xref: /linux/mm/memcontrol.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 /*
89  * Statistics for memory cgroup.
90  */
91 enum mem_cgroup_stat_index {
92 	/*
93 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 	 */
95 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
96 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
97 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
98 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
99 	MEM_CGROUP_STAT_NSTATS,
100 };
101 
102 static const char * const mem_cgroup_stat_names[] = {
103 	"cache",
104 	"rss",
105 	"mapped_file",
106 	"swap",
107 };
108 
109 enum mem_cgroup_events_index {
110 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
111 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
112 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
113 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
114 	MEM_CGROUP_EVENTS_NSTATS,
115 };
116 
117 static const char * const mem_cgroup_events_names[] = {
118 	"pgpgin",
119 	"pgpgout",
120 	"pgfault",
121 	"pgmajfault",
122 };
123 
124 static const char * const mem_cgroup_lru_names[] = {
125 	"inactive_anon",
126 	"active_anon",
127 	"inactive_file",
128 	"active_file",
129 	"unevictable",
130 };
131 
132 /*
133  * Per memcg event counter is incremented at every pagein/pageout. With THP,
134  * it will be incremated by the number of pages. This counter is used for
135  * for trigger some periodic events. This is straightforward and better
136  * than using jiffies etc. to handle periodic memcg event.
137  */
138 enum mem_cgroup_events_target {
139 	MEM_CGROUP_TARGET_THRESH,
140 	MEM_CGROUP_TARGET_SOFTLIMIT,
141 	MEM_CGROUP_TARGET_NUMAINFO,
142 	MEM_CGROUP_NTARGETS,
143 };
144 #define THRESHOLDS_EVENTS_TARGET 128
145 #define SOFTLIMIT_EVENTS_TARGET 1024
146 #define NUMAINFO_EVENTS_TARGET	1024
147 
148 struct mem_cgroup_stat_cpu {
149 	long count[MEM_CGROUP_STAT_NSTATS];
150 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
151 	unsigned long nr_page_events;
152 	unsigned long targets[MEM_CGROUP_NTARGETS];
153 };
154 
155 struct mem_cgroup_reclaim_iter {
156 	/*
157 	 * last scanned hierarchy member. Valid only if last_dead_count
158 	 * matches memcg->dead_count of the hierarchy root group.
159 	 */
160 	struct mem_cgroup *last_visited;
161 	unsigned long last_dead_count;
162 
163 	/* scan generation, increased every round-trip */
164 	unsigned int generation;
165 };
166 
167 /*
168  * per-zone information in memory controller.
169  */
170 struct mem_cgroup_per_zone {
171 	struct lruvec		lruvec;
172 	unsigned long		lru_size[NR_LRU_LISTS];
173 
174 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
175 
176 	struct rb_node		tree_node;	/* RB tree node */
177 	unsigned long long	usage_in_excess;/* Set to the value by which */
178 						/* the soft limit is exceeded*/
179 	bool			on_tree;
180 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
181 						/* use container_of	   */
182 };
183 
184 struct mem_cgroup_per_node {
185 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
186 };
187 
188 struct mem_cgroup_lru_info {
189 	struct mem_cgroup_per_node *nodeinfo[0];
190 };
191 
192 /*
193  * Cgroups above their limits are maintained in a RB-Tree, independent of
194  * their hierarchy representation
195  */
196 
197 struct mem_cgroup_tree_per_zone {
198 	struct rb_root rb_root;
199 	spinlock_t lock;
200 };
201 
202 struct mem_cgroup_tree_per_node {
203 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
204 };
205 
206 struct mem_cgroup_tree {
207 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
208 };
209 
210 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
211 
212 struct mem_cgroup_threshold {
213 	struct eventfd_ctx *eventfd;
214 	u64 threshold;
215 };
216 
217 /* For threshold */
218 struct mem_cgroup_threshold_ary {
219 	/* An array index points to threshold just below or equal to usage. */
220 	int current_threshold;
221 	/* Size of entries[] */
222 	unsigned int size;
223 	/* Array of thresholds */
224 	struct mem_cgroup_threshold entries[0];
225 };
226 
227 struct mem_cgroup_thresholds {
228 	/* Primary thresholds array */
229 	struct mem_cgroup_threshold_ary *primary;
230 	/*
231 	 * Spare threshold array.
232 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
233 	 * It must be able to store at least primary->size - 1 entries.
234 	 */
235 	struct mem_cgroup_threshold_ary *spare;
236 };
237 
238 /* for OOM */
239 struct mem_cgroup_eventfd_list {
240 	struct list_head list;
241 	struct eventfd_ctx *eventfd;
242 };
243 
244 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
245 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
246 
247 /*
248  * The memory controller data structure. The memory controller controls both
249  * page cache and RSS per cgroup. We would eventually like to provide
250  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
251  * to help the administrator determine what knobs to tune.
252  *
253  * TODO: Add a water mark for the memory controller. Reclaim will begin when
254  * we hit the water mark. May be even add a low water mark, such that
255  * no reclaim occurs from a cgroup at it's low water mark, this is
256  * a feature that will be implemented much later in the future.
257  */
258 struct mem_cgroup {
259 	struct cgroup_subsys_state css;
260 	/*
261 	 * the counter to account for memory usage
262 	 */
263 	struct res_counter res;
264 
265 	/* vmpressure notifications */
266 	struct vmpressure vmpressure;
267 
268 	union {
269 		/*
270 		 * the counter to account for mem+swap usage.
271 		 */
272 		struct res_counter memsw;
273 
274 		/*
275 		 * rcu_freeing is used only when freeing struct mem_cgroup,
276 		 * so put it into a union to avoid wasting more memory.
277 		 * It must be disjoint from the css field.  It could be
278 		 * in a union with the res field, but res plays a much
279 		 * larger part in mem_cgroup life than memsw, and might
280 		 * be of interest, even at time of free, when debugging.
281 		 * So share rcu_head with the less interesting memsw.
282 		 */
283 		struct rcu_head rcu_freeing;
284 		/*
285 		 * We also need some space for a worker in deferred freeing.
286 		 * By the time we call it, rcu_freeing is no longer in use.
287 		 */
288 		struct work_struct work_freeing;
289 	};
290 
291 	/*
292 	 * the counter to account for kernel memory usage.
293 	 */
294 	struct res_counter kmem;
295 	/*
296 	 * Should the accounting and control be hierarchical, per subtree?
297 	 */
298 	bool use_hierarchy;
299 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 
301 	bool		oom_lock;
302 	atomic_t	under_oom;
303 
304 	atomic_t	refcnt;
305 
306 	int	swappiness;
307 	/* OOM-Killer disable */
308 	int		oom_kill_disable;
309 
310 	/* set when res.limit == memsw.limit */
311 	bool		memsw_is_minimum;
312 
313 	/* protect arrays of thresholds */
314 	struct mutex thresholds_lock;
315 
316 	/* thresholds for memory usage. RCU-protected */
317 	struct mem_cgroup_thresholds thresholds;
318 
319 	/* thresholds for mem+swap usage. RCU-protected */
320 	struct mem_cgroup_thresholds memsw_thresholds;
321 
322 	/* For oom notifier event fd */
323 	struct list_head oom_notify;
324 
325 	/*
326 	 * Should we move charges of a task when a task is moved into this
327 	 * mem_cgroup ? And what type of charges should we move ?
328 	 */
329 	unsigned long 	move_charge_at_immigrate;
330 	/*
331 	 * set > 0 if pages under this cgroup are moving to other cgroup.
332 	 */
333 	atomic_t	moving_account;
334 	/* taken only while moving_account > 0 */
335 	spinlock_t	move_lock;
336 	/*
337 	 * percpu counter.
338 	 */
339 	struct mem_cgroup_stat_cpu __percpu *stat;
340 	/*
341 	 * used when a cpu is offlined or other synchronizations
342 	 * See mem_cgroup_read_stat().
343 	 */
344 	struct mem_cgroup_stat_cpu nocpu_base;
345 	spinlock_t pcp_counter_lock;
346 
347 	atomic_t	dead_count;
348 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
349 	struct tcp_memcontrol tcp_mem;
350 #endif
351 #if defined(CONFIG_MEMCG_KMEM)
352 	/* analogous to slab_common's slab_caches list. per-memcg */
353 	struct list_head memcg_slab_caches;
354 	/* Not a spinlock, we can take a lot of time walking the list */
355 	struct mutex slab_caches_mutex;
356         /* Index in the kmem_cache->memcg_params->memcg_caches array */
357 	int kmemcg_id;
358 #endif
359 
360 	int last_scanned_node;
361 #if MAX_NUMNODES > 1
362 	nodemask_t	scan_nodes;
363 	atomic_t	numainfo_events;
364 	atomic_t	numainfo_updating;
365 #endif
366 
367 	/*
368 	 * Per cgroup active and inactive list, similar to the
369 	 * per zone LRU lists.
370 	 *
371 	 * WARNING: This has to be the last element of the struct. Don't
372 	 * add new fields after this point.
373 	 */
374 	struct mem_cgroup_lru_info info;
375 };
376 
377 static size_t memcg_size(void)
378 {
379 	return sizeof(struct mem_cgroup) +
380 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
381 }
382 
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 };
389 
390 /* We account when limit is on, but only after call sites are patched */
391 #define KMEM_ACCOUNTED_MASK \
392 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393 
394 #ifdef CONFIG_MEMCG_KMEM
395 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396 {
397 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399 
400 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401 {
402 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403 }
404 
405 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406 {
407 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409 
410 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411 {
412 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413 }
414 
415 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416 {
417 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
418 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
419 }
420 
421 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
422 {
423 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
424 				  &memcg->kmem_account_flags);
425 }
426 #endif
427 
428 /* Stuffs for move charges at task migration. */
429 /*
430  * Types of charges to be moved. "move_charge_at_immitgrate" and
431  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
432  */
433 enum move_type {
434 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
435 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
436 	NR_MOVE_TYPE,
437 };
438 
439 /* "mc" and its members are protected by cgroup_mutex */
440 static struct move_charge_struct {
441 	spinlock_t	  lock; /* for from, to */
442 	struct mem_cgroup *from;
443 	struct mem_cgroup *to;
444 	unsigned long immigrate_flags;
445 	unsigned long precharge;
446 	unsigned long moved_charge;
447 	unsigned long moved_swap;
448 	struct task_struct *moving_task;	/* a task moving charges */
449 	wait_queue_head_t waitq;		/* a waitq for other context */
450 } mc = {
451 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
452 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
453 };
454 
455 static bool move_anon(void)
456 {
457 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
458 }
459 
460 static bool move_file(void)
461 {
462 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
463 }
464 
465 /*
466  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
467  * limit reclaim to prevent infinite loops, if they ever occur.
468  */
469 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
470 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
471 
472 enum charge_type {
473 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
474 	MEM_CGROUP_CHARGE_TYPE_ANON,
475 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
476 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
477 	NR_CHARGE_TYPE,
478 };
479 
480 /* for encoding cft->private value on file */
481 enum res_type {
482 	_MEM,
483 	_MEMSWAP,
484 	_OOM_TYPE,
485 	_KMEM,
486 };
487 
488 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
489 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
490 #define MEMFILE_ATTR(val)	((val) & 0xffff)
491 /* Used for OOM nofiier */
492 #define OOM_CONTROL		(0)
493 
494 /*
495  * Reclaim flags for mem_cgroup_hierarchical_reclaim
496  */
497 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
498 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
499 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
500 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
501 
502 /*
503  * The memcg_create_mutex will be held whenever a new cgroup is created.
504  * As a consequence, any change that needs to protect against new child cgroups
505  * appearing has to hold it as well.
506  */
507 static DEFINE_MUTEX(memcg_create_mutex);
508 
509 static void mem_cgroup_get(struct mem_cgroup *memcg);
510 static void mem_cgroup_put(struct mem_cgroup *memcg);
511 
512 static inline
513 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
514 {
515 	return container_of(s, struct mem_cgroup, css);
516 }
517 
518 /* Some nice accessors for the vmpressure. */
519 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
520 {
521 	if (!memcg)
522 		memcg = root_mem_cgroup;
523 	return &memcg->vmpressure;
524 }
525 
526 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
527 {
528 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
529 }
530 
531 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
532 {
533 	return &mem_cgroup_from_css(css)->vmpressure;
534 }
535 
536 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
537 {
538 	return (memcg == root_mem_cgroup);
539 }
540 
541 /* Writing them here to avoid exposing memcg's inner layout */
542 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
543 
544 void sock_update_memcg(struct sock *sk)
545 {
546 	if (mem_cgroup_sockets_enabled) {
547 		struct mem_cgroup *memcg;
548 		struct cg_proto *cg_proto;
549 
550 		BUG_ON(!sk->sk_prot->proto_cgroup);
551 
552 		/* Socket cloning can throw us here with sk_cgrp already
553 		 * filled. It won't however, necessarily happen from
554 		 * process context. So the test for root memcg given
555 		 * the current task's memcg won't help us in this case.
556 		 *
557 		 * Respecting the original socket's memcg is a better
558 		 * decision in this case.
559 		 */
560 		if (sk->sk_cgrp) {
561 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
562 			mem_cgroup_get(sk->sk_cgrp->memcg);
563 			return;
564 		}
565 
566 		rcu_read_lock();
567 		memcg = mem_cgroup_from_task(current);
568 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
569 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
570 			mem_cgroup_get(memcg);
571 			sk->sk_cgrp = cg_proto;
572 		}
573 		rcu_read_unlock();
574 	}
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577 
578 void sock_release_memcg(struct sock *sk)
579 {
580 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 		struct mem_cgroup *memcg;
582 		WARN_ON(!sk->sk_cgrp->memcg);
583 		memcg = sk->sk_cgrp->memcg;
584 		mem_cgroup_put(memcg);
585 	}
586 }
587 
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 	if (!memcg || mem_cgroup_is_root(memcg))
591 		return NULL;
592 
593 	return &memcg->tcp_mem.cg_proto;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596 
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
600 		return;
601 	static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608 
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612  * There are two main reasons for not using the css_id for this:
613  *  1) this works better in sparse environments, where we have a lot of memcgs,
614  *     but only a few kmem-limited. Or also, if we have, for instance, 200
615  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
616  *     200 entry array for that.
617  *
618  *  2) In order not to violate the cgroup API, we would like to do all memory
619  *     allocation in ->create(). At that point, we haven't yet allocated the
620  *     css_id. Having a separate index prevents us from messing with the cgroup
621  *     core for this
622  *
623  * The current size of the caches array is stored in
624  * memcg_limited_groups_array_size.  It will double each time we have to
625  * increase it.
626  */
627 static DEFINE_IDA(kmem_limited_groups);
628 int memcg_limited_groups_array_size;
629 
630 /*
631  * MIN_SIZE is different than 1, because we would like to avoid going through
632  * the alloc/free process all the time. In a small machine, 4 kmem-limited
633  * cgroups is a reasonable guess. In the future, it could be a parameter or
634  * tunable, but that is strictly not necessary.
635  *
636  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
637  * this constant directly from cgroup, but it is understandable that this is
638  * better kept as an internal representation in cgroup.c. In any case, the
639  * css_id space is not getting any smaller, and we don't have to necessarily
640  * increase ours as well if it increases.
641  */
642 #define MEMCG_CACHES_MIN_SIZE 4
643 #define MEMCG_CACHES_MAX_SIZE 65535
644 
645 /*
646  * A lot of the calls to the cache allocation functions are expected to be
647  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
648  * conditional to this static branch, we'll have to allow modules that does
649  * kmem_cache_alloc and the such to see this symbol as well
650  */
651 struct static_key memcg_kmem_enabled_key;
652 EXPORT_SYMBOL(memcg_kmem_enabled_key);
653 
654 static void disarm_kmem_keys(struct mem_cgroup *memcg)
655 {
656 	if (memcg_kmem_is_active(memcg)) {
657 		static_key_slow_dec(&memcg_kmem_enabled_key);
658 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
659 	}
660 	/*
661 	 * This check can't live in kmem destruction function,
662 	 * since the charges will outlive the cgroup
663 	 */
664 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
665 }
666 #else
667 static void disarm_kmem_keys(struct mem_cgroup *memcg)
668 {
669 }
670 #endif /* CONFIG_MEMCG_KMEM */
671 
672 static void disarm_static_keys(struct mem_cgroup *memcg)
673 {
674 	disarm_sock_keys(memcg);
675 	disarm_kmem_keys(memcg);
676 }
677 
678 static void drain_all_stock_async(struct mem_cgroup *memcg);
679 
680 static struct mem_cgroup_per_zone *
681 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
682 {
683 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
684 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
685 }
686 
687 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688 {
689 	return &memcg->css;
690 }
691 
692 static struct mem_cgroup_per_zone *
693 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694 {
695 	int nid = page_to_nid(page);
696 	int zid = page_zonenum(page);
697 
698 	return mem_cgroup_zoneinfo(memcg, nid, zid);
699 }
700 
701 static struct mem_cgroup_tree_per_zone *
702 soft_limit_tree_node_zone(int nid, int zid)
703 {
704 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706 
707 static struct mem_cgroup_tree_per_zone *
708 soft_limit_tree_from_page(struct page *page)
709 {
710 	int nid = page_to_nid(page);
711 	int zid = page_zonenum(page);
712 
713 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714 }
715 
716 static void
717 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
718 				struct mem_cgroup_per_zone *mz,
719 				struct mem_cgroup_tree_per_zone *mctz,
720 				unsigned long long new_usage_in_excess)
721 {
722 	struct rb_node **p = &mctz->rb_root.rb_node;
723 	struct rb_node *parent = NULL;
724 	struct mem_cgroup_per_zone *mz_node;
725 
726 	if (mz->on_tree)
727 		return;
728 
729 	mz->usage_in_excess = new_usage_in_excess;
730 	if (!mz->usage_in_excess)
731 		return;
732 	while (*p) {
733 		parent = *p;
734 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
735 					tree_node);
736 		if (mz->usage_in_excess < mz_node->usage_in_excess)
737 			p = &(*p)->rb_left;
738 		/*
739 		 * We can't avoid mem cgroups that are over their soft
740 		 * limit by the same amount
741 		 */
742 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
743 			p = &(*p)->rb_right;
744 	}
745 	rb_link_node(&mz->tree_node, parent, p);
746 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
747 	mz->on_tree = true;
748 }
749 
750 static void
751 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
752 				struct mem_cgroup_per_zone *mz,
753 				struct mem_cgroup_tree_per_zone *mctz)
754 {
755 	if (!mz->on_tree)
756 		return;
757 	rb_erase(&mz->tree_node, &mctz->rb_root);
758 	mz->on_tree = false;
759 }
760 
761 static void
762 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
763 				struct mem_cgroup_per_zone *mz,
764 				struct mem_cgroup_tree_per_zone *mctz)
765 {
766 	spin_lock(&mctz->lock);
767 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
768 	spin_unlock(&mctz->lock);
769 }
770 
771 
772 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
773 {
774 	unsigned long long excess;
775 	struct mem_cgroup_per_zone *mz;
776 	struct mem_cgroup_tree_per_zone *mctz;
777 	int nid = page_to_nid(page);
778 	int zid = page_zonenum(page);
779 	mctz = soft_limit_tree_from_page(page);
780 
781 	/*
782 	 * Necessary to update all ancestors when hierarchy is used.
783 	 * because their event counter is not touched.
784 	 */
785 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
786 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
787 		excess = res_counter_soft_limit_excess(&memcg->res);
788 		/*
789 		 * We have to update the tree if mz is on RB-tree or
790 		 * mem is over its softlimit.
791 		 */
792 		if (excess || mz->on_tree) {
793 			spin_lock(&mctz->lock);
794 			/* if on-tree, remove it */
795 			if (mz->on_tree)
796 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
797 			/*
798 			 * Insert again. mz->usage_in_excess will be updated.
799 			 * If excess is 0, no tree ops.
800 			 */
801 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
802 			spin_unlock(&mctz->lock);
803 		}
804 	}
805 }
806 
807 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
808 {
809 	int node, zone;
810 	struct mem_cgroup_per_zone *mz;
811 	struct mem_cgroup_tree_per_zone *mctz;
812 
813 	for_each_node(node) {
814 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
815 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
816 			mctz = soft_limit_tree_node_zone(node, zone);
817 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 		}
819 	}
820 }
821 
822 static struct mem_cgroup_per_zone *
823 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824 {
825 	struct rb_node *rightmost = NULL;
826 	struct mem_cgroup_per_zone *mz;
827 
828 retry:
829 	mz = NULL;
830 	rightmost = rb_last(&mctz->rb_root);
831 	if (!rightmost)
832 		goto done;		/* Nothing to reclaim from */
833 
834 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
835 	/*
836 	 * Remove the node now but someone else can add it back,
837 	 * we will to add it back at the end of reclaim to its correct
838 	 * position in the tree.
839 	 */
840 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
841 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
842 		!css_tryget(&mz->memcg->css))
843 		goto retry;
844 done:
845 	return mz;
846 }
847 
848 static struct mem_cgroup_per_zone *
849 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
850 {
851 	struct mem_cgroup_per_zone *mz;
852 
853 	spin_lock(&mctz->lock);
854 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
855 	spin_unlock(&mctz->lock);
856 	return mz;
857 }
858 
859 /*
860  * Implementation Note: reading percpu statistics for memcg.
861  *
862  * Both of vmstat[] and percpu_counter has threshold and do periodic
863  * synchronization to implement "quick" read. There are trade-off between
864  * reading cost and precision of value. Then, we may have a chance to implement
865  * a periodic synchronizion of counter in memcg's counter.
866  *
867  * But this _read() function is used for user interface now. The user accounts
868  * memory usage by memory cgroup and he _always_ requires exact value because
869  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
870  * have to visit all online cpus and make sum. So, for now, unnecessary
871  * synchronization is not implemented. (just implemented for cpu hotplug)
872  *
873  * If there are kernel internal actions which can make use of some not-exact
874  * value, and reading all cpu value can be performance bottleneck in some
875  * common workload, threashold and synchonization as vmstat[] should be
876  * implemented.
877  */
878 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
879 				 enum mem_cgroup_stat_index idx)
880 {
881 	long val = 0;
882 	int cpu;
883 
884 	get_online_cpus();
885 	for_each_online_cpu(cpu)
886 		val += per_cpu(memcg->stat->count[idx], cpu);
887 #ifdef CONFIG_HOTPLUG_CPU
888 	spin_lock(&memcg->pcp_counter_lock);
889 	val += memcg->nocpu_base.count[idx];
890 	spin_unlock(&memcg->pcp_counter_lock);
891 #endif
892 	put_online_cpus();
893 	return val;
894 }
895 
896 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
897 					 bool charge)
898 {
899 	int val = (charge) ? 1 : -1;
900 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
901 }
902 
903 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
904 					    enum mem_cgroup_events_index idx)
905 {
906 	unsigned long val = 0;
907 	int cpu;
908 
909 	for_each_online_cpu(cpu)
910 		val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 	spin_lock(&memcg->pcp_counter_lock);
913 	val += memcg->nocpu_base.events[idx];
914 	spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 	return val;
917 }
918 
919 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
920 					 bool anon, int nr_pages)
921 {
922 	preempt_disable();
923 
924 	/*
925 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 	 * counted as CACHE even if it's on ANON LRU.
927 	 */
928 	if (anon)
929 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 				nr_pages);
931 	else
932 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 				nr_pages);
934 
935 	/* pagein of a big page is an event. So, ignore page size */
936 	if (nr_pages > 0)
937 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
938 	else {
939 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
940 		nr_pages = -nr_pages; /* for event */
941 	}
942 
943 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
944 
945 	preempt_enable();
946 }
947 
948 unsigned long
949 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 {
951 	struct mem_cgroup_per_zone *mz;
952 
953 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 	return mz->lru_size[lru];
955 }
956 
957 static unsigned long
958 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
959 			unsigned int lru_mask)
960 {
961 	struct mem_cgroup_per_zone *mz;
962 	enum lru_list lru;
963 	unsigned long ret = 0;
964 
965 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
966 
967 	for_each_lru(lru) {
968 		if (BIT(lru) & lru_mask)
969 			ret += mz->lru_size[lru];
970 	}
971 	return ret;
972 }
973 
974 static unsigned long
975 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
976 			int nid, unsigned int lru_mask)
977 {
978 	u64 total = 0;
979 	int zid;
980 
981 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
982 		total += mem_cgroup_zone_nr_lru_pages(memcg,
983 						nid, zid, lru_mask);
984 
985 	return total;
986 }
987 
988 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
989 			unsigned int lru_mask)
990 {
991 	int nid;
992 	u64 total = 0;
993 
994 	for_each_node_state(nid, N_MEMORY)
995 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
996 	return total;
997 }
998 
999 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 				       enum mem_cgroup_events_target target)
1001 {
1002 	unsigned long val, next;
1003 
1004 	val = __this_cpu_read(memcg->stat->nr_page_events);
1005 	next = __this_cpu_read(memcg->stat->targets[target]);
1006 	/* from time_after() in jiffies.h */
1007 	if ((long)next - (long)val < 0) {
1008 		switch (target) {
1009 		case MEM_CGROUP_TARGET_THRESH:
1010 			next = val + THRESHOLDS_EVENTS_TARGET;
1011 			break;
1012 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 			next = val + SOFTLIMIT_EVENTS_TARGET;
1014 			break;
1015 		case MEM_CGROUP_TARGET_NUMAINFO:
1016 			next = val + NUMAINFO_EVENTS_TARGET;
1017 			break;
1018 		default:
1019 			break;
1020 		}
1021 		__this_cpu_write(memcg->stat->targets[target], next);
1022 		return true;
1023 	}
1024 	return false;
1025 }
1026 
1027 /*
1028  * Check events in order.
1029  *
1030  */
1031 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1032 {
1033 	preempt_disable();
1034 	/* threshold event is triggered in finer grain than soft limit */
1035 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1036 						MEM_CGROUP_TARGET_THRESH))) {
1037 		bool do_softlimit;
1038 		bool do_numainfo __maybe_unused;
1039 
1040 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1041 						MEM_CGROUP_TARGET_SOFTLIMIT);
1042 #if MAX_NUMNODES > 1
1043 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1044 						MEM_CGROUP_TARGET_NUMAINFO);
1045 #endif
1046 		preempt_enable();
1047 
1048 		mem_cgroup_threshold(memcg);
1049 		if (unlikely(do_softlimit))
1050 			mem_cgroup_update_tree(memcg, page);
1051 #if MAX_NUMNODES > 1
1052 		if (unlikely(do_numainfo))
1053 			atomic_inc(&memcg->numainfo_events);
1054 #endif
1055 	} else
1056 		preempt_enable();
1057 }
1058 
1059 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1060 {
1061 	return mem_cgroup_from_css(
1062 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1063 }
1064 
1065 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066 {
1067 	/*
1068 	 * mm_update_next_owner() may clear mm->owner to NULL
1069 	 * if it races with swapoff, page migration, etc.
1070 	 * So this can be called with p == NULL.
1071 	 */
1072 	if (unlikely(!p))
1073 		return NULL;
1074 
1075 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1076 }
1077 
1078 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079 {
1080 	struct mem_cgroup *memcg = NULL;
1081 
1082 	if (!mm)
1083 		return NULL;
1084 	/*
1085 	 * Because we have no locks, mm->owner's may be being moved to other
1086 	 * cgroup. We use css_tryget() here even if this looks
1087 	 * pessimistic (rather than adding locks here).
1088 	 */
1089 	rcu_read_lock();
1090 	do {
1091 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 		if (unlikely(!memcg))
1093 			break;
1094 	} while (!css_tryget(&memcg->css));
1095 	rcu_read_unlock();
1096 	return memcg;
1097 }
1098 
1099 /*
1100  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101  * ref. count) or NULL if the whole root's subtree has been visited.
1102  *
1103  * helper function to be used by mem_cgroup_iter
1104  */
1105 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106 		struct mem_cgroup *last_visited)
1107 {
1108 	struct cgroup *prev_cgroup, *next_cgroup;
1109 
1110 	/*
1111 	 * Root is not visited by cgroup iterators so it needs an
1112 	 * explicit visit.
1113 	 */
1114 	if (!last_visited)
1115 		return root;
1116 
1117 	prev_cgroup = (last_visited == root) ? NULL
1118 		: last_visited->css.cgroup;
1119 skip_node:
1120 	next_cgroup = cgroup_next_descendant_pre(
1121 			prev_cgroup, root->css.cgroup);
1122 
1123 	/*
1124 	 * Even if we found a group we have to make sure it is
1125 	 * alive. css && !memcg means that the groups should be
1126 	 * skipped and we should continue the tree walk.
1127 	 * last_visited css is safe to use because it is
1128 	 * protected by css_get and the tree walk is rcu safe.
1129 	 */
1130 	if (next_cgroup) {
1131 		struct mem_cgroup *mem = mem_cgroup_from_cont(
1132 				next_cgroup);
1133 		if (css_tryget(&mem->css))
1134 			return mem;
1135 		else {
1136 			prev_cgroup = next_cgroup;
1137 			goto skip_node;
1138 		}
1139 	}
1140 
1141 	return NULL;
1142 }
1143 
1144 /**
1145  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1146  * @root: hierarchy root
1147  * @prev: previously returned memcg, NULL on first invocation
1148  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1149  *
1150  * Returns references to children of the hierarchy below @root, or
1151  * @root itself, or %NULL after a full round-trip.
1152  *
1153  * Caller must pass the return value in @prev on subsequent
1154  * invocations for reference counting, or use mem_cgroup_iter_break()
1155  * to cancel a hierarchy walk before the round-trip is complete.
1156  *
1157  * Reclaimers can specify a zone and a priority level in @reclaim to
1158  * divide up the memcgs in the hierarchy among all concurrent
1159  * reclaimers operating on the same zone and priority.
1160  */
1161 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1162 				   struct mem_cgroup *prev,
1163 				   struct mem_cgroup_reclaim_cookie *reclaim)
1164 {
1165 	struct mem_cgroup *memcg = NULL;
1166 	struct mem_cgroup *last_visited = NULL;
1167 	unsigned long uninitialized_var(dead_count);
1168 
1169 	if (mem_cgroup_disabled())
1170 		return NULL;
1171 
1172 	if (!root)
1173 		root = root_mem_cgroup;
1174 
1175 	if (prev && !reclaim)
1176 		last_visited = prev;
1177 
1178 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1179 		if (prev)
1180 			goto out_css_put;
1181 		return root;
1182 	}
1183 
1184 	rcu_read_lock();
1185 	while (!memcg) {
1186 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1187 
1188 		if (reclaim) {
1189 			int nid = zone_to_nid(reclaim->zone);
1190 			int zid = zone_idx(reclaim->zone);
1191 			struct mem_cgroup_per_zone *mz;
1192 
1193 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1194 			iter = &mz->reclaim_iter[reclaim->priority];
1195 			last_visited = iter->last_visited;
1196 			if (prev && reclaim->generation != iter->generation) {
1197 				iter->last_visited = NULL;
1198 				goto out_unlock;
1199 			}
1200 
1201 			/*
1202 			 * If the dead_count mismatches, a destruction
1203 			 * has happened or is happening concurrently.
1204 			 * If the dead_count matches, a destruction
1205 			 * might still happen concurrently, but since
1206 			 * we checked under RCU, that destruction
1207 			 * won't free the object until we release the
1208 			 * RCU reader lock.  Thus, the dead_count
1209 			 * check verifies the pointer is still valid,
1210 			 * css_tryget() verifies the cgroup pointed to
1211 			 * is alive.
1212 			 */
1213 			dead_count = atomic_read(&root->dead_count);
1214 			smp_rmb();
1215 			last_visited = iter->last_visited;
1216 			if (last_visited) {
1217 				if ((dead_count != iter->last_dead_count) ||
1218 					!css_tryget(&last_visited->css)) {
1219 					last_visited = NULL;
1220 				}
1221 			}
1222 		}
1223 
1224 		memcg = __mem_cgroup_iter_next(root, last_visited);
1225 
1226 		if (reclaim) {
1227 			if (last_visited)
1228 				css_put(&last_visited->css);
1229 
1230 			iter->last_visited = memcg;
1231 			smp_wmb();
1232 			iter->last_dead_count = dead_count;
1233 
1234 			if (!memcg)
1235 				iter->generation++;
1236 			else if (!prev && memcg)
1237 				reclaim->generation = iter->generation;
1238 		}
1239 
1240 		if (prev && !memcg)
1241 			goto out_unlock;
1242 	}
1243 out_unlock:
1244 	rcu_read_unlock();
1245 out_css_put:
1246 	if (prev && prev != root)
1247 		css_put(&prev->css);
1248 
1249 	return memcg;
1250 }
1251 
1252 /**
1253  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254  * @root: hierarchy root
1255  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256  */
1257 void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 			   struct mem_cgroup *prev)
1259 {
1260 	if (!root)
1261 		root = root_mem_cgroup;
1262 	if (prev && prev != root)
1263 		css_put(&prev->css);
1264 }
1265 
1266 /*
1267  * Iteration constructs for visiting all cgroups (under a tree).  If
1268  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1269  * be used for reference counting.
1270  */
1271 #define for_each_mem_cgroup_tree(iter, root)		\
1272 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1273 	     iter != NULL;				\
1274 	     iter = mem_cgroup_iter(root, iter, NULL))
1275 
1276 #define for_each_mem_cgroup(iter)			\
1277 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1278 	     iter != NULL;				\
1279 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1280 
1281 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1282 {
1283 	struct mem_cgroup *memcg;
1284 
1285 	rcu_read_lock();
1286 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1287 	if (unlikely(!memcg))
1288 		goto out;
1289 
1290 	switch (idx) {
1291 	case PGFAULT:
1292 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1293 		break;
1294 	case PGMAJFAULT:
1295 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1296 		break;
1297 	default:
1298 		BUG();
1299 	}
1300 out:
1301 	rcu_read_unlock();
1302 }
1303 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1304 
1305 /**
1306  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1307  * @zone: zone of the wanted lruvec
1308  * @memcg: memcg of the wanted lruvec
1309  *
1310  * Returns the lru list vector holding pages for the given @zone and
1311  * @mem.  This can be the global zone lruvec, if the memory controller
1312  * is disabled.
1313  */
1314 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1315 				      struct mem_cgroup *memcg)
1316 {
1317 	struct mem_cgroup_per_zone *mz;
1318 	struct lruvec *lruvec;
1319 
1320 	if (mem_cgroup_disabled()) {
1321 		lruvec = &zone->lruvec;
1322 		goto out;
1323 	}
1324 
1325 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1326 	lruvec = &mz->lruvec;
1327 out:
1328 	/*
1329 	 * Since a node can be onlined after the mem_cgroup was created,
1330 	 * we have to be prepared to initialize lruvec->zone here;
1331 	 * and if offlined then reonlined, we need to reinitialize it.
1332 	 */
1333 	if (unlikely(lruvec->zone != zone))
1334 		lruvec->zone = zone;
1335 	return lruvec;
1336 }
1337 
1338 /*
1339  * Following LRU functions are allowed to be used without PCG_LOCK.
1340  * Operations are called by routine of global LRU independently from memcg.
1341  * What we have to take care of here is validness of pc->mem_cgroup.
1342  *
1343  * Changes to pc->mem_cgroup happens when
1344  * 1. charge
1345  * 2. moving account
1346  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1347  * It is added to LRU before charge.
1348  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1349  * When moving account, the page is not on LRU. It's isolated.
1350  */
1351 
1352 /**
1353  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1354  * @page: the page
1355  * @zone: zone of the page
1356  */
1357 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1358 {
1359 	struct mem_cgroup_per_zone *mz;
1360 	struct mem_cgroup *memcg;
1361 	struct page_cgroup *pc;
1362 	struct lruvec *lruvec;
1363 
1364 	if (mem_cgroup_disabled()) {
1365 		lruvec = &zone->lruvec;
1366 		goto out;
1367 	}
1368 
1369 	pc = lookup_page_cgroup(page);
1370 	memcg = pc->mem_cgroup;
1371 
1372 	/*
1373 	 * Surreptitiously switch any uncharged offlist page to root:
1374 	 * an uncharged page off lru does nothing to secure
1375 	 * its former mem_cgroup from sudden removal.
1376 	 *
1377 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1378 	 * under page_cgroup lock: between them, they make all uses
1379 	 * of pc->mem_cgroup safe.
1380 	 */
1381 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1382 		pc->mem_cgroup = memcg = root_mem_cgroup;
1383 
1384 	mz = page_cgroup_zoneinfo(memcg, page);
1385 	lruvec = &mz->lruvec;
1386 out:
1387 	/*
1388 	 * Since a node can be onlined after the mem_cgroup was created,
1389 	 * we have to be prepared to initialize lruvec->zone here;
1390 	 * and if offlined then reonlined, we need to reinitialize it.
1391 	 */
1392 	if (unlikely(lruvec->zone != zone))
1393 		lruvec->zone = zone;
1394 	return lruvec;
1395 }
1396 
1397 /**
1398  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1399  * @lruvec: mem_cgroup per zone lru vector
1400  * @lru: index of lru list the page is sitting on
1401  * @nr_pages: positive when adding or negative when removing
1402  *
1403  * This function must be called when a page is added to or removed from an
1404  * lru list.
1405  */
1406 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1407 				int nr_pages)
1408 {
1409 	struct mem_cgroup_per_zone *mz;
1410 	unsigned long *lru_size;
1411 
1412 	if (mem_cgroup_disabled())
1413 		return;
1414 
1415 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1416 	lru_size = mz->lru_size + lru;
1417 	*lru_size += nr_pages;
1418 	VM_BUG_ON((long)(*lru_size) < 0);
1419 }
1420 
1421 /*
1422  * Checks whether given mem is same or in the root_mem_cgroup's
1423  * hierarchy subtree
1424  */
1425 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1426 				  struct mem_cgroup *memcg)
1427 {
1428 	if (root_memcg == memcg)
1429 		return true;
1430 	if (!root_memcg->use_hierarchy || !memcg)
1431 		return false;
1432 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1433 }
1434 
1435 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1436 				       struct mem_cgroup *memcg)
1437 {
1438 	bool ret;
1439 
1440 	rcu_read_lock();
1441 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1442 	rcu_read_unlock();
1443 	return ret;
1444 }
1445 
1446 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1447 {
1448 	int ret;
1449 	struct mem_cgroup *curr = NULL;
1450 	struct task_struct *p;
1451 
1452 	p = find_lock_task_mm(task);
1453 	if (p) {
1454 		curr = try_get_mem_cgroup_from_mm(p->mm);
1455 		task_unlock(p);
1456 	} else {
1457 		/*
1458 		 * All threads may have already detached their mm's, but the oom
1459 		 * killer still needs to detect if they have already been oom
1460 		 * killed to prevent needlessly killing additional tasks.
1461 		 */
1462 		task_lock(task);
1463 		curr = mem_cgroup_from_task(task);
1464 		if (curr)
1465 			css_get(&curr->css);
1466 		task_unlock(task);
1467 	}
1468 	if (!curr)
1469 		return 0;
1470 	/*
1471 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1472 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1473 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1474 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1475 	 */
1476 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1477 	css_put(&curr->css);
1478 	return ret;
1479 }
1480 
1481 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1482 {
1483 	unsigned long inactive_ratio;
1484 	unsigned long inactive;
1485 	unsigned long active;
1486 	unsigned long gb;
1487 
1488 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1489 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1490 
1491 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1492 	if (gb)
1493 		inactive_ratio = int_sqrt(10 * gb);
1494 	else
1495 		inactive_ratio = 1;
1496 
1497 	return inactive * inactive_ratio < active;
1498 }
1499 
1500 #define mem_cgroup_from_res_counter(counter, member)	\
1501 	container_of(counter, struct mem_cgroup, member)
1502 
1503 /**
1504  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1505  * @memcg: the memory cgroup
1506  *
1507  * Returns the maximum amount of memory @mem can be charged with, in
1508  * pages.
1509  */
1510 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1511 {
1512 	unsigned long long margin;
1513 
1514 	margin = res_counter_margin(&memcg->res);
1515 	if (do_swap_account)
1516 		margin = min(margin, res_counter_margin(&memcg->memsw));
1517 	return margin >> PAGE_SHIFT;
1518 }
1519 
1520 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1521 {
1522 	struct cgroup *cgrp = memcg->css.cgroup;
1523 
1524 	/* root ? */
1525 	if (cgrp->parent == NULL)
1526 		return vm_swappiness;
1527 
1528 	return memcg->swappiness;
1529 }
1530 
1531 /*
1532  * memcg->moving_account is used for checking possibility that some thread is
1533  * calling move_account(). When a thread on CPU-A starts moving pages under
1534  * a memcg, other threads should check memcg->moving_account under
1535  * rcu_read_lock(), like this:
1536  *
1537  *         CPU-A                                    CPU-B
1538  *                                              rcu_read_lock()
1539  *         memcg->moving_account+1              if (memcg->mocing_account)
1540  *                                                   take heavy locks.
1541  *         synchronize_rcu()                    update something.
1542  *                                              rcu_read_unlock()
1543  *         start move here.
1544  */
1545 
1546 /* for quick checking without looking up memcg */
1547 atomic_t memcg_moving __read_mostly;
1548 
1549 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1550 {
1551 	atomic_inc(&memcg_moving);
1552 	atomic_inc(&memcg->moving_account);
1553 	synchronize_rcu();
1554 }
1555 
1556 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1557 {
1558 	/*
1559 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1560 	 * We check NULL in callee rather than caller.
1561 	 */
1562 	if (memcg) {
1563 		atomic_dec(&memcg_moving);
1564 		atomic_dec(&memcg->moving_account);
1565 	}
1566 }
1567 
1568 /*
1569  * 2 routines for checking "mem" is under move_account() or not.
1570  *
1571  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1572  *			  is used for avoiding races in accounting.  If true,
1573  *			  pc->mem_cgroup may be overwritten.
1574  *
1575  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1576  *			  under hierarchy of moving cgroups. This is for
1577  *			  waiting at hith-memory prressure caused by "move".
1578  */
1579 
1580 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1581 {
1582 	VM_BUG_ON(!rcu_read_lock_held());
1583 	return atomic_read(&memcg->moving_account) > 0;
1584 }
1585 
1586 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587 {
1588 	struct mem_cgroup *from;
1589 	struct mem_cgroup *to;
1590 	bool ret = false;
1591 	/*
1592 	 * Unlike task_move routines, we access mc.to, mc.from not under
1593 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 	 */
1595 	spin_lock(&mc.lock);
1596 	from = mc.from;
1597 	to = mc.to;
1598 	if (!from)
1599 		goto unlock;
1600 
1601 	ret = mem_cgroup_same_or_subtree(memcg, from)
1602 		|| mem_cgroup_same_or_subtree(memcg, to);
1603 unlock:
1604 	spin_unlock(&mc.lock);
1605 	return ret;
1606 }
1607 
1608 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 {
1610 	if (mc.moving_task && current != mc.moving_task) {
1611 		if (mem_cgroup_under_move(memcg)) {
1612 			DEFINE_WAIT(wait);
1613 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 			/* moving charge context might have finished. */
1615 			if (mc.moving_task)
1616 				schedule();
1617 			finish_wait(&mc.waitq, &wait);
1618 			return true;
1619 		}
1620 	}
1621 	return false;
1622 }
1623 
1624 /*
1625  * Take this lock when
1626  * - a code tries to modify page's memcg while it's USED.
1627  * - a code tries to modify page state accounting in a memcg.
1628  * see mem_cgroup_stolen(), too.
1629  */
1630 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1631 				  unsigned long *flags)
1632 {
1633 	spin_lock_irqsave(&memcg->move_lock, *flags);
1634 }
1635 
1636 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1637 				unsigned long *flags)
1638 {
1639 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1640 }
1641 
1642 #define K(x) ((x) << (PAGE_SHIFT-10))
1643 /**
1644  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1645  * @memcg: The memory cgroup that went over limit
1646  * @p: Task that is going to be killed
1647  *
1648  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1649  * enabled
1650  */
1651 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1652 {
1653 	struct cgroup *task_cgrp;
1654 	struct cgroup *mem_cgrp;
1655 	/*
1656 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1657 	 * on the assumption that OOM is serialized for memory controller.
1658 	 * If this assumption is broken, revisit this code.
1659 	 */
1660 	static char memcg_name[PATH_MAX];
1661 	int ret;
1662 	struct mem_cgroup *iter;
1663 	unsigned int i;
1664 
1665 	if (!p)
1666 		return;
1667 
1668 	rcu_read_lock();
1669 
1670 	mem_cgrp = memcg->css.cgroup;
1671 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1672 
1673 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1674 	if (ret < 0) {
1675 		/*
1676 		 * Unfortunately, we are unable to convert to a useful name
1677 		 * But we'll still print out the usage information
1678 		 */
1679 		rcu_read_unlock();
1680 		goto done;
1681 	}
1682 	rcu_read_unlock();
1683 
1684 	pr_info("Task in %s killed", memcg_name);
1685 
1686 	rcu_read_lock();
1687 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1688 	if (ret < 0) {
1689 		rcu_read_unlock();
1690 		goto done;
1691 	}
1692 	rcu_read_unlock();
1693 
1694 	/*
1695 	 * Continues from above, so we don't need an KERN_ level
1696 	 */
1697 	pr_cont(" as a result of limit of %s\n", memcg_name);
1698 done:
1699 
1700 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1701 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1704 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1705 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1708 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1709 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1712 
1713 	for_each_mem_cgroup_tree(iter, memcg) {
1714 		pr_info("Memory cgroup stats");
1715 
1716 		rcu_read_lock();
1717 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1718 		if (!ret)
1719 			pr_cont(" for %s", memcg_name);
1720 		rcu_read_unlock();
1721 		pr_cont(":");
1722 
1723 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1724 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1725 				continue;
1726 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1727 				K(mem_cgroup_read_stat(iter, i)));
1728 		}
1729 
1730 		for (i = 0; i < NR_LRU_LISTS; i++)
1731 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1732 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1733 
1734 		pr_cont("\n");
1735 	}
1736 }
1737 
1738 /*
1739  * This function returns the number of memcg under hierarchy tree. Returns
1740  * 1(self count) if no children.
1741  */
1742 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1743 {
1744 	int num = 0;
1745 	struct mem_cgroup *iter;
1746 
1747 	for_each_mem_cgroup_tree(iter, memcg)
1748 		num++;
1749 	return num;
1750 }
1751 
1752 /*
1753  * Return the memory (and swap, if configured) limit for a memcg.
1754  */
1755 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1756 {
1757 	u64 limit;
1758 
1759 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1760 
1761 	/*
1762 	 * Do not consider swap space if we cannot swap due to swappiness
1763 	 */
1764 	if (mem_cgroup_swappiness(memcg)) {
1765 		u64 memsw;
1766 
1767 		limit += total_swap_pages << PAGE_SHIFT;
1768 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1769 
1770 		/*
1771 		 * If memsw is finite and limits the amount of swap space
1772 		 * available to this memcg, return that limit.
1773 		 */
1774 		limit = min(limit, memsw);
1775 	}
1776 
1777 	return limit;
1778 }
1779 
1780 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 				     int order)
1782 {
1783 	struct mem_cgroup *iter;
1784 	unsigned long chosen_points = 0;
1785 	unsigned long totalpages;
1786 	unsigned int points = 0;
1787 	struct task_struct *chosen = NULL;
1788 
1789 	/*
1790 	 * If current has a pending SIGKILL or is exiting, then automatically
1791 	 * select it.  The goal is to allow it to allocate so that it may
1792 	 * quickly exit and free its memory.
1793 	 */
1794 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1795 		set_thread_flag(TIF_MEMDIE);
1796 		return;
1797 	}
1798 
1799 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1800 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1801 	for_each_mem_cgroup_tree(iter, memcg) {
1802 		struct cgroup *cgroup = iter->css.cgroup;
1803 		struct cgroup_iter it;
1804 		struct task_struct *task;
1805 
1806 		cgroup_iter_start(cgroup, &it);
1807 		while ((task = cgroup_iter_next(cgroup, &it))) {
1808 			switch (oom_scan_process_thread(task, totalpages, NULL,
1809 							false)) {
1810 			case OOM_SCAN_SELECT:
1811 				if (chosen)
1812 					put_task_struct(chosen);
1813 				chosen = task;
1814 				chosen_points = ULONG_MAX;
1815 				get_task_struct(chosen);
1816 				/* fall through */
1817 			case OOM_SCAN_CONTINUE:
1818 				continue;
1819 			case OOM_SCAN_ABORT:
1820 				cgroup_iter_end(cgroup, &it);
1821 				mem_cgroup_iter_break(memcg, iter);
1822 				if (chosen)
1823 					put_task_struct(chosen);
1824 				return;
1825 			case OOM_SCAN_OK:
1826 				break;
1827 			};
1828 			points = oom_badness(task, memcg, NULL, totalpages);
1829 			if (points > chosen_points) {
1830 				if (chosen)
1831 					put_task_struct(chosen);
1832 				chosen = task;
1833 				chosen_points = points;
1834 				get_task_struct(chosen);
1835 			}
1836 		}
1837 		cgroup_iter_end(cgroup, &it);
1838 	}
1839 
1840 	if (!chosen)
1841 		return;
1842 	points = chosen_points * 1000 / totalpages;
1843 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 			 NULL, "Memory cgroup out of memory");
1845 }
1846 
1847 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 					gfp_t gfp_mask,
1849 					unsigned long flags)
1850 {
1851 	unsigned long total = 0;
1852 	bool noswap = false;
1853 	int loop;
1854 
1855 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 		noswap = true;
1857 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 		noswap = true;
1859 
1860 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 		if (loop)
1862 			drain_all_stock_async(memcg);
1863 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 		/*
1865 		 * Allow limit shrinkers, which are triggered directly
1866 		 * by userspace, to catch signals and stop reclaim
1867 		 * after minimal progress, regardless of the margin.
1868 		 */
1869 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 			break;
1871 		if (mem_cgroup_margin(memcg))
1872 			break;
1873 		/*
1874 		 * If nothing was reclaimed after two attempts, there
1875 		 * may be no reclaimable pages in this hierarchy.
1876 		 */
1877 		if (loop && !total)
1878 			break;
1879 	}
1880 	return total;
1881 }
1882 
1883 /**
1884  * test_mem_cgroup_node_reclaimable
1885  * @memcg: the target memcg
1886  * @nid: the node ID to be checked.
1887  * @noswap : specify true here if the user wants flle only information.
1888  *
1889  * This function returns whether the specified memcg contains any
1890  * reclaimable pages on a node. Returns true if there are any reclaimable
1891  * pages in the node.
1892  */
1893 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1894 		int nid, bool noswap)
1895 {
1896 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1897 		return true;
1898 	if (noswap || !total_swap_pages)
1899 		return false;
1900 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1901 		return true;
1902 	return false;
1903 
1904 }
1905 #if MAX_NUMNODES > 1
1906 
1907 /*
1908  * Always updating the nodemask is not very good - even if we have an empty
1909  * list or the wrong list here, we can start from some node and traverse all
1910  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911  *
1912  */
1913 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1914 {
1915 	int nid;
1916 	/*
1917 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 	 * pagein/pageout changes since the last update.
1919 	 */
1920 	if (!atomic_read(&memcg->numainfo_events))
1921 		return;
1922 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1923 		return;
1924 
1925 	/* make a nodemask where this memcg uses memory from */
1926 	memcg->scan_nodes = node_states[N_MEMORY];
1927 
1928 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1929 
1930 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 			node_clear(nid, memcg->scan_nodes);
1932 	}
1933 
1934 	atomic_set(&memcg->numainfo_events, 0);
1935 	atomic_set(&memcg->numainfo_updating, 0);
1936 }
1937 
1938 /*
1939  * Selecting a node where we start reclaim from. Because what we need is just
1940  * reducing usage counter, start from anywhere is O,K. Considering
1941  * memory reclaim from current node, there are pros. and cons.
1942  *
1943  * Freeing memory from current node means freeing memory from a node which
1944  * we'll use or we've used. So, it may make LRU bad. And if several threads
1945  * hit limits, it will see a contention on a node. But freeing from remote
1946  * node means more costs for memory reclaim because of memory latency.
1947  *
1948  * Now, we use round-robin. Better algorithm is welcomed.
1949  */
1950 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1951 {
1952 	int node;
1953 
1954 	mem_cgroup_may_update_nodemask(memcg);
1955 	node = memcg->last_scanned_node;
1956 
1957 	node = next_node(node, memcg->scan_nodes);
1958 	if (node == MAX_NUMNODES)
1959 		node = first_node(memcg->scan_nodes);
1960 	/*
1961 	 * We call this when we hit limit, not when pages are added to LRU.
1962 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 	 * memcg is too small and all pages are not on LRU. In that case,
1964 	 * we use curret node.
1965 	 */
1966 	if (unlikely(node == MAX_NUMNODES))
1967 		node = numa_node_id();
1968 
1969 	memcg->last_scanned_node = node;
1970 	return node;
1971 }
1972 
1973 /*
1974  * Check all nodes whether it contains reclaimable pages or not.
1975  * For quick scan, we make use of scan_nodes. This will allow us to skip
1976  * unused nodes. But scan_nodes is lazily updated and may not cotain
1977  * enough new information. We need to do double check.
1978  */
1979 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1980 {
1981 	int nid;
1982 
1983 	/*
1984 	 * quick check...making use of scan_node.
1985 	 * We can skip unused nodes.
1986 	 */
1987 	if (!nodes_empty(memcg->scan_nodes)) {
1988 		for (nid = first_node(memcg->scan_nodes);
1989 		     nid < MAX_NUMNODES;
1990 		     nid = next_node(nid, memcg->scan_nodes)) {
1991 
1992 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1993 				return true;
1994 		}
1995 	}
1996 	/*
1997 	 * Check rest of nodes.
1998 	 */
1999 	for_each_node_state(nid, N_MEMORY) {
2000 		if (node_isset(nid, memcg->scan_nodes))
2001 			continue;
2002 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2003 			return true;
2004 	}
2005 	return false;
2006 }
2007 
2008 #else
2009 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2010 {
2011 	return 0;
2012 }
2013 
2014 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015 {
2016 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2017 }
2018 #endif
2019 
2020 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 				   struct zone *zone,
2022 				   gfp_t gfp_mask,
2023 				   unsigned long *total_scanned)
2024 {
2025 	struct mem_cgroup *victim = NULL;
2026 	int total = 0;
2027 	int loop = 0;
2028 	unsigned long excess;
2029 	unsigned long nr_scanned;
2030 	struct mem_cgroup_reclaim_cookie reclaim = {
2031 		.zone = zone,
2032 		.priority = 0,
2033 	};
2034 
2035 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2036 
2037 	while (1) {
2038 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2039 		if (!victim) {
2040 			loop++;
2041 			if (loop >= 2) {
2042 				/*
2043 				 * If we have not been able to reclaim
2044 				 * anything, it might because there are
2045 				 * no reclaimable pages under this hierarchy
2046 				 */
2047 				if (!total)
2048 					break;
2049 				/*
2050 				 * We want to do more targeted reclaim.
2051 				 * excess >> 2 is not to excessive so as to
2052 				 * reclaim too much, nor too less that we keep
2053 				 * coming back to reclaim from this cgroup
2054 				 */
2055 				if (total >= (excess >> 2) ||
2056 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2057 					break;
2058 			}
2059 			continue;
2060 		}
2061 		if (!mem_cgroup_reclaimable(victim, false))
2062 			continue;
2063 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 						     zone, &nr_scanned);
2065 		*total_scanned += nr_scanned;
2066 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2067 			break;
2068 	}
2069 	mem_cgroup_iter_break(root_memcg, victim);
2070 	return total;
2071 }
2072 
2073 /*
2074  * Check OOM-Killer is already running under our hierarchy.
2075  * If someone is running, return false.
2076  * Has to be called with memcg_oom_lock
2077  */
2078 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2079 {
2080 	struct mem_cgroup *iter, *failed = NULL;
2081 
2082 	for_each_mem_cgroup_tree(iter, memcg) {
2083 		if (iter->oom_lock) {
2084 			/*
2085 			 * this subtree of our hierarchy is already locked
2086 			 * so we cannot give a lock.
2087 			 */
2088 			failed = iter;
2089 			mem_cgroup_iter_break(memcg, iter);
2090 			break;
2091 		} else
2092 			iter->oom_lock = true;
2093 	}
2094 
2095 	if (!failed)
2096 		return true;
2097 
2098 	/*
2099 	 * OK, we failed to lock the whole subtree so we have to clean up
2100 	 * what we set up to the failing subtree
2101 	 */
2102 	for_each_mem_cgroup_tree(iter, memcg) {
2103 		if (iter == failed) {
2104 			mem_cgroup_iter_break(memcg, iter);
2105 			break;
2106 		}
2107 		iter->oom_lock = false;
2108 	}
2109 	return false;
2110 }
2111 
2112 /*
2113  * Has to be called with memcg_oom_lock
2114  */
2115 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2116 {
2117 	struct mem_cgroup *iter;
2118 
2119 	for_each_mem_cgroup_tree(iter, memcg)
2120 		iter->oom_lock = false;
2121 	return 0;
2122 }
2123 
2124 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2125 {
2126 	struct mem_cgroup *iter;
2127 
2128 	for_each_mem_cgroup_tree(iter, memcg)
2129 		atomic_inc(&iter->under_oom);
2130 }
2131 
2132 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2133 {
2134 	struct mem_cgroup *iter;
2135 
2136 	/*
2137 	 * When a new child is created while the hierarchy is under oom,
2138 	 * mem_cgroup_oom_lock() may not be called. We have to use
2139 	 * atomic_add_unless() here.
2140 	 */
2141 	for_each_mem_cgroup_tree(iter, memcg)
2142 		atomic_add_unless(&iter->under_oom, -1, 0);
2143 }
2144 
2145 static DEFINE_SPINLOCK(memcg_oom_lock);
2146 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147 
2148 struct oom_wait_info {
2149 	struct mem_cgroup *memcg;
2150 	wait_queue_t	wait;
2151 };
2152 
2153 static int memcg_oom_wake_function(wait_queue_t *wait,
2154 	unsigned mode, int sync, void *arg)
2155 {
2156 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 	struct mem_cgroup *oom_wait_memcg;
2158 	struct oom_wait_info *oom_wait_info;
2159 
2160 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2161 	oom_wait_memcg = oom_wait_info->memcg;
2162 
2163 	/*
2164 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2165 	 * Then we can use css_is_ancestor without taking care of RCU.
2166 	 */
2167 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2169 		return 0;
2170 	return autoremove_wake_function(wait, mode, sync, arg);
2171 }
2172 
2173 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2174 {
2175 	/* for filtering, pass "memcg" as argument. */
2176 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2177 }
2178 
2179 static void memcg_oom_recover(struct mem_cgroup *memcg)
2180 {
2181 	if (memcg && atomic_read(&memcg->under_oom))
2182 		memcg_wakeup_oom(memcg);
2183 }
2184 
2185 /*
2186  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2187  */
2188 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2189 				  int order)
2190 {
2191 	struct oom_wait_info owait;
2192 	bool locked, need_to_kill;
2193 
2194 	owait.memcg = memcg;
2195 	owait.wait.flags = 0;
2196 	owait.wait.func = memcg_oom_wake_function;
2197 	owait.wait.private = current;
2198 	INIT_LIST_HEAD(&owait.wait.task_list);
2199 	need_to_kill = true;
2200 	mem_cgroup_mark_under_oom(memcg);
2201 
2202 	/* At first, try to OOM lock hierarchy under memcg.*/
2203 	spin_lock(&memcg_oom_lock);
2204 	locked = mem_cgroup_oom_lock(memcg);
2205 	/*
2206 	 * Even if signal_pending(), we can't quit charge() loop without
2207 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2208 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2209 	 */
2210 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2211 	if (!locked || memcg->oom_kill_disable)
2212 		need_to_kill = false;
2213 	if (locked)
2214 		mem_cgroup_oom_notify(memcg);
2215 	spin_unlock(&memcg_oom_lock);
2216 
2217 	if (need_to_kill) {
2218 		finish_wait(&memcg_oom_waitq, &owait.wait);
2219 		mem_cgroup_out_of_memory(memcg, mask, order);
2220 	} else {
2221 		schedule();
2222 		finish_wait(&memcg_oom_waitq, &owait.wait);
2223 	}
2224 	spin_lock(&memcg_oom_lock);
2225 	if (locked)
2226 		mem_cgroup_oom_unlock(memcg);
2227 	memcg_wakeup_oom(memcg);
2228 	spin_unlock(&memcg_oom_lock);
2229 
2230 	mem_cgroup_unmark_under_oom(memcg);
2231 
2232 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2233 		return false;
2234 	/* Give chance to dying process */
2235 	schedule_timeout_uninterruptible(1);
2236 	return true;
2237 }
2238 
2239 /*
2240  * Currently used to update mapped file statistics, but the routine can be
2241  * generalized to update other statistics as well.
2242  *
2243  * Notes: Race condition
2244  *
2245  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2246  * it tends to be costly. But considering some conditions, we doesn't need
2247  * to do so _always_.
2248  *
2249  * Considering "charge", lock_page_cgroup() is not required because all
2250  * file-stat operations happen after a page is attached to radix-tree. There
2251  * are no race with "charge".
2252  *
2253  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2254  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2255  * if there are race with "uncharge". Statistics itself is properly handled
2256  * by flags.
2257  *
2258  * Considering "move", this is an only case we see a race. To make the race
2259  * small, we check mm->moving_account and detect there are possibility of race
2260  * If there is, we take a lock.
2261  */
2262 
2263 void __mem_cgroup_begin_update_page_stat(struct page *page,
2264 				bool *locked, unsigned long *flags)
2265 {
2266 	struct mem_cgroup *memcg;
2267 	struct page_cgroup *pc;
2268 
2269 	pc = lookup_page_cgroup(page);
2270 again:
2271 	memcg = pc->mem_cgroup;
2272 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273 		return;
2274 	/*
2275 	 * If this memory cgroup is not under account moving, we don't
2276 	 * need to take move_lock_mem_cgroup(). Because we already hold
2277 	 * rcu_read_lock(), any calls to move_account will be delayed until
2278 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2279 	 */
2280 	if (!mem_cgroup_stolen(memcg))
2281 		return;
2282 
2283 	move_lock_mem_cgroup(memcg, flags);
2284 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2285 		move_unlock_mem_cgroup(memcg, flags);
2286 		goto again;
2287 	}
2288 	*locked = true;
2289 }
2290 
2291 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2292 {
2293 	struct page_cgroup *pc = lookup_page_cgroup(page);
2294 
2295 	/*
2296 	 * It's guaranteed that pc->mem_cgroup never changes while
2297 	 * lock is held because a routine modifies pc->mem_cgroup
2298 	 * should take move_lock_mem_cgroup().
2299 	 */
2300 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2301 }
2302 
2303 void mem_cgroup_update_page_stat(struct page *page,
2304 				 enum mem_cgroup_page_stat_item idx, int val)
2305 {
2306 	struct mem_cgroup *memcg;
2307 	struct page_cgroup *pc = lookup_page_cgroup(page);
2308 	unsigned long uninitialized_var(flags);
2309 
2310 	if (mem_cgroup_disabled())
2311 		return;
2312 
2313 	memcg = pc->mem_cgroup;
2314 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2315 		return;
2316 
2317 	switch (idx) {
2318 	case MEMCG_NR_FILE_MAPPED:
2319 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2320 		break;
2321 	default:
2322 		BUG();
2323 	}
2324 
2325 	this_cpu_add(memcg->stat->count[idx], val);
2326 }
2327 
2328 /*
2329  * size of first charge trial. "32" comes from vmscan.c's magic value.
2330  * TODO: maybe necessary to use big numbers in big irons.
2331  */
2332 #define CHARGE_BATCH	32U
2333 struct memcg_stock_pcp {
2334 	struct mem_cgroup *cached; /* this never be root cgroup */
2335 	unsigned int nr_pages;
2336 	struct work_struct work;
2337 	unsigned long flags;
2338 #define FLUSHING_CACHED_CHARGE	0
2339 };
2340 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2341 static DEFINE_MUTEX(percpu_charge_mutex);
2342 
2343 /**
2344  * consume_stock: Try to consume stocked charge on this cpu.
2345  * @memcg: memcg to consume from.
2346  * @nr_pages: how many pages to charge.
2347  *
2348  * The charges will only happen if @memcg matches the current cpu's memcg
2349  * stock, and at least @nr_pages are available in that stock.  Failure to
2350  * service an allocation will refill the stock.
2351  *
2352  * returns true if successful, false otherwise.
2353  */
2354 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 {
2356 	struct memcg_stock_pcp *stock;
2357 	bool ret = true;
2358 
2359 	if (nr_pages > CHARGE_BATCH)
2360 		return false;
2361 
2362 	stock = &get_cpu_var(memcg_stock);
2363 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2364 		stock->nr_pages -= nr_pages;
2365 	else /* need to call res_counter_charge */
2366 		ret = false;
2367 	put_cpu_var(memcg_stock);
2368 	return ret;
2369 }
2370 
2371 /*
2372  * Returns stocks cached in percpu to res_counter and reset cached information.
2373  */
2374 static void drain_stock(struct memcg_stock_pcp *stock)
2375 {
2376 	struct mem_cgroup *old = stock->cached;
2377 
2378 	if (stock->nr_pages) {
2379 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2380 
2381 		res_counter_uncharge(&old->res, bytes);
2382 		if (do_swap_account)
2383 			res_counter_uncharge(&old->memsw, bytes);
2384 		stock->nr_pages = 0;
2385 	}
2386 	stock->cached = NULL;
2387 }
2388 
2389 /*
2390  * This must be called under preempt disabled or must be called by
2391  * a thread which is pinned to local cpu.
2392  */
2393 static void drain_local_stock(struct work_struct *dummy)
2394 {
2395 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2396 	drain_stock(stock);
2397 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2398 }
2399 
2400 static void __init memcg_stock_init(void)
2401 {
2402 	int cpu;
2403 
2404 	for_each_possible_cpu(cpu) {
2405 		struct memcg_stock_pcp *stock =
2406 					&per_cpu(memcg_stock, cpu);
2407 		INIT_WORK(&stock->work, drain_local_stock);
2408 	}
2409 }
2410 
2411 /*
2412  * Cache charges(val) which is from res_counter, to local per_cpu area.
2413  * This will be consumed by consume_stock() function, later.
2414  */
2415 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 {
2417 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2418 
2419 	if (stock->cached != memcg) { /* reset if necessary */
2420 		drain_stock(stock);
2421 		stock->cached = memcg;
2422 	}
2423 	stock->nr_pages += nr_pages;
2424 	put_cpu_var(memcg_stock);
2425 }
2426 
2427 /*
2428  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2429  * of the hierarchy under it. sync flag says whether we should block
2430  * until the work is done.
2431  */
2432 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2433 {
2434 	int cpu, curcpu;
2435 
2436 	/* Notify other cpus that system-wide "drain" is running */
2437 	get_online_cpus();
2438 	curcpu = get_cpu();
2439 	for_each_online_cpu(cpu) {
2440 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2441 		struct mem_cgroup *memcg;
2442 
2443 		memcg = stock->cached;
2444 		if (!memcg || !stock->nr_pages)
2445 			continue;
2446 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2447 			continue;
2448 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2449 			if (cpu == curcpu)
2450 				drain_local_stock(&stock->work);
2451 			else
2452 				schedule_work_on(cpu, &stock->work);
2453 		}
2454 	}
2455 	put_cpu();
2456 
2457 	if (!sync)
2458 		goto out;
2459 
2460 	for_each_online_cpu(cpu) {
2461 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2463 			flush_work(&stock->work);
2464 	}
2465 out:
2466  	put_online_cpus();
2467 }
2468 
2469 /*
2470  * Tries to drain stocked charges in other cpus. This function is asynchronous
2471  * and just put a work per cpu for draining localy on each cpu. Caller can
2472  * expects some charges will be back to res_counter later but cannot wait for
2473  * it.
2474  */
2475 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2476 {
2477 	/*
2478 	 * If someone calls draining, avoid adding more kworker runs.
2479 	 */
2480 	if (!mutex_trylock(&percpu_charge_mutex))
2481 		return;
2482 	drain_all_stock(root_memcg, false);
2483 	mutex_unlock(&percpu_charge_mutex);
2484 }
2485 
2486 /* This is a synchronous drain interface. */
2487 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2488 {
2489 	/* called when force_empty is called */
2490 	mutex_lock(&percpu_charge_mutex);
2491 	drain_all_stock(root_memcg, true);
2492 	mutex_unlock(&percpu_charge_mutex);
2493 }
2494 
2495 /*
2496  * This function drains percpu counter value from DEAD cpu and
2497  * move it to local cpu. Note that this function can be preempted.
2498  */
2499 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2500 {
2501 	int i;
2502 
2503 	spin_lock(&memcg->pcp_counter_lock);
2504 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2505 		long x = per_cpu(memcg->stat->count[i], cpu);
2506 
2507 		per_cpu(memcg->stat->count[i], cpu) = 0;
2508 		memcg->nocpu_base.count[i] += x;
2509 	}
2510 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2511 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2512 
2513 		per_cpu(memcg->stat->events[i], cpu) = 0;
2514 		memcg->nocpu_base.events[i] += x;
2515 	}
2516 	spin_unlock(&memcg->pcp_counter_lock);
2517 }
2518 
2519 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2520 					unsigned long action,
2521 					void *hcpu)
2522 {
2523 	int cpu = (unsigned long)hcpu;
2524 	struct memcg_stock_pcp *stock;
2525 	struct mem_cgroup *iter;
2526 
2527 	if (action == CPU_ONLINE)
2528 		return NOTIFY_OK;
2529 
2530 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2531 		return NOTIFY_OK;
2532 
2533 	for_each_mem_cgroup(iter)
2534 		mem_cgroup_drain_pcp_counter(iter, cpu);
2535 
2536 	stock = &per_cpu(memcg_stock, cpu);
2537 	drain_stock(stock);
2538 	return NOTIFY_OK;
2539 }
2540 
2541 
2542 /* See __mem_cgroup_try_charge() for details */
2543 enum {
2544 	CHARGE_OK,		/* success */
2545 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2546 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2547 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2548 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2549 };
2550 
2551 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2552 				unsigned int nr_pages, unsigned int min_pages,
2553 				bool oom_check)
2554 {
2555 	unsigned long csize = nr_pages * PAGE_SIZE;
2556 	struct mem_cgroup *mem_over_limit;
2557 	struct res_counter *fail_res;
2558 	unsigned long flags = 0;
2559 	int ret;
2560 
2561 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2562 
2563 	if (likely(!ret)) {
2564 		if (!do_swap_account)
2565 			return CHARGE_OK;
2566 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2567 		if (likely(!ret))
2568 			return CHARGE_OK;
2569 
2570 		res_counter_uncharge(&memcg->res, csize);
2571 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2572 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2573 	} else
2574 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2575 	/*
2576 	 * Never reclaim on behalf of optional batching, retry with a
2577 	 * single page instead.
2578 	 */
2579 	if (nr_pages > min_pages)
2580 		return CHARGE_RETRY;
2581 
2582 	if (!(gfp_mask & __GFP_WAIT))
2583 		return CHARGE_WOULDBLOCK;
2584 
2585 	if (gfp_mask & __GFP_NORETRY)
2586 		return CHARGE_NOMEM;
2587 
2588 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2589 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2590 		return CHARGE_RETRY;
2591 	/*
2592 	 * Even though the limit is exceeded at this point, reclaim
2593 	 * may have been able to free some pages.  Retry the charge
2594 	 * before killing the task.
2595 	 *
2596 	 * Only for regular pages, though: huge pages are rather
2597 	 * unlikely to succeed so close to the limit, and we fall back
2598 	 * to regular pages anyway in case of failure.
2599 	 */
2600 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2601 		return CHARGE_RETRY;
2602 
2603 	/*
2604 	 * At task move, charge accounts can be doubly counted. So, it's
2605 	 * better to wait until the end of task_move if something is going on.
2606 	 */
2607 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2608 		return CHARGE_RETRY;
2609 
2610 	/* If we don't need to call oom-killer at el, return immediately */
2611 	if (!oom_check)
2612 		return CHARGE_NOMEM;
2613 	/* check OOM */
2614 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2615 		return CHARGE_OOM_DIE;
2616 
2617 	return CHARGE_RETRY;
2618 }
2619 
2620 /*
2621  * __mem_cgroup_try_charge() does
2622  * 1. detect memcg to be charged against from passed *mm and *ptr,
2623  * 2. update res_counter
2624  * 3. call memory reclaim if necessary.
2625  *
2626  * In some special case, if the task is fatal, fatal_signal_pending() or
2627  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2628  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2629  * as possible without any hazards. 2: all pages should have a valid
2630  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2631  * pointer, that is treated as a charge to root_mem_cgroup.
2632  *
2633  * So __mem_cgroup_try_charge() will return
2634  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2635  *  -ENOMEM ...  charge failure because of resource limits.
2636  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2637  *
2638  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2639  * the oom-killer can be invoked.
2640  */
2641 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2642 				   gfp_t gfp_mask,
2643 				   unsigned int nr_pages,
2644 				   struct mem_cgroup **ptr,
2645 				   bool oom)
2646 {
2647 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2648 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649 	struct mem_cgroup *memcg = NULL;
2650 	int ret;
2651 
2652 	/*
2653 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2654 	 * in system level. So, allow to go ahead dying process in addition to
2655 	 * MEMDIE process.
2656 	 */
2657 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2658 		     || fatal_signal_pending(current)))
2659 		goto bypass;
2660 
2661 	/*
2662 	 * We always charge the cgroup the mm_struct belongs to.
2663 	 * The mm_struct's mem_cgroup changes on task migration if the
2664 	 * thread group leader migrates. It's possible that mm is not
2665 	 * set, if so charge the root memcg (happens for pagecache usage).
2666 	 */
2667 	if (!*ptr && !mm)
2668 		*ptr = root_mem_cgroup;
2669 again:
2670 	if (*ptr) { /* css should be a valid one */
2671 		memcg = *ptr;
2672 		if (mem_cgroup_is_root(memcg))
2673 			goto done;
2674 		if (consume_stock(memcg, nr_pages))
2675 			goto done;
2676 		css_get(&memcg->css);
2677 	} else {
2678 		struct task_struct *p;
2679 
2680 		rcu_read_lock();
2681 		p = rcu_dereference(mm->owner);
2682 		/*
2683 		 * Because we don't have task_lock(), "p" can exit.
2684 		 * In that case, "memcg" can point to root or p can be NULL with
2685 		 * race with swapoff. Then, we have small risk of mis-accouning.
2686 		 * But such kind of mis-account by race always happens because
2687 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2688 		 * small race, here.
2689 		 * (*) swapoff at el will charge against mm-struct not against
2690 		 * task-struct. So, mm->owner can be NULL.
2691 		 */
2692 		memcg = mem_cgroup_from_task(p);
2693 		if (!memcg)
2694 			memcg = root_mem_cgroup;
2695 		if (mem_cgroup_is_root(memcg)) {
2696 			rcu_read_unlock();
2697 			goto done;
2698 		}
2699 		if (consume_stock(memcg, nr_pages)) {
2700 			/*
2701 			 * It seems dagerous to access memcg without css_get().
2702 			 * But considering how consume_stok works, it's not
2703 			 * necessary. If consume_stock success, some charges
2704 			 * from this memcg are cached on this cpu. So, we
2705 			 * don't need to call css_get()/css_tryget() before
2706 			 * calling consume_stock().
2707 			 */
2708 			rcu_read_unlock();
2709 			goto done;
2710 		}
2711 		/* after here, we may be blocked. we need to get refcnt */
2712 		if (!css_tryget(&memcg->css)) {
2713 			rcu_read_unlock();
2714 			goto again;
2715 		}
2716 		rcu_read_unlock();
2717 	}
2718 
2719 	do {
2720 		bool oom_check;
2721 
2722 		/* If killed, bypass charge */
2723 		if (fatal_signal_pending(current)) {
2724 			css_put(&memcg->css);
2725 			goto bypass;
2726 		}
2727 
2728 		oom_check = false;
2729 		if (oom && !nr_oom_retries) {
2730 			oom_check = true;
2731 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2732 		}
2733 
2734 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2735 		    oom_check);
2736 		switch (ret) {
2737 		case CHARGE_OK:
2738 			break;
2739 		case CHARGE_RETRY: /* not in OOM situation but retry */
2740 			batch = nr_pages;
2741 			css_put(&memcg->css);
2742 			memcg = NULL;
2743 			goto again;
2744 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2745 			css_put(&memcg->css);
2746 			goto nomem;
2747 		case CHARGE_NOMEM: /* OOM routine works */
2748 			if (!oom) {
2749 				css_put(&memcg->css);
2750 				goto nomem;
2751 			}
2752 			/* If oom, we never return -ENOMEM */
2753 			nr_oom_retries--;
2754 			break;
2755 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2756 			css_put(&memcg->css);
2757 			goto bypass;
2758 		}
2759 	} while (ret != CHARGE_OK);
2760 
2761 	if (batch > nr_pages)
2762 		refill_stock(memcg, batch - nr_pages);
2763 	css_put(&memcg->css);
2764 done:
2765 	*ptr = memcg;
2766 	return 0;
2767 nomem:
2768 	*ptr = NULL;
2769 	return -ENOMEM;
2770 bypass:
2771 	*ptr = root_mem_cgroup;
2772 	return -EINTR;
2773 }
2774 
2775 /*
2776  * Somemtimes we have to undo a charge we got by try_charge().
2777  * This function is for that and do uncharge, put css's refcnt.
2778  * gotten by try_charge().
2779  */
2780 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2781 				       unsigned int nr_pages)
2782 {
2783 	if (!mem_cgroup_is_root(memcg)) {
2784 		unsigned long bytes = nr_pages * PAGE_SIZE;
2785 
2786 		res_counter_uncharge(&memcg->res, bytes);
2787 		if (do_swap_account)
2788 			res_counter_uncharge(&memcg->memsw, bytes);
2789 	}
2790 }
2791 
2792 /*
2793  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2794  * This is useful when moving usage to parent cgroup.
2795  */
2796 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2797 					unsigned int nr_pages)
2798 {
2799 	unsigned long bytes = nr_pages * PAGE_SIZE;
2800 
2801 	if (mem_cgroup_is_root(memcg))
2802 		return;
2803 
2804 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2805 	if (do_swap_account)
2806 		res_counter_uncharge_until(&memcg->memsw,
2807 						memcg->memsw.parent, bytes);
2808 }
2809 
2810 /*
2811  * A helper function to get mem_cgroup from ID. must be called under
2812  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2813  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2814  * called against removed memcg.)
2815  */
2816 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2817 {
2818 	struct cgroup_subsys_state *css;
2819 
2820 	/* ID 0 is unused ID */
2821 	if (!id)
2822 		return NULL;
2823 	css = css_lookup(&mem_cgroup_subsys, id);
2824 	if (!css)
2825 		return NULL;
2826 	return mem_cgroup_from_css(css);
2827 }
2828 
2829 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2830 {
2831 	struct mem_cgroup *memcg = NULL;
2832 	struct page_cgroup *pc;
2833 	unsigned short id;
2834 	swp_entry_t ent;
2835 
2836 	VM_BUG_ON(!PageLocked(page));
2837 
2838 	pc = lookup_page_cgroup(page);
2839 	lock_page_cgroup(pc);
2840 	if (PageCgroupUsed(pc)) {
2841 		memcg = pc->mem_cgroup;
2842 		if (memcg && !css_tryget(&memcg->css))
2843 			memcg = NULL;
2844 	} else if (PageSwapCache(page)) {
2845 		ent.val = page_private(page);
2846 		id = lookup_swap_cgroup_id(ent);
2847 		rcu_read_lock();
2848 		memcg = mem_cgroup_lookup(id);
2849 		if (memcg && !css_tryget(&memcg->css))
2850 			memcg = NULL;
2851 		rcu_read_unlock();
2852 	}
2853 	unlock_page_cgroup(pc);
2854 	return memcg;
2855 }
2856 
2857 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2858 				       struct page *page,
2859 				       unsigned int nr_pages,
2860 				       enum charge_type ctype,
2861 				       bool lrucare)
2862 {
2863 	struct page_cgroup *pc = lookup_page_cgroup(page);
2864 	struct zone *uninitialized_var(zone);
2865 	struct lruvec *lruvec;
2866 	bool was_on_lru = false;
2867 	bool anon;
2868 
2869 	lock_page_cgroup(pc);
2870 	VM_BUG_ON(PageCgroupUsed(pc));
2871 	/*
2872 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2873 	 * accessed by any other context at this point.
2874 	 */
2875 
2876 	/*
2877 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2878 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2879 	 */
2880 	if (lrucare) {
2881 		zone = page_zone(page);
2882 		spin_lock_irq(&zone->lru_lock);
2883 		if (PageLRU(page)) {
2884 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2885 			ClearPageLRU(page);
2886 			del_page_from_lru_list(page, lruvec, page_lru(page));
2887 			was_on_lru = true;
2888 		}
2889 	}
2890 
2891 	pc->mem_cgroup = memcg;
2892 	/*
2893 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2894 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2895 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2896 	 * before USED bit, we need memory barrier here.
2897 	 * See mem_cgroup_add_lru_list(), etc.
2898  	 */
2899 	smp_wmb();
2900 	SetPageCgroupUsed(pc);
2901 
2902 	if (lrucare) {
2903 		if (was_on_lru) {
2904 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2905 			VM_BUG_ON(PageLRU(page));
2906 			SetPageLRU(page);
2907 			add_page_to_lru_list(page, lruvec, page_lru(page));
2908 		}
2909 		spin_unlock_irq(&zone->lru_lock);
2910 	}
2911 
2912 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2913 		anon = true;
2914 	else
2915 		anon = false;
2916 
2917 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2918 	unlock_page_cgroup(pc);
2919 
2920 	/*
2921 	 * "charge_statistics" updated event counter. Then, check it.
2922 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2923 	 * if they exceeds softlimit.
2924 	 */
2925 	memcg_check_events(memcg, page);
2926 }
2927 
2928 static DEFINE_MUTEX(set_limit_mutex);
2929 
2930 #ifdef CONFIG_MEMCG_KMEM
2931 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2932 {
2933 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2934 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2935 }
2936 
2937 /*
2938  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2939  * in the memcg_cache_params struct.
2940  */
2941 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2942 {
2943 	struct kmem_cache *cachep;
2944 
2945 	VM_BUG_ON(p->is_root_cache);
2946 	cachep = p->root_cache;
2947 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2948 }
2949 
2950 #ifdef CONFIG_SLABINFO
2951 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2952 					struct seq_file *m)
2953 {
2954 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2955 	struct memcg_cache_params *params;
2956 
2957 	if (!memcg_can_account_kmem(memcg))
2958 		return -EIO;
2959 
2960 	print_slabinfo_header(m);
2961 
2962 	mutex_lock(&memcg->slab_caches_mutex);
2963 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2964 		cache_show(memcg_params_to_cache(params), m);
2965 	mutex_unlock(&memcg->slab_caches_mutex);
2966 
2967 	return 0;
2968 }
2969 #endif
2970 
2971 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2972 {
2973 	struct res_counter *fail_res;
2974 	struct mem_cgroup *_memcg;
2975 	int ret = 0;
2976 	bool may_oom;
2977 
2978 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2979 	if (ret)
2980 		return ret;
2981 
2982 	/*
2983 	 * Conditions under which we can wait for the oom_killer. Those are
2984 	 * the same conditions tested by the core page allocator
2985 	 */
2986 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2987 
2988 	_memcg = memcg;
2989 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2990 				      &_memcg, may_oom);
2991 
2992 	if (ret == -EINTR)  {
2993 		/*
2994 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
2995 		 * OOM kill or fatal signal.  Since our only options are to
2996 		 * either fail the allocation or charge it to this cgroup, do
2997 		 * it as a temporary condition. But we can't fail. From a
2998 		 * kmem/slab perspective, the cache has already been selected,
2999 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3000 		 * our minds.
3001 		 *
3002 		 * This condition will only trigger if the task entered
3003 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3004 		 * __mem_cgroup_try_charge() above. Tasks that were already
3005 		 * dying when the allocation triggers should have been already
3006 		 * directed to the root cgroup in memcontrol.h
3007 		 */
3008 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3009 		if (do_swap_account)
3010 			res_counter_charge_nofail(&memcg->memsw, size,
3011 						  &fail_res);
3012 		ret = 0;
3013 	} else if (ret)
3014 		res_counter_uncharge(&memcg->kmem, size);
3015 
3016 	return ret;
3017 }
3018 
3019 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3020 {
3021 	res_counter_uncharge(&memcg->res, size);
3022 	if (do_swap_account)
3023 		res_counter_uncharge(&memcg->memsw, size);
3024 
3025 	/* Not down to 0 */
3026 	if (res_counter_uncharge(&memcg->kmem, size))
3027 		return;
3028 
3029 	if (memcg_kmem_test_and_clear_dead(memcg))
3030 		mem_cgroup_put(memcg);
3031 }
3032 
3033 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3034 {
3035 	if (!memcg)
3036 		return;
3037 
3038 	mutex_lock(&memcg->slab_caches_mutex);
3039 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3040 	mutex_unlock(&memcg->slab_caches_mutex);
3041 }
3042 
3043 /*
3044  * helper for acessing a memcg's index. It will be used as an index in the
3045  * child cache array in kmem_cache, and also to derive its name. This function
3046  * will return -1 when this is not a kmem-limited memcg.
3047  */
3048 int memcg_cache_id(struct mem_cgroup *memcg)
3049 {
3050 	return memcg ? memcg->kmemcg_id : -1;
3051 }
3052 
3053 /*
3054  * This ends up being protected by the set_limit mutex, during normal
3055  * operation, because that is its main call site.
3056  *
3057  * But when we create a new cache, we can call this as well if its parent
3058  * is kmem-limited. That will have to hold set_limit_mutex as well.
3059  */
3060 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3061 {
3062 	int num, ret;
3063 
3064 	num = ida_simple_get(&kmem_limited_groups,
3065 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3066 	if (num < 0)
3067 		return num;
3068 	/*
3069 	 * After this point, kmem_accounted (that we test atomically in
3070 	 * the beginning of this conditional), is no longer 0. This
3071 	 * guarantees only one process will set the following boolean
3072 	 * to true. We don't need test_and_set because we're protected
3073 	 * by the set_limit_mutex anyway.
3074 	 */
3075 	memcg_kmem_set_activated(memcg);
3076 
3077 	ret = memcg_update_all_caches(num+1);
3078 	if (ret) {
3079 		ida_simple_remove(&kmem_limited_groups, num);
3080 		memcg_kmem_clear_activated(memcg);
3081 		return ret;
3082 	}
3083 
3084 	memcg->kmemcg_id = num;
3085 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3086 	mutex_init(&memcg->slab_caches_mutex);
3087 	return 0;
3088 }
3089 
3090 static size_t memcg_caches_array_size(int num_groups)
3091 {
3092 	ssize_t size;
3093 	if (num_groups <= 0)
3094 		return 0;
3095 
3096 	size = 2 * num_groups;
3097 	if (size < MEMCG_CACHES_MIN_SIZE)
3098 		size = MEMCG_CACHES_MIN_SIZE;
3099 	else if (size > MEMCG_CACHES_MAX_SIZE)
3100 		size = MEMCG_CACHES_MAX_SIZE;
3101 
3102 	return size;
3103 }
3104 
3105 /*
3106  * We should update the current array size iff all caches updates succeed. This
3107  * can only be done from the slab side. The slab mutex needs to be held when
3108  * calling this.
3109  */
3110 void memcg_update_array_size(int num)
3111 {
3112 	if (num > memcg_limited_groups_array_size)
3113 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3114 }
3115 
3116 static void kmem_cache_destroy_work_func(struct work_struct *w);
3117 
3118 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3119 {
3120 	struct memcg_cache_params *cur_params = s->memcg_params;
3121 
3122 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3123 
3124 	if (num_groups > memcg_limited_groups_array_size) {
3125 		int i;
3126 		ssize_t size = memcg_caches_array_size(num_groups);
3127 
3128 		size *= sizeof(void *);
3129 		size += sizeof(struct memcg_cache_params);
3130 
3131 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3132 		if (!s->memcg_params) {
3133 			s->memcg_params = cur_params;
3134 			return -ENOMEM;
3135 		}
3136 
3137 		INIT_WORK(&s->memcg_params->destroy,
3138 				kmem_cache_destroy_work_func);
3139 		s->memcg_params->is_root_cache = true;
3140 
3141 		/*
3142 		 * There is the chance it will be bigger than
3143 		 * memcg_limited_groups_array_size, if we failed an allocation
3144 		 * in a cache, in which case all caches updated before it, will
3145 		 * have a bigger array.
3146 		 *
3147 		 * But if that is the case, the data after
3148 		 * memcg_limited_groups_array_size is certainly unused
3149 		 */
3150 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3151 			if (!cur_params->memcg_caches[i])
3152 				continue;
3153 			s->memcg_params->memcg_caches[i] =
3154 						cur_params->memcg_caches[i];
3155 		}
3156 
3157 		/*
3158 		 * Ideally, we would wait until all caches succeed, and only
3159 		 * then free the old one. But this is not worth the extra
3160 		 * pointer per-cache we'd have to have for this.
3161 		 *
3162 		 * It is not a big deal if some caches are left with a size
3163 		 * bigger than the others. And all updates will reset this
3164 		 * anyway.
3165 		 */
3166 		kfree(cur_params);
3167 	}
3168 	return 0;
3169 }
3170 
3171 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3172 			 struct kmem_cache *root_cache)
3173 {
3174 	size_t size = sizeof(struct memcg_cache_params);
3175 
3176 	if (!memcg_kmem_enabled())
3177 		return 0;
3178 
3179 	if (!memcg)
3180 		size += memcg_limited_groups_array_size * sizeof(void *);
3181 
3182 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 	if (!s->memcg_params)
3184 		return -ENOMEM;
3185 
3186 	INIT_WORK(&s->memcg_params->destroy,
3187 			kmem_cache_destroy_work_func);
3188 	if (memcg) {
3189 		s->memcg_params->memcg = memcg;
3190 		s->memcg_params->root_cache = root_cache;
3191 	} else
3192 		s->memcg_params->is_root_cache = true;
3193 
3194 	return 0;
3195 }
3196 
3197 void memcg_release_cache(struct kmem_cache *s)
3198 {
3199 	struct kmem_cache *root;
3200 	struct mem_cgroup *memcg;
3201 	int id;
3202 
3203 	/*
3204 	 * This happens, for instance, when a root cache goes away before we
3205 	 * add any memcg.
3206 	 */
3207 	if (!s->memcg_params)
3208 		return;
3209 
3210 	if (s->memcg_params->is_root_cache)
3211 		goto out;
3212 
3213 	memcg = s->memcg_params->memcg;
3214 	id  = memcg_cache_id(memcg);
3215 
3216 	root = s->memcg_params->root_cache;
3217 	root->memcg_params->memcg_caches[id] = NULL;
3218 
3219 	mutex_lock(&memcg->slab_caches_mutex);
3220 	list_del(&s->memcg_params->list);
3221 	mutex_unlock(&memcg->slab_caches_mutex);
3222 
3223 	mem_cgroup_put(memcg);
3224 out:
3225 	kfree(s->memcg_params);
3226 }
3227 
3228 /*
3229  * During the creation a new cache, we need to disable our accounting mechanism
3230  * altogether. This is true even if we are not creating, but rather just
3231  * enqueing new caches to be created.
3232  *
3233  * This is because that process will trigger allocations; some visible, like
3234  * explicit kmallocs to auxiliary data structures, name strings and internal
3235  * cache structures; some well concealed, like INIT_WORK() that can allocate
3236  * objects during debug.
3237  *
3238  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239  * to it. This may not be a bounded recursion: since the first cache creation
3240  * failed to complete (waiting on the allocation), we'll just try to create the
3241  * cache again, failing at the same point.
3242  *
3243  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245  * inside the following two functions.
3246  */
3247 static inline void memcg_stop_kmem_account(void)
3248 {
3249 	VM_BUG_ON(!current->mm);
3250 	current->memcg_kmem_skip_account++;
3251 }
3252 
3253 static inline void memcg_resume_kmem_account(void)
3254 {
3255 	VM_BUG_ON(!current->mm);
3256 	current->memcg_kmem_skip_account--;
3257 }
3258 
3259 static void kmem_cache_destroy_work_func(struct work_struct *w)
3260 {
3261 	struct kmem_cache *cachep;
3262 	struct memcg_cache_params *p;
3263 
3264 	p = container_of(w, struct memcg_cache_params, destroy);
3265 
3266 	cachep = memcg_params_to_cache(p);
3267 
3268 	/*
3269 	 * If we get down to 0 after shrink, we could delete right away.
3270 	 * However, memcg_release_pages() already puts us back in the workqueue
3271 	 * in that case. If we proceed deleting, we'll get a dangling
3272 	 * reference, and removing the object from the workqueue in that case
3273 	 * is unnecessary complication. We are not a fast path.
3274 	 *
3275 	 * Note that this case is fundamentally different from racing with
3276 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 	 * into the queue, but doing so from inside the worker racing to
3279 	 * destroy it.
3280 	 *
3281 	 * So if we aren't down to zero, we'll just schedule a worker and try
3282 	 * again
3283 	 */
3284 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3285 		kmem_cache_shrink(cachep);
3286 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3287 			return;
3288 	} else
3289 		kmem_cache_destroy(cachep);
3290 }
3291 
3292 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293 {
3294 	if (!cachep->memcg_params->dead)
3295 		return;
3296 
3297 	/*
3298 	 * There are many ways in which we can get here.
3299 	 *
3300 	 * We can get to a memory-pressure situation while the delayed work is
3301 	 * still pending to run. The vmscan shrinkers can then release all
3302 	 * cache memory and get us to destruction. If this is the case, we'll
3303 	 * be executed twice, which is a bug (the second time will execute over
3304 	 * bogus data). In this case, cancelling the work should be fine.
3305 	 *
3306 	 * But we can also get here from the worker itself, if
3307 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 	 * get the page count to 0. In this case, we'll deadlock if we try to
3309 	 * cancel the work (the worker runs with an internal lock held, which
3310 	 * is the same lock we would hold for cancel_work_sync().)
3311 	 *
3312 	 * Since we can't possibly know who got us here, just refrain from
3313 	 * running if there is already work pending
3314 	 */
3315 	if (work_pending(&cachep->memcg_params->destroy))
3316 		return;
3317 	/*
3318 	 * We have to defer the actual destroying to a workqueue, because
3319 	 * we might currently be in a context that cannot sleep.
3320 	 */
3321 	schedule_work(&cachep->memcg_params->destroy);
3322 }
3323 
3324 /*
3325  * This lock protects updaters, not readers. We want readers to be as fast as
3326  * they can, and they will either see NULL or a valid cache value. Our model
3327  * allow them to see NULL, in which case the root memcg will be selected.
3328  *
3329  * We need this lock because multiple allocations to the same cache from a non
3330  * will span more than one worker. Only one of them can create the cache.
3331  */
3332 static DEFINE_MUTEX(memcg_cache_mutex);
3333 
3334 /*
3335  * Called with memcg_cache_mutex held
3336  */
3337 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3338 					 struct kmem_cache *s)
3339 {
3340 	struct kmem_cache *new;
3341 	static char *tmp_name = NULL;
3342 
3343 	lockdep_assert_held(&memcg_cache_mutex);
3344 
3345 	/*
3346 	 * kmem_cache_create_memcg duplicates the given name and
3347 	 * cgroup_name for this name requires RCU context.
3348 	 * This static temporary buffer is used to prevent from
3349 	 * pointless shortliving allocation.
3350 	 */
3351 	if (!tmp_name) {
3352 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3353 		if (!tmp_name)
3354 			return NULL;
3355 	}
3356 
3357 	rcu_read_lock();
3358 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3359 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3360 	rcu_read_unlock();
3361 
3362 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3363 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3364 
3365 	if (new)
3366 		new->allocflags |= __GFP_KMEMCG;
3367 
3368 	return new;
3369 }
3370 
3371 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3372 						  struct kmem_cache *cachep)
3373 {
3374 	struct kmem_cache *new_cachep;
3375 	int idx;
3376 
3377 	BUG_ON(!memcg_can_account_kmem(memcg));
3378 
3379 	idx = memcg_cache_id(memcg);
3380 
3381 	mutex_lock(&memcg_cache_mutex);
3382 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3383 	if (new_cachep)
3384 		goto out;
3385 
3386 	new_cachep = kmem_cache_dup(memcg, cachep);
3387 	if (new_cachep == NULL) {
3388 		new_cachep = cachep;
3389 		goto out;
3390 	}
3391 
3392 	mem_cgroup_get(memcg);
3393 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3394 
3395 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3396 	/*
3397 	 * the readers won't lock, make sure everybody sees the updated value,
3398 	 * so they won't put stuff in the queue again for no reason
3399 	 */
3400 	wmb();
3401 out:
3402 	mutex_unlock(&memcg_cache_mutex);
3403 	return new_cachep;
3404 }
3405 
3406 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3407 {
3408 	struct kmem_cache *c;
3409 	int i;
3410 
3411 	if (!s->memcg_params)
3412 		return;
3413 	if (!s->memcg_params->is_root_cache)
3414 		return;
3415 
3416 	/*
3417 	 * If the cache is being destroyed, we trust that there is no one else
3418 	 * requesting objects from it. Even if there are, the sanity checks in
3419 	 * kmem_cache_destroy should caught this ill-case.
3420 	 *
3421 	 * Still, we don't want anyone else freeing memcg_caches under our
3422 	 * noses, which can happen if a new memcg comes to life. As usual,
3423 	 * we'll take the set_limit_mutex to protect ourselves against this.
3424 	 */
3425 	mutex_lock(&set_limit_mutex);
3426 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3427 		c = s->memcg_params->memcg_caches[i];
3428 		if (!c)
3429 			continue;
3430 
3431 		/*
3432 		 * We will now manually delete the caches, so to avoid races
3433 		 * we need to cancel all pending destruction workers and
3434 		 * proceed with destruction ourselves.
3435 		 *
3436 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3437 		 * and that could spawn the workers again: it is likely that
3438 		 * the cache still have active pages until this very moment.
3439 		 * This would lead us back to mem_cgroup_destroy_cache.
3440 		 *
3441 		 * But that will not execute at all if the "dead" flag is not
3442 		 * set, so flip it down to guarantee we are in control.
3443 		 */
3444 		c->memcg_params->dead = false;
3445 		cancel_work_sync(&c->memcg_params->destroy);
3446 		kmem_cache_destroy(c);
3447 	}
3448 	mutex_unlock(&set_limit_mutex);
3449 }
3450 
3451 struct create_work {
3452 	struct mem_cgroup *memcg;
3453 	struct kmem_cache *cachep;
3454 	struct work_struct work;
3455 };
3456 
3457 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3458 {
3459 	struct kmem_cache *cachep;
3460 	struct memcg_cache_params *params;
3461 
3462 	if (!memcg_kmem_is_active(memcg))
3463 		return;
3464 
3465 	mutex_lock(&memcg->slab_caches_mutex);
3466 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3467 		cachep = memcg_params_to_cache(params);
3468 		cachep->memcg_params->dead = true;
3469 		schedule_work(&cachep->memcg_params->destroy);
3470 	}
3471 	mutex_unlock(&memcg->slab_caches_mutex);
3472 }
3473 
3474 static void memcg_create_cache_work_func(struct work_struct *w)
3475 {
3476 	struct create_work *cw;
3477 
3478 	cw = container_of(w, struct create_work, work);
3479 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3480 	/* Drop the reference gotten when we enqueued. */
3481 	css_put(&cw->memcg->css);
3482 	kfree(cw);
3483 }
3484 
3485 /*
3486  * Enqueue the creation of a per-memcg kmem_cache.
3487  */
3488 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3489 					 struct kmem_cache *cachep)
3490 {
3491 	struct create_work *cw;
3492 
3493 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3494 	if (cw == NULL) {
3495 		css_put(&memcg->css);
3496 		return;
3497 	}
3498 
3499 	cw->memcg = memcg;
3500 	cw->cachep = cachep;
3501 
3502 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3503 	schedule_work(&cw->work);
3504 }
3505 
3506 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3507 				       struct kmem_cache *cachep)
3508 {
3509 	/*
3510 	 * We need to stop accounting when we kmalloc, because if the
3511 	 * corresponding kmalloc cache is not yet created, the first allocation
3512 	 * in __memcg_create_cache_enqueue will recurse.
3513 	 *
3514 	 * However, it is better to enclose the whole function. Depending on
3515 	 * the debugging options enabled, INIT_WORK(), for instance, can
3516 	 * trigger an allocation. This too, will make us recurse. Because at
3517 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3518 	 * the safest choice is to do it like this, wrapping the whole function.
3519 	 */
3520 	memcg_stop_kmem_account();
3521 	__memcg_create_cache_enqueue(memcg, cachep);
3522 	memcg_resume_kmem_account();
3523 }
3524 /*
3525  * Return the kmem_cache we're supposed to use for a slab allocation.
3526  * We try to use the current memcg's version of the cache.
3527  *
3528  * If the cache does not exist yet, if we are the first user of it,
3529  * we either create it immediately, if possible, or create it asynchronously
3530  * in a workqueue.
3531  * In the latter case, we will let the current allocation go through with
3532  * the original cache.
3533  *
3534  * Can't be called in interrupt context or from kernel threads.
3535  * This function needs to be called with rcu_read_lock() held.
3536  */
3537 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3538 					  gfp_t gfp)
3539 {
3540 	struct mem_cgroup *memcg;
3541 	int idx;
3542 
3543 	VM_BUG_ON(!cachep->memcg_params);
3544 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3545 
3546 	if (!current->mm || current->memcg_kmem_skip_account)
3547 		return cachep;
3548 
3549 	rcu_read_lock();
3550 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3551 
3552 	if (!memcg_can_account_kmem(memcg))
3553 		goto out;
3554 
3555 	idx = memcg_cache_id(memcg);
3556 
3557 	/*
3558 	 * barrier to mare sure we're always seeing the up to date value.  The
3559 	 * code updating memcg_caches will issue a write barrier to match this.
3560 	 */
3561 	read_barrier_depends();
3562 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3563 		cachep = cachep->memcg_params->memcg_caches[idx];
3564 		goto out;
3565 	}
3566 
3567 	/* The corresponding put will be done in the workqueue. */
3568 	if (!css_tryget(&memcg->css))
3569 		goto out;
3570 	rcu_read_unlock();
3571 
3572 	/*
3573 	 * If we are in a safe context (can wait, and not in interrupt
3574 	 * context), we could be be predictable and return right away.
3575 	 * This would guarantee that the allocation being performed
3576 	 * already belongs in the new cache.
3577 	 *
3578 	 * However, there are some clashes that can arrive from locking.
3579 	 * For instance, because we acquire the slab_mutex while doing
3580 	 * kmem_cache_dup, this means no further allocation could happen
3581 	 * with the slab_mutex held.
3582 	 *
3583 	 * Also, because cache creation issue get_online_cpus(), this
3584 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3585 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3586 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3587 	 * better to defer everything.
3588 	 */
3589 	memcg_create_cache_enqueue(memcg, cachep);
3590 	return cachep;
3591 out:
3592 	rcu_read_unlock();
3593 	return cachep;
3594 }
3595 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3596 
3597 /*
3598  * We need to verify if the allocation against current->mm->owner's memcg is
3599  * possible for the given order. But the page is not allocated yet, so we'll
3600  * need a further commit step to do the final arrangements.
3601  *
3602  * It is possible for the task to switch cgroups in this mean time, so at
3603  * commit time, we can't rely on task conversion any longer.  We'll then use
3604  * the handle argument to return to the caller which cgroup we should commit
3605  * against. We could also return the memcg directly and avoid the pointer
3606  * passing, but a boolean return value gives better semantics considering
3607  * the compiled-out case as well.
3608  *
3609  * Returning true means the allocation is possible.
3610  */
3611 bool
3612 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3613 {
3614 	struct mem_cgroup *memcg;
3615 	int ret;
3616 
3617 	*_memcg = NULL;
3618 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3619 
3620 	/*
3621 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3622 	 * isn't much we can do without complicating this too much, and it would
3623 	 * be gfp-dependent anyway. Just let it go
3624 	 */
3625 	if (unlikely(!memcg))
3626 		return true;
3627 
3628 	if (!memcg_can_account_kmem(memcg)) {
3629 		css_put(&memcg->css);
3630 		return true;
3631 	}
3632 
3633 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3634 	if (!ret)
3635 		*_memcg = memcg;
3636 
3637 	css_put(&memcg->css);
3638 	return (ret == 0);
3639 }
3640 
3641 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3642 			      int order)
3643 {
3644 	struct page_cgroup *pc;
3645 
3646 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3647 
3648 	/* The page allocation failed. Revert */
3649 	if (!page) {
3650 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3651 		return;
3652 	}
3653 
3654 	pc = lookup_page_cgroup(page);
3655 	lock_page_cgroup(pc);
3656 	pc->mem_cgroup = memcg;
3657 	SetPageCgroupUsed(pc);
3658 	unlock_page_cgroup(pc);
3659 }
3660 
3661 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3662 {
3663 	struct mem_cgroup *memcg = NULL;
3664 	struct page_cgroup *pc;
3665 
3666 
3667 	pc = lookup_page_cgroup(page);
3668 	/*
3669 	 * Fast unlocked return. Theoretically might have changed, have to
3670 	 * check again after locking.
3671 	 */
3672 	if (!PageCgroupUsed(pc))
3673 		return;
3674 
3675 	lock_page_cgroup(pc);
3676 	if (PageCgroupUsed(pc)) {
3677 		memcg = pc->mem_cgroup;
3678 		ClearPageCgroupUsed(pc);
3679 	}
3680 	unlock_page_cgroup(pc);
3681 
3682 	/*
3683 	 * We trust that only if there is a memcg associated with the page, it
3684 	 * is a valid allocation
3685 	 */
3686 	if (!memcg)
3687 		return;
3688 
3689 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3690 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3691 }
3692 #else
3693 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3694 {
3695 }
3696 #endif /* CONFIG_MEMCG_KMEM */
3697 
3698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3699 
3700 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3701 /*
3702  * Because tail pages are not marked as "used", set it. We're under
3703  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3704  * charge/uncharge will be never happen and move_account() is done under
3705  * compound_lock(), so we don't have to take care of races.
3706  */
3707 void mem_cgroup_split_huge_fixup(struct page *head)
3708 {
3709 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3710 	struct page_cgroup *pc;
3711 	int i;
3712 
3713 	if (mem_cgroup_disabled())
3714 		return;
3715 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3716 		pc = head_pc + i;
3717 		pc->mem_cgroup = head_pc->mem_cgroup;
3718 		smp_wmb();/* see __commit_charge() */
3719 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3720 	}
3721 }
3722 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3723 
3724 /**
3725  * mem_cgroup_move_account - move account of the page
3726  * @page: the page
3727  * @nr_pages: number of regular pages (>1 for huge pages)
3728  * @pc:	page_cgroup of the page.
3729  * @from: mem_cgroup which the page is moved from.
3730  * @to:	mem_cgroup which the page is moved to. @from != @to.
3731  *
3732  * The caller must confirm following.
3733  * - page is not on LRU (isolate_page() is useful.)
3734  * - compound_lock is held when nr_pages > 1
3735  *
3736  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3737  * from old cgroup.
3738  */
3739 static int mem_cgroup_move_account(struct page *page,
3740 				   unsigned int nr_pages,
3741 				   struct page_cgroup *pc,
3742 				   struct mem_cgroup *from,
3743 				   struct mem_cgroup *to)
3744 {
3745 	unsigned long flags;
3746 	int ret;
3747 	bool anon = PageAnon(page);
3748 
3749 	VM_BUG_ON(from == to);
3750 	VM_BUG_ON(PageLRU(page));
3751 	/*
3752 	 * The page is isolated from LRU. So, collapse function
3753 	 * will not handle this page. But page splitting can happen.
3754 	 * Do this check under compound_page_lock(). The caller should
3755 	 * hold it.
3756 	 */
3757 	ret = -EBUSY;
3758 	if (nr_pages > 1 && !PageTransHuge(page))
3759 		goto out;
3760 
3761 	lock_page_cgroup(pc);
3762 
3763 	ret = -EINVAL;
3764 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3765 		goto unlock;
3766 
3767 	move_lock_mem_cgroup(from, &flags);
3768 
3769 	if (!anon && page_mapped(page)) {
3770 		/* Update mapped_file data for mem_cgroup */
3771 		preempt_disable();
3772 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3773 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3774 		preempt_enable();
3775 	}
3776 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3777 
3778 	/* caller should have done css_get */
3779 	pc->mem_cgroup = to;
3780 	mem_cgroup_charge_statistics(to, anon, nr_pages);
3781 	move_unlock_mem_cgroup(from, &flags);
3782 	ret = 0;
3783 unlock:
3784 	unlock_page_cgroup(pc);
3785 	/*
3786 	 * check events
3787 	 */
3788 	memcg_check_events(to, page);
3789 	memcg_check_events(from, page);
3790 out:
3791 	return ret;
3792 }
3793 
3794 /**
3795  * mem_cgroup_move_parent - moves page to the parent group
3796  * @page: the page to move
3797  * @pc: page_cgroup of the page
3798  * @child: page's cgroup
3799  *
3800  * move charges to its parent or the root cgroup if the group has no
3801  * parent (aka use_hierarchy==0).
3802  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3803  * mem_cgroup_move_account fails) the failure is always temporary and
3804  * it signals a race with a page removal/uncharge or migration. In the
3805  * first case the page is on the way out and it will vanish from the LRU
3806  * on the next attempt and the call should be retried later.
3807  * Isolation from the LRU fails only if page has been isolated from
3808  * the LRU since we looked at it and that usually means either global
3809  * reclaim or migration going on. The page will either get back to the
3810  * LRU or vanish.
3811  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3812  * (!PageCgroupUsed) or moved to a different group. The page will
3813  * disappear in the next attempt.
3814  */
3815 static int mem_cgroup_move_parent(struct page *page,
3816 				  struct page_cgroup *pc,
3817 				  struct mem_cgroup *child)
3818 {
3819 	struct mem_cgroup *parent;
3820 	unsigned int nr_pages;
3821 	unsigned long uninitialized_var(flags);
3822 	int ret;
3823 
3824 	VM_BUG_ON(mem_cgroup_is_root(child));
3825 
3826 	ret = -EBUSY;
3827 	if (!get_page_unless_zero(page))
3828 		goto out;
3829 	if (isolate_lru_page(page))
3830 		goto put;
3831 
3832 	nr_pages = hpage_nr_pages(page);
3833 
3834 	parent = parent_mem_cgroup(child);
3835 	/*
3836 	 * If no parent, move charges to root cgroup.
3837 	 */
3838 	if (!parent)
3839 		parent = root_mem_cgroup;
3840 
3841 	if (nr_pages > 1) {
3842 		VM_BUG_ON(!PageTransHuge(page));
3843 		flags = compound_lock_irqsave(page);
3844 	}
3845 
3846 	ret = mem_cgroup_move_account(page, nr_pages,
3847 				pc, child, parent);
3848 	if (!ret)
3849 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3850 
3851 	if (nr_pages > 1)
3852 		compound_unlock_irqrestore(page, flags);
3853 	putback_lru_page(page);
3854 put:
3855 	put_page(page);
3856 out:
3857 	return ret;
3858 }
3859 
3860 /*
3861  * Charge the memory controller for page usage.
3862  * Return
3863  * 0 if the charge was successful
3864  * < 0 if the cgroup is over its limit
3865  */
3866 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3867 				gfp_t gfp_mask, enum charge_type ctype)
3868 {
3869 	struct mem_cgroup *memcg = NULL;
3870 	unsigned int nr_pages = 1;
3871 	bool oom = true;
3872 	int ret;
3873 
3874 	if (PageTransHuge(page)) {
3875 		nr_pages <<= compound_order(page);
3876 		VM_BUG_ON(!PageTransHuge(page));
3877 		/*
3878 		 * Never OOM-kill a process for a huge page.  The
3879 		 * fault handler will fall back to regular pages.
3880 		 */
3881 		oom = false;
3882 	}
3883 
3884 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3885 	if (ret == -ENOMEM)
3886 		return ret;
3887 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3888 	return 0;
3889 }
3890 
3891 int mem_cgroup_newpage_charge(struct page *page,
3892 			      struct mm_struct *mm, gfp_t gfp_mask)
3893 {
3894 	if (mem_cgroup_disabled())
3895 		return 0;
3896 	VM_BUG_ON(page_mapped(page));
3897 	VM_BUG_ON(page->mapping && !PageAnon(page));
3898 	VM_BUG_ON(!mm);
3899 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3900 					MEM_CGROUP_CHARGE_TYPE_ANON);
3901 }
3902 
3903 /*
3904  * While swap-in, try_charge -> commit or cancel, the page is locked.
3905  * And when try_charge() successfully returns, one refcnt to memcg without
3906  * struct page_cgroup is acquired. This refcnt will be consumed by
3907  * "commit()" or removed by "cancel()"
3908  */
3909 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3910 					  struct page *page,
3911 					  gfp_t mask,
3912 					  struct mem_cgroup **memcgp)
3913 {
3914 	struct mem_cgroup *memcg;
3915 	struct page_cgroup *pc;
3916 	int ret;
3917 
3918 	pc = lookup_page_cgroup(page);
3919 	/*
3920 	 * Every swap fault against a single page tries to charge the
3921 	 * page, bail as early as possible.  shmem_unuse() encounters
3922 	 * already charged pages, too.  The USED bit is protected by
3923 	 * the page lock, which serializes swap cache removal, which
3924 	 * in turn serializes uncharging.
3925 	 */
3926 	if (PageCgroupUsed(pc))
3927 		return 0;
3928 	if (!do_swap_account)
3929 		goto charge_cur_mm;
3930 	memcg = try_get_mem_cgroup_from_page(page);
3931 	if (!memcg)
3932 		goto charge_cur_mm;
3933 	*memcgp = memcg;
3934 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3935 	css_put(&memcg->css);
3936 	if (ret == -EINTR)
3937 		ret = 0;
3938 	return ret;
3939 charge_cur_mm:
3940 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3941 	if (ret == -EINTR)
3942 		ret = 0;
3943 	return ret;
3944 }
3945 
3946 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3947 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3948 {
3949 	*memcgp = NULL;
3950 	if (mem_cgroup_disabled())
3951 		return 0;
3952 	/*
3953 	 * A racing thread's fault, or swapoff, may have already
3954 	 * updated the pte, and even removed page from swap cache: in
3955 	 * those cases unuse_pte()'s pte_same() test will fail; but
3956 	 * there's also a KSM case which does need to charge the page.
3957 	 */
3958 	if (!PageSwapCache(page)) {
3959 		int ret;
3960 
3961 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3962 		if (ret == -EINTR)
3963 			ret = 0;
3964 		return ret;
3965 	}
3966 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3967 }
3968 
3969 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3970 {
3971 	if (mem_cgroup_disabled())
3972 		return;
3973 	if (!memcg)
3974 		return;
3975 	__mem_cgroup_cancel_charge(memcg, 1);
3976 }
3977 
3978 static void
3979 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3980 					enum charge_type ctype)
3981 {
3982 	if (mem_cgroup_disabled())
3983 		return;
3984 	if (!memcg)
3985 		return;
3986 
3987 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3988 	/*
3989 	 * Now swap is on-memory. This means this page may be
3990 	 * counted both as mem and swap....double count.
3991 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3992 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3993 	 * may call delete_from_swap_cache() before reach here.
3994 	 */
3995 	if (do_swap_account && PageSwapCache(page)) {
3996 		swp_entry_t ent = {.val = page_private(page)};
3997 		mem_cgroup_uncharge_swap(ent);
3998 	}
3999 }
4000 
4001 void mem_cgroup_commit_charge_swapin(struct page *page,
4002 				     struct mem_cgroup *memcg)
4003 {
4004 	__mem_cgroup_commit_charge_swapin(page, memcg,
4005 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4006 }
4007 
4008 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4009 				gfp_t gfp_mask)
4010 {
4011 	struct mem_cgroup *memcg = NULL;
4012 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4013 	int ret;
4014 
4015 	if (mem_cgroup_disabled())
4016 		return 0;
4017 	if (PageCompound(page))
4018 		return 0;
4019 
4020 	if (!PageSwapCache(page))
4021 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4022 	else { /* page is swapcache/shmem */
4023 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4024 						     gfp_mask, &memcg);
4025 		if (!ret)
4026 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4027 	}
4028 	return ret;
4029 }
4030 
4031 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4032 				   unsigned int nr_pages,
4033 				   const enum charge_type ctype)
4034 {
4035 	struct memcg_batch_info *batch = NULL;
4036 	bool uncharge_memsw = true;
4037 
4038 	/* If swapout, usage of swap doesn't decrease */
4039 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4040 		uncharge_memsw = false;
4041 
4042 	batch = &current->memcg_batch;
4043 	/*
4044 	 * In usual, we do css_get() when we remember memcg pointer.
4045 	 * But in this case, we keep res->usage until end of a series of
4046 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4047 	 */
4048 	if (!batch->memcg)
4049 		batch->memcg = memcg;
4050 	/*
4051 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4052 	 * In those cases, all pages freed continuously can be expected to be in
4053 	 * the same cgroup and we have chance to coalesce uncharges.
4054 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4055 	 * because we want to do uncharge as soon as possible.
4056 	 */
4057 
4058 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4059 		goto direct_uncharge;
4060 
4061 	if (nr_pages > 1)
4062 		goto direct_uncharge;
4063 
4064 	/*
4065 	 * In typical case, batch->memcg == mem. This means we can
4066 	 * merge a series of uncharges to an uncharge of res_counter.
4067 	 * If not, we uncharge res_counter ony by one.
4068 	 */
4069 	if (batch->memcg != memcg)
4070 		goto direct_uncharge;
4071 	/* remember freed charge and uncharge it later */
4072 	batch->nr_pages++;
4073 	if (uncharge_memsw)
4074 		batch->memsw_nr_pages++;
4075 	return;
4076 direct_uncharge:
4077 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4078 	if (uncharge_memsw)
4079 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4080 	if (unlikely(batch->memcg != memcg))
4081 		memcg_oom_recover(memcg);
4082 }
4083 
4084 /*
4085  * uncharge if !page_mapped(page)
4086  */
4087 static struct mem_cgroup *
4088 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4089 			     bool end_migration)
4090 {
4091 	struct mem_cgroup *memcg = NULL;
4092 	unsigned int nr_pages = 1;
4093 	struct page_cgroup *pc;
4094 	bool anon;
4095 
4096 	if (mem_cgroup_disabled())
4097 		return NULL;
4098 
4099 	VM_BUG_ON(PageSwapCache(page));
4100 
4101 	if (PageTransHuge(page)) {
4102 		nr_pages <<= compound_order(page);
4103 		VM_BUG_ON(!PageTransHuge(page));
4104 	}
4105 	/*
4106 	 * Check if our page_cgroup is valid
4107 	 */
4108 	pc = lookup_page_cgroup(page);
4109 	if (unlikely(!PageCgroupUsed(pc)))
4110 		return NULL;
4111 
4112 	lock_page_cgroup(pc);
4113 
4114 	memcg = pc->mem_cgroup;
4115 
4116 	if (!PageCgroupUsed(pc))
4117 		goto unlock_out;
4118 
4119 	anon = PageAnon(page);
4120 
4121 	switch (ctype) {
4122 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4123 		/*
4124 		 * Generally PageAnon tells if it's the anon statistics to be
4125 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4126 		 * used before page reached the stage of being marked PageAnon.
4127 		 */
4128 		anon = true;
4129 		/* fallthrough */
4130 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4131 		/* See mem_cgroup_prepare_migration() */
4132 		if (page_mapped(page))
4133 			goto unlock_out;
4134 		/*
4135 		 * Pages under migration may not be uncharged.  But
4136 		 * end_migration() /must/ be the one uncharging the
4137 		 * unused post-migration page and so it has to call
4138 		 * here with the migration bit still set.  See the
4139 		 * res_counter handling below.
4140 		 */
4141 		if (!end_migration && PageCgroupMigration(pc))
4142 			goto unlock_out;
4143 		break;
4144 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4145 		if (!PageAnon(page)) {	/* Shared memory */
4146 			if (page->mapping && !page_is_file_cache(page))
4147 				goto unlock_out;
4148 		} else if (page_mapped(page)) /* Anon */
4149 				goto unlock_out;
4150 		break;
4151 	default:
4152 		break;
4153 	}
4154 
4155 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4156 
4157 	ClearPageCgroupUsed(pc);
4158 	/*
4159 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4160 	 * freed from LRU. This is safe because uncharged page is expected not
4161 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4162 	 * special functions.
4163 	 */
4164 
4165 	unlock_page_cgroup(pc);
4166 	/*
4167 	 * even after unlock, we have memcg->res.usage here and this memcg
4168 	 * will never be freed.
4169 	 */
4170 	memcg_check_events(memcg, page);
4171 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4172 		mem_cgroup_swap_statistics(memcg, true);
4173 		mem_cgroup_get(memcg);
4174 	}
4175 	/*
4176 	 * Migration does not charge the res_counter for the
4177 	 * replacement page, so leave it alone when phasing out the
4178 	 * page that is unused after the migration.
4179 	 */
4180 	if (!end_migration && !mem_cgroup_is_root(memcg))
4181 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4182 
4183 	return memcg;
4184 
4185 unlock_out:
4186 	unlock_page_cgroup(pc);
4187 	return NULL;
4188 }
4189 
4190 void mem_cgroup_uncharge_page(struct page *page)
4191 {
4192 	/* early check. */
4193 	if (page_mapped(page))
4194 		return;
4195 	VM_BUG_ON(page->mapping && !PageAnon(page));
4196 	if (PageSwapCache(page))
4197 		return;
4198 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4199 }
4200 
4201 void mem_cgroup_uncharge_cache_page(struct page *page)
4202 {
4203 	VM_BUG_ON(page_mapped(page));
4204 	VM_BUG_ON(page->mapping);
4205 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4206 }
4207 
4208 /*
4209  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4210  * In that cases, pages are freed continuously and we can expect pages
4211  * are in the same memcg. All these calls itself limits the number of
4212  * pages freed at once, then uncharge_start/end() is called properly.
4213  * This may be called prural(2) times in a context,
4214  */
4215 
4216 void mem_cgroup_uncharge_start(void)
4217 {
4218 	current->memcg_batch.do_batch++;
4219 	/* We can do nest. */
4220 	if (current->memcg_batch.do_batch == 1) {
4221 		current->memcg_batch.memcg = NULL;
4222 		current->memcg_batch.nr_pages = 0;
4223 		current->memcg_batch.memsw_nr_pages = 0;
4224 	}
4225 }
4226 
4227 void mem_cgroup_uncharge_end(void)
4228 {
4229 	struct memcg_batch_info *batch = &current->memcg_batch;
4230 
4231 	if (!batch->do_batch)
4232 		return;
4233 
4234 	batch->do_batch--;
4235 	if (batch->do_batch) /* If stacked, do nothing. */
4236 		return;
4237 
4238 	if (!batch->memcg)
4239 		return;
4240 	/*
4241 	 * This "batch->memcg" is valid without any css_get/put etc...
4242 	 * bacause we hide charges behind us.
4243 	 */
4244 	if (batch->nr_pages)
4245 		res_counter_uncharge(&batch->memcg->res,
4246 				     batch->nr_pages * PAGE_SIZE);
4247 	if (batch->memsw_nr_pages)
4248 		res_counter_uncharge(&batch->memcg->memsw,
4249 				     batch->memsw_nr_pages * PAGE_SIZE);
4250 	memcg_oom_recover(batch->memcg);
4251 	/* forget this pointer (for sanity check) */
4252 	batch->memcg = NULL;
4253 }
4254 
4255 #ifdef CONFIG_SWAP
4256 /*
4257  * called after __delete_from_swap_cache() and drop "page" account.
4258  * memcg information is recorded to swap_cgroup of "ent"
4259  */
4260 void
4261 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4262 {
4263 	struct mem_cgroup *memcg;
4264 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4265 
4266 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4267 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4268 
4269 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4270 
4271 	/*
4272 	 * record memcg information,  if swapout && memcg != NULL,
4273 	 * mem_cgroup_get() was called in uncharge().
4274 	 */
4275 	if (do_swap_account && swapout && memcg)
4276 		swap_cgroup_record(ent, css_id(&memcg->css));
4277 }
4278 #endif
4279 
4280 #ifdef CONFIG_MEMCG_SWAP
4281 /*
4282  * called from swap_entry_free(). remove record in swap_cgroup and
4283  * uncharge "memsw" account.
4284  */
4285 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4286 {
4287 	struct mem_cgroup *memcg;
4288 	unsigned short id;
4289 
4290 	if (!do_swap_account)
4291 		return;
4292 
4293 	id = swap_cgroup_record(ent, 0);
4294 	rcu_read_lock();
4295 	memcg = mem_cgroup_lookup(id);
4296 	if (memcg) {
4297 		/*
4298 		 * We uncharge this because swap is freed.
4299 		 * This memcg can be obsolete one. We avoid calling css_tryget
4300 		 */
4301 		if (!mem_cgroup_is_root(memcg))
4302 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4303 		mem_cgroup_swap_statistics(memcg, false);
4304 		mem_cgroup_put(memcg);
4305 	}
4306 	rcu_read_unlock();
4307 }
4308 
4309 /**
4310  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4311  * @entry: swap entry to be moved
4312  * @from:  mem_cgroup which the entry is moved from
4313  * @to:  mem_cgroup which the entry is moved to
4314  *
4315  * It succeeds only when the swap_cgroup's record for this entry is the same
4316  * as the mem_cgroup's id of @from.
4317  *
4318  * Returns 0 on success, -EINVAL on failure.
4319  *
4320  * The caller must have charged to @to, IOW, called res_counter_charge() about
4321  * both res and memsw, and called css_get().
4322  */
4323 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4324 				struct mem_cgroup *from, struct mem_cgroup *to)
4325 {
4326 	unsigned short old_id, new_id;
4327 
4328 	old_id = css_id(&from->css);
4329 	new_id = css_id(&to->css);
4330 
4331 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4332 		mem_cgroup_swap_statistics(from, false);
4333 		mem_cgroup_swap_statistics(to, true);
4334 		/*
4335 		 * This function is only called from task migration context now.
4336 		 * It postpones res_counter and refcount handling till the end
4337 		 * of task migration(mem_cgroup_clear_mc()) for performance
4338 		 * improvement. But we cannot postpone mem_cgroup_get(to)
4339 		 * because if the process that has been moved to @to does
4340 		 * swap-in, the refcount of @to might be decreased to 0.
4341 		 */
4342 		mem_cgroup_get(to);
4343 		return 0;
4344 	}
4345 	return -EINVAL;
4346 }
4347 #else
4348 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4349 				struct mem_cgroup *from, struct mem_cgroup *to)
4350 {
4351 	return -EINVAL;
4352 }
4353 #endif
4354 
4355 /*
4356  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4357  * page belongs to.
4358  */
4359 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4360 				  struct mem_cgroup **memcgp)
4361 {
4362 	struct mem_cgroup *memcg = NULL;
4363 	unsigned int nr_pages = 1;
4364 	struct page_cgroup *pc;
4365 	enum charge_type ctype;
4366 
4367 	*memcgp = NULL;
4368 
4369 	if (mem_cgroup_disabled())
4370 		return;
4371 
4372 	if (PageTransHuge(page))
4373 		nr_pages <<= compound_order(page);
4374 
4375 	pc = lookup_page_cgroup(page);
4376 	lock_page_cgroup(pc);
4377 	if (PageCgroupUsed(pc)) {
4378 		memcg = pc->mem_cgroup;
4379 		css_get(&memcg->css);
4380 		/*
4381 		 * At migrating an anonymous page, its mapcount goes down
4382 		 * to 0 and uncharge() will be called. But, even if it's fully
4383 		 * unmapped, migration may fail and this page has to be
4384 		 * charged again. We set MIGRATION flag here and delay uncharge
4385 		 * until end_migration() is called
4386 		 *
4387 		 * Corner Case Thinking
4388 		 * A)
4389 		 * When the old page was mapped as Anon and it's unmap-and-freed
4390 		 * while migration was ongoing.
4391 		 * If unmap finds the old page, uncharge() of it will be delayed
4392 		 * until end_migration(). If unmap finds a new page, it's
4393 		 * uncharged when it make mapcount to be 1->0. If unmap code
4394 		 * finds swap_migration_entry, the new page will not be mapped
4395 		 * and end_migration() will find it(mapcount==0).
4396 		 *
4397 		 * B)
4398 		 * When the old page was mapped but migraion fails, the kernel
4399 		 * remaps it. A charge for it is kept by MIGRATION flag even
4400 		 * if mapcount goes down to 0. We can do remap successfully
4401 		 * without charging it again.
4402 		 *
4403 		 * C)
4404 		 * The "old" page is under lock_page() until the end of
4405 		 * migration, so, the old page itself will not be swapped-out.
4406 		 * If the new page is swapped out before end_migraton, our
4407 		 * hook to usual swap-out path will catch the event.
4408 		 */
4409 		if (PageAnon(page))
4410 			SetPageCgroupMigration(pc);
4411 	}
4412 	unlock_page_cgroup(pc);
4413 	/*
4414 	 * If the page is not charged at this point,
4415 	 * we return here.
4416 	 */
4417 	if (!memcg)
4418 		return;
4419 
4420 	*memcgp = memcg;
4421 	/*
4422 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4423 	 * is called before end_migration, we can catch all events on this new
4424 	 * page. In the case new page is migrated but not remapped, new page's
4425 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4426 	 */
4427 	if (PageAnon(page))
4428 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4429 	else
4430 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4431 	/*
4432 	 * The page is committed to the memcg, but it's not actually
4433 	 * charged to the res_counter since we plan on replacing the
4434 	 * old one and only one page is going to be left afterwards.
4435 	 */
4436 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4437 }
4438 
4439 /* remove redundant charge if migration failed*/
4440 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4441 	struct page *oldpage, struct page *newpage, bool migration_ok)
4442 {
4443 	struct page *used, *unused;
4444 	struct page_cgroup *pc;
4445 	bool anon;
4446 
4447 	if (!memcg)
4448 		return;
4449 
4450 	if (!migration_ok) {
4451 		used = oldpage;
4452 		unused = newpage;
4453 	} else {
4454 		used = newpage;
4455 		unused = oldpage;
4456 	}
4457 	anon = PageAnon(used);
4458 	__mem_cgroup_uncharge_common(unused,
4459 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4460 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4461 				     true);
4462 	css_put(&memcg->css);
4463 	/*
4464 	 * We disallowed uncharge of pages under migration because mapcount
4465 	 * of the page goes down to zero, temporarly.
4466 	 * Clear the flag and check the page should be charged.
4467 	 */
4468 	pc = lookup_page_cgroup(oldpage);
4469 	lock_page_cgroup(pc);
4470 	ClearPageCgroupMigration(pc);
4471 	unlock_page_cgroup(pc);
4472 
4473 	/*
4474 	 * If a page is a file cache, radix-tree replacement is very atomic
4475 	 * and we can skip this check. When it was an Anon page, its mapcount
4476 	 * goes down to 0. But because we added MIGRATION flage, it's not
4477 	 * uncharged yet. There are several case but page->mapcount check
4478 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4479 	 * check. (see prepare_charge() also)
4480 	 */
4481 	if (anon)
4482 		mem_cgroup_uncharge_page(used);
4483 }
4484 
4485 /*
4486  * At replace page cache, newpage is not under any memcg but it's on
4487  * LRU. So, this function doesn't touch res_counter but handles LRU
4488  * in correct way. Both pages are locked so we cannot race with uncharge.
4489  */
4490 void mem_cgroup_replace_page_cache(struct page *oldpage,
4491 				  struct page *newpage)
4492 {
4493 	struct mem_cgroup *memcg = NULL;
4494 	struct page_cgroup *pc;
4495 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4496 
4497 	if (mem_cgroup_disabled())
4498 		return;
4499 
4500 	pc = lookup_page_cgroup(oldpage);
4501 	/* fix accounting on old pages */
4502 	lock_page_cgroup(pc);
4503 	if (PageCgroupUsed(pc)) {
4504 		memcg = pc->mem_cgroup;
4505 		mem_cgroup_charge_statistics(memcg, false, -1);
4506 		ClearPageCgroupUsed(pc);
4507 	}
4508 	unlock_page_cgroup(pc);
4509 
4510 	/*
4511 	 * When called from shmem_replace_page(), in some cases the
4512 	 * oldpage has already been charged, and in some cases not.
4513 	 */
4514 	if (!memcg)
4515 		return;
4516 	/*
4517 	 * Even if newpage->mapping was NULL before starting replacement,
4518 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4519 	 * LRU while we overwrite pc->mem_cgroup.
4520 	 */
4521 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4522 }
4523 
4524 #ifdef CONFIG_DEBUG_VM
4525 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4526 {
4527 	struct page_cgroup *pc;
4528 
4529 	pc = lookup_page_cgroup(page);
4530 	/*
4531 	 * Can be NULL while feeding pages into the page allocator for
4532 	 * the first time, i.e. during boot or memory hotplug;
4533 	 * or when mem_cgroup_disabled().
4534 	 */
4535 	if (likely(pc) && PageCgroupUsed(pc))
4536 		return pc;
4537 	return NULL;
4538 }
4539 
4540 bool mem_cgroup_bad_page_check(struct page *page)
4541 {
4542 	if (mem_cgroup_disabled())
4543 		return false;
4544 
4545 	return lookup_page_cgroup_used(page) != NULL;
4546 }
4547 
4548 void mem_cgroup_print_bad_page(struct page *page)
4549 {
4550 	struct page_cgroup *pc;
4551 
4552 	pc = lookup_page_cgroup_used(page);
4553 	if (pc) {
4554 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4555 			 pc, pc->flags, pc->mem_cgroup);
4556 	}
4557 }
4558 #endif
4559 
4560 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4561 				unsigned long long val)
4562 {
4563 	int retry_count;
4564 	u64 memswlimit, memlimit;
4565 	int ret = 0;
4566 	int children = mem_cgroup_count_children(memcg);
4567 	u64 curusage, oldusage;
4568 	int enlarge;
4569 
4570 	/*
4571 	 * For keeping hierarchical_reclaim simple, how long we should retry
4572 	 * is depends on callers. We set our retry-count to be function
4573 	 * of # of children which we should visit in this loop.
4574 	 */
4575 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4576 
4577 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4578 
4579 	enlarge = 0;
4580 	while (retry_count) {
4581 		if (signal_pending(current)) {
4582 			ret = -EINTR;
4583 			break;
4584 		}
4585 		/*
4586 		 * Rather than hide all in some function, I do this in
4587 		 * open coded manner. You see what this really does.
4588 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4589 		 */
4590 		mutex_lock(&set_limit_mutex);
4591 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4592 		if (memswlimit < val) {
4593 			ret = -EINVAL;
4594 			mutex_unlock(&set_limit_mutex);
4595 			break;
4596 		}
4597 
4598 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4599 		if (memlimit < val)
4600 			enlarge = 1;
4601 
4602 		ret = res_counter_set_limit(&memcg->res, val);
4603 		if (!ret) {
4604 			if (memswlimit == val)
4605 				memcg->memsw_is_minimum = true;
4606 			else
4607 				memcg->memsw_is_minimum = false;
4608 		}
4609 		mutex_unlock(&set_limit_mutex);
4610 
4611 		if (!ret)
4612 			break;
4613 
4614 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4615 				   MEM_CGROUP_RECLAIM_SHRINK);
4616 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4617 		/* Usage is reduced ? */
4618   		if (curusage >= oldusage)
4619 			retry_count--;
4620 		else
4621 			oldusage = curusage;
4622 	}
4623 	if (!ret && enlarge)
4624 		memcg_oom_recover(memcg);
4625 
4626 	return ret;
4627 }
4628 
4629 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4630 					unsigned long long val)
4631 {
4632 	int retry_count;
4633 	u64 memlimit, memswlimit, oldusage, curusage;
4634 	int children = mem_cgroup_count_children(memcg);
4635 	int ret = -EBUSY;
4636 	int enlarge = 0;
4637 
4638 	/* see mem_cgroup_resize_res_limit */
4639  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4640 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4641 	while (retry_count) {
4642 		if (signal_pending(current)) {
4643 			ret = -EINTR;
4644 			break;
4645 		}
4646 		/*
4647 		 * Rather than hide all in some function, I do this in
4648 		 * open coded manner. You see what this really does.
4649 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4650 		 */
4651 		mutex_lock(&set_limit_mutex);
4652 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4653 		if (memlimit > val) {
4654 			ret = -EINVAL;
4655 			mutex_unlock(&set_limit_mutex);
4656 			break;
4657 		}
4658 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4659 		if (memswlimit < val)
4660 			enlarge = 1;
4661 		ret = res_counter_set_limit(&memcg->memsw, val);
4662 		if (!ret) {
4663 			if (memlimit == val)
4664 				memcg->memsw_is_minimum = true;
4665 			else
4666 				memcg->memsw_is_minimum = false;
4667 		}
4668 		mutex_unlock(&set_limit_mutex);
4669 
4670 		if (!ret)
4671 			break;
4672 
4673 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4674 				   MEM_CGROUP_RECLAIM_NOSWAP |
4675 				   MEM_CGROUP_RECLAIM_SHRINK);
4676 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4677 		/* Usage is reduced ? */
4678 		if (curusage >= oldusage)
4679 			retry_count--;
4680 		else
4681 			oldusage = curusage;
4682 	}
4683 	if (!ret && enlarge)
4684 		memcg_oom_recover(memcg);
4685 	return ret;
4686 }
4687 
4688 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4689 					    gfp_t gfp_mask,
4690 					    unsigned long *total_scanned)
4691 {
4692 	unsigned long nr_reclaimed = 0;
4693 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4694 	unsigned long reclaimed;
4695 	int loop = 0;
4696 	struct mem_cgroup_tree_per_zone *mctz;
4697 	unsigned long long excess;
4698 	unsigned long nr_scanned;
4699 
4700 	if (order > 0)
4701 		return 0;
4702 
4703 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4704 	/*
4705 	 * This loop can run a while, specially if mem_cgroup's continuously
4706 	 * keep exceeding their soft limit and putting the system under
4707 	 * pressure
4708 	 */
4709 	do {
4710 		if (next_mz)
4711 			mz = next_mz;
4712 		else
4713 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4714 		if (!mz)
4715 			break;
4716 
4717 		nr_scanned = 0;
4718 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4719 						    gfp_mask, &nr_scanned);
4720 		nr_reclaimed += reclaimed;
4721 		*total_scanned += nr_scanned;
4722 		spin_lock(&mctz->lock);
4723 
4724 		/*
4725 		 * If we failed to reclaim anything from this memory cgroup
4726 		 * it is time to move on to the next cgroup
4727 		 */
4728 		next_mz = NULL;
4729 		if (!reclaimed) {
4730 			do {
4731 				/*
4732 				 * Loop until we find yet another one.
4733 				 *
4734 				 * By the time we get the soft_limit lock
4735 				 * again, someone might have aded the
4736 				 * group back on the RB tree. Iterate to
4737 				 * make sure we get a different mem.
4738 				 * mem_cgroup_largest_soft_limit_node returns
4739 				 * NULL if no other cgroup is present on
4740 				 * the tree
4741 				 */
4742 				next_mz =
4743 				__mem_cgroup_largest_soft_limit_node(mctz);
4744 				if (next_mz == mz)
4745 					css_put(&next_mz->memcg->css);
4746 				else /* next_mz == NULL or other memcg */
4747 					break;
4748 			} while (1);
4749 		}
4750 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4751 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4752 		/*
4753 		 * One school of thought says that we should not add
4754 		 * back the node to the tree if reclaim returns 0.
4755 		 * But our reclaim could return 0, simply because due
4756 		 * to priority we are exposing a smaller subset of
4757 		 * memory to reclaim from. Consider this as a longer
4758 		 * term TODO.
4759 		 */
4760 		/* If excess == 0, no tree ops */
4761 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4762 		spin_unlock(&mctz->lock);
4763 		css_put(&mz->memcg->css);
4764 		loop++;
4765 		/*
4766 		 * Could not reclaim anything and there are no more
4767 		 * mem cgroups to try or we seem to be looping without
4768 		 * reclaiming anything.
4769 		 */
4770 		if (!nr_reclaimed &&
4771 			(next_mz == NULL ||
4772 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4773 			break;
4774 	} while (!nr_reclaimed);
4775 	if (next_mz)
4776 		css_put(&next_mz->memcg->css);
4777 	return nr_reclaimed;
4778 }
4779 
4780 /**
4781  * mem_cgroup_force_empty_list - clears LRU of a group
4782  * @memcg: group to clear
4783  * @node: NUMA node
4784  * @zid: zone id
4785  * @lru: lru to to clear
4786  *
4787  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4788  * reclaim the pages page themselves - pages are moved to the parent (or root)
4789  * group.
4790  */
4791 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4792 				int node, int zid, enum lru_list lru)
4793 {
4794 	struct lruvec *lruvec;
4795 	unsigned long flags;
4796 	struct list_head *list;
4797 	struct page *busy;
4798 	struct zone *zone;
4799 
4800 	zone = &NODE_DATA(node)->node_zones[zid];
4801 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4802 	list = &lruvec->lists[lru];
4803 
4804 	busy = NULL;
4805 	do {
4806 		struct page_cgroup *pc;
4807 		struct page *page;
4808 
4809 		spin_lock_irqsave(&zone->lru_lock, flags);
4810 		if (list_empty(list)) {
4811 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4812 			break;
4813 		}
4814 		page = list_entry(list->prev, struct page, lru);
4815 		if (busy == page) {
4816 			list_move(&page->lru, list);
4817 			busy = NULL;
4818 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4819 			continue;
4820 		}
4821 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4822 
4823 		pc = lookup_page_cgroup(page);
4824 
4825 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4826 			/* found lock contention or "pc" is obsolete. */
4827 			busy = page;
4828 			cond_resched();
4829 		} else
4830 			busy = NULL;
4831 	} while (!list_empty(list));
4832 }
4833 
4834 /*
4835  * make mem_cgroup's charge to be 0 if there is no task by moving
4836  * all the charges and pages to the parent.
4837  * This enables deleting this mem_cgroup.
4838  *
4839  * Caller is responsible for holding css reference on the memcg.
4840  */
4841 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4842 {
4843 	int node, zid;
4844 	u64 usage;
4845 
4846 	do {
4847 		/* This is for making all *used* pages to be on LRU. */
4848 		lru_add_drain_all();
4849 		drain_all_stock_sync(memcg);
4850 		mem_cgroup_start_move(memcg);
4851 		for_each_node_state(node, N_MEMORY) {
4852 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4853 				enum lru_list lru;
4854 				for_each_lru(lru) {
4855 					mem_cgroup_force_empty_list(memcg,
4856 							node, zid, lru);
4857 				}
4858 			}
4859 		}
4860 		mem_cgroup_end_move(memcg);
4861 		memcg_oom_recover(memcg);
4862 		cond_resched();
4863 
4864 		/*
4865 		 * Kernel memory may not necessarily be trackable to a specific
4866 		 * process. So they are not migrated, and therefore we can't
4867 		 * expect their value to drop to 0 here.
4868 		 * Having res filled up with kmem only is enough.
4869 		 *
4870 		 * This is a safety check because mem_cgroup_force_empty_list
4871 		 * could have raced with mem_cgroup_replace_page_cache callers
4872 		 * so the lru seemed empty but the page could have been added
4873 		 * right after the check. RES_USAGE should be safe as we always
4874 		 * charge before adding to the LRU.
4875 		 */
4876 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4877 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4878 	} while (usage > 0);
4879 }
4880 
4881 /*
4882  * This mainly exists for tests during the setting of set of use_hierarchy.
4883  * Since this is the very setting we are changing, the current hierarchy value
4884  * is meaningless
4885  */
4886 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4887 {
4888 	struct cgroup *pos;
4889 
4890 	/* bounce at first found */
4891 	cgroup_for_each_child(pos, memcg->css.cgroup)
4892 		return true;
4893 	return false;
4894 }
4895 
4896 /*
4897  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4898  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4899  * from mem_cgroup_count_children(), in the sense that we don't really care how
4900  * many children we have; we only need to know if we have any.  It also counts
4901  * any memcg without hierarchy as infertile.
4902  */
4903 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4904 {
4905 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4906 }
4907 
4908 /*
4909  * Reclaims as many pages from the given memcg as possible and moves
4910  * the rest to the parent.
4911  *
4912  * Caller is responsible for holding css reference for memcg.
4913  */
4914 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4915 {
4916 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4917 	struct cgroup *cgrp = memcg->css.cgroup;
4918 
4919 	/* returns EBUSY if there is a task or if we come here twice. */
4920 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4921 		return -EBUSY;
4922 
4923 	/* we call try-to-free pages for make this cgroup empty */
4924 	lru_add_drain_all();
4925 	/* try to free all pages in this cgroup */
4926 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4927 		int progress;
4928 
4929 		if (signal_pending(current))
4930 			return -EINTR;
4931 
4932 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4933 						false);
4934 		if (!progress) {
4935 			nr_retries--;
4936 			/* maybe some writeback is necessary */
4937 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4938 		}
4939 
4940 	}
4941 	lru_add_drain();
4942 	mem_cgroup_reparent_charges(memcg);
4943 
4944 	return 0;
4945 }
4946 
4947 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4948 {
4949 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4950 	int ret;
4951 
4952 	if (mem_cgroup_is_root(memcg))
4953 		return -EINVAL;
4954 	css_get(&memcg->css);
4955 	ret = mem_cgroup_force_empty(memcg);
4956 	css_put(&memcg->css);
4957 
4958 	return ret;
4959 }
4960 
4961 
4962 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4963 {
4964 	return mem_cgroup_from_cont(cont)->use_hierarchy;
4965 }
4966 
4967 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4968 					u64 val)
4969 {
4970 	int retval = 0;
4971 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4972 	struct cgroup *parent = cont->parent;
4973 	struct mem_cgroup *parent_memcg = NULL;
4974 
4975 	if (parent)
4976 		parent_memcg = mem_cgroup_from_cont(parent);
4977 
4978 	mutex_lock(&memcg_create_mutex);
4979 
4980 	if (memcg->use_hierarchy == val)
4981 		goto out;
4982 
4983 	/*
4984 	 * If parent's use_hierarchy is set, we can't make any modifications
4985 	 * in the child subtrees. If it is unset, then the change can
4986 	 * occur, provided the current cgroup has no children.
4987 	 *
4988 	 * For the root cgroup, parent_mem is NULL, we allow value to be
4989 	 * set if there are no children.
4990 	 */
4991 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4992 				(val == 1 || val == 0)) {
4993 		if (!__memcg_has_children(memcg))
4994 			memcg->use_hierarchy = val;
4995 		else
4996 			retval = -EBUSY;
4997 	} else
4998 		retval = -EINVAL;
4999 
5000 out:
5001 	mutex_unlock(&memcg_create_mutex);
5002 
5003 	return retval;
5004 }
5005 
5006 
5007 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5008 					       enum mem_cgroup_stat_index idx)
5009 {
5010 	struct mem_cgroup *iter;
5011 	long val = 0;
5012 
5013 	/* Per-cpu values can be negative, use a signed accumulator */
5014 	for_each_mem_cgroup_tree(iter, memcg)
5015 		val += mem_cgroup_read_stat(iter, idx);
5016 
5017 	if (val < 0) /* race ? */
5018 		val = 0;
5019 	return val;
5020 }
5021 
5022 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5023 {
5024 	u64 val;
5025 
5026 	if (!mem_cgroup_is_root(memcg)) {
5027 		if (!swap)
5028 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5029 		else
5030 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5031 	}
5032 
5033 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5034 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5035 
5036 	if (swap)
5037 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5038 
5039 	return val << PAGE_SHIFT;
5040 }
5041 
5042 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5043 			       struct file *file, char __user *buf,
5044 			       size_t nbytes, loff_t *ppos)
5045 {
5046 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047 	char str[64];
5048 	u64 val;
5049 	int name, len;
5050 	enum res_type type;
5051 
5052 	type = MEMFILE_TYPE(cft->private);
5053 	name = MEMFILE_ATTR(cft->private);
5054 
5055 	switch (type) {
5056 	case _MEM:
5057 		if (name == RES_USAGE)
5058 			val = mem_cgroup_usage(memcg, false);
5059 		else
5060 			val = res_counter_read_u64(&memcg->res, name);
5061 		break;
5062 	case _MEMSWAP:
5063 		if (name == RES_USAGE)
5064 			val = mem_cgroup_usage(memcg, true);
5065 		else
5066 			val = res_counter_read_u64(&memcg->memsw, name);
5067 		break;
5068 	case _KMEM:
5069 		val = res_counter_read_u64(&memcg->kmem, name);
5070 		break;
5071 	default:
5072 		BUG();
5073 	}
5074 
5075 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5076 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5077 }
5078 
5079 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5080 {
5081 	int ret = -EINVAL;
5082 #ifdef CONFIG_MEMCG_KMEM
5083 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5084 	/*
5085 	 * For simplicity, we won't allow this to be disabled.  It also can't
5086 	 * be changed if the cgroup has children already, or if tasks had
5087 	 * already joined.
5088 	 *
5089 	 * If tasks join before we set the limit, a person looking at
5090 	 * kmem.usage_in_bytes will have no way to determine when it took
5091 	 * place, which makes the value quite meaningless.
5092 	 *
5093 	 * After it first became limited, changes in the value of the limit are
5094 	 * of course permitted.
5095 	 */
5096 	mutex_lock(&memcg_create_mutex);
5097 	mutex_lock(&set_limit_mutex);
5098 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5099 		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5100 			ret = -EBUSY;
5101 			goto out;
5102 		}
5103 		ret = res_counter_set_limit(&memcg->kmem, val);
5104 		VM_BUG_ON(ret);
5105 
5106 		ret = memcg_update_cache_sizes(memcg);
5107 		if (ret) {
5108 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5109 			goto out;
5110 		}
5111 		static_key_slow_inc(&memcg_kmem_enabled_key);
5112 		/*
5113 		 * setting the active bit after the inc will guarantee no one
5114 		 * starts accounting before all call sites are patched
5115 		 */
5116 		memcg_kmem_set_active(memcg);
5117 
5118 		/*
5119 		 * kmem charges can outlive the cgroup. In the case of slab
5120 		 * pages, for instance, a page contain objects from various
5121 		 * processes, so it is unfeasible to migrate them away. We
5122 		 * need to reference count the memcg because of that.
5123 		 */
5124 		mem_cgroup_get(memcg);
5125 	} else
5126 		ret = res_counter_set_limit(&memcg->kmem, val);
5127 out:
5128 	mutex_unlock(&set_limit_mutex);
5129 	mutex_unlock(&memcg_create_mutex);
5130 #endif
5131 	return ret;
5132 }
5133 
5134 #ifdef CONFIG_MEMCG_KMEM
5135 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5136 {
5137 	int ret = 0;
5138 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5139 	if (!parent)
5140 		goto out;
5141 
5142 	memcg->kmem_account_flags = parent->kmem_account_flags;
5143 	/*
5144 	 * When that happen, we need to disable the static branch only on those
5145 	 * memcgs that enabled it. To achieve this, we would be forced to
5146 	 * complicate the code by keeping track of which memcgs were the ones
5147 	 * that actually enabled limits, and which ones got it from its
5148 	 * parents.
5149 	 *
5150 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5151 	 * that is accounted.
5152 	 */
5153 	if (!memcg_kmem_is_active(memcg))
5154 		goto out;
5155 
5156 	/*
5157 	 * destroy(), called if we fail, will issue static_key_slow_inc() and
5158 	 * mem_cgroup_put() if kmem is enabled. We have to either call them
5159 	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5160 	 * this more consistent, since it always leads to the same destroy path
5161 	 */
5162 	mem_cgroup_get(memcg);
5163 	static_key_slow_inc(&memcg_kmem_enabled_key);
5164 
5165 	mutex_lock(&set_limit_mutex);
5166 	ret = memcg_update_cache_sizes(memcg);
5167 	mutex_unlock(&set_limit_mutex);
5168 out:
5169 	return ret;
5170 }
5171 #endif /* CONFIG_MEMCG_KMEM */
5172 
5173 /*
5174  * The user of this function is...
5175  * RES_LIMIT.
5176  */
5177 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5178 			    const char *buffer)
5179 {
5180 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5181 	enum res_type type;
5182 	int name;
5183 	unsigned long long val;
5184 	int ret;
5185 
5186 	type = MEMFILE_TYPE(cft->private);
5187 	name = MEMFILE_ATTR(cft->private);
5188 
5189 	switch (name) {
5190 	case RES_LIMIT:
5191 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5192 			ret = -EINVAL;
5193 			break;
5194 		}
5195 		/* This function does all necessary parse...reuse it */
5196 		ret = res_counter_memparse_write_strategy(buffer, &val);
5197 		if (ret)
5198 			break;
5199 		if (type == _MEM)
5200 			ret = mem_cgroup_resize_limit(memcg, val);
5201 		else if (type == _MEMSWAP)
5202 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5203 		else if (type == _KMEM)
5204 			ret = memcg_update_kmem_limit(cont, val);
5205 		else
5206 			return -EINVAL;
5207 		break;
5208 	case RES_SOFT_LIMIT:
5209 		ret = res_counter_memparse_write_strategy(buffer, &val);
5210 		if (ret)
5211 			break;
5212 		/*
5213 		 * For memsw, soft limits are hard to implement in terms
5214 		 * of semantics, for now, we support soft limits for
5215 		 * control without swap
5216 		 */
5217 		if (type == _MEM)
5218 			ret = res_counter_set_soft_limit(&memcg->res, val);
5219 		else
5220 			ret = -EINVAL;
5221 		break;
5222 	default:
5223 		ret = -EINVAL; /* should be BUG() ? */
5224 		break;
5225 	}
5226 	return ret;
5227 }
5228 
5229 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5230 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5231 {
5232 	struct cgroup *cgroup;
5233 	unsigned long long min_limit, min_memsw_limit, tmp;
5234 
5235 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5236 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5237 	cgroup = memcg->css.cgroup;
5238 	if (!memcg->use_hierarchy)
5239 		goto out;
5240 
5241 	while (cgroup->parent) {
5242 		cgroup = cgroup->parent;
5243 		memcg = mem_cgroup_from_cont(cgroup);
5244 		if (!memcg->use_hierarchy)
5245 			break;
5246 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5247 		min_limit = min(min_limit, tmp);
5248 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5249 		min_memsw_limit = min(min_memsw_limit, tmp);
5250 	}
5251 out:
5252 	*mem_limit = min_limit;
5253 	*memsw_limit = min_memsw_limit;
5254 }
5255 
5256 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5257 {
5258 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5259 	int name;
5260 	enum res_type type;
5261 
5262 	type = MEMFILE_TYPE(event);
5263 	name = MEMFILE_ATTR(event);
5264 
5265 	switch (name) {
5266 	case RES_MAX_USAGE:
5267 		if (type == _MEM)
5268 			res_counter_reset_max(&memcg->res);
5269 		else if (type == _MEMSWAP)
5270 			res_counter_reset_max(&memcg->memsw);
5271 		else if (type == _KMEM)
5272 			res_counter_reset_max(&memcg->kmem);
5273 		else
5274 			return -EINVAL;
5275 		break;
5276 	case RES_FAILCNT:
5277 		if (type == _MEM)
5278 			res_counter_reset_failcnt(&memcg->res);
5279 		else if (type == _MEMSWAP)
5280 			res_counter_reset_failcnt(&memcg->memsw);
5281 		else if (type == _KMEM)
5282 			res_counter_reset_failcnt(&memcg->kmem);
5283 		else
5284 			return -EINVAL;
5285 		break;
5286 	}
5287 
5288 	return 0;
5289 }
5290 
5291 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5292 					struct cftype *cft)
5293 {
5294 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5295 }
5296 
5297 #ifdef CONFIG_MMU
5298 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5299 					struct cftype *cft, u64 val)
5300 {
5301 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5302 
5303 	if (val >= (1 << NR_MOVE_TYPE))
5304 		return -EINVAL;
5305 
5306 	/*
5307 	 * No kind of locking is needed in here, because ->can_attach() will
5308 	 * check this value once in the beginning of the process, and then carry
5309 	 * on with stale data. This means that changes to this value will only
5310 	 * affect task migrations starting after the change.
5311 	 */
5312 	memcg->move_charge_at_immigrate = val;
5313 	return 0;
5314 }
5315 #else
5316 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5317 					struct cftype *cft, u64 val)
5318 {
5319 	return -ENOSYS;
5320 }
5321 #endif
5322 
5323 #ifdef CONFIG_NUMA
5324 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5325 				      struct seq_file *m)
5326 {
5327 	int nid;
5328 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5329 	unsigned long node_nr;
5330 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5331 
5332 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5333 	seq_printf(m, "total=%lu", total_nr);
5334 	for_each_node_state(nid, N_MEMORY) {
5335 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5336 		seq_printf(m, " N%d=%lu", nid, node_nr);
5337 	}
5338 	seq_putc(m, '\n');
5339 
5340 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5341 	seq_printf(m, "file=%lu", file_nr);
5342 	for_each_node_state(nid, N_MEMORY) {
5343 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5344 				LRU_ALL_FILE);
5345 		seq_printf(m, " N%d=%lu", nid, node_nr);
5346 	}
5347 	seq_putc(m, '\n');
5348 
5349 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5350 	seq_printf(m, "anon=%lu", anon_nr);
5351 	for_each_node_state(nid, N_MEMORY) {
5352 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5353 				LRU_ALL_ANON);
5354 		seq_printf(m, " N%d=%lu", nid, node_nr);
5355 	}
5356 	seq_putc(m, '\n');
5357 
5358 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5359 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5360 	for_each_node_state(nid, N_MEMORY) {
5361 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5362 				BIT(LRU_UNEVICTABLE));
5363 		seq_printf(m, " N%d=%lu", nid, node_nr);
5364 	}
5365 	seq_putc(m, '\n');
5366 	return 0;
5367 }
5368 #endif /* CONFIG_NUMA */
5369 
5370 static inline void mem_cgroup_lru_names_not_uptodate(void)
5371 {
5372 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5373 }
5374 
5375 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5376 				 struct seq_file *m)
5377 {
5378 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5379 	struct mem_cgroup *mi;
5380 	unsigned int i;
5381 
5382 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5383 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5384 			continue;
5385 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5386 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5387 	}
5388 
5389 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5390 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5391 			   mem_cgroup_read_events(memcg, i));
5392 
5393 	for (i = 0; i < NR_LRU_LISTS; i++)
5394 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5395 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5396 
5397 	/* Hierarchical information */
5398 	{
5399 		unsigned long long limit, memsw_limit;
5400 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5401 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5402 		if (do_swap_account)
5403 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5404 				   memsw_limit);
5405 	}
5406 
5407 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5408 		long long val = 0;
5409 
5410 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5411 			continue;
5412 		for_each_mem_cgroup_tree(mi, memcg)
5413 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5414 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5415 	}
5416 
5417 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5418 		unsigned long long val = 0;
5419 
5420 		for_each_mem_cgroup_tree(mi, memcg)
5421 			val += mem_cgroup_read_events(mi, i);
5422 		seq_printf(m, "total_%s %llu\n",
5423 			   mem_cgroup_events_names[i], val);
5424 	}
5425 
5426 	for (i = 0; i < NR_LRU_LISTS; i++) {
5427 		unsigned long long val = 0;
5428 
5429 		for_each_mem_cgroup_tree(mi, memcg)
5430 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5431 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5432 	}
5433 
5434 #ifdef CONFIG_DEBUG_VM
5435 	{
5436 		int nid, zid;
5437 		struct mem_cgroup_per_zone *mz;
5438 		struct zone_reclaim_stat *rstat;
5439 		unsigned long recent_rotated[2] = {0, 0};
5440 		unsigned long recent_scanned[2] = {0, 0};
5441 
5442 		for_each_online_node(nid)
5443 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5444 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5445 				rstat = &mz->lruvec.reclaim_stat;
5446 
5447 				recent_rotated[0] += rstat->recent_rotated[0];
5448 				recent_rotated[1] += rstat->recent_rotated[1];
5449 				recent_scanned[0] += rstat->recent_scanned[0];
5450 				recent_scanned[1] += rstat->recent_scanned[1];
5451 			}
5452 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5453 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5454 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5455 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5456 	}
5457 #endif
5458 
5459 	return 0;
5460 }
5461 
5462 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5463 {
5464 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5465 
5466 	return mem_cgroup_swappiness(memcg);
5467 }
5468 
5469 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5470 				       u64 val)
5471 {
5472 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5473 	struct mem_cgroup *parent;
5474 
5475 	if (val > 100)
5476 		return -EINVAL;
5477 
5478 	if (cgrp->parent == NULL)
5479 		return -EINVAL;
5480 
5481 	parent = mem_cgroup_from_cont(cgrp->parent);
5482 
5483 	mutex_lock(&memcg_create_mutex);
5484 
5485 	/* If under hierarchy, only empty-root can set this value */
5486 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5487 		mutex_unlock(&memcg_create_mutex);
5488 		return -EINVAL;
5489 	}
5490 
5491 	memcg->swappiness = val;
5492 
5493 	mutex_unlock(&memcg_create_mutex);
5494 
5495 	return 0;
5496 }
5497 
5498 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5499 {
5500 	struct mem_cgroup_threshold_ary *t;
5501 	u64 usage;
5502 	int i;
5503 
5504 	rcu_read_lock();
5505 	if (!swap)
5506 		t = rcu_dereference(memcg->thresholds.primary);
5507 	else
5508 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5509 
5510 	if (!t)
5511 		goto unlock;
5512 
5513 	usage = mem_cgroup_usage(memcg, swap);
5514 
5515 	/*
5516 	 * current_threshold points to threshold just below or equal to usage.
5517 	 * If it's not true, a threshold was crossed after last
5518 	 * call of __mem_cgroup_threshold().
5519 	 */
5520 	i = t->current_threshold;
5521 
5522 	/*
5523 	 * Iterate backward over array of thresholds starting from
5524 	 * current_threshold and check if a threshold is crossed.
5525 	 * If none of thresholds below usage is crossed, we read
5526 	 * only one element of the array here.
5527 	 */
5528 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5529 		eventfd_signal(t->entries[i].eventfd, 1);
5530 
5531 	/* i = current_threshold + 1 */
5532 	i++;
5533 
5534 	/*
5535 	 * Iterate forward over array of thresholds starting from
5536 	 * current_threshold+1 and check if a threshold is crossed.
5537 	 * If none of thresholds above usage is crossed, we read
5538 	 * only one element of the array here.
5539 	 */
5540 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5541 		eventfd_signal(t->entries[i].eventfd, 1);
5542 
5543 	/* Update current_threshold */
5544 	t->current_threshold = i - 1;
5545 unlock:
5546 	rcu_read_unlock();
5547 }
5548 
5549 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5550 {
5551 	while (memcg) {
5552 		__mem_cgroup_threshold(memcg, false);
5553 		if (do_swap_account)
5554 			__mem_cgroup_threshold(memcg, true);
5555 
5556 		memcg = parent_mem_cgroup(memcg);
5557 	}
5558 }
5559 
5560 static int compare_thresholds(const void *a, const void *b)
5561 {
5562 	const struct mem_cgroup_threshold *_a = a;
5563 	const struct mem_cgroup_threshold *_b = b;
5564 
5565 	return _a->threshold - _b->threshold;
5566 }
5567 
5568 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5569 {
5570 	struct mem_cgroup_eventfd_list *ev;
5571 
5572 	list_for_each_entry(ev, &memcg->oom_notify, list)
5573 		eventfd_signal(ev->eventfd, 1);
5574 	return 0;
5575 }
5576 
5577 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5578 {
5579 	struct mem_cgroup *iter;
5580 
5581 	for_each_mem_cgroup_tree(iter, memcg)
5582 		mem_cgroup_oom_notify_cb(iter);
5583 }
5584 
5585 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5586 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5587 {
5588 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5589 	struct mem_cgroup_thresholds *thresholds;
5590 	struct mem_cgroup_threshold_ary *new;
5591 	enum res_type type = MEMFILE_TYPE(cft->private);
5592 	u64 threshold, usage;
5593 	int i, size, ret;
5594 
5595 	ret = res_counter_memparse_write_strategy(args, &threshold);
5596 	if (ret)
5597 		return ret;
5598 
5599 	mutex_lock(&memcg->thresholds_lock);
5600 
5601 	if (type == _MEM)
5602 		thresholds = &memcg->thresholds;
5603 	else if (type == _MEMSWAP)
5604 		thresholds = &memcg->memsw_thresholds;
5605 	else
5606 		BUG();
5607 
5608 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5609 
5610 	/* Check if a threshold crossed before adding a new one */
5611 	if (thresholds->primary)
5612 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5613 
5614 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5615 
5616 	/* Allocate memory for new array of thresholds */
5617 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5618 			GFP_KERNEL);
5619 	if (!new) {
5620 		ret = -ENOMEM;
5621 		goto unlock;
5622 	}
5623 	new->size = size;
5624 
5625 	/* Copy thresholds (if any) to new array */
5626 	if (thresholds->primary) {
5627 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5628 				sizeof(struct mem_cgroup_threshold));
5629 	}
5630 
5631 	/* Add new threshold */
5632 	new->entries[size - 1].eventfd = eventfd;
5633 	new->entries[size - 1].threshold = threshold;
5634 
5635 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5636 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5637 			compare_thresholds, NULL);
5638 
5639 	/* Find current threshold */
5640 	new->current_threshold = -1;
5641 	for (i = 0; i < size; i++) {
5642 		if (new->entries[i].threshold <= usage) {
5643 			/*
5644 			 * new->current_threshold will not be used until
5645 			 * rcu_assign_pointer(), so it's safe to increment
5646 			 * it here.
5647 			 */
5648 			++new->current_threshold;
5649 		} else
5650 			break;
5651 	}
5652 
5653 	/* Free old spare buffer and save old primary buffer as spare */
5654 	kfree(thresholds->spare);
5655 	thresholds->spare = thresholds->primary;
5656 
5657 	rcu_assign_pointer(thresholds->primary, new);
5658 
5659 	/* To be sure that nobody uses thresholds */
5660 	synchronize_rcu();
5661 
5662 unlock:
5663 	mutex_unlock(&memcg->thresholds_lock);
5664 
5665 	return ret;
5666 }
5667 
5668 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5669 	struct cftype *cft, struct eventfd_ctx *eventfd)
5670 {
5671 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5672 	struct mem_cgroup_thresholds *thresholds;
5673 	struct mem_cgroup_threshold_ary *new;
5674 	enum res_type type = MEMFILE_TYPE(cft->private);
5675 	u64 usage;
5676 	int i, j, size;
5677 
5678 	mutex_lock(&memcg->thresholds_lock);
5679 	if (type == _MEM)
5680 		thresholds = &memcg->thresholds;
5681 	else if (type == _MEMSWAP)
5682 		thresholds = &memcg->memsw_thresholds;
5683 	else
5684 		BUG();
5685 
5686 	if (!thresholds->primary)
5687 		goto unlock;
5688 
5689 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5690 
5691 	/* Check if a threshold crossed before removing */
5692 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5693 
5694 	/* Calculate new number of threshold */
5695 	size = 0;
5696 	for (i = 0; i < thresholds->primary->size; i++) {
5697 		if (thresholds->primary->entries[i].eventfd != eventfd)
5698 			size++;
5699 	}
5700 
5701 	new = thresholds->spare;
5702 
5703 	/* Set thresholds array to NULL if we don't have thresholds */
5704 	if (!size) {
5705 		kfree(new);
5706 		new = NULL;
5707 		goto swap_buffers;
5708 	}
5709 
5710 	new->size = size;
5711 
5712 	/* Copy thresholds and find current threshold */
5713 	new->current_threshold = -1;
5714 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5715 		if (thresholds->primary->entries[i].eventfd == eventfd)
5716 			continue;
5717 
5718 		new->entries[j] = thresholds->primary->entries[i];
5719 		if (new->entries[j].threshold <= usage) {
5720 			/*
5721 			 * new->current_threshold will not be used
5722 			 * until rcu_assign_pointer(), so it's safe to increment
5723 			 * it here.
5724 			 */
5725 			++new->current_threshold;
5726 		}
5727 		j++;
5728 	}
5729 
5730 swap_buffers:
5731 	/* Swap primary and spare array */
5732 	thresholds->spare = thresholds->primary;
5733 	/* If all events are unregistered, free the spare array */
5734 	if (!new) {
5735 		kfree(thresholds->spare);
5736 		thresholds->spare = NULL;
5737 	}
5738 
5739 	rcu_assign_pointer(thresholds->primary, new);
5740 
5741 	/* To be sure that nobody uses thresholds */
5742 	synchronize_rcu();
5743 unlock:
5744 	mutex_unlock(&memcg->thresholds_lock);
5745 }
5746 
5747 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5748 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5749 {
5750 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5751 	struct mem_cgroup_eventfd_list *event;
5752 	enum res_type type = MEMFILE_TYPE(cft->private);
5753 
5754 	BUG_ON(type != _OOM_TYPE);
5755 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5756 	if (!event)
5757 		return -ENOMEM;
5758 
5759 	spin_lock(&memcg_oom_lock);
5760 
5761 	event->eventfd = eventfd;
5762 	list_add(&event->list, &memcg->oom_notify);
5763 
5764 	/* already in OOM ? */
5765 	if (atomic_read(&memcg->under_oom))
5766 		eventfd_signal(eventfd, 1);
5767 	spin_unlock(&memcg_oom_lock);
5768 
5769 	return 0;
5770 }
5771 
5772 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5773 	struct cftype *cft, struct eventfd_ctx *eventfd)
5774 {
5775 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5776 	struct mem_cgroup_eventfd_list *ev, *tmp;
5777 	enum res_type type = MEMFILE_TYPE(cft->private);
5778 
5779 	BUG_ON(type != _OOM_TYPE);
5780 
5781 	spin_lock(&memcg_oom_lock);
5782 
5783 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5784 		if (ev->eventfd == eventfd) {
5785 			list_del(&ev->list);
5786 			kfree(ev);
5787 		}
5788 	}
5789 
5790 	spin_unlock(&memcg_oom_lock);
5791 }
5792 
5793 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5794 	struct cftype *cft,  struct cgroup_map_cb *cb)
5795 {
5796 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5797 
5798 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5799 
5800 	if (atomic_read(&memcg->under_oom))
5801 		cb->fill(cb, "under_oom", 1);
5802 	else
5803 		cb->fill(cb, "under_oom", 0);
5804 	return 0;
5805 }
5806 
5807 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5808 	struct cftype *cft, u64 val)
5809 {
5810 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5811 	struct mem_cgroup *parent;
5812 
5813 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5814 	if (!cgrp->parent || !((val == 0) || (val == 1)))
5815 		return -EINVAL;
5816 
5817 	parent = mem_cgroup_from_cont(cgrp->parent);
5818 
5819 	mutex_lock(&memcg_create_mutex);
5820 	/* oom-kill-disable is a flag for subhierarchy. */
5821 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5822 		mutex_unlock(&memcg_create_mutex);
5823 		return -EINVAL;
5824 	}
5825 	memcg->oom_kill_disable = val;
5826 	if (!val)
5827 		memcg_oom_recover(memcg);
5828 	mutex_unlock(&memcg_create_mutex);
5829 	return 0;
5830 }
5831 
5832 #ifdef CONFIG_MEMCG_KMEM
5833 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5834 {
5835 	int ret;
5836 
5837 	memcg->kmemcg_id = -1;
5838 	ret = memcg_propagate_kmem(memcg);
5839 	if (ret)
5840 		return ret;
5841 
5842 	return mem_cgroup_sockets_init(memcg, ss);
5843 }
5844 
5845 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5846 {
5847 	mem_cgroup_sockets_destroy(memcg);
5848 
5849 	memcg_kmem_mark_dead(memcg);
5850 
5851 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5852 		return;
5853 
5854 	/*
5855 	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5856 	 * path here, being careful not to race with memcg_uncharge_kmem: it is
5857 	 * possible that the charges went down to 0 between mark_dead and the
5858 	 * res_counter read, so in that case, we don't need the put
5859 	 */
5860 	if (memcg_kmem_test_and_clear_dead(memcg))
5861 		mem_cgroup_put(memcg);
5862 }
5863 #else
5864 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5865 {
5866 	return 0;
5867 }
5868 
5869 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5870 {
5871 }
5872 #endif
5873 
5874 static struct cftype mem_cgroup_files[] = {
5875 	{
5876 		.name = "usage_in_bytes",
5877 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5878 		.read = mem_cgroup_read,
5879 		.register_event = mem_cgroup_usage_register_event,
5880 		.unregister_event = mem_cgroup_usage_unregister_event,
5881 	},
5882 	{
5883 		.name = "max_usage_in_bytes",
5884 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5885 		.trigger = mem_cgroup_reset,
5886 		.read = mem_cgroup_read,
5887 	},
5888 	{
5889 		.name = "limit_in_bytes",
5890 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5891 		.write_string = mem_cgroup_write,
5892 		.read = mem_cgroup_read,
5893 	},
5894 	{
5895 		.name = "soft_limit_in_bytes",
5896 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5897 		.write_string = mem_cgroup_write,
5898 		.read = mem_cgroup_read,
5899 	},
5900 	{
5901 		.name = "failcnt",
5902 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5903 		.trigger = mem_cgroup_reset,
5904 		.read = mem_cgroup_read,
5905 	},
5906 	{
5907 		.name = "stat",
5908 		.read_seq_string = memcg_stat_show,
5909 	},
5910 	{
5911 		.name = "force_empty",
5912 		.trigger = mem_cgroup_force_empty_write,
5913 	},
5914 	{
5915 		.name = "use_hierarchy",
5916 		.flags = CFTYPE_INSANE,
5917 		.write_u64 = mem_cgroup_hierarchy_write,
5918 		.read_u64 = mem_cgroup_hierarchy_read,
5919 	},
5920 	{
5921 		.name = "swappiness",
5922 		.read_u64 = mem_cgroup_swappiness_read,
5923 		.write_u64 = mem_cgroup_swappiness_write,
5924 	},
5925 	{
5926 		.name = "move_charge_at_immigrate",
5927 		.read_u64 = mem_cgroup_move_charge_read,
5928 		.write_u64 = mem_cgroup_move_charge_write,
5929 	},
5930 	{
5931 		.name = "oom_control",
5932 		.read_map = mem_cgroup_oom_control_read,
5933 		.write_u64 = mem_cgroup_oom_control_write,
5934 		.register_event = mem_cgroup_oom_register_event,
5935 		.unregister_event = mem_cgroup_oom_unregister_event,
5936 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5937 	},
5938 	{
5939 		.name = "pressure_level",
5940 		.register_event = vmpressure_register_event,
5941 		.unregister_event = vmpressure_unregister_event,
5942 	},
5943 #ifdef CONFIG_NUMA
5944 	{
5945 		.name = "numa_stat",
5946 		.read_seq_string = memcg_numa_stat_show,
5947 	},
5948 #endif
5949 #ifdef CONFIG_MEMCG_KMEM
5950 	{
5951 		.name = "kmem.limit_in_bytes",
5952 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5953 		.write_string = mem_cgroup_write,
5954 		.read = mem_cgroup_read,
5955 	},
5956 	{
5957 		.name = "kmem.usage_in_bytes",
5958 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5959 		.read = mem_cgroup_read,
5960 	},
5961 	{
5962 		.name = "kmem.failcnt",
5963 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5964 		.trigger = mem_cgroup_reset,
5965 		.read = mem_cgroup_read,
5966 	},
5967 	{
5968 		.name = "kmem.max_usage_in_bytes",
5969 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5970 		.trigger = mem_cgroup_reset,
5971 		.read = mem_cgroup_read,
5972 	},
5973 #ifdef CONFIG_SLABINFO
5974 	{
5975 		.name = "kmem.slabinfo",
5976 		.read_seq_string = mem_cgroup_slabinfo_read,
5977 	},
5978 #endif
5979 #endif
5980 	{ },	/* terminate */
5981 };
5982 
5983 #ifdef CONFIG_MEMCG_SWAP
5984 static struct cftype memsw_cgroup_files[] = {
5985 	{
5986 		.name = "memsw.usage_in_bytes",
5987 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5988 		.read = mem_cgroup_read,
5989 		.register_event = mem_cgroup_usage_register_event,
5990 		.unregister_event = mem_cgroup_usage_unregister_event,
5991 	},
5992 	{
5993 		.name = "memsw.max_usage_in_bytes",
5994 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5995 		.trigger = mem_cgroup_reset,
5996 		.read = mem_cgroup_read,
5997 	},
5998 	{
5999 		.name = "memsw.limit_in_bytes",
6000 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6001 		.write_string = mem_cgroup_write,
6002 		.read = mem_cgroup_read,
6003 	},
6004 	{
6005 		.name = "memsw.failcnt",
6006 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6007 		.trigger = mem_cgroup_reset,
6008 		.read = mem_cgroup_read,
6009 	},
6010 	{ },	/* terminate */
6011 };
6012 #endif
6013 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6014 {
6015 	struct mem_cgroup_per_node *pn;
6016 	struct mem_cgroup_per_zone *mz;
6017 	int zone, tmp = node;
6018 	/*
6019 	 * This routine is called against possible nodes.
6020 	 * But it's BUG to call kmalloc() against offline node.
6021 	 *
6022 	 * TODO: this routine can waste much memory for nodes which will
6023 	 *       never be onlined. It's better to use memory hotplug callback
6024 	 *       function.
6025 	 */
6026 	if (!node_state(node, N_NORMAL_MEMORY))
6027 		tmp = -1;
6028 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6029 	if (!pn)
6030 		return 1;
6031 
6032 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6033 		mz = &pn->zoneinfo[zone];
6034 		lruvec_init(&mz->lruvec);
6035 		mz->usage_in_excess = 0;
6036 		mz->on_tree = false;
6037 		mz->memcg = memcg;
6038 	}
6039 	memcg->info.nodeinfo[node] = pn;
6040 	return 0;
6041 }
6042 
6043 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6044 {
6045 	kfree(memcg->info.nodeinfo[node]);
6046 }
6047 
6048 static struct mem_cgroup *mem_cgroup_alloc(void)
6049 {
6050 	struct mem_cgroup *memcg;
6051 	size_t size = memcg_size();
6052 
6053 	/* Can be very big if nr_node_ids is very big */
6054 	if (size < PAGE_SIZE)
6055 		memcg = kzalloc(size, GFP_KERNEL);
6056 	else
6057 		memcg = vzalloc(size);
6058 
6059 	if (!memcg)
6060 		return NULL;
6061 
6062 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6063 	if (!memcg->stat)
6064 		goto out_free;
6065 	spin_lock_init(&memcg->pcp_counter_lock);
6066 	return memcg;
6067 
6068 out_free:
6069 	if (size < PAGE_SIZE)
6070 		kfree(memcg);
6071 	else
6072 		vfree(memcg);
6073 	return NULL;
6074 }
6075 
6076 /*
6077  * At destroying mem_cgroup, references from swap_cgroup can remain.
6078  * (scanning all at force_empty is too costly...)
6079  *
6080  * Instead of clearing all references at force_empty, we remember
6081  * the number of reference from swap_cgroup and free mem_cgroup when
6082  * it goes down to 0.
6083  *
6084  * Removal of cgroup itself succeeds regardless of refs from swap.
6085  */
6086 
6087 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6088 {
6089 	int node;
6090 	size_t size = memcg_size();
6091 
6092 	mem_cgroup_remove_from_trees(memcg);
6093 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6094 
6095 	for_each_node(node)
6096 		free_mem_cgroup_per_zone_info(memcg, node);
6097 
6098 	free_percpu(memcg->stat);
6099 
6100 	/*
6101 	 * We need to make sure that (at least for now), the jump label
6102 	 * destruction code runs outside of the cgroup lock. This is because
6103 	 * get_online_cpus(), which is called from the static_branch update,
6104 	 * can't be called inside the cgroup_lock. cpusets are the ones
6105 	 * enforcing this dependency, so if they ever change, we might as well.
6106 	 *
6107 	 * schedule_work() will guarantee this happens. Be careful if you need
6108 	 * to move this code around, and make sure it is outside
6109 	 * the cgroup_lock.
6110 	 */
6111 	disarm_static_keys(memcg);
6112 	if (size < PAGE_SIZE)
6113 		kfree(memcg);
6114 	else
6115 		vfree(memcg);
6116 }
6117 
6118 
6119 /*
6120  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6121  * but in process context.  The work_freeing structure is overlaid
6122  * on the rcu_freeing structure, which itself is overlaid on memsw.
6123  */
6124 static void free_work(struct work_struct *work)
6125 {
6126 	struct mem_cgroup *memcg;
6127 
6128 	memcg = container_of(work, struct mem_cgroup, work_freeing);
6129 	__mem_cgroup_free(memcg);
6130 }
6131 
6132 static void free_rcu(struct rcu_head *rcu_head)
6133 {
6134 	struct mem_cgroup *memcg;
6135 
6136 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6137 	INIT_WORK(&memcg->work_freeing, free_work);
6138 	schedule_work(&memcg->work_freeing);
6139 }
6140 
6141 static void mem_cgroup_get(struct mem_cgroup *memcg)
6142 {
6143 	atomic_inc(&memcg->refcnt);
6144 }
6145 
6146 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6147 {
6148 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
6149 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6150 		call_rcu(&memcg->rcu_freeing, free_rcu);
6151 		if (parent)
6152 			mem_cgroup_put(parent);
6153 	}
6154 }
6155 
6156 static void mem_cgroup_put(struct mem_cgroup *memcg)
6157 {
6158 	__mem_cgroup_put(memcg, 1);
6159 }
6160 
6161 /*
6162  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6163  */
6164 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6165 {
6166 	if (!memcg->res.parent)
6167 		return NULL;
6168 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6169 }
6170 EXPORT_SYMBOL(parent_mem_cgroup);
6171 
6172 static void __init mem_cgroup_soft_limit_tree_init(void)
6173 {
6174 	struct mem_cgroup_tree_per_node *rtpn;
6175 	struct mem_cgroup_tree_per_zone *rtpz;
6176 	int tmp, node, zone;
6177 
6178 	for_each_node(node) {
6179 		tmp = node;
6180 		if (!node_state(node, N_NORMAL_MEMORY))
6181 			tmp = -1;
6182 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6183 		BUG_ON(!rtpn);
6184 
6185 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6186 
6187 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6188 			rtpz = &rtpn->rb_tree_per_zone[zone];
6189 			rtpz->rb_root = RB_ROOT;
6190 			spin_lock_init(&rtpz->lock);
6191 		}
6192 	}
6193 }
6194 
6195 static struct cgroup_subsys_state * __ref
6196 mem_cgroup_css_alloc(struct cgroup *cont)
6197 {
6198 	struct mem_cgroup *memcg;
6199 	long error = -ENOMEM;
6200 	int node;
6201 
6202 	memcg = mem_cgroup_alloc();
6203 	if (!memcg)
6204 		return ERR_PTR(error);
6205 
6206 	for_each_node(node)
6207 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6208 			goto free_out;
6209 
6210 	/* root ? */
6211 	if (cont->parent == NULL) {
6212 		root_mem_cgroup = memcg;
6213 		res_counter_init(&memcg->res, NULL);
6214 		res_counter_init(&memcg->memsw, NULL);
6215 		res_counter_init(&memcg->kmem, NULL);
6216 	}
6217 
6218 	memcg->last_scanned_node = MAX_NUMNODES;
6219 	INIT_LIST_HEAD(&memcg->oom_notify);
6220 	atomic_set(&memcg->refcnt, 1);
6221 	memcg->move_charge_at_immigrate = 0;
6222 	mutex_init(&memcg->thresholds_lock);
6223 	spin_lock_init(&memcg->move_lock);
6224 	vmpressure_init(&memcg->vmpressure);
6225 
6226 	return &memcg->css;
6227 
6228 free_out:
6229 	__mem_cgroup_free(memcg);
6230 	return ERR_PTR(error);
6231 }
6232 
6233 static int
6234 mem_cgroup_css_online(struct cgroup *cont)
6235 {
6236 	struct mem_cgroup *memcg, *parent;
6237 	int error = 0;
6238 
6239 	if (!cont->parent)
6240 		return 0;
6241 
6242 	mutex_lock(&memcg_create_mutex);
6243 	memcg = mem_cgroup_from_cont(cont);
6244 	parent = mem_cgroup_from_cont(cont->parent);
6245 
6246 	memcg->use_hierarchy = parent->use_hierarchy;
6247 	memcg->oom_kill_disable = parent->oom_kill_disable;
6248 	memcg->swappiness = mem_cgroup_swappiness(parent);
6249 
6250 	if (parent->use_hierarchy) {
6251 		res_counter_init(&memcg->res, &parent->res);
6252 		res_counter_init(&memcg->memsw, &parent->memsw);
6253 		res_counter_init(&memcg->kmem, &parent->kmem);
6254 
6255 		/*
6256 		 * We increment refcnt of the parent to ensure that we can
6257 		 * safely access it on res_counter_charge/uncharge.
6258 		 * This refcnt will be decremented when freeing this
6259 		 * mem_cgroup(see mem_cgroup_put).
6260 		 */
6261 		mem_cgroup_get(parent);
6262 	} else {
6263 		res_counter_init(&memcg->res, NULL);
6264 		res_counter_init(&memcg->memsw, NULL);
6265 		res_counter_init(&memcg->kmem, NULL);
6266 		/*
6267 		 * Deeper hierachy with use_hierarchy == false doesn't make
6268 		 * much sense so let cgroup subsystem know about this
6269 		 * unfortunate state in our controller.
6270 		 */
6271 		if (parent != root_mem_cgroup)
6272 			mem_cgroup_subsys.broken_hierarchy = true;
6273 	}
6274 
6275 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6276 	mutex_unlock(&memcg_create_mutex);
6277 	if (error) {
6278 		/*
6279 		 * We call put now because our (and parent's) refcnts
6280 		 * are already in place. mem_cgroup_put() will internally
6281 		 * call __mem_cgroup_free, so return directly
6282 		 */
6283 		mem_cgroup_put(memcg);
6284 		if (parent->use_hierarchy)
6285 			mem_cgroup_put(parent);
6286 	}
6287 	return error;
6288 }
6289 
6290 /*
6291  * Announce all parents that a group from their hierarchy is gone.
6292  */
6293 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6294 {
6295 	struct mem_cgroup *parent = memcg;
6296 
6297 	while ((parent = parent_mem_cgroup(parent)))
6298 		atomic_inc(&parent->dead_count);
6299 
6300 	/*
6301 	 * if the root memcg is not hierarchical we have to check it
6302 	 * explicitely.
6303 	 */
6304 	if (!root_mem_cgroup->use_hierarchy)
6305 		atomic_inc(&root_mem_cgroup->dead_count);
6306 }
6307 
6308 static void mem_cgroup_css_offline(struct cgroup *cont)
6309 {
6310 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6311 
6312 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6313 	mem_cgroup_reparent_charges(memcg);
6314 	mem_cgroup_destroy_all_caches(memcg);
6315 }
6316 
6317 static void mem_cgroup_css_free(struct cgroup *cont)
6318 {
6319 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6320 
6321 	kmem_cgroup_destroy(memcg);
6322 
6323 	mem_cgroup_put(memcg);
6324 }
6325 
6326 #ifdef CONFIG_MMU
6327 /* Handlers for move charge at task migration. */
6328 #define PRECHARGE_COUNT_AT_ONCE	256
6329 static int mem_cgroup_do_precharge(unsigned long count)
6330 {
6331 	int ret = 0;
6332 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6333 	struct mem_cgroup *memcg = mc.to;
6334 
6335 	if (mem_cgroup_is_root(memcg)) {
6336 		mc.precharge += count;
6337 		/* we don't need css_get for root */
6338 		return ret;
6339 	}
6340 	/* try to charge at once */
6341 	if (count > 1) {
6342 		struct res_counter *dummy;
6343 		/*
6344 		 * "memcg" cannot be under rmdir() because we've already checked
6345 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6346 		 * are still under the same cgroup_mutex. So we can postpone
6347 		 * css_get().
6348 		 */
6349 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6350 			goto one_by_one;
6351 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6352 						PAGE_SIZE * count, &dummy)) {
6353 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6354 			goto one_by_one;
6355 		}
6356 		mc.precharge += count;
6357 		return ret;
6358 	}
6359 one_by_one:
6360 	/* fall back to one by one charge */
6361 	while (count--) {
6362 		if (signal_pending(current)) {
6363 			ret = -EINTR;
6364 			break;
6365 		}
6366 		if (!batch_count--) {
6367 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6368 			cond_resched();
6369 		}
6370 		ret = __mem_cgroup_try_charge(NULL,
6371 					GFP_KERNEL, 1, &memcg, false);
6372 		if (ret)
6373 			/* mem_cgroup_clear_mc() will do uncharge later */
6374 			return ret;
6375 		mc.precharge++;
6376 	}
6377 	return ret;
6378 }
6379 
6380 /**
6381  * get_mctgt_type - get target type of moving charge
6382  * @vma: the vma the pte to be checked belongs
6383  * @addr: the address corresponding to the pte to be checked
6384  * @ptent: the pte to be checked
6385  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6386  *
6387  * Returns
6388  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6389  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6390  *     move charge. if @target is not NULL, the page is stored in target->page
6391  *     with extra refcnt got(Callers should handle it).
6392  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6393  *     target for charge migration. if @target is not NULL, the entry is stored
6394  *     in target->ent.
6395  *
6396  * Called with pte lock held.
6397  */
6398 union mc_target {
6399 	struct page	*page;
6400 	swp_entry_t	ent;
6401 };
6402 
6403 enum mc_target_type {
6404 	MC_TARGET_NONE = 0,
6405 	MC_TARGET_PAGE,
6406 	MC_TARGET_SWAP,
6407 };
6408 
6409 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6410 						unsigned long addr, pte_t ptent)
6411 {
6412 	struct page *page = vm_normal_page(vma, addr, ptent);
6413 
6414 	if (!page || !page_mapped(page))
6415 		return NULL;
6416 	if (PageAnon(page)) {
6417 		/* we don't move shared anon */
6418 		if (!move_anon())
6419 			return NULL;
6420 	} else if (!move_file())
6421 		/* we ignore mapcount for file pages */
6422 		return NULL;
6423 	if (!get_page_unless_zero(page))
6424 		return NULL;
6425 
6426 	return page;
6427 }
6428 
6429 #ifdef CONFIG_SWAP
6430 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6431 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6432 {
6433 	struct page *page = NULL;
6434 	swp_entry_t ent = pte_to_swp_entry(ptent);
6435 
6436 	if (!move_anon() || non_swap_entry(ent))
6437 		return NULL;
6438 	/*
6439 	 * Because lookup_swap_cache() updates some statistics counter,
6440 	 * we call find_get_page() with swapper_space directly.
6441 	 */
6442 	page = find_get_page(swap_address_space(ent), ent.val);
6443 	if (do_swap_account)
6444 		entry->val = ent.val;
6445 
6446 	return page;
6447 }
6448 #else
6449 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6450 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6451 {
6452 	return NULL;
6453 }
6454 #endif
6455 
6456 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6457 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6458 {
6459 	struct page *page = NULL;
6460 	struct address_space *mapping;
6461 	pgoff_t pgoff;
6462 
6463 	if (!vma->vm_file) /* anonymous vma */
6464 		return NULL;
6465 	if (!move_file())
6466 		return NULL;
6467 
6468 	mapping = vma->vm_file->f_mapping;
6469 	if (pte_none(ptent))
6470 		pgoff = linear_page_index(vma, addr);
6471 	else /* pte_file(ptent) is true */
6472 		pgoff = pte_to_pgoff(ptent);
6473 
6474 	/* page is moved even if it's not RSS of this task(page-faulted). */
6475 	page = find_get_page(mapping, pgoff);
6476 
6477 #ifdef CONFIG_SWAP
6478 	/* shmem/tmpfs may report page out on swap: account for that too. */
6479 	if (radix_tree_exceptional_entry(page)) {
6480 		swp_entry_t swap = radix_to_swp_entry(page);
6481 		if (do_swap_account)
6482 			*entry = swap;
6483 		page = find_get_page(swap_address_space(swap), swap.val);
6484 	}
6485 #endif
6486 	return page;
6487 }
6488 
6489 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6490 		unsigned long addr, pte_t ptent, union mc_target *target)
6491 {
6492 	struct page *page = NULL;
6493 	struct page_cgroup *pc;
6494 	enum mc_target_type ret = MC_TARGET_NONE;
6495 	swp_entry_t ent = { .val = 0 };
6496 
6497 	if (pte_present(ptent))
6498 		page = mc_handle_present_pte(vma, addr, ptent);
6499 	else if (is_swap_pte(ptent))
6500 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6501 	else if (pte_none(ptent) || pte_file(ptent))
6502 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6503 
6504 	if (!page && !ent.val)
6505 		return ret;
6506 	if (page) {
6507 		pc = lookup_page_cgroup(page);
6508 		/*
6509 		 * Do only loose check w/o page_cgroup lock.
6510 		 * mem_cgroup_move_account() checks the pc is valid or not under
6511 		 * the lock.
6512 		 */
6513 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6514 			ret = MC_TARGET_PAGE;
6515 			if (target)
6516 				target->page = page;
6517 		}
6518 		if (!ret || !target)
6519 			put_page(page);
6520 	}
6521 	/* There is a swap entry and a page doesn't exist or isn't charged */
6522 	if (ent.val && !ret &&
6523 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6524 		ret = MC_TARGET_SWAP;
6525 		if (target)
6526 			target->ent = ent;
6527 	}
6528 	return ret;
6529 }
6530 
6531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6532 /*
6533  * We don't consider swapping or file mapped pages because THP does not
6534  * support them for now.
6535  * Caller should make sure that pmd_trans_huge(pmd) is true.
6536  */
6537 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6538 		unsigned long addr, pmd_t pmd, union mc_target *target)
6539 {
6540 	struct page *page = NULL;
6541 	struct page_cgroup *pc;
6542 	enum mc_target_type ret = MC_TARGET_NONE;
6543 
6544 	page = pmd_page(pmd);
6545 	VM_BUG_ON(!page || !PageHead(page));
6546 	if (!move_anon())
6547 		return ret;
6548 	pc = lookup_page_cgroup(page);
6549 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6550 		ret = MC_TARGET_PAGE;
6551 		if (target) {
6552 			get_page(page);
6553 			target->page = page;
6554 		}
6555 	}
6556 	return ret;
6557 }
6558 #else
6559 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6560 		unsigned long addr, pmd_t pmd, union mc_target *target)
6561 {
6562 	return MC_TARGET_NONE;
6563 }
6564 #endif
6565 
6566 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6567 					unsigned long addr, unsigned long end,
6568 					struct mm_walk *walk)
6569 {
6570 	struct vm_area_struct *vma = walk->private;
6571 	pte_t *pte;
6572 	spinlock_t *ptl;
6573 
6574 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6575 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6576 			mc.precharge += HPAGE_PMD_NR;
6577 		spin_unlock(&vma->vm_mm->page_table_lock);
6578 		return 0;
6579 	}
6580 
6581 	if (pmd_trans_unstable(pmd))
6582 		return 0;
6583 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6584 	for (; addr != end; pte++, addr += PAGE_SIZE)
6585 		if (get_mctgt_type(vma, addr, *pte, NULL))
6586 			mc.precharge++;	/* increment precharge temporarily */
6587 	pte_unmap_unlock(pte - 1, ptl);
6588 	cond_resched();
6589 
6590 	return 0;
6591 }
6592 
6593 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6594 {
6595 	unsigned long precharge;
6596 	struct vm_area_struct *vma;
6597 
6598 	down_read(&mm->mmap_sem);
6599 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6600 		struct mm_walk mem_cgroup_count_precharge_walk = {
6601 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6602 			.mm = mm,
6603 			.private = vma,
6604 		};
6605 		if (is_vm_hugetlb_page(vma))
6606 			continue;
6607 		walk_page_range(vma->vm_start, vma->vm_end,
6608 					&mem_cgroup_count_precharge_walk);
6609 	}
6610 	up_read(&mm->mmap_sem);
6611 
6612 	precharge = mc.precharge;
6613 	mc.precharge = 0;
6614 
6615 	return precharge;
6616 }
6617 
6618 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6619 {
6620 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6621 
6622 	VM_BUG_ON(mc.moving_task);
6623 	mc.moving_task = current;
6624 	return mem_cgroup_do_precharge(precharge);
6625 }
6626 
6627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6628 static void __mem_cgroup_clear_mc(void)
6629 {
6630 	struct mem_cgroup *from = mc.from;
6631 	struct mem_cgroup *to = mc.to;
6632 
6633 	/* we must uncharge all the leftover precharges from mc.to */
6634 	if (mc.precharge) {
6635 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6636 		mc.precharge = 0;
6637 	}
6638 	/*
6639 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6640 	 * we must uncharge here.
6641 	 */
6642 	if (mc.moved_charge) {
6643 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6644 		mc.moved_charge = 0;
6645 	}
6646 	/* we must fixup refcnts and charges */
6647 	if (mc.moved_swap) {
6648 		/* uncharge swap account from the old cgroup */
6649 		if (!mem_cgroup_is_root(mc.from))
6650 			res_counter_uncharge(&mc.from->memsw,
6651 						PAGE_SIZE * mc.moved_swap);
6652 		__mem_cgroup_put(mc.from, mc.moved_swap);
6653 
6654 		if (!mem_cgroup_is_root(mc.to)) {
6655 			/*
6656 			 * we charged both to->res and to->memsw, so we should
6657 			 * uncharge to->res.
6658 			 */
6659 			res_counter_uncharge(&mc.to->res,
6660 						PAGE_SIZE * mc.moved_swap);
6661 		}
6662 		/* we've already done mem_cgroup_get(mc.to) */
6663 		mc.moved_swap = 0;
6664 	}
6665 	memcg_oom_recover(from);
6666 	memcg_oom_recover(to);
6667 	wake_up_all(&mc.waitq);
6668 }
6669 
6670 static void mem_cgroup_clear_mc(void)
6671 {
6672 	struct mem_cgroup *from = mc.from;
6673 
6674 	/*
6675 	 * we must clear moving_task before waking up waiters at the end of
6676 	 * task migration.
6677 	 */
6678 	mc.moving_task = NULL;
6679 	__mem_cgroup_clear_mc();
6680 	spin_lock(&mc.lock);
6681 	mc.from = NULL;
6682 	mc.to = NULL;
6683 	spin_unlock(&mc.lock);
6684 	mem_cgroup_end_move(from);
6685 }
6686 
6687 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6688 				 struct cgroup_taskset *tset)
6689 {
6690 	struct task_struct *p = cgroup_taskset_first(tset);
6691 	int ret = 0;
6692 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6693 	unsigned long move_charge_at_immigrate;
6694 
6695 	/*
6696 	 * We are now commited to this value whatever it is. Changes in this
6697 	 * tunable will only affect upcoming migrations, not the current one.
6698 	 * So we need to save it, and keep it going.
6699 	 */
6700 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6701 	if (move_charge_at_immigrate) {
6702 		struct mm_struct *mm;
6703 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6704 
6705 		VM_BUG_ON(from == memcg);
6706 
6707 		mm = get_task_mm(p);
6708 		if (!mm)
6709 			return 0;
6710 		/* We move charges only when we move a owner of the mm */
6711 		if (mm->owner == p) {
6712 			VM_BUG_ON(mc.from);
6713 			VM_BUG_ON(mc.to);
6714 			VM_BUG_ON(mc.precharge);
6715 			VM_BUG_ON(mc.moved_charge);
6716 			VM_BUG_ON(mc.moved_swap);
6717 			mem_cgroup_start_move(from);
6718 			spin_lock(&mc.lock);
6719 			mc.from = from;
6720 			mc.to = memcg;
6721 			mc.immigrate_flags = move_charge_at_immigrate;
6722 			spin_unlock(&mc.lock);
6723 			/* We set mc.moving_task later */
6724 
6725 			ret = mem_cgroup_precharge_mc(mm);
6726 			if (ret)
6727 				mem_cgroup_clear_mc();
6728 		}
6729 		mmput(mm);
6730 	}
6731 	return ret;
6732 }
6733 
6734 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6735 				     struct cgroup_taskset *tset)
6736 {
6737 	mem_cgroup_clear_mc();
6738 }
6739 
6740 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6741 				unsigned long addr, unsigned long end,
6742 				struct mm_walk *walk)
6743 {
6744 	int ret = 0;
6745 	struct vm_area_struct *vma = walk->private;
6746 	pte_t *pte;
6747 	spinlock_t *ptl;
6748 	enum mc_target_type target_type;
6749 	union mc_target target;
6750 	struct page *page;
6751 	struct page_cgroup *pc;
6752 
6753 	/*
6754 	 * We don't take compound_lock() here but no race with splitting thp
6755 	 * happens because:
6756 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6757 	 *    under splitting, which means there's no concurrent thp split,
6758 	 *  - if another thread runs into split_huge_page() just after we
6759 	 *    entered this if-block, the thread must wait for page table lock
6760 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6761 	 *    part of thp split is not executed yet.
6762 	 */
6763 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6764 		if (mc.precharge < HPAGE_PMD_NR) {
6765 			spin_unlock(&vma->vm_mm->page_table_lock);
6766 			return 0;
6767 		}
6768 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6769 		if (target_type == MC_TARGET_PAGE) {
6770 			page = target.page;
6771 			if (!isolate_lru_page(page)) {
6772 				pc = lookup_page_cgroup(page);
6773 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6774 							pc, mc.from, mc.to)) {
6775 					mc.precharge -= HPAGE_PMD_NR;
6776 					mc.moved_charge += HPAGE_PMD_NR;
6777 				}
6778 				putback_lru_page(page);
6779 			}
6780 			put_page(page);
6781 		}
6782 		spin_unlock(&vma->vm_mm->page_table_lock);
6783 		return 0;
6784 	}
6785 
6786 	if (pmd_trans_unstable(pmd))
6787 		return 0;
6788 retry:
6789 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6790 	for (; addr != end; addr += PAGE_SIZE) {
6791 		pte_t ptent = *(pte++);
6792 		swp_entry_t ent;
6793 
6794 		if (!mc.precharge)
6795 			break;
6796 
6797 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6798 		case MC_TARGET_PAGE:
6799 			page = target.page;
6800 			if (isolate_lru_page(page))
6801 				goto put;
6802 			pc = lookup_page_cgroup(page);
6803 			if (!mem_cgroup_move_account(page, 1, pc,
6804 						     mc.from, mc.to)) {
6805 				mc.precharge--;
6806 				/* we uncharge from mc.from later. */
6807 				mc.moved_charge++;
6808 			}
6809 			putback_lru_page(page);
6810 put:			/* get_mctgt_type() gets the page */
6811 			put_page(page);
6812 			break;
6813 		case MC_TARGET_SWAP:
6814 			ent = target.ent;
6815 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6816 				mc.precharge--;
6817 				/* we fixup refcnts and charges later. */
6818 				mc.moved_swap++;
6819 			}
6820 			break;
6821 		default:
6822 			break;
6823 		}
6824 	}
6825 	pte_unmap_unlock(pte - 1, ptl);
6826 	cond_resched();
6827 
6828 	if (addr != end) {
6829 		/*
6830 		 * We have consumed all precharges we got in can_attach().
6831 		 * We try charge one by one, but don't do any additional
6832 		 * charges to mc.to if we have failed in charge once in attach()
6833 		 * phase.
6834 		 */
6835 		ret = mem_cgroup_do_precharge(1);
6836 		if (!ret)
6837 			goto retry;
6838 	}
6839 
6840 	return ret;
6841 }
6842 
6843 static void mem_cgroup_move_charge(struct mm_struct *mm)
6844 {
6845 	struct vm_area_struct *vma;
6846 
6847 	lru_add_drain_all();
6848 retry:
6849 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6850 		/*
6851 		 * Someone who are holding the mmap_sem might be waiting in
6852 		 * waitq. So we cancel all extra charges, wake up all waiters,
6853 		 * and retry. Because we cancel precharges, we might not be able
6854 		 * to move enough charges, but moving charge is a best-effort
6855 		 * feature anyway, so it wouldn't be a big problem.
6856 		 */
6857 		__mem_cgroup_clear_mc();
6858 		cond_resched();
6859 		goto retry;
6860 	}
6861 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6862 		int ret;
6863 		struct mm_walk mem_cgroup_move_charge_walk = {
6864 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6865 			.mm = mm,
6866 			.private = vma,
6867 		};
6868 		if (is_vm_hugetlb_page(vma))
6869 			continue;
6870 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6871 						&mem_cgroup_move_charge_walk);
6872 		if (ret)
6873 			/*
6874 			 * means we have consumed all precharges and failed in
6875 			 * doing additional charge. Just abandon here.
6876 			 */
6877 			break;
6878 	}
6879 	up_read(&mm->mmap_sem);
6880 }
6881 
6882 static void mem_cgroup_move_task(struct cgroup *cont,
6883 				 struct cgroup_taskset *tset)
6884 {
6885 	struct task_struct *p = cgroup_taskset_first(tset);
6886 	struct mm_struct *mm = get_task_mm(p);
6887 
6888 	if (mm) {
6889 		if (mc.to)
6890 			mem_cgroup_move_charge(mm);
6891 		mmput(mm);
6892 	}
6893 	if (mc.to)
6894 		mem_cgroup_clear_mc();
6895 }
6896 #else	/* !CONFIG_MMU */
6897 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6898 				 struct cgroup_taskset *tset)
6899 {
6900 	return 0;
6901 }
6902 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6903 				     struct cgroup_taskset *tset)
6904 {
6905 }
6906 static void mem_cgroup_move_task(struct cgroup *cont,
6907 				 struct cgroup_taskset *tset)
6908 {
6909 }
6910 #endif
6911 
6912 /*
6913  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6914  * to verify sane_behavior flag on each mount attempt.
6915  */
6916 static void mem_cgroup_bind(struct cgroup *root)
6917 {
6918 	/*
6919 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6920 	 * guarantees that @root doesn't have any children, so turning it
6921 	 * on for the root memcg is enough.
6922 	 */
6923 	if (cgroup_sane_behavior(root))
6924 		mem_cgroup_from_cont(root)->use_hierarchy = true;
6925 }
6926 
6927 struct cgroup_subsys mem_cgroup_subsys = {
6928 	.name = "memory",
6929 	.subsys_id = mem_cgroup_subsys_id,
6930 	.css_alloc = mem_cgroup_css_alloc,
6931 	.css_online = mem_cgroup_css_online,
6932 	.css_offline = mem_cgroup_css_offline,
6933 	.css_free = mem_cgroup_css_free,
6934 	.can_attach = mem_cgroup_can_attach,
6935 	.cancel_attach = mem_cgroup_cancel_attach,
6936 	.attach = mem_cgroup_move_task,
6937 	.bind = mem_cgroup_bind,
6938 	.base_cftypes = mem_cgroup_files,
6939 	.early_init = 0,
6940 	.use_id = 1,
6941 };
6942 
6943 #ifdef CONFIG_MEMCG_SWAP
6944 static int __init enable_swap_account(char *s)
6945 {
6946 	/* consider enabled if no parameter or 1 is given */
6947 	if (!strcmp(s, "1"))
6948 		really_do_swap_account = 1;
6949 	else if (!strcmp(s, "0"))
6950 		really_do_swap_account = 0;
6951 	return 1;
6952 }
6953 __setup("swapaccount=", enable_swap_account);
6954 
6955 static void __init memsw_file_init(void)
6956 {
6957 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6958 }
6959 
6960 static void __init enable_swap_cgroup(void)
6961 {
6962 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6963 		do_swap_account = 1;
6964 		memsw_file_init();
6965 	}
6966 }
6967 
6968 #else
6969 static void __init enable_swap_cgroup(void)
6970 {
6971 }
6972 #endif
6973 
6974 /*
6975  * subsys_initcall() for memory controller.
6976  *
6977  * Some parts like hotcpu_notifier() have to be initialized from this context
6978  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6979  * everything that doesn't depend on a specific mem_cgroup structure should
6980  * be initialized from here.
6981  */
6982 static int __init mem_cgroup_init(void)
6983 {
6984 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6985 	enable_swap_cgroup();
6986 	mem_cgroup_soft_limit_tree_init();
6987 	memcg_stock_init();
6988 	return 0;
6989 }
6990 subsys_initcall(mem_cgroup_init);
6991