xref: /linux/mm/memcontrol.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90 
91 /* BPF memory accounting disabled? */
92 static bool cgroup_memory_nobpf __ro_after_init;
93 
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97 
98 static inline bool task_is_dying(void)
99 {
100 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
101 		(current->flags & PF_EXITING);
102 }
103 
104 /* Some nice accessors for the vmpressure. */
105 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
106 {
107 	if (!memcg)
108 		memcg = root_mem_cgroup;
109 	return &memcg->vmpressure;
110 }
111 
112 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
113 {
114 	return container_of(vmpr, struct mem_cgroup, vmpressure);
115 }
116 
117 #define CURRENT_OBJCG_UPDATE_BIT 0
118 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
119 
120 static DEFINE_SPINLOCK(objcg_lock);
121 
122 bool mem_cgroup_kmem_disabled(void)
123 {
124 	return cgroup_memory_nokmem;
125 }
126 
127 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
128 				      unsigned int nr_pages);
129 
130 static void obj_cgroup_release(struct percpu_ref *ref)
131 {
132 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
133 	unsigned int nr_bytes;
134 	unsigned int nr_pages;
135 	unsigned long flags;
136 
137 	/*
138 	 * At this point all allocated objects are freed, and
139 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
140 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
141 	 *
142 	 * The following sequence can lead to it:
143 	 * 1) CPU0: objcg == stock->cached_objcg
144 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
145 	 *          PAGE_SIZE bytes are charged
146 	 * 3) CPU1: a process from another memcg is allocating something,
147 	 *          the stock if flushed,
148 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
149 	 * 5) CPU0: we do release this object,
150 	 *          92 bytes are added to stock->nr_bytes
151 	 * 6) CPU0: stock is flushed,
152 	 *          92 bytes are added to objcg->nr_charged_bytes
153 	 *
154 	 * In the result, nr_charged_bytes == PAGE_SIZE.
155 	 * This page will be uncharged in obj_cgroup_release().
156 	 */
157 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
158 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
159 	nr_pages = nr_bytes >> PAGE_SHIFT;
160 
161 	if (nr_pages)
162 		obj_cgroup_uncharge_pages(objcg, nr_pages);
163 
164 	spin_lock_irqsave(&objcg_lock, flags);
165 	list_del(&objcg->list);
166 	spin_unlock_irqrestore(&objcg_lock, flags);
167 
168 	percpu_ref_exit(ref);
169 	kfree_rcu(objcg, rcu);
170 }
171 
172 static struct obj_cgroup *obj_cgroup_alloc(void)
173 {
174 	struct obj_cgroup *objcg;
175 	int ret;
176 
177 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
178 	if (!objcg)
179 		return NULL;
180 
181 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
182 			      GFP_KERNEL);
183 	if (ret) {
184 		kfree(objcg);
185 		return NULL;
186 	}
187 	INIT_LIST_HEAD(&objcg->list);
188 	return objcg;
189 }
190 
191 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
192 				  struct mem_cgroup *parent)
193 {
194 	struct obj_cgroup *objcg, *iter;
195 
196 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
197 
198 	spin_lock_irq(&objcg_lock);
199 
200 	/* 1) Ready to reparent active objcg. */
201 	list_add(&objcg->list, &memcg->objcg_list);
202 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
203 	list_for_each_entry(iter, &memcg->objcg_list, list)
204 		WRITE_ONCE(iter->memcg, parent);
205 	/* 3) Move already reparented objcgs to the parent's list */
206 	list_splice(&memcg->objcg_list, &parent->objcg_list);
207 
208 	spin_unlock_irq(&objcg_lock);
209 
210 	percpu_ref_kill(&objcg->refcnt);
211 }
212 
213 /*
214  * A lot of the calls to the cache allocation functions are expected to be
215  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
216  * conditional to this static branch, we'll have to allow modules that does
217  * kmem_cache_alloc and the such to see this symbol as well
218  */
219 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
220 EXPORT_SYMBOL(memcg_kmem_online_key);
221 
222 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
223 EXPORT_SYMBOL(memcg_bpf_enabled_key);
224 
225 /**
226  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
227  * @folio: folio of interest
228  *
229  * If memcg is bound to the default hierarchy, css of the memcg associated
230  * with @folio is returned.  The returned css remains associated with @folio
231  * until it is released.
232  *
233  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
234  * is returned.
235  */
236 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
237 {
238 	struct mem_cgroup *memcg = folio_memcg(folio);
239 
240 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		memcg = root_mem_cgroup;
242 
243 	return &memcg->css;
244 }
245 
246 /**
247  * page_cgroup_ino - return inode number of the memcg a page is charged to
248  * @page: the page
249  *
250  * Look up the closest online ancestor of the memory cgroup @page is charged to
251  * and return its inode number or 0 if @page is not charged to any cgroup. It
252  * is safe to call this function without holding a reference to @page.
253  *
254  * Note, this function is inherently racy, because there is nothing to prevent
255  * the cgroup inode from getting torn down and potentially reallocated a moment
256  * after page_cgroup_ino() returns, so it only should be used by callers that
257  * do not care (such as procfs interfaces).
258  */
259 ino_t page_cgroup_ino(struct page *page)
260 {
261 	struct mem_cgroup *memcg;
262 	unsigned long ino = 0;
263 
264 	rcu_read_lock();
265 	/* page_folio() is racy here, but the entire function is racy anyway */
266 	memcg = folio_memcg_check(page_folio(page));
267 
268 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
269 		memcg = parent_mem_cgroup(memcg);
270 	if (memcg)
271 		ino = cgroup_ino(memcg->css.cgroup);
272 	rcu_read_unlock();
273 	return ino;
274 }
275 
276 /* Subset of node_stat_item for memcg stats */
277 static const unsigned int memcg_node_stat_items[] = {
278 	NR_INACTIVE_ANON,
279 	NR_ACTIVE_ANON,
280 	NR_INACTIVE_FILE,
281 	NR_ACTIVE_FILE,
282 	NR_UNEVICTABLE,
283 	NR_SLAB_RECLAIMABLE_B,
284 	NR_SLAB_UNRECLAIMABLE_B,
285 	WORKINGSET_REFAULT_ANON,
286 	WORKINGSET_REFAULT_FILE,
287 	WORKINGSET_ACTIVATE_ANON,
288 	WORKINGSET_ACTIVATE_FILE,
289 	WORKINGSET_RESTORE_ANON,
290 	WORKINGSET_RESTORE_FILE,
291 	WORKINGSET_NODERECLAIM,
292 	NR_ANON_MAPPED,
293 	NR_FILE_MAPPED,
294 	NR_FILE_PAGES,
295 	NR_FILE_DIRTY,
296 	NR_WRITEBACK,
297 	NR_SHMEM,
298 	NR_SHMEM_THPS,
299 	NR_FILE_THPS,
300 	NR_ANON_THPS,
301 	NR_KERNEL_STACK_KB,
302 	NR_PAGETABLE,
303 	NR_SECONDARY_PAGETABLE,
304 #ifdef CONFIG_SWAP
305 	NR_SWAPCACHE,
306 #endif
307 #ifdef CONFIG_NUMA_BALANCING
308 	PGPROMOTE_SUCCESS,
309 #endif
310 	PGDEMOTE_KSWAPD,
311 	PGDEMOTE_DIRECT,
312 	PGDEMOTE_KHUGEPAGED,
313 };
314 
315 static const unsigned int memcg_stat_items[] = {
316 	MEMCG_SWAP,
317 	MEMCG_SOCK,
318 	MEMCG_PERCPU_B,
319 	MEMCG_VMALLOC,
320 	MEMCG_KMEM,
321 	MEMCG_ZSWAP_B,
322 	MEMCG_ZSWAPPED,
323 };
324 
325 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
326 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
327 			   ARRAY_SIZE(memcg_stat_items))
328 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
329 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
330 
331 static void init_memcg_stats(void)
332 {
333 	u8 i, j = 0;
334 
335 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
336 
337 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
338 
339 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
340 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
341 
342 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
343 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
344 }
345 
346 static inline int memcg_stats_index(int idx)
347 {
348 	return mem_cgroup_stats_index[idx];
349 }
350 
351 struct lruvec_stats_percpu {
352 	/* Local (CPU and cgroup) state */
353 	long state[NR_MEMCG_NODE_STAT_ITEMS];
354 
355 	/* Delta calculation for lockless upward propagation */
356 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
357 };
358 
359 struct lruvec_stats {
360 	/* Aggregated (CPU and subtree) state */
361 	long state[NR_MEMCG_NODE_STAT_ITEMS];
362 
363 	/* Non-hierarchical (CPU aggregated) state */
364 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
365 
366 	/* Pending child counts during tree propagation */
367 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
368 };
369 
370 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
371 {
372 	struct mem_cgroup_per_node *pn;
373 	long x;
374 	int i;
375 
376 	if (mem_cgroup_disabled())
377 		return node_page_state(lruvec_pgdat(lruvec), idx);
378 
379 	i = memcg_stats_index(idx);
380 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
381 		return 0;
382 
383 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
384 	x = READ_ONCE(pn->lruvec_stats->state[i]);
385 #ifdef CONFIG_SMP
386 	if (x < 0)
387 		x = 0;
388 #endif
389 	return x;
390 }
391 
392 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
393 				      enum node_stat_item idx)
394 {
395 	struct mem_cgroup_per_node *pn;
396 	long x;
397 	int i;
398 
399 	if (mem_cgroup_disabled())
400 		return node_page_state(lruvec_pgdat(lruvec), idx);
401 
402 	i = memcg_stats_index(idx);
403 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
404 		return 0;
405 
406 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
407 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
408 #ifdef CONFIG_SMP
409 	if (x < 0)
410 		x = 0;
411 #endif
412 	return x;
413 }
414 
415 /* Subset of vm_event_item to report for memcg event stats */
416 static const unsigned int memcg_vm_event_stat[] = {
417 #ifdef CONFIG_MEMCG_V1
418 	PGPGIN,
419 	PGPGOUT,
420 #endif
421 	PGSCAN_KSWAPD,
422 	PGSCAN_DIRECT,
423 	PGSCAN_KHUGEPAGED,
424 	PGSTEAL_KSWAPD,
425 	PGSTEAL_DIRECT,
426 	PGSTEAL_KHUGEPAGED,
427 	PGFAULT,
428 	PGMAJFAULT,
429 	PGREFILL,
430 	PGACTIVATE,
431 	PGDEACTIVATE,
432 	PGLAZYFREE,
433 	PGLAZYFREED,
434 #ifdef CONFIG_ZSWAP
435 	ZSWPIN,
436 	ZSWPOUT,
437 	ZSWPWB,
438 #endif
439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
440 	THP_FAULT_ALLOC,
441 	THP_COLLAPSE_ALLOC,
442 	THP_SWPOUT,
443 	THP_SWPOUT_FALLBACK,
444 #endif
445 #ifdef CONFIG_NUMA_BALANCING
446 	NUMA_PAGE_MIGRATE,
447 	NUMA_PTE_UPDATES,
448 	NUMA_HINT_FAULTS,
449 #endif
450 };
451 
452 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
453 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
454 
455 static void init_memcg_events(void)
456 {
457 	u8 i;
458 
459 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
460 
461 	memset(mem_cgroup_events_index, U8_MAX,
462 	       sizeof(mem_cgroup_events_index));
463 
464 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
465 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
466 }
467 
468 static inline int memcg_events_index(enum vm_event_item idx)
469 {
470 	return mem_cgroup_events_index[idx];
471 }
472 
473 struct memcg_vmstats_percpu {
474 	/* Stats updates since the last flush */
475 	unsigned int			stats_updates;
476 
477 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
478 	struct memcg_vmstats_percpu	*parent;
479 	struct memcg_vmstats		*vmstats;
480 
481 	/* The above should fit a single cacheline for memcg_rstat_updated() */
482 
483 	/* Local (CPU and cgroup) page state & events */
484 	long			state[MEMCG_VMSTAT_SIZE];
485 	unsigned long		events[NR_MEMCG_EVENTS];
486 
487 	/* Delta calculation for lockless upward propagation */
488 	long			state_prev[MEMCG_VMSTAT_SIZE];
489 	unsigned long		events_prev[NR_MEMCG_EVENTS];
490 } ____cacheline_aligned;
491 
492 struct memcg_vmstats {
493 	/* Aggregated (CPU and subtree) page state & events */
494 	long			state[MEMCG_VMSTAT_SIZE];
495 	unsigned long		events[NR_MEMCG_EVENTS];
496 
497 	/* Non-hierarchical (CPU aggregated) page state & events */
498 	long			state_local[MEMCG_VMSTAT_SIZE];
499 	unsigned long		events_local[NR_MEMCG_EVENTS];
500 
501 	/* Pending child counts during tree propagation */
502 	long			state_pending[MEMCG_VMSTAT_SIZE];
503 	unsigned long		events_pending[NR_MEMCG_EVENTS];
504 
505 	/* Stats updates since the last flush */
506 	atomic64_t		stats_updates;
507 };
508 
509 /*
510  * memcg and lruvec stats flushing
511  *
512  * Many codepaths leading to stats update or read are performance sensitive and
513  * adding stats flushing in such codepaths is not desirable. So, to optimize the
514  * flushing the kernel does:
515  *
516  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
517  *    rstat update tree grow unbounded.
518  *
519  * 2) Flush the stats synchronously on reader side only when there are more than
520  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
521  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
522  *    only for 2 seconds due to (1).
523  */
524 static void flush_memcg_stats_dwork(struct work_struct *w);
525 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
526 static u64 flush_last_time;
527 
528 #define FLUSH_TIME (2UL*HZ)
529 
530 /*
531  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
532  * not rely on this as part of an acquired spinlock_t lock. These functions are
533  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
534  * is sufficient.
535  */
536 static void memcg_stats_lock(void)
537 {
538 	preempt_disable_nested();
539 	VM_WARN_ON_IRQS_ENABLED();
540 }
541 
542 static void __memcg_stats_lock(void)
543 {
544 	preempt_disable_nested();
545 }
546 
547 static void memcg_stats_unlock(void)
548 {
549 	preempt_enable_nested();
550 }
551 
552 
553 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
554 {
555 	return atomic64_read(&vmstats->stats_updates) >
556 		MEMCG_CHARGE_BATCH * num_online_cpus();
557 }
558 
559 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
560 {
561 	struct memcg_vmstats_percpu *statc;
562 	int cpu = smp_processor_id();
563 	unsigned int stats_updates;
564 
565 	if (!val)
566 		return;
567 
568 	cgroup_rstat_updated(memcg->css.cgroup, cpu);
569 	statc = this_cpu_ptr(memcg->vmstats_percpu);
570 	for (; statc; statc = statc->parent) {
571 		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
572 		WRITE_ONCE(statc->stats_updates, stats_updates);
573 		if (stats_updates < MEMCG_CHARGE_BATCH)
574 			continue;
575 
576 		/*
577 		 * If @memcg is already flush-able, increasing stats_updates is
578 		 * redundant. Avoid the overhead of the atomic update.
579 		 */
580 		if (!memcg_vmstats_needs_flush(statc->vmstats))
581 			atomic64_add(stats_updates,
582 				     &statc->vmstats->stats_updates);
583 		WRITE_ONCE(statc->stats_updates, 0);
584 	}
585 }
586 
587 static void do_flush_stats(struct mem_cgroup *memcg)
588 {
589 	if (mem_cgroup_is_root(memcg))
590 		WRITE_ONCE(flush_last_time, jiffies_64);
591 
592 	cgroup_rstat_flush(memcg->css.cgroup);
593 }
594 
595 /*
596  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
597  * @memcg: root of the subtree to flush
598  *
599  * Flushing is serialized by the underlying global rstat lock. There is also a
600  * minimum amount of work to be done even if there are no stat updates to flush.
601  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
602  * avoids unnecessary work and contention on the underlying lock.
603  */
604 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
605 {
606 	if (mem_cgroup_disabled())
607 		return;
608 
609 	if (!memcg)
610 		memcg = root_mem_cgroup;
611 
612 	if (memcg_vmstats_needs_flush(memcg->vmstats))
613 		do_flush_stats(memcg);
614 }
615 
616 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
617 {
618 	/* Only flush if the periodic flusher is one full cycle late */
619 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
620 		mem_cgroup_flush_stats(memcg);
621 }
622 
623 static void flush_memcg_stats_dwork(struct work_struct *w)
624 {
625 	/*
626 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
627 	 * in latency-sensitive paths is as cheap as possible.
628 	 */
629 	do_flush_stats(root_mem_cgroup);
630 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
631 }
632 
633 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
634 {
635 	long x;
636 	int i = memcg_stats_index(idx);
637 
638 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
639 		return 0;
640 
641 	x = READ_ONCE(memcg->vmstats->state[i]);
642 #ifdef CONFIG_SMP
643 	if (x < 0)
644 		x = 0;
645 #endif
646 	return x;
647 }
648 
649 static int memcg_page_state_unit(int item);
650 
651 /*
652  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
653  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
654  */
655 static int memcg_state_val_in_pages(int idx, int val)
656 {
657 	int unit = memcg_page_state_unit(idx);
658 
659 	if (!val || unit == PAGE_SIZE)
660 		return val;
661 	else
662 		return max(val * unit / PAGE_SIZE, 1UL);
663 }
664 
665 /**
666  * __mod_memcg_state - update cgroup memory statistics
667  * @memcg: the memory cgroup
668  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
669  * @val: delta to add to the counter, can be negative
670  */
671 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
672 		       int val)
673 {
674 	int i = memcg_stats_index(idx);
675 
676 	if (mem_cgroup_disabled())
677 		return;
678 
679 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
680 		return;
681 
682 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
683 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
684 }
685 
686 /* idx can be of type enum memcg_stat_item or node_stat_item. */
687 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
688 {
689 	long x;
690 	int i = memcg_stats_index(idx);
691 
692 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
693 		return 0;
694 
695 	x = READ_ONCE(memcg->vmstats->state_local[i]);
696 #ifdef CONFIG_SMP
697 	if (x < 0)
698 		x = 0;
699 #endif
700 	return x;
701 }
702 
703 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
704 				     enum node_stat_item idx,
705 				     int val)
706 {
707 	struct mem_cgroup_per_node *pn;
708 	struct mem_cgroup *memcg;
709 	int i = memcg_stats_index(idx);
710 
711 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
712 		return;
713 
714 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
715 	memcg = pn->memcg;
716 
717 	/*
718 	 * The caller from rmap relies on disabled preemption because they never
719 	 * update their counter from in-interrupt context. For these two
720 	 * counters we check that the update is never performed from an
721 	 * interrupt context while other caller need to have disabled interrupt.
722 	 */
723 	__memcg_stats_lock();
724 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
725 		switch (idx) {
726 		case NR_ANON_MAPPED:
727 		case NR_FILE_MAPPED:
728 		case NR_ANON_THPS:
729 			WARN_ON_ONCE(!in_task());
730 			break;
731 		default:
732 			VM_WARN_ON_IRQS_ENABLED();
733 		}
734 	}
735 
736 	/* Update memcg */
737 	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
738 
739 	/* Update lruvec */
740 	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
741 
742 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
743 	memcg_stats_unlock();
744 }
745 
746 /**
747  * __mod_lruvec_state - update lruvec memory statistics
748  * @lruvec: the lruvec
749  * @idx: the stat item
750  * @val: delta to add to the counter, can be negative
751  *
752  * The lruvec is the intersection of the NUMA node and a cgroup. This
753  * function updates the all three counters that are affected by a
754  * change of state at this level: per-node, per-cgroup, per-lruvec.
755  */
756 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
757 			int val)
758 {
759 	/* Update node */
760 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
761 
762 	/* Update memcg and lruvec */
763 	if (!mem_cgroup_disabled())
764 		__mod_memcg_lruvec_state(lruvec, idx, val);
765 }
766 
767 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
768 			     int val)
769 {
770 	struct mem_cgroup *memcg;
771 	pg_data_t *pgdat = folio_pgdat(folio);
772 	struct lruvec *lruvec;
773 
774 	rcu_read_lock();
775 	memcg = folio_memcg(folio);
776 	/* Untracked pages have no memcg, no lruvec. Update only the node */
777 	if (!memcg) {
778 		rcu_read_unlock();
779 		__mod_node_page_state(pgdat, idx, val);
780 		return;
781 	}
782 
783 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
784 	__mod_lruvec_state(lruvec, idx, val);
785 	rcu_read_unlock();
786 }
787 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
788 
789 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
790 {
791 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
792 	struct mem_cgroup *memcg;
793 	struct lruvec *lruvec;
794 
795 	rcu_read_lock();
796 	memcg = mem_cgroup_from_slab_obj(p);
797 
798 	/*
799 	 * Untracked pages have no memcg, no lruvec. Update only the
800 	 * node. If we reparent the slab objects to the root memcg,
801 	 * when we free the slab object, we need to update the per-memcg
802 	 * vmstats to keep it correct for the root memcg.
803 	 */
804 	if (!memcg) {
805 		__mod_node_page_state(pgdat, idx, val);
806 	} else {
807 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
808 		__mod_lruvec_state(lruvec, idx, val);
809 	}
810 	rcu_read_unlock();
811 }
812 
813 /**
814  * __count_memcg_events - account VM events in a cgroup
815  * @memcg: the memory cgroup
816  * @idx: the event item
817  * @count: the number of events that occurred
818  */
819 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
820 			  unsigned long count)
821 {
822 	int i = memcg_events_index(idx);
823 
824 	if (mem_cgroup_disabled())
825 		return;
826 
827 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
828 		return;
829 
830 	memcg_stats_lock();
831 	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
832 	memcg_rstat_updated(memcg, count);
833 	memcg_stats_unlock();
834 }
835 
836 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
837 {
838 	int i = memcg_events_index(event);
839 
840 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
841 		return 0;
842 
843 	return READ_ONCE(memcg->vmstats->events[i]);
844 }
845 
846 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
847 {
848 	int i = memcg_events_index(event);
849 
850 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
851 		return 0;
852 
853 	return READ_ONCE(memcg->vmstats->events_local[i]);
854 }
855 
856 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
857 {
858 	/*
859 	 * mm_update_next_owner() may clear mm->owner to NULL
860 	 * if it races with swapoff, page migration, etc.
861 	 * So this can be called with p == NULL.
862 	 */
863 	if (unlikely(!p))
864 		return NULL;
865 
866 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
867 }
868 EXPORT_SYMBOL(mem_cgroup_from_task);
869 
870 static __always_inline struct mem_cgroup *active_memcg(void)
871 {
872 	if (!in_task())
873 		return this_cpu_read(int_active_memcg);
874 	else
875 		return current->active_memcg;
876 }
877 
878 /**
879  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
880  * @mm: mm from which memcg should be extracted. It can be NULL.
881  *
882  * Obtain a reference on mm->memcg and returns it if successful. If mm
883  * is NULL, then the memcg is chosen as follows:
884  * 1) The active memcg, if set.
885  * 2) current->mm->memcg, if available
886  * 3) root memcg
887  * If mem_cgroup is disabled, NULL is returned.
888  */
889 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
890 {
891 	struct mem_cgroup *memcg;
892 
893 	if (mem_cgroup_disabled())
894 		return NULL;
895 
896 	/*
897 	 * Page cache insertions can happen without an
898 	 * actual mm context, e.g. during disk probing
899 	 * on boot, loopback IO, acct() writes etc.
900 	 *
901 	 * No need to css_get on root memcg as the reference
902 	 * counting is disabled on the root level in the
903 	 * cgroup core. See CSS_NO_REF.
904 	 */
905 	if (unlikely(!mm)) {
906 		memcg = active_memcg();
907 		if (unlikely(memcg)) {
908 			/* remote memcg must hold a ref */
909 			css_get(&memcg->css);
910 			return memcg;
911 		}
912 		mm = current->mm;
913 		if (unlikely(!mm))
914 			return root_mem_cgroup;
915 	}
916 
917 	rcu_read_lock();
918 	do {
919 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
920 		if (unlikely(!memcg))
921 			memcg = root_mem_cgroup;
922 	} while (!css_tryget(&memcg->css));
923 	rcu_read_unlock();
924 	return memcg;
925 }
926 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
927 
928 /**
929  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
930  */
931 struct mem_cgroup *get_mem_cgroup_from_current(void)
932 {
933 	struct mem_cgroup *memcg;
934 
935 	if (mem_cgroup_disabled())
936 		return NULL;
937 
938 again:
939 	rcu_read_lock();
940 	memcg = mem_cgroup_from_task(current);
941 	if (!css_tryget(&memcg->css)) {
942 		rcu_read_unlock();
943 		goto again;
944 	}
945 	rcu_read_unlock();
946 	return memcg;
947 }
948 
949 /**
950  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
951  * @folio: folio from which memcg should be extracted.
952  */
953 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
954 {
955 	struct mem_cgroup *memcg = folio_memcg(folio);
956 
957 	if (mem_cgroup_disabled())
958 		return NULL;
959 
960 	rcu_read_lock();
961 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
962 		memcg = root_mem_cgroup;
963 	rcu_read_unlock();
964 	return memcg;
965 }
966 
967 /**
968  * mem_cgroup_iter - iterate over memory cgroup hierarchy
969  * @root: hierarchy root
970  * @prev: previously returned memcg, NULL on first invocation
971  * @reclaim: cookie for shared reclaim walks, NULL for full walks
972  *
973  * Returns references to children of the hierarchy below @root, or
974  * @root itself, or %NULL after a full round-trip.
975  *
976  * Caller must pass the return value in @prev on subsequent
977  * invocations for reference counting, or use mem_cgroup_iter_break()
978  * to cancel a hierarchy walk before the round-trip is complete.
979  *
980  * Reclaimers can specify a node in @reclaim to divide up the memcgs
981  * in the hierarchy among all concurrent reclaimers operating on the
982  * same node.
983  */
984 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
985 				   struct mem_cgroup *prev,
986 				   struct mem_cgroup_reclaim_cookie *reclaim)
987 {
988 	struct mem_cgroup_reclaim_iter *iter;
989 	struct cgroup_subsys_state *css;
990 	struct mem_cgroup *pos;
991 	struct mem_cgroup *next;
992 
993 	if (mem_cgroup_disabled())
994 		return NULL;
995 
996 	if (!root)
997 		root = root_mem_cgroup;
998 
999 	rcu_read_lock();
1000 restart:
1001 	next = NULL;
1002 
1003 	if (reclaim) {
1004 		int gen;
1005 		int nid = reclaim->pgdat->node_id;
1006 
1007 		iter = &root->nodeinfo[nid]->iter;
1008 		gen = atomic_read(&iter->generation);
1009 
1010 		/*
1011 		 * On start, join the current reclaim iteration cycle.
1012 		 * Exit when a concurrent walker completes it.
1013 		 */
1014 		if (!prev)
1015 			reclaim->generation = gen;
1016 		else if (reclaim->generation != gen)
1017 			goto out_unlock;
1018 
1019 		pos = READ_ONCE(iter->position);
1020 	} else
1021 		pos = prev;
1022 
1023 	css = pos ? &pos->css : NULL;
1024 
1025 	while ((css = css_next_descendant_pre(css, &root->css))) {
1026 		/*
1027 		 * Verify the css and acquire a reference.  The root
1028 		 * is provided by the caller, so we know it's alive
1029 		 * and kicking, and don't take an extra reference.
1030 		 */
1031 		if (css == &root->css || css_tryget(css))
1032 			break;
1033 	}
1034 
1035 	next = mem_cgroup_from_css(css);
1036 
1037 	if (reclaim) {
1038 		/*
1039 		 * The position could have already been updated by a competing
1040 		 * thread, so check that the value hasn't changed since we read
1041 		 * it to avoid reclaiming from the same cgroup twice.
1042 		 */
1043 		if (cmpxchg(&iter->position, pos, next) != pos) {
1044 			if (css && css != &root->css)
1045 				css_put(css);
1046 			goto restart;
1047 		}
1048 
1049 		if (!next) {
1050 			atomic_inc(&iter->generation);
1051 
1052 			/*
1053 			 * Reclaimers share the hierarchy walk, and a
1054 			 * new one might jump in right at the end of
1055 			 * the hierarchy - make sure they see at least
1056 			 * one group and restart from the beginning.
1057 			 */
1058 			if (!prev)
1059 				goto restart;
1060 		}
1061 	}
1062 
1063 out_unlock:
1064 	rcu_read_unlock();
1065 	if (prev && prev != root)
1066 		css_put(&prev->css);
1067 
1068 	return next;
1069 }
1070 
1071 /**
1072  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1073  * @root: hierarchy root
1074  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1075  */
1076 void mem_cgroup_iter_break(struct mem_cgroup *root,
1077 			   struct mem_cgroup *prev)
1078 {
1079 	if (!root)
1080 		root = root_mem_cgroup;
1081 	if (prev && prev != root)
1082 		css_put(&prev->css);
1083 }
1084 
1085 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1086 					struct mem_cgroup *dead_memcg)
1087 {
1088 	struct mem_cgroup_reclaim_iter *iter;
1089 	struct mem_cgroup_per_node *mz;
1090 	int nid;
1091 
1092 	for_each_node(nid) {
1093 		mz = from->nodeinfo[nid];
1094 		iter = &mz->iter;
1095 		cmpxchg(&iter->position, dead_memcg, NULL);
1096 	}
1097 }
1098 
1099 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1100 {
1101 	struct mem_cgroup *memcg = dead_memcg;
1102 	struct mem_cgroup *last;
1103 
1104 	do {
1105 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1106 		last = memcg;
1107 	} while ((memcg = parent_mem_cgroup(memcg)));
1108 
1109 	/*
1110 	 * When cgroup1 non-hierarchy mode is used,
1111 	 * parent_mem_cgroup() does not walk all the way up to the
1112 	 * cgroup root (root_mem_cgroup). So we have to handle
1113 	 * dead_memcg from cgroup root separately.
1114 	 */
1115 	if (!mem_cgroup_is_root(last))
1116 		__invalidate_reclaim_iterators(root_mem_cgroup,
1117 						dead_memcg);
1118 }
1119 
1120 /**
1121  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1122  * @memcg: hierarchy root
1123  * @fn: function to call for each task
1124  * @arg: argument passed to @fn
1125  *
1126  * This function iterates over tasks attached to @memcg or to any of its
1127  * descendants and calls @fn for each task. If @fn returns a non-zero
1128  * value, the function breaks the iteration loop. Otherwise, it will iterate
1129  * over all tasks and return 0.
1130  *
1131  * This function must not be called for the root memory cgroup.
1132  */
1133 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1134 			   int (*fn)(struct task_struct *, void *), void *arg)
1135 {
1136 	struct mem_cgroup *iter;
1137 	int ret = 0;
1138 
1139 	BUG_ON(mem_cgroup_is_root(memcg));
1140 
1141 	for_each_mem_cgroup_tree(iter, memcg) {
1142 		struct css_task_iter it;
1143 		struct task_struct *task;
1144 
1145 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1146 		while (!ret && (task = css_task_iter_next(&it)))
1147 			ret = fn(task, arg);
1148 		css_task_iter_end(&it);
1149 		if (ret) {
1150 			mem_cgroup_iter_break(memcg, iter);
1151 			break;
1152 		}
1153 	}
1154 }
1155 
1156 #ifdef CONFIG_DEBUG_VM
1157 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1158 {
1159 	struct mem_cgroup *memcg;
1160 
1161 	if (mem_cgroup_disabled())
1162 		return;
1163 
1164 	memcg = folio_memcg(folio);
1165 
1166 	if (!memcg)
1167 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1168 	else
1169 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1170 }
1171 #endif
1172 
1173 /**
1174  * folio_lruvec_lock - Lock the lruvec for a folio.
1175  * @folio: Pointer to the folio.
1176  *
1177  * These functions are safe to use under any of the following conditions:
1178  * - folio locked
1179  * - folio_test_lru false
1180  * - folio_memcg_lock()
1181  * - folio frozen (refcount of 0)
1182  *
1183  * Return: The lruvec this folio is on with its lock held.
1184  */
1185 struct lruvec *folio_lruvec_lock(struct folio *folio)
1186 {
1187 	struct lruvec *lruvec = folio_lruvec(folio);
1188 
1189 	spin_lock(&lruvec->lru_lock);
1190 	lruvec_memcg_debug(lruvec, folio);
1191 
1192 	return lruvec;
1193 }
1194 
1195 /**
1196  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1197  * @folio: Pointer to the folio.
1198  *
1199  * These functions are safe to use under any of the following conditions:
1200  * - folio locked
1201  * - folio_test_lru false
1202  * - folio_memcg_lock()
1203  * - folio frozen (refcount of 0)
1204  *
1205  * Return: The lruvec this folio is on with its lock held and interrupts
1206  * disabled.
1207  */
1208 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1209 {
1210 	struct lruvec *lruvec = folio_lruvec(folio);
1211 
1212 	spin_lock_irq(&lruvec->lru_lock);
1213 	lruvec_memcg_debug(lruvec, folio);
1214 
1215 	return lruvec;
1216 }
1217 
1218 /**
1219  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1220  * @folio: Pointer to the folio.
1221  * @flags: Pointer to irqsave flags.
1222  *
1223  * These functions are safe to use under any of the following conditions:
1224  * - folio locked
1225  * - folio_test_lru false
1226  * - folio_memcg_lock()
1227  * - folio frozen (refcount of 0)
1228  *
1229  * Return: The lruvec this folio is on with its lock held and interrupts
1230  * disabled.
1231  */
1232 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1233 		unsigned long *flags)
1234 {
1235 	struct lruvec *lruvec = folio_lruvec(folio);
1236 
1237 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1238 	lruvec_memcg_debug(lruvec, folio);
1239 
1240 	return lruvec;
1241 }
1242 
1243 /**
1244  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245  * @lruvec: mem_cgroup per zone lru vector
1246  * @lru: index of lru list the page is sitting on
1247  * @zid: zone id of the accounted pages
1248  * @nr_pages: positive when adding or negative when removing
1249  *
1250  * This function must be called under lru_lock, just before a page is added
1251  * to or just after a page is removed from an lru list.
1252  */
1253 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1254 				int zid, int nr_pages)
1255 {
1256 	struct mem_cgroup_per_node *mz;
1257 	unsigned long *lru_size;
1258 	long size;
1259 
1260 	if (mem_cgroup_disabled())
1261 		return;
1262 
1263 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1264 	lru_size = &mz->lru_zone_size[zid][lru];
1265 
1266 	if (nr_pages < 0)
1267 		*lru_size += nr_pages;
1268 
1269 	size = *lru_size;
1270 	if (WARN_ONCE(size < 0,
1271 		"%s(%p, %d, %d): lru_size %ld\n",
1272 		__func__, lruvec, lru, nr_pages, size)) {
1273 		VM_BUG_ON(1);
1274 		*lru_size = 0;
1275 	}
1276 
1277 	if (nr_pages > 0)
1278 		*lru_size += nr_pages;
1279 }
1280 
1281 /**
1282  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1283  * @memcg: the memory cgroup
1284  *
1285  * Returns the maximum amount of memory @mem can be charged with, in
1286  * pages.
1287  */
1288 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1289 {
1290 	unsigned long margin = 0;
1291 	unsigned long count;
1292 	unsigned long limit;
1293 
1294 	count = page_counter_read(&memcg->memory);
1295 	limit = READ_ONCE(memcg->memory.max);
1296 	if (count < limit)
1297 		margin = limit - count;
1298 
1299 	if (do_memsw_account()) {
1300 		count = page_counter_read(&memcg->memsw);
1301 		limit = READ_ONCE(memcg->memsw.max);
1302 		if (count < limit)
1303 			margin = min(margin, limit - count);
1304 		else
1305 			margin = 0;
1306 	}
1307 
1308 	return margin;
1309 }
1310 
1311 struct memory_stat {
1312 	const char *name;
1313 	unsigned int idx;
1314 };
1315 
1316 static const struct memory_stat memory_stats[] = {
1317 	{ "anon",			NR_ANON_MAPPED			},
1318 	{ "file",			NR_FILE_PAGES			},
1319 	{ "kernel",			MEMCG_KMEM			},
1320 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1321 	{ "pagetables",			NR_PAGETABLE			},
1322 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1323 	{ "percpu",			MEMCG_PERCPU_B			},
1324 	{ "sock",			MEMCG_SOCK			},
1325 	{ "vmalloc",			MEMCG_VMALLOC			},
1326 	{ "shmem",			NR_SHMEM			},
1327 #ifdef CONFIG_ZSWAP
1328 	{ "zswap",			MEMCG_ZSWAP_B			},
1329 	{ "zswapped",			MEMCG_ZSWAPPED			},
1330 #endif
1331 	{ "file_mapped",		NR_FILE_MAPPED			},
1332 	{ "file_dirty",			NR_FILE_DIRTY			},
1333 	{ "file_writeback",		NR_WRITEBACK			},
1334 #ifdef CONFIG_SWAP
1335 	{ "swapcached",			NR_SWAPCACHE			},
1336 #endif
1337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1338 	{ "anon_thp",			NR_ANON_THPS			},
1339 	{ "file_thp",			NR_FILE_THPS			},
1340 	{ "shmem_thp",			NR_SHMEM_THPS			},
1341 #endif
1342 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1343 	{ "active_anon",		NR_ACTIVE_ANON			},
1344 	{ "inactive_file",		NR_INACTIVE_FILE		},
1345 	{ "active_file",		NR_ACTIVE_FILE			},
1346 	{ "unevictable",		NR_UNEVICTABLE			},
1347 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1348 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1349 
1350 	/* The memory events */
1351 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1352 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1353 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1354 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1355 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1356 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1357 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1358 
1359 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1360 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1361 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1362 #ifdef CONFIG_NUMA_BALANCING
1363 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1364 #endif
1365 };
1366 
1367 /* The actual unit of the state item, not the same as the output unit */
1368 static int memcg_page_state_unit(int item)
1369 {
1370 	switch (item) {
1371 	case MEMCG_PERCPU_B:
1372 	case MEMCG_ZSWAP_B:
1373 	case NR_SLAB_RECLAIMABLE_B:
1374 	case NR_SLAB_UNRECLAIMABLE_B:
1375 		return 1;
1376 	case NR_KERNEL_STACK_KB:
1377 		return SZ_1K;
1378 	default:
1379 		return PAGE_SIZE;
1380 	}
1381 }
1382 
1383 /* Translate stat items to the correct unit for memory.stat output */
1384 static int memcg_page_state_output_unit(int item)
1385 {
1386 	/*
1387 	 * Workingset state is actually in pages, but we export it to userspace
1388 	 * as a scalar count of events, so special case it here.
1389 	 *
1390 	 * Demotion and promotion activities are exported in pages, consistent
1391 	 * with their global counterparts.
1392 	 */
1393 	switch (item) {
1394 	case WORKINGSET_REFAULT_ANON:
1395 	case WORKINGSET_REFAULT_FILE:
1396 	case WORKINGSET_ACTIVATE_ANON:
1397 	case WORKINGSET_ACTIVATE_FILE:
1398 	case WORKINGSET_RESTORE_ANON:
1399 	case WORKINGSET_RESTORE_FILE:
1400 	case WORKINGSET_NODERECLAIM:
1401 	case PGDEMOTE_KSWAPD:
1402 	case PGDEMOTE_DIRECT:
1403 	case PGDEMOTE_KHUGEPAGED:
1404 #ifdef CONFIG_NUMA_BALANCING
1405 	case PGPROMOTE_SUCCESS:
1406 #endif
1407 		return 1;
1408 	default:
1409 		return memcg_page_state_unit(item);
1410 	}
1411 }
1412 
1413 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1414 {
1415 	return memcg_page_state(memcg, item) *
1416 		memcg_page_state_output_unit(item);
1417 }
1418 
1419 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1420 {
1421 	return memcg_page_state_local(memcg, item) *
1422 		memcg_page_state_output_unit(item);
1423 }
1424 
1425 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1426 {
1427 	int i;
1428 
1429 	/*
1430 	 * Provide statistics on the state of the memory subsystem as
1431 	 * well as cumulative event counters that show past behavior.
1432 	 *
1433 	 * This list is ordered following a combination of these gradients:
1434 	 * 1) generic big picture -> specifics and details
1435 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1436 	 *
1437 	 * Current memory state:
1438 	 */
1439 	mem_cgroup_flush_stats(memcg);
1440 
1441 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1442 		u64 size;
1443 
1444 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1445 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1446 
1447 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1448 			size += memcg_page_state_output(memcg,
1449 							NR_SLAB_RECLAIMABLE_B);
1450 			seq_buf_printf(s, "slab %llu\n", size);
1451 		}
1452 	}
1453 
1454 	/* Accumulated memory events */
1455 	seq_buf_printf(s, "pgscan %lu\n",
1456 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1457 		       memcg_events(memcg, PGSCAN_DIRECT) +
1458 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1459 	seq_buf_printf(s, "pgsteal %lu\n",
1460 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1461 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1462 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1463 
1464 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1465 #ifdef CONFIG_MEMCG_V1
1466 		if (memcg_vm_event_stat[i] == PGPGIN ||
1467 		    memcg_vm_event_stat[i] == PGPGOUT)
1468 			continue;
1469 #endif
1470 		seq_buf_printf(s, "%s %lu\n",
1471 			       vm_event_name(memcg_vm_event_stat[i]),
1472 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1473 	}
1474 }
1475 
1476 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1477 {
1478 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1479 		memcg_stat_format(memcg, s);
1480 	else
1481 		memcg1_stat_format(memcg, s);
1482 	if (seq_buf_has_overflowed(s))
1483 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1484 }
1485 
1486 /**
1487  * mem_cgroup_print_oom_context: Print OOM information relevant to
1488  * memory controller.
1489  * @memcg: The memory cgroup that went over limit
1490  * @p: Task that is going to be killed
1491  *
1492  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1493  * enabled
1494  */
1495 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1496 {
1497 	rcu_read_lock();
1498 
1499 	if (memcg) {
1500 		pr_cont(",oom_memcg=");
1501 		pr_cont_cgroup_path(memcg->css.cgroup);
1502 	} else
1503 		pr_cont(",global_oom");
1504 	if (p) {
1505 		pr_cont(",task_memcg=");
1506 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1507 	}
1508 	rcu_read_unlock();
1509 }
1510 
1511 /**
1512  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1513  * memory controller.
1514  * @memcg: The memory cgroup that went over limit
1515  */
1516 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1517 {
1518 	/* Use static buffer, for the caller is holding oom_lock. */
1519 	static char buf[PAGE_SIZE];
1520 	struct seq_buf s;
1521 
1522 	lockdep_assert_held(&oom_lock);
1523 
1524 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 		K((u64)page_counter_read(&memcg->memory)),
1526 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1527 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 			K((u64)page_counter_read(&memcg->swap)),
1530 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1531 #ifdef CONFIG_MEMCG_V1
1532 	else {
1533 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1534 			K((u64)page_counter_read(&memcg->memsw)),
1535 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1536 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1537 			K((u64)page_counter_read(&memcg->kmem)),
1538 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1539 	}
1540 #endif
1541 
1542 	pr_info("Memory cgroup stats for ");
1543 	pr_cont_cgroup_path(memcg->css.cgroup);
1544 	pr_cont(":");
1545 	seq_buf_init(&s, buf, sizeof(buf));
1546 	memory_stat_format(memcg, &s);
1547 	seq_buf_do_printk(&s, KERN_INFO);
1548 }
1549 
1550 /*
1551  * Return the memory (and swap, if configured) limit for a memcg.
1552  */
1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554 {
1555 	unsigned long max = READ_ONCE(memcg->memory.max);
1556 
1557 	if (do_memsw_account()) {
1558 		if (mem_cgroup_swappiness(memcg)) {
1559 			/* Calculate swap excess capacity from memsw limit */
1560 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1561 
1562 			max += min(swap, (unsigned long)total_swap_pages);
1563 		}
1564 	} else {
1565 		if (mem_cgroup_swappiness(memcg))
1566 			max += min(READ_ONCE(memcg->swap.max),
1567 				   (unsigned long)total_swap_pages);
1568 	}
1569 	return max;
1570 }
1571 
1572 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1573 {
1574 	return page_counter_read(&memcg->memory);
1575 }
1576 
1577 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1578 				     int order)
1579 {
1580 	struct oom_control oc = {
1581 		.zonelist = NULL,
1582 		.nodemask = NULL,
1583 		.memcg = memcg,
1584 		.gfp_mask = gfp_mask,
1585 		.order = order,
1586 	};
1587 	bool ret = true;
1588 
1589 	if (mutex_lock_killable(&oom_lock))
1590 		return true;
1591 
1592 	if (mem_cgroup_margin(memcg) >= (1 << order))
1593 		goto unlock;
1594 
1595 	/*
1596 	 * A few threads which were not waiting at mutex_lock_killable() can
1597 	 * fail to bail out. Therefore, check again after holding oom_lock.
1598 	 */
1599 	ret = task_is_dying() || out_of_memory(&oc);
1600 
1601 unlock:
1602 	mutex_unlock(&oom_lock);
1603 	return ret;
1604 }
1605 
1606 /*
1607  * Returns true if successfully killed one or more processes. Though in some
1608  * corner cases it can return true even without killing any process.
1609  */
1610 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1611 {
1612 	bool locked, ret;
1613 
1614 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1615 		return false;
1616 
1617 	memcg_memory_event(memcg, MEMCG_OOM);
1618 
1619 	if (!memcg1_oom_prepare(memcg, &locked))
1620 		return false;
1621 
1622 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1623 
1624 	memcg1_oom_finish(memcg, locked);
1625 
1626 	return ret;
1627 }
1628 
1629 /**
1630  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1631  * @victim: task to be killed by the OOM killer
1632  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1633  *
1634  * Returns a pointer to a memory cgroup, which has to be cleaned up
1635  * by killing all belonging OOM-killable tasks.
1636  *
1637  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1638  */
1639 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1640 					    struct mem_cgroup *oom_domain)
1641 {
1642 	struct mem_cgroup *oom_group = NULL;
1643 	struct mem_cgroup *memcg;
1644 
1645 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1646 		return NULL;
1647 
1648 	if (!oom_domain)
1649 		oom_domain = root_mem_cgroup;
1650 
1651 	rcu_read_lock();
1652 
1653 	memcg = mem_cgroup_from_task(victim);
1654 	if (mem_cgroup_is_root(memcg))
1655 		goto out;
1656 
1657 	/*
1658 	 * If the victim task has been asynchronously moved to a different
1659 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1660 	 * In this case it's better to ignore memory.group.oom.
1661 	 */
1662 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1663 		goto out;
1664 
1665 	/*
1666 	 * Traverse the memory cgroup hierarchy from the victim task's
1667 	 * cgroup up to the OOMing cgroup (or root) to find the
1668 	 * highest-level memory cgroup with oom.group set.
1669 	 */
1670 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1671 		if (READ_ONCE(memcg->oom_group))
1672 			oom_group = memcg;
1673 
1674 		if (memcg == oom_domain)
1675 			break;
1676 	}
1677 
1678 	if (oom_group)
1679 		css_get(&oom_group->css);
1680 out:
1681 	rcu_read_unlock();
1682 
1683 	return oom_group;
1684 }
1685 
1686 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1687 {
1688 	pr_info("Tasks in ");
1689 	pr_cont_cgroup_path(memcg->css.cgroup);
1690 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1691 }
1692 
1693 struct memcg_stock_pcp {
1694 	local_lock_t stock_lock;
1695 	struct mem_cgroup *cached; /* this never be root cgroup */
1696 	unsigned int nr_pages;
1697 
1698 	struct obj_cgroup *cached_objcg;
1699 	struct pglist_data *cached_pgdat;
1700 	unsigned int nr_bytes;
1701 	int nr_slab_reclaimable_b;
1702 	int nr_slab_unreclaimable_b;
1703 
1704 	struct work_struct work;
1705 	unsigned long flags;
1706 #define FLUSHING_CACHED_CHARGE	0
1707 };
1708 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1709 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
1710 };
1711 static DEFINE_MUTEX(percpu_charge_mutex);
1712 
1713 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1714 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1715 				     struct mem_cgroup *root_memcg);
1716 
1717 /**
1718  * consume_stock: Try to consume stocked charge on this cpu.
1719  * @memcg: memcg to consume from.
1720  * @nr_pages: how many pages to charge.
1721  *
1722  * The charges will only happen if @memcg matches the current cpu's memcg
1723  * stock, and at least @nr_pages are available in that stock.  Failure to
1724  * service an allocation will refill the stock.
1725  *
1726  * returns true if successful, false otherwise.
1727  */
1728 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1729 {
1730 	struct memcg_stock_pcp *stock;
1731 	unsigned int stock_pages;
1732 	unsigned long flags;
1733 	bool ret = false;
1734 
1735 	if (nr_pages > MEMCG_CHARGE_BATCH)
1736 		return ret;
1737 
1738 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1739 
1740 	stock = this_cpu_ptr(&memcg_stock);
1741 	stock_pages = READ_ONCE(stock->nr_pages);
1742 	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1743 		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1744 		ret = true;
1745 	}
1746 
1747 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1748 
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Returns stocks cached in percpu and reset cached information.
1754  */
1755 static void drain_stock(struct memcg_stock_pcp *stock)
1756 {
1757 	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1758 	struct mem_cgroup *old = READ_ONCE(stock->cached);
1759 
1760 	if (!old)
1761 		return;
1762 
1763 	if (stock_pages) {
1764 		page_counter_uncharge(&old->memory, stock_pages);
1765 		if (do_memsw_account())
1766 			page_counter_uncharge(&old->memsw, stock_pages);
1767 
1768 		WRITE_ONCE(stock->nr_pages, 0);
1769 	}
1770 
1771 	css_put(&old->css);
1772 	WRITE_ONCE(stock->cached, NULL);
1773 }
1774 
1775 static void drain_local_stock(struct work_struct *dummy)
1776 {
1777 	struct memcg_stock_pcp *stock;
1778 	struct obj_cgroup *old = NULL;
1779 	unsigned long flags;
1780 
1781 	/*
1782 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1783 	 * drain_stock races is that we always operate on local CPU stock
1784 	 * here with IRQ disabled
1785 	 */
1786 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1787 
1788 	stock = this_cpu_ptr(&memcg_stock);
1789 	old = drain_obj_stock(stock);
1790 	drain_stock(stock);
1791 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1792 
1793 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1794 	obj_cgroup_put(old);
1795 }
1796 
1797 /*
1798  * Cache charges(val) to local per_cpu area.
1799  * This will be consumed by consume_stock() function, later.
1800  */
1801 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1802 {
1803 	struct memcg_stock_pcp *stock;
1804 	unsigned int stock_pages;
1805 
1806 	stock = this_cpu_ptr(&memcg_stock);
1807 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1808 		drain_stock(stock);
1809 		css_get(&memcg->css);
1810 		WRITE_ONCE(stock->cached, memcg);
1811 	}
1812 	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1813 	WRITE_ONCE(stock->nr_pages, stock_pages);
1814 
1815 	if (stock_pages > MEMCG_CHARGE_BATCH)
1816 		drain_stock(stock);
1817 }
1818 
1819 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1820 {
1821 	unsigned long flags;
1822 
1823 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1824 	__refill_stock(memcg, nr_pages);
1825 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1826 }
1827 
1828 /*
1829  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1830  * of the hierarchy under it.
1831  */
1832 void drain_all_stock(struct mem_cgroup *root_memcg)
1833 {
1834 	int cpu, curcpu;
1835 
1836 	/* If someone's already draining, avoid adding running more workers. */
1837 	if (!mutex_trylock(&percpu_charge_mutex))
1838 		return;
1839 	/*
1840 	 * Notify other cpus that system-wide "drain" is running
1841 	 * We do not care about races with the cpu hotplug because cpu down
1842 	 * as well as workers from this path always operate on the local
1843 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1844 	 */
1845 	migrate_disable();
1846 	curcpu = smp_processor_id();
1847 	for_each_online_cpu(cpu) {
1848 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1849 		struct mem_cgroup *memcg;
1850 		bool flush = false;
1851 
1852 		rcu_read_lock();
1853 		memcg = READ_ONCE(stock->cached);
1854 		if (memcg && READ_ONCE(stock->nr_pages) &&
1855 		    mem_cgroup_is_descendant(memcg, root_memcg))
1856 			flush = true;
1857 		else if (obj_stock_flush_required(stock, root_memcg))
1858 			flush = true;
1859 		rcu_read_unlock();
1860 
1861 		if (flush &&
1862 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1863 			if (cpu == curcpu)
1864 				drain_local_stock(&stock->work);
1865 			else if (!cpu_is_isolated(cpu))
1866 				schedule_work_on(cpu, &stock->work);
1867 		}
1868 	}
1869 	migrate_enable();
1870 	mutex_unlock(&percpu_charge_mutex);
1871 }
1872 
1873 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1874 {
1875 	struct memcg_stock_pcp *stock;
1876 
1877 	stock = &per_cpu(memcg_stock, cpu);
1878 	drain_stock(stock);
1879 
1880 	return 0;
1881 }
1882 
1883 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1884 				  unsigned int nr_pages,
1885 				  gfp_t gfp_mask)
1886 {
1887 	unsigned long nr_reclaimed = 0;
1888 
1889 	do {
1890 		unsigned long pflags;
1891 
1892 		if (page_counter_read(&memcg->memory) <=
1893 		    READ_ONCE(memcg->memory.high))
1894 			continue;
1895 
1896 		memcg_memory_event(memcg, MEMCG_HIGH);
1897 
1898 		psi_memstall_enter(&pflags);
1899 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1900 							gfp_mask,
1901 							MEMCG_RECLAIM_MAY_SWAP,
1902 							NULL);
1903 		psi_memstall_leave(&pflags);
1904 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1905 		 !mem_cgroup_is_root(memcg));
1906 
1907 	return nr_reclaimed;
1908 }
1909 
1910 static void high_work_func(struct work_struct *work)
1911 {
1912 	struct mem_cgroup *memcg;
1913 
1914 	memcg = container_of(work, struct mem_cgroup, high_work);
1915 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1916 }
1917 
1918 /*
1919  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1920  * enough to still cause a significant slowdown in most cases, while still
1921  * allowing diagnostics and tracing to proceed without becoming stuck.
1922  */
1923 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1924 
1925 /*
1926  * When calculating the delay, we use these either side of the exponentiation to
1927  * maintain precision and scale to a reasonable number of jiffies (see the table
1928  * below.
1929  *
1930  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1931  *   overage ratio to a delay.
1932  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1933  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
1934  *   to produce a reasonable delay curve.
1935  *
1936  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1937  * reasonable delay curve compared to precision-adjusted overage, not
1938  * penalising heavily at first, but still making sure that growth beyond the
1939  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1940  * example, with a high of 100 megabytes:
1941  *
1942  *  +-------+------------------------+
1943  *  | usage | time to allocate in ms |
1944  *  +-------+------------------------+
1945  *  | 100M  |                      0 |
1946  *  | 101M  |                      6 |
1947  *  | 102M  |                     25 |
1948  *  | 103M  |                     57 |
1949  *  | 104M  |                    102 |
1950  *  | 105M  |                    159 |
1951  *  | 106M  |                    230 |
1952  *  | 107M  |                    313 |
1953  *  | 108M  |                    409 |
1954  *  | 109M  |                    518 |
1955  *  | 110M  |                    639 |
1956  *  | 111M  |                    774 |
1957  *  | 112M  |                    921 |
1958  *  | 113M  |                   1081 |
1959  *  | 114M  |                   1254 |
1960  *  | 115M  |                   1439 |
1961  *  | 116M  |                   1638 |
1962  *  | 117M  |                   1849 |
1963  *  | 118M  |                   2000 |
1964  *  | 119M  |                   2000 |
1965  *  | 120M  |                   2000 |
1966  *  +-------+------------------------+
1967  */
1968  #define MEMCG_DELAY_PRECISION_SHIFT 20
1969  #define MEMCG_DELAY_SCALING_SHIFT 14
1970 
1971 static u64 calculate_overage(unsigned long usage, unsigned long high)
1972 {
1973 	u64 overage;
1974 
1975 	if (usage <= high)
1976 		return 0;
1977 
1978 	/*
1979 	 * Prevent division by 0 in overage calculation by acting as if
1980 	 * it was a threshold of 1 page
1981 	 */
1982 	high = max(high, 1UL);
1983 
1984 	overage = usage - high;
1985 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
1986 	return div64_u64(overage, high);
1987 }
1988 
1989 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
1990 {
1991 	u64 overage, max_overage = 0;
1992 
1993 	do {
1994 		overage = calculate_overage(page_counter_read(&memcg->memory),
1995 					    READ_ONCE(memcg->memory.high));
1996 		max_overage = max(overage, max_overage);
1997 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1998 		 !mem_cgroup_is_root(memcg));
1999 
2000 	return max_overage;
2001 }
2002 
2003 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2004 {
2005 	u64 overage, max_overage = 0;
2006 
2007 	do {
2008 		overage = calculate_overage(page_counter_read(&memcg->swap),
2009 					    READ_ONCE(memcg->swap.high));
2010 		if (overage)
2011 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2012 		max_overage = max(overage, max_overage);
2013 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2014 		 !mem_cgroup_is_root(memcg));
2015 
2016 	return max_overage;
2017 }
2018 
2019 /*
2020  * Get the number of jiffies that we should penalise a mischievous cgroup which
2021  * is exceeding its memory.high by checking both it and its ancestors.
2022  */
2023 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2024 					  unsigned int nr_pages,
2025 					  u64 max_overage)
2026 {
2027 	unsigned long penalty_jiffies;
2028 
2029 	if (!max_overage)
2030 		return 0;
2031 
2032 	/*
2033 	 * We use overage compared to memory.high to calculate the number of
2034 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2035 	 * fairly lenient on small overages, and increasingly harsh when the
2036 	 * memcg in question makes it clear that it has no intention of stopping
2037 	 * its crazy behaviour, so we exponentially increase the delay based on
2038 	 * overage amount.
2039 	 */
2040 	penalty_jiffies = max_overage * max_overage * HZ;
2041 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2042 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2043 
2044 	/*
2045 	 * Factor in the task's own contribution to the overage, such that four
2046 	 * N-sized allocations are throttled approximately the same as one
2047 	 * 4N-sized allocation.
2048 	 *
2049 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2050 	 * larger the current charge patch is than that.
2051 	 */
2052 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2053 }
2054 
2055 /*
2056  * Reclaims memory over the high limit. Called directly from
2057  * try_charge() (context permitting), as well as from the userland
2058  * return path where reclaim is always able to block.
2059  */
2060 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2061 {
2062 	unsigned long penalty_jiffies;
2063 	unsigned long pflags;
2064 	unsigned long nr_reclaimed;
2065 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2066 	int nr_retries = MAX_RECLAIM_RETRIES;
2067 	struct mem_cgroup *memcg;
2068 	bool in_retry = false;
2069 
2070 	if (likely(!nr_pages))
2071 		return;
2072 
2073 	memcg = get_mem_cgroup_from_mm(current->mm);
2074 	current->memcg_nr_pages_over_high = 0;
2075 
2076 retry_reclaim:
2077 	/*
2078 	 * Bail if the task is already exiting. Unlike memory.max,
2079 	 * memory.high enforcement isn't as strict, and there is no
2080 	 * OOM killer involved, which means the excess could already
2081 	 * be much bigger (and still growing) than it could for
2082 	 * memory.max; the dying task could get stuck in fruitless
2083 	 * reclaim for a long time, which isn't desirable.
2084 	 */
2085 	if (task_is_dying())
2086 		goto out;
2087 
2088 	/*
2089 	 * The allocating task should reclaim at least the batch size, but for
2090 	 * subsequent retries we only want to do what's necessary to prevent oom
2091 	 * or breaching resource isolation.
2092 	 *
2093 	 * This is distinct from memory.max or page allocator behaviour because
2094 	 * memory.high is currently batched, whereas memory.max and the page
2095 	 * allocator run every time an allocation is made.
2096 	 */
2097 	nr_reclaimed = reclaim_high(memcg,
2098 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2099 				    gfp_mask);
2100 
2101 	/*
2102 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2103 	 * allocators proactively to slow down excessive growth.
2104 	 */
2105 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2106 					       mem_find_max_overage(memcg));
2107 
2108 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2109 						swap_find_max_overage(memcg));
2110 
2111 	/*
2112 	 * Clamp the max delay per usermode return so as to still keep the
2113 	 * application moving forwards and also permit diagnostics, albeit
2114 	 * extremely slowly.
2115 	 */
2116 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2117 
2118 	/*
2119 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2120 	 * that it's not even worth doing, in an attempt to be nice to those who
2121 	 * go only a small amount over their memory.high value and maybe haven't
2122 	 * been aggressively reclaimed enough yet.
2123 	 */
2124 	if (penalty_jiffies <= HZ / 100)
2125 		goto out;
2126 
2127 	/*
2128 	 * If reclaim is making forward progress but we're still over
2129 	 * memory.high, we want to encourage that rather than doing allocator
2130 	 * throttling.
2131 	 */
2132 	if (nr_reclaimed || nr_retries--) {
2133 		in_retry = true;
2134 		goto retry_reclaim;
2135 	}
2136 
2137 	/*
2138 	 * Reclaim didn't manage to push usage below the limit, slow
2139 	 * this allocating task down.
2140 	 *
2141 	 * If we exit early, we're guaranteed to die (since
2142 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2143 	 * need to account for any ill-begotten jiffies to pay them off later.
2144 	 */
2145 	psi_memstall_enter(&pflags);
2146 	schedule_timeout_killable(penalty_jiffies);
2147 	psi_memstall_leave(&pflags);
2148 
2149 out:
2150 	css_put(&memcg->css);
2151 }
2152 
2153 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2154 		     unsigned int nr_pages)
2155 {
2156 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2157 	int nr_retries = MAX_RECLAIM_RETRIES;
2158 	struct mem_cgroup *mem_over_limit;
2159 	struct page_counter *counter;
2160 	unsigned long nr_reclaimed;
2161 	bool passed_oom = false;
2162 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2163 	bool drained = false;
2164 	bool raised_max_event = false;
2165 	unsigned long pflags;
2166 
2167 retry:
2168 	if (consume_stock(memcg, nr_pages))
2169 		return 0;
2170 
2171 	if (!do_memsw_account() ||
2172 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2173 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2174 			goto done_restock;
2175 		if (do_memsw_account())
2176 			page_counter_uncharge(&memcg->memsw, batch);
2177 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2178 	} else {
2179 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2180 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2181 	}
2182 
2183 	if (batch > nr_pages) {
2184 		batch = nr_pages;
2185 		goto retry;
2186 	}
2187 
2188 	/*
2189 	 * Prevent unbounded recursion when reclaim operations need to
2190 	 * allocate memory. This might exceed the limits temporarily,
2191 	 * but we prefer facilitating memory reclaim and getting back
2192 	 * under the limit over triggering OOM kills in these cases.
2193 	 */
2194 	if (unlikely(current->flags & PF_MEMALLOC))
2195 		goto force;
2196 
2197 	if (unlikely(task_in_memcg_oom(current)))
2198 		goto nomem;
2199 
2200 	if (!gfpflags_allow_blocking(gfp_mask))
2201 		goto nomem;
2202 
2203 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2204 	raised_max_event = true;
2205 
2206 	psi_memstall_enter(&pflags);
2207 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2208 						    gfp_mask, reclaim_options, NULL);
2209 	psi_memstall_leave(&pflags);
2210 
2211 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2212 		goto retry;
2213 
2214 	if (!drained) {
2215 		drain_all_stock(mem_over_limit);
2216 		drained = true;
2217 		goto retry;
2218 	}
2219 
2220 	if (gfp_mask & __GFP_NORETRY)
2221 		goto nomem;
2222 	/*
2223 	 * Even though the limit is exceeded at this point, reclaim
2224 	 * may have been able to free some pages.  Retry the charge
2225 	 * before killing the task.
2226 	 *
2227 	 * Only for regular pages, though: huge pages are rather
2228 	 * unlikely to succeed so close to the limit, and we fall back
2229 	 * to regular pages anyway in case of failure.
2230 	 */
2231 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2232 		goto retry;
2233 	/*
2234 	 * At task move, charge accounts can be doubly counted. So, it's
2235 	 * better to wait until the end of task_move if something is going on.
2236 	 */
2237 	if (memcg1_wait_acct_move(mem_over_limit))
2238 		goto retry;
2239 
2240 	if (nr_retries--)
2241 		goto retry;
2242 
2243 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2244 		goto nomem;
2245 
2246 	/* Avoid endless loop for tasks bypassed by the oom killer */
2247 	if (passed_oom && task_is_dying())
2248 		goto nomem;
2249 
2250 	/*
2251 	 * keep retrying as long as the memcg oom killer is able to make
2252 	 * a forward progress or bypass the charge if the oom killer
2253 	 * couldn't make any progress.
2254 	 */
2255 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2256 			   get_order(nr_pages * PAGE_SIZE))) {
2257 		passed_oom = true;
2258 		nr_retries = MAX_RECLAIM_RETRIES;
2259 		goto retry;
2260 	}
2261 nomem:
2262 	/*
2263 	 * Memcg doesn't have a dedicated reserve for atomic
2264 	 * allocations. But like the global atomic pool, we need to
2265 	 * put the burden of reclaim on regular allocation requests
2266 	 * and let these go through as privileged allocations.
2267 	 */
2268 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2269 		return -ENOMEM;
2270 force:
2271 	/*
2272 	 * If the allocation has to be enforced, don't forget to raise
2273 	 * a MEMCG_MAX event.
2274 	 */
2275 	if (!raised_max_event)
2276 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2277 
2278 	/*
2279 	 * The allocation either can't fail or will lead to more memory
2280 	 * being freed very soon.  Allow memory usage go over the limit
2281 	 * temporarily by force charging it.
2282 	 */
2283 	page_counter_charge(&memcg->memory, nr_pages);
2284 	if (do_memsw_account())
2285 		page_counter_charge(&memcg->memsw, nr_pages);
2286 
2287 	return 0;
2288 
2289 done_restock:
2290 	if (batch > nr_pages)
2291 		refill_stock(memcg, batch - nr_pages);
2292 
2293 	/*
2294 	 * If the hierarchy is above the normal consumption range, schedule
2295 	 * reclaim on returning to userland.  We can perform reclaim here
2296 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2298 	 * not recorded as it most likely matches current's and won't
2299 	 * change in the meantime.  As high limit is checked again before
2300 	 * reclaim, the cost of mismatch is negligible.
2301 	 */
2302 	do {
2303 		bool mem_high, swap_high;
2304 
2305 		mem_high = page_counter_read(&memcg->memory) >
2306 			READ_ONCE(memcg->memory.high);
2307 		swap_high = page_counter_read(&memcg->swap) >
2308 			READ_ONCE(memcg->swap.high);
2309 
2310 		/* Don't bother a random interrupted task */
2311 		if (!in_task()) {
2312 			if (mem_high) {
2313 				schedule_work(&memcg->high_work);
2314 				break;
2315 			}
2316 			continue;
2317 		}
2318 
2319 		if (mem_high || swap_high) {
2320 			/*
2321 			 * The allocating tasks in this cgroup will need to do
2322 			 * reclaim or be throttled to prevent further growth
2323 			 * of the memory or swap footprints.
2324 			 *
2325 			 * Target some best-effort fairness between the tasks,
2326 			 * and distribute reclaim work and delay penalties
2327 			 * based on how much each task is actually allocating.
2328 			 */
2329 			current->memcg_nr_pages_over_high += batch;
2330 			set_notify_resume(current);
2331 			break;
2332 		}
2333 	} while ((memcg = parent_mem_cgroup(memcg)));
2334 
2335 	/*
2336 	 * Reclaim is set up above to be called from the userland
2337 	 * return path. But also attempt synchronous reclaim to avoid
2338 	 * excessive overrun while the task is still inside the
2339 	 * kernel. If this is successful, the return path will see it
2340 	 * when it rechecks the overage and simply bail out.
2341 	 */
2342 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2343 	    !(current->flags & PF_MEMALLOC) &&
2344 	    gfpflags_allow_blocking(gfp_mask))
2345 		mem_cgroup_handle_over_high(gfp_mask);
2346 	return 0;
2347 }
2348 
2349 /**
2350  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2351  * @memcg: memcg previously charged.
2352  * @nr_pages: number of pages previously charged.
2353  */
2354 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 {
2356 	if (mem_cgroup_is_root(memcg))
2357 		return;
2358 
2359 	page_counter_uncharge(&memcg->memory, nr_pages);
2360 	if (do_memsw_account())
2361 		page_counter_uncharge(&memcg->memsw, nr_pages);
2362 }
2363 
2364 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2365 {
2366 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2367 	/*
2368 	 * Any of the following ensures page's memcg stability:
2369 	 *
2370 	 * - the page lock
2371 	 * - LRU isolation
2372 	 * - folio_memcg_lock()
2373 	 * - exclusive reference
2374 	 * - mem_cgroup_trylock_pages()
2375 	 */
2376 	folio->memcg_data = (unsigned long)memcg;
2377 }
2378 
2379 /**
2380  * mem_cgroup_commit_charge - commit a previously successful try_charge().
2381  * @folio: folio to commit the charge to.
2382  * @memcg: memcg previously charged.
2383  */
2384 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2385 {
2386 	css_get(&memcg->css);
2387 	commit_charge(folio, memcg);
2388 	memcg1_commit_charge(folio, memcg);
2389 }
2390 
2391 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2392 				       struct pglist_data *pgdat,
2393 				       enum node_stat_item idx, int nr)
2394 {
2395 	struct mem_cgroup *memcg;
2396 	struct lruvec *lruvec;
2397 
2398 	rcu_read_lock();
2399 	memcg = obj_cgroup_memcg(objcg);
2400 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2401 	__mod_memcg_lruvec_state(lruvec, idx, nr);
2402 	rcu_read_unlock();
2403 }
2404 
2405 static __always_inline
2406 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2407 {
2408 	/*
2409 	 * Slab objects are accounted individually, not per-page.
2410 	 * Memcg membership data for each individual object is saved in
2411 	 * slab->obj_exts.
2412 	 */
2413 	if (folio_test_slab(folio)) {
2414 		struct slabobj_ext *obj_exts;
2415 		struct slab *slab;
2416 		unsigned int off;
2417 
2418 		slab = folio_slab(folio);
2419 		obj_exts = slab_obj_exts(slab);
2420 		if (!obj_exts)
2421 			return NULL;
2422 
2423 		off = obj_to_index(slab->slab_cache, slab, p);
2424 		if (obj_exts[off].objcg)
2425 			return obj_cgroup_memcg(obj_exts[off].objcg);
2426 
2427 		return NULL;
2428 	}
2429 
2430 	/*
2431 	 * folio_memcg_check() is used here, because in theory we can encounter
2432 	 * a folio where the slab flag has been cleared already, but
2433 	 * slab->obj_exts has not been freed yet
2434 	 * folio_memcg_check() will guarantee that a proper memory
2435 	 * cgroup pointer or NULL will be returned.
2436 	 */
2437 	return folio_memcg_check(folio);
2438 }
2439 
2440 /*
2441  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2442  * It is not suitable for objects allocated using vmalloc().
2443  *
2444  * A passed kernel object must be a slab object or a generic kernel page.
2445  *
2446  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2447  * cgroup_mutex, etc.
2448  */
2449 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2450 {
2451 	if (mem_cgroup_disabled())
2452 		return NULL;
2453 
2454 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2455 }
2456 
2457 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2458 {
2459 	struct obj_cgroup *objcg = NULL;
2460 
2461 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2462 		objcg = rcu_dereference(memcg->objcg);
2463 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2464 			break;
2465 		objcg = NULL;
2466 	}
2467 	return objcg;
2468 }
2469 
2470 static struct obj_cgroup *current_objcg_update(void)
2471 {
2472 	struct mem_cgroup *memcg;
2473 	struct obj_cgroup *old, *objcg = NULL;
2474 
2475 	do {
2476 		/* Atomically drop the update bit. */
2477 		old = xchg(&current->objcg, NULL);
2478 		if (old) {
2479 			old = (struct obj_cgroup *)
2480 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2481 			obj_cgroup_put(old);
2482 
2483 			old = NULL;
2484 		}
2485 
2486 		/* If new objcg is NULL, no reason for the second atomic update. */
2487 		if (!current->mm || (current->flags & PF_KTHREAD))
2488 			return NULL;
2489 
2490 		/*
2491 		 * Release the objcg pointer from the previous iteration,
2492 		 * if try_cmpxcg() below fails.
2493 		 */
2494 		if (unlikely(objcg)) {
2495 			obj_cgroup_put(objcg);
2496 			objcg = NULL;
2497 		}
2498 
2499 		/*
2500 		 * Obtain the new objcg pointer. The current task can be
2501 		 * asynchronously moved to another memcg and the previous
2502 		 * memcg can be offlined. So let's get the memcg pointer
2503 		 * and try get a reference to objcg under a rcu read lock.
2504 		 */
2505 
2506 		rcu_read_lock();
2507 		memcg = mem_cgroup_from_task(current);
2508 		objcg = __get_obj_cgroup_from_memcg(memcg);
2509 		rcu_read_unlock();
2510 
2511 		/*
2512 		 * Try set up a new objcg pointer atomically. If it
2513 		 * fails, it means the update flag was set concurrently, so
2514 		 * the whole procedure should be repeated.
2515 		 */
2516 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2517 
2518 	return objcg;
2519 }
2520 
2521 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2522 {
2523 	struct mem_cgroup *memcg;
2524 	struct obj_cgroup *objcg;
2525 
2526 	if (in_task()) {
2527 		memcg = current->active_memcg;
2528 		if (unlikely(memcg))
2529 			goto from_memcg;
2530 
2531 		objcg = READ_ONCE(current->objcg);
2532 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2533 			objcg = current_objcg_update();
2534 		/*
2535 		 * Objcg reference is kept by the task, so it's safe
2536 		 * to use the objcg by the current task.
2537 		 */
2538 		return objcg;
2539 	}
2540 
2541 	memcg = this_cpu_read(int_active_memcg);
2542 	if (unlikely(memcg))
2543 		goto from_memcg;
2544 
2545 	return NULL;
2546 
2547 from_memcg:
2548 	objcg = NULL;
2549 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2550 		/*
2551 		 * Memcg pointer is protected by scope (see set_active_memcg())
2552 		 * and is pinning the corresponding objcg, so objcg can't go
2553 		 * away and can be used within the scope without any additional
2554 		 * protection.
2555 		 */
2556 		objcg = rcu_dereference_check(memcg->objcg, 1);
2557 		if (likely(objcg))
2558 			break;
2559 	}
2560 
2561 	return objcg;
2562 }
2563 
2564 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2565 {
2566 	struct obj_cgroup *objcg;
2567 
2568 	if (!memcg_kmem_online())
2569 		return NULL;
2570 
2571 	if (folio_memcg_kmem(folio)) {
2572 		objcg = __folio_objcg(folio);
2573 		obj_cgroup_get(objcg);
2574 	} else {
2575 		struct mem_cgroup *memcg;
2576 
2577 		rcu_read_lock();
2578 		memcg = __folio_memcg(folio);
2579 		if (memcg)
2580 			objcg = __get_obj_cgroup_from_memcg(memcg);
2581 		else
2582 			objcg = NULL;
2583 		rcu_read_unlock();
2584 	}
2585 	return objcg;
2586 }
2587 
2588 /*
2589  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2590  * @objcg: object cgroup to uncharge
2591  * @nr_pages: number of pages to uncharge
2592  */
2593 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2594 				      unsigned int nr_pages)
2595 {
2596 	struct mem_cgroup *memcg;
2597 
2598 	memcg = get_mem_cgroup_from_objcg(objcg);
2599 
2600 	mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2601 	memcg1_account_kmem(memcg, -nr_pages);
2602 	refill_stock(memcg, nr_pages);
2603 
2604 	css_put(&memcg->css);
2605 }
2606 
2607 /*
2608  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2609  * @objcg: object cgroup to charge
2610  * @gfp: reclaim mode
2611  * @nr_pages: number of pages to charge
2612  *
2613  * Returns 0 on success, an error code on failure.
2614  */
2615 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2616 				   unsigned int nr_pages)
2617 {
2618 	struct mem_cgroup *memcg;
2619 	int ret;
2620 
2621 	memcg = get_mem_cgroup_from_objcg(objcg);
2622 
2623 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2624 	if (ret)
2625 		goto out;
2626 
2627 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2628 	memcg1_account_kmem(memcg, nr_pages);
2629 out:
2630 	css_put(&memcg->css);
2631 
2632 	return ret;
2633 }
2634 
2635 /**
2636  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2637  * @page: page to charge
2638  * @gfp: reclaim mode
2639  * @order: allocation order
2640  *
2641  * Returns 0 on success, an error code on failure.
2642  */
2643 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2644 {
2645 	struct obj_cgroup *objcg;
2646 	int ret = 0;
2647 
2648 	objcg = current_obj_cgroup();
2649 	if (objcg) {
2650 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2651 		if (!ret) {
2652 			obj_cgroup_get(objcg);
2653 			page->memcg_data = (unsigned long)objcg |
2654 				MEMCG_DATA_KMEM;
2655 			return 0;
2656 		}
2657 	}
2658 	return ret;
2659 }
2660 
2661 /**
2662  * __memcg_kmem_uncharge_page: uncharge a kmem page
2663  * @page: page to uncharge
2664  * @order: allocation order
2665  */
2666 void __memcg_kmem_uncharge_page(struct page *page, int order)
2667 {
2668 	struct folio *folio = page_folio(page);
2669 	struct obj_cgroup *objcg;
2670 	unsigned int nr_pages = 1 << order;
2671 
2672 	if (!folio_memcg_kmem(folio))
2673 		return;
2674 
2675 	objcg = __folio_objcg(folio);
2676 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2677 	folio->memcg_data = 0;
2678 	obj_cgroup_put(objcg);
2679 }
2680 
2681 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2682 		     enum node_stat_item idx, int nr)
2683 {
2684 	struct memcg_stock_pcp *stock;
2685 	struct obj_cgroup *old = NULL;
2686 	unsigned long flags;
2687 	int *bytes;
2688 
2689 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2690 	stock = this_cpu_ptr(&memcg_stock);
2691 
2692 	/*
2693 	 * Save vmstat data in stock and skip vmstat array update unless
2694 	 * accumulating over a page of vmstat data or when pgdat or idx
2695 	 * changes.
2696 	 */
2697 	if (READ_ONCE(stock->cached_objcg) != objcg) {
2698 		old = drain_obj_stock(stock);
2699 		obj_cgroup_get(objcg);
2700 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2701 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2702 		WRITE_ONCE(stock->cached_objcg, objcg);
2703 		stock->cached_pgdat = pgdat;
2704 	} else if (stock->cached_pgdat != pgdat) {
2705 		/* Flush the existing cached vmstat data */
2706 		struct pglist_data *oldpg = stock->cached_pgdat;
2707 
2708 		if (stock->nr_slab_reclaimable_b) {
2709 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2710 					  stock->nr_slab_reclaimable_b);
2711 			stock->nr_slab_reclaimable_b = 0;
2712 		}
2713 		if (stock->nr_slab_unreclaimable_b) {
2714 			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2715 					  stock->nr_slab_unreclaimable_b);
2716 			stock->nr_slab_unreclaimable_b = 0;
2717 		}
2718 		stock->cached_pgdat = pgdat;
2719 	}
2720 
2721 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2722 					       : &stock->nr_slab_unreclaimable_b;
2723 	/*
2724 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2725 	 * cached locally at least once before pushing it out.
2726 	 */
2727 	if (!*bytes) {
2728 		*bytes = nr;
2729 		nr = 0;
2730 	} else {
2731 		*bytes += nr;
2732 		if (abs(*bytes) > PAGE_SIZE) {
2733 			nr = *bytes;
2734 			*bytes = 0;
2735 		} else {
2736 			nr = 0;
2737 		}
2738 	}
2739 	if (nr)
2740 		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
2741 
2742 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2743 	obj_cgroup_put(old);
2744 }
2745 
2746 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2747 {
2748 	struct memcg_stock_pcp *stock;
2749 	unsigned long flags;
2750 	bool ret = false;
2751 
2752 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2753 
2754 	stock = this_cpu_ptr(&memcg_stock);
2755 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2756 		stock->nr_bytes -= nr_bytes;
2757 		ret = true;
2758 	}
2759 
2760 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2761 
2762 	return ret;
2763 }
2764 
2765 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2766 {
2767 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2768 
2769 	if (!old)
2770 		return NULL;
2771 
2772 	if (stock->nr_bytes) {
2773 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2774 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2775 
2776 		if (nr_pages) {
2777 			struct mem_cgroup *memcg;
2778 
2779 			memcg = get_mem_cgroup_from_objcg(old);
2780 
2781 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2782 			memcg1_account_kmem(memcg, -nr_pages);
2783 			__refill_stock(memcg, nr_pages);
2784 
2785 			css_put(&memcg->css);
2786 		}
2787 
2788 		/*
2789 		 * The leftover is flushed to the centralized per-memcg value.
2790 		 * On the next attempt to refill obj stock it will be moved
2791 		 * to a per-cpu stock (probably, on an other CPU), see
2792 		 * refill_obj_stock().
2793 		 *
2794 		 * How often it's flushed is a trade-off between the memory
2795 		 * limit enforcement accuracy and potential CPU contention,
2796 		 * so it might be changed in the future.
2797 		 */
2798 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2799 		stock->nr_bytes = 0;
2800 	}
2801 
2802 	/*
2803 	 * Flush the vmstat data in current stock
2804 	 */
2805 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2806 		if (stock->nr_slab_reclaimable_b) {
2807 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2808 					  NR_SLAB_RECLAIMABLE_B,
2809 					  stock->nr_slab_reclaimable_b);
2810 			stock->nr_slab_reclaimable_b = 0;
2811 		}
2812 		if (stock->nr_slab_unreclaimable_b) {
2813 			__mod_objcg_mlstate(old, stock->cached_pgdat,
2814 					  NR_SLAB_UNRECLAIMABLE_B,
2815 					  stock->nr_slab_unreclaimable_b);
2816 			stock->nr_slab_unreclaimable_b = 0;
2817 		}
2818 		stock->cached_pgdat = NULL;
2819 	}
2820 
2821 	WRITE_ONCE(stock->cached_objcg, NULL);
2822 	/*
2823 	 * The `old' objects needs to be released by the caller via
2824 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2825 	 */
2826 	return old;
2827 }
2828 
2829 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2830 				     struct mem_cgroup *root_memcg)
2831 {
2832 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2833 	struct mem_cgroup *memcg;
2834 
2835 	if (objcg) {
2836 		memcg = obj_cgroup_memcg(objcg);
2837 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2838 			return true;
2839 	}
2840 
2841 	return false;
2842 }
2843 
2844 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2845 			     bool allow_uncharge)
2846 {
2847 	struct memcg_stock_pcp *stock;
2848 	struct obj_cgroup *old = NULL;
2849 	unsigned long flags;
2850 	unsigned int nr_pages = 0;
2851 
2852 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2853 
2854 	stock = this_cpu_ptr(&memcg_stock);
2855 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2856 		old = drain_obj_stock(stock);
2857 		obj_cgroup_get(objcg);
2858 		WRITE_ONCE(stock->cached_objcg, objcg);
2859 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2860 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2861 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
2862 	}
2863 	stock->nr_bytes += nr_bytes;
2864 
2865 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2866 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2867 		stock->nr_bytes &= (PAGE_SIZE - 1);
2868 	}
2869 
2870 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2871 	obj_cgroup_put(old);
2872 
2873 	if (nr_pages)
2874 		obj_cgroup_uncharge_pages(objcg, nr_pages);
2875 }
2876 
2877 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2878 {
2879 	unsigned int nr_pages, nr_bytes;
2880 	int ret;
2881 
2882 	if (consume_obj_stock(objcg, size))
2883 		return 0;
2884 
2885 	/*
2886 	 * In theory, objcg->nr_charged_bytes can have enough
2887 	 * pre-charged bytes to satisfy the allocation. However,
2888 	 * flushing objcg->nr_charged_bytes requires two atomic
2889 	 * operations, and objcg->nr_charged_bytes can't be big.
2890 	 * The shared objcg->nr_charged_bytes can also become a
2891 	 * performance bottleneck if all tasks of the same memcg are
2892 	 * trying to update it. So it's better to ignore it and try
2893 	 * grab some new pages. The stock's nr_bytes will be flushed to
2894 	 * objcg->nr_charged_bytes later on when objcg changes.
2895 	 *
2896 	 * The stock's nr_bytes may contain enough pre-charged bytes
2897 	 * to allow one less page from being charged, but we can't rely
2898 	 * on the pre-charged bytes not being changed outside of
2899 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
2900 	 * pre-charged bytes as well when charging pages. To avoid a
2901 	 * page uncharge right after a page charge, we set the
2902 	 * allow_uncharge flag to false when calling refill_obj_stock()
2903 	 * to temporarily allow the pre-charged bytes to exceed the page
2904 	 * size limit. The maximum reachable value of the pre-charged
2905 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2906 	 * race.
2907 	 */
2908 	nr_pages = size >> PAGE_SHIFT;
2909 	nr_bytes = size & (PAGE_SIZE - 1);
2910 
2911 	if (nr_bytes)
2912 		nr_pages += 1;
2913 
2914 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2915 	if (!ret && nr_bytes)
2916 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2917 
2918 	return ret;
2919 }
2920 
2921 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2922 {
2923 	refill_obj_stock(objcg, size, true);
2924 }
2925 
2926 static inline size_t obj_full_size(struct kmem_cache *s)
2927 {
2928 	/*
2929 	 * For each accounted object there is an extra space which is used
2930 	 * to store obj_cgroup membership. Charge it too.
2931 	 */
2932 	return s->size + sizeof(struct obj_cgroup *);
2933 }
2934 
2935 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2936 				  gfp_t flags, size_t size, void **p)
2937 {
2938 	struct obj_cgroup *objcg;
2939 	struct slab *slab;
2940 	unsigned long off;
2941 	size_t i;
2942 
2943 	/*
2944 	 * The obtained objcg pointer is safe to use within the current scope,
2945 	 * defined by current task or set_active_memcg() pair.
2946 	 * obj_cgroup_get() is used to get a permanent reference.
2947 	 */
2948 	objcg = current_obj_cgroup();
2949 	if (!objcg)
2950 		return true;
2951 
2952 	/*
2953 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
2954 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2955 	 * the whole requested size.
2956 	 * return success as there's nothing to free back
2957 	 */
2958 	if (unlikely(*p == NULL))
2959 		return true;
2960 
2961 	flags &= gfp_allowed_mask;
2962 
2963 	if (lru) {
2964 		int ret;
2965 		struct mem_cgroup *memcg;
2966 
2967 		memcg = get_mem_cgroup_from_objcg(objcg);
2968 		ret = memcg_list_lru_alloc(memcg, lru, flags);
2969 		css_put(&memcg->css);
2970 
2971 		if (ret)
2972 			return false;
2973 	}
2974 
2975 	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2976 		return false;
2977 
2978 	for (i = 0; i < size; i++) {
2979 		slab = virt_to_slab(p[i]);
2980 
2981 		if (!slab_obj_exts(slab) &&
2982 		    alloc_slab_obj_exts(slab, s, flags, false)) {
2983 			obj_cgroup_uncharge(objcg, obj_full_size(s));
2984 			continue;
2985 		}
2986 
2987 		off = obj_to_index(s, slab, p[i]);
2988 		obj_cgroup_get(objcg);
2989 		slab_obj_exts(slab)[off].objcg = objcg;
2990 		mod_objcg_state(objcg, slab_pgdat(slab),
2991 				cache_vmstat_idx(s), obj_full_size(s));
2992 	}
2993 
2994 	return true;
2995 }
2996 
2997 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2998 			    void **p, int objects, struct slabobj_ext *obj_exts)
2999 {
3000 	for (int i = 0; i < objects; i++) {
3001 		struct obj_cgroup *objcg;
3002 		unsigned int off;
3003 
3004 		off = obj_to_index(s, slab, p[i]);
3005 		objcg = obj_exts[off].objcg;
3006 		if (!objcg)
3007 			continue;
3008 
3009 		obj_exts[off].objcg = NULL;
3010 		obj_cgroup_uncharge(objcg, obj_full_size(s));
3011 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3012 				-obj_full_size(s));
3013 		obj_cgroup_put(objcg);
3014 	}
3015 }
3016 
3017 /*
3018  * Because folio_memcg(head) is not set on tails, set it now.
3019  */
3020 void split_page_memcg(struct page *head, int old_order, int new_order)
3021 {
3022 	struct folio *folio = page_folio(head);
3023 	int i;
3024 	unsigned int old_nr = 1 << old_order;
3025 	unsigned int new_nr = 1 << new_order;
3026 
3027 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3028 		return;
3029 
3030 	for (i = new_nr; i < old_nr; i += new_nr)
3031 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3032 
3033 	if (folio_memcg_kmem(folio))
3034 		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3035 	else
3036 		css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3037 }
3038 
3039 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3040 {
3041 	unsigned long val;
3042 
3043 	if (mem_cgroup_is_root(memcg)) {
3044 		/*
3045 		 * Approximate root's usage from global state. This isn't
3046 		 * perfect, but the root usage was always an approximation.
3047 		 */
3048 		val = global_node_page_state(NR_FILE_PAGES) +
3049 			global_node_page_state(NR_ANON_MAPPED);
3050 		if (swap)
3051 			val += total_swap_pages - get_nr_swap_pages();
3052 	} else {
3053 		if (!swap)
3054 			val = page_counter_read(&memcg->memory);
3055 		else
3056 			val = page_counter_read(&memcg->memsw);
3057 	}
3058 	return val;
3059 }
3060 
3061 static int memcg_online_kmem(struct mem_cgroup *memcg)
3062 {
3063 	struct obj_cgroup *objcg;
3064 
3065 	if (mem_cgroup_kmem_disabled())
3066 		return 0;
3067 
3068 	if (unlikely(mem_cgroup_is_root(memcg)))
3069 		return 0;
3070 
3071 	objcg = obj_cgroup_alloc();
3072 	if (!objcg)
3073 		return -ENOMEM;
3074 
3075 	objcg->memcg = memcg;
3076 	rcu_assign_pointer(memcg->objcg, objcg);
3077 	obj_cgroup_get(objcg);
3078 	memcg->orig_objcg = objcg;
3079 
3080 	static_branch_enable(&memcg_kmem_online_key);
3081 
3082 	memcg->kmemcg_id = memcg->id.id;
3083 
3084 	return 0;
3085 }
3086 
3087 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3088 {
3089 	struct mem_cgroup *parent;
3090 
3091 	if (mem_cgroup_kmem_disabled())
3092 		return;
3093 
3094 	if (unlikely(mem_cgroup_is_root(memcg)))
3095 		return;
3096 
3097 	parent = parent_mem_cgroup(memcg);
3098 	if (!parent)
3099 		parent = root_mem_cgroup;
3100 
3101 	memcg_reparent_objcgs(memcg, parent);
3102 
3103 	/*
3104 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3105 	 * corresponding to this cgroup are guaranteed to remain empty.
3106 	 * The ordering is imposed by list_lru_node->lock taken by
3107 	 * memcg_reparent_list_lrus().
3108 	 */
3109 	memcg_reparent_list_lrus(memcg, parent);
3110 }
3111 
3112 #ifdef CONFIG_CGROUP_WRITEBACK
3113 
3114 #include <trace/events/writeback.h>
3115 
3116 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3117 {
3118 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3119 }
3120 
3121 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3122 {
3123 	wb_domain_exit(&memcg->cgwb_domain);
3124 }
3125 
3126 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3127 {
3128 	wb_domain_size_changed(&memcg->cgwb_domain);
3129 }
3130 
3131 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3132 {
3133 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3134 
3135 	if (!memcg->css.parent)
3136 		return NULL;
3137 
3138 	return &memcg->cgwb_domain;
3139 }
3140 
3141 /**
3142  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3143  * @wb: bdi_writeback in question
3144  * @pfilepages: out parameter for number of file pages
3145  * @pheadroom: out parameter for number of allocatable pages according to memcg
3146  * @pdirty: out parameter for number of dirty pages
3147  * @pwriteback: out parameter for number of pages under writeback
3148  *
3149  * Determine the numbers of file, headroom, dirty, and writeback pages in
3150  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3151  * is a bit more involved.
3152  *
3153  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3154  * headroom is calculated as the lowest headroom of itself and the
3155  * ancestors.  Note that this doesn't consider the actual amount of
3156  * available memory in the system.  The caller should further cap
3157  * *@pheadroom accordingly.
3158  */
3159 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3160 			 unsigned long *pheadroom, unsigned long *pdirty,
3161 			 unsigned long *pwriteback)
3162 {
3163 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3164 	struct mem_cgroup *parent;
3165 
3166 	mem_cgroup_flush_stats_ratelimited(memcg);
3167 
3168 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3169 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3170 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3171 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3172 
3173 	*pheadroom = PAGE_COUNTER_MAX;
3174 	while ((parent = parent_mem_cgroup(memcg))) {
3175 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3176 					    READ_ONCE(memcg->memory.high));
3177 		unsigned long used = page_counter_read(&memcg->memory);
3178 
3179 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3180 		memcg = parent;
3181 	}
3182 }
3183 
3184 /*
3185  * Foreign dirty flushing
3186  *
3187  * There's an inherent mismatch between memcg and writeback.  The former
3188  * tracks ownership per-page while the latter per-inode.  This was a
3189  * deliberate design decision because honoring per-page ownership in the
3190  * writeback path is complicated, may lead to higher CPU and IO overheads
3191  * and deemed unnecessary given that write-sharing an inode across
3192  * different cgroups isn't a common use-case.
3193  *
3194  * Combined with inode majority-writer ownership switching, this works well
3195  * enough in most cases but there are some pathological cases.  For
3196  * example, let's say there are two cgroups A and B which keep writing to
3197  * different but confined parts of the same inode.  B owns the inode and
3198  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3199  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3200  * triggering background writeback.  A will be slowed down without a way to
3201  * make writeback of the dirty pages happen.
3202  *
3203  * Conditions like the above can lead to a cgroup getting repeatedly and
3204  * severely throttled after making some progress after each
3205  * dirty_expire_interval while the underlying IO device is almost
3206  * completely idle.
3207  *
3208  * Solving this problem completely requires matching the ownership tracking
3209  * granularities between memcg and writeback in either direction.  However,
3210  * the more egregious behaviors can be avoided by simply remembering the
3211  * most recent foreign dirtying events and initiating remote flushes on
3212  * them when local writeback isn't enough to keep the memory clean enough.
3213  *
3214  * The following two functions implement such mechanism.  When a foreign
3215  * page - a page whose memcg and writeback ownerships don't match - is
3216  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3217  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3218  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3219  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3220  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3221  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3222  * limited to MEMCG_CGWB_FRN_CNT.
3223  *
3224  * The mechanism only remembers IDs and doesn't hold any object references.
3225  * As being wrong occasionally doesn't matter, updates and accesses to the
3226  * records are lockless and racy.
3227  */
3228 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3229 					     struct bdi_writeback *wb)
3230 {
3231 	struct mem_cgroup *memcg = folio_memcg(folio);
3232 	struct memcg_cgwb_frn *frn;
3233 	u64 now = get_jiffies_64();
3234 	u64 oldest_at = now;
3235 	int oldest = -1;
3236 	int i;
3237 
3238 	trace_track_foreign_dirty(folio, wb);
3239 
3240 	/*
3241 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3242 	 * using it.  If not replace the oldest one which isn't being
3243 	 * written out.
3244 	 */
3245 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3246 		frn = &memcg->cgwb_frn[i];
3247 		if (frn->bdi_id == wb->bdi->id &&
3248 		    frn->memcg_id == wb->memcg_css->id)
3249 			break;
3250 		if (time_before64(frn->at, oldest_at) &&
3251 		    atomic_read(&frn->done.cnt) == 1) {
3252 			oldest = i;
3253 			oldest_at = frn->at;
3254 		}
3255 	}
3256 
3257 	if (i < MEMCG_CGWB_FRN_CNT) {
3258 		/*
3259 		 * Re-using an existing one.  Update timestamp lazily to
3260 		 * avoid making the cacheline hot.  We want them to be
3261 		 * reasonably up-to-date and significantly shorter than
3262 		 * dirty_expire_interval as that's what expires the record.
3263 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3264 		 */
3265 		unsigned long update_intv =
3266 			min_t(unsigned long, HZ,
3267 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3268 
3269 		if (time_before64(frn->at, now - update_intv))
3270 			frn->at = now;
3271 	} else if (oldest >= 0) {
3272 		/* replace the oldest free one */
3273 		frn = &memcg->cgwb_frn[oldest];
3274 		frn->bdi_id = wb->bdi->id;
3275 		frn->memcg_id = wb->memcg_css->id;
3276 		frn->at = now;
3277 	}
3278 }
3279 
3280 /* issue foreign writeback flushes for recorded foreign dirtying events */
3281 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3282 {
3283 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3284 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3285 	u64 now = jiffies_64;
3286 	int i;
3287 
3288 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3289 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3290 
3291 		/*
3292 		 * If the record is older than dirty_expire_interval,
3293 		 * writeback on it has already started.  No need to kick it
3294 		 * off again.  Also, don't start a new one if there's
3295 		 * already one in flight.
3296 		 */
3297 		if (time_after64(frn->at, now - intv) &&
3298 		    atomic_read(&frn->done.cnt) == 1) {
3299 			frn->at = 0;
3300 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3301 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3302 					       WB_REASON_FOREIGN_FLUSH,
3303 					       &frn->done);
3304 		}
3305 	}
3306 }
3307 
3308 #else	/* CONFIG_CGROUP_WRITEBACK */
3309 
3310 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3311 {
3312 	return 0;
3313 }
3314 
3315 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3316 {
3317 }
3318 
3319 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3320 {
3321 }
3322 
3323 #endif	/* CONFIG_CGROUP_WRITEBACK */
3324 
3325 /*
3326  * Private memory cgroup IDR
3327  *
3328  * Swap-out records and page cache shadow entries need to store memcg
3329  * references in constrained space, so we maintain an ID space that is
3330  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3331  * memory-controlled cgroups to 64k.
3332  *
3333  * However, there usually are many references to the offline CSS after
3334  * the cgroup has been destroyed, such as page cache or reclaimable
3335  * slab objects, that don't need to hang on to the ID. We want to keep
3336  * those dead CSS from occupying IDs, or we might quickly exhaust the
3337  * relatively small ID space and prevent the creation of new cgroups
3338  * even when there are much fewer than 64k cgroups - possibly none.
3339  *
3340  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3341  * be freed and recycled when it's no longer needed, which is usually
3342  * when the CSS is offlined.
3343  *
3344  * The only exception to that are records of swapped out tmpfs/shmem
3345  * pages that need to be attributed to live ancestors on swapin. But
3346  * those references are manageable from userspace.
3347  */
3348 
3349 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3350 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3351 
3352 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3353 {
3354 	if (memcg->id.id > 0) {
3355 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3356 		memcg->id.id = 0;
3357 	}
3358 }
3359 
3360 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3361 					   unsigned int n)
3362 {
3363 	refcount_add(n, &memcg->id.ref);
3364 }
3365 
3366 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3367 {
3368 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3369 		mem_cgroup_id_remove(memcg);
3370 
3371 		/* Memcg ID pins CSS */
3372 		css_put(&memcg->css);
3373 	}
3374 }
3375 
3376 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3377 {
3378 	mem_cgroup_id_put_many(memcg, 1);
3379 }
3380 
3381 /**
3382  * mem_cgroup_from_id - look up a memcg from a memcg id
3383  * @id: the memcg id to look up
3384  *
3385  * Caller must hold rcu_read_lock().
3386  */
3387 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3388 {
3389 	WARN_ON_ONCE(!rcu_read_lock_held());
3390 	return xa_load(&mem_cgroup_ids, id);
3391 }
3392 
3393 #ifdef CONFIG_SHRINKER_DEBUG
3394 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3395 {
3396 	struct cgroup *cgrp;
3397 	struct cgroup_subsys_state *css;
3398 	struct mem_cgroup *memcg;
3399 
3400 	cgrp = cgroup_get_from_id(ino);
3401 	if (IS_ERR(cgrp))
3402 		return ERR_CAST(cgrp);
3403 
3404 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3405 	if (css)
3406 		memcg = container_of(css, struct mem_cgroup, css);
3407 	else
3408 		memcg = ERR_PTR(-ENOENT);
3409 
3410 	cgroup_put(cgrp);
3411 
3412 	return memcg;
3413 }
3414 #endif
3415 
3416 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3417 {
3418 	struct mem_cgroup_per_node *pn;
3419 
3420 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3421 	if (!pn)
3422 		return false;
3423 
3424 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3425 					GFP_KERNEL_ACCOUNT, node);
3426 	if (!pn->lruvec_stats)
3427 		goto fail;
3428 
3429 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3430 						   GFP_KERNEL_ACCOUNT);
3431 	if (!pn->lruvec_stats_percpu)
3432 		goto fail;
3433 
3434 	lruvec_init(&pn->lruvec);
3435 	pn->memcg = memcg;
3436 
3437 	memcg->nodeinfo[node] = pn;
3438 	return true;
3439 fail:
3440 	kfree(pn->lruvec_stats);
3441 	kfree(pn);
3442 	return false;
3443 }
3444 
3445 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3446 {
3447 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3448 
3449 	if (!pn)
3450 		return;
3451 
3452 	free_percpu(pn->lruvec_stats_percpu);
3453 	kfree(pn->lruvec_stats);
3454 	kfree(pn);
3455 }
3456 
3457 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3458 {
3459 	int node;
3460 
3461 	obj_cgroup_put(memcg->orig_objcg);
3462 
3463 	for_each_node(node)
3464 		free_mem_cgroup_per_node_info(memcg, node);
3465 	memcg1_free_events(memcg);
3466 	kfree(memcg->vmstats);
3467 	free_percpu(memcg->vmstats_percpu);
3468 	kfree(memcg);
3469 }
3470 
3471 static void mem_cgroup_free(struct mem_cgroup *memcg)
3472 {
3473 	lru_gen_exit_memcg(memcg);
3474 	memcg_wb_domain_exit(memcg);
3475 	__mem_cgroup_free(memcg);
3476 }
3477 
3478 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3479 {
3480 	struct memcg_vmstats_percpu *statc, *pstatc;
3481 	struct mem_cgroup *memcg;
3482 	int node, cpu;
3483 	int __maybe_unused i;
3484 	long error;
3485 
3486 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3487 	if (!memcg)
3488 		return ERR_PTR(-ENOMEM);
3489 
3490 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3491 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3492 	if (error)
3493 		goto fail;
3494 	error = -ENOMEM;
3495 
3496 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3497 				 GFP_KERNEL_ACCOUNT);
3498 	if (!memcg->vmstats)
3499 		goto fail;
3500 
3501 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3502 						 GFP_KERNEL_ACCOUNT);
3503 	if (!memcg->vmstats_percpu)
3504 		goto fail;
3505 
3506 	if (!memcg1_alloc_events(memcg))
3507 		goto fail;
3508 
3509 	for_each_possible_cpu(cpu) {
3510 		if (parent)
3511 			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3512 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3513 		statc->parent = parent ? pstatc : NULL;
3514 		statc->vmstats = memcg->vmstats;
3515 	}
3516 
3517 	for_each_node(node)
3518 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3519 			goto fail;
3520 
3521 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3522 		goto fail;
3523 
3524 	INIT_WORK(&memcg->high_work, high_work_func);
3525 	vmpressure_init(&memcg->vmpressure);
3526 	INIT_LIST_HEAD(&memcg->memory_peaks);
3527 	INIT_LIST_HEAD(&memcg->swap_peaks);
3528 	spin_lock_init(&memcg->peaks_lock);
3529 	memcg->socket_pressure = jiffies;
3530 	memcg1_memcg_init(memcg);
3531 	memcg->kmemcg_id = -1;
3532 	INIT_LIST_HEAD(&memcg->objcg_list);
3533 #ifdef CONFIG_CGROUP_WRITEBACK
3534 	INIT_LIST_HEAD(&memcg->cgwb_list);
3535 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3536 		memcg->cgwb_frn[i].done =
3537 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3538 #endif
3539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3540 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3541 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3542 	memcg->deferred_split_queue.split_queue_len = 0;
3543 #endif
3544 	lru_gen_init_memcg(memcg);
3545 	return memcg;
3546 fail:
3547 	mem_cgroup_id_remove(memcg);
3548 	__mem_cgroup_free(memcg);
3549 	return ERR_PTR(error);
3550 }
3551 
3552 static struct cgroup_subsys_state * __ref
3553 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3554 {
3555 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3556 	struct mem_cgroup *memcg, *old_memcg;
3557 
3558 	old_memcg = set_active_memcg(parent);
3559 	memcg = mem_cgroup_alloc(parent);
3560 	set_active_memcg(old_memcg);
3561 	if (IS_ERR(memcg))
3562 		return ERR_CAST(memcg);
3563 
3564 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3565 	memcg1_soft_limit_reset(memcg);
3566 #ifdef CONFIG_ZSWAP
3567 	memcg->zswap_max = PAGE_COUNTER_MAX;
3568 	WRITE_ONCE(memcg->zswap_writeback, true);
3569 #endif
3570 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3571 	if (parent) {
3572 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3573 
3574 		page_counter_init(&memcg->memory, &parent->memory, true);
3575 		page_counter_init(&memcg->swap, &parent->swap, false);
3576 #ifdef CONFIG_MEMCG_V1
3577 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3578 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3579 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3580 #endif
3581 	} else {
3582 		init_memcg_stats();
3583 		init_memcg_events();
3584 		page_counter_init(&memcg->memory, NULL, true);
3585 		page_counter_init(&memcg->swap, NULL, false);
3586 #ifdef CONFIG_MEMCG_V1
3587 		page_counter_init(&memcg->kmem, NULL, false);
3588 		page_counter_init(&memcg->tcpmem, NULL, false);
3589 #endif
3590 		root_mem_cgroup = memcg;
3591 		return &memcg->css;
3592 	}
3593 
3594 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3595 		static_branch_inc(&memcg_sockets_enabled_key);
3596 
3597 	if (!cgroup_memory_nobpf)
3598 		static_branch_inc(&memcg_bpf_enabled_key);
3599 
3600 	return &memcg->css;
3601 }
3602 
3603 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3604 {
3605 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606 
3607 	if (memcg_online_kmem(memcg))
3608 		goto remove_id;
3609 
3610 	/*
3611 	 * A memcg must be visible for expand_shrinker_info()
3612 	 * by the time the maps are allocated. So, we allocate maps
3613 	 * here, when for_each_mem_cgroup() can't skip it.
3614 	 */
3615 	if (alloc_shrinker_info(memcg))
3616 		goto offline_kmem;
3617 
3618 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3619 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3620 				   FLUSH_TIME);
3621 	lru_gen_online_memcg(memcg);
3622 
3623 	/* Online state pins memcg ID, memcg ID pins CSS */
3624 	refcount_set(&memcg->id.ref, 1);
3625 	css_get(css);
3626 
3627 	/*
3628 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3629 	 *
3630 	 * We could do this earlier and require callers to filter with
3631 	 * css_tryget_online(). But right now there are no users that
3632 	 * need earlier access, and the workingset code relies on the
3633 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3634 	 * publish it here at the end of onlining. This matches the
3635 	 * regular ID destruction during offlining.
3636 	 */
3637 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3638 
3639 	return 0;
3640 offline_kmem:
3641 	memcg_offline_kmem(memcg);
3642 remove_id:
3643 	mem_cgroup_id_remove(memcg);
3644 	return -ENOMEM;
3645 }
3646 
3647 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3648 {
3649 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650 
3651 	memcg1_css_offline(memcg);
3652 
3653 	page_counter_set_min(&memcg->memory, 0);
3654 	page_counter_set_low(&memcg->memory, 0);
3655 
3656 	zswap_memcg_offline_cleanup(memcg);
3657 
3658 	memcg_offline_kmem(memcg);
3659 	reparent_shrinker_deferred(memcg);
3660 	wb_memcg_offline(memcg);
3661 	lru_gen_offline_memcg(memcg);
3662 
3663 	drain_all_stock(memcg);
3664 
3665 	mem_cgroup_id_put(memcg);
3666 }
3667 
3668 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3669 {
3670 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3671 
3672 	invalidate_reclaim_iterators(memcg);
3673 	lru_gen_release_memcg(memcg);
3674 }
3675 
3676 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3677 {
3678 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3679 	int __maybe_unused i;
3680 
3681 #ifdef CONFIG_CGROUP_WRITEBACK
3682 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3683 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3684 #endif
3685 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3686 		static_branch_dec(&memcg_sockets_enabled_key);
3687 
3688 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3689 		static_branch_dec(&memcg_sockets_enabled_key);
3690 
3691 	if (!cgroup_memory_nobpf)
3692 		static_branch_dec(&memcg_bpf_enabled_key);
3693 
3694 	vmpressure_cleanup(&memcg->vmpressure);
3695 	cancel_work_sync(&memcg->high_work);
3696 	memcg1_remove_from_trees(memcg);
3697 	free_shrinker_info(memcg);
3698 	mem_cgroup_free(memcg);
3699 }
3700 
3701 /**
3702  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3703  * @css: the target css
3704  *
3705  * Reset the states of the mem_cgroup associated with @css.  This is
3706  * invoked when the userland requests disabling on the default hierarchy
3707  * but the memcg is pinned through dependency.  The memcg should stop
3708  * applying policies and should revert to the vanilla state as it may be
3709  * made visible again.
3710  *
3711  * The current implementation only resets the essential configurations.
3712  * This needs to be expanded to cover all the visible parts.
3713  */
3714 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3715 {
3716 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3717 
3718 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3719 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3720 #ifdef CONFIG_MEMCG_V1
3721 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3722 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3723 #endif
3724 	page_counter_set_min(&memcg->memory, 0);
3725 	page_counter_set_low(&memcg->memory, 0);
3726 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3727 	memcg1_soft_limit_reset(memcg);
3728 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3729 	memcg_wb_domain_size_changed(memcg);
3730 }
3731 
3732 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3733 {
3734 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3735 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3736 	struct memcg_vmstats_percpu *statc;
3737 	long delta, delta_cpu, v;
3738 	int i, nid;
3739 
3740 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3741 
3742 	for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
3743 		/*
3744 		 * Collect the aggregated propagation counts of groups
3745 		 * below us. We're in a per-cpu loop here and this is
3746 		 * a global counter, so the first cycle will get them.
3747 		 */
3748 		delta = memcg->vmstats->state_pending[i];
3749 		if (delta)
3750 			memcg->vmstats->state_pending[i] = 0;
3751 
3752 		/* Add CPU changes on this level since the last flush */
3753 		delta_cpu = 0;
3754 		v = READ_ONCE(statc->state[i]);
3755 		if (v != statc->state_prev[i]) {
3756 			delta_cpu = v - statc->state_prev[i];
3757 			delta += delta_cpu;
3758 			statc->state_prev[i] = v;
3759 		}
3760 
3761 		/* Aggregate counts on this level and propagate upwards */
3762 		if (delta_cpu)
3763 			memcg->vmstats->state_local[i] += delta_cpu;
3764 
3765 		if (delta) {
3766 			memcg->vmstats->state[i] += delta;
3767 			if (parent)
3768 				parent->vmstats->state_pending[i] += delta;
3769 		}
3770 	}
3771 
3772 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
3773 		delta = memcg->vmstats->events_pending[i];
3774 		if (delta)
3775 			memcg->vmstats->events_pending[i] = 0;
3776 
3777 		delta_cpu = 0;
3778 		v = READ_ONCE(statc->events[i]);
3779 		if (v != statc->events_prev[i]) {
3780 			delta_cpu = v - statc->events_prev[i];
3781 			delta += delta_cpu;
3782 			statc->events_prev[i] = v;
3783 		}
3784 
3785 		if (delta_cpu)
3786 			memcg->vmstats->events_local[i] += delta_cpu;
3787 
3788 		if (delta) {
3789 			memcg->vmstats->events[i] += delta;
3790 			if (parent)
3791 				parent->vmstats->events_pending[i] += delta;
3792 		}
3793 	}
3794 
3795 	for_each_node_state(nid, N_MEMORY) {
3796 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3797 		struct lruvec_stats *lstats = pn->lruvec_stats;
3798 		struct lruvec_stats *plstats = NULL;
3799 		struct lruvec_stats_percpu *lstatc;
3800 
3801 		if (parent)
3802 			plstats = parent->nodeinfo[nid]->lruvec_stats;
3803 
3804 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3805 
3806 		for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
3807 			delta = lstats->state_pending[i];
3808 			if (delta)
3809 				lstats->state_pending[i] = 0;
3810 
3811 			delta_cpu = 0;
3812 			v = READ_ONCE(lstatc->state[i]);
3813 			if (v != lstatc->state_prev[i]) {
3814 				delta_cpu = v - lstatc->state_prev[i];
3815 				delta += delta_cpu;
3816 				lstatc->state_prev[i] = v;
3817 			}
3818 
3819 			if (delta_cpu)
3820 				lstats->state_local[i] += delta_cpu;
3821 
3822 			if (delta) {
3823 				lstats->state[i] += delta;
3824 				if (plstats)
3825 					plstats->state_pending[i] += delta;
3826 			}
3827 		}
3828 	}
3829 	WRITE_ONCE(statc->stats_updates, 0);
3830 	/* We are in a per-cpu loop here, only do the atomic write once */
3831 	if (atomic64_read(&memcg->vmstats->stats_updates))
3832 		atomic64_set(&memcg->vmstats->stats_updates, 0);
3833 }
3834 
3835 static void mem_cgroup_fork(struct task_struct *task)
3836 {
3837 	/*
3838 	 * Set the update flag to cause task->objcg to be initialized lazily
3839 	 * on the first allocation. It can be done without any synchronization
3840 	 * because it's always performed on the current task, so does
3841 	 * current_objcg_update().
3842 	 */
3843 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3844 }
3845 
3846 static void mem_cgroup_exit(struct task_struct *task)
3847 {
3848 	struct obj_cgroup *objcg = task->objcg;
3849 
3850 	objcg = (struct obj_cgroup *)
3851 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3852 	obj_cgroup_put(objcg);
3853 
3854 	/*
3855 	 * Some kernel allocations can happen after this point,
3856 	 * but let's ignore them. It can be done without any synchronization
3857 	 * because it's always performed on the current task, so does
3858 	 * current_objcg_update().
3859 	 */
3860 	task->objcg = NULL;
3861 }
3862 
3863 #ifdef CONFIG_LRU_GEN
3864 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3865 {
3866 	struct task_struct *task;
3867 	struct cgroup_subsys_state *css;
3868 
3869 	/* find the first leader if there is any */
3870 	cgroup_taskset_for_each_leader(task, css, tset)
3871 		break;
3872 
3873 	if (!task)
3874 		return;
3875 
3876 	task_lock(task);
3877 	if (task->mm && READ_ONCE(task->mm->owner) == task)
3878 		lru_gen_migrate_mm(task->mm);
3879 	task_unlock(task);
3880 }
3881 #else
3882 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3883 #endif /* CONFIG_LRU_GEN */
3884 
3885 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3886 {
3887 	struct task_struct *task;
3888 	struct cgroup_subsys_state *css;
3889 
3890 	cgroup_taskset_for_each(task, css, tset) {
3891 		/* atomically set the update bit */
3892 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3893 	}
3894 }
3895 
3896 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3897 {
3898 	mem_cgroup_lru_gen_attach(tset);
3899 	mem_cgroup_kmem_attach(tset);
3900 }
3901 
3902 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3903 {
3904 	if (value == PAGE_COUNTER_MAX)
3905 		seq_puts(m, "max\n");
3906 	else
3907 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3908 
3909 	return 0;
3910 }
3911 
3912 static u64 memory_current_read(struct cgroup_subsys_state *css,
3913 			       struct cftype *cft)
3914 {
3915 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916 
3917 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3918 }
3919 
3920 #define OFP_PEAK_UNSET (((-1UL)))
3921 
3922 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3923 {
3924 	struct cgroup_of_peak *ofp = of_peak(sf->private);
3925 	u64 fd_peak = READ_ONCE(ofp->value), peak;
3926 
3927 	/* User wants global or local peak? */
3928 	if (fd_peak == OFP_PEAK_UNSET)
3929 		peak = pc->watermark;
3930 	else
3931 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3932 
3933 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3934 	return 0;
3935 }
3936 
3937 static int memory_peak_show(struct seq_file *sf, void *v)
3938 {
3939 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3940 
3941 	return peak_show(sf, v, &memcg->memory);
3942 }
3943 
3944 static int peak_open(struct kernfs_open_file *of)
3945 {
3946 	struct cgroup_of_peak *ofp = of_peak(of);
3947 
3948 	ofp->value = OFP_PEAK_UNSET;
3949 	return 0;
3950 }
3951 
3952 static void peak_release(struct kernfs_open_file *of)
3953 {
3954 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3955 	struct cgroup_of_peak *ofp = of_peak(of);
3956 
3957 	if (ofp->value == OFP_PEAK_UNSET) {
3958 		/* fast path (no writes on this fd) */
3959 		return;
3960 	}
3961 	spin_lock(&memcg->peaks_lock);
3962 	list_del(&ofp->list);
3963 	spin_unlock(&memcg->peaks_lock);
3964 }
3965 
3966 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3967 			  loff_t off, struct page_counter *pc,
3968 			  struct list_head *watchers)
3969 {
3970 	unsigned long usage;
3971 	struct cgroup_of_peak *peer_ctx;
3972 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3973 	struct cgroup_of_peak *ofp = of_peak(of);
3974 
3975 	spin_lock(&memcg->peaks_lock);
3976 
3977 	usage = page_counter_read(pc);
3978 	WRITE_ONCE(pc->local_watermark, usage);
3979 
3980 	list_for_each_entry(peer_ctx, watchers, list)
3981 		if (usage > peer_ctx->value)
3982 			WRITE_ONCE(peer_ctx->value, usage);
3983 
3984 	/* initial write, register watcher */
3985 	if (ofp->value == -1)
3986 		list_add(&ofp->list, watchers);
3987 
3988 	WRITE_ONCE(ofp->value, usage);
3989 	spin_unlock(&memcg->peaks_lock);
3990 
3991 	return nbytes;
3992 }
3993 
3994 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
3995 				 size_t nbytes, loff_t off)
3996 {
3997 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3998 
3999 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4000 			  &memcg->memory_peaks);
4001 }
4002 
4003 #undef OFP_PEAK_UNSET
4004 
4005 static int memory_min_show(struct seq_file *m, void *v)
4006 {
4007 	return seq_puts_memcg_tunable(m,
4008 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4009 }
4010 
4011 static ssize_t memory_min_write(struct kernfs_open_file *of,
4012 				char *buf, size_t nbytes, loff_t off)
4013 {
4014 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4015 	unsigned long min;
4016 	int err;
4017 
4018 	buf = strstrip(buf);
4019 	err = page_counter_memparse(buf, "max", &min);
4020 	if (err)
4021 		return err;
4022 
4023 	page_counter_set_min(&memcg->memory, min);
4024 
4025 	return nbytes;
4026 }
4027 
4028 static int memory_low_show(struct seq_file *m, void *v)
4029 {
4030 	return seq_puts_memcg_tunable(m,
4031 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4032 }
4033 
4034 static ssize_t memory_low_write(struct kernfs_open_file *of,
4035 				char *buf, size_t nbytes, loff_t off)
4036 {
4037 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4038 	unsigned long low;
4039 	int err;
4040 
4041 	buf = strstrip(buf);
4042 	err = page_counter_memparse(buf, "max", &low);
4043 	if (err)
4044 		return err;
4045 
4046 	page_counter_set_low(&memcg->memory, low);
4047 
4048 	return nbytes;
4049 }
4050 
4051 static int memory_high_show(struct seq_file *m, void *v)
4052 {
4053 	return seq_puts_memcg_tunable(m,
4054 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4055 }
4056 
4057 static ssize_t memory_high_write(struct kernfs_open_file *of,
4058 				 char *buf, size_t nbytes, loff_t off)
4059 {
4060 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4061 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4062 	bool drained = false;
4063 	unsigned long high;
4064 	int err;
4065 
4066 	buf = strstrip(buf);
4067 	err = page_counter_memparse(buf, "max", &high);
4068 	if (err)
4069 		return err;
4070 
4071 	page_counter_set_high(&memcg->memory, high);
4072 
4073 	for (;;) {
4074 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4075 		unsigned long reclaimed;
4076 
4077 		if (nr_pages <= high)
4078 			break;
4079 
4080 		if (signal_pending(current))
4081 			break;
4082 
4083 		if (!drained) {
4084 			drain_all_stock(memcg);
4085 			drained = true;
4086 			continue;
4087 		}
4088 
4089 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4090 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4091 
4092 		if (!reclaimed && !nr_retries--)
4093 			break;
4094 	}
4095 
4096 	memcg_wb_domain_size_changed(memcg);
4097 	return nbytes;
4098 }
4099 
4100 static int memory_max_show(struct seq_file *m, void *v)
4101 {
4102 	return seq_puts_memcg_tunable(m,
4103 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4104 }
4105 
4106 static ssize_t memory_max_write(struct kernfs_open_file *of,
4107 				char *buf, size_t nbytes, loff_t off)
4108 {
4109 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4110 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4111 	bool drained = false;
4112 	unsigned long max;
4113 	int err;
4114 
4115 	buf = strstrip(buf);
4116 	err = page_counter_memparse(buf, "max", &max);
4117 	if (err)
4118 		return err;
4119 
4120 	xchg(&memcg->memory.max, max);
4121 
4122 	for (;;) {
4123 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4124 
4125 		if (nr_pages <= max)
4126 			break;
4127 
4128 		if (signal_pending(current))
4129 			break;
4130 
4131 		if (!drained) {
4132 			drain_all_stock(memcg);
4133 			drained = true;
4134 			continue;
4135 		}
4136 
4137 		if (nr_reclaims) {
4138 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4139 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4140 				nr_reclaims--;
4141 			continue;
4142 		}
4143 
4144 		memcg_memory_event(memcg, MEMCG_OOM);
4145 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4146 			break;
4147 	}
4148 
4149 	memcg_wb_domain_size_changed(memcg);
4150 	return nbytes;
4151 }
4152 
4153 /*
4154  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4155  * if any new events become available.
4156  */
4157 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4158 {
4159 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4160 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4161 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4162 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4163 	seq_printf(m, "oom_kill %lu\n",
4164 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4165 	seq_printf(m, "oom_group_kill %lu\n",
4166 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4167 }
4168 
4169 static int memory_events_show(struct seq_file *m, void *v)
4170 {
4171 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4172 
4173 	__memory_events_show(m, memcg->memory_events);
4174 	return 0;
4175 }
4176 
4177 static int memory_events_local_show(struct seq_file *m, void *v)
4178 {
4179 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4180 
4181 	__memory_events_show(m, memcg->memory_events_local);
4182 	return 0;
4183 }
4184 
4185 int memory_stat_show(struct seq_file *m, void *v)
4186 {
4187 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4188 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4189 	struct seq_buf s;
4190 
4191 	if (!buf)
4192 		return -ENOMEM;
4193 	seq_buf_init(&s, buf, PAGE_SIZE);
4194 	memory_stat_format(memcg, &s);
4195 	seq_puts(m, buf);
4196 	kfree(buf);
4197 	return 0;
4198 }
4199 
4200 #ifdef CONFIG_NUMA
4201 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4202 						     int item)
4203 {
4204 	return lruvec_page_state(lruvec, item) *
4205 		memcg_page_state_output_unit(item);
4206 }
4207 
4208 static int memory_numa_stat_show(struct seq_file *m, void *v)
4209 {
4210 	int i;
4211 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4212 
4213 	mem_cgroup_flush_stats(memcg);
4214 
4215 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4216 		int nid;
4217 
4218 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4219 			continue;
4220 
4221 		seq_printf(m, "%s", memory_stats[i].name);
4222 		for_each_node_state(nid, N_MEMORY) {
4223 			u64 size;
4224 			struct lruvec *lruvec;
4225 
4226 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4227 			size = lruvec_page_state_output(lruvec,
4228 							memory_stats[i].idx);
4229 			seq_printf(m, " N%d=%llu", nid, size);
4230 		}
4231 		seq_putc(m, '\n');
4232 	}
4233 
4234 	return 0;
4235 }
4236 #endif
4237 
4238 static int memory_oom_group_show(struct seq_file *m, void *v)
4239 {
4240 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4241 
4242 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4243 
4244 	return 0;
4245 }
4246 
4247 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4248 				      char *buf, size_t nbytes, loff_t off)
4249 {
4250 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4251 	int ret, oom_group;
4252 
4253 	buf = strstrip(buf);
4254 	if (!buf)
4255 		return -EINVAL;
4256 
4257 	ret = kstrtoint(buf, 0, &oom_group);
4258 	if (ret)
4259 		return ret;
4260 
4261 	if (oom_group != 0 && oom_group != 1)
4262 		return -EINVAL;
4263 
4264 	WRITE_ONCE(memcg->oom_group, oom_group);
4265 
4266 	return nbytes;
4267 }
4268 
4269 enum {
4270 	MEMORY_RECLAIM_SWAPPINESS = 0,
4271 	MEMORY_RECLAIM_NULL,
4272 };
4273 
4274 static const match_table_t tokens = {
4275 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4276 	{ MEMORY_RECLAIM_NULL, NULL },
4277 };
4278 
4279 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4280 			      size_t nbytes, loff_t off)
4281 {
4282 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4283 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4284 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4285 	int swappiness = -1;
4286 	unsigned int reclaim_options;
4287 	char *old_buf, *start;
4288 	substring_t args[MAX_OPT_ARGS];
4289 
4290 	buf = strstrip(buf);
4291 
4292 	old_buf = buf;
4293 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4294 	if (buf == old_buf)
4295 		return -EINVAL;
4296 
4297 	buf = strstrip(buf);
4298 
4299 	while ((start = strsep(&buf, " ")) != NULL) {
4300 		if (!strlen(start))
4301 			continue;
4302 		switch (match_token(start, tokens, args)) {
4303 		case MEMORY_RECLAIM_SWAPPINESS:
4304 			if (match_int(&args[0], &swappiness))
4305 				return -EINVAL;
4306 			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4307 				return -EINVAL;
4308 			break;
4309 		default:
4310 			return -EINVAL;
4311 		}
4312 	}
4313 
4314 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4315 	while (nr_reclaimed < nr_to_reclaim) {
4316 		/* Will converge on zero, but reclaim enforces a minimum */
4317 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4318 		unsigned long reclaimed;
4319 
4320 		if (signal_pending(current))
4321 			return -EINTR;
4322 
4323 		/*
4324 		 * This is the final attempt, drain percpu lru caches in the
4325 		 * hope of introducing more evictable pages for
4326 		 * try_to_free_mem_cgroup_pages().
4327 		 */
4328 		if (!nr_retries)
4329 			lru_add_drain_all();
4330 
4331 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4332 					batch_size, GFP_KERNEL,
4333 					reclaim_options,
4334 					swappiness == -1 ? NULL : &swappiness);
4335 
4336 		if (!reclaimed && !nr_retries--)
4337 			return -EAGAIN;
4338 
4339 		nr_reclaimed += reclaimed;
4340 	}
4341 
4342 	return nbytes;
4343 }
4344 
4345 static struct cftype memory_files[] = {
4346 	{
4347 		.name = "current",
4348 		.flags = CFTYPE_NOT_ON_ROOT,
4349 		.read_u64 = memory_current_read,
4350 	},
4351 	{
4352 		.name = "peak",
4353 		.flags = CFTYPE_NOT_ON_ROOT,
4354 		.open = peak_open,
4355 		.release = peak_release,
4356 		.seq_show = memory_peak_show,
4357 		.write = memory_peak_write,
4358 	},
4359 	{
4360 		.name = "min",
4361 		.flags = CFTYPE_NOT_ON_ROOT,
4362 		.seq_show = memory_min_show,
4363 		.write = memory_min_write,
4364 	},
4365 	{
4366 		.name = "low",
4367 		.flags = CFTYPE_NOT_ON_ROOT,
4368 		.seq_show = memory_low_show,
4369 		.write = memory_low_write,
4370 	},
4371 	{
4372 		.name = "high",
4373 		.flags = CFTYPE_NOT_ON_ROOT,
4374 		.seq_show = memory_high_show,
4375 		.write = memory_high_write,
4376 	},
4377 	{
4378 		.name = "max",
4379 		.flags = CFTYPE_NOT_ON_ROOT,
4380 		.seq_show = memory_max_show,
4381 		.write = memory_max_write,
4382 	},
4383 	{
4384 		.name = "events",
4385 		.flags = CFTYPE_NOT_ON_ROOT,
4386 		.file_offset = offsetof(struct mem_cgroup, events_file),
4387 		.seq_show = memory_events_show,
4388 	},
4389 	{
4390 		.name = "events.local",
4391 		.flags = CFTYPE_NOT_ON_ROOT,
4392 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4393 		.seq_show = memory_events_local_show,
4394 	},
4395 	{
4396 		.name = "stat",
4397 		.seq_show = memory_stat_show,
4398 	},
4399 #ifdef CONFIG_NUMA
4400 	{
4401 		.name = "numa_stat",
4402 		.seq_show = memory_numa_stat_show,
4403 	},
4404 #endif
4405 	{
4406 		.name = "oom.group",
4407 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4408 		.seq_show = memory_oom_group_show,
4409 		.write = memory_oom_group_write,
4410 	},
4411 	{
4412 		.name = "reclaim",
4413 		.flags = CFTYPE_NS_DELEGATABLE,
4414 		.write = memory_reclaim,
4415 	},
4416 	{ }	/* terminate */
4417 };
4418 
4419 struct cgroup_subsys memory_cgrp_subsys = {
4420 	.css_alloc = mem_cgroup_css_alloc,
4421 	.css_online = mem_cgroup_css_online,
4422 	.css_offline = mem_cgroup_css_offline,
4423 	.css_released = mem_cgroup_css_released,
4424 	.css_free = mem_cgroup_css_free,
4425 	.css_reset = mem_cgroup_css_reset,
4426 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4427 	.attach = mem_cgroup_attach,
4428 	.fork = mem_cgroup_fork,
4429 	.exit = mem_cgroup_exit,
4430 	.dfl_cftypes = memory_files,
4431 #ifdef CONFIG_MEMCG_V1
4432 	.can_attach = memcg1_can_attach,
4433 	.cancel_attach = memcg1_cancel_attach,
4434 	.post_attach = memcg1_move_task,
4435 	.legacy_cftypes = mem_cgroup_legacy_files,
4436 #endif
4437 	.early_init = 0,
4438 };
4439 
4440 /**
4441  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4442  * @root: the top ancestor of the sub-tree being checked
4443  * @memcg: the memory cgroup to check
4444  *
4445  * WARNING: This function is not stateless! It can only be used as part
4446  *          of a top-down tree iteration, not for isolated queries.
4447  */
4448 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4449 				     struct mem_cgroup *memcg)
4450 {
4451 	bool recursive_protection =
4452 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4453 
4454 	if (mem_cgroup_disabled())
4455 		return;
4456 
4457 	if (!root)
4458 		root = root_mem_cgroup;
4459 
4460 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4461 }
4462 
4463 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4464 			gfp_t gfp)
4465 {
4466 	int ret;
4467 
4468 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4469 	if (ret)
4470 		goto out;
4471 
4472 	mem_cgroup_commit_charge(folio, memcg);
4473 out:
4474 	return ret;
4475 }
4476 
4477 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4478 {
4479 	struct mem_cgroup *memcg;
4480 	int ret;
4481 
4482 	memcg = get_mem_cgroup_from_mm(mm);
4483 	ret = charge_memcg(folio, memcg, gfp);
4484 	css_put(&memcg->css);
4485 
4486 	return ret;
4487 }
4488 
4489 /**
4490  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4491  * @memcg: memcg to charge.
4492  * @gfp: reclaim mode.
4493  * @nr_pages: number of pages to charge.
4494  *
4495  * This function is called when allocating a huge page folio to determine if
4496  * the memcg has the capacity for it. It does not commit the charge yet,
4497  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4498  *
4499  * Once we have obtained the hugetlb folio, we can call
4500  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4501  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4502  * of try_charge().
4503  *
4504  * Returns 0 on success. Otherwise, an error code is returned.
4505  */
4506 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4507 			long nr_pages)
4508 {
4509 	/*
4510 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4511 	 * but do not attempt to commit charge later (or cancel on error) either.
4512 	 */
4513 	if (mem_cgroup_disabled() || !memcg ||
4514 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4515 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4516 		return -EOPNOTSUPP;
4517 
4518 	if (try_charge(memcg, gfp, nr_pages))
4519 		return -ENOMEM;
4520 
4521 	return 0;
4522 }
4523 
4524 /**
4525  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4526  * @folio: folio to charge.
4527  * @mm: mm context of the victim
4528  * @gfp: reclaim mode
4529  * @entry: swap entry for which the folio is allocated
4530  *
4531  * This function charges a folio allocated for swapin. Please call this before
4532  * adding the folio to the swapcache.
4533  *
4534  * Returns 0 on success. Otherwise, an error code is returned.
4535  */
4536 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4537 				  gfp_t gfp, swp_entry_t entry)
4538 {
4539 	struct mem_cgroup *memcg;
4540 	unsigned short id;
4541 	int ret;
4542 
4543 	if (mem_cgroup_disabled())
4544 		return 0;
4545 
4546 	id = lookup_swap_cgroup_id(entry);
4547 	rcu_read_lock();
4548 	memcg = mem_cgroup_from_id(id);
4549 	if (!memcg || !css_tryget_online(&memcg->css))
4550 		memcg = get_mem_cgroup_from_mm(mm);
4551 	rcu_read_unlock();
4552 
4553 	ret = charge_memcg(folio, memcg, gfp);
4554 
4555 	css_put(&memcg->css);
4556 	return ret;
4557 }
4558 
4559 /*
4560  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4561  * @entry: the first swap entry for which the pages are charged
4562  * @nr_pages: number of pages which will be uncharged
4563  *
4564  * Call this function after successfully adding the charged page to swapcache.
4565  *
4566  * Note: This function assumes the page for which swap slot is being uncharged
4567  * is order 0 page.
4568  */
4569 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4570 {
4571 	/*
4572 	 * Cgroup1's unified memory+swap counter has been charged with the
4573 	 * new swapcache page, finish the transfer by uncharging the swap
4574 	 * slot. The swap slot would also get uncharged when it dies, but
4575 	 * it can stick around indefinitely and we'd count the page twice
4576 	 * the entire time.
4577 	 *
4578 	 * Cgroup2 has separate resource counters for memory and swap,
4579 	 * so this is a non-issue here. Memory and swap charge lifetimes
4580 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
4581 	 * page to memory here, and uncharge swap when the slot is freed.
4582 	 */
4583 	if (!mem_cgroup_disabled() && do_memsw_account()) {
4584 		/*
4585 		 * The swap entry might not get freed for a long time,
4586 		 * let's not wait for it.  The page already received a
4587 		 * memory+swap charge, drop the swap entry duplicate.
4588 		 */
4589 		mem_cgroup_uncharge_swap(entry, nr_pages);
4590 	}
4591 }
4592 
4593 struct uncharge_gather {
4594 	struct mem_cgroup *memcg;
4595 	unsigned long nr_memory;
4596 	unsigned long pgpgout;
4597 	unsigned long nr_kmem;
4598 	int nid;
4599 };
4600 
4601 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4602 {
4603 	memset(ug, 0, sizeof(*ug));
4604 }
4605 
4606 static void uncharge_batch(const struct uncharge_gather *ug)
4607 {
4608 	if (ug->nr_memory) {
4609 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4610 		if (do_memsw_account())
4611 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4612 		if (ug->nr_kmem) {
4613 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4614 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4615 		}
4616 		memcg1_oom_recover(ug->memcg);
4617 	}
4618 
4619 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4620 
4621 	/* drop reference from uncharge_folio */
4622 	css_put(&ug->memcg->css);
4623 }
4624 
4625 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4626 {
4627 	long nr_pages;
4628 	struct mem_cgroup *memcg;
4629 	struct obj_cgroup *objcg;
4630 
4631 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4632 
4633 	/*
4634 	 * Nobody should be changing or seriously looking at
4635 	 * folio memcg or objcg at this point, we have fully
4636 	 * exclusive access to the folio.
4637 	 */
4638 	if (folio_memcg_kmem(folio)) {
4639 		objcg = __folio_objcg(folio);
4640 		/*
4641 		 * This get matches the put at the end of the function and
4642 		 * kmem pages do not hold memcg references anymore.
4643 		 */
4644 		memcg = get_mem_cgroup_from_objcg(objcg);
4645 	} else {
4646 		memcg = __folio_memcg(folio);
4647 	}
4648 
4649 	if (!memcg)
4650 		return;
4651 
4652 	if (ug->memcg != memcg) {
4653 		if (ug->memcg) {
4654 			uncharge_batch(ug);
4655 			uncharge_gather_clear(ug);
4656 		}
4657 		ug->memcg = memcg;
4658 		ug->nid = folio_nid(folio);
4659 
4660 		/* pairs with css_put in uncharge_batch */
4661 		css_get(&memcg->css);
4662 	}
4663 
4664 	nr_pages = folio_nr_pages(folio);
4665 
4666 	if (folio_memcg_kmem(folio)) {
4667 		ug->nr_memory += nr_pages;
4668 		ug->nr_kmem += nr_pages;
4669 
4670 		folio->memcg_data = 0;
4671 		obj_cgroup_put(objcg);
4672 	} else {
4673 		/* LRU pages aren't accounted at the root level */
4674 		if (!mem_cgroup_is_root(memcg))
4675 			ug->nr_memory += nr_pages;
4676 		ug->pgpgout++;
4677 
4678 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4679 		folio->memcg_data = 0;
4680 	}
4681 
4682 	css_put(&memcg->css);
4683 }
4684 
4685 void __mem_cgroup_uncharge(struct folio *folio)
4686 {
4687 	struct uncharge_gather ug;
4688 
4689 	/* Don't touch folio->lru of any random page, pre-check: */
4690 	if (!folio_memcg_charged(folio))
4691 		return;
4692 
4693 	uncharge_gather_clear(&ug);
4694 	uncharge_folio(folio, &ug);
4695 	uncharge_batch(&ug);
4696 }
4697 
4698 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4699 {
4700 	struct uncharge_gather ug;
4701 	unsigned int i;
4702 
4703 	uncharge_gather_clear(&ug);
4704 	for (i = 0; i < folios->nr; i++)
4705 		uncharge_folio(folios->folios[i], &ug);
4706 	if (ug.memcg)
4707 		uncharge_batch(&ug);
4708 }
4709 
4710 /**
4711  * mem_cgroup_replace_folio - Charge a folio's replacement.
4712  * @old: Currently circulating folio.
4713  * @new: Replacement folio.
4714  *
4715  * Charge @new as a replacement folio for @old. @old will
4716  * be uncharged upon free.
4717  *
4718  * Both folios must be locked, @new->mapping must be set up.
4719  */
4720 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4721 {
4722 	struct mem_cgroup *memcg;
4723 	long nr_pages = folio_nr_pages(new);
4724 
4725 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4726 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4727 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4728 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4729 
4730 	if (mem_cgroup_disabled())
4731 		return;
4732 
4733 	/* Page cache replacement: new folio already charged? */
4734 	if (folio_memcg_charged(new))
4735 		return;
4736 
4737 	memcg = folio_memcg(old);
4738 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4739 	if (!memcg)
4740 		return;
4741 
4742 	/* Force-charge the new page. The old one will be freed soon */
4743 	if (!mem_cgroup_is_root(memcg)) {
4744 		page_counter_charge(&memcg->memory, nr_pages);
4745 		if (do_memsw_account())
4746 			page_counter_charge(&memcg->memsw, nr_pages);
4747 	}
4748 
4749 	css_get(&memcg->css);
4750 	commit_charge(new, memcg);
4751 	memcg1_commit_charge(new, memcg);
4752 }
4753 
4754 /**
4755  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4756  * @old: Currently circulating folio.
4757  * @new: Replacement folio.
4758  *
4759  * Transfer the memcg data from the old folio to the new folio for migration.
4760  * The old folio's data info will be cleared. Note that the memory counters
4761  * will remain unchanged throughout the process.
4762  *
4763  * Both folios must be locked, @new->mapping must be set up.
4764  */
4765 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4766 {
4767 	struct mem_cgroup *memcg;
4768 
4769 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4770 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4771 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4772 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4773 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4774 
4775 	if (mem_cgroup_disabled())
4776 		return;
4777 
4778 	memcg = folio_memcg(old);
4779 	/*
4780 	 * Note that it is normal to see !memcg for a hugetlb folio.
4781 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4782 	 * was not selected.
4783 	 */
4784 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4785 	if (!memcg)
4786 		return;
4787 
4788 	/* Transfer the charge and the css ref */
4789 	commit_charge(new, memcg);
4790 
4791 	/* Warning should never happen, so don't worry about refcount non-0 */
4792 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4793 	old->memcg_data = 0;
4794 }
4795 
4796 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4797 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4798 
4799 void mem_cgroup_sk_alloc(struct sock *sk)
4800 {
4801 	struct mem_cgroup *memcg;
4802 
4803 	if (!mem_cgroup_sockets_enabled)
4804 		return;
4805 
4806 	/* Do not associate the sock with unrelated interrupted task's memcg. */
4807 	if (!in_task())
4808 		return;
4809 
4810 	rcu_read_lock();
4811 	memcg = mem_cgroup_from_task(current);
4812 	if (mem_cgroup_is_root(memcg))
4813 		goto out;
4814 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4815 		goto out;
4816 	if (css_tryget(&memcg->css))
4817 		sk->sk_memcg = memcg;
4818 out:
4819 	rcu_read_unlock();
4820 }
4821 
4822 void mem_cgroup_sk_free(struct sock *sk)
4823 {
4824 	if (sk->sk_memcg)
4825 		css_put(&sk->sk_memcg->css);
4826 }
4827 
4828 /**
4829  * mem_cgroup_charge_skmem - charge socket memory
4830  * @memcg: memcg to charge
4831  * @nr_pages: number of pages to charge
4832  * @gfp_mask: reclaim mode
4833  *
4834  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4835  * @memcg's configured limit, %false if it doesn't.
4836  */
4837 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4838 			     gfp_t gfp_mask)
4839 {
4840 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4841 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4842 
4843 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4844 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4845 		return true;
4846 	}
4847 
4848 	return false;
4849 }
4850 
4851 /**
4852  * mem_cgroup_uncharge_skmem - uncharge socket memory
4853  * @memcg: memcg to uncharge
4854  * @nr_pages: number of pages to uncharge
4855  */
4856 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4857 {
4858 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4859 		memcg1_uncharge_skmem(memcg, nr_pages);
4860 		return;
4861 	}
4862 
4863 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4864 
4865 	refill_stock(memcg, nr_pages);
4866 }
4867 
4868 static int __init cgroup_memory(char *s)
4869 {
4870 	char *token;
4871 
4872 	while ((token = strsep(&s, ",")) != NULL) {
4873 		if (!*token)
4874 			continue;
4875 		if (!strcmp(token, "nosocket"))
4876 			cgroup_memory_nosocket = true;
4877 		if (!strcmp(token, "nokmem"))
4878 			cgroup_memory_nokmem = true;
4879 		if (!strcmp(token, "nobpf"))
4880 			cgroup_memory_nobpf = true;
4881 	}
4882 	return 1;
4883 }
4884 __setup("cgroup.memory=", cgroup_memory);
4885 
4886 /*
4887  * subsys_initcall() for memory controller.
4888  *
4889  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4890  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4891  * basically everything that doesn't depend on a specific mem_cgroup structure
4892  * should be initialized from here.
4893  */
4894 static int __init mem_cgroup_init(void)
4895 {
4896 	int cpu;
4897 
4898 	/*
4899 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4900 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
4901 	 * to work fine, we should make sure that the overfill threshold can't
4902 	 * exceed S32_MAX / PAGE_SIZE.
4903 	 */
4904 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4905 
4906 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4907 				  memcg_hotplug_cpu_dead);
4908 
4909 	for_each_possible_cpu(cpu)
4910 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4911 			  drain_local_stock);
4912 
4913 	return 0;
4914 }
4915 subsys_initcall(mem_cgroup_init);
4916 
4917 #ifdef CONFIG_SWAP
4918 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4919 {
4920 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
4921 		/*
4922 		 * The root cgroup cannot be destroyed, so it's refcount must
4923 		 * always be >= 1.
4924 		 */
4925 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4926 			VM_BUG_ON(1);
4927 			break;
4928 		}
4929 		memcg = parent_mem_cgroup(memcg);
4930 		if (!memcg)
4931 			memcg = root_mem_cgroup;
4932 	}
4933 	return memcg;
4934 }
4935 
4936 /**
4937  * mem_cgroup_swapout - transfer a memsw charge to swap
4938  * @folio: folio whose memsw charge to transfer
4939  * @entry: swap entry to move the charge to
4940  *
4941  * Transfer the memsw charge of @folio to @entry.
4942  */
4943 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4944 {
4945 	struct mem_cgroup *memcg, *swap_memcg;
4946 	unsigned int nr_entries;
4947 	unsigned short oldid;
4948 
4949 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4950 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4951 
4952 	if (mem_cgroup_disabled())
4953 		return;
4954 
4955 	if (!do_memsw_account())
4956 		return;
4957 
4958 	memcg = folio_memcg(folio);
4959 
4960 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4961 	if (!memcg)
4962 		return;
4963 
4964 	/*
4965 	 * In case the memcg owning these pages has been offlined and doesn't
4966 	 * have an ID allocated to it anymore, charge the closest online
4967 	 * ancestor for the swap instead and transfer the memory+swap charge.
4968 	 */
4969 	swap_memcg = mem_cgroup_id_get_online(memcg);
4970 	nr_entries = folio_nr_pages(folio);
4971 	/* Get references for the tail pages, too */
4972 	if (nr_entries > 1)
4973 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
4974 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
4975 				   nr_entries);
4976 	VM_BUG_ON_FOLIO(oldid, folio);
4977 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
4978 
4979 	folio_unqueue_deferred_split(folio);
4980 	folio->memcg_data = 0;
4981 
4982 	if (!mem_cgroup_is_root(memcg))
4983 		page_counter_uncharge(&memcg->memory, nr_entries);
4984 
4985 	if (memcg != swap_memcg) {
4986 		if (!mem_cgroup_is_root(swap_memcg))
4987 			page_counter_charge(&swap_memcg->memsw, nr_entries);
4988 		page_counter_uncharge(&memcg->memsw, nr_entries);
4989 	}
4990 
4991 	memcg1_swapout(folio, memcg);
4992 	css_put(&memcg->css);
4993 }
4994 
4995 /**
4996  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
4997  * @folio: folio being added to swap
4998  * @entry: swap entry to charge
4999  *
5000  * Try to charge @folio's memcg for the swap space at @entry.
5001  *
5002  * Returns 0 on success, -ENOMEM on failure.
5003  */
5004 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5005 {
5006 	unsigned int nr_pages = folio_nr_pages(folio);
5007 	struct page_counter *counter;
5008 	struct mem_cgroup *memcg;
5009 	unsigned short oldid;
5010 
5011 	if (do_memsw_account())
5012 		return 0;
5013 
5014 	memcg = folio_memcg(folio);
5015 
5016 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5017 	if (!memcg)
5018 		return 0;
5019 
5020 	if (!entry.val) {
5021 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5022 		return 0;
5023 	}
5024 
5025 	memcg = mem_cgroup_id_get_online(memcg);
5026 
5027 	if (!mem_cgroup_is_root(memcg) &&
5028 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5029 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5030 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5031 		mem_cgroup_id_put(memcg);
5032 		return -ENOMEM;
5033 	}
5034 
5035 	/* Get references for the tail pages, too */
5036 	if (nr_pages > 1)
5037 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5038 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5039 	VM_BUG_ON_FOLIO(oldid, folio);
5040 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5041 
5042 	return 0;
5043 }
5044 
5045 /**
5046  * __mem_cgroup_uncharge_swap - uncharge swap space
5047  * @entry: swap entry to uncharge
5048  * @nr_pages: the amount of swap space to uncharge
5049  */
5050 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5051 {
5052 	struct mem_cgroup *memcg;
5053 	unsigned short id;
5054 
5055 	id = swap_cgroup_record(entry, 0, nr_pages);
5056 	rcu_read_lock();
5057 	memcg = mem_cgroup_from_id(id);
5058 	if (memcg) {
5059 		if (!mem_cgroup_is_root(memcg)) {
5060 			if (do_memsw_account())
5061 				page_counter_uncharge(&memcg->memsw, nr_pages);
5062 			else
5063 				page_counter_uncharge(&memcg->swap, nr_pages);
5064 		}
5065 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5066 		mem_cgroup_id_put_many(memcg, nr_pages);
5067 	}
5068 	rcu_read_unlock();
5069 }
5070 
5071 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5072 {
5073 	long nr_swap_pages = get_nr_swap_pages();
5074 
5075 	if (mem_cgroup_disabled() || do_memsw_account())
5076 		return nr_swap_pages;
5077 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5078 		nr_swap_pages = min_t(long, nr_swap_pages,
5079 				      READ_ONCE(memcg->swap.max) -
5080 				      page_counter_read(&memcg->swap));
5081 	return nr_swap_pages;
5082 }
5083 
5084 bool mem_cgroup_swap_full(struct folio *folio)
5085 {
5086 	struct mem_cgroup *memcg;
5087 
5088 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5089 
5090 	if (vm_swap_full())
5091 		return true;
5092 	if (do_memsw_account())
5093 		return false;
5094 
5095 	memcg = folio_memcg(folio);
5096 	if (!memcg)
5097 		return false;
5098 
5099 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5100 		unsigned long usage = page_counter_read(&memcg->swap);
5101 
5102 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5103 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5104 			return true;
5105 	}
5106 
5107 	return false;
5108 }
5109 
5110 static int __init setup_swap_account(char *s)
5111 {
5112 	bool res;
5113 
5114 	if (!kstrtobool(s, &res) && !res)
5115 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5116 			     "in favor of configuring swap control via cgroupfs. "
5117 			     "Please report your usecase to linux-mm@kvack.org if you "
5118 			     "depend on this functionality.\n");
5119 	return 1;
5120 }
5121 __setup("swapaccount=", setup_swap_account);
5122 
5123 static u64 swap_current_read(struct cgroup_subsys_state *css,
5124 			     struct cftype *cft)
5125 {
5126 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5127 
5128 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5129 }
5130 
5131 static int swap_peak_show(struct seq_file *sf, void *v)
5132 {
5133 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5134 
5135 	return peak_show(sf, v, &memcg->swap);
5136 }
5137 
5138 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5139 			       size_t nbytes, loff_t off)
5140 {
5141 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5142 
5143 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5144 			  &memcg->swap_peaks);
5145 }
5146 
5147 static int swap_high_show(struct seq_file *m, void *v)
5148 {
5149 	return seq_puts_memcg_tunable(m,
5150 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5151 }
5152 
5153 static ssize_t swap_high_write(struct kernfs_open_file *of,
5154 			       char *buf, size_t nbytes, loff_t off)
5155 {
5156 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5157 	unsigned long high;
5158 	int err;
5159 
5160 	buf = strstrip(buf);
5161 	err = page_counter_memparse(buf, "max", &high);
5162 	if (err)
5163 		return err;
5164 
5165 	page_counter_set_high(&memcg->swap, high);
5166 
5167 	return nbytes;
5168 }
5169 
5170 static int swap_max_show(struct seq_file *m, void *v)
5171 {
5172 	return seq_puts_memcg_tunable(m,
5173 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5174 }
5175 
5176 static ssize_t swap_max_write(struct kernfs_open_file *of,
5177 			      char *buf, size_t nbytes, loff_t off)
5178 {
5179 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5180 	unsigned long max;
5181 	int err;
5182 
5183 	buf = strstrip(buf);
5184 	err = page_counter_memparse(buf, "max", &max);
5185 	if (err)
5186 		return err;
5187 
5188 	xchg(&memcg->swap.max, max);
5189 
5190 	return nbytes;
5191 }
5192 
5193 static int swap_events_show(struct seq_file *m, void *v)
5194 {
5195 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5196 
5197 	seq_printf(m, "high %lu\n",
5198 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5199 	seq_printf(m, "max %lu\n",
5200 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5201 	seq_printf(m, "fail %lu\n",
5202 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5203 
5204 	return 0;
5205 }
5206 
5207 static struct cftype swap_files[] = {
5208 	{
5209 		.name = "swap.current",
5210 		.flags = CFTYPE_NOT_ON_ROOT,
5211 		.read_u64 = swap_current_read,
5212 	},
5213 	{
5214 		.name = "swap.high",
5215 		.flags = CFTYPE_NOT_ON_ROOT,
5216 		.seq_show = swap_high_show,
5217 		.write = swap_high_write,
5218 	},
5219 	{
5220 		.name = "swap.max",
5221 		.flags = CFTYPE_NOT_ON_ROOT,
5222 		.seq_show = swap_max_show,
5223 		.write = swap_max_write,
5224 	},
5225 	{
5226 		.name = "swap.peak",
5227 		.flags = CFTYPE_NOT_ON_ROOT,
5228 		.open = peak_open,
5229 		.release = peak_release,
5230 		.seq_show = swap_peak_show,
5231 		.write = swap_peak_write,
5232 	},
5233 	{
5234 		.name = "swap.events",
5235 		.flags = CFTYPE_NOT_ON_ROOT,
5236 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5237 		.seq_show = swap_events_show,
5238 	},
5239 	{ }	/* terminate */
5240 };
5241 
5242 #ifdef CONFIG_ZSWAP
5243 /**
5244  * obj_cgroup_may_zswap - check if this cgroup can zswap
5245  * @objcg: the object cgroup
5246  *
5247  * Check if the hierarchical zswap limit has been reached.
5248  *
5249  * This doesn't check for specific headroom, and it is not atomic
5250  * either. But with zswap, the size of the allocation is only known
5251  * once compression has occurred, and this optimistic pre-check avoids
5252  * spending cycles on compression when there is already no room left
5253  * or zswap is disabled altogether somewhere in the hierarchy.
5254  */
5255 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5256 {
5257 	struct mem_cgroup *memcg, *original_memcg;
5258 	bool ret = true;
5259 
5260 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5261 		return true;
5262 
5263 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5264 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5265 	     memcg = parent_mem_cgroup(memcg)) {
5266 		unsigned long max = READ_ONCE(memcg->zswap_max);
5267 		unsigned long pages;
5268 
5269 		if (max == PAGE_COUNTER_MAX)
5270 			continue;
5271 		if (max == 0) {
5272 			ret = false;
5273 			break;
5274 		}
5275 
5276 		/*
5277 		 * mem_cgroup_flush_stats() ignores small changes. Use
5278 		 * do_flush_stats() directly to get accurate stats for charging.
5279 		 */
5280 		do_flush_stats(memcg);
5281 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5282 		if (pages < max)
5283 			continue;
5284 		ret = false;
5285 		break;
5286 	}
5287 	mem_cgroup_put(original_memcg);
5288 	return ret;
5289 }
5290 
5291 /**
5292  * obj_cgroup_charge_zswap - charge compression backend memory
5293  * @objcg: the object cgroup
5294  * @size: size of compressed object
5295  *
5296  * This forces the charge after obj_cgroup_may_zswap() allowed
5297  * compression and storage in zwap for this cgroup to go ahead.
5298  */
5299 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5300 {
5301 	struct mem_cgroup *memcg;
5302 
5303 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5304 		return;
5305 
5306 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5307 
5308 	/* PF_MEMALLOC context, charging must succeed */
5309 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5310 		VM_WARN_ON_ONCE(1);
5311 
5312 	rcu_read_lock();
5313 	memcg = obj_cgroup_memcg(objcg);
5314 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5315 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5316 	rcu_read_unlock();
5317 }
5318 
5319 /**
5320  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5321  * @objcg: the object cgroup
5322  * @size: size of compressed object
5323  *
5324  * Uncharges zswap memory on page in.
5325  */
5326 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5327 {
5328 	struct mem_cgroup *memcg;
5329 
5330 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5331 		return;
5332 
5333 	obj_cgroup_uncharge(objcg, size);
5334 
5335 	rcu_read_lock();
5336 	memcg = obj_cgroup_memcg(objcg);
5337 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5338 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5339 	rcu_read_unlock();
5340 }
5341 
5342 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5343 {
5344 	/* if zswap is disabled, do not block pages going to the swapping device */
5345 	if (!zswap_is_enabled())
5346 		return true;
5347 
5348 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5349 		if (!READ_ONCE(memcg->zswap_writeback))
5350 			return false;
5351 
5352 	return true;
5353 }
5354 
5355 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5356 			      struct cftype *cft)
5357 {
5358 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359 
5360 	mem_cgroup_flush_stats(memcg);
5361 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5362 }
5363 
5364 static int zswap_max_show(struct seq_file *m, void *v)
5365 {
5366 	return seq_puts_memcg_tunable(m,
5367 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5368 }
5369 
5370 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5371 			       char *buf, size_t nbytes, loff_t off)
5372 {
5373 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5374 	unsigned long max;
5375 	int err;
5376 
5377 	buf = strstrip(buf);
5378 	err = page_counter_memparse(buf, "max", &max);
5379 	if (err)
5380 		return err;
5381 
5382 	xchg(&memcg->zswap_max, max);
5383 
5384 	return nbytes;
5385 }
5386 
5387 static int zswap_writeback_show(struct seq_file *m, void *v)
5388 {
5389 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5390 
5391 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5392 	return 0;
5393 }
5394 
5395 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5396 				char *buf, size_t nbytes, loff_t off)
5397 {
5398 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5399 	int zswap_writeback;
5400 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5401 
5402 	if (parse_ret)
5403 		return parse_ret;
5404 
5405 	if (zswap_writeback != 0 && zswap_writeback != 1)
5406 		return -EINVAL;
5407 
5408 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5409 	return nbytes;
5410 }
5411 
5412 static struct cftype zswap_files[] = {
5413 	{
5414 		.name = "zswap.current",
5415 		.flags = CFTYPE_NOT_ON_ROOT,
5416 		.read_u64 = zswap_current_read,
5417 	},
5418 	{
5419 		.name = "zswap.max",
5420 		.flags = CFTYPE_NOT_ON_ROOT,
5421 		.seq_show = zswap_max_show,
5422 		.write = zswap_max_write,
5423 	},
5424 	{
5425 		.name = "zswap.writeback",
5426 		.seq_show = zswap_writeback_show,
5427 		.write = zswap_writeback_write,
5428 	},
5429 	{ }	/* terminate */
5430 };
5431 #endif /* CONFIG_ZSWAP */
5432 
5433 static int __init mem_cgroup_swap_init(void)
5434 {
5435 	if (mem_cgroup_disabled())
5436 		return 0;
5437 
5438 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5439 #ifdef CONFIG_MEMCG_V1
5440 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5441 #endif
5442 #ifdef CONFIG_ZSWAP
5443 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5444 #endif
5445 	return 0;
5446 }
5447 subsys_initcall(mem_cgroup_swap_init);
5448 
5449 #endif /* CONFIG_SWAP */
5450