1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/parser.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/resume_user_mode.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include <linux/sched/isolation.h> 66 #include <linux/kmemleak.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "memcontrol-v1.h" 72 73 #include <linux/uaccess.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/memcg.h> 77 #undef CREATE_TRACE_POINTS 78 79 #include <trace/events/vmscan.h> 80 81 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 82 EXPORT_SYMBOL(memory_cgrp_subsys); 83 84 struct mem_cgroup *root_mem_cgroup __read_mostly; 85 86 /* Active memory cgroup to use from an interrupt context */ 87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 89 90 /* Socket memory accounting disabled? */ 91 static bool cgroup_memory_nosocket __ro_after_init; 92 93 /* Kernel memory accounting disabled? */ 94 static bool cgroup_memory_nokmem __ro_after_init; 95 96 /* BPF memory accounting disabled? */ 97 static bool cgroup_memory_nobpf __ro_after_init; 98 99 static struct kmem_cache *memcg_cachep; 100 static struct kmem_cache *memcg_pn_cachep; 101 102 #ifdef CONFIG_CGROUP_WRITEBACK 103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 104 #endif 105 106 static inline bool task_is_dying(void) 107 { 108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 109 (current->flags & PF_EXITING); 110 } 111 112 /* Some nice accessors for the vmpressure. */ 113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 114 { 115 if (!memcg) 116 memcg = root_mem_cgroup; 117 return &memcg->vmpressure; 118 } 119 120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 121 { 122 return container_of(vmpr, struct mem_cgroup, vmpressure); 123 } 124 125 #define SEQ_BUF_SIZE SZ_4K 126 #define CURRENT_OBJCG_UPDATE_BIT 0 127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 128 129 static DEFINE_SPINLOCK(objcg_lock); 130 131 bool mem_cgroup_kmem_disabled(void) 132 { 133 return cgroup_memory_nokmem; 134 } 135 136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 137 138 static void obj_cgroup_release(struct percpu_ref *ref) 139 { 140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 141 unsigned int nr_bytes; 142 unsigned int nr_pages; 143 unsigned long flags; 144 145 /* 146 * At this point all allocated objects are freed, and 147 * objcg->nr_charged_bytes can't have an arbitrary byte value. 148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 149 * 150 * The following sequence can lead to it: 151 * 1) CPU0: objcg == stock->cached_objcg 152 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 153 * PAGE_SIZE bytes are charged 154 * 3) CPU1: a process from another memcg is allocating something, 155 * the stock if flushed, 156 * objcg->nr_charged_bytes = PAGE_SIZE - 92 157 * 5) CPU0: we do release this object, 158 * 92 bytes are added to stock->nr_bytes 159 * 6) CPU0: stock is flushed, 160 * 92 bytes are added to objcg->nr_charged_bytes 161 * 162 * In the result, nr_charged_bytes == PAGE_SIZE. 163 * This page will be uncharged in obj_cgroup_release(). 164 */ 165 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 167 nr_pages = nr_bytes >> PAGE_SHIFT; 168 169 if (nr_pages) { 170 struct mem_cgroup *memcg; 171 172 memcg = get_mem_cgroup_from_objcg(objcg); 173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 174 memcg1_account_kmem(memcg, -nr_pages); 175 if (!mem_cgroup_is_root(memcg)) 176 memcg_uncharge(memcg, nr_pages); 177 mem_cgroup_put(memcg); 178 } 179 180 spin_lock_irqsave(&objcg_lock, flags); 181 list_del(&objcg->list); 182 spin_unlock_irqrestore(&objcg_lock, flags); 183 184 percpu_ref_exit(ref); 185 kfree_rcu(objcg, rcu); 186 } 187 188 static struct obj_cgroup *obj_cgroup_alloc(void) 189 { 190 struct obj_cgroup *objcg; 191 int ret; 192 193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 194 if (!objcg) 195 return NULL; 196 197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 198 GFP_KERNEL); 199 if (ret) { 200 kfree(objcg); 201 return NULL; 202 } 203 INIT_LIST_HEAD(&objcg->list); 204 return objcg; 205 } 206 207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 208 struct mem_cgroup *parent) 209 { 210 struct obj_cgroup *objcg, *iter; 211 212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 213 214 spin_lock_irq(&objcg_lock); 215 216 /* 1) Ready to reparent active objcg. */ 217 list_add(&objcg->list, &memcg->objcg_list); 218 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 219 list_for_each_entry(iter, &memcg->objcg_list, list) 220 WRITE_ONCE(iter->memcg, parent); 221 /* 3) Move already reparented objcgs to the parent's list */ 222 list_splice(&memcg->objcg_list, &parent->objcg_list); 223 224 spin_unlock_irq(&objcg_lock); 225 226 percpu_ref_kill(&objcg->refcnt); 227 } 228 229 /* 230 * A lot of the calls to the cache allocation functions are expected to be 231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 232 * conditional to this static branch, we'll have to allow modules that does 233 * kmem_cache_alloc and the such to see this symbol as well 234 */ 235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 236 EXPORT_SYMBOL(memcg_kmem_online_key); 237 238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 239 EXPORT_SYMBOL(memcg_bpf_enabled_key); 240 241 /** 242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 243 * @folio: folio of interest 244 * 245 * If memcg is bound to the default hierarchy, css of the memcg associated 246 * with @folio is returned. The returned css remains associated with @folio 247 * until it is released. 248 * 249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 250 * is returned. 251 */ 252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 253 { 254 struct mem_cgroup *memcg = folio_memcg(folio); 255 256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 257 memcg = root_mem_cgroup; 258 259 return &memcg->css; 260 } 261 262 /** 263 * page_cgroup_ino - return inode number of the memcg a page is charged to 264 * @page: the page 265 * 266 * Look up the closest online ancestor of the memory cgroup @page is charged to 267 * and return its inode number or 0 if @page is not charged to any cgroup. It 268 * is safe to call this function without holding a reference to @page. 269 * 270 * Note, this function is inherently racy, because there is nothing to prevent 271 * the cgroup inode from getting torn down and potentially reallocated a moment 272 * after page_cgroup_ino() returns, so it only should be used by callers that 273 * do not care (such as procfs interfaces). 274 */ 275 ino_t page_cgroup_ino(struct page *page) 276 { 277 struct mem_cgroup *memcg; 278 unsigned long ino = 0; 279 280 rcu_read_lock(); 281 /* page_folio() is racy here, but the entire function is racy anyway */ 282 memcg = folio_memcg_check(page_folio(page)); 283 284 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 285 memcg = parent_mem_cgroup(memcg); 286 if (memcg) 287 ino = cgroup_ino(memcg->css.cgroup); 288 rcu_read_unlock(); 289 return ino; 290 } 291 292 /* Subset of node_stat_item for memcg stats */ 293 static const unsigned int memcg_node_stat_items[] = { 294 NR_INACTIVE_ANON, 295 NR_ACTIVE_ANON, 296 NR_INACTIVE_FILE, 297 NR_ACTIVE_FILE, 298 NR_UNEVICTABLE, 299 NR_SLAB_RECLAIMABLE_B, 300 NR_SLAB_UNRECLAIMABLE_B, 301 WORKINGSET_REFAULT_ANON, 302 WORKINGSET_REFAULT_FILE, 303 WORKINGSET_ACTIVATE_ANON, 304 WORKINGSET_ACTIVATE_FILE, 305 WORKINGSET_RESTORE_ANON, 306 WORKINGSET_RESTORE_FILE, 307 WORKINGSET_NODERECLAIM, 308 NR_ANON_MAPPED, 309 NR_FILE_MAPPED, 310 NR_FILE_PAGES, 311 NR_FILE_DIRTY, 312 NR_WRITEBACK, 313 NR_SHMEM, 314 NR_SHMEM_THPS, 315 NR_FILE_THPS, 316 NR_ANON_THPS, 317 NR_KERNEL_STACK_KB, 318 NR_PAGETABLE, 319 NR_SECONDARY_PAGETABLE, 320 #ifdef CONFIG_SWAP 321 NR_SWAPCACHE, 322 #endif 323 #ifdef CONFIG_NUMA_BALANCING 324 PGPROMOTE_SUCCESS, 325 #endif 326 PGDEMOTE_KSWAPD, 327 PGDEMOTE_DIRECT, 328 PGDEMOTE_KHUGEPAGED, 329 PGDEMOTE_PROACTIVE, 330 #ifdef CONFIG_HUGETLB_PAGE 331 NR_HUGETLB, 332 #endif 333 }; 334 335 static const unsigned int memcg_stat_items[] = { 336 MEMCG_SWAP, 337 MEMCG_SOCK, 338 MEMCG_PERCPU_B, 339 MEMCG_VMALLOC, 340 MEMCG_KMEM, 341 MEMCG_ZSWAP_B, 342 MEMCG_ZSWAPPED, 343 }; 344 345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 347 ARRAY_SIZE(memcg_stat_items)) 348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 350 351 static void init_memcg_stats(void) 352 { 353 u8 i, j = 0; 354 355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 356 357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 358 359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 361 362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 363 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 364 } 365 366 static inline int memcg_stats_index(int idx) 367 { 368 return mem_cgroup_stats_index[idx]; 369 } 370 371 struct lruvec_stats_percpu { 372 /* Local (CPU and cgroup) state */ 373 long state[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Delta calculation for lockless upward propagation */ 376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 struct lruvec_stats { 380 /* Aggregated (CPU and subtree) state */ 381 long state[NR_MEMCG_NODE_STAT_ITEMS]; 382 383 /* Non-hierarchical (CPU aggregated) state */ 384 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Pending child counts during tree propagation */ 387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 388 }; 389 390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 391 { 392 struct mem_cgroup_per_node *pn; 393 long x; 394 int i; 395 396 if (mem_cgroup_disabled()) 397 return node_page_state(lruvec_pgdat(lruvec), idx); 398 399 i = memcg_stats_index(idx); 400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 401 return 0; 402 403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 404 x = READ_ONCE(pn->lruvec_stats->state[i]); 405 #ifdef CONFIG_SMP 406 if (x < 0) 407 x = 0; 408 #endif 409 return x; 410 } 411 412 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 413 enum node_stat_item idx) 414 { 415 struct mem_cgroup_per_node *pn; 416 long x; 417 int i; 418 419 if (mem_cgroup_disabled()) 420 return node_page_state(lruvec_pgdat(lruvec), idx); 421 422 i = memcg_stats_index(idx); 423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 424 return 0; 425 426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 428 #ifdef CONFIG_SMP 429 if (x < 0) 430 x = 0; 431 #endif 432 return x; 433 } 434 435 /* Subset of vm_event_item to report for memcg event stats */ 436 static const unsigned int memcg_vm_event_stat[] = { 437 #ifdef CONFIG_MEMCG_V1 438 PGPGIN, 439 PGPGOUT, 440 #endif 441 PSWPIN, 442 PSWPOUT, 443 PGSCAN_KSWAPD, 444 PGSCAN_DIRECT, 445 PGSCAN_KHUGEPAGED, 446 PGSCAN_PROACTIVE, 447 PGSTEAL_KSWAPD, 448 PGSTEAL_DIRECT, 449 PGSTEAL_KHUGEPAGED, 450 PGSTEAL_PROACTIVE, 451 PGFAULT, 452 PGMAJFAULT, 453 PGREFILL, 454 PGACTIVATE, 455 PGDEACTIVATE, 456 PGLAZYFREE, 457 PGLAZYFREED, 458 #ifdef CONFIG_SWAP 459 SWPIN_ZERO, 460 SWPOUT_ZERO, 461 #endif 462 #ifdef CONFIG_ZSWAP 463 ZSWPIN, 464 ZSWPOUT, 465 ZSWPWB, 466 #endif 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 THP_FAULT_ALLOC, 469 THP_COLLAPSE_ALLOC, 470 THP_SWPOUT, 471 THP_SWPOUT_FALLBACK, 472 #endif 473 #ifdef CONFIG_NUMA_BALANCING 474 NUMA_PAGE_MIGRATE, 475 NUMA_PTE_UPDATES, 476 NUMA_HINT_FAULTS, 477 #endif 478 }; 479 480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 482 483 static void init_memcg_events(void) 484 { 485 u8 i; 486 487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 488 489 memset(mem_cgroup_events_index, U8_MAX, 490 sizeof(mem_cgroup_events_index)); 491 492 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 494 } 495 496 static inline int memcg_events_index(enum vm_event_item idx) 497 { 498 return mem_cgroup_events_index[idx]; 499 } 500 501 struct memcg_vmstats_percpu { 502 /* Stats updates since the last flush */ 503 unsigned int stats_updates; 504 505 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 506 struct memcg_vmstats_percpu __percpu *parent_pcpu; 507 struct memcg_vmstats *vmstats; 508 509 /* The above should fit a single cacheline for memcg_rstat_updated() */ 510 511 /* Local (CPU and cgroup) page state & events */ 512 long state[MEMCG_VMSTAT_SIZE]; 513 unsigned long events[NR_MEMCG_EVENTS]; 514 515 /* Delta calculation for lockless upward propagation */ 516 long state_prev[MEMCG_VMSTAT_SIZE]; 517 unsigned long events_prev[NR_MEMCG_EVENTS]; 518 } ____cacheline_aligned; 519 520 struct memcg_vmstats { 521 /* Aggregated (CPU and subtree) page state & events */ 522 long state[MEMCG_VMSTAT_SIZE]; 523 unsigned long events[NR_MEMCG_EVENTS]; 524 525 /* Non-hierarchical (CPU aggregated) page state & events */ 526 long state_local[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_local[NR_MEMCG_EVENTS]; 528 529 /* Pending child counts during tree propagation */ 530 long state_pending[MEMCG_VMSTAT_SIZE]; 531 unsigned long events_pending[NR_MEMCG_EVENTS]; 532 533 /* Stats updates since the last flush */ 534 atomic64_t stats_updates; 535 }; 536 537 /* 538 * memcg and lruvec stats flushing 539 * 540 * Many codepaths leading to stats update or read are performance sensitive and 541 * adding stats flushing in such codepaths is not desirable. So, to optimize the 542 * flushing the kernel does: 543 * 544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 545 * rstat update tree grow unbounded. 546 * 547 * 2) Flush the stats synchronously on reader side only when there are more than 548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 550 * only for 2 seconds due to (1). 551 */ 552 static void flush_memcg_stats_dwork(struct work_struct *w); 553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 554 static u64 flush_last_time; 555 556 #define FLUSH_TIME (2UL*HZ) 557 558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 559 { 560 return atomic64_read(&vmstats->stats_updates) > 561 MEMCG_CHARGE_BATCH * num_online_cpus(); 562 } 563 564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, 565 int cpu) 566 { 567 struct memcg_vmstats_percpu __percpu *statc_pcpu; 568 struct memcg_vmstats_percpu *statc; 569 unsigned int stats_updates; 570 571 if (!val) 572 return; 573 574 css_rstat_updated(&memcg->css, cpu); 575 statc_pcpu = memcg->vmstats_percpu; 576 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { 577 statc = this_cpu_ptr(statc_pcpu); 578 /* 579 * If @memcg is already flushable then all its ancestors are 580 * flushable as well and also there is no need to increase 581 * stats_updates. 582 */ 583 if (memcg_vmstats_needs_flush(statc->vmstats)) 584 break; 585 586 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, 587 abs(val)); 588 if (stats_updates < MEMCG_CHARGE_BATCH) 589 continue; 590 591 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); 592 atomic64_add(stats_updates, &statc->vmstats->stats_updates); 593 } 594 } 595 596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 597 { 598 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 599 600 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 601 force, needs_flush); 602 603 if (!force && !needs_flush) 604 return; 605 606 if (mem_cgroup_is_root(memcg)) 607 WRITE_ONCE(flush_last_time, jiffies_64); 608 609 css_rstat_flush(&memcg->css); 610 } 611 612 /* 613 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 614 * @memcg: root of the subtree to flush 615 * 616 * Flushing is serialized by the underlying global rstat lock. There is also a 617 * minimum amount of work to be done even if there are no stat updates to flush. 618 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 619 * avoids unnecessary work and contention on the underlying lock. 620 */ 621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 622 { 623 if (mem_cgroup_disabled()) 624 return; 625 626 if (!memcg) 627 memcg = root_mem_cgroup; 628 629 __mem_cgroup_flush_stats(memcg, false); 630 } 631 632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 633 { 634 /* Only flush if the periodic flusher is one full cycle late */ 635 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 636 mem_cgroup_flush_stats(memcg); 637 } 638 639 static void flush_memcg_stats_dwork(struct work_struct *w) 640 { 641 /* 642 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 643 * in latency-sensitive paths is as cheap as possible. 644 */ 645 __mem_cgroup_flush_stats(root_mem_cgroup, true); 646 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 647 } 648 649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 650 { 651 long x; 652 int i = memcg_stats_index(idx); 653 654 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 655 return 0; 656 657 x = READ_ONCE(memcg->vmstats->state[i]); 658 #ifdef CONFIG_SMP 659 if (x < 0) 660 x = 0; 661 #endif 662 return x; 663 } 664 665 static int memcg_page_state_unit(int item); 666 667 /* 668 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 669 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 670 */ 671 static int memcg_state_val_in_pages(int idx, int val) 672 { 673 int unit = memcg_page_state_unit(idx); 674 675 if (!val || unit == PAGE_SIZE) 676 return val; 677 else 678 return max(val * unit / PAGE_SIZE, 1UL); 679 } 680 681 /** 682 * mod_memcg_state - update cgroup memory statistics 683 * @memcg: the memory cgroup 684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 685 * @val: delta to add to the counter, can be negative 686 */ 687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 688 int val) 689 { 690 int i = memcg_stats_index(idx); 691 int cpu; 692 693 if (mem_cgroup_disabled()) 694 return; 695 696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 697 return; 698 699 cpu = get_cpu(); 700 701 this_cpu_add(memcg->vmstats_percpu->state[i], val); 702 val = memcg_state_val_in_pages(idx, val); 703 memcg_rstat_updated(memcg, val, cpu); 704 trace_mod_memcg_state(memcg, idx, val); 705 706 put_cpu(); 707 } 708 709 #ifdef CONFIG_MEMCG_V1 710 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 712 { 713 long x; 714 int i = memcg_stats_index(idx); 715 716 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 717 return 0; 718 719 x = READ_ONCE(memcg->vmstats->state_local[i]); 720 #ifdef CONFIG_SMP 721 if (x < 0) 722 x = 0; 723 #endif 724 return x; 725 } 726 #endif 727 728 static void mod_memcg_lruvec_state(struct lruvec *lruvec, 729 enum node_stat_item idx, 730 int val) 731 { 732 struct mem_cgroup_per_node *pn; 733 struct mem_cgroup *memcg; 734 int i = memcg_stats_index(idx); 735 int cpu; 736 737 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 cpu = get_cpu(); 744 745 /* Update memcg */ 746 this_cpu_add(memcg->vmstats_percpu->state[i], val); 747 748 /* Update lruvec */ 749 this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 750 751 val = memcg_state_val_in_pages(idx, val); 752 memcg_rstat_updated(memcg, val, cpu); 753 trace_mod_memcg_lruvec_state(memcg, idx, val); 754 755 put_cpu(); 756 } 757 758 /** 759 * __mod_lruvec_state - update lruvec memory statistics 760 * @lruvec: the lruvec 761 * @idx: the stat item 762 * @val: delta to add to the counter, can be negative 763 * 764 * The lruvec is the intersection of the NUMA node and a cgroup. This 765 * function updates the all three counters that are affected by a 766 * change of state at this level: per-node, per-cgroup, per-lruvec. 767 */ 768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 769 int val) 770 { 771 /* Update node */ 772 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 773 774 /* Update memcg and lruvec */ 775 if (!mem_cgroup_disabled()) 776 mod_memcg_lruvec_state(lruvec, idx, val); 777 } 778 779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 780 int val) 781 { 782 struct mem_cgroup *memcg; 783 pg_data_t *pgdat = folio_pgdat(folio); 784 struct lruvec *lruvec; 785 786 rcu_read_lock(); 787 memcg = folio_memcg(folio); 788 /* Untracked pages have no memcg, no lruvec. Update only the node */ 789 if (!memcg) { 790 rcu_read_unlock(); 791 __mod_node_page_state(pgdat, idx, val); 792 return; 793 } 794 795 lruvec = mem_cgroup_lruvec(memcg, pgdat); 796 __mod_lruvec_state(lruvec, idx, val); 797 rcu_read_unlock(); 798 } 799 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 800 801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 802 { 803 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 804 struct mem_cgroup *memcg; 805 struct lruvec *lruvec; 806 807 rcu_read_lock(); 808 memcg = mem_cgroup_from_slab_obj(p); 809 810 /* 811 * Untracked pages have no memcg, no lruvec. Update only the 812 * node. If we reparent the slab objects to the root memcg, 813 * when we free the slab object, we need to update the per-memcg 814 * vmstats to keep it correct for the root memcg. 815 */ 816 if (!memcg) { 817 __mod_node_page_state(pgdat, idx, val); 818 } else { 819 lruvec = mem_cgroup_lruvec(memcg, pgdat); 820 __mod_lruvec_state(lruvec, idx, val); 821 } 822 rcu_read_unlock(); 823 } 824 825 /** 826 * count_memcg_events - account VM events in a cgroup 827 * @memcg: the memory cgroup 828 * @idx: the event item 829 * @count: the number of events that occurred 830 */ 831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 832 unsigned long count) 833 { 834 int i = memcg_events_index(idx); 835 int cpu; 836 837 if (mem_cgroup_disabled()) 838 return; 839 840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 841 return; 842 843 cpu = get_cpu(); 844 845 this_cpu_add(memcg->vmstats_percpu->events[i], count); 846 memcg_rstat_updated(memcg, count, cpu); 847 trace_count_memcg_events(memcg, idx, count); 848 849 put_cpu(); 850 } 851 852 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 853 { 854 int i = memcg_events_index(event); 855 856 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 857 return 0; 858 859 return READ_ONCE(memcg->vmstats->events[i]); 860 } 861 862 #ifdef CONFIG_MEMCG_V1 863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 864 { 865 int i = memcg_events_index(event); 866 867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 868 return 0; 869 870 return READ_ONCE(memcg->vmstats->events_local[i]); 871 } 872 #endif 873 874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 875 { 876 /* 877 * mm_update_next_owner() may clear mm->owner to NULL 878 * if it races with swapoff, page migration, etc. 879 * So this can be called with p == NULL. 880 */ 881 if (unlikely(!p)) 882 return NULL; 883 884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 885 } 886 EXPORT_SYMBOL(mem_cgroup_from_task); 887 888 static __always_inline struct mem_cgroup *active_memcg(void) 889 { 890 if (!in_task()) 891 return this_cpu_read(int_active_memcg); 892 else 893 return current->active_memcg; 894 } 895 896 /** 897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 898 * @mm: mm from which memcg should be extracted. It can be NULL. 899 * 900 * Obtain a reference on mm->memcg and returns it if successful. If mm 901 * is NULL, then the memcg is chosen as follows: 902 * 1) The active memcg, if set. 903 * 2) current->mm->memcg, if available 904 * 3) root memcg 905 * If mem_cgroup is disabled, NULL is returned. 906 */ 907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 908 { 909 struct mem_cgroup *memcg; 910 911 if (mem_cgroup_disabled()) 912 return NULL; 913 914 /* 915 * Page cache insertions can happen without an 916 * actual mm context, e.g. during disk probing 917 * on boot, loopback IO, acct() writes etc. 918 * 919 * No need to css_get on root memcg as the reference 920 * counting is disabled on the root level in the 921 * cgroup core. See CSS_NO_REF. 922 */ 923 if (unlikely(!mm)) { 924 memcg = active_memcg(); 925 if (unlikely(memcg)) { 926 /* remote memcg must hold a ref */ 927 css_get(&memcg->css); 928 return memcg; 929 } 930 mm = current->mm; 931 if (unlikely(!mm)) 932 return root_mem_cgroup; 933 } 934 935 rcu_read_lock(); 936 do { 937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 938 if (unlikely(!memcg)) 939 memcg = root_mem_cgroup; 940 } while (!css_tryget(&memcg->css)); 941 rcu_read_unlock(); 942 return memcg; 943 } 944 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 945 946 /** 947 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 948 */ 949 struct mem_cgroup *get_mem_cgroup_from_current(void) 950 { 951 struct mem_cgroup *memcg; 952 953 if (mem_cgroup_disabled()) 954 return NULL; 955 956 again: 957 rcu_read_lock(); 958 memcg = mem_cgroup_from_task(current); 959 if (!css_tryget(&memcg->css)) { 960 rcu_read_unlock(); 961 goto again; 962 } 963 rcu_read_unlock(); 964 return memcg; 965 } 966 967 /** 968 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 969 * @folio: folio from which memcg should be extracted. 970 */ 971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 972 { 973 struct mem_cgroup *memcg = folio_memcg(folio); 974 975 if (mem_cgroup_disabled()) 976 return NULL; 977 978 rcu_read_lock(); 979 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 980 memcg = root_mem_cgroup; 981 rcu_read_unlock(); 982 return memcg; 983 } 984 985 /** 986 * mem_cgroup_iter - iterate over memory cgroup hierarchy 987 * @root: hierarchy root 988 * @prev: previously returned memcg, NULL on first invocation 989 * @reclaim: cookie for shared reclaim walks, NULL for full walks 990 * 991 * Returns references to children of the hierarchy below @root, or 992 * @root itself, or %NULL after a full round-trip. 993 * 994 * Caller must pass the return value in @prev on subsequent 995 * invocations for reference counting, or use mem_cgroup_iter_break() 996 * to cancel a hierarchy walk before the round-trip is complete. 997 * 998 * Reclaimers can specify a node in @reclaim to divide up the memcgs 999 * in the hierarchy among all concurrent reclaimers operating on the 1000 * same node. 1001 */ 1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1003 struct mem_cgroup *prev, 1004 struct mem_cgroup_reclaim_cookie *reclaim) 1005 { 1006 struct mem_cgroup_reclaim_iter *iter; 1007 struct cgroup_subsys_state *css; 1008 struct mem_cgroup *pos; 1009 struct mem_cgroup *next; 1010 1011 if (mem_cgroup_disabled()) 1012 return NULL; 1013 1014 if (!root) 1015 root = root_mem_cgroup; 1016 1017 rcu_read_lock(); 1018 restart: 1019 next = NULL; 1020 1021 if (reclaim) { 1022 int gen; 1023 int nid = reclaim->pgdat->node_id; 1024 1025 iter = &root->nodeinfo[nid]->iter; 1026 gen = atomic_read(&iter->generation); 1027 1028 /* 1029 * On start, join the current reclaim iteration cycle. 1030 * Exit when a concurrent walker completes it. 1031 */ 1032 if (!prev) 1033 reclaim->generation = gen; 1034 else if (reclaim->generation != gen) 1035 goto out_unlock; 1036 1037 pos = READ_ONCE(iter->position); 1038 } else 1039 pos = prev; 1040 1041 css = pos ? &pos->css : NULL; 1042 1043 while ((css = css_next_descendant_pre(css, &root->css))) { 1044 /* 1045 * Verify the css and acquire a reference. The root 1046 * is provided by the caller, so we know it's alive 1047 * and kicking, and don't take an extra reference. 1048 */ 1049 if (css == &root->css || css_tryget(css)) 1050 break; 1051 } 1052 1053 next = mem_cgroup_from_css(css); 1054 1055 if (reclaim) { 1056 /* 1057 * The position could have already been updated by a competing 1058 * thread, so check that the value hasn't changed since we read 1059 * it to avoid reclaiming from the same cgroup twice. 1060 */ 1061 if (cmpxchg(&iter->position, pos, next) != pos) { 1062 if (css && css != &root->css) 1063 css_put(css); 1064 goto restart; 1065 } 1066 1067 if (!next) { 1068 atomic_inc(&iter->generation); 1069 1070 /* 1071 * Reclaimers share the hierarchy walk, and a 1072 * new one might jump in right at the end of 1073 * the hierarchy - make sure they see at least 1074 * one group and restart from the beginning. 1075 */ 1076 if (!prev) 1077 goto restart; 1078 } 1079 } 1080 1081 out_unlock: 1082 rcu_read_unlock(); 1083 if (prev && prev != root) 1084 css_put(&prev->css); 1085 1086 return next; 1087 } 1088 1089 /** 1090 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1091 * @root: hierarchy root 1092 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1093 */ 1094 void mem_cgroup_iter_break(struct mem_cgroup *root, 1095 struct mem_cgroup *prev) 1096 { 1097 if (!root) 1098 root = root_mem_cgroup; 1099 if (prev && prev != root) 1100 css_put(&prev->css); 1101 } 1102 1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1104 struct mem_cgroup *dead_memcg) 1105 { 1106 struct mem_cgroup_reclaim_iter *iter; 1107 struct mem_cgroup_per_node *mz; 1108 int nid; 1109 1110 for_each_node(nid) { 1111 mz = from->nodeinfo[nid]; 1112 iter = &mz->iter; 1113 cmpxchg(&iter->position, dead_memcg, NULL); 1114 } 1115 } 1116 1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1118 { 1119 struct mem_cgroup *memcg = dead_memcg; 1120 struct mem_cgroup *last; 1121 1122 do { 1123 __invalidate_reclaim_iterators(memcg, dead_memcg); 1124 last = memcg; 1125 } while ((memcg = parent_mem_cgroup(memcg))); 1126 1127 /* 1128 * When cgroup1 non-hierarchy mode is used, 1129 * parent_mem_cgroup() does not walk all the way up to the 1130 * cgroup root (root_mem_cgroup). So we have to handle 1131 * dead_memcg from cgroup root separately. 1132 */ 1133 if (!mem_cgroup_is_root(last)) 1134 __invalidate_reclaim_iterators(root_mem_cgroup, 1135 dead_memcg); 1136 } 1137 1138 /** 1139 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1140 * @memcg: hierarchy root 1141 * @fn: function to call for each task 1142 * @arg: argument passed to @fn 1143 * 1144 * This function iterates over tasks attached to @memcg or to any of its 1145 * descendants and calls @fn for each task. If @fn returns a non-zero 1146 * value, the function breaks the iteration loop. Otherwise, it will iterate 1147 * over all tasks and return 0. 1148 * 1149 * This function must not be called for the root memory cgroup. 1150 */ 1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1152 int (*fn)(struct task_struct *, void *), void *arg) 1153 { 1154 struct mem_cgroup *iter; 1155 int ret = 0; 1156 1157 BUG_ON(mem_cgroup_is_root(memcg)); 1158 1159 for_each_mem_cgroup_tree(iter, memcg) { 1160 struct css_task_iter it; 1161 struct task_struct *task; 1162 1163 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1164 while (!ret && (task = css_task_iter_next(&it))) { 1165 ret = fn(task, arg); 1166 /* Avoid potential softlockup warning */ 1167 cond_resched(); 1168 } 1169 css_task_iter_end(&it); 1170 if (ret) { 1171 mem_cgroup_iter_break(memcg, iter); 1172 break; 1173 } 1174 } 1175 } 1176 1177 #ifdef CONFIG_DEBUG_VM 1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1179 { 1180 struct mem_cgroup *memcg; 1181 1182 if (mem_cgroup_disabled()) 1183 return; 1184 1185 memcg = folio_memcg(folio); 1186 1187 if (!memcg) 1188 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1189 else 1190 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1191 } 1192 #endif 1193 1194 /** 1195 * folio_lruvec_lock - Lock the lruvec for a folio. 1196 * @folio: Pointer to the folio. 1197 * 1198 * These functions are safe to use under any of the following conditions: 1199 * - folio locked 1200 * - folio_test_lru false 1201 * - folio frozen (refcount of 0) 1202 * 1203 * Return: The lruvec this folio is on with its lock held. 1204 */ 1205 struct lruvec *folio_lruvec_lock(struct folio *folio) 1206 { 1207 struct lruvec *lruvec = folio_lruvec(folio); 1208 1209 spin_lock(&lruvec->lru_lock); 1210 lruvec_memcg_debug(lruvec, folio); 1211 1212 return lruvec; 1213 } 1214 1215 /** 1216 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1217 * @folio: Pointer to the folio. 1218 * 1219 * These functions are safe to use under any of the following conditions: 1220 * - folio locked 1221 * - folio_test_lru false 1222 * - folio frozen (refcount of 0) 1223 * 1224 * Return: The lruvec this folio is on with its lock held and interrupts 1225 * disabled. 1226 */ 1227 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1228 { 1229 struct lruvec *lruvec = folio_lruvec(folio); 1230 1231 spin_lock_irq(&lruvec->lru_lock); 1232 lruvec_memcg_debug(lruvec, folio); 1233 1234 return lruvec; 1235 } 1236 1237 /** 1238 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1239 * @folio: Pointer to the folio. 1240 * @flags: Pointer to irqsave flags. 1241 * 1242 * These functions are safe to use under any of the following conditions: 1243 * - folio locked 1244 * - folio_test_lru false 1245 * - folio frozen (refcount of 0) 1246 * 1247 * Return: The lruvec this folio is on with its lock held and interrupts 1248 * disabled. 1249 */ 1250 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1251 unsigned long *flags) 1252 { 1253 struct lruvec *lruvec = folio_lruvec(folio); 1254 1255 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1256 lruvec_memcg_debug(lruvec, folio); 1257 1258 return lruvec; 1259 } 1260 1261 /** 1262 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1263 * @lruvec: mem_cgroup per zone lru vector 1264 * @lru: index of lru list the page is sitting on 1265 * @zid: zone id of the accounted pages 1266 * @nr_pages: positive when adding or negative when removing 1267 * 1268 * This function must be called under lru_lock, just before a page is added 1269 * to or just after a page is removed from an lru list. 1270 */ 1271 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1272 int zid, int nr_pages) 1273 { 1274 struct mem_cgroup_per_node *mz; 1275 unsigned long *lru_size; 1276 long size; 1277 1278 if (mem_cgroup_disabled()) 1279 return; 1280 1281 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1282 lru_size = &mz->lru_zone_size[zid][lru]; 1283 1284 if (nr_pages < 0) 1285 *lru_size += nr_pages; 1286 1287 size = *lru_size; 1288 if (WARN_ONCE(size < 0, 1289 "%s(%p, %d, %d): lru_size %ld\n", 1290 __func__, lruvec, lru, nr_pages, size)) { 1291 VM_BUG_ON(1); 1292 *lru_size = 0; 1293 } 1294 1295 if (nr_pages > 0) 1296 *lru_size += nr_pages; 1297 } 1298 1299 /** 1300 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1301 * @memcg: the memory cgroup 1302 * 1303 * Returns the maximum amount of memory @mem can be charged with, in 1304 * pages. 1305 */ 1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1307 { 1308 unsigned long margin = 0; 1309 unsigned long count; 1310 unsigned long limit; 1311 1312 count = page_counter_read(&memcg->memory); 1313 limit = READ_ONCE(memcg->memory.max); 1314 if (count < limit) 1315 margin = limit - count; 1316 1317 if (do_memsw_account()) { 1318 count = page_counter_read(&memcg->memsw); 1319 limit = READ_ONCE(memcg->memsw.max); 1320 if (count < limit) 1321 margin = min(margin, limit - count); 1322 else 1323 margin = 0; 1324 } 1325 1326 return margin; 1327 } 1328 1329 struct memory_stat { 1330 const char *name; 1331 unsigned int idx; 1332 }; 1333 1334 static const struct memory_stat memory_stats[] = { 1335 { "anon", NR_ANON_MAPPED }, 1336 { "file", NR_FILE_PAGES }, 1337 { "kernel", MEMCG_KMEM }, 1338 { "kernel_stack", NR_KERNEL_STACK_KB }, 1339 { "pagetables", NR_PAGETABLE }, 1340 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1341 { "percpu", MEMCG_PERCPU_B }, 1342 { "sock", MEMCG_SOCK }, 1343 { "vmalloc", MEMCG_VMALLOC }, 1344 { "shmem", NR_SHMEM }, 1345 #ifdef CONFIG_ZSWAP 1346 { "zswap", MEMCG_ZSWAP_B }, 1347 { "zswapped", MEMCG_ZSWAPPED }, 1348 #endif 1349 { "file_mapped", NR_FILE_MAPPED }, 1350 { "file_dirty", NR_FILE_DIRTY }, 1351 { "file_writeback", NR_WRITEBACK }, 1352 #ifdef CONFIG_SWAP 1353 { "swapcached", NR_SWAPCACHE }, 1354 #endif 1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1356 { "anon_thp", NR_ANON_THPS }, 1357 { "file_thp", NR_FILE_THPS }, 1358 { "shmem_thp", NR_SHMEM_THPS }, 1359 #endif 1360 { "inactive_anon", NR_INACTIVE_ANON }, 1361 { "active_anon", NR_ACTIVE_ANON }, 1362 { "inactive_file", NR_INACTIVE_FILE }, 1363 { "active_file", NR_ACTIVE_FILE }, 1364 { "unevictable", NR_UNEVICTABLE }, 1365 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1366 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1367 #ifdef CONFIG_HUGETLB_PAGE 1368 { "hugetlb", NR_HUGETLB }, 1369 #endif 1370 1371 /* The memory events */ 1372 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1373 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1374 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1375 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1376 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1377 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1378 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1379 1380 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1381 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1382 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1383 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1384 #ifdef CONFIG_NUMA_BALANCING 1385 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1386 #endif 1387 }; 1388 1389 /* The actual unit of the state item, not the same as the output unit */ 1390 static int memcg_page_state_unit(int item) 1391 { 1392 switch (item) { 1393 case MEMCG_PERCPU_B: 1394 case MEMCG_ZSWAP_B: 1395 case NR_SLAB_RECLAIMABLE_B: 1396 case NR_SLAB_UNRECLAIMABLE_B: 1397 return 1; 1398 case NR_KERNEL_STACK_KB: 1399 return SZ_1K; 1400 default: 1401 return PAGE_SIZE; 1402 } 1403 } 1404 1405 /* Translate stat items to the correct unit for memory.stat output */ 1406 static int memcg_page_state_output_unit(int item) 1407 { 1408 /* 1409 * Workingset state is actually in pages, but we export it to userspace 1410 * as a scalar count of events, so special case it here. 1411 * 1412 * Demotion and promotion activities are exported in pages, consistent 1413 * with their global counterparts. 1414 */ 1415 switch (item) { 1416 case WORKINGSET_REFAULT_ANON: 1417 case WORKINGSET_REFAULT_FILE: 1418 case WORKINGSET_ACTIVATE_ANON: 1419 case WORKINGSET_ACTIVATE_FILE: 1420 case WORKINGSET_RESTORE_ANON: 1421 case WORKINGSET_RESTORE_FILE: 1422 case WORKINGSET_NODERECLAIM: 1423 case PGDEMOTE_KSWAPD: 1424 case PGDEMOTE_DIRECT: 1425 case PGDEMOTE_KHUGEPAGED: 1426 case PGDEMOTE_PROACTIVE: 1427 #ifdef CONFIG_NUMA_BALANCING 1428 case PGPROMOTE_SUCCESS: 1429 #endif 1430 return 1; 1431 default: 1432 return memcg_page_state_unit(item); 1433 } 1434 } 1435 1436 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1437 { 1438 return memcg_page_state(memcg, item) * 1439 memcg_page_state_output_unit(item); 1440 } 1441 1442 #ifdef CONFIG_MEMCG_V1 1443 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1444 { 1445 return memcg_page_state_local(memcg, item) * 1446 memcg_page_state_output_unit(item); 1447 } 1448 #endif 1449 1450 #ifdef CONFIG_HUGETLB_PAGE 1451 static bool memcg_accounts_hugetlb(void) 1452 { 1453 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1454 } 1455 #else /* CONFIG_HUGETLB_PAGE */ 1456 static bool memcg_accounts_hugetlb(void) 1457 { 1458 return false; 1459 } 1460 #endif /* CONFIG_HUGETLB_PAGE */ 1461 1462 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1463 { 1464 int i; 1465 1466 /* 1467 * Provide statistics on the state of the memory subsystem as 1468 * well as cumulative event counters that show past behavior. 1469 * 1470 * This list is ordered following a combination of these gradients: 1471 * 1) generic big picture -> specifics and details 1472 * 2) reflecting userspace activity -> reflecting kernel heuristics 1473 * 1474 * Current memory state: 1475 */ 1476 mem_cgroup_flush_stats(memcg); 1477 1478 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1479 u64 size; 1480 1481 #ifdef CONFIG_HUGETLB_PAGE 1482 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1483 !memcg_accounts_hugetlb()) 1484 continue; 1485 #endif 1486 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1487 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1488 1489 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1490 size += memcg_page_state_output(memcg, 1491 NR_SLAB_RECLAIMABLE_B); 1492 seq_buf_printf(s, "slab %llu\n", size); 1493 } 1494 } 1495 1496 /* Accumulated memory events */ 1497 seq_buf_printf(s, "pgscan %lu\n", 1498 memcg_events(memcg, PGSCAN_KSWAPD) + 1499 memcg_events(memcg, PGSCAN_DIRECT) + 1500 memcg_events(memcg, PGSCAN_PROACTIVE) + 1501 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1502 seq_buf_printf(s, "pgsteal %lu\n", 1503 memcg_events(memcg, PGSTEAL_KSWAPD) + 1504 memcg_events(memcg, PGSTEAL_DIRECT) + 1505 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1506 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1507 1508 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1509 #ifdef CONFIG_MEMCG_V1 1510 if (memcg_vm_event_stat[i] == PGPGIN || 1511 memcg_vm_event_stat[i] == PGPGOUT) 1512 continue; 1513 #endif 1514 seq_buf_printf(s, "%s %lu\n", 1515 vm_event_name(memcg_vm_event_stat[i]), 1516 memcg_events(memcg, memcg_vm_event_stat[i])); 1517 } 1518 } 1519 1520 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1521 { 1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1523 memcg_stat_format(memcg, s); 1524 else 1525 memcg1_stat_format(memcg, s); 1526 if (seq_buf_has_overflowed(s)) 1527 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1528 } 1529 1530 /** 1531 * mem_cgroup_print_oom_context: Print OOM information relevant to 1532 * memory controller. 1533 * @memcg: The memory cgroup that went over limit 1534 * @p: Task that is going to be killed 1535 * 1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1537 * enabled 1538 */ 1539 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1540 { 1541 rcu_read_lock(); 1542 1543 if (memcg) { 1544 pr_cont(",oom_memcg="); 1545 pr_cont_cgroup_path(memcg->css.cgroup); 1546 } else 1547 pr_cont(",global_oom"); 1548 if (p) { 1549 pr_cont(",task_memcg="); 1550 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1551 } 1552 rcu_read_unlock(); 1553 } 1554 1555 /** 1556 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1557 * memory controller. 1558 * @memcg: The memory cgroup that went over limit 1559 */ 1560 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1561 { 1562 /* Use static buffer, for the caller is holding oom_lock. */ 1563 static char buf[SEQ_BUF_SIZE]; 1564 struct seq_buf s; 1565 unsigned long memory_failcnt; 1566 1567 lockdep_assert_held(&oom_lock); 1568 1569 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1570 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1571 else 1572 memory_failcnt = memcg->memory.failcnt; 1573 1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1575 K((u64)page_counter_read(&memcg->memory)), 1576 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1577 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1578 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1579 K((u64)page_counter_read(&memcg->swap)), 1580 K((u64)READ_ONCE(memcg->swap.max)), 1581 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1582 #ifdef CONFIG_MEMCG_V1 1583 else { 1584 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1585 K((u64)page_counter_read(&memcg->memsw)), 1586 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1587 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1588 K((u64)page_counter_read(&memcg->kmem)), 1589 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1590 } 1591 #endif 1592 1593 pr_info("Memory cgroup stats for "); 1594 pr_cont_cgroup_path(memcg->css.cgroup); 1595 pr_cont(":"); 1596 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1597 memory_stat_format(memcg, &s); 1598 seq_buf_do_printk(&s, KERN_INFO); 1599 } 1600 1601 /* 1602 * Return the memory (and swap, if configured) limit for a memcg. 1603 */ 1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1605 { 1606 unsigned long max = READ_ONCE(memcg->memory.max); 1607 1608 if (do_memsw_account()) { 1609 if (mem_cgroup_swappiness(memcg)) { 1610 /* Calculate swap excess capacity from memsw limit */ 1611 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1612 1613 max += min(swap, (unsigned long)total_swap_pages); 1614 } 1615 } else { 1616 if (mem_cgroup_swappiness(memcg)) 1617 max += min(READ_ONCE(memcg->swap.max), 1618 (unsigned long)total_swap_pages); 1619 } 1620 return max; 1621 } 1622 1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1624 { 1625 return page_counter_read(&memcg->memory); 1626 } 1627 1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1629 int order) 1630 { 1631 struct oom_control oc = { 1632 .zonelist = NULL, 1633 .nodemask = NULL, 1634 .memcg = memcg, 1635 .gfp_mask = gfp_mask, 1636 .order = order, 1637 }; 1638 bool ret = true; 1639 1640 if (mutex_lock_killable(&oom_lock)) 1641 return true; 1642 1643 if (mem_cgroup_margin(memcg) >= (1 << order)) 1644 goto unlock; 1645 1646 /* 1647 * A few threads which were not waiting at mutex_lock_killable() can 1648 * fail to bail out. Therefore, check again after holding oom_lock. 1649 */ 1650 ret = out_of_memory(&oc); 1651 1652 unlock: 1653 mutex_unlock(&oom_lock); 1654 return ret; 1655 } 1656 1657 /* 1658 * Returns true if successfully killed one or more processes. Though in some 1659 * corner cases it can return true even without killing any process. 1660 */ 1661 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1662 { 1663 bool locked, ret; 1664 1665 if (order > PAGE_ALLOC_COSTLY_ORDER) 1666 return false; 1667 1668 memcg_memory_event(memcg, MEMCG_OOM); 1669 1670 if (!memcg1_oom_prepare(memcg, &locked)) 1671 return false; 1672 1673 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1674 1675 memcg1_oom_finish(memcg, locked); 1676 1677 return ret; 1678 } 1679 1680 /** 1681 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1682 * @victim: task to be killed by the OOM killer 1683 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1684 * 1685 * Returns a pointer to a memory cgroup, which has to be cleaned up 1686 * by killing all belonging OOM-killable tasks. 1687 * 1688 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1689 */ 1690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1691 struct mem_cgroup *oom_domain) 1692 { 1693 struct mem_cgroup *oom_group = NULL; 1694 struct mem_cgroup *memcg; 1695 1696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1697 return NULL; 1698 1699 if (!oom_domain) 1700 oom_domain = root_mem_cgroup; 1701 1702 rcu_read_lock(); 1703 1704 memcg = mem_cgroup_from_task(victim); 1705 if (mem_cgroup_is_root(memcg)) 1706 goto out; 1707 1708 /* 1709 * If the victim task has been asynchronously moved to a different 1710 * memory cgroup, we might end up killing tasks outside oom_domain. 1711 * In this case it's better to ignore memory.group.oom. 1712 */ 1713 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1714 goto out; 1715 1716 /* 1717 * Traverse the memory cgroup hierarchy from the victim task's 1718 * cgroup up to the OOMing cgroup (or root) to find the 1719 * highest-level memory cgroup with oom.group set. 1720 */ 1721 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1722 if (READ_ONCE(memcg->oom_group)) 1723 oom_group = memcg; 1724 1725 if (memcg == oom_domain) 1726 break; 1727 } 1728 1729 if (oom_group) 1730 css_get(&oom_group->css); 1731 out: 1732 rcu_read_unlock(); 1733 1734 return oom_group; 1735 } 1736 1737 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1738 { 1739 pr_info("Tasks in "); 1740 pr_cont_cgroup_path(memcg->css.cgroup); 1741 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1742 } 1743 1744 /* 1745 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1746 * nr_pages in a single cacheline. This may change in future. 1747 */ 1748 #define NR_MEMCG_STOCK 7 1749 #define FLUSHING_CACHED_CHARGE 0 1750 struct memcg_stock_pcp { 1751 local_trylock_t lock; 1752 uint8_t nr_pages[NR_MEMCG_STOCK]; 1753 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1754 1755 struct work_struct work; 1756 unsigned long flags; 1757 }; 1758 1759 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1760 .lock = INIT_LOCAL_TRYLOCK(lock), 1761 }; 1762 1763 struct obj_stock_pcp { 1764 local_trylock_t lock; 1765 unsigned int nr_bytes; 1766 struct obj_cgroup *cached_objcg; 1767 struct pglist_data *cached_pgdat; 1768 int nr_slab_reclaimable_b; 1769 int nr_slab_unreclaimable_b; 1770 1771 struct work_struct work; 1772 unsigned long flags; 1773 }; 1774 1775 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { 1776 .lock = INIT_LOCAL_TRYLOCK(lock), 1777 }; 1778 1779 static DEFINE_MUTEX(percpu_charge_mutex); 1780 1781 static void drain_obj_stock(struct obj_stock_pcp *stock); 1782 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 1783 struct mem_cgroup *root_memcg); 1784 1785 /** 1786 * consume_stock: Try to consume stocked charge on this cpu. 1787 * @memcg: memcg to consume from. 1788 * @nr_pages: how many pages to charge. 1789 * 1790 * Consume the cached charge if enough nr_pages are present otherwise return 1791 * failure. Also return failure for charge request larger than 1792 * MEMCG_CHARGE_BATCH or if the local lock is already taken. 1793 * 1794 * returns true if successful, false otherwise. 1795 */ 1796 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1797 { 1798 struct memcg_stock_pcp *stock; 1799 uint8_t stock_pages; 1800 bool ret = false; 1801 int i; 1802 1803 if (nr_pages > MEMCG_CHARGE_BATCH || 1804 !local_trylock(&memcg_stock.lock)) 1805 return ret; 1806 1807 stock = this_cpu_ptr(&memcg_stock); 1808 1809 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1810 if (memcg != READ_ONCE(stock->cached[i])) 1811 continue; 1812 1813 stock_pages = READ_ONCE(stock->nr_pages[i]); 1814 if (stock_pages >= nr_pages) { 1815 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1816 ret = true; 1817 } 1818 break; 1819 } 1820 1821 local_unlock(&memcg_stock.lock); 1822 1823 return ret; 1824 } 1825 1826 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1827 { 1828 page_counter_uncharge(&memcg->memory, nr_pages); 1829 if (do_memsw_account()) 1830 page_counter_uncharge(&memcg->memsw, nr_pages); 1831 } 1832 1833 /* 1834 * Returns stocks cached in percpu and reset cached information. 1835 */ 1836 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1837 { 1838 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1839 uint8_t stock_pages; 1840 1841 if (!old) 1842 return; 1843 1844 stock_pages = READ_ONCE(stock->nr_pages[i]); 1845 if (stock_pages) { 1846 memcg_uncharge(old, stock_pages); 1847 WRITE_ONCE(stock->nr_pages[i], 0); 1848 } 1849 1850 css_put(&old->css); 1851 WRITE_ONCE(stock->cached[i], NULL); 1852 } 1853 1854 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1855 { 1856 int i; 1857 1858 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1859 drain_stock(stock, i); 1860 } 1861 1862 static void drain_local_memcg_stock(struct work_struct *dummy) 1863 { 1864 struct memcg_stock_pcp *stock; 1865 1866 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1867 return; 1868 1869 local_lock(&memcg_stock.lock); 1870 1871 stock = this_cpu_ptr(&memcg_stock); 1872 drain_stock_fully(stock); 1873 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1874 1875 local_unlock(&memcg_stock.lock); 1876 } 1877 1878 static void drain_local_obj_stock(struct work_struct *dummy) 1879 { 1880 struct obj_stock_pcp *stock; 1881 1882 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1883 return; 1884 1885 local_lock(&obj_stock.lock); 1886 1887 stock = this_cpu_ptr(&obj_stock); 1888 drain_obj_stock(stock); 1889 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1890 1891 local_unlock(&obj_stock.lock); 1892 } 1893 1894 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1895 { 1896 struct memcg_stock_pcp *stock; 1897 struct mem_cgroup *cached; 1898 uint8_t stock_pages; 1899 bool success = false; 1900 int empty_slot = -1; 1901 int i; 1902 1903 /* 1904 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1905 * decide to increase it more than 127 then we will need more careful 1906 * handling of nr_pages[] in struct memcg_stock_pcp. 1907 */ 1908 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1909 1910 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1911 1912 if (nr_pages > MEMCG_CHARGE_BATCH || 1913 !local_trylock(&memcg_stock.lock)) { 1914 /* 1915 * In case of larger than batch refill or unlikely failure to 1916 * lock the percpu memcg_stock.lock, uncharge memcg directly. 1917 */ 1918 memcg_uncharge(memcg, nr_pages); 1919 return; 1920 } 1921 1922 stock = this_cpu_ptr(&memcg_stock); 1923 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1924 cached = READ_ONCE(stock->cached[i]); 1925 if (!cached && empty_slot == -1) 1926 empty_slot = i; 1927 if (memcg == READ_ONCE(stock->cached[i])) { 1928 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1929 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1930 if (stock_pages > MEMCG_CHARGE_BATCH) 1931 drain_stock(stock, i); 1932 success = true; 1933 break; 1934 } 1935 } 1936 1937 if (!success) { 1938 i = empty_slot; 1939 if (i == -1) { 1940 i = get_random_u32_below(NR_MEMCG_STOCK); 1941 drain_stock(stock, i); 1942 } 1943 css_get(&memcg->css); 1944 WRITE_ONCE(stock->cached[i], memcg); 1945 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1946 } 1947 1948 local_unlock(&memcg_stock.lock); 1949 } 1950 1951 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, 1952 struct mem_cgroup *root_memcg) 1953 { 1954 struct mem_cgroup *memcg; 1955 bool flush = false; 1956 int i; 1957 1958 rcu_read_lock(); 1959 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1960 memcg = READ_ONCE(stock->cached[i]); 1961 if (!memcg) 1962 continue; 1963 1964 if (READ_ONCE(stock->nr_pages[i]) && 1965 mem_cgroup_is_descendant(memcg, root_memcg)) { 1966 flush = true; 1967 break; 1968 } 1969 } 1970 rcu_read_unlock(); 1971 return flush; 1972 } 1973 1974 /* 1975 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1976 * of the hierarchy under it. 1977 */ 1978 void drain_all_stock(struct mem_cgroup *root_memcg) 1979 { 1980 int cpu, curcpu; 1981 1982 /* If someone's already draining, avoid adding running more workers. */ 1983 if (!mutex_trylock(&percpu_charge_mutex)) 1984 return; 1985 /* 1986 * Notify other cpus that system-wide "drain" is running 1987 * We do not care about races with the cpu hotplug because cpu down 1988 * as well as workers from this path always operate on the local 1989 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1990 */ 1991 migrate_disable(); 1992 curcpu = smp_processor_id(); 1993 for_each_online_cpu(cpu) { 1994 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); 1995 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); 1996 1997 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && 1998 is_memcg_drain_needed(memcg_st, root_memcg) && 1999 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2000 &memcg_st->flags)) { 2001 if (cpu == curcpu) 2002 drain_local_memcg_stock(&memcg_st->work); 2003 else if (!cpu_is_isolated(cpu)) 2004 schedule_work_on(cpu, &memcg_st->work); 2005 } 2006 2007 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && 2008 obj_stock_flush_required(obj_st, root_memcg) && 2009 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2010 &obj_st->flags)) { 2011 if (cpu == curcpu) 2012 drain_local_obj_stock(&obj_st->work); 2013 else if (!cpu_is_isolated(cpu)) 2014 schedule_work_on(cpu, &obj_st->work); 2015 } 2016 } 2017 migrate_enable(); 2018 mutex_unlock(&percpu_charge_mutex); 2019 } 2020 2021 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2022 { 2023 /* no need for the local lock */ 2024 drain_obj_stock(&per_cpu(obj_stock, cpu)); 2025 drain_stock_fully(&per_cpu(memcg_stock, cpu)); 2026 2027 return 0; 2028 } 2029 2030 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2031 unsigned int nr_pages, 2032 gfp_t gfp_mask) 2033 { 2034 unsigned long nr_reclaimed = 0; 2035 2036 do { 2037 unsigned long pflags; 2038 2039 if (page_counter_read(&memcg->memory) <= 2040 READ_ONCE(memcg->memory.high)) 2041 continue; 2042 2043 memcg_memory_event(memcg, MEMCG_HIGH); 2044 2045 psi_memstall_enter(&pflags); 2046 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2047 gfp_mask, 2048 MEMCG_RECLAIM_MAY_SWAP, 2049 NULL); 2050 psi_memstall_leave(&pflags); 2051 } while ((memcg = parent_mem_cgroup(memcg)) && 2052 !mem_cgroup_is_root(memcg)); 2053 2054 return nr_reclaimed; 2055 } 2056 2057 static void high_work_func(struct work_struct *work) 2058 { 2059 struct mem_cgroup *memcg; 2060 2061 memcg = container_of(work, struct mem_cgroup, high_work); 2062 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2063 } 2064 2065 /* 2066 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2067 * enough to still cause a significant slowdown in most cases, while still 2068 * allowing diagnostics and tracing to proceed without becoming stuck. 2069 */ 2070 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2071 2072 /* 2073 * When calculating the delay, we use these either side of the exponentiation to 2074 * maintain precision and scale to a reasonable number of jiffies (see the table 2075 * below. 2076 * 2077 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2078 * overage ratio to a delay. 2079 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2080 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2081 * to produce a reasonable delay curve. 2082 * 2083 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2084 * reasonable delay curve compared to precision-adjusted overage, not 2085 * penalising heavily at first, but still making sure that growth beyond the 2086 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2087 * example, with a high of 100 megabytes: 2088 * 2089 * +-------+------------------------+ 2090 * | usage | time to allocate in ms | 2091 * +-------+------------------------+ 2092 * | 100M | 0 | 2093 * | 101M | 6 | 2094 * | 102M | 25 | 2095 * | 103M | 57 | 2096 * | 104M | 102 | 2097 * | 105M | 159 | 2098 * | 106M | 230 | 2099 * | 107M | 313 | 2100 * | 108M | 409 | 2101 * | 109M | 518 | 2102 * | 110M | 639 | 2103 * | 111M | 774 | 2104 * | 112M | 921 | 2105 * | 113M | 1081 | 2106 * | 114M | 1254 | 2107 * | 115M | 1439 | 2108 * | 116M | 1638 | 2109 * | 117M | 1849 | 2110 * | 118M | 2000 | 2111 * | 119M | 2000 | 2112 * | 120M | 2000 | 2113 * +-------+------------------------+ 2114 */ 2115 #define MEMCG_DELAY_PRECISION_SHIFT 20 2116 #define MEMCG_DELAY_SCALING_SHIFT 14 2117 2118 static u64 calculate_overage(unsigned long usage, unsigned long high) 2119 { 2120 u64 overage; 2121 2122 if (usage <= high) 2123 return 0; 2124 2125 /* 2126 * Prevent division by 0 in overage calculation by acting as if 2127 * it was a threshold of 1 page 2128 */ 2129 high = max(high, 1UL); 2130 2131 overage = usage - high; 2132 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2133 return div64_u64(overage, high); 2134 } 2135 2136 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2137 { 2138 u64 overage, max_overage = 0; 2139 2140 do { 2141 overage = calculate_overage(page_counter_read(&memcg->memory), 2142 READ_ONCE(memcg->memory.high)); 2143 max_overage = max(overage, max_overage); 2144 } while ((memcg = parent_mem_cgroup(memcg)) && 2145 !mem_cgroup_is_root(memcg)); 2146 2147 return max_overage; 2148 } 2149 2150 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2151 { 2152 u64 overage, max_overage = 0; 2153 2154 do { 2155 overage = calculate_overage(page_counter_read(&memcg->swap), 2156 READ_ONCE(memcg->swap.high)); 2157 if (overage) 2158 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2159 max_overage = max(overage, max_overage); 2160 } while ((memcg = parent_mem_cgroup(memcg)) && 2161 !mem_cgroup_is_root(memcg)); 2162 2163 return max_overage; 2164 } 2165 2166 /* 2167 * Get the number of jiffies that we should penalise a mischievous cgroup which 2168 * is exceeding its memory.high by checking both it and its ancestors. 2169 */ 2170 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2171 unsigned int nr_pages, 2172 u64 max_overage) 2173 { 2174 unsigned long penalty_jiffies; 2175 2176 if (!max_overage) 2177 return 0; 2178 2179 /* 2180 * We use overage compared to memory.high to calculate the number of 2181 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2182 * fairly lenient on small overages, and increasingly harsh when the 2183 * memcg in question makes it clear that it has no intention of stopping 2184 * its crazy behaviour, so we exponentially increase the delay based on 2185 * overage amount. 2186 */ 2187 penalty_jiffies = max_overage * max_overage * HZ; 2188 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2189 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2190 2191 /* 2192 * Factor in the task's own contribution to the overage, such that four 2193 * N-sized allocations are throttled approximately the same as one 2194 * 4N-sized allocation. 2195 * 2196 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2197 * larger the current charge patch is than that. 2198 */ 2199 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2200 } 2201 2202 /* 2203 * Reclaims memory over the high limit. Called directly from 2204 * try_charge() (context permitting), as well as from the userland 2205 * return path where reclaim is always able to block. 2206 */ 2207 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2208 { 2209 unsigned long penalty_jiffies; 2210 unsigned long pflags; 2211 unsigned long nr_reclaimed; 2212 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2213 int nr_retries = MAX_RECLAIM_RETRIES; 2214 struct mem_cgroup *memcg; 2215 bool in_retry = false; 2216 2217 if (likely(!nr_pages)) 2218 return; 2219 2220 memcg = get_mem_cgroup_from_mm(current->mm); 2221 current->memcg_nr_pages_over_high = 0; 2222 2223 retry_reclaim: 2224 /* 2225 * Bail if the task is already exiting. Unlike memory.max, 2226 * memory.high enforcement isn't as strict, and there is no 2227 * OOM killer involved, which means the excess could already 2228 * be much bigger (and still growing) than it could for 2229 * memory.max; the dying task could get stuck in fruitless 2230 * reclaim for a long time, which isn't desirable. 2231 */ 2232 if (task_is_dying()) 2233 goto out; 2234 2235 /* 2236 * The allocating task should reclaim at least the batch size, but for 2237 * subsequent retries we only want to do what's necessary to prevent oom 2238 * or breaching resource isolation. 2239 * 2240 * This is distinct from memory.max or page allocator behaviour because 2241 * memory.high is currently batched, whereas memory.max and the page 2242 * allocator run every time an allocation is made. 2243 */ 2244 nr_reclaimed = reclaim_high(memcg, 2245 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2246 gfp_mask); 2247 2248 /* 2249 * memory.high is breached and reclaim is unable to keep up. Throttle 2250 * allocators proactively to slow down excessive growth. 2251 */ 2252 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2253 mem_find_max_overage(memcg)); 2254 2255 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2256 swap_find_max_overage(memcg)); 2257 2258 /* 2259 * Clamp the max delay per usermode return so as to still keep the 2260 * application moving forwards and also permit diagnostics, albeit 2261 * extremely slowly. 2262 */ 2263 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2264 2265 /* 2266 * Don't sleep if the amount of jiffies this memcg owes us is so low 2267 * that it's not even worth doing, in an attempt to be nice to those who 2268 * go only a small amount over their memory.high value and maybe haven't 2269 * been aggressively reclaimed enough yet. 2270 */ 2271 if (penalty_jiffies <= HZ / 100) 2272 goto out; 2273 2274 /* 2275 * If reclaim is making forward progress but we're still over 2276 * memory.high, we want to encourage that rather than doing allocator 2277 * throttling. 2278 */ 2279 if (nr_reclaimed || nr_retries--) { 2280 in_retry = true; 2281 goto retry_reclaim; 2282 } 2283 2284 /* 2285 * Reclaim didn't manage to push usage below the limit, slow 2286 * this allocating task down. 2287 * 2288 * If we exit early, we're guaranteed to die (since 2289 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2290 * need to account for any ill-begotten jiffies to pay them off later. 2291 */ 2292 psi_memstall_enter(&pflags); 2293 schedule_timeout_killable(penalty_jiffies); 2294 psi_memstall_leave(&pflags); 2295 2296 out: 2297 css_put(&memcg->css); 2298 } 2299 2300 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2301 unsigned int nr_pages) 2302 { 2303 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2304 int nr_retries = MAX_RECLAIM_RETRIES; 2305 struct mem_cgroup *mem_over_limit; 2306 struct page_counter *counter; 2307 unsigned long nr_reclaimed; 2308 bool passed_oom = false; 2309 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2310 bool drained = false; 2311 bool raised_max_event = false; 2312 unsigned long pflags; 2313 2314 retry: 2315 if (consume_stock(memcg, nr_pages)) 2316 return 0; 2317 2318 if (!gfpflags_allow_spinning(gfp_mask)) 2319 /* Avoid the refill and flush of the older stock */ 2320 batch = nr_pages; 2321 2322 if (!do_memsw_account() || 2323 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2324 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2325 goto done_restock; 2326 if (do_memsw_account()) 2327 page_counter_uncharge(&memcg->memsw, batch); 2328 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2329 } else { 2330 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2331 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2332 } 2333 2334 if (batch > nr_pages) { 2335 batch = nr_pages; 2336 goto retry; 2337 } 2338 2339 /* 2340 * Prevent unbounded recursion when reclaim operations need to 2341 * allocate memory. This might exceed the limits temporarily, 2342 * but we prefer facilitating memory reclaim and getting back 2343 * under the limit over triggering OOM kills in these cases. 2344 */ 2345 if (unlikely(current->flags & PF_MEMALLOC)) 2346 goto force; 2347 2348 if (unlikely(task_in_memcg_oom(current))) 2349 goto nomem; 2350 2351 if (!gfpflags_allow_blocking(gfp_mask)) 2352 goto nomem; 2353 2354 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2355 raised_max_event = true; 2356 2357 psi_memstall_enter(&pflags); 2358 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2359 gfp_mask, reclaim_options, NULL); 2360 psi_memstall_leave(&pflags); 2361 2362 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2363 goto retry; 2364 2365 if (!drained) { 2366 drain_all_stock(mem_over_limit); 2367 drained = true; 2368 goto retry; 2369 } 2370 2371 if (gfp_mask & __GFP_NORETRY) 2372 goto nomem; 2373 /* 2374 * Even though the limit is exceeded at this point, reclaim 2375 * may have been able to free some pages. Retry the charge 2376 * before killing the task. 2377 * 2378 * Only for regular pages, though: huge pages are rather 2379 * unlikely to succeed so close to the limit, and we fall back 2380 * to regular pages anyway in case of failure. 2381 */ 2382 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2383 goto retry; 2384 2385 if (nr_retries--) 2386 goto retry; 2387 2388 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2389 goto nomem; 2390 2391 /* Avoid endless loop for tasks bypassed by the oom killer */ 2392 if (passed_oom && task_is_dying()) 2393 goto nomem; 2394 2395 /* 2396 * keep retrying as long as the memcg oom killer is able to make 2397 * a forward progress or bypass the charge if the oom killer 2398 * couldn't make any progress. 2399 */ 2400 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2401 get_order(nr_pages * PAGE_SIZE))) { 2402 passed_oom = true; 2403 nr_retries = MAX_RECLAIM_RETRIES; 2404 goto retry; 2405 } 2406 nomem: 2407 /* 2408 * Memcg doesn't have a dedicated reserve for atomic 2409 * allocations. But like the global atomic pool, we need to 2410 * put the burden of reclaim on regular allocation requests 2411 * and let these go through as privileged allocations. 2412 */ 2413 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2414 return -ENOMEM; 2415 force: 2416 /* 2417 * If the allocation has to be enforced, don't forget to raise 2418 * a MEMCG_MAX event. 2419 */ 2420 if (!raised_max_event) 2421 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2422 2423 /* 2424 * The allocation either can't fail or will lead to more memory 2425 * being freed very soon. Allow memory usage go over the limit 2426 * temporarily by force charging it. 2427 */ 2428 page_counter_charge(&memcg->memory, nr_pages); 2429 if (do_memsw_account()) 2430 page_counter_charge(&memcg->memsw, nr_pages); 2431 2432 return 0; 2433 2434 done_restock: 2435 if (batch > nr_pages) 2436 refill_stock(memcg, batch - nr_pages); 2437 2438 /* 2439 * If the hierarchy is above the normal consumption range, schedule 2440 * reclaim on returning to userland. We can perform reclaim here 2441 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2442 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2443 * not recorded as it most likely matches current's and won't 2444 * change in the meantime. As high limit is checked again before 2445 * reclaim, the cost of mismatch is negligible. 2446 */ 2447 do { 2448 bool mem_high, swap_high; 2449 2450 mem_high = page_counter_read(&memcg->memory) > 2451 READ_ONCE(memcg->memory.high); 2452 swap_high = page_counter_read(&memcg->swap) > 2453 READ_ONCE(memcg->swap.high); 2454 2455 /* Don't bother a random interrupted task */ 2456 if (!in_task()) { 2457 if (mem_high) { 2458 schedule_work(&memcg->high_work); 2459 break; 2460 } 2461 continue; 2462 } 2463 2464 if (mem_high || swap_high) { 2465 /* 2466 * The allocating tasks in this cgroup will need to do 2467 * reclaim or be throttled to prevent further growth 2468 * of the memory or swap footprints. 2469 * 2470 * Target some best-effort fairness between the tasks, 2471 * and distribute reclaim work and delay penalties 2472 * based on how much each task is actually allocating. 2473 */ 2474 current->memcg_nr_pages_over_high += batch; 2475 set_notify_resume(current); 2476 break; 2477 } 2478 } while ((memcg = parent_mem_cgroup(memcg))); 2479 2480 /* 2481 * Reclaim is set up above to be called from the userland 2482 * return path. But also attempt synchronous reclaim to avoid 2483 * excessive overrun while the task is still inside the 2484 * kernel. If this is successful, the return path will see it 2485 * when it rechecks the overage and simply bail out. 2486 */ 2487 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2488 !(current->flags & PF_MEMALLOC) && 2489 gfpflags_allow_blocking(gfp_mask)) 2490 mem_cgroup_handle_over_high(gfp_mask); 2491 return 0; 2492 } 2493 2494 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2495 unsigned int nr_pages) 2496 { 2497 if (mem_cgroup_is_root(memcg)) 2498 return 0; 2499 2500 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2501 } 2502 2503 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2504 { 2505 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2506 /* 2507 * Any of the following ensures page's memcg stability: 2508 * 2509 * - the page lock 2510 * - LRU isolation 2511 * - exclusive reference 2512 */ 2513 folio->memcg_data = (unsigned long)memcg; 2514 } 2515 2516 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2517 struct pglist_data *pgdat, 2518 enum node_stat_item idx, int nr) 2519 { 2520 struct mem_cgroup *memcg; 2521 struct lruvec *lruvec; 2522 2523 rcu_read_lock(); 2524 memcg = obj_cgroup_memcg(objcg); 2525 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2526 mod_memcg_lruvec_state(lruvec, idx, nr); 2527 rcu_read_unlock(); 2528 } 2529 2530 static __always_inline 2531 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2532 { 2533 /* 2534 * Slab objects are accounted individually, not per-page. 2535 * Memcg membership data for each individual object is saved in 2536 * slab->obj_exts. 2537 */ 2538 if (folio_test_slab(folio)) { 2539 struct slabobj_ext *obj_exts; 2540 struct slab *slab; 2541 unsigned int off; 2542 2543 slab = folio_slab(folio); 2544 obj_exts = slab_obj_exts(slab); 2545 if (!obj_exts) 2546 return NULL; 2547 2548 off = obj_to_index(slab->slab_cache, slab, p); 2549 if (obj_exts[off].objcg) 2550 return obj_cgroup_memcg(obj_exts[off].objcg); 2551 2552 return NULL; 2553 } 2554 2555 /* 2556 * folio_memcg_check() is used here, because in theory we can encounter 2557 * a folio where the slab flag has been cleared already, but 2558 * slab->obj_exts has not been freed yet 2559 * folio_memcg_check() will guarantee that a proper memory 2560 * cgroup pointer or NULL will be returned. 2561 */ 2562 return folio_memcg_check(folio); 2563 } 2564 2565 /* 2566 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2567 * It is not suitable for objects allocated using vmalloc(). 2568 * 2569 * A passed kernel object must be a slab object or a generic kernel page. 2570 * 2571 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2572 * cgroup_mutex, etc. 2573 */ 2574 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2575 { 2576 if (mem_cgroup_disabled()) 2577 return NULL; 2578 2579 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2580 } 2581 2582 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2583 { 2584 struct obj_cgroup *objcg = NULL; 2585 2586 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2587 objcg = rcu_dereference(memcg->objcg); 2588 if (likely(objcg && obj_cgroup_tryget(objcg))) 2589 break; 2590 objcg = NULL; 2591 } 2592 return objcg; 2593 } 2594 2595 static struct obj_cgroup *current_objcg_update(void) 2596 { 2597 struct mem_cgroup *memcg; 2598 struct obj_cgroup *old, *objcg = NULL; 2599 2600 do { 2601 /* Atomically drop the update bit. */ 2602 old = xchg(¤t->objcg, NULL); 2603 if (old) { 2604 old = (struct obj_cgroup *) 2605 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2606 obj_cgroup_put(old); 2607 2608 old = NULL; 2609 } 2610 2611 /* If new objcg is NULL, no reason for the second atomic update. */ 2612 if (!current->mm || (current->flags & PF_KTHREAD)) 2613 return NULL; 2614 2615 /* 2616 * Release the objcg pointer from the previous iteration, 2617 * if try_cmpxcg() below fails. 2618 */ 2619 if (unlikely(objcg)) { 2620 obj_cgroup_put(objcg); 2621 objcg = NULL; 2622 } 2623 2624 /* 2625 * Obtain the new objcg pointer. The current task can be 2626 * asynchronously moved to another memcg and the previous 2627 * memcg can be offlined. So let's get the memcg pointer 2628 * and try get a reference to objcg under a rcu read lock. 2629 */ 2630 2631 rcu_read_lock(); 2632 memcg = mem_cgroup_from_task(current); 2633 objcg = __get_obj_cgroup_from_memcg(memcg); 2634 rcu_read_unlock(); 2635 2636 /* 2637 * Try set up a new objcg pointer atomically. If it 2638 * fails, it means the update flag was set concurrently, so 2639 * the whole procedure should be repeated. 2640 */ 2641 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2642 2643 return objcg; 2644 } 2645 2646 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2647 { 2648 struct mem_cgroup *memcg; 2649 struct obj_cgroup *objcg; 2650 2651 if (in_task()) { 2652 memcg = current->active_memcg; 2653 if (unlikely(memcg)) 2654 goto from_memcg; 2655 2656 objcg = READ_ONCE(current->objcg); 2657 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2658 objcg = current_objcg_update(); 2659 /* 2660 * Objcg reference is kept by the task, so it's safe 2661 * to use the objcg by the current task. 2662 */ 2663 return objcg; 2664 } 2665 2666 memcg = this_cpu_read(int_active_memcg); 2667 if (unlikely(memcg)) 2668 goto from_memcg; 2669 2670 return NULL; 2671 2672 from_memcg: 2673 objcg = NULL; 2674 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2675 /* 2676 * Memcg pointer is protected by scope (see set_active_memcg()) 2677 * and is pinning the corresponding objcg, so objcg can't go 2678 * away and can be used within the scope without any additional 2679 * protection. 2680 */ 2681 objcg = rcu_dereference_check(memcg->objcg, 1); 2682 if (likely(objcg)) 2683 break; 2684 } 2685 2686 return objcg; 2687 } 2688 2689 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2690 { 2691 struct obj_cgroup *objcg; 2692 2693 if (!memcg_kmem_online()) 2694 return NULL; 2695 2696 if (folio_memcg_kmem(folio)) { 2697 objcg = __folio_objcg(folio); 2698 obj_cgroup_get(objcg); 2699 } else { 2700 struct mem_cgroup *memcg; 2701 2702 rcu_read_lock(); 2703 memcg = __folio_memcg(folio); 2704 if (memcg) 2705 objcg = __get_obj_cgroup_from_memcg(memcg); 2706 else 2707 objcg = NULL; 2708 rcu_read_unlock(); 2709 } 2710 return objcg; 2711 } 2712 2713 /* 2714 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2715 * @objcg: object cgroup to uncharge 2716 * @nr_pages: number of pages to uncharge 2717 */ 2718 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2719 unsigned int nr_pages) 2720 { 2721 struct mem_cgroup *memcg; 2722 2723 memcg = get_mem_cgroup_from_objcg(objcg); 2724 2725 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2726 memcg1_account_kmem(memcg, -nr_pages); 2727 if (!mem_cgroup_is_root(memcg)) 2728 refill_stock(memcg, nr_pages); 2729 2730 css_put(&memcg->css); 2731 } 2732 2733 /* 2734 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2735 * @objcg: object cgroup to charge 2736 * @gfp: reclaim mode 2737 * @nr_pages: number of pages to charge 2738 * 2739 * Returns 0 on success, an error code on failure. 2740 */ 2741 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2742 unsigned int nr_pages) 2743 { 2744 struct mem_cgroup *memcg; 2745 int ret; 2746 2747 memcg = get_mem_cgroup_from_objcg(objcg); 2748 2749 ret = try_charge_memcg(memcg, gfp, nr_pages); 2750 if (ret) 2751 goto out; 2752 2753 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2754 memcg1_account_kmem(memcg, nr_pages); 2755 out: 2756 css_put(&memcg->css); 2757 2758 return ret; 2759 } 2760 2761 static struct obj_cgroup *page_objcg(const struct page *page) 2762 { 2763 unsigned long memcg_data = page->memcg_data; 2764 2765 if (mem_cgroup_disabled() || !memcg_data) 2766 return NULL; 2767 2768 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2769 page); 2770 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2771 } 2772 2773 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2774 { 2775 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2776 } 2777 2778 /** 2779 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2780 * @page: page to charge 2781 * @gfp: reclaim mode 2782 * @order: allocation order 2783 * 2784 * Returns 0 on success, an error code on failure. 2785 */ 2786 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2787 { 2788 struct obj_cgroup *objcg; 2789 int ret = 0; 2790 2791 objcg = current_obj_cgroup(); 2792 if (objcg) { 2793 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2794 if (!ret) { 2795 obj_cgroup_get(objcg); 2796 page_set_objcg(page, objcg); 2797 return 0; 2798 } 2799 } 2800 return ret; 2801 } 2802 2803 /** 2804 * __memcg_kmem_uncharge_page: uncharge a kmem page 2805 * @page: page to uncharge 2806 * @order: allocation order 2807 */ 2808 void __memcg_kmem_uncharge_page(struct page *page, int order) 2809 { 2810 struct obj_cgroup *objcg = page_objcg(page); 2811 unsigned int nr_pages = 1 << order; 2812 2813 if (!objcg) 2814 return; 2815 2816 obj_cgroup_uncharge_pages(objcg, nr_pages); 2817 page->memcg_data = 0; 2818 obj_cgroup_put(objcg); 2819 } 2820 2821 static void __account_obj_stock(struct obj_cgroup *objcg, 2822 struct obj_stock_pcp *stock, int nr, 2823 struct pglist_data *pgdat, enum node_stat_item idx) 2824 { 2825 int *bytes; 2826 2827 /* 2828 * Save vmstat data in stock and skip vmstat array update unless 2829 * accumulating over a page of vmstat data or when pgdat changes. 2830 */ 2831 if (stock->cached_pgdat != pgdat) { 2832 /* Flush the existing cached vmstat data */ 2833 struct pglist_data *oldpg = stock->cached_pgdat; 2834 2835 if (stock->nr_slab_reclaimable_b) { 2836 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2837 stock->nr_slab_reclaimable_b); 2838 stock->nr_slab_reclaimable_b = 0; 2839 } 2840 if (stock->nr_slab_unreclaimable_b) { 2841 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2842 stock->nr_slab_unreclaimable_b); 2843 stock->nr_slab_unreclaimable_b = 0; 2844 } 2845 stock->cached_pgdat = pgdat; 2846 } 2847 2848 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2849 : &stock->nr_slab_unreclaimable_b; 2850 /* 2851 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2852 * cached locally at least once before pushing it out. 2853 */ 2854 if (!*bytes) { 2855 *bytes = nr; 2856 nr = 0; 2857 } else { 2858 *bytes += nr; 2859 if (abs(*bytes) > PAGE_SIZE) { 2860 nr = *bytes; 2861 *bytes = 0; 2862 } else { 2863 nr = 0; 2864 } 2865 } 2866 if (nr) 2867 mod_objcg_mlstate(objcg, pgdat, idx, nr); 2868 } 2869 2870 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2871 struct pglist_data *pgdat, enum node_stat_item idx) 2872 { 2873 struct obj_stock_pcp *stock; 2874 bool ret = false; 2875 2876 if (!local_trylock(&obj_stock.lock)) 2877 return ret; 2878 2879 stock = this_cpu_ptr(&obj_stock); 2880 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2881 stock->nr_bytes -= nr_bytes; 2882 ret = true; 2883 2884 if (pgdat) 2885 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2886 } 2887 2888 local_unlock(&obj_stock.lock); 2889 2890 return ret; 2891 } 2892 2893 static void drain_obj_stock(struct obj_stock_pcp *stock) 2894 { 2895 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2896 2897 if (!old) 2898 return; 2899 2900 if (stock->nr_bytes) { 2901 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2902 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2903 2904 if (nr_pages) { 2905 struct mem_cgroup *memcg; 2906 2907 memcg = get_mem_cgroup_from_objcg(old); 2908 2909 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2910 memcg1_account_kmem(memcg, -nr_pages); 2911 if (!mem_cgroup_is_root(memcg)) 2912 memcg_uncharge(memcg, nr_pages); 2913 2914 css_put(&memcg->css); 2915 } 2916 2917 /* 2918 * The leftover is flushed to the centralized per-memcg value. 2919 * On the next attempt to refill obj stock it will be moved 2920 * to a per-cpu stock (probably, on an other CPU), see 2921 * refill_obj_stock(). 2922 * 2923 * How often it's flushed is a trade-off between the memory 2924 * limit enforcement accuracy and potential CPU contention, 2925 * so it might be changed in the future. 2926 */ 2927 atomic_add(nr_bytes, &old->nr_charged_bytes); 2928 stock->nr_bytes = 0; 2929 } 2930 2931 /* 2932 * Flush the vmstat data in current stock 2933 */ 2934 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2935 if (stock->nr_slab_reclaimable_b) { 2936 mod_objcg_mlstate(old, stock->cached_pgdat, 2937 NR_SLAB_RECLAIMABLE_B, 2938 stock->nr_slab_reclaimable_b); 2939 stock->nr_slab_reclaimable_b = 0; 2940 } 2941 if (stock->nr_slab_unreclaimable_b) { 2942 mod_objcg_mlstate(old, stock->cached_pgdat, 2943 NR_SLAB_UNRECLAIMABLE_B, 2944 stock->nr_slab_unreclaimable_b); 2945 stock->nr_slab_unreclaimable_b = 0; 2946 } 2947 stock->cached_pgdat = NULL; 2948 } 2949 2950 WRITE_ONCE(stock->cached_objcg, NULL); 2951 obj_cgroup_put(old); 2952 } 2953 2954 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 2955 struct mem_cgroup *root_memcg) 2956 { 2957 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2958 struct mem_cgroup *memcg; 2959 bool flush = false; 2960 2961 rcu_read_lock(); 2962 if (objcg) { 2963 memcg = obj_cgroup_memcg(objcg); 2964 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2965 flush = true; 2966 } 2967 rcu_read_unlock(); 2968 2969 return flush; 2970 } 2971 2972 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2973 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 2974 enum node_stat_item idx) 2975 { 2976 struct obj_stock_pcp *stock; 2977 unsigned int nr_pages = 0; 2978 2979 if (!local_trylock(&obj_stock.lock)) { 2980 if (pgdat) 2981 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); 2982 nr_pages = nr_bytes >> PAGE_SHIFT; 2983 nr_bytes = nr_bytes & (PAGE_SIZE - 1); 2984 atomic_add(nr_bytes, &objcg->nr_charged_bytes); 2985 goto out; 2986 } 2987 2988 stock = this_cpu_ptr(&obj_stock); 2989 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2990 drain_obj_stock(stock); 2991 obj_cgroup_get(objcg); 2992 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2993 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2994 WRITE_ONCE(stock->cached_objcg, objcg); 2995 2996 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2997 } 2998 stock->nr_bytes += nr_bytes; 2999 3000 if (pgdat) 3001 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3002 3003 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3004 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3005 stock->nr_bytes &= (PAGE_SIZE - 1); 3006 } 3007 3008 local_unlock(&obj_stock.lock); 3009 out: 3010 if (nr_pages) 3011 obj_cgroup_uncharge_pages(objcg, nr_pages); 3012 } 3013 3014 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3015 struct pglist_data *pgdat, enum node_stat_item idx) 3016 { 3017 unsigned int nr_pages, nr_bytes; 3018 int ret; 3019 3020 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3021 return 0; 3022 3023 /* 3024 * In theory, objcg->nr_charged_bytes can have enough 3025 * pre-charged bytes to satisfy the allocation. However, 3026 * flushing objcg->nr_charged_bytes requires two atomic 3027 * operations, and objcg->nr_charged_bytes can't be big. 3028 * The shared objcg->nr_charged_bytes can also become a 3029 * performance bottleneck if all tasks of the same memcg are 3030 * trying to update it. So it's better to ignore it and try 3031 * grab some new pages. The stock's nr_bytes will be flushed to 3032 * objcg->nr_charged_bytes later on when objcg changes. 3033 * 3034 * The stock's nr_bytes may contain enough pre-charged bytes 3035 * to allow one less page from being charged, but we can't rely 3036 * on the pre-charged bytes not being changed outside of 3037 * consume_obj_stock() or refill_obj_stock(). So ignore those 3038 * pre-charged bytes as well when charging pages. To avoid a 3039 * page uncharge right after a page charge, we set the 3040 * allow_uncharge flag to false when calling refill_obj_stock() 3041 * to temporarily allow the pre-charged bytes to exceed the page 3042 * size limit. The maximum reachable value of the pre-charged 3043 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3044 * race. 3045 */ 3046 nr_pages = size >> PAGE_SHIFT; 3047 nr_bytes = size & (PAGE_SIZE - 1); 3048 3049 if (nr_bytes) 3050 nr_pages += 1; 3051 3052 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3053 if (!ret && (nr_bytes || pgdat)) 3054 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3055 false, size, pgdat, idx); 3056 3057 return ret; 3058 } 3059 3060 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3061 { 3062 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3063 } 3064 3065 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3066 { 3067 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3068 } 3069 3070 static inline size_t obj_full_size(struct kmem_cache *s) 3071 { 3072 /* 3073 * For each accounted object there is an extra space which is used 3074 * to store obj_cgroup membership. Charge it too. 3075 */ 3076 return s->size + sizeof(struct obj_cgroup *); 3077 } 3078 3079 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3080 gfp_t flags, size_t size, void **p) 3081 { 3082 struct obj_cgroup *objcg; 3083 struct slab *slab; 3084 unsigned long off; 3085 size_t i; 3086 3087 /* 3088 * The obtained objcg pointer is safe to use within the current scope, 3089 * defined by current task or set_active_memcg() pair. 3090 * obj_cgroup_get() is used to get a permanent reference. 3091 */ 3092 objcg = current_obj_cgroup(); 3093 if (!objcg) 3094 return true; 3095 3096 /* 3097 * slab_alloc_node() avoids the NULL check, so we might be called with a 3098 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3099 * the whole requested size. 3100 * return success as there's nothing to free back 3101 */ 3102 if (unlikely(*p == NULL)) 3103 return true; 3104 3105 flags &= gfp_allowed_mask; 3106 3107 if (lru) { 3108 int ret; 3109 struct mem_cgroup *memcg; 3110 3111 memcg = get_mem_cgroup_from_objcg(objcg); 3112 ret = memcg_list_lru_alloc(memcg, lru, flags); 3113 css_put(&memcg->css); 3114 3115 if (ret) 3116 return false; 3117 } 3118 3119 for (i = 0; i < size; i++) { 3120 slab = virt_to_slab(p[i]); 3121 3122 if (!slab_obj_exts(slab) && 3123 alloc_slab_obj_exts(slab, s, flags, false)) { 3124 continue; 3125 } 3126 3127 /* 3128 * if we fail and size is 1, memcg_alloc_abort_single() will 3129 * just free the object, which is ok as we have not assigned 3130 * objcg to its obj_ext yet 3131 * 3132 * for larger sizes, kmem_cache_free_bulk() will uncharge 3133 * any objects that were already charged and obj_ext assigned 3134 * 3135 * TODO: we could batch this until slab_pgdat(slab) changes 3136 * between iterations, with a more complicated undo 3137 */ 3138 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3139 slab_pgdat(slab), cache_vmstat_idx(s))) 3140 return false; 3141 3142 off = obj_to_index(s, slab, p[i]); 3143 obj_cgroup_get(objcg); 3144 slab_obj_exts(slab)[off].objcg = objcg; 3145 } 3146 3147 return true; 3148 } 3149 3150 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3151 void **p, int objects, struct slabobj_ext *obj_exts) 3152 { 3153 size_t obj_size = obj_full_size(s); 3154 3155 for (int i = 0; i < objects; i++) { 3156 struct obj_cgroup *objcg; 3157 unsigned int off; 3158 3159 off = obj_to_index(s, slab, p[i]); 3160 objcg = obj_exts[off].objcg; 3161 if (!objcg) 3162 continue; 3163 3164 obj_exts[off].objcg = NULL; 3165 refill_obj_stock(objcg, obj_size, true, -obj_size, 3166 slab_pgdat(slab), cache_vmstat_idx(s)); 3167 obj_cgroup_put(objcg); 3168 } 3169 } 3170 3171 /* 3172 * The objcg is only set on the first page, so transfer it to all the 3173 * other pages. 3174 */ 3175 void split_page_memcg(struct page *page, unsigned order) 3176 { 3177 struct obj_cgroup *objcg = page_objcg(page); 3178 unsigned int i, nr = 1 << order; 3179 3180 if (!objcg) 3181 return; 3182 3183 for (i = 1; i < nr; i++) 3184 page_set_objcg(&page[i], objcg); 3185 3186 obj_cgroup_get_many(objcg, nr - 1); 3187 } 3188 3189 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3190 unsigned new_order) 3191 { 3192 unsigned new_refs; 3193 3194 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3195 return; 3196 3197 new_refs = (1 << (old_order - new_order)) - 1; 3198 css_get_many(&__folio_memcg(folio)->css, new_refs); 3199 } 3200 3201 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3202 { 3203 unsigned long val; 3204 3205 if (mem_cgroup_is_root(memcg)) { 3206 /* 3207 * Approximate root's usage from global state. This isn't 3208 * perfect, but the root usage was always an approximation. 3209 */ 3210 val = global_node_page_state(NR_FILE_PAGES) + 3211 global_node_page_state(NR_ANON_MAPPED); 3212 if (swap) 3213 val += total_swap_pages - get_nr_swap_pages(); 3214 } else { 3215 if (!swap) 3216 val = page_counter_read(&memcg->memory); 3217 else 3218 val = page_counter_read(&memcg->memsw); 3219 } 3220 return val; 3221 } 3222 3223 static int memcg_online_kmem(struct mem_cgroup *memcg) 3224 { 3225 struct obj_cgroup *objcg; 3226 3227 if (mem_cgroup_kmem_disabled()) 3228 return 0; 3229 3230 if (unlikely(mem_cgroup_is_root(memcg))) 3231 return 0; 3232 3233 objcg = obj_cgroup_alloc(); 3234 if (!objcg) 3235 return -ENOMEM; 3236 3237 objcg->memcg = memcg; 3238 rcu_assign_pointer(memcg->objcg, objcg); 3239 obj_cgroup_get(objcg); 3240 memcg->orig_objcg = objcg; 3241 3242 static_branch_enable(&memcg_kmem_online_key); 3243 3244 memcg->kmemcg_id = memcg->id.id; 3245 3246 return 0; 3247 } 3248 3249 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3250 { 3251 struct mem_cgroup *parent; 3252 3253 if (mem_cgroup_kmem_disabled()) 3254 return; 3255 3256 if (unlikely(mem_cgroup_is_root(memcg))) 3257 return; 3258 3259 parent = parent_mem_cgroup(memcg); 3260 if (!parent) 3261 parent = root_mem_cgroup; 3262 3263 memcg_reparent_list_lrus(memcg, parent); 3264 3265 /* 3266 * Objcg's reparenting must be after list_lru's, make sure list_lru 3267 * helpers won't use parent's list_lru until child is drained. 3268 */ 3269 memcg_reparent_objcgs(memcg, parent); 3270 } 3271 3272 #ifdef CONFIG_CGROUP_WRITEBACK 3273 3274 #include <trace/events/writeback.h> 3275 3276 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3277 { 3278 return wb_domain_init(&memcg->cgwb_domain, gfp); 3279 } 3280 3281 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3282 { 3283 wb_domain_exit(&memcg->cgwb_domain); 3284 } 3285 3286 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3287 { 3288 wb_domain_size_changed(&memcg->cgwb_domain); 3289 } 3290 3291 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3292 { 3293 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3294 3295 if (!memcg->css.parent) 3296 return NULL; 3297 3298 return &memcg->cgwb_domain; 3299 } 3300 3301 /** 3302 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3303 * @wb: bdi_writeback in question 3304 * @pfilepages: out parameter for number of file pages 3305 * @pheadroom: out parameter for number of allocatable pages according to memcg 3306 * @pdirty: out parameter for number of dirty pages 3307 * @pwriteback: out parameter for number of pages under writeback 3308 * 3309 * Determine the numbers of file, headroom, dirty, and writeback pages in 3310 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3311 * is a bit more involved. 3312 * 3313 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3314 * headroom is calculated as the lowest headroom of itself and the 3315 * ancestors. Note that this doesn't consider the actual amount of 3316 * available memory in the system. The caller should further cap 3317 * *@pheadroom accordingly. 3318 */ 3319 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3320 unsigned long *pheadroom, unsigned long *pdirty, 3321 unsigned long *pwriteback) 3322 { 3323 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3324 struct mem_cgroup *parent; 3325 3326 mem_cgroup_flush_stats_ratelimited(memcg); 3327 3328 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3329 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3330 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3331 memcg_page_state(memcg, NR_ACTIVE_FILE); 3332 3333 *pheadroom = PAGE_COUNTER_MAX; 3334 while ((parent = parent_mem_cgroup(memcg))) { 3335 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3336 READ_ONCE(memcg->memory.high)); 3337 unsigned long used = page_counter_read(&memcg->memory); 3338 3339 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3340 memcg = parent; 3341 } 3342 } 3343 3344 /* 3345 * Foreign dirty flushing 3346 * 3347 * There's an inherent mismatch between memcg and writeback. The former 3348 * tracks ownership per-page while the latter per-inode. This was a 3349 * deliberate design decision because honoring per-page ownership in the 3350 * writeback path is complicated, may lead to higher CPU and IO overheads 3351 * and deemed unnecessary given that write-sharing an inode across 3352 * different cgroups isn't a common use-case. 3353 * 3354 * Combined with inode majority-writer ownership switching, this works well 3355 * enough in most cases but there are some pathological cases. For 3356 * example, let's say there are two cgroups A and B which keep writing to 3357 * different but confined parts of the same inode. B owns the inode and 3358 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3359 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3360 * triggering background writeback. A will be slowed down without a way to 3361 * make writeback of the dirty pages happen. 3362 * 3363 * Conditions like the above can lead to a cgroup getting repeatedly and 3364 * severely throttled after making some progress after each 3365 * dirty_expire_interval while the underlying IO device is almost 3366 * completely idle. 3367 * 3368 * Solving this problem completely requires matching the ownership tracking 3369 * granularities between memcg and writeback in either direction. However, 3370 * the more egregious behaviors can be avoided by simply remembering the 3371 * most recent foreign dirtying events and initiating remote flushes on 3372 * them when local writeback isn't enough to keep the memory clean enough. 3373 * 3374 * The following two functions implement such mechanism. When a foreign 3375 * page - a page whose memcg and writeback ownerships don't match - is 3376 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3377 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3378 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3379 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3380 * foreign bdi_writebacks which haven't expired. Both the numbers of 3381 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3382 * limited to MEMCG_CGWB_FRN_CNT. 3383 * 3384 * The mechanism only remembers IDs and doesn't hold any object references. 3385 * As being wrong occasionally doesn't matter, updates and accesses to the 3386 * records are lockless and racy. 3387 */ 3388 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3389 struct bdi_writeback *wb) 3390 { 3391 struct mem_cgroup *memcg = folio_memcg(folio); 3392 struct memcg_cgwb_frn *frn; 3393 u64 now = get_jiffies_64(); 3394 u64 oldest_at = now; 3395 int oldest = -1; 3396 int i; 3397 3398 trace_track_foreign_dirty(folio, wb); 3399 3400 /* 3401 * Pick the slot to use. If there is already a slot for @wb, keep 3402 * using it. If not replace the oldest one which isn't being 3403 * written out. 3404 */ 3405 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3406 frn = &memcg->cgwb_frn[i]; 3407 if (frn->bdi_id == wb->bdi->id && 3408 frn->memcg_id == wb->memcg_css->id) 3409 break; 3410 if (time_before64(frn->at, oldest_at) && 3411 atomic_read(&frn->done.cnt) == 1) { 3412 oldest = i; 3413 oldest_at = frn->at; 3414 } 3415 } 3416 3417 if (i < MEMCG_CGWB_FRN_CNT) { 3418 /* 3419 * Re-using an existing one. Update timestamp lazily to 3420 * avoid making the cacheline hot. We want them to be 3421 * reasonably up-to-date and significantly shorter than 3422 * dirty_expire_interval as that's what expires the record. 3423 * Use the shorter of 1s and dirty_expire_interval / 8. 3424 */ 3425 unsigned long update_intv = 3426 min_t(unsigned long, HZ, 3427 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3428 3429 if (time_before64(frn->at, now - update_intv)) 3430 frn->at = now; 3431 } else if (oldest >= 0) { 3432 /* replace the oldest free one */ 3433 frn = &memcg->cgwb_frn[oldest]; 3434 frn->bdi_id = wb->bdi->id; 3435 frn->memcg_id = wb->memcg_css->id; 3436 frn->at = now; 3437 } 3438 } 3439 3440 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3441 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3442 { 3443 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3444 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3445 u64 now = jiffies_64; 3446 int i; 3447 3448 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3449 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3450 3451 /* 3452 * If the record is older than dirty_expire_interval, 3453 * writeback on it has already started. No need to kick it 3454 * off again. Also, don't start a new one if there's 3455 * already one in flight. 3456 */ 3457 if (time_after64(frn->at, now - intv) && 3458 atomic_read(&frn->done.cnt) == 1) { 3459 frn->at = 0; 3460 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3461 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3462 WB_REASON_FOREIGN_FLUSH, 3463 &frn->done); 3464 } 3465 } 3466 } 3467 3468 #else /* CONFIG_CGROUP_WRITEBACK */ 3469 3470 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3471 { 3472 return 0; 3473 } 3474 3475 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3476 { 3477 } 3478 3479 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3480 { 3481 } 3482 3483 #endif /* CONFIG_CGROUP_WRITEBACK */ 3484 3485 /* 3486 * Private memory cgroup IDR 3487 * 3488 * Swap-out records and page cache shadow entries need to store memcg 3489 * references in constrained space, so we maintain an ID space that is 3490 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3491 * memory-controlled cgroups to 64k. 3492 * 3493 * However, there usually are many references to the offline CSS after 3494 * the cgroup has been destroyed, such as page cache or reclaimable 3495 * slab objects, that don't need to hang on to the ID. We want to keep 3496 * those dead CSS from occupying IDs, or we might quickly exhaust the 3497 * relatively small ID space and prevent the creation of new cgroups 3498 * even when there are much fewer than 64k cgroups - possibly none. 3499 * 3500 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3501 * be freed and recycled when it's no longer needed, which is usually 3502 * when the CSS is offlined. 3503 * 3504 * The only exception to that are records of swapped out tmpfs/shmem 3505 * pages that need to be attributed to live ancestors on swapin. But 3506 * those references are manageable from userspace. 3507 */ 3508 3509 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3510 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3511 3512 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3513 { 3514 if (memcg->id.id > 0) { 3515 xa_erase(&mem_cgroup_ids, memcg->id.id); 3516 memcg->id.id = 0; 3517 } 3518 } 3519 3520 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3521 unsigned int n) 3522 { 3523 refcount_add(n, &memcg->id.ref); 3524 } 3525 3526 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3527 { 3528 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3529 mem_cgroup_id_remove(memcg); 3530 3531 /* Memcg ID pins CSS */ 3532 css_put(&memcg->css); 3533 } 3534 } 3535 3536 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3537 { 3538 mem_cgroup_id_put_many(memcg, 1); 3539 } 3540 3541 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3542 { 3543 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3544 /* 3545 * The root cgroup cannot be destroyed, so it's refcount must 3546 * always be >= 1. 3547 */ 3548 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3549 VM_BUG_ON(1); 3550 break; 3551 } 3552 memcg = parent_mem_cgroup(memcg); 3553 if (!memcg) 3554 memcg = root_mem_cgroup; 3555 } 3556 return memcg; 3557 } 3558 3559 /** 3560 * mem_cgroup_from_id - look up a memcg from a memcg id 3561 * @id: the memcg id to look up 3562 * 3563 * Caller must hold rcu_read_lock(). 3564 */ 3565 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3566 { 3567 WARN_ON_ONCE(!rcu_read_lock_held()); 3568 return xa_load(&mem_cgroup_ids, id); 3569 } 3570 3571 #ifdef CONFIG_SHRINKER_DEBUG 3572 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3573 { 3574 struct cgroup *cgrp; 3575 struct cgroup_subsys_state *css; 3576 struct mem_cgroup *memcg; 3577 3578 cgrp = cgroup_get_from_id(ino); 3579 if (IS_ERR(cgrp)) 3580 return ERR_CAST(cgrp); 3581 3582 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3583 if (css) 3584 memcg = container_of(css, struct mem_cgroup, css); 3585 else 3586 memcg = ERR_PTR(-ENOENT); 3587 3588 cgroup_put(cgrp); 3589 3590 return memcg; 3591 } 3592 #endif 3593 3594 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3595 { 3596 if (!pn) 3597 return; 3598 3599 free_percpu(pn->lruvec_stats_percpu); 3600 kfree(pn->lruvec_stats); 3601 kfree(pn); 3602 } 3603 3604 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3605 { 3606 struct mem_cgroup_per_node *pn; 3607 3608 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3609 node); 3610 if (!pn) 3611 return false; 3612 3613 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3614 GFP_KERNEL_ACCOUNT, node); 3615 if (!pn->lruvec_stats) 3616 goto fail; 3617 3618 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3619 GFP_KERNEL_ACCOUNT); 3620 if (!pn->lruvec_stats_percpu) 3621 goto fail; 3622 3623 lruvec_init(&pn->lruvec); 3624 pn->memcg = memcg; 3625 3626 memcg->nodeinfo[node] = pn; 3627 return true; 3628 fail: 3629 free_mem_cgroup_per_node_info(pn); 3630 return false; 3631 } 3632 3633 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3634 { 3635 int node; 3636 3637 obj_cgroup_put(memcg->orig_objcg); 3638 3639 for_each_node(node) 3640 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3641 memcg1_free_events(memcg); 3642 kfree(memcg->vmstats); 3643 free_percpu(memcg->vmstats_percpu); 3644 kfree(memcg); 3645 } 3646 3647 static void mem_cgroup_free(struct mem_cgroup *memcg) 3648 { 3649 lru_gen_exit_memcg(memcg); 3650 memcg_wb_domain_exit(memcg); 3651 __mem_cgroup_free(memcg); 3652 } 3653 3654 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3655 { 3656 struct memcg_vmstats_percpu *statc; 3657 struct memcg_vmstats_percpu __percpu *pstatc_pcpu; 3658 struct mem_cgroup *memcg; 3659 int node, cpu; 3660 int __maybe_unused i; 3661 long error; 3662 3663 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3664 if (!memcg) 3665 return ERR_PTR(-ENOMEM); 3666 3667 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3668 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3669 if (error) 3670 goto fail; 3671 error = -ENOMEM; 3672 3673 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3674 GFP_KERNEL_ACCOUNT); 3675 if (!memcg->vmstats) 3676 goto fail; 3677 3678 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3679 GFP_KERNEL_ACCOUNT); 3680 if (!memcg->vmstats_percpu) 3681 goto fail; 3682 3683 if (!memcg1_alloc_events(memcg)) 3684 goto fail; 3685 3686 for_each_possible_cpu(cpu) { 3687 if (parent) 3688 pstatc_pcpu = parent->vmstats_percpu; 3689 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3690 statc->parent_pcpu = parent ? pstatc_pcpu : NULL; 3691 statc->vmstats = memcg->vmstats; 3692 } 3693 3694 for_each_node(node) 3695 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3696 goto fail; 3697 3698 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3699 goto fail; 3700 3701 INIT_WORK(&memcg->high_work, high_work_func); 3702 vmpressure_init(&memcg->vmpressure); 3703 INIT_LIST_HEAD(&memcg->memory_peaks); 3704 INIT_LIST_HEAD(&memcg->swap_peaks); 3705 spin_lock_init(&memcg->peaks_lock); 3706 memcg->socket_pressure = jiffies; 3707 memcg1_memcg_init(memcg); 3708 memcg->kmemcg_id = -1; 3709 INIT_LIST_HEAD(&memcg->objcg_list); 3710 #ifdef CONFIG_CGROUP_WRITEBACK 3711 INIT_LIST_HEAD(&memcg->cgwb_list); 3712 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3713 memcg->cgwb_frn[i].done = 3714 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3715 #endif 3716 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3717 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3718 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3719 memcg->deferred_split_queue.split_queue_len = 0; 3720 #endif 3721 lru_gen_init_memcg(memcg); 3722 return memcg; 3723 fail: 3724 mem_cgroup_id_remove(memcg); 3725 __mem_cgroup_free(memcg); 3726 return ERR_PTR(error); 3727 } 3728 3729 static struct cgroup_subsys_state * __ref 3730 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3731 { 3732 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3733 struct mem_cgroup *memcg, *old_memcg; 3734 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3735 3736 old_memcg = set_active_memcg(parent); 3737 memcg = mem_cgroup_alloc(parent); 3738 set_active_memcg(old_memcg); 3739 if (IS_ERR(memcg)) 3740 return ERR_CAST(memcg); 3741 3742 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3743 memcg1_soft_limit_reset(memcg); 3744 #ifdef CONFIG_ZSWAP 3745 memcg->zswap_max = PAGE_COUNTER_MAX; 3746 WRITE_ONCE(memcg->zswap_writeback, true); 3747 #endif 3748 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3749 if (parent) { 3750 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3751 3752 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3753 page_counter_init(&memcg->swap, &parent->swap, false); 3754 #ifdef CONFIG_MEMCG_V1 3755 memcg->memory.track_failcnt = !memcg_on_dfl; 3756 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3757 page_counter_init(&memcg->kmem, &parent->kmem, false); 3758 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3759 #endif 3760 } else { 3761 init_memcg_stats(); 3762 init_memcg_events(); 3763 page_counter_init(&memcg->memory, NULL, true); 3764 page_counter_init(&memcg->swap, NULL, false); 3765 #ifdef CONFIG_MEMCG_V1 3766 page_counter_init(&memcg->kmem, NULL, false); 3767 page_counter_init(&memcg->tcpmem, NULL, false); 3768 #endif 3769 root_mem_cgroup = memcg; 3770 return &memcg->css; 3771 } 3772 3773 if (memcg_on_dfl && !cgroup_memory_nosocket) 3774 static_branch_inc(&memcg_sockets_enabled_key); 3775 3776 if (!cgroup_memory_nobpf) 3777 static_branch_inc(&memcg_bpf_enabled_key); 3778 3779 return &memcg->css; 3780 } 3781 3782 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3783 { 3784 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3785 3786 if (memcg_online_kmem(memcg)) 3787 goto remove_id; 3788 3789 /* 3790 * A memcg must be visible for expand_shrinker_info() 3791 * by the time the maps are allocated. So, we allocate maps 3792 * here, when for_each_mem_cgroup() can't skip it. 3793 */ 3794 if (alloc_shrinker_info(memcg)) 3795 goto offline_kmem; 3796 3797 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3798 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3799 FLUSH_TIME); 3800 lru_gen_online_memcg(memcg); 3801 3802 /* Online state pins memcg ID, memcg ID pins CSS */ 3803 refcount_set(&memcg->id.ref, 1); 3804 css_get(css); 3805 3806 /* 3807 * Ensure mem_cgroup_from_id() works once we're fully online. 3808 * 3809 * We could do this earlier and require callers to filter with 3810 * css_tryget_online(). But right now there are no users that 3811 * need earlier access, and the workingset code relies on the 3812 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3813 * publish it here at the end of onlining. This matches the 3814 * regular ID destruction during offlining. 3815 */ 3816 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3817 3818 return 0; 3819 offline_kmem: 3820 memcg_offline_kmem(memcg); 3821 remove_id: 3822 mem_cgroup_id_remove(memcg); 3823 return -ENOMEM; 3824 } 3825 3826 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3827 { 3828 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3829 3830 memcg1_css_offline(memcg); 3831 3832 page_counter_set_min(&memcg->memory, 0); 3833 page_counter_set_low(&memcg->memory, 0); 3834 3835 zswap_memcg_offline_cleanup(memcg); 3836 3837 memcg_offline_kmem(memcg); 3838 reparent_shrinker_deferred(memcg); 3839 wb_memcg_offline(memcg); 3840 lru_gen_offline_memcg(memcg); 3841 3842 drain_all_stock(memcg); 3843 3844 mem_cgroup_id_put(memcg); 3845 } 3846 3847 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3848 { 3849 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3850 3851 invalidate_reclaim_iterators(memcg); 3852 lru_gen_release_memcg(memcg); 3853 } 3854 3855 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3856 { 3857 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3858 int __maybe_unused i; 3859 3860 #ifdef CONFIG_CGROUP_WRITEBACK 3861 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3862 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3863 #endif 3864 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3865 static_branch_dec(&memcg_sockets_enabled_key); 3866 3867 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3868 static_branch_dec(&memcg_sockets_enabled_key); 3869 3870 if (!cgroup_memory_nobpf) 3871 static_branch_dec(&memcg_bpf_enabled_key); 3872 3873 vmpressure_cleanup(&memcg->vmpressure); 3874 cancel_work_sync(&memcg->high_work); 3875 memcg1_remove_from_trees(memcg); 3876 free_shrinker_info(memcg); 3877 mem_cgroup_free(memcg); 3878 } 3879 3880 /** 3881 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3882 * @css: the target css 3883 * 3884 * Reset the states of the mem_cgroup associated with @css. This is 3885 * invoked when the userland requests disabling on the default hierarchy 3886 * but the memcg is pinned through dependency. The memcg should stop 3887 * applying policies and should revert to the vanilla state as it may be 3888 * made visible again. 3889 * 3890 * The current implementation only resets the essential configurations. 3891 * This needs to be expanded to cover all the visible parts. 3892 */ 3893 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3894 { 3895 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3896 3897 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3898 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3899 #ifdef CONFIG_MEMCG_V1 3900 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3901 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3902 #endif 3903 page_counter_set_min(&memcg->memory, 0); 3904 page_counter_set_low(&memcg->memory, 0); 3905 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3906 memcg1_soft_limit_reset(memcg); 3907 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3908 memcg_wb_domain_size_changed(memcg); 3909 } 3910 3911 struct aggregate_control { 3912 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3913 long *aggregate; 3914 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3915 long *local; 3916 /* pointer to the pending child counters during tree propagation */ 3917 long *pending; 3918 /* pointer to the parent's pending counters, could be NULL */ 3919 long *ppending; 3920 /* pointer to the percpu counters to be aggregated */ 3921 long *cstat; 3922 /* pointer to the percpu counters of the last aggregation*/ 3923 long *cstat_prev; 3924 /* size of the above counters */ 3925 int size; 3926 }; 3927 3928 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3929 { 3930 int i; 3931 long delta, delta_cpu, v; 3932 3933 for (i = 0; i < ac->size; i++) { 3934 /* 3935 * Collect the aggregated propagation counts of groups 3936 * below us. We're in a per-cpu loop here and this is 3937 * a global counter, so the first cycle will get them. 3938 */ 3939 delta = ac->pending[i]; 3940 if (delta) 3941 ac->pending[i] = 0; 3942 3943 /* Add CPU changes on this level since the last flush */ 3944 delta_cpu = 0; 3945 v = READ_ONCE(ac->cstat[i]); 3946 if (v != ac->cstat_prev[i]) { 3947 delta_cpu = v - ac->cstat_prev[i]; 3948 delta += delta_cpu; 3949 ac->cstat_prev[i] = v; 3950 } 3951 3952 /* Aggregate counts on this level and propagate upwards */ 3953 if (delta_cpu) 3954 ac->local[i] += delta_cpu; 3955 3956 if (delta) { 3957 ac->aggregate[i] += delta; 3958 if (ac->ppending) 3959 ac->ppending[i] += delta; 3960 } 3961 } 3962 } 3963 3964 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3965 { 3966 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3967 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3968 struct memcg_vmstats_percpu *statc; 3969 struct aggregate_control ac; 3970 int nid; 3971 3972 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3973 3974 ac = (struct aggregate_control) { 3975 .aggregate = memcg->vmstats->state, 3976 .local = memcg->vmstats->state_local, 3977 .pending = memcg->vmstats->state_pending, 3978 .ppending = parent ? parent->vmstats->state_pending : NULL, 3979 .cstat = statc->state, 3980 .cstat_prev = statc->state_prev, 3981 .size = MEMCG_VMSTAT_SIZE, 3982 }; 3983 mem_cgroup_stat_aggregate(&ac); 3984 3985 ac = (struct aggregate_control) { 3986 .aggregate = memcg->vmstats->events, 3987 .local = memcg->vmstats->events_local, 3988 .pending = memcg->vmstats->events_pending, 3989 .ppending = parent ? parent->vmstats->events_pending : NULL, 3990 .cstat = statc->events, 3991 .cstat_prev = statc->events_prev, 3992 .size = NR_MEMCG_EVENTS, 3993 }; 3994 mem_cgroup_stat_aggregate(&ac); 3995 3996 for_each_node_state(nid, N_MEMORY) { 3997 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3998 struct lruvec_stats *lstats = pn->lruvec_stats; 3999 struct lruvec_stats *plstats = NULL; 4000 struct lruvec_stats_percpu *lstatc; 4001 4002 if (parent) 4003 plstats = parent->nodeinfo[nid]->lruvec_stats; 4004 4005 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4006 4007 ac = (struct aggregate_control) { 4008 .aggregate = lstats->state, 4009 .local = lstats->state_local, 4010 .pending = lstats->state_pending, 4011 .ppending = plstats ? plstats->state_pending : NULL, 4012 .cstat = lstatc->state, 4013 .cstat_prev = lstatc->state_prev, 4014 .size = NR_MEMCG_NODE_STAT_ITEMS, 4015 }; 4016 mem_cgroup_stat_aggregate(&ac); 4017 4018 } 4019 WRITE_ONCE(statc->stats_updates, 0); 4020 /* We are in a per-cpu loop here, only do the atomic write once */ 4021 if (atomic64_read(&memcg->vmstats->stats_updates)) 4022 atomic64_set(&memcg->vmstats->stats_updates, 0); 4023 } 4024 4025 static void mem_cgroup_fork(struct task_struct *task) 4026 { 4027 /* 4028 * Set the update flag to cause task->objcg to be initialized lazily 4029 * on the first allocation. It can be done without any synchronization 4030 * because it's always performed on the current task, so does 4031 * current_objcg_update(). 4032 */ 4033 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4034 } 4035 4036 static void mem_cgroup_exit(struct task_struct *task) 4037 { 4038 struct obj_cgroup *objcg = task->objcg; 4039 4040 objcg = (struct obj_cgroup *) 4041 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4042 obj_cgroup_put(objcg); 4043 4044 /* 4045 * Some kernel allocations can happen after this point, 4046 * but let's ignore them. It can be done without any synchronization 4047 * because it's always performed on the current task, so does 4048 * current_objcg_update(). 4049 */ 4050 task->objcg = NULL; 4051 } 4052 4053 #ifdef CONFIG_LRU_GEN 4054 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4055 { 4056 struct task_struct *task; 4057 struct cgroup_subsys_state *css; 4058 4059 /* find the first leader if there is any */ 4060 cgroup_taskset_for_each_leader(task, css, tset) 4061 break; 4062 4063 if (!task) 4064 return; 4065 4066 task_lock(task); 4067 if (task->mm && READ_ONCE(task->mm->owner) == task) 4068 lru_gen_migrate_mm(task->mm); 4069 task_unlock(task); 4070 } 4071 #else 4072 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4073 #endif /* CONFIG_LRU_GEN */ 4074 4075 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4076 { 4077 struct task_struct *task; 4078 struct cgroup_subsys_state *css; 4079 4080 cgroup_taskset_for_each(task, css, tset) { 4081 /* atomically set the update bit */ 4082 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4083 } 4084 } 4085 4086 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4087 { 4088 mem_cgroup_lru_gen_attach(tset); 4089 mem_cgroup_kmem_attach(tset); 4090 } 4091 4092 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4093 { 4094 if (value == PAGE_COUNTER_MAX) 4095 seq_puts(m, "max\n"); 4096 else 4097 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4098 4099 return 0; 4100 } 4101 4102 static u64 memory_current_read(struct cgroup_subsys_state *css, 4103 struct cftype *cft) 4104 { 4105 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4106 4107 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4108 } 4109 4110 #define OFP_PEAK_UNSET (((-1UL))) 4111 4112 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4113 { 4114 struct cgroup_of_peak *ofp = of_peak(sf->private); 4115 u64 fd_peak = READ_ONCE(ofp->value), peak; 4116 4117 /* User wants global or local peak? */ 4118 if (fd_peak == OFP_PEAK_UNSET) 4119 peak = pc->watermark; 4120 else 4121 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4122 4123 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4124 return 0; 4125 } 4126 4127 static int memory_peak_show(struct seq_file *sf, void *v) 4128 { 4129 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4130 4131 return peak_show(sf, v, &memcg->memory); 4132 } 4133 4134 static int peak_open(struct kernfs_open_file *of) 4135 { 4136 struct cgroup_of_peak *ofp = of_peak(of); 4137 4138 ofp->value = OFP_PEAK_UNSET; 4139 return 0; 4140 } 4141 4142 static void peak_release(struct kernfs_open_file *of) 4143 { 4144 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4145 struct cgroup_of_peak *ofp = of_peak(of); 4146 4147 if (ofp->value == OFP_PEAK_UNSET) { 4148 /* fast path (no writes on this fd) */ 4149 return; 4150 } 4151 spin_lock(&memcg->peaks_lock); 4152 list_del(&ofp->list); 4153 spin_unlock(&memcg->peaks_lock); 4154 } 4155 4156 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4157 loff_t off, struct page_counter *pc, 4158 struct list_head *watchers) 4159 { 4160 unsigned long usage; 4161 struct cgroup_of_peak *peer_ctx; 4162 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4163 struct cgroup_of_peak *ofp = of_peak(of); 4164 4165 spin_lock(&memcg->peaks_lock); 4166 4167 usage = page_counter_read(pc); 4168 WRITE_ONCE(pc->local_watermark, usage); 4169 4170 list_for_each_entry(peer_ctx, watchers, list) 4171 if (usage > peer_ctx->value) 4172 WRITE_ONCE(peer_ctx->value, usage); 4173 4174 /* initial write, register watcher */ 4175 if (ofp->value == OFP_PEAK_UNSET) 4176 list_add(&ofp->list, watchers); 4177 4178 WRITE_ONCE(ofp->value, usage); 4179 spin_unlock(&memcg->peaks_lock); 4180 4181 return nbytes; 4182 } 4183 4184 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4185 size_t nbytes, loff_t off) 4186 { 4187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4188 4189 return peak_write(of, buf, nbytes, off, &memcg->memory, 4190 &memcg->memory_peaks); 4191 } 4192 4193 #undef OFP_PEAK_UNSET 4194 4195 static int memory_min_show(struct seq_file *m, void *v) 4196 { 4197 return seq_puts_memcg_tunable(m, 4198 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4199 } 4200 4201 static ssize_t memory_min_write(struct kernfs_open_file *of, 4202 char *buf, size_t nbytes, loff_t off) 4203 { 4204 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4205 unsigned long min; 4206 int err; 4207 4208 buf = strstrip(buf); 4209 err = page_counter_memparse(buf, "max", &min); 4210 if (err) 4211 return err; 4212 4213 page_counter_set_min(&memcg->memory, min); 4214 4215 return nbytes; 4216 } 4217 4218 static int memory_low_show(struct seq_file *m, void *v) 4219 { 4220 return seq_puts_memcg_tunable(m, 4221 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4222 } 4223 4224 static ssize_t memory_low_write(struct kernfs_open_file *of, 4225 char *buf, size_t nbytes, loff_t off) 4226 { 4227 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4228 unsigned long low; 4229 int err; 4230 4231 buf = strstrip(buf); 4232 err = page_counter_memparse(buf, "max", &low); 4233 if (err) 4234 return err; 4235 4236 page_counter_set_low(&memcg->memory, low); 4237 4238 return nbytes; 4239 } 4240 4241 static int memory_high_show(struct seq_file *m, void *v) 4242 { 4243 return seq_puts_memcg_tunable(m, 4244 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4245 } 4246 4247 static ssize_t memory_high_write(struct kernfs_open_file *of, 4248 char *buf, size_t nbytes, loff_t off) 4249 { 4250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4251 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4252 bool drained = false; 4253 unsigned long high; 4254 int err; 4255 4256 buf = strstrip(buf); 4257 err = page_counter_memparse(buf, "max", &high); 4258 if (err) 4259 return err; 4260 4261 page_counter_set_high(&memcg->memory, high); 4262 4263 if (of->file->f_flags & O_NONBLOCK) 4264 goto out; 4265 4266 for (;;) { 4267 unsigned long nr_pages = page_counter_read(&memcg->memory); 4268 unsigned long reclaimed; 4269 4270 if (nr_pages <= high) 4271 break; 4272 4273 if (signal_pending(current)) 4274 break; 4275 4276 if (!drained) { 4277 drain_all_stock(memcg); 4278 drained = true; 4279 continue; 4280 } 4281 4282 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4283 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4284 4285 if (!reclaimed && !nr_retries--) 4286 break; 4287 } 4288 out: 4289 memcg_wb_domain_size_changed(memcg); 4290 return nbytes; 4291 } 4292 4293 static int memory_max_show(struct seq_file *m, void *v) 4294 { 4295 return seq_puts_memcg_tunable(m, 4296 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4297 } 4298 4299 static ssize_t memory_max_write(struct kernfs_open_file *of, 4300 char *buf, size_t nbytes, loff_t off) 4301 { 4302 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4303 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4304 bool drained = false; 4305 unsigned long max; 4306 int err; 4307 4308 buf = strstrip(buf); 4309 err = page_counter_memparse(buf, "max", &max); 4310 if (err) 4311 return err; 4312 4313 xchg(&memcg->memory.max, max); 4314 4315 if (of->file->f_flags & O_NONBLOCK) 4316 goto out; 4317 4318 for (;;) { 4319 unsigned long nr_pages = page_counter_read(&memcg->memory); 4320 4321 if (nr_pages <= max) 4322 break; 4323 4324 if (signal_pending(current)) 4325 break; 4326 4327 if (!drained) { 4328 drain_all_stock(memcg); 4329 drained = true; 4330 continue; 4331 } 4332 4333 if (nr_reclaims) { 4334 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4335 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4336 nr_reclaims--; 4337 continue; 4338 } 4339 4340 memcg_memory_event(memcg, MEMCG_OOM); 4341 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4342 break; 4343 cond_resched(); 4344 } 4345 out: 4346 memcg_wb_domain_size_changed(memcg); 4347 return nbytes; 4348 } 4349 4350 /* 4351 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4352 * if any new events become available. 4353 */ 4354 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4355 { 4356 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4357 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4358 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4359 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4360 seq_printf(m, "oom_kill %lu\n", 4361 atomic_long_read(&events[MEMCG_OOM_KILL])); 4362 seq_printf(m, "oom_group_kill %lu\n", 4363 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4364 } 4365 4366 static int memory_events_show(struct seq_file *m, void *v) 4367 { 4368 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4369 4370 __memory_events_show(m, memcg->memory_events); 4371 return 0; 4372 } 4373 4374 static int memory_events_local_show(struct seq_file *m, void *v) 4375 { 4376 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4377 4378 __memory_events_show(m, memcg->memory_events_local); 4379 return 0; 4380 } 4381 4382 int memory_stat_show(struct seq_file *m, void *v) 4383 { 4384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4385 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4386 struct seq_buf s; 4387 4388 if (!buf) 4389 return -ENOMEM; 4390 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4391 memory_stat_format(memcg, &s); 4392 seq_puts(m, buf); 4393 kfree(buf); 4394 return 0; 4395 } 4396 4397 #ifdef CONFIG_NUMA 4398 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4399 int item) 4400 { 4401 return lruvec_page_state(lruvec, item) * 4402 memcg_page_state_output_unit(item); 4403 } 4404 4405 static int memory_numa_stat_show(struct seq_file *m, void *v) 4406 { 4407 int i; 4408 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4409 4410 mem_cgroup_flush_stats(memcg); 4411 4412 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4413 int nid; 4414 4415 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4416 continue; 4417 4418 seq_printf(m, "%s", memory_stats[i].name); 4419 for_each_node_state(nid, N_MEMORY) { 4420 u64 size; 4421 struct lruvec *lruvec; 4422 4423 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4424 size = lruvec_page_state_output(lruvec, 4425 memory_stats[i].idx); 4426 seq_printf(m, " N%d=%llu", nid, size); 4427 } 4428 seq_putc(m, '\n'); 4429 } 4430 4431 return 0; 4432 } 4433 #endif 4434 4435 static int memory_oom_group_show(struct seq_file *m, void *v) 4436 { 4437 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4438 4439 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4440 4441 return 0; 4442 } 4443 4444 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4445 char *buf, size_t nbytes, loff_t off) 4446 { 4447 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4448 int ret, oom_group; 4449 4450 buf = strstrip(buf); 4451 if (!buf) 4452 return -EINVAL; 4453 4454 ret = kstrtoint(buf, 0, &oom_group); 4455 if (ret) 4456 return ret; 4457 4458 if (oom_group != 0 && oom_group != 1) 4459 return -EINVAL; 4460 4461 WRITE_ONCE(memcg->oom_group, oom_group); 4462 4463 return nbytes; 4464 } 4465 4466 enum { 4467 MEMORY_RECLAIM_SWAPPINESS = 0, 4468 MEMORY_RECLAIM_SWAPPINESS_MAX, 4469 MEMORY_RECLAIM_NULL, 4470 }; 4471 4472 static const match_table_t tokens = { 4473 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4474 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 4475 { MEMORY_RECLAIM_NULL, NULL }, 4476 }; 4477 4478 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4479 size_t nbytes, loff_t off) 4480 { 4481 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4482 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4483 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4484 int swappiness = -1; 4485 unsigned int reclaim_options; 4486 char *old_buf, *start; 4487 substring_t args[MAX_OPT_ARGS]; 4488 4489 buf = strstrip(buf); 4490 4491 old_buf = buf; 4492 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4493 if (buf == old_buf) 4494 return -EINVAL; 4495 4496 buf = strstrip(buf); 4497 4498 while ((start = strsep(&buf, " ")) != NULL) { 4499 if (!strlen(start)) 4500 continue; 4501 switch (match_token(start, tokens, args)) { 4502 case MEMORY_RECLAIM_SWAPPINESS: 4503 if (match_int(&args[0], &swappiness)) 4504 return -EINVAL; 4505 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4506 return -EINVAL; 4507 break; 4508 case MEMORY_RECLAIM_SWAPPINESS_MAX: 4509 swappiness = SWAPPINESS_ANON_ONLY; 4510 break; 4511 default: 4512 return -EINVAL; 4513 } 4514 } 4515 4516 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4517 while (nr_reclaimed < nr_to_reclaim) { 4518 /* Will converge on zero, but reclaim enforces a minimum */ 4519 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4520 unsigned long reclaimed; 4521 4522 if (signal_pending(current)) 4523 return -EINTR; 4524 4525 /* 4526 * This is the final attempt, drain percpu lru caches in the 4527 * hope of introducing more evictable pages for 4528 * try_to_free_mem_cgroup_pages(). 4529 */ 4530 if (!nr_retries) 4531 lru_add_drain_all(); 4532 4533 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4534 batch_size, GFP_KERNEL, 4535 reclaim_options, 4536 swappiness == -1 ? NULL : &swappiness); 4537 4538 if (!reclaimed && !nr_retries--) 4539 return -EAGAIN; 4540 4541 nr_reclaimed += reclaimed; 4542 } 4543 4544 return nbytes; 4545 } 4546 4547 static struct cftype memory_files[] = { 4548 { 4549 .name = "current", 4550 .flags = CFTYPE_NOT_ON_ROOT, 4551 .read_u64 = memory_current_read, 4552 }, 4553 { 4554 .name = "peak", 4555 .flags = CFTYPE_NOT_ON_ROOT, 4556 .open = peak_open, 4557 .release = peak_release, 4558 .seq_show = memory_peak_show, 4559 .write = memory_peak_write, 4560 }, 4561 { 4562 .name = "min", 4563 .flags = CFTYPE_NOT_ON_ROOT, 4564 .seq_show = memory_min_show, 4565 .write = memory_min_write, 4566 }, 4567 { 4568 .name = "low", 4569 .flags = CFTYPE_NOT_ON_ROOT, 4570 .seq_show = memory_low_show, 4571 .write = memory_low_write, 4572 }, 4573 { 4574 .name = "high", 4575 .flags = CFTYPE_NOT_ON_ROOT, 4576 .seq_show = memory_high_show, 4577 .write = memory_high_write, 4578 }, 4579 { 4580 .name = "max", 4581 .flags = CFTYPE_NOT_ON_ROOT, 4582 .seq_show = memory_max_show, 4583 .write = memory_max_write, 4584 }, 4585 { 4586 .name = "events", 4587 .flags = CFTYPE_NOT_ON_ROOT, 4588 .file_offset = offsetof(struct mem_cgroup, events_file), 4589 .seq_show = memory_events_show, 4590 }, 4591 { 4592 .name = "events.local", 4593 .flags = CFTYPE_NOT_ON_ROOT, 4594 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4595 .seq_show = memory_events_local_show, 4596 }, 4597 { 4598 .name = "stat", 4599 .seq_show = memory_stat_show, 4600 }, 4601 #ifdef CONFIG_NUMA 4602 { 4603 .name = "numa_stat", 4604 .seq_show = memory_numa_stat_show, 4605 }, 4606 #endif 4607 { 4608 .name = "oom.group", 4609 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4610 .seq_show = memory_oom_group_show, 4611 .write = memory_oom_group_write, 4612 }, 4613 { 4614 .name = "reclaim", 4615 .flags = CFTYPE_NS_DELEGATABLE, 4616 .write = memory_reclaim, 4617 }, 4618 { } /* terminate */ 4619 }; 4620 4621 struct cgroup_subsys memory_cgrp_subsys = { 4622 .css_alloc = mem_cgroup_css_alloc, 4623 .css_online = mem_cgroup_css_online, 4624 .css_offline = mem_cgroup_css_offline, 4625 .css_released = mem_cgroup_css_released, 4626 .css_free = mem_cgroup_css_free, 4627 .css_reset = mem_cgroup_css_reset, 4628 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4629 .attach = mem_cgroup_attach, 4630 .fork = mem_cgroup_fork, 4631 .exit = mem_cgroup_exit, 4632 .dfl_cftypes = memory_files, 4633 #ifdef CONFIG_MEMCG_V1 4634 .legacy_cftypes = mem_cgroup_legacy_files, 4635 #endif 4636 .early_init = 0, 4637 }; 4638 4639 /** 4640 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4641 * @root: the top ancestor of the sub-tree being checked 4642 * @memcg: the memory cgroup to check 4643 * 4644 * WARNING: This function is not stateless! It can only be used as part 4645 * of a top-down tree iteration, not for isolated queries. 4646 */ 4647 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4648 struct mem_cgroup *memcg) 4649 { 4650 bool recursive_protection = 4651 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4652 4653 if (mem_cgroup_disabled()) 4654 return; 4655 4656 if (!root) 4657 root = root_mem_cgroup; 4658 4659 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4660 } 4661 4662 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4663 gfp_t gfp) 4664 { 4665 int ret; 4666 4667 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4668 if (ret) 4669 goto out; 4670 4671 css_get(&memcg->css); 4672 commit_charge(folio, memcg); 4673 memcg1_commit_charge(folio, memcg); 4674 out: 4675 return ret; 4676 } 4677 4678 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4679 { 4680 struct mem_cgroup *memcg; 4681 int ret; 4682 4683 memcg = get_mem_cgroup_from_mm(mm); 4684 ret = charge_memcg(folio, memcg, gfp); 4685 css_put(&memcg->css); 4686 4687 return ret; 4688 } 4689 4690 /** 4691 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4692 * @folio: folio being charged 4693 * @gfp: reclaim mode 4694 * 4695 * This function is called when allocating a huge page folio, after the page has 4696 * already been obtained and charged to the appropriate hugetlb cgroup 4697 * controller (if it is enabled). 4698 * 4699 * Returns ENOMEM if the memcg is already full. 4700 * Returns 0 if either the charge was successful, or if we skip the charging. 4701 */ 4702 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4703 { 4704 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4705 int ret = 0; 4706 4707 /* 4708 * Even memcg does not account for hugetlb, we still want to update 4709 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4710 * charging the memcg. 4711 */ 4712 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4713 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4714 goto out; 4715 4716 if (charge_memcg(folio, memcg, gfp)) 4717 ret = -ENOMEM; 4718 4719 out: 4720 mem_cgroup_put(memcg); 4721 return ret; 4722 } 4723 4724 /** 4725 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4726 * @folio: folio to charge. 4727 * @mm: mm context of the victim 4728 * @gfp: reclaim mode 4729 * @entry: swap entry for which the folio is allocated 4730 * 4731 * This function charges a folio allocated for swapin. Please call this before 4732 * adding the folio to the swapcache. 4733 * 4734 * Returns 0 on success. Otherwise, an error code is returned. 4735 */ 4736 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4737 gfp_t gfp, swp_entry_t entry) 4738 { 4739 struct mem_cgroup *memcg; 4740 unsigned short id; 4741 int ret; 4742 4743 if (mem_cgroup_disabled()) 4744 return 0; 4745 4746 id = lookup_swap_cgroup_id(entry); 4747 rcu_read_lock(); 4748 memcg = mem_cgroup_from_id(id); 4749 if (!memcg || !css_tryget_online(&memcg->css)) 4750 memcg = get_mem_cgroup_from_mm(mm); 4751 rcu_read_unlock(); 4752 4753 ret = charge_memcg(folio, memcg, gfp); 4754 4755 css_put(&memcg->css); 4756 return ret; 4757 } 4758 4759 struct uncharge_gather { 4760 struct mem_cgroup *memcg; 4761 unsigned long nr_memory; 4762 unsigned long pgpgout; 4763 unsigned long nr_kmem; 4764 int nid; 4765 }; 4766 4767 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4768 { 4769 memset(ug, 0, sizeof(*ug)); 4770 } 4771 4772 static void uncharge_batch(const struct uncharge_gather *ug) 4773 { 4774 if (ug->nr_memory) { 4775 memcg_uncharge(ug->memcg, ug->nr_memory); 4776 if (ug->nr_kmem) { 4777 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4778 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4779 } 4780 memcg1_oom_recover(ug->memcg); 4781 } 4782 4783 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4784 4785 /* drop reference from uncharge_folio */ 4786 css_put(&ug->memcg->css); 4787 } 4788 4789 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4790 { 4791 long nr_pages; 4792 struct mem_cgroup *memcg; 4793 struct obj_cgroup *objcg; 4794 4795 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4796 4797 /* 4798 * Nobody should be changing or seriously looking at 4799 * folio memcg or objcg at this point, we have fully 4800 * exclusive access to the folio. 4801 */ 4802 if (folio_memcg_kmem(folio)) { 4803 objcg = __folio_objcg(folio); 4804 /* 4805 * This get matches the put at the end of the function and 4806 * kmem pages do not hold memcg references anymore. 4807 */ 4808 memcg = get_mem_cgroup_from_objcg(objcg); 4809 } else { 4810 memcg = __folio_memcg(folio); 4811 } 4812 4813 if (!memcg) 4814 return; 4815 4816 if (ug->memcg != memcg) { 4817 if (ug->memcg) { 4818 uncharge_batch(ug); 4819 uncharge_gather_clear(ug); 4820 } 4821 ug->memcg = memcg; 4822 ug->nid = folio_nid(folio); 4823 4824 /* pairs with css_put in uncharge_batch */ 4825 css_get(&memcg->css); 4826 } 4827 4828 nr_pages = folio_nr_pages(folio); 4829 4830 if (folio_memcg_kmem(folio)) { 4831 ug->nr_memory += nr_pages; 4832 ug->nr_kmem += nr_pages; 4833 4834 folio->memcg_data = 0; 4835 obj_cgroup_put(objcg); 4836 } else { 4837 /* LRU pages aren't accounted at the root level */ 4838 if (!mem_cgroup_is_root(memcg)) 4839 ug->nr_memory += nr_pages; 4840 ug->pgpgout++; 4841 4842 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4843 folio->memcg_data = 0; 4844 } 4845 4846 css_put(&memcg->css); 4847 } 4848 4849 void __mem_cgroup_uncharge(struct folio *folio) 4850 { 4851 struct uncharge_gather ug; 4852 4853 /* Don't touch folio->lru of any random page, pre-check: */ 4854 if (!folio_memcg_charged(folio)) 4855 return; 4856 4857 uncharge_gather_clear(&ug); 4858 uncharge_folio(folio, &ug); 4859 uncharge_batch(&ug); 4860 } 4861 4862 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4863 { 4864 struct uncharge_gather ug; 4865 unsigned int i; 4866 4867 uncharge_gather_clear(&ug); 4868 for (i = 0; i < folios->nr; i++) 4869 uncharge_folio(folios->folios[i], &ug); 4870 if (ug.memcg) 4871 uncharge_batch(&ug); 4872 } 4873 4874 /** 4875 * mem_cgroup_replace_folio - Charge a folio's replacement. 4876 * @old: Currently circulating folio. 4877 * @new: Replacement folio. 4878 * 4879 * Charge @new as a replacement folio for @old. @old will 4880 * be uncharged upon free. 4881 * 4882 * Both folios must be locked, @new->mapping must be set up. 4883 */ 4884 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4885 { 4886 struct mem_cgroup *memcg; 4887 long nr_pages = folio_nr_pages(new); 4888 4889 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4890 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4891 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4892 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4893 4894 if (mem_cgroup_disabled()) 4895 return; 4896 4897 /* Page cache replacement: new folio already charged? */ 4898 if (folio_memcg_charged(new)) 4899 return; 4900 4901 memcg = folio_memcg(old); 4902 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4903 if (!memcg) 4904 return; 4905 4906 /* Force-charge the new page. The old one will be freed soon */ 4907 if (!mem_cgroup_is_root(memcg)) { 4908 page_counter_charge(&memcg->memory, nr_pages); 4909 if (do_memsw_account()) 4910 page_counter_charge(&memcg->memsw, nr_pages); 4911 } 4912 4913 css_get(&memcg->css); 4914 commit_charge(new, memcg); 4915 memcg1_commit_charge(new, memcg); 4916 } 4917 4918 /** 4919 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4920 * @old: Currently circulating folio. 4921 * @new: Replacement folio. 4922 * 4923 * Transfer the memcg data from the old folio to the new folio for migration. 4924 * The old folio's data info will be cleared. Note that the memory counters 4925 * will remain unchanged throughout the process. 4926 * 4927 * Both folios must be locked, @new->mapping must be set up. 4928 */ 4929 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4930 { 4931 struct mem_cgroup *memcg; 4932 4933 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4934 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4935 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4936 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4937 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4938 4939 if (mem_cgroup_disabled()) 4940 return; 4941 4942 memcg = folio_memcg(old); 4943 /* 4944 * Note that it is normal to see !memcg for a hugetlb folio. 4945 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4946 * was not selected. 4947 */ 4948 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4949 if (!memcg) 4950 return; 4951 4952 /* Transfer the charge and the css ref */ 4953 commit_charge(new, memcg); 4954 4955 /* Warning should never happen, so don't worry about refcount non-0 */ 4956 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4957 old->memcg_data = 0; 4958 } 4959 4960 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4961 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4962 4963 void mem_cgroup_sk_alloc(struct sock *sk) 4964 { 4965 struct mem_cgroup *memcg; 4966 4967 if (!mem_cgroup_sockets_enabled) 4968 return; 4969 4970 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4971 if (!in_task()) 4972 return; 4973 4974 rcu_read_lock(); 4975 memcg = mem_cgroup_from_task(current); 4976 if (mem_cgroup_is_root(memcg)) 4977 goto out; 4978 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4979 goto out; 4980 if (css_tryget(&memcg->css)) 4981 sk->sk_memcg = memcg; 4982 out: 4983 rcu_read_unlock(); 4984 } 4985 4986 void mem_cgroup_sk_free(struct sock *sk) 4987 { 4988 if (sk->sk_memcg) 4989 css_put(&sk->sk_memcg->css); 4990 } 4991 4992 /** 4993 * mem_cgroup_charge_skmem - charge socket memory 4994 * @memcg: memcg to charge 4995 * @nr_pages: number of pages to charge 4996 * @gfp_mask: reclaim mode 4997 * 4998 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4999 * @memcg's configured limit, %false if it doesn't. 5000 */ 5001 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 5002 gfp_t gfp_mask) 5003 { 5004 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5005 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5006 5007 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5008 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5009 return true; 5010 } 5011 5012 return false; 5013 } 5014 5015 /** 5016 * mem_cgroup_uncharge_skmem - uncharge socket memory 5017 * @memcg: memcg to uncharge 5018 * @nr_pages: number of pages to uncharge 5019 */ 5020 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5021 { 5022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5023 memcg1_uncharge_skmem(memcg, nr_pages); 5024 return; 5025 } 5026 5027 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5028 5029 refill_stock(memcg, nr_pages); 5030 } 5031 5032 static int __init cgroup_memory(char *s) 5033 { 5034 char *token; 5035 5036 while ((token = strsep(&s, ",")) != NULL) { 5037 if (!*token) 5038 continue; 5039 if (!strcmp(token, "nosocket")) 5040 cgroup_memory_nosocket = true; 5041 if (!strcmp(token, "nokmem")) 5042 cgroup_memory_nokmem = true; 5043 if (!strcmp(token, "nobpf")) 5044 cgroup_memory_nobpf = true; 5045 } 5046 return 1; 5047 } 5048 __setup("cgroup.memory=", cgroup_memory); 5049 5050 /* 5051 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5052 * 5053 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5054 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5055 * basically everything that doesn't depend on a specific mem_cgroup structure 5056 * should be initialized from here. 5057 */ 5058 int __init mem_cgroup_init(void) 5059 { 5060 unsigned int memcg_size; 5061 int cpu; 5062 5063 /* 5064 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5065 * used for per-memcg-per-cpu caching of per-node statistics. In order 5066 * to work fine, we should make sure that the overfill threshold can't 5067 * exceed S32_MAX / PAGE_SIZE. 5068 */ 5069 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5070 5071 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5072 memcg_hotplug_cpu_dead); 5073 5074 for_each_possible_cpu(cpu) { 5075 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5076 drain_local_memcg_stock); 5077 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, 5078 drain_local_obj_stock); 5079 } 5080 5081 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5082 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5083 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5084 5085 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5086 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5087 5088 return 0; 5089 } 5090 5091 #ifdef CONFIG_SWAP 5092 /** 5093 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5094 * @folio: folio being added to swap 5095 * @entry: swap entry to charge 5096 * 5097 * Try to charge @folio's memcg for the swap space at @entry. 5098 * 5099 * Returns 0 on success, -ENOMEM on failure. 5100 */ 5101 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5102 { 5103 unsigned int nr_pages = folio_nr_pages(folio); 5104 struct page_counter *counter; 5105 struct mem_cgroup *memcg; 5106 5107 if (do_memsw_account()) 5108 return 0; 5109 5110 memcg = folio_memcg(folio); 5111 5112 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5113 if (!memcg) 5114 return 0; 5115 5116 if (!entry.val) { 5117 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5118 return 0; 5119 } 5120 5121 memcg = mem_cgroup_id_get_online(memcg); 5122 5123 if (!mem_cgroup_is_root(memcg) && 5124 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5125 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5126 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5127 mem_cgroup_id_put(memcg); 5128 return -ENOMEM; 5129 } 5130 5131 /* Get references for the tail pages, too */ 5132 if (nr_pages > 1) 5133 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5134 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5135 5136 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5137 5138 return 0; 5139 } 5140 5141 /** 5142 * __mem_cgroup_uncharge_swap - uncharge swap space 5143 * @entry: swap entry to uncharge 5144 * @nr_pages: the amount of swap space to uncharge 5145 */ 5146 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5147 { 5148 struct mem_cgroup *memcg; 5149 unsigned short id; 5150 5151 id = swap_cgroup_clear(entry, nr_pages); 5152 rcu_read_lock(); 5153 memcg = mem_cgroup_from_id(id); 5154 if (memcg) { 5155 if (!mem_cgroup_is_root(memcg)) { 5156 if (do_memsw_account()) 5157 page_counter_uncharge(&memcg->memsw, nr_pages); 5158 else 5159 page_counter_uncharge(&memcg->swap, nr_pages); 5160 } 5161 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5162 mem_cgroup_id_put_many(memcg, nr_pages); 5163 } 5164 rcu_read_unlock(); 5165 } 5166 5167 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5168 { 5169 long nr_swap_pages = get_nr_swap_pages(); 5170 5171 if (mem_cgroup_disabled() || do_memsw_account()) 5172 return nr_swap_pages; 5173 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5174 nr_swap_pages = min_t(long, nr_swap_pages, 5175 READ_ONCE(memcg->swap.max) - 5176 page_counter_read(&memcg->swap)); 5177 return nr_swap_pages; 5178 } 5179 5180 bool mem_cgroup_swap_full(struct folio *folio) 5181 { 5182 struct mem_cgroup *memcg; 5183 5184 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5185 5186 if (vm_swap_full()) 5187 return true; 5188 if (do_memsw_account()) 5189 return false; 5190 5191 memcg = folio_memcg(folio); 5192 if (!memcg) 5193 return false; 5194 5195 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5196 unsigned long usage = page_counter_read(&memcg->swap); 5197 5198 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5199 usage * 2 >= READ_ONCE(memcg->swap.max)) 5200 return true; 5201 } 5202 5203 return false; 5204 } 5205 5206 static int __init setup_swap_account(char *s) 5207 { 5208 bool res; 5209 5210 if (!kstrtobool(s, &res) && !res) 5211 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5212 "in favor of configuring swap control via cgroupfs. " 5213 "Please report your usecase to linux-mm@kvack.org if you " 5214 "depend on this functionality.\n"); 5215 return 1; 5216 } 5217 __setup("swapaccount=", setup_swap_account); 5218 5219 static u64 swap_current_read(struct cgroup_subsys_state *css, 5220 struct cftype *cft) 5221 { 5222 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5223 5224 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5225 } 5226 5227 static int swap_peak_show(struct seq_file *sf, void *v) 5228 { 5229 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5230 5231 return peak_show(sf, v, &memcg->swap); 5232 } 5233 5234 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5235 size_t nbytes, loff_t off) 5236 { 5237 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5238 5239 return peak_write(of, buf, nbytes, off, &memcg->swap, 5240 &memcg->swap_peaks); 5241 } 5242 5243 static int swap_high_show(struct seq_file *m, void *v) 5244 { 5245 return seq_puts_memcg_tunable(m, 5246 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5247 } 5248 5249 static ssize_t swap_high_write(struct kernfs_open_file *of, 5250 char *buf, size_t nbytes, loff_t off) 5251 { 5252 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5253 unsigned long high; 5254 int err; 5255 5256 buf = strstrip(buf); 5257 err = page_counter_memparse(buf, "max", &high); 5258 if (err) 5259 return err; 5260 5261 page_counter_set_high(&memcg->swap, high); 5262 5263 return nbytes; 5264 } 5265 5266 static int swap_max_show(struct seq_file *m, void *v) 5267 { 5268 return seq_puts_memcg_tunable(m, 5269 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5270 } 5271 5272 static ssize_t swap_max_write(struct kernfs_open_file *of, 5273 char *buf, size_t nbytes, loff_t off) 5274 { 5275 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5276 unsigned long max; 5277 int err; 5278 5279 buf = strstrip(buf); 5280 err = page_counter_memparse(buf, "max", &max); 5281 if (err) 5282 return err; 5283 5284 xchg(&memcg->swap.max, max); 5285 5286 return nbytes; 5287 } 5288 5289 static int swap_events_show(struct seq_file *m, void *v) 5290 { 5291 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5292 5293 seq_printf(m, "high %lu\n", 5294 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5295 seq_printf(m, "max %lu\n", 5296 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5297 seq_printf(m, "fail %lu\n", 5298 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5299 5300 return 0; 5301 } 5302 5303 static struct cftype swap_files[] = { 5304 { 5305 .name = "swap.current", 5306 .flags = CFTYPE_NOT_ON_ROOT, 5307 .read_u64 = swap_current_read, 5308 }, 5309 { 5310 .name = "swap.high", 5311 .flags = CFTYPE_NOT_ON_ROOT, 5312 .seq_show = swap_high_show, 5313 .write = swap_high_write, 5314 }, 5315 { 5316 .name = "swap.max", 5317 .flags = CFTYPE_NOT_ON_ROOT, 5318 .seq_show = swap_max_show, 5319 .write = swap_max_write, 5320 }, 5321 { 5322 .name = "swap.peak", 5323 .flags = CFTYPE_NOT_ON_ROOT, 5324 .open = peak_open, 5325 .release = peak_release, 5326 .seq_show = swap_peak_show, 5327 .write = swap_peak_write, 5328 }, 5329 { 5330 .name = "swap.events", 5331 .flags = CFTYPE_NOT_ON_ROOT, 5332 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5333 .seq_show = swap_events_show, 5334 }, 5335 { } /* terminate */ 5336 }; 5337 5338 #ifdef CONFIG_ZSWAP 5339 /** 5340 * obj_cgroup_may_zswap - check if this cgroup can zswap 5341 * @objcg: the object cgroup 5342 * 5343 * Check if the hierarchical zswap limit has been reached. 5344 * 5345 * This doesn't check for specific headroom, and it is not atomic 5346 * either. But with zswap, the size of the allocation is only known 5347 * once compression has occurred, and this optimistic pre-check avoids 5348 * spending cycles on compression when there is already no room left 5349 * or zswap is disabled altogether somewhere in the hierarchy. 5350 */ 5351 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5352 { 5353 struct mem_cgroup *memcg, *original_memcg; 5354 bool ret = true; 5355 5356 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5357 return true; 5358 5359 original_memcg = get_mem_cgroup_from_objcg(objcg); 5360 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5361 memcg = parent_mem_cgroup(memcg)) { 5362 unsigned long max = READ_ONCE(memcg->zswap_max); 5363 unsigned long pages; 5364 5365 if (max == PAGE_COUNTER_MAX) 5366 continue; 5367 if (max == 0) { 5368 ret = false; 5369 break; 5370 } 5371 5372 /* Force flush to get accurate stats for charging */ 5373 __mem_cgroup_flush_stats(memcg, true); 5374 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5375 if (pages < max) 5376 continue; 5377 ret = false; 5378 break; 5379 } 5380 mem_cgroup_put(original_memcg); 5381 return ret; 5382 } 5383 5384 /** 5385 * obj_cgroup_charge_zswap - charge compression backend memory 5386 * @objcg: the object cgroup 5387 * @size: size of compressed object 5388 * 5389 * This forces the charge after obj_cgroup_may_zswap() allowed 5390 * compression and storage in zwap for this cgroup to go ahead. 5391 */ 5392 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5393 { 5394 struct mem_cgroup *memcg; 5395 5396 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5397 return; 5398 5399 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5400 5401 /* PF_MEMALLOC context, charging must succeed */ 5402 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5403 VM_WARN_ON_ONCE(1); 5404 5405 rcu_read_lock(); 5406 memcg = obj_cgroup_memcg(objcg); 5407 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5408 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5409 rcu_read_unlock(); 5410 } 5411 5412 /** 5413 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5414 * @objcg: the object cgroup 5415 * @size: size of compressed object 5416 * 5417 * Uncharges zswap memory on page in. 5418 */ 5419 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5420 { 5421 struct mem_cgroup *memcg; 5422 5423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5424 return; 5425 5426 obj_cgroup_uncharge(objcg, size); 5427 5428 rcu_read_lock(); 5429 memcg = obj_cgroup_memcg(objcg); 5430 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5431 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5432 rcu_read_unlock(); 5433 } 5434 5435 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5436 { 5437 /* if zswap is disabled, do not block pages going to the swapping device */ 5438 if (!zswap_is_enabled()) 5439 return true; 5440 5441 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5442 if (!READ_ONCE(memcg->zswap_writeback)) 5443 return false; 5444 5445 return true; 5446 } 5447 5448 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5449 struct cftype *cft) 5450 { 5451 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5452 5453 mem_cgroup_flush_stats(memcg); 5454 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5455 } 5456 5457 static int zswap_max_show(struct seq_file *m, void *v) 5458 { 5459 return seq_puts_memcg_tunable(m, 5460 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5461 } 5462 5463 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5464 char *buf, size_t nbytes, loff_t off) 5465 { 5466 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5467 unsigned long max; 5468 int err; 5469 5470 buf = strstrip(buf); 5471 err = page_counter_memparse(buf, "max", &max); 5472 if (err) 5473 return err; 5474 5475 xchg(&memcg->zswap_max, max); 5476 5477 return nbytes; 5478 } 5479 5480 static int zswap_writeback_show(struct seq_file *m, void *v) 5481 { 5482 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5483 5484 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5485 return 0; 5486 } 5487 5488 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5489 char *buf, size_t nbytes, loff_t off) 5490 { 5491 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5492 int zswap_writeback; 5493 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5494 5495 if (parse_ret) 5496 return parse_ret; 5497 5498 if (zswap_writeback != 0 && zswap_writeback != 1) 5499 return -EINVAL; 5500 5501 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5502 return nbytes; 5503 } 5504 5505 static struct cftype zswap_files[] = { 5506 { 5507 .name = "zswap.current", 5508 .flags = CFTYPE_NOT_ON_ROOT, 5509 .read_u64 = zswap_current_read, 5510 }, 5511 { 5512 .name = "zswap.max", 5513 .flags = CFTYPE_NOT_ON_ROOT, 5514 .seq_show = zswap_max_show, 5515 .write = zswap_max_write, 5516 }, 5517 { 5518 .name = "zswap.writeback", 5519 .seq_show = zswap_writeback_show, 5520 .write = zswap_writeback_write, 5521 }, 5522 { } /* terminate */ 5523 }; 5524 #endif /* CONFIG_ZSWAP */ 5525 5526 static int __init mem_cgroup_swap_init(void) 5527 { 5528 if (mem_cgroup_disabled()) 5529 return 0; 5530 5531 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5532 #ifdef CONFIG_MEMCG_V1 5533 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5534 #endif 5535 #ifdef CONFIG_ZSWAP 5536 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5537 #endif 5538 return 0; 5539 } 5540 subsys_initcall(mem_cgroup_swap_init); 5541 5542 #endif /* CONFIG_SWAP */ 5543 5544 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5545 { 5546 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5547 } 5548