xref: /linux/mm/memcontrol.c (revision bea00fab2b0e5359ee88a2b127f15a35cd48872b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/mutex.h>
46 #include <linux/rbtree.h>
47 #include <linux/slab.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/eventfd.h>
52 #include <linux/poll.h>
53 #include <linux/sort.h>
54 #include <linux/fs.h>
55 #include <linux/seq_file.h>
56 #include <linux/vmpressure.h>
57 #include <linux/memremap.h>
58 #include <linux/mm_inline.h>
59 #include <linux/swap_cgroup.h>
60 #include <linux/cpu.h>
61 #include <linux/oom.h>
62 #include <linux/lockdep.h>
63 #include <linux/file.h>
64 #include <linux/resume_user_mode.h>
65 #include <linux/psi.h>
66 #include <linux/seq_buf.h>
67 #include <linux/sched/isolation.h>
68 #include <linux/kmemleak.h>
69 #include "internal.h"
70 #include <net/sock.h>
71 #include <net/ip.h>
72 #include "slab.h"
73 #include "swap.h"
74 
75 #include <linux/uaccess.h>
76 
77 #include <trace/events/vmscan.h>
78 
79 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80 EXPORT_SYMBOL(memory_cgrp_subsys);
81 
82 struct mem_cgroup *root_mem_cgroup __read_mostly;
83 
84 /* Active memory cgroup to use from an interrupt context */
85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87 
88 /* Socket memory accounting disabled? */
89 static bool cgroup_memory_nosocket __ro_after_init;
90 
91 /* Kernel memory accounting disabled? */
92 static bool cgroup_memory_nokmem __ro_after_init;
93 
94 /* BPF memory accounting disabled? */
95 static bool cgroup_memory_nobpf __ro_after_init;
96 
97 #ifdef CONFIG_CGROUP_WRITEBACK
98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 #endif
100 
101 /* Whether legacy memory+swap accounting is active */
102 static bool do_memsw_account(void)
103 {
104 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
105 }
106 
107 #define THRESHOLDS_EVENTS_TARGET 128
108 #define SOFTLIMIT_EVENTS_TARGET 1024
109 
110 /*
111  * Cgroups above their limits are maintained in a RB-Tree, independent of
112  * their hierarchy representation
113  */
114 
115 struct mem_cgroup_tree_per_node {
116 	struct rb_root rb_root;
117 	struct rb_node *rb_rightmost;
118 	spinlock_t lock;
119 };
120 
121 struct mem_cgroup_tree {
122 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 };
124 
125 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 
127 /* for OOM */
128 struct mem_cgroup_eventfd_list {
129 	struct list_head list;
130 	struct eventfd_ctx *eventfd;
131 };
132 
133 /*
134  * cgroup_event represents events which userspace want to receive.
135  */
136 struct mem_cgroup_event {
137 	/*
138 	 * memcg which the event belongs to.
139 	 */
140 	struct mem_cgroup *memcg;
141 	/*
142 	 * eventfd to signal userspace about the event.
143 	 */
144 	struct eventfd_ctx *eventfd;
145 	/*
146 	 * Each of these stored in a list by the cgroup.
147 	 */
148 	struct list_head list;
149 	/*
150 	 * register_event() callback will be used to add new userspace
151 	 * waiter for changes related to this event.  Use eventfd_signal()
152 	 * on eventfd to send notification to userspace.
153 	 */
154 	int (*register_event)(struct mem_cgroup *memcg,
155 			      struct eventfd_ctx *eventfd, const char *args);
156 	/*
157 	 * unregister_event() callback will be called when userspace closes
158 	 * the eventfd or on cgroup removing.  This callback must be set,
159 	 * if you want provide notification functionality.
160 	 */
161 	void (*unregister_event)(struct mem_cgroup *memcg,
162 				 struct eventfd_ctx *eventfd);
163 	/*
164 	 * All fields below needed to unregister event when
165 	 * userspace closes eventfd.
166 	 */
167 	poll_table pt;
168 	wait_queue_head_t *wqh;
169 	wait_queue_entry_t wait;
170 	struct work_struct remove;
171 };
172 
173 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175 
176 /* Stuffs for move charges at task migration. */
177 /*
178  * Types of charges to be moved.
179  */
180 #define MOVE_ANON	0x1U
181 #define MOVE_FILE	0x2U
182 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
183 
184 /* "mc" and its members are protected by cgroup_mutex */
185 static struct move_charge_struct {
186 	spinlock_t	  lock; /* for from, to */
187 	struct mm_struct  *mm;
188 	struct mem_cgroup *from;
189 	struct mem_cgroup *to;
190 	unsigned long flags;
191 	unsigned long precharge;
192 	unsigned long moved_charge;
193 	unsigned long moved_swap;
194 	struct task_struct *moving_task;	/* a task moving charges */
195 	wait_queue_head_t waitq;		/* a waitq for other context */
196 } mc = {
197 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199 };
200 
201 /*
202  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
203  * limit reclaim to prevent infinite loops, if they ever occur.
204  */
205 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
206 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
207 
208 /* for encoding cft->private value on file */
209 enum res_type {
210 	_MEM,
211 	_MEMSWAP,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 
220 /*
221  * Iteration constructs for visiting all cgroups (under a tree).  If
222  * loops are exited prematurely (break), mem_cgroup_iter_break() must
223  * be used for reference counting.
224  */
225 #define for_each_mem_cgroup_tree(iter, root)		\
226 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
227 	     iter != NULL;				\
228 	     iter = mem_cgroup_iter(root, iter, NULL))
229 
230 #define for_each_mem_cgroup(iter)			\
231 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(NULL, iter, NULL))
234 
235 static inline bool task_is_dying(void)
236 {
237 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 		(current->flags & PF_EXITING);
239 }
240 
241 /* Some nice accessors for the vmpressure. */
242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243 {
244 	if (!memcg)
245 		memcg = root_mem_cgroup;
246 	return &memcg->vmpressure;
247 }
248 
249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250 {
251 	return container_of(vmpr, struct mem_cgroup, vmpressure);
252 }
253 
254 #define CURRENT_OBJCG_UPDATE_BIT 0
255 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256 
257 #ifdef CONFIG_MEMCG_KMEM
258 static DEFINE_SPINLOCK(objcg_lock);
259 
260 bool mem_cgroup_kmem_disabled(void)
261 {
262 	return cgroup_memory_nokmem;
263 }
264 
265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 				      unsigned int nr_pages);
267 
268 static void obj_cgroup_release(struct percpu_ref *ref)
269 {
270 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 	unsigned int nr_bytes;
272 	unsigned int nr_pages;
273 	unsigned long flags;
274 
275 	/*
276 	 * At this point all allocated objects are freed, and
277 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 	 *
280 	 * The following sequence can lead to it:
281 	 * 1) CPU0: objcg == stock->cached_objcg
282 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 	 *          PAGE_SIZE bytes are charged
284 	 * 3) CPU1: a process from another memcg is allocating something,
285 	 *          the stock if flushed,
286 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
287 	 * 5) CPU0: we do release this object,
288 	 *          92 bytes are added to stock->nr_bytes
289 	 * 6) CPU0: stock is flushed,
290 	 *          92 bytes are added to objcg->nr_charged_bytes
291 	 *
292 	 * In the result, nr_charged_bytes == PAGE_SIZE.
293 	 * This page will be uncharged in obj_cgroup_release().
294 	 */
295 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 	nr_pages = nr_bytes >> PAGE_SHIFT;
298 
299 	if (nr_pages)
300 		obj_cgroup_uncharge_pages(objcg, nr_pages);
301 
302 	spin_lock_irqsave(&objcg_lock, flags);
303 	list_del(&objcg->list);
304 	spin_unlock_irqrestore(&objcg_lock, flags);
305 
306 	percpu_ref_exit(ref);
307 	kfree_rcu(objcg, rcu);
308 }
309 
310 static struct obj_cgroup *obj_cgroup_alloc(void)
311 {
312 	struct obj_cgroup *objcg;
313 	int ret;
314 
315 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 	if (!objcg)
317 		return NULL;
318 
319 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 			      GFP_KERNEL);
321 	if (ret) {
322 		kfree(objcg);
323 		return NULL;
324 	}
325 	INIT_LIST_HEAD(&objcg->list);
326 	return objcg;
327 }
328 
329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 				  struct mem_cgroup *parent)
331 {
332 	struct obj_cgroup *objcg, *iter;
333 
334 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335 
336 	spin_lock_irq(&objcg_lock);
337 
338 	/* 1) Ready to reparent active objcg. */
339 	list_add(&objcg->list, &memcg->objcg_list);
340 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
341 	list_for_each_entry(iter, &memcg->objcg_list, list)
342 		WRITE_ONCE(iter->memcg, parent);
343 	/* 3) Move already reparented objcgs to the parent's list */
344 	list_splice(&memcg->objcg_list, &parent->objcg_list);
345 
346 	spin_unlock_irq(&objcg_lock);
347 
348 	percpu_ref_kill(&objcg->refcnt);
349 }
350 
351 /*
352  * A lot of the calls to the cache allocation functions are expected to be
353  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354  * conditional to this static branch, we'll have to allow modules that does
355  * kmem_cache_alloc and the such to see this symbol as well
356  */
357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358 EXPORT_SYMBOL(memcg_kmem_online_key);
359 
360 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361 EXPORT_SYMBOL(memcg_bpf_enabled_key);
362 #endif
363 
364 /**
365  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366  * @folio: folio of interest
367  *
368  * If memcg is bound to the default hierarchy, css of the memcg associated
369  * with @folio is returned.  The returned css remains associated with @folio
370  * until it is released.
371  *
372  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
373  * is returned.
374  */
375 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
376 {
377 	struct mem_cgroup *memcg = folio_memcg(folio);
378 
379 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
380 		memcg = root_mem_cgroup;
381 
382 	return &memcg->css;
383 }
384 
385 /**
386  * page_cgroup_ino - return inode number of the memcg a page is charged to
387  * @page: the page
388  *
389  * Look up the closest online ancestor of the memory cgroup @page is charged to
390  * and return its inode number or 0 if @page is not charged to any cgroup. It
391  * is safe to call this function without holding a reference to @page.
392  *
393  * Note, this function is inherently racy, because there is nothing to prevent
394  * the cgroup inode from getting torn down and potentially reallocated a moment
395  * after page_cgroup_ino() returns, so it only should be used by callers that
396  * do not care (such as procfs interfaces).
397  */
398 ino_t page_cgroup_ino(struct page *page)
399 {
400 	struct mem_cgroup *memcg;
401 	unsigned long ino = 0;
402 
403 	rcu_read_lock();
404 	/* page_folio() is racy here, but the entire function is racy anyway */
405 	memcg = folio_memcg_check(page_folio(page));
406 
407 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
408 		memcg = parent_mem_cgroup(memcg);
409 	if (memcg)
410 		ino = cgroup_ino(memcg->css.cgroup);
411 	rcu_read_unlock();
412 	return ino;
413 }
414 
415 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416 					 struct mem_cgroup_tree_per_node *mctz,
417 					 unsigned long new_usage_in_excess)
418 {
419 	struct rb_node **p = &mctz->rb_root.rb_node;
420 	struct rb_node *parent = NULL;
421 	struct mem_cgroup_per_node *mz_node;
422 	bool rightmost = true;
423 
424 	if (mz->on_tree)
425 		return;
426 
427 	mz->usage_in_excess = new_usage_in_excess;
428 	if (!mz->usage_in_excess)
429 		return;
430 	while (*p) {
431 		parent = *p;
432 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
433 					tree_node);
434 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
435 			p = &(*p)->rb_left;
436 			rightmost = false;
437 		} else {
438 			p = &(*p)->rb_right;
439 		}
440 	}
441 
442 	if (rightmost)
443 		mctz->rb_rightmost = &mz->tree_node;
444 
445 	rb_link_node(&mz->tree_node, parent, p);
446 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
447 	mz->on_tree = true;
448 }
449 
450 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451 					 struct mem_cgroup_tree_per_node *mctz)
452 {
453 	if (!mz->on_tree)
454 		return;
455 
456 	if (&mz->tree_node == mctz->rb_rightmost)
457 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
458 
459 	rb_erase(&mz->tree_node, &mctz->rb_root);
460 	mz->on_tree = false;
461 }
462 
463 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464 				       struct mem_cgroup_tree_per_node *mctz)
465 {
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&mctz->lock, flags);
469 	__mem_cgroup_remove_exceeded(mz, mctz);
470 	spin_unlock_irqrestore(&mctz->lock, flags);
471 }
472 
473 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474 {
475 	unsigned long nr_pages = page_counter_read(&memcg->memory);
476 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
477 	unsigned long excess = 0;
478 
479 	if (nr_pages > soft_limit)
480 		excess = nr_pages - soft_limit;
481 
482 	return excess;
483 }
484 
485 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
486 {
487 	unsigned long excess;
488 	struct mem_cgroup_per_node *mz;
489 	struct mem_cgroup_tree_per_node *mctz;
490 
491 	if (lru_gen_enabled()) {
492 		if (soft_limit_excess(memcg))
493 			lru_gen_soft_reclaim(memcg, nid);
494 		return;
495 	}
496 
497 	mctz = soft_limit_tree.rb_tree_per_node[nid];
498 	if (!mctz)
499 		return;
500 	/*
501 	 * Necessary to update all ancestors when hierarchy is used.
502 	 * because their event counter is not touched.
503 	 */
504 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
505 		mz = memcg->nodeinfo[nid];
506 		excess = soft_limit_excess(memcg);
507 		/*
508 		 * We have to update the tree if mz is on RB-tree or
509 		 * mem is over its softlimit.
510 		 */
511 		if (excess || mz->on_tree) {
512 			unsigned long flags;
513 
514 			spin_lock_irqsave(&mctz->lock, flags);
515 			/* if on-tree, remove it */
516 			if (mz->on_tree)
517 				__mem_cgroup_remove_exceeded(mz, mctz);
518 			/*
519 			 * Insert again. mz->usage_in_excess will be updated.
520 			 * If excess is 0, no tree ops.
521 			 */
522 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
523 			spin_unlock_irqrestore(&mctz->lock, flags);
524 		}
525 	}
526 }
527 
528 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529 {
530 	struct mem_cgroup_tree_per_node *mctz;
531 	struct mem_cgroup_per_node *mz;
532 	int nid;
533 
534 	for_each_node(nid) {
535 		mz = memcg->nodeinfo[nid];
536 		mctz = soft_limit_tree.rb_tree_per_node[nid];
537 		if (mctz)
538 			mem_cgroup_remove_exceeded(mz, mctz);
539 	}
540 }
541 
542 static struct mem_cgroup_per_node *
543 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
544 {
545 	struct mem_cgroup_per_node *mz;
546 
547 retry:
548 	mz = NULL;
549 	if (!mctz->rb_rightmost)
550 		goto done;		/* Nothing to reclaim from */
551 
552 	mz = rb_entry(mctz->rb_rightmost,
553 		      struct mem_cgroup_per_node, tree_node);
554 	/*
555 	 * Remove the node now but someone else can add it back,
556 	 * we will to add it back at the end of reclaim to its correct
557 	 * position in the tree.
558 	 */
559 	__mem_cgroup_remove_exceeded(mz, mctz);
560 	if (!soft_limit_excess(mz->memcg) ||
561 	    !css_tryget(&mz->memcg->css))
562 		goto retry;
563 done:
564 	return mz;
565 }
566 
567 static struct mem_cgroup_per_node *
568 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
569 {
570 	struct mem_cgroup_per_node *mz;
571 
572 	spin_lock_irq(&mctz->lock);
573 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
574 	spin_unlock_irq(&mctz->lock);
575 	return mz;
576 }
577 
578 /* Subset of vm_event_item to report for memcg event stats */
579 static const unsigned int memcg_vm_event_stat[] = {
580 	PGPGIN,
581 	PGPGOUT,
582 	PGSCAN_KSWAPD,
583 	PGSCAN_DIRECT,
584 	PGSCAN_KHUGEPAGED,
585 	PGSTEAL_KSWAPD,
586 	PGSTEAL_DIRECT,
587 	PGSTEAL_KHUGEPAGED,
588 	PGFAULT,
589 	PGMAJFAULT,
590 	PGREFILL,
591 	PGACTIVATE,
592 	PGDEACTIVATE,
593 	PGLAZYFREE,
594 	PGLAZYFREED,
595 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
596 	ZSWPIN,
597 	ZSWPOUT,
598 	ZSWPWB,
599 #endif
600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
601 	THP_FAULT_ALLOC,
602 	THP_COLLAPSE_ALLOC,
603 	THP_SWPOUT,
604 	THP_SWPOUT_FALLBACK,
605 #endif
606 };
607 
608 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
609 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
610 
611 static void init_memcg_events(void)
612 {
613 	int i;
614 
615 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
616 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
617 }
618 
619 static inline int memcg_events_index(enum vm_event_item idx)
620 {
621 	return mem_cgroup_events_index[idx] - 1;
622 }
623 
624 struct memcg_vmstats_percpu {
625 	/* Stats updates since the last flush */
626 	unsigned int			stats_updates;
627 
628 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
629 	struct memcg_vmstats_percpu	*parent;
630 	struct memcg_vmstats		*vmstats;
631 
632 	/* The above should fit a single cacheline for memcg_rstat_updated() */
633 
634 	/* Local (CPU and cgroup) page state & events */
635 	long			state[MEMCG_NR_STAT];
636 	unsigned long		events[NR_MEMCG_EVENTS];
637 
638 	/* Delta calculation for lockless upward propagation */
639 	long			state_prev[MEMCG_NR_STAT];
640 	unsigned long		events_prev[NR_MEMCG_EVENTS];
641 
642 	/* Cgroup1: threshold notifications & softlimit tree updates */
643 	unsigned long		nr_page_events;
644 	unsigned long		targets[MEM_CGROUP_NTARGETS];
645 } ____cacheline_aligned;
646 
647 struct memcg_vmstats {
648 	/* Aggregated (CPU and subtree) page state & events */
649 	long			state[MEMCG_NR_STAT];
650 	unsigned long		events[NR_MEMCG_EVENTS];
651 
652 	/* Non-hierarchical (CPU aggregated) page state & events */
653 	long			state_local[MEMCG_NR_STAT];
654 	unsigned long		events_local[NR_MEMCG_EVENTS];
655 
656 	/* Pending child counts during tree propagation */
657 	long			state_pending[MEMCG_NR_STAT];
658 	unsigned long		events_pending[NR_MEMCG_EVENTS];
659 
660 	/* Stats updates since the last flush */
661 	atomic64_t		stats_updates;
662 };
663 
664 /*
665  * memcg and lruvec stats flushing
666  *
667  * Many codepaths leading to stats update or read are performance sensitive and
668  * adding stats flushing in such codepaths is not desirable. So, to optimize the
669  * flushing the kernel does:
670  *
671  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
672  *    rstat update tree grow unbounded.
673  *
674  * 2) Flush the stats synchronously on reader side only when there are more than
675  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
676  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
677  *    only for 2 seconds due to (1).
678  */
679 static void flush_memcg_stats_dwork(struct work_struct *w);
680 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
681 static u64 flush_last_time;
682 
683 #define FLUSH_TIME (2UL*HZ)
684 
685 /*
686  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
687  * not rely on this as part of an acquired spinlock_t lock. These functions are
688  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
689  * is sufficient.
690  */
691 static void memcg_stats_lock(void)
692 {
693 	preempt_disable_nested();
694 	VM_WARN_ON_IRQS_ENABLED();
695 }
696 
697 static void __memcg_stats_lock(void)
698 {
699 	preempt_disable_nested();
700 }
701 
702 static void memcg_stats_unlock(void)
703 {
704 	preempt_enable_nested();
705 }
706 
707 
708 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
709 {
710 	return atomic64_read(&vmstats->stats_updates) >
711 		MEMCG_CHARGE_BATCH * num_online_cpus();
712 }
713 
714 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
715 {
716 	struct memcg_vmstats_percpu *statc;
717 	int cpu = smp_processor_id();
718 
719 	if (!val)
720 		return;
721 
722 	cgroup_rstat_updated(memcg->css.cgroup, cpu);
723 	statc = this_cpu_ptr(memcg->vmstats_percpu);
724 	for (; statc; statc = statc->parent) {
725 		statc->stats_updates += abs(val);
726 		if (statc->stats_updates < MEMCG_CHARGE_BATCH)
727 			continue;
728 
729 		/*
730 		 * If @memcg is already flush-able, increasing stats_updates is
731 		 * redundant. Avoid the overhead of the atomic update.
732 		 */
733 		if (!memcg_vmstats_needs_flush(statc->vmstats))
734 			atomic64_add(statc->stats_updates,
735 				     &statc->vmstats->stats_updates);
736 		statc->stats_updates = 0;
737 	}
738 }
739 
740 static void do_flush_stats(struct mem_cgroup *memcg)
741 {
742 	if (mem_cgroup_is_root(memcg))
743 		WRITE_ONCE(flush_last_time, jiffies_64);
744 
745 	cgroup_rstat_flush(memcg->css.cgroup);
746 }
747 
748 /*
749  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
750  * @memcg: root of the subtree to flush
751  *
752  * Flushing is serialized by the underlying global rstat lock. There is also a
753  * minimum amount of work to be done even if there are no stat updates to flush.
754  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
755  * avoids unnecessary work and contention on the underlying lock.
756  */
757 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
758 {
759 	if (mem_cgroup_disabled())
760 		return;
761 
762 	if (!memcg)
763 		memcg = root_mem_cgroup;
764 
765 	if (memcg_vmstats_needs_flush(memcg->vmstats))
766 		do_flush_stats(memcg);
767 }
768 
769 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
770 {
771 	/* Only flush if the periodic flusher is one full cycle late */
772 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
773 		mem_cgroup_flush_stats(memcg);
774 }
775 
776 static void flush_memcg_stats_dwork(struct work_struct *w)
777 {
778 	/*
779 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
780 	 * in latency-sensitive paths is as cheap as possible.
781 	 */
782 	do_flush_stats(root_mem_cgroup);
783 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
784 }
785 
786 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
787 {
788 	long x = READ_ONCE(memcg->vmstats->state[idx]);
789 #ifdef CONFIG_SMP
790 	if (x < 0)
791 		x = 0;
792 #endif
793 	return x;
794 }
795 
796 static int memcg_page_state_unit(int item);
797 
798 /*
799  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
800  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
801  */
802 static int memcg_state_val_in_pages(int idx, int val)
803 {
804 	int unit = memcg_page_state_unit(idx);
805 
806 	if (!val || unit == PAGE_SIZE)
807 		return val;
808 	else
809 		return max(val * unit / PAGE_SIZE, 1UL);
810 }
811 
812 /**
813  * __mod_memcg_state - update cgroup memory statistics
814  * @memcg: the memory cgroup
815  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
816  * @val: delta to add to the counter, can be negative
817  */
818 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
819 {
820 	if (mem_cgroup_disabled())
821 		return;
822 
823 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
824 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
825 }
826 
827 /* idx can be of type enum memcg_stat_item or node_stat_item. */
828 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
829 {
830 	long x = READ_ONCE(memcg->vmstats->state_local[idx]);
831 
832 #ifdef CONFIG_SMP
833 	if (x < 0)
834 		x = 0;
835 #endif
836 	return x;
837 }
838 
839 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 			      int val)
841 {
842 	struct mem_cgroup_per_node *pn;
843 	struct mem_cgroup *memcg;
844 
845 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
846 	memcg = pn->memcg;
847 
848 	/*
849 	 * The caller from rmap relies on disabled preemption because they never
850 	 * update their counter from in-interrupt context. For these two
851 	 * counters we check that the update is never performed from an
852 	 * interrupt context while other caller need to have disabled interrupt.
853 	 */
854 	__memcg_stats_lock();
855 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
856 		switch (idx) {
857 		case NR_ANON_MAPPED:
858 		case NR_FILE_MAPPED:
859 		case NR_ANON_THPS:
860 		case NR_SHMEM_PMDMAPPED:
861 		case NR_FILE_PMDMAPPED:
862 			WARN_ON_ONCE(!in_task());
863 			break;
864 		default:
865 			VM_WARN_ON_IRQS_ENABLED();
866 		}
867 	}
868 
869 	/* Update memcg */
870 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
871 
872 	/* Update lruvec */
873 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
874 
875 	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
876 	memcg_stats_unlock();
877 }
878 
879 /**
880  * __mod_lruvec_state - update lruvec memory statistics
881  * @lruvec: the lruvec
882  * @idx: the stat item
883  * @val: delta to add to the counter, can be negative
884  *
885  * The lruvec is the intersection of the NUMA node and a cgroup. This
886  * function updates the all three counters that are affected by a
887  * change of state at this level: per-node, per-cgroup, per-lruvec.
888  */
889 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
890 			int val)
891 {
892 	/* Update node */
893 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
894 
895 	/* Update memcg and lruvec */
896 	if (!mem_cgroup_disabled())
897 		__mod_memcg_lruvec_state(lruvec, idx, val);
898 }
899 
900 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
901 			     int val)
902 {
903 	struct mem_cgroup *memcg;
904 	pg_data_t *pgdat = folio_pgdat(folio);
905 	struct lruvec *lruvec;
906 
907 	rcu_read_lock();
908 	memcg = folio_memcg(folio);
909 	/* Untracked pages have no memcg, no lruvec. Update only the node */
910 	if (!memcg) {
911 		rcu_read_unlock();
912 		__mod_node_page_state(pgdat, idx, val);
913 		return;
914 	}
915 
916 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
917 	__mod_lruvec_state(lruvec, idx, val);
918 	rcu_read_unlock();
919 }
920 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
921 
922 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
923 {
924 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
925 	struct mem_cgroup *memcg;
926 	struct lruvec *lruvec;
927 
928 	rcu_read_lock();
929 	memcg = mem_cgroup_from_slab_obj(p);
930 
931 	/*
932 	 * Untracked pages have no memcg, no lruvec. Update only the
933 	 * node. If we reparent the slab objects to the root memcg,
934 	 * when we free the slab object, we need to update the per-memcg
935 	 * vmstats to keep it correct for the root memcg.
936 	 */
937 	if (!memcg) {
938 		__mod_node_page_state(pgdat, idx, val);
939 	} else {
940 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
941 		__mod_lruvec_state(lruvec, idx, val);
942 	}
943 	rcu_read_unlock();
944 }
945 
946 /**
947  * __count_memcg_events - account VM events in a cgroup
948  * @memcg: the memory cgroup
949  * @idx: the event item
950  * @count: the number of events that occurred
951  */
952 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
953 			  unsigned long count)
954 {
955 	int index = memcg_events_index(idx);
956 
957 	if (mem_cgroup_disabled() || index < 0)
958 		return;
959 
960 	memcg_stats_lock();
961 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
962 	memcg_rstat_updated(memcg, count);
963 	memcg_stats_unlock();
964 }
965 
966 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
967 {
968 	int index = memcg_events_index(event);
969 
970 	if (index < 0)
971 		return 0;
972 	return READ_ONCE(memcg->vmstats->events[index]);
973 }
974 
975 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
976 {
977 	int index = memcg_events_index(event);
978 
979 	if (index < 0)
980 		return 0;
981 
982 	return READ_ONCE(memcg->vmstats->events_local[index]);
983 }
984 
985 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
986 					 int nr_pages)
987 {
988 	/* pagein of a big page is an event. So, ignore page size */
989 	if (nr_pages > 0)
990 		__count_memcg_events(memcg, PGPGIN, 1);
991 	else {
992 		__count_memcg_events(memcg, PGPGOUT, 1);
993 		nr_pages = -nr_pages; /* for event */
994 	}
995 
996 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
997 }
998 
999 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 				       enum mem_cgroup_events_target target)
1001 {
1002 	unsigned long val, next;
1003 
1004 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1005 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1006 	/* from time_after() in jiffies.h */
1007 	if ((long)(next - val) < 0) {
1008 		switch (target) {
1009 		case MEM_CGROUP_TARGET_THRESH:
1010 			next = val + THRESHOLDS_EVENTS_TARGET;
1011 			break;
1012 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 			next = val + SOFTLIMIT_EVENTS_TARGET;
1014 			break;
1015 		default:
1016 			break;
1017 		}
1018 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1019 		return true;
1020 	}
1021 	return false;
1022 }
1023 
1024 /*
1025  * Check events in order.
1026  *
1027  */
1028 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1029 {
1030 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1031 		return;
1032 
1033 	/* threshold event is triggered in finer grain than soft limit */
1034 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1035 						MEM_CGROUP_TARGET_THRESH))) {
1036 		bool do_softlimit;
1037 
1038 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1039 						MEM_CGROUP_TARGET_SOFTLIMIT);
1040 		mem_cgroup_threshold(memcg);
1041 		if (unlikely(do_softlimit))
1042 			mem_cgroup_update_tree(memcg, nid);
1043 	}
1044 }
1045 
1046 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047 {
1048 	/*
1049 	 * mm_update_next_owner() may clear mm->owner to NULL
1050 	 * if it races with swapoff, page migration, etc.
1051 	 * So this can be called with p == NULL.
1052 	 */
1053 	if (unlikely(!p))
1054 		return NULL;
1055 
1056 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1057 }
1058 EXPORT_SYMBOL(mem_cgroup_from_task);
1059 
1060 static __always_inline struct mem_cgroup *active_memcg(void)
1061 {
1062 	if (!in_task())
1063 		return this_cpu_read(int_active_memcg);
1064 	else
1065 		return current->active_memcg;
1066 }
1067 
1068 /**
1069  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1070  * @mm: mm from which memcg should be extracted. It can be NULL.
1071  *
1072  * Obtain a reference on mm->memcg and returns it if successful. If mm
1073  * is NULL, then the memcg is chosen as follows:
1074  * 1) The active memcg, if set.
1075  * 2) current->mm->memcg, if available
1076  * 3) root memcg
1077  * If mem_cgroup is disabled, NULL is returned.
1078  */
1079 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1080 {
1081 	struct mem_cgroup *memcg;
1082 
1083 	if (mem_cgroup_disabled())
1084 		return NULL;
1085 
1086 	/*
1087 	 * Page cache insertions can happen without an
1088 	 * actual mm context, e.g. during disk probing
1089 	 * on boot, loopback IO, acct() writes etc.
1090 	 *
1091 	 * No need to css_get on root memcg as the reference
1092 	 * counting is disabled on the root level in the
1093 	 * cgroup core. See CSS_NO_REF.
1094 	 */
1095 	if (unlikely(!mm)) {
1096 		memcg = active_memcg();
1097 		if (unlikely(memcg)) {
1098 			/* remote memcg must hold a ref */
1099 			css_get(&memcg->css);
1100 			return memcg;
1101 		}
1102 		mm = current->mm;
1103 		if (unlikely(!mm))
1104 			return root_mem_cgroup;
1105 	}
1106 
1107 	rcu_read_lock();
1108 	do {
1109 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110 		if (unlikely(!memcg))
1111 			memcg = root_mem_cgroup;
1112 	} while (!css_tryget(&memcg->css));
1113 	rcu_read_unlock();
1114 	return memcg;
1115 }
1116 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1117 
1118 /**
1119  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1120  */
1121 struct mem_cgroup *get_mem_cgroup_from_current(void)
1122 {
1123 	struct mem_cgroup *memcg;
1124 
1125 	if (mem_cgroup_disabled())
1126 		return NULL;
1127 
1128 again:
1129 	rcu_read_lock();
1130 	memcg = mem_cgroup_from_task(current);
1131 	if (!css_tryget(&memcg->css)) {
1132 		rcu_read_unlock();
1133 		goto again;
1134 	}
1135 	rcu_read_unlock();
1136 	return memcg;
1137 }
1138 
1139 /**
1140  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141  * @root: hierarchy root
1142  * @prev: previously returned memcg, NULL on first invocation
1143  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144  *
1145  * Returns references to children of the hierarchy below @root, or
1146  * @root itself, or %NULL after a full round-trip.
1147  *
1148  * Caller must pass the return value in @prev on subsequent
1149  * invocations for reference counting, or use mem_cgroup_iter_break()
1150  * to cancel a hierarchy walk before the round-trip is complete.
1151  *
1152  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153  * in the hierarchy among all concurrent reclaimers operating on the
1154  * same node.
1155  */
1156 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157 				   struct mem_cgroup *prev,
1158 				   struct mem_cgroup_reclaim_cookie *reclaim)
1159 {
1160 	struct mem_cgroup_reclaim_iter *iter;
1161 	struct cgroup_subsys_state *css = NULL;
1162 	struct mem_cgroup *memcg = NULL;
1163 	struct mem_cgroup *pos = NULL;
1164 
1165 	if (mem_cgroup_disabled())
1166 		return NULL;
1167 
1168 	if (!root)
1169 		root = root_mem_cgroup;
1170 
1171 	rcu_read_lock();
1172 
1173 	if (reclaim) {
1174 		struct mem_cgroup_per_node *mz;
1175 
1176 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1177 		iter = &mz->iter;
1178 
1179 		/*
1180 		 * On start, join the current reclaim iteration cycle.
1181 		 * Exit when a concurrent walker completes it.
1182 		 */
1183 		if (!prev)
1184 			reclaim->generation = iter->generation;
1185 		else if (reclaim->generation != iter->generation)
1186 			goto out_unlock;
1187 
1188 		while (1) {
1189 			pos = READ_ONCE(iter->position);
1190 			if (!pos || css_tryget(&pos->css))
1191 				break;
1192 			/*
1193 			 * css reference reached zero, so iter->position will
1194 			 * be cleared by ->css_released. However, we should not
1195 			 * rely on this happening soon, because ->css_released
1196 			 * is called from a work queue, and by busy-waiting we
1197 			 * might block it. So we clear iter->position right
1198 			 * away.
1199 			 */
1200 			(void)cmpxchg(&iter->position, pos, NULL);
1201 		}
1202 	} else if (prev) {
1203 		pos = prev;
1204 	}
1205 
1206 	if (pos)
1207 		css = &pos->css;
1208 
1209 	for (;;) {
1210 		css = css_next_descendant_pre(css, &root->css);
1211 		if (!css) {
1212 			/*
1213 			 * Reclaimers share the hierarchy walk, and a
1214 			 * new one might jump in right at the end of
1215 			 * the hierarchy - make sure they see at least
1216 			 * one group and restart from the beginning.
1217 			 */
1218 			if (!prev)
1219 				continue;
1220 			break;
1221 		}
1222 
1223 		/*
1224 		 * Verify the css and acquire a reference.  The root
1225 		 * is provided by the caller, so we know it's alive
1226 		 * and kicking, and don't take an extra reference.
1227 		 */
1228 		if (css == &root->css || css_tryget(css)) {
1229 			memcg = mem_cgroup_from_css(css);
1230 			break;
1231 		}
1232 	}
1233 
1234 	if (reclaim) {
1235 		/*
1236 		 * The position could have already been updated by a competing
1237 		 * thread, so check that the value hasn't changed since we read
1238 		 * it to avoid reclaiming from the same cgroup twice.
1239 		 */
1240 		(void)cmpxchg(&iter->position, pos, memcg);
1241 
1242 		if (pos)
1243 			css_put(&pos->css);
1244 
1245 		if (!memcg)
1246 			iter->generation++;
1247 	}
1248 
1249 out_unlock:
1250 	rcu_read_unlock();
1251 	if (prev && prev != root)
1252 		css_put(&prev->css);
1253 
1254 	return memcg;
1255 }
1256 
1257 /**
1258  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259  * @root: hierarchy root
1260  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261  */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 			   struct mem_cgroup *prev)
1264 {
1265 	if (!root)
1266 		root = root_mem_cgroup;
1267 	if (prev && prev != root)
1268 		css_put(&prev->css);
1269 }
1270 
1271 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1272 					struct mem_cgroup *dead_memcg)
1273 {
1274 	struct mem_cgroup_reclaim_iter *iter;
1275 	struct mem_cgroup_per_node *mz;
1276 	int nid;
1277 
1278 	for_each_node(nid) {
1279 		mz = from->nodeinfo[nid];
1280 		iter = &mz->iter;
1281 		cmpxchg(&iter->position, dead_memcg, NULL);
1282 	}
1283 }
1284 
1285 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1286 {
1287 	struct mem_cgroup *memcg = dead_memcg;
1288 	struct mem_cgroup *last;
1289 
1290 	do {
1291 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1292 		last = memcg;
1293 	} while ((memcg = parent_mem_cgroup(memcg)));
1294 
1295 	/*
1296 	 * When cgroup1 non-hierarchy mode is used,
1297 	 * parent_mem_cgroup() does not walk all the way up to the
1298 	 * cgroup root (root_mem_cgroup). So we have to handle
1299 	 * dead_memcg from cgroup root separately.
1300 	 */
1301 	if (!mem_cgroup_is_root(last))
1302 		__invalidate_reclaim_iterators(root_mem_cgroup,
1303 						dead_memcg);
1304 }
1305 
1306 /**
1307  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1308  * @memcg: hierarchy root
1309  * @fn: function to call for each task
1310  * @arg: argument passed to @fn
1311  *
1312  * This function iterates over tasks attached to @memcg or to any of its
1313  * descendants and calls @fn for each task. If @fn returns a non-zero
1314  * value, the function breaks the iteration loop. Otherwise, it will iterate
1315  * over all tasks and return 0.
1316  *
1317  * This function must not be called for the root memory cgroup.
1318  */
1319 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1320 			   int (*fn)(struct task_struct *, void *), void *arg)
1321 {
1322 	struct mem_cgroup *iter;
1323 	int ret = 0;
1324 
1325 	BUG_ON(mem_cgroup_is_root(memcg));
1326 
1327 	for_each_mem_cgroup_tree(iter, memcg) {
1328 		struct css_task_iter it;
1329 		struct task_struct *task;
1330 
1331 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1332 		while (!ret && (task = css_task_iter_next(&it)))
1333 			ret = fn(task, arg);
1334 		css_task_iter_end(&it);
1335 		if (ret) {
1336 			mem_cgroup_iter_break(memcg, iter);
1337 			break;
1338 		}
1339 	}
1340 }
1341 
1342 #ifdef CONFIG_DEBUG_VM
1343 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1344 {
1345 	struct mem_cgroup *memcg;
1346 
1347 	if (mem_cgroup_disabled())
1348 		return;
1349 
1350 	memcg = folio_memcg(folio);
1351 
1352 	if (!memcg)
1353 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1354 	else
1355 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1356 }
1357 #endif
1358 
1359 /**
1360  * folio_lruvec_lock - Lock the lruvec for a folio.
1361  * @folio: Pointer to the folio.
1362  *
1363  * These functions are safe to use under any of the following conditions:
1364  * - folio locked
1365  * - folio_test_lru false
1366  * - folio_memcg_lock()
1367  * - folio frozen (refcount of 0)
1368  *
1369  * Return: The lruvec this folio is on with its lock held.
1370  */
1371 struct lruvec *folio_lruvec_lock(struct folio *folio)
1372 {
1373 	struct lruvec *lruvec = folio_lruvec(folio);
1374 
1375 	spin_lock(&lruvec->lru_lock);
1376 	lruvec_memcg_debug(lruvec, folio);
1377 
1378 	return lruvec;
1379 }
1380 
1381 /**
1382  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1383  * @folio: Pointer to the folio.
1384  *
1385  * These functions are safe to use under any of the following conditions:
1386  * - folio locked
1387  * - folio_test_lru false
1388  * - folio_memcg_lock()
1389  * - folio frozen (refcount of 0)
1390  *
1391  * Return: The lruvec this folio is on with its lock held and interrupts
1392  * disabled.
1393  */
1394 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1395 {
1396 	struct lruvec *lruvec = folio_lruvec(folio);
1397 
1398 	spin_lock_irq(&lruvec->lru_lock);
1399 	lruvec_memcg_debug(lruvec, folio);
1400 
1401 	return lruvec;
1402 }
1403 
1404 /**
1405  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1406  * @folio: Pointer to the folio.
1407  * @flags: Pointer to irqsave flags.
1408  *
1409  * These functions are safe to use under any of the following conditions:
1410  * - folio locked
1411  * - folio_test_lru false
1412  * - folio_memcg_lock()
1413  * - folio frozen (refcount of 0)
1414  *
1415  * Return: The lruvec this folio is on with its lock held and interrupts
1416  * disabled.
1417  */
1418 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1419 		unsigned long *flags)
1420 {
1421 	struct lruvec *lruvec = folio_lruvec(folio);
1422 
1423 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1424 	lruvec_memcg_debug(lruvec, folio);
1425 
1426 	return lruvec;
1427 }
1428 
1429 /**
1430  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431  * @lruvec: mem_cgroup per zone lru vector
1432  * @lru: index of lru list the page is sitting on
1433  * @zid: zone id of the accounted pages
1434  * @nr_pages: positive when adding or negative when removing
1435  *
1436  * This function must be called under lru_lock, just before a page is added
1437  * to or just after a page is removed from an lru list.
1438  */
1439 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440 				int zid, int nr_pages)
1441 {
1442 	struct mem_cgroup_per_node *mz;
1443 	unsigned long *lru_size;
1444 	long size;
1445 
1446 	if (mem_cgroup_disabled())
1447 		return;
1448 
1449 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1450 	lru_size = &mz->lru_zone_size[zid][lru];
1451 
1452 	if (nr_pages < 0)
1453 		*lru_size += nr_pages;
1454 
1455 	size = *lru_size;
1456 	if (WARN_ONCE(size < 0,
1457 		"%s(%p, %d, %d): lru_size %ld\n",
1458 		__func__, lruvec, lru, nr_pages, size)) {
1459 		VM_BUG_ON(1);
1460 		*lru_size = 0;
1461 	}
1462 
1463 	if (nr_pages > 0)
1464 		*lru_size += nr_pages;
1465 }
1466 
1467 /**
1468  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1469  * @memcg: the memory cgroup
1470  *
1471  * Returns the maximum amount of memory @mem can be charged with, in
1472  * pages.
1473  */
1474 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475 {
1476 	unsigned long margin = 0;
1477 	unsigned long count;
1478 	unsigned long limit;
1479 
1480 	count = page_counter_read(&memcg->memory);
1481 	limit = READ_ONCE(memcg->memory.max);
1482 	if (count < limit)
1483 		margin = limit - count;
1484 
1485 	if (do_memsw_account()) {
1486 		count = page_counter_read(&memcg->memsw);
1487 		limit = READ_ONCE(memcg->memsw.max);
1488 		if (count < limit)
1489 			margin = min(margin, limit - count);
1490 		else
1491 			margin = 0;
1492 	}
1493 
1494 	return margin;
1495 }
1496 
1497 /*
1498  * A routine for checking "mem" is under move_account() or not.
1499  *
1500  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1501  * moving cgroups. This is for waiting at high-memory pressure
1502  * caused by "move".
1503  */
1504 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1505 {
1506 	struct mem_cgroup *from;
1507 	struct mem_cgroup *to;
1508 	bool ret = false;
1509 	/*
1510 	 * Unlike task_move routines, we access mc.to, mc.from not under
1511 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1512 	 */
1513 	spin_lock(&mc.lock);
1514 	from = mc.from;
1515 	to = mc.to;
1516 	if (!from)
1517 		goto unlock;
1518 
1519 	ret = mem_cgroup_is_descendant(from, memcg) ||
1520 		mem_cgroup_is_descendant(to, memcg);
1521 unlock:
1522 	spin_unlock(&mc.lock);
1523 	return ret;
1524 }
1525 
1526 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1527 {
1528 	if (mc.moving_task && current != mc.moving_task) {
1529 		if (mem_cgroup_under_move(memcg)) {
1530 			DEFINE_WAIT(wait);
1531 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1532 			/* moving charge context might have finished. */
1533 			if (mc.moving_task)
1534 				schedule();
1535 			finish_wait(&mc.waitq, &wait);
1536 			return true;
1537 		}
1538 	}
1539 	return false;
1540 }
1541 
1542 struct memory_stat {
1543 	const char *name;
1544 	unsigned int idx;
1545 };
1546 
1547 static const struct memory_stat memory_stats[] = {
1548 	{ "anon",			NR_ANON_MAPPED			},
1549 	{ "file",			NR_FILE_PAGES			},
1550 	{ "kernel",			MEMCG_KMEM			},
1551 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1552 	{ "pagetables",			NR_PAGETABLE			},
1553 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1554 	{ "percpu",			MEMCG_PERCPU_B			},
1555 	{ "sock",			MEMCG_SOCK			},
1556 	{ "vmalloc",			MEMCG_VMALLOC			},
1557 	{ "shmem",			NR_SHMEM			},
1558 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1559 	{ "zswap",			MEMCG_ZSWAP_B			},
1560 	{ "zswapped",			MEMCG_ZSWAPPED			},
1561 #endif
1562 	{ "file_mapped",		NR_FILE_MAPPED			},
1563 	{ "file_dirty",			NR_FILE_DIRTY			},
1564 	{ "file_writeback",		NR_WRITEBACK			},
1565 #ifdef CONFIG_SWAP
1566 	{ "swapcached",			NR_SWAPCACHE			},
1567 #endif
1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569 	{ "anon_thp",			NR_ANON_THPS			},
1570 	{ "file_thp",			NR_FILE_THPS			},
1571 	{ "shmem_thp",			NR_SHMEM_THPS			},
1572 #endif
1573 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1574 	{ "active_anon",		NR_ACTIVE_ANON			},
1575 	{ "inactive_file",		NR_INACTIVE_FILE		},
1576 	{ "active_file",		NR_ACTIVE_FILE			},
1577 	{ "unevictable",		NR_UNEVICTABLE			},
1578 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1579 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1580 
1581 	/* The memory events */
1582 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1583 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1584 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1585 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1586 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1587 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1588 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1589 };
1590 
1591 /* The actual unit of the state item, not the same as the output unit */
1592 static int memcg_page_state_unit(int item)
1593 {
1594 	switch (item) {
1595 	case MEMCG_PERCPU_B:
1596 	case MEMCG_ZSWAP_B:
1597 	case NR_SLAB_RECLAIMABLE_B:
1598 	case NR_SLAB_UNRECLAIMABLE_B:
1599 		return 1;
1600 	case NR_KERNEL_STACK_KB:
1601 		return SZ_1K;
1602 	default:
1603 		return PAGE_SIZE;
1604 	}
1605 }
1606 
1607 /* Translate stat items to the correct unit for memory.stat output */
1608 static int memcg_page_state_output_unit(int item)
1609 {
1610 	/*
1611 	 * Workingset state is actually in pages, but we export it to userspace
1612 	 * as a scalar count of events, so special case it here.
1613 	 */
1614 	switch (item) {
1615 	case WORKINGSET_REFAULT_ANON:
1616 	case WORKINGSET_REFAULT_FILE:
1617 	case WORKINGSET_ACTIVATE_ANON:
1618 	case WORKINGSET_ACTIVATE_FILE:
1619 	case WORKINGSET_RESTORE_ANON:
1620 	case WORKINGSET_RESTORE_FILE:
1621 	case WORKINGSET_NODERECLAIM:
1622 		return 1;
1623 	default:
1624 		return memcg_page_state_unit(item);
1625 	}
1626 }
1627 
1628 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1629 						    int item)
1630 {
1631 	return memcg_page_state(memcg, item) *
1632 		memcg_page_state_output_unit(item);
1633 }
1634 
1635 static inline unsigned long memcg_page_state_local_output(
1636 		struct mem_cgroup *memcg, int item)
1637 {
1638 	return memcg_page_state_local(memcg, item) *
1639 		memcg_page_state_output_unit(item);
1640 }
1641 
1642 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1643 {
1644 	int i;
1645 
1646 	/*
1647 	 * Provide statistics on the state of the memory subsystem as
1648 	 * well as cumulative event counters that show past behavior.
1649 	 *
1650 	 * This list is ordered following a combination of these gradients:
1651 	 * 1) generic big picture -> specifics and details
1652 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1653 	 *
1654 	 * Current memory state:
1655 	 */
1656 	mem_cgroup_flush_stats(memcg);
1657 
1658 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1659 		u64 size;
1660 
1661 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1662 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1663 
1664 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1665 			size += memcg_page_state_output(memcg,
1666 							NR_SLAB_RECLAIMABLE_B);
1667 			seq_buf_printf(s, "slab %llu\n", size);
1668 		}
1669 	}
1670 
1671 	/* Accumulated memory events */
1672 	seq_buf_printf(s, "pgscan %lu\n",
1673 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1674 		       memcg_events(memcg, PGSCAN_DIRECT) +
1675 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1676 	seq_buf_printf(s, "pgsteal %lu\n",
1677 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1678 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1679 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1680 
1681 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1682 		if (memcg_vm_event_stat[i] == PGPGIN ||
1683 		    memcg_vm_event_stat[i] == PGPGOUT)
1684 			continue;
1685 
1686 		seq_buf_printf(s, "%s %lu\n",
1687 			       vm_event_name(memcg_vm_event_stat[i]),
1688 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1689 	}
1690 
1691 	/* The above should easily fit into one page */
1692 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1693 }
1694 
1695 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1696 
1697 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1698 {
1699 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1700 		memcg_stat_format(memcg, s);
1701 	else
1702 		memcg1_stat_format(memcg, s);
1703 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1704 }
1705 
1706 /**
1707  * mem_cgroup_print_oom_context: Print OOM information relevant to
1708  * memory controller.
1709  * @memcg: The memory cgroup that went over limit
1710  * @p: Task that is going to be killed
1711  *
1712  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1713  * enabled
1714  */
1715 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1716 {
1717 	rcu_read_lock();
1718 
1719 	if (memcg) {
1720 		pr_cont(",oom_memcg=");
1721 		pr_cont_cgroup_path(memcg->css.cgroup);
1722 	} else
1723 		pr_cont(",global_oom");
1724 	if (p) {
1725 		pr_cont(",task_memcg=");
1726 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1727 	}
1728 	rcu_read_unlock();
1729 }
1730 
1731 /**
1732  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1733  * memory controller.
1734  * @memcg: The memory cgroup that went over limit
1735  */
1736 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1737 {
1738 	/* Use static buffer, for the caller is holding oom_lock. */
1739 	static char buf[PAGE_SIZE];
1740 	struct seq_buf s;
1741 
1742 	lockdep_assert_held(&oom_lock);
1743 
1744 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1745 		K((u64)page_counter_read(&memcg->memory)),
1746 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1747 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1748 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1749 			K((u64)page_counter_read(&memcg->swap)),
1750 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1751 	else {
1752 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1753 			K((u64)page_counter_read(&memcg->memsw)),
1754 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1755 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1756 			K((u64)page_counter_read(&memcg->kmem)),
1757 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1758 	}
1759 
1760 	pr_info("Memory cgroup stats for ");
1761 	pr_cont_cgroup_path(memcg->css.cgroup);
1762 	pr_cont(":");
1763 	seq_buf_init(&s, buf, sizeof(buf));
1764 	memory_stat_format(memcg, &s);
1765 	seq_buf_do_printk(&s, KERN_INFO);
1766 }
1767 
1768 /*
1769  * Return the memory (and swap, if configured) limit for a memcg.
1770  */
1771 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1772 {
1773 	unsigned long max = READ_ONCE(memcg->memory.max);
1774 
1775 	if (do_memsw_account()) {
1776 		if (mem_cgroup_swappiness(memcg)) {
1777 			/* Calculate swap excess capacity from memsw limit */
1778 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1779 
1780 			max += min(swap, (unsigned long)total_swap_pages);
1781 		}
1782 	} else {
1783 		if (mem_cgroup_swappiness(memcg))
1784 			max += min(READ_ONCE(memcg->swap.max),
1785 				   (unsigned long)total_swap_pages);
1786 	}
1787 	return max;
1788 }
1789 
1790 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1791 {
1792 	return page_counter_read(&memcg->memory);
1793 }
1794 
1795 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1796 				     int order)
1797 {
1798 	struct oom_control oc = {
1799 		.zonelist = NULL,
1800 		.nodemask = NULL,
1801 		.memcg = memcg,
1802 		.gfp_mask = gfp_mask,
1803 		.order = order,
1804 	};
1805 	bool ret = true;
1806 
1807 	if (mutex_lock_killable(&oom_lock))
1808 		return true;
1809 
1810 	if (mem_cgroup_margin(memcg) >= (1 << order))
1811 		goto unlock;
1812 
1813 	/*
1814 	 * A few threads which were not waiting at mutex_lock_killable() can
1815 	 * fail to bail out. Therefore, check again after holding oom_lock.
1816 	 */
1817 	ret = task_is_dying() || out_of_memory(&oc);
1818 
1819 unlock:
1820 	mutex_unlock(&oom_lock);
1821 	return ret;
1822 }
1823 
1824 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1825 				   pg_data_t *pgdat,
1826 				   gfp_t gfp_mask,
1827 				   unsigned long *total_scanned)
1828 {
1829 	struct mem_cgroup *victim = NULL;
1830 	int total = 0;
1831 	int loop = 0;
1832 	unsigned long excess;
1833 	unsigned long nr_scanned;
1834 	struct mem_cgroup_reclaim_cookie reclaim = {
1835 		.pgdat = pgdat,
1836 	};
1837 
1838 	excess = soft_limit_excess(root_memcg);
1839 
1840 	while (1) {
1841 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1842 		if (!victim) {
1843 			loop++;
1844 			if (loop >= 2) {
1845 				/*
1846 				 * If we have not been able to reclaim
1847 				 * anything, it might because there are
1848 				 * no reclaimable pages under this hierarchy
1849 				 */
1850 				if (!total)
1851 					break;
1852 				/*
1853 				 * We want to do more targeted reclaim.
1854 				 * excess >> 2 is not to excessive so as to
1855 				 * reclaim too much, nor too less that we keep
1856 				 * coming back to reclaim from this cgroup
1857 				 */
1858 				if (total >= (excess >> 2) ||
1859 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1860 					break;
1861 			}
1862 			continue;
1863 		}
1864 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1865 					pgdat, &nr_scanned);
1866 		*total_scanned += nr_scanned;
1867 		if (!soft_limit_excess(root_memcg))
1868 			break;
1869 	}
1870 	mem_cgroup_iter_break(root_memcg, victim);
1871 	return total;
1872 }
1873 
1874 #ifdef CONFIG_LOCKDEP
1875 static struct lockdep_map memcg_oom_lock_dep_map = {
1876 	.name = "memcg_oom_lock",
1877 };
1878 #endif
1879 
1880 static DEFINE_SPINLOCK(memcg_oom_lock);
1881 
1882 /*
1883  * Check OOM-Killer is already running under our hierarchy.
1884  * If someone is running, return false.
1885  */
1886 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1887 {
1888 	struct mem_cgroup *iter, *failed = NULL;
1889 
1890 	spin_lock(&memcg_oom_lock);
1891 
1892 	for_each_mem_cgroup_tree(iter, memcg) {
1893 		if (iter->oom_lock) {
1894 			/*
1895 			 * this subtree of our hierarchy is already locked
1896 			 * so we cannot give a lock.
1897 			 */
1898 			failed = iter;
1899 			mem_cgroup_iter_break(memcg, iter);
1900 			break;
1901 		} else
1902 			iter->oom_lock = true;
1903 	}
1904 
1905 	if (failed) {
1906 		/*
1907 		 * OK, we failed to lock the whole subtree so we have
1908 		 * to clean up what we set up to the failing subtree
1909 		 */
1910 		for_each_mem_cgroup_tree(iter, memcg) {
1911 			if (iter == failed) {
1912 				mem_cgroup_iter_break(memcg, iter);
1913 				break;
1914 			}
1915 			iter->oom_lock = false;
1916 		}
1917 	} else
1918 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1919 
1920 	spin_unlock(&memcg_oom_lock);
1921 
1922 	return !failed;
1923 }
1924 
1925 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1926 {
1927 	struct mem_cgroup *iter;
1928 
1929 	spin_lock(&memcg_oom_lock);
1930 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1931 	for_each_mem_cgroup_tree(iter, memcg)
1932 		iter->oom_lock = false;
1933 	spin_unlock(&memcg_oom_lock);
1934 }
1935 
1936 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1937 {
1938 	struct mem_cgroup *iter;
1939 
1940 	spin_lock(&memcg_oom_lock);
1941 	for_each_mem_cgroup_tree(iter, memcg)
1942 		iter->under_oom++;
1943 	spin_unlock(&memcg_oom_lock);
1944 }
1945 
1946 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1947 {
1948 	struct mem_cgroup *iter;
1949 
1950 	/*
1951 	 * Be careful about under_oom underflows because a child memcg
1952 	 * could have been added after mem_cgroup_mark_under_oom.
1953 	 */
1954 	spin_lock(&memcg_oom_lock);
1955 	for_each_mem_cgroup_tree(iter, memcg)
1956 		if (iter->under_oom > 0)
1957 			iter->under_oom--;
1958 	spin_unlock(&memcg_oom_lock);
1959 }
1960 
1961 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1962 
1963 struct oom_wait_info {
1964 	struct mem_cgroup *memcg;
1965 	wait_queue_entry_t	wait;
1966 };
1967 
1968 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1969 	unsigned mode, int sync, void *arg)
1970 {
1971 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1972 	struct mem_cgroup *oom_wait_memcg;
1973 	struct oom_wait_info *oom_wait_info;
1974 
1975 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1976 	oom_wait_memcg = oom_wait_info->memcg;
1977 
1978 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1979 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1980 		return 0;
1981 	return autoremove_wake_function(wait, mode, sync, arg);
1982 }
1983 
1984 static void memcg_oom_recover(struct mem_cgroup *memcg)
1985 {
1986 	/*
1987 	 * For the following lockless ->under_oom test, the only required
1988 	 * guarantee is that it must see the state asserted by an OOM when
1989 	 * this function is called as a result of userland actions
1990 	 * triggered by the notification of the OOM.  This is trivially
1991 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1992 	 * triggering notification.
1993 	 */
1994 	if (memcg && memcg->under_oom)
1995 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1996 }
1997 
1998 /*
1999  * Returns true if successfully killed one or more processes. Though in some
2000  * corner cases it can return true even without killing any process.
2001  */
2002 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2003 {
2004 	bool locked, ret;
2005 
2006 	if (order > PAGE_ALLOC_COSTLY_ORDER)
2007 		return false;
2008 
2009 	memcg_memory_event(memcg, MEMCG_OOM);
2010 
2011 	/*
2012 	 * We are in the middle of the charge context here, so we
2013 	 * don't want to block when potentially sitting on a callstack
2014 	 * that holds all kinds of filesystem and mm locks.
2015 	 *
2016 	 * cgroup1 allows disabling the OOM killer and waiting for outside
2017 	 * handling until the charge can succeed; remember the context and put
2018 	 * the task to sleep at the end of the page fault when all locks are
2019 	 * released.
2020 	 *
2021 	 * On the other hand, in-kernel OOM killer allows for an async victim
2022 	 * memory reclaim (oom_reaper) and that means that we are not solely
2023 	 * relying on the oom victim to make a forward progress and we can
2024 	 * invoke the oom killer here.
2025 	 *
2026 	 * Please note that mem_cgroup_out_of_memory might fail to find a
2027 	 * victim and then we have to bail out from the charge path.
2028 	 */
2029 	if (READ_ONCE(memcg->oom_kill_disable)) {
2030 		if (current->in_user_fault) {
2031 			css_get(&memcg->css);
2032 			current->memcg_in_oom = memcg;
2033 			current->memcg_oom_gfp_mask = mask;
2034 			current->memcg_oom_order = order;
2035 		}
2036 		return false;
2037 	}
2038 
2039 	mem_cgroup_mark_under_oom(memcg);
2040 
2041 	locked = mem_cgroup_oom_trylock(memcg);
2042 
2043 	if (locked)
2044 		mem_cgroup_oom_notify(memcg);
2045 
2046 	mem_cgroup_unmark_under_oom(memcg);
2047 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
2048 
2049 	if (locked)
2050 		mem_cgroup_oom_unlock(memcg);
2051 
2052 	return ret;
2053 }
2054 
2055 /**
2056  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2057  * @handle: actually kill/wait or just clean up the OOM state
2058  *
2059  * This has to be called at the end of a page fault if the memcg OOM
2060  * handler was enabled.
2061  *
2062  * Memcg supports userspace OOM handling where failed allocations must
2063  * sleep on a waitqueue until the userspace task resolves the
2064  * situation.  Sleeping directly in the charge context with all kinds
2065  * of locks held is not a good idea, instead we remember an OOM state
2066  * in the task and mem_cgroup_oom_synchronize() has to be called at
2067  * the end of the page fault to complete the OOM handling.
2068  *
2069  * Returns %true if an ongoing memcg OOM situation was detected and
2070  * completed, %false otherwise.
2071  */
2072 bool mem_cgroup_oom_synchronize(bool handle)
2073 {
2074 	struct mem_cgroup *memcg = current->memcg_in_oom;
2075 	struct oom_wait_info owait;
2076 	bool locked;
2077 
2078 	/* OOM is global, do not handle */
2079 	if (!memcg)
2080 		return false;
2081 
2082 	if (!handle)
2083 		goto cleanup;
2084 
2085 	owait.memcg = memcg;
2086 	owait.wait.flags = 0;
2087 	owait.wait.func = memcg_oom_wake_function;
2088 	owait.wait.private = current;
2089 	INIT_LIST_HEAD(&owait.wait.entry);
2090 
2091 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2092 	mem_cgroup_mark_under_oom(memcg);
2093 
2094 	locked = mem_cgroup_oom_trylock(memcg);
2095 
2096 	if (locked)
2097 		mem_cgroup_oom_notify(memcg);
2098 
2099 	schedule();
2100 	mem_cgroup_unmark_under_oom(memcg);
2101 	finish_wait(&memcg_oom_waitq, &owait.wait);
2102 
2103 	if (locked)
2104 		mem_cgroup_oom_unlock(memcg);
2105 cleanup:
2106 	current->memcg_in_oom = NULL;
2107 	css_put(&memcg->css);
2108 	return true;
2109 }
2110 
2111 /**
2112  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2113  * @victim: task to be killed by the OOM killer
2114  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2115  *
2116  * Returns a pointer to a memory cgroup, which has to be cleaned up
2117  * by killing all belonging OOM-killable tasks.
2118  *
2119  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2120  */
2121 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2122 					    struct mem_cgroup *oom_domain)
2123 {
2124 	struct mem_cgroup *oom_group = NULL;
2125 	struct mem_cgroup *memcg;
2126 
2127 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2128 		return NULL;
2129 
2130 	if (!oom_domain)
2131 		oom_domain = root_mem_cgroup;
2132 
2133 	rcu_read_lock();
2134 
2135 	memcg = mem_cgroup_from_task(victim);
2136 	if (mem_cgroup_is_root(memcg))
2137 		goto out;
2138 
2139 	/*
2140 	 * If the victim task has been asynchronously moved to a different
2141 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2142 	 * In this case it's better to ignore memory.group.oom.
2143 	 */
2144 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2145 		goto out;
2146 
2147 	/*
2148 	 * Traverse the memory cgroup hierarchy from the victim task's
2149 	 * cgroup up to the OOMing cgroup (or root) to find the
2150 	 * highest-level memory cgroup with oom.group set.
2151 	 */
2152 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2153 		if (READ_ONCE(memcg->oom_group))
2154 			oom_group = memcg;
2155 
2156 		if (memcg == oom_domain)
2157 			break;
2158 	}
2159 
2160 	if (oom_group)
2161 		css_get(&oom_group->css);
2162 out:
2163 	rcu_read_unlock();
2164 
2165 	return oom_group;
2166 }
2167 
2168 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2169 {
2170 	pr_info("Tasks in ");
2171 	pr_cont_cgroup_path(memcg->css.cgroup);
2172 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2173 }
2174 
2175 /**
2176  * folio_memcg_lock - Bind a folio to its memcg.
2177  * @folio: The folio.
2178  *
2179  * This function prevents unlocked LRU folios from being moved to
2180  * another cgroup.
2181  *
2182  * It ensures lifetime of the bound memcg.  The caller is responsible
2183  * for the lifetime of the folio.
2184  */
2185 void folio_memcg_lock(struct folio *folio)
2186 {
2187 	struct mem_cgroup *memcg;
2188 	unsigned long flags;
2189 
2190 	/*
2191 	 * The RCU lock is held throughout the transaction.  The fast
2192 	 * path can get away without acquiring the memcg->move_lock
2193 	 * because page moving starts with an RCU grace period.
2194          */
2195 	rcu_read_lock();
2196 
2197 	if (mem_cgroup_disabled())
2198 		return;
2199 again:
2200 	memcg = folio_memcg(folio);
2201 	if (unlikely(!memcg))
2202 		return;
2203 
2204 #ifdef CONFIG_PROVE_LOCKING
2205 	local_irq_save(flags);
2206 	might_lock(&memcg->move_lock);
2207 	local_irq_restore(flags);
2208 #endif
2209 
2210 	if (atomic_read(&memcg->moving_account) <= 0)
2211 		return;
2212 
2213 	spin_lock_irqsave(&memcg->move_lock, flags);
2214 	if (memcg != folio_memcg(folio)) {
2215 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2216 		goto again;
2217 	}
2218 
2219 	/*
2220 	 * When charge migration first begins, we can have multiple
2221 	 * critical sections holding the fast-path RCU lock and one
2222 	 * holding the slowpath move_lock. Track the task who has the
2223 	 * move_lock for folio_memcg_unlock().
2224 	 */
2225 	memcg->move_lock_task = current;
2226 	memcg->move_lock_flags = flags;
2227 }
2228 
2229 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2230 {
2231 	if (memcg && memcg->move_lock_task == current) {
2232 		unsigned long flags = memcg->move_lock_flags;
2233 
2234 		memcg->move_lock_task = NULL;
2235 		memcg->move_lock_flags = 0;
2236 
2237 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2238 	}
2239 
2240 	rcu_read_unlock();
2241 }
2242 
2243 /**
2244  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2245  * @folio: The folio.
2246  *
2247  * This releases the binding created by folio_memcg_lock().  This does
2248  * not change the accounting of this folio to its memcg, but it does
2249  * permit others to change it.
2250  */
2251 void folio_memcg_unlock(struct folio *folio)
2252 {
2253 	__folio_memcg_unlock(folio_memcg(folio));
2254 }
2255 
2256 struct memcg_stock_pcp {
2257 	local_lock_t stock_lock;
2258 	struct mem_cgroup *cached; /* this never be root cgroup */
2259 	unsigned int nr_pages;
2260 
2261 #ifdef CONFIG_MEMCG_KMEM
2262 	struct obj_cgroup *cached_objcg;
2263 	struct pglist_data *cached_pgdat;
2264 	unsigned int nr_bytes;
2265 	int nr_slab_reclaimable_b;
2266 	int nr_slab_unreclaimable_b;
2267 #endif
2268 
2269 	struct work_struct work;
2270 	unsigned long flags;
2271 #define FLUSHING_CACHED_CHARGE	0
2272 };
2273 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2274 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2275 };
2276 static DEFINE_MUTEX(percpu_charge_mutex);
2277 
2278 #ifdef CONFIG_MEMCG_KMEM
2279 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2280 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2281 				     struct mem_cgroup *root_memcg);
2282 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2283 
2284 #else
2285 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2286 {
2287 	return NULL;
2288 }
2289 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2290 				     struct mem_cgroup *root_memcg)
2291 {
2292 	return false;
2293 }
2294 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2295 {
2296 }
2297 #endif
2298 
2299 /**
2300  * consume_stock: Try to consume stocked charge on this cpu.
2301  * @memcg: memcg to consume from.
2302  * @nr_pages: how many pages to charge.
2303  *
2304  * The charges will only happen if @memcg matches the current cpu's memcg
2305  * stock, and at least @nr_pages are available in that stock.  Failure to
2306  * service an allocation will refill the stock.
2307  *
2308  * returns true if successful, false otherwise.
2309  */
2310 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311 {
2312 	struct memcg_stock_pcp *stock;
2313 	unsigned long flags;
2314 	bool ret = false;
2315 
2316 	if (nr_pages > MEMCG_CHARGE_BATCH)
2317 		return ret;
2318 
2319 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2320 
2321 	stock = this_cpu_ptr(&memcg_stock);
2322 	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2323 		stock->nr_pages -= nr_pages;
2324 		ret = true;
2325 	}
2326 
2327 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328 
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Returns stocks cached in percpu and reset cached information.
2334  */
2335 static void drain_stock(struct memcg_stock_pcp *stock)
2336 {
2337 	struct mem_cgroup *old = READ_ONCE(stock->cached);
2338 
2339 	if (!old)
2340 		return;
2341 
2342 	if (stock->nr_pages) {
2343 		page_counter_uncharge(&old->memory, stock->nr_pages);
2344 		if (do_memsw_account())
2345 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2346 		stock->nr_pages = 0;
2347 	}
2348 
2349 	css_put(&old->css);
2350 	WRITE_ONCE(stock->cached, NULL);
2351 }
2352 
2353 static void drain_local_stock(struct work_struct *dummy)
2354 {
2355 	struct memcg_stock_pcp *stock;
2356 	struct obj_cgroup *old = NULL;
2357 	unsigned long flags;
2358 
2359 	/*
2360 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2361 	 * drain_stock races is that we always operate on local CPU stock
2362 	 * here with IRQ disabled
2363 	 */
2364 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2365 
2366 	stock = this_cpu_ptr(&memcg_stock);
2367 	old = drain_obj_stock(stock);
2368 	drain_stock(stock);
2369 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2370 
2371 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2372 	if (old)
2373 		obj_cgroup_put(old);
2374 }
2375 
2376 /*
2377  * Cache charges(val) to local per_cpu area.
2378  * This will be consumed by consume_stock() function, later.
2379  */
2380 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2381 {
2382 	struct memcg_stock_pcp *stock;
2383 
2384 	stock = this_cpu_ptr(&memcg_stock);
2385 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2386 		drain_stock(stock);
2387 		css_get(&memcg->css);
2388 		WRITE_ONCE(stock->cached, memcg);
2389 	}
2390 	stock->nr_pages += nr_pages;
2391 
2392 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2393 		drain_stock(stock);
2394 }
2395 
2396 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2397 {
2398 	unsigned long flags;
2399 
2400 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2401 	__refill_stock(memcg, nr_pages);
2402 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2403 }
2404 
2405 /*
2406  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2407  * of the hierarchy under it.
2408  */
2409 static void drain_all_stock(struct mem_cgroup *root_memcg)
2410 {
2411 	int cpu, curcpu;
2412 
2413 	/* If someone's already draining, avoid adding running more workers. */
2414 	if (!mutex_trylock(&percpu_charge_mutex))
2415 		return;
2416 	/*
2417 	 * Notify other cpus that system-wide "drain" is running
2418 	 * We do not care about races with the cpu hotplug because cpu down
2419 	 * as well as workers from this path always operate on the local
2420 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2421 	 */
2422 	migrate_disable();
2423 	curcpu = smp_processor_id();
2424 	for_each_online_cpu(cpu) {
2425 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426 		struct mem_cgroup *memcg;
2427 		bool flush = false;
2428 
2429 		rcu_read_lock();
2430 		memcg = READ_ONCE(stock->cached);
2431 		if (memcg && stock->nr_pages &&
2432 		    mem_cgroup_is_descendant(memcg, root_memcg))
2433 			flush = true;
2434 		else if (obj_stock_flush_required(stock, root_memcg))
2435 			flush = true;
2436 		rcu_read_unlock();
2437 
2438 		if (flush &&
2439 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2440 			if (cpu == curcpu)
2441 				drain_local_stock(&stock->work);
2442 			else if (!cpu_is_isolated(cpu))
2443 				schedule_work_on(cpu, &stock->work);
2444 		}
2445 	}
2446 	migrate_enable();
2447 	mutex_unlock(&percpu_charge_mutex);
2448 }
2449 
2450 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2451 {
2452 	struct memcg_stock_pcp *stock;
2453 
2454 	stock = &per_cpu(memcg_stock, cpu);
2455 	drain_stock(stock);
2456 
2457 	return 0;
2458 }
2459 
2460 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 				  unsigned int nr_pages,
2462 				  gfp_t gfp_mask)
2463 {
2464 	unsigned long nr_reclaimed = 0;
2465 
2466 	do {
2467 		unsigned long pflags;
2468 
2469 		if (page_counter_read(&memcg->memory) <=
2470 		    READ_ONCE(memcg->memory.high))
2471 			continue;
2472 
2473 		memcg_memory_event(memcg, MEMCG_HIGH);
2474 
2475 		psi_memstall_enter(&pflags);
2476 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 							gfp_mask,
2478 							MEMCG_RECLAIM_MAY_SWAP);
2479 		psi_memstall_leave(&pflags);
2480 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2481 		 !mem_cgroup_is_root(memcg));
2482 
2483 	return nr_reclaimed;
2484 }
2485 
2486 static void high_work_func(struct work_struct *work)
2487 {
2488 	struct mem_cgroup *memcg;
2489 
2490 	memcg = container_of(work, struct mem_cgroup, high_work);
2491 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2492 }
2493 
2494 /*
2495  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2496  * enough to still cause a significant slowdown in most cases, while still
2497  * allowing diagnostics and tracing to proceed without becoming stuck.
2498  */
2499 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2500 
2501 /*
2502  * When calculating the delay, we use these either side of the exponentiation to
2503  * maintain precision and scale to a reasonable number of jiffies (see the table
2504  * below.
2505  *
2506  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2507  *   overage ratio to a delay.
2508  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2509  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2510  *   to produce a reasonable delay curve.
2511  *
2512  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2513  * reasonable delay curve compared to precision-adjusted overage, not
2514  * penalising heavily at first, but still making sure that growth beyond the
2515  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2516  * example, with a high of 100 megabytes:
2517  *
2518  *  +-------+------------------------+
2519  *  | usage | time to allocate in ms |
2520  *  +-------+------------------------+
2521  *  | 100M  |                      0 |
2522  *  | 101M  |                      6 |
2523  *  | 102M  |                     25 |
2524  *  | 103M  |                     57 |
2525  *  | 104M  |                    102 |
2526  *  | 105M  |                    159 |
2527  *  | 106M  |                    230 |
2528  *  | 107M  |                    313 |
2529  *  | 108M  |                    409 |
2530  *  | 109M  |                    518 |
2531  *  | 110M  |                    639 |
2532  *  | 111M  |                    774 |
2533  *  | 112M  |                    921 |
2534  *  | 113M  |                   1081 |
2535  *  | 114M  |                   1254 |
2536  *  | 115M  |                   1439 |
2537  *  | 116M  |                   1638 |
2538  *  | 117M  |                   1849 |
2539  *  | 118M  |                   2000 |
2540  *  | 119M  |                   2000 |
2541  *  | 120M  |                   2000 |
2542  *  +-------+------------------------+
2543  */
2544  #define MEMCG_DELAY_PRECISION_SHIFT 20
2545  #define MEMCG_DELAY_SCALING_SHIFT 14
2546 
2547 static u64 calculate_overage(unsigned long usage, unsigned long high)
2548 {
2549 	u64 overage;
2550 
2551 	if (usage <= high)
2552 		return 0;
2553 
2554 	/*
2555 	 * Prevent division by 0 in overage calculation by acting as if
2556 	 * it was a threshold of 1 page
2557 	 */
2558 	high = max(high, 1UL);
2559 
2560 	overage = usage - high;
2561 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2562 	return div64_u64(overage, high);
2563 }
2564 
2565 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2566 {
2567 	u64 overage, max_overage = 0;
2568 
2569 	do {
2570 		overage = calculate_overage(page_counter_read(&memcg->memory),
2571 					    READ_ONCE(memcg->memory.high));
2572 		max_overage = max(overage, max_overage);
2573 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2574 		 !mem_cgroup_is_root(memcg));
2575 
2576 	return max_overage;
2577 }
2578 
2579 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2580 {
2581 	u64 overage, max_overage = 0;
2582 
2583 	do {
2584 		overage = calculate_overage(page_counter_read(&memcg->swap),
2585 					    READ_ONCE(memcg->swap.high));
2586 		if (overage)
2587 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2588 		max_overage = max(overage, max_overage);
2589 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2590 		 !mem_cgroup_is_root(memcg));
2591 
2592 	return max_overage;
2593 }
2594 
2595 /*
2596  * Get the number of jiffies that we should penalise a mischievous cgroup which
2597  * is exceeding its memory.high by checking both it and its ancestors.
2598  */
2599 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2600 					  unsigned int nr_pages,
2601 					  u64 max_overage)
2602 {
2603 	unsigned long penalty_jiffies;
2604 
2605 	if (!max_overage)
2606 		return 0;
2607 
2608 	/*
2609 	 * We use overage compared to memory.high to calculate the number of
2610 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2611 	 * fairly lenient on small overages, and increasingly harsh when the
2612 	 * memcg in question makes it clear that it has no intention of stopping
2613 	 * its crazy behaviour, so we exponentially increase the delay based on
2614 	 * overage amount.
2615 	 */
2616 	penalty_jiffies = max_overage * max_overage * HZ;
2617 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2618 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2619 
2620 	/*
2621 	 * Factor in the task's own contribution to the overage, such that four
2622 	 * N-sized allocations are throttled approximately the same as one
2623 	 * 4N-sized allocation.
2624 	 *
2625 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2626 	 * larger the current charge patch is than that.
2627 	 */
2628 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2629 }
2630 
2631 /*
2632  * Reclaims memory over the high limit. Called directly from
2633  * try_charge() (context permitting), as well as from the userland
2634  * return path where reclaim is always able to block.
2635  */
2636 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2637 {
2638 	unsigned long penalty_jiffies;
2639 	unsigned long pflags;
2640 	unsigned long nr_reclaimed;
2641 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2642 	int nr_retries = MAX_RECLAIM_RETRIES;
2643 	struct mem_cgroup *memcg;
2644 	bool in_retry = false;
2645 
2646 	if (likely(!nr_pages))
2647 		return;
2648 
2649 	memcg = get_mem_cgroup_from_mm(current->mm);
2650 	current->memcg_nr_pages_over_high = 0;
2651 
2652 retry_reclaim:
2653 	/*
2654 	 * Bail if the task is already exiting. Unlike memory.max,
2655 	 * memory.high enforcement isn't as strict, and there is no
2656 	 * OOM killer involved, which means the excess could already
2657 	 * be much bigger (and still growing) than it could for
2658 	 * memory.max; the dying task could get stuck in fruitless
2659 	 * reclaim for a long time, which isn't desirable.
2660 	 */
2661 	if (task_is_dying())
2662 		goto out;
2663 
2664 	/*
2665 	 * The allocating task should reclaim at least the batch size, but for
2666 	 * subsequent retries we only want to do what's necessary to prevent oom
2667 	 * or breaching resource isolation.
2668 	 *
2669 	 * This is distinct from memory.max or page allocator behaviour because
2670 	 * memory.high is currently batched, whereas memory.max and the page
2671 	 * allocator run every time an allocation is made.
2672 	 */
2673 	nr_reclaimed = reclaim_high(memcg,
2674 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2675 				    gfp_mask);
2676 
2677 	/*
2678 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2679 	 * allocators proactively to slow down excessive growth.
2680 	 */
2681 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2682 					       mem_find_max_overage(memcg));
2683 
2684 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2685 						swap_find_max_overage(memcg));
2686 
2687 	/*
2688 	 * Clamp the max delay per usermode return so as to still keep the
2689 	 * application moving forwards and also permit diagnostics, albeit
2690 	 * extremely slowly.
2691 	 */
2692 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2693 
2694 	/*
2695 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2696 	 * that it's not even worth doing, in an attempt to be nice to those who
2697 	 * go only a small amount over their memory.high value and maybe haven't
2698 	 * been aggressively reclaimed enough yet.
2699 	 */
2700 	if (penalty_jiffies <= HZ / 100)
2701 		goto out;
2702 
2703 	/*
2704 	 * If reclaim is making forward progress but we're still over
2705 	 * memory.high, we want to encourage that rather than doing allocator
2706 	 * throttling.
2707 	 */
2708 	if (nr_reclaimed || nr_retries--) {
2709 		in_retry = true;
2710 		goto retry_reclaim;
2711 	}
2712 
2713 	/*
2714 	 * Reclaim didn't manage to push usage below the limit, slow
2715 	 * this allocating task down.
2716 	 *
2717 	 * If we exit early, we're guaranteed to die (since
2718 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2719 	 * need to account for any ill-begotten jiffies to pay them off later.
2720 	 */
2721 	psi_memstall_enter(&pflags);
2722 	schedule_timeout_killable(penalty_jiffies);
2723 	psi_memstall_leave(&pflags);
2724 
2725 out:
2726 	css_put(&memcg->css);
2727 }
2728 
2729 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2730 			unsigned int nr_pages)
2731 {
2732 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2733 	int nr_retries = MAX_RECLAIM_RETRIES;
2734 	struct mem_cgroup *mem_over_limit;
2735 	struct page_counter *counter;
2736 	unsigned long nr_reclaimed;
2737 	bool passed_oom = false;
2738 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2739 	bool drained = false;
2740 	bool raised_max_event = false;
2741 	unsigned long pflags;
2742 
2743 retry:
2744 	if (consume_stock(memcg, nr_pages))
2745 		return 0;
2746 
2747 	if (!do_memsw_account() ||
2748 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2749 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2750 			goto done_restock;
2751 		if (do_memsw_account())
2752 			page_counter_uncharge(&memcg->memsw, batch);
2753 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2754 	} else {
2755 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2756 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2757 	}
2758 
2759 	if (batch > nr_pages) {
2760 		batch = nr_pages;
2761 		goto retry;
2762 	}
2763 
2764 	/*
2765 	 * Prevent unbounded recursion when reclaim operations need to
2766 	 * allocate memory. This might exceed the limits temporarily,
2767 	 * but we prefer facilitating memory reclaim and getting back
2768 	 * under the limit over triggering OOM kills in these cases.
2769 	 */
2770 	if (unlikely(current->flags & PF_MEMALLOC))
2771 		goto force;
2772 
2773 	if (unlikely(task_in_memcg_oom(current)))
2774 		goto nomem;
2775 
2776 	if (!gfpflags_allow_blocking(gfp_mask))
2777 		goto nomem;
2778 
2779 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2780 	raised_max_event = true;
2781 
2782 	psi_memstall_enter(&pflags);
2783 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2784 						    gfp_mask, reclaim_options);
2785 	psi_memstall_leave(&pflags);
2786 
2787 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2788 		goto retry;
2789 
2790 	if (!drained) {
2791 		drain_all_stock(mem_over_limit);
2792 		drained = true;
2793 		goto retry;
2794 	}
2795 
2796 	if (gfp_mask & __GFP_NORETRY)
2797 		goto nomem;
2798 	/*
2799 	 * Even though the limit is exceeded at this point, reclaim
2800 	 * may have been able to free some pages.  Retry the charge
2801 	 * before killing the task.
2802 	 *
2803 	 * Only for regular pages, though: huge pages are rather
2804 	 * unlikely to succeed so close to the limit, and we fall back
2805 	 * to regular pages anyway in case of failure.
2806 	 */
2807 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2808 		goto retry;
2809 	/*
2810 	 * At task move, charge accounts can be doubly counted. So, it's
2811 	 * better to wait until the end of task_move if something is going on.
2812 	 */
2813 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2814 		goto retry;
2815 
2816 	if (nr_retries--)
2817 		goto retry;
2818 
2819 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2820 		goto nomem;
2821 
2822 	/* Avoid endless loop for tasks bypassed by the oom killer */
2823 	if (passed_oom && task_is_dying())
2824 		goto nomem;
2825 
2826 	/*
2827 	 * keep retrying as long as the memcg oom killer is able to make
2828 	 * a forward progress or bypass the charge if the oom killer
2829 	 * couldn't make any progress.
2830 	 */
2831 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2832 			   get_order(nr_pages * PAGE_SIZE))) {
2833 		passed_oom = true;
2834 		nr_retries = MAX_RECLAIM_RETRIES;
2835 		goto retry;
2836 	}
2837 nomem:
2838 	/*
2839 	 * Memcg doesn't have a dedicated reserve for atomic
2840 	 * allocations. But like the global atomic pool, we need to
2841 	 * put the burden of reclaim on regular allocation requests
2842 	 * and let these go through as privileged allocations.
2843 	 */
2844 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2845 		return -ENOMEM;
2846 force:
2847 	/*
2848 	 * If the allocation has to be enforced, don't forget to raise
2849 	 * a MEMCG_MAX event.
2850 	 */
2851 	if (!raised_max_event)
2852 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2853 
2854 	/*
2855 	 * The allocation either can't fail or will lead to more memory
2856 	 * being freed very soon.  Allow memory usage go over the limit
2857 	 * temporarily by force charging it.
2858 	 */
2859 	page_counter_charge(&memcg->memory, nr_pages);
2860 	if (do_memsw_account())
2861 		page_counter_charge(&memcg->memsw, nr_pages);
2862 
2863 	return 0;
2864 
2865 done_restock:
2866 	if (batch > nr_pages)
2867 		refill_stock(memcg, batch - nr_pages);
2868 
2869 	/*
2870 	 * If the hierarchy is above the normal consumption range, schedule
2871 	 * reclaim on returning to userland.  We can perform reclaim here
2872 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2873 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2874 	 * not recorded as it most likely matches current's and won't
2875 	 * change in the meantime.  As high limit is checked again before
2876 	 * reclaim, the cost of mismatch is negligible.
2877 	 */
2878 	do {
2879 		bool mem_high, swap_high;
2880 
2881 		mem_high = page_counter_read(&memcg->memory) >
2882 			READ_ONCE(memcg->memory.high);
2883 		swap_high = page_counter_read(&memcg->swap) >
2884 			READ_ONCE(memcg->swap.high);
2885 
2886 		/* Don't bother a random interrupted task */
2887 		if (!in_task()) {
2888 			if (mem_high) {
2889 				schedule_work(&memcg->high_work);
2890 				break;
2891 			}
2892 			continue;
2893 		}
2894 
2895 		if (mem_high || swap_high) {
2896 			/*
2897 			 * The allocating tasks in this cgroup will need to do
2898 			 * reclaim or be throttled to prevent further growth
2899 			 * of the memory or swap footprints.
2900 			 *
2901 			 * Target some best-effort fairness between the tasks,
2902 			 * and distribute reclaim work and delay penalties
2903 			 * based on how much each task is actually allocating.
2904 			 */
2905 			current->memcg_nr_pages_over_high += batch;
2906 			set_notify_resume(current);
2907 			break;
2908 		}
2909 	} while ((memcg = parent_mem_cgroup(memcg)));
2910 
2911 	/*
2912 	 * Reclaim is set up above to be called from the userland
2913 	 * return path. But also attempt synchronous reclaim to avoid
2914 	 * excessive overrun while the task is still inside the
2915 	 * kernel. If this is successful, the return path will see it
2916 	 * when it rechecks the overage and simply bail out.
2917 	 */
2918 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2919 	    !(current->flags & PF_MEMALLOC) &&
2920 	    gfpflags_allow_blocking(gfp_mask))
2921 		mem_cgroup_handle_over_high(gfp_mask);
2922 	return 0;
2923 }
2924 
2925 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2926 			     unsigned int nr_pages)
2927 {
2928 	if (mem_cgroup_is_root(memcg))
2929 		return 0;
2930 
2931 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2932 }
2933 
2934 /**
2935  * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2936  * @memcg: memcg previously charged.
2937  * @nr_pages: number of pages previously charged.
2938  */
2939 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2940 {
2941 	if (mem_cgroup_is_root(memcg))
2942 		return;
2943 
2944 	page_counter_uncharge(&memcg->memory, nr_pages);
2945 	if (do_memsw_account())
2946 		page_counter_uncharge(&memcg->memsw, nr_pages);
2947 }
2948 
2949 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2950 {
2951 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2952 	/*
2953 	 * Any of the following ensures page's memcg stability:
2954 	 *
2955 	 * - the page lock
2956 	 * - LRU isolation
2957 	 * - folio_memcg_lock()
2958 	 * - exclusive reference
2959 	 * - mem_cgroup_trylock_pages()
2960 	 */
2961 	folio->memcg_data = (unsigned long)memcg;
2962 }
2963 
2964 /**
2965  * mem_cgroup_commit_charge - commit a previously successful try_charge().
2966  * @folio: folio to commit the charge to.
2967  * @memcg: memcg previously charged.
2968  */
2969 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2970 {
2971 	css_get(&memcg->css);
2972 	commit_charge(folio, memcg);
2973 
2974 	local_irq_disable();
2975 	mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2976 	memcg_check_events(memcg, folio_nid(folio));
2977 	local_irq_enable();
2978 }
2979 
2980 #ifdef CONFIG_MEMCG_KMEM
2981 /*
2982  * The allocated objcg pointers array is not accounted directly.
2983  * Moreover, it should not come from DMA buffer and is not readily
2984  * reclaimable. So those GFP bits should be masked off.
2985  */
2986 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2987 				 __GFP_ACCOUNT | __GFP_NOFAIL)
2988 
2989 /*
2990  * mod_objcg_mlstate() may be called with irq enabled, so
2991  * mod_memcg_lruvec_state() should be used.
2992  */
2993 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2994 				     struct pglist_data *pgdat,
2995 				     enum node_stat_item idx, int nr)
2996 {
2997 	struct mem_cgroup *memcg;
2998 	struct lruvec *lruvec;
2999 
3000 	rcu_read_lock();
3001 	memcg = obj_cgroup_memcg(objcg);
3002 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
3003 	mod_memcg_lruvec_state(lruvec, idx, nr);
3004 	rcu_read_unlock();
3005 }
3006 
3007 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
3008 				 gfp_t gfp, bool new_slab)
3009 {
3010 	unsigned int objects = objs_per_slab(s, slab);
3011 	unsigned long memcg_data;
3012 	void *vec;
3013 
3014 	gfp &= ~OBJCGS_CLEAR_MASK;
3015 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
3016 			   slab_nid(slab));
3017 	if (!vec)
3018 		return -ENOMEM;
3019 
3020 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
3021 	if (new_slab) {
3022 		/*
3023 		 * If the slab is brand new and nobody can yet access its
3024 		 * memcg_data, no synchronization is required and memcg_data can
3025 		 * be simply assigned.
3026 		 */
3027 		slab->memcg_data = memcg_data;
3028 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
3029 		/*
3030 		 * If the slab is already in use, somebody can allocate and
3031 		 * assign obj_cgroups in parallel. In this case the existing
3032 		 * objcg vector should be reused.
3033 		 */
3034 		kfree(vec);
3035 		return 0;
3036 	}
3037 
3038 	kmemleak_not_leak(vec);
3039 	return 0;
3040 }
3041 
3042 static __always_inline
3043 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3044 {
3045 	/*
3046 	 * Slab objects are accounted individually, not per-page.
3047 	 * Memcg membership data for each individual object is saved in
3048 	 * slab->memcg_data.
3049 	 */
3050 	if (folio_test_slab(folio)) {
3051 		struct obj_cgroup **objcgs;
3052 		struct slab *slab;
3053 		unsigned int off;
3054 
3055 		slab = folio_slab(folio);
3056 		objcgs = slab_objcgs(slab);
3057 		if (!objcgs)
3058 			return NULL;
3059 
3060 		off = obj_to_index(slab->slab_cache, slab, p);
3061 		if (objcgs[off])
3062 			return obj_cgroup_memcg(objcgs[off]);
3063 
3064 		return NULL;
3065 	}
3066 
3067 	/*
3068 	 * folio_memcg_check() is used here, because in theory we can encounter
3069 	 * a folio where the slab flag has been cleared already, but
3070 	 * slab->memcg_data has not been freed yet
3071 	 * folio_memcg_check() will guarantee that a proper memory
3072 	 * cgroup pointer or NULL will be returned.
3073 	 */
3074 	return folio_memcg_check(folio);
3075 }
3076 
3077 /*
3078  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3079  *
3080  * A passed kernel object can be a slab object, vmalloc object or a generic
3081  * kernel page, so different mechanisms for getting the memory cgroup pointer
3082  * should be used.
3083  *
3084  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3085  * can not know for sure how the kernel object is implemented.
3086  * mem_cgroup_from_obj() can be safely used in such cases.
3087  *
3088  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3089  * cgroup_mutex, etc.
3090  */
3091 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3092 {
3093 	struct folio *folio;
3094 
3095 	if (mem_cgroup_disabled())
3096 		return NULL;
3097 
3098 	if (unlikely(is_vmalloc_addr(p)))
3099 		folio = page_folio(vmalloc_to_page(p));
3100 	else
3101 		folio = virt_to_folio(p);
3102 
3103 	return mem_cgroup_from_obj_folio(folio, p);
3104 }
3105 
3106 /*
3107  * Returns a pointer to the memory cgroup to which the kernel object is charged.
3108  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3109  * allocated using vmalloc().
3110  *
3111  * A passed kernel object must be a slab object or a generic kernel page.
3112  *
3113  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3114  * cgroup_mutex, etc.
3115  */
3116 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3117 {
3118 	if (mem_cgroup_disabled())
3119 		return NULL;
3120 
3121 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3122 }
3123 
3124 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3125 {
3126 	struct obj_cgroup *objcg = NULL;
3127 
3128 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3129 		objcg = rcu_dereference(memcg->objcg);
3130 		if (likely(objcg && obj_cgroup_tryget(objcg)))
3131 			break;
3132 		objcg = NULL;
3133 	}
3134 	return objcg;
3135 }
3136 
3137 static struct obj_cgroup *current_objcg_update(void)
3138 {
3139 	struct mem_cgroup *memcg;
3140 	struct obj_cgroup *old, *objcg = NULL;
3141 
3142 	do {
3143 		/* Atomically drop the update bit. */
3144 		old = xchg(&current->objcg, NULL);
3145 		if (old) {
3146 			old = (struct obj_cgroup *)
3147 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3148 			if (old)
3149 				obj_cgroup_put(old);
3150 
3151 			old = NULL;
3152 		}
3153 
3154 		/* If new objcg is NULL, no reason for the second atomic update. */
3155 		if (!current->mm || (current->flags & PF_KTHREAD))
3156 			return NULL;
3157 
3158 		/*
3159 		 * Release the objcg pointer from the previous iteration,
3160 		 * if try_cmpxcg() below fails.
3161 		 */
3162 		if (unlikely(objcg)) {
3163 			obj_cgroup_put(objcg);
3164 			objcg = NULL;
3165 		}
3166 
3167 		/*
3168 		 * Obtain the new objcg pointer. The current task can be
3169 		 * asynchronously moved to another memcg and the previous
3170 		 * memcg can be offlined. So let's get the memcg pointer
3171 		 * and try get a reference to objcg under a rcu read lock.
3172 		 */
3173 
3174 		rcu_read_lock();
3175 		memcg = mem_cgroup_from_task(current);
3176 		objcg = __get_obj_cgroup_from_memcg(memcg);
3177 		rcu_read_unlock();
3178 
3179 		/*
3180 		 * Try set up a new objcg pointer atomically. If it
3181 		 * fails, it means the update flag was set concurrently, so
3182 		 * the whole procedure should be repeated.
3183 		 */
3184 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
3185 
3186 	return objcg;
3187 }
3188 
3189 __always_inline struct obj_cgroup *current_obj_cgroup(void)
3190 {
3191 	struct mem_cgroup *memcg;
3192 	struct obj_cgroup *objcg;
3193 
3194 	if (in_task()) {
3195 		memcg = current->active_memcg;
3196 		if (unlikely(memcg))
3197 			goto from_memcg;
3198 
3199 		objcg = READ_ONCE(current->objcg);
3200 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3201 			objcg = current_objcg_update();
3202 		/*
3203 		 * Objcg reference is kept by the task, so it's safe
3204 		 * to use the objcg by the current task.
3205 		 */
3206 		return objcg;
3207 	}
3208 
3209 	memcg = this_cpu_read(int_active_memcg);
3210 	if (unlikely(memcg))
3211 		goto from_memcg;
3212 
3213 	return NULL;
3214 
3215 from_memcg:
3216 	objcg = NULL;
3217 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3218 		/*
3219 		 * Memcg pointer is protected by scope (see set_active_memcg())
3220 		 * and is pinning the corresponding objcg, so objcg can't go
3221 		 * away and can be used within the scope without any additional
3222 		 * protection.
3223 		 */
3224 		objcg = rcu_dereference_check(memcg->objcg, 1);
3225 		if (likely(objcg))
3226 			break;
3227 	}
3228 
3229 	return objcg;
3230 }
3231 
3232 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3233 {
3234 	struct obj_cgroup *objcg;
3235 
3236 	if (!memcg_kmem_online())
3237 		return NULL;
3238 
3239 	if (folio_memcg_kmem(folio)) {
3240 		objcg = __folio_objcg(folio);
3241 		obj_cgroup_get(objcg);
3242 	} else {
3243 		struct mem_cgroup *memcg;
3244 
3245 		rcu_read_lock();
3246 		memcg = __folio_memcg(folio);
3247 		if (memcg)
3248 			objcg = __get_obj_cgroup_from_memcg(memcg);
3249 		else
3250 			objcg = NULL;
3251 		rcu_read_unlock();
3252 	}
3253 	return objcg;
3254 }
3255 
3256 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3257 {
3258 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3259 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3260 		if (nr_pages > 0)
3261 			page_counter_charge(&memcg->kmem, nr_pages);
3262 		else
3263 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3264 	}
3265 }
3266 
3267 
3268 /*
3269  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3270  * @objcg: object cgroup to uncharge
3271  * @nr_pages: number of pages to uncharge
3272  */
3273 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3274 				      unsigned int nr_pages)
3275 {
3276 	struct mem_cgroup *memcg;
3277 
3278 	memcg = get_mem_cgroup_from_objcg(objcg);
3279 
3280 	memcg_account_kmem(memcg, -nr_pages);
3281 	refill_stock(memcg, nr_pages);
3282 
3283 	css_put(&memcg->css);
3284 }
3285 
3286 /*
3287  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3288  * @objcg: object cgroup to charge
3289  * @gfp: reclaim mode
3290  * @nr_pages: number of pages to charge
3291  *
3292  * Returns 0 on success, an error code on failure.
3293  */
3294 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3295 				   unsigned int nr_pages)
3296 {
3297 	struct mem_cgroup *memcg;
3298 	int ret;
3299 
3300 	memcg = get_mem_cgroup_from_objcg(objcg);
3301 
3302 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3303 	if (ret)
3304 		goto out;
3305 
3306 	memcg_account_kmem(memcg, nr_pages);
3307 out:
3308 	css_put(&memcg->css);
3309 
3310 	return ret;
3311 }
3312 
3313 /**
3314  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3315  * @page: page to charge
3316  * @gfp: reclaim mode
3317  * @order: allocation order
3318  *
3319  * Returns 0 on success, an error code on failure.
3320  */
3321 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3322 {
3323 	struct obj_cgroup *objcg;
3324 	int ret = 0;
3325 
3326 	objcg = current_obj_cgroup();
3327 	if (objcg) {
3328 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3329 		if (!ret) {
3330 			obj_cgroup_get(objcg);
3331 			page->memcg_data = (unsigned long)objcg |
3332 				MEMCG_DATA_KMEM;
3333 			return 0;
3334 		}
3335 	}
3336 	return ret;
3337 }
3338 
3339 /**
3340  * __memcg_kmem_uncharge_page: uncharge a kmem page
3341  * @page: page to uncharge
3342  * @order: allocation order
3343  */
3344 void __memcg_kmem_uncharge_page(struct page *page, int order)
3345 {
3346 	struct folio *folio = page_folio(page);
3347 	struct obj_cgroup *objcg;
3348 	unsigned int nr_pages = 1 << order;
3349 
3350 	if (!folio_memcg_kmem(folio))
3351 		return;
3352 
3353 	objcg = __folio_objcg(folio);
3354 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3355 	folio->memcg_data = 0;
3356 	obj_cgroup_put(objcg);
3357 }
3358 
3359 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3360 		     enum node_stat_item idx, int nr)
3361 {
3362 	struct memcg_stock_pcp *stock;
3363 	struct obj_cgroup *old = NULL;
3364 	unsigned long flags;
3365 	int *bytes;
3366 
3367 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3368 	stock = this_cpu_ptr(&memcg_stock);
3369 
3370 	/*
3371 	 * Save vmstat data in stock and skip vmstat array update unless
3372 	 * accumulating over a page of vmstat data or when pgdat or idx
3373 	 * changes.
3374 	 */
3375 	if (READ_ONCE(stock->cached_objcg) != objcg) {
3376 		old = drain_obj_stock(stock);
3377 		obj_cgroup_get(objcg);
3378 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3379 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3380 		WRITE_ONCE(stock->cached_objcg, objcg);
3381 		stock->cached_pgdat = pgdat;
3382 	} else if (stock->cached_pgdat != pgdat) {
3383 		/* Flush the existing cached vmstat data */
3384 		struct pglist_data *oldpg = stock->cached_pgdat;
3385 
3386 		if (stock->nr_slab_reclaimable_b) {
3387 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3388 					  stock->nr_slab_reclaimable_b);
3389 			stock->nr_slab_reclaimable_b = 0;
3390 		}
3391 		if (stock->nr_slab_unreclaimable_b) {
3392 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3393 					  stock->nr_slab_unreclaimable_b);
3394 			stock->nr_slab_unreclaimable_b = 0;
3395 		}
3396 		stock->cached_pgdat = pgdat;
3397 	}
3398 
3399 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3400 					       : &stock->nr_slab_unreclaimable_b;
3401 	/*
3402 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3403 	 * cached locally at least once before pushing it out.
3404 	 */
3405 	if (!*bytes) {
3406 		*bytes = nr;
3407 		nr = 0;
3408 	} else {
3409 		*bytes += nr;
3410 		if (abs(*bytes) > PAGE_SIZE) {
3411 			nr = *bytes;
3412 			*bytes = 0;
3413 		} else {
3414 			nr = 0;
3415 		}
3416 	}
3417 	if (nr)
3418 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3419 
3420 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3421 	if (old)
3422 		obj_cgroup_put(old);
3423 }
3424 
3425 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3426 {
3427 	struct memcg_stock_pcp *stock;
3428 	unsigned long flags;
3429 	bool ret = false;
3430 
3431 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3432 
3433 	stock = this_cpu_ptr(&memcg_stock);
3434 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3435 		stock->nr_bytes -= nr_bytes;
3436 		ret = true;
3437 	}
3438 
3439 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3440 
3441 	return ret;
3442 }
3443 
3444 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3445 {
3446 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3447 
3448 	if (!old)
3449 		return NULL;
3450 
3451 	if (stock->nr_bytes) {
3452 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3453 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3454 
3455 		if (nr_pages) {
3456 			struct mem_cgroup *memcg;
3457 
3458 			memcg = get_mem_cgroup_from_objcg(old);
3459 
3460 			memcg_account_kmem(memcg, -nr_pages);
3461 			__refill_stock(memcg, nr_pages);
3462 
3463 			css_put(&memcg->css);
3464 		}
3465 
3466 		/*
3467 		 * The leftover is flushed to the centralized per-memcg value.
3468 		 * On the next attempt to refill obj stock it will be moved
3469 		 * to a per-cpu stock (probably, on an other CPU), see
3470 		 * refill_obj_stock().
3471 		 *
3472 		 * How often it's flushed is a trade-off between the memory
3473 		 * limit enforcement accuracy and potential CPU contention,
3474 		 * so it might be changed in the future.
3475 		 */
3476 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3477 		stock->nr_bytes = 0;
3478 	}
3479 
3480 	/*
3481 	 * Flush the vmstat data in current stock
3482 	 */
3483 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3484 		if (stock->nr_slab_reclaimable_b) {
3485 			mod_objcg_mlstate(old, stock->cached_pgdat,
3486 					  NR_SLAB_RECLAIMABLE_B,
3487 					  stock->nr_slab_reclaimable_b);
3488 			stock->nr_slab_reclaimable_b = 0;
3489 		}
3490 		if (stock->nr_slab_unreclaimable_b) {
3491 			mod_objcg_mlstate(old, stock->cached_pgdat,
3492 					  NR_SLAB_UNRECLAIMABLE_B,
3493 					  stock->nr_slab_unreclaimable_b);
3494 			stock->nr_slab_unreclaimable_b = 0;
3495 		}
3496 		stock->cached_pgdat = NULL;
3497 	}
3498 
3499 	WRITE_ONCE(stock->cached_objcg, NULL);
3500 	/*
3501 	 * The `old' objects needs to be released by the caller via
3502 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3503 	 */
3504 	return old;
3505 }
3506 
3507 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3508 				     struct mem_cgroup *root_memcg)
3509 {
3510 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3511 	struct mem_cgroup *memcg;
3512 
3513 	if (objcg) {
3514 		memcg = obj_cgroup_memcg(objcg);
3515 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3516 			return true;
3517 	}
3518 
3519 	return false;
3520 }
3521 
3522 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3523 			     bool allow_uncharge)
3524 {
3525 	struct memcg_stock_pcp *stock;
3526 	struct obj_cgroup *old = NULL;
3527 	unsigned long flags;
3528 	unsigned int nr_pages = 0;
3529 
3530 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3531 
3532 	stock = this_cpu_ptr(&memcg_stock);
3533 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3534 		old = drain_obj_stock(stock);
3535 		obj_cgroup_get(objcg);
3536 		WRITE_ONCE(stock->cached_objcg, objcg);
3537 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3538 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3539 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3540 	}
3541 	stock->nr_bytes += nr_bytes;
3542 
3543 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3544 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3545 		stock->nr_bytes &= (PAGE_SIZE - 1);
3546 	}
3547 
3548 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3549 	if (old)
3550 		obj_cgroup_put(old);
3551 
3552 	if (nr_pages)
3553 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3554 }
3555 
3556 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3557 {
3558 	unsigned int nr_pages, nr_bytes;
3559 	int ret;
3560 
3561 	if (consume_obj_stock(objcg, size))
3562 		return 0;
3563 
3564 	/*
3565 	 * In theory, objcg->nr_charged_bytes can have enough
3566 	 * pre-charged bytes to satisfy the allocation. However,
3567 	 * flushing objcg->nr_charged_bytes requires two atomic
3568 	 * operations, and objcg->nr_charged_bytes can't be big.
3569 	 * The shared objcg->nr_charged_bytes can also become a
3570 	 * performance bottleneck if all tasks of the same memcg are
3571 	 * trying to update it. So it's better to ignore it and try
3572 	 * grab some new pages. The stock's nr_bytes will be flushed to
3573 	 * objcg->nr_charged_bytes later on when objcg changes.
3574 	 *
3575 	 * The stock's nr_bytes may contain enough pre-charged bytes
3576 	 * to allow one less page from being charged, but we can't rely
3577 	 * on the pre-charged bytes not being changed outside of
3578 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3579 	 * pre-charged bytes as well when charging pages. To avoid a
3580 	 * page uncharge right after a page charge, we set the
3581 	 * allow_uncharge flag to false when calling refill_obj_stock()
3582 	 * to temporarily allow the pre-charged bytes to exceed the page
3583 	 * size limit. The maximum reachable value of the pre-charged
3584 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3585 	 * race.
3586 	 */
3587 	nr_pages = size >> PAGE_SHIFT;
3588 	nr_bytes = size & (PAGE_SIZE - 1);
3589 
3590 	if (nr_bytes)
3591 		nr_pages += 1;
3592 
3593 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3594 	if (!ret && nr_bytes)
3595 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3596 
3597 	return ret;
3598 }
3599 
3600 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3601 {
3602 	refill_obj_stock(objcg, size, true);
3603 }
3604 
3605 #endif /* CONFIG_MEMCG_KMEM */
3606 
3607 /*
3608  * Because page_memcg(head) is not set on tails, set it now.
3609  */
3610 void split_page_memcg(struct page *head, int old_order, int new_order)
3611 {
3612 	struct folio *folio = page_folio(head);
3613 	struct mem_cgroup *memcg = folio_memcg(folio);
3614 	int i;
3615 	unsigned int old_nr = 1 << old_order;
3616 	unsigned int new_nr = 1 << new_order;
3617 
3618 	if (mem_cgroup_disabled() || !memcg)
3619 		return;
3620 
3621 	for (i = new_nr; i < old_nr; i += new_nr)
3622 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3623 
3624 	if (folio_memcg_kmem(folio))
3625 		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3626 	else
3627 		css_get_many(&memcg->css, old_nr / new_nr - 1);
3628 }
3629 
3630 #ifdef CONFIG_SWAP
3631 /**
3632  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3633  * @entry: swap entry to be moved
3634  * @from:  mem_cgroup which the entry is moved from
3635  * @to:  mem_cgroup which the entry is moved to
3636  *
3637  * It succeeds only when the swap_cgroup's record for this entry is the same
3638  * as the mem_cgroup's id of @from.
3639  *
3640  * Returns 0 on success, -EINVAL on failure.
3641  *
3642  * The caller must have charged to @to, IOW, called page_counter_charge() about
3643  * both res and memsw, and called css_get().
3644  */
3645 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3646 				struct mem_cgroup *from, struct mem_cgroup *to)
3647 {
3648 	unsigned short old_id, new_id;
3649 
3650 	old_id = mem_cgroup_id(from);
3651 	new_id = mem_cgroup_id(to);
3652 
3653 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3654 		mod_memcg_state(from, MEMCG_SWAP, -1);
3655 		mod_memcg_state(to, MEMCG_SWAP, 1);
3656 		return 0;
3657 	}
3658 	return -EINVAL;
3659 }
3660 #else
3661 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3662 				struct mem_cgroup *from, struct mem_cgroup *to)
3663 {
3664 	return -EINVAL;
3665 }
3666 #endif
3667 
3668 static DEFINE_MUTEX(memcg_max_mutex);
3669 
3670 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3671 				 unsigned long max, bool memsw)
3672 {
3673 	bool enlarge = false;
3674 	bool drained = false;
3675 	int ret;
3676 	bool limits_invariant;
3677 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3678 
3679 	do {
3680 		if (signal_pending(current)) {
3681 			ret = -EINTR;
3682 			break;
3683 		}
3684 
3685 		mutex_lock(&memcg_max_mutex);
3686 		/*
3687 		 * Make sure that the new limit (memsw or memory limit) doesn't
3688 		 * break our basic invariant rule memory.max <= memsw.max.
3689 		 */
3690 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3691 					   max <= memcg->memsw.max;
3692 		if (!limits_invariant) {
3693 			mutex_unlock(&memcg_max_mutex);
3694 			ret = -EINVAL;
3695 			break;
3696 		}
3697 		if (max > counter->max)
3698 			enlarge = true;
3699 		ret = page_counter_set_max(counter, max);
3700 		mutex_unlock(&memcg_max_mutex);
3701 
3702 		if (!ret)
3703 			break;
3704 
3705 		if (!drained) {
3706 			drain_all_stock(memcg);
3707 			drained = true;
3708 			continue;
3709 		}
3710 
3711 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3712 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3713 			ret = -EBUSY;
3714 			break;
3715 		}
3716 	} while (true);
3717 
3718 	if (!ret && enlarge)
3719 		memcg_oom_recover(memcg);
3720 
3721 	return ret;
3722 }
3723 
3724 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3725 					    gfp_t gfp_mask,
3726 					    unsigned long *total_scanned)
3727 {
3728 	unsigned long nr_reclaimed = 0;
3729 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3730 	unsigned long reclaimed;
3731 	int loop = 0;
3732 	struct mem_cgroup_tree_per_node *mctz;
3733 	unsigned long excess;
3734 
3735 	if (lru_gen_enabled())
3736 		return 0;
3737 
3738 	if (order > 0)
3739 		return 0;
3740 
3741 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3742 
3743 	/*
3744 	 * Do not even bother to check the largest node if the root
3745 	 * is empty. Do it lockless to prevent lock bouncing. Races
3746 	 * are acceptable as soft limit is best effort anyway.
3747 	 */
3748 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3749 		return 0;
3750 
3751 	/*
3752 	 * This loop can run a while, specially if mem_cgroup's continuously
3753 	 * keep exceeding their soft limit and putting the system under
3754 	 * pressure
3755 	 */
3756 	do {
3757 		if (next_mz)
3758 			mz = next_mz;
3759 		else
3760 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3761 		if (!mz)
3762 			break;
3763 
3764 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3765 						    gfp_mask, total_scanned);
3766 		nr_reclaimed += reclaimed;
3767 		spin_lock_irq(&mctz->lock);
3768 
3769 		/*
3770 		 * If we failed to reclaim anything from this memory cgroup
3771 		 * it is time to move on to the next cgroup
3772 		 */
3773 		next_mz = NULL;
3774 		if (!reclaimed)
3775 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3776 
3777 		excess = soft_limit_excess(mz->memcg);
3778 		/*
3779 		 * One school of thought says that we should not add
3780 		 * back the node to the tree if reclaim returns 0.
3781 		 * But our reclaim could return 0, simply because due
3782 		 * to priority we are exposing a smaller subset of
3783 		 * memory to reclaim from. Consider this as a longer
3784 		 * term TODO.
3785 		 */
3786 		/* If excess == 0, no tree ops */
3787 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3788 		spin_unlock_irq(&mctz->lock);
3789 		css_put(&mz->memcg->css);
3790 		loop++;
3791 		/*
3792 		 * Could not reclaim anything and there are no more
3793 		 * mem cgroups to try or we seem to be looping without
3794 		 * reclaiming anything.
3795 		 */
3796 		if (!nr_reclaimed &&
3797 			(next_mz == NULL ||
3798 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3799 			break;
3800 	} while (!nr_reclaimed);
3801 	if (next_mz)
3802 		css_put(&next_mz->memcg->css);
3803 	return nr_reclaimed;
3804 }
3805 
3806 /*
3807  * Reclaims as many pages from the given memcg as possible.
3808  *
3809  * Caller is responsible for holding css reference for memcg.
3810  */
3811 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3812 {
3813 	int nr_retries = MAX_RECLAIM_RETRIES;
3814 
3815 	/* we call try-to-free pages for make this cgroup empty */
3816 	lru_add_drain_all();
3817 
3818 	drain_all_stock(memcg);
3819 
3820 	/* try to free all pages in this cgroup */
3821 	while (nr_retries && page_counter_read(&memcg->memory)) {
3822 		if (signal_pending(current))
3823 			return -EINTR;
3824 
3825 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3826 						  MEMCG_RECLAIM_MAY_SWAP))
3827 			nr_retries--;
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3834 					    char *buf, size_t nbytes,
3835 					    loff_t off)
3836 {
3837 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838 
3839 	if (mem_cgroup_is_root(memcg))
3840 		return -EINVAL;
3841 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3842 }
3843 
3844 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3845 				     struct cftype *cft)
3846 {
3847 	return 1;
3848 }
3849 
3850 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3851 				      struct cftype *cft, u64 val)
3852 {
3853 	if (val == 1)
3854 		return 0;
3855 
3856 	pr_warn_once("Non-hierarchical mode is deprecated. "
3857 		     "Please report your usecase to linux-mm@kvack.org if you "
3858 		     "depend on this functionality.\n");
3859 
3860 	return -EINVAL;
3861 }
3862 
3863 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864 {
3865 	unsigned long val;
3866 
3867 	if (mem_cgroup_is_root(memcg)) {
3868 		/*
3869 		 * Approximate root's usage from global state. This isn't
3870 		 * perfect, but the root usage was always an approximation.
3871 		 */
3872 		val = global_node_page_state(NR_FILE_PAGES) +
3873 			global_node_page_state(NR_ANON_MAPPED);
3874 		if (swap)
3875 			val += total_swap_pages - get_nr_swap_pages();
3876 	} else {
3877 		if (!swap)
3878 			val = page_counter_read(&memcg->memory);
3879 		else
3880 			val = page_counter_read(&memcg->memsw);
3881 	}
3882 	return val;
3883 }
3884 
3885 enum {
3886 	RES_USAGE,
3887 	RES_LIMIT,
3888 	RES_MAX_USAGE,
3889 	RES_FAILCNT,
3890 	RES_SOFT_LIMIT,
3891 };
3892 
3893 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3894 			       struct cftype *cft)
3895 {
3896 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897 	struct page_counter *counter;
3898 
3899 	switch (MEMFILE_TYPE(cft->private)) {
3900 	case _MEM:
3901 		counter = &memcg->memory;
3902 		break;
3903 	case _MEMSWAP:
3904 		counter = &memcg->memsw;
3905 		break;
3906 	case _KMEM:
3907 		counter = &memcg->kmem;
3908 		break;
3909 	case _TCP:
3910 		counter = &memcg->tcpmem;
3911 		break;
3912 	default:
3913 		BUG();
3914 	}
3915 
3916 	switch (MEMFILE_ATTR(cft->private)) {
3917 	case RES_USAGE:
3918 		if (counter == &memcg->memory)
3919 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3920 		if (counter == &memcg->memsw)
3921 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3922 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3923 	case RES_LIMIT:
3924 		return (u64)counter->max * PAGE_SIZE;
3925 	case RES_MAX_USAGE:
3926 		return (u64)counter->watermark * PAGE_SIZE;
3927 	case RES_FAILCNT:
3928 		return counter->failcnt;
3929 	case RES_SOFT_LIMIT:
3930 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3931 	default:
3932 		BUG();
3933 	}
3934 }
3935 
3936 /*
3937  * This function doesn't do anything useful. Its only job is to provide a read
3938  * handler for a file so that cgroup_file_mode() will add read permissions.
3939  */
3940 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3941 				     __always_unused void *v)
3942 {
3943 	return -EINVAL;
3944 }
3945 
3946 #ifdef CONFIG_MEMCG_KMEM
3947 static int memcg_online_kmem(struct mem_cgroup *memcg)
3948 {
3949 	struct obj_cgroup *objcg;
3950 
3951 	if (mem_cgroup_kmem_disabled())
3952 		return 0;
3953 
3954 	if (unlikely(mem_cgroup_is_root(memcg)))
3955 		return 0;
3956 
3957 	objcg = obj_cgroup_alloc();
3958 	if (!objcg)
3959 		return -ENOMEM;
3960 
3961 	objcg->memcg = memcg;
3962 	rcu_assign_pointer(memcg->objcg, objcg);
3963 	obj_cgroup_get(objcg);
3964 	memcg->orig_objcg = objcg;
3965 
3966 	static_branch_enable(&memcg_kmem_online_key);
3967 
3968 	memcg->kmemcg_id = memcg->id.id;
3969 
3970 	return 0;
3971 }
3972 
3973 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3974 {
3975 	struct mem_cgroup *parent;
3976 
3977 	if (mem_cgroup_kmem_disabled())
3978 		return;
3979 
3980 	if (unlikely(mem_cgroup_is_root(memcg)))
3981 		return;
3982 
3983 	parent = parent_mem_cgroup(memcg);
3984 	if (!parent)
3985 		parent = root_mem_cgroup;
3986 
3987 	memcg_reparent_objcgs(memcg, parent);
3988 
3989 	/*
3990 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3991 	 * corresponding to this cgroup are guaranteed to remain empty.
3992 	 * The ordering is imposed by list_lru_node->lock taken by
3993 	 * memcg_reparent_list_lrus().
3994 	 */
3995 	memcg_reparent_list_lrus(memcg, parent);
3996 }
3997 #else
3998 static int memcg_online_kmem(struct mem_cgroup *memcg)
3999 {
4000 	return 0;
4001 }
4002 static void memcg_offline_kmem(struct mem_cgroup *memcg)
4003 {
4004 }
4005 #endif /* CONFIG_MEMCG_KMEM */
4006 
4007 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
4008 {
4009 	int ret;
4010 
4011 	mutex_lock(&memcg_max_mutex);
4012 
4013 	ret = page_counter_set_max(&memcg->tcpmem, max);
4014 	if (ret)
4015 		goto out;
4016 
4017 	if (!memcg->tcpmem_active) {
4018 		/*
4019 		 * The active flag needs to be written after the static_key
4020 		 * update. This is what guarantees that the socket activation
4021 		 * function is the last one to run. See mem_cgroup_sk_alloc()
4022 		 * for details, and note that we don't mark any socket as
4023 		 * belonging to this memcg until that flag is up.
4024 		 *
4025 		 * We need to do this, because static_keys will span multiple
4026 		 * sites, but we can't control their order. If we mark a socket
4027 		 * as accounted, but the accounting functions are not patched in
4028 		 * yet, we'll lose accounting.
4029 		 *
4030 		 * We never race with the readers in mem_cgroup_sk_alloc(),
4031 		 * because when this value change, the code to process it is not
4032 		 * patched in yet.
4033 		 */
4034 		static_branch_inc(&memcg_sockets_enabled_key);
4035 		memcg->tcpmem_active = true;
4036 	}
4037 out:
4038 	mutex_unlock(&memcg_max_mutex);
4039 	return ret;
4040 }
4041 
4042 /*
4043  * The user of this function is...
4044  * RES_LIMIT.
4045  */
4046 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4047 				char *buf, size_t nbytes, loff_t off)
4048 {
4049 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4050 	unsigned long nr_pages;
4051 	int ret;
4052 
4053 	buf = strstrip(buf);
4054 	ret = page_counter_memparse(buf, "-1", &nr_pages);
4055 	if (ret)
4056 		return ret;
4057 
4058 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4059 	case RES_LIMIT:
4060 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4061 			ret = -EINVAL;
4062 			break;
4063 		}
4064 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
4065 		case _MEM:
4066 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4067 			break;
4068 		case _MEMSWAP:
4069 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4070 			break;
4071 		case _KMEM:
4072 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4073 				     "Writing any value to this file has no effect. "
4074 				     "Please report your usecase to linux-mm@kvack.org if you "
4075 				     "depend on this functionality.\n");
4076 			ret = 0;
4077 			break;
4078 		case _TCP:
4079 			ret = memcg_update_tcp_max(memcg, nr_pages);
4080 			break;
4081 		}
4082 		break;
4083 	case RES_SOFT_LIMIT:
4084 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4085 			ret = -EOPNOTSUPP;
4086 		} else {
4087 			WRITE_ONCE(memcg->soft_limit, nr_pages);
4088 			ret = 0;
4089 		}
4090 		break;
4091 	}
4092 	return ret ?: nbytes;
4093 }
4094 
4095 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4096 				size_t nbytes, loff_t off)
4097 {
4098 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4099 	struct page_counter *counter;
4100 
4101 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
4102 	case _MEM:
4103 		counter = &memcg->memory;
4104 		break;
4105 	case _MEMSWAP:
4106 		counter = &memcg->memsw;
4107 		break;
4108 	case _KMEM:
4109 		counter = &memcg->kmem;
4110 		break;
4111 	case _TCP:
4112 		counter = &memcg->tcpmem;
4113 		break;
4114 	default:
4115 		BUG();
4116 	}
4117 
4118 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4119 	case RES_MAX_USAGE:
4120 		page_counter_reset_watermark(counter);
4121 		break;
4122 	case RES_FAILCNT:
4123 		counter->failcnt = 0;
4124 		break;
4125 	default:
4126 		BUG();
4127 	}
4128 
4129 	return nbytes;
4130 }
4131 
4132 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4133 					struct cftype *cft)
4134 {
4135 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4136 }
4137 
4138 #ifdef CONFIG_MMU
4139 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4140 					struct cftype *cft, u64 val)
4141 {
4142 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4143 
4144 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4145 		     "Please report your usecase to linux-mm@kvack.org if you "
4146 		     "depend on this functionality.\n");
4147 
4148 	if (val & ~MOVE_MASK)
4149 		return -EINVAL;
4150 
4151 	/*
4152 	 * No kind of locking is needed in here, because ->can_attach() will
4153 	 * check this value once in the beginning of the process, and then carry
4154 	 * on with stale data. This means that changes to this value will only
4155 	 * affect task migrations starting after the change.
4156 	 */
4157 	memcg->move_charge_at_immigrate = val;
4158 	return 0;
4159 }
4160 #else
4161 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4162 					struct cftype *cft, u64 val)
4163 {
4164 	return -ENOSYS;
4165 }
4166 #endif
4167 
4168 #ifdef CONFIG_NUMA
4169 
4170 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4171 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4172 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
4173 
4174 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4175 				int nid, unsigned int lru_mask, bool tree)
4176 {
4177 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4178 	unsigned long nr = 0;
4179 	enum lru_list lru;
4180 
4181 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4182 
4183 	for_each_lru(lru) {
4184 		if (!(BIT(lru) & lru_mask))
4185 			continue;
4186 		if (tree)
4187 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4188 		else
4189 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4190 	}
4191 	return nr;
4192 }
4193 
4194 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4195 					     unsigned int lru_mask,
4196 					     bool tree)
4197 {
4198 	unsigned long nr = 0;
4199 	enum lru_list lru;
4200 
4201 	for_each_lru(lru) {
4202 		if (!(BIT(lru) & lru_mask))
4203 			continue;
4204 		if (tree)
4205 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4206 		else
4207 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4208 	}
4209 	return nr;
4210 }
4211 
4212 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4213 {
4214 	struct numa_stat {
4215 		const char *name;
4216 		unsigned int lru_mask;
4217 	};
4218 
4219 	static const struct numa_stat stats[] = {
4220 		{ "total", LRU_ALL },
4221 		{ "file", LRU_ALL_FILE },
4222 		{ "anon", LRU_ALL_ANON },
4223 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4224 	};
4225 	const struct numa_stat *stat;
4226 	int nid;
4227 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4228 
4229 	mem_cgroup_flush_stats(memcg);
4230 
4231 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4232 		seq_printf(m, "%s=%lu", stat->name,
4233 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4234 						   false));
4235 		for_each_node_state(nid, N_MEMORY)
4236 			seq_printf(m, " N%d=%lu", nid,
4237 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4238 							stat->lru_mask, false));
4239 		seq_putc(m, '\n');
4240 	}
4241 
4242 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4243 
4244 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4245 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4246 						   true));
4247 		for_each_node_state(nid, N_MEMORY)
4248 			seq_printf(m, " N%d=%lu", nid,
4249 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4250 							stat->lru_mask, true));
4251 		seq_putc(m, '\n');
4252 	}
4253 
4254 	return 0;
4255 }
4256 #endif /* CONFIG_NUMA */
4257 
4258 static const unsigned int memcg1_stats[] = {
4259 	NR_FILE_PAGES,
4260 	NR_ANON_MAPPED,
4261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 	NR_ANON_THPS,
4263 #endif
4264 	NR_SHMEM,
4265 	NR_FILE_MAPPED,
4266 	NR_FILE_DIRTY,
4267 	NR_WRITEBACK,
4268 	WORKINGSET_REFAULT_ANON,
4269 	WORKINGSET_REFAULT_FILE,
4270 #ifdef CONFIG_SWAP
4271 	MEMCG_SWAP,
4272 	NR_SWAPCACHE,
4273 #endif
4274 };
4275 
4276 static const char *const memcg1_stat_names[] = {
4277 	"cache",
4278 	"rss",
4279 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280 	"rss_huge",
4281 #endif
4282 	"shmem",
4283 	"mapped_file",
4284 	"dirty",
4285 	"writeback",
4286 	"workingset_refault_anon",
4287 	"workingset_refault_file",
4288 #ifdef CONFIG_SWAP
4289 	"swap",
4290 	"swapcached",
4291 #endif
4292 };
4293 
4294 /* Universal VM events cgroup1 shows, original sort order */
4295 static const unsigned int memcg1_events[] = {
4296 	PGPGIN,
4297 	PGPGOUT,
4298 	PGFAULT,
4299 	PGMAJFAULT,
4300 };
4301 
4302 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4303 {
4304 	unsigned long memory, memsw;
4305 	struct mem_cgroup *mi;
4306 	unsigned int i;
4307 
4308 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4309 
4310 	mem_cgroup_flush_stats(memcg);
4311 
4312 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4313 		unsigned long nr;
4314 
4315 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4316 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4317 	}
4318 
4319 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4320 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4321 			       memcg_events_local(memcg, memcg1_events[i]));
4322 
4323 	for (i = 0; i < NR_LRU_LISTS; i++)
4324 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4325 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4326 			       PAGE_SIZE);
4327 
4328 	/* Hierarchical information */
4329 	memory = memsw = PAGE_COUNTER_MAX;
4330 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4331 		memory = min(memory, READ_ONCE(mi->memory.max));
4332 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4333 	}
4334 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4335 		       (u64)memory * PAGE_SIZE);
4336 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4337 		       (u64)memsw * PAGE_SIZE);
4338 
4339 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4340 		unsigned long nr;
4341 
4342 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4343 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4344 			       (u64)nr);
4345 	}
4346 
4347 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4348 		seq_buf_printf(s, "total_%s %llu\n",
4349 			       vm_event_name(memcg1_events[i]),
4350 			       (u64)memcg_events(memcg, memcg1_events[i]));
4351 
4352 	for (i = 0; i < NR_LRU_LISTS; i++)
4353 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4354 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4355 			       PAGE_SIZE);
4356 
4357 #ifdef CONFIG_DEBUG_VM
4358 	{
4359 		pg_data_t *pgdat;
4360 		struct mem_cgroup_per_node *mz;
4361 		unsigned long anon_cost = 0;
4362 		unsigned long file_cost = 0;
4363 
4364 		for_each_online_pgdat(pgdat) {
4365 			mz = memcg->nodeinfo[pgdat->node_id];
4366 
4367 			anon_cost += mz->lruvec.anon_cost;
4368 			file_cost += mz->lruvec.file_cost;
4369 		}
4370 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4371 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4372 	}
4373 #endif
4374 }
4375 
4376 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4377 				      struct cftype *cft)
4378 {
4379 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380 
4381 	return mem_cgroup_swappiness(memcg);
4382 }
4383 
4384 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4385 				       struct cftype *cft, u64 val)
4386 {
4387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388 
4389 	if (val > 200)
4390 		return -EINVAL;
4391 
4392 	if (!mem_cgroup_is_root(memcg))
4393 		WRITE_ONCE(memcg->swappiness, val);
4394 	else
4395 		WRITE_ONCE(vm_swappiness, val);
4396 
4397 	return 0;
4398 }
4399 
4400 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4401 {
4402 	struct mem_cgroup_threshold_ary *t;
4403 	unsigned long usage;
4404 	int i;
4405 
4406 	rcu_read_lock();
4407 	if (!swap)
4408 		t = rcu_dereference(memcg->thresholds.primary);
4409 	else
4410 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4411 
4412 	if (!t)
4413 		goto unlock;
4414 
4415 	usage = mem_cgroup_usage(memcg, swap);
4416 
4417 	/*
4418 	 * current_threshold points to threshold just below or equal to usage.
4419 	 * If it's not true, a threshold was crossed after last
4420 	 * call of __mem_cgroup_threshold().
4421 	 */
4422 	i = t->current_threshold;
4423 
4424 	/*
4425 	 * Iterate backward over array of thresholds starting from
4426 	 * current_threshold and check if a threshold is crossed.
4427 	 * If none of thresholds below usage is crossed, we read
4428 	 * only one element of the array here.
4429 	 */
4430 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4431 		eventfd_signal(t->entries[i].eventfd);
4432 
4433 	/* i = current_threshold + 1 */
4434 	i++;
4435 
4436 	/*
4437 	 * Iterate forward over array of thresholds starting from
4438 	 * current_threshold+1 and check if a threshold is crossed.
4439 	 * If none of thresholds above usage is crossed, we read
4440 	 * only one element of the array here.
4441 	 */
4442 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4443 		eventfd_signal(t->entries[i].eventfd);
4444 
4445 	/* Update current_threshold */
4446 	t->current_threshold = i - 1;
4447 unlock:
4448 	rcu_read_unlock();
4449 }
4450 
4451 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4452 {
4453 	while (memcg) {
4454 		__mem_cgroup_threshold(memcg, false);
4455 		if (do_memsw_account())
4456 			__mem_cgroup_threshold(memcg, true);
4457 
4458 		memcg = parent_mem_cgroup(memcg);
4459 	}
4460 }
4461 
4462 static int compare_thresholds(const void *a, const void *b)
4463 {
4464 	const struct mem_cgroup_threshold *_a = a;
4465 	const struct mem_cgroup_threshold *_b = b;
4466 
4467 	if (_a->threshold > _b->threshold)
4468 		return 1;
4469 
4470 	if (_a->threshold < _b->threshold)
4471 		return -1;
4472 
4473 	return 0;
4474 }
4475 
4476 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4477 {
4478 	struct mem_cgroup_eventfd_list *ev;
4479 
4480 	spin_lock(&memcg_oom_lock);
4481 
4482 	list_for_each_entry(ev, &memcg->oom_notify, list)
4483 		eventfd_signal(ev->eventfd);
4484 
4485 	spin_unlock(&memcg_oom_lock);
4486 	return 0;
4487 }
4488 
4489 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4490 {
4491 	struct mem_cgroup *iter;
4492 
4493 	for_each_mem_cgroup_tree(iter, memcg)
4494 		mem_cgroup_oom_notify_cb(iter);
4495 }
4496 
4497 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4498 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4499 {
4500 	struct mem_cgroup_thresholds *thresholds;
4501 	struct mem_cgroup_threshold_ary *new;
4502 	unsigned long threshold;
4503 	unsigned long usage;
4504 	int i, size, ret;
4505 
4506 	ret = page_counter_memparse(args, "-1", &threshold);
4507 	if (ret)
4508 		return ret;
4509 
4510 	mutex_lock(&memcg->thresholds_lock);
4511 
4512 	if (type == _MEM) {
4513 		thresholds = &memcg->thresholds;
4514 		usage = mem_cgroup_usage(memcg, false);
4515 	} else if (type == _MEMSWAP) {
4516 		thresholds = &memcg->memsw_thresholds;
4517 		usage = mem_cgroup_usage(memcg, true);
4518 	} else
4519 		BUG();
4520 
4521 	/* Check if a threshold crossed before adding a new one */
4522 	if (thresholds->primary)
4523 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4524 
4525 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4526 
4527 	/* Allocate memory for new array of thresholds */
4528 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4529 	if (!new) {
4530 		ret = -ENOMEM;
4531 		goto unlock;
4532 	}
4533 	new->size = size;
4534 
4535 	/* Copy thresholds (if any) to new array */
4536 	if (thresholds->primary)
4537 		memcpy(new->entries, thresholds->primary->entries,
4538 		       flex_array_size(new, entries, size - 1));
4539 
4540 	/* Add new threshold */
4541 	new->entries[size - 1].eventfd = eventfd;
4542 	new->entries[size - 1].threshold = threshold;
4543 
4544 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4545 	sort(new->entries, size, sizeof(*new->entries),
4546 			compare_thresholds, NULL);
4547 
4548 	/* Find current threshold */
4549 	new->current_threshold = -1;
4550 	for (i = 0; i < size; i++) {
4551 		if (new->entries[i].threshold <= usage) {
4552 			/*
4553 			 * new->current_threshold will not be used until
4554 			 * rcu_assign_pointer(), so it's safe to increment
4555 			 * it here.
4556 			 */
4557 			++new->current_threshold;
4558 		} else
4559 			break;
4560 	}
4561 
4562 	/* Free old spare buffer and save old primary buffer as spare */
4563 	kfree(thresholds->spare);
4564 	thresholds->spare = thresholds->primary;
4565 
4566 	rcu_assign_pointer(thresholds->primary, new);
4567 
4568 	/* To be sure that nobody uses thresholds */
4569 	synchronize_rcu();
4570 
4571 unlock:
4572 	mutex_unlock(&memcg->thresholds_lock);
4573 
4574 	return ret;
4575 }
4576 
4577 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4578 	struct eventfd_ctx *eventfd, const char *args)
4579 {
4580 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4581 }
4582 
4583 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4584 	struct eventfd_ctx *eventfd, const char *args)
4585 {
4586 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4587 }
4588 
4589 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4590 	struct eventfd_ctx *eventfd, enum res_type type)
4591 {
4592 	struct mem_cgroup_thresholds *thresholds;
4593 	struct mem_cgroup_threshold_ary *new;
4594 	unsigned long usage;
4595 	int i, j, size, entries;
4596 
4597 	mutex_lock(&memcg->thresholds_lock);
4598 
4599 	if (type == _MEM) {
4600 		thresholds = &memcg->thresholds;
4601 		usage = mem_cgroup_usage(memcg, false);
4602 	} else if (type == _MEMSWAP) {
4603 		thresholds = &memcg->memsw_thresholds;
4604 		usage = mem_cgroup_usage(memcg, true);
4605 	} else
4606 		BUG();
4607 
4608 	if (!thresholds->primary)
4609 		goto unlock;
4610 
4611 	/* Check if a threshold crossed before removing */
4612 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4613 
4614 	/* Calculate new number of threshold */
4615 	size = entries = 0;
4616 	for (i = 0; i < thresholds->primary->size; i++) {
4617 		if (thresholds->primary->entries[i].eventfd != eventfd)
4618 			size++;
4619 		else
4620 			entries++;
4621 	}
4622 
4623 	new = thresholds->spare;
4624 
4625 	/* If no items related to eventfd have been cleared, nothing to do */
4626 	if (!entries)
4627 		goto unlock;
4628 
4629 	/* Set thresholds array to NULL if we don't have thresholds */
4630 	if (!size) {
4631 		kfree(new);
4632 		new = NULL;
4633 		goto swap_buffers;
4634 	}
4635 
4636 	new->size = size;
4637 
4638 	/* Copy thresholds and find current threshold */
4639 	new->current_threshold = -1;
4640 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4641 		if (thresholds->primary->entries[i].eventfd == eventfd)
4642 			continue;
4643 
4644 		new->entries[j] = thresholds->primary->entries[i];
4645 		if (new->entries[j].threshold <= usage) {
4646 			/*
4647 			 * new->current_threshold will not be used
4648 			 * until rcu_assign_pointer(), so it's safe to increment
4649 			 * it here.
4650 			 */
4651 			++new->current_threshold;
4652 		}
4653 		j++;
4654 	}
4655 
4656 swap_buffers:
4657 	/* Swap primary and spare array */
4658 	thresholds->spare = thresholds->primary;
4659 
4660 	rcu_assign_pointer(thresholds->primary, new);
4661 
4662 	/* To be sure that nobody uses thresholds */
4663 	synchronize_rcu();
4664 
4665 	/* If all events are unregistered, free the spare array */
4666 	if (!new) {
4667 		kfree(thresholds->spare);
4668 		thresholds->spare = NULL;
4669 	}
4670 unlock:
4671 	mutex_unlock(&memcg->thresholds_lock);
4672 }
4673 
4674 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4675 	struct eventfd_ctx *eventfd)
4676 {
4677 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4678 }
4679 
4680 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4681 	struct eventfd_ctx *eventfd)
4682 {
4683 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4684 }
4685 
4686 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4687 	struct eventfd_ctx *eventfd, const char *args)
4688 {
4689 	struct mem_cgroup_eventfd_list *event;
4690 
4691 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4692 	if (!event)
4693 		return -ENOMEM;
4694 
4695 	spin_lock(&memcg_oom_lock);
4696 
4697 	event->eventfd = eventfd;
4698 	list_add(&event->list, &memcg->oom_notify);
4699 
4700 	/* already in OOM ? */
4701 	if (memcg->under_oom)
4702 		eventfd_signal(eventfd);
4703 	spin_unlock(&memcg_oom_lock);
4704 
4705 	return 0;
4706 }
4707 
4708 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4709 	struct eventfd_ctx *eventfd)
4710 {
4711 	struct mem_cgroup_eventfd_list *ev, *tmp;
4712 
4713 	spin_lock(&memcg_oom_lock);
4714 
4715 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4716 		if (ev->eventfd == eventfd) {
4717 			list_del(&ev->list);
4718 			kfree(ev);
4719 		}
4720 	}
4721 
4722 	spin_unlock(&memcg_oom_lock);
4723 }
4724 
4725 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4726 {
4727 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4728 
4729 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4730 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4731 	seq_printf(sf, "oom_kill %lu\n",
4732 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4733 	return 0;
4734 }
4735 
4736 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4737 	struct cftype *cft, u64 val)
4738 {
4739 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4740 
4741 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4742 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4743 		return -EINVAL;
4744 
4745 	WRITE_ONCE(memcg->oom_kill_disable, val);
4746 	if (!val)
4747 		memcg_oom_recover(memcg);
4748 
4749 	return 0;
4750 }
4751 
4752 #ifdef CONFIG_CGROUP_WRITEBACK
4753 
4754 #include <trace/events/writeback.h>
4755 
4756 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4757 {
4758 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4759 }
4760 
4761 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4762 {
4763 	wb_domain_exit(&memcg->cgwb_domain);
4764 }
4765 
4766 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4767 {
4768 	wb_domain_size_changed(&memcg->cgwb_domain);
4769 }
4770 
4771 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4772 {
4773 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4774 
4775 	if (!memcg->css.parent)
4776 		return NULL;
4777 
4778 	return &memcg->cgwb_domain;
4779 }
4780 
4781 /**
4782  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4783  * @wb: bdi_writeback in question
4784  * @pfilepages: out parameter for number of file pages
4785  * @pheadroom: out parameter for number of allocatable pages according to memcg
4786  * @pdirty: out parameter for number of dirty pages
4787  * @pwriteback: out parameter for number of pages under writeback
4788  *
4789  * Determine the numbers of file, headroom, dirty, and writeback pages in
4790  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4791  * is a bit more involved.
4792  *
4793  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4794  * headroom is calculated as the lowest headroom of itself and the
4795  * ancestors.  Note that this doesn't consider the actual amount of
4796  * available memory in the system.  The caller should further cap
4797  * *@pheadroom accordingly.
4798  */
4799 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4800 			 unsigned long *pheadroom, unsigned long *pdirty,
4801 			 unsigned long *pwriteback)
4802 {
4803 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4804 	struct mem_cgroup *parent;
4805 
4806 	mem_cgroup_flush_stats_ratelimited(memcg);
4807 
4808 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4809 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4810 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4811 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4812 
4813 	*pheadroom = PAGE_COUNTER_MAX;
4814 	while ((parent = parent_mem_cgroup(memcg))) {
4815 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4816 					    READ_ONCE(memcg->memory.high));
4817 		unsigned long used = page_counter_read(&memcg->memory);
4818 
4819 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4820 		memcg = parent;
4821 	}
4822 }
4823 
4824 /*
4825  * Foreign dirty flushing
4826  *
4827  * There's an inherent mismatch between memcg and writeback.  The former
4828  * tracks ownership per-page while the latter per-inode.  This was a
4829  * deliberate design decision because honoring per-page ownership in the
4830  * writeback path is complicated, may lead to higher CPU and IO overheads
4831  * and deemed unnecessary given that write-sharing an inode across
4832  * different cgroups isn't a common use-case.
4833  *
4834  * Combined with inode majority-writer ownership switching, this works well
4835  * enough in most cases but there are some pathological cases.  For
4836  * example, let's say there are two cgroups A and B which keep writing to
4837  * different but confined parts of the same inode.  B owns the inode and
4838  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4839  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4840  * triggering background writeback.  A will be slowed down without a way to
4841  * make writeback of the dirty pages happen.
4842  *
4843  * Conditions like the above can lead to a cgroup getting repeatedly and
4844  * severely throttled after making some progress after each
4845  * dirty_expire_interval while the underlying IO device is almost
4846  * completely idle.
4847  *
4848  * Solving this problem completely requires matching the ownership tracking
4849  * granularities between memcg and writeback in either direction.  However,
4850  * the more egregious behaviors can be avoided by simply remembering the
4851  * most recent foreign dirtying events and initiating remote flushes on
4852  * them when local writeback isn't enough to keep the memory clean enough.
4853  *
4854  * The following two functions implement such mechanism.  When a foreign
4855  * page - a page whose memcg and writeback ownerships don't match - is
4856  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4857  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4858  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4859  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4860  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4861  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4862  * limited to MEMCG_CGWB_FRN_CNT.
4863  *
4864  * The mechanism only remembers IDs and doesn't hold any object references.
4865  * As being wrong occasionally doesn't matter, updates and accesses to the
4866  * records are lockless and racy.
4867  */
4868 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4869 					     struct bdi_writeback *wb)
4870 {
4871 	struct mem_cgroup *memcg = folio_memcg(folio);
4872 	struct memcg_cgwb_frn *frn;
4873 	u64 now = get_jiffies_64();
4874 	u64 oldest_at = now;
4875 	int oldest = -1;
4876 	int i;
4877 
4878 	trace_track_foreign_dirty(folio, wb);
4879 
4880 	/*
4881 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4882 	 * using it.  If not replace the oldest one which isn't being
4883 	 * written out.
4884 	 */
4885 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4886 		frn = &memcg->cgwb_frn[i];
4887 		if (frn->bdi_id == wb->bdi->id &&
4888 		    frn->memcg_id == wb->memcg_css->id)
4889 			break;
4890 		if (time_before64(frn->at, oldest_at) &&
4891 		    atomic_read(&frn->done.cnt) == 1) {
4892 			oldest = i;
4893 			oldest_at = frn->at;
4894 		}
4895 	}
4896 
4897 	if (i < MEMCG_CGWB_FRN_CNT) {
4898 		/*
4899 		 * Re-using an existing one.  Update timestamp lazily to
4900 		 * avoid making the cacheline hot.  We want them to be
4901 		 * reasonably up-to-date and significantly shorter than
4902 		 * dirty_expire_interval as that's what expires the record.
4903 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4904 		 */
4905 		unsigned long update_intv =
4906 			min_t(unsigned long, HZ,
4907 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4908 
4909 		if (time_before64(frn->at, now - update_intv))
4910 			frn->at = now;
4911 	} else if (oldest >= 0) {
4912 		/* replace the oldest free one */
4913 		frn = &memcg->cgwb_frn[oldest];
4914 		frn->bdi_id = wb->bdi->id;
4915 		frn->memcg_id = wb->memcg_css->id;
4916 		frn->at = now;
4917 	}
4918 }
4919 
4920 /* issue foreign writeback flushes for recorded foreign dirtying events */
4921 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4922 {
4923 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4924 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4925 	u64 now = jiffies_64;
4926 	int i;
4927 
4928 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4929 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4930 
4931 		/*
4932 		 * If the record is older than dirty_expire_interval,
4933 		 * writeback on it has already started.  No need to kick it
4934 		 * off again.  Also, don't start a new one if there's
4935 		 * already one in flight.
4936 		 */
4937 		if (time_after64(frn->at, now - intv) &&
4938 		    atomic_read(&frn->done.cnt) == 1) {
4939 			frn->at = 0;
4940 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4941 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4942 					       WB_REASON_FOREIGN_FLUSH,
4943 					       &frn->done);
4944 		}
4945 	}
4946 }
4947 
4948 #else	/* CONFIG_CGROUP_WRITEBACK */
4949 
4950 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4951 {
4952 	return 0;
4953 }
4954 
4955 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4956 {
4957 }
4958 
4959 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4960 {
4961 }
4962 
4963 #endif	/* CONFIG_CGROUP_WRITEBACK */
4964 
4965 /*
4966  * DO NOT USE IN NEW FILES.
4967  *
4968  * "cgroup.event_control" implementation.
4969  *
4970  * This is way over-engineered.  It tries to support fully configurable
4971  * events for each user.  Such level of flexibility is completely
4972  * unnecessary especially in the light of the planned unified hierarchy.
4973  *
4974  * Please deprecate this and replace with something simpler if at all
4975  * possible.
4976  */
4977 
4978 /*
4979  * Unregister event and free resources.
4980  *
4981  * Gets called from workqueue.
4982  */
4983 static void memcg_event_remove(struct work_struct *work)
4984 {
4985 	struct mem_cgroup_event *event =
4986 		container_of(work, struct mem_cgroup_event, remove);
4987 	struct mem_cgroup *memcg = event->memcg;
4988 
4989 	remove_wait_queue(event->wqh, &event->wait);
4990 
4991 	event->unregister_event(memcg, event->eventfd);
4992 
4993 	/* Notify userspace the event is going away. */
4994 	eventfd_signal(event->eventfd);
4995 
4996 	eventfd_ctx_put(event->eventfd);
4997 	kfree(event);
4998 	css_put(&memcg->css);
4999 }
5000 
5001 /*
5002  * Gets called on EPOLLHUP on eventfd when user closes it.
5003  *
5004  * Called with wqh->lock held and interrupts disabled.
5005  */
5006 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5007 			    int sync, void *key)
5008 {
5009 	struct mem_cgroup_event *event =
5010 		container_of(wait, struct mem_cgroup_event, wait);
5011 	struct mem_cgroup *memcg = event->memcg;
5012 	__poll_t flags = key_to_poll(key);
5013 
5014 	if (flags & EPOLLHUP) {
5015 		/*
5016 		 * If the event has been detached at cgroup removal, we
5017 		 * can simply return knowing the other side will cleanup
5018 		 * for us.
5019 		 *
5020 		 * We can't race against event freeing since the other
5021 		 * side will require wqh->lock via remove_wait_queue(),
5022 		 * which we hold.
5023 		 */
5024 		spin_lock(&memcg->event_list_lock);
5025 		if (!list_empty(&event->list)) {
5026 			list_del_init(&event->list);
5027 			/*
5028 			 * We are in atomic context, but cgroup_event_remove()
5029 			 * may sleep, so we have to call it in workqueue.
5030 			 */
5031 			schedule_work(&event->remove);
5032 		}
5033 		spin_unlock(&memcg->event_list_lock);
5034 	}
5035 
5036 	return 0;
5037 }
5038 
5039 static void memcg_event_ptable_queue_proc(struct file *file,
5040 		wait_queue_head_t *wqh, poll_table *pt)
5041 {
5042 	struct mem_cgroup_event *event =
5043 		container_of(pt, struct mem_cgroup_event, pt);
5044 
5045 	event->wqh = wqh;
5046 	add_wait_queue(wqh, &event->wait);
5047 }
5048 
5049 /*
5050  * DO NOT USE IN NEW FILES.
5051  *
5052  * Parse input and register new cgroup event handler.
5053  *
5054  * Input must be in format '<event_fd> <control_fd> <args>'.
5055  * Interpretation of args is defined by control file implementation.
5056  */
5057 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5058 					 char *buf, size_t nbytes, loff_t off)
5059 {
5060 	struct cgroup_subsys_state *css = of_css(of);
5061 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5062 	struct mem_cgroup_event *event;
5063 	struct cgroup_subsys_state *cfile_css;
5064 	unsigned int efd, cfd;
5065 	struct fd efile;
5066 	struct fd cfile;
5067 	struct dentry *cdentry;
5068 	const char *name;
5069 	char *endp;
5070 	int ret;
5071 
5072 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
5073 		return -EOPNOTSUPP;
5074 
5075 	buf = strstrip(buf);
5076 
5077 	efd = simple_strtoul(buf, &endp, 10);
5078 	if (*endp != ' ')
5079 		return -EINVAL;
5080 	buf = endp + 1;
5081 
5082 	cfd = simple_strtoul(buf, &endp, 10);
5083 	if ((*endp != ' ') && (*endp != '\0'))
5084 		return -EINVAL;
5085 	buf = endp + 1;
5086 
5087 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5088 	if (!event)
5089 		return -ENOMEM;
5090 
5091 	event->memcg = memcg;
5092 	INIT_LIST_HEAD(&event->list);
5093 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5094 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5095 	INIT_WORK(&event->remove, memcg_event_remove);
5096 
5097 	efile = fdget(efd);
5098 	if (!efile.file) {
5099 		ret = -EBADF;
5100 		goto out_kfree;
5101 	}
5102 
5103 	event->eventfd = eventfd_ctx_fileget(efile.file);
5104 	if (IS_ERR(event->eventfd)) {
5105 		ret = PTR_ERR(event->eventfd);
5106 		goto out_put_efile;
5107 	}
5108 
5109 	cfile = fdget(cfd);
5110 	if (!cfile.file) {
5111 		ret = -EBADF;
5112 		goto out_put_eventfd;
5113 	}
5114 
5115 	/* the process need read permission on control file */
5116 	/* AV: shouldn't we check that it's been opened for read instead? */
5117 	ret = file_permission(cfile.file, MAY_READ);
5118 	if (ret < 0)
5119 		goto out_put_cfile;
5120 
5121 	/*
5122 	 * The control file must be a regular cgroup1 file. As a regular cgroup
5123 	 * file can't be renamed, it's safe to access its name afterwards.
5124 	 */
5125 	cdentry = cfile.file->f_path.dentry;
5126 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5127 		ret = -EINVAL;
5128 		goto out_put_cfile;
5129 	}
5130 
5131 	/*
5132 	 * Determine the event callbacks and set them in @event.  This used
5133 	 * to be done via struct cftype but cgroup core no longer knows
5134 	 * about these events.  The following is crude but the whole thing
5135 	 * is for compatibility anyway.
5136 	 *
5137 	 * DO NOT ADD NEW FILES.
5138 	 */
5139 	name = cdentry->d_name.name;
5140 
5141 	if (!strcmp(name, "memory.usage_in_bytes")) {
5142 		event->register_event = mem_cgroup_usage_register_event;
5143 		event->unregister_event = mem_cgroup_usage_unregister_event;
5144 	} else if (!strcmp(name, "memory.oom_control")) {
5145 		event->register_event = mem_cgroup_oom_register_event;
5146 		event->unregister_event = mem_cgroup_oom_unregister_event;
5147 	} else if (!strcmp(name, "memory.pressure_level")) {
5148 		event->register_event = vmpressure_register_event;
5149 		event->unregister_event = vmpressure_unregister_event;
5150 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5151 		event->register_event = memsw_cgroup_usage_register_event;
5152 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5153 	} else {
5154 		ret = -EINVAL;
5155 		goto out_put_cfile;
5156 	}
5157 
5158 	/*
5159 	 * Verify @cfile should belong to @css.  Also, remaining events are
5160 	 * automatically removed on cgroup destruction but the removal is
5161 	 * asynchronous, so take an extra ref on @css.
5162 	 */
5163 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5164 					       &memory_cgrp_subsys);
5165 	ret = -EINVAL;
5166 	if (IS_ERR(cfile_css))
5167 		goto out_put_cfile;
5168 	if (cfile_css != css) {
5169 		css_put(cfile_css);
5170 		goto out_put_cfile;
5171 	}
5172 
5173 	ret = event->register_event(memcg, event->eventfd, buf);
5174 	if (ret)
5175 		goto out_put_css;
5176 
5177 	vfs_poll(efile.file, &event->pt);
5178 
5179 	spin_lock_irq(&memcg->event_list_lock);
5180 	list_add(&event->list, &memcg->event_list);
5181 	spin_unlock_irq(&memcg->event_list_lock);
5182 
5183 	fdput(cfile);
5184 	fdput(efile);
5185 
5186 	return nbytes;
5187 
5188 out_put_css:
5189 	css_put(css);
5190 out_put_cfile:
5191 	fdput(cfile);
5192 out_put_eventfd:
5193 	eventfd_ctx_put(event->eventfd);
5194 out_put_efile:
5195 	fdput(efile);
5196 out_kfree:
5197 	kfree(event);
5198 
5199 	return ret;
5200 }
5201 
5202 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5203 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5204 {
5205 	/*
5206 	 * Deprecated.
5207 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5208 	 */
5209 	return 0;
5210 }
5211 #endif
5212 
5213 static int memory_stat_show(struct seq_file *m, void *v);
5214 
5215 static struct cftype mem_cgroup_legacy_files[] = {
5216 	{
5217 		.name = "usage_in_bytes",
5218 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5219 		.read_u64 = mem_cgroup_read_u64,
5220 	},
5221 	{
5222 		.name = "max_usage_in_bytes",
5223 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5224 		.write = mem_cgroup_reset,
5225 		.read_u64 = mem_cgroup_read_u64,
5226 	},
5227 	{
5228 		.name = "limit_in_bytes",
5229 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5230 		.write = mem_cgroup_write,
5231 		.read_u64 = mem_cgroup_read_u64,
5232 	},
5233 	{
5234 		.name = "soft_limit_in_bytes",
5235 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5236 		.write = mem_cgroup_write,
5237 		.read_u64 = mem_cgroup_read_u64,
5238 	},
5239 	{
5240 		.name = "failcnt",
5241 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5242 		.write = mem_cgroup_reset,
5243 		.read_u64 = mem_cgroup_read_u64,
5244 	},
5245 	{
5246 		.name = "stat",
5247 		.seq_show = memory_stat_show,
5248 	},
5249 	{
5250 		.name = "force_empty",
5251 		.write = mem_cgroup_force_empty_write,
5252 	},
5253 	{
5254 		.name = "use_hierarchy",
5255 		.write_u64 = mem_cgroup_hierarchy_write,
5256 		.read_u64 = mem_cgroup_hierarchy_read,
5257 	},
5258 	{
5259 		.name = "cgroup.event_control",		/* XXX: for compat */
5260 		.write = memcg_write_event_control,
5261 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5262 	},
5263 	{
5264 		.name = "swappiness",
5265 		.read_u64 = mem_cgroup_swappiness_read,
5266 		.write_u64 = mem_cgroup_swappiness_write,
5267 	},
5268 	{
5269 		.name = "move_charge_at_immigrate",
5270 		.read_u64 = mem_cgroup_move_charge_read,
5271 		.write_u64 = mem_cgroup_move_charge_write,
5272 	},
5273 	{
5274 		.name = "oom_control",
5275 		.seq_show = mem_cgroup_oom_control_read,
5276 		.write_u64 = mem_cgroup_oom_control_write,
5277 	},
5278 	{
5279 		.name = "pressure_level",
5280 		.seq_show = mem_cgroup_dummy_seq_show,
5281 	},
5282 #ifdef CONFIG_NUMA
5283 	{
5284 		.name = "numa_stat",
5285 		.seq_show = memcg_numa_stat_show,
5286 	},
5287 #endif
5288 	{
5289 		.name = "kmem.limit_in_bytes",
5290 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5291 		.write = mem_cgroup_write,
5292 		.read_u64 = mem_cgroup_read_u64,
5293 	},
5294 	{
5295 		.name = "kmem.usage_in_bytes",
5296 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5297 		.read_u64 = mem_cgroup_read_u64,
5298 	},
5299 	{
5300 		.name = "kmem.failcnt",
5301 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5302 		.write = mem_cgroup_reset,
5303 		.read_u64 = mem_cgroup_read_u64,
5304 	},
5305 	{
5306 		.name = "kmem.max_usage_in_bytes",
5307 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5308 		.write = mem_cgroup_reset,
5309 		.read_u64 = mem_cgroup_read_u64,
5310 	},
5311 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5312 	{
5313 		.name = "kmem.slabinfo",
5314 		.seq_show = mem_cgroup_slab_show,
5315 	},
5316 #endif
5317 	{
5318 		.name = "kmem.tcp.limit_in_bytes",
5319 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5320 		.write = mem_cgroup_write,
5321 		.read_u64 = mem_cgroup_read_u64,
5322 	},
5323 	{
5324 		.name = "kmem.tcp.usage_in_bytes",
5325 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5326 		.read_u64 = mem_cgroup_read_u64,
5327 	},
5328 	{
5329 		.name = "kmem.tcp.failcnt",
5330 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5331 		.write = mem_cgroup_reset,
5332 		.read_u64 = mem_cgroup_read_u64,
5333 	},
5334 	{
5335 		.name = "kmem.tcp.max_usage_in_bytes",
5336 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5337 		.write = mem_cgroup_reset,
5338 		.read_u64 = mem_cgroup_read_u64,
5339 	},
5340 	{ },	/* terminate */
5341 };
5342 
5343 /*
5344  * Private memory cgroup IDR
5345  *
5346  * Swap-out records and page cache shadow entries need to store memcg
5347  * references in constrained space, so we maintain an ID space that is
5348  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5349  * memory-controlled cgroups to 64k.
5350  *
5351  * However, there usually are many references to the offline CSS after
5352  * the cgroup has been destroyed, such as page cache or reclaimable
5353  * slab objects, that don't need to hang on to the ID. We want to keep
5354  * those dead CSS from occupying IDs, or we might quickly exhaust the
5355  * relatively small ID space and prevent the creation of new cgroups
5356  * even when there are much fewer than 64k cgroups - possibly none.
5357  *
5358  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5359  * be freed and recycled when it's no longer needed, which is usually
5360  * when the CSS is offlined.
5361  *
5362  * The only exception to that are records of swapped out tmpfs/shmem
5363  * pages that need to be attributed to live ancestors on swapin. But
5364  * those references are manageable from userspace.
5365  */
5366 
5367 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5368 static DEFINE_IDR(mem_cgroup_idr);
5369 
5370 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5371 {
5372 	if (memcg->id.id > 0) {
5373 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5374 		memcg->id.id = 0;
5375 	}
5376 }
5377 
5378 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5379 						  unsigned int n)
5380 {
5381 	refcount_add(n, &memcg->id.ref);
5382 }
5383 
5384 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5385 {
5386 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5387 		mem_cgroup_id_remove(memcg);
5388 
5389 		/* Memcg ID pins CSS */
5390 		css_put(&memcg->css);
5391 	}
5392 }
5393 
5394 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5395 {
5396 	mem_cgroup_id_put_many(memcg, 1);
5397 }
5398 
5399 /**
5400  * mem_cgroup_from_id - look up a memcg from a memcg id
5401  * @id: the memcg id to look up
5402  *
5403  * Caller must hold rcu_read_lock().
5404  */
5405 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5406 {
5407 	WARN_ON_ONCE(!rcu_read_lock_held());
5408 	return idr_find(&mem_cgroup_idr, id);
5409 }
5410 
5411 #ifdef CONFIG_SHRINKER_DEBUG
5412 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5413 {
5414 	struct cgroup *cgrp;
5415 	struct cgroup_subsys_state *css;
5416 	struct mem_cgroup *memcg;
5417 
5418 	cgrp = cgroup_get_from_id(ino);
5419 	if (IS_ERR(cgrp))
5420 		return ERR_CAST(cgrp);
5421 
5422 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5423 	if (css)
5424 		memcg = container_of(css, struct mem_cgroup, css);
5425 	else
5426 		memcg = ERR_PTR(-ENOENT);
5427 
5428 	cgroup_put(cgrp);
5429 
5430 	return memcg;
5431 }
5432 #endif
5433 
5434 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5435 {
5436 	struct mem_cgroup_per_node *pn;
5437 
5438 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5439 	if (!pn)
5440 		return 1;
5441 
5442 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5443 						   GFP_KERNEL_ACCOUNT);
5444 	if (!pn->lruvec_stats_percpu) {
5445 		kfree(pn);
5446 		return 1;
5447 	}
5448 
5449 	lruvec_init(&pn->lruvec);
5450 	pn->memcg = memcg;
5451 
5452 	memcg->nodeinfo[node] = pn;
5453 	return 0;
5454 }
5455 
5456 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5457 {
5458 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5459 
5460 	if (!pn)
5461 		return;
5462 
5463 	free_percpu(pn->lruvec_stats_percpu);
5464 	kfree(pn);
5465 }
5466 
5467 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5468 {
5469 	int node;
5470 
5471 	if (memcg->orig_objcg)
5472 		obj_cgroup_put(memcg->orig_objcg);
5473 
5474 	for_each_node(node)
5475 		free_mem_cgroup_per_node_info(memcg, node);
5476 	kfree(memcg->vmstats);
5477 	free_percpu(memcg->vmstats_percpu);
5478 	kfree(memcg);
5479 }
5480 
5481 static void mem_cgroup_free(struct mem_cgroup *memcg)
5482 {
5483 	lru_gen_exit_memcg(memcg);
5484 	memcg_wb_domain_exit(memcg);
5485 	__mem_cgroup_free(memcg);
5486 }
5487 
5488 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5489 {
5490 	struct memcg_vmstats_percpu *statc, *pstatc;
5491 	struct mem_cgroup *memcg;
5492 	int node, cpu;
5493 	int __maybe_unused i;
5494 	long error = -ENOMEM;
5495 
5496 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5497 	if (!memcg)
5498 		return ERR_PTR(error);
5499 
5500 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5501 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5502 	if (memcg->id.id < 0) {
5503 		error = memcg->id.id;
5504 		goto fail;
5505 	}
5506 
5507 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5508 	if (!memcg->vmstats)
5509 		goto fail;
5510 
5511 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5512 						 GFP_KERNEL_ACCOUNT);
5513 	if (!memcg->vmstats_percpu)
5514 		goto fail;
5515 
5516 	for_each_possible_cpu(cpu) {
5517 		if (parent)
5518 			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5519 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5520 		statc->parent = parent ? pstatc : NULL;
5521 		statc->vmstats = memcg->vmstats;
5522 	}
5523 
5524 	for_each_node(node)
5525 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5526 			goto fail;
5527 
5528 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5529 		goto fail;
5530 
5531 	INIT_WORK(&memcg->high_work, high_work_func);
5532 	INIT_LIST_HEAD(&memcg->oom_notify);
5533 	mutex_init(&memcg->thresholds_lock);
5534 	spin_lock_init(&memcg->move_lock);
5535 	vmpressure_init(&memcg->vmpressure);
5536 	INIT_LIST_HEAD(&memcg->event_list);
5537 	spin_lock_init(&memcg->event_list_lock);
5538 	memcg->socket_pressure = jiffies;
5539 #ifdef CONFIG_MEMCG_KMEM
5540 	memcg->kmemcg_id = -1;
5541 	INIT_LIST_HEAD(&memcg->objcg_list);
5542 #endif
5543 #ifdef CONFIG_CGROUP_WRITEBACK
5544 	INIT_LIST_HEAD(&memcg->cgwb_list);
5545 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5546 		memcg->cgwb_frn[i].done =
5547 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5548 #endif
5549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5550 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5551 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5552 	memcg->deferred_split_queue.split_queue_len = 0;
5553 #endif
5554 	lru_gen_init_memcg(memcg);
5555 	return memcg;
5556 fail:
5557 	mem_cgroup_id_remove(memcg);
5558 	__mem_cgroup_free(memcg);
5559 	return ERR_PTR(error);
5560 }
5561 
5562 static struct cgroup_subsys_state * __ref
5563 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5564 {
5565 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5566 	struct mem_cgroup *memcg, *old_memcg;
5567 
5568 	old_memcg = set_active_memcg(parent);
5569 	memcg = mem_cgroup_alloc(parent);
5570 	set_active_memcg(old_memcg);
5571 	if (IS_ERR(memcg))
5572 		return ERR_CAST(memcg);
5573 
5574 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5575 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5576 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5577 	memcg->zswap_max = PAGE_COUNTER_MAX;
5578 	WRITE_ONCE(memcg->zswap_writeback,
5579 		!parent || READ_ONCE(parent->zswap_writeback));
5580 #endif
5581 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5582 	if (parent) {
5583 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5584 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5585 
5586 		page_counter_init(&memcg->memory, &parent->memory);
5587 		page_counter_init(&memcg->swap, &parent->swap);
5588 		page_counter_init(&memcg->kmem, &parent->kmem);
5589 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5590 	} else {
5591 		init_memcg_events();
5592 		page_counter_init(&memcg->memory, NULL);
5593 		page_counter_init(&memcg->swap, NULL);
5594 		page_counter_init(&memcg->kmem, NULL);
5595 		page_counter_init(&memcg->tcpmem, NULL);
5596 
5597 		root_mem_cgroup = memcg;
5598 		return &memcg->css;
5599 	}
5600 
5601 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5602 		static_branch_inc(&memcg_sockets_enabled_key);
5603 
5604 #if defined(CONFIG_MEMCG_KMEM)
5605 	if (!cgroup_memory_nobpf)
5606 		static_branch_inc(&memcg_bpf_enabled_key);
5607 #endif
5608 
5609 	return &memcg->css;
5610 }
5611 
5612 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5613 {
5614 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615 
5616 	if (memcg_online_kmem(memcg))
5617 		goto remove_id;
5618 
5619 	/*
5620 	 * A memcg must be visible for expand_shrinker_info()
5621 	 * by the time the maps are allocated. So, we allocate maps
5622 	 * here, when for_each_mem_cgroup() can't skip it.
5623 	 */
5624 	if (alloc_shrinker_info(memcg))
5625 		goto offline_kmem;
5626 
5627 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5628 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5629 				   FLUSH_TIME);
5630 	lru_gen_online_memcg(memcg);
5631 
5632 	/* Online state pins memcg ID, memcg ID pins CSS */
5633 	refcount_set(&memcg->id.ref, 1);
5634 	css_get(css);
5635 
5636 	/*
5637 	 * Ensure mem_cgroup_from_id() works once we're fully online.
5638 	 *
5639 	 * We could do this earlier and require callers to filter with
5640 	 * css_tryget_online(). But right now there are no users that
5641 	 * need earlier access, and the workingset code relies on the
5642 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5643 	 * publish it here at the end of onlining. This matches the
5644 	 * regular ID destruction during offlining.
5645 	 */
5646 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5647 
5648 	return 0;
5649 offline_kmem:
5650 	memcg_offline_kmem(memcg);
5651 remove_id:
5652 	mem_cgroup_id_remove(memcg);
5653 	return -ENOMEM;
5654 }
5655 
5656 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5657 {
5658 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5659 	struct mem_cgroup_event *event, *tmp;
5660 
5661 	/*
5662 	 * Unregister events and notify userspace.
5663 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5664 	 * directory to avoid race between userspace and kernelspace.
5665 	 */
5666 	spin_lock_irq(&memcg->event_list_lock);
5667 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5668 		list_del_init(&event->list);
5669 		schedule_work(&event->remove);
5670 	}
5671 	spin_unlock_irq(&memcg->event_list_lock);
5672 
5673 	page_counter_set_min(&memcg->memory, 0);
5674 	page_counter_set_low(&memcg->memory, 0);
5675 
5676 	zswap_memcg_offline_cleanup(memcg);
5677 
5678 	memcg_offline_kmem(memcg);
5679 	reparent_shrinker_deferred(memcg);
5680 	wb_memcg_offline(memcg);
5681 	lru_gen_offline_memcg(memcg);
5682 
5683 	drain_all_stock(memcg);
5684 
5685 	mem_cgroup_id_put(memcg);
5686 }
5687 
5688 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5689 {
5690 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5691 
5692 	invalidate_reclaim_iterators(memcg);
5693 	lru_gen_release_memcg(memcg);
5694 }
5695 
5696 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5697 {
5698 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5699 	int __maybe_unused i;
5700 
5701 #ifdef CONFIG_CGROUP_WRITEBACK
5702 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5703 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5704 #endif
5705 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5706 		static_branch_dec(&memcg_sockets_enabled_key);
5707 
5708 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5709 		static_branch_dec(&memcg_sockets_enabled_key);
5710 
5711 #if defined(CONFIG_MEMCG_KMEM)
5712 	if (!cgroup_memory_nobpf)
5713 		static_branch_dec(&memcg_bpf_enabled_key);
5714 #endif
5715 
5716 	vmpressure_cleanup(&memcg->vmpressure);
5717 	cancel_work_sync(&memcg->high_work);
5718 	mem_cgroup_remove_from_trees(memcg);
5719 	free_shrinker_info(memcg);
5720 	mem_cgroup_free(memcg);
5721 }
5722 
5723 /**
5724  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5725  * @css: the target css
5726  *
5727  * Reset the states of the mem_cgroup associated with @css.  This is
5728  * invoked when the userland requests disabling on the default hierarchy
5729  * but the memcg is pinned through dependency.  The memcg should stop
5730  * applying policies and should revert to the vanilla state as it may be
5731  * made visible again.
5732  *
5733  * The current implementation only resets the essential configurations.
5734  * This needs to be expanded to cover all the visible parts.
5735  */
5736 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5737 {
5738 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739 
5740 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5741 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5742 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5743 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5744 	page_counter_set_min(&memcg->memory, 0);
5745 	page_counter_set_low(&memcg->memory, 0);
5746 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5747 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5748 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5749 	memcg_wb_domain_size_changed(memcg);
5750 }
5751 
5752 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5753 {
5754 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5755 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5756 	struct memcg_vmstats_percpu *statc;
5757 	long delta, delta_cpu, v;
5758 	int i, nid;
5759 
5760 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5761 
5762 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5763 		/*
5764 		 * Collect the aggregated propagation counts of groups
5765 		 * below us. We're in a per-cpu loop here and this is
5766 		 * a global counter, so the first cycle will get them.
5767 		 */
5768 		delta = memcg->vmstats->state_pending[i];
5769 		if (delta)
5770 			memcg->vmstats->state_pending[i] = 0;
5771 
5772 		/* Add CPU changes on this level since the last flush */
5773 		delta_cpu = 0;
5774 		v = READ_ONCE(statc->state[i]);
5775 		if (v != statc->state_prev[i]) {
5776 			delta_cpu = v - statc->state_prev[i];
5777 			delta += delta_cpu;
5778 			statc->state_prev[i] = v;
5779 		}
5780 
5781 		/* Aggregate counts on this level and propagate upwards */
5782 		if (delta_cpu)
5783 			memcg->vmstats->state_local[i] += delta_cpu;
5784 
5785 		if (delta) {
5786 			memcg->vmstats->state[i] += delta;
5787 			if (parent)
5788 				parent->vmstats->state_pending[i] += delta;
5789 		}
5790 	}
5791 
5792 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5793 		delta = memcg->vmstats->events_pending[i];
5794 		if (delta)
5795 			memcg->vmstats->events_pending[i] = 0;
5796 
5797 		delta_cpu = 0;
5798 		v = READ_ONCE(statc->events[i]);
5799 		if (v != statc->events_prev[i]) {
5800 			delta_cpu = v - statc->events_prev[i];
5801 			delta += delta_cpu;
5802 			statc->events_prev[i] = v;
5803 		}
5804 
5805 		if (delta_cpu)
5806 			memcg->vmstats->events_local[i] += delta_cpu;
5807 
5808 		if (delta) {
5809 			memcg->vmstats->events[i] += delta;
5810 			if (parent)
5811 				parent->vmstats->events_pending[i] += delta;
5812 		}
5813 	}
5814 
5815 	for_each_node_state(nid, N_MEMORY) {
5816 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5817 		struct mem_cgroup_per_node *ppn = NULL;
5818 		struct lruvec_stats_percpu *lstatc;
5819 
5820 		if (parent)
5821 			ppn = parent->nodeinfo[nid];
5822 
5823 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5824 
5825 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5826 			delta = pn->lruvec_stats.state_pending[i];
5827 			if (delta)
5828 				pn->lruvec_stats.state_pending[i] = 0;
5829 
5830 			delta_cpu = 0;
5831 			v = READ_ONCE(lstatc->state[i]);
5832 			if (v != lstatc->state_prev[i]) {
5833 				delta_cpu = v - lstatc->state_prev[i];
5834 				delta += delta_cpu;
5835 				lstatc->state_prev[i] = v;
5836 			}
5837 
5838 			if (delta_cpu)
5839 				pn->lruvec_stats.state_local[i] += delta_cpu;
5840 
5841 			if (delta) {
5842 				pn->lruvec_stats.state[i] += delta;
5843 				if (ppn)
5844 					ppn->lruvec_stats.state_pending[i] += delta;
5845 			}
5846 		}
5847 	}
5848 	statc->stats_updates = 0;
5849 	/* We are in a per-cpu loop here, only do the atomic write once */
5850 	if (atomic64_read(&memcg->vmstats->stats_updates))
5851 		atomic64_set(&memcg->vmstats->stats_updates, 0);
5852 }
5853 
5854 #ifdef CONFIG_MMU
5855 /* Handlers for move charge at task migration. */
5856 static int mem_cgroup_do_precharge(unsigned long count)
5857 {
5858 	int ret;
5859 
5860 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5861 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5862 	if (!ret) {
5863 		mc.precharge += count;
5864 		return ret;
5865 	}
5866 
5867 	/* Try charges one by one with reclaim, but do not retry */
5868 	while (count--) {
5869 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5870 		if (ret)
5871 			return ret;
5872 		mc.precharge++;
5873 		cond_resched();
5874 	}
5875 	return 0;
5876 }
5877 
5878 union mc_target {
5879 	struct folio	*folio;
5880 	swp_entry_t	ent;
5881 };
5882 
5883 enum mc_target_type {
5884 	MC_TARGET_NONE = 0,
5885 	MC_TARGET_PAGE,
5886 	MC_TARGET_SWAP,
5887 	MC_TARGET_DEVICE,
5888 };
5889 
5890 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5891 						unsigned long addr, pte_t ptent)
5892 {
5893 	struct page *page = vm_normal_page(vma, addr, ptent);
5894 
5895 	if (!page)
5896 		return NULL;
5897 	if (PageAnon(page)) {
5898 		if (!(mc.flags & MOVE_ANON))
5899 			return NULL;
5900 	} else {
5901 		if (!(mc.flags & MOVE_FILE))
5902 			return NULL;
5903 	}
5904 	get_page(page);
5905 
5906 	return page;
5907 }
5908 
5909 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5910 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5911 			pte_t ptent, swp_entry_t *entry)
5912 {
5913 	struct page *page = NULL;
5914 	swp_entry_t ent = pte_to_swp_entry(ptent);
5915 
5916 	if (!(mc.flags & MOVE_ANON))
5917 		return NULL;
5918 
5919 	/*
5920 	 * Handle device private pages that are not accessible by the CPU, but
5921 	 * stored as special swap entries in the page table.
5922 	 */
5923 	if (is_device_private_entry(ent)) {
5924 		page = pfn_swap_entry_to_page(ent);
5925 		if (!get_page_unless_zero(page))
5926 			return NULL;
5927 		return page;
5928 	}
5929 
5930 	if (non_swap_entry(ent))
5931 		return NULL;
5932 
5933 	/*
5934 	 * Because swap_cache_get_folio() updates some statistics counter,
5935 	 * we call find_get_page() with swapper_space directly.
5936 	 */
5937 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5938 	entry->val = ent.val;
5939 
5940 	return page;
5941 }
5942 #else
5943 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5944 			pte_t ptent, swp_entry_t *entry)
5945 {
5946 	return NULL;
5947 }
5948 #endif
5949 
5950 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5951 			unsigned long addr, pte_t ptent)
5952 {
5953 	unsigned long index;
5954 	struct folio *folio;
5955 
5956 	if (!vma->vm_file) /* anonymous vma */
5957 		return NULL;
5958 	if (!(mc.flags & MOVE_FILE))
5959 		return NULL;
5960 
5961 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5962 	/* shmem/tmpfs may report page out on swap: account for that too. */
5963 	index = linear_page_index(vma, addr);
5964 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5965 	if (IS_ERR(folio))
5966 		return NULL;
5967 	return folio_file_page(folio, index);
5968 }
5969 
5970 /**
5971  * mem_cgroup_move_account - move account of the folio
5972  * @folio: The folio.
5973  * @compound: charge the page as compound or small page
5974  * @from: mem_cgroup which the folio is moved from.
5975  * @to:	mem_cgroup which the folio is moved to. @from != @to.
5976  *
5977  * The folio must be locked and not on the LRU.
5978  *
5979  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5980  * from old cgroup.
5981  */
5982 static int mem_cgroup_move_account(struct folio *folio,
5983 				   bool compound,
5984 				   struct mem_cgroup *from,
5985 				   struct mem_cgroup *to)
5986 {
5987 	struct lruvec *from_vec, *to_vec;
5988 	struct pglist_data *pgdat;
5989 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5990 	int nid, ret;
5991 
5992 	VM_BUG_ON(from == to);
5993 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5994 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5995 	VM_BUG_ON(compound && !folio_test_large(folio));
5996 
5997 	ret = -EINVAL;
5998 	if (folio_memcg(folio) != from)
5999 		goto out;
6000 
6001 	pgdat = folio_pgdat(folio);
6002 	from_vec = mem_cgroup_lruvec(from, pgdat);
6003 	to_vec = mem_cgroup_lruvec(to, pgdat);
6004 
6005 	folio_memcg_lock(folio);
6006 
6007 	if (folio_test_anon(folio)) {
6008 		if (folio_mapped(folio)) {
6009 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6010 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6011 			if (folio_test_pmd_mappable(folio)) {
6012 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
6013 						   -nr_pages);
6014 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
6015 						   nr_pages);
6016 			}
6017 		}
6018 	} else {
6019 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6020 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6021 
6022 		if (folio_test_swapbacked(folio)) {
6023 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6024 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6025 		}
6026 
6027 		if (folio_mapped(folio)) {
6028 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6029 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6030 		}
6031 
6032 		if (folio_test_dirty(folio)) {
6033 			struct address_space *mapping = folio_mapping(folio);
6034 
6035 			if (mapping_can_writeback(mapping)) {
6036 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6037 						   -nr_pages);
6038 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6039 						   nr_pages);
6040 			}
6041 		}
6042 	}
6043 
6044 #ifdef CONFIG_SWAP
6045 	if (folio_test_swapcache(folio)) {
6046 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6047 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6048 	}
6049 #endif
6050 	if (folio_test_writeback(folio)) {
6051 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6052 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6053 	}
6054 
6055 	/*
6056 	 * All state has been migrated, let's switch to the new memcg.
6057 	 *
6058 	 * It is safe to change page's memcg here because the page
6059 	 * is referenced, charged, isolated, and locked: we can't race
6060 	 * with (un)charging, migration, LRU putback, or anything else
6061 	 * that would rely on a stable page's memory cgroup.
6062 	 *
6063 	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6064 	 * to save space. As soon as we switch page's memory cgroup to a
6065 	 * new memcg that isn't locked, the above state can change
6066 	 * concurrently again. Make sure we're truly done with it.
6067 	 */
6068 	smp_mb();
6069 
6070 	css_get(&to->css);
6071 	css_put(&from->css);
6072 
6073 	folio->memcg_data = (unsigned long)to;
6074 
6075 	__folio_memcg_unlock(from);
6076 
6077 	ret = 0;
6078 	nid = folio_nid(folio);
6079 
6080 	local_irq_disable();
6081 	mem_cgroup_charge_statistics(to, nr_pages);
6082 	memcg_check_events(to, nid);
6083 	mem_cgroup_charge_statistics(from, -nr_pages);
6084 	memcg_check_events(from, nid);
6085 	local_irq_enable();
6086 out:
6087 	return ret;
6088 }
6089 
6090 /**
6091  * get_mctgt_type - get target type of moving charge
6092  * @vma: the vma the pte to be checked belongs
6093  * @addr: the address corresponding to the pte to be checked
6094  * @ptent: the pte to be checked
6095  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6096  *
6097  * Context: Called with pte lock held.
6098  * Return:
6099  * * MC_TARGET_NONE - If the pte is not a target for move charge.
6100  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6101  *   move charge. If @target is not NULL, the folio is stored in target->folio
6102  *   with extra refcnt taken (Caller should release it).
6103  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6104  *   target for charge migration.  If @target is not NULL, the entry is
6105  *   stored in target->ent.
6106  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6107  *   thus not on the lru.  For now such page is charged like a regular page
6108  *   would be as it is just special memory taking the place of a regular page.
6109  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
6110  */
6111 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6112 		unsigned long addr, pte_t ptent, union mc_target *target)
6113 {
6114 	struct page *page = NULL;
6115 	struct folio *folio;
6116 	enum mc_target_type ret = MC_TARGET_NONE;
6117 	swp_entry_t ent = { .val = 0 };
6118 
6119 	if (pte_present(ptent))
6120 		page = mc_handle_present_pte(vma, addr, ptent);
6121 	else if (pte_none_mostly(ptent))
6122 		/*
6123 		 * PTE markers should be treated as a none pte here, separated
6124 		 * from other swap handling below.
6125 		 */
6126 		page = mc_handle_file_pte(vma, addr, ptent);
6127 	else if (is_swap_pte(ptent))
6128 		page = mc_handle_swap_pte(vma, ptent, &ent);
6129 
6130 	if (page)
6131 		folio = page_folio(page);
6132 	if (target && page) {
6133 		if (!folio_trylock(folio)) {
6134 			folio_put(folio);
6135 			return ret;
6136 		}
6137 		/*
6138 		 * page_mapped() must be stable during the move. This
6139 		 * pte is locked, so if it's present, the page cannot
6140 		 * become unmapped. If it isn't, we have only partial
6141 		 * control over the mapped state: the page lock will
6142 		 * prevent new faults against pagecache and swapcache,
6143 		 * so an unmapped page cannot become mapped. However,
6144 		 * if the page is already mapped elsewhere, it can
6145 		 * unmap, and there is nothing we can do about it.
6146 		 * Alas, skip moving the page in this case.
6147 		 */
6148 		if (!pte_present(ptent) && page_mapped(page)) {
6149 			folio_unlock(folio);
6150 			folio_put(folio);
6151 			return ret;
6152 		}
6153 	}
6154 
6155 	if (!page && !ent.val)
6156 		return ret;
6157 	if (page) {
6158 		/*
6159 		 * Do only loose check w/o serialization.
6160 		 * mem_cgroup_move_account() checks the page is valid or
6161 		 * not under LRU exclusion.
6162 		 */
6163 		if (folio_memcg(folio) == mc.from) {
6164 			ret = MC_TARGET_PAGE;
6165 			if (folio_is_device_private(folio) ||
6166 			    folio_is_device_coherent(folio))
6167 				ret = MC_TARGET_DEVICE;
6168 			if (target)
6169 				target->folio = folio;
6170 		}
6171 		if (!ret || !target) {
6172 			if (target)
6173 				folio_unlock(folio);
6174 			folio_put(folio);
6175 		}
6176 	}
6177 	/*
6178 	 * There is a swap entry and a page doesn't exist or isn't charged.
6179 	 * But we cannot move a tail-page in a THP.
6180 	 */
6181 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6182 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6183 		ret = MC_TARGET_SWAP;
6184 		if (target)
6185 			target->ent = ent;
6186 	}
6187 	return ret;
6188 }
6189 
6190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6191 /*
6192  * We don't consider PMD mapped swapping or file mapped pages because THP does
6193  * not support them for now.
6194  * Caller should make sure that pmd_trans_huge(pmd) is true.
6195  */
6196 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6197 		unsigned long addr, pmd_t pmd, union mc_target *target)
6198 {
6199 	struct page *page = NULL;
6200 	struct folio *folio;
6201 	enum mc_target_type ret = MC_TARGET_NONE;
6202 
6203 	if (unlikely(is_swap_pmd(pmd))) {
6204 		VM_BUG_ON(thp_migration_supported() &&
6205 				  !is_pmd_migration_entry(pmd));
6206 		return ret;
6207 	}
6208 	page = pmd_page(pmd);
6209 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6210 	folio = page_folio(page);
6211 	if (!(mc.flags & MOVE_ANON))
6212 		return ret;
6213 	if (folio_memcg(folio) == mc.from) {
6214 		ret = MC_TARGET_PAGE;
6215 		if (target) {
6216 			folio_get(folio);
6217 			if (!folio_trylock(folio)) {
6218 				folio_put(folio);
6219 				return MC_TARGET_NONE;
6220 			}
6221 			target->folio = folio;
6222 		}
6223 	}
6224 	return ret;
6225 }
6226 #else
6227 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6228 		unsigned long addr, pmd_t pmd, union mc_target *target)
6229 {
6230 	return MC_TARGET_NONE;
6231 }
6232 #endif
6233 
6234 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6235 					unsigned long addr, unsigned long end,
6236 					struct mm_walk *walk)
6237 {
6238 	struct vm_area_struct *vma = walk->vma;
6239 	pte_t *pte;
6240 	spinlock_t *ptl;
6241 
6242 	ptl = pmd_trans_huge_lock(pmd, vma);
6243 	if (ptl) {
6244 		/*
6245 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6246 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6247 		 * this might change.
6248 		 */
6249 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6250 			mc.precharge += HPAGE_PMD_NR;
6251 		spin_unlock(ptl);
6252 		return 0;
6253 	}
6254 
6255 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6256 	if (!pte)
6257 		return 0;
6258 	for (; addr != end; pte++, addr += PAGE_SIZE)
6259 		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6260 			mc.precharge++;	/* increment precharge temporarily */
6261 	pte_unmap_unlock(pte - 1, ptl);
6262 	cond_resched();
6263 
6264 	return 0;
6265 }
6266 
6267 static const struct mm_walk_ops precharge_walk_ops = {
6268 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6269 	.walk_lock	= PGWALK_RDLOCK,
6270 };
6271 
6272 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6273 {
6274 	unsigned long precharge;
6275 
6276 	mmap_read_lock(mm);
6277 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6278 	mmap_read_unlock(mm);
6279 
6280 	precharge = mc.precharge;
6281 	mc.precharge = 0;
6282 
6283 	return precharge;
6284 }
6285 
6286 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6287 {
6288 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6289 
6290 	VM_BUG_ON(mc.moving_task);
6291 	mc.moving_task = current;
6292 	return mem_cgroup_do_precharge(precharge);
6293 }
6294 
6295 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6296 static void __mem_cgroup_clear_mc(void)
6297 {
6298 	struct mem_cgroup *from = mc.from;
6299 	struct mem_cgroup *to = mc.to;
6300 
6301 	/* we must uncharge all the leftover precharges from mc.to */
6302 	if (mc.precharge) {
6303 		mem_cgroup_cancel_charge(mc.to, mc.precharge);
6304 		mc.precharge = 0;
6305 	}
6306 	/*
6307 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6308 	 * we must uncharge here.
6309 	 */
6310 	if (mc.moved_charge) {
6311 		mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6312 		mc.moved_charge = 0;
6313 	}
6314 	/* we must fixup refcnts and charges */
6315 	if (mc.moved_swap) {
6316 		/* uncharge swap account from the old cgroup */
6317 		if (!mem_cgroup_is_root(mc.from))
6318 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6319 
6320 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6321 
6322 		/*
6323 		 * we charged both to->memory and to->memsw, so we
6324 		 * should uncharge to->memory.
6325 		 */
6326 		if (!mem_cgroup_is_root(mc.to))
6327 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6328 
6329 		mc.moved_swap = 0;
6330 	}
6331 	memcg_oom_recover(from);
6332 	memcg_oom_recover(to);
6333 	wake_up_all(&mc.waitq);
6334 }
6335 
6336 static void mem_cgroup_clear_mc(void)
6337 {
6338 	struct mm_struct *mm = mc.mm;
6339 
6340 	/*
6341 	 * we must clear moving_task before waking up waiters at the end of
6342 	 * task migration.
6343 	 */
6344 	mc.moving_task = NULL;
6345 	__mem_cgroup_clear_mc();
6346 	spin_lock(&mc.lock);
6347 	mc.from = NULL;
6348 	mc.to = NULL;
6349 	mc.mm = NULL;
6350 	spin_unlock(&mc.lock);
6351 
6352 	mmput(mm);
6353 }
6354 
6355 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356 {
6357 	struct cgroup_subsys_state *css;
6358 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6359 	struct mem_cgroup *from;
6360 	struct task_struct *leader, *p;
6361 	struct mm_struct *mm;
6362 	unsigned long move_flags;
6363 	int ret = 0;
6364 
6365 	/* charge immigration isn't supported on the default hierarchy */
6366 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6367 		return 0;
6368 
6369 	/*
6370 	 * Multi-process migrations only happen on the default hierarchy
6371 	 * where charge immigration is not used.  Perform charge
6372 	 * immigration if @tset contains a leader and whine if there are
6373 	 * multiple.
6374 	 */
6375 	p = NULL;
6376 	cgroup_taskset_for_each_leader(leader, css, tset) {
6377 		WARN_ON_ONCE(p);
6378 		p = leader;
6379 		memcg = mem_cgroup_from_css(css);
6380 	}
6381 	if (!p)
6382 		return 0;
6383 
6384 	/*
6385 	 * We are now committed to this value whatever it is. Changes in this
6386 	 * tunable will only affect upcoming migrations, not the current one.
6387 	 * So we need to save it, and keep it going.
6388 	 */
6389 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6390 	if (!move_flags)
6391 		return 0;
6392 
6393 	from = mem_cgroup_from_task(p);
6394 
6395 	VM_BUG_ON(from == memcg);
6396 
6397 	mm = get_task_mm(p);
6398 	if (!mm)
6399 		return 0;
6400 	/* We move charges only when we move a owner of the mm */
6401 	if (mm->owner == p) {
6402 		VM_BUG_ON(mc.from);
6403 		VM_BUG_ON(mc.to);
6404 		VM_BUG_ON(mc.precharge);
6405 		VM_BUG_ON(mc.moved_charge);
6406 		VM_BUG_ON(mc.moved_swap);
6407 
6408 		spin_lock(&mc.lock);
6409 		mc.mm = mm;
6410 		mc.from = from;
6411 		mc.to = memcg;
6412 		mc.flags = move_flags;
6413 		spin_unlock(&mc.lock);
6414 		/* We set mc.moving_task later */
6415 
6416 		ret = mem_cgroup_precharge_mc(mm);
6417 		if (ret)
6418 			mem_cgroup_clear_mc();
6419 	} else {
6420 		mmput(mm);
6421 	}
6422 	return ret;
6423 }
6424 
6425 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6426 {
6427 	if (mc.to)
6428 		mem_cgroup_clear_mc();
6429 }
6430 
6431 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6432 				unsigned long addr, unsigned long end,
6433 				struct mm_walk *walk)
6434 {
6435 	int ret = 0;
6436 	struct vm_area_struct *vma = walk->vma;
6437 	pte_t *pte;
6438 	spinlock_t *ptl;
6439 	enum mc_target_type target_type;
6440 	union mc_target target;
6441 	struct folio *folio;
6442 
6443 	ptl = pmd_trans_huge_lock(pmd, vma);
6444 	if (ptl) {
6445 		if (mc.precharge < HPAGE_PMD_NR) {
6446 			spin_unlock(ptl);
6447 			return 0;
6448 		}
6449 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6450 		if (target_type == MC_TARGET_PAGE) {
6451 			folio = target.folio;
6452 			if (folio_isolate_lru(folio)) {
6453 				if (!mem_cgroup_move_account(folio, true,
6454 							     mc.from, mc.to)) {
6455 					mc.precharge -= HPAGE_PMD_NR;
6456 					mc.moved_charge += HPAGE_PMD_NR;
6457 				}
6458 				folio_putback_lru(folio);
6459 			}
6460 			folio_unlock(folio);
6461 			folio_put(folio);
6462 		} else if (target_type == MC_TARGET_DEVICE) {
6463 			folio = target.folio;
6464 			if (!mem_cgroup_move_account(folio, true,
6465 						     mc.from, mc.to)) {
6466 				mc.precharge -= HPAGE_PMD_NR;
6467 				mc.moved_charge += HPAGE_PMD_NR;
6468 			}
6469 			folio_unlock(folio);
6470 			folio_put(folio);
6471 		}
6472 		spin_unlock(ptl);
6473 		return 0;
6474 	}
6475 
6476 retry:
6477 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6478 	if (!pte)
6479 		return 0;
6480 	for (; addr != end; addr += PAGE_SIZE) {
6481 		pte_t ptent = ptep_get(pte++);
6482 		bool device = false;
6483 		swp_entry_t ent;
6484 
6485 		if (!mc.precharge)
6486 			break;
6487 
6488 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6489 		case MC_TARGET_DEVICE:
6490 			device = true;
6491 			fallthrough;
6492 		case MC_TARGET_PAGE:
6493 			folio = target.folio;
6494 			/*
6495 			 * We can have a part of the split pmd here. Moving it
6496 			 * can be done but it would be too convoluted so simply
6497 			 * ignore such a partial THP and keep it in original
6498 			 * memcg. There should be somebody mapping the head.
6499 			 */
6500 			if (folio_test_large(folio))
6501 				goto put;
6502 			if (!device && !folio_isolate_lru(folio))
6503 				goto put;
6504 			if (!mem_cgroup_move_account(folio, false,
6505 						mc.from, mc.to)) {
6506 				mc.precharge--;
6507 				/* we uncharge from mc.from later. */
6508 				mc.moved_charge++;
6509 			}
6510 			if (!device)
6511 				folio_putback_lru(folio);
6512 put:			/* get_mctgt_type() gets & locks the page */
6513 			folio_unlock(folio);
6514 			folio_put(folio);
6515 			break;
6516 		case MC_TARGET_SWAP:
6517 			ent = target.ent;
6518 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6519 				mc.precharge--;
6520 				mem_cgroup_id_get_many(mc.to, 1);
6521 				/* we fixup other refcnts and charges later. */
6522 				mc.moved_swap++;
6523 			}
6524 			break;
6525 		default:
6526 			break;
6527 		}
6528 	}
6529 	pte_unmap_unlock(pte - 1, ptl);
6530 	cond_resched();
6531 
6532 	if (addr != end) {
6533 		/*
6534 		 * We have consumed all precharges we got in can_attach().
6535 		 * We try charge one by one, but don't do any additional
6536 		 * charges to mc.to if we have failed in charge once in attach()
6537 		 * phase.
6538 		 */
6539 		ret = mem_cgroup_do_precharge(1);
6540 		if (!ret)
6541 			goto retry;
6542 	}
6543 
6544 	return ret;
6545 }
6546 
6547 static const struct mm_walk_ops charge_walk_ops = {
6548 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6549 	.walk_lock	= PGWALK_RDLOCK,
6550 };
6551 
6552 static void mem_cgroup_move_charge(void)
6553 {
6554 	lru_add_drain_all();
6555 	/*
6556 	 * Signal folio_memcg_lock() to take the memcg's move_lock
6557 	 * while we're moving its pages to another memcg. Then wait
6558 	 * for already started RCU-only updates to finish.
6559 	 */
6560 	atomic_inc(&mc.from->moving_account);
6561 	synchronize_rcu();
6562 retry:
6563 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6564 		/*
6565 		 * Someone who are holding the mmap_lock might be waiting in
6566 		 * waitq. So we cancel all extra charges, wake up all waiters,
6567 		 * and retry. Because we cancel precharges, we might not be able
6568 		 * to move enough charges, but moving charge is a best-effort
6569 		 * feature anyway, so it wouldn't be a big problem.
6570 		 */
6571 		__mem_cgroup_clear_mc();
6572 		cond_resched();
6573 		goto retry;
6574 	}
6575 	/*
6576 	 * When we have consumed all precharges and failed in doing
6577 	 * additional charge, the page walk just aborts.
6578 	 */
6579 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6580 	mmap_read_unlock(mc.mm);
6581 	atomic_dec(&mc.from->moving_account);
6582 }
6583 
6584 static void mem_cgroup_move_task(void)
6585 {
6586 	if (mc.to) {
6587 		mem_cgroup_move_charge();
6588 		mem_cgroup_clear_mc();
6589 	}
6590 }
6591 
6592 #else	/* !CONFIG_MMU */
6593 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6594 {
6595 	return 0;
6596 }
6597 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6598 {
6599 }
6600 static void mem_cgroup_move_task(void)
6601 {
6602 }
6603 #endif
6604 
6605 #ifdef CONFIG_MEMCG_KMEM
6606 static void mem_cgroup_fork(struct task_struct *task)
6607 {
6608 	/*
6609 	 * Set the update flag to cause task->objcg to be initialized lazily
6610 	 * on the first allocation. It can be done without any synchronization
6611 	 * because it's always performed on the current task, so does
6612 	 * current_objcg_update().
6613 	 */
6614 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6615 }
6616 
6617 static void mem_cgroup_exit(struct task_struct *task)
6618 {
6619 	struct obj_cgroup *objcg = task->objcg;
6620 
6621 	objcg = (struct obj_cgroup *)
6622 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6623 	if (objcg)
6624 		obj_cgroup_put(objcg);
6625 
6626 	/*
6627 	 * Some kernel allocations can happen after this point,
6628 	 * but let's ignore them. It can be done without any synchronization
6629 	 * because it's always performed on the current task, so does
6630 	 * current_objcg_update().
6631 	 */
6632 	task->objcg = NULL;
6633 }
6634 #endif
6635 
6636 #ifdef CONFIG_LRU_GEN
6637 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6638 {
6639 	struct task_struct *task;
6640 	struct cgroup_subsys_state *css;
6641 
6642 	/* find the first leader if there is any */
6643 	cgroup_taskset_for_each_leader(task, css, tset)
6644 		break;
6645 
6646 	if (!task)
6647 		return;
6648 
6649 	task_lock(task);
6650 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6651 		lru_gen_migrate_mm(task->mm);
6652 	task_unlock(task);
6653 }
6654 #else
6655 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6656 #endif /* CONFIG_LRU_GEN */
6657 
6658 #ifdef CONFIG_MEMCG_KMEM
6659 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6660 {
6661 	struct task_struct *task;
6662 	struct cgroup_subsys_state *css;
6663 
6664 	cgroup_taskset_for_each(task, css, tset) {
6665 		/* atomically set the update bit */
6666 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6667 	}
6668 }
6669 #else
6670 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6671 #endif /* CONFIG_MEMCG_KMEM */
6672 
6673 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6674 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6675 {
6676 	mem_cgroup_lru_gen_attach(tset);
6677 	mem_cgroup_kmem_attach(tset);
6678 }
6679 #endif
6680 
6681 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6682 {
6683 	if (value == PAGE_COUNTER_MAX)
6684 		seq_puts(m, "max\n");
6685 	else
6686 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6687 
6688 	return 0;
6689 }
6690 
6691 static u64 memory_current_read(struct cgroup_subsys_state *css,
6692 			       struct cftype *cft)
6693 {
6694 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6695 
6696 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6697 }
6698 
6699 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6700 			    struct cftype *cft)
6701 {
6702 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6703 
6704 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6705 }
6706 
6707 static int memory_min_show(struct seq_file *m, void *v)
6708 {
6709 	return seq_puts_memcg_tunable(m,
6710 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6711 }
6712 
6713 static ssize_t memory_min_write(struct kernfs_open_file *of,
6714 				char *buf, size_t nbytes, loff_t off)
6715 {
6716 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6717 	unsigned long min;
6718 	int err;
6719 
6720 	buf = strstrip(buf);
6721 	err = page_counter_memparse(buf, "max", &min);
6722 	if (err)
6723 		return err;
6724 
6725 	page_counter_set_min(&memcg->memory, min);
6726 
6727 	return nbytes;
6728 }
6729 
6730 static int memory_low_show(struct seq_file *m, void *v)
6731 {
6732 	return seq_puts_memcg_tunable(m,
6733 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6734 }
6735 
6736 static ssize_t memory_low_write(struct kernfs_open_file *of,
6737 				char *buf, size_t nbytes, loff_t off)
6738 {
6739 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6740 	unsigned long low;
6741 	int err;
6742 
6743 	buf = strstrip(buf);
6744 	err = page_counter_memparse(buf, "max", &low);
6745 	if (err)
6746 		return err;
6747 
6748 	page_counter_set_low(&memcg->memory, low);
6749 
6750 	return nbytes;
6751 }
6752 
6753 static int memory_high_show(struct seq_file *m, void *v)
6754 {
6755 	return seq_puts_memcg_tunable(m,
6756 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6757 }
6758 
6759 static ssize_t memory_high_write(struct kernfs_open_file *of,
6760 				 char *buf, size_t nbytes, loff_t off)
6761 {
6762 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6763 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6764 	bool drained = false;
6765 	unsigned long high;
6766 	int err;
6767 
6768 	buf = strstrip(buf);
6769 	err = page_counter_memparse(buf, "max", &high);
6770 	if (err)
6771 		return err;
6772 
6773 	page_counter_set_high(&memcg->memory, high);
6774 
6775 	for (;;) {
6776 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6777 		unsigned long reclaimed;
6778 
6779 		if (nr_pages <= high)
6780 			break;
6781 
6782 		if (signal_pending(current))
6783 			break;
6784 
6785 		if (!drained) {
6786 			drain_all_stock(memcg);
6787 			drained = true;
6788 			continue;
6789 		}
6790 
6791 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6792 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6793 
6794 		if (!reclaimed && !nr_retries--)
6795 			break;
6796 	}
6797 
6798 	memcg_wb_domain_size_changed(memcg);
6799 	return nbytes;
6800 }
6801 
6802 static int memory_max_show(struct seq_file *m, void *v)
6803 {
6804 	return seq_puts_memcg_tunable(m,
6805 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6806 }
6807 
6808 static ssize_t memory_max_write(struct kernfs_open_file *of,
6809 				char *buf, size_t nbytes, loff_t off)
6810 {
6811 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6812 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6813 	bool drained = false;
6814 	unsigned long max;
6815 	int err;
6816 
6817 	buf = strstrip(buf);
6818 	err = page_counter_memparse(buf, "max", &max);
6819 	if (err)
6820 		return err;
6821 
6822 	xchg(&memcg->memory.max, max);
6823 
6824 	for (;;) {
6825 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6826 
6827 		if (nr_pages <= max)
6828 			break;
6829 
6830 		if (signal_pending(current))
6831 			break;
6832 
6833 		if (!drained) {
6834 			drain_all_stock(memcg);
6835 			drained = true;
6836 			continue;
6837 		}
6838 
6839 		if (nr_reclaims) {
6840 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6841 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6842 				nr_reclaims--;
6843 			continue;
6844 		}
6845 
6846 		memcg_memory_event(memcg, MEMCG_OOM);
6847 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6848 			break;
6849 	}
6850 
6851 	memcg_wb_domain_size_changed(memcg);
6852 	return nbytes;
6853 }
6854 
6855 /*
6856  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6857  * if any new events become available.
6858  */
6859 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6860 {
6861 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6862 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6863 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6864 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6865 	seq_printf(m, "oom_kill %lu\n",
6866 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6867 	seq_printf(m, "oom_group_kill %lu\n",
6868 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6869 }
6870 
6871 static int memory_events_show(struct seq_file *m, void *v)
6872 {
6873 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6874 
6875 	__memory_events_show(m, memcg->memory_events);
6876 	return 0;
6877 }
6878 
6879 static int memory_events_local_show(struct seq_file *m, void *v)
6880 {
6881 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6882 
6883 	__memory_events_show(m, memcg->memory_events_local);
6884 	return 0;
6885 }
6886 
6887 static int memory_stat_show(struct seq_file *m, void *v)
6888 {
6889 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6890 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6891 	struct seq_buf s;
6892 
6893 	if (!buf)
6894 		return -ENOMEM;
6895 	seq_buf_init(&s, buf, PAGE_SIZE);
6896 	memory_stat_format(memcg, &s);
6897 	seq_puts(m, buf);
6898 	kfree(buf);
6899 	return 0;
6900 }
6901 
6902 #ifdef CONFIG_NUMA
6903 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6904 						     int item)
6905 {
6906 	return lruvec_page_state(lruvec, item) *
6907 		memcg_page_state_output_unit(item);
6908 }
6909 
6910 static int memory_numa_stat_show(struct seq_file *m, void *v)
6911 {
6912 	int i;
6913 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6914 
6915 	mem_cgroup_flush_stats(memcg);
6916 
6917 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6918 		int nid;
6919 
6920 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6921 			continue;
6922 
6923 		seq_printf(m, "%s", memory_stats[i].name);
6924 		for_each_node_state(nid, N_MEMORY) {
6925 			u64 size;
6926 			struct lruvec *lruvec;
6927 
6928 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6929 			size = lruvec_page_state_output(lruvec,
6930 							memory_stats[i].idx);
6931 			seq_printf(m, " N%d=%llu", nid, size);
6932 		}
6933 		seq_putc(m, '\n');
6934 	}
6935 
6936 	return 0;
6937 }
6938 #endif
6939 
6940 static int memory_oom_group_show(struct seq_file *m, void *v)
6941 {
6942 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6943 
6944 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6945 
6946 	return 0;
6947 }
6948 
6949 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6950 				      char *buf, size_t nbytes, loff_t off)
6951 {
6952 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6953 	int ret, oom_group;
6954 
6955 	buf = strstrip(buf);
6956 	if (!buf)
6957 		return -EINVAL;
6958 
6959 	ret = kstrtoint(buf, 0, &oom_group);
6960 	if (ret)
6961 		return ret;
6962 
6963 	if (oom_group != 0 && oom_group != 1)
6964 		return -EINVAL;
6965 
6966 	WRITE_ONCE(memcg->oom_group, oom_group);
6967 
6968 	return nbytes;
6969 }
6970 
6971 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6972 			      size_t nbytes, loff_t off)
6973 {
6974 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6975 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6976 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6977 	unsigned int reclaim_options;
6978 	int err;
6979 
6980 	buf = strstrip(buf);
6981 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6982 	if (err)
6983 		return err;
6984 
6985 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6986 	while (nr_reclaimed < nr_to_reclaim) {
6987 		/* Will converge on zero, but reclaim enforces a minimum */
6988 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
6989 		unsigned long reclaimed;
6990 
6991 		if (signal_pending(current))
6992 			return -EINTR;
6993 
6994 		/*
6995 		 * This is the final attempt, drain percpu lru caches in the
6996 		 * hope of introducing more evictable pages for
6997 		 * try_to_free_mem_cgroup_pages().
6998 		 */
6999 		if (!nr_retries)
7000 			lru_add_drain_all();
7001 
7002 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
7003 					batch_size, GFP_KERNEL, reclaim_options);
7004 
7005 		if (!reclaimed && !nr_retries--)
7006 			return -EAGAIN;
7007 
7008 		nr_reclaimed += reclaimed;
7009 	}
7010 
7011 	return nbytes;
7012 }
7013 
7014 static struct cftype memory_files[] = {
7015 	{
7016 		.name = "current",
7017 		.flags = CFTYPE_NOT_ON_ROOT,
7018 		.read_u64 = memory_current_read,
7019 	},
7020 	{
7021 		.name = "peak",
7022 		.flags = CFTYPE_NOT_ON_ROOT,
7023 		.read_u64 = memory_peak_read,
7024 	},
7025 	{
7026 		.name = "min",
7027 		.flags = CFTYPE_NOT_ON_ROOT,
7028 		.seq_show = memory_min_show,
7029 		.write = memory_min_write,
7030 	},
7031 	{
7032 		.name = "low",
7033 		.flags = CFTYPE_NOT_ON_ROOT,
7034 		.seq_show = memory_low_show,
7035 		.write = memory_low_write,
7036 	},
7037 	{
7038 		.name = "high",
7039 		.flags = CFTYPE_NOT_ON_ROOT,
7040 		.seq_show = memory_high_show,
7041 		.write = memory_high_write,
7042 	},
7043 	{
7044 		.name = "max",
7045 		.flags = CFTYPE_NOT_ON_ROOT,
7046 		.seq_show = memory_max_show,
7047 		.write = memory_max_write,
7048 	},
7049 	{
7050 		.name = "events",
7051 		.flags = CFTYPE_NOT_ON_ROOT,
7052 		.file_offset = offsetof(struct mem_cgroup, events_file),
7053 		.seq_show = memory_events_show,
7054 	},
7055 	{
7056 		.name = "events.local",
7057 		.flags = CFTYPE_NOT_ON_ROOT,
7058 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
7059 		.seq_show = memory_events_local_show,
7060 	},
7061 	{
7062 		.name = "stat",
7063 		.seq_show = memory_stat_show,
7064 	},
7065 #ifdef CONFIG_NUMA
7066 	{
7067 		.name = "numa_stat",
7068 		.seq_show = memory_numa_stat_show,
7069 	},
7070 #endif
7071 	{
7072 		.name = "oom.group",
7073 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7074 		.seq_show = memory_oom_group_show,
7075 		.write = memory_oom_group_write,
7076 	},
7077 	{
7078 		.name = "reclaim",
7079 		.flags = CFTYPE_NS_DELEGATABLE,
7080 		.write = memory_reclaim,
7081 	},
7082 	{ }	/* terminate */
7083 };
7084 
7085 struct cgroup_subsys memory_cgrp_subsys = {
7086 	.css_alloc = mem_cgroup_css_alloc,
7087 	.css_online = mem_cgroup_css_online,
7088 	.css_offline = mem_cgroup_css_offline,
7089 	.css_released = mem_cgroup_css_released,
7090 	.css_free = mem_cgroup_css_free,
7091 	.css_reset = mem_cgroup_css_reset,
7092 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
7093 	.can_attach = mem_cgroup_can_attach,
7094 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7095 	.attach = mem_cgroup_attach,
7096 #endif
7097 	.cancel_attach = mem_cgroup_cancel_attach,
7098 	.post_attach = mem_cgroup_move_task,
7099 #ifdef CONFIG_MEMCG_KMEM
7100 	.fork = mem_cgroup_fork,
7101 	.exit = mem_cgroup_exit,
7102 #endif
7103 	.dfl_cftypes = memory_files,
7104 	.legacy_cftypes = mem_cgroup_legacy_files,
7105 	.early_init = 0,
7106 };
7107 
7108 /*
7109  * This function calculates an individual cgroup's effective
7110  * protection which is derived from its own memory.min/low, its
7111  * parent's and siblings' settings, as well as the actual memory
7112  * distribution in the tree.
7113  *
7114  * The following rules apply to the effective protection values:
7115  *
7116  * 1. At the first level of reclaim, effective protection is equal to
7117  *    the declared protection in memory.min and memory.low.
7118  *
7119  * 2. To enable safe delegation of the protection configuration, at
7120  *    subsequent levels the effective protection is capped to the
7121  *    parent's effective protection.
7122  *
7123  * 3. To make complex and dynamic subtrees easier to configure, the
7124  *    user is allowed to overcommit the declared protection at a given
7125  *    level. If that is the case, the parent's effective protection is
7126  *    distributed to the children in proportion to how much protection
7127  *    they have declared and how much of it they are utilizing.
7128  *
7129  *    This makes distribution proportional, but also work-conserving:
7130  *    if one cgroup claims much more protection than it uses memory,
7131  *    the unused remainder is available to its siblings.
7132  *
7133  * 4. Conversely, when the declared protection is undercommitted at a
7134  *    given level, the distribution of the larger parental protection
7135  *    budget is NOT proportional. A cgroup's protection from a sibling
7136  *    is capped to its own memory.min/low setting.
7137  *
7138  * 5. However, to allow protecting recursive subtrees from each other
7139  *    without having to declare each individual cgroup's fixed share
7140  *    of the ancestor's claim to protection, any unutilized -
7141  *    "floating" - protection from up the tree is distributed in
7142  *    proportion to each cgroup's *usage*. This makes the protection
7143  *    neutral wrt sibling cgroups and lets them compete freely over
7144  *    the shared parental protection budget, but it protects the
7145  *    subtree as a whole from neighboring subtrees.
7146  *
7147  * Note that 4. and 5. are not in conflict: 4. is about protecting
7148  * against immediate siblings whereas 5. is about protecting against
7149  * neighboring subtrees.
7150  */
7151 static unsigned long effective_protection(unsigned long usage,
7152 					  unsigned long parent_usage,
7153 					  unsigned long setting,
7154 					  unsigned long parent_effective,
7155 					  unsigned long siblings_protected)
7156 {
7157 	unsigned long protected;
7158 	unsigned long ep;
7159 
7160 	protected = min(usage, setting);
7161 	/*
7162 	 * If all cgroups at this level combined claim and use more
7163 	 * protection than what the parent affords them, distribute
7164 	 * shares in proportion to utilization.
7165 	 *
7166 	 * We are using actual utilization rather than the statically
7167 	 * claimed protection in order to be work-conserving: claimed
7168 	 * but unused protection is available to siblings that would
7169 	 * otherwise get a smaller chunk than what they claimed.
7170 	 */
7171 	if (siblings_protected > parent_effective)
7172 		return protected * parent_effective / siblings_protected;
7173 
7174 	/*
7175 	 * Ok, utilized protection of all children is within what the
7176 	 * parent affords them, so we know whatever this child claims
7177 	 * and utilizes is effectively protected.
7178 	 *
7179 	 * If there is unprotected usage beyond this value, reclaim
7180 	 * will apply pressure in proportion to that amount.
7181 	 *
7182 	 * If there is unutilized protection, the cgroup will be fully
7183 	 * shielded from reclaim, but we do return a smaller value for
7184 	 * protection than what the group could enjoy in theory. This
7185 	 * is okay. With the overcommit distribution above, effective
7186 	 * protection is always dependent on how memory is actually
7187 	 * consumed among the siblings anyway.
7188 	 */
7189 	ep = protected;
7190 
7191 	/*
7192 	 * If the children aren't claiming (all of) the protection
7193 	 * afforded to them by the parent, distribute the remainder in
7194 	 * proportion to the (unprotected) memory of each cgroup. That
7195 	 * way, cgroups that aren't explicitly prioritized wrt each
7196 	 * other compete freely over the allowance, but they are
7197 	 * collectively protected from neighboring trees.
7198 	 *
7199 	 * We're using unprotected memory for the weight so that if
7200 	 * some cgroups DO claim explicit protection, we don't protect
7201 	 * the same bytes twice.
7202 	 *
7203 	 * Check both usage and parent_usage against the respective
7204 	 * protected values. One should imply the other, but they
7205 	 * aren't read atomically - make sure the division is sane.
7206 	 */
7207 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7208 		return ep;
7209 	if (parent_effective > siblings_protected &&
7210 	    parent_usage > siblings_protected &&
7211 	    usage > protected) {
7212 		unsigned long unclaimed;
7213 
7214 		unclaimed = parent_effective - siblings_protected;
7215 		unclaimed *= usage - protected;
7216 		unclaimed /= parent_usage - siblings_protected;
7217 
7218 		ep += unclaimed;
7219 	}
7220 
7221 	return ep;
7222 }
7223 
7224 /**
7225  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7226  * @root: the top ancestor of the sub-tree being checked
7227  * @memcg: the memory cgroup to check
7228  *
7229  * WARNING: This function is not stateless! It can only be used as part
7230  *          of a top-down tree iteration, not for isolated queries.
7231  */
7232 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7233 				     struct mem_cgroup *memcg)
7234 {
7235 	unsigned long usage, parent_usage;
7236 	struct mem_cgroup *parent;
7237 
7238 	if (mem_cgroup_disabled())
7239 		return;
7240 
7241 	if (!root)
7242 		root = root_mem_cgroup;
7243 
7244 	/*
7245 	 * Effective values of the reclaim targets are ignored so they
7246 	 * can be stale. Have a look at mem_cgroup_protection for more
7247 	 * details.
7248 	 * TODO: calculation should be more robust so that we do not need
7249 	 * that special casing.
7250 	 */
7251 	if (memcg == root)
7252 		return;
7253 
7254 	usage = page_counter_read(&memcg->memory);
7255 	if (!usage)
7256 		return;
7257 
7258 	parent = parent_mem_cgroup(memcg);
7259 
7260 	if (parent == root) {
7261 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
7262 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
7263 		return;
7264 	}
7265 
7266 	parent_usage = page_counter_read(&parent->memory);
7267 
7268 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7269 			READ_ONCE(memcg->memory.min),
7270 			READ_ONCE(parent->memory.emin),
7271 			atomic_long_read(&parent->memory.children_min_usage)));
7272 
7273 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7274 			READ_ONCE(memcg->memory.low),
7275 			READ_ONCE(parent->memory.elow),
7276 			atomic_long_read(&parent->memory.children_low_usage)));
7277 }
7278 
7279 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7280 			gfp_t gfp)
7281 {
7282 	int ret;
7283 
7284 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7285 	if (ret)
7286 		goto out;
7287 
7288 	mem_cgroup_commit_charge(folio, memcg);
7289 out:
7290 	return ret;
7291 }
7292 
7293 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7294 {
7295 	struct mem_cgroup *memcg;
7296 	int ret;
7297 
7298 	memcg = get_mem_cgroup_from_mm(mm);
7299 	ret = charge_memcg(folio, memcg, gfp);
7300 	css_put(&memcg->css);
7301 
7302 	return ret;
7303 }
7304 
7305 /**
7306  * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7307  * @memcg: memcg to charge.
7308  * @gfp: reclaim mode.
7309  * @nr_pages: number of pages to charge.
7310  *
7311  * This function is called when allocating a huge page folio to determine if
7312  * the memcg has the capacity for it. It does not commit the charge yet,
7313  * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7314  *
7315  * Once we have obtained the hugetlb folio, we can call
7316  * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7317  * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7318  * of try_charge().
7319  *
7320  * Returns 0 on success. Otherwise, an error code is returned.
7321  */
7322 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7323 			long nr_pages)
7324 {
7325 	/*
7326 	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7327 	 * but do not attempt to commit charge later (or cancel on error) either.
7328 	 */
7329 	if (mem_cgroup_disabled() || !memcg ||
7330 		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7331 		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7332 		return -EOPNOTSUPP;
7333 
7334 	if (try_charge(memcg, gfp, nr_pages))
7335 		return -ENOMEM;
7336 
7337 	return 0;
7338 }
7339 
7340 /**
7341  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7342  * @folio: folio to charge.
7343  * @mm: mm context of the victim
7344  * @gfp: reclaim mode
7345  * @entry: swap entry for which the folio is allocated
7346  *
7347  * This function charges a folio allocated for swapin. Please call this before
7348  * adding the folio to the swapcache.
7349  *
7350  * Returns 0 on success. Otherwise, an error code is returned.
7351  */
7352 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7353 				  gfp_t gfp, swp_entry_t entry)
7354 {
7355 	struct mem_cgroup *memcg;
7356 	unsigned short id;
7357 	int ret;
7358 
7359 	if (mem_cgroup_disabled())
7360 		return 0;
7361 
7362 	id = lookup_swap_cgroup_id(entry);
7363 	rcu_read_lock();
7364 	memcg = mem_cgroup_from_id(id);
7365 	if (!memcg || !css_tryget_online(&memcg->css))
7366 		memcg = get_mem_cgroup_from_mm(mm);
7367 	rcu_read_unlock();
7368 
7369 	ret = charge_memcg(folio, memcg, gfp);
7370 
7371 	css_put(&memcg->css);
7372 	return ret;
7373 }
7374 
7375 /*
7376  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7377  * @entry: swap entry for which the page is charged
7378  *
7379  * Call this function after successfully adding the charged page to swapcache.
7380  *
7381  * Note: This function assumes the page for which swap slot is being uncharged
7382  * is order 0 page.
7383  */
7384 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7385 {
7386 	/*
7387 	 * Cgroup1's unified memory+swap counter has been charged with the
7388 	 * new swapcache page, finish the transfer by uncharging the swap
7389 	 * slot. The swap slot would also get uncharged when it dies, but
7390 	 * it can stick around indefinitely and we'd count the page twice
7391 	 * the entire time.
7392 	 *
7393 	 * Cgroup2 has separate resource counters for memory and swap,
7394 	 * so this is a non-issue here. Memory and swap charge lifetimes
7395 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7396 	 * page to memory here, and uncharge swap when the slot is freed.
7397 	 */
7398 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7399 		/*
7400 		 * The swap entry might not get freed for a long time,
7401 		 * let's not wait for it.  The page already received a
7402 		 * memory+swap charge, drop the swap entry duplicate.
7403 		 */
7404 		mem_cgroup_uncharge_swap(entry, 1);
7405 	}
7406 }
7407 
7408 struct uncharge_gather {
7409 	struct mem_cgroup *memcg;
7410 	unsigned long nr_memory;
7411 	unsigned long pgpgout;
7412 	unsigned long nr_kmem;
7413 	int nid;
7414 };
7415 
7416 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7417 {
7418 	memset(ug, 0, sizeof(*ug));
7419 }
7420 
7421 static void uncharge_batch(const struct uncharge_gather *ug)
7422 {
7423 	unsigned long flags;
7424 
7425 	if (ug->nr_memory) {
7426 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7427 		if (do_memsw_account())
7428 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7429 		if (ug->nr_kmem)
7430 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7431 		memcg_oom_recover(ug->memcg);
7432 	}
7433 
7434 	local_irq_save(flags);
7435 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7436 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7437 	memcg_check_events(ug->memcg, ug->nid);
7438 	local_irq_restore(flags);
7439 
7440 	/* drop reference from uncharge_folio */
7441 	css_put(&ug->memcg->css);
7442 }
7443 
7444 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7445 {
7446 	long nr_pages;
7447 	struct mem_cgroup *memcg;
7448 	struct obj_cgroup *objcg;
7449 
7450 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7451 
7452 	/*
7453 	 * Nobody should be changing or seriously looking at
7454 	 * folio memcg or objcg at this point, we have fully
7455 	 * exclusive access to the folio.
7456 	 */
7457 	if (folio_memcg_kmem(folio)) {
7458 		objcg = __folio_objcg(folio);
7459 		/*
7460 		 * This get matches the put at the end of the function and
7461 		 * kmem pages do not hold memcg references anymore.
7462 		 */
7463 		memcg = get_mem_cgroup_from_objcg(objcg);
7464 	} else {
7465 		memcg = __folio_memcg(folio);
7466 	}
7467 
7468 	if (!memcg)
7469 		return;
7470 
7471 	if (ug->memcg != memcg) {
7472 		if (ug->memcg) {
7473 			uncharge_batch(ug);
7474 			uncharge_gather_clear(ug);
7475 		}
7476 		ug->memcg = memcg;
7477 		ug->nid = folio_nid(folio);
7478 
7479 		/* pairs with css_put in uncharge_batch */
7480 		css_get(&memcg->css);
7481 	}
7482 
7483 	nr_pages = folio_nr_pages(folio);
7484 
7485 	if (folio_memcg_kmem(folio)) {
7486 		ug->nr_memory += nr_pages;
7487 		ug->nr_kmem += nr_pages;
7488 
7489 		folio->memcg_data = 0;
7490 		obj_cgroup_put(objcg);
7491 	} else {
7492 		/* LRU pages aren't accounted at the root level */
7493 		if (!mem_cgroup_is_root(memcg))
7494 			ug->nr_memory += nr_pages;
7495 		ug->pgpgout++;
7496 
7497 		folio->memcg_data = 0;
7498 	}
7499 
7500 	css_put(&memcg->css);
7501 }
7502 
7503 void __mem_cgroup_uncharge(struct folio *folio)
7504 {
7505 	struct uncharge_gather ug;
7506 
7507 	/* Don't touch folio->lru of any random page, pre-check: */
7508 	if (!folio_memcg(folio))
7509 		return;
7510 
7511 	uncharge_gather_clear(&ug);
7512 	uncharge_folio(folio, &ug);
7513 	uncharge_batch(&ug);
7514 }
7515 
7516 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7517 {
7518 	struct uncharge_gather ug;
7519 	unsigned int i;
7520 
7521 	uncharge_gather_clear(&ug);
7522 	for (i = 0; i < folios->nr; i++)
7523 		uncharge_folio(folios->folios[i], &ug);
7524 	if (ug.memcg)
7525 		uncharge_batch(&ug);
7526 }
7527 
7528 /**
7529  * mem_cgroup_replace_folio - Charge a folio's replacement.
7530  * @old: Currently circulating folio.
7531  * @new: Replacement folio.
7532  *
7533  * Charge @new as a replacement folio for @old. @old will
7534  * be uncharged upon free. This is only used by the page cache
7535  * (in replace_page_cache_folio()).
7536  *
7537  * Both folios must be locked, @new->mapping must be set up.
7538  */
7539 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7540 {
7541 	struct mem_cgroup *memcg;
7542 	long nr_pages = folio_nr_pages(new);
7543 	unsigned long flags;
7544 
7545 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7546 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7547 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7548 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7549 
7550 	if (mem_cgroup_disabled())
7551 		return;
7552 
7553 	/* Page cache replacement: new folio already charged? */
7554 	if (folio_memcg(new))
7555 		return;
7556 
7557 	memcg = folio_memcg(old);
7558 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7559 	if (!memcg)
7560 		return;
7561 
7562 	/* Force-charge the new page. The old one will be freed soon */
7563 	if (!mem_cgroup_is_root(memcg)) {
7564 		page_counter_charge(&memcg->memory, nr_pages);
7565 		if (do_memsw_account())
7566 			page_counter_charge(&memcg->memsw, nr_pages);
7567 	}
7568 
7569 	css_get(&memcg->css);
7570 	commit_charge(new, memcg);
7571 
7572 	local_irq_save(flags);
7573 	mem_cgroup_charge_statistics(memcg, nr_pages);
7574 	memcg_check_events(memcg, folio_nid(new));
7575 	local_irq_restore(flags);
7576 }
7577 
7578 /**
7579  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7580  * @old: Currently circulating folio.
7581  * @new: Replacement folio.
7582  *
7583  * Transfer the memcg data from the old folio to the new folio for migration.
7584  * The old folio's data info will be cleared. Note that the memory counters
7585  * will remain unchanged throughout the process.
7586  *
7587  * Both folios must be locked, @new->mapping must be set up.
7588  */
7589 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7590 {
7591 	struct mem_cgroup *memcg;
7592 
7593 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7594 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7595 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7596 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7597 
7598 	if (mem_cgroup_disabled())
7599 		return;
7600 
7601 	memcg = folio_memcg(old);
7602 	/*
7603 	 * Note that it is normal to see !memcg for a hugetlb folio.
7604 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7605 	 * was not selected.
7606 	 */
7607 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7608 	if (!memcg)
7609 		return;
7610 
7611 	/* Transfer the charge and the css ref */
7612 	commit_charge(new, memcg);
7613 	/*
7614 	 * If the old folio is a large folio and is in the split queue, it needs
7615 	 * to be removed from the split queue now, in case getting an incorrect
7616 	 * split queue in destroy_large_folio() after the memcg of the old folio
7617 	 * is cleared.
7618 	 *
7619 	 * In addition, the old folio is about to be freed after migration, so
7620 	 * removing from the split queue a bit earlier seems reasonable.
7621 	 */
7622 	if (folio_test_large(old) && folio_test_large_rmappable(old))
7623 		folio_undo_large_rmappable(old);
7624 	old->memcg_data = 0;
7625 }
7626 
7627 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7628 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7629 
7630 void mem_cgroup_sk_alloc(struct sock *sk)
7631 {
7632 	struct mem_cgroup *memcg;
7633 
7634 	if (!mem_cgroup_sockets_enabled)
7635 		return;
7636 
7637 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7638 	if (!in_task())
7639 		return;
7640 
7641 	rcu_read_lock();
7642 	memcg = mem_cgroup_from_task(current);
7643 	if (mem_cgroup_is_root(memcg))
7644 		goto out;
7645 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7646 		goto out;
7647 	if (css_tryget(&memcg->css))
7648 		sk->sk_memcg = memcg;
7649 out:
7650 	rcu_read_unlock();
7651 }
7652 
7653 void mem_cgroup_sk_free(struct sock *sk)
7654 {
7655 	if (sk->sk_memcg)
7656 		css_put(&sk->sk_memcg->css);
7657 }
7658 
7659 /**
7660  * mem_cgroup_charge_skmem - charge socket memory
7661  * @memcg: memcg to charge
7662  * @nr_pages: number of pages to charge
7663  * @gfp_mask: reclaim mode
7664  *
7665  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7666  * @memcg's configured limit, %false if it doesn't.
7667  */
7668 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7669 			     gfp_t gfp_mask)
7670 {
7671 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7672 		struct page_counter *fail;
7673 
7674 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7675 			memcg->tcpmem_pressure = 0;
7676 			return true;
7677 		}
7678 		memcg->tcpmem_pressure = 1;
7679 		if (gfp_mask & __GFP_NOFAIL) {
7680 			page_counter_charge(&memcg->tcpmem, nr_pages);
7681 			return true;
7682 		}
7683 		return false;
7684 	}
7685 
7686 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7687 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7688 		return true;
7689 	}
7690 
7691 	return false;
7692 }
7693 
7694 /**
7695  * mem_cgroup_uncharge_skmem - uncharge socket memory
7696  * @memcg: memcg to uncharge
7697  * @nr_pages: number of pages to uncharge
7698  */
7699 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7700 {
7701 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7702 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7703 		return;
7704 	}
7705 
7706 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7707 
7708 	refill_stock(memcg, nr_pages);
7709 }
7710 
7711 static int __init cgroup_memory(char *s)
7712 {
7713 	char *token;
7714 
7715 	while ((token = strsep(&s, ",")) != NULL) {
7716 		if (!*token)
7717 			continue;
7718 		if (!strcmp(token, "nosocket"))
7719 			cgroup_memory_nosocket = true;
7720 		if (!strcmp(token, "nokmem"))
7721 			cgroup_memory_nokmem = true;
7722 		if (!strcmp(token, "nobpf"))
7723 			cgroup_memory_nobpf = true;
7724 	}
7725 	return 1;
7726 }
7727 __setup("cgroup.memory=", cgroup_memory);
7728 
7729 /*
7730  * subsys_initcall() for memory controller.
7731  *
7732  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7733  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7734  * basically everything that doesn't depend on a specific mem_cgroup structure
7735  * should be initialized from here.
7736  */
7737 static int __init mem_cgroup_init(void)
7738 {
7739 	int cpu, node;
7740 
7741 	/*
7742 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7743 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7744 	 * to work fine, we should make sure that the overfill threshold can't
7745 	 * exceed S32_MAX / PAGE_SIZE.
7746 	 */
7747 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7748 
7749 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7750 				  memcg_hotplug_cpu_dead);
7751 
7752 	for_each_possible_cpu(cpu)
7753 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7754 			  drain_local_stock);
7755 
7756 	for_each_node(node) {
7757 		struct mem_cgroup_tree_per_node *rtpn;
7758 
7759 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7760 
7761 		rtpn->rb_root = RB_ROOT;
7762 		rtpn->rb_rightmost = NULL;
7763 		spin_lock_init(&rtpn->lock);
7764 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7765 	}
7766 
7767 	return 0;
7768 }
7769 subsys_initcall(mem_cgroup_init);
7770 
7771 #ifdef CONFIG_SWAP
7772 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7773 {
7774 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7775 		/*
7776 		 * The root cgroup cannot be destroyed, so it's refcount must
7777 		 * always be >= 1.
7778 		 */
7779 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7780 			VM_BUG_ON(1);
7781 			break;
7782 		}
7783 		memcg = parent_mem_cgroup(memcg);
7784 		if (!memcg)
7785 			memcg = root_mem_cgroup;
7786 	}
7787 	return memcg;
7788 }
7789 
7790 /**
7791  * mem_cgroup_swapout - transfer a memsw charge to swap
7792  * @folio: folio whose memsw charge to transfer
7793  * @entry: swap entry to move the charge to
7794  *
7795  * Transfer the memsw charge of @folio to @entry.
7796  */
7797 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7798 {
7799 	struct mem_cgroup *memcg, *swap_memcg;
7800 	unsigned int nr_entries;
7801 	unsigned short oldid;
7802 
7803 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7804 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7805 
7806 	if (mem_cgroup_disabled())
7807 		return;
7808 
7809 	if (!do_memsw_account())
7810 		return;
7811 
7812 	memcg = folio_memcg(folio);
7813 
7814 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7815 	if (!memcg)
7816 		return;
7817 
7818 	/*
7819 	 * In case the memcg owning these pages has been offlined and doesn't
7820 	 * have an ID allocated to it anymore, charge the closest online
7821 	 * ancestor for the swap instead and transfer the memory+swap charge.
7822 	 */
7823 	swap_memcg = mem_cgroup_id_get_online(memcg);
7824 	nr_entries = folio_nr_pages(folio);
7825 	/* Get references for the tail pages, too */
7826 	if (nr_entries > 1)
7827 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7828 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7829 				   nr_entries);
7830 	VM_BUG_ON_FOLIO(oldid, folio);
7831 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7832 
7833 	folio->memcg_data = 0;
7834 
7835 	if (!mem_cgroup_is_root(memcg))
7836 		page_counter_uncharge(&memcg->memory, nr_entries);
7837 
7838 	if (memcg != swap_memcg) {
7839 		if (!mem_cgroup_is_root(swap_memcg))
7840 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7841 		page_counter_uncharge(&memcg->memsw, nr_entries);
7842 	}
7843 
7844 	/*
7845 	 * Interrupts should be disabled here because the caller holds the
7846 	 * i_pages lock which is taken with interrupts-off. It is
7847 	 * important here to have the interrupts disabled because it is the
7848 	 * only synchronisation we have for updating the per-CPU variables.
7849 	 */
7850 	memcg_stats_lock();
7851 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7852 	memcg_stats_unlock();
7853 	memcg_check_events(memcg, folio_nid(folio));
7854 
7855 	css_put(&memcg->css);
7856 }
7857 
7858 /**
7859  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7860  * @folio: folio being added to swap
7861  * @entry: swap entry to charge
7862  *
7863  * Try to charge @folio's memcg for the swap space at @entry.
7864  *
7865  * Returns 0 on success, -ENOMEM on failure.
7866  */
7867 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7868 {
7869 	unsigned int nr_pages = folio_nr_pages(folio);
7870 	struct page_counter *counter;
7871 	struct mem_cgroup *memcg;
7872 	unsigned short oldid;
7873 
7874 	if (do_memsw_account())
7875 		return 0;
7876 
7877 	memcg = folio_memcg(folio);
7878 
7879 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7880 	if (!memcg)
7881 		return 0;
7882 
7883 	if (!entry.val) {
7884 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7885 		return 0;
7886 	}
7887 
7888 	memcg = mem_cgroup_id_get_online(memcg);
7889 
7890 	if (!mem_cgroup_is_root(memcg) &&
7891 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7892 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7893 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7894 		mem_cgroup_id_put(memcg);
7895 		return -ENOMEM;
7896 	}
7897 
7898 	/* Get references for the tail pages, too */
7899 	if (nr_pages > 1)
7900 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7901 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7902 	VM_BUG_ON_FOLIO(oldid, folio);
7903 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7904 
7905 	return 0;
7906 }
7907 
7908 /**
7909  * __mem_cgroup_uncharge_swap - uncharge swap space
7910  * @entry: swap entry to uncharge
7911  * @nr_pages: the amount of swap space to uncharge
7912  */
7913 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7914 {
7915 	struct mem_cgroup *memcg;
7916 	unsigned short id;
7917 
7918 	id = swap_cgroup_record(entry, 0, nr_pages);
7919 	rcu_read_lock();
7920 	memcg = mem_cgroup_from_id(id);
7921 	if (memcg) {
7922 		if (!mem_cgroup_is_root(memcg)) {
7923 			if (do_memsw_account())
7924 				page_counter_uncharge(&memcg->memsw, nr_pages);
7925 			else
7926 				page_counter_uncharge(&memcg->swap, nr_pages);
7927 		}
7928 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7929 		mem_cgroup_id_put_many(memcg, nr_pages);
7930 	}
7931 	rcu_read_unlock();
7932 }
7933 
7934 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7935 {
7936 	long nr_swap_pages = get_nr_swap_pages();
7937 
7938 	if (mem_cgroup_disabled() || do_memsw_account())
7939 		return nr_swap_pages;
7940 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7941 		nr_swap_pages = min_t(long, nr_swap_pages,
7942 				      READ_ONCE(memcg->swap.max) -
7943 				      page_counter_read(&memcg->swap));
7944 	return nr_swap_pages;
7945 }
7946 
7947 bool mem_cgroup_swap_full(struct folio *folio)
7948 {
7949 	struct mem_cgroup *memcg;
7950 
7951 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7952 
7953 	if (vm_swap_full())
7954 		return true;
7955 	if (do_memsw_account())
7956 		return false;
7957 
7958 	memcg = folio_memcg(folio);
7959 	if (!memcg)
7960 		return false;
7961 
7962 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7963 		unsigned long usage = page_counter_read(&memcg->swap);
7964 
7965 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7966 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7967 			return true;
7968 	}
7969 
7970 	return false;
7971 }
7972 
7973 static int __init setup_swap_account(char *s)
7974 {
7975 	bool res;
7976 
7977 	if (!kstrtobool(s, &res) && !res)
7978 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
7979 			     "in favor of configuring swap control via cgroupfs. "
7980 			     "Please report your usecase to linux-mm@kvack.org if you "
7981 			     "depend on this functionality.\n");
7982 	return 1;
7983 }
7984 __setup("swapaccount=", setup_swap_account);
7985 
7986 static u64 swap_current_read(struct cgroup_subsys_state *css,
7987 			     struct cftype *cft)
7988 {
7989 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7990 
7991 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7992 }
7993 
7994 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7995 			  struct cftype *cft)
7996 {
7997 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7998 
7999 	return (u64)memcg->swap.watermark * PAGE_SIZE;
8000 }
8001 
8002 static int swap_high_show(struct seq_file *m, void *v)
8003 {
8004 	return seq_puts_memcg_tunable(m,
8005 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8006 }
8007 
8008 static ssize_t swap_high_write(struct kernfs_open_file *of,
8009 			       char *buf, size_t nbytes, loff_t off)
8010 {
8011 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8012 	unsigned long high;
8013 	int err;
8014 
8015 	buf = strstrip(buf);
8016 	err = page_counter_memparse(buf, "max", &high);
8017 	if (err)
8018 		return err;
8019 
8020 	page_counter_set_high(&memcg->swap, high);
8021 
8022 	return nbytes;
8023 }
8024 
8025 static int swap_max_show(struct seq_file *m, void *v)
8026 {
8027 	return seq_puts_memcg_tunable(m,
8028 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8029 }
8030 
8031 static ssize_t swap_max_write(struct kernfs_open_file *of,
8032 			      char *buf, size_t nbytes, loff_t off)
8033 {
8034 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8035 	unsigned long max;
8036 	int err;
8037 
8038 	buf = strstrip(buf);
8039 	err = page_counter_memparse(buf, "max", &max);
8040 	if (err)
8041 		return err;
8042 
8043 	xchg(&memcg->swap.max, max);
8044 
8045 	return nbytes;
8046 }
8047 
8048 static int swap_events_show(struct seq_file *m, void *v)
8049 {
8050 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8051 
8052 	seq_printf(m, "high %lu\n",
8053 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8054 	seq_printf(m, "max %lu\n",
8055 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8056 	seq_printf(m, "fail %lu\n",
8057 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8058 
8059 	return 0;
8060 }
8061 
8062 static struct cftype swap_files[] = {
8063 	{
8064 		.name = "swap.current",
8065 		.flags = CFTYPE_NOT_ON_ROOT,
8066 		.read_u64 = swap_current_read,
8067 	},
8068 	{
8069 		.name = "swap.high",
8070 		.flags = CFTYPE_NOT_ON_ROOT,
8071 		.seq_show = swap_high_show,
8072 		.write = swap_high_write,
8073 	},
8074 	{
8075 		.name = "swap.max",
8076 		.flags = CFTYPE_NOT_ON_ROOT,
8077 		.seq_show = swap_max_show,
8078 		.write = swap_max_write,
8079 	},
8080 	{
8081 		.name = "swap.peak",
8082 		.flags = CFTYPE_NOT_ON_ROOT,
8083 		.read_u64 = swap_peak_read,
8084 	},
8085 	{
8086 		.name = "swap.events",
8087 		.flags = CFTYPE_NOT_ON_ROOT,
8088 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
8089 		.seq_show = swap_events_show,
8090 	},
8091 	{ }	/* terminate */
8092 };
8093 
8094 static struct cftype memsw_files[] = {
8095 	{
8096 		.name = "memsw.usage_in_bytes",
8097 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8098 		.read_u64 = mem_cgroup_read_u64,
8099 	},
8100 	{
8101 		.name = "memsw.max_usage_in_bytes",
8102 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8103 		.write = mem_cgroup_reset,
8104 		.read_u64 = mem_cgroup_read_u64,
8105 	},
8106 	{
8107 		.name = "memsw.limit_in_bytes",
8108 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8109 		.write = mem_cgroup_write,
8110 		.read_u64 = mem_cgroup_read_u64,
8111 	},
8112 	{
8113 		.name = "memsw.failcnt",
8114 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8115 		.write = mem_cgroup_reset,
8116 		.read_u64 = mem_cgroup_read_u64,
8117 	},
8118 	{ },	/* terminate */
8119 };
8120 
8121 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8122 /**
8123  * obj_cgroup_may_zswap - check if this cgroup can zswap
8124  * @objcg: the object cgroup
8125  *
8126  * Check if the hierarchical zswap limit has been reached.
8127  *
8128  * This doesn't check for specific headroom, and it is not atomic
8129  * either. But with zswap, the size of the allocation is only known
8130  * once compression has occurred, and this optimistic pre-check avoids
8131  * spending cycles on compression when there is already no room left
8132  * or zswap is disabled altogether somewhere in the hierarchy.
8133  */
8134 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8135 {
8136 	struct mem_cgroup *memcg, *original_memcg;
8137 	bool ret = true;
8138 
8139 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8140 		return true;
8141 
8142 	original_memcg = get_mem_cgroup_from_objcg(objcg);
8143 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8144 	     memcg = parent_mem_cgroup(memcg)) {
8145 		unsigned long max = READ_ONCE(memcg->zswap_max);
8146 		unsigned long pages;
8147 
8148 		if (max == PAGE_COUNTER_MAX)
8149 			continue;
8150 		if (max == 0) {
8151 			ret = false;
8152 			break;
8153 		}
8154 
8155 		/*
8156 		 * mem_cgroup_flush_stats() ignores small changes. Use
8157 		 * do_flush_stats() directly to get accurate stats for charging.
8158 		 */
8159 		do_flush_stats(memcg);
8160 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8161 		if (pages < max)
8162 			continue;
8163 		ret = false;
8164 		break;
8165 	}
8166 	mem_cgroup_put(original_memcg);
8167 	return ret;
8168 }
8169 
8170 /**
8171  * obj_cgroup_charge_zswap - charge compression backend memory
8172  * @objcg: the object cgroup
8173  * @size: size of compressed object
8174  *
8175  * This forces the charge after obj_cgroup_may_zswap() allowed
8176  * compression and storage in zwap for this cgroup to go ahead.
8177  */
8178 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8179 {
8180 	struct mem_cgroup *memcg;
8181 
8182 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8183 		return;
8184 
8185 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8186 
8187 	/* PF_MEMALLOC context, charging must succeed */
8188 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8189 		VM_WARN_ON_ONCE(1);
8190 
8191 	rcu_read_lock();
8192 	memcg = obj_cgroup_memcg(objcg);
8193 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8194 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8195 	rcu_read_unlock();
8196 }
8197 
8198 /**
8199  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8200  * @objcg: the object cgroup
8201  * @size: size of compressed object
8202  *
8203  * Uncharges zswap memory on page in.
8204  */
8205 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8206 {
8207 	struct mem_cgroup *memcg;
8208 
8209 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8210 		return;
8211 
8212 	obj_cgroup_uncharge(objcg, size);
8213 
8214 	rcu_read_lock();
8215 	memcg = obj_cgroup_memcg(objcg);
8216 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8217 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8218 	rcu_read_unlock();
8219 }
8220 
8221 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8222 {
8223 	/* if zswap is disabled, do not block pages going to the swapping device */
8224 	return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8225 }
8226 
8227 static u64 zswap_current_read(struct cgroup_subsys_state *css,
8228 			      struct cftype *cft)
8229 {
8230 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8231 
8232 	mem_cgroup_flush_stats(memcg);
8233 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8234 }
8235 
8236 static int zswap_max_show(struct seq_file *m, void *v)
8237 {
8238 	return seq_puts_memcg_tunable(m,
8239 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8240 }
8241 
8242 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8243 			       char *buf, size_t nbytes, loff_t off)
8244 {
8245 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8246 	unsigned long max;
8247 	int err;
8248 
8249 	buf = strstrip(buf);
8250 	err = page_counter_memparse(buf, "max", &max);
8251 	if (err)
8252 		return err;
8253 
8254 	xchg(&memcg->zswap_max, max);
8255 
8256 	return nbytes;
8257 }
8258 
8259 static int zswap_writeback_show(struct seq_file *m, void *v)
8260 {
8261 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8262 
8263 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8264 	return 0;
8265 }
8266 
8267 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8268 				char *buf, size_t nbytes, loff_t off)
8269 {
8270 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8271 	int zswap_writeback;
8272 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8273 
8274 	if (parse_ret)
8275 		return parse_ret;
8276 
8277 	if (zswap_writeback != 0 && zswap_writeback != 1)
8278 		return -EINVAL;
8279 
8280 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8281 	return nbytes;
8282 }
8283 
8284 static struct cftype zswap_files[] = {
8285 	{
8286 		.name = "zswap.current",
8287 		.flags = CFTYPE_NOT_ON_ROOT,
8288 		.read_u64 = zswap_current_read,
8289 	},
8290 	{
8291 		.name = "zswap.max",
8292 		.flags = CFTYPE_NOT_ON_ROOT,
8293 		.seq_show = zswap_max_show,
8294 		.write = zswap_max_write,
8295 	},
8296 	{
8297 		.name = "zswap.writeback",
8298 		.seq_show = zswap_writeback_show,
8299 		.write = zswap_writeback_write,
8300 	},
8301 	{ }	/* terminate */
8302 };
8303 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8304 
8305 static int __init mem_cgroup_swap_init(void)
8306 {
8307 	if (mem_cgroup_disabled())
8308 		return 0;
8309 
8310 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8311 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8312 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8313 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8314 #endif
8315 	return 0;
8316 }
8317 subsys_initcall(mem_cgroup_swap_init);
8318 
8319 #endif /* CONFIG_SWAP */
8320