 5846 #endif 5847 #ifdef CONFIG_MEMCG_KMEM 5848 { 5849 .name = "kmem.limit_in_bytes", 5850 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5851 .write_string = mem_cgroup_write, 5852 .read = mem_cgroup_read, 5853 }, 5854 { 5855 .name = "kmem.usage_in_bytes", 5856 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5857 .read = mem_cgroup_read, 5858 }, 5859 { 5860 .name = "kmem.failcnt", 5861 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5862 .trigger = mem_cgroup_reset, 5863 .read = mem_cgroup_read, 5864 }, 5865 { 5866 .name = "kmem.max_usage_in_bytes", 5867 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5868 .trigger = mem_cgroup_reset, 5869 .read = mem_cgroup_read, 5870 }, 5871 #ifdef CONFIG_SLABINFO 5872 { 5873 .name = "kmem.slabinfo", 5874 .read_seq_string = mem_cgroup_slabinfo_read, 5875 }, 5876 #endif 5877 #endif 5878 { }, /* terminate */ 5879 }; 5880 5881 #ifdef CONFIG_MEMCG_SWAP 5882 static struct cftype memsw_cgroup_files[] = { 5883 { 5884 .name = "memsw.usage_in_bytes", 5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5886 .read = mem_cgroup_read, 5887 .register_event = mem_cgroup_usage_register_event, 5888 .unregister_event = mem_cgroup_usage_unregister_event, 5889 }, 5890 { 5891 .name = "memsw.max_usage_in_bytes", 5892 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5893 .trigger = mem_cgroup_reset, 5894 .read = mem_cgroup_read, 5895 }, 5896 { 5897 .name = "memsw.limit_in_bytes", 5898 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5899 .write_string = mem_cgroup_write, 5900 .read = mem_cgroup_read, 5901 }, 5902 { 5903 .name = "memsw.failcnt", 5904 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5905 .trigger = mem_cgroup_reset, 5906 .read = mem_cgroup_read, 5907 }, 5908 { }, /* terminate */ 5909 }; 5910 #endif 5911 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5912 { 5913 struct mem_cgroup_per_node *pn; 5914 struct mem_cgroup_per_zone *mz; 5915 int zone, tmp = node; 5916 /* 5917 * This routine is called against possible nodes. 5918 * But it's BUG to call kmalloc() against offline node. 5919 * 5920 * TODO: this routine can waste much memory for nodes which will 5921 * never be onlined. It's better to use memory hotplug callback 5922 * function. 5923 */ 5924 if (!node_state(node, N_NORMAL_MEMORY)) 5925 tmp = -1; 5926 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5927 if (!pn) 5928 return 1; 5929 5930 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5931 mz = &pn->zoneinfo[zone]; 5932 lruvec_init(&mz->lruvec); 5933 mz->usage_in_excess = 0; 5934 mz->on_tree = false; 5935 mz->memcg = memcg; 5936 } 5937 memcg->info.nodeinfo[node] = pn; 5938 return 0; 5939 } 5940 5941 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5942 { 5943 kfree(memcg->info.nodeinfo[node]); 5944 } 5945 5946 static struct mem_cgroup *mem_cgroup_alloc(void) 5947 { 5948 struct mem_cgroup *memcg; 5949 size_t size = memcg_size(); 5950 5951 /* Can be very big if nr_node_ids is very big */ 5952 if (size < PAGE_SIZE) 5953 memcg = kzalloc(size, GFP_KERNEL); 5954 else 5955 memcg = vzalloc(size); 5956 5957 if (!memcg) 5958 return NULL; 5959 5960 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 5961 if (!memcg->stat) 5962 goto out_free; 5963 spin_lock_init(&memcg->pcp_counter_lock); 5964 return memcg; 5965 5966 out_free: 5967 if (size < PAGE_SIZE) 5968 kfree(memcg); 5969 else 5970 vfree(memcg); 5971 return NULL; 5972 } 5973 5974 /* 5975 * At destroying mem_cgroup, references from swap_cgroup can remain. 5976 * (scanning all at force_empty is too costly...) 5977 * 5978 * Instead of clearing all references at force_empty, we remember 5979 * the number of reference from swap_cgroup and free mem_cgroup when 5980 * it goes down to 0. 5981 * 5982 * Removal of cgroup itself succeeds regardless of refs from swap. 5983 */ 5984 5985 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5986 { 5987 int node; 5988 size_t size = memcg_size(); 5989 5990 mem_cgroup_remove_from_trees(memcg); 5991 free_css_id(&mem_cgroup_subsys, &memcg->css); 5992 5993 for_each_node(node) 5994 free_mem_cgroup_per_zone_info(memcg, node); 5995 5996 free_percpu(memcg->stat); 5997 5998 /* 5999 * We need to make sure that (at least for now), the jump label 6000 * destruction code runs outside of the cgroup lock. This is because 6001 * get_online_cpus(), which is called from the static_branch update, 6002 * can't be called inside the cgroup_lock. cpusets are the ones 6003 * enforcing this dependency, so if they ever change, we might as well. 6004 * 6005 * schedule_work() will guarantee this happens. Be careful if you need 6006 * to move this code around, and make sure it is outside 6007 * the cgroup_lock. 6008 */ 6009 disarm_static_keys(memcg); 6010 if (size < PAGE_SIZE) 6011 kfree(memcg); 6012 else 6013 vfree(memcg); 6014 } 6015 6016 6017 /* 6018 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 6019 * but in process context. The work_freeing structure is overlaid 6020 * on the rcu_freeing structure, which itself is overlaid on memsw. 6021 */ 6022 static void free_work(struct work_struct *work) 6023 { 6024 struct mem_cgroup *memcg; 6025 6026 memcg = container_of(work, struct mem_cgroup, work_freeing); 6027 __mem_cgroup_free(memcg); 6028 } 6029 6030 static void free_rcu(struct rcu_head *rcu_head) 6031 { 6032 struct mem_cgroup *memcg; 6033 6034 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 6035 INIT_WORK(&memcg->work_freeing, free_work); 6036 schedule_work(&memcg->work_freeing); 6037 } 6038 6039 static void mem_cgroup_get(struct mem_cgroup *memcg) 6040 { 6041 atomic_inc(&memcg->refcnt); 6042 } 6043 6044 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 6045 { 6046 if (atomic_sub_and_test(count, &memcg->refcnt)) { 6047 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 6048 call_rcu(&memcg->rcu_freeing, free_rcu); 6049 if (parent) 6050 mem_cgroup_put(parent); 6051 } 6052 } 6053 6054 static void mem_cgroup_put(struct mem_cgroup *memcg) 6055 { 6056 __mem_cgroup_put(memcg, 1); 6057 } 6058 6059 /* 6060 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6061 */ 6062 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6063 { 6064 if (!memcg->res.parent) 6065 return NULL; 6066 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6067 } 6068 EXPORT_SYMBOL(parent_mem_cgroup); 6069 6070 static void __init mem_cgroup_soft_limit_tree_init(void) 6071 { 6072 struct mem_cgroup_tree_per_node *rtpn; 6073 struct mem_cgroup_tree_per_zone *rtpz; 6074 int tmp, node, zone; 6075 6076 for_each_node(node) { 6077 tmp = node; 6078 if (!node_state(node, N_NORMAL_MEMORY)) 6079 tmp = -1; 6080 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6081 BUG_ON(!rtpn); 6082 6083 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6084 6085 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6086 rtpz = &rtpn->rb_tree_per_zone[zone]; 6087 rtpz->rb_root = RB_ROOT; 6088 spin_lock_init(&rtpz->lock); 6089 } 6090 } 6091 } 6092 6093 static struct cgroup_subsys_state * __ref 6094 mem_cgroup_css_alloc(struct cgroup *cont) 6095 { 6096 struct mem_cgroup *memcg; 6097 long error = -ENOMEM; 6098 int node; 6099 6100 memcg = mem_cgroup_alloc(); 6101 if (!memcg) 6102 return ERR_PTR(error); 6103 6104 for_each_node(node) 6105 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6106 goto free_out; 6107 6108 /* root ? */ 6109 if (cont->parent == NULL) { 6110 root_mem_cgroup = memcg; 6111 res_counter_init(&memcg->res, NULL); 6112 res_counter_init(&memcg->memsw, NULL); 6113 res_counter_init(&memcg->kmem, NULL); 6114 } 6115 6116 memcg->last_scanned_node = MAX_NUMNODES; 6117 INIT_LIST_HEAD(&memcg->oom_notify); 6118 atomic_set(&memcg->refcnt, 1); 6119 memcg->move_charge_at_immigrate = 0; 6120 mutex_init(&memcg->thresholds_lock); 6121 spin_lock_init(&memcg->move_lock); 6122 6123 return &memcg->css; 6124 6125 free_out: 6126 __mem_cgroup_free(memcg); 6127 return ERR_PTR(error); 6128 } 6129 6130 static int 6131 mem_cgroup_css_online(struct cgroup *cont) 6132 { 6133 struct mem_cgroup *memcg, *parent; 6134 int error = 0; 6135 6136 if (!cont->parent) 6137 return 0; 6138 6139 mutex_lock(&memcg_create_mutex); 6140 memcg = mem_cgroup_from_cont(cont); 6141 parent = mem_cgroup_from_cont(cont->parent); 6142 6143 memcg->use_hierarchy = parent->use_hierarchy; 6144 memcg->oom_kill_disable = parent->oom_kill_disable; 6145 memcg->swappiness = mem_cgroup_swappiness(parent); 6146 6147 if (parent->use_hierarchy) { 6148 res_counter_init(&memcg->res, &parent->res); 6149 res_counter_init(&memcg->memsw, &parent->memsw); 6150 res_counter_init(&memcg->kmem, &parent->kmem); 6151 6152 /* 6153 * We increment refcnt of the parent to ensure that we can 6154 * safely access it on res_counter_charge/uncharge. 6155 * This refcnt will be decremented when freeing this 6156 * mem_cgroup(see mem_cgroup_put). 6157 */ 6158 mem_cgroup_get(parent); 6159 } else { 6160 res_counter_init(&memcg->res, NULL); 6161 res_counter_init(&memcg->memsw, NULL); 6162 res_counter_init(&memcg->kmem, NULL); 6163 /* 6164 * Deeper hierachy with use_hierarchy == false doesn't make 6165 * much sense so let cgroup subsystem know about this 6166 * unfortunate state in our controller. 6167 */ 6168 if (parent != root_mem_cgroup) 6169 mem_cgroup_subsys.broken_hierarchy = true; 6170 } 6171 6172 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6173 mutex_unlock(&memcg_create_mutex); 6174 if (error) { 6175 /* 6176 * We call put now because our (and parent's) refcnts 6177 * are already in place. mem_cgroup_put() will internally 6178 * call __mem_cgroup_free, so return directly 6179 */ 6180 mem_cgroup_put(memcg); 6181 if (parent->use_hierarchy) 6182 mem_cgroup_put(parent); 6183 } 6184 return error; 6185 } 6186 6187 static void mem_cgroup_css_offline(struct cgroup *cont) 6188 { 6189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6190 6191 mem_cgroup_reparent_charges(memcg); 6192 mem_cgroup_destroy_all_caches(memcg); 6193 } 6194 6195 static void mem_cgroup_css_free(struct cgroup *cont) 6196 { 6197 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6198 6199 kmem_cgroup_destroy(memcg); 6200 6201 mem_cgroup_put(memcg); 6202 } 6203 6204 #ifdef CONFIG_MMU 6205 /* Handlers for move charge at task migration. */ 6206 #define PRECHARGE_COUNT_AT_ONCE 256 6207 static int mem_cgroup_do_precharge(unsigned long count) 6208 { 6209 int ret = 0; 6210 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6211 struct mem_cgroup *memcg = mc.to; 6212 6213 if (mem_cgroup_is_root(memcg)) { 6214 mc.precharge += count; 6215 /* we don't need css_get for root */ 6216 return ret; 6217 } 6218 /* try to charge at once */ 6219 if (count > 1) { 6220 struct res_counter *dummy; 6221 /* 6222 * "memcg" cannot be under rmdir() because we've already checked 6223 * by cgroup_lock_live_cgroup() that it is not removed and we 6224 * are still under the same cgroup_mutex. So we can postpone 6225 * css_get(). 6226 */ 6227 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6228 goto one_by_one; 6229 if (do_swap_account && res_counter_charge(&memcg->memsw, 6230 PAGE_SIZE * count, &dummy)) { 6231 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6232 goto one_by_one; 6233 } 6234 mc.precharge += count; 6235 return ret; 6236 } 6237 one_by_one: 6238 /* fall back to one by one charge */ 6239 while (count--) { 6240 if (signal_pending(current)) { 6241 ret = -EINTR; 6242 break; 6243 } 6244 if (!batch_count--) { 6245 batch_count = PRECHARGE_COUNT_AT_ONCE; 6246 cond_resched(); 6247 } 6248 ret = __mem_cgroup_try_charge(NULL, 6249 GFP_KERNEL, 1, &memcg, false); 6250 if (ret) 6251 /* mem_cgroup_clear_mc() will do uncharge later */ 6252 return ret; 6253 mc.precharge++; 6254 } 6255 return ret; 6256 } 6257 6258 /** 6259 * get_mctgt_type - get target type of moving charge 6260 * @vma: the vma the pte to be checked belongs 6261 * @addr: the address corresponding to the pte to be checked 6262 * @ptent: the pte to be checked 6263 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6264 * 6265 * Returns 6266 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6267 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6268 * move charge. if @target is not NULL, the page is stored in target->page 6269 * with extra refcnt got(Callers should handle it). 6270 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6271 * target for charge migration. if @target is not NULL, the entry is stored 6272 * in target->ent. 6273 * 6274 * Called with pte lock held. 6275 */ 6276 union mc_target { 6277 struct page *page; 6278 swp_entry_t ent; 6279 }; 6280 6281 enum mc_target_type { 6282 MC_TARGET_NONE = 0, 6283 MC_TARGET_PAGE, 6284 MC_TARGET_SWAP, 6285 }; 6286 6287 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6288 unsigned long addr, pte_t ptent) 6289 { 6290 struct page *page = vm_normal_page(vma, addr, ptent); 6291 6292 if (!page || !page_mapped(page)) 6293 return NULL; 6294 if (PageAnon(page)) { 6295 /* we don't move shared anon */ 6296 if (!move_anon()) 6297 return NULL; 6298 } else if (!move_file()) 6299 /* we ignore mapcount for file pages */ 6300 return NULL; 6301 if (!get_page_unless_zero(page)) 6302 return NULL; 6303 6304 return page; 6305 } 6306 6307 #ifdef CONFIG_SWAP 6308 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6309 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6310 { 6311 struct page *page = NULL; 6312 swp_entry_t ent = pte_to_swp_entry(ptent); 6313 6314 if (!move_anon() || non_swap_entry(ent)) 6315 return NULL; 6316 /* 6317 * Because lookup_swap_cache() updates some statistics counter, 6318 * we call find_get_page() with swapper_space directly. 6319 */ 6320 page = find_get_page(swap_address_space(ent), ent.val); 6321 if (do_swap_account) 6322 entry->val = ent.val; 6323 6324 return page; 6325 } 6326 #else 6327 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6328 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6329 { 6330 return NULL; 6331 } 6332 #endif 6333 6334 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6335 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6336 { 6337 struct page *page = NULL; 6338 struct address_space *mapping; 6339 pgoff_t pgoff; 6340 6341 if (!vma->vm_file) /* anonymous vma */ 6342 return NULL; 6343 if (!move_file()) 6344 return NULL; 6345 6346 mapping = vma->vm_file->f_mapping; 6347 if (pte_none(ptent)) 6348 pgoff = linear_page_index(vma, addr); 6349 else /* pte_file(ptent) is true */ 6350 pgoff = pte_to_pgoff(ptent); 6351 6352 /* page is moved even if it's not RSS of this task(page-faulted). */ 6353 page = find_get_page(mapping, pgoff); 6354 6355 #ifdef CONFIG_SWAP 6356 /* shmem/tmpfs may report page out on swap: account for that too. */ 6357 if (radix_tree_exceptional_entry(page)) { 6358 swp_entry_t swap = radix_to_swp_entry(page); 6359 if (do_swap_account) 6360 *entry = swap; 6361 page = find_get_page(swap_address_space(swap), swap.val); 6362 } 6363 #endif 6364 return page; 6365 } 6366 6367 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6368 unsigned long addr, pte_t ptent, union mc_target *target) 6369 { 6370 struct page *page = NULL; 6371 struct page_cgroup *pc; 6372 enum mc_target_type ret = MC_TARGET_NONE; 6373 swp_entry_t ent = { .val = 0 }; 6374 6375 if (pte_present(ptent)) 6376 page = mc_handle_present_pte(vma, addr, ptent); 6377 else if (is_swap_pte(ptent)) 6378 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6379 else if (pte_none(ptent) || pte_file(ptent)) 6380 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6381 6382 if (!page && !ent.val) 6383 return ret; 6384 if (page) { 6385 pc = lookup_page_cgroup(page); 6386 /* 6387 * Do only loose check w/o page_cgroup lock. 6388 * mem_cgroup_move_account() checks the pc is valid or not under 6389 * the lock. 6390 */ 6391 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6392 ret = MC_TARGET_PAGE; 6393 if (target) 6394 target->page = page; 6395 } 6396 if (!ret || !target) 6397 put_page(page); 6398 } 6399 /* There is a swap entry and a page doesn't exist or isn't charged */ 6400 if (ent.val && !ret && 6401 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6402 ret = MC_TARGET_SWAP; 6403 if (target) 6404 target->ent = ent; 6405 } 6406 return ret; 6407 } 6408 6409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6410 /* 6411 * We don't consider swapping or file mapped pages because THP does not 6412 * support them for now. 6413 * Caller should make sure that pmd_trans_huge(pmd) is true. 6414 */ 6415 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6416 unsigned long addr, pmd_t pmd, union mc_target *target) 6417 { 6418 struct page *page = NULL; 6419 struct page_cgroup *pc; 6420 enum mc_target_type ret = MC_TARGET_NONE; 6421 6422 page = pmd_page(pmd); 6423 VM_BUG_ON(!page || !PageHead(page)); 6424 if (!move_anon()) 6425 return ret; 6426 pc = lookup_page_cgroup(page); 6427 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6428 ret = MC_TARGET_PAGE; 6429 if (target) { 6430 get_page(page); 6431 target->page = page; 6432 } 6433 } 6434 return ret; 6435 } 6436 #else 6437 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6438 unsigned long addr, pmd_t pmd, union mc_target *target) 6439 { 6440 return MC_TARGET_NONE; 6441 } 6442 #endif 6443 6444 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6445 unsigned long addr, unsigned long end, 6446 struct mm_walk *walk) 6447 { 6448 struct vm_area_struct *vma = walk->private; 6449 pte_t *pte; 6450 spinlock_t *ptl; 6451 6452 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6453 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6454 mc.precharge += HPAGE_PMD_NR; 6455 spin_unlock(&vma->vm_mm->page_table_lock); 6456 return 0; 6457 } 6458 6459 if (pmd_trans_unstable(pmd)) 6460 return 0; 6461 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6462 for (; addr != end; pte++, addr += PAGE_SIZE) 6463 if (get_mctgt_type(vma, addr, *pte, NULL)) 6464 mc.precharge++; /* increment precharge temporarily */ 6465 pte_unmap_unlock(pte - 1, ptl); 6466 cond_resched(); 6467 6468 return 0; 6469 } 6470 6471 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6472 { 6473 unsigned long precharge; 6474 struct vm_area_struct *vma; 6475 6476 down_read(&mm->mmap_sem); 6477 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6478 struct mm_walk mem_cgroup_count_precharge_walk = { 6479 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6480 .mm = mm, 6481 .private = vma, 6482 }; 6483 if (is_vm_hugetlb_page(vma)) 6484 continue; 6485 walk_page_range(vma->vm_start, vma->vm_end, 6486 &mem_cgroup_count_precharge_walk); 6487 } 6488 up_read(&mm->mmap_sem); 6489 6490 precharge = mc.precharge; 6491 mc.precharge = 0; 6492 6493 return precharge; 6494 } 6495 6496 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6497 { 6498 unsigned long precharge = mem_cgroup_count_precharge(mm); 6499 6500 VM_BUG_ON(mc.moving_task); 6501 mc.moving_task = current; 6502 return mem_cgroup_do_precharge(precharge); 6503 } 6504 6505 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6506 static void __mem_cgroup_clear_mc(void) 6507 { 6508 struct mem_cgroup *from = mc.from; 6509 struct mem_cgroup *to = mc.to; 6510 6511 /* we must uncharge all the leftover precharges from mc.to */ 6512 if (mc.precharge) { 6513 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6514 mc.precharge = 0; 6515 } 6516 /* 6517 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6518 * we must uncharge here. 6519 */ 6520 if (mc.moved_charge) { 6521 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6522 mc.moved_charge = 0; 6523 } 6524 /* we must fixup refcnts and charges */ 6525 if (mc.moved_swap) { 6526 /* uncharge swap account from the old cgroup */ 6527 if (!mem_cgroup_is_root(mc.from)) 6528 res_counter_uncharge(&mc.from->memsw, 6529 PAGE_SIZE * mc.moved_swap); 6530 __mem_cgroup_put(mc.from, mc.moved_swap); 6531 6532 if (!mem_cgroup_is_root(mc.to)) { 6533 /* 6534 * we charged both to->res and to->memsw, so we should 6535 * uncharge to->res. 6536 */ 6537 res_counter_uncharge(&mc.to->res, 6538 PAGE_SIZE * mc.moved_swap); 6539 } 6540 /* we've already done mem_cgroup_get(mc.to) */ 6541 mc.moved_swap = 0; 6542 } 6543 memcg_oom_recover(from); 6544 memcg_oom_recover(to); 6545 wake_up_all(&mc.waitq); 6546 } 6547 6548 static void mem_cgroup_clear_mc(void) 6549 { 6550 struct mem_cgroup *from = mc.from; 6551 6552 /* 6553 * we must clear moving_task before waking up waiters at the end of 6554 * task migration. 6555 */ 6556 mc.moving_task = NULL; 6557 __mem_cgroup_clear_mc(); 6558 spin_lock(&mc.lock); 6559 mc.from = NULL; 6560 mc.to = NULL; 6561 spin_unlock(&mc.lock); 6562 mem_cgroup_end_move(from); 6563 } 6564 6565 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6566 struct cgroup_taskset *tset) 6567 { 6568 struct task_struct *p = cgroup_taskset_first(tset); 6569 int ret = 0; 6570 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 6571 unsigned long move_charge_at_immigrate; 6572 6573 /* 6574 * We are now commited to this value whatever it is. Changes in this 6575 * tunable will only affect upcoming migrations, not the current one. 6576 * So we need to save it, and keep it going. 6577 */ 6578 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6579 if (move_charge_at_immigrate) { 6580 struct mm_struct *mm; 6581 struct mem_cgroup *from = mem_cgroup_from_task(p); 6582 6583 VM_BUG_ON(from == memcg); 6584 6585 mm = get_task_mm(p); 6586 if (!mm) 6587 return 0; 6588 /* We move charges only when we move a owner of the mm */ 6589 if (mm->owner == p) { 6590 VM_BUG_ON(mc.from); 6591 VM_BUG_ON(mc.to); 6592 VM_BUG_ON(mc.precharge); 6593 VM_BUG_ON(mc.moved_charge); 6594 VM_BUG_ON(mc.moved_swap); 6595 mem_cgroup_start_move(from); 6596 spin_lock(&mc.lock); 6597 mc.from = from; 6598 mc.to = memcg; 6599 mc.immigrate_flags = move_charge_at_immigrate; 6600 spin_unlock(&mc.lock); 6601 /* We set mc.moving_task later */ 6602 6603 ret = mem_cgroup_precharge_mc(mm); 6604 if (ret) 6605 mem_cgroup_clear_mc(); 6606 } 6607 mmput(mm); 6608 } 6609 return ret; 6610 } 6611 6612 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6613 struct cgroup_taskset *tset) 6614 { 6615 mem_cgroup_clear_mc(); 6616 } 6617 6618 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6619 unsigned long addr, unsigned long end, 6620 struct mm_walk *walk) 6621 { 6622 int ret = 0; 6623 struct vm_area_struct *vma = walk->private; 6624 pte_t *pte; 6625 spinlock_t *ptl; 6626 enum mc_target_type target_type; 6627 union mc_target target; 6628 struct page *page; 6629 struct page_cgroup *pc; 6630 6631 /* 6632 * We don't take compound_lock() here but no race with splitting thp 6633 * happens because: 6634 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6635 * under splitting, which means there's no concurrent thp split, 6636 * - if another thread runs into split_huge_page() just after we 6637 * entered this if-block, the thread must wait for page table lock 6638 * to be unlocked in __split_huge_page_splitting(), where the main 6639 * part of thp split is not executed yet. 6640 */ 6641 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6642 if (mc.precharge < HPAGE_PMD_NR) { 6643 spin_unlock(&vma->vm_mm->page_table_lock); 6644 return 0; 6645 } 6646 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6647 if (target_type == MC_TARGET_PAGE) { 6648 page = target.page; 6649 if (!isolate_lru_page(page)) { 6650 pc = lookup_page_cgroup(page); 6651 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6652 pc, mc.from, mc.to)) { 6653 mc.precharge -= HPAGE_PMD_NR; 6654 mc.moved_charge += HPAGE_PMD_NR; 6655 } 6656 putback_lru_page(page); 6657 } 6658 put_page(page); 6659 } 6660 spin_unlock(&vma->vm_mm->page_table_lock); 6661 return 0; 6662 } 6663 6664 if (pmd_trans_unstable(pmd)) 6665 return 0; 6666 retry: 6667 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6668 for (; addr != end; addr += PAGE_SIZE) { 6669 pte_t ptent = *(pte++); 6670 swp_entry_t ent; 6671 6672 if (!mc.precharge) 6673 break; 6674 6675 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6676 case MC_TARGET_PAGE: 6677 page = target.page; 6678 if (isolate_lru_page(page)) 6679 goto put; 6680 pc = lookup_page_cgroup(page); 6681 if (!mem_cgroup_move_account(page, 1, pc, 6682 mc.from, mc.to)) { 6683 mc.precharge--; 6684 /* we uncharge from mc.from later. */ 6685 mc.moved_charge++; 6686 } 6687 putback_lru_page(page); 6688 put: /* get_mctgt_type() gets the page */ 6689 put_page(page); 6690 break; 6691 case MC_TARGET_SWAP: 6692 ent = target.ent; 6693 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6694 mc.precharge--; 6695 /* we fixup refcnts and charges later. */ 6696 mc.moved_swap++; 6697 } 6698 break; 6699 default: 6700 break; 6701 } 6702 } 6703 pte_unmap_unlock(pte - 1, ptl); 6704 cond_resched(); 6705 6706 if (addr != end) { 6707 /* 6708 * We have consumed all precharges we got in can_attach(). 6709 * We try charge one by one, but don't do any additional 6710 * charges to mc.to if we have failed in charge once in attach() 6711 * phase. 6712 */ 6713 ret = mem_cgroup_do_precharge(1); 6714 if (!ret) 6715 goto retry; 6716 } 6717 6718 return ret; 6719 } 6720 6721 static void mem_cgroup_move_charge(struct mm_struct *mm) 6722 { 6723 struct vm_area_struct *vma; 6724 6725 lru_add_drain_all(); 6726 retry: 6727 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6728 /* 6729 * Someone who are holding the mmap_sem might be waiting in 6730 * waitq. So we cancel all extra charges, wake up all waiters, 6731 * and retry. Because we cancel precharges, we might not be able 6732 * to move enough charges, but moving charge is a best-effort 6733 * feature anyway, so it wouldn't be a big problem. 6734 */ 6735 __mem_cgroup_clear_mc(); 6736 cond_resched(); 6737 goto retry; 6738 } 6739 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6740 int ret; 6741 struct mm_walk mem_cgroup_move_charge_walk = { 6742 .pmd_entry = mem_cgroup_move_charge_pte_range, 6743 .mm = mm, 6744 .private = vma, 6745 }; 6746 if (is_vm_hugetlb_page(vma)) 6747 continue; 6748 ret = walk_page_range(vma->vm_start, vma->vm_end, 6749 &mem_cgroup_move_charge_walk); 6750 if (ret) 6751 /* 6752 * means we have consumed all precharges and failed in 6753 * doing additional charge. Just abandon here. 6754 */ 6755 break; 6756 } 6757 up_read(&mm->mmap_sem); 6758 } 6759 6760 static void mem_cgroup_move_task(struct cgroup *cont, 6761 struct cgroup_taskset *tset) 6762 { 6763 struct task_struct *p = cgroup_taskset_first(tset); 6764 struct mm_struct *mm = get_task_mm(p); 6765 6766 if (mm) { 6767 if (mc.to) 6768 mem_cgroup_move_charge(mm); 6769 mmput(mm); 6770 } 6771 if (mc.to) 6772 mem_cgroup_clear_mc(); 6773 } 6774 #else /* !CONFIG_MMU */ 6775 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6776 struct cgroup_taskset *tset) 6777 { 6778 return 0; 6779 } 6780 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6781 struct cgroup_taskset *tset) 6782 { 6783 } 6784 static void mem_cgroup_move_task(struct cgroup *cont, 6785 struct cgroup_taskset *tset) 6786 { 6787 } 6788 #endif 6789 6790 struct cgroup_subsys mem_cgroup_subsys = { 6791 .name = "memory", 6792 .subsys_id = mem_cgroup_subsys_id, 6793 .css_alloc = mem_cgroup_css_alloc, 6794 .css_online = mem_cgroup_css_online, 6795 .css_offline = mem_cgroup_css_offline, 6796 .css_free = mem_cgroup_css_free, 6797 .can_attach = mem_cgroup_can_attach, 6798 .cancel_attach = mem_cgroup_cancel_attach, 6799 .attach = mem_cgroup_move_task, 6800 .base_cftypes = mem_cgroup_files, 6801 .early_init = 0, 6802 .use_id = 1, 6803 }; 6804 6805 #ifdef CONFIG_MEMCG_SWAP 6806 static int __init enable_swap_account(char *s) 6807 { 6808 /* consider enabled if no parameter or 1 is given */ 6809 if (!strcmp(s, "1")) 6810 really_do_swap_account = 1; 6811 else if (!strcmp(s, "0")) 6812 really_do_swap_account = 0; 6813 return 1; 6814 } 6815 __setup("swapaccount=", enable_swap_account); 6816 6817 static void __init memsw_file_init(void) 6818 { 6819 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6820 } 6821 6822 static void __init enable_swap_cgroup(void) 6823 { 6824 if (!mem_cgroup_disabled() && really_do_swap_account) { 6825 do_swap_account = 1; 6826 memsw_file_init(); 6827 } 6828 } 6829 6830 #else 6831 static void __init enable_swap_cgroup(void) 6832 { 6833 } 6834 #endif 6835 6836 /* 6837 * subsys_initcall() for memory controller. 6838 * 6839 * Some parts like hotcpu_notifier() have to be initialized from this context 6840 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 6841 * everything that doesn't depend on a specific mem_cgroup structure should 6842 * be initialized from here. 6843 */ 6844 static int __init mem_cgroup_init(void) 6845 { 6846 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6847 enable_swap_cgroup(); 6848 mem_cgroup_soft_limit_tree_init(); 6849 memcg_stock_init(); 6850 return 0; 6851 } 6852 subsys_initcall(mem_cgroup_init); 6853