1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include "internal.h" 58 #include <net/sock.h> 59 #include <net/ip.h> 60 #include <net/tcp_memcontrol.h> 61 62 #include <asm/uaccess.h> 63 64 #include <trace/events/vmscan.h> 65 66 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 67 EXPORT_SYMBOL(mem_cgroup_subsys); 68 69 #define MEM_CGROUP_RECLAIM_RETRIES 5 70 static struct mem_cgroup *root_mem_cgroup __read_mostly; 71 72 #ifdef CONFIG_MEMCG_SWAP 73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 74 int do_swap_account __read_mostly; 75 76 /* for remember boot option*/ 77 #ifdef CONFIG_MEMCG_SWAP_ENABLED 78 static int really_do_swap_account __initdata = 1; 79 #else 80 static int really_do_swap_account __initdata = 0; 81 #endif 82 83 #else 84 #define do_swap_account 0 85 #endif 86 87 88 /* 89 * Statistics for memory cgroup. 90 */ 91 enum mem_cgroup_stat_index { 92 /* 93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 94 */ 95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 99 MEM_CGROUP_STAT_NSTATS, 100 }; 101 102 static const char * const mem_cgroup_stat_names[] = { 103 "cache", 104 "rss", 105 "mapped_file", 106 "swap", 107 }; 108 109 enum mem_cgroup_events_index { 110 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 111 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 112 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 113 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 114 MEM_CGROUP_EVENTS_NSTATS, 115 }; 116 117 static const char * const mem_cgroup_events_names[] = { 118 "pgpgin", 119 "pgpgout", 120 "pgfault", 121 "pgmajfault", 122 }; 123 124 static const char * const mem_cgroup_lru_names[] = { 125 "inactive_anon", 126 "active_anon", 127 "inactive_file", 128 "active_file", 129 "unevictable", 130 }; 131 132 /* 133 * Per memcg event counter is incremented at every pagein/pageout. With THP, 134 * it will be incremated by the number of pages. This counter is used for 135 * for trigger some periodic events. This is straightforward and better 136 * than using jiffies etc. to handle periodic memcg event. 137 */ 138 enum mem_cgroup_events_target { 139 MEM_CGROUP_TARGET_THRESH, 140 MEM_CGROUP_TARGET_SOFTLIMIT, 141 MEM_CGROUP_TARGET_NUMAINFO, 142 MEM_CGROUP_NTARGETS, 143 }; 144 #define THRESHOLDS_EVENTS_TARGET 128 145 #define SOFTLIMIT_EVENTS_TARGET 1024 146 #define NUMAINFO_EVENTS_TARGET 1024 147 148 struct mem_cgroup_stat_cpu { 149 long count[MEM_CGROUP_STAT_NSTATS]; 150 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 151 unsigned long nr_page_events; 152 unsigned long targets[MEM_CGROUP_NTARGETS]; 153 }; 154 155 struct mem_cgroup_reclaim_iter { 156 /* 157 * last scanned hierarchy member. Valid only if last_dead_count 158 * matches memcg->dead_count of the hierarchy root group. 159 */ 160 struct mem_cgroup *last_visited; 161 unsigned long last_dead_count; 162 163 /* scan generation, increased every round-trip */ 164 unsigned int generation; 165 }; 166 167 /* 168 * per-zone information in memory controller. 169 */ 170 struct mem_cgroup_per_zone { 171 struct lruvec lruvec; 172 unsigned long lru_size[NR_LRU_LISTS]; 173 174 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 175 176 struct rb_node tree_node; /* RB tree node */ 177 unsigned long long usage_in_excess;/* Set to the value by which */ 178 /* the soft limit is exceeded*/ 179 bool on_tree; 180 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 181 /* use container_of */ 182 }; 183 184 struct mem_cgroup_per_node { 185 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 186 }; 187 188 struct mem_cgroup_lru_info { 189 struct mem_cgroup_per_node *nodeinfo[0]; 190 }; 191 192 /* 193 * Cgroups above their limits are maintained in a RB-Tree, independent of 194 * their hierarchy representation 195 */ 196 197 struct mem_cgroup_tree_per_zone { 198 struct rb_root rb_root; 199 spinlock_t lock; 200 }; 201 202 struct mem_cgroup_tree_per_node { 203 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 204 }; 205 206 struct mem_cgroup_tree { 207 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 208 }; 209 210 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 211 212 struct mem_cgroup_threshold { 213 struct eventfd_ctx *eventfd; 214 u64 threshold; 215 }; 216 217 /* For threshold */ 218 struct mem_cgroup_threshold_ary { 219 /* An array index points to threshold just below or equal to usage. */ 220 int current_threshold; 221 /* Size of entries[] */ 222 unsigned int size; 223 /* Array of thresholds */ 224 struct mem_cgroup_threshold entries[0]; 225 }; 226 227 struct mem_cgroup_thresholds { 228 /* Primary thresholds array */ 229 struct mem_cgroup_threshold_ary *primary; 230 /* 231 * Spare threshold array. 232 * This is needed to make mem_cgroup_unregister_event() "never fail". 233 * It must be able to store at least primary->size - 1 entries. 234 */ 235 struct mem_cgroup_threshold_ary *spare; 236 }; 237 238 /* for OOM */ 239 struct mem_cgroup_eventfd_list { 240 struct list_head list; 241 struct eventfd_ctx *eventfd; 242 }; 243 244 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 245 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 246 247 /* 248 * The memory controller data structure. The memory controller controls both 249 * page cache and RSS per cgroup. We would eventually like to provide 250 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 251 * to help the administrator determine what knobs to tune. 252 * 253 * TODO: Add a water mark for the memory controller. Reclaim will begin when 254 * we hit the water mark. May be even add a low water mark, such that 255 * no reclaim occurs from a cgroup at it's low water mark, this is 256 * a feature that will be implemented much later in the future. 257 */ 258 struct mem_cgroup { 259 struct cgroup_subsys_state css; 260 /* 261 * the counter to account for memory usage 262 */ 263 struct res_counter res; 264 265 /* vmpressure notifications */ 266 struct vmpressure vmpressure; 267 268 union { 269 /* 270 * the counter to account for mem+swap usage. 271 */ 272 struct res_counter memsw; 273 274 /* 275 * rcu_freeing is used only when freeing struct mem_cgroup, 276 * so put it into a union to avoid wasting more memory. 277 * It must be disjoint from the css field. It could be 278 * in a union with the res field, but res plays a much 279 * larger part in mem_cgroup life than memsw, and might 280 * be of interest, even at time of free, when debugging. 281 * So share rcu_head with the less interesting memsw. 282 */ 283 struct rcu_head rcu_freeing; 284 /* 285 * We also need some space for a worker in deferred freeing. 286 * By the time we call it, rcu_freeing is no longer in use. 287 */ 288 struct work_struct work_freeing; 289 }; 290 291 /* 292 * the counter to account for kernel memory usage. 293 */ 294 struct res_counter kmem; 295 /* 296 * Should the accounting and control be hierarchical, per subtree? 297 */ 298 bool use_hierarchy; 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 300 301 bool oom_lock; 302 atomic_t under_oom; 303 304 atomic_t refcnt; 305 306 int swappiness; 307 /* OOM-Killer disable */ 308 int oom_kill_disable; 309 310 /* set when res.limit == memsw.limit */ 311 bool memsw_is_minimum; 312 313 /* protect arrays of thresholds */ 314 struct mutex thresholds_lock; 315 316 /* thresholds for memory usage. RCU-protected */ 317 struct mem_cgroup_thresholds thresholds; 318 319 /* thresholds for mem+swap usage. RCU-protected */ 320 struct mem_cgroup_thresholds memsw_thresholds; 321 322 /* For oom notifier event fd */ 323 struct list_head oom_notify; 324 325 /* 326 * Should we move charges of a task when a task is moved into this 327 * mem_cgroup ? And what type of charges should we move ? 328 */ 329 unsigned long move_charge_at_immigrate; 330 /* 331 * set > 0 if pages under this cgroup are moving to other cgroup. 332 */ 333 atomic_t moving_account; 334 /* taken only while moving_account > 0 */ 335 spinlock_t move_lock; 336 /* 337 * percpu counter. 338 */ 339 struct mem_cgroup_stat_cpu __percpu *stat; 340 /* 341 * used when a cpu is offlined or other synchronizations 342 * See mem_cgroup_read_stat(). 343 */ 344 struct mem_cgroup_stat_cpu nocpu_base; 345 spinlock_t pcp_counter_lock; 346 347 atomic_t dead_count; 348 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 349 struct tcp_memcontrol tcp_mem; 350 #endif 351 #if defined(CONFIG_MEMCG_KMEM) 352 /* analogous to slab_common's slab_caches list. per-memcg */ 353 struct list_head memcg_slab_caches; 354 /* Not a spinlock, we can take a lot of time walking the list */ 355 struct mutex slab_caches_mutex; 356 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 357 int kmemcg_id; 358 #endif 359 360 int last_scanned_node; 361 #if MAX_NUMNODES > 1 362 nodemask_t scan_nodes; 363 atomic_t numainfo_events; 364 atomic_t numainfo_updating; 365 #endif 366 367 /* 368 * Per cgroup active and inactive list, similar to the 369 * per zone LRU lists. 370 * 371 * WARNING: This has to be the last element of the struct. Don't 372 * add new fields after this point. 373 */ 374 struct mem_cgroup_lru_info info; 375 }; 376 377 static size_t memcg_size(void) 378 { 379 return sizeof(struct mem_cgroup) + 380 nr_node_ids * sizeof(struct mem_cgroup_per_node); 381 } 382 383 /* internal only representation about the status of kmem accounting. */ 384 enum { 385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 388 }; 389 390 /* We account when limit is on, but only after call sites are patched */ 391 #define KMEM_ACCOUNTED_MASK \ 392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 393 394 #ifdef CONFIG_MEMCG_KMEM 395 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 396 { 397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 398 } 399 400 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 401 { 402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 403 } 404 405 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 406 { 407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 408 } 409 410 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 411 { 412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 413 } 414 415 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 416 { 417 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 418 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 419 } 420 421 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 422 { 423 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 424 &memcg->kmem_account_flags); 425 } 426 #endif 427 428 /* Stuffs for move charges at task migration. */ 429 /* 430 * Types of charges to be moved. "move_charge_at_immitgrate" and 431 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 432 */ 433 enum move_type { 434 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 435 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 436 NR_MOVE_TYPE, 437 }; 438 439 /* "mc" and its members are protected by cgroup_mutex */ 440 static struct move_charge_struct { 441 spinlock_t lock; /* for from, to */ 442 struct mem_cgroup *from; 443 struct mem_cgroup *to; 444 unsigned long immigrate_flags; 445 unsigned long precharge; 446 unsigned long moved_charge; 447 unsigned long moved_swap; 448 struct task_struct *moving_task; /* a task moving charges */ 449 wait_queue_head_t waitq; /* a waitq for other context */ 450 } mc = { 451 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 452 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 453 }; 454 455 static bool move_anon(void) 456 { 457 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 458 } 459 460 static bool move_file(void) 461 { 462 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 463 } 464 465 /* 466 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 467 * limit reclaim to prevent infinite loops, if they ever occur. 468 */ 469 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 470 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 471 472 enum charge_type { 473 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 474 MEM_CGROUP_CHARGE_TYPE_ANON, 475 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 476 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 477 NR_CHARGE_TYPE, 478 }; 479 480 /* for encoding cft->private value on file */ 481 enum res_type { 482 _MEM, 483 _MEMSWAP, 484 _OOM_TYPE, 485 _KMEM, 486 }; 487 488 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 489 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 490 #define MEMFILE_ATTR(val) ((val) & 0xffff) 491 /* Used for OOM nofiier */ 492 #define OOM_CONTROL (0) 493 494 /* 495 * Reclaim flags for mem_cgroup_hierarchical_reclaim 496 */ 497 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 498 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 499 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 500 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 501 502 /* 503 * The memcg_create_mutex will be held whenever a new cgroup is created. 504 * As a consequence, any change that needs to protect against new child cgroups 505 * appearing has to hold it as well. 506 */ 507 static DEFINE_MUTEX(memcg_create_mutex); 508 509 static void mem_cgroup_get(struct mem_cgroup *memcg); 510 static void mem_cgroup_put(struct mem_cgroup *memcg); 511 512 static inline 513 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 514 { 515 return container_of(s, struct mem_cgroup, css); 516 } 517 518 /* Some nice accessors for the vmpressure. */ 519 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 520 { 521 if (!memcg) 522 memcg = root_mem_cgroup; 523 return &memcg->vmpressure; 524 } 525 526 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 527 { 528 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 529 } 530 531 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 532 { 533 return &mem_cgroup_from_css(css)->vmpressure; 534 } 535 536 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 537 { 538 return (memcg == root_mem_cgroup); 539 } 540 541 /* Writing them here to avoid exposing memcg's inner layout */ 542 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 543 544 void sock_update_memcg(struct sock *sk) 545 { 546 if (mem_cgroup_sockets_enabled) { 547 struct mem_cgroup *memcg; 548 struct cg_proto *cg_proto; 549 550 BUG_ON(!sk->sk_prot->proto_cgroup); 551 552 /* Socket cloning can throw us here with sk_cgrp already 553 * filled. It won't however, necessarily happen from 554 * process context. So the test for root memcg given 555 * the current task's memcg won't help us in this case. 556 * 557 * Respecting the original socket's memcg is a better 558 * decision in this case. 559 */ 560 if (sk->sk_cgrp) { 561 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 562 mem_cgroup_get(sk->sk_cgrp->memcg); 563 return; 564 } 565 566 rcu_read_lock(); 567 memcg = mem_cgroup_from_task(current); 568 cg_proto = sk->sk_prot->proto_cgroup(memcg); 569 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 570 mem_cgroup_get(memcg); 571 sk->sk_cgrp = cg_proto; 572 } 573 rcu_read_unlock(); 574 } 575 } 576 EXPORT_SYMBOL(sock_update_memcg); 577 578 void sock_release_memcg(struct sock *sk) 579 { 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 581 struct mem_cgroup *memcg; 582 WARN_ON(!sk->sk_cgrp->memcg); 583 memcg = sk->sk_cgrp->memcg; 584 mem_cgroup_put(memcg); 585 } 586 } 587 588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 589 { 590 if (!memcg || mem_cgroup_is_root(memcg)) 591 return NULL; 592 593 return &memcg->tcp_mem.cg_proto; 594 } 595 EXPORT_SYMBOL(tcp_proto_cgroup); 596 597 static void disarm_sock_keys(struct mem_cgroup *memcg) 598 { 599 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 600 return; 601 static_key_slow_dec(&memcg_socket_limit_enabled); 602 } 603 #else 604 static void disarm_sock_keys(struct mem_cgroup *memcg) 605 { 606 } 607 #endif 608 609 #ifdef CONFIG_MEMCG_KMEM 610 /* 611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 612 * There are two main reasons for not using the css_id for this: 613 * 1) this works better in sparse environments, where we have a lot of memcgs, 614 * but only a few kmem-limited. Or also, if we have, for instance, 200 615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 616 * 200 entry array for that. 617 * 618 * 2) In order not to violate the cgroup API, we would like to do all memory 619 * allocation in ->create(). At that point, we haven't yet allocated the 620 * css_id. Having a separate index prevents us from messing with the cgroup 621 * core for this 622 * 623 * The current size of the caches array is stored in 624 * memcg_limited_groups_array_size. It will double each time we have to 625 * increase it. 626 */ 627 static DEFINE_IDA(kmem_limited_groups); 628 int memcg_limited_groups_array_size; 629 630 /* 631 * MIN_SIZE is different than 1, because we would like to avoid going through 632 * the alloc/free process all the time. In a small machine, 4 kmem-limited 633 * cgroups is a reasonable guess. In the future, it could be a parameter or 634 * tunable, but that is strictly not necessary. 635 * 636 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 637 * this constant directly from cgroup, but it is understandable that this is 638 * better kept as an internal representation in cgroup.c. In any case, the 639 * css_id space is not getting any smaller, and we don't have to necessarily 640 * increase ours as well if it increases. 641 */ 642 #define MEMCG_CACHES_MIN_SIZE 4 643 #define MEMCG_CACHES_MAX_SIZE 65535 644 645 /* 646 * A lot of the calls to the cache allocation functions are expected to be 647 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 648 * conditional to this static branch, we'll have to allow modules that does 649 * kmem_cache_alloc and the such to see this symbol as well 650 */ 651 struct static_key memcg_kmem_enabled_key; 652 EXPORT_SYMBOL(memcg_kmem_enabled_key); 653 654 static void disarm_kmem_keys(struct mem_cgroup *memcg) 655 { 656 if (memcg_kmem_is_active(memcg)) { 657 static_key_slow_dec(&memcg_kmem_enabled_key); 658 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 659 } 660 /* 661 * This check can't live in kmem destruction function, 662 * since the charges will outlive the cgroup 663 */ 664 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 665 } 666 #else 667 static void disarm_kmem_keys(struct mem_cgroup *memcg) 668 { 669 } 670 #endif /* CONFIG_MEMCG_KMEM */ 671 672 static void disarm_static_keys(struct mem_cgroup *memcg) 673 { 674 disarm_sock_keys(memcg); 675 disarm_kmem_keys(memcg); 676 } 677 678 static void drain_all_stock_async(struct mem_cgroup *memcg); 679 680 static struct mem_cgroup_per_zone * 681 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 682 { 683 VM_BUG_ON((unsigned)nid >= nr_node_ids); 684 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 685 } 686 687 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 688 { 689 return &memcg->css; 690 } 691 692 static struct mem_cgroup_per_zone * 693 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 694 { 695 int nid = page_to_nid(page); 696 int zid = page_zonenum(page); 697 698 return mem_cgroup_zoneinfo(memcg, nid, zid); 699 } 700 701 static struct mem_cgroup_tree_per_zone * 702 soft_limit_tree_node_zone(int nid, int zid) 703 { 704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 705 } 706 707 static struct mem_cgroup_tree_per_zone * 708 soft_limit_tree_from_page(struct page *page) 709 { 710 int nid = page_to_nid(page); 711 int zid = page_zonenum(page); 712 713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 714 } 715 716 static void 717 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 718 struct mem_cgroup_per_zone *mz, 719 struct mem_cgroup_tree_per_zone *mctz, 720 unsigned long long new_usage_in_excess) 721 { 722 struct rb_node **p = &mctz->rb_root.rb_node; 723 struct rb_node *parent = NULL; 724 struct mem_cgroup_per_zone *mz_node; 725 726 if (mz->on_tree) 727 return; 728 729 mz->usage_in_excess = new_usage_in_excess; 730 if (!mz->usage_in_excess) 731 return; 732 while (*p) { 733 parent = *p; 734 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 735 tree_node); 736 if (mz->usage_in_excess < mz_node->usage_in_excess) 737 p = &(*p)->rb_left; 738 /* 739 * We can't avoid mem cgroups that are over their soft 740 * limit by the same amount 741 */ 742 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 743 p = &(*p)->rb_right; 744 } 745 rb_link_node(&mz->tree_node, parent, p); 746 rb_insert_color(&mz->tree_node, &mctz->rb_root); 747 mz->on_tree = true; 748 } 749 750 static void 751 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 752 struct mem_cgroup_per_zone *mz, 753 struct mem_cgroup_tree_per_zone *mctz) 754 { 755 if (!mz->on_tree) 756 return; 757 rb_erase(&mz->tree_node, &mctz->rb_root); 758 mz->on_tree = false; 759 } 760 761 static void 762 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 763 struct mem_cgroup_per_zone *mz, 764 struct mem_cgroup_tree_per_zone *mctz) 765 { 766 spin_lock(&mctz->lock); 767 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 768 spin_unlock(&mctz->lock); 769 } 770 771 772 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 773 { 774 unsigned long long excess; 775 struct mem_cgroup_per_zone *mz; 776 struct mem_cgroup_tree_per_zone *mctz; 777 int nid = page_to_nid(page); 778 int zid = page_zonenum(page); 779 mctz = soft_limit_tree_from_page(page); 780 781 /* 782 * Necessary to update all ancestors when hierarchy is used. 783 * because their event counter is not touched. 784 */ 785 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 786 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 787 excess = res_counter_soft_limit_excess(&memcg->res); 788 /* 789 * We have to update the tree if mz is on RB-tree or 790 * mem is over its softlimit. 791 */ 792 if (excess || mz->on_tree) { 793 spin_lock(&mctz->lock); 794 /* if on-tree, remove it */ 795 if (mz->on_tree) 796 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 797 /* 798 * Insert again. mz->usage_in_excess will be updated. 799 * If excess is 0, no tree ops. 800 */ 801 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 802 spin_unlock(&mctz->lock); 803 } 804 } 805 } 806 807 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 808 { 809 int node, zone; 810 struct mem_cgroup_per_zone *mz; 811 struct mem_cgroup_tree_per_zone *mctz; 812 813 for_each_node(node) { 814 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 815 mz = mem_cgroup_zoneinfo(memcg, node, zone); 816 mctz = soft_limit_tree_node_zone(node, zone); 817 mem_cgroup_remove_exceeded(memcg, mz, mctz); 818 } 819 } 820 } 821 822 static struct mem_cgroup_per_zone * 823 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 824 { 825 struct rb_node *rightmost = NULL; 826 struct mem_cgroup_per_zone *mz; 827 828 retry: 829 mz = NULL; 830 rightmost = rb_last(&mctz->rb_root); 831 if (!rightmost) 832 goto done; /* Nothing to reclaim from */ 833 834 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 835 /* 836 * Remove the node now but someone else can add it back, 837 * we will to add it back at the end of reclaim to its correct 838 * position in the tree. 839 */ 840 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 841 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 842 !css_tryget(&mz->memcg->css)) 843 goto retry; 844 done: 845 return mz; 846 } 847 848 static struct mem_cgroup_per_zone * 849 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 850 { 851 struct mem_cgroup_per_zone *mz; 852 853 spin_lock(&mctz->lock); 854 mz = __mem_cgroup_largest_soft_limit_node(mctz); 855 spin_unlock(&mctz->lock); 856 return mz; 857 } 858 859 /* 860 * Implementation Note: reading percpu statistics for memcg. 861 * 862 * Both of vmstat[] and percpu_counter has threshold and do periodic 863 * synchronization to implement "quick" read. There are trade-off between 864 * reading cost and precision of value. Then, we may have a chance to implement 865 * a periodic synchronizion of counter in memcg's counter. 866 * 867 * But this _read() function is used for user interface now. The user accounts 868 * memory usage by memory cgroup and he _always_ requires exact value because 869 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 870 * have to visit all online cpus and make sum. So, for now, unnecessary 871 * synchronization is not implemented. (just implemented for cpu hotplug) 872 * 873 * If there are kernel internal actions which can make use of some not-exact 874 * value, and reading all cpu value can be performance bottleneck in some 875 * common workload, threashold and synchonization as vmstat[] should be 876 * implemented. 877 */ 878 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 879 enum mem_cgroup_stat_index idx) 880 { 881 long val = 0; 882 int cpu; 883 884 get_online_cpus(); 885 for_each_online_cpu(cpu) 886 val += per_cpu(memcg->stat->count[idx], cpu); 887 #ifdef CONFIG_HOTPLUG_CPU 888 spin_lock(&memcg->pcp_counter_lock); 889 val += memcg->nocpu_base.count[idx]; 890 spin_unlock(&memcg->pcp_counter_lock); 891 #endif 892 put_online_cpus(); 893 return val; 894 } 895 896 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 897 bool charge) 898 { 899 int val = (charge) ? 1 : -1; 900 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 901 } 902 903 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 904 enum mem_cgroup_events_index idx) 905 { 906 unsigned long val = 0; 907 int cpu; 908 909 for_each_online_cpu(cpu) 910 val += per_cpu(memcg->stat->events[idx], cpu); 911 #ifdef CONFIG_HOTPLUG_CPU 912 spin_lock(&memcg->pcp_counter_lock); 913 val += memcg->nocpu_base.events[idx]; 914 spin_unlock(&memcg->pcp_counter_lock); 915 #endif 916 return val; 917 } 918 919 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 920 bool anon, int nr_pages) 921 { 922 preempt_disable(); 923 924 /* 925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 926 * counted as CACHE even if it's on ANON LRU. 927 */ 928 if (anon) 929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 930 nr_pages); 931 else 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 933 nr_pages); 934 935 /* pagein of a big page is an event. So, ignore page size */ 936 if (nr_pages > 0) 937 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 938 else { 939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 940 nr_pages = -nr_pages; /* for event */ 941 } 942 943 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 944 945 preempt_enable(); 946 } 947 948 unsigned long 949 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 950 { 951 struct mem_cgroup_per_zone *mz; 952 953 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 954 return mz->lru_size[lru]; 955 } 956 957 static unsigned long 958 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 959 unsigned int lru_mask) 960 { 961 struct mem_cgroup_per_zone *mz; 962 enum lru_list lru; 963 unsigned long ret = 0; 964 965 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 966 967 for_each_lru(lru) { 968 if (BIT(lru) & lru_mask) 969 ret += mz->lru_size[lru]; 970 } 971 return ret; 972 } 973 974 static unsigned long 975 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 976 int nid, unsigned int lru_mask) 977 { 978 u64 total = 0; 979 int zid; 980 981 for (zid = 0; zid < MAX_NR_ZONES; zid++) 982 total += mem_cgroup_zone_nr_lru_pages(memcg, 983 nid, zid, lru_mask); 984 985 return total; 986 } 987 988 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 989 unsigned int lru_mask) 990 { 991 int nid; 992 u64 total = 0; 993 994 for_each_node_state(nid, N_MEMORY) 995 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 996 return total; 997 } 998 999 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1000 enum mem_cgroup_events_target target) 1001 { 1002 unsigned long val, next; 1003 1004 val = __this_cpu_read(memcg->stat->nr_page_events); 1005 next = __this_cpu_read(memcg->stat->targets[target]); 1006 /* from time_after() in jiffies.h */ 1007 if ((long)next - (long)val < 0) { 1008 switch (target) { 1009 case MEM_CGROUP_TARGET_THRESH: 1010 next = val + THRESHOLDS_EVENTS_TARGET; 1011 break; 1012 case MEM_CGROUP_TARGET_SOFTLIMIT: 1013 next = val + SOFTLIMIT_EVENTS_TARGET; 1014 break; 1015 case MEM_CGROUP_TARGET_NUMAINFO: 1016 next = val + NUMAINFO_EVENTS_TARGET; 1017 break; 1018 default: 1019 break; 1020 } 1021 __this_cpu_write(memcg->stat->targets[target], next); 1022 return true; 1023 } 1024 return false; 1025 } 1026 1027 /* 1028 * Check events in order. 1029 * 1030 */ 1031 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1032 { 1033 preempt_disable(); 1034 /* threshold event is triggered in finer grain than soft limit */ 1035 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1036 MEM_CGROUP_TARGET_THRESH))) { 1037 bool do_softlimit; 1038 bool do_numainfo __maybe_unused; 1039 1040 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1041 MEM_CGROUP_TARGET_SOFTLIMIT); 1042 #if MAX_NUMNODES > 1 1043 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1044 MEM_CGROUP_TARGET_NUMAINFO); 1045 #endif 1046 preempt_enable(); 1047 1048 mem_cgroup_threshold(memcg); 1049 if (unlikely(do_softlimit)) 1050 mem_cgroup_update_tree(memcg, page); 1051 #if MAX_NUMNODES > 1 1052 if (unlikely(do_numainfo)) 1053 atomic_inc(&memcg->numainfo_events); 1054 #endif 1055 } else 1056 preempt_enable(); 1057 } 1058 1059 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 1060 { 1061 return mem_cgroup_from_css( 1062 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 1063 } 1064 1065 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1066 { 1067 /* 1068 * mm_update_next_owner() may clear mm->owner to NULL 1069 * if it races with swapoff, page migration, etc. 1070 * So this can be called with p == NULL. 1071 */ 1072 if (unlikely(!p)) 1073 return NULL; 1074 1075 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 1076 } 1077 1078 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1079 { 1080 struct mem_cgroup *memcg = NULL; 1081 1082 if (!mm) 1083 return NULL; 1084 /* 1085 * Because we have no locks, mm->owner's may be being moved to other 1086 * cgroup. We use css_tryget() here even if this looks 1087 * pessimistic (rather than adding locks here). 1088 */ 1089 rcu_read_lock(); 1090 do { 1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1092 if (unlikely(!memcg)) 1093 break; 1094 } while (!css_tryget(&memcg->css)); 1095 rcu_read_unlock(); 1096 return memcg; 1097 } 1098 1099 /* 1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1101 * ref. count) or NULL if the whole root's subtree has been visited. 1102 * 1103 * helper function to be used by mem_cgroup_iter 1104 */ 1105 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1106 struct mem_cgroup *last_visited) 1107 { 1108 struct cgroup *prev_cgroup, *next_cgroup; 1109 1110 /* 1111 * Root is not visited by cgroup iterators so it needs an 1112 * explicit visit. 1113 */ 1114 if (!last_visited) 1115 return root; 1116 1117 prev_cgroup = (last_visited == root) ? NULL 1118 : last_visited->css.cgroup; 1119 skip_node: 1120 next_cgroup = cgroup_next_descendant_pre( 1121 prev_cgroup, root->css.cgroup); 1122 1123 /* 1124 * Even if we found a group we have to make sure it is 1125 * alive. css && !memcg means that the groups should be 1126 * skipped and we should continue the tree walk. 1127 * last_visited css is safe to use because it is 1128 * protected by css_get and the tree walk is rcu safe. 1129 */ 1130 if (next_cgroup) { 1131 struct mem_cgroup *mem = mem_cgroup_from_cont( 1132 next_cgroup); 1133 if (css_tryget(&mem->css)) 1134 return mem; 1135 else { 1136 prev_cgroup = next_cgroup; 1137 goto skip_node; 1138 } 1139 } 1140 1141 return NULL; 1142 } 1143 1144 /** 1145 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1146 * @root: hierarchy root 1147 * @prev: previously returned memcg, NULL on first invocation 1148 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1149 * 1150 * Returns references to children of the hierarchy below @root, or 1151 * @root itself, or %NULL after a full round-trip. 1152 * 1153 * Caller must pass the return value in @prev on subsequent 1154 * invocations for reference counting, or use mem_cgroup_iter_break() 1155 * to cancel a hierarchy walk before the round-trip is complete. 1156 * 1157 * Reclaimers can specify a zone and a priority level in @reclaim to 1158 * divide up the memcgs in the hierarchy among all concurrent 1159 * reclaimers operating on the same zone and priority. 1160 */ 1161 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1162 struct mem_cgroup *prev, 1163 struct mem_cgroup_reclaim_cookie *reclaim) 1164 { 1165 struct mem_cgroup *memcg = NULL; 1166 struct mem_cgroup *last_visited = NULL; 1167 unsigned long uninitialized_var(dead_count); 1168 1169 if (mem_cgroup_disabled()) 1170 return NULL; 1171 1172 if (!root) 1173 root = root_mem_cgroup; 1174 1175 if (prev && !reclaim) 1176 last_visited = prev; 1177 1178 if (!root->use_hierarchy && root != root_mem_cgroup) { 1179 if (prev) 1180 goto out_css_put; 1181 return root; 1182 } 1183 1184 rcu_read_lock(); 1185 while (!memcg) { 1186 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1187 1188 if (reclaim) { 1189 int nid = zone_to_nid(reclaim->zone); 1190 int zid = zone_idx(reclaim->zone); 1191 struct mem_cgroup_per_zone *mz; 1192 1193 mz = mem_cgroup_zoneinfo(root, nid, zid); 1194 iter = &mz->reclaim_iter[reclaim->priority]; 1195 last_visited = iter->last_visited; 1196 if (prev && reclaim->generation != iter->generation) { 1197 iter->last_visited = NULL; 1198 goto out_unlock; 1199 } 1200 1201 /* 1202 * If the dead_count mismatches, a destruction 1203 * has happened or is happening concurrently. 1204 * If the dead_count matches, a destruction 1205 * might still happen concurrently, but since 1206 * we checked under RCU, that destruction 1207 * won't free the object until we release the 1208 * RCU reader lock. Thus, the dead_count 1209 * check verifies the pointer is still valid, 1210 * css_tryget() verifies the cgroup pointed to 1211 * is alive. 1212 */ 1213 dead_count = atomic_read(&root->dead_count); 1214 smp_rmb(); 1215 last_visited = iter->last_visited; 1216 if (last_visited) { 1217 if ((dead_count != iter->last_dead_count) || 1218 !css_tryget(&last_visited->css)) { 1219 last_visited = NULL; 1220 } 1221 } 1222 } 1223 1224 memcg = __mem_cgroup_iter_next(root, last_visited); 1225 1226 if (reclaim) { 1227 if (last_visited) 1228 css_put(&last_visited->css); 1229 1230 iter->last_visited = memcg; 1231 smp_wmb(); 1232 iter->last_dead_count = dead_count; 1233 1234 if (!memcg) 1235 iter->generation++; 1236 else if (!prev && memcg) 1237 reclaim->generation = iter->generation; 1238 } 1239 1240 if (prev && !memcg) 1241 goto out_unlock; 1242 } 1243 out_unlock: 1244 rcu_read_unlock(); 1245 out_css_put: 1246 if (prev && prev != root) 1247 css_put(&prev->css); 1248 1249 return memcg; 1250 } 1251 1252 /** 1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1254 * @root: hierarchy root 1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1256 */ 1257 void mem_cgroup_iter_break(struct mem_cgroup *root, 1258 struct mem_cgroup *prev) 1259 { 1260 if (!root) 1261 root = root_mem_cgroup; 1262 if (prev && prev != root) 1263 css_put(&prev->css); 1264 } 1265 1266 /* 1267 * Iteration constructs for visiting all cgroups (under a tree). If 1268 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1269 * be used for reference counting. 1270 */ 1271 #define for_each_mem_cgroup_tree(iter, root) \ 1272 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1273 iter != NULL; \ 1274 iter = mem_cgroup_iter(root, iter, NULL)) 1275 1276 #define for_each_mem_cgroup(iter) \ 1277 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1278 iter != NULL; \ 1279 iter = mem_cgroup_iter(NULL, iter, NULL)) 1280 1281 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1282 { 1283 struct mem_cgroup *memcg; 1284 1285 rcu_read_lock(); 1286 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1287 if (unlikely(!memcg)) 1288 goto out; 1289 1290 switch (idx) { 1291 case PGFAULT: 1292 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1293 break; 1294 case PGMAJFAULT: 1295 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1296 break; 1297 default: 1298 BUG(); 1299 } 1300 out: 1301 rcu_read_unlock(); 1302 } 1303 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1304 1305 /** 1306 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1307 * @zone: zone of the wanted lruvec 1308 * @memcg: memcg of the wanted lruvec 1309 * 1310 * Returns the lru list vector holding pages for the given @zone and 1311 * @mem. This can be the global zone lruvec, if the memory controller 1312 * is disabled. 1313 */ 1314 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1315 struct mem_cgroup *memcg) 1316 { 1317 struct mem_cgroup_per_zone *mz; 1318 struct lruvec *lruvec; 1319 1320 if (mem_cgroup_disabled()) { 1321 lruvec = &zone->lruvec; 1322 goto out; 1323 } 1324 1325 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1326 lruvec = &mz->lruvec; 1327 out: 1328 /* 1329 * Since a node can be onlined after the mem_cgroup was created, 1330 * we have to be prepared to initialize lruvec->zone here; 1331 * and if offlined then reonlined, we need to reinitialize it. 1332 */ 1333 if (unlikely(lruvec->zone != zone)) 1334 lruvec->zone = zone; 1335 return lruvec; 1336 } 1337 1338 /* 1339 * Following LRU functions are allowed to be used without PCG_LOCK. 1340 * Operations are called by routine of global LRU independently from memcg. 1341 * What we have to take care of here is validness of pc->mem_cgroup. 1342 * 1343 * Changes to pc->mem_cgroup happens when 1344 * 1. charge 1345 * 2. moving account 1346 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1347 * It is added to LRU before charge. 1348 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1349 * When moving account, the page is not on LRU. It's isolated. 1350 */ 1351 1352 /** 1353 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1354 * @page: the page 1355 * @zone: zone of the page 1356 */ 1357 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1358 { 1359 struct mem_cgroup_per_zone *mz; 1360 struct mem_cgroup *memcg; 1361 struct page_cgroup *pc; 1362 struct lruvec *lruvec; 1363 1364 if (mem_cgroup_disabled()) { 1365 lruvec = &zone->lruvec; 1366 goto out; 1367 } 1368 1369 pc = lookup_page_cgroup(page); 1370 memcg = pc->mem_cgroup; 1371 1372 /* 1373 * Surreptitiously switch any uncharged offlist page to root: 1374 * an uncharged page off lru does nothing to secure 1375 * its former mem_cgroup from sudden removal. 1376 * 1377 * Our caller holds lru_lock, and PageCgroupUsed is updated 1378 * under page_cgroup lock: between them, they make all uses 1379 * of pc->mem_cgroup safe. 1380 */ 1381 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1382 pc->mem_cgroup = memcg = root_mem_cgroup; 1383 1384 mz = page_cgroup_zoneinfo(memcg, page); 1385 lruvec = &mz->lruvec; 1386 out: 1387 /* 1388 * Since a node can be onlined after the mem_cgroup was created, 1389 * we have to be prepared to initialize lruvec->zone here; 1390 * and if offlined then reonlined, we need to reinitialize it. 1391 */ 1392 if (unlikely(lruvec->zone != zone)) 1393 lruvec->zone = zone; 1394 return lruvec; 1395 } 1396 1397 /** 1398 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1399 * @lruvec: mem_cgroup per zone lru vector 1400 * @lru: index of lru list the page is sitting on 1401 * @nr_pages: positive when adding or negative when removing 1402 * 1403 * This function must be called when a page is added to or removed from an 1404 * lru list. 1405 */ 1406 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1407 int nr_pages) 1408 { 1409 struct mem_cgroup_per_zone *mz; 1410 unsigned long *lru_size; 1411 1412 if (mem_cgroup_disabled()) 1413 return; 1414 1415 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1416 lru_size = mz->lru_size + lru; 1417 *lru_size += nr_pages; 1418 VM_BUG_ON((long)(*lru_size) < 0); 1419 } 1420 1421 /* 1422 * Checks whether given mem is same or in the root_mem_cgroup's 1423 * hierarchy subtree 1424 */ 1425 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1426 struct mem_cgroup *memcg) 1427 { 1428 if (root_memcg == memcg) 1429 return true; 1430 if (!root_memcg->use_hierarchy || !memcg) 1431 return false; 1432 return css_is_ancestor(&memcg->css, &root_memcg->css); 1433 } 1434 1435 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1436 struct mem_cgroup *memcg) 1437 { 1438 bool ret; 1439 1440 rcu_read_lock(); 1441 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1442 rcu_read_unlock(); 1443 return ret; 1444 } 1445 1446 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1447 { 1448 int ret; 1449 struct mem_cgroup *curr = NULL; 1450 struct task_struct *p; 1451 1452 p = find_lock_task_mm(task); 1453 if (p) { 1454 curr = try_get_mem_cgroup_from_mm(p->mm); 1455 task_unlock(p); 1456 } else { 1457 /* 1458 * All threads may have already detached their mm's, but the oom 1459 * killer still needs to detect if they have already been oom 1460 * killed to prevent needlessly killing additional tasks. 1461 */ 1462 task_lock(task); 1463 curr = mem_cgroup_from_task(task); 1464 if (curr) 1465 css_get(&curr->css); 1466 task_unlock(task); 1467 } 1468 if (!curr) 1469 return 0; 1470 /* 1471 * We should check use_hierarchy of "memcg" not "curr". Because checking 1472 * use_hierarchy of "curr" here make this function true if hierarchy is 1473 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1474 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1475 */ 1476 ret = mem_cgroup_same_or_subtree(memcg, curr); 1477 css_put(&curr->css); 1478 return ret; 1479 } 1480 1481 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1482 { 1483 unsigned long inactive_ratio; 1484 unsigned long inactive; 1485 unsigned long active; 1486 unsigned long gb; 1487 1488 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1489 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1490 1491 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1492 if (gb) 1493 inactive_ratio = int_sqrt(10 * gb); 1494 else 1495 inactive_ratio = 1; 1496 1497 return inactive * inactive_ratio < active; 1498 } 1499 1500 #define mem_cgroup_from_res_counter(counter, member) \ 1501 container_of(counter, struct mem_cgroup, member) 1502 1503 /** 1504 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1505 * @memcg: the memory cgroup 1506 * 1507 * Returns the maximum amount of memory @mem can be charged with, in 1508 * pages. 1509 */ 1510 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1511 { 1512 unsigned long long margin; 1513 1514 margin = res_counter_margin(&memcg->res); 1515 if (do_swap_account) 1516 margin = min(margin, res_counter_margin(&memcg->memsw)); 1517 return margin >> PAGE_SHIFT; 1518 } 1519 1520 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1521 { 1522 struct cgroup *cgrp = memcg->css.cgroup; 1523 1524 /* root ? */ 1525 if (cgrp->parent == NULL) 1526 return vm_swappiness; 1527 1528 return memcg->swappiness; 1529 } 1530 1531 /* 1532 * memcg->moving_account is used for checking possibility that some thread is 1533 * calling move_account(). When a thread on CPU-A starts moving pages under 1534 * a memcg, other threads should check memcg->moving_account under 1535 * rcu_read_lock(), like this: 1536 * 1537 * CPU-A CPU-B 1538 * rcu_read_lock() 1539 * memcg->moving_account+1 if (memcg->mocing_account) 1540 * take heavy locks. 1541 * synchronize_rcu() update something. 1542 * rcu_read_unlock() 1543 * start move here. 1544 */ 1545 1546 /* for quick checking without looking up memcg */ 1547 atomic_t memcg_moving __read_mostly; 1548 1549 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1550 { 1551 atomic_inc(&memcg_moving); 1552 atomic_inc(&memcg->moving_account); 1553 synchronize_rcu(); 1554 } 1555 1556 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1557 { 1558 /* 1559 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1560 * We check NULL in callee rather than caller. 1561 */ 1562 if (memcg) { 1563 atomic_dec(&memcg_moving); 1564 atomic_dec(&memcg->moving_account); 1565 } 1566 } 1567 1568 /* 1569 * 2 routines for checking "mem" is under move_account() or not. 1570 * 1571 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1572 * is used for avoiding races in accounting. If true, 1573 * pc->mem_cgroup may be overwritten. 1574 * 1575 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1576 * under hierarchy of moving cgroups. This is for 1577 * waiting at hith-memory prressure caused by "move". 1578 */ 1579 1580 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1581 { 1582 VM_BUG_ON(!rcu_read_lock_held()); 1583 return atomic_read(&memcg->moving_account) > 0; 1584 } 1585 1586 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1587 { 1588 struct mem_cgroup *from; 1589 struct mem_cgroup *to; 1590 bool ret = false; 1591 /* 1592 * Unlike task_move routines, we access mc.to, mc.from not under 1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1594 */ 1595 spin_lock(&mc.lock); 1596 from = mc.from; 1597 to = mc.to; 1598 if (!from) 1599 goto unlock; 1600 1601 ret = mem_cgroup_same_or_subtree(memcg, from) 1602 || mem_cgroup_same_or_subtree(memcg, to); 1603 unlock: 1604 spin_unlock(&mc.lock); 1605 return ret; 1606 } 1607 1608 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1609 { 1610 if (mc.moving_task && current != mc.moving_task) { 1611 if (mem_cgroup_under_move(memcg)) { 1612 DEFINE_WAIT(wait); 1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1614 /* moving charge context might have finished. */ 1615 if (mc.moving_task) 1616 schedule(); 1617 finish_wait(&mc.waitq, &wait); 1618 return true; 1619 } 1620 } 1621 return false; 1622 } 1623 1624 /* 1625 * Take this lock when 1626 * - a code tries to modify page's memcg while it's USED. 1627 * - a code tries to modify page state accounting in a memcg. 1628 * see mem_cgroup_stolen(), too. 1629 */ 1630 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1631 unsigned long *flags) 1632 { 1633 spin_lock_irqsave(&memcg->move_lock, *flags); 1634 } 1635 1636 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1637 unsigned long *flags) 1638 { 1639 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1640 } 1641 1642 #define K(x) ((x) << (PAGE_SHIFT-10)) 1643 /** 1644 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1645 * @memcg: The memory cgroup that went over limit 1646 * @p: Task that is going to be killed 1647 * 1648 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1649 * enabled 1650 */ 1651 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1652 { 1653 struct cgroup *task_cgrp; 1654 struct cgroup *mem_cgrp; 1655 /* 1656 * Need a buffer in BSS, can't rely on allocations. The code relies 1657 * on the assumption that OOM is serialized for memory controller. 1658 * If this assumption is broken, revisit this code. 1659 */ 1660 static char memcg_name[PATH_MAX]; 1661 int ret; 1662 struct mem_cgroup *iter; 1663 unsigned int i; 1664 1665 if (!p) 1666 return; 1667 1668 rcu_read_lock(); 1669 1670 mem_cgrp = memcg->css.cgroup; 1671 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1672 1673 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1674 if (ret < 0) { 1675 /* 1676 * Unfortunately, we are unable to convert to a useful name 1677 * But we'll still print out the usage information 1678 */ 1679 rcu_read_unlock(); 1680 goto done; 1681 } 1682 rcu_read_unlock(); 1683 1684 pr_info("Task in %s killed", memcg_name); 1685 1686 rcu_read_lock(); 1687 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1688 if (ret < 0) { 1689 rcu_read_unlock(); 1690 goto done; 1691 } 1692 rcu_read_unlock(); 1693 1694 /* 1695 * Continues from above, so we don't need an KERN_ level 1696 */ 1697 pr_cont(" as a result of limit of %s\n", memcg_name); 1698 done: 1699 1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1703 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1712 1713 for_each_mem_cgroup_tree(iter, memcg) { 1714 pr_info("Memory cgroup stats"); 1715 1716 rcu_read_lock(); 1717 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1718 if (!ret) 1719 pr_cont(" for %s", memcg_name); 1720 rcu_read_unlock(); 1721 pr_cont(":"); 1722 1723 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1724 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1725 continue; 1726 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1727 K(mem_cgroup_read_stat(iter, i))); 1728 } 1729 1730 for (i = 0; i < NR_LRU_LISTS; i++) 1731 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1732 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1733 1734 pr_cont("\n"); 1735 } 1736 } 1737 1738 /* 1739 * This function returns the number of memcg under hierarchy tree. Returns 1740 * 1(self count) if no children. 1741 */ 1742 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1743 { 1744 int num = 0; 1745 struct mem_cgroup *iter; 1746 1747 for_each_mem_cgroup_tree(iter, memcg) 1748 num++; 1749 return num; 1750 } 1751 1752 /* 1753 * Return the memory (and swap, if configured) limit for a memcg. 1754 */ 1755 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1756 { 1757 u64 limit; 1758 1759 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1760 1761 /* 1762 * Do not consider swap space if we cannot swap due to swappiness 1763 */ 1764 if (mem_cgroup_swappiness(memcg)) { 1765 u64 memsw; 1766 1767 limit += total_swap_pages << PAGE_SHIFT; 1768 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1769 1770 /* 1771 * If memsw is finite and limits the amount of swap space 1772 * available to this memcg, return that limit. 1773 */ 1774 limit = min(limit, memsw); 1775 } 1776 1777 return limit; 1778 } 1779 1780 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1781 int order) 1782 { 1783 struct mem_cgroup *iter; 1784 unsigned long chosen_points = 0; 1785 unsigned long totalpages; 1786 unsigned int points = 0; 1787 struct task_struct *chosen = NULL; 1788 1789 /* 1790 * If current has a pending SIGKILL or is exiting, then automatically 1791 * select it. The goal is to allow it to allocate so that it may 1792 * quickly exit and free its memory. 1793 */ 1794 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1795 set_thread_flag(TIF_MEMDIE); 1796 return; 1797 } 1798 1799 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1800 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1801 for_each_mem_cgroup_tree(iter, memcg) { 1802 struct cgroup *cgroup = iter->css.cgroup; 1803 struct cgroup_iter it; 1804 struct task_struct *task; 1805 1806 cgroup_iter_start(cgroup, &it); 1807 while ((task = cgroup_iter_next(cgroup, &it))) { 1808 switch (oom_scan_process_thread(task, totalpages, NULL, 1809 false)) { 1810 case OOM_SCAN_SELECT: 1811 if (chosen) 1812 put_task_struct(chosen); 1813 chosen = task; 1814 chosen_points = ULONG_MAX; 1815 get_task_struct(chosen); 1816 /* fall through */ 1817 case OOM_SCAN_CONTINUE: 1818 continue; 1819 case OOM_SCAN_ABORT: 1820 cgroup_iter_end(cgroup, &it); 1821 mem_cgroup_iter_break(memcg, iter); 1822 if (chosen) 1823 put_task_struct(chosen); 1824 return; 1825 case OOM_SCAN_OK: 1826 break; 1827 }; 1828 points = oom_badness(task, memcg, NULL, totalpages); 1829 if (points > chosen_points) { 1830 if (chosen) 1831 put_task_struct(chosen); 1832 chosen = task; 1833 chosen_points = points; 1834 get_task_struct(chosen); 1835 } 1836 } 1837 cgroup_iter_end(cgroup, &it); 1838 } 1839 1840 if (!chosen) 1841 return; 1842 points = chosen_points * 1000 / totalpages; 1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1844 NULL, "Memory cgroup out of memory"); 1845 } 1846 1847 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1848 gfp_t gfp_mask, 1849 unsigned long flags) 1850 { 1851 unsigned long total = 0; 1852 bool noswap = false; 1853 int loop; 1854 1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1856 noswap = true; 1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1858 noswap = true; 1859 1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1861 if (loop) 1862 drain_all_stock_async(memcg); 1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1864 /* 1865 * Allow limit shrinkers, which are triggered directly 1866 * by userspace, to catch signals and stop reclaim 1867 * after minimal progress, regardless of the margin. 1868 */ 1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1870 break; 1871 if (mem_cgroup_margin(memcg)) 1872 break; 1873 /* 1874 * If nothing was reclaimed after two attempts, there 1875 * may be no reclaimable pages in this hierarchy. 1876 */ 1877 if (loop && !total) 1878 break; 1879 } 1880 return total; 1881 } 1882 1883 /** 1884 * test_mem_cgroup_node_reclaimable 1885 * @memcg: the target memcg 1886 * @nid: the node ID to be checked. 1887 * @noswap : specify true here if the user wants flle only information. 1888 * 1889 * This function returns whether the specified memcg contains any 1890 * reclaimable pages on a node. Returns true if there are any reclaimable 1891 * pages in the node. 1892 */ 1893 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1894 int nid, bool noswap) 1895 { 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1897 return true; 1898 if (noswap || !total_swap_pages) 1899 return false; 1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1901 return true; 1902 return false; 1903 1904 } 1905 #if MAX_NUMNODES > 1 1906 1907 /* 1908 * Always updating the nodemask is not very good - even if we have an empty 1909 * list or the wrong list here, we can start from some node and traverse all 1910 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1911 * 1912 */ 1913 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1914 { 1915 int nid; 1916 /* 1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1918 * pagein/pageout changes since the last update. 1919 */ 1920 if (!atomic_read(&memcg->numainfo_events)) 1921 return; 1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1923 return; 1924 1925 /* make a nodemask where this memcg uses memory from */ 1926 memcg->scan_nodes = node_states[N_MEMORY]; 1927 1928 for_each_node_mask(nid, node_states[N_MEMORY]) { 1929 1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1931 node_clear(nid, memcg->scan_nodes); 1932 } 1933 1934 atomic_set(&memcg->numainfo_events, 0); 1935 atomic_set(&memcg->numainfo_updating, 0); 1936 } 1937 1938 /* 1939 * Selecting a node where we start reclaim from. Because what we need is just 1940 * reducing usage counter, start from anywhere is O,K. Considering 1941 * memory reclaim from current node, there are pros. and cons. 1942 * 1943 * Freeing memory from current node means freeing memory from a node which 1944 * we'll use or we've used. So, it may make LRU bad. And if several threads 1945 * hit limits, it will see a contention on a node. But freeing from remote 1946 * node means more costs for memory reclaim because of memory latency. 1947 * 1948 * Now, we use round-robin. Better algorithm is welcomed. 1949 */ 1950 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1951 { 1952 int node; 1953 1954 mem_cgroup_may_update_nodemask(memcg); 1955 node = memcg->last_scanned_node; 1956 1957 node = next_node(node, memcg->scan_nodes); 1958 if (node == MAX_NUMNODES) 1959 node = first_node(memcg->scan_nodes); 1960 /* 1961 * We call this when we hit limit, not when pages are added to LRU. 1962 * No LRU may hold pages because all pages are UNEVICTABLE or 1963 * memcg is too small and all pages are not on LRU. In that case, 1964 * we use curret node. 1965 */ 1966 if (unlikely(node == MAX_NUMNODES)) 1967 node = numa_node_id(); 1968 1969 memcg->last_scanned_node = node; 1970 return node; 1971 } 1972 1973 /* 1974 * Check all nodes whether it contains reclaimable pages or not. 1975 * For quick scan, we make use of scan_nodes. This will allow us to skip 1976 * unused nodes. But scan_nodes is lazily updated and may not cotain 1977 * enough new information. We need to do double check. 1978 */ 1979 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1980 { 1981 int nid; 1982 1983 /* 1984 * quick check...making use of scan_node. 1985 * We can skip unused nodes. 1986 */ 1987 if (!nodes_empty(memcg->scan_nodes)) { 1988 for (nid = first_node(memcg->scan_nodes); 1989 nid < MAX_NUMNODES; 1990 nid = next_node(nid, memcg->scan_nodes)) { 1991 1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1993 return true; 1994 } 1995 } 1996 /* 1997 * Check rest of nodes. 1998 */ 1999 for_each_node_state(nid, N_MEMORY) { 2000 if (node_isset(nid, memcg->scan_nodes)) 2001 continue; 2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 2003 return true; 2004 } 2005 return false; 2006 } 2007 2008 #else 2009 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 2010 { 2011 return 0; 2012 } 2013 2014 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2015 { 2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2017 } 2018 #endif 2019 2020 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2021 struct zone *zone, 2022 gfp_t gfp_mask, 2023 unsigned long *total_scanned) 2024 { 2025 struct mem_cgroup *victim = NULL; 2026 int total = 0; 2027 int loop = 0; 2028 unsigned long excess; 2029 unsigned long nr_scanned; 2030 struct mem_cgroup_reclaim_cookie reclaim = { 2031 .zone = zone, 2032 .priority = 0, 2033 }; 2034 2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2036 2037 while (1) { 2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2039 if (!victim) { 2040 loop++; 2041 if (loop >= 2) { 2042 /* 2043 * If we have not been able to reclaim 2044 * anything, it might because there are 2045 * no reclaimable pages under this hierarchy 2046 */ 2047 if (!total) 2048 break; 2049 /* 2050 * We want to do more targeted reclaim. 2051 * excess >> 2 is not to excessive so as to 2052 * reclaim too much, nor too less that we keep 2053 * coming back to reclaim from this cgroup 2054 */ 2055 if (total >= (excess >> 2) || 2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2057 break; 2058 } 2059 continue; 2060 } 2061 if (!mem_cgroup_reclaimable(victim, false)) 2062 continue; 2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2064 zone, &nr_scanned); 2065 *total_scanned += nr_scanned; 2066 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2067 break; 2068 } 2069 mem_cgroup_iter_break(root_memcg, victim); 2070 return total; 2071 } 2072 2073 /* 2074 * Check OOM-Killer is already running under our hierarchy. 2075 * If someone is running, return false. 2076 * Has to be called with memcg_oom_lock 2077 */ 2078 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 2079 { 2080 struct mem_cgroup *iter, *failed = NULL; 2081 2082 for_each_mem_cgroup_tree(iter, memcg) { 2083 if (iter->oom_lock) { 2084 /* 2085 * this subtree of our hierarchy is already locked 2086 * so we cannot give a lock. 2087 */ 2088 failed = iter; 2089 mem_cgroup_iter_break(memcg, iter); 2090 break; 2091 } else 2092 iter->oom_lock = true; 2093 } 2094 2095 if (!failed) 2096 return true; 2097 2098 /* 2099 * OK, we failed to lock the whole subtree so we have to clean up 2100 * what we set up to the failing subtree 2101 */ 2102 for_each_mem_cgroup_tree(iter, memcg) { 2103 if (iter == failed) { 2104 mem_cgroup_iter_break(memcg, iter); 2105 break; 2106 } 2107 iter->oom_lock = false; 2108 } 2109 return false; 2110 } 2111 2112 /* 2113 * Has to be called with memcg_oom_lock 2114 */ 2115 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2116 { 2117 struct mem_cgroup *iter; 2118 2119 for_each_mem_cgroup_tree(iter, memcg) 2120 iter->oom_lock = false; 2121 return 0; 2122 } 2123 2124 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2125 { 2126 struct mem_cgroup *iter; 2127 2128 for_each_mem_cgroup_tree(iter, memcg) 2129 atomic_inc(&iter->under_oom); 2130 } 2131 2132 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2133 { 2134 struct mem_cgroup *iter; 2135 2136 /* 2137 * When a new child is created while the hierarchy is under oom, 2138 * mem_cgroup_oom_lock() may not be called. We have to use 2139 * atomic_add_unless() here. 2140 */ 2141 for_each_mem_cgroup_tree(iter, memcg) 2142 atomic_add_unless(&iter->under_oom, -1, 0); 2143 } 2144 2145 static DEFINE_SPINLOCK(memcg_oom_lock); 2146 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2147 2148 struct oom_wait_info { 2149 struct mem_cgroup *memcg; 2150 wait_queue_t wait; 2151 }; 2152 2153 static int memcg_oom_wake_function(wait_queue_t *wait, 2154 unsigned mode, int sync, void *arg) 2155 { 2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2157 struct mem_cgroup *oom_wait_memcg; 2158 struct oom_wait_info *oom_wait_info; 2159 2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2161 oom_wait_memcg = oom_wait_info->memcg; 2162 2163 /* 2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2165 * Then we can use css_is_ancestor without taking care of RCU. 2166 */ 2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2169 return 0; 2170 return autoremove_wake_function(wait, mode, sync, arg); 2171 } 2172 2173 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2174 { 2175 /* for filtering, pass "memcg" as argument. */ 2176 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2177 } 2178 2179 static void memcg_oom_recover(struct mem_cgroup *memcg) 2180 { 2181 if (memcg && atomic_read(&memcg->under_oom)) 2182 memcg_wakeup_oom(memcg); 2183 } 2184 2185 /* 2186 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2187 */ 2188 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2189 int order) 2190 { 2191 struct oom_wait_info owait; 2192 bool locked, need_to_kill; 2193 2194 owait.memcg = memcg; 2195 owait.wait.flags = 0; 2196 owait.wait.func = memcg_oom_wake_function; 2197 owait.wait.private = current; 2198 INIT_LIST_HEAD(&owait.wait.task_list); 2199 need_to_kill = true; 2200 mem_cgroup_mark_under_oom(memcg); 2201 2202 /* At first, try to OOM lock hierarchy under memcg.*/ 2203 spin_lock(&memcg_oom_lock); 2204 locked = mem_cgroup_oom_lock(memcg); 2205 /* 2206 * Even if signal_pending(), we can't quit charge() loop without 2207 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2208 * under OOM is always welcomed, use TASK_KILLABLE here. 2209 */ 2210 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2211 if (!locked || memcg->oom_kill_disable) 2212 need_to_kill = false; 2213 if (locked) 2214 mem_cgroup_oom_notify(memcg); 2215 spin_unlock(&memcg_oom_lock); 2216 2217 if (need_to_kill) { 2218 finish_wait(&memcg_oom_waitq, &owait.wait); 2219 mem_cgroup_out_of_memory(memcg, mask, order); 2220 } else { 2221 schedule(); 2222 finish_wait(&memcg_oom_waitq, &owait.wait); 2223 } 2224 spin_lock(&memcg_oom_lock); 2225 if (locked) 2226 mem_cgroup_oom_unlock(memcg); 2227 memcg_wakeup_oom(memcg); 2228 spin_unlock(&memcg_oom_lock); 2229 2230 mem_cgroup_unmark_under_oom(memcg); 2231 2232 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2233 return false; 2234 /* Give chance to dying process */ 2235 schedule_timeout_uninterruptible(1); 2236 return true; 2237 } 2238 2239 /* 2240 * Currently used to update mapped file statistics, but the routine can be 2241 * generalized to update other statistics as well. 2242 * 2243 * Notes: Race condition 2244 * 2245 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2246 * it tends to be costly. But considering some conditions, we doesn't need 2247 * to do so _always_. 2248 * 2249 * Considering "charge", lock_page_cgroup() is not required because all 2250 * file-stat operations happen after a page is attached to radix-tree. There 2251 * are no race with "charge". 2252 * 2253 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2254 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2255 * if there are race with "uncharge". Statistics itself is properly handled 2256 * by flags. 2257 * 2258 * Considering "move", this is an only case we see a race. To make the race 2259 * small, we check mm->moving_account and detect there are possibility of race 2260 * If there is, we take a lock. 2261 */ 2262 2263 void __mem_cgroup_begin_update_page_stat(struct page *page, 2264 bool *locked, unsigned long *flags) 2265 { 2266 struct mem_cgroup *memcg; 2267 struct page_cgroup *pc; 2268 2269 pc = lookup_page_cgroup(page); 2270 again: 2271 memcg = pc->mem_cgroup; 2272 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2273 return; 2274 /* 2275 * If this memory cgroup is not under account moving, we don't 2276 * need to take move_lock_mem_cgroup(). Because we already hold 2277 * rcu_read_lock(), any calls to move_account will be delayed until 2278 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2279 */ 2280 if (!mem_cgroup_stolen(memcg)) 2281 return; 2282 2283 move_lock_mem_cgroup(memcg, flags); 2284 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2285 move_unlock_mem_cgroup(memcg, flags); 2286 goto again; 2287 } 2288 *locked = true; 2289 } 2290 2291 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2292 { 2293 struct page_cgroup *pc = lookup_page_cgroup(page); 2294 2295 /* 2296 * It's guaranteed that pc->mem_cgroup never changes while 2297 * lock is held because a routine modifies pc->mem_cgroup 2298 * should take move_lock_mem_cgroup(). 2299 */ 2300 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2301 } 2302 2303 void mem_cgroup_update_page_stat(struct page *page, 2304 enum mem_cgroup_page_stat_item idx, int val) 2305 { 2306 struct mem_cgroup *memcg; 2307 struct page_cgroup *pc = lookup_page_cgroup(page); 2308 unsigned long uninitialized_var(flags); 2309 2310 if (mem_cgroup_disabled()) 2311 return; 2312 2313 memcg = pc->mem_cgroup; 2314 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2315 return; 2316 2317 switch (idx) { 2318 case MEMCG_NR_FILE_MAPPED: 2319 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2320 break; 2321 default: 2322 BUG(); 2323 } 2324 2325 this_cpu_add(memcg->stat->count[idx], val); 2326 } 2327 2328 /* 2329 * size of first charge trial. "32" comes from vmscan.c's magic value. 2330 * TODO: maybe necessary to use big numbers in big irons. 2331 */ 2332 #define CHARGE_BATCH 32U 2333 struct memcg_stock_pcp { 2334 struct mem_cgroup *cached; /* this never be root cgroup */ 2335 unsigned int nr_pages; 2336 struct work_struct work; 2337 unsigned long flags; 2338 #define FLUSHING_CACHED_CHARGE 0 2339 }; 2340 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2341 static DEFINE_MUTEX(percpu_charge_mutex); 2342 2343 /** 2344 * consume_stock: Try to consume stocked charge on this cpu. 2345 * @memcg: memcg to consume from. 2346 * @nr_pages: how many pages to charge. 2347 * 2348 * The charges will only happen if @memcg matches the current cpu's memcg 2349 * stock, and at least @nr_pages are available in that stock. Failure to 2350 * service an allocation will refill the stock. 2351 * 2352 * returns true if successful, false otherwise. 2353 */ 2354 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2355 { 2356 struct memcg_stock_pcp *stock; 2357 bool ret = true; 2358 2359 if (nr_pages > CHARGE_BATCH) 2360 return false; 2361 2362 stock = &get_cpu_var(memcg_stock); 2363 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2364 stock->nr_pages -= nr_pages; 2365 else /* need to call res_counter_charge */ 2366 ret = false; 2367 put_cpu_var(memcg_stock); 2368 return ret; 2369 } 2370 2371 /* 2372 * Returns stocks cached in percpu to res_counter and reset cached information. 2373 */ 2374 static void drain_stock(struct memcg_stock_pcp *stock) 2375 { 2376 struct mem_cgroup *old = stock->cached; 2377 2378 if (stock->nr_pages) { 2379 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2380 2381 res_counter_uncharge(&old->res, bytes); 2382 if (do_swap_account) 2383 res_counter_uncharge(&old->memsw, bytes); 2384 stock->nr_pages = 0; 2385 } 2386 stock->cached = NULL; 2387 } 2388 2389 /* 2390 * This must be called under preempt disabled or must be called by 2391 * a thread which is pinned to local cpu. 2392 */ 2393 static void drain_local_stock(struct work_struct *dummy) 2394 { 2395 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2396 drain_stock(stock); 2397 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2398 } 2399 2400 static void __init memcg_stock_init(void) 2401 { 2402 int cpu; 2403 2404 for_each_possible_cpu(cpu) { 2405 struct memcg_stock_pcp *stock = 2406 &per_cpu(memcg_stock, cpu); 2407 INIT_WORK(&stock->work, drain_local_stock); 2408 } 2409 } 2410 2411 /* 2412 * Cache charges(val) which is from res_counter, to local per_cpu area. 2413 * This will be consumed by consume_stock() function, later. 2414 */ 2415 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2416 { 2417 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2418 2419 if (stock->cached != memcg) { /* reset if necessary */ 2420 drain_stock(stock); 2421 stock->cached = memcg; 2422 } 2423 stock->nr_pages += nr_pages; 2424 put_cpu_var(memcg_stock); 2425 } 2426 2427 /* 2428 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2429 * of the hierarchy under it. sync flag says whether we should block 2430 * until the work is done. 2431 */ 2432 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2433 { 2434 int cpu, curcpu; 2435 2436 /* Notify other cpus that system-wide "drain" is running */ 2437 get_online_cpus(); 2438 curcpu = get_cpu(); 2439 for_each_online_cpu(cpu) { 2440 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2441 struct mem_cgroup *memcg; 2442 2443 memcg = stock->cached; 2444 if (!memcg || !stock->nr_pages) 2445 continue; 2446 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2447 continue; 2448 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2449 if (cpu == curcpu) 2450 drain_local_stock(&stock->work); 2451 else 2452 schedule_work_on(cpu, &stock->work); 2453 } 2454 } 2455 put_cpu(); 2456 2457 if (!sync) 2458 goto out; 2459 2460 for_each_online_cpu(cpu) { 2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2462 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2463 flush_work(&stock->work); 2464 } 2465 out: 2466 put_online_cpus(); 2467 } 2468 2469 /* 2470 * Tries to drain stocked charges in other cpus. This function is asynchronous 2471 * and just put a work per cpu for draining localy on each cpu. Caller can 2472 * expects some charges will be back to res_counter later but cannot wait for 2473 * it. 2474 */ 2475 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2476 { 2477 /* 2478 * If someone calls draining, avoid adding more kworker runs. 2479 */ 2480 if (!mutex_trylock(&percpu_charge_mutex)) 2481 return; 2482 drain_all_stock(root_memcg, false); 2483 mutex_unlock(&percpu_charge_mutex); 2484 } 2485 2486 /* This is a synchronous drain interface. */ 2487 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2488 { 2489 /* called when force_empty is called */ 2490 mutex_lock(&percpu_charge_mutex); 2491 drain_all_stock(root_memcg, true); 2492 mutex_unlock(&percpu_charge_mutex); 2493 } 2494 2495 /* 2496 * This function drains percpu counter value from DEAD cpu and 2497 * move it to local cpu. Note that this function can be preempted. 2498 */ 2499 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2500 { 2501 int i; 2502 2503 spin_lock(&memcg->pcp_counter_lock); 2504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2505 long x = per_cpu(memcg->stat->count[i], cpu); 2506 2507 per_cpu(memcg->stat->count[i], cpu) = 0; 2508 memcg->nocpu_base.count[i] += x; 2509 } 2510 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2511 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2512 2513 per_cpu(memcg->stat->events[i], cpu) = 0; 2514 memcg->nocpu_base.events[i] += x; 2515 } 2516 spin_unlock(&memcg->pcp_counter_lock); 2517 } 2518 2519 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2520 unsigned long action, 2521 void *hcpu) 2522 { 2523 int cpu = (unsigned long)hcpu; 2524 struct memcg_stock_pcp *stock; 2525 struct mem_cgroup *iter; 2526 2527 if (action == CPU_ONLINE) 2528 return NOTIFY_OK; 2529 2530 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2531 return NOTIFY_OK; 2532 2533 for_each_mem_cgroup(iter) 2534 mem_cgroup_drain_pcp_counter(iter, cpu); 2535 2536 stock = &per_cpu(memcg_stock, cpu); 2537 drain_stock(stock); 2538 return NOTIFY_OK; 2539 } 2540 2541 2542 /* See __mem_cgroup_try_charge() for details */ 2543 enum { 2544 CHARGE_OK, /* success */ 2545 CHARGE_RETRY, /* need to retry but retry is not bad */ 2546 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2547 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2548 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2549 }; 2550 2551 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2552 unsigned int nr_pages, unsigned int min_pages, 2553 bool oom_check) 2554 { 2555 unsigned long csize = nr_pages * PAGE_SIZE; 2556 struct mem_cgroup *mem_over_limit; 2557 struct res_counter *fail_res; 2558 unsigned long flags = 0; 2559 int ret; 2560 2561 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2562 2563 if (likely(!ret)) { 2564 if (!do_swap_account) 2565 return CHARGE_OK; 2566 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2567 if (likely(!ret)) 2568 return CHARGE_OK; 2569 2570 res_counter_uncharge(&memcg->res, csize); 2571 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2572 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2573 } else 2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2575 /* 2576 * Never reclaim on behalf of optional batching, retry with a 2577 * single page instead. 2578 */ 2579 if (nr_pages > min_pages) 2580 return CHARGE_RETRY; 2581 2582 if (!(gfp_mask & __GFP_WAIT)) 2583 return CHARGE_WOULDBLOCK; 2584 2585 if (gfp_mask & __GFP_NORETRY) 2586 return CHARGE_NOMEM; 2587 2588 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2589 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2590 return CHARGE_RETRY; 2591 /* 2592 * Even though the limit is exceeded at this point, reclaim 2593 * may have been able to free some pages. Retry the charge 2594 * before killing the task. 2595 * 2596 * Only for regular pages, though: huge pages are rather 2597 * unlikely to succeed so close to the limit, and we fall back 2598 * to regular pages anyway in case of failure. 2599 */ 2600 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2601 return CHARGE_RETRY; 2602 2603 /* 2604 * At task move, charge accounts can be doubly counted. So, it's 2605 * better to wait until the end of task_move if something is going on. 2606 */ 2607 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2608 return CHARGE_RETRY; 2609 2610 /* If we don't need to call oom-killer at el, return immediately */ 2611 if (!oom_check) 2612 return CHARGE_NOMEM; 2613 /* check OOM */ 2614 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2615 return CHARGE_OOM_DIE; 2616 2617 return CHARGE_RETRY; 2618 } 2619 2620 /* 2621 * __mem_cgroup_try_charge() does 2622 * 1. detect memcg to be charged against from passed *mm and *ptr, 2623 * 2. update res_counter 2624 * 3. call memory reclaim if necessary. 2625 * 2626 * In some special case, if the task is fatal, fatal_signal_pending() or 2627 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2628 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2629 * as possible without any hazards. 2: all pages should have a valid 2630 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2631 * pointer, that is treated as a charge to root_mem_cgroup. 2632 * 2633 * So __mem_cgroup_try_charge() will return 2634 * 0 ... on success, filling *ptr with a valid memcg pointer. 2635 * -ENOMEM ... charge failure because of resource limits. 2636 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2637 * 2638 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2639 * the oom-killer can be invoked. 2640 */ 2641 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2642 gfp_t gfp_mask, 2643 unsigned int nr_pages, 2644 struct mem_cgroup **ptr, 2645 bool oom) 2646 { 2647 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2648 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2649 struct mem_cgroup *memcg = NULL; 2650 int ret; 2651 2652 /* 2653 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2654 * in system level. So, allow to go ahead dying process in addition to 2655 * MEMDIE process. 2656 */ 2657 if (unlikely(test_thread_flag(TIF_MEMDIE) 2658 || fatal_signal_pending(current))) 2659 goto bypass; 2660 2661 /* 2662 * We always charge the cgroup the mm_struct belongs to. 2663 * The mm_struct's mem_cgroup changes on task migration if the 2664 * thread group leader migrates. It's possible that mm is not 2665 * set, if so charge the root memcg (happens for pagecache usage). 2666 */ 2667 if (!*ptr && !mm) 2668 *ptr = root_mem_cgroup; 2669 again: 2670 if (*ptr) { /* css should be a valid one */ 2671 memcg = *ptr; 2672 if (mem_cgroup_is_root(memcg)) 2673 goto done; 2674 if (consume_stock(memcg, nr_pages)) 2675 goto done; 2676 css_get(&memcg->css); 2677 } else { 2678 struct task_struct *p; 2679 2680 rcu_read_lock(); 2681 p = rcu_dereference(mm->owner); 2682 /* 2683 * Because we don't have task_lock(), "p" can exit. 2684 * In that case, "memcg" can point to root or p can be NULL with 2685 * race with swapoff. Then, we have small risk of mis-accouning. 2686 * But such kind of mis-account by race always happens because 2687 * we don't have cgroup_mutex(). It's overkill and we allo that 2688 * small race, here. 2689 * (*) swapoff at el will charge against mm-struct not against 2690 * task-struct. So, mm->owner can be NULL. 2691 */ 2692 memcg = mem_cgroup_from_task(p); 2693 if (!memcg) 2694 memcg = root_mem_cgroup; 2695 if (mem_cgroup_is_root(memcg)) { 2696 rcu_read_unlock(); 2697 goto done; 2698 } 2699 if (consume_stock(memcg, nr_pages)) { 2700 /* 2701 * It seems dagerous to access memcg without css_get(). 2702 * But considering how consume_stok works, it's not 2703 * necessary. If consume_stock success, some charges 2704 * from this memcg are cached on this cpu. So, we 2705 * don't need to call css_get()/css_tryget() before 2706 * calling consume_stock(). 2707 */ 2708 rcu_read_unlock(); 2709 goto done; 2710 } 2711 /* after here, we may be blocked. we need to get refcnt */ 2712 if (!css_tryget(&memcg->css)) { 2713 rcu_read_unlock(); 2714 goto again; 2715 } 2716 rcu_read_unlock(); 2717 } 2718 2719 do { 2720 bool oom_check; 2721 2722 /* If killed, bypass charge */ 2723 if (fatal_signal_pending(current)) { 2724 css_put(&memcg->css); 2725 goto bypass; 2726 } 2727 2728 oom_check = false; 2729 if (oom && !nr_oom_retries) { 2730 oom_check = true; 2731 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2732 } 2733 2734 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2735 oom_check); 2736 switch (ret) { 2737 case CHARGE_OK: 2738 break; 2739 case CHARGE_RETRY: /* not in OOM situation but retry */ 2740 batch = nr_pages; 2741 css_put(&memcg->css); 2742 memcg = NULL; 2743 goto again; 2744 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2745 css_put(&memcg->css); 2746 goto nomem; 2747 case CHARGE_NOMEM: /* OOM routine works */ 2748 if (!oom) { 2749 css_put(&memcg->css); 2750 goto nomem; 2751 } 2752 /* If oom, we never return -ENOMEM */ 2753 nr_oom_retries--; 2754 break; 2755 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2756 css_put(&memcg->css); 2757 goto bypass; 2758 } 2759 } while (ret != CHARGE_OK); 2760 2761 if (batch > nr_pages) 2762 refill_stock(memcg, batch - nr_pages); 2763 css_put(&memcg->css); 2764 done: 2765 *ptr = memcg; 2766 return 0; 2767 nomem: 2768 *ptr = NULL; 2769 return -ENOMEM; 2770 bypass: 2771 *ptr = root_mem_cgroup; 2772 return -EINTR; 2773 } 2774 2775 /* 2776 * Somemtimes we have to undo a charge we got by try_charge(). 2777 * This function is for that and do uncharge, put css's refcnt. 2778 * gotten by try_charge(). 2779 */ 2780 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2781 unsigned int nr_pages) 2782 { 2783 if (!mem_cgroup_is_root(memcg)) { 2784 unsigned long bytes = nr_pages * PAGE_SIZE; 2785 2786 res_counter_uncharge(&memcg->res, bytes); 2787 if (do_swap_account) 2788 res_counter_uncharge(&memcg->memsw, bytes); 2789 } 2790 } 2791 2792 /* 2793 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2794 * This is useful when moving usage to parent cgroup. 2795 */ 2796 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2797 unsigned int nr_pages) 2798 { 2799 unsigned long bytes = nr_pages * PAGE_SIZE; 2800 2801 if (mem_cgroup_is_root(memcg)) 2802 return; 2803 2804 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2805 if (do_swap_account) 2806 res_counter_uncharge_until(&memcg->memsw, 2807 memcg->memsw.parent, bytes); 2808 } 2809 2810 /* 2811 * A helper function to get mem_cgroup from ID. must be called under 2812 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2813 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2814 * called against removed memcg.) 2815 */ 2816 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2817 { 2818 struct cgroup_subsys_state *css; 2819 2820 /* ID 0 is unused ID */ 2821 if (!id) 2822 return NULL; 2823 css = css_lookup(&mem_cgroup_subsys, id); 2824 if (!css) 2825 return NULL; 2826 return mem_cgroup_from_css(css); 2827 } 2828 2829 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2830 { 2831 struct mem_cgroup *memcg = NULL; 2832 struct page_cgroup *pc; 2833 unsigned short id; 2834 swp_entry_t ent; 2835 2836 VM_BUG_ON(!PageLocked(page)); 2837 2838 pc = lookup_page_cgroup(page); 2839 lock_page_cgroup(pc); 2840 if (PageCgroupUsed(pc)) { 2841 memcg = pc->mem_cgroup; 2842 if (memcg && !css_tryget(&memcg->css)) 2843 memcg = NULL; 2844 } else if (PageSwapCache(page)) { 2845 ent.val = page_private(page); 2846 id = lookup_swap_cgroup_id(ent); 2847 rcu_read_lock(); 2848 memcg = mem_cgroup_lookup(id); 2849 if (memcg && !css_tryget(&memcg->css)) 2850 memcg = NULL; 2851 rcu_read_unlock(); 2852 } 2853 unlock_page_cgroup(pc); 2854 return memcg; 2855 } 2856 2857 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2858 struct page *page, 2859 unsigned int nr_pages, 2860 enum charge_type ctype, 2861 bool lrucare) 2862 { 2863 struct page_cgroup *pc = lookup_page_cgroup(page); 2864 struct zone *uninitialized_var(zone); 2865 struct lruvec *lruvec; 2866 bool was_on_lru = false; 2867 bool anon; 2868 2869 lock_page_cgroup(pc); 2870 VM_BUG_ON(PageCgroupUsed(pc)); 2871 /* 2872 * we don't need page_cgroup_lock about tail pages, becase they are not 2873 * accessed by any other context at this point. 2874 */ 2875 2876 /* 2877 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2878 * may already be on some other mem_cgroup's LRU. Take care of it. 2879 */ 2880 if (lrucare) { 2881 zone = page_zone(page); 2882 spin_lock_irq(&zone->lru_lock); 2883 if (PageLRU(page)) { 2884 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2885 ClearPageLRU(page); 2886 del_page_from_lru_list(page, lruvec, page_lru(page)); 2887 was_on_lru = true; 2888 } 2889 } 2890 2891 pc->mem_cgroup = memcg; 2892 /* 2893 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2894 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2895 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2896 * before USED bit, we need memory barrier here. 2897 * See mem_cgroup_add_lru_list(), etc. 2898 */ 2899 smp_wmb(); 2900 SetPageCgroupUsed(pc); 2901 2902 if (lrucare) { 2903 if (was_on_lru) { 2904 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2905 VM_BUG_ON(PageLRU(page)); 2906 SetPageLRU(page); 2907 add_page_to_lru_list(page, lruvec, page_lru(page)); 2908 } 2909 spin_unlock_irq(&zone->lru_lock); 2910 } 2911 2912 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2913 anon = true; 2914 else 2915 anon = false; 2916 2917 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2918 unlock_page_cgroup(pc); 2919 2920 /* 2921 * "charge_statistics" updated event counter. Then, check it. 2922 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2923 * if they exceeds softlimit. 2924 */ 2925 memcg_check_events(memcg, page); 2926 } 2927 2928 static DEFINE_MUTEX(set_limit_mutex); 2929 2930 #ifdef CONFIG_MEMCG_KMEM 2931 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2932 { 2933 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2934 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2935 } 2936 2937 /* 2938 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2939 * in the memcg_cache_params struct. 2940 */ 2941 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2942 { 2943 struct kmem_cache *cachep; 2944 2945 VM_BUG_ON(p->is_root_cache); 2946 cachep = p->root_cache; 2947 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2948 } 2949 2950 #ifdef CONFIG_SLABINFO 2951 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, 2952 struct seq_file *m) 2953 { 2954 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2955 struct memcg_cache_params *params; 2956 2957 if (!memcg_can_account_kmem(memcg)) 2958 return -EIO; 2959 2960 print_slabinfo_header(m); 2961 2962 mutex_lock(&memcg->slab_caches_mutex); 2963 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2964 cache_show(memcg_params_to_cache(params), m); 2965 mutex_unlock(&memcg->slab_caches_mutex); 2966 2967 return 0; 2968 } 2969 #endif 2970 2971 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2972 { 2973 struct res_counter *fail_res; 2974 struct mem_cgroup *_memcg; 2975 int ret = 0; 2976 bool may_oom; 2977 2978 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2979 if (ret) 2980 return ret; 2981 2982 /* 2983 * Conditions under which we can wait for the oom_killer. Those are 2984 * the same conditions tested by the core page allocator 2985 */ 2986 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2987 2988 _memcg = memcg; 2989 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2990 &_memcg, may_oom); 2991 2992 if (ret == -EINTR) { 2993 /* 2994 * __mem_cgroup_try_charge() chosed to bypass to root due to 2995 * OOM kill or fatal signal. Since our only options are to 2996 * either fail the allocation or charge it to this cgroup, do 2997 * it as a temporary condition. But we can't fail. From a 2998 * kmem/slab perspective, the cache has already been selected, 2999 * by mem_cgroup_kmem_get_cache(), so it is too late to change 3000 * our minds. 3001 * 3002 * This condition will only trigger if the task entered 3003 * memcg_charge_kmem in a sane state, but was OOM-killed during 3004 * __mem_cgroup_try_charge() above. Tasks that were already 3005 * dying when the allocation triggers should have been already 3006 * directed to the root cgroup in memcontrol.h 3007 */ 3008 res_counter_charge_nofail(&memcg->res, size, &fail_res); 3009 if (do_swap_account) 3010 res_counter_charge_nofail(&memcg->memsw, size, 3011 &fail_res); 3012 ret = 0; 3013 } else if (ret) 3014 res_counter_uncharge(&memcg->kmem, size); 3015 3016 return ret; 3017 } 3018 3019 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3020 { 3021 res_counter_uncharge(&memcg->res, size); 3022 if (do_swap_account) 3023 res_counter_uncharge(&memcg->memsw, size); 3024 3025 /* Not down to 0 */ 3026 if (res_counter_uncharge(&memcg->kmem, size)) 3027 return; 3028 3029 if (memcg_kmem_test_and_clear_dead(memcg)) 3030 mem_cgroup_put(memcg); 3031 } 3032 3033 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3034 { 3035 if (!memcg) 3036 return; 3037 3038 mutex_lock(&memcg->slab_caches_mutex); 3039 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3040 mutex_unlock(&memcg->slab_caches_mutex); 3041 } 3042 3043 /* 3044 * helper for acessing a memcg's index. It will be used as an index in the 3045 * child cache array in kmem_cache, and also to derive its name. This function 3046 * will return -1 when this is not a kmem-limited memcg. 3047 */ 3048 int memcg_cache_id(struct mem_cgroup *memcg) 3049 { 3050 return memcg ? memcg->kmemcg_id : -1; 3051 } 3052 3053 /* 3054 * This ends up being protected by the set_limit mutex, during normal 3055 * operation, because that is its main call site. 3056 * 3057 * But when we create a new cache, we can call this as well if its parent 3058 * is kmem-limited. That will have to hold set_limit_mutex as well. 3059 */ 3060 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3061 { 3062 int num, ret; 3063 3064 num = ida_simple_get(&kmem_limited_groups, 3065 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3066 if (num < 0) 3067 return num; 3068 /* 3069 * After this point, kmem_accounted (that we test atomically in 3070 * the beginning of this conditional), is no longer 0. This 3071 * guarantees only one process will set the following boolean 3072 * to true. We don't need test_and_set because we're protected 3073 * by the set_limit_mutex anyway. 3074 */ 3075 memcg_kmem_set_activated(memcg); 3076 3077 ret = memcg_update_all_caches(num+1); 3078 if (ret) { 3079 ida_simple_remove(&kmem_limited_groups, num); 3080 memcg_kmem_clear_activated(memcg); 3081 return ret; 3082 } 3083 3084 memcg->kmemcg_id = num; 3085 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3086 mutex_init(&memcg->slab_caches_mutex); 3087 return 0; 3088 } 3089 3090 static size_t memcg_caches_array_size(int num_groups) 3091 { 3092 ssize_t size; 3093 if (num_groups <= 0) 3094 return 0; 3095 3096 size = 2 * num_groups; 3097 if (size < MEMCG_CACHES_MIN_SIZE) 3098 size = MEMCG_CACHES_MIN_SIZE; 3099 else if (size > MEMCG_CACHES_MAX_SIZE) 3100 size = MEMCG_CACHES_MAX_SIZE; 3101 3102 return size; 3103 } 3104 3105 /* 3106 * We should update the current array size iff all caches updates succeed. This 3107 * can only be done from the slab side. The slab mutex needs to be held when 3108 * calling this. 3109 */ 3110 void memcg_update_array_size(int num) 3111 { 3112 if (num > memcg_limited_groups_array_size) 3113 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3114 } 3115 3116 static void kmem_cache_destroy_work_func(struct work_struct *w); 3117 3118 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3119 { 3120 struct memcg_cache_params *cur_params = s->memcg_params; 3121 3122 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3123 3124 if (num_groups > memcg_limited_groups_array_size) { 3125 int i; 3126 ssize_t size = memcg_caches_array_size(num_groups); 3127 3128 size *= sizeof(void *); 3129 size += sizeof(struct memcg_cache_params); 3130 3131 s->memcg_params = kzalloc(size, GFP_KERNEL); 3132 if (!s->memcg_params) { 3133 s->memcg_params = cur_params; 3134 return -ENOMEM; 3135 } 3136 3137 INIT_WORK(&s->memcg_params->destroy, 3138 kmem_cache_destroy_work_func); 3139 s->memcg_params->is_root_cache = true; 3140 3141 /* 3142 * There is the chance it will be bigger than 3143 * memcg_limited_groups_array_size, if we failed an allocation 3144 * in a cache, in which case all caches updated before it, will 3145 * have a bigger array. 3146 * 3147 * But if that is the case, the data after 3148 * memcg_limited_groups_array_size is certainly unused 3149 */ 3150 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3151 if (!cur_params->memcg_caches[i]) 3152 continue; 3153 s->memcg_params->memcg_caches[i] = 3154 cur_params->memcg_caches[i]; 3155 } 3156 3157 /* 3158 * Ideally, we would wait until all caches succeed, and only 3159 * then free the old one. But this is not worth the extra 3160 * pointer per-cache we'd have to have for this. 3161 * 3162 * It is not a big deal if some caches are left with a size 3163 * bigger than the others. And all updates will reset this 3164 * anyway. 3165 */ 3166 kfree(cur_params); 3167 } 3168 return 0; 3169 } 3170 3171 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3172 struct kmem_cache *root_cache) 3173 { 3174 size_t size = sizeof(struct memcg_cache_params); 3175 3176 if (!memcg_kmem_enabled()) 3177 return 0; 3178 3179 if (!memcg) 3180 size += memcg_limited_groups_array_size * sizeof(void *); 3181 3182 s->memcg_params = kzalloc(size, GFP_KERNEL); 3183 if (!s->memcg_params) 3184 return -ENOMEM; 3185 3186 INIT_WORK(&s->memcg_params->destroy, 3187 kmem_cache_destroy_work_func); 3188 if (memcg) { 3189 s->memcg_params->memcg = memcg; 3190 s->memcg_params->root_cache = root_cache; 3191 } else 3192 s->memcg_params->is_root_cache = true; 3193 3194 return 0; 3195 } 3196 3197 void memcg_release_cache(struct kmem_cache *s) 3198 { 3199 struct kmem_cache *root; 3200 struct mem_cgroup *memcg; 3201 int id; 3202 3203 /* 3204 * This happens, for instance, when a root cache goes away before we 3205 * add any memcg. 3206 */ 3207 if (!s->memcg_params) 3208 return; 3209 3210 if (s->memcg_params->is_root_cache) 3211 goto out; 3212 3213 memcg = s->memcg_params->memcg; 3214 id = memcg_cache_id(memcg); 3215 3216 root = s->memcg_params->root_cache; 3217 root->memcg_params->memcg_caches[id] = NULL; 3218 3219 mutex_lock(&memcg->slab_caches_mutex); 3220 list_del(&s->memcg_params->list); 3221 mutex_unlock(&memcg->slab_caches_mutex); 3222 3223 mem_cgroup_put(memcg); 3224 out: 3225 kfree(s->memcg_params); 3226 } 3227 3228 /* 3229 * During the creation a new cache, we need to disable our accounting mechanism 3230 * altogether. This is true even if we are not creating, but rather just 3231 * enqueing new caches to be created. 3232 * 3233 * This is because that process will trigger allocations; some visible, like 3234 * explicit kmallocs to auxiliary data structures, name strings and internal 3235 * cache structures; some well concealed, like INIT_WORK() that can allocate 3236 * objects during debug. 3237 * 3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3239 * to it. This may not be a bounded recursion: since the first cache creation 3240 * failed to complete (waiting on the allocation), we'll just try to create the 3241 * cache again, failing at the same point. 3242 * 3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3245 * inside the following two functions. 3246 */ 3247 static inline void memcg_stop_kmem_account(void) 3248 { 3249 VM_BUG_ON(!current->mm); 3250 current->memcg_kmem_skip_account++; 3251 } 3252 3253 static inline void memcg_resume_kmem_account(void) 3254 { 3255 VM_BUG_ON(!current->mm); 3256 current->memcg_kmem_skip_account--; 3257 } 3258 3259 static void kmem_cache_destroy_work_func(struct work_struct *w) 3260 { 3261 struct kmem_cache *cachep; 3262 struct memcg_cache_params *p; 3263 3264 p = container_of(w, struct memcg_cache_params, destroy); 3265 3266 cachep = memcg_params_to_cache(p); 3267 3268 /* 3269 * If we get down to 0 after shrink, we could delete right away. 3270 * However, memcg_release_pages() already puts us back in the workqueue 3271 * in that case. If we proceed deleting, we'll get a dangling 3272 * reference, and removing the object from the workqueue in that case 3273 * is unnecessary complication. We are not a fast path. 3274 * 3275 * Note that this case is fundamentally different from racing with 3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3277 * kmem_cache_shrink, not only we would be reinserting a dead cache 3278 * into the queue, but doing so from inside the worker racing to 3279 * destroy it. 3280 * 3281 * So if we aren't down to zero, we'll just schedule a worker and try 3282 * again 3283 */ 3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3285 kmem_cache_shrink(cachep); 3286 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3287 return; 3288 } else 3289 kmem_cache_destroy(cachep); 3290 } 3291 3292 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3293 { 3294 if (!cachep->memcg_params->dead) 3295 return; 3296 3297 /* 3298 * There are many ways in which we can get here. 3299 * 3300 * We can get to a memory-pressure situation while the delayed work is 3301 * still pending to run. The vmscan shrinkers can then release all 3302 * cache memory and get us to destruction. If this is the case, we'll 3303 * be executed twice, which is a bug (the second time will execute over 3304 * bogus data). In this case, cancelling the work should be fine. 3305 * 3306 * But we can also get here from the worker itself, if 3307 * kmem_cache_shrink is enough to shake all the remaining objects and 3308 * get the page count to 0. In this case, we'll deadlock if we try to 3309 * cancel the work (the worker runs with an internal lock held, which 3310 * is the same lock we would hold for cancel_work_sync().) 3311 * 3312 * Since we can't possibly know who got us here, just refrain from 3313 * running if there is already work pending 3314 */ 3315 if (work_pending(&cachep->memcg_params->destroy)) 3316 return; 3317 /* 3318 * We have to defer the actual destroying to a workqueue, because 3319 * we might currently be in a context that cannot sleep. 3320 */ 3321 schedule_work(&cachep->memcg_params->destroy); 3322 } 3323 3324 /* 3325 * This lock protects updaters, not readers. We want readers to be as fast as 3326 * they can, and they will either see NULL or a valid cache value. Our model 3327 * allow them to see NULL, in which case the root memcg will be selected. 3328 * 3329 * We need this lock because multiple allocations to the same cache from a non 3330 * will span more than one worker. Only one of them can create the cache. 3331 */ 3332 static DEFINE_MUTEX(memcg_cache_mutex); 3333 3334 /* 3335 * Called with memcg_cache_mutex held 3336 */ 3337 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3338 struct kmem_cache *s) 3339 { 3340 struct kmem_cache *new; 3341 static char *tmp_name = NULL; 3342 3343 lockdep_assert_held(&memcg_cache_mutex); 3344 3345 /* 3346 * kmem_cache_create_memcg duplicates the given name and 3347 * cgroup_name for this name requires RCU context. 3348 * This static temporary buffer is used to prevent from 3349 * pointless shortliving allocation. 3350 */ 3351 if (!tmp_name) { 3352 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3353 if (!tmp_name) 3354 return NULL; 3355 } 3356 3357 rcu_read_lock(); 3358 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3359 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3360 rcu_read_unlock(); 3361 3362 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3363 (s->flags & ~SLAB_PANIC), s->ctor, s); 3364 3365 if (new) 3366 new->allocflags |= __GFP_KMEMCG; 3367 3368 return new; 3369 } 3370 3371 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3372 struct kmem_cache *cachep) 3373 { 3374 struct kmem_cache *new_cachep; 3375 int idx; 3376 3377 BUG_ON(!memcg_can_account_kmem(memcg)); 3378 3379 idx = memcg_cache_id(memcg); 3380 3381 mutex_lock(&memcg_cache_mutex); 3382 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3383 if (new_cachep) 3384 goto out; 3385 3386 new_cachep = kmem_cache_dup(memcg, cachep); 3387 if (new_cachep == NULL) { 3388 new_cachep = cachep; 3389 goto out; 3390 } 3391 3392 mem_cgroup_get(memcg); 3393 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3394 3395 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3396 /* 3397 * the readers won't lock, make sure everybody sees the updated value, 3398 * so they won't put stuff in the queue again for no reason 3399 */ 3400 wmb(); 3401 out: 3402 mutex_unlock(&memcg_cache_mutex); 3403 return new_cachep; 3404 } 3405 3406 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3407 { 3408 struct kmem_cache *c; 3409 int i; 3410 3411 if (!s->memcg_params) 3412 return; 3413 if (!s->memcg_params->is_root_cache) 3414 return; 3415 3416 /* 3417 * If the cache is being destroyed, we trust that there is no one else 3418 * requesting objects from it. Even if there are, the sanity checks in 3419 * kmem_cache_destroy should caught this ill-case. 3420 * 3421 * Still, we don't want anyone else freeing memcg_caches under our 3422 * noses, which can happen if a new memcg comes to life. As usual, 3423 * we'll take the set_limit_mutex to protect ourselves against this. 3424 */ 3425 mutex_lock(&set_limit_mutex); 3426 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3427 c = s->memcg_params->memcg_caches[i]; 3428 if (!c) 3429 continue; 3430 3431 /* 3432 * We will now manually delete the caches, so to avoid races 3433 * we need to cancel all pending destruction workers and 3434 * proceed with destruction ourselves. 3435 * 3436 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3437 * and that could spawn the workers again: it is likely that 3438 * the cache still have active pages until this very moment. 3439 * This would lead us back to mem_cgroup_destroy_cache. 3440 * 3441 * But that will not execute at all if the "dead" flag is not 3442 * set, so flip it down to guarantee we are in control. 3443 */ 3444 c->memcg_params->dead = false; 3445 cancel_work_sync(&c->memcg_params->destroy); 3446 kmem_cache_destroy(c); 3447 } 3448 mutex_unlock(&set_limit_mutex); 3449 } 3450 3451 struct create_work { 3452 struct mem_cgroup *memcg; 3453 struct kmem_cache *cachep; 3454 struct work_struct work; 3455 }; 3456 3457 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3458 { 3459 struct kmem_cache *cachep; 3460 struct memcg_cache_params *params; 3461 3462 if (!memcg_kmem_is_active(memcg)) 3463 return; 3464 3465 mutex_lock(&memcg->slab_caches_mutex); 3466 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3467 cachep = memcg_params_to_cache(params); 3468 cachep->memcg_params->dead = true; 3469 schedule_work(&cachep->memcg_params->destroy); 3470 } 3471 mutex_unlock(&memcg->slab_caches_mutex); 3472 } 3473 3474 static void memcg_create_cache_work_func(struct work_struct *w) 3475 { 3476 struct create_work *cw; 3477 3478 cw = container_of(w, struct create_work, work); 3479 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3480 /* Drop the reference gotten when we enqueued. */ 3481 css_put(&cw->memcg->css); 3482 kfree(cw); 3483 } 3484 3485 /* 3486 * Enqueue the creation of a per-memcg kmem_cache. 3487 */ 3488 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3489 struct kmem_cache *cachep) 3490 { 3491 struct create_work *cw; 3492 3493 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3494 if (cw == NULL) { 3495 css_put(&memcg->css); 3496 return; 3497 } 3498 3499 cw->memcg = memcg; 3500 cw->cachep = cachep; 3501 3502 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3503 schedule_work(&cw->work); 3504 } 3505 3506 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3507 struct kmem_cache *cachep) 3508 { 3509 /* 3510 * We need to stop accounting when we kmalloc, because if the 3511 * corresponding kmalloc cache is not yet created, the first allocation 3512 * in __memcg_create_cache_enqueue will recurse. 3513 * 3514 * However, it is better to enclose the whole function. Depending on 3515 * the debugging options enabled, INIT_WORK(), for instance, can 3516 * trigger an allocation. This too, will make us recurse. Because at 3517 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3518 * the safest choice is to do it like this, wrapping the whole function. 3519 */ 3520 memcg_stop_kmem_account(); 3521 __memcg_create_cache_enqueue(memcg, cachep); 3522 memcg_resume_kmem_account(); 3523 } 3524 /* 3525 * Return the kmem_cache we're supposed to use for a slab allocation. 3526 * We try to use the current memcg's version of the cache. 3527 * 3528 * If the cache does not exist yet, if we are the first user of it, 3529 * we either create it immediately, if possible, or create it asynchronously 3530 * in a workqueue. 3531 * In the latter case, we will let the current allocation go through with 3532 * the original cache. 3533 * 3534 * Can't be called in interrupt context or from kernel threads. 3535 * This function needs to be called with rcu_read_lock() held. 3536 */ 3537 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3538 gfp_t gfp) 3539 { 3540 struct mem_cgroup *memcg; 3541 int idx; 3542 3543 VM_BUG_ON(!cachep->memcg_params); 3544 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3545 3546 if (!current->mm || current->memcg_kmem_skip_account) 3547 return cachep; 3548 3549 rcu_read_lock(); 3550 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3551 3552 if (!memcg_can_account_kmem(memcg)) 3553 goto out; 3554 3555 idx = memcg_cache_id(memcg); 3556 3557 /* 3558 * barrier to mare sure we're always seeing the up to date value. The 3559 * code updating memcg_caches will issue a write barrier to match this. 3560 */ 3561 read_barrier_depends(); 3562 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3563 cachep = cachep->memcg_params->memcg_caches[idx]; 3564 goto out; 3565 } 3566 3567 /* The corresponding put will be done in the workqueue. */ 3568 if (!css_tryget(&memcg->css)) 3569 goto out; 3570 rcu_read_unlock(); 3571 3572 /* 3573 * If we are in a safe context (can wait, and not in interrupt 3574 * context), we could be be predictable and return right away. 3575 * This would guarantee that the allocation being performed 3576 * already belongs in the new cache. 3577 * 3578 * However, there are some clashes that can arrive from locking. 3579 * For instance, because we acquire the slab_mutex while doing 3580 * kmem_cache_dup, this means no further allocation could happen 3581 * with the slab_mutex held. 3582 * 3583 * Also, because cache creation issue get_online_cpus(), this 3584 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3585 * that ends up reversed during cpu hotplug. (cpuset allocates 3586 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3587 * better to defer everything. 3588 */ 3589 memcg_create_cache_enqueue(memcg, cachep); 3590 return cachep; 3591 out: 3592 rcu_read_unlock(); 3593 return cachep; 3594 } 3595 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3596 3597 /* 3598 * We need to verify if the allocation against current->mm->owner's memcg is 3599 * possible for the given order. But the page is not allocated yet, so we'll 3600 * need a further commit step to do the final arrangements. 3601 * 3602 * It is possible for the task to switch cgroups in this mean time, so at 3603 * commit time, we can't rely on task conversion any longer. We'll then use 3604 * the handle argument to return to the caller which cgroup we should commit 3605 * against. We could also return the memcg directly and avoid the pointer 3606 * passing, but a boolean return value gives better semantics considering 3607 * the compiled-out case as well. 3608 * 3609 * Returning true means the allocation is possible. 3610 */ 3611 bool 3612 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3613 { 3614 struct mem_cgroup *memcg; 3615 int ret; 3616 3617 *_memcg = NULL; 3618 memcg = try_get_mem_cgroup_from_mm(current->mm); 3619 3620 /* 3621 * very rare case described in mem_cgroup_from_task. Unfortunately there 3622 * isn't much we can do without complicating this too much, and it would 3623 * be gfp-dependent anyway. Just let it go 3624 */ 3625 if (unlikely(!memcg)) 3626 return true; 3627 3628 if (!memcg_can_account_kmem(memcg)) { 3629 css_put(&memcg->css); 3630 return true; 3631 } 3632 3633 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3634 if (!ret) 3635 *_memcg = memcg; 3636 3637 css_put(&memcg->css); 3638 return (ret == 0); 3639 } 3640 3641 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3642 int order) 3643 { 3644 struct page_cgroup *pc; 3645 3646 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3647 3648 /* The page allocation failed. Revert */ 3649 if (!page) { 3650 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3651 return; 3652 } 3653 3654 pc = lookup_page_cgroup(page); 3655 lock_page_cgroup(pc); 3656 pc->mem_cgroup = memcg; 3657 SetPageCgroupUsed(pc); 3658 unlock_page_cgroup(pc); 3659 } 3660 3661 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3662 { 3663 struct mem_cgroup *memcg = NULL; 3664 struct page_cgroup *pc; 3665 3666 3667 pc = lookup_page_cgroup(page); 3668 /* 3669 * Fast unlocked return. Theoretically might have changed, have to 3670 * check again after locking. 3671 */ 3672 if (!PageCgroupUsed(pc)) 3673 return; 3674 3675 lock_page_cgroup(pc); 3676 if (PageCgroupUsed(pc)) { 3677 memcg = pc->mem_cgroup; 3678 ClearPageCgroupUsed(pc); 3679 } 3680 unlock_page_cgroup(pc); 3681 3682 /* 3683 * We trust that only if there is a memcg associated with the page, it 3684 * is a valid allocation 3685 */ 3686 if (!memcg) 3687 return; 3688 3689 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3690 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3691 } 3692 #else 3693 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3694 { 3695 } 3696 #endif /* CONFIG_MEMCG_KMEM */ 3697 3698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3699 3700 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3701 /* 3702 * Because tail pages are not marked as "used", set it. We're under 3703 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3704 * charge/uncharge will be never happen and move_account() is done under 3705 * compound_lock(), so we don't have to take care of races. 3706 */ 3707 void mem_cgroup_split_huge_fixup(struct page *head) 3708 { 3709 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3710 struct page_cgroup *pc; 3711 int i; 3712 3713 if (mem_cgroup_disabled()) 3714 return; 3715 for (i = 1; i < HPAGE_PMD_NR; i++) { 3716 pc = head_pc + i; 3717 pc->mem_cgroup = head_pc->mem_cgroup; 3718 smp_wmb();/* see __commit_charge() */ 3719 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3720 } 3721 } 3722 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3723 3724 /** 3725 * mem_cgroup_move_account - move account of the page 3726 * @page: the page 3727 * @nr_pages: number of regular pages (>1 for huge pages) 3728 * @pc: page_cgroup of the page. 3729 * @from: mem_cgroup which the page is moved from. 3730 * @to: mem_cgroup which the page is moved to. @from != @to. 3731 * 3732 * The caller must confirm following. 3733 * - page is not on LRU (isolate_page() is useful.) 3734 * - compound_lock is held when nr_pages > 1 3735 * 3736 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3737 * from old cgroup. 3738 */ 3739 static int mem_cgroup_move_account(struct page *page, 3740 unsigned int nr_pages, 3741 struct page_cgroup *pc, 3742 struct mem_cgroup *from, 3743 struct mem_cgroup *to) 3744 { 3745 unsigned long flags; 3746 int ret; 3747 bool anon = PageAnon(page); 3748 3749 VM_BUG_ON(from == to); 3750 VM_BUG_ON(PageLRU(page)); 3751 /* 3752 * The page is isolated from LRU. So, collapse function 3753 * will not handle this page. But page splitting can happen. 3754 * Do this check under compound_page_lock(). The caller should 3755 * hold it. 3756 */ 3757 ret = -EBUSY; 3758 if (nr_pages > 1 && !PageTransHuge(page)) 3759 goto out; 3760 3761 lock_page_cgroup(pc); 3762 3763 ret = -EINVAL; 3764 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3765 goto unlock; 3766 3767 move_lock_mem_cgroup(from, &flags); 3768 3769 if (!anon && page_mapped(page)) { 3770 /* Update mapped_file data for mem_cgroup */ 3771 preempt_disable(); 3772 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3773 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3774 preempt_enable(); 3775 } 3776 mem_cgroup_charge_statistics(from, anon, -nr_pages); 3777 3778 /* caller should have done css_get */ 3779 pc->mem_cgroup = to; 3780 mem_cgroup_charge_statistics(to, anon, nr_pages); 3781 move_unlock_mem_cgroup(from, &flags); 3782 ret = 0; 3783 unlock: 3784 unlock_page_cgroup(pc); 3785 /* 3786 * check events 3787 */ 3788 memcg_check_events(to, page); 3789 memcg_check_events(from, page); 3790 out: 3791 return ret; 3792 } 3793 3794 /** 3795 * mem_cgroup_move_parent - moves page to the parent group 3796 * @page: the page to move 3797 * @pc: page_cgroup of the page 3798 * @child: page's cgroup 3799 * 3800 * move charges to its parent or the root cgroup if the group has no 3801 * parent (aka use_hierarchy==0). 3802 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3803 * mem_cgroup_move_account fails) the failure is always temporary and 3804 * it signals a race with a page removal/uncharge or migration. In the 3805 * first case the page is on the way out and it will vanish from the LRU 3806 * on the next attempt and the call should be retried later. 3807 * Isolation from the LRU fails only if page has been isolated from 3808 * the LRU since we looked at it and that usually means either global 3809 * reclaim or migration going on. The page will either get back to the 3810 * LRU or vanish. 3811 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3812 * (!PageCgroupUsed) or moved to a different group. The page will 3813 * disappear in the next attempt. 3814 */ 3815 static int mem_cgroup_move_parent(struct page *page, 3816 struct page_cgroup *pc, 3817 struct mem_cgroup *child) 3818 { 3819 struct mem_cgroup *parent; 3820 unsigned int nr_pages; 3821 unsigned long uninitialized_var(flags); 3822 int ret; 3823 3824 VM_BUG_ON(mem_cgroup_is_root(child)); 3825 3826 ret = -EBUSY; 3827 if (!get_page_unless_zero(page)) 3828 goto out; 3829 if (isolate_lru_page(page)) 3830 goto put; 3831 3832 nr_pages = hpage_nr_pages(page); 3833 3834 parent = parent_mem_cgroup(child); 3835 /* 3836 * If no parent, move charges to root cgroup. 3837 */ 3838 if (!parent) 3839 parent = root_mem_cgroup; 3840 3841 if (nr_pages > 1) { 3842 VM_BUG_ON(!PageTransHuge(page)); 3843 flags = compound_lock_irqsave(page); 3844 } 3845 3846 ret = mem_cgroup_move_account(page, nr_pages, 3847 pc, child, parent); 3848 if (!ret) 3849 __mem_cgroup_cancel_local_charge(child, nr_pages); 3850 3851 if (nr_pages > 1) 3852 compound_unlock_irqrestore(page, flags); 3853 putback_lru_page(page); 3854 put: 3855 put_page(page); 3856 out: 3857 return ret; 3858 } 3859 3860 /* 3861 * Charge the memory controller for page usage. 3862 * Return 3863 * 0 if the charge was successful 3864 * < 0 if the cgroup is over its limit 3865 */ 3866 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3867 gfp_t gfp_mask, enum charge_type ctype) 3868 { 3869 struct mem_cgroup *memcg = NULL; 3870 unsigned int nr_pages = 1; 3871 bool oom = true; 3872 int ret; 3873 3874 if (PageTransHuge(page)) { 3875 nr_pages <<= compound_order(page); 3876 VM_BUG_ON(!PageTransHuge(page)); 3877 /* 3878 * Never OOM-kill a process for a huge page. The 3879 * fault handler will fall back to regular pages. 3880 */ 3881 oom = false; 3882 } 3883 3884 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3885 if (ret == -ENOMEM) 3886 return ret; 3887 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3888 return 0; 3889 } 3890 3891 int mem_cgroup_newpage_charge(struct page *page, 3892 struct mm_struct *mm, gfp_t gfp_mask) 3893 { 3894 if (mem_cgroup_disabled()) 3895 return 0; 3896 VM_BUG_ON(page_mapped(page)); 3897 VM_BUG_ON(page->mapping && !PageAnon(page)); 3898 VM_BUG_ON(!mm); 3899 return mem_cgroup_charge_common(page, mm, gfp_mask, 3900 MEM_CGROUP_CHARGE_TYPE_ANON); 3901 } 3902 3903 /* 3904 * While swap-in, try_charge -> commit or cancel, the page is locked. 3905 * And when try_charge() successfully returns, one refcnt to memcg without 3906 * struct page_cgroup is acquired. This refcnt will be consumed by 3907 * "commit()" or removed by "cancel()" 3908 */ 3909 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3910 struct page *page, 3911 gfp_t mask, 3912 struct mem_cgroup **memcgp) 3913 { 3914 struct mem_cgroup *memcg; 3915 struct page_cgroup *pc; 3916 int ret; 3917 3918 pc = lookup_page_cgroup(page); 3919 /* 3920 * Every swap fault against a single page tries to charge the 3921 * page, bail as early as possible. shmem_unuse() encounters 3922 * already charged pages, too. The USED bit is protected by 3923 * the page lock, which serializes swap cache removal, which 3924 * in turn serializes uncharging. 3925 */ 3926 if (PageCgroupUsed(pc)) 3927 return 0; 3928 if (!do_swap_account) 3929 goto charge_cur_mm; 3930 memcg = try_get_mem_cgroup_from_page(page); 3931 if (!memcg) 3932 goto charge_cur_mm; 3933 *memcgp = memcg; 3934 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3935 css_put(&memcg->css); 3936 if (ret == -EINTR) 3937 ret = 0; 3938 return ret; 3939 charge_cur_mm: 3940 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3941 if (ret == -EINTR) 3942 ret = 0; 3943 return ret; 3944 } 3945 3946 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3947 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3948 { 3949 *memcgp = NULL; 3950 if (mem_cgroup_disabled()) 3951 return 0; 3952 /* 3953 * A racing thread's fault, or swapoff, may have already 3954 * updated the pte, and even removed page from swap cache: in 3955 * those cases unuse_pte()'s pte_same() test will fail; but 3956 * there's also a KSM case which does need to charge the page. 3957 */ 3958 if (!PageSwapCache(page)) { 3959 int ret; 3960 3961 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3962 if (ret == -EINTR) 3963 ret = 0; 3964 return ret; 3965 } 3966 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3967 } 3968 3969 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3970 { 3971 if (mem_cgroup_disabled()) 3972 return; 3973 if (!memcg) 3974 return; 3975 __mem_cgroup_cancel_charge(memcg, 1); 3976 } 3977 3978 static void 3979 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3980 enum charge_type ctype) 3981 { 3982 if (mem_cgroup_disabled()) 3983 return; 3984 if (!memcg) 3985 return; 3986 3987 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3988 /* 3989 * Now swap is on-memory. This means this page may be 3990 * counted both as mem and swap....double count. 3991 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3992 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3993 * may call delete_from_swap_cache() before reach here. 3994 */ 3995 if (do_swap_account && PageSwapCache(page)) { 3996 swp_entry_t ent = {.val = page_private(page)}; 3997 mem_cgroup_uncharge_swap(ent); 3998 } 3999 } 4000 4001 void mem_cgroup_commit_charge_swapin(struct page *page, 4002 struct mem_cgroup *memcg) 4003 { 4004 __mem_cgroup_commit_charge_swapin(page, memcg, 4005 MEM_CGROUP_CHARGE_TYPE_ANON); 4006 } 4007 4008 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4009 gfp_t gfp_mask) 4010 { 4011 struct mem_cgroup *memcg = NULL; 4012 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4013 int ret; 4014 4015 if (mem_cgroup_disabled()) 4016 return 0; 4017 if (PageCompound(page)) 4018 return 0; 4019 4020 if (!PageSwapCache(page)) 4021 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4022 else { /* page is swapcache/shmem */ 4023 ret = __mem_cgroup_try_charge_swapin(mm, page, 4024 gfp_mask, &memcg); 4025 if (!ret) 4026 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4027 } 4028 return ret; 4029 } 4030 4031 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4032 unsigned int nr_pages, 4033 const enum charge_type ctype) 4034 { 4035 struct memcg_batch_info *batch = NULL; 4036 bool uncharge_memsw = true; 4037 4038 /* If swapout, usage of swap doesn't decrease */ 4039 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4040 uncharge_memsw = false; 4041 4042 batch = ¤t->memcg_batch; 4043 /* 4044 * In usual, we do css_get() when we remember memcg pointer. 4045 * But in this case, we keep res->usage until end of a series of 4046 * uncharges. Then, it's ok to ignore memcg's refcnt. 4047 */ 4048 if (!batch->memcg) 4049 batch->memcg = memcg; 4050 /* 4051 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4052 * In those cases, all pages freed continuously can be expected to be in 4053 * the same cgroup and we have chance to coalesce uncharges. 4054 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4055 * because we want to do uncharge as soon as possible. 4056 */ 4057 4058 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4059 goto direct_uncharge; 4060 4061 if (nr_pages > 1) 4062 goto direct_uncharge; 4063 4064 /* 4065 * In typical case, batch->memcg == mem. This means we can 4066 * merge a series of uncharges to an uncharge of res_counter. 4067 * If not, we uncharge res_counter ony by one. 4068 */ 4069 if (batch->memcg != memcg) 4070 goto direct_uncharge; 4071 /* remember freed charge and uncharge it later */ 4072 batch->nr_pages++; 4073 if (uncharge_memsw) 4074 batch->memsw_nr_pages++; 4075 return; 4076 direct_uncharge: 4077 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4078 if (uncharge_memsw) 4079 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4080 if (unlikely(batch->memcg != memcg)) 4081 memcg_oom_recover(memcg); 4082 } 4083 4084 /* 4085 * uncharge if !page_mapped(page) 4086 */ 4087 static struct mem_cgroup * 4088 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4089 bool end_migration) 4090 { 4091 struct mem_cgroup *memcg = NULL; 4092 unsigned int nr_pages = 1; 4093 struct page_cgroup *pc; 4094 bool anon; 4095 4096 if (mem_cgroup_disabled()) 4097 return NULL; 4098 4099 VM_BUG_ON(PageSwapCache(page)); 4100 4101 if (PageTransHuge(page)) { 4102 nr_pages <<= compound_order(page); 4103 VM_BUG_ON(!PageTransHuge(page)); 4104 } 4105 /* 4106 * Check if our page_cgroup is valid 4107 */ 4108 pc = lookup_page_cgroup(page); 4109 if (unlikely(!PageCgroupUsed(pc))) 4110 return NULL; 4111 4112 lock_page_cgroup(pc); 4113 4114 memcg = pc->mem_cgroup; 4115 4116 if (!PageCgroupUsed(pc)) 4117 goto unlock_out; 4118 4119 anon = PageAnon(page); 4120 4121 switch (ctype) { 4122 case MEM_CGROUP_CHARGE_TYPE_ANON: 4123 /* 4124 * Generally PageAnon tells if it's the anon statistics to be 4125 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4126 * used before page reached the stage of being marked PageAnon. 4127 */ 4128 anon = true; 4129 /* fallthrough */ 4130 case MEM_CGROUP_CHARGE_TYPE_DROP: 4131 /* See mem_cgroup_prepare_migration() */ 4132 if (page_mapped(page)) 4133 goto unlock_out; 4134 /* 4135 * Pages under migration may not be uncharged. But 4136 * end_migration() /must/ be the one uncharging the 4137 * unused post-migration page and so it has to call 4138 * here with the migration bit still set. See the 4139 * res_counter handling below. 4140 */ 4141 if (!end_migration && PageCgroupMigration(pc)) 4142 goto unlock_out; 4143 break; 4144 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4145 if (!PageAnon(page)) { /* Shared memory */ 4146 if (page->mapping && !page_is_file_cache(page)) 4147 goto unlock_out; 4148 } else if (page_mapped(page)) /* Anon */ 4149 goto unlock_out; 4150 break; 4151 default: 4152 break; 4153 } 4154 4155 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 4156 4157 ClearPageCgroupUsed(pc); 4158 /* 4159 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4160 * freed from LRU. This is safe because uncharged page is expected not 4161 * to be reused (freed soon). Exception is SwapCache, it's handled by 4162 * special functions. 4163 */ 4164 4165 unlock_page_cgroup(pc); 4166 /* 4167 * even after unlock, we have memcg->res.usage here and this memcg 4168 * will never be freed. 4169 */ 4170 memcg_check_events(memcg, page); 4171 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4172 mem_cgroup_swap_statistics(memcg, true); 4173 mem_cgroup_get(memcg); 4174 } 4175 /* 4176 * Migration does not charge the res_counter for the 4177 * replacement page, so leave it alone when phasing out the 4178 * page that is unused after the migration. 4179 */ 4180 if (!end_migration && !mem_cgroup_is_root(memcg)) 4181 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4182 4183 return memcg; 4184 4185 unlock_out: 4186 unlock_page_cgroup(pc); 4187 return NULL; 4188 } 4189 4190 void mem_cgroup_uncharge_page(struct page *page) 4191 { 4192 /* early check. */ 4193 if (page_mapped(page)) 4194 return; 4195 VM_BUG_ON(page->mapping && !PageAnon(page)); 4196 if (PageSwapCache(page)) 4197 return; 4198 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4199 } 4200 4201 void mem_cgroup_uncharge_cache_page(struct page *page) 4202 { 4203 VM_BUG_ON(page_mapped(page)); 4204 VM_BUG_ON(page->mapping); 4205 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4206 } 4207 4208 /* 4209 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4210 * In that cases, pages are freed continuously and we can expect pages 4211 * are in the same memcg. All these calls itself limits the number of 4212 * pages freed at once, then uncharge_start/end() is called properly. 4213 * This may be called prural(2) times in a context, 4214 */ 4215 4216 void mem_cgroup_uncharge_start(void) 4217 { 4218 current->memcg_batch.do_batch++; 4219 /* We can do nest. */ 4220 if (current->memcg_batch.do_batch == 1) { 4221 current->memcg_batch.memcg = NULL; 4222 current->memcg_batch.nr_pages = 0; 4223 current->memcg_batch.memsw_nr_pages = 0; 4224 } 4225 } 4226 4227 void mem_cgroup_uncharge_end(void) 4228 { 4229 struct memcg_batch_info *batch = ¤t->memcg_batch; 4230 4231 if (!batch->do_batch) 4232 return; 4233 4234 batch->do_batch--; 4235 if (batch->do_batch) /* If stacked, do nothing. */ 4236 return; 4237 4238 if (!batch->memcg) 4239 return; 4240 /* 4241 * This "batch->memcg" is valid without any css_get/put etc... 4242 * bacause we hide charges behind us. 4243 */ 4244 if (batch->nr_pages) 4245 res_counter_uncharge(&batch->memcg->res, 4246 batch->nr_pages * PAGE_SIZE); 4247 if (batch->memsw_nr_pages) 4248 res_counter_uncharge(&batch->memcg->memsw, 4249 batch->memsw_nr_pages * PAGE_SIZE); 4250 memcg_oom_recover(batch->memcg); 4251 /* forget this pointer (for sanity check) */ 4252 batch->memcg = NULL; 4253 } 4254 4255 #ifdef CONFIG_SWAP 4256 /* 4257 * called after __delete_from_swap_cache() and drop "page" account. 4258 * memcg information is recorded to swap_cgroup of "ent" 4259 */ 4260 void 4261 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4262 { 4263 struct mem_cgroup *memcg; 4264 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4265 4266 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4267 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4268 4269 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4270 4271 /* 4272 * record memcg information, if swapout && memcg != NULL, 4273 * mem_cgroup_get() was called in uncharge(). 4274 */ 4275 if (do_swap_account && swapout && memcg) 4276 swap_cgroup_record(ent, css_id(&memcg->css)); 4277 } 4278 #endif 4279 4280 #ifdef CONFIG_MEMCG_SWAP 4281 /* 4282 * called from swap_entry_free(). remove record in swap_cgroup and 4283 * uncharge "memsw" account. 4284 */ 4285 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4286 { 4287 struct mem_cgroup *memcg; 4288 unsigned short id; 4289 4290 if (!do_swap_account) 4291 return; 4292 4293 id = swap_cgroup_record(ent, 0); 4294 rcu_read_lock(); 4295 memcg = mem_cgroup_lookup(id); 4296 if (memcg) { 4297 /* 4298 * We uncharge this because swap is freed. 4299 * This memcg can be obsolete one. We avoid calling css_tryget 4300 */ 4301 if (!mem_cgroup_is_root(memcg)) 4302 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4303 mem_cgroup_swap_statistics(memcg, false); 4304 mem_cgroup_put(memcg); 4305 } 4306 rcu_read_unlock(); 4307 } 4308 4309 /** 4310 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4311 * @entry: swap entry to be moved 4312 * @from: mem_cgroup which the entry is moved from 4313 * @to: mem_cgroup which the entry is moved to 4314 * 4315 * It succeeds only when the swap_cgroup's record for this entry is the same 4316 * as the mem_cgroup's id of @from. 4317 * 4318 * Returns 0 on success, -EINVAL on failure. 4319 * 4320 * The caller must have charged to @to, IOW, called res_counter_charge() about 4321 * both res and memsw, and called css_get(). 4322 */ 4323 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4324 struct mem_cgroup *from, struct mem_cgroup *to) 4325 { 4326 unsigned short old_id, new_id; 4327 4328 old_id = css_id(&from->css); 4329 new_id = css_id(&to->css); 4330 4331 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4332 mem_cgroup_swap_statistics(from, false); 4333 mem_cgroup_swap_statistics(to, true); 4334 /* 4335 * This function is only called from task migration context now. 4336 * It postpones res_counter and refcount handling till the end 4337 * of task migration(mem_cgroup_clear_mc()) for performance 4338 * improvement. But we cannot postpone mem_cgroup_get(to) 4339 * because if the process that has been moved to @to does 4340 * swap-in, the refcount of @to might be decreased to 0. 4341 */ 4342 mem_cgroup_get(to); 4343 return 0; 4344 } 4345 return -EINVAL; 4346 } 4347 #else 4348 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4349 struct mem_cgroup *from, struct mem_cgroup *to) 4350 { 4351 return -EINVAL; 4352 } 4353 #endif 4354 4355 /* 4356 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4357 * page belongs to. 4358 */ 4359 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4360 struct mem_cgroup **memcgp) 4361 { 4362 struct mem_cgroup *memcg = NULL; 4363 unsigned int nr_pages = 1; 4364 struct page_cgroup *pc; 4365 enum charge_type ctype; 4366 4367 *memcgp = NULL; 4368 4369 if (mem_cgroup_disabled()) 4370 return; 4371 4372 if (PageTransHuge(page)) 4373 nr_pages <<= compound_order(page); 4374 4375 pc = lookup_page_cgroup(page); 4376 lock_page_cgroup(pc); 4377 if (PageCgroupUsed(pc)) { 4378 memcg = pc->mem_cgroup; 4379 css_get(&memcg->css); 4380 /* 4381 * At migrating an anonymous page, its mapcount goes down 4382 * to 0 and uncharge() will be called. But, even if it's fully 4383 * unmapped, migration may fail and this page has to be 4384 * charged again. We set MIGRATION flag here and delay uncharge 4385 * until end_migration() is called 4386 * 4387 * Corner Case Thinking 4388 * A) 4389 * When the old page was mapped as Anon and it's unmap-and-freed 4390 * while migration was ongoing. 4391 * If unmap finds the old page, uncharge() of it will be delayed 4392 * until end_migration(). If unmap finds a new page, it's 4393 * uncharged when it make mapcount to be 1->0. If unmap code 4394 * finds swap_migration_entry, the new page will not be mapped 4395 * and end_migration() will find it(mapcount==0). 4396 * 4397 * B) 4398 * When the old page was mapped but migraion fails, the kernel 4399 * remaps it. A charge for it is kept by MIGRATION flag even 4400 * if mapcount goes down to 0. We can do remap successfully 4401 * without charging it again. 4402 * 4403 * C) 4404 * The "old" page is under lock_page() until the end of 4405 * migration, so, the old page itself will not be swapped-out. 4406 * If the new page is swapped out before end_migraton, our 4407 * hook to usual swap-out path will catch the event. 4408 */ 4409 if (PageAnon(page)) 4410 SetPageCgroupMigration(pc); 4411 } 4412 unlock_page_cgroup(pc); 4413 /* 4414 * If the page is not charged at this point, 4415 * we return here. 4416 */ 4417 if (!memcg) 4418 return; 4419 4420 *memcgp = memcg; 4421 /* 4422 * We charge new page before it's used/mapped. So, even if unlock_page() 4423 * is called before end_migration, we can catch all events on this new 4424 * page. In the case new page is migrated but not remapped, new page's 4425 * mapcount will be finally 0 and we call uncharge in end_migration(). 4426 */ 4427 if (PageAnon(page)) 4428 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4429 else 4430 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4431 /* 4432 * The page is committed to the memcg, but it's not actually 4433 * charged to the res_counter since we plan on replacing the 4434 * old one and only one page is going to be left afterwards. 4435 */ 4436 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4437 } 4438 4439 /* remove redundant charge if migration failed*/ 4440 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4441 struct page *oldpage, struct page *newpage, bool migration_ok) 4442 { 4443 struct page *used, *unused; 4444 struct page_cgroup *pc; 4445 bool anon; 4446 4447 if (!memcg) 4448 return; 4449 4450 if (!migration_ok) { 4451 used = oldpage; 4452 unused = newpage; 4453 } else { 4454 used = newpage; 4455 unused = oldpage; 4456 } 4457 anon = PageAnon(used); 4458 __mem_cgroup_uncharge_common(unused, 4459 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4460 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4461 true); 4462 css_put(&memcg->css); 4463 /* 4464 * We disallowed uncharge of pages under migration because mapcount 4465 * of the page goes down to zero, temporarly. 4466 * Clear the flag and check the page should be charged. 4467 */ 4468 pc = lookup_page_cgroup(oldpage); 4469 lock_page_cgroup(pc); 4470 ClearPageCgroupMigration(pc); 4471 unlock_page_cgroup(pc); 4472 4473 /* 4474 * If a page is a file cache, radix-tree replacement is very atomic 4475 * and we can skip this check. When it was an Anon page, its mapcount 4476 * goes down to 0. But because we added MIGRATION flage, it's not 4477 * uncharged yet. There are several case but page->mapcount check 4478 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4479 * check. (see prepare_charge() also) 4480 */ 4481 if (anon) 4482 mem_cgroup_uncharge_page(used); 4483 } 4484 4485 /* 4486 * At replace page cache, newpage is not under any memcg but it's on 4487 * LRU. So, this function doesn't touch res_counter but handles LRU 4488 * in correct way. Both pages are locked so we cannot race with uncharge. 4489 */ 4490 void mem_cgroup_replace_page_cache(struct page *oldpage, 4491 struct page *newpage) 4492 { 4493 struct mem_cgroup *memcg = NULL; 4494 struct page_cgroup *pc; 4495 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4496 4497 if (mem_cgroup_disabled()) 4498 return; 4499 4500 pc = lookup_page_cgroup(oldpage); 4501 /* fix accounting on old pages */ 4502 lock_page_cgroup(pc); 4503 if (PageCgroupUsed(pc)) { 4504 memcg = pc->mem_cgroup; 4505 mem_cgroup_charge_statistics(memcg, false, -1); 4506 ClearPageCgroupUsed(pc); 4507 } 4508 unlock_page_cgroup(pc); 4509 4510 /* 4511 * When called from shmem_replace_page(), in some cases the 4512 * oldpage has already been charged, and in some cases not. 4513 */ 4514 if (!memcg) 4515 return; 4516 /* 4517 * Even if newpage->mapping was NULL before starting replacement, 4518 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4519 * LRU while we overwrite pc->mem_cgroup. 4520 */ 4521 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4522 } 4523 4524 #ifdef CONFIG_DEBUG_VM 4525 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4526 { 4527 struct page_cgroup *pc; 4528 4529 pc = lookup_page_cgroup(page); 4530 /* 4531 * Can be NULL while feeding pages into the page allocator for 4532 * the first time, i.e. during boot or memory hotplug; 4533 * or when mem_cgroup_disabled(). 4534 */ 4535 if (likely(pc) && PageCgroupUsed(pc)) 4536 return pc; 4537 return NULL; 4538 } 4539 4540 bool mem_cgroup_bad_page_check(struct page *page) 4541 { 4542 if (mem_cgroup_disabled()) 4543 return false; 4544 4545 return lookup_page_cgroup_used(page) != NULL; 4546 } 4547 4548 void mem_cgroup_print_bad_page(struct page *page) 4549 { 4550 struct page_cgroup *pc; 4551 4552 pc = lookup_page_cgroup_used(page); 4553 if (pc) { 4554 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4555 pc, pc->flags, pc->mem_cgroup); 4556 } 4557 } 4558 #endif 4559 4560 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4561 unsigned long long val) 4562 { 4563 int retry_count; 4564 u64 memswlimit, memlimit; 4565 int ret = 0; 4566 int children = mem_cgroup_count_children(memcg); 4567 u64 curusage, oldusage; 4568 int enlarge; 4569 4570 /* 4571 * For keeping hierarchical_reclaim simple, how long we should retry 4572 * is depends on callers. We set our retry-count to be function 4573 * of # of children which we should visit in this loop. 4574 */ 4575 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4576 4577 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4578 4579 enlarge = 0; 4580 while (retry_count) { 4581 if (signal_pending(current)) { 4582 ret = -EINTR; 4583 break; 4584 } 4585 /* 4586 * Rather than hide all in some function, I do this in 4587 * open coded manner. You see what this really does. 4588 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4589 */ 4590 mutex_lock(&set_limit_mutex); 4591 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4592 if (memswlimit < val) { 4593 ret = -EINVAL; 4594 mutex_unlock(&set_limit_mutex); 4595 break; 4596 } 4597 4598 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4599 if (memlimit < val) 4600 enlarge = 1; 4601 4602 ret = res_counter_set_limit(&memcg->res, val); 4603 if (!ret) { 4604 if (memswlimit == val) 4605 memcg->memsw_is_minimum = true; 4606 else 4607 memcg->memsw_is_minimum = false; 4608 } 4609 mutex_unlock(&set_limit_mutex); 4610 4611 if (!ret) 4612 break; 4613 4614 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4615 MEM_CGROUP_RECLAIM_SHRINK); 4616 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4617 /* Usage is reduced ? */ 4618 if (curusage >= oldusage) 4619 retry_count--; 4620 else 4621 oldusage = curusage; 4622 } 4623 if (!ret && enlarge) 4624 memcg_oom_recover(memcg); 4625 4626 return ret; 4627 } 4628 4629 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4630 unsigned long long val) 4631 { 4632 int retry_count; 4633 u64 memlimit, memswlimit, oldusage, curusage; 4634 int children = mem_cgroup_count_children(memcg); 4635 int ret = -EBUSY; 4636 int enlarge = 0; 4637 4638 /* see mem_cgroup_resize_res_limit */ 4639 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4640 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4641 while (retry_count) { 4642 if (signal_pending(current)) { 4643 ret = -EINTR; 4644 break; 4645 } 4646 /* 4647 * Rather than hide all in some function, I do this in 4648 * open coded manner. You see what this really does. 4649 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4650 */ 4651 mutex_lock(&set_limit_mutex); 4652 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4653 if (memlimit > val) { 4654 ret = -EINVAL; 4655 mutex_unlock(&set_limit_mutex); 4656 break; 4657 } 4658 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4659 if (memswlimit < val) 4660 enlarge = 1; 4661 ret = res_counter_set_limit(&memcg->memsw, val); 4662 if (!ret) { 4663 if (memlimit == val) 4664 memcg->memsw_is_minimum = true; 4665 else 4666 memcg->memsw_is_minimum = false; 4667 } 4668 mutex_unlock(&set_limit_mutex); 4669 4670 if (!ret) 4671 break; 4672 4673 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4674 MEM_CGROUP_RECLAIM_NOSWAP | 4675 MEM_CGROUP_RECLAIM_SHRINK); 4676 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4677 /* Usage is reduced ? */ 4678 if (curusage >= oldusage) 4679 retry_count--; 4680 else 4681 oldusage = curusage; 4682 } 4683 if (!ret && enlarge) 4684 memcg_oom_recover(memcg); 4685 return ret; 4686 } 4687 4688 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4689 gfp_t gfp_mask, 4690 unsigned long *total_scanned) 4691 { 4692 unsigned long nr_reclaimed = 0; 4693 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4694 unsigned long reclaimed; 4695 int loop = 0; 4696 struct mem_cgroup_tree_per_zone *mctz; 4697 unsigned long long excess; 4698 unsigned long nr_scanned; 4699 4700 if (order > 0) 4701 return 0; 4702 4703 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4704 /* 4705 * This loop can run a while, specially if mem_cgroup's continuously 4706 * keep exceeding their soft limit and putting the system under 4707 * pressure 4708 */ 4709 do { 4710 if (next_mz) 4711 mz = next_mz; 4712 else 4713 mz = mem_cgroup_largest_soft_limit_node(mctz); 4714 if (!mz) 4715 break; 4716 4717 nr_scanned = 0; 4718 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4719 gfp_mask, &nr_scanned); 4720 nr_reclaimed += reclaimed; 4721 *total_scanned += nr_scanned; 4722 spin_lock(&mctz->lock); 4723 4724 /* 4725 * If we failed to reclaim anything from this memory cgroup 4726 * it is time to move on to the next cgroup 4727 */ 4728 next_mz = NULL; 4729 if (!reclaimed) { 4730 do { 4731 /* 4732 * Loop until we find yet another one. 4733 * 4734 * By the time we get the soft_limit lock 4735 * again, someone might have aded the 4736 * group back on the RB tree. Iterate to 4737 * make sure we get a different mem. 4738 * mem_cgroup_largest_soft_limit_node returns 4739 * NULL if no other cgroup is present on 4740 * the tree 4741 */ 4742 next_mz = 4743 __mem_cgroup_largest_soft_limit_node(mctz); 4744 if (next_mz == mz) 4745 css_put(&next_mz->memcg->css); 4746 else /* next_mz == NULL or other memcg */ 4747 break; 4748 } while (1); 4749 } 4750 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4751 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4752 /* 4753 * One school of thought says that we should not add 4754 * back the node to the tree if reclaim returns 0. 4755 * But our reclaim could return 0, simply because due 4756 * to priority we are exposing a smaller subset of 4757 * memory to reclaim from. Consider this as a longer 4758 * term TODO. 4759 */ 4760 /* If excess == 0, no tree ops */ 4761 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4762 spin_unlock(&mctz->lock); 4763 css_put(&mz->memcg->css); 4764 loop++; 4765 /* 4766 * Could not reclaim anything and there are no more 4767 * mem cgroups to try or we seem to be looping without 4768 * reclaiming anything. 4769 */ 4770 if (!nr_reclaimed && 4771 (next_mz == NULL || 4772 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4773 break; 4774 } while (!nr_reclaimed); 4775 if (next_mz) 4776 css_put(&next_mz->memcg->css); 4777 return nr_reclaimed; 4778 } 4779 4780 /** 4781 * mem_cgroup_force_empty_list - clears LRU of a group 4782 * @memcg: group to clear 4783 * @node: NUMA node 4784 * @zid: zone id 4785 * @lru: lru to to clear 4786 * 4787 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4788 * reclaim the pages page themselves - pages are moved to the parent (or root) 4789 * group. 4790 */ 4791 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4792 int node, int zid, enum lru_list lru) 4793 { 4794 struct lruvec *lruvec; 4795 unsigned long flags; 4796 struct list_head *list; 4797 struct page *busy; 4798 struct zone *zone; 4799 4800 zone = &NODE_DATA(node)->node_zones[zid]; 4801 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4802 list = &lruvec->lists[lru]; 4803 4804 busy = NULL; 4805 do { 4806 struct page_cgroup *pc; 4807 struct page *page; 4808 4809 spin_lock_irqsave(&zone->lru_lock, flags); 4810 if (list_empty(list)) { 4811 spin_unlock_irqrestore(&zone->lru_lock, flags); 4812 break; 4813 } 4814 page = list_entry(list->prev, struct page, lru); 4815 if (busy == page) { 4816 list_move(&page->lru, list); 4817 busy = NULL; 4818 spin_unlock_irqrestore(&zone->lru_lock, flags); 4819 continue; 4820 } 4821 spin_unlock_irqrestore(&zone->lru_lock, flags); 4822 4823 pc = lookup_page_cgroup(page); 4824 4825 if (mem_cgroup_move_parent(page, pc, memcg)) { 4826 /* found lock contention or "pc" is obsolete. */ 4827 busy = page; 4828 cond_resched(); 4829 } else 4830 busy = NULL; 4831 } while (!list_empty(list)); 4832 } 4833 4834 /* 4835 * make mem_cgroup's charge to be 0 if there is no task by moving 4836 * all the charges and pages to the parent. 4837 * This enables deleting this mem_cgroup. 4838 * 4839 * Caller is responsible for holding css reference on the memcg. 4840 */ 4841 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4842 { 4843 int node, zid; 4844 u64 usage; 4845 4846 do { 4847 /* This is for making all *used* pages to be on LRU. */ 4848 lru_add_drain_all(); 4849 drain_all_stock_sync(memcg); 4850 mem_cgroup_start_move(memcg); 4851 for_each_node_state(node, N_MEMORY) { 4852 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4853 enum lru_list lru; 4854 for_each_lru(lru) { 4855 mem_cgroup_force_empty_list(memcg, 4856 node, zid, lru); 4857 } 4858 } 4859 } 4860 mem_cgroup_end_move(memcg); 4861 memcg_oom_recover(memcg); 4862 cond_resched(); 4863 4864 /* 4865 * Kernel memory may not necessarily be trackable to a specific 4866 * process. So they are not migrated, and therefore we can't 4867 * expect their value to drop to 0 here. 4868 * Having res filled up with kmem only is enough. 4869 * 4870 * This is a safety check because mem_cgroup_force_empty_list 4871 * could have raced with mem_cgroup_replace_page_cache callers 4872 * so the lru seemed empty but the page could have been added 4873 * right after the check. RES_USAGE should be safe as we always 4874 * charge before adding to the LRU. 4875 */ 4876 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4877 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4878 } while (usage > 0); 4879 } 4880 4881 /* 4882 * This mainly exists for tests during the setting of set of use_hierarchy. 4883 * Since this is the very setting we are changing, the current hierarchy value 4884 * is meaningless 4885 */ 4886 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4887 { 4888 struct cgroup *pos; 4889 4890 /* bounce at first found */ 4891 cgroup_for_each_child(pos, memcg->css.cgroup) 4892 return true; 4893 return false; 4894 } 4895 4896 /* 4897 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4898 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4899 * from mem_cgroup_count_children(), in the sense that we don't really care how 4900 * many children we have; we only need to know if we have any. It also counts 4901 * any memcg without hierarchy as infertile. 4902 */ 4903 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4904 { 4905 return memcg->use_hierarchy && __memcg_has_children(memcg); 4906 } 4907 4908 /* 4909 * Reclaims as many pages from the given memcg as possible and moves 4910 * the rest to the parent. 4911 * 4912 * Caller is responsible for holding css reference for memcg. 4913 */ 4914 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4915 { 4916 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4917 struct cgroup *cgrp = memcg->css.cgroup; 4918 4919 /* returns EBUSY if there is a task or if we come here twice. */ 4920 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4921 return -EBUSY; 4922 4923 /* we call try-to-free pages for make this cgroup empty */ 4924 lru_add_drain_all(); 4925 /* try to free all pages in this cgroup */ 4926 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4927 int progress; 4928 4929 if (signal_pending(current)) 4930 return -EINTR; 4931 4932 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4933 false); 4934 if (!progress) { 4935 nr_retries--; 4936 /* maybe some writeback is necessary */ 4937 congestion_wait(BLK_RW_ASYNC, HZ/10); 4938 } 4939 4940 } 4941 lru_add_drain(); 4942 mem_cgroup_reparent_charges(memcg); 4943 4944 return 0; 4945 } 4946 4947 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 4948 { 4949 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4950 int ret; 4951 4952 if (mem_cgroup_is_root(memcg)) 4953 return -EINVAL; 4954 css_get(&memcg->css); 4955 ret = mem_cgroup_force_empty(memcg); 4956 css_put(&memcg->css); 4957 4958 return ret; 4959 } 4960 4961 4962 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 4963 { 4964 return mem_cgroup_from_cont(cont)->use_hierarchy; 4965 } 4966 4967 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 4968 u64 val) 4969 { 4970 int retval = 0; 4971 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4972 struct cgroup *parent = cont->parent; 4973 struct mem_cgroup *parent_memcg = NULL; 4974 4975 if (parent) 4976 parent_memcg = mem_cgroup_from_cont(parent); 4977 4978 mutex_lock(&memcg_create_mutex); 4979 4980 if (memcg->use_hierarchy == val) 4981 goto out; 4982 4983 /* 4984 * If parent's use_hierarchy is set, we can't make any modifications 4985 * in the child subtrees. If it is unset, then the change can 4986 * occur, provided the current cgroup has no children. 4987 * 4988 * For the root cgroup, parent_mem is NULL, we allow value to be 4989 * set if there are no children. 4990 */ 4991 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4992 (val == 1 || val == 0)) { 4993 if (!__memcg_has_children(memcg)) 4994 memcg->use_hierarchy = val; 4995 else 4996 retval = -EBUSY; 4997 } else 4998 retval = -EINVAL; 4999 5000 out: 5001 mutex_unlock(&memcg_create_mutex); 5002 5003 return retval; 5004 } 5005 5006 5007 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5008 enum mem_cgroup_stat_index idx) 5009 { 5010 struct mem_cgroup *iter; 5011 long val = 0; 5012 5013 /* Per-cpu values can be negative, use a signed accumulator */ 5014 for_each_mem_cgroup_tree(iter, memcg) 5015 val += mem_cgroup_read_stat(iter, idx); 5016 5017 if (val < 0) /* race ? */ 5018 val = 0; 5019 return val; 5020 } 5021 5022 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5023 { 5024 u64 val; 5025 5026 if (!mem_cgroup_is_root(memcg)) { 5027 if (!swap) 5028 return res_counter_read_u64(&memcg->res, RES_USAGE); 5029 else 5030 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5031 } 5032 5033 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5034 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5035 5036 if (swap) 5037 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5038 5039 return val << PAGE_SHIFT; 5040 } 5041 5042 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 5043 struct file *file, char __user *buf, 5044 size_t nbytes, loff_t *ppos) 5045 { 5046 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5047 char str[64]; 5048 u64 val; 5049 int name, len; 5050 enum res_type type; 5051 5052 type = MEMFILE_TYPE(cft->private); 5053 name = MEMFILE_ATTR(cft->private); 5054 5055 switch (type) { 5056 case _MEM: 5057 if (name == RES_USAGE) 5058 val = mem_cgroup_usage(memcg, false); 5059 else 5060 val = res_counter_read_u64(&memcg->res, name); 5061 break; 5062 case _MEMSWAP: 5063 if (name == RES_USAGE) 5064 val = mem_cgroup_usage(memcg, true); 5065 else 5066 val = res_counter_read_u64(&memcg->memsw, name); 5067 break; 5068 case _KMEM: 5069 val = res_counter_read_u64(&memcg->kmem, name); 5070 break; 5071 default: 5072 BUG(); 5073 } 5074 5075 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5076 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5077 } 5078 5079 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) 5080 { 5081 int ret = -EINVAL; 5082 #ifdef CONFIG_MEMCG_KMEM 5083 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5084 /* 5085 * For simplicity, we won't allow this to be disabled. It also can't 5086 * be changed if the cgroup has children already, or if tasks had 5087 * already joined. 5088 * 5089 * If tasks join before we set the limit, a person looking at 5090 * kmem.usage_in_bytes will have no way to determine when it took 5091 * place, which makes the value quite meaningless. 5092 * 5093 * After it first became limited, changes in the value of the limit are 5094 * of course permitted. 5095 */ 5096 mutex_lock(&memcg_create_mutex); 5097 mutex_lock(&set_limit_mutex); 5098 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 5099 if (cgroup_task_count(cont) || memcg_has_children(memcg)) { 5100 ret = -EBUSY; 5101 goto out; 5102 } 5103 ret = res_counter_set_limit(&memcg->kmem, val); 5104 VM_BUG_ON(ret); 5105 5106 ret = memcg_update_cache_sizes(memcg); 5107 if (ret) { 5108 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 5109 goto out; 5110 } 5111 static_key_slow_inc(&memcg_kmem_enabled_key); 5112 /* 5113 * setting the active bit after the inc will guarantee no one 5114 * starts accounting before all call sites are patched 5115 */ 5116 memcg_kmem_set_active(memcg); 5117 5118 /* 5119 * kmem charges can outlive the cgroup. In the case of slab 5120 * pages, for instance, a page contain objects from various 5121 * processes, so it is unfeasible to migrate them away. We 5122 * need to reference count the memcg because of that. 5123 */ 5124 mem_cgroup_get(memcg); 5125 } else 5126 ret = res_counter_set_limit(&memcg->kmem, val); 5127 out: 5128 mutex_unlock(&set_limit_mutex); 5129 mutex_unlock(&memcg_create_mutex); 5130 #endif 5131 return ret; 5132 } 5133 5134 #ifdef CONFIG_MEMCG_KMEM 5135 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5136 { 5137 int ret = 0; 5138 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5139 if (!parent) 5140 goto out; 5141 5142 memcg->kmem_account_flags = parent->kmem_account_flags; 5143 /* 5144 * When that happen, we need to disable the static branch only on those 5145 * memcgs that enabled it. To achieve this, we would be forced to 5146 * complicate the code by keeping track of which memcgs were the ones 5147 * that actually enabled limits, and which ones got it from its 5148 * parents. 5149 * 5150 * It is a lot simpler just to do static_key_slow_inc() on every child 5151 * that is accounted. 5152 */ 5153 if (!memcg_kmem_is_active(memcg)) 5154 goto out; 5155 5156 /* 5157 * destroy(), called if we fail, will issue static_key_slow_inc() and 5158 * mem_cgroup_put() if kmem is enabled. We have to either call them 5159 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find 5160 * this more consistent, since it always leads to the same destroy path 5161 */ 5162 mem_cgroup_get(memcg); 5163 static_key_slow_inc(&memcg_kmem_enabled_key); 5164 5165 mutex_lock(&set_limit_mutex); 5166 ret = memcg_update_cache_sizes(memcg); 5167 mutex_unlock(&set_limit_mutex); 5168 out: 5169 return ret; 5170 } 5171 #endif /* CONFIG_MEMCG_KMEM */ 5172 5173 /* 5174 * The user of this function is... 5175 * RES_LIMIT. 5176 */ 5177 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 5178 const char *buffer) 5179 { 5180 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5181 enum res_type type; 5182 int name; 5183 unsigned long long val; 5184 int ret; 5185 5186 type = MEMFILE_TYPE(cft->private); 5187 name = MEMFILE_ATTR(cft->private); 5188 5189 switch (name) { 5190 case RES_LIMIT: 5191 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5192 ret = -EINVAL; 5193 break; 5194 } 5195 /* This function does all necessary parse...reuse it */ 5196 ret = res_counter_memparse_write_strategy(buffer, &val); 5197 if (ret) 5198 break; 5199 if (type == _MEM) 5200 ret = mem_cgroup_resize_limit(memcg, val); 5201 else if (type == _MEMSWAP) 5202 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5203 else if (type == _KMEM) 5204 ret = memcg_update_kmem_limit(cont, val); 5205 else 5206 return -EINVAL; 5207 break; 5208 case RES_SOFT_LIMIT: 5209 ret = res_counter_memparse_write_strategy(buffer, &val); 5210 if (ret) 5211 break; 5212 /* 5213 * For memsw, soft limits are hard to implement in terms 5214 * of semantics, for now, we support soft limits for 5215 * control without swap 5216 */ 5217 if (type == _MEM) 5218 ret = res_counter_set_soft_limit(&memcg->res, val); 5219 else 5220 ret = -EINVAL; 5221 break; 5222 default: 5223 ret = -EINVAL; /* should be BUG() ? */ 5224 break; 5225 } 5226 return ret; 5227 } 5228 5229 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5230 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5231 { 5232 struct cgroup *cgroup; 5233 unsigned long long min_limit, min_memsw_limit, tmp; 5234 5235 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5236 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5237 cgroup = memcg->css.cgroup; 5238 if (!memcg->use_hierarchy) 5239 goto out; 5240 5241 while (cgroup->parent) { 5242 cgroup = cgroup->parent; 5243 memcg = mem_cgroup_from_cont(cgroup); 5244 if (!memcg->use_hierarchy) 5245 break; 5246 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5247 min_limit = min(min_limit, tmp); 5248 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5249 min_memsw_limit = min(min_memsw_limit, tmp); 5250 } 5251 out: 5252 *mem_limit = min_limit; 5253 *memsw_limit = min_memsw_limit; 5254 } 5255 5256 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 5257 { 5258 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5259 int name; 5260 enum res_type type; 5261 5262 type = MEMFILE_TYPE(event); 5263 name = MEMFILE_ATTR(event); 5264 5265 switch (name) { 5266 case RES_MAX_USAGE: 5267 if (type == _MEM) 5268 res_counter_reset_max(&memcg->res); 5269 else if (type == _MEMSWAP) 5270 res_counter_reset_max(&memcg->memsw); 5271 else if (type == _KMEM) 5272 res_counter_reset_max(&memcg->kmem); 5273 else 5274 return -EINVAL; 5275 break; 5276 case RES_FAILCNT: 5277 if (type == _MEM) 5278 res_counter_reset_failcnt(&memcg->res); 5279 else if (type == _MEMSWAP) 5280 res_counter_reset_failcnt(&memcg->memsw); 5281 else if (type == _KMEM) 5282 res_counter_reset_failcnt(&memcg->kmem); 5283 else 5284 return -EINVAL; 5285 break; 5286 } 5287 5288 return 0; 5289 } 5290 5291 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 5292 struct cftype *cft) 5293 { 5294 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 5295 } 5296 5297 #ifdef CONFIG_MMU 5298 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5299 struct cftype *cft, u64 val) 5300 { 5301 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5302 5303 if (val >= (1 << NR_MOVE_TYPE)) 5304 return -EINVAL; 5305 5306 /* 5307 * No kind of locking is needed in here, because ->can_attach() will 5308 * check this value once in the beginning of the process, and then carry 5309 * on with stale data. This means that changes to this value will only 5310 * affect task migrations starting after the change. 5311 */ 5312 memcg->move_charge_at_immigrate = val; 5313 return 0; 5314 } 5315 #else 5316 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5317 struct cftype *cft, u64 val) 5318 { 5319 return -ENOSYS; 5320 } 5321 #endif 5322 5323 #ifdef CONFIG_NUMA 5324 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 5325 struct seq_file *m) 5326 { 5327 int nid; 5328 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5329 unsigned long node_nr; 5330 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5331 5332 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5333 seq_printf(m, "total=%lu", total_nr); 5334 for_each_node_state(nid, N_MEMORY) { 5335 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5336 seq_printf(m, " N%d=%lu", nid, node_nr); 5337 } 5338 seq_putc(m, '\n'); 5339 5340 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5341 seq_printf(m, "file=%lu", file_nr); 5342 for_each_node_state(nid, N_MEMORY) { 5343 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5344 LRU_ALL_FILE); 5345 seq_printf(m, " N%d=%lu", nid, node_nr); 5346 } 5347 seq_putc(m, '\n'); 5348 5349 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5350 seq_printf(m, "anon=%lu", anon_nr); 5351 for_each_node_state(nid, N_MEMORY) { 5352 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5353 LRU_ALL_ANON); 5354 seq_printf(m, " N%d=%lu", nid, node_nr); 5355 } 5356 seq_putc(m, '\n'); 5357 5358 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5359 seq_printf(m, "unevictable=%lu", unevictable_nr); 5360 for_each_node_state(nid, N_MEMORY) { 5361 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5362 BIT(LRU_UNEVICTABLE)); 5363 seq_printf(m, " N%d=%lu", nid, node_nr); 5364 } 5365 seq_putc(m, '\n'); 5366 return 0; 5367 } 5368 #endif /* CONFIG_NUMA */ 5369 5370 static inline void mem_cgroup_lru_names_not_uptodate(void) 5371 { 5372 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5373 } 5374 5375 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 5376 struct seq_file *m) 5377 { 5378 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5379 struct mem_cgroup *mi; 5380 unsigned int i; 5381 5382 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5383 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5384 continue; 5385 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5386 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5387 } 5388 5389 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5390 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5391 mem_cgroup_read_events(memcg, i)); 5392 5393 for (i = 0; i < NR_LRU_LISTS; i++) 5394 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5395 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5396 5397 /* Hierarchical information */ 5398 { 5399 unsigned long long limit, memsw_limit; 5400 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5401 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5402 if (do_swap_account) 5403 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5404 memsw_limit); 5405 } 5406 5407 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5408 long long val = 0; 5409 5410 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5411 continue; 5412 for_each_mem_cgroup_tree(mi, memcg) 5413 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5414 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5415 } 5416 5417 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5418 unsigned long long val = 0; 5419 5420 for_each_mem_cgroup_tree(mi, memcg) 5421 val += mem_cgroup_read_events(mi, i); 5422 seq_printf(m, "total_%s %llu\n", 5423 mem_cgroup_events_names[i], val); 5424 } 5425 5426 for (i = 0; i < NR_LRU_LISTS; i++) { 5427 unsigned long long val = 0; 5428 5429 for_each_mem_cgroup_tree(mi, memcg) 5430 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5431 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5432 } 5433 5434 #ifdef CONFIG_DEBUG_VM 5435 { 5436 int nid, zid; 5437 struct mem_cgroup_per_zone *mz; 5438 struct zone_reclaim_stat *rstat; 5439 unsigned long recent_rotated[2] = {0, 0}; 5440 unsigned long recent_scanned[2] = {0, 0}; 5441 5442 for_each_online_node(nid) 5443 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5444 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5445 rstat = &mz->lruvec.reclaim_stat; 5446 5447 recent_rotated[0] += rstat->recent_rotated[0]; 5448 recent_rotated[1] += rstat->recent_rotated[1]; 5449 recent_scanned[0] += rstat->recent_scanned[0]; 5450 recent_scanned[1] += rstat->recent_scanned[1]; 5451 } 5452 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5453 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5454 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5455 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5456 } 5457 #endif 5458 5459 return 0; 5460 } 5461 5462 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 5463 { 5464 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5465 5466 return mem_cgroup_swappiness(memcg); 5467 } 5468 5469 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 5470 u64 val) 5471 { 5472 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5473 struct mem_cgroup *parent; 5474 5475 if (val > 100) 5476 return -EINVAL; 5477 5478 if (cgrp->parent == NULL) 5479 return -EINVAL; 5480 5481 parent = mem_cgroup_from_cont(cgrp->parent); 5482 5483 mutex_lock(&memcg_create_mutex); 5484 5485 /* If under hierarchy, only empty-root can set this value */ 5486 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5487 mutex_unlock(&memcg_create_mutex); 5488 return -EINVAL; 5489 } 5490 5491 memcg->swappiness = val; 5492 5493 mutex_unlock(&memcg_create_mutex); 5494 5495 return 0; 5496 } 5497 5498 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5499 { 5500 struct mem_cgroup_threshold_ary *t; 5501 u64 usage; 5502 int i; 5503 5504 rcu_read_lock(); 5505 if (!swap) 5506 t = rcu_dereference(memcg->thresholds.primary); 5507 else 5508 t = rcu_dereference(memcg->memsw_thresholds.primary); 5509 5510 if (!t) 5511 goto unlock; 5512 5513 usage = mem_cgroup_usage(memcg, swap); 5514 5515 /* 5516 * current_threshold points to threshold just below or equal to usage. 5517 * If it's not true, a threshold was crossed after last 5518 * call of __mem_cgroup_threshold(). 5519 */ 5520 i = t->current_threshold; 5521 5522 /* 5523 * Iterate backward over array of thresholds starting from 5524 * current_threshold and check if a threshold is crossed. 5525 * If none of thresholds below usage is crossed, we read 5526 * only one element of the array here. 5527 */ 5528 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5529 eventfd_signal(t->entries[i].eventfd, 1); 5530 5531 /* i = current_threshold + 1 */ 5532 i++; 5533 5534 /* 5535 * Iterate forward over array of thresholds starting from 5536 * current_threshold+1 and check if a threshold is crossed. 5537 * If none of thresholds above usage is crossed, we read 5538 * only one element of the array here. 5539 */ 5540 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5541 eventfd_signal(t->entries[i].eventfd, 1); 5542 5543 /* Update current_threshold */ 5544 t->current_threshold = i - 1; 5545 unlock: 5546 rcu_read_unlock(); 5547 } 5548 5549 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5550 { 5551 while (memcg) { 5552 __mem_cgroup_threshold(memcg, false); 5553 if (do_swap_account) 5554 __mem_cgroup_threshold(memcg, true); 5555 5556 memcg = parent_mem_cgroup(memcg); 5557 } 5558 } 5559 5560 static int compare_thresholds(const void *a, const void *b) 5561 { 5562 const struct mem_cgroup_threshold *_a = a; 5563 const struct mem_cgroup_threshold *_b = b; 5564 5565 return _a->threshold - _b->threshold; 5566 } 5567 5568 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5569 { 5570 struct mem_cgroup_eventfd_list *ev; 5571 5572 list_for_each_entry(ev, &memcg->oom_notify, list) 5573 eventfd_signal(ev->eventfd, 1); 5574 return 0; 5575 } 5576 5577 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5578 { 5579 struct mem_cgroup *iter; 5580 5581 for_each_mem_cgroup_tree(iter, memcg) 5582 mem_cgroup_oom_notify_cb(iter); 5583 } 5584 5585 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 5586 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5587 { 5588 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5589 struct mem_cgroup_thresholds *thresholds; 5590 struct mem_cgroup_threshold_ary *new; 5591 enum res_type type = MEMFILE_TYPE(cft->private); 5592 u64 threshold, usage; 5593 int i, size, ret; 5594 5595 ret = res_counter_memparse_write_strategy(args, &threshold); 5596 if (ret) 5597 return ret; 5598 5599 mutex_lock(&memcg->thresholds_lock); 5600 5601 if (type == _MEM) 5602 thresholds = &memcg->thresholds; 5603 else if (type == _MEMSWAP) 5604 thresholds = &memcg->memsw_thresholds; 5605 else 5606 BUG(); 5607 5608 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5609 5610 /* Check if a threshold crossed before adding a new one */ 5611 if (thresholds->primary) 5612 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5613 5614 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5615 5616 /* Allocate memory for new array of thresholds */ 5617 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5618 GFP_KERNEL); 5619 if (!new) { 5620 ret = -ENOMEM; 5621 goto unlock; 5622 } 5623 new->size = size; 5624 5625 /* Copy thresholds (if any) to new array */ 5626 if (thresholds->primary) { 5627 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5628 sizeof(struct mem_cgroup_threshold)); 5629 } 5630 5631 /* Add new threshold */ 5632 new->entries[size - 1].eventfd = eventfd; 5633 new->entries[size - 1].threshold = threshold; 5634 5635 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5636 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5637 compare_thresholds, NULL); 5638 5639 /* Find current threshold */ 5640 new->current_threshold = -1; 5641 for (i = 0; i < size; i++) { 5642 if (new->entries[i].threshold <= usage) { 5643 /* 5644 * new->current_threshold will not be used until 5645 * rcu_assign_pointer(), so it's safe to increment 5646 * it here. 5647 */ 5648 ++new->current_threshold; 5649 } else 5650 break; 5651 } 5652 5653 /* Free old spare buffer and save old primary buffer as spare */ 5654 kfree(thresholds->spare); 5655 thresholds->spare = thresholds->primary; 5656 5657 rcu_assign_pointer(thresholds->primary, new); 5658 5659 /* To be sure that nobody uses thresholds */ 5660 synchronize_rcu(); 5661 5662 unlock: 5663 mutex_unlock(&memcg->thresholds_lock); 5664 5665 return ret; 5666 } 5667 5668 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 5669 struct cftype *cft, struct eventfd_ctx *eventfd) 5670 { 5671 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5672 struct mem_cgroup_thresholds *thresholds; 5673 struct mem_cgroup_threshold_ary *new; 5674 enum res_type type = MEMFILE_TYPE(cft->private); 5675 u64 usage; 5676 int i, j, size; 5677 5678 mutex_lock(&memcg->thresholds_lock); 5679 if (type == _MEM) 5680 thresholds = &memcg->thresholds; 5681 else if (type == _MEMSWAP) 5682 thresholds = &memcg->memsw_thresholds; 5683 else 5684 BUG(); 5685 5686 if (!thresholds->primary) 5687 goto unlock; 5688 5689 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5690 5691 /* Check if a threshold crossed before removing */ 5692 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5693 5694 /* Calculate new number of threshold */ 5695 size = 0; 5696 for (i = 0; i < thresholds->primary->size; i++) { 5697 if (thresholds->primary->entries[i].eventfd != eventfd) 5698 size++; 5699 } 5700 5701 new = thresholds->spare; 5702 5703 /* Set thresholds array to NULL if we don't have thresholds */ 5704 if (!size) { 5705 kfree(new); 5706 new = NULL; 5707 goto swap_buffers; 5708 } 5709 5710 new->size = size; 5711 5712 /* Copy thresholds and find current threshold */ 5713 new->current_threshold = -1; 5714 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5715 if (thresholds->primary->entries[i].eventfd == eventfd) 5716 continue; 5717 5718 new->entries[j] = thresholds->primary->entries[i]; 5719 if (new->entries[j].threshold <= usage) { 5720 /* 5721 * new->current_threshold will not be used 5722 * until rcu_assign_pointer(), so it's safe to increment 5723 * it here. 5724 */ 5725 ++new->current_threshold; 5726 } 5727 j++; 5728 } 5729 5730 swap_buffers: 5731 /* Swap primary and spare array */ 5732 thresholds->spare = thresholds->primary; 5733 /* If all events are unregistered, free the spare array */ 5734 if (!new) { 5735 kfree(thresholds->spare); 5736 thresholds->spare = NULL; 5737 } 5738 5739 rcu_assign_pointer(thresholds->primary, new); 5740 5741 /* To be sure that nobody uses thresholds */ 5742 synchronize_rcu(); 5743 unlock: 5744 mutex_unlock(&memcg->thresholds_lock); 5745 } 5746 5747 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 5748 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5749 { 5750 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5751 struct mem_cgroup_eventfd_list *event; 5752 enum res_type type = MEMFILE_TYPE(cft->private); 5753 5754 BUG_ON(type != _OOM_TYPE); 5755 event = kmalloc(sizeof(*event), GFP_KERNEL); 5756 if (!event) 5757 return -ENOMEM; 5758 5759 spin_lock(&memcg_oom_lock); 5760 5761 event->eventfd = eventfd; 5762 list_add(&event->list, &memcg->oom_notify); 5763 5764 /* already in OOM ? */ 5765 if (atomic_read(&memcg->under_oom)) 5766 eventfd_signal(eventfd, 1); 5767 spin_unlock(&memcg_oom_lock); 5768 5769 return 0; 5770 } 5771 5772 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 5773 struct cftype *cft, struct eventfd_ctx *eventfd) 5774 { 5775 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5776 struct mem_cgroup_eventfd_list *ev, *tmp; 5777 enum res_type type = MEMFILE_TYPE(cft->private); 5778 5779 BUG_ON(type != _OOM_TYPE); 5780 5781 spin_lock(&memcg_oom_lock); 5782 5783 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5784 if (ev->eventfd == eventfd) { 5785 list_del(&ev->list); 5786 kfree(ev); 5787 } 5788 } 5789 5790 spin_unlock(&memcg_oom_lock); 5791 } 5792 5793 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 5794 struct cftype *cft, struct cgroup_map_cb *cb) 5795 { 5796 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5797 5798 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5799 5800 if (atomic_read(&memcg->under_oom)) 5801 cb->fill(cb, "under_oom", 1); 5802 else 5803 cb->fill(cb, "under_oom", 0); 5804 return 0; 5805 } 5806 5807 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 5808 struct cftype *cft, u64 val) 5809 { 5810 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5811 struct mem_cgroup *parent; 5812 5813 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5814 if (!cgrp->parent || !((val == 0) || (val == 1))) 5815 return -EINVAL; 5816 5817 parent = mem_cgroup_from_cont(cgrp->parent); 5818 5819 mutex_lock(&memcg_create_mutex); 5820 /* oom-kill-disable is a flag for subhierarchy. */ 5821 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5822 mutex_unlock(&memcg_create_mutex); 5823 return -EINVAL; 5824 } 5825 memcg->oom_kill_disable = val; 5826 if (!val) 5827 memcg_oom_recover(memcg); 5828 mutex_unlock(&memcg_create_mutex); 5829 return 0; 5830 } 5831 5832 #ifdef CONFIG_MEMCG_KMEM 5833 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5834 { 5835 int ret; 5836 5837 memcg->kmemcg_id = -1; 5838 ret = memcg_propagate_kmem(memcg); 5839 if (ret) 5840 return ret; 5841 5842 return mem_cgroup_sockets_init(memcg, ss); 5843 } 5844 5845 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5846 { 5847 mem_cgroup_sockets_destroy(memcg); 5848 5849 memcg_kmem_mark_dead(memcg); 5850 5851 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5852 return; 5853 5854 /* 5855 * Charges already down to 0, undo mem_cgroup_get() done in the charge 5856 * path here, being careful not to race with memcg_uncharge_kmem: it is 5857 * possible that the charges went down to 0 between mark_dead and the 5858 * res_counter read, so in that case, we don't need the put 5859 */ 5860 if (memcg_kmem_test_and_clear_dead(memcg)) 5861 mem_cgroup_put(memcg); 5862 } 5863 #else 5864 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5865 { 5866 return 0; 5867 } 5868 5869 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5870 { 5871 } 5872 #endif 5873 5874 static struct cftype mem_cgroup_files[] = { 5875 { 5876 .name = "usage_in_bytes", 5877 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5878 .read = mem_cgroup_read, 5879 .register_event = mem_cgroup_usage_register_event, 5880 .unregister_event = mem_cgroup_usage_unregister_event, 5881 }, 5882 { 5883 .name = "max_usage_in_bytes", 5884 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5885 .trigger = mem_cgroup_reset, 5886 .read = mem_cgroup_read, 5887 }, 5888 { 5889 .name = "limit_in_bytes", 5890 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5891 .write_string = mem_cgroup_write, 5892 .read = mem_cgroup_read, 5893 }, 5894 { 5895 .name = "soft_limit_in_bytes", 5896 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5897 .write_string = mem_cgroup_write, 5898 .read = mem_cgroup_read, 5899 }, 5900 { 5901 .name = "failcnt", 5902 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5903 .trigger = mem_cgroup_reset, 5904 .read = mem_cgroup_read, 5905 }, 5906 { 5907 .name = "stat", 5908 .read_seq_string = memcg_stat_show, 5909 }, 5910 { 5911 .name = "force_empty", 5912 .trigger = mem_cgroup_force_empty_write, 5913 }, 5914 { 5915 .name = "use_hierarchy", 5916 .flags = CFTYPE_INSANE, 5917 .write_u64 = mem_cgroup_hierarchy_write, 5918 .read_u64 = mem_cgroup_hierarchy_read, 5919 }, 5920 { 5921 .name = "swappiness", 5922 .read_u64 = mem_cgroup_swappiness_read, 5923 .write_u64 = mem_cgroup_swappiness_write, 5924 }, 5925 { 5926 .name = "move_charge_at_immigrate", 5927 .read_u64 = mem_cgroup_move_charge_read, 5928 .write_u64 = mem_cgroup_move_charge_write, 5929 }, 5930 { 5931 .name = "oom_control", 5932 .read_map = mem_cgroup_oom_control_read, 5933 .write_u64 = mem_cgroup_oom_control_write, 5934 .register_event = mem_cgroup_oom_register_event, 5935 .unregister_event = mem_cgroup_oom_unregister_event, 5936 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5937 }, 5938 { 5939 .name = "pressure_level", 5940 .register_event = vmpressure_register_event, 5941 .unregister_event = vmpressure_unregister_event, 5942 }, 5943 #ifdef CONFIG_NUMA 5944 { 5945 .name = "numa_stat", 5946 .read_seq_string = memcg_numa_stat_show, 5947 }, 5948 #endif 5949 #ifdef CONFIG_MEMCG_KMEM 5950 { 5951 .name = "kmem.limit_in_bytes", 5952 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5953 .write_string = mem_cgroup_write, 5954 .read = mem_cgroup_read, 5955 }, 5956 { 5957 .name = "kmem.usage_in_bytes", 5958 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5959 .read = mem_cgroup_read, 5960 }, 5961 { 5962 .name = "kmem.failcnt", 5963 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5964 .trigger = mem_cgroup_reset, 5965 .read = mem_cgroup_read, 5966 }, 5967 { 5968 .name = "kmem.max_usage_in_bytes", 5969 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5970 .trigger = mem_cgroup_reset, 5971 .read = mem_cgroup_read, 5972 }, 5973 #ifdef CONFIG_SLABINFO 5974 { 5975 .name = "kmem.slabinfo", 5976 .read_seq_string = mem_cgroup_slabinfo_read, 5977 }, 5978 #endif 5979 #endif 5980 { }, /* terminate */ 5981 }; 5982 5983 #ifdef CONFIG_MEMCG_SWAP 5984 static struct cftype memsw_cgroup_files[] = { 5985 { 5986 .name = "memsw.usage_in_bytes", 5987 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5988 .read = mem_cgroup_read, 5989 .register_event = mem_cgroup_usage_register_event, 5990 .unregister_event = mem_cgroup_usage_unregister_event, 5991 }, 5992 { 5993 .name = "memsw.max_usage_in_bytes", 5994 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5995 .trigger = mem_cgroup_reset, 5996 .read = mem_cgroup_read, 5997 }, 5998 { 5999 .name = "memsw.limit_in_bytes", 6000 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6001 .write_string = mem_cgroup_write, 6002 .read = mem_cgroup_read, 6003 }, 6004 { 6005 .name = "memsw.failcnt", 6006 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6007 .trigger = mem_cgroup_reset, 6008 .read = mem_cgroup_read, 6009 }, 6010 { }, /* terminate */ 6011 }; 6012 #endif 6013 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6014 { 6015 struct mem_cgroup_per_node *pn; 6016 struct mem_cgroup_per_zone *mz; 6017 int zone, tmp = node; 6018 /* 6019 * This routine is called against possible nodes. 6020 * But it's BUG to call kmalloc() against offline node. 6021 * 6022 * TODO: this routine can waste much memory for nodes which will 6023 * never be onlined. It's better to use memory hotplug callback 6024 * function. 6025 */ 6026 if (!node_state(node, N_NORMAL_MEMORY)) 6027 tmp = -1; 6028 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6029 if (!pn) 6030 return 1; 6031 6032 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6033 mz = &pn->zoneinfo[zone]; 6034 lruvec_init(&mz->lruvec); 6035 mz->usage_in_excess = 0; 6036 mz->on_tree = false; 6037 mz->memcg = memcg; 6038 } 6039 memcg->info.nodeinfo[node] = pn; 6040 return 0; 6041 } 6042 6043 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6044 { 6045 kfree(memcg->info.nodeinfo[node]); 6046 } 6047 6048 static struct mem_cgroup *mem_cgroup_alloc(void) 6049 { 6050 struct mem_cgroup *memcg; 6051 size_t size = memcg_size(); 6052 6053 /* Can be very big if nr_node_ids is very big */ 6054 if (size < PAGE_SIZE) 6055 memcg = kzalloc(size, GFP_KERNEL); 6056 else 6057 memcg = vzalloc(size); 6058 6059 if (!memcg) 6060 return NULL; 6061 6062 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6063 if (!memcg->stat) 6064 goto out_free; 6065 spin_lock_init(&memcg->pcp_counter_lock); 6066 return memcg; 6067 6068 out_free: 6069 if (size < PAGE_SIZE) 6070 kfree(memcg); 6071 else 6072 vfree(memcg); 6073 return NULL; 6074 } 6075 6076 /* 6077 * At destroying mem_cgroup, references from swap_cgroup can remain. 6078 * (scanning all at force_empty is too costly...) 6079 * 6080 * Instead of clearing all references at force_empty, we remember 6081 * the number of reference from swap_cgroup and free mem_cgroup when 6082 * it goes down to 0. 6083 * 6084 * Removal of cgroup itself succeeds regardless of refs from swap. 6085 */ 6086 6087 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6088 { 6089 int node; 6090 size_t size = memcg_size(); 6091 6092 mem_cgroup_remove_from_trees(memcg); 6093 free_css_id(&mem_cgroup_subsys, &memcg->css); 6094 6095 for_each_node(node) 6096 free_mem_cgroup_per_zone_info(memcg, node); 6097 6098 free_percpu(memcg->stat); 6099 6100 /* 6101 * We need to make sure that (at least for now), the jump label 6102 * destruction code runs outside of the cgroup lock. This is because 6103 * get_online_cpus(), which is called from the static_branch update, 6104 * can't be called inside the cgroup_lock. cpusets are the ones 6105 * enforcing this dependency, so if they ever change, we might as well. 6106 * 6107 * schedule_work() will guarantee this happens. Be careful if you need 6108 * to move this code around, and make sure it is outside 6109 * the cgroup_lock. 6110 */ 6111 disarm_static_keys(memcg); 6112 if (size < PAGE_SIZE) 6113 kfree(memcg); 6114 else 6115 vfree(memcg); 6116 } 6117 6118 6119 /* 6120 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 6121 * but in process context. The work_freeing structure is overlaid 6122 * on the rcu_freeing structure, which itself is overlaid on memsw. 6123 */ 6124 static void free_work(struct work_struct *work) 6125 { 6126 struct mem_cgroup *memcg; 6127 6128 memcg = container_of(work, struct mem_cgroup, work_freeing); 6129 __mem_cgroup_free(memcg); 6130 } 6131 6132 static void free_rcu(struct rcu_head *rcu_head) 6133 { 6134 struct mem_cgroup *memcg; 6135 6136 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 6137 INIT_WORK(&memcg->work_freeing, free_work); 6138 schedule_work(&memcg->work_freeing); 6139 } 6140 6141 static void mem_cgroup_get(struct mem_cgroup *memcg) 6142 { 6143 atomic_inc(&memcg->refcnt); 6144 } 6145 6146 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 6147 { 6148 if (atomic_sub_and_test(count, &memcg->refcnt)) { 6149 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 6150 call_rcu(&memcg->rcu_freeing, free_rcu); 6151 if (parent) 6152 mem_cgroup_put(parent); 6153 } 6154 } 6155 6156 static void mem_cgroup_put(struct mem_cgroup *memcg) 6157 { 6158 __mem_cgroup_put(memcg, 1); 6159 } 6160 6161 /* 6162 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6163 */ 6164 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6165 { 6166 if (!memcg->res.parent) 6167 return NULL; 6168 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6169 } 6170 EXPORT_SYMBOL(parent_mem_cgroup); 6171 6172 static void __init mem_cgroup_soft_limit_tree_init(void) 6173 { 6174 struct mem_cgroup_tree_per_node *rtpn; 6175 struct mem_cgroup_tree_per_zone *rtpz; 6176 int tmp, node, zone; 6177 6178 for_each_node(node) { 6179 tmp = node; 6180 if (!node_state(node, N_NORMAL_MEMORY)) 6181 tmp = -1; 6182 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6183 BUG_ON(!rtpn); 6184 6185 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6186 6187 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6188 rtpz = &rtpn->rb_tree_per_zone[zone]; 6189 rtpz->rb_root = RB_ROOT; 6190 spin_lock_init(&rtpz->lock); 6191 } 6192 } 6193 } 6194 6195 static struct cgroup_subsys_state * __ref 6196 mem_cgroup_css_alloc(struct cgroup *cont) 6197 { 6198 struct mem_cgroup *memcg; 6199 long error = -ENOMEM; 6200 int node; 6201 6202 memcg = mem_cgroup_alloc(); 6203 if (!memcg) 6204 return ERR_PTR(error); 6205 6206 for_each_node(node) 6207 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6208 goto free_out; 6209 6210 /* root ? */ 6211 if (cont->parent == NULL) { 6212 root_mem_cgroup = memcg; 6213 res_counter_init(&memcg->res, NULL); 6214 res_counter_init(&memcg->memsw, NULL); 6215 res_counter_init(&memcg->kmem, NULL); 6216 } 6217 6218 memcg->last_scanned_node = MAX_NUMNODES; 6219 INIT_LIST_HEAD(&memcg->oom_notify); 6220 atomic_set(&memcg->refcnt, 1); 6221 memcg->move_charge_at_immigrate = 0; 6222 mutex_init(&memcg->thresholds_lock); 6223 spin_lock_init(&memcg->move_lock); 6224 vmpressure_init(&memcg->vmpressure); 6225 6226 return &memcg->css; 6227 6228 free_out: 6229 __mem_cgroup_free(memcg); 6230 return ERR_PTR(error); 6231 } 6232 6233 static int 6234 mem_cgroup_css_online(struct cgroup *cont) 6235 { 6236 struct mem_cgroup *memcg, *parent; 6237 int error = 0; 6238 6239 if (!cont->parent) 6240 return 0; 6241 6242 mutex_lock(&memcg_create_mutex); 6243 memcg = mem_cgroup_from_cont(cont); 6244 parent = mem_cgroup_from_cont(cont->parent); 6245 6246 memcg->use_hierarchy = parent->use_hierarchy; 6247 memcg->oom_kill_disable = parent->oom_kill_disable; 6248 memcg->swappiness = mem_cgroup_swappiness(parent); 6249 6250 if (parent->use_hierarchy) { 6251 res_counter_init(&memcg->res, &parent->res); 6252 res_counter_init(&memcg->memsw, &parent->memsw); 6253 res_counter_init(&memcg->kmem, &parent->kmem); 6254 6255 /* 6256 * We increment refcnt of the parent to ensure that we can 6257 * safely access it on res_counter_charge/uncharge. 6258 * This refcnt will be decremented when freeing this 6259 * mem_cgroup(see mem_cgroup_put). 6260 */ 6261 mem_cgroup_get(parent); 6262 } else { 6263 res_counter_init(&memcg->res, NULL); 6264 res_counter_init(&memcg->memsw, NULL); 6265 res_counter_init(&memcg->kmem, NULL); 6266 /* 6267 * Deeper hierachy with use_hierarchy == false doesn't make 6268 * much sense so let cgroup subsystem know about this 6269 * unfortunate state in our controller. 6270 */ 6271 if (parent != root_mem_cgroup) 6272 mem_cgroup_subsys.broken_hierarchy = true; 6273 } 6274 6275 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6276 mutex_unlock(&memcg_create_mutex); 6277 if (error) { 6278 /* 6279 * We call put now because our (and parent's) refcnts 6280 * are already in place. mem_cgroup_put() will internally 6281 * call __mem_cgroup_free, so return directly 6282 */ 6283 mem_cgroup_put(memcg); 6284 if (parent->use_hierarchy) 6285 mem_cgroup_put(parent); 6286 } 6287 return error; 6288 } 6289 6290 /* 6291 * Announce all parents that a group from their hierarchy is gone. 6292 */ 6293 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6294 { 6295 struct mem_cgroup *parent = memcg; 6296 6297 while ((parent = parent_mem_cgroup(parent))) 6298 atomic_inc(&parent->dead_count); 6299 6300 /* 6301 * if the root memcg is not hierarchical we have to check it 6302 * explicitely. 6303 */ 6304 if (!root_mem_cgroup->use_hierarchy) 6305 atomic_inc(&root_mem_cgroup->dead_count); 6306 } 6307 6308 static void mem_cgroup_css_offline(struct cgroup *cont) 6309 { 6310 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6311 6312 mem_cgroup_invalidate_reclaim_iterators(memcg); 6313 mem_cgroup_reparent_charges(memcg); 6314 mem_cgroup_destroy_all_caches(memcg); 6315 } 6316 6317 static void mem_cgroup_css_free(struct cgroup *cont) 6318 { 6319 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6320 6321 kmem_cgroup_destroy(memcg); 6322 6323 mem_cgroup_put(memcg); 6324 } 6325 6326 #ifdef CONFIG_MMU 6327 /* Handlers for move charge at task migration. */ 6328 #define PRECHARGE_COUNT_AT_ONCE 256 6329 static int mem_cgroup_do_precharge(unsigned long count) 6330 { 6331 int ret = 0; 6332 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6333 struct mem_cgroup *memcg = mc.to; 6334 6335 if (mem_cgroup_is_root(memcg)) { 6336 mc.precharge += count; 6337 /* we don't need css_get for root */ 6338 return ret; 6339 } 6340 /* try to charge at once */ 6341 if (count > 1) { 6342 struct res_counter *dummy; 6343 /* 6344 * "memcg" cannot be under rmdir() because we've already checked 6345 * by cgroup_lock_live_cgroup() that it is not removed and we 6346 * are still under the same cgroup_mutex. So we can postpone 6347 * css_get(). 6348 */ 6349 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6350 goto one_by_one; 6351 if (do_swap_account && res_counter_charge(&memcg->memsw, 6352 PAGE_SIZE * count, &dummy)) { 6353 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6354 goto one_by_one; 6355 } 6356 mc.precharge += count; 6357 return ret; 6358 } 6359 one_by_one: 6360 /* fall back to one by one charge */ 6361 while (count--) { 6362 if (signal_pending(current)) { 6363 ret = -EINTR; 6364 break; 6365 } 6366 if (!batch_count--) { 6367 batch_count = PRECHARGE_COUNT_AT_ONCE; 6368 cond_resched(); 6369 } 6370 ret = __mem_cgroup_try_charge(NULL, 6371 GFP_KERNEL, 1, &memcg, false); 6372 if (ret) 6373 /* mem_cgroup_clear_mc() will do uncharge later */ 6374 return ret; 6375 mc.precharge++; 6376 } 6377 return ret; 6378 } 6379 6380 /** 6381 * get_mctgt_type - get target type of moving charge 6382 * @vma: the vma the pte to be checked belongs 6383 * @addr: the address corresponding to the pte to be checked 6384 * @ptent: the pte to be checked 6385 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6386 * 6387 * Returns 6388 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6389 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6390 * move charge. if @target is not NULL, the page is stored in target->page 6391 * with extra refcnt got(Callers should handle it). 6392 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6393 * target for charge migration. if @target is not NULL, the entry is stored 6394 * in target->ent. 6395 * 6396 * Called with pte lock held. 6397 */ 6398 union mc_target { 6399 struct page *page; 6400 swp_entry_t ent; 6401 }; 6402 6403 enum mc_target_type { 6404 MC_TARGET_NONE = 0, 6405 MC_TARGET_PAGE, 6406 MC_TARGET_SWAP, 6407 }; 6408 6409 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6410 unsigned long addr, pte_t ptent) 6411 { 6412 struct page *page = vm_normal_page(vma, addr, ptent); 6413 6414 if (!page || !page_mapped(page)) 6415 return NULL; 6416 if (PageAnon(page)) { 6417 /* we don't move shared anon */ 6418 if (!move_anon()) 6419 return NULL; 6420 } else if (!move_file()) 6421 /* we ignore mapcount for file pages */ 6422 return NULL; 6423 if (!get_page_unless_zero(page)) 6424 return NULL; 6425 6426 return page; 6427 } 6428 6429 #ifdef CONFIG_SWAP 6430 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6431 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6432 { 6433 struct page *page = NULL; 6434 swp_entry_t ent = pte_to_swp_entry(ptent); 6435 6436 if (!move_anon() || non_swap_entry(ent)) 6437 return NULL; 6438 /* 6439 * Because lookup_swap_cache() updates some statistics counter, 6440 * we call find_get_page() with swapper_space directly. 6441 */ 6442 page = find_get_page(swap_address_space(ent), ent.val); 6443 if (do_swap_account) 6444 entry->val = ent.val; 6445 6446 return page; 6447 } 6448 #else 6449 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6450 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6451 { 6452 return NULL; 6453 } 6454 #endif 6455 6456 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6457 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6458 { 6459 struct page *page = NULL; 6460 struct address_space *mapping; 6461 pgoff_t pgoff; 6462 6463 if (!vma->vm_file) /* anonymous vma */ 6464 return NULL; 6465 if (!move_file()) 6466 return NULL; 6467 6468 mapping = vma->vm_file->f_mapping; 6469 if (pte_none(ptent)) 6470 pgoff = linear_page_index(vma, addr); 6471 else /* pte_file(ptent) is true */ 6472 pgoff = pte_to_pgoff(ptent); 6473 6474 /* page is moved even if it's not RSS of this task(page-faulted). */ 6475 page = find_get_page(mapping, pgoff); 6476 6477 #ifdef CONFIG_SWAP 6478 /* shmem/tmpfs may report page out on swap: account for that too. */ 6479 if (radix_tree_exceptional_entry(page)) { 6480 swp_entry_t swap = radix_to_swp_entry(page); 6481 if (do_swap_account) 6482 *entry = swap; 6483 page = find_get_page(swap_address_space(swap), swap.val); 6484 } 6485 #endif 6486 return page; 6487 } 6488 6489 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6490 unsigned long addr, pte_t ptent, union mc_target *target) 6491 { 6492 struct page *page = NULL; 6493 struct page_cgroup *pc; 6494 enum mc_target_type ret = MC_TARGET_NONE; 6495 swp_entry_t ent = { .val = 0 }; 6496 6497 if (pte_present(ptent)) 6498 page = mc_handle_present_pte(vma, addr, ptent); 6499 else if (is_swap_pte(ptent)) 6500 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6501 else if (pte_none(ptent) || pte_file(ptent)) 6502 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6503 6504 if (!page && !ent.val) 6505 return ret; 6506 if (page) { 6507 pc = lookup_page_cgroup(page); 6508 /* 6509 * Do only loose check w/o page_cgroup lock. 6510 * mem_cgroup_move_account() checks the pc is valid or not under 6511 * the lock. 6512 */ 6513 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6514 ret = MC_TARGET_PAGE; 6515 if (target) 6516 target->page = page; 6517 } 6518 if (!ret || !target) 6519 put_page(page); 6520 } 6521 /* There is a swap entry and a page doesn't exist or isn't charged */ 6522 if (ent.val && !ret && 6523 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6524 ret = MC_TARGET_SWAP; 6525 if (target) 6526 target->ent = ent; 6527 } 6528 return ret; 6529 } 6530 6531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6532 /* 6533 * We don't consider swapping or file mapped pages because THP does not 6534 * support them for now. 6535 * Caller should make sure that pmd_trans_huge(pmd) is true. 6536 */ 6537 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6538 unsigned long addr, pmd_t pmd, union mc_target *target) 6539 { 6540 struct page *page = NULL; 6541 struct page_cgroup *pc; 6542 enum mc_target_type ret = MC_TARGET_NONE; 6543 6544 page = pmd_page(pmd); 6545 VM_BUG_ON(!page || !PageHead(page)); 6546 if (!move_anon()) 6547 return ret; 6548 pc = lookup_page_cgroup(page); 6549 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6550 ret = MC_TARGET_PAGE; 6551 if (target) { 6552 get_page(page); 6553 target->page = page; 6554 } 6555 } 6556 return ret; 6557 } 6558 #else 6559 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6560 unsigned long addr, pmd_t pmd, union mc_target *target) 6561 { 6562 return MC_TARGET_NONE; 6563 } 6564 #endif 6565 6566 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6567 unsigned long addr, unsigned long end, 6568 struct mm_walk *walk) 6569 { 6570 struct vm_area_struct *vma = walk->private; 6571 pte_t *pte; 6572 spinlock_t *ptl; 6573 6574 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6575 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6576 mc.precharge += HPAGE_PMD_NR; 6577 spin_unlock(&vma->vm_mm->page_table_lock); 6578 return 0; 6579 } 6580 6581 if (pmd_trans_unstable(pmd)) 6582 return 0; 6583 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6584 for (; addr != end; pte++, addr += PAGE_SIZE) 6585 if (get_mctgt_type(vma, addr, *pte, NULL)) 6586 mc.precharge++; /* increment precharge temporarily */ 6587 pte_unmap_unlock(pte - 1, ptl); 6588 cond_resched(); 6589 6590 return 0; 6591 } 6592 6593 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6594 { 6595 unsigned long precharge; 6596 struct vm_area_struct *vma; 6597 6598 down_read(&mm->mmap_sem); 6599 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6600 struct mm_walk mem_cgroup_count_precharge_walk = { 6601 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6602 .mm = mm, 6603 .private = vma, 6604 }; 6605 if (is_vm_hugetlb_page(vma)) 6606 continue; 6607 walk_page_range(vma->vm_start, vma->vm_end, 6608 &mem_cgroup_count_precharge_walk); 6609 } 6610 up_read(&mm->mmap_sem); 6611 6612 precharge = mc.precharge; 6613 mc.precharge = 0; 6614 6615 return precharge; 6616 } 6617 6618 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6619 { 6620 unsigned long precharge = mem_cgroup_count_precharge(mm); 6621 6622 VM_BUG_ON(mc.moving_task); 6623 mc.moving_task = current; 6624 return mem_cgroup_do_precharge(precharge); 6625 } 6626 6627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6628 static void __mem_cgroup_clear_mc(void) 6629 { 6630 struct mem_cgroup *from = mc.from; 6631 struct mem_cgroup *to = mc.to; 6632 6633 /* we must uncharge all the leftover precharges from mc.to */ 6634 if (mc.precharge) { 6635 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6636 mc.precharge = 0; 6637 } 6638 /* 6639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6640 * we must uncharge here. 6641 */ 6642 if (mc.moved_charge) { 6643 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6644 mc.moved_charge = 0; 6645 } 6646 /* we must fixup refcnts and charges */ 6647 if (mc.moved_swap) { 6648 /* uncharge swap account from the old cgroup */ 6649 if (!mem_cgroup_is_root(mc.from)) 6650 res_counter_uncharge(&mc.from->memsw, 6651 PAGE_SIZE * mc.moved_swap); 6652 __mem_cgroup_put(mc.from, mc.moved_swap); 6653 6654 if (!mem_cgroup_is_root(mc.to)) { 6655 /* 6656 * we charged both to->res and to->memsw, so we should 6657 * uncharge to->res. 6658 */ 6659 res_counter_uncharge(&mc.to->res, 6660 PAGE_SIZE * mc.moved_swap); 6661 } 6662 /* we've already done mem_cgroup_get(mc.to) */ 6663 mc.moved_swap = 0; 6664 } 6665 memcg_oom_recover(from); 6666 memcg_oom_recover(to); 6667 wake_up_all(&mc.waitq); 6668 } 6669 6670 static void mem_cgroup_clear_mc(void) 6671 { 6672 struct mem_cgroup *from = mc.from; 6673 6674 /* 6675 * we must clear moving_task before waking up waiters at the end of 6676 * task migration. 6677 */ 6678 mc.moving_task = NULL; 6679 __mem_cgroup_clear_mc(); 6680 spin_lock(&mc.lock); 6681 mc.from = NULL; 6682 mc.to = NULL; 6683 spin_unlock(&mc.lock); 6684 mem_cgroup_end_move(from); 6685 } 6686 6687 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6688 struct cgroup_taskset *tset) 6689 { 6690 struct task_struct *p = cgroup_taskset_first(tset); 6691 int ret = 0; 6692 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 6693 unsigned long move_charge_at_immigrate; 6694 6695 /* 6696 * We are now commited to this value whatever it is. Changes in this 6697 * tunable will only affect upcoming migrations, not the current one. 6698 * So we need to save it, and keep it going. 6699 */ 6700 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6701 if (move_charge_at_immigrate) { 6702 struct mm_struct *mm; 6703 struct mem_cgroup *from = mem_cgroup_from_task(p); 6704 6705 VM_BUG_ON(from == memcg); 6706 6707 mm = get_task_mm(p); 6708 if (!mm) 6709 return 0; 6710 /* We move charges only when we move a owner of the mm */ 6711 if (mm->owner == p) { 6712 VM_BUG_ON(mc.from); 6713 VM_BUG_ON(mc.to); 6714 VM_BUG_ON(mc.precharge); 6715 VM_BUG_ON(mc.moved_charge); 6716 VM_BUG_ON(mc.moved_swap); 6717 mem_cgroup_start_move(from); 6718 spin_lock(&mc.lock); 6719 mc.from = from; 6720 mc.to = memcg; 6721 mc.immigrate_flags = move_charge_at_immigrate; 6722 spin_unlock(&mc.lock); 6723 /* We set mc.moving_task later */ 6724 6725 ret = mem_cgroup_precharge_mc(mm); 6726 if (ret) 6727 mem_cgroup_clear_mc(); 6728 } 6729 mmput(mm); 6730 } 6731 return ret; 6732 } 6733 6734 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6735 struct cgroup_taskset *tset) 6736 { 6737 mem_cgroup_clear_mc(); 6738 } 6739 6740 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6741 unsigned long addr, unsigned long end, 6742 struct mm_walk *walk) 6743 { 6744 int ret = 0; 6745 struct vm_area_struct *vma = walk->private; 6746 pte_t *pte; 6747 spinlock_t *ptl; 6748 enum mc_target_type target_type; 6749 union mc_target target; 6750 struct page *page; 6751 struct page_cgroup *pc; 6752 6753 /* 6754 * We don't take compound_lock() here but no race with splitting thp 6755 * happens because: 6756 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6757 * under splitting, which means there's no concurrent thp split, 6758 * - if another thread runs into split_huge_page() just after we 6759 * entered this if-block, the thread must wait for page table lock 6760 * to be unlocked in __split_huge_page_splitting(), where the main 6761 * part of thp split is not executed yet. 6762 */ 6763 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6764 if (mc.precharge < HPAGE_PMD_NR) { 6765 spin_unlock(&vma->vm_mm->page_table_lock); 6766 return 0; 6767 } 6768 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6769 if (target_type == MC_TARGET_PAGE) { 6770 page = target.page; 6771 if (!isolate_lru_page(page)) { 6772 pc = lookup_page_cgroup(page); 6773 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6774 pc, mc.from, mc.to)) { 6775 mc.precharge -= HPAGE_PMD_NR; 6776 mc.moved_charge += HPAGE_PMD_NR; 6777 } 6778 putback_lru_page(page); 6779 } 6780 put_page(page); 6781 } 6782 spin_unlock(&vma->vm_mm->page_table_lock); 6783 return 0; 6784 } 6785 6786 if (pmd_trans_unstable(pmd)) 6787 return 0; 6788 retry: 6789 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6790 for (; addr != end; addr += PAGE_SIZE) { 6791 pte_t ptent = *(pte++); 6792 swp_entry_t ent; 6793 6794 if (!mc.precharge) 6795 break; 6796 6797 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6798 case MC_TARGET_PAGE: 6799 page = target.page; 6800 if (isolate_lru_page(page)) 6801 goto put; 6802 pc = lookup_page_cgroup(page); 6803 if (!mem_cgroup_move_account(page, 1, pc, 6804 mc.from, mc.to)) { 6805 mc.precharge--; 6806 /* we uncharge from mc.from later. */ 6807 mc.moved_charge++; 6808 } 6809 putback_lru_page(page); 6810 put: /* get_mctgt_type() gets the page */ 6811 put_page(page); 6812 break; 6813 case MC_TARGET_SWAP: 6814 ent = target.ent; 6815 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6816 mc.precharge--; 6817 /* we fixup refcnts and charges later. */ 6818 mc.moved_swap++; 6819 } 6820 break; 6821 default: 6822 break; 6823 } 6824 } 6825 pte_unmap_unlock(pte - 1, ptl); 6826 cond_resched(); 6827 6828 if (addr != end) { 6829 /* 6830 * We have consumed all precharges we got in can_attach(). 6831 * We try charge one by one, but don't do any additional 6832 * charges to mc.to if we have failed in charge once in attach() 6833 * phase. 6834 */ 6835 ret = mem_cgroup_do_precharge(1); 6836 if (!ret) 6837 goto retry; 6838 } 6839 6840 return ret; 6841 } 6842 6843 static void mem_cgroup_move_charge(struct mm_struct *mm) 6844 { 6845 struct vm_area_struct *vma; 6846 6847 lru_add_drain_all(); 6848 retry: 6849 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6850 /* 6851 * Someone who are holding the mmap_sem might be waiting in 6852 * waitq. So we cancel all extra charges, wake up all waiters, 6853 * and retry. Because we cancel precharges, we might not be able 6854 * to move enough charges, but moving charge is a best-effort 6855 * feature anyway, so it wouldn't be a big problem. 6856 */ 6857 __mem_cgroup_clear_mc(); 6858 cond_resched(); 6859 goto retry; 6860 } 6861 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6862 int ret; 6863 struct mm_walk mem_cgroup_move_charge_walk = { 6864 .pmd_entry = mem_cgroup_move_charge_pte_range, 6865 .mm = mm, 6866 .private = vma, 6867 }; 6868 if (is_vm_hugetlb_page(vma)) 6869 continue; 6870 ret = walk_page_range(vma->vm_start, vma->vm_end, 6871 &mem_cgroup_move_charge_walk); 6872 if (ret) 6873 /* 6874 * means we have consumed all precharges and failed in 6875 * doing additional charge. Just abandon here. 6876 */ 6877 break; 6878 } 6879 up_read(&mm->mmap_sem); 6880 } 6881 6882 static void mem_cgroup_move_task(struct cgroup *cont, 6883 struct cgroup_taskset *tset) 6884 { 6885 struct task_struct *p = cgroup_taskset_first(tset); 6886 struct mm_struct *mm = get_task_mm(p); 6887 6888 if (mm) { 6889 if (mc.to) 6890 mem_cgroup_move_charge(mm); 6891 mmput(mm); 6892 } 6893 if (mc.to) 6894 mem_cgroup_clear_mc(); 6895 } 6896 #else /* !CONFIG_MMU */ 6897 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6898 struct cgroup_taskset *tset) 6899 { 6900 return 0; 6901 } 6902 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6903 struct cgroup_taskset *tset) 6904 { 6905 } 6906 static void mem_cgroup_move_task(struct cgroup *cont, 6907 struct cgroup_taskset *tset) 6908 { 6909 } 6910 #endif 6911 6912 /* 6913 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6914 * to verify sane_behavior flag on each mount attempt. 6915 */ 6916 static void mem_cgroup_bind(struct cgroup *root) 6917 { 6918 /* 6919 * use_hierarchy is forced with sane_behavior. cgroup core 6920 * guarantees that @root doesn't have any children, so turning it 6921 * on for the root memcg is enough. 6922 */ 6923 if (cgroup_sane_behavior(root)) 6924 mem_cgroup_from_cont(root)->use_hierarchy = true; 6925 } 6926 6927 struct cgroup_subsys mem_cgroup_subsys = { 6928 .name = "memory", 6929 .subsys_id = mem_cgroup_subsys_id, 6930 .css_alloc = mem_cgroup_css_alloc, 6931 .css_online = mem_cgroup_css_online, 6932 .css_offline = mem_cgroup_css_offline, 6933 .css_free = mem_cgroup_css_free, 6934 .can_attach = mem_cgroup_can_attach, 6935 .cancel_attach = mem_cgroup_cancel_attach, 6936 .attach = mem_cgroup_move_task, 6937 .bind = mem_cgroup_bind, 6938 .base_cftypes = mem_cgroup_files, 6939 .early_init = 0, 6940 .use_id = 1, 6941 }; 6942 6943 #ifdef CONFIG_MEMCG_SWAP 6944 static int __init enable_swap_account(char *s) 6945 { 6946 /* consider enabled if no parameter or 1 is given */ 6947 if (!strcmp(s, "1")) 6948 really_do_swap_account = 1; 6949 else if (!strcmp(s, "0")) 6950 really_do_swap_account = 0; 6951 return 1; 6952 } 6953 __setup("swapaccount=", enable_swap_account); 6954 6955 static void __init memsw_file_init(void) 6956 { 6957 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6958 } 6959 6960 static void __init enable_swap_cgroup(void) 6961 { 6962 if (!mem_cgroup_disabled() && really_do_swap_account) { 6963 do_swap_account = 1; 6964 memsw_file_init(); 6965 } 6966 } 6967 6968 #else 6969 static void __init enable_swap_cgroup(void) 6970 { 6971 } 6972 #endif 6973 6974 /* 6975 * subsys_initcall() for memory controller. 6976 * 6977 * Some parts like hotcpu_notifier() have to be initialized from this context 6978 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 6979 * everything that doesn't depend on a specific mem_cgroup structure should 6980 * be initialized from here. 6981 */ 6982 static int __init mem_cgroup_init(void) 6983 { 6984 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6985 enable_swap_cgroup(); 6986 mem_cgroup_soft_limit_tree_init(); 6987 memcg_stock_init(); 6988 return 0; 6989 } 6990 subsys_initcall(mem_cgroup_init); 6991