1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/mm_inline.h> 53 #include <linux/page_cgroup.h> 54 #include <linux/cpu.h> 55 #include <linux/oom.h> 56 #include "internal.h" 57 #include <net/sock.h> 58 #include <net/ip.h> 59 #include <net/tcp_memcontrol.h> 60 61 #include <asm/uaccess.h> 62 63 #include <trace/events/vmscan.h> 64 65 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 66 EXPORT_SYMBOL(mem_cgroup_subsys); 67 68 #define MEM_CGROUP_RECLAIM_RETRIES 5 69 static struct mem_cgroup *root_mem_cgroup __read_mostly; 70 71 #ifdef CONFIG_MEMCG_SWAP 72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 73 int do_swap_account __read_mostly; 74 75 /* for remember boot option*/ 76 #ifdef CONFIG_MEMCG_SWAP_ENABLED 77 static int really_do_swap_account __initdata = 1; 78 #else 79 static int really_do_swap_account __initdata = 0; 80 #endif 81 82 #else 83 #define do_swap_account 0 84 #endif 85 86 87 /* 88 * Statistics for memory cgroup. 89 */ 90 enum mem_cgroup_stat_index { 91 /* 92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 93 */ 94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 98 MEM_CGROUP_STAT_NSTATS, 99 }; 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "mapped_file", 105 "swap", 106 }; 107 108 enum mem_cgroup_events_index { 109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 113 MEM_CGROUP_EVENTS_NSTATS, 114 }; 115 116 static const char * const mem_cgroup_events_names[] = { 117 "pgpgin", 118 "pgpgout", 119 "pgfault", 120 "pgmajfault", 121 }; 122 123 /* 124 * Per memcg event counter is incremented at every pagein/pageout. With THP, 125 * it will be incremated by the number of pages. This counter is used for 126 * for trigger some periodic events. This is straightforward and better 127 * than using jiffies etc. to handle periodic memcg event. 128 */ 129 enum mem_cgroup_events_target { 130 MEM_CGROUP_TARGET_THRESH, 131 MEM_CGROUP_TARGET_SOFTLIMIT, 132 MEM_CGROUP_TARGET_NUMAINFO, 133 MEM_CGROUP_NTARGETS, 134 }; 135 #define THRESHOLDS_EVENTS_TARGET 128 136 #define SOFTLIMIT_EVENTS_TARGET 1024 137 #define NUMAINFO_EVENTS_TARGET 1024 138 139 struct mem_cgroup_stat_cpu { 140 long count[MEM_CGROUP_STAT_NSTATS]; 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 142 unsigned long nr_page_events; 143 unsigned long targets[MEM_CGROUP_NTARGETS]; 144 }; 145 146 struct mem_cgroup_reclaim_iter { 147 /* css_id of the last scanned hierarchy member */ 148 int position; 149 /* scan generation, increased every round-trip */ 150 unsigned int generation; 151 }; 152 153 /* 154 * per-zone information in memory controller. 155 */ 156 struct mem_cgroup_per_zone { 157 struct lruvec lruvec; 158 unsigned long lru_size[NR_LRU_LISTS]; 159 160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 161 162 struct rb_node tree_node; /* RB tree node */ 163 unsigned long long usage_in_excess;/* Set to the value by which */ 164 /* the soft limit is exceeded*/ 165 bool on_tree; 166 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 167 /* use container_of */ 168 }; 169 170 struct mem_cgroup_per_node { 171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 172 }; 173 174 struct mem_cgroup_lru_info { 175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 176 }; 177 178 /* 179 * Cgroups above their limits are maintained in a RB-Tree, independent of 180 * their hierarchy representation 181 */ 182 183 struct mem_cgroup_tree_per_zone { 184 struct rb_root rb_root; 185 spinlock_t lock; 186 }; 187 188 struct mem_cgroup_tree_per_node { 189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 190 }; 191 192 struct mem_cgroup_tree { 193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 194 }; 195 196 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 197 198 struct mem_cgroup_threshold { 199 struct eventfd_ctx *eventfd; 200 u64 threshold; 201 }; 202 203 /* For threshold */ 204 struct mem_cgroup_threshold_ary { 205 /* An array index points to threshold just below or equal to usage. */ 206 int current_threshold; 207 /* Size of entries[] */ 208 unsigned int size; 209 /* Array of thresholds */ 210 struct mem_cgroup_threshold entries[0]; 211 }; 212 213 struct mem_cgroup_thresholds { 214 /* Primary thresholds array */ 215 struct mem_cgroup_threshold_ary *primary; 216 /* 217 * Spare threshold array. 218 * This is needed to make mem_cgroup_unregister_event() "never fail". 219 * It must be able to store at least primary->size - 1 entries. 220 */ 221 struct mem_cgroup_threshold_ary *spare; 222 }; 223 224 /* for OOM */ 225 struct mem_cgroup_eventfd_list { 226 struct list_head list; 227 struct eventfd_ctx *eventfd; 228 }; 229 230 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 232 233 /* 234 * The memory controller data structure. The memory controller controls both 235 * page cache and RSS per cgroup. We would eventually like to provide 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 237 * to help the administrator determine what knobs to tune. 238 * 239 * TODO: Add a water mark for the memory controller. Reclaim will begin when 240 * we hit the water mark. May be even add a low water mark, such that 241 * no reclaim occurs from a cgroup at it's low water mark, this is 242 * a feature that will be implemented much later in the future. 243 */ 244 struct mem_cgroup { 245 struct cgroup_subsys_state css; 246 /* 247 * the counter to account for memory usage 248 */ 249 struct res_counter res; 250 251 union { 252 /* 253 * the counter to account for mem+swap usage. 254 */ 255 struct res_counter memsw; 256 257 /* 258 * rcu_freeing is used only when freeing struct mem_cgroup, 259 * so put it into a union to avoid wasting more memory. 260 * It must be disjoint from the css field. It could be 261 * in a union with the res field, but res plays a much 262 * larger part in mem_cgroup life than memsw, and might 263 * be of interest, even at time of free, when debugging. 264 * So share rcu_head with the less interesting memsw. 265 */ 266 struct rcu_head rcu_freeing; 267 /* 268 * We also need some space for a worker in deferred freeing. 269 * By the time we call it, rcu_freeing is no longer in use. 270 */ 271 struct work_struct work_freeing; 272 }; 273 274 /* 275 * the counter to account for kernel memory usage. 276 */ 277 struct res_counter kmem; 278 /* 279 * Per cgroup active and inactive list, similar to the 280 * per zone LRU lists. 281 */ 282 struct mem_cgroup_lru_info info; 283 int last_scanned_node; 284 #if MAX_NUMNODES > 1 285 nodemask_t scan_nodes; 286 atomic_t numainfo_events; 287 atomic_t numainfo_updating; 288 #endif 289 /* 290 * Should the accounting and control be hierarchical, per subtree? 291 */ 292 bool use_hierarchy; 293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 294 295 bool oom_lock; 296 atomic_t under_oom; 297 298 atomic_t refcnt; 299 300 int swappiness; 301 /* OOM-Killer disable */ 302 int oom_kill_disable; 303 304 /* set when res.limit == memsw.limit */ 305 bool memsw_is_minimum; 306 307 /* protect arrays of thresholds */ 308 struct mutex thresholds_lock; 309 310 /* thresholds for memory usage. RCU-protected */ 311 struct mem_cgroup_thresholds thresholds; 312 313 /* thresholds for mem+swap usage. RCU-protected */ 314 struct mem_cgroup_thresholds memsw_thresholds; 315 316 /* For oom notifier event fd */ 317 struct list_head oom_notify; 318 319 /* 320 * Should we move charges of a task when a task is moved into this 321 * mem_cgroup ? And what type of charges should we move ? 322 */ 323 unsigned long move_charge_at_immigrate; 324 /* 325 * set > 0 if pages under this cgroup are moving to other cgroup. 326 */ 327 atomic_t moving_account; 328 /* taken only while moving_account > 0 */ 329 spinlock_t move_lock; 330 /* 331 * percpu counter. 332 */ 333 struct mem_cgroup_stat_cpu __percpu *stat; 334 /* 335 * used when a cpu is offlined or other synchronizations 336 * See mem_cgroup_read_stat(). 337 */ 338 struct mem_cgroup_stat_cpu nocpu_base; 339 spinlock_t pcp_counter_lock; 340 341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 342 struct tcp_memcontrol tcp_mem; 343 #endif 344 #if defined(CONFIG_MEMCG_KMEM) 345 /* analogous to slab_common's slab_caches list. per-memcg */ 346 struct list_head memcg_slab_caches; 347 /* Not a spinlock, we can take a lot of time walking the list */ 348 struct mutex slab_caches_mutex; 349 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 350 int kmemcg_id; 351 #endif 352 }; 353 354 /* internal only representation about the status of kmem accounting. */ 355 enum { 356 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 357 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 358 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 359 }; 360 361 /* We account when limit is on, but only after call sites are patched */ 362 #define KMEM_ACCOUNTED_MASK \ 363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 364 365 #ifdef CONFIG_MEMCG_KMEM 366 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 367 { 368 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 369 } 370 371 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 372 { 373 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 374 } 375 376 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 377 { 378 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 379 } 380 381 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 382 { 383 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 384 } 385 386 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 387 { 388 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 389 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 390 } 391 392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 393 { 394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 395 &memcg->kmem_account_flags); 396 } 397 #endif 398 399 /* Stuffs for move charges at task migration. */ 400 /* 401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 402 * left-shifted bitmap of these types. 403 */ 404 enum move_type { 405 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 406 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 407 NR_MOVE_TYPE, 408 }; 409 410 /* "mc" and its members are protected by cgroup_mutex */ 411 static struct move_charge_struct { 412 spinlock_t lock; /* for from, to */ 413 struct mem_cgroup *from; 414 struct mem_cgroup *to; 415 unsigned long precharge; 416 unsigned long moved_charge; 417 unsigned long moved_swap; 418 struct task_struct *moving_task; /* a task moving charges */ 419 wait_queue_head_t waitq; /* a waitq for other context */ 420 } mc = { 421 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 422 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 423 }; 424 425 static bool move_anon(void) 426 { 427 return test_bit(MOVE_CHARGE_TYPE_ANON, 428 &mc.to->move_charge_at_immigrate); 429 } 430 431 static bool move_file(void) 432 { 433 return test_bit(MOVE_CHARGE_TYPE_FILE, 434 &mc.to->move_charge_at_immigrate); 435 } 436 437 /* 438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 439 * limit reclaim to prevent infinite loops, if they ever occur. 440 */ 441 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 442 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 443 444 enum charge_type { 445 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 446 MEM_CGROUP_CHARGE_TYPE_ANON, 447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 448 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 449 NR_CHARGE_TYPE, 450 }; 451 452 /* for encoding cft->private value on file */ 453 enum res_type { 454 _MEM, 455 _MEMSWAP, 456 _OOM_TYPE, 457 _KMEM, 458 }; 459 460 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 461 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 462 #define MEMFILE_ATTR(val) ((val) & 0xffff) 463 /* Used for OOM nofiier */ 464 #define OOM_CONTROL (0) 465 466 /* 467 * Reclaim flags for mem_cgroup_hierarchical_reclaim 468 */ 469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 470 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 472 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 473 474 static void mem_cgroup_get(struct mem_cgroup *memcg); 475 static void mem_cgroup_put(struct mem_cgroup *memcg); 476 477 static inline 478 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 479 { 480 return container_of(s, struct mem_cgroup, css); 481 } 482 483 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 484 { 485 return (memcg == root_mem_cgroup); 486 } 487 488 /* Writing them here to avoid exposing memcg's inner layout */ 489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 490 491 void sock_update_memcg(struct sock *sk) 492 { 493 if (mem_cgroup_sockets_enabled) { 494 struct mem_cgroup *memcg; 495 struct cg_proto *cg_proto; 496 497 BUG_ON(!sk->sk_prot->proto_cgroup); 498 499 /* Socket cloning can throw us here with sk_cgrp already 500 * filled. It won't however, necessarily happen from 501 * process context. So the test for root memcg given 502 * the current task's memcg won't help us in this case. 503 * 504 * Respecting the original socket's memcg is a better 505 * decision in this case. 506 */ 507 if (sk->sk_cgrp) { 508 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 509 mem_cgroup_get(sk->sk_cgrp->memcg); 510 return; 511 } 512 513 rcu_read_lock(); 514 memcg = mem_cgroup_from_task(current); 515 cg_proto = sk->sk_prot->proto_cgroup(memcg); 516 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 517 mem_cgroup_get(memcg); 518 sk->sk_cgrp = cg_proto; 519 } 520 rcu_read_unlock(); 521 } 522 } 523 EXPORT_SYMBOL(sock_update_memcg); 524 525 void sock_release_memcg(struct sock *sk) 526 { 527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 528 struct mem_cgroup *memcg; 529 WARN_ON(!sk->sk_cgrp->memcg); 530 memcg = sk->sk_cgrp->memcg; 531 mem_cgroup_put(memcg); 532 } 533 } 534 535 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 536 { 537 if (!memcg || mem_cgroup_is_root(memcg)) 538 return NULL; 539 540 return &memcg->tcp_mem.cg_proto; 541 } 542 EXPORT_SYMBOL(tcp_proto_cgroup); 543 544 static void disarm_sock_keys(struct mem_cgroup *memcg) 545 { 546 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 547 return; 548 static_key_slow_dec(&memcg_socket_limit_enabled); 549 } 550 #else 551 static void disarm_sock_keys(struct mem_cgroup *memcg) 552 { 553 } 554 #endif 555 556 #ifdef CONFIG_MEMCG_KMEM 557 /* 558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 559 * There are two main reasons for not using the css_id for this: 560 * 1) this works better in sparse environments, where we have a lot of memcgs, 561 * but only a few kmem-limited. Or also, if we have, for instance, 200 562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 563 * 200 entry array for that. 564 * 565 * 2) In order not to violate the cgroup API, we would like to do all memory 566 * allocation in ->create(). At that point, we haven't yet allocated the 567 * css_id. Having a separate index prevents us from messing with the cgroup 568 * core for this 569 * 570 * The current size of the caches array is stored in 571 * memcg_limited_groups_array_size. It will double each time we have to 572 * increase it. 573 */ 574 static DEFINE_IDA(kmem_limited_groups); 575 int memcg_limited_groups_array_size; 576 577 /* 578 * MIN_SIZE is different than 1, because we would like to avoid going through 579 * the alloc/free process all the time. In a small machine, 4 kmem-limited 580 * cgroups is a reasonable guess. In the future, it could be a parameter or 581 * tunable, but that is strictly not necessary. 582 * 583 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 584 * this constant directly from cgroup, but it is understandable that this is 585 * better kept as an internal representation in cgroup.c. In any case, the 586 * css_id space is not getting any smaller, and we don't have to necessarily 587 * increase ours as well if it increases. 588 */ 589 #define MEMCG_CACHES_MIN_SIZE 4 590 #define MEMCG_CACHES_MAX_SIZE 65535 591 592 /* 593 * A lot of the calls to the cache allocation functions are expected to be 594 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 595 * conditional to this static branch, we'll have to allow modules that does 596 * kmem_cache_alloc and the such to see this symbol as well 597 */ 598 struct static_key memcg_kmem_enabled_key; 599 EXPORT_SYMBOL(memcg_kmem_enabled_key); 600 601 static void disarm_kmem_keys(struct mem_cgroup *memcg) 602 { 603 if (memcg_kmem_is_active(memcg)) { 604 static_key_slow_dec(&memcg_kmem_enabled_key); 605 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 606 } 607 /* 608 * This check can't live in kmem destruction function, 609 * since the charges will outlive the cgroup 610 */ 611 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 612 } 613 #else 614 static void disarm_kmem_keys(struct mem_cgroup *memcg) 615 { 616 } 617 #endif /* CONFIG_MEMCG_KMEM */ 618 619 static void disarm_static_keys(struct mem_cgroup *memcg) 620 { 621 disarm_sock_keys(memcg); 622 disarm_kmem_keys(memcg); 623 } 624 625 static void drain_all_stock_async(struct mem_cgroup *memcg); 626 627 static struct mem_cgroup_per_zone * 628 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 629 { 630 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 631 } 632 633 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 634 { 635 return &memcg->css; 636 } 637 638 static struct mem_cgroup_per_zone * 639 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 640 { 641 int nid = page_to_nid(page); 642 int zid = page_zonenum(page); 643 644 return mem_cgroup_zoneinfo(memcg, nid, zid); 645 } 646 647 static struct mem_cgroup_tree_per_zone * 648 soft_limit_tree_node_zone(int nid, int zid) 649 { 650 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 651 } 652 653 static struct mem_cgroup_tree_per_zone * 654 soft_limit_tree_from_page(struct page *page) 655 { 656 int nid = page_to_nid(page); 657 int zid = page_zonenum(page); 658 659 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 660 } 661 662 static void 663 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 664 struct mem_cgroup_per_zone *mz, 665 struct mem_cgroup_tree_per_zone *mctz, 666 unsigned long long new_usage_in_excess) 667 { 668 struct rb_node **p = &mctz->rb_root.rb_node; 669 struct rb_node *parent = NULL; 670 struct mem_cgroup_per_zone *mz_node; 671 672 if (mz->on_tree) 673 return; 674 675 mz->usage_in_excess = new_usage_in_excess; 676 if (!mz->usage_in_excess) 677 return; 678 while (*p) { 679 parent = *p; 680 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 681 tree_node); 682 if (mz->usage_in_excess < mz_node->usage_in_excess) 683 p = &(*p)->rb_left; 684 /* 685 * We can't avoid mem cgroups that are over their soft 686 * limit by the same amount 687 */ 688 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 689 p = &(*p)->rb_right; 690 } 691 rb_link_node(&mz->tree_node, parent, p); 692 rb_insert_color(&mz->tree_node, &mctz->rb_root); 693 mz->on_tree = true; 694 } 695 696 static void 697 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 698 struct mem_cgroup_per_zone *mz, 699 struct mem_cgroup_tree_per_zone *mctz) 700 { 701 if (!mz->on_tree) 702 return; 703 rb_erase(&mz->tree_node, &mctz->rb_root); 704 mz->on_tree = false; 705 } 706 707 static void 708 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 709 struct mem_cgroup_per_zone *mz, 710 struct mem_cgroup_tree_per_zone *mctz) 711 { 712 spin_lock(&mctz->lock); 713 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 714 spin_unlock(&mctz->lock); 715 } 716 717 718 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 719 { 720 unsigned long long excess; 721 struct mem_cgroup_per_zone *mz; 722 struct mem_cgroup_tree_per_zone *mctz; 723 int nid = page_to_nid(page); 724 int zid = page_zonenum(page); 725 mctz = soft_limit_tree_from_page(page); 726 727 /* 728 * Necessary to update all ancestors when hierarchy is used. 729 * because their event counter is not touched. 730 */ 731 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 732 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 733 excess = res_counter_soft_limit_excess(&memcg->res); 734 /* 735 * We have to update the tree if mz is on RB-tree or 736 * mem is over its softlimit. 737 */ 738 if (excess || mz->on_tree) { 739 spin_lock(&mctz->lock); 740 /* if on-tree, remove it */ 741 if (mz->on_tree) 742 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 743 /* 744 * Insert again. mz->usage_in_excess will be updated. 745 * If excess is 0, no tree ops. 746 */ 747 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 748 spin_unlock(&mctz->lock); 749 } 750 } 751 } 752 753 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 754 { 755 int node, zone; 756 struct mem_cgroup_per_zone *mz; 757 struct mem_cgroup_tree_per_zone *mctz; 758 759 for_each_node(node) { 760 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 761 mz = mem_cgroup_zoneinfo(memcg, node, zone); 762 mctz = soft_limit_tree_node_zone(node, zone); 763 mem_cgroup_remove_exceeded(memcg, mz, mctz); 764 } 765 } 766 } 767 768 static struct mem_cgroup_per_zone * 769 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 770 { 771 struct rb_node *rightmost = NULL; 772 struct mem_cgroup_per_zone *mz; 773 774 retry: 775 mz = NULL; 776 rightmost = rb_last(&mctz->rb_root); 777 if (!rightmost) 778 goto done; /* Nothing to reclaim from */ 779 780 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 781 /* 782 * Remove the node now but someone else can add it back, 783 * we will to add it back at the end of reclaim to its correct 784 * position in the tree. 785 */ 786 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 787 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 788 !css_tryget(&mz->memcg->css)) 789 goto retry; 790 done: 791 return mz; 792 } 793 794 static struct mem_cgroup_per_zone * 795 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 796 { 797 struct mem_cgroup_per_zone *mz; 798 799 spin_lock(&mctz->lock); 800 mz = __mem_cgroup_largest_soft_limit_node(mctz); 801 spin_unlock(&mctz->lock); 802 return mz; 803 } 804 805 /* 806 * Implementation Note: reading percpu statistics for memcg. 807 * 808 * Both of vmstat[] and percpu_counter has threshold and do periodic 809 * synchronization to implement "quick" read. There are trade-off between 810 * reading cost and precision of value. Then, we may have a chance to implement 811 * a periodic synchronizion of counter in memcg's counter. 812 * 813 * But this _read() function is used for user interface now. The user accounts 814 * memory usage by memory cgroup and he _always_ requires exact value because 815 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 816 * have to visit all online cpus and make sum. So, for now, unnecessary 817 * synchronization is not implemented. (just implemented for cpu hotplug) 818 * 819 * If there are kernel internal actions which can make use of some not-exact 820 * value, and reading all cpu value can be performance bottleneck in some 821 * common workload, threashold and synchonization as vmstat[] should be 822 * implemented. 823 */ 824 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 825 enum mem_cgroup_stat_index idx) 826 { 827 long val = 0; 828 int cpu; 829 830 get_online_cpus(); 831 for_each_online_cpu(cpu) 832 val += per_cpu(memcg->stat->count[idx], cpu); 833 #ifdef CONFIG_HOTPLUG_CPU 834 spin_lock(&memcg->pcp_counter_lock); 835 val += memcg->nocpu_base.count[idx]; 836 spin_unlock(&memcg->pcp_counter_lock); 837 #endif 838 put_online_cpus(); 839 return val; 840 } 841 842 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 843 bool charge) 844 { 845 int val = (charge) ? 1 : -1; 846 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 847 } 848 849 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 850 enum mem_cgroup_events_index idx) 851 { 852 unsigned long val = 0; 853 int cpu; 854 855 for_each_online_cpu(cpu) 856 val += per_cpu(memcg->stat->events[idx], cpu); 857 #ifdef CONFIG_HOTPLUG_CPU 858 spin_lock(&memcg->pcp_counter_lock); 859 val += memcg->nocpu_base.events[idx]; 860 spin_unlock(&memcg->pcp_counter_lock); 861 #endif 862 return val; 863 } 864 865 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 866 bool anon, int nr_pages) 867 { 868 preempt_disable(); 869 870 /* 871 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 872 * counted as CACHE even if it's on ANON LRU. 873 */ 874 if (anon) 875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 876 nr_pages); 877 else 878 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 879 nr_pages); 880 881 /* pagein of a big page is an event. So, ignore page size */ 882 if (nr_pages > 0) 883 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 884 else { 885 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 886 nr_pages = -nr_pages; /* for event */ 887 } 888 889 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 890 891 preempt_enable(); 892 } 893 894 unsigned long 895 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 896 { 897 struct mem_cgroup_per_zone *mz; 898 899 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 900 return mz->lru_size[lru]; 901 } 902 903 static unsigned long 904 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 905 unsigned int lru_mask) 906 { 907 struct mem_cgroup_per_zone *mz; 908 enum lru_list lru; 909 unsigned long ret = 0; 910 911 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 912 913 for_each_lru(lru) { 914 if (BIT(lru) & lru_mask) 915 ret += mz->lru_size[lru]; 916 } 917 return ret; 918 } 919 920 static unsigned long 921 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 922 int nid, unsigned int lru_mask) 923 { 924 u64 total = 0; 925 int zid; 926 927 for (zid = 0; zid < MAX_NR_ZONES; zid++) 928 total += mem_cgroup_zone_nr_lru_pages(memcg, 929 nid, zid, lru_mask); 930 931 return total; 932 } 933 934 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 935 unsigned int lru_mask) 936 { 937 int nid; 938 u64 total = 0; 939 940 for_each_node_state(nid, N_MEMORY) 941 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 942 return total; 943 } 944 945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 946 enum mem_cgroup_events_target target) 947 { 948 unsigned long val, next; 949 950 val = __this_cpu_read(memcg->stat->nr_page_events); 951 next = __this_cpu_read(memcg->stat->targets[target]); 952 /* from time_after() in jiffies.h */ 953 if ((long)next - (long)val < 0) { 954 switch (target) { 955 case MEM_CGROUP_TARGET_THRESH: 956 next = val + THRESHOLDS_EVENTS_TARGET; 957 break; 958 case MEM_CGROUP_TARGET_SOFTLIMIT: 959 next = val + SOFTLIMIT_EVENTS_TARGET; 960 break; 961 case MEM_CGROUP_TARGET_NUMAINFO: 962 next = val + NUMAINFO_EVENTS_TARGET; 963 break; 964 default: 965 break; 966 } 967 __this_cpu_write(memcg->stat->targets[target], next); 968 return true; 969 } 970 return false; 971 } 972 973 /* 974 * Check events in order. 975 * 976 */ 977 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 978 { 979 preempt_disable(); 980 /* threshold event is triggered in finer grain than soft limit */ 981 if (unlikely(mem_cgroup_event_ratelimit(memcg, 982 MEM_CGROUP_TARGET_THRESH))) { 983 bool do_softlimit; 984 bool do_numainfo __maybe_unused; 985 986 do_softlimit = mem_cgroup_event_ratelimit(memcg, 987 MEM_CGROUP_TARGET_SOFTLIMIT); 988 #if MAX_NUMNODES > 1 989 do_numainfo = mem_cgroup_event_ratelimit(memcg, 990 MEM_CGROUP_TARGET_NUMAINFO); 991 #endif 992 preempt_enable(); 993 994 mem_cgroup_threshold(memcg); 995 if (unlikely(do_softlimit)) 996 mem_cgroup_update_tree(memcg, page); 997 #if MAX_NUMNODES > 1 998 if (unlikely(do_numainfo)) 999 atomic_inc(&memcg->numainfo_events); 1000 #endif 1001 } else 1002 preempt_enable(); 1003 } 1004 1005 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 1006 { 1007 return mem_cgroup_from_css( 1008 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 1009 } 1010 1011 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1012 { 1013 /* 1014 * mm_update_next_owner() may clear mm->owner to NULL 1015 * if it races with swapoff, page migration, etc. 1016 * So this can be called with p == NULL. 1017 */ 1018 if (unlikely(!p)) 1019 return NULL; 1020 1021 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 1022 } 1023 1024 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1025 { 1026 struct mem_cgroup *memcg = NULL; 1027 1028 if (!mm) 1029 return NULL; 1030 /* 1031 * Because we have no locks, mm->owner's may be being moved to other 1032 * cgroup. We use css_tryget() here even if this looks 1033 * pessimistic (rather than adding locks here). 1034 */ 1035 rcu_read_lock(); 1036 do { 1037 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1038 if (unlikely(!memcg)) 1039 break; 1040 } while (!css_tryget(&memcg->css)); 1041 rcu_read_unlock(); 1042 return memcg; 1043 } 1044 1045 /** 1046 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1047 * @root: hierarchy root 1048 * @prev: previously returned memcg, NULL on first invocation 1049 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1050 * 1051 * Returns references to children of the hierarchy below @root, or 1052 * @root itself, or %NULL after a full round-trip. 1053 * 1054 * Caller must pass the return value in @prev on subsequent 1055 * invocations for reference counting, or use mem_cgroup_iter_break() 1056 * to cancel a hierarchy walk before the round-trip is complete. 1057 * 1058 * Reclaimers can specify a zone and a priority level in @reclaim to 1059 * divide up the memcgs in the hierarchy among all concurrent 1060 * reclaimers operating on the same zone and priority. 1061 */ 1062 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1063 struct mem_cgroup *prev, 1064 struct mem_cgroup_reclaim_cookie *reclaim) 1065 { 1066 struct mem_cgroup *memcg = NULL; 1067 int id = 0; 1068 1069 if (mem_cgroup_disabled()) 1070 return NULL; 1071 1072 if (!root) 1073 root = root_mem_cgroup; 1074 1075 if (prev && !reclaim) 1076 id = css_id(&prev->css); 1077 1078 if (prev && prev != root) 1079 css_put(&prev->css); 1080 1081 if (!root->use_hierarchy && root != root_mem_cgroup) { 1082 if (prev) 1083 return NULL; 1084 return root; 1085 } 1086 1087 while (!memcg) { 1088 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1089 struct cgroup_subsys_state *css; 1090 1091 if (reclaim) { 1092 int nid = zone_to_nid(reclaim->zone); 1093 int zid = zone_idx(reclaim->zone); 1094 struct mem_cgroup_per_zone *mz; 1095 1096 mz = mem_cgroup_zoneinfo(root, nid, zid); 1097 iter = &mz->reclaim_iter[reclaim->priority]; 1098 if (prev && reclaim->generation != iter->generation) 1099 return NULL; 1100 id = iter->position; 1101 } 1102 1103 rcu_read_lock(); 1104 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 1105 if (css) { 1106 if (css == &root->css || css_tryget(css)) 1107 memcg = mem_cgroup_from_css(css); 1108 } else 1109 id = 0; 1110 rcu_read_unlock(); 1111 1112 if (reclaim) { 1113 iter->position = id; 1114 if (!css) 1115 iter->generation++; 1116 else if (!prev && memcg) 1117 reclaim->generation = iter->generation; 1118 } 1119 1120 if (prev && !css) 1121 return NULL; 1122 } 1123 return memcg; 1124 } 1125 1126 /** 1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1128 * @root: hierarchy root 1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1130 */ 1131 void mem_cgroup_iter_break(struct mem_cgroup *root, 1132 struct mem_cgroup *prev) 1133 { 1134 if (!root) 1135 root = root_mem_cgroup; 1136 if (prev && prev != root) 1137 css_put(&prev->css); 1138 } 1139 1140 /* 1141 * Iteration constructs for visiting all cgroups (under a tree). If 1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1143 * be used for reference counting. 1144 */ 1145 #define for_each_mem_cgroup_tree(iter, root) \ 1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1147 iter != NULL; \ 1148 iter = mem_cgroup_iter(root, iter, NULL)) 1149 1150 #define for_each_mem_cgroup(iter) \ 1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1152 iter != NULL; \ 1153 iter = mem_cgroup_iter(NULL, iter, NULL)) 1154 1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1156 { 1157 struct mem_cgroup *memcg; 1158 1159 rcu_read_lock(); 1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1161 if (unlikely(!memcg)) 1162 goto out; 1163 1164 switch (idx) { 1165 case PGFAULT: 1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1167 break; 1168 case PGMAJFAULT: 1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1170 break; 1171 default: 1172 BUG(); 1173 } 1174 out: 1175 rcu_read_unlock(); 1176 } 1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1178 1179 /** 1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1181 * @zone: zone of the wanted lruvec 1182 * @memcg: memcg of the wanted lruvec 1183 * 1184 * Returns the lru list vector holding pages for the given @zone and 1185 * @mem. This can be the global zone lruvec, if the memory controller 1186 * is disabled. 1187 */ 1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1189 struct mem_cgroup *memcg) 1190 { 1191 struct mem_cgroup_per_zone *mz; 1192 struct lruvec *lruvec; 1193 1194 if (mem_cgroup_disabled()) { 1195 lruvec = &zone->lruvec; 1196 goto out; 1197 } 1198 1199 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1200 lruvec = &mz->lruvec; 1201 out: 1202 /* 1203 * Since a node can be onlined after the mem_cgroup was created, 1204 * we have to be prepared to initialize lruvec->zone here; 1205 * and if offlined then reonlined, we need to reinitialize it. 1206 */ 1207 if (unlikely(lruvec->zone != zone)) 1208 lruvec->zone = zone; 1209 return lruvec; 1210 } 1211 1212 /* 1213 * Following LRU functions are allowed to be used without PCG_LOCK. 1214 * Operations are called by routine of global LRU independently from memcg. 1215 * What we have to take care of here is validness of pc->mem_cgroup. 1216 * 1217 * Changes to pc->mem_cgroup happens when 1218 * 1. charge 1219 * 2. moving account 1220 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1221 * It is added to LRU before charge. 1222 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1223 * When moving account, the page is not on LRU. It's isolated. 1224 */ 1225 1226 /** 1227 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1228 * @page: the page 1229 * @zone: zone of the page 1230 */ 1231 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1232 { 1233 struct mem_cgroup_per_zone *mz; 1234 struct mem_cgroup *memcg; 1235 struct page_cgroup *pc; 1236 struct lruvec *lruvec; 1237 1238 if (mem_cgroup_disabled()) { 1239 lruvec = &zone->lruvec; 1240 goto out; 1241 } 1242 1243 pc = lookup_page_cgroup(page); 1244 memcg = pc->mem_cgroup; 1245 1246 /* 1247 * Surreptitiously switch any uncharged offlist page to root: 1248 * an uncharged page off lru does nothing to secure 1249 * its former mem_cgroup from sudden removal. 1250 * 1251 * Our caller holds lru_lock, and PageCgroupUsed is updated 1252 * under page_cgroup lock: between them, they make all uses 1253 * of pc->mem_cgroup safe. 1254 */ 1255 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1256 pc->mem_cgroup = memcg = root_mem_cgroup; 1257 1258 mz = page_cgroup_zoneinfo(memcg, page); 1259 lruvec = &mz->lruvec; 1260 out: 1261 /* 1262 * Since a node can be onlined after the mem_cgroup was created, 1263 * we have to be prepared to initialize lruvec->zone here; 1264 * and if offlined then reonlined, we need to reinitialize it. 1265 */ 1266 if (unlikely(lruvec->zone != zone)) 1267 lruvec->zone = zone; 1268 return lruvec; 1269 } 1270 1271 /** 1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1273 * @lruvec: mem_cgroup per zone lru vector 1274 * @lru: index of lru list the page is sitting on 1275 * @nr_pages: positive when adding or negative when removing 1276 * 1277 * This function must be called when a page is added to or removed from an 1278 * lru list. 1279 */ 1280 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1281 int nr_pages) 1282 { 1283 struct mem_cgroup_per_zone *mz; 1284 unsigned long *lru_size; 1285 1286 if (mem_cgroup_disabled()) 1287 return; 1288 1289 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1290 lru_size = mz->lru_size + lru; 1291 *lru_size += nr_pages; 1292 VM_BUG_ON((long)(*lru_size) < 0); 1293 } 1294 1295 /* 1296 * Checks whether given mem is same or in the root_mem_cgroup's 1297 * hierarchy subtree 1298 */ 1299 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1300 struct mem_cgroup *memcg) 1301 { 1302 if (root_memcg == memcg) 1303 return true; 1304 if (!root_memcg->use_hierarchy || !memcg) 1305 return false; 1306 return css_is_ancestor(&memcg->css, &root_memcg->css); 1307 } 1308 1309 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1310 struct mem_cgroup *memcg) 1311 { 1312 bool ret; 1313 1314 rcu_read_lock(); 1315 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1316 rcu_read_unlock(); 1317 return ret; 1318 } 1319 1320 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1321 { 1322 int ret; 1323 struct mem_cgroup *curr = NULL; 1324 struct task_struct *p; 1325 1326 p = find_lock_task_mm(task); 1327 if (p) { 1328 curr = try_get_mem_cgroup_from_mm(p->mm); 1329 task_unlock(p); 1330 } else { 1331 /* 1332 * All threads may have already detached their mm's, but the oom 1333 * killer still needs to detect if they have already been oom 1334 * killed to prevent needlessly killing additional tasks. 1335 */ 1336 task_lock(task); 1337 curr = mem_cgroup_from_task(task); 1338 if (curr) 1339 css_get(&curr->css); 1340 task_unlock(task); 1341 } 1342 if (!curr) 1343 return 0; 1344 /* 1345 * We should check use_hierarchy of "memcg" not "curr". Because checking 1346 * use_hierarchy of "curr" here make this function true if hierarchy is 1347 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1348 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1349 */ 1350 ret = mem_cgroup_same_or_subtree(memcg, curr); 1351 css_put(&curr->css); 1352 return ret; 1353 } 1354 1355 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1356 { 1357 unsigned long inactive_ratio; 1358 unsigned long inactive; 1359 unsigned long active; 1360 unsigned long gb; 1361 1362 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1363 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1364 1365 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1366 if (gb) 1367 inactive_ratio = int_sqrt(10 * gb); 1368 else 1369 inactive_ratio = 1; 1370 1371 return inactive * inactive_ratio < active; 1372 } 1373 1374 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1375 { 1376 unsigned long active; 1377 unsigned long inactive; 1378 1379 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1380 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1381 1382 return (active > inactive); 1383 } 1384 1385 #define mem_cgroup_from_res_counter(counter, member) \ 1386 container_of(counter, struct mem_cgroup, member) 1387 1388 /** 1389 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1390 * @memcg: the memory cgroup 1391 * 1392 * Returns the maximum amount of memory @mem can be charged with, in 1393 * pages. 1394 */ 1395 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1396 { 1397 unsigned long long margin; 1398 1399 margin = res_counter_margin(&memcg->res); 1400 if (do_swap_account) 1401 margin = min(margin, res_counter_margin(&memcg->memsw)); 1402 return margin >> PAGE_SHIFT; 1403 } 1404 1405 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1406 { 1407 struct cgroup *cgrp = memcg->css.cgroup; 1408 1409 /* root ? */ 1410 if (cgrp->parent == NULL) 1411 return vm_swappiness; 1412 1413 return memcg->swappiness; 1414 } 1415 1416 /* 1417 * memcg->moving_account is used for checking possibility that some thread is 1418 * calling move_account(). When a thread on CPU-A starts moving pages under 1419 * a memcg, other threads should check memcg->moving_account under 1420 * rcu_read_lock(), like this: 1421 * 1422 * CPU-A CPU-B 1423 * rcu_read_lock() 1424 * memcg->moving_account+1 if (memcg->mocing_account) 1425 * take heavy locks. 1426 * synchronize_rcu() update something. 1427 * rcu_read_unlock() 1428 * start move here. 1429 */ 1430 1431 /* for quick checking without looking up memcg */ 1432 atomic_t memcg_moving __read_mostly; 1433 1434 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1435 { 1436 atomic_inc(&memcg_moving); 1437 atomic_inc(&memcg->moving_account); 1438 synchronize_rcu(); 1439 } 1440 1441 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1442 { 1443 /* 1444 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1445 * We check NULL in callee rather than caller. 1446 */ 1447 if (memcg) { 1448 atomic_dec(&memcg_moving); 1449 atomic_dec(&memcg->moving_account); 1450 } 1451 } 1452 1453 /* 1454 * 2 routines for checking "mem" is under move_account() or not. 1455 * 1456 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1457 * is used for avoiding races in accounting. If true, 1458 * pc->mem_cgroup may be overwritten. 1459 * 1460 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1461 * under hierarchy of moving cgroups. This is for 1462 * waiting at hith-memory prressure caused by "move". 1463 */ 1464 1465 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1466 { 1467 VM_BUG_ON(!rcu_read_lock_held()); 1468 return atomic_read(&memcg->moving_account) > 0; 1469 } 1470 1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1472 { 1473 struct mem_cgroup *from; 1474 struct mem_cgroup *to; 1475 bool ret = false; 1476 /* 1477 * Unlike task_move routines, we access mc.to, mc.from not under 1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1479 */ 1480 spin_lock(&mc.lock); 1481 from = mc.from; 1482 to = mc.to; 1483 if (!from) 1484 goto unlock; 1485 1486 ret = mem_cgroup_same_or_subtree(memcg, from) 1487 || mem_cgroup_same_or_subtree(memcg, to); 1488 unlock: 1489 spin_unlock(&mc.lock); 1490 return ret; 1491 } 1492 1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1494 { 1495 if (mc.moving_task && current != mc.moving_task) { 1496 if (mem_cgroup_under_move(memcg)) { 1497 DEFINE_WAIT(wait); 1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1499 /* moving charge context might have finished. */ 1500 if (mc.moving_task) 1501 schedule(); 1502 finish_wait(&mc.waitq, &wait); 1503 return true; 1504 } 1505 } 1506 return false; 1507 } 1508 1509 /* 1510 * Take this lock when 1511 * - a code tries to modify page's memcg while it's USED. 1512 * - a code tries to modify page state accounting in a memcg. 1513 * see mem_cgroup_stolen(), too. 1514 */ 1515 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1516 unsigned long *flags) 1517 { 1518 spin_lock_irqsave(&memcg->move_lock, *flags); 1519 } 1520 1521 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1522 unsigned long *flags) 1523 { 1524 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1525 } 1526 1527 /** 1528 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1529 * @memcg: The memory cgroup that went over limit 1530 * @p: Task that is going to be killed 1531 * 1532 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1533 * enabled 1534 */ 1535 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1536 { 1537 struct cgroup *task_cgrp; 1538 struct cgroup *mem_cgrp; 1539 /* 1540 * Need a buffer in BSS, can't rely on allocations. The code relies 1541 * on the assumption that OOM is serialized for memory controller. 1542 * If this assumption is broken, revisit this code. 1543 */ 1544 static char memcg_name[PATH_MAX]; 1545 int ret; 1546 1547 if (!memcg || !p) 1548 return; 1549 1550 rcu_read_lock(); 1551 1552 mem_cgrp = memcg->css.cgroup; 1553 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1554 1555 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1556 if (ret < 0) { 1557 /* 1558 * Unfortunately, we are unable to convert to a useful name 1559 * But we'll still print out the usage information 1560 */ 1561 rcu_read_unlock(); 1562 goto done; 1563 } 1564 rcu_read_unlock(); 1565 1566 printk(KERN_INFO "Task in %s killed", memcg_name); 1567 1568 rcu_read_lock(); 1569 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1570 if (ret < 0) { 1571 rcu_read_unlock(); 1572 goto done; 1573 } 1574 rcu_read_unlock(); 1575 1576 /* 1577 * Continues from above, so we don't need an KERN_ level 1578 */ 1579 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1580 done: 1581 1582 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1583 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1584 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1585 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1586 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1587 "failcnt %llu\n", 1588 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1589 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1590 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1591 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1592 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1593 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1594 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1595 } 1596 1597 /* 1598 * This function returns the number of memcg under hierarchy tree. Returns 1599 * 1(self count) if no children. 1600 */ 1601 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1602 { 1603 int num = 0; 1604 struct mem_cgroup *iter; 1605 1606 for_each_mem_cgroup_tree(iter, memcg) 1607 num++; 1608 return num; 1609 } 1610 1611 /* 1612 * Return the memory (and swap, if configured) limit for a memcg. 1613 */ 1614 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1615 { 1616 u64 limit; 1617 1618 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1619 1620 /* 1621 * Do not consider swap space if we cannot swap due to swappiness 1622 */ 1623 if (mem_cgroup_swappiness(memcg)) { 1624 u64 memsw; 1625 1626 limit += total_swap_pages << PAGE_SHIFT; 1627 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1628 1629 /* 1630 * If memsw is finite and limits the amount of swap space 1631 * available to this memcg, return that limit. 1632 */ 1633 limit = min(limit, memsw); 1634 } 1635 1636 return limit; 1637 } 1638 1639 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1640 int order) 1641 { 1642 struct mem_cgroup *iter; 1643 unsigned long chosen_points = 0; 1644 unsigned long totalpages; 1645 unsigned int points = 0; 1646 struct task_struct *chosen = NULL; 1647 1648 /* 1649 * If current has a pending SIGKILL, then automatically select it. The 1650 * goal is to allow it to allocate so that it may quickly exit and free 1651 * its memory. 1652 */ 1653 if (fatal_signal_pending(current)) { 1654 set_thread_flag(TIF_MEMDIE); 1655 return; 1656 } 1657 1658 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1659 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1660 for_each_mem_cgroup_tree(iter, memcg) { 1661 struct cgroup *cgroup = iter->css.cgroup; 1662 struct cgroup_iter it; 1663 struct task_struct *task; 1664 1665 cgroup_iter_start(cgroup, &it); 1666 while ((task = cgroup_iter_next(cgroup, &it))) { 1667 switch (oom_scan_process_thread(task, totalpages, NULL, 1668 false)) { 1669 case OOM_SCAN_SELECT: 1670 if (chosen) 1671 put_task_struct(chosen); 1672 chosen = task; 1673 chosen_points = ULONG_MAX; 1674 get_task_struct(chosen); 1675 /* fall through */ 1676 case OOM_SCAN_CONTINUE: 1677 continue; 1678 case OOM_SCAN_ABORT: 1679 cgroup_iter_end(cgroup, &it); 1680 mem_cgroup_iter_break(memcg, iter); 1681 if (chosen) 1682 put_task_struct(chosen); 1683 return; 1684 case OOM_SCAN_OK: 1685 break; 1686 }; 1687 points = oom_badness(task, memcg, NULL, totalpages); 1688 if (points > chosen_points) { 1689 if (chosen) 1690 put_task_struct(chosen); 1691 chosen = task; 1692 chosen_points = points; 1693 get_task_struct(chosen); 1694 } 1695 } 1696 cgroup_iter_end(cgroup, &it); 1697 } 1698 1699 if (!chosen) 1700 return; 1701 points = chosen_points * 1000 / totalpages; 1702 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1703 NULL, "Memory cgroup out of memory"); 1704 } 1705 1706 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1707 gfp_t gfp_mask, 1708 unsigned long flags) 1709 { 1710 unsigned long total = 0; 1711 bool noswap = false; 1712 int loop; 1713 1714 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1715 noswap = true; 1716 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1717 noswap = true; 1718 1719 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1720 if (loop) 1721 drain_all_stock_async(memcg); 1722 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1723 /* 1724 * Allow limit shrinkers, which are triggered directly 1725 * by userspace, to catch signals and stop reclaim 1726 * after minimal progress, regardless of the margin. 1727 */ 1728 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1729 break; 1730 if (mem_cgroup_margin(memcg)) 1731 break; 1732 /* 1733 * If nothing was reclaimed after two attempts, there 1734 * may be no reclaimable pages in this hierarchy. 1735 */ 1736 if (loop && !total) 1737 break; 1738 } 1739 return total; 1740 } 1741 1742 /** 1743 * test_mem_cgroup_node_reclaimable 1744 * @memcg: the target memcg 1745 * @nid: the node ID to be checked. 1746 * @noswap : specify true here if the user wants flle only information. 1747 * 1748 * This function returns whether the specified memcg contains any 1749 * reclaimable pages on a node. Returns true if there are any reclaimable 1750 * pages in the node. 1751 */ 1752 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1753 int nid, bool noswap) 1754 { 1755 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1756 return true; 1757 if (noswap || !total_swap_pages) 1758 return false; 1759 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1760 return true; 1761 return false; 1762 1763 } 1764 #if MAX_NUMNODES > 1 1765 1766 /* 1767 * Always updating the nodemask is not very good - even if we have an empty 1768 * list or the wrong list here, we can start from some node and traverse all 1769 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1770 * 1771 */ 1772 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1773 { 1774 int nid; 1775 /* 1776 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1777 * pagein/pageout changes since the last update. 1778 */ 1779 if (!atomic_read(&memcg->numainfo_events)) 1780 return; 1781 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1782 return; 1783 1784 /* make a nodemask where this memcg uses memory from */ 1785 memcg->scan_nodes = node_states[N_MEMORY]; 1786 1787 for_each_node_mask(nid, node_states[N_MEMORY]) { 1788 1789 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1790 node_clear(nid, memcg->scan_nodes); 1791 } 1792 1793 atomic_set(&memcg->numainfo_events, 0); 1794 atomic_set(&memcg->numainfo_updating, 0); 1795 } 1796 1797 /* 1798 * Selecting a node where we start reclaim from. Because what we need is just 1799 * reducing usage counter, start from anywhere is O,K. Considering 1800 * memory reclaim from current node, there are pros. and cons. 1801 * 1802 * Freeing memory from current node means freeing memory from a node which 1803 * we'll use or we've used. So, it may make LRU bad. And if several threads 1804 * hit limits, it will see a contention on a node. But freeing from remote 1805 * node means more costs for memory reclaim because of memory latency. 1806 * 1807 * Now, we use round-robin. Better algorithm is welcomed. 1808 */ 1809 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1810 { 1811 int node; 1812 1813 mem_cgroup_may_update_nodemask(memcg); 1814 node = memcg->last_scanned_node; 1815 1816 node = next_node(node, memcg->scan_nodes); 1817 if (node == MAX_NUMNODES) 1818 node = first_node(memcg->scan_nodes); 1819 /* 1820 * We call this when we hit limit, not when pages are added to LRU. 1821 * No LRU may hold pages because all pages are UNEVICTABLE or 1822 * memcg is too small and all pages are not on LRU. In that case, 1823 * we use curret node. 1824 */ 1825 if (unlikely(node == MAX_NUMNODES)) 1826 node = numa_node_id(); 1827 1828 memcg->last_scanned_node = node; 1829 return node; 1830 } 1831 1832 /* 1833 * Check all nodes whether it contains reclaimable pages or not. 1834 * For quick scan, we make use of scan_nodes. This will allow us to skip 1835 * unused nodes. But scan_nodes is lazily updated and may not cotain 1836 * enough new information. We need to do double check. 1837 */ 1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1839 { 1840 int nid; 1841 1842 /* 1843 * quick check...making use of scan_node. 1844 * We can skip unused nodes. 1845 */ 1846 if (!nodes_empty(memcg->scan_nodes)) { 1847 for (nid = first_node(memcg->scan_nodes); 1848 nid < MAX_NUMNODES; 1849 nid = next_node(nid, memcg->scan_nodes)) { 1850 1851 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1852 return true; 1853 } 1854 } 1855 /* 1856 * Check rest of nodes. 1857 */ 1858 for_each_node_state(nid, N_MEMORY) { 1859 if (node_isset(nid, memcg->scan_nodes)) 1860 continue; 1861 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1862 return true; 1863 } 1864 return false; 1865 } 1866 1867 #else 1868 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1869 { 1870 return 0; 1871 } 1872 1873 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1874 { 1875 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1876 } 1877 #endif 1878 1879 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1880 struct zone *zone, 1881 gfp_t gfp_mask, 1882 unsigned long *total_scanned) 1883 { 1884 struct mem_cgroup *victim = NULL; 1885 int total = 0; 1886 int loop = 0; 1887 unsigned long excess; 1888 unsigned long nr_scanned; 1889 struct mem_cgroup_reclaim_cookie reclaim = { 1890 .zone = zone, 1891 .priority = 0, 1892 }; 1893 1894 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1895 1896 while (1) { 1897 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1898 if (!victim) { 1899 loop++; 1900 if (loop >= 2) { 1901 /* 1902 * If we have not been able to reclaim 1903 * anything, it might because there are 1904 * no reclaimable pages under this hierarchy 1905 */ 1906 if (!total) 1907 break; 1908 /* 1909 * We want to do more targeted reclaim. 1910 * excess >> 2 is not to excessive so as to 1911 * reclaim too much, nor too less that we keep 1912 * coming back to reclaim from this cgroup 1913 */ 1914 if (total >= (excess >> 2) || 1915 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1916 break; 1917 } 1918 continue; 1919 } 1920 if (!mem_cgroup_reclaimable(victim, false)) 1921 continue; 1922 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1923 zone, &nr_scanned); 1924 *total_scanned += nr_scanned; 1925 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1926 break; 1927 } 1928 mem_cgroup_iter_break(root_memcg, victim); 1929 return total; 1930 } 1931 1932 /* 1933 * Check OOM-Killer is already running under our hierarchy. 1934 * If someone is running, return false. 1935 * Has to be called with memcg_oom_lock 1936 */ 1937 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1938 { 1939 struct mem_cgroup *iter, *failed = NULL; 1940 1941 for_each_mem_cgroup_tree(iter, memcg) { 1942 if (iter->oom_lock) { 1943 /* 1944 * this subtree of our hierarchy is already locked 1945 * so we cannot give a lock. 1946 */ 1947 failed = iter; 1948 mem_cgroup_iter_break(memcg, iter); 1949 break; 1950 } else 1951 iter->oom_lock = true; 1952 } 1953 1954 if (!failed) 1955 return true; 1956 1957 /* 1958 * OK, we failed to lock the whole subtree so we have to clean up 1959 * what we set up to the failing subtree 1960 */ 1961 for_each_mem_cgroup_tree(iter, memcg) { 1962 if (iter == failed) { 1963 mem_cgroup_iter_break(memcg, iter); 1964 break; 1965 } 1966 iter->oom_lock = false; 1967 } 1968 return false; 1969 } 1970 1971 /* 1972 * Has to be called with memcg_oom_lock 1973 */ 1974 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1975 { 1976 struct mem_cgroup *iter; 1977 1978 for_each_mem_cgroup_tree(iter, memcg) 1979 iter->oom_lock = false; 1980 return 0; 1981 } 1982 1983 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1984 { 1985 struct mem_cgroup *iter; 1986 1987 for_each_mem_cgroup_tree(iter, memcg) 1988 atomic_inc(&iter->under_oom); 1989 } 1990 1991 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1992 { 1993 struct mem_cgroup *iter; 1994 1995 /* 1996 * When a new child is created while the hierarchy is under oom, 1997 * mem_cgroup_oom_lock() may not be called. We have to use 1998 * atomic_add_unless() here. 1999 */ 2000 for_each_mem_cgroup_tree(iter, memcg) 2001 atomic_add_unless(&iter->under_oom, -1, 0); 2002 } 2003 2004 static DEFINE_SPINLOCK(memcg_oom_lock); 2005 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2006 2007 struct oom_wait_info { 2008 struct mem_cgroup *memcg; 2009 wait_queue_t wait; 2010 }; 2011 2012 static int memcg_oom_wake_function(wait_queue_t *wait, 2013 unsigned mode, int sync, void *arg) 2014 { 2015 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2016 struct mem_cgroup *oom_wait_memcg; 2017 struct oom_wait_info *oom_wait_info; 2018 2019 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2020 oom_wait_memcg = oom_wait_info->memcg; 2021 2022 /* 2023 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2024 * Then we can use css_is_ancestor without taking care of RCU. 2025 */ 2026 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2027 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2028 return 0; 2029 return autoremove_wake_function(wait, mode, sync, arg); 2030 } 2031 2032 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2033 { 2034 /* for filtering, pass "memcg" as argument. */ 2035 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2036 } 2037 2038 static void memcg_oom_recover(struct mem_cgroup *memcg) 2039 { 2040 if (memcg && atomic_read(&memcg->under_oom)) 2041 memcg_wakeup_oom(memcg); 2042 } 2043 2044 /* 2045 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2046 */ 2047 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2048 int order) 2049 { 2050 struct oom_wait_info owait; 2051 bool locked, need_to_kill; 2052 2053 owait.memcg = memcg; 2054 owait.wait.flags = 0; 2055 owait.wait.func = memcg_oom_wake_function; 2056 owait.wait.private = current; 2057 INIT_LIST_HEAD(&owait.wait.task_list); 2058 need_to_kill = true; 2059 mem_cgroup_mark_under_oom(memcg); 2060 2061 /* At first, try to OOM lock hierarchy under memcg.*/ 2062 spin_lock(&memcg_oom_lock); 2063 locked = mem_cgroup_oom_lock(memcg); 2064 /* 2065 * Even if signal_pending(), we can't quit charge() loop without 2066 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2067 * under OOM is always welcomed, use TASK_KILLABLE here. 2068 */ 2069 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2070 if (!locked || memcg->oom_kill_disable) 2071 need_to_kill = false; 2072 if (locked) 2073 mem_cgroup_oom_notify(memcg); 2074 spin_unlock(&memcg_oom_lock); 2075 2076 if (need_to_kill) { 2077 finish_wait(&memcg_oom_waitq, &owait.wait); 2078 mem_cgroup_out_of_memory(memcg, mask, order); 2079 } else { 2080 schedule(); 2081 finish_wait(&memcg_oom_waitq, &owait.wait); 2082 } 2083 spin_lock(&memcg_oom_lock); 2084 if (locked) 2085 mem_cgroup_oom_unlock(memcg); 2086 memcg_wakeup_oom(memcg); 2087 spin_unlock(&memcg_oom_lock); 2088 2089 mem_cgroup_unmark_under_oom(memcg); 2090 2091 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2092 return false; 2093 /* Give chance to dying process */ 2094 schedule_timeout_uninterruptible(1); 2095 return true; 2096 } 2097 2098 /* 2099 * Currently used to update mapped file statistics, but the routine can be 2100 * generalized to update other statistics as well. 2101 * 2102 * Notes: Race condition 2103 * 2104 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2105 * it tends to be costly. But considering some conditions, we doesn't need 2106 * to do so _always_. 2107 * 2108 * Considering "charge", lock_page_cgroup() is not required because all 2109 * file-stat operations happen after a page is attached to radix-tree. There 2110 * are no race with "charge". 2111 * 2112 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2113 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2114 * if there are race with "uncharge". Statistics itself is properly handled 2115 * by flags. 2116 * 2117 * Considering "move", this is an only case we see a race. To make the race 2118 * small, we check mm->moving_account and detect there are possibility of race 2119 * If there is, we take a lock. 2120 */ 2121 2122 void __mem_cgroup_begin_update_page_stat(struct page *page, 2123 bool *locked, unsigned long *flags) 2124 { 2125 struct mem_cgroup *memcg; 2126 struct page_cgroup *pc; 2127 2128 pc = lookup_page_cgroup(page); 2129 again: 2130 memcg = pc->mem_cgroup; 2131 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2132 return; 2133 /* 2134 * If this memory cgroup is not under account moving, we don't 2135 * need to take move_lock_mem_cgroup(). Because we already hold 2136 * rcu_read_lock(), any calls to move_account will be delayed until 2137 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2138 */ 2139 if (!mem_cgroup_stolen(memcg)) 2140 return; 2141 2142 move_lock_mem_cgroup(memcg, flags); 2143 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2144 move_unlock_mem_cgroup(memcg, flags); 2145 goto again; 2146 } 2147 *locked = true; 2148 } 2149 2150 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2151 { 2152 struct page_cgroup *pc = lookup_page_cgroup(page); 2153 2154 /* 2155 * It's guaranteed that pc->mem_cgroup never changes while 2156 * lock is held because a routine modifies pc->mem_cgroup 2157 * should take move_lock_mem_cgroup(). 2158 */ 2159 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2160 } 2161 2162 void mem_cgroup_update_page_stat(struct page *page, 2163 enum mem_cgroup_page_stat_item idx, int val) 2164 { 2165 struct mem_cgroup *memcg; 2166 struct page_cgroup *pc = lookup_page_cgroup(page); 2167 unsigned long uninitialized_var(flags); 2168 2169 if (mem_cgroup_disabled()) 2170 return; 2171 2172 memcg = pc->mem_cgroup; 2173 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2174 return; 2175 2176 switch (idx) { 2177 case MEMCG_NR_FILE_MAPPED: 2178 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2179 break; 2180 default: 2181 BUG(); 2182 } 2183 2184 this_cpu_add(memcg->stat->count[idx], val); 2185 } 2186 2187 /* 2188 * size of first charge trial. "32" comes from vmscan.c's magic value. 2189 * TODO: maybe necessary to use big numbers in big irons. 2190 */ 2191 #define CHARGE_BATCH 32U 2192 struct memcg_stock_pcp { 2193 struct mem_cgroup *cached; /* this never be root cgroup */ 2194 unsigned int nr_pages; 2195 struct work_struct work; 2196 unsigned long flags; 2197 #define FLUSHING_CACHED_CHARGE 0 2198 }; 2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2200 static DEFINE_MUTEX(percpu_charge_mutex); 2201 2202 /** 2203 * consume_stock: Try to consume stocked charge on this cpu. 2204 * @memcg: memcg to consume from. 2205 * @nr_pages: how many pages to charge. 2206 * 2207 * The charges will only happen if @memcg matches the current cpu's memcg 2208 * stock, and at least @nr_pages are available in that stock. Failure to 2209 * service an allocation will refill the stock. 2210 * 2211 * returns true if successful, false otherwise. 2212 */ 2213 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2214 { 2215 struct memcg_stock_pcp *stock; 2216 bool ret = true; 2217 2218 if (nr_pages > CHARGE_BATCH) 2219 return false; 2220 2221 stock = &get_cpu_var(memcg_stock); 2222 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2223 stock->nr_pages -= nr_pages; 2224 else /* need to call res_counter_charge */ 2225 ret = false; 2226 put_cpu_var(memcg_stock); 2227 return ret; 2228 } 2229 2230 /* 2231 * Returns stocks cached in percpu to res_counter and reset cached information. 2232 */ 2233 static void drain_stock(struct memcg_stock_pcp *stock) 2234 { 2235 struct mem_cgroup *old = stock->cached; 2236 2237 if (stock->nr_pages) { 2238 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2239 2240 res_counter_uncharge(&old->res, bytes); 2241 if (do_swap_account) 2242 res_counter_uncharge(&old->memsw, bytes); 2243 stock->nr_pages = 0; 2244 } 2245 stock->cached = NULL; 2246 } 2247 2248 /* 2249 * This must be called under preempt disabled or must be called by 2250 * a thread which is pinned to local cpu. 2251 */ 2252 static void drain_local_stock(struct work_struct *dummy) 2253 { 2254 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2255 drain_stock(stock); 2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2257 } 2258 2259 /* 2260 * Cache charges(val) which is from res_counter, to local per_cpu area. 2261 * This will be consumed by consume_stock() function, later. 2262 */ 2263 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2264 { 2265 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2266 2267 if (stock->cached != memcg) { /* reset if necessary */ 2268 drain_stock(stock); 2269 stock->cached = memcg; 2270 } 2271 stock->nr_pages += nr_pages; 2272 put_cpu_var(memcg_stock); 2273 } 2274 2275 /* 2276 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2277 * of the hierarchy under it. sync flag says whether we should block 2278 * until the work is done. 2279 */ 2280 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2281 { 2282 int cpu, curcpu; 2283 2284 /* Notify other cpus that system-wide "drain" is running */ 2285 get_online_cpus(); 2286 curcpu = get_cpu(); 2287 for_each_online_cpu(cpu) { 2288 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2289 struct mem_cgroup *memcg; 2290 2291 memcg = stock->cached; 2292 if (!memcg || !stock->nr_pages) 2293 continue; 2294 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2295 continue; 2296 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2297 if (cpu == curcpu) 2298 drain_local_stock(&stock->work); 2299 else 2300 schedule_work_on(cpu, &stock->work); 2301 } 2302 } 2303 put_cpu(); 2304 2305 if (!sync) 2306 goto out; 2307 2308 for_each_online_cpu(cpu) { 2309 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2310 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2311 flush_work(&stock->work); 2312 } 2313 out: 2314 put_online_cpus(); 2315 } 2316 2317 /* 2318 * Tries to drain stocked charges in other cpus. This function is asynchronous 2319 * and just put a work per cpu for draining localy on each cpu. Caller can 2320 * expects some charges will be back to res_counter later but cannot wait for 2321 * it. 2322 */ 2323 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2324 { 2325 /* 2326 * If someone calls draining, avoid adding more kworker runs. 2327 */ 2328 if (!mutex_trylock(&percpu_charge_mutex)) 2329 return; 2330 drain_all_stock(root_memcg, false); 2331 mutex_unlock(&percpu_charge_mutex); 2332 } 2333 2334 /* This is a synchronous drain interface. */ 2335 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2336 { 2337 /* called when force_empty is called */ 2338 mutex_lock(&percpu_charge_mutex); 2339 drain_all_stock(root_memcg, true); 2340 mutex_unlock(&percpu_charge_mutex); 2341 } 2342 2343 /* 2344 * This function drains percpu counter value from DEAD cpu and 2345 * move it to local cpu. Note that this function can be preempted. 2346 */ 2347 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2348 { 2349 int i; 2350 2351 spin_lock(&memcg->pcp_counter_lock); 2352 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2353 long x = per_cpu(memcg->stat->count[i], cpu); 2354 2355 per_cpu(memcg->stat->count[i], cpu) = 0; 2356 memcg->nocpu_base.count[i] += x; 2357 } 2358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2359 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2360 2361 per_cpu(memcg->stat->events[i], cpu) = 0; 2362 memcg->nocpu_base.events[i] += x; 2363 } 2364 spin_unlock(&memcg->pcp_counter_lock); 2365 } 2366 2367 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2368 unsigned long action, 2369 void *hcpu) 2370 { 2371 int cpu = (unsigned long)hcpu; 2372 struct memcg_stock_pcp *stock; 2373 struct mem_cgroup *iter; 2374 2375 if (action == CPU_ONLINE) 2376 return NOTIFY_OK; 2377 2378 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2379 return NOTIFY_OK; 2380 2381 for_each_mem_cgroup(iter) 2382 mem_cgroup_drain_pcp_counter(iter, cpu); 2383 2384 stock = &per_cpu(memcg_stock, cpu); 2385 drain_stock(stock); 2386 return NOTIFY_OK; 2387 } 2388 2389 2390 /* See __mem_cgroup_try_charge() for details */ 2391 enum { 2392 CHARGE_OK, /* success */ 2393 CHARGE_RETRY, /* need to retry but retry is not bad */ 2394 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2395 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2396 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2397 }; 2398 2399 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2400 unsigned int nr_pages, unsigned int min_pages, 2401 bool oom_check) 2402 { 2403 unsigned long csize = nr_pages * PAGE_SIZE; 2404 struct mem_cgroup *mem_over_limit; 2405 struct res_counter *fail_res; 2406 unsigned long flags = 0; 2407 int ret; 2408 2409 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2410 2411 if (likely(!ret)) { 2412 if (!do_swap_account) 2413 return CHARGE_OK; 2414 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2415 if (likely(!ret)) 2416 return CHARGE_OK; 2417 2418 res_counter_uncharge(&memcg->res, csize); 2419 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2420 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2421 } else 2422 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2423 /* 2424 * Never reclaim on behalf of optional batching, retry with a 2425 * single page instead. 2426 */ 2427 if (nr_pages > min_pages) 2428 return CHARGE_RETRY; 2429 2430 if (!(gfp_mask & __GFP_WAIT)) 2431 return CHARGE_WOULDBLOCK; 2432 2433 if (gfp_mask & __GFP_NORETRY) 2434 return CHARGE_NOMEM; 2435 2436 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2438 return CHARGE_RETRY; 2439 /* 2440 * Even though the limit is exceeded at this point, reclaim 2441 * may have been able to free some pages. Retry the charge 2442 * before killing the task. 2443 * 2444 * Only for regular pages, though: huge pages are rather 2445 * unlikely to succeed so close to the limit, and we fall back 2446 * to regular pages anyway in case of failure. 2447 */ 2448 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2449 return CHARGE_RETRY; 2450 2451 /* 2452 * At task move, charge accounts can be doubly counted. So, it's 2453 * better to wait until the end of task_move if something is going on. 2454 */ 2455 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2456 return CHARGE_RETRY; 2457 2458 /* If we don't need to call oom-killer at el, return immediately */ 2459 if (!oom_check) 2460 return CHARGE_NOMEM; 2461 /* check OOM */ 2462 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2463 return CHARGE_OOM_DIE; 2464 2465 return CHARGE_RETRY; 2466 } 2467 2468 /* 2469 * __mem_cgroup_try_charge() does 2470 * 1. detect memcg to be charged against from passed *mm and *ptr, 2471 * 2. update res_counter 2472 * 3. call memory reclaim if necessary. 2473 * 2474 * In some special case, if the task is fatal, fatal_signal_pending() or 2475 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2476 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2477 * as possible without any hazards. 2: all pages should have a valid 2478 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2479 * pointer, that is treated as a charge to root_mem_cgroup. 2480 * 2481 * So __mem_cgroup_try_charge() will return 2482 * 0 ... on success, filling *ptr with a valid memcg pointer. 2483 * -ENOMEM ... charge failure because of resource limits. 2484 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2485 * 2486 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2487 * the oom-killer can be invoked. 2488 */ 2489 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2490 gfp_t gfp_mask, 2491 unsigned int nr_pages, 2492 struct mem_cgroup **ptr, 2493 bool oom) 2494 { 2495 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2496 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2497 struct mem_cgroup *memcg = NULL; 2498 int ret; 2499 2500 /* 2501 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2502 * in system level. So, allow to go ahead dying process in addition to 2503 * MEMDIE process. 2504 */ 2505 if (unlikely(test_thread_flag(TIF_MEMDIE) 2506 || fatal_signal_pending(current))) 2507 goto bypass; 2508 2509 /* 2510 * We always charge the cgroup the mm_struct belongs to. 2511 * The mm_struct's mem_cgroup changes on task migration if the 2512 * thread group leader migrates. It's possible that mm is not 2513 * set, if so charge the root memcg (happens for pagecache usage). 2514 */ 2515 if (!*ptr && !mm) 2516 *ptr = root_mem_cgroup; 2517 again: 2518 if (*ptr) { /* css should be a valid one */ 2519 memcg = *ptr; 2520 if (mem_cgroup_is_root(memcg)) 2521 goto done; 2522 if (consume_stock(memcg, nr_pages)) 2523 goto done; 2524 css_get(&memcg->css); 2525 } else { 2526 struct task_struct *p; 2527 2528 rcu_read_lock(); 2529 p = rcu_dereference(mm->owner); 2530 /* 2531 * Because we don't have task_lock(), "p" can exit. 2532 * In that case, "memcg" can point to root or p can be NULL with 2533 * race with swapoff. Then, we have small risk of mis-accouning. 2534 * But such kind of mis-account by race always happens because 2535 * we don't have cgroup_mutex(). It's overkill and we allo that 2536 * small race, here. 2537 * (*) swapoff at el will charge against mm-struct not against 2538 * task-struct. So, mm->owner can be NULL. 2539 */ 2540 memcg = mem_cgroup_from_task(p); 2541 if (!memcg) 2542 memcg = root_mem_cgroup; 2543 if (mem_cgroup_is_root(memcg)) { 2544 rcu_read_unlock(); 2545 goto done; 2546 } 2547 if (consume_stock(memcg, nr_pages)) { 2548 /* 2549 * It seems dagerous to access memcg without css_get(). 2550 * But considering how consume_stok works, it's not 2551 * necessary. If consume_stock success, some charges 2552 * from this memcg are cached on this cpu. So, we 2553 * don't need to call css_get()/css_tryget() before 2554 * calling consume_stock(). 2555 */ 2556 rcu_read_unlock(); 2557 goto done; 2558 } 2559 /* after here, we may be blocked. we need to get refcnt */ 2560 if (!css_tryget(&memcg->css)) { 2561 rcu_read_unlock(); 2562 goto again; 2563 } 2564 rcu_read_unlock(); 2565 } 2566 2567 do { 2568 bool oom_check; 2569 2570 /* If killed, bypass charge */ 2571 if (fatal_signal_pending(current)) { 2572 css_put(&memcg->css); 2573 goto bypass; 2574 } 2575 2576 oom_check = false; 2577 if (oom && !nr_oom_retries) { 2578 oom_check = true; 2579 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2580 } 2581 2582 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2583 oom_check); 2584 switch (ret) { 2585 case CHARGE_OK: 2586 break; 2587 case CHARGE_RETRY: /* not in OOM situation but retry */ 2588 batch = nr_pages; 2589 css_put(&memcg->css); 2590 memcg = NULL; 2591 goto again; 2592 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2593 css_put(&memcg->css); 2594 goto nomem; 2595 case CHARGE_NOMEM: /* OOM routine works */ 2596 if (!oom) { 2597 css_put(&memcg->css); 2598 goto nomem; 2599 } 2600 /* If oom, we never return -ENOMEM */ 2601 nr_oom_retries--; 2602 break; 2603 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2604 css_put(&memcg->css); 2605 goto bypass; 2606 } 2607 } while (ret != CHARGE_OK); 2608 2609 if (batch > nr_pages) 2610 refill_stock(memcg, batch - nr_pages); 2611 css_put(&memcg->css); 2612 done: 2613 *ptr = memcg; 2614 return 0; 2615 nomem: 2616 *ptr = NULL; 2617 return -ENOMEM; 2618 bypass: 2619 *ptr = root_mem_cgroup; 2620 return -EINTR; 2621 } 2622 2623 /* 2624 * Somemtimes we have to undo a charge we got by try_charge(). 2625 * This function is for that and do uncharge, put css's refcnt. 2626 * gotten by try_charge(). 2627 */ 2628 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2629 unsigned int nr_pages) 2630 { 2631 if (!mem_cgroup_is_root(memcg)) { 2632 unsigned long bytes = nr_pages * PAGE_SIZE; 2633 2634 res_counter_uncharge(&memcg->res, bytes); 2635 if (do_swap_account) 2636 res_counter_uncharge(&memcg->memsw, bytes); 2637 } 2638 } 2639 2640 /* 2641 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2642 * This is useful when moving usage to parent cgroup. 2643 */ 2644 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2645 unsigned int nr_pages) 2646 { 2647 unsigned long bytes = nr_pages * PAGE_SIZE; 2648 2649 if (mem_cgroup_is_root(memcg)) 2650 return; 2651 2652 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2653 if (do_swap_account) 2654 res_counter_uncharge_until(&memcg->memsw, 2655 memcg->memsw.parent, bytes); 2656 } 2657 2658 /* 2659 * A helper function to get mem_cgroup from ID. must be called under 2660 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2661 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2662 * called against removed memcg.) 2663 */ 2664 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2665 { 2666 struct cgroup_subsys_state *css; 2667 2668 /* ID 0 is unused ID */ 2669 if (!id) 2670 return NULL; 2671 css = css_lookup(&mem_cgroup_subsys, id); 2672 if (!css) 2673 return NULL; 2674 return mem_cgroup_from_css(css); 2675 } 2676 2677 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2678 { 2679 struct mem_cgroup *memcg = NULL; 2680 struct page_cgroup *pc; 2681 unsigned short id; 2682 swp_entry_t ent; 2683 2684 VM_BUG_ON(!PageLocked(page)); 2685 2686 pc = lookup_page_cgroup(page); 2687 lock_page_cgroup(pc); 2688 if (PageCgroupUsed(pc)) { 2689 memcg = pc->mem_cgroup; 2690 if (memcg && !css_tryget(&memcg->css)) 2691 memcg = NULL; 2692 } else if (PageSwapCache(page)) { 2693 ent.val = page_private(page); 2694 id = lookup_swap_cgroup_id(ent); 2695 rcu_read_lock(); 2696 memcg = mem_cgroup_lookup(id); 2697 if (memcg && !css_tryget(&memcg->css)) 2698 memcg = NULL; 2699 rcu_read_unlock(); 2700 } 2701 unlock_page_cgroup(pc); 2702 return memcg; 2703 } 2704 2705 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2706 struct page *page, 2707 unsigned int nr_pages, 2708 enum charge_type ctype, 2709 bool lrucare) 2710 { 2711 struct page_cgroup *pc = lookup_page_cgroup(page); 2712 struct zone *uninitialized_var(zone); 2713 struct lruvec *lruvec; 2714 bool was_on_lru = false; 2715 bool anon; 2716 2717 lock_page_cgroup(pc); 2718 VM_BUG_ON(PageCgroupUsed(pc)); 2719 /* 2720 * we don't need page_cgroup_lock about tail pages, becase they are not 2721 * accessed by any other context at this point. 2722 */ 2723 2724 /* 2725 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2726 * may already be on some other mem_cgroup's LRU. Take care of it. 2727 */ 2728 if (lrucare) { 2729 zone = page_zone(page); 2730 spin_lock_irq(&zone->lru_lock); 2731 if (PageLRU(page)) { 2732 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2733 ClearPageLRU(page); 2734 del_page_from_lru_list(page, lruvec, page_lru(page)); 2735 was_on_lru = true; 2736 } 2737 } 2738 2739 pc->mem_cgroup = memcg; 2740 /* 2741 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2742 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2743 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2744 * before USED bit, we need memory barrier here. 2745 * See mem_cgroup_add_lru_list(), etc. 2746 */ 2747 smp_wmb(); 2748 SetPageCgroupUsed(pc); 2749 2750 if (lrucare) { 2751 if (was_on_lru) { 2752 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2753 VM_BUG_ON(PageLRU(page)); 2754 SetPageLRU(page); 2755 add_page_to_lru_list(page, lruvec, page_lru(page)); 2756 } 2757 spin_unlock_irq(&zone->lru_lock); 2758 } 2759 2760 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2761 anon = true; 2762 else 2763 anon = false; 2764 2765 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2766 unlock_page_cgroup(pc); 2767 2768 /* 2769 * "charge_statistics" updated event counter. Then, check it. 2770 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2771 * if they exceeds softlimit. 2772 */ 2773 memcg_check_events(memcg, page); 2774 } 2775 2776 static DEFINE_MUTEX(set_limit_mutex); 2777 2778 #ifdef CONFIG_MEMCG_KMEM 2779 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2780 { 2781 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2782 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2783 } 2784 2785 /* 2786 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2787 * in the memcg_cache_params struct. 2788 */ 2789 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2790 { 2791 struct kmem_cache *cachep; 2792 2793 VM_BUG_ON(p->is_root_cache); 2794 cachep = p->root_cache; 2795 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2796 } 2797 2798 #ifdef CONFIG_SLABINFO 2799 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, 2800 struct seq_file *m) 2801 { 2802 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2803 struct memcg_cache_params *params; 2804 2805 if (!memcg_can_account_kmem(memcg)) 2806 return -EIO; 2807 2808 print_slabinfo_header(m); 2809 2810 mutex_lock(&memcg->slab_caches_mutex); 2811 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2812 cache_show(memcg_params_to_cache(params), m); 2813 mutex_unlock(&memcg->slab_caches_mutex); 2814 2815 return 0; 2816 } 2817 #endif 2818 2819 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2820 { 2821 struct res_counter *fail_res; 2822 struct mem_cgroup *_memcg; 2823 int ret = 0; 2824 bool may_oom; 2825 2826 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2827 if (ret) 2828 return ret; 2829 2830 /* 2831 * Conditions under which we can wait for the oom_killer. Those are 2832 * the same conditions tested by the core page allocator 2833 */ 2834 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2835 2836 _memcg = memcg; 2837 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2838 &_memcg, may_oom); 2839 2840 if (ret == -EINTR) { 2841 /* 2842 * __mem_cgroup_try_charge() chosed to bypass to root due to 2843 * OOM kill or fatal signal. Since our only options are to 2844 * either fail the allocation or charge it to this cgroup, do 2845 * it as a temporary condition. But we can't fail. From a 2846 * kmem/slab perspective, the cache has already been selected, 2847 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2848 * our minds. 2849 * 2850 * This condition will only trigger if the task entered 2851 * memcg_charge_kmem in a sane state, but was OOM-killed during 2852 * __mem_cgroup_try_charge() above. Tasks that were already 2853 * dying when the allocation triggers should have been already 2854 * directed to the root cgroup in memcontrol.h 2855 */ 2856 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2857 if (do_swap_account) 2858 res_counter_charge_nofail(&memcg->memsw, size, 2859 &fail_res); 2860 ret = 0; 2861 } else if (ret) 2862 res_counter_uncharge(&memcg->kmem, size); 2863 2864 return ret; 2865 } 2866 2867 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2868 { 2869 res_counter_uncharge(&memcg->res, size); 2870 if (do_swap_account) 2871 res_counter_uncharge(&memcg->memsw, size); 2872 2873 /* Not down to 0 */ 2874 if (res_counter_uncharge(&memcg->kmem, size)) 2875 return; 2876 2877 if (memcg_kmem_test_and_clear_dead(memcg)) 2878 mem_cgroup_put(memcg); 2879 } 2880 2881 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 2882 { 2883 if (!memcg) 2884 return; 2885 2886 mutex_lock(&memcg->slab_caches_mutex); 2887 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 2888 mutex_unlock(&memcg->slab_caches_mutex); 2889 } 2890 2891 /* 2892 * helper for acessing a memcg's index. It will be used as an index in the 2893 * child cache array in kmem_cache, and also to derive its name. This function 2894 * will return -1 when this is not a kmem-limited memcg. 2895 */ 2896 int memcg_cache_id(struct mem_cgroup *memcg) 2897 { 2898 return memcg ? memcg->kmemcg_id : -1; 2899 } 2900 2901 /* 2902 * This ends up being protected by the set_limit mutex, during normal 2903 * operation, because that is its main call site. 2904 * 2905 * But when we create a new cache, we can call this as well if its parent 2906 * is kmem-limited. That will have to hold set_limit_mutex as well. 2907 */ 2908 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 2909 { 2910 int num, ret; 2911 2912 num = ida_simple_get(&kmem_limited_groups, 2913 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2914 if (num < 0) 2915 return num; 2916 /* 2917 * After this point, kmem_accounted (that we test atomically in 2918 * the beginning of this conditional), is no longer 0. This 2919 * guarantees only one process will set the following boolean 2920 * to true. We don't need test_and_set because we're protected 2921 * by the set_limit_mutex anyway. 2922 */ 2923 memcg_kmem_set_activated(memcg); 2924 2925 ret = memcg_update_all_caches(num+1); 2926 if (ret) { 2927 ida_simple_remove(&kmem_limited_groups, num); 2928 memcg_kmem_clear_activated(memcg); 2929 return ret; 2930 } 2931 2932 memcg->kmemcg_id = num; 2933 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 2934 mutex_init(&memcg->slab_caches_mutex); 2935 return 0; 2936 } 2937 2938 static size_t memcg_caches_array_size(int num_groups) 2939 { 2940 ssize_t size; 2941 if (num_groups <= 0) 2942 return 0; 2943 2944 size = 2 * num_groups; 2945 if (size < MEMCG_CACHES_MIN_SIZE) 2946 size = MEMCG_CACHES_MIN_SIZE; 2947 else if (size > MEMCG_CACHES_MAX_SIZE) 2948 size = MEMCG_CACHES_MAX_SIZE; 2949 2950 return size; 2951 } 2952 2953 /* 2954 * We should update the current array size iff all caches updates succeed. This 2955 * can only be done from the slab side. The slab mutex needs to be held when 2956 * calling this. 2957 */ 2958 void memcg_update_array_size(int num) 2959 { 2960 if (num > memcg_limited_groups_array_size) 2961 memcg_limited_groups_array_size = memcg_caches_array_size(num); 2962 } 2963 2964 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 2965 { 2966 struct memcg_cache_params *cur_params = s->memcg_params; 2967 2968 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 2969 2970 if (num_groups > memcg_limited_groups_array_size) { 2971 int i; 2972 ssize_t size = memcg_caches_array_size(num_groups); 2973 2974 size *= sizeof(void *); 2975 size += sizeof(struct memcg_cache_params); 2976 2977 s->memcg_params = kzalloc(size, GFP_KERNEL); 2978 if (!s->memcg_params) { 2979 s->memcg_params = cur_params; 2980 return -ENOMEM; 2981 } 2982 2983 s->memcg_params->is_root_cache = true; 2984 2985 /* 2986 * There is the chance it will be bigger than 2987 * memcg_limited_groups_array_size, if we failed an allocation 2988 * in a cache, in which case all caches updated before it, will 2989 * have a bigger array. 2990 * 2991 * But if that is the case, the data after 2992 * memcg_limited_groups_array_size is certainly unused 2993 */ 2994 for (i = 0; i < memcg_limited_groups_array_size; i++) { 2995 if (!cur_params->memcg_caches[i]) 2996 continue; 2997 s->memcg_params->memcg_caches[i] = 2998 cur_params->memcg_caches[i]; 2999 } 3000 3001 /* 3002 * Ideally, we would wait until all caches succeed, and only 3003 * then free the old one. But this is not worth the extra 3004 * pointer per-cache we'd have to have for this. 3005 * 3006 * It is not a big deal if some caches are left with a size 3007 * bigger than the others. And all updates will reset this 3008 * anyway. 3009 */ 3010 kfree(cur_params); 3011 } 3012 return 0; 3013 } 3014 3015 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3016 struct kmem_cache *root_cache) 3017 { 3018 size_t size = sizeof(struct memcg_cache_params); 3019 3020 if (!memcg_kmem_enabled()) 3021 return 0; 3022 3023 if (!memcg) 3024 size += memcg_limited_groups_array_size * sizeof(void *); 3025 3026 s->memcg_params = kzalloc(size, GFP_KERNEL); 3027 if (!s->memcg_params) 3028 return -ENOMEM; 3029 3030 if (memcg) { 3031 s->memcg_params->memcg = memcg; 3032 s->memcg_params->root_cache = root_cache; 3033 } 3034 return 0; 3035 } 3036 3037 void memcg_release_cache(struct kmem_cache *s) 3038 { 3039 struct kmem_cache *root; 3040 struct mem_cgroup *memcg; 3041 int id; 3042 3043 /* 3044 * This happens, for instance, when a root cache goes away before we 3045 * add any memcg. 3046 */ 3047 if (!s->memcg_params) 3048 return; 3049 3050 if (s->memcg_params->is_root_cache) 3051 goto out; 3052 3053 memcg = s->memcg_params->memcg; 3054 id = memcg_cache_id(memcg); 3055 3056 root = s->memcg_params->root_cache; 3057 root->memcg_params->memcg_caches[id] = NULL; 3058 mem_cgroup_put(memcg); 3059 3060 mutex_lock(&memcg->slab_caches_mutex); 3061 list_del(&s->memcg_params->list); 3062 mutex_unlock(&memcg->slab_caches_mutex); 3063 3064 out: 3065 kfree(s->memcg_params); 3066 } 3067 3068 /* 3069 * During the creation a new cache, we need to disable our accounting mechanism 3070 * altogether. This is true even if we are not creating, but rather just 3071 * enqueing new caches to be created. 3072 * 3073 * This is because that process will trigger allocations; some visible, like 3074 * explicit kmallocs to auxiliary data structures, name strings and internal 3075 * cache structures; some well concealed, like INIT_WORK() that can allocate 3076 * objects during debug. 3077 * 3078 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3079 * to it. This may not be a bounded recursion: since the first cache creation 3080 * failed to complete (waiting on the allocation), we'll just try to create the 3081 * cache again, failing at the same point. 3082 * 3083 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3084 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3085 * inside the following two functions. 3086 */ 3087 static inline void memcg_stop_kmem_account(void) 3088 { 3089 VM_BUG_ON(!current->mm); 3090 current->memcg_kmem_skip_account++; 3091 } 3092 3093 static inline void memcg_resume_kmem_account(void) 3094 { 3095 VM_BUG_ON(!current->mm); 3096 current->memcg_kmem_skip_account--; 3097 } 3098 3099 static void kmem_cache_destroy_work_func(struct work_struct *w) 3100 { 3101 struct kmem_cache *cachep; 3102 struct memcg_cache_params *p; 3103 3104 p = container_of(w, struct memcg_cache_params, destroy); 3105 3106 cachep = memcg_params_to_cache(p); 3107 3108 /* 3109 * If we get down to 0 after shrink, we could delete right away. 3110 * However, memcg_release_pages() already puts us back in the workqueue 3111 * in that case. If we proceed deleting, we'll get a dangling 3112 * reference, and removing the object from the workqueue in that case 3113 * is unnecessary complication. We are not a fast path. 3114 * 3115 * Note that this case is fundamentally different from racing with 3116 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3117 * kmem_cache_shrink, not only we would be reinserting a dead cache 3118 * into the queue, but doing so from inside the worker racing to 3119 * destroy it. 3120 * 3121 * So if we aren't down to zero, we'll just schedule a worker and try 3122 * again 3123 */ 3124 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3125 kmem_cache_shrink(cachep); 3126 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3127 return; 3128 } else 3129 kmem_cache_destroy(cachep); 3130 } 3131 3132 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3133 { 3134 if (!cachep->memcg_params->dead) 3135 return; 3136 3137 /* 3138 * There are many ways in which we can get here. 3139 * 3140 * We can get to a memory-pressure situation while the delayed work is 3141 * still pending to run. The vmscan shrinkers can then release all 3142 * cache memory and get us to destruction. If this is the case, we'll 3143 * be executed twice, which is a bug (the second time will execute over 3144 * bogus data). In this case, cancelling the work should be fine. 3145 * 3146 * But we can also get here from the worker itself, if 3147 * kmem_cache_shrink is enough to shake all the remaining objects and 3148 * get the page count to 0. In this case, we'll deadlock if we try to 3149 * cancel the work (the worker runs with an internal lock held, which 3150 * is the same lock we would hold for cancel_work_sync().) 3151 * 3152 * Since we can't possibly know who got us here, just refrain from 3153 * running if there is already work pending 3154 */ 3155 if (work_pending(&cachep->memcg_params->destroy)) 3156 return; 3157 /* 3158 * We have to defer the actual destroying to a workqueue, because 3159 * we might currently be in a context that cannot sleep. 3160 */ 3161 schedule_work(&cachep->memcg_params->destroy); 3162 } 3163 3164 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s) 3165 { 3166 char *name; 3167 struct dentry *dentry; 3168 3169 rcu_read_lock(); 3170 dentry = rcu_dereference(memcg->css.cgroup->dentry); 3171 rcu_read_unlock(); 3172 3173 BUG_ON(dentry == NULL); 3174 3175 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name, 3176 memcg_cache_id(memcg), dentry->d_name.name); 3177 3178 return name; 3179 } 3180 3181 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3182 struct kmem_cache *s) 3183 { 3184 char *name; 3185 struct kmem_cache *new; 3186 3187 name = memcg_cache_name(memcg, s); 3188 if (!name) 3189 return NULL; 3190 3191 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align, 3192 (s->flags & ~SLAB_PANIC), s->ctor, s); 3193 3194 if (new) 3195 new->allocflags |= __GFP_KMEMCG; 3196 3197 kfree(name); 3198 return new; 3199 } 3200 3201 /* 3202 * This lock protects updaters, not readers. We want readers to be as fast as 3203 * they can, and they will either see NULL or a valid cache value. Our model 3204 * allow them to see NULL, in which case the root memcg will be selected. 3205 * 3206 * We need this lock because multiple allocations to the same cache from a non 3207 * will span more than one worker. Only one of them can create the cache. 3208 */ 3209 static DEFINE_MUTEX(memcg_cache_mutex); 3210 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3211 struct kmem_cache *cachep) 3212 { 3213 struct kmem_cache *new_cachep; 3214 int idx; 3215 3216 BUG_ON(!memcg_can_account_kmem(memcg)); 3217 3218 idx = memcg_cache_id(memcg); 3219 3220 mutex_lock(&memcg_cache_mutex); 3221 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3222 if (new_cachep) 3223 goto out; 3224 3225 new_cachep = kmem_cache_dup(memcg, cachep); 3226 if (new_cachep == NULL) { 3227 new_cachep = cachep; 3228 goto out; 3229 } 3230 3231 mem_cgroup_get(memcg); 3232 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3233 3234 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3235 /* 3236 * the readers won't lock, make sure everybody sees the updated value, 3237 * so they won't put stuff in the queue again for no reason 3238 */ 3239 wmb(); 3240 out: 3241 mutex_unlock(&memcg_cache_mutex); 3242 return new_cachep; 3243 } 3244 3245 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3246 { 3247 struct kmem_cache *c; 3248 int i; 3249 3250 if (!s->memcg_params) 3251 return; 3252 if (!s->memcg_params->is_root_cache) 3253 return; 3254 3255 /* 3256 * If the cache is being destroyed, we trust that there is no one else 3257 * requesting objects from it. Even if there are, the sanity checks in 3258 * kmem_cache_destroy should caught this ill-case. 3259 * 3260 * Still, we don't want anyone else freeing memcg_caches under our 3261 * noses, which can happen if a new memcg comes to life. As usual, 3262 * we'll take the set_limit_mutex to protect ourselves against this. 3263 */ 3264 mutex_lock(&set_limit_mutex); 3265 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3266 c = s->memcg_params->memcg_caches[i]; 3267 if (!c) 3268 continue; 3269 3270 /* 3271 * We will now manually delete the caches, so to avoid races 3272 * we need to cancel all pending destruction workers and 3273 * proceed with destruction ourselves. 3274 * 3275 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3276 * and that could spawn the workers again: it is likely that 3277 * the cache still have active pages until this very moment. 3278 * This would lead us back to mem_cgroup_destroy_cache. 3279 * 3280 * But that will not execute at all if the "dead" flag is not 3281 * set, so flip it down to guarantee we are in control. 3282 */ 3283 c->memcg_params->dead = false; 3284 cancel_work_sync(&c->memcg_params->destroy); 3285 kmem_cache_destroy(c); 3286 } 3287 mutex_unlock(&set_limit_mutex); 3288 } 3289 3290 struct create_work { 3291 struct mem_cgroup *memcg; 3292 struct kmem_cache *cachep; 3293 struct work_struct work; 3294 }; 3295 3296 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3297 { 3298 struct kmem_cache *cachep; 3299 struct memcg_cache_params *params; 3300 3301 if (!memcg_kmem_is_active(memcg)) 3302 return; 3303 3304 mutex_lock(&memcg->slab_caches_mutex); 3305 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3306 cachep = memcg_params_to_cache(params); 3307 cachep->memcg_params->dead = true; 3308 INIT_WORK(&cachep->memcg_params->destroy, 3309 kmem_cache_destroy_work_func); 3310 schedule_work(&cachep->memcg_params->destroy); 3311 } 3312 mutex_unlock(&memcg->slab_caches_mutex); 3313 } 3314 3315 static void memcg_create_cache_work_func(struct work_struct *w) 3316 { 3317 struct create_work *cw; 3318 3319 cw = container_of(w, struct create_work, work); 3320 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3321 /* Drop the reference gotten when we enqueued. */ 3322 css_put(&cw->memcg->css); 3323 kfree(cw); 3324 } 3325 3326 /* 3327 * Enqueue the creation of a per-memcg kmem_cache. 3328 * Called with rcu_read_lock. 3329 */ 3330 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3331 struct kmem_cache *cachep) 3332 { 3333 struct create_work *cw; 3334 3335 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3336 if (cw == NULL) 3337 return; 3338 3339 /* The corresponding put will be done in the workqueue. */ 3340 if (!css_tryget(&memcg->css)) { 3341 kfree(cw); 3342 return; 3343 } 3344 3345 cw->memcg = memcg; 3346 cw->cachep = cachep; 3347 3348 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3349 schedule_work(&cw->work); 3350 } 3351 3352 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3353 struct kmem_cache *cachep) 3354 { 3355 /* 3356 * We need to stop accounting when we kmalloc, because if the 3357 * corresponding kmalloc cache is not yet created, the first allocation 3358 * in __memcg_create_cache_enqueue will recurse. 3359 * 3360 * However, it is better to enclose the whole function. Depending on 3361 * the debugging options enabled, INIT_WORK(), for instance, can 3362 * trigger an allocation. This too, will make us recurse. Because at 3363 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3364 * the safest choice is to do it like this, wrapping the whole function. 3365 */ 3366 memcg_stop_kmem_account(); 3367 __memcg_create_cache_enqueue(memcg, cachep); 3368 memcg_resume_kmem_account(); 3369 } 3370 /* 3371 * Return the kmem_cache we're supposed to use for a slab allocation. 3372 * We try to use the current memcg's version of the cache. 3373 * 3374 * If the cache does not exist yet, if we are the first user of it, 3375 * we either create it immediately, if possible, or create it asynchronously 3376 * in a workqueue. 3377 * In the latter case, we will let the current allocation go through with 3378 * the original cache. 3379 * 3380 * Can't be called in interrupt context or from kernel threads. 3381 * This function needs to be called with rcu_read_lock() held. 3382 */ 3383 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3384 gfp_t gfp) 3385 { 3386 struct mem_cgroup *memcg; 3387 int idx; 3388 3389 VM_BUG_ON(!cachep->memcg_params); 3390 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3391 3392 if (!current->mm || current->memcg_kmem_skip_account) 3393 return cachep; 3394 3395 rcu_read_lock(); 3396 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3397 rcu_read_unlock(); 3398 3399 if (!memcg_can_account_kmem(memcg)) 3400 return cachep; 3401 3402 idx = memcg_cache_id(memcg); 3403 3404 /* 3405 * barrier to mare sure we're always seeing the up to date value. The 3406 * code updating memcg_caches will issue a write barrier to match this. 3407 */ 3408 read_barrier_depends(); 3409 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) { 3410 /* 3411 * If we are in a safe context (can wait, and not in interrupt 3412 * context), we could be be predictable and return right away. 3413 * This would guarantee that the allocation being performed 3414 * already belongs in the new cache. 3415 * 3416 * However, there are some clashes that can arrive from locking. 3417 * For instance, because we acquire the slab_mutex while doing 3418 * kmem_cache_dup, this means no further allocation could happen 3419 * with the slab_mutex held. 3420 * 3421 * Also, because cache creation issue get_online_cpus(), this 3422 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3423 * that ends up reversed during cpu hotplug. (cpuset allocates 3424 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3425 * better to defer everything. 3426 */ 3427 memcg_create_cache_enqueue(memcg, cachep); 3428 return cachep; 3429 } 3430 3431 return cachep->memcg_params->memcg_caches[idx]; 3432 } 3433 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3434 3435 /* 3436 * We need to verify if the allocation against current->mm->owner's memcg is 3437 * possible for the given order. But the page is not allocated yet, so we'll 3438 * need a further commit step to do the final arrangements. 3439 * 3440 * It is possible for the task to switch cgroups in this mean time, so at 3441 * commit time, we can't rely on task conversion any longer. We'll then use 3442 * the handle argument to return to the caller which cgroup we should commit 3443 * against. We could also return the memcg directly and avoid the pointer 3444 * passing, but a boolean return value gives better semantics considering 3445 * the compiled-out case as well. 3446 * 3447 * Returning true means the allocation is possible. 3448 */ 3449 bool 3450 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3451 { 3452 struct mem_cgroup *memcg; 3453 int ret; 3454 3455 *_memcg = NULL; 3456 memcg = try_get_mem_cgroup_from_mm(current->mm); 3457 3458 /* 3459 * very rare case described in mem_cgroup_from_task. Unfortunately there 3460 * isn't much we can do without complicating this too much, and it would 3461 * be gfp-dependent anyway. Just let it go 3462 */ 3463 if (unlikely(!memcg)) 3464 return true; 3465 3466 if (!memcg_can_account_kmem(memcg)) { 3467 css_put(&memcg->css); 3468 return true; 3469 } 3470 3471 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3472 if (!ret) 3473 *_memcg = memcg; 3474 3475 css_put(&memcg->css); 3476 return (ret == 0); 3477 } 3478 3479 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3480 int order) 3481 { 3482 struct page_cgroup *pc; 3483 3484 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3485 3486 /* The page allocation failed. Revert */ 3487 if (!page) { 3488 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3489 return; 3490 } 3491 3492 pc = lookup_page_cgroup(page); 3493 lock_page_cgroup(pc); 3494 pc->mem_cgroup = memcg; 3495 SetPageCgroupUsed(pc); 3496 unlock_page_cgroup(pc); 3497 } 3498 3499 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3500 { 3501 struct mem_cgroup *memcg = NULL; 3502 struct page_cgroup *pc; 3503 3504 3505 pc = lookup_page_cgroup(page); 3506 /* 3507 * Fast unlocked return. Theoretically might have changed, have to 3508 * check again after locking. 3509 */ 3510 if (!PageCgroupUsed(pc)) 3511 return; 3512 3513 lock_page_cgroup(pc); 3514 if (PageCgroupUsed(pc)) { 3515 memcg = pc->mem_cgroup; 3516 ClearPageCgroupUsed(pc); 3517 } 3518 unlock_page_cgroup(pc); 3519 3520 /* 3521 * We trust that only if there is a memcg associated with the page, it 3522 * is a valid allocation 3523 */ 3524 if (!memcg) 3525 return; 3526 3527 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3528 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3529 } 3530 #else 3531 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3532 { 3533 } 3534 #endif /* CONFIG_MEMCG_KMEM */ 3535 3536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3537 3538 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3539 /* 3540 * Because tail pages are not marked as "used", set it. We're under 3541 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3542 * charge/uncharge will be never happen and move_account() is done under 3543 * compound_lock(), so we don't have to take care of races. 3544 */ 3545 void mem_cgroup_split_huge_fixup(struct page *head) 3546 { 3547 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3548 struct page_cgroup *pc; 3549 int i; 3550 3551 if (mem_cgroup_disabled()) 3552 return; 3553 for (i = 1; i < HPAGE_PMD_NR; i++) { 3554 pc = head_pc + i; 3555 pc->mem_cgroup = head_pc->mem_cgroup; 3556 smp_wmb();/* see __commit_charge() */ 3557 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3558 } 3559 } 3560 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3561 3562 /** 3563 * mem_cgroup_move_account - move account of the page 3564 * @page: the page 3565 * @nr_pages: number of regular pages (>1 for huge pages) 3566 * @pc: page_cgroup of the page. 3567 * @from: mem_cgroup which the page is moved from. 3568 * @to: mem_cgroup which the page is moved to. @from != @to. 3569 * 3570 * The caller must confirm following. 3571 * - page is not on LRU (isolate_page() is useful.) 3572 * - compound_lock is held when nr_pages > 1 3573 * 3574 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3575 * from old cgroup. 3576 */ 3577 static int mem_cgroup_move_account(struct page *page, 3578 unsigned int nr_pages, 3579 struct page_cgroup *pc, 3580 struct mem_cgroup *from, 3581 struct mem_cgroup *to) 3582 { 3583 unsigned long flags; 3584 int ret; 3585 bool anon = PageAnon(page); 3586 3587 VM_BUG_ON(from == to); 3588 VM_BUG_ON(PageLRU(page)); 3589 /* 3590 * The page is isolated from LRU. So, collapse function 3591 * will not handle this page. But page splitting can happen. 3592 * Do this check under compound_page_lock(). The caller should 3593 * hold it. 3594 */ 3595 ret = -EBUSY; 3596 if (nr_pages > 1 && !PageTransHuge(page)) 3597 goto out; 3598 3599 lock_page_cgroup(pc); 3600 3601 ret = -EINVAL; 3602 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3603 goto unlock; 3604 3605 move_lock_mem_cgroup(from, &flags); 3606 3607 if (!anon && page_mapped(page)) { 3608 /* Update mapped_file data for mem_cgroup */ 3609 preempt_disable(); 3610 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3611 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3612 preempt_enable(); 3613 } 3614 mem_cgroup_charge_statistics(from, anon, -nr_pages); 3615 3616 /* caller should have done css_get */ 3617 pc->mem_cgroup = to; 3618 mem_cgroup_charge_statistics(to, anon, nr_pages); 3619 move_unlock_mem_cgroup(from, &flags); 3620 ret = 0; 3621 unlock: 3622 unlock_page_cgroup(pc); 3623 /* 3624 * check events 3625 */ 3626 memcg_check_events(to, page); 3627 memcg_check_events(from, page); 3628 out: 3629 return ret; 3630 } 3631 3632 /** 3633 * mem_cgroup_move_parent - moves page to the parent group 3634 * @page: the page to move 3635 * @pc: page_cgroup of the page 3636 * @child: page's cgroup 3637 * 3638 * move charges to its parent or the root cgroup if the group has no 3639 * parent (aka use_hierarchy==0). 3640 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3641 * mem_cgroup_move_account fails) the failure is always temporary and 3642 * it signals a race with a page removal/uncharge or migration. In the 3643 * first case the page is on the way out and it will vanish from the LRU 3644 * on the next attempt and the call should be retried later. 3645 * Isolation from the LRU fails only if page has been isolated from 3646 * the LRU since we looked at it and that usually means either global 3647 * reclaim or migration going on. The page will either get back to the 3648 * LRU or vanish. 3649 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3650 * (!PageCgroupUsed) or moved to a different group. The page will 3651 * disappear in the next attempt. 3652 */ 3653 static int mem_cgroup_move_parent(struct page *page, 3654 struct page_cgroup *pc, 3655 struct mem_cgroup *child) 3656 { 3657 struct mem_cgroup *parent; 3658 unsigned int nr_pages; 3659 unsigned long uninitialized_var(flags); 3660 int ret; 3661 3662 VM_BUG_ON(mem_cgroup_is_root(child)); 3663 3664 ret = -EBUSY; 3665 if (!get_page_unless_zero(page)) 3666 goto out; 3667 if (isolate_lru_page(page)) 3668 goto put; 3669 3670 nr_pages = hpage_nr_pages(page); 3671 3672 parent = parent_mem_cgroup(child); 3673 /* 3674 * If no parent, move charges to root cgroup. 3675 */ 3676 if (!parent) 3677 parent = root_mem_cgroup; 3678 3679 if (nr_pages > 1) { 3680 VM_BUG_ON(!PageTransHuge(page)); 3681 flags = compound_lock_irqsave(page); 3682 } 3683 3684 ret = mem_cgroup_move_account(page, nr_pages, 3685 pc, child, parent); 3686 if (!ret) 3687 __mem_cgroup_cancel_local_charge(child, nr_pages); 3688 3689 if (nr_pages > 1) 3690 compound_unlock_irqrestore(page, flags); 3691 putback_lru_page(page); 3692 put: 3693 put_page(page); 3694 out: 3695 return ret; 3696 } 3697 3698 /* 3699 * Charge the memory controller for page usage. 3700 * Return 3701 * 0 if the charge was successful 3702 * < 0 if the cgroup is over its limit 3703 */ 3704 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3705 gfp_t gfp_mask, enum charge_type ctype) 3706 { 3707 struct mem_cgroup *memcg = NULL; 3708 unsigned int nr_pages = 1; 3709 bool oom = true; 3710 int ret; 3711 3712 if (PageTransHuge(page)) { 3713 nr_pages <<= compound_order(page); 3714 VM_BUG_ON(!PageTransHuge(page)); 3715 /* 3716 * Never OOM-kill a process for a huge page. The 3717 * fault handler will fall back to regular pages. 3718 */ 3719 oom = false; 3720 } 3721 3722 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3723 if (ret == -ENOMEM) 3724 return ret; 3725 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3726 return 0; 3727 } 3728 3729 int mem_cgroup_newpage_charge(struct page *page, 3730 struct mm_struct *mm, gfp_t gfp_mask) 3731 { 3732 if (mem_cgroup_disabled()) 3733 return 0; 3734 VM_BUG_ON(page_mapped(page)); 3735 VM_BUG_ON(page->mapping && !PageAnon(page)); 3736 VM_BUG_ON(!mm); 3737 return mem_cgroup_charge_common(page, mm, gfp_mask, 3738 MEM_CGROUP_CHARGE_TYPE_ANON); 3739 } 3740 3741 /* 3742 * While swap-in, try_charge -> commit or cancel, the page is locked. 3743 * And when try_charge() successfully returns, one refcnt to memcg without 3744 * struct page_cgroup is acquired. This refcnt will be consumed by 3745 * "commit()" or removed by "cancel()" 3746 */ 3747 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3748 struct page *page, 3749 gfp_t mask, 3750 struct mem_cgroup **memcgp) 3751 { 3752 struct mem_cgroup *memcg; 3753 struct page_cgroup *pc; 3754 int ret; 3755 3756 pc = lookup_page_cgroup(page); 3757 /* 3758 * Every swap fault against a single page tries to charge the 3759 * page, bail as early as possible. shmem_unuse() encounters 3760 * already charged pages, too. The USED bit is protected by 3761 * the page lock, which serializes swap cache removal, which 3762 * in turn serializes uncharging. 3763 */ 3764 if (PageCgroupUsed(pc)) 3765 return 0; 3766 if (!do_swap_account) 3767 goto charge_cur_mm; 3768 memcg = try_get_mem_cgroup_from_page(page); 3769 if (!memcg) 3770 goto charge_cur_mm; 3771 *memcgp = memcg; 3772 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3773 css_put(&memcg->css); 3774 if (ret == -EINTR) 3775 ret = 0; 3776 return ret; 3777 charge_cur_mm: 3778 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3779 if (ret == -EINTR) 3780 ret = 0; 3781 return ret; 3782 } 3783 3784 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3785 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3786 { 3787 *memcgp = NULL; 3788 if (mem_cgroup_disabled()) 3789 return 0; 3790 /* 3791 * A racing thread's fault, or swapoff, may have already 3792 * updated the pte, and even removed page from swap cache: in 3793 * those cases unuse_pte()'s pte_same() test will fail; but 3794 * there's also a KSM case which does need to charge the page. 3795 */ 3796 if (!PageSwapCache(page)) { 3797 int ret; 3798 3799 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3800 if (ret == -EINTR) 3801 ret = 0; 3802 return ret; 3803 } 3804 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3805 } 3806 3807 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3808 { 3809 if (mem_cgroup_disabled()) 3810 return; 3811 if (!memcg) 3812 return; 3813 __mem_cgroup_cancel_charge(memcg, 1); 3814 } 3815 3816 static void 3817 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3818 enum charge_type ctype) 3819 { 3820 if (mem_cgroup_disabled()) 3821 return; 3822 if (!memcg) 3823 return; 3824 3825 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3826 /* 3827 * Now swap is on-memory. This means this page may be 3828 * counted both as mem and swap....double count. 3829 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3830 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3831 * may call delete_from_swap_cache() before reach here. 3832 */ 3833 if (do_swap_account && PageSwapCache(page)) { 3834 swp_entry_t ent = {.val = page_private(page)}; 3835 mem_cgroup_uncharge_swap(ent); 3836 } 3837 } 3838 3839 void mem_cgroup_commit_charge_swapin(struct page *page, 3840 struct mem_cgroup *memcg) 3841 { 3842 __mem_cgroup_commit_charge_swapin(page, memcg, 3843 MEM_CGROUP_CHARGE_TYPE_ANON); 3844 } 3845 3846 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 3847 gfp_t gfp_mask) 3848 { 3849 struct mem_cgroup *memcg = NULL; 3850 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3851 int ret; 3852 3853 if (mem_cgroup_disabled()) 3854 return 0; 3855 if (PageCompound(page)) 3856 return 0; 3857 3858 if (!PageSwapCache(page)) 3859 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 3860 else { /* page is swapcache/shmem */ 3861 ret = __mem_cgroup_try_charge_swapin(mm, page, 3862 gfp_mask, &memcg); 3863 if (!ret) 3864 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3865 } 3866 return ret; 3867 } 3868 3869 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3870 unsigned int nr_pages, 3871 const enum charge_type ctype) 3872 { 3873 struct memcg_batch_info *batch = NULL; 3874 bool uncharge_memsw = true; 3875 3876 /* If swapout, usage of swap doesn't decrease */ 3877 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3878 uncharge_memsw = false; 3879 3880 batch = ¤t->memcg_batch; 3881 /* 3882 * In usual, we do css_get() when we remember memcg pointer. 3883 * But in this case, we keep res->usage until end of a series of 3884 * uncharges. Then, it's ok to ignore memcg's refcnt. 3885 */ 3886 if (!batch->memcg) 3887 batch->memcg = memcg; 3888 /* 3889 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 3890 * In those cases, all pages freed continuously can be expected to be in 3891 * the same cgroup and we have chance to coalesce uncharges. 3892 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 3893 * because we want to do uncharge as soon as possible. 3894 */ 3895 3896 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 3897 goto direct_uncharge; 3898 3899 if (nr_pages > 1) 3900 goto direct_uncharge; 3901 3902 /* 3903 * In typical case, batch->memcg == mem. This means we can 3904 * merge a series of uncharges to an uncharge of res_counter. 3905 * If not, we uncharge res_counter ony by one. 3906 */ 3907 if (batch->memcg != memcg) 3908 goto direct_uncharge; 3909 /* remember freed charge and uncharge it later */ 3910 batch->nr_pages++; 3911 if (uncharge_memsw) 3912 batch->memsw_nr_pages++; 3913 return; 3914 direct_uncharge: 3915 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 3916 if (uncharge_memsw) 3917 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 3918 if (unlikely(batch->memcg != memcg)) 3919 memcg_oom_recover(memcg); 3920 } 3921 3922 /* 3923 * uncharge if !page_mapped(page) 3924 */ 3925 static struct mem_cgroup * 3926 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 3927 bool end_migration) 3928 { 3929 struct mem_cgroup *memcg = NULL; 3930 unsigned int nr_pages = 1; 3931 struct page_cgroup *pc; 3932 bool anon; 3933 3934 if (mem_cgroup_disabled()) 3935 return NULL; 3936 3937 VM_BUG_ON(PageSwapCache(page)); 3938 3939 if (PageTransHuge(page)) { 3940 nr_pages <<= compound_order(page); 3941 VM_BUG_ON(!PageTransHuge(page)); 3942 } 3943 /* 3944 * Check if our page_cgroup is valid 3945 */ 3946 pc = lookup_page_cgroup(page); 3947 if (unlikely(!PageCgroupUsed(pc))) 3948 return NULL; 3949 3950 lock_page_cgroup(pc); 3951 3952 memcg = pc->mem_cgroup; 3953 3954 if (!PageCgroupUsed(pc)) 3955 goto unlock_out; 3956 3957 anon = PageAnon(page); 3958 3959 switch (ctype) { 3960 case MEM_CGROUP_CHARGE_TYPE_ANON: 3961 /* 3962 * Generally PageAnon tells if it's the anon statistics to be 3963 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3964 * used before page reached the stage of being marked PageAnon. 3965 */ 3966 anon = true; 3967 /* fallthrough */ 3968 case MEM_CGROUP_CHARGE_TYPE_DROP: 3969 /* See mem_cgroup_prepare_migration() */ 3970 if (page_mapped(page)) 3971 goto unlock_out; 3972 /* 3973 * Pages under migration may not be uncharged. But 3974 * end_migration() /must/ be the one uncharging the 3975 * unused post-migration page and so it has to call 3976 * here with the migration bit still set. See the 3977 * res_counter handling below. 3978 */ 3979 if (!end_migration && PageCgroupMigration(pc)) 3980 goto unlock_out; 3981 break; 3982 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3983 if (!PageAnon(page)) { /* Shared memory */ 3984 if (page->mapping && !page_is_file_cache(page)) 3985 goto unlock_out; 3986 } else if (page_mapped(page)) /* Anon */ 3987 goto unlock_out; 3988 break; 3989 default: 3990 break; 3991 } 3992 3993 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3994 3995 ClearPageCgroupUsed(pc); 3996 /* 3997 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3998 * freed from LRU. This is safe because uncharged page is expected not 3999 * to be reused (freed soon). Exception is SwapCache, it's handled by 4000 * special functions. 4001 */ 4002 4003 unlock_page_cgroup(pc); 4004 /* 4005 * even after unlock, we have memcg->res.usage here and this memcg 4006 * will never be freed. 4007 */ 4008 memcg_check_events(memcg, page); 4009 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4010 mem_cgroup_swap_statistics(memcg, true); 4011 mem_cgroup_get(memcg); 4012 } 4013 /* 4014 * Migration does not charge the res_counter for the 4015 * replacement page, so leave it alone when phasing out the 4016 * page that is unused after the migration. 4017 */ 4018 if (!end_migration && !mem_cgroup_is_root(memcg)) 4019 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4020 4021 return memcg; 4022 4023 unlock_out: 4024 unlock_page_cgroup(pc); 4025 return NULL; 4026 } 4027 4028 void mem_cgroup_uncharge_page(struct page *page) 4029 { 4030 /* early check. */ 4031 if (page_mapped(page)) 4032 return; 4033 VM_BUG_ON(page->mapping && !PageAnon(page)); 4034 if (PageSwapCache(page)) 4035 return; 4036 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4037 } 4038 4039 void mem_cgroup_uncharge_cache_page(struct page *page) 4040 { 4041 VM_BUG_ON(page_mapped(page)); 4042 VM_BUG_ON(page->mapping); 4043 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4044 } 4045 4046 /* 4047 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4048 * In that cases, pages are freed continuously and we can expect pages 4049 * are in the same memcg. All these calls itself limits the number of 4050 * pages freed at once, then uncharge_start/end() is called properly. 4051 * This may be called prural(2) times in a context, 4052 */ 4053 4054 void mem_cgroup_uncharge_start(void) 4055 { 4056 current->memcg_batch.do_batch++; 4057 /* We can do nest. */ 4058 if (current->memcg_batch.do_batch == 1) { 4059 current->memcg_batch.memcg = NULL; 4060 current->memcg_batch.nr_pages = 0; 4061 current->memcg_batch.memsw_nr_pages = 0; 4062 } 4063 } 4064 4065 void mem_cgroup_uncharge_end(void) 4066 { 4067 struct memcg_batch_info *batch = ¤t->memcg_batch; 4068 4069 if (!batch->do_batch) 4070 return; 4071 4072 batch->do_batch--; 4073 if (batch->do_batch) /* If stacked, do nothing. */ 4074 return; 4075 4076 if (!batch->memcg) 4077 return; 4078 /* 4079 * This "batch->memcg" is valid without any css_get/put etc... 4080 * bacause we hide charges behind us. 4081 */ 4082 if (batch->nr_pages) 4083 res_counter_uncharge(&batch->memcg->res, 4084 batch->nr_pages * PAGE_SIZE); 4085 if (batch->memsw_nr_pages) 4086 res_counter_uncharge(&batch->memcg->memsw, 4087 batch->memsw_nr_pages * PAGE_SIZE); 4088 memcg_oom_recover(batch->memcg); 4089 /* forget this pointer (for sanity check) */ 4090 batch->memcg = NULL; 4091 } 4092 4093 #ifdef CONFIG_SWAP 4094 /* 4095 * called after __delete_from_swap_cache() and drop "page" account. 4096 * memcg information is recorded to swap_cgroup of "ent" 4097 */ 4098 void 4099 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4100 { 4101 struct mem_cgroup *memcg; 4102 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4103 4104 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4105 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4106 4107 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4108 4109 /* 4110 * record memcg information, if swapout && memcg != NULL, 4111 * mem_cgroup_get() was called in uncharge(). 4112 */ 4113 if (do_swap_account && swapout && memcg) 4114 swap_cgroup_record(ent, css_id(&memcg->css)); 4115 } 4116 #endif 4117 4118 #ifdef CONFIG_MEMCG_SWAP 4119 /* 4120 * called from swap_entry_free(). remove record in swap_cgroup and 4121 * uncharge "memsw" account. 4122 */ 4123 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4124 { 4125 struct mem_cgroup *memcg; 4126 unsigned short id; 4127 4128 if (!do_swap_account) 4129 return; 4130 4131 id = swap_cgroup_record(ent, 0); 4132 rcu_read_lock(); 4133 memcg = mem_cgroup_lookup(id); 4134 if (memcg) { 4135 /* 4136 * We uncharge this because swap is freed. 4137 * This memcg can be obsolete one. We avoid calling css_tryget 4138 */ 4139 if (!mem_cgroup_is_root(memcg)) 4140 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4141 mem_cgroup_swap_statistics(memcg, false); 4142 mem_cgroup_put(memcg); 4143 } 4144 rcu_read_unlock(); 4145 } 4146 4147 /** 4148 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4149 * @entry: swap entry to be moved 4150 * @from: mem_cgroup which the entry is moved from 4151 * @to: mem_cgroup which the entry is moved to 4152 * 4153 * It succeeds only when the swap_cgroup's record for this entry is the same 4154 * as the mem_cgroup's id of @from. 4155 * 4156 * Returns 0 on success, -EINVAL on failure. 4157 * 4158 * The caller must have charged to @to, IOW, called res_counter_charge() about 4159 * both res and memsw, and called css_get(). 4160 */ 4161 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4162 struct mem_cgroup *from, struct mem_cgroup *to) 4163 { 4164 unsigned short old_id, new_id; 4165 4166 old_id = css_id(&from->css); 4167 new_id = css_id(&to->css); 4168 4169 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4170 mem_cgroup_swap_statistics(from, false); 4171 mem_cgroup_swap_statistics(to, true); 4172 /* 4173 * This function is only called from task migration context now. 4174 * It postpones res_counter and refcount handling till the end 4175 * of task migration(mem_cgroup_clear_mc()) for performance 4176 * improvement. But we cannot postpone mem_cgroup_get(to) 4177 * because if the process that has been moved to @to does 4178 * swap-in, the refcount of @to might be decreased to 0. 4179 */ 4180 mem_cgroup_get(to); 4181 return 0; 4182 } 4183 return -EINVAL; 4184 } 4185 #else 4186 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4187 struct mem_cgroup *from, struct mem_cgroup *to) 4188 { 4189 return -EINVAL; 4190 } 4191 #endif 4192 4193 /* 4194 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4195 * page belongs to. 4196 */ 4197 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4198 struct mem_cgroup **memcgp) 4199 { 4200 struct mem_cgroup *memcg = NULL; 4201 unsigned int nr_pages = 1; 4202 struct page_cgroup *pc; 4203 enum charge_type ctype; 4204 4205 *memcgp = NULL; 4206 4207 if (mem_cgroup_disabled()) 4208 return; 4209 4210 if (PageTransHuge(page)) 4211 nr_pages <<= compound_order(page); 4212 4213 pc = lookup_page_cgroup(page); 4214 lock_page_cgroup(pc); 4215 if (PageCgroupUsed(pc)) { 4216 memcg = pc->mem_cgroup; 4217 css_get(&memcg->css); 4218 /* 4219 * At migrating an anonymous page, its mapcount goes down 4220 * to 0 and uncharge() will be called. But, even if it's fully 4221 * unmapped, migration may fail and this page has to be 4222 * charged again. We set MIGRATION flag here and delay uncharge 4223 * until end_migration() is called 4224 * 4225 * Corner Case Thinking 4226 * A) 4227 * When the old page was mapped as Anon and it's unmap-and-freed 4228 * while migration was ongoing. 4229 * If unmap finds the old page, uncharge() of it will be delayed 4230 * until end_migration(). If unmap finds a new page, it's 4231 * uncharged when it make mapcount to be 1->0. If unmap code 4232 * finds swap_migration_entry, the new page will not be mapped 4233 * and end_migration() will find it(mapcount==0). 4234 * 4235 * B) 4236 * When the old page was mapped but migraion fails, the kernel 4237 * remaps it. A charge for it is kept by MIGRATION flag even 4238 * if mapcount goes down to 0. We can do remap successfully 4239 * without charging it again. 4240 * 4241 * C) 4242 * The "old" page is under lock_page() until the end of 4243 * migration, so, the old page itself will not be swapped-out. 4244 * If the new page is swapped out before end_migraton, our 4245 * hook to usual swap-out path will catch the event. 4246 */ 4247 if (PageAnon(page)) 4248 SetPageCgroupMigration(pc); 4249 } 4250 unlock_page_cgroup(pc); 4251 /* 4252 * If the page is not charged at this point, 4253 * we return here. 4254 */ 4255 if (!memcg) 4256 return; 4257 4258 *memcgp = memcg; 4259 /* 4260 * We charge new page before it's used/mapped. So, even if unlock_page() 4261 * is called before end_migration, we can catch all events on this new 4262 * page. In the case new page is migrated but not remapped, new page's 4263 * mapcount will be finally 0 and we call uncharge in end_migration(). 4264 */ 4265 if (PageAnon(page)) 4266 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4267 else 4268 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4269 /* 4270 * The page is committed to the memcg, but it's not actually 4271 * charged to the res_counter since we plan on replacing the 4272 * old one and only one page is going to be left afterwards. 4273 */ 4274 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4275 } 4276 4277 /* remove redundant charge if migration failed*/ 4278 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4279 struct page *oldpage, struct page *newpage, bool migration_ok) 4280 { 4281 struct page *used, *unused; 4282 struct page_cgroup *pc; 4283 bool anon; 4284 4285 if (!memcg) 4286 return; 4287 4288 if (!migration_ok) { 4289 used = oldpage; 4290 unused = newpage; 4291 } else { 4292 used = newpage; 4293 unused = oldpage; 4294 } 4295 anon = PageAnon(used); 4296 __mem_cgroup_uncharge_common(unused, 4297 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4298 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4299 true); 4300 css_put(&memcg->css); 4301 /* 4302 * We disallowed uncharge of pages under migration because mapcount 4303 * of the page goes down to zero, temporarly. 4304 * Clear the flag and check the page should be charged. 4305 */ 4306 pc = lookup_page_cgroup(oldpage); 4307 lock_page_cgroup(pc); 4308 ClearPageCgroupMigration(pc); 4309 unlock_page_cgroup(pc); 4310 4311 /* 4312 * If a page is a file cache, radix-tree replacement is very atomic 4313 * and we can skip this check. When it was an Anon page, its mapcount 4314 * goes down to 0. But because we added MIGRATION flage, it's not 4315 * uncharged yet. There are several case but page->mapcount check 4316 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4317 * check. (see prepare_charge() also) 4318 */ 4319 if (anon) 4320 mem_cgroup_uncharge_page(used); 4321 } 4322 4323 /* 4324 * At replace page cache, newpage is not under any memcg but it's on 4325 * LRU. So, this function doesn't touch res_counter but handles LRU 4326 * in correct way. Both pages are locked so we cannot race with uncharge. 4327 */ 4328 void mem_cgroup_replace_page_cache(struct page *oldpage, 4329 struct page *newpage) 4330 { 4331 struct mem_cgroup *memcg = NULL; 4332 struct page_cgroup *pc; 4333 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4334 4335 if (mem_cgroup_disabled()) 4336 return; 4337 4338 pc = lookup_page_cgroup(oldpage); 4339 /* fix accounting on old pages */ 4340 lock_page_cgroup(pc); 4341 if (PageCgroupUsed(pc)) { 4342 memcg = pc->mem_cgroup; 4343 mem_cgroup_charge_statistics(memcg, false, -1); 4344 ClearPageCgroupUsed(pc); 4345 } 4346 unlock_page_cgroup(pc); 4347 4348 /* 4349 * When called from shmem_replace_page(), in some cases the 4350 * oldpage has already been charged, and in some cases not. 4351 */ 4352 if (!memcg) 4353 return; 4354 /* 4355 * Even if newpage->mapping was NULL before starting replacement, 4356 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4357 * LRU while we overwrite pc->mem_cgroup. 4358 */ 4359 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4360 } 4361 4362 #ifdef CONFIG_DEBUG_VM 4363 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4364 { 4365 struct page_cgroup *pc; 4366 4367 pc = lookup_page_cgroup(page); 4368 /* 4369 * Can be NULL while feeding pages into the page allocator for 4370 * the first time, i.e. during boot or memory hotplug; 4371 * or when mem_cgroup_disabled(). 4372 */ 4373 if (likely(pc) && PageCgroupUsed(pc)) 4374 return pc; 4375 return NULL; 4376 } 4377 4378 bool mem_cgroup_bad_page_check(struct page *page) 4379 { 4380 if (mem_cgroup_disabled()) 4381 return false; 4382 4383 return lookup_page_cgroup_used(page) != NULL; 4384 } 4385 4386 void mem_cgroup_print_bad_page(struct page *page) 4387 { 4388 struct page_cgroup *pc; 4389 4390 pc = lookup_page_cgroup_used(page); 4391 if (pc) { 4392 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4393 pc, pc->flags, pc->mem_cgroup); 4394 } 4395 } 4396 #endif 4397 4398 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4399 unsigned long long val) 4400 { 4401 int retry_count; 4402 u64 memswlimit, memlimit; 4403 int ret = 0; 4404 int children = mem_cgroup_count_children(memcg); 4405 u64 curusage, oldusage; 4406 int enlarge; 4407 4408 /* 4409 * For keeping hierarchical_reclaim simple, how long we should retry 4410 * is depends on callers. We set our retry-count to be function 4411 * of # of children which we should visit in this loop. 4412 */ 4413 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4414 4415 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4416 4417 enlarge = 0; 4418 while (retry_count) { 4419 if (signal_pending(current)) { 4420 ret = -EINTR; 4421 break; 4422 } 4423 /* 4424 * Rather than hide all in some function, I do this in 4425 * open coded manner. You see what this really does. 4426 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4427 */ 4428 mutex_lock(&set_limit_mutex); 4429 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4430 if (memswlimit < val) { 4431 ret = -EINVAL; 4432 mutex_unlock(&set_limit_mutex); 4433 break; 4434 } 4435 4436 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4437 if (memlimit < val) 4438 enlarge = 1; 4439 4440 ret = res_counter_set_limit(&memcg->res, val); 4441 if (!ret) { 4442 if (memswlimit == val) 4443 memcg->memsw_is_minimum = true; 4444 else 4445 memcg->memsw_is_minimum = false; 4446 } 4447 mutex_unlock(&set_limit_mutex); 4448 4449 if (!ret) 4450 break; 4451 4452 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4453 MEM_CGROUP_RECLAIM_SHRINK); 4454 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4455 /* Usage is reduced ? */ 4456 if (curusage >= oldusage) 4457 retry_count--; 4458 else 4459 oldusage = curusage; 4460 } 4461 if (!ret && enlarge) 4462 memcg_oom_recover(memcg); 4463 4464 return ret; 4465 } 4466 4467 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4468 unsigned long long val) 4469 { 4470 int retry_count; 4471 u64 memlimit, memswlimit, oldusage, curusage; 4472 int children = mem_cgroup_count_children(memcg); 4473 int ret = -EBUSY; 4474 int enlarge = 0; 4475 4476 /* see mem_cgroup_resize_res_limit */ 4477 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4478 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4479 while (retry_count) { 4480 if (signal_pending(current)) { 4481 ret = -EINTR; 4482 break; 4483 } 4484 /* 4485 * Rather than hide all in some function, I do this in 4486 * open coded manner. You see what this really does. 4487 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4488 */ 4489 mutex_lock(&set_limit_mutex); 4490 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4491 if (memlimit > val) { 4492 ret = -EINVAL; 4493 mutex_unlock(&set_limit_mutex); 4494 break; 4495 } 4496 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4497 if (memswlimit < val) 4498 enlarge = 1; 4499 ret = res_counter_set_limit(&memcg->memsw, val); 4500 if (!ret) { 4501 if (memlimit == val) 4502 memcg->memsw_is_minimum = true; 4503 else 4504 memcg->memsw_is_minimum = false; 4505 } 4506 mutex_unlock(&set_limit_mutex); 4507 4508 if (!ret) 4509 break; 4510 4511 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4512 MEM_CGROUP_RECLAIM_NOSWAP | 4513 MEM_CGROUP_RECLAIM_SHRINK); 4514 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4515 /* Usage is reduced ? */ 4516 if (curusage >= oldusage) 4517 retry_count--; 4518 else 4519 oldusage = curusage; 4520 } 4521 if (!ret && enlarge) 4522 memcg_oom_recover(memcg); 4523 return ret; 4524 } 4525 4526 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4527 gfp_t gfp_mask, 4528 unsigned long *total_scanned) 4529 { 4530 unsigned long nr_reclaimed = 0; 4531 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4532 unsigned long reclaimed; 4533 int loop = 0; 4534 struct mem_cgroup_tree_per_zone *mctz; 4535 unsigned long long excess; 4536 unsigned long nr_scanned; 4537 4538 if (order > 0) 4539 return 0; 4540 4541 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4542 /* 4543 * This loop can run a while, specially if mem_cgroup's continuously 4544 * keep exceeding their soft limit and putting the system under 4545 * pressure 4546 */ 4547 do { 4548 if (next_mz) 4549 mz = next_mz; 4550 else 4551 mz = mem_cgroup_largest_soft_limit_node(mctz); 4552 if (!mz) 4553 break; 4554 4555 nr_scanned = 0; 4556 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4557 gfp_mask, &nr_scanned); 4558 nr_reclaimed += reclaimed; 4559 *total_scanned += nr_scanned; 4560 spin_lock(&mctz->lock); 4561 4562 /* 4563 * If we failed to reclaim anything from this memory cgroup 4564 * it is time to move on to the next cgroup 4565 */ 4566 next_mz = NULL; 4567 if (!reclaimed) { 4568 do { 4569 /* 4570 * Loop until we find yet another one. 4571 * 4572 * By the time we get the soft_limit lock 4573 * again, someone might have aded the 4574 * group back on the RB tree. Iterate to 4575 * make sure we get a different mem. 4576 * mem_cgroup_largest_soft_limit_node returns 4577 * NULL if no other cgroup is present on 4578 * the tree 4579 */ 4580 next_mz = 4581 __mem_cgroup_largest_soft_limit_node(mctz); 4582 if (next_mz == mz) 4583 css_put(&next_mz->memcg->css); 4584 else /* next_mz == NULL or other memcg */ 4585 break; 4586 } while (1); 4587 } 4588 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4589 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4590 /* 4591 * One school of thought says that we should not add 4592 * back the node to the tree if reclaim returns 0. 4593 * But our reclaim could return 0, simply because due 4594 * to priority we are exposing a smaller subset of 4595 * memory to reclaim from. Consider this as a longer 4596 * term TODO. 4597 */ 4598 /* If excess == 0, no tree ops */ 4599 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4600 spin_unlock(&mctz->lock); 4601 css_put(&mz->memcg->css); 4602 loop++; 4603 /* 4604 * Could not reclaim anything and there are no more 4605 * mem cgroups to try or we seem to be looping without 4606 * reclaiming anything. 4607 */ 4608 if (!nr_reclaimed && 4609 (next_mz == NULL || 4610 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4611 break; 4612 } while (!nr_reclaimed); 4613 if (next_mz) 4614 css_put(&next_mz->memcg->css); 4615 return nr_reclaimed; 4616 } 4617 4618 /** 4619 * mem_cgroup_force_empty_list - clears LRU of a group 4620 * @memcg: group to clear 4621 * @node: NUMA node 4622 * @zid: zone id 4623 * @lru: lru to to clear 4624 * 4625 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4626 * reclaim the pages page themselves - pages are moved to the parent (or root) 4627 * group. 4628 */ 4629 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4630 int node, int zid, enum lru_list lru) 4631 { 4632 struct lruvec *lruvec; 4633 unsigned long flags; 4634 struct list_head *list; 4635 struct page *busy; 4636 struct zone *zone; 4637 4638 zone = &NODE_DATA(node)->node_zones[zid]; 4639 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4640 list = &lruvec->lists[lru]; 4641 4642 busy = NULL; 4643 do { 4644 struct page_cgroup *pc; 4645 struct page *page; 4646 4647 spin_lock_irqsave(&zone->lru_lock, flags); 4648 if (list_empty(list)) { 4649 spin_unlock_irqrestore(&zone->lru_lock, flags); 4650 break; 4651 } 4652 page = list_entry(list->prev, struct page, lru); 4653 if (busy == page) { 4654 list_move(&page->lru, list); 4655 busy = NULL; 4656 spin_unlock_irqrestore(&zone->lru_lock, flags); 4657 continue; 4658 } 4659 spin_unlock_irqrestore(&zone->lru_lock, flags); 4660 4661 pc = lookup_page_cgroup(page); 4662 4663 if (mem_cgroup_move_parent(page, pc, memcg)) { 4664 /* found lock contention or "pc" is obsolete. */ 4665 busy = page; 4666 cond_resched(); 4667 } else 4668 busy = NULL; 4669 } while (!list_empty(list)); 4670 } 4671 4672 /* 4673 * make mem_cgroup's charge to be 0 if there is no task by moving 4674 * all the charges and pages to the parent. 4675 * This enables deleting this mem_cgroup. 4676 * 4677 * Caller is responsible for holding css reference on the memcg. 4678 */ 4679 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4680 { 4681 int node, zid; 4682 u64 usage; 4683 4684 do { 4685 /* This is for making all *used* pages to be on LRU. */ 4686 lru_add_drain_all(); 4687 drain_all_stock_sync(memcg); 4688 mem_cgroup_start_move(memcg); 4689 for_each_node_state(node, N_MEMORY) { 4690 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4691 enum lru_list lru; 4692 for_each_lru(lru) { 4693 mem_cgroup_force_empty_list(memcg, 4694 node, zid, lru); 4695 } 4696 } 4697 } 4698 mem_cgroup_end_move(memcg); 4699 memcg_oom_recover(memcg); 4700 cond_resched(); 4701 4702 /* 4703 * Kernel memory may not necessarily be trackable to a specific 4704 * process. So they are not migrated, and therefore we can't 4705 * expect their value to drop to 0 here. 4706 * Having res filled up with kmem only is enough. 4707 * 4708 * This is a safety check because mem_cgroup_force_empty_list 4709 * could have raced with mem_cgroup_replace_page_cache callers 4710 * so the lru seemed empty but the page could have been added 4711 * right after the check. RES_USAGE should be safe as we always 4712 * charge before adding to the LRU. 4713 */ 4714 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4715 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4716 } while (usage > 0); 4717 } 4718 4719 /* 4720 * Reclaims as many pages from the given memcg as possible and moves 4721 * the rest to the parent. 4722 * 4723 * Caller is responsible for holding css reference for memcg. 4724 */ 4725 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4726 { 4727 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4728 struct cgroup *cgrp = memcg->css.cgroup; 4729 4730 /* returns EBUSY if there is a task or if we come here twice. */ 4731 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4732 return -EBUSY; 4733 4734 /* we call try-to-free pages for make this cgroup empty */ 4735 lru_add_drain_all(); 4736 /* try to free all pages in this cgroup */ 4737 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4738 int progress; 4739 4740 if (signal_pending(current)) 4741 return -EINTR; 4742 4743 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4744 false); 4745 if (!progress) { 4746 nr_retries--; 4747 /* maybe some writeback is necessary */ 4748 congestion_wait(BLK_RW_ASYNC, HZ/10); 4749 } 4750 4751 } 4752 lru_add_drain(); 4753 mem_cgroup_reparent_charges(memcg); 4754 4755 return 0; 4756 } 4757 4758 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 4759 { 4760 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4761 int ret; 4762 4763 if (mem_cgroup_is_root(memcg)) 4764 return -EINVAL; 4765 css_get(&memcg->css); 4766 ret = mem_cgroup_force_empty(memcg); 4767 css_put(&memcg->css); 4768 4769 return ret; 4770 } 4771 4772 4773 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 4774 { 4775 return mem_cgroup_from_cont(cont)->use_hierarchy; 4776 } 4777 4778 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 4779 u64 val) 4780 { 4781 int retval = 0; 4782 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4783 struct cgroup *parent = cont->parent; 4784 struct mem_cgroup *parent_memcg = NULL; 4785 4786 if (parent) 4787 parent_memcg = mem_cgroup_from_cont(parent); 4788 4789 cgroup_lock(); 4790 4791 if (memcg->use_hierarchy == val) 4792 goto out; 4793 4794 /* 4795 * If parent's use_hierarchy is set, we can't make any modifications 4796 * in the child subtrees. If it is unset, then the change can 4797 * occur, provided the current cgroup has no children. 4798 * 4799 * For the root cgroup, parent_mem is NULL, we allow value to be 4800 * set if there are no children. 4801 */ 4802 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4803 (val == 1 || val == 0)) { 4804 if (list_empty(&cont->children)) 4805 memcg->use_hierarchy = val; 4806 else 4807 retval = -EBUSY; 4808 } else 4809 retval = -EINVAL; 4810 4811 out: 4812 cgroup_unlock(); 4813 4814 return retval; 4815 } 4816 4817 4818 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4819 enum mem_cgroup_stat_index idx) 4820 { 4821 struct mem_cgroup *iter; 4822 long val = 0; 4823 4824 /* Per-cpu values can be negative, use a signed accumulator */ 4825 for_each_mem_cgroup_tree(iter, memcg) 4826 val += mem_cgroup_read_stat(iter, idx); 4827 4828 if (val < 0) /* race ? */ 4829 val = 0; 4830 return val; 4831 } 4832 4833 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4834 { 4835 u64 val; 4836 4837 if (!mem_cgroup_is_root(memcg)) { 4838 if (!swap) 4839 return res_counter_read_u64(&memcg->res, RES_USAGE); 4840 else 4841 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4842 } 4843 4844 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4845 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4846 4847 if (swap) 4848 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4849 4850 return val << PAGE_SHIFT; 4851 } 4852 4853 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 4854 struct file *file, char __user *buf, 4855 size_t nbytes, loff_t *ppos) 4856 { 4857 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4858 char str[64]; 4859 u64 val; 4860 int name, len; 4861 enum res_type type; 4862 4863 type = MEMFILE_TYPE(cft->private); 4864 name = MEMFILE_ATTR(cft->private); 4865 4866 if (!do_swap_account && type == _MEMSWAP) 4867 return -EOPNOTSUPP; 4868 4869 switch (type) { 4870 case _MEM: 4871 if (name == RES_USAGE) 4872 val = mem_cgroup_usage(memcg, false); 4873 else 4874 val = res_counter_read_u64(&memcg->res, name); 4875 break; 4876 case _MEMSWAP: 4877 if (name == RES_USAGE) 4878 val = mem_cgroup_usage(memcg, true); 4879 else 4880 val = res_counter_read_u64(&memcg->memsw, name); 4881 break; 4882 case _KMEM: 4883 val = res_counter_read_u64(&memcg->kmem, name); 4884 break; 4885 default: 4886 BUG(); 4887 } 4888 4889 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 4890 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 4891 } 4892 4893 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) 4894 { 4895 int ret = -EINVAL; 4896 #ifdef CONFIG_MEMCG_KMEM 4897 bool must_inc_static_branch = false; 4898 4899 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4900 /* 4901 * For simplicity, we won't allow this to be disabled. It also can't 4902 * be changed if the cgroup has children already, or if tasks had 4903 * already joined. 4904 * 4905 * If tasks join before we set the limit, a person looking at 4906 * kmem.usage_in_bytes will have no way to determine when it took 4907 * place, which makes the value quite meaningless. 4908 * 4909 * After it first became limited, changes in the value of the limit are 4910 * of course permitted. 4911 * 4912 * Taking the cgroup_lock is really offensive, but it is so far the only 4913 * way to guarantee that no children will appear. There are plenty of 4914 * other offenders, and they should all go away. Fine grained locking 4915 * is probably the way to go here. When we are fully hierarchical, we 4916 * can also get rid of the use_hierarchy check. 4917 */ 4918 cgroup_lock(); 4919 mutex_lock(&set_limit_mutex); 4920 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 4921 if (cgroup_task_count(cont) || (memcg->use_hierarchy && 4922 !list_empty(&cont->children))) { 4923 ret = -EBUSY; 4924 goto out; 4925 } 4926 ret = res_counter_set_limit(&memcg->kmem, val); 4927 VM_BUG_ON(ret); 4928 4929 ret = memcg_update_cache_sizes(memcg); 4930 if (ret) { 4931 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 4932 goto out; 4933 } 4934 must_inc_static_branch = true; 4935 /* 4936 * kmem charges can outlive the cgroup. In the case of slab 4937 * pages, for instance, a page contain objects from various 4938 * processes, so it is unfeasible to migrate them away. We 4939 * need to reference count the memcg because of that. 4940 */ 4941 mem_cgroup_get(memcg); 4942 } else 4943 ret = res_counter_set_limit(&memcg->kmem, val); 4944 out: 4945 mutex_unlock(&set_limit_mutex); 4946 cgroup_unlock(); 4947 4948 /* 4949 * We are by now familiar with the fact that we can't inc the static 4950 * branch inside cgroup_lock. See disarm functions for details. A 4951 * worker here is overkill, but also wrong: After the limit is set, we 4952 * must start accounting right away. Since this operation can't fail, 4953 * we can safely defer it to here - no rollback will be needed. 4954 * 4955 * The boolean used to control this is also safe, because 4956 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be 4957 * able to set it to true; 4958 */ 4959 if (must_inc_static_branch) { 4960 static_key_slow_inc(&memcg_kmem_enabled_key); 4961 /* 4962 * setting the active bit after the inc will guarantee no one 4963 * starts accounting before all call sites are patched 4964 */ 4965 memcg_kmem_set_active(memcg); 4966 } 4967 4968 #endif 4969 return ret; 4970 } 4971 4972 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 4973 { 4974 int ret = 0; 4975 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4976 if (!parent) 4977 goto out; 4978 4979 memcg->kmem_account_flags = parent->kmem_account_flags; 4980 #ifdef CONFIG_MEMCG_KMEM 4981 /* 4982 * When that happen, we need to disable the static branch only on those 4983 * memcgs that enabled it. To achieve this, we would be forced to 4984 * complicate the code by keeping track of which memcgs were the ones 4985 * that actually enabled limits, and which ones got it from its 4986 * parents. 4987 * 4988 * It is a lot simpler just to do static_key_slow_inc() on every child 4989 * that is accounted. 4990 */ 4991 if (!memcg_kmem_is_active(memcg)) 4992 goto out; 4993 4994 /* 4995 * destroy(), called if we fail, will issue static_key_slow_inc() and 4996 * mem_cgroup_put() if kmem is enabled. We have to either call them 4997 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find 4998 * this more consistent, since it always leads to the same destroy path 4999 */ 5000 mem_cgroup_get(memcg); 5001 static_key_slow_inc(&memcg_kmem_enabled_key); 5002 5003 mutex_lock(&set_limit_mutex); 5004 ret = memcg_update_cache_sizes(memcg); 5005 mutex_unlock(&set_limit_mutex); 5006 #endif 5007 out: 5008 return ret; 5009 } 5010 5011 /* 5012 * The user of this function is... 5013 * RES_LIMIT. 5014 */ 5015 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 5016 const char *buffer) 5017 { 5018 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5019 enum res_type type; 5020 int name; 5021 unsigned long long val; 5022 int ret; 5023 5024 type = MEMFILE_TYPE(cft->private); 5025 name = MEMFILE_ATTR(cft->private); 5026 5027 if (!do_swap_account && type == _MEMSWAP) 5028 return -EOPNOTSUPP; 5029 5030 switch (name) { 5031 case RES_LIMIT: 5032 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5033 ret = -EINVAL; 5034 break; 5035 } 5036 /* This function does all necessary parse...reuse it */ 5037 ret = res_counter_memparse_write_strategy(buffer, &val); 5038 if (ret) 5039 break; 5040 if (type == _MEM) 5041 ret = mem_cgroup_resize_limit(memcg, val); 5042 else if (type == _MEMSWAP) 5043 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5044 else if (type == _KMEM) 5045 ret = memcg_update_kmem_limit(cont, val); 5046 else 5047 return -EINVAL; 5048 break; 5049 case RES_SOFT_LIMIT: 5050 ret = res_counter_memparse_write_strategy(buffer, &val); 5051 if (ret) 5052 break; 5053 /* 5054 * For memsw, soft limits are hard to implement in terms 5055 * of semantics, for now, we support soft limits for 5056 * control without swap 5057 */ 5058 if (type == _MEM) 5059 ret = res_counter_set_soft_limit(&memcg->res, val); 5060 else 5061 ret = -EINVAL; 5062 break; 5063 default: 5064 ret = -EINVAL; /* should be BUG() ? */ 5065 break; 5066 } 5067 return ret; 5068 } 5069 5070 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5071 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5072 { 5073 struct cgroup *cgroup; 5074 unsigned long long min_limit, min_memsw_limit, tmp; 5075 5076 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5077 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5078 cgroup = memcg->css.cgroup; 5079 if (!memcg->use_hierarchy) 5080 goto out; 5081 5082 while (cgroup->parent) { 5083 cgroup = cgroup->parent; 5084 memcg = mem_cgroup_from_cont(cgroup); 5085 if (!memcg->use_hierarchy) 5086 break; 5087 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5088 min_limit = min(min_limit, tmp); 5089 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5090 min_memsw_limit = min(min_memsw_limit, tmp); 5091 } 5092 out: 5093 *mem_limit = min_limit; 5094 *memsw_limit = min_memsw_limit; 5095 } 5096 5097 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 5098 { 5099 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5100 int name; 5101 enum res_type type; 5102 5103 type = MEMFILE_TYPE(event); 5104 name = MEMFILE_ATTR(event); 5105 5106 if (!do_swap_account && type == _MEMSWAP) 5107 return -EOPNOTSUPP; 5108 5109 switch (name) { 5110 case RES_MAX_USAGE: 5111 if (type == _MEM) 5112 res_counter_reset_max(&memcg->res); 5113 else if (type == _MEMSWAP) 5114 res_counter_reset_max(&memcg->memsw); 5115 else if (type == _KMEM) 5116 res_counter_reset_max(&memcg->kmem); 5117 else 5118 return -EINVAL; 5119 break; 5120 case RES_FAILCNT: 5121 if (type == _MEM) 5122 res_counter_reset_failcnt(&memcg->res); 5123 else if (type == _MEMSWAP) 5124 res_counter_reset_failcnt(&memcg->memsw); 5125 else if (type == _KMEM) 5126 res_counter_reset_failcnt(&memcg->kmem); 5127 else 5128 return -EINVAL; 5129 break; 5130 } 5131 5132 return 0; 5133 } 5134 5135 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 5136 struct cftype *cft) 5137 { 5138 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 5139 } 5140 5141 #ifdef CONFIG_MMU 5142 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5143 struct cftype *cft, u64 val) 5144 { 5145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5146 5147 if (val >= (1 << NR_MOVE_TYPE)) 5148 return -EINVAL; 5149 /* 5150 * We check this value several times in both in can_attach() and 5151 * attach(), so we need cgroup lock to prevent this value from being 5152 * inconsistent. 5153 */ 5154 cgroup_lock(); 5155 memcg->move_charge_at_immigrate = val; 5156 cgroup_unlock(); 5157 5158 return 0; 5159 } 5160 #else 5161 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5162 struct cftype *cft, u64 val) 5163 { 5164 return -ENOSYS; 5165 } 5166 #endif 5167 5168 #ifdef CONFIG_NUMA 5169 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 5170 struct seq_file *m) 5171 { 5172 int nid; 5173 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5174 unsigned long node_nr; 5175 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5176 5177 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5178 seq_printf(m, "total=%lu", total_nr); 5179 for_each_node_state(nid, N_MEMORY) { 5180 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5181 seq_printf(m, " N%d=%lu", nid, node_nr); 5182 } 5183 seq_putc(m, '\n'); 5184 5185 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5186 seq_printf(m, "file=%lu", file_nr); 5187 for_each_node_state(nid, N_MEMORY) { 5188 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5189 LRU_ALL_FILE); 5190 seq_printf(m, " N%d=%lu", nid, node_nr); 5191 } 5192 seq_putc(m, '\n'); 5193 5194 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5195 seq_printf(m, "anon=%lu", anon_nr); 5196 for_each_node_state(nid, N_MEMORY) { 5197 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5198 LRU_ALL_ANON); 5199 seq_printf(m, " N%d=%lu", nid, node_nr); 5200 } 5201 seq_putc(m, '\n'); 5202 5203 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5204 seq_printf(m, "unevictable=%lu", unevictable_nr); 5205 for_each_node_state(nid, N_MEMORY) { 5206 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5207 BIT(LRU_UNEVICTABLE)); 5208 seq_printf(m, " N%d=%lu", nid, node_nr); 5209 } 5210 seq_putc(m, '\n'); 5211 return 0; 5212 } 5213 #endif /* CONFIG_NUMA */ 5214 5215 static const char * const mem_cgroup_lru_names[] = { 5216 "inactive_anon", 5217 "active_anon", 5218 "inactive_file", 5219 "active_file", 5220 "unevictable", 5221 }; 5222 5223 static inline void mem_cgroup_lru_names_not_uptodate(void) 5224 { 5225 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5226 } 5227 5228 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 5229 struct seq_file *m) 5230 { 5231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5232 struct mem_cgroup *mi; 5233 unsigned int i; 5234 5235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5236 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5237 continue; 5238 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5239 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5240 } 5241 5242 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5243 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5244 mem_cgroup_read_events(memcg, i)); 5245 5246 for (i = 0; i < NR_LRU_LISTS; i++) 5247 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5248 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5249 5250 /* Hierarchical information */ 5251 { 5252 unsigned long long limit, memsw_limit; 5253 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5254 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5255 if (do_swap_account) 5256 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5257 memsw_limit); 5258 } 5259 5260 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5261 long long val = 0; 5262 5263 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5264 continue; 5265 for_each_mem_cgroup_tree(mi, memcg) 5266 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5267 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5268 } 5269 5270 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5271 unsigned long long val = 0; 5272 5273 for_each_mem_cgroup_tree(mi, memcg) 5274 val += mem_cgroup_read_events(mi, i); 5275 seq_printf(m, "total_%s %llu\n", 5276 mem_cgroup_events_names[i], val); 5277 } 5278 5279 for (i = 0; i < NR_LRU_LISTS; i++) { 5280 unsigned long long val = 0; 5281 5282 for_each_mem_cgroup_tree(mi, memcg) 5283 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5284 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5285 } 5286 5287 #ifdef CONFIG_DEBUG_VM 5288 { 5289 int nid, zid; 5290 struct mem_cgroup_per_zone *mz; 5291 struct zone_reclaim_stat *rstat; 5292 unsigned long recent_rotated[2] = {0, 0}; 5293 unsigned long recent_scanned[2] = {0, 0}; 5294 5295 for_each_online_node(nid) 5296 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5297 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5298 rstat = &mz->lruvec.reclaim_stat; 5299 5300 recent_rotated[0] += rstat->recent_rotated[0]; 5301 recent_rotated[1] += rstat->recent_rotated[1]; 5302 recent_scanned[0] += rstat->recent_scanned[0]; 5303 recent_scanned[1] += rstat->recent_scanned[1]; 5304 } 5305 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5306 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5307 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5308 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5309 } 5310 #endif 5311 5312 return 0; 5313 } 5314 5315 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 5316 { 5317 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5318 5319 return mem_cgroup_swappiness(memcg); 5320 } 5321 5322 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 5323 u64 val) 5324 { 5325 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5326 struct mem_cgroup *parent; 5327 5328 if (val > 100) 5329 return -EINVAL; 5330 5331 if (cgrp->parent == NULL) 5332 return -EINVAL; 5333 5334 parent = mem_cgroup_from_cont(cgrp->parent); 5335 5336 cgroup_lock(); 5337 5338 /* If under hierarchy, only empty-root can set this value */ 5339 if ((parent->use_hierarchy) || 5340 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 5341 cgroup_unlock(); 5342 return -EINVAL; 5343 } 5344 5345 memcg->swappiness = val; 5346 5347 cgroup_unlock(); 5348 5349 return 0; 5350 } 5351 5352 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5353 { 5354 struct mem_cgroup_threshold_ary *t; 5355 u64 usage; 5356 int i; 5357 5358 rcu_read_lock(); 5359 if (!swap) 5360 t = rcu_dereference(memcg->thresholds.primary); 5361 else 5362 t = rcu_dereference(memcg->memsw_thresholds.primary); 5363 5364 if (!t) 5365 goto unlock; 5366 5367 usage = mem_cgroup_usage(memcg, swap); 5368 5369 /* 5370 * current_threshold points to threshold just below or equal to usage. 5371 * If it's not true, a threshold was crossed after last 5372 * call of __mem_cgroup_threshold(). 5373 */ 5374 i = t->current_threshold; 5375 5376 /* 5377 * Iterate backward over array of thresholds starting from 5378 * current_threshold and check if a threshold is crossed. 5379 * If none of thresholds below usage is crossed, we read 5380 * only one element of the array here. 5381 */ 5382 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5383 eventfd_signal(t->entries[i].eventfd, 1); 5384 5385 /* i = current_threshold + 1 */ 5386 i++; 5387 5388 /* 5389 * Iterate forward over array of thresholds starting from 5390 * current_threshold+1 and check if a threshold is crossed. 5391 * If none of thresholds above usage is crossed, we read 5392 * only one element of the array here. 5393 */ 5394 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5395 eventfd_signal(t->entries[i].eventfd, 1); 5396 5397 /* Update current_threshold */ 5398 t->current_threshold = i - 1; 5399 unlock: 5400 rcu_read_unlock(); 5401 } 5402 5403 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5404 { 5405 while (memcg) { 5406 __mem_cgroup_threshold(memcg, false); 5407 if (do_swap_account) 5408 __mem_cgroup_threshold(memcg, true); 5409 5410 memcg = parent_mem_cgroup(memcg); 5411 } 5412 } 5413 5414 static int compare_thresholds(const void *a, const void *b) 5415 { 5416 const struct mem_cgroup_threshold *_a = a; 5417 const struct mem_cgroup_threshold *_b = b; 5418 5419 return _a->threshold - _b->threshold; 5420 } 5421 5422 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5423 { 5424 struct mem_cgroup_eventfd_list *ev; 5425 5426 list_for_each_entry(ev, &memcg->oom_notify, list) 5427 eventfd_signal(ev->eventfd, 1); 5428 return 0; 5429 } 5430 5431 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5432 { 5433 struct mem_cgroup *iter; 5434 5435 for_each_mem_cgroup_tree(iter, memcg) 5436 mem_cgroup_oom_notify_cb(iter); 5437 } 5438 5439 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 5440 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5441 { 5442 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5443 struct mem_cgroup_thresholds *thresholds; 5444 struct mem_cgroup_threshold_ary *new; 5445 enum res_type type = MEMFILE_TYPE(cft->private); 5446 u64 threshold, usage; 5447 int i, size, ret; 5448 5449 ret = res_counter_memparse_write_strategy(args, &threshold); 5450 if (ret) 5451 return ret; 5452 5453 mutex_lock(&memcg->thresholds_lock); 5454 5455 if (type == _MEM) 5456 thresholds = &memcg->thresholds; 5457 else if (type == _MEMSWAP) 5458 thresholds = &memcg->memsw_thresholds; 5459 else 5460 BUG(); 5461 5462 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5463 5464 /* Check if a threshold crossed before adding a new one */ 5465 if (thresholds->primary) 5466 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5467 5468 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5469 5470 /* Allocate memory for new array of thresholds */ 5471 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5472 GFP_KERNEL); 5473 if (!new) { 5474 ret = -ENOMEM; 5475 goto unlock; 5476 } 5477 new->size = size; 5478 5479 /* Copy thresholds (if any) to new array */ 5480 if (thresholds->primary) { 5481 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5482 sizeof(struct mem_cgroup_threshold)); 5483 } 5484 5485 /* Add new threshold */ 5486 new->entries[size - 1].eventfd = eventfd; 5487 new->entries[size - 1].threshold = threshold; 5488 5489 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5490 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5491 compare_thresholds, NULL); 5492 5493 /* Find current threshold */ 5494 new->current_threshold = -1; 5495 for (i = 0; i < size; i++) { 5496 if (new->entries[i].threshold <= usage) { 5497 /* 5498 * new->current_threshold will not be used until 5499 * rcu_assign_pointer(), so it's safe to increment 5500 * it here. 5501 */ 5502 ++new->current_threshold; 5503 } else 5504 break; 5505 } 5506 5507 /* Free old spare buffer and save old primary buffer as spare */ 5508 kfree(thresholds->spare); 5509 thresholds->spare = thresholds->primary; 5510 5511 rcu_assign_pointer(thresholds->primary, new); 5512 5513 /* To be sure that nobody uses thresholds */ 5514 synchronize_rcu(); 5515 5516 unlock: 5517 mutex_unlock(&memcg->thresholds_lock); 5518 5519 return ret; 5520 } 5521 5522 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 5523 struct cftype *cft, struct eventfd_ctx *eventfd) 5524 { 5525 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5526 struct mem_cgroup_thresholds *thresholds; 5527 struct mem_cgroup_threshold_ary *new; 5528 enum res_type type = MEMFILE_TYPE(cft->private); 5529 u64 usage; 5530 int i, j, size; 5531 5532 mutex_lock(&memcg->thresholds_lock); 5533 if (type == _MEM) 5534 thresholds = &memcg->thresholds; 5535 else if (type == _MEMSWAP) 5536 thresholds = &memcg->memsw_thresholds; 5537 else 5538 BUG(); 5539 5540 if (!thresholds->primary) 5541 goto unlock; 5542 5543 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5544 5545 /* Check if a threshold crossed before removing */ 5546 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5547 5548 /* Calculate new number of threshold */ 5549 size = 0; 5550 for (i = 0; i < thresholds->primary->size; i++) { 5551 if (thresholds->primary->entries[i].eventfd != eventfd) 5552 size++; 5553 } 5554 5555 new = thresholds->spare; 5556 5557 /* Set thresholds array to NULL if we don't have thresholds */ 5558 if (!size) { 5559 kfree(new); 5560 new = NULL; 5561 goto swap_buffers; 5562 } 5563 5564 new->size = size; 5565 5566 /* Copy thresholds and find current threshold */ 5567 new->current_threshold = -1; 5568 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5569 if (thresholds->primary->entries[i].eventfd == eventfd) 5570 continue; 5571 5572 new->entries[j] = thresholds->primary->entries[i]; 5573 if (new->entries[j].threshold <= usage) { 5574 /* 5575 * new->current_threshold will not be used 5576 * until rcu_assign_pointer(), so it's safe to increment 5577 * it here. 5578 */ 5579 ++new->current_threshold; 5580 } 5581 j++; 5582 } 5583 5584 swap_buffers: 5585 /* Swap primary and spare array */ 5586 thresholds->spare = thresholds->primary; 5587 /* If all events are unregistered, free the spare array */ 5588 if (!new) { 5589 kfree(thresholds->spare); 5590 thresholds->spare = NULL; 5591 } 5592 5593 rcu_assign_pointer(thresholds->primary, new); 5594 5595 /* To be sure that nobody uses thresholds */ 5596 synchronize_rcu(); 5597 unlock: 5598 mutex_unlock(&memcg->thresholds_lock); 5599 } 5600 5601 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 5602 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5603 { 5604 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5605 struct mem_cgroup_eventfd_list *event; 5606 enum res_type type = MEMFILE_TYPE(cft->private); 5607 5608 BUG_ON(type != _OOM_TYPE); 5609 event = kmalloc(sizeof(*event), GFP_KERNEL); 5610 if (!event) 5611 return -ENOMEM; 5612 5613 spin_lock(&memcg_oom_lock); 5614 5615 event->eventfd = eventfd; 5616 list_add(&event->list, &memcg->oom_notify); 5617 5618 /* already in OOM ? */ 5619 if (atomic_read(&memcg->under_oom)) 5620 eventfd_signal(eventfd, 1); 5621 spin_unlock(&memcg_oom_lock); 5622 5623 return 0; 5624 } 5625 5626 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 5627 struct cftype *cft, struct eventfd_ctx *eventfd) 5628 { 5629 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5630 struct mem_cgroup_eventfd_list *ev, *tmp; 5631 enum res_type type = MEMFILE_TYPE(cft->private); 5632 5633 BUG_ON(type != _OOM_TYPE); 5634 5635 spin_lock(&memcg_oom_lock); 5636 5637 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5638 if (ev->eventfd == eventfd) { 5639 list_del(&ev->list); 5640 kfree(ev); 5641 } 5642 } 5643 5644 spin_unlock(&memcg_oom_lock); 5645 } 5646 5647 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 5648 struct cftype *cft, struct cgroup_map_cb *cb) 5649 { 5650 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5651 5652 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5653 5654 if (atomic_read(&memcg->under_oom)) 5655 cb->fill(cb, "under_oom", 1); 5656 else 5657 cb->fill(cb, "under_oom", 0); 5658 return 0; 5659 } 5660 5661 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 5662 struct cftype *cft, u64 val) 5663 { 5664 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5665 struct mem_cgroup *parent; 5666 5667 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5668 if (!cgrp->parent || !((val == 0) || (val == 1))) 5669 return -EINVAL; 5670 5671 parent = mem_cgroup_from_cont(cgrp->parent); 5672 5673 cgroup_lock(); 5674 /* oom-kill-disable is a flag for subhierarchy. */ 5675 if ((parent->use_hierarchy) || 5676 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 5677 cgroup_unlock(); 5678 return -EINVAL; 5679 } 5680 memcg->oom_kill_disable = val; 5681 if (!val) 5682 memcg_oom_recover(memcg); 5683 cgroup_unlock(); 5684 return 0; 5685 } 5686 5687 #ifdef CONFIG_MEMCG_KMEM 5688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5689 { 5690 int ret; 5691 5692 memcg->kmemcg_id = -1; 5693 ret = memcg_propagate_kmem(memcg); 5694 if (ret) 5695 return ret; 5696 5697 return mem_cgroup_sockets_init(memcg, ss); 5698 }; 5699 5700 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5701 { 5702 mem_cgroup_sockets_destroy(memcg); 5703 5704 memcg_kmem_mark_dead(memcg); 5705 5706 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5707 return; 5708 5709 /* 5710 * Charges already down to 0, undo mem_cgroup_get() done in the charge 5711 * path here, being careful not to race with memcg_uncharge_kmem: it is 5712 * possible that the charges went down to 0 between mark_dead and the 5713 * res_counter read, so in that case, we don't need the put 5714 */ 5715 if (memcg_kmem_test_and_clear_dead(memcg)) 5716 mem_cgroup_put(memcg); 5717 } 5718 #else 5719 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5720 { 5721 return 0; 5722 } 5723 5724 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5725 { 5726 } 5727 #endif 5728 5729 static struct cftype mem_cgroup_files[] = { 5730 { 5731 .name = "usage_in_bytes", 5732 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5733 .read = mem_cgroup_read, 5734 .register_event = mem_cgroup_usage_register_event, 5735 .unregister_event = mem_cgroup_usage_unregister_event, 5736 }, 5737 { 5738 .name = "max_usage_in_bytes", 5739 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5740 .trigger = mem_cgroup_reset, 5741 .read = mem_cgroup_read, 5742 }, 5743 { 5744 .name = "limit_in_bytes", 5745 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5746 .write_string = mem_cgroup_write, 5747 .read = mem_cgroup_read, 5748 }, 5749 { 5750 .name = "soft_limit_in_bytes", 5751 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5752 .write_string = mem_cgroup_write, 5753 .read = mem_cgroup_read, 5754 }, 5755 { 5756 .name = "failcnt", 5757 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5758 .trigger = mem_cgroup_reset, 5759 .read = mem_cgroup_read, 5760 }, 5761 { 5762 .name = "stat", 5763 .read_seq_string = memcg_stat_show, 5764 }, 5765 { 5766 .name = "force_empty", 5767 .trigger = mem_cgroup_force_empty_write, 5768 }, 5769 { 5770 .name = "use_hierarchy", 5771 .write_u64 = mem_cgroup_hierarchy_write, 5772 .read_u64 = mem_cgroup_hierarchy_read, 5773 }, 5774 { 5775 .name = "swappiness", 5776 .read_u64 = mem_cgroup_swappiness_read, 5777 .write_u64 = mem_cgroup_swappiness_write, 5778 }, 5779 { 5780 .name = "move_charge_at_immigrate", 5781 .read_u64 = mem_cgroup_move_charge_read, 5782 .write_u64 = mem_cgroup_move_charge_write, 5783 }, 5784 { 5785 .name = "oom_control", 5786 .read_map = mem_cgroup_oom_control_read, 5787 .write_u64 = mem_cgroup_oom_control_write, 5788 .register_event = mem_cgroup_oom_register_event, 5789 .unregister_event = mem_cgroup_oom_unregister_event, 5790 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5791 }, 5792 #ifdef CONFIG_NUMA 5793 { 5794 .name = "numa_stat", 5795 .read_seq_string = memcg_numa_stat_show, 5796 }, 5797 #endif 5798 #ifdef CONFIG_MEMCG_SWAP 5799 { 5800 .name = "memsw.usage_in_bytes", 5801 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5802 .read = mem_cgroup_read, 5803 .register_event = mem_cgroup_usage_register_event, 5804 .unregister_event = mem_cgroup_usage_unregister_event, 5805 }, 5806 { 5807 .name = "memsw.max_usage_in_bytes", 5808 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5809 .trigger = mem_cgroup_reset, 5810 .read = mem_cgroup_read, 5811 }, 5812 { 5813 .name = "memsw.limit_in_bytes", 5814 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5815 .write_string = mem_cgroup_write, 5816 .read = mem_cgroup_read, 5817 }, 5818 { 5819 .name = "memsw.failcnt", 5820 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5821 .trigger = mem_cgroup_reset, 5822 .read = mem_cgroup_read, 5823 }, 5824 #endif 5825 #ifdef CONFIG_MEMCG_KMEM 5826 { 5827 .name = "kmem.limit_in_bytes", 5828 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5829 .write_string = mem_cgroup_write, 5830 .read = mem_cgroup_read, 5831 }, 5832 { 5833 .name = "kmem.usage_in_bytes", 5834 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5835 .read = mem_cgroup_read, 5836 }, 5837 { 5838 .name = "kmem.failcnt", 5839 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5840 .trigger = mem_cgroup_reset, 5841 .read = mem_cgroup_read, 5842 }, 5843 { 5844 .name = "kmem.max_usage_in_bytes", 5845 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5846 .trigger = mem_cgroup_reset, 5847 .read = mem_cgroup_read, 5848 }, 5849 #ifdef CONFIG_SLABINFO 5850 { 5851 .name = "kmem.slabinfo", 5852 .read_seq_string = mem_cgroup_slabinfo_read, 5853 }, 5854 #endif 5855 #endif 5856 { }, /* terminate */ 5857 }; 5858 5859 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5860 { 5861 struct mem_cgroup_per_node *pn; 5862 struct mem_cgroup_per_zone *mz; 5863 int zone, tmp = node; 5864 /* 5865 * This routine is called against possible nodes. 5866 * But it's BUG to call kmalloc() against offline node. 5867 * 5868 * TODO: this routine can waste much memory for nodes which will 5869 * never be onlined. It's better to use memory hotplug callback 5870 * function. 5871 */ 5872 if (!node_state(node, N_NORMAL_MEMORY)) 5873 tmp = -1; 5874 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5875 if (!pn) 5876 return 1; 5877 5878 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5879 mz = &pn->zoneinfo[zone]; 5880 lruvec_init(&mz->lruvec); 5881 mz->usage_in_excess = 0; 5882 mz->on_tree = false; 5883 mz->memcg = memcg; 5884 } 5885 memcg->info.nodeinfo[node] = pn; 5886 return 0; 5887 } 5888 5889 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5890 { 5891 kfree(memcg->info.nodeinfo[node]); 5892 } 5893 5894 static struct mem_cgroup *mem_cgroup_alloc(void) 5895 { 5896 struct mem_cgroup *memcg; 5897 int size = sizeof(struct mem_cgroup); 5898 5899 /* Can be very big if MAX_NUMNODES is very big */ 5900 if (size < PAGE_SIZE) 5901 memcg = kzalloc(size, GFP_KERNEL); 5902 else 5903 memcg = vzalloc(size); 5904 5905 if (!memcg) 5906 return NULL; 5907 5908 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 5909 if (!memcg->stat) 5910 goto out_free; 5911 spin_lock_init(&memcg->pcp_counter_lock); 5912 return memcg; 5913 5914 out_free: 5915 if (size < PAGE_SIZE) 5916 kfree(memcg); 5917 else 5918 vfree(memcg); 5919 return NULL; 5920 } 5921 5922 /* 5923 * At destroying mem_cgroup, references from swap_cgroup can remain. 5924 * (scanning all at force_empty is too costly...) 5925 * 5926 * Instead of clearing all references at force_empty, we remember 5927 * the number of reference from swap_cgroup and free mem_cgroup when 5928 * it goes down to 0. 5929 * 5930 * Removal of cgroup itself succeeds regardless of refs from swap. 5931 */ 5932 5933 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5934 { 5935 int node; 5936 int size = sizeof(struct mem_cgroup); 5937 5938 mem_cgroup_remove_from_trees(memcg); 5939 free_css_id(&mem_cgroup_subsys, &memcg->css); 5940 5941 for_each_node(node) 5942 free_mem_cgroup_per_zone_info(memcg, node); 5943 5944 free_percpu(memcg->stat); 5945 5946 /* 5947 * We need to make sure that (at least for now), the jump label 5948 * destruction code runs outside of the cgroup lock. This is because 5949 * get_online_cpus(), which is called from the static_branch update, 5950 * can't be called inside the cgroup_lock. cpusets are the ones 5951 * enforcing this dependency, so if they ever change, we might as well. 5952 * 5953 * schedule_work() will guarantee this happens. Be careful if you need 5954 * to move this code around, and make sure it is outside 5955 * the cgroup_lock. 5956 */ 5957 disarm_static_keys(memcg); 5958 if (size < PAGE_SIZE) 5959 kfree(memcg); 5960 else 5961 vfree(memcg); 5962 } 5963 5964 5965 /* 5966 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 5967 * but in process context. The work_freeing structure is overlaid 5968 * on the rcu_freeing structure, which itself is overlaid on memsw. 5969 */ 5970 static void free_work(struct work_struct *work) 5971 { 5972 struct mem_cgroup *memcg; 5973 5974 memcg = container_of(work, struct mem_cgroup, work_freeing); 5975 __mem_cgroup_free(memcg); 5976 } 5977 5978 static void free_rcu(struct rcu_head *rcu_head) 5979 { 5980 struct mem_cgroup *memcg; 5981 5982 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 5983 INIT_WORK(&memcg->work_freeing, free_work); 5984 schedule_work(&memcg->work_freeing); 5985 } 5986 5987 static void mem_cgroup_get(struct mem_cgroup *memcg) 5988 { 5989 atomic_inc(&memcg->refcnt); 5990 } 5991 5992 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 5993 { 5994 if (atomic_sub_and_test(count, &memcg->refcnt)) { 5995 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5996 call_rcu(&memcg->rcu_freeing, free_rcu); 5997 if (parent) 5998 mem_cgroup_put(parent); 5999 } 6000 } 6001 6002 static void mem_cgroup_put(struct mem_cgroup *memcg) 6003 { 6004 __mem_cgroup_put(memcg, 1); 6005 } 6006 6007 /* 6008 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6009 */ 6010 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6011 { 6012 if (!memcg->res.parent) 6013 return NULL; 6014 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6015 } 6016 EXPORT_SYMBOL(parent_mem_cgroup); 6017 6018 #ifdef CONFIG_MEMCG_SWAP 6019 static void __init enable_swap_cgroup(void) 6020 { 6021 if (!mem_cgroup_disabled() && really_do_swap_account) 6022 do_swap_account = 1; 6023 } 6024 #else 6025 static void __init enable_swap_cgroup(void) 6026 { 6027 } 6028 #endif 6029 6030 static int mem_cgroup_soft_limit_tree_init(void) 6031 { 6032 struct mem_cgroup_tree_per_node *rtpn; 6033 struct mem_cgroup_tree_per_zone *rtpz; 6034 int tmp, node, zone; 6035 6036 for_each_node(node) { 6037 tmp = node; 6038 if (!node_state(node, N_NORMAL_MEMORY)) 6039 tmp = -1; 6040 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6041 if (!rtpn) 6042 goto err_cleanup; 6043 6044 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6045 6046 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6047 rtpz = &rtpn->rb_tree_per_zone[zone]; 6048 rtpz->rb_root = RB_ROOT; 6049 spin_lock_init(&rtpz->lock); 6050 } 6051 } 6052 return 0; 6053 6054 err_cleanup: 6055 for_each_node(node) { 6056 if (!soft_limit_tree.rb_tree_per_node[node]) 6057 break; 6058 kfree(soft_limit_tree.rb_tree_per_node[node]); 6059 soft_limit_tree.rb_tree_per_node[node] = NULL; 6060 } 6061 return 1; 6062 6063 } 6064 6065 static struct cgroup_subsys_state * __ref 6066 mem_cgroup_css_alloc(struct cgroup *cont) 6067 { 6068 struct mem_cgroup *memcg, *parent; 6069 long error = -ENOMEM; 6070 int node; 6071 6072 memcg = mem_cgroup_alloc(); 6073 if (!memcg) 6074 return ERR_PTR(error); 6075 6076 for_each_node(node) 6077 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6078 goto free_out; 6079 6080 /* root ? */ 6081 if (cont->parent == NULL) { 6082 int cpu; 6083 enable_swap_cgroup(); 6084 parent = NULL; 6085 if (mem_cgroup_soft_limit_tree_init()) 6086 goto free_out; 6087 root_mem_cgroup = memcg; 6088 for_each_possible_cpu(cpu) { 6089 struct memcg_stock_pcp *stock = 6090 &per_cpu(memcg_stock, cpu); 6091 INIT_WORK(&stock->work, drain_local_stock); 6092 } 6093 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6094 } else { 6095 parent = mem_cgroup_from_cont(cont->parent); 6096 memcg->use_hierarchy = parent->use_hierarchy; 6097 memcg->oom_kill_disable = parent->oom_kill_disable; 6098 } 6099 6100 if (parent && parent->use_hierarchy) { 6101 res_counter_init(&memcg->res, &parent->res); 6102 res_counter_init(&memcg->memsw, &parent->memsw); 6103 res_counter_init(&memcg->kmem, &parent->kmem); 6104 6105 /* 6106 * We increment refcnt of the parent to ensure that we can 6107 * safely access it on res_counter_charge/uncharge. 6108 * This refcnt will be decremented when freeing this 6109 * mem_cgroup(see mem_cgroup_put). 6110 */ 6111 mem_cgroup_get(parent); 6112 } else { 6113 res_counter_init(&memcg->res, NULL); 6114 res_counter_init(&memcg->memsw, NULL); 6115 res_counter_init(&memcg->kmem, NULL); 6116 /* 6117 * Deeper hierachy with use_hierarchy == false doesn't make 6118 * much sense so let cgroup subsystem know about this 6119 * unfortunate state in our controller. 6120 */ 6121 if (parent && parent != root_mem_cgroup) 6122 mem_cgroup_subsys.broken_hierarchy = true; 6123 } 6124 memcg->last_scanned_node = MAX_NUMNODES; 6125 INIT_LIST_HEAD(&memcg->oom_notify); 6126 6127 if (parent) 6128 memcg->swappiness = mem_cgroup_swappiness(parent); 6129 atomic_set(&memcg->refcnt, 1); 6130 memcg->move_charge_at_immigrate = 0; 6131 mutex_init(&memcg->thresholds_lock); 6132 spin_lock_init(&memcg->move_lock); 6133 6134 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6135 if (error) { 6136 /* 6137 * We call put now because our (and parent's) refcnts 6138 * are already in place. mem_cgroup_put() will internally 6139 * call __mem_cgroup_free, so return directly 6140 */ 6141 mem_cgroup_put(memcg); 6142 return ERR_PTR(error); 6143 } 6144 return &memcg->css; 6145 free_out: 6146 __mem_cgroup_free(memcg); 6147 return ERR_PTR(error); 6148 } 6149 6150 static void mem_cgroup_css_offline(struct cgroup *cont) 6151 { 6152 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6153 6154 mem_cgroup_reparent_charges(memcg); 6155 mem_cgroup_destroy_all_caches(memcg); 6156 } 6157 6158 static void mem_cgroup_css_free(struct cgroup *cont) 6159 { 6160 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6161 6162 kmem_cgroup_destroy(memcg); 6163 6164 mem_cgroup_put(memcg); 6165 } 6166 6167 #ifdef CONFIG_MMU 6168 /* Handlers for move charge at task migration. */ 6169 #define PRECHARGE_COUNT_AT_ONCE 256 6170 static int mem_cgroup_do_precharge(unsigned long count) 6171 { 6172 int ret = 0; 6173 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6174 struct mem_cgroup *memcg = mc.to; 6175 6176 if (mem_cgroup_is_root(memcg)) { 6177 mc.precharge += count; 6178 /* we don't need css_get for root */ 6179 return ret; 6180 } 6181 /* try to charge at once */ 6182 if (count > 1) { 6183 struct res_counter *dummy; 6184 /* 6185 * "memcg" cannot be under rmdir() because we've already checked 6186 * by cgroup_lock_live_cgroup() that it is not removed and we 6187 * are still under the same cgroup_mutex. So we can postpone 6188 * css_get(). 6189 */ 6190 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6191 goto one_by_one; 6192 if (do_swap_account && res_counter_charge(&memcg->memsw, 6193 PAGE_SIZE * count, &dummy)) { 6194 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6195 goto one_by_one; 6196 } 6197 mc.precharge += count; 6198 return ret; 6199 } 6200 one_by_one: 6201 /* fall back to one by one charge */ 6202 while (count--) { 6203 if (signal_pending(current)) { 6204 ret = -EINTR; 6205 break; 6206 } 6207 if (!batch_count--) { 6208 batch_count = PRECHARGE_COUNT_AT_ONCE; 6209 cond_resched(); 6210 } 6211 ret = __mem_cgroup_try_charge(NULL, 6212 GFP_KERNEL, 1, &memcg, false); 6213 if (ret) 6214 /* mem_cgroup_clear_mc() will do uncharge later */ 6215 return ret; 6216 mc.precharge++; 6217 } 6218 return ret; 6219 } 6220 6221 /** 6222 * get_mctgt_type - get target type of moving charge 6223 * @vma: the vma the pte to be checked belongs 6224 * @addr: the address corresponding to the pte to be checked 6225 * @ptent: the pte to be checked 6226 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6227 * 6228 * Returns 6229 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6230 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6231 * move charge. if @target is not NULL, the page is stored in target->page 6232 * with extra refcnt got(Callers should handle it). 6233 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6234 * target for charge migration. if @target is not NULL, the entry is stored 6235 * in target->ent. 6236 * 6237 * Called with pte lock held. 6238 */ 6239 union mc_target { 6240 struct page *page; 6241 swp_entry_t ent; 6242 }; 6243 6244 enum mc_target_type { 6245 MC_TARGET_NONE = 0, 6246 MC_TARGET_PAGE, 6247 MC_TARGET_SWAP, 6248 }; 6249 6250 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6251 unsigned long addr, pte_t ptent) 6252 { 6253 struct page *page = vm_normal_page(vma, addr, ptent); 6254 6255 if (!page || !page_mapped(page)) 6256 return NULL; 6257 if (PageAnon(page)) { 6258 /* we don't move shared anon */ 6259 if (!move_anon()) 6260 return NULL; 6261 } else if (!move_file()) 6262 /* we ignore mapcount for file pages */ 6263 return NULL; 6264 if (!get_page_unless_zero(page)) 6265 return NULL; 6266 6267 return page; 6268 } 6269 6270 #ifdef CONFIG_SWAP 6271 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6272 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6273 { 6274 struct page *page = NULL; 6275 swp_entry_t ent = pte_to_swp_entry(ptent); 6276 6277 if (!move_anon() || non_swap_entry(ent)) 6278 return NULL; 6279 /* 6280 * Because lookup_swap_cache() updates some statistics counter, 6281 * we call find_get_page() with swapper_space directly. 6282 */ 6283 page = find_get_page(&swapper_space, ent.val); 6284 if (do_swap_account) 6285 entry->val = ent.val; 6286 6287 return page; 6288 } 6289 #else 6290 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6291 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6292 { 6293 return NULL; 6294 } 6295 #endif 6296 6297 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6298 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6299 { 6300 struct page *page = NULL; 6301 struct address_space *mapping; 6302 pgoff_t pgoff; 6303 6304 if (!vma->vm_file) /* anonymous vma */ 6305 return NULL; 6306 if (!move_file()) 6307 return NULL; 6308 6309 mapping = vma->vm_file->f_mapping; 6310 if (pte_none(ptent)) 6311 pgoff = linear_page_index(vma, addr); 6312 else /* pte_file(ptent) is true */ 6313 pgoff = pte_to_pgoff(ptent); 6314 6315 /* page is moved even if it's not RSS of this task(page-faulted). */ 6316 page = find_get_page(mapping, pgoff); 6317 6318 #ifdef CONFIG_SWAP 6319 /* shmem/tmpfs may report page out on swap: account for that too. */ 6320 if (radix_tree_exceptional_entry(page)) { 6321 swp_entry_t swap = radix_to_swp_entry(page); 6322 if (do_swap_account) 6323 *entry = swap; 6324 page = find_get_page(&swapper_space, swap.val); 6325 } 6326 #endif 6327 return page; 6328 } 6329 6330 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6331 unsigned long addr, pte_t ptent, union mc_target *target) 6332 { 6333 struct page *page = NULL; 6334 struct page_cgroup *pc; 6335 enum mc_target_type ret = MC_TARGET_NONE; 6336 swp_entry_t ent = { .val = 0 }; 6337 6338 if (pte_present(ptent)) 6339 page = mc_handle_present_pte(vma, addr, ptent); 6340 else if (is_swap_pte(ptent)) 6341 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6342 else if (pte_none(ptent) || pte_file(ptent)) 6343 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6344 6345 if (!page && !ent.val) 6346 return ret; 6347 if (page) { 6348 pc = lookup_page_cgroup(page); 6349 /* 6350 * Do only loose check w/o page_cgroup lock. 6351 * mem_cgroup_move_account() checks the pc is valid or not under 6352 * the lock. 6353 */ 6354 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6355 ret = MC_TARGET_PAGE; 6356 if (target) 6357 target->page = page; 6358 } 6359 if (!ret || !target) 6360 put_page(page); 6361 } 6362 /* There is a swap entry and a page doesn't exist or isn't charged */ 6363 if (ent.val && !ret && 6364 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6365 ret = MC_TARGET_SWAP; 6366 if (target) 6367 target->ent = ent; 6368 } 6369 return ret; 6370 } 6371 6372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6373 /* 6374 * We don't consider swapping or file mapped pages because THP does not 6375 * support them for now. 6376 * Caller should make sure that pmd_trans_huge(pmd) is true. 6377 */ 6378 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6379 unsigned long addr, pmd_t pmd, union mc_target *target) 6380 { 6381 struct page *page = NULL; 6382 struct page_cgroup *pc; 6383 enum mc_target_type ret = MC_TARGET_NONE; 6384 6385 page = pmd_page(pmd); 6386 VM_BUG_ON(!page || !PageHead(page)); 6387 if (!move_anon()) 6388 return ret; 6389 pc = lookup_page_cgroup(page); 6390 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6391 ret = MC_TARGET_PAGE; 6392 if (target) { 6393 get_page(page); 6394 target->page = page; 6395 } 6396 } 6397 return ret; 6398 } 6399 #else 6400 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6401 unsigned long addr, pmd_t pmd, union mc_target *target) 6402 { 6403 return MC_TARGET_NONE; 6404 } 6405 #endif 6406 6407 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6408 unsigned long addr, unsigned long end, 6409 struct mm_walk *walk) 6410 { 6411 struct vm_area_struct *vma = walk->private; 6412 pte_t *pte; 6413 spinlock_t *ptl; 6414 6415 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6416 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6417 mc.precharge += HPAGE_PMD_NR; 6418 spin_unlock(&vma->vm_mm->page_table_lock); 6419 return 0; 6420 } 6421 6422 if (pmd_trans_unstable(pmd)) 6423 return 0; 6424 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6425 for (; addr != end; pte++, addr += PAGE_SIZE) 6426 if (get_mctgt_type(vma, addr, *pte, NULL)) 6427 mc.precharge++; /* increment precharge temporarily */ 6428 pte_unmap_unlock(pte - 1, ptl); 6429 cond_resched(); 6430 6431 return 0; 6432 } 6433 6434 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6435 { 6436 unsigned long precharge; 6437 struct vm_area_struct *vma; 6438 6439 down_read(&mm->mmap_sem); 6440 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6441 struct mm_walk mem_cgroup_count_precharge_walk = { 6442 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6443 .mm = mm, 6444 .private = vma, 6445 }; 6446 if (is_vm_hugetlb_page(vma)) 6447 continue; 6448 walk_page_range(vma->vm_start, vma->vm_end, 6449 &mem_cgroup_count_precharge_walk); 6450 } 6451 up_read(&mm->mmap_sem); 6452 6453 precharge = mc.precharge; 6454 mc.precharge = 0; 6455 6456 return precharge; 6457 } 6458 6459 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6460 { 6461 unsigned long precharge = mem_cgroup_count_precharge(mm); 6462 6463 VM_BUG_ON(mc.moving_task); 6464 mc.moving_task = current; 6465 return mem_cgroup_do_precharge(precharge); 6466 } 6467 6468 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6469 static void __mem_cgroup_clear_mc(void) 6470 { 6471 struct mem_cgroup *from = mc.from; 6472 struct mem_cgroup *to = mc.to; 6473 6474 /* we must uncharge all the leftover precharges from mc.to */ 6475 if (mc.precharge) { 6476 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6477 mc.precharge = 0; 6478 } 6479 /* 6480 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6481 * we must uncharge here. 6482 */ 6483 if (mc.moved_charge) { 6484 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6485 mc.moved_charge = 0; 6486 } 6487 /* we must fixup refcnts and charges */ 6488 if (mc.moved_swap) { 6489 /* uncharge swap account from the old cgroup */ 6490 if (!mem_cgroup_is_root(mc.from)) 6491 res_counter_uncharge(&mc.from->memsw, 6492 PAGE_SIZE * mc.moved_swap); 6493 __mem_cgroup_put(mc.from, mc.moved_swap); 6494 6495 if (!mem_cgroup_is_root(mc.to)) { 6496 /* 6497 * we charged both to->res and to->memsw, so we should 6498 * uncharge to->res. 6499 */ 6500 res_counter_uncharge(&mc.to->res, 6501 PAGE_SIZE * mc.moved_swap); 6502 } 6503 /* we've already done mem_cgroup_get(mc.to) */ 6504 mc.moved_swap = 0; 6505 } 6506 memcg_oom_recover(from); 6507 memcg_oom_recover(to); 6508 wake_up_all(&mc.waitq); 6509 } 6510 6511 static void mem_cgroup_clear_mc(void) 6512 { 6513 struct mem_cgroup *from = mc.from; 6514 6515 /* 6516 * we must clear moving_task before waking up waiters at the end of 6517 * task migration. 6518 */ 6519 mc.moving_task = NULL; 6520 __mem_cgroup_clear_mc(); 6521 spin_lock(&mc.lock); 6522 mc.from = NULL; 6523 mc.to = NULL; 6524 spin_unlock(&mc.lock); 6525 mem_cgroup_end_move(from); 6526 } 6527 6528 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6529 struct cgroup_taskset *tset) 6530 { 6531 struct task_struct *p = cgroup_taskset_first(tset); 6532 int ret = 0; 6533 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 6534 6535 if (memcg->move_charge_at_immigrate) { 6536 struct mm_struct *mm; 6537 struct mem_cgroup *from = mem_cgroup_from_task(p); 6538 6539 VM_BUG_ON(from == memcg); 6540 6541 mm = get_task_mm(p); 6542 if (!mm) 6543 return 0; 6544 /* We move charges only when we move a owner of the mm */ 6545 if (mm->owner == p) { 6546 VM_BUG_ON(mc.from); 6547 VM_BUG_ON(mc.to); 6548 VM_BUG_ON(mc.precharge); 6549 VM_BUG_ON(mc.moved_charge); 6550 VM_BUG_ON(mc.moved_swap); 6551 mem_cgroup_start_move(from); 6552 spin_lock(&mc.lock); 6553 mc.from = from; 6554 mc.to = memcg; 6555 spin_unlock(&mc.lock); 6556 /* We set mc.moving_task later */ 6557 6558 ret = mem_cgroup_precharge_mc(mm); 6559 if (ret) 6560 mem_cgroup_clear_mc(); 6561 } 6562 mmput(mm); 6563 } 6564 return ret; 6565 } 6566 6567 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6568 struct cgroup_taskset *tset) 6569 { 6570 mem_cgroup_clear_mc(); 6571 } 6572 6573 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6574 unsigned long addr, unsigned long end, 6575 struct mm_walk *walk) 6576 { 6577 int ret = 0; 6578 struct vm_area_struct *vma = walk->private; 6579 pte_t *pte; 6580 spinlock_t *ptl; 6581 enum mc_target_type target_type; 6582 union mc_target target; 6583 struct page *page; 6584 struct page_cgroup *pc; 6585 6586 /* 6587 * We don't take compound_lock() here but no race with splitting thp 6588 * happens because: 6589 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6590 * under splitting, which means there's no concurrent thp split, 6591 * - if another thread runs into split_huge_page() just after we 6592 * entered this if-block, the thread must wait for page table lock 6593 * to be unlocked in __split_huge_page_splitting(), where the main 6594 * part of thp split is not executed yet. 6595 */ 6596 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6597 if (mc.precharge < HPAGE_PMD_NR) { 6598 spin_unlock(&vma->vm_mm->page_table_lock); 6599 return 0; 6600 } 6601 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6602 if (target_type == MC_TARGET_PAGE) { 6603 page = target.page; 6604 if (!isolate_lru_page(page)) { 6605 pc = lookup_page_cgroup(page); 6606 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6607 pc, mc.from, mc.to)) { 6608 mc.precharge -= HPAGE_PMD_NR; 6609 mc.moved_charge += HPAGE_PMD_NR; 6610 } 6611 putback_lru_page(page); 6612 } 6613 put_page(page); 6614 } 6615 spin_unlock(&vma->vm_mm->page_table_lock); 6616 return 0; 6617 } 6618 6619 if (pmd_trans_unstable(pmd)) 6620 return 0; 6621 retry: 6622 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6623 for (; addr != end; addr += PAGE_SIZE) { 6624 pte_t ptent = *(pte++); 6625 swp_entry_t ent; 6626 6627 if (!mc.precharge) 6628 break; 6629 6630 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6631 case MC_TARGET_PAGE: 6632 page = target.page; 6633 if (isolate_lru_page(page)) 6634 goto put; 6635 pc = lookup_page_cgroup(page); 6636 if (!mem_cgroup_move_account(page, 1, pc, 6637 mc.from, mc.to)) { 6638 mc.precharge--; 6639 /* we uncharge from mc.from later. */ 6640 mc.moved_charge++; 6641 } 6642 putback_lru_page(page); 6643 put: /* get_mctgt_type() gets the page */ 6644 put_page(page); 6645 break; 6646 case MC_TARGET_SWAP: 6647 ent = target.ent; 6648 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6649 mc.precharge--; 6650 /* we fixup refcnts and charges later. */ 6651 mc.moved_swap++; 6652 } 6653 break; 6654 default: 6655 break; 6656 } 6657 } 6658 pte_unmap_unlock(pte - 1, ptl); 6659 cond_resched(); 6660 6661 if (addr != end) { 6662 /* 6663 * We have consumed all precharges we got in can_attach(). 6664 * We try charge one by one, but don't do any additional 6665 * charges to mc.to if we have failed in charge once in attach() 6666 * phase. 6667 */ 6668 ret = mem_cgroup_do_precharge(1); 6669 if (!ret) 6670 goto retry; 6671 } 6672 6673 return ret; 6674 } 6675 6676 static void mem_cgroup_move_charge(struct mm_struct *mm) 6677 { 6678 struct vm_area_struct *vma; 6679 6680 lru_add_drain_all(); 6681 retry: 6682 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6683 /* 6684 * Someone who are holding the mmap_sem might be waiting in 6685 * waitq. So we cancel all extra charges, wake up all waiters, 6686 * and retry. Because we cancel precharges, we might not be able 6687 * to move enough charges, but moving charge is a best-effort 6688 * feature anyway, so it wouldn't be a big problem. 6689 */ 6690 __mem_cgroup_clear_mc(); 6691 cond_resched(); 6692 goto retry; 6693 } 6694 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6695 int ret; 6696 struct mm_walk mem_cgroup_move_charge_walk = { 6697 .pmd_entry = mem_cgroup_move_charge_pte_range, 6698 .mm = mm, 6699 .private = vma, 6700 }; 6701 if (is_vm_hugetlb_page(vma)) 6702 continue; 6703 ret = walk_page_range(vma->vm_start, vma->vm_end, 6704 &mem_cgroup_move_charge_walk); 6705 if (ret) 6706 /* 6707 * means we have consumed all precharges and failed in 6708 * doing additional charge. Just abandon here. 6709 */ 6710 break; 6711 } 6712 up_read(&mm->mmap_sem); 6713 } 6714 6715 static void mem_cgroup_move_task(struct cgroup *cont, 6716 struct cgroup_taskset *tset) 6717 { 6718 struct task_struct *p = cgroup_taskset_first(tset); 6719 struct mm_struct *mm = get_task_mm(p); 6720 6721 if (mm) { 6722 if (mc.to) 6723 mem_cgroup_move_charge(mm); 6724 mmput(mm); 6725 } 6726 if (mc.to) 6727 mem_cgroup_clear_mc(); 6728 } 6729 #else /* !CONFIG_MMU */ 6730 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6731 struct cgroup_taskset *tset) 6732 { 6733 return 0; 6734 } 6735 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6736 struct cgroup_taskset *tset) 6737 { 6738 } 6739 static void mem_cgroup_move_task(struct cgroup *cont, 6740 struct cgroup_taskset *tset) 6741 { 6742 } 6743 #endif 6744 6745 struct cgroup_subsys mem_cgroup_subsys = { 6746 .name = "memory", 6747 .subsys_id = mem_cgroup_subsys_id, 6748 .css_alloc = mem_cgroup_css_alloc, 6749 .css_offline = mem_cgroup_css_offline, 6750 .css_free = mem_cgroup_css_free, 6751 .can_attach = mem_cgroup_can_attach, 6752 .cancel_attach = mem_cgroup_cancel_attach, 6753 .attach = mem_cgroup_move_task, 6754 .base_cftypes = mem_cgroup_files, 6755 .early_init = 0, 6756 .use_id = 1, 6757 }; 6758 6759 #ifdef CONFIG_MEMCG_SWAP 6760 static int __init enable_swap_account(char *s) 6761 { 6762 /* consider enabled if no parameter or 1 is given */ 6763 if (!strcmp(s, "1")) 6764 really_do_swap_account = 1; 6765 else if (!strcmp(s, "0")) 6766 really_do_swap_account = 0; 6767 return 1; 6768 } 6769 __setup("swapaccount=", enable_swap_account); 6770 6771 #endif 6772