1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include "internal.h" 58 #include <net/sock.h> 59 #include <net/ip.h> 60 #include <net/tcp_memcontrol.h> 61 62 #include <asm/uaccess.h> 63 64 #include <trace/events/vmscan.h> 65 66 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 67 EXPORT_SYMBOL(mem_cgroup_subsys); 68 69 #define MEM_CGROUP_RECLAIM_RETRIES 5 70 static struct mem_cgroup *root_mem_cgroup __read_mostly; 71 72 #ifdef CONFIG_MEMCG_SWAP 73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 74 int do_swap_account __read_mostly; 75 76 /* for remember boot option*/ 77 #ifdef CONFIG_MEMCG_SWAP_ENABLED 78 static int really_do_swap_account __initdata = 1; 79 #else 80 static int really_do_swap_account __initdata = 0; 81 #endif 82 83 #else 84 #define do_swap_account 0 85 #endif 86 87 88 /* 89 * Statistics for memory cgroup. 90 */ 91 enum mem_cgroup_stat_index { 92 /* 93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 94 */ 95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 100 MEM_CGROUP_STAT_NSTATS, 101 }; 102 103 static const char * const mem_cgroup_stat_names[] = { 104 "cache", 105 "rss", 106 "rss_huge", 107 "mapped_file", 108 "swap", 109 }; 110 111 enum mem_cgroup_events_index { 112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 116 MEM_CGROUP_EVENTS_NSTATS, 117 }; 118 119 static const char * const mem_cgroup_events_names[] = { 120 "pgpgin", 121 "pgpgout", 122 "pgfault", 123 "pgmajfault", 124 }; 125 126 static const char * const mem_cgroup_lru_names[] = { 127 "inactive_anon", 128 "active_anon", 129 "inactive_file", 130 "active_file", 131 "unevictable", 132 }; 133 134 /* 135 * Per memcg event counter is incremented at every pagein/pageout. With THP, 136 * it will be incremated by the number of pages. This counter is used for 137 * for trigger some periodic events. This is straightforward and better 138 * than using jiffies etc. to handle periodic memcg event. 139 */ 140 enum mem_cgroup_events_target { 141 MEM_CGROUP_TARGET_THRESH, 142 MEM_CGROUP_TARGET_SOFTLIMIT, 143 MEM_CGROUP_TARGET_NUMAINFO, 144 MEM_CGROUP_NTARGETS, 145 }; 146 #define THRESHOLDS_EVENTS_TARGET 128 147 #define SOFTLIMIT_EVENTS_TARGET 1024 148 #define NUMAINFO_EVENTS_TARGET 1024 149 150 struct mem_cgroup_stat_cpu { 151 long count[MEM_CGROUP_STAT_NSTATS]; 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 153 unsigned long nr_page_events; 154 unsigned long targets[MEM_CGROUP_NTARGETS]; 155 }; 156 157 struct mem_cgroup_reclaim_iter { 158 /* 159 * last scanned hierarchy member. Valid only if last_dead_count 160 * matches memcg->dead_count of the hierarchy root group. 161 */ 162 struct mem_cgroup *last_visited; 163 unsigned long last_dead_count; 164 165 /* scan generation, increased every round-trip */ 166 unsigned int generation; 167 }; 168 169 /* 170 * per-zone information in memory controller. 171 */ 172 struct mem_cgroup_per_zone { 173 struct lruvec lruvec; 174 unsigned long lru_size[NR_LRU_LISTS]; 175 176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 177 178 struct rb_node tree_node; /* RB tree node */ 179 unsigned long long usage_in_excess;/* Set to the value by which */ 180 /* the soft limit is exceeded*/ 181 bool on_tree; 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 183 /* use container_of */ 184 }; 185 186 struct mem_cgroup_per_node { 187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 188 }; 189 190 /* 191 * Cgroups above their limits are maintained in a RB-Tree, independent of 192 * their hierarchy representation 193 */ 194 195 struct mem_cgroup_tree_per_zone { 196 struct rb_root rb_root; 197 spinlock_t lock; 198 }; 199 200 struct mem_cgroup_tree_per_node { 201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 202 }; 203 204 struct mem_cgroup_tree { 205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 206 }; 207 208 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 209 210 struct mem_cgroup_threshold { 211 struct eventfd_ctx *eventfd; 212 u64 threshold; 213 }; 214 215 /* For threshold */ 216 struct mem_cgroup_threshold_ary { 217 /* An array index points to threshold just below or equal to usage. */ 218 int current_threshold; 219 /* Size of entries[] */ 220 unsigned int size; 221 /* Array of thresholds */ 222 struct mem_cgroup_threshold entries[0]; 223 }; 224 225 struct mem_cgroup_thresholds { 226 /* Primary thresholds array */ 227 struct mem_cgroup_threshold_ary *primary; 228 /* 229 * Spare threshold array. 230 * This is needed to make mem_cgroup_unregister_event() "never fail". 231 * It must be able to store at least primary->size - 1 entries. 232 */ 233 struct mem_cgroup_threshold_ary *spare; 234 }; 235 236 /* for OOM */ 237 struct mem_cgroup_eventfd_list { 238 struct list_head list; 239 struct eventfd_ctx *eventfd; 240 }; 241 242 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 244 245 /* 246 * The memory controller data structure. The memory controller controls both 247 * page cache and RSS per cgroup. We would eventually like to provide 248 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 249 * to help the administrator determine what knobs to tune. 250 * 251 * TODO: Add a water mark for the memory controller. Reclaim will begin when 252 * we hit the water mark. May be even add a low water mark, such that 253 * no reclaim occurs from a cgroup at it's low water mark, this is 254 * a feature that will be implemented much later in the future. 255 */ 256 struct mem_cgroup { 257 struct cgroup_subsys_state css; 258 /* 259 * the counter to account for memory usage 260 */ 261 struct res_counter res; 262 263 /* vmpressure notifications */ 264 struct vmpressure vmpressure; 265 266 /* 267 * the counter to account for mem+swap usage. 268 */ 269 struct res_counter memsw; 270 271 /* 272 * the counter to account for kernel memory usage. 273 */ 274 struct res_counter kmem; 275 /* 276 * Should the accounting and control be hierarchical, per subtree? 277 */ 278 bool use_hierarchy; 279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 280 281 bool oom_lock; 282 atomic_t under_oom; 283 284 int swappiness; 285 /* OOM-Killer disable */ 286 int oom_kill_disable; 287 288 /* set when res.limit == memsw.limit */ 289 bool memsw_is_minimum; 290 291 /* protect arrays of thresholds */ 292 struct mutex thresholds_lock; 293 294 /* thresholds for memory usage. RCU-protected */ 295 struct mem_cgroup_thresholds thresholds; 296 297 /* thresholds for mem+swap usage. RCU-protected */ 298 struct mem_cgroup_thresholds memsw_thresholds; 299 300 /* For oom notifier event fd */ 301 struct list_head oom_notify; 302 303 /* 304 * Should we move charges of a task when a task is moved into this 305 * mem_cgroup ? And what type of charges should we move ? 306 */ 307 unsigned long move_charge_at_immigrate; 308 /* 309 * set > 0 if pages under this cgroup are moving to other cgroup. 310 */ 311 atomic_t moving_account; 312 /* taken only while moving_account > 0 */ 313 spinlock_t move_lock; 314 /* 315 * percpu counter. 316 */ 317 struct mem_cgroup_stat_cpu __percpu *stat; 318 /* 319 * used when a cpu is offlined or other synchronizations 320 * See mem_cgroup_read_stat(). 321 */ 322 struct mem_cgroup_stat_cpu nocpu_base; 323 spinlock_t pcp_counter_lock; 324 325 atomic_t dead_count; 326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 327 struct tcp_memcontrol tcp_mem; 328 #endif 329 #if defined(CONFIG_MEMCG_KMEM) 330 /* analogous to slab_common's slab_caches list. per-memcg */ 331 struct list_head memcg_slab_caches; 332 /* Not a spinlock, we can take a lot of time walking the list */ 333 struct mutex slab_caches_mutex; 334 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 335 int kmemcg_id; 336 #endif 337 338 int last_scanned_node; 339 #if MAX_NUMNODES > 1 340 nodemask_t scan_nodes; 341 atomic_t numainfo_events; 342 atomic_t numainfo_updating; 343 #endif 344 345 struct mem_cgroup_per_node *nodeinfo[0]; 346 /* WARNING: nodeinfo must be the last member here */ 347 }; 348 349 static size_t memcg_size(void) 350 { 351 return sizeof(struct mem_cgroup) + 352 nr_node_ids * sizeof(struct mem_cgroup_per_node); 353 } 354 355 /* internal only representation about the status of kmem accounting. */ 356 enum { 357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 360 }; 361 362 /* We account when limit is on, but only after call sites are patched */ 363 #define KMEM_ACCOUNTED_MASK \ 364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 365 366 #ifdef CONFIG_MEMCG_KMEM 367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 368 { 369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 370 } 371 372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 373 { 374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 375 } 376 377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 378 { 379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 380 } 381 382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 383 { 384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 385 } 386 387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 388 { 389 /* 390 * Our caller must use css_get() first, because memcg_uncharge_kmem() 391 * will call css_put() if it sees the memcg is dead. 392 */ 393 smp_wmb(); 394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 396 } 397 398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 399 { 400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 401 &memcg->kmem_account_flags); 402 } 403 #endif 404 405 /* Stuffs for move charges at task migration. */ 406 /* 407 * Types of charges to be moved. "move_charge_at_immitgrate" and 408 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 409 */ 410 enum move_type { 411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 413 NR_MOVE_TYPE, 414 }; 415 416 /* "mc" and its members are protected by cgroup_mutex */ 417 static struct move_charge_struct { 418 spinlock_t lock; /* for from, to */ 419 struct mem_cgroup *from; 420 struct mem_cgroup *to; 421 unsigned long immigrate_flags; 422 unsigned long precharge; 423 unsigned long moved_charge; 424 unsigned long moved_swap; 425 struct task_struct *moving_task; /* a task moving charges */ 426 wait_queue_head_t waitq; /* a waitq for other context */ 427 } mc = { 428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 430 }; 431 432 static bool move_anon(void) 433 { 434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 435 } 436 437 static bool move_file(void) 438 { 439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 440 } 441 442 /* 443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 444 * limit reclaim to prevent infinite loops, if they ever occur. 445 */ 446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 448 449 enum charge_type { 450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 451 MEM_CGROUP_CHARGE_TYPE_ANON, 452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 454 NR_CHARGE_TYPE, 455 }; 456 457 /* for encoding cft->private value on file */ 458 enum res_type { 459 _MEM, 460 _MEMSWAP, 461 _OOM_TYPE, 462 _KMEM, 463 }; 464 465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 467 #define MEMFILE_ATTR(val) ((val) & 0xffff) 468 /* Used for OOM nofiier */ 469 #define OOM_CONTROL (0) 470 471 /* 472 * Reclaim flags for mem_cgroup_hierarchical_reclaim 473 */ 474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 478 479 /* 480 * The memcg_create_mutex will be held whenever a new cgroup is created. 481 * As a consequence, any change that needs to protect against new child cgroups 482 * appearing has to hold it as well. 483 */ 484 static DEFINE_MUTEX(memcg_create_mutex); 485 486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 487 { 488 return s ? container_of(s, struct mem_cgroup, css) : NULL; 489 } 490 491 /* Some nice accessors for the vmpressure. */ 492 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 493 { 494 if (!memcg) 495 memcg = root_mem_cgroup; 496 return &memcg->vmpressure; 497 } 498 499 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 500 { 501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 502 } 503 504 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 505 { 506 return &mem_cgroup_from_css(css)->vmpressure; 507 } 508 509 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 510 { 511 return (memcg == root_mem_cgroup); 512 } 513 514 /* Writing them here to avoid exposing memcg's inner layout */ 515 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 516 517 void sock_update_memcg(struct sock *sk) 518 { 519 if (mem_cgroup_sockets_enabled) { 520 struct mem_cgroup *memcg; 521 struct cg_proto *cg_proto; 522 523 BUG_ON(!sk->sk_prot->proto_cgroup); 524 525 /* Socket cloning can throw us here with sk_cgrp already 526 * filled. It won't however, necessarily happen from 527 * process context. So the test for root memcg given 528 * the current task's memcg won't help us in this case. 529 * 530 * Respecting the original socket's memcg is a better 531 * decision in this case. 532 */ 533 if (sk->sk_cgrp) { 534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 535 css_get(&sk->sk_cgrp->memcg->css); 536 return; 537 } 538 539 rcu_read_lock(); 540 memcg = mem_cgroup_from_task(current); 541 cg_proto = sk->sk_prot->proto_cgroup(memcg); 542 if (!mem_cgroup_is_root(memcg) && 543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 544 sk->sk_cgrp = cg_proto; 545 } 546 rcu_read_unlock(); 547 } 548 } 549 EXPORT_SYMBOL(sock_update_memcg); 550 551 void sock_release_memcg(struct sock *sk) 552 { 553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 554 struct mem_cgroup *memcg; 555 WARN_ON(!sk->sk_cgrp->memcg); 556 memcg = sk->sk_cgrp->memcg; 557 css_put(&sk->sk_cgrp->memcg->css); 558 } 559 } 560 561 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 562 { 563 if (!memcg || mem_cgroup_is_root(memcg)) 564 return NULL; 565 566 return &memcg->tcp_mem.cg_proto; 567 } 568 EXPORT_SYMBOL(tcp_proto_cgroup); 569 570 static void disarm_sock_keys(struct mem_cgroup *memcg) 571 { 572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 573 return; 574 static_key_slow_dec(&memcg_socket_limit_enabled); 575 } 576 #else 577 static void disarm_sock_keys(struct mem_cgroup *memcg) 578 { 579 } 580 #endif 581 582 #ifdef CONFIG_MEMCG_KMEM 583 /* 584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 585 * There are two main reasons for not using the css_id for this: 586 * 1) this works better in sparse environments, where we have a lot of memcgs, 587 * but only a few kmem-limited. Or also, if we have, for instance, 200 588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 589 * 200 entry array for that. 590 * 591 * 2) In order not to violate the cgroup API, we would like to do all memory 592 * allocation in ->create(). At that point, we haven't yet allocated the 593 * css_id. Having a separate index prevents us from messing with the cgroup 594 * core for this 595 * 596 * The current size of the caches array is stored in 597 * memcg_limited_groups_array_size. It will double each time we have to 598 * increase it. 599 */ 600 static DEFINE_IDA(kmem_limited_groups); 601 int memcg_limited_groups_array_size; 602 603 /* 604 * MIN_SIZE is different than 1, because we would like to avoid going through 605 * the alloc/free process all the time. In a small machine, 4 kmem-limited 606 * cgroups is a reasonable guess. In the future, it could be a parameter or 607 * tunable, but that is strictly not necessary. 608 * 609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 610 * this constant directly from cgroup, but it is understandable that this is 611 * better kept as an internal representation in cgroup.c. In any case, the 612 * css_id space is not getting any smaller, and we don't have to necessarily 613 * increase ours as well if it increases. 614 */ 615 #define MEMCG_CACHES_MIN_SIZE 4 616 #define MEMCG_CACHES_MAX_SIZE 65535 617 618 /* 619 * A lot of the calls to the cache allocation functions are expected to be 620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 621 * conditional to this static branch, we'll have to allow modules that does 622 * kmem_cache_alloc and the such to see this symbol as well 623 */ 624 struct static_key memcg_kmem_enabled_key; 625 EXPORT_SYMBOL(memcg_kmem_enabled_key); 626 627 static void disarm_kmem_keys(struct mem_cgroup *memcg) 628 { 629 if (memcg_kmem_is_active(memcg)) { 630 static_key_slow_dec(&memcg_kmem_enabled_key); 631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 632 } 633 /* 634 * This check can't live in kmem destruction function, 635 * since the charges will outlive the cgroup 636 */ 637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 638 } 639 #else 640 static void disarm_kmem_keys(struct mem_cgroup *memcg) 641 { 642 } 643 #endif /* CONFIG_MEMCG_KMEM */ 644 645 static void disarm_static_keys(struct mem_cgroup *memcg) 646 { 647 disarm_sock_keys(memcg); 648 disarm_kmem_keys(memcg); 649 } 650 651 static void drain_all_stock_async(struct mem_cgroup *memcg); 652 653 static struct mem_cgroup_per_zone * 654 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 655 { 656 VM_BUG_ON((unsigned)nid >= nr_node_ids); 657 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 658 } 659 660 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 661 { 662 return &memcg->css; 663 } 664 665 static struct mem_cgroup_per_zone * 666 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 667 { 668 int nid = page_to_nid(page); 669 int zid = page_zonenum(page); 670 671 return mem_cgroup_zoneinfo(memcg, nid, zid); 672 } 673 674 static struct mem_cgroup_tree_per_zone * 675 soft_limit_tree_node_zone(int nid, int zid) 676 { 677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 678 } 679 680 static struct mem_cgroup_tree_per_zone * 681 soft_limit_tree_from_page(struct page *page) 682 { 683 int nid = page_to_nid(page); 684 int zid = page_zonenum(page); 685 686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 687 } 688 689 static void 690 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 691 struct mem_cgroup_per_zone *mz, 692 struct mem_cgroup_tree_per_zone *mctz, 693 unsigned long long new_usage_in_excess) 694 { 695 struct rb_node **p = &mctz->rb_root.rb_node; 696 struct rb_node *parent = NULL; 697 struct mem_cgroup_per_zone *mz_node; 698 699 if (mz->on_tree) 700 return; 701 702 mz->usage_in_excess = new_usage_in_excess; 703 if (!mz->usage_in_excess) 704 return; 705 while (*p) { 706 parent = *p; 707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 708 tree_node); 709 if (mz->usage_in_excess < mz_node->usage_in_excess) 710 p = &(*p)->rb_left; 711 /* 712 * We can't avoid mem cgroups that are over their soft 713 * limit by the same amount 714 */ 715 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 716 p = &(*p)->rb_right; 717 } 718 rb_link_node(&mz->tree_node, parent, p); 719 rb_insert_color(&mz->tree_node, &mctz->rb_root); 720 mz->on_tree = true; 721 } 722 723 static void 724 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 725 struct mem_cgroup_per_zone *mz, 726 struct mem_cgroup_tree_per_zone *mctz) 727 { 728 if (!mz->on_tree) 729 return; 730 rb_erase(&mz->tree_node, &mctz->rb_root); 731 mz->on_tree = false; 732 } 733 734 static void 735 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 736 struct mem_cgroup_per_zone *mz, 737 struct mem_cgroup_tree_per_zone *mctz) 738 { 739 spin_lock(&mctz->lock); 740 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 741 spin_unlock(&mctz->lock); 742 } 743 744 745 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 746 { 747 unsigned long long excess; 748 struct mem_cgroup_per_zone *mz; 749 struct mem_cgroup_tree_per_zone *mctz; 750 int nid = page_to_nid(page); 751 int zid = page_zonenum(page); 752 mctz = soft_limit_tree_from_page(page); 753 754 /* 755 * Necessary to update all ancestors when hierarchy is used. 756 * because their event counter is not touched. 757 */ 758 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 759 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 760 excess = res_counter_soft_limit_excess(&memcg->res); 761 /* 762 * We have to update the tree if mz is on RB-tree or 763 * mem is over its softlimit. 764 */ 765 if (excess || mz->on_tree) { 766 spin_lock(&mctz->lock); 767 /* if on-tree, remove it */ 768 if (mz->on_tree) 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 770 /* 771 * Insert again. mz->usage_in_excess will be updated. 772 * If excess is 0, no tree ops. 773 */ 774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 775 spin_unlock(&mctz->lock); 776 } 777 } 778 } 779 780 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 781 { 782 int node, zone; 783 struct mem_cgroup_per_zone *mz; 784 struct mem_cgroup_tree_per_zone *mctz; 785 786 for_each_node(node) { 787 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 788 mz = mem_cgroup_zoneinfo(memcg, node, zone); 789 mctz = soft_limit_tree_node_zone(node, zone); 790 mem_cgroup_remove_exceeded(memcg, mz, mctz); 791 } 792 } 793 } 794 795 static struct mem_cgroup_per_zone * 796 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 797 { 798 struct rb_node *rightmost = NULL; 799 struct mem_cgroup_per_zone *mz; 800 801 retry: 802 mz = NULL; 803 rightmost = rb_last(&mctz->rb_root); 804 if (!rightmost) 805 goto done; /* Nothing to reclaim from */ 806 807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 808 /* 809 * Remove the node now but someone else can add it back, 810 * we will to add it back at the end of reclaim to its correct 811 * position in the tree. 812 */ 813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 814 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 815 !css_tryget(&mz->memcg->css)) 816 goto retry; 817 done: 818 return mz; 819 } 820 821 static struct mem_cgroup_per_zone * 822 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 823 { 824 struct mem_cgroup_per_zone *mz; 825 826 spin_lock(&mctz->lock); 827 mz = __mem_cgroup_largest_soft_limit_node(mctz); 828 spin_unlock(&mctz->lock); 829 return mz; 830 } 831 832 /* 833 * Implementation Note: reading percpu statistics for memcg. 834 * 835 * Both of vmstat[] and percpu_counter has threshold and do periodic 836 * synchronization to implement "quick" read. There are trade-off between 837 * reading cost and precision of value. Then, we may have a chance to implement 838 * a periodic synchronizion of counter in memcg's counter. 839 * 840 * But this _read() function is used for user interface now. The user accounts 841 * memory usage by memory cgroup and he _always_ requires exact value because 842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 843 * have to visit all online cpus and make sum. So, for now, unnecessary 844 * synchronization is not implemented. (just implemented for cpu hotplug) 845 * 846 * If there are kernel internal actions which can make use of some not-exact 847 * value, and reading all cpu value can be performance bottleneck in some 848 * common workload, threashold and synchonization as vmstat[] should be 849 * implemented. 850 */ 851 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 852 enum mem_cgroup_stat_index idx) 853 { 854 long val = 0; 855 int cpu; 856 857 get_online_cpus(); 858 for_each_online_cpu(cpu) 859 val += per_cpu(memcg->stat->count[idx], cpu); 860 #ifdef CONFIG_HOTPLUG_CPU 861 spin_lock(&memcg->pcp_counter_lock); 862 val += memcg->nocpu_base.count[idx]; 863 spin_unlock(&memcg->pcp_counter_lock); 864 #endif 865 put_online_cpus(); 866 return val; 867 } 868 869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 870 bool charge) 871 { 872 int val = (charge) ? 1 : -1; 873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 874 } 875 876 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 877 enum mem_cgroup_events_index idx) 878 { 879 unsigned long val = 0; 880 int cpu; 881 882 for_each_online_cpu(cpu) 883 val += per_cpu(memcg->stat->events[idx], cpu); 884 #ifdef CONFIG_HOTPLUG_CPU 885 spin_lock(&memcg->pcp_counter_lock); 886 val += memcg->nocpu_base.events[idx]; 887 spin_unlock(&memcg->pcp_counter_lock); 888 #endif 889 return val; 890 } 891 892 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 893 struct page *page, 894 bool anon, int nr_pages) 895 { 896 preempt_disable(); 897 898 /* 899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 900 * counted as CACHE even if it's on ANON LRU. 901 */ 902 if (anon) 903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 904 nr_pages); 905 else 906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 907 nr_pages); 908 909 if (PageTransHuge(page)) 910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 911 nr_pages); 912 913 /* pagein of a big page is an event. So, ignore page size */ 914 if (nr_pages > 0) 915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 916 else { 917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 918 nr_pages = -nr_pages; /* for event */ 919 } 920 921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 922 923 preempt_enable(); 924 } 925 926 unsigned long 927 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 928 { 929 struct mem_cgroup_per_zone *mz; 930 931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 932 return mz->lru_size[lru]; 933 } 934 935 static unsigned long 936 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 937 unsigned int lru_mask) 938 { 939 struct mem_cgroup_per_zone *mz; 940 enum lru_list lru; 941 unsigned long ret = 0; 942 943 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 944 945 for_each_lru(lru) { 946 if (BIT(lru) & lru_mask) 947 ret += mz->lru_size[lru]; 948 } 949 return ret; 950 } 951 952 static unsigned long 953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 954 int nid, unsigned int lru_mask) 955 { 956 u64 total = 0; 957 int zid; 958 959 for (zid = 0; zid < MAX_NR_ZONES; zid++) 960 total += mem_cgroup_zone_nr_lru_pages(memcg, 961 nid, zid, lru_mask); 962 963 return total; 964 } 965 966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 967 unsigned int lru_mask) 968 { 969 int nid; 970 u64 total = 0; 971 972 for_each_node_state(nid, N_MEMORY) 973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 974 return total; 975 } 976 977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 978 enum mem_cgroup_events_target target) 979 { 980 unsigned long val, next; 981 982 val = __this_cpu_read(memcg->stat->nr_page_events); 983 next = __this_cpu_read(memcg->stat->targets[target]); 984 /* from time_after() in jiffies.h */ 985 if ((long)next - (long)val < 0) { 986 switch (target) { 987 case MEM_CGROUP_TARGET_THRESH: 988 next = val + THRESHOLDS_EVENTS_TARGET; 989 break; 990 case MEM_CGROUP_TARGET_SOFTLIMIT: 991 next = val + SOFTLIMIT_EVENTS_TARGET; 992 break; 993 case MEM_CGROUP_TARGET_NUMAINFO: 994 next = val + NUMAINFO_EVENTS_TARGET; 995 break; 996 default: 997 break; 998 } 999 __this_cpu_write(memcg->stat->targets[target], next); 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 /* 1006 * Check events in order. 1007 * 1008 */ 1009 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1010 { 1011 preempt_disable(); 1012 /* threshold event is triggered in finer grain than soft limit */ 1013 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1014 MEM_CGROUP_TARGET_THRESH))) { 1015 bool do_softlimit; 1016 bool do_numainfo __maybe_unused; 1017 1018 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1019 MEM_CGROUP_TARGET_SOFTLIMIT); 1020 #if MAX_NUMNODES > 1 1021 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1022 MEM_CGROUP_TARGET_NUMAINFO); 1023 #endif 1024 preempt_enable(); 1025 1026 mem_cgroup_threshold(memcg); 1027 if (unlikely(do_softlimit)) 1028 mem_cgroup_update_tree(memcg, page); 1029 #if MAX_NUMNODES > 1 1030 if (unlikely(do_numainfo)) 1031 atomic_inc(&memcg->numainfo_events); 1032 #endif 1033 } else 1034 preempt_enable(); 1035 } 1036 1037 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1038 { 1039 /* 1040 * mm_update_next_owner() may clear mm->owner to NULL 1041 * if it races with swapoff, page migration, etc. 1042 * So this can be called with p == NULL. 1043 */ 1044 if (unlikely(!p)) 1045 return NULL; 1046 1047 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); 1048 } 1049 1050 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1051 { 1052 struct mem_cgroup *memcg = NULL; 1053 1054 if (!mm) 1055 return NULL; 1056 /* 1057 * Because we have no locks, mm->owner's may be being moved to other 1058 * cgroup. We use css_tryget() here even if this looks 1059 * pessimistic (rather than adding locks here). 1060 */ 1061 rcu_read_lock(); 1062 do { 1063 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1064 if (unlikely(!memcg)) 1065 break; 1066 } while (!css_tryget(&memcg->css)); 1067 rcu_read_unlock(); 1068 return memcg; 1069 } 1070 1071 /* 1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1073 * ref. count) or NULL if the whole root's subtree has been visited. 1074 * 1075 * helper function to be used by mem_cgroup_iter 1076 */ 1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1078 struct mem_cgroup *last_visited) 1079 { 1080 struct cgroup_subsys_state *prev_css, *next_css; 1081 1082 prev_css = last_visited ? &last_visited->css : NULL; 1083 skip_node: 1084 next_css = css_next_descendant_pre(prev_css, &root->css); 1085 1086 /* 1087 * Even if we found a group we have to make sure it is 1088 * alive. css && !memcg means that the groups should be 1089 * skipped and we should continue the tree walk. 1090 * last_visited css is safe to use because it is 1091 * protected by css_get and the tree walk is rcu safe. 1092 */ 1093 if (next_css) { 1094 struct mem_cgroup *mem = mem_cgroup_from_css(next_css); 1095 1096 if (css_tryget(&mem->css)) 1097 return mem; 1098 else { 1099 prev_css = next_css; 1100 goto skip_node; 1101 } 1102 } 1103 1104 return NULL; 1105 } 1106 1107 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1108 { 1109 /* 1110 * When a group in the hierarchy below root is destroyed, the 1111 * hierarchy iterator can no longer be trusted since it might 1112 * have pointed to the destroyed group. Invalidate it. 1113 */ 1114 atomic_inc(&root->dead_count); 1115 } 1116 1117 static struct mem_cgroup * 1118 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1119 struct mem_cgroup *root, 1120 int *sequence) 1121 { 1122 struct mem_cgroup *position = NULL; 1123 /* 1124 * A cgroup destruction happens in two stages: offlining and 1125 * release. They are separated by a RCU grace period. 1126 * 1127 * If the iterator is valid, we may still race with an 1128 * offlining. The RCU lock ensures the object won't be 1129 * released, tryget will fail if we lost the race. 1130 */ 1131 *sequence = atomic_read(&root->dead_count); 1132 if (iter->last_dead_count == *sequence) { 1133 smp_rmb(); 1134 position = iter->last_visited; 1135 if (position && !css_tryget(&position->css)) 1136 position = NULL; 1137 } 1138 return position; 1139 } 1140 1141 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1142 struct mem_cgroup *last_visited, 1143 struct mem_cgroup *new_position, 1144 int sequence) 1145 { 1146 if (last_visited) 1147 css_put(&last_visited->css); 1148 /* 1149 * We store the sequence count from the time @last_visited was 1150 * loaded successfully instead of rereading it here so that we 1151 * don't lose destruction events in between. We could have 1152 * raced with the destruction of @new_position after all. 1153 */ 1154 iter->last_visited = new_position; 1155 smp_wmb(); 1156 iter->last_dead_count = sequence; 1157 } 1158 1159 /** 1160 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1161 * @root: hierarchy root 1162 * @prev: previously returned memcg, NULL on first invocation 1163 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1164 * 1165 * Returns references to children of the hierarchy below @root, or 1166 * @root itself, or %NULL after a full round-trip. 1167 * 1168 * Caller must pass the return value in @prev on subsequent 1169 * invocations for reference counting, or use mem_cgroup_iter_break() 1170 * to cancel a hierarchy walk before the round-trip is complete. 1171 * 1172 * Reclaimers can specify a zone and a priority level in @reclaim to 1173 * divide up the memcgs in the hierarchy among all concurrent 1174 * reclaimers operating on the same zone and priority. 1175 */ 1176 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1177 struct mem_cgroup *prev, 1178 struct mem_cgroup_reclaim_cookie *reclaim) 1179 { 1180 struct mem_cgroup *memcg = NULL; 1181 struct mem_cgroup *last_visited = NULL; 1182 1183 if (mem_cgroup_disabled()) 1184 return NULL; 1185 1186 if (!root) 1187 root = root_mem_cgroup; 1188 1189 if (prev && !reclaim) 1190 last_visited = prev; 1191 1192 if (!root->use_hierarchy && root != root_mem_cgroup) { 1193 if (prev) 1194 goto out_css_put; 1195 return root; 1196 } 1197 1198 rcu_read_lock(); 1199 while (!memcg) { 1200 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1201 int uninitialized_var(seq); 1202 1203 if (reclaim) { 1204 int nid = zone_to_nid(reclaim->zone); 1205 int zid = zone_idx(reclaim->zone); 1206 struct mem_cgroup_per_zone *mz; 1207 1208 mz = mem_cgroup_zoneinfo(root, nid, zid); 1209 iter = &mz->reclaim_iter[reclaim->priority]; 1210 if (prev && reclaim->generation != iter->generation) { 1211 iter->last_visited = NULL; 1212 goto out_unlock; 1213 } 1214 1215 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1216 } 1217 1218 memcg = __mem_cgroup_iter_next(root, last_visited); 1219 1220 if (reclaim) { 1221 mem_cgroup_iter_update(iter, last_visited, memcg, seq); 1222 1223 if (!memcg) 1224 iter->generation++; 1225 else if (!prev && memcg) 1226 reclaim->generation = iter->generation; 1227 } 1228 1229 if (prev && !memcg) 1230 goto out_unlock; 1231 } 1232 out_unlock: 1233 rcu_read_unlock(); 1234 out_css_put: 1235 if (prev && prev != root) 1236 css_put(&prev->css); 1237 1238 return memcg; 1239 } 1240 1241 /** 1242 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1243 * @root: hierarchy root 1244 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1245 */ 1246 void mem_cgroup_iter_break(struct mem_cgroup *root, 1247 struct mem_cgroup *prev) 1248 { 1249 if (!root) 1250 root = root_mem_cgroup; 1251 if (prev && prev != root) 1252 css_put(&prev->css); 1253 } 1254 1255 /* 1256 * Iteration constructs for visiting all cgroups (under a tree). If 1257 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1258 * be used for reference counting. 1259 */ 1260 #define for_each_mem_cgroup_tree(iter, root) \ 1261 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1262 iter != NULL; \ 1263 iter = mem_cgroup_iter(root, iter, NULL)) 1264 1265 #define for_each_mem_cgroup(iter) \ 1266 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1267 iter != NULL; \ 1268 iter = mem_cgroup_iter(NULL, iter, NULL)) 1269 1270 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1271 { 1272 struct mem_cgroup *memcg; 1273 1274 rcu_read_lock(); 1275 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1276 if (unlikely(!memcg)) 1277 goto out; 1278 1279 switch (idx) { 1280 case PGFAULT: 1281 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1282 break; 1283 case PGMAJFAULT: 1284 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1285 break; 1286 default: 1287 BUG(); 1288 } 1289 out: 1290 rcu_read_unlock(); 1291 } 1292 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1293 1294 /** 1295 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1296 * @zone: zone of the wanted lruvec 1297 * @memcg: memcg of the wanted lruvec 1298 * 1299 * Returns the lru list vector holding pages for the given @zone and 1300 * @mem. This can be the global zone lruvec, if the memory controller 1301 * is disabled. 1302 */ 1303 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1304 struct mem_cgroup *memcg) 1305 { 1306 struct mem_cgroup_per_zone *mz; 1307 struct lruvec *lruvec; 1308 1309 if (mem_cgroup_disabled()) { 1310 lruvec = &zone->lruvec; 1311 goto out; 1312 } 1313 1314 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1315 lruvec = &mz->lruvec; 1316 out: 1317 /* 1318 * Since a node can be onlined after the mem_cgroup was created, 1319 * we have to be prepared to initialize lruvec->zone here; 1320 * and if offlined then reonlined, we need to reinitialize it. 1321 */ 1322 if (unlikely(lruvec->zone != zone)) 1323 lruvec->zone = zone; 1324 return lruvec; 1325 } 1326 1327 /* 1328 * Following LRU functions are allowed to be used without PCG_LOCK. 1329 * Operations are called by routine of global LRU independently from memcg. 1330 * What we have to take care of here is validness of pc->mem_cgroup. 1331 * 1332 * Changes to pc->mem_cgroup happens when 1333 * 1. charge 1334 * 2. moving account 1335 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1336 * It is added to LRU before charge. 1337 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1338 * When moving account, the page is not on LRU. It's isolated. 1339 */ 1340 1341 /** 1342 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1343 * @page: the page 1344 * @zone: zone of the page 1345 */ 1346 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1347 { 1348 struct mem_cgroup_per_zone *mz; 1349 struct mem_cgroup *memcg; 1350 struct page_cgroup *pc; 1351 struct lruvec *lruvec; 1352 1353 if (mem_cgroup_disabled()) { 1354 lruvec = &zone->lruvec; 1355 goto out; 1356 } 1357 1358 pc = lookup_page_cgroup(page); 1359 memcg = pc->mem_cgroup; 1360 1361 /* 1362 * Surreptitiously switch any uncharged offlist page to root: 1363 * an uncharged page off lru does nothing to secure 1364 * its former mem_cgroup from sudden removal. 1365 * 1366 * Our caller holds lru_lock, and PageCgroupUsed is updated 1367 * under page_cgroup lock: between them, they make all uses 1368 * of pc->mem_cgroup safe. 1369 */ 1370 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1371 pc->mem_cgroup = memcg = root_mem_cgroup; 1372 1373 mz = page_cgroup_zoneinfo(memcg, page); 1374 lruvec = &mz->lruvec; 1375 out: 1376 /* 1377 * Since a node can be onlined after the mem_cgroup was created, 1378 * we have to be prepared to initialize lruvec->zone here; 1379 * and if offlined then reonlined, we need to reinitialize it. 1380 */ 1381 if (unlikely(lruvec->zone != zone)) 1382 lruvec->zone = zone; 1383 return lruvec; 1384 } 1385 1386 /** 1387 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1388 * @lruvec: mem_cgroup per zone lru vector 1389 * @lru: index of lru list the page is sitting on 1390 * @nr_pages: positive when adding or negative when removing 1391 * 1392 * This function must be called when a page is added to or removed from an 1393 * lru list. 1394 */ 1395 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1396 int nr_pages) 1397 { 1398 struct mem_cgroup_per_zone *mz; 1399 unsigned long *lru_size; 1400 1401 if (mem_cgroup_disabled()) 1402 return; 1403 1404 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1405 lru_size = mz->lru_size + lru; 1406 *lru_size += nr_pages; 1407 VM_BUG_ON((long)(*lru_size) < 0); 1408 } 1409 1410 /* 1411 * Checks whether given mem is same or in the root_mem_cgroup's 1412 * hierarchy subtree 1413 */ 1414 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1415 struct mem_cgroup *memcg) 1416 { 1417 if (root_memcg == memcg) 1418 return true; 1419 if (!root_memcg->use_hierarchy || !memcg) 1420 return false; 1421 return css_is_ancestor(&memcg->css, &root_memcg->css); 1422 } 1423 1424 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1425 struct mem_cgroup *memcg) 1426 { 1427 bool ret; 1428 1429 rcu_read_lock(); 1430 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1431 rcu_read_unlock(); 1432 return ret; 1433 } 1434 1435 bool task_in_mem_cgroup(struct task_struct *task, 1436 const struct mem_cgroup *memcg) 1437 { 1438 struct mem_cgroup *curr = NULL; 1439 struct task_struct *p; 1440 bool ret; 1441 1442 p = find_lock_task_mm(task); 1443 if (p) { 1444 curr = try_get_mem_cgroup_from_mm(p->mm); 1445 task_unlock(p); 1446 } else { 1447 /* 1448 * All threads may have already detached their mm's, but the oom 1449 * killer still needs to detect if they have already been oom 1450 * killed to prevent needlessly killing additional tasks. 1451 */ 1452 rcu_read_lock(); 1453 curr = mem_cgroup_from_task(task); 1454 if (curr) 1455 css_get(&curr->css); 1456 rcu_read_unlock(); 1457 } 1458 if (!curr) 1459 return false; 1460 /* 1461 * We should check use_hierarchy of "memcg" not "curr". Because checking 1462 * use_hierarchy of "curr" here make this function true if hierarchy is 1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1464 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1465 */ 1466 ret = mem_cgroup_same_or_subtree(memcg, curr); 1467 css_put(&curr->css); 1468 return ret; 1469 } 1470 1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1472 { 1473 unsigned long inactive_ratio; 1474 unsigned long inactive; 1475 unsigned long active; 1476 unsigned long gb; 1477 1478 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1479 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1480 1481 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1482 if (gb) 1483 inactive_ratio = int_sqrt(10 * gb); 1484 else 1485 inactive_ratio = 1; 1486 1487 return inactive * inactive_ratio < active; 1488 } 1489 1490 #define mem_cgroup_from_res_counter(counter, member) \ 1491 container_of(counter, struct mem_cgroup, member) 1492 1493 /** 1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1495 * @memcg: the memory cgroup 1496 * 1497 * Returns the maximum amount of memory @mem can be charged with, in 1498 * pages. 1499 */ 1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1501 { 1502 unsigned long long margin; 1503 1504 margin = res_counter_margin(&memcg->res); 1505 if (do_swap_account) 1506 margin = min(margin, res_counter_margin(&memcg->memsw)); 1507 return margin >> PAGE_SHIFT; 1508 } 1509 1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1511 { 1512 /* root ? */ 1513 if (!css_parent(&memcg->css)) 1514 return vm_swappiness; 1515 1516 return memcg->swappiness; 1517 } 1518 1519 /* 1520 * memcg->moving_account is used for checking possibility that some thread is 1521 * calling move_account(). When a thread on CPU-A starts moving pages under 1522 * a memcg, other threads should check memcg->moving_account under 1523 * rcu_read_lock(), like this: 1524 * 1525 * CPU-A CPU-B 1526 * rcu_read_lock() 1527 * memcg->moving_account+1 if (memcg->mocing_account) 1528 * take heavy locks. 1529 * synchronize_rcu() update something. 1530 * rcu_read_unlock() 1531 * start move here. 1532 */ 1533 1534 /* for quick checking without looking up memcg */ 1535 atomic_t memcg_moving __read_mostly; 1536 1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1538 { 1539 atomic_inc(&memcg_moving); 1540 atomic_inc(&memcg->moving_account); 1541 synchronize_rcu(); 1542 } 1543 1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1545 { 1546 /* 1547 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1548 * We check NULL in callee rather than caller. 1549 */ 1550 if (memcg) { 1551 atomic_dec(&memcg_moving); 1552 atomic_dec(&memcg->moving_account); 1553 } 1554 } 1555 1556 /* 1557 * 2 routines for checking "mem" is under move_account() or not. 1558 * 1559 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1560 * is used for avoiding races in accounting. If true, 1561 * pc->mem_cgroup may be overwritten. 1562 * 1563 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1564 * under hierarchy of moving cgroups. This is for 1565 * waiting at hith-memory prressure caused by "move". 1566 */ 1567 1568 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1569 { 1570 VM_BUG_ON(!rcu_read_lock_held()); 1571 return atomic_read(&memcg->moving_account) > 0; 1572 } 1573 1574 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1575 { 1576 struct mem_cgroup *from; 1577 struct mem_cgroup *to; 1578 bool ret = false; 1579 /* 1580 * Unlike task_move routines, we access mc.to, mc.from not under 1581 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1582 */ 1583 spin_lock(&mc.lock); 1584 from = mc.from; 1585 to = mc.to; 1586 if (!from) 1587 goto unlock; 1588 1589 ret = mem_cgroup_same_or_subtree(memcg, from) 1590 || mem_cgroup_same_or_subtree(memcg, to); 1591 unlock: 1592 spin_unlock(&mc.lock); 1593 return ret; 1594 } 1595 1596 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1597 { 1598 if (mc.moving_task && current != mc.moving_task) { 1599 if (mem_cgroup_under_move(memcg)) { 1600 DEFINE_WAIT(wait); 1601 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1602 /* moving charge context might have finished. */ 1603 if (mc.moving_task) 1604 schedule(); 1605 finish_wait(&mc.waitq, &wait); 1606 return true; 1607 } 1608 } 1609 return false; 1610 } 1611 1612 /* 1613 * Take this lock when 1614 * - a code tries to modify page's memcg while it's USED. 1615 * - a code tries to modify page state accounting in a memcg. 1616 * see mem_cgroup_stolen(), too. 1617 */ 1618 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1619 unsigned long *flags) 1620 { 1621 spin_lock_irqsave(&memcg->move_lock, *flags); 1622 } 1623 1624 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1625 unsigned long *flags) 1626 { 1627 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1628 } 1629 1630 #define K(x) ((x) << (PAGE_SHIFT-10)) 1631 /** 1632 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1633 * @memcg: The memory cgroup that went over limit 1634 * @p: Task that is going to be killed 1635 * 1636 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1637 * enabled 1638 */ 1639 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1640 { 1641 struct cgroup *task_cgrp; 1642 struct cgroup *mem_cgrp; 1643 /* 1644 * Need a buffer in BSS, can't rely on allocations. The code relies 1645 * on the assumption that OOM is serialized for memory controller. 1646 * If this assumption is broken, revisit this code. 1647 */ 1648 static char memcg_name[PATH_MAX]; 1649 int ret; 1650 struct mem_cgroup *iter; 1651 unsigned int i; 1652 1653 if (!p) 1654 return; 1655 1656 rcu_read_lock(); 1657 1658 mem_cgrp = memcg->css.cgroup; 1659 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1660 1661 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1662 if (ret < 0) { 1663 /* 1664 * Unfortunately, we are unable to convert to a useful name 1665 * But we'll still print out the usage information 1666 */ 1667 rcu_read_unlock(); 1668 goto done; 1669 } 1670 rcu_read_unlock(); 1671 1672 pr_info("Task in %s killed", memcg_name); 1673 1674 rcu_read_lock(); 1675 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1676 if (ret < 0) { 1677 rcu_read_unlock(); 1678 goto done; 1679 } 1680 rcu_read_unlock(); 1681 1682 /* 1683 * Continues from above, so we don't need an KERN_ level 1684 */ 1685 pr_cont(" as a result of limit of %s\n", memcg_name); 1686 done: 1687 1688 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1689 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1690 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1691 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1692 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1693 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1694 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1695 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1697 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1698 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1699 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1700 1701 for_each_mem_cgroup_tree(iter, memcg) { 1702 pr_info("Memory cgroup stats"); 1703 1704 rcu_read_lock(); 1705 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1706 if (!ret) 1707 pr_cont(" for %s", memcg_name); 1708 rcu_read_unlock(); 1709 pr_cont(":"); 1710 1711 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1712 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1713 continue; 1714 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1715 K(mem_cgroup_read_stat(iter, i))); 1716 } 1717 1718 for (i = 0; i < NR_LRU_LISTS; i++) 1719 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1720 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1721 1722 pr_cont("\n"); 1723 } 1724 } 1725 1726 /* 1727 * This function returns the number of memcg under hierarchy tree. Returns 1728 * 1(self count) if no children. 1729 */ 1730 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1731 { 1732 int num = 0; 1733 struct mem_cgroup *iter; 1734 1735 for_each_mem_cgroup_tree(iter, memcg) 1736 num++; 1737 return num; 1738 } 1739 1740 /* 1741 * Return the memory (and swap, if configured) limit for a memcg. 1742 */ 1743 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1744 { 1745 u64 limit; 1746 1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1748 1749 /* 1750 * Do not consider swap space if we cannot swap due to swappiness 1751 */ 1752 if (mem_cgroup_swappiness(memcg)) { 1753 u64 memsw; 1754 1755 limit += total_swap_pages << PAGE_SHIFT; 1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1757 1758 /* 1759 * If memsw is finite and limits the amount of swap space 1760 * available to this memcg, return that limit. 1761 */ 1762 limit = min(limit, memsw); 1763 } 1764 1765 return limit; 1766 } 1767 1768 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1769 int order) 1770 { 1771 struct mem_cgroup *iter; 1772 unsigned long chosen_points = 0; 1773 unsigned long totalpages; 1774 unsigned int points = 0; 1775 struct task_struct *chosen = NULL; 1776 1777 /* 1778 * If current has a pending SIGKILL or is exiting, then automatically 1779 * select it. The goal is to allow it to allocate so that it may 1780 * quickly exit and free its memory. 1781 */ 1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1783 set_thread_flag(TIF_MEMDIE); 1784 return; 1785 } 1786 1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1789 for_each_mem_cgroup_tree(iter, memcg) { 1790 struct css_task_iter it; 1791 struct task_struct *task; 1792 1793 css_task_iter_start(&iter->css, &it); 1794 while ((task = css_task_iter_next(&it))) { 1795 switch (oom_scan_process_thread(task, totalpages, NULL, 1796 false)) { 1797 case OOM_SCAN_SELECT: 1798 if (chosen) 1799 put_task_struct(chosen); 1800 chosen = task; 1801 chosen_points = ULONG_MAX; 1802 get_task_struct(chosen); 1803 /* fall through */ 1804 case OOM_SCAN_CONTINUE: 1805 continue; 1806 case OOM_SCAN_ABORT: 1807 css_task_iter_end(&it); 1808 mem_cgroup_iter_break(memcg, iter); 1809 if (chosen) 1810 put_task_struct(chosen); 1811 return; 1812 case OOM_SCAN_OK: 1813 break; 1814 }; 1815 points = oom_badness(task, memcg, NULL, totalpages); 1816 if (points > chosen_points) { 1817 if (chosen) 1818 put_task_struct(chosen); 1819 chosen = task; 1820 chosen_points = points; 1821 get_task_struct(chosen); 1822 } 1823 } 1824 css_task_iter_end(&it); 1825 } 1826 1827 if (!chosen) 1828 return; 1829 points = chosen_points * 1000 / totalpages; 1830 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1831 NULL, "Memory cgroup out of memory"); 1832 } 1833 1834 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1835 gfp_t gfp_mask, 1836 unsigned long flags) 1837 { 1838 unsigned long total = 0; 1839 bool noswap = false; 1840 int loop; 1841 1842 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1843 noswap = true; 1844 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1845 noswap = true; 1846 1847 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1848 if (loop) 1849 drain_all_stock_async(memcg); 1850 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1851 /* 1852 * Allow limit shrinkers, which are triggered directly 1853 * by userspace, to catch signals and stop reclaim 1854 * after minimal progress, regardless of the margin. 1855 */ 1856 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1857 break; 1858 if (mem_cgroup_margin(memcg)) 1859 break; 1860 /* 1861 * If nothing was reclaimed after two attempts, there 1862 * may be no reclaimable pages in this hierarchy. 1863 */ 1864 if (loop && !total) 1865 break; 1866 } 1867 return total; 1868 } 1869 1870 /** 1871 * test_mem_cgroup_node_reclaimable 1872 * @memcg: the target memcg 1873 * @nid: the node ID to be checked. 1874 * @noswap : specify true here if the user wants flle only information. 1875 * 1876 * This function returns whether the specified memcg contains any 1877 * reclaimable pages on a node. Returns true if there are any reclaimable 1878 * pages in the node. 1879 */ 1880 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1881 int nid, bool noswap) 1882 { 1883 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1884 return true; 1885 if (noswap || !total_swap_pages) 1886 return false; 1887 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1888 return true; 1889 return false; 1890 1891 } 1892 #if MAX_NUMNODES > 1 1893 1894 /* 1895 * Always updating the nodemask is not very good - even if we have an empty 1896 * list or the wrong list here, we can start from some node and traverse all 1897 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1898 * 1899 */ 1900 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1901 { 1902 int nid; 1903 /* 1904 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1905 * pagein/pageout changes since the last update. 1906 */ 1907 if (!atomic_read(&memcg->numainfo_events)) 1908 return; 1909 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1910 return; 1911 1912 /* make a nodemask where this memcg uses memory from */ 1913 memcg->scan_nodes = node_states[N_MEMORY]; 1914 1915 for_each_node_mask(nid, node_states[N_MEMORY]) { 1916 1917 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1918 node_clear(nid, memcg->scan_nodes); 1919 } 1920 1921 atomic_set(&memcg->numainfo_events, 0); 1922 atomic_set(&memcg->numainfo_updating, 0); 1923 } 1924 1925 /* 1926 * Selecting a node where we start reclaim from. Because what we need is just 1927 * reducing usage counter, start from anywhere is O,K. Considering 1928 * memory reclaim from current node, there are pros. and cons. 1929 * 1930 * Freeing memory from current node means freeing memory from a node which 1931 * we'll use or we've used. So, it may make LRU bad. And if several threads 1932 * hit limits, it will see a contention on a node. But freeing from remote 1933 * node means more costs for memory reclaim because of memory latency. 1934 * 1935 * Now, we use round-robin. Better algorithm is welcomed. 1936 */ 1937 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1938 { 1939 int node; 1940 1941 mem_cgroup_may_update_nodemask(memcg); 1942 node = memcg->last_scanned_node; 1943 1944 node = next_node(node, memcg->scan_nodes); 1945 if (node == MAX_NUMNODES) 1946 node = first_node(memcg->scan_nodes); 1947 /* 1948 * We call this when we hit limit, not when pages are added to LRU. 1949 * No LRU may hold pages because all pages are UNEVICTABLE or 1950 * memcg is too small and all pages are not on LRU. In that case, 1951 * we use curret node. 1952 */ 1953 if (unlikely(node == MAX_NUMNODES)) 1954 node = numa_node_id(); 1955 1956 memcg->last_scanned_node = node; 1957 return node; 1958 } 1959 1960 /* 1961 * Check all nodes whether it contains reclaimable pages or not. 1962 * For quick scan, we make use of scan_nodes. This will allow us to skip 1963 * unused nodes. But scan_nodes is lazily updated and may not cotain 1964 * enough new information. We need to do double check. 1965 */ 1966 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1967 { 1968 int nid; 1969 1970 /* 1971 * quick check...making use of scan_node. 1972 * We can skip unused nodes. 1973 */ 1974 if (!nodes_empty(memcg->scan_nodes)) { 1975 for (nid = first_node(memcg->scan_nodes); 1976 nid < MAX_NUMNODES; 1977 nid = next_node(nid, memcg->scan_nodes)) { 1978 1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1980 return true; 1981 } 1982 } 1983 /* 1984 * Check rest of nodes. 1985 */ 1986 for_each_node_state(nid, N_MEMORY) { 1987 if (node_isset(nid, memcg->scan_nodes)) 1988 continue; 1989 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1990 return true; 1991 } 1992 return false; 1993 } 1994 1995 #else 1996 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1997 { 1998 return 0; 1999 } 2000 2001 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2002 { 2003 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2004 } 2005 #endif 2006 2007 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2008 struct zone *zone, 2009 gfp_t gfp_mask, 2010 unsigned long *total_scanned) 2011 { 2012 struct mem_cgroup *victim = NULL; 2013 int total = 0; 2014 int loop = 0; 2015 unsigned long excess; 2016 unsigned long nr_scanned; 2017 struct mem_cgroup_reclaim_cookie reclaim = { 2018 .zone = zone, 2019 .priority = 0, 2020 }; 2021 2022 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2023 2024 while (1) { 2025 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2026 if (!victim) { 2027 loop++; 2028 if (loop >= 2) { 2029 /* 2030 * If we have not been able to reclaim 2031 * anything, it might because there are 2032 * no reclaimable pages under this hierarchy 2033 */ 2034 if (!total) 2035 break; 2036 /* 2037 * We want to do more targeted reclaim. 2038 * excess >> 2 is not to excessive so as to 2039 * reclaim too much, nor too less that we keep 2040 * coming back to reclaim from this cgroup 2041 */ 2042 if (total >= (excess >> 2) || 2043 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2044 break; 2045 } 2046 continue; 2047 } 2048 if (!mem_cgroup_reclaimable(victim, false)) 2049 continue; 2050 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2051 zone, &nr_scanned); 2052 *total_scanned += nr_scanned; 2053 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2054 break; 2055 } 2056 mem_cgroup_iter_break(root_memcg, victim); 2057 return total; 2058 } 2059 2060 /* 2061 * Check OOM-Killer is already running under our hierarchy. 2062 * If someone is running, return false. 2063 * Has to be called with memcg_oom_lock 2064 */ 2065 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 2066 { 2067 struct mem_cgroup *iter, *failed = NULL; 2068 2069 for_each_mem_cgroup_tree(iter, memcg) { 2070 if (iter->oom_lock) { 2071 /* 2072 * this subtree of our hierarchy is already locked 2073 * so we cannot give a lock. 2074 */ 2075 failed = iter; 2076 mem_cgroup_iter_break(memcg, iter); 2077 break; 2078 } else 2079 iter->oom_lock = true; 2080 } 2081 2082 if (!failed) 2083 return true; 2084 2085 /* 2086 * OK, we failed to lock the whole subtree so we have to clean up 2087 * what we set up to the failing subtree 2088 */ 2089 for_each_mem_cgroup_tree(iter, memcg) { 2090 if (iter == failed) { 2091 mem_cgroup_iter_break(memcg, iter); 2092 break; 2093 } 2094 iter->oom_lock = false; 2095 } 2096 return false; 2097 } 2098 2099 /* 2100 * Has to be called with memcg_oom_lock 2101 */ 2102 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2103 { 2104 struct mem_cgroup *iter; 2105 2106 for_each_mem_cgroup_tree(iter, memcg) 2107 iter->oom_lock = false; 2108 return 0; 2109 } 2110 2111 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2112 { 2113 struct mem_cgroup *iter; 2114 2115 for_each_mem_cgroup_tree(iter, memcg) 2116 atomic_inc(&iter->under_oom); 2117 } 2118 2119 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2120 { 2121 struct mem_cgroup *iter; 2122 2123 /* 2124 * When a new child is created while the hierarchy is under oom, 2125 * mem_cgroup_oom_lock() may not be called. We have to use 2126 * atomic_add_unless() here. 2127 */ 2128 for_each_mem_cgroup_tree(iter, memcg) 2129 atomic_add_unless(&iter->under_oom, -1, 0); 2130 } 2131 2132 static DEFINE_SPINLOCK(memcg_oom_lock); 2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2134 2135 struct oom_wait_info { 2136 struct mem_cgroup *memcg; 2137 wait_queue_t wait; 2138 }; 2139 2140 static int memcg_oom_wake_function(wait_queue_t *wait, 2141 unsigned mode, int sync, void *arg) 2142 { 2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2144 struct mem_cgroup *oom_wait_memcg; 2145 struct oom_wait_info *oom_wait_info; 2146 2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2148 oom_wait_memcg = oom_wait_info->memcg; 2149 2150 /* 2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2152 * Then we can use css_is_ancestor without taking care of RCU. 2153 */ 2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2156 return 0; 2157 return autoremove_wake_function(wait, mode, sync, arg); 2158 } 2159 2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2161 { 2162 /* for filtering, pass "memcg" as argument. */ 2163 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2164 } 2165 2166 static void memcg_oom_recover(struct mem_cgroup *memcg) 2167 { 2168 if (memcg && atomic_read(&memcg->under_oom)) 2169 memcg_wakeup_oom(memcg); 2170 } 2171 2172 /* 2173 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2174 */ 2175 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2176 int order) 2177 { 2178 struct oom_wait_info owait; 2179 bool locked, need_to_kill; 2180 2181 owait.memcg = memcg; 2182 owait.wait.flags = 0; 2183 owait.wait.func = memcg_oom_wake_function; 2184 owait.wait.private = current; 2185 INIT_LIST_HEAD(&owait.wait.task_list); 2186 need_to_kill = true; 2187 mem_cgroup_mark_under_oom(memcg); 2188 2189 /* At first, try to OOM lock hierarchy under memcg.*/ 2190 spin_lock(&memcg_oom_lock); 2191 locked = mem_cgroup_oom_lock(memcg); 2192 /* 2193 * Even if signal_pending(), we can't quit charge() loop without 2194 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2195 * under OOM is always welcomed, use TASK_KILLABLE here. 2196 */ 2197 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2198 if (!locked || memcg->oom_kill_disable) 2199 need_to_kill = false; 2200 if (locked) 2201 mem_cgroup_oom_notify(memcg); 2202 spin_unlock(&memcg_oom_lock); 2203 2204 if (need_to_kill) { 2205 finish_wait(&memcg_oom_waitq, &owait.wait); 2206 mem_cgroup_out_of_memory(memcg, mask, order); 2207 } else { 2208 schedule(); 2209 finish_wait(&memcg_oom_waitq, &owait.wait); 2210 } 2211 spin_lock(&memcg_oom_lock); 2212 if (locked) 2213 mem_cgroup_oom_unlock(memcg); 2214 memcg_wakeup_oom(memcg); 2215 spin_unlock(&memcg_oom_lock); 2216 2217 mem_cgroup_unmark_under_oom(memcg); 2218 2219 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2220 return false; 2221 /* Give chance to dying process */ 2222 schedule_timeout_uninterruptible(1); 2223 return true; 2224 } 2225 2226 /* 2227 * Currently used to update mapped file statistics, but the routine can be 2228 * generalized to update other statistics as well. 2229 * 2230 * Notes: Race condition 2231 * 2232 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2233 * it tends to be costly. But considering some conditions, we doesn't need 2234 * to do so _always_. 2235 * 2236 * Considering "charge", lock_page_cgroup() is not required because all 2237 * file-stat operations happen after a page is attached to radix-tree. There 2238 * are no race with "charge". 2239 * 2240 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2241 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2242 * if there are race with "uncharge". Statistics itself is properly handled 2243 * by flags. 2244 * 2245 * Considering "move", this is an only case we see a race. To make the race 2246 * small, we check mm->moving_account and detect there are possibility of race 2247 * If there is, we take a lock. 2248 */ 2249 2250 void __mem_cgroup_begin_update_page_stat(struct page *page, 2251 bool *locked, unsigned long *flags) 2252 { 2253 struct mem_cgroup *memcg; 2254 struct page_cgroup *pc; 2255 2256 pc = lookup_page_cgroup(page); 2257 again: 2258 memcg = pc->mem_cgroup; 2259 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2260 return; 2261 /* 2262 * If this memory cgroup is not under account moving, we don't 2263 * need to take move_lock_mem_cgroup(). Because we already hold 2264 * rcu_read_lock(), any calls to move_account will be delayed until 2265 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2266 */ 2267 if (!mem_cgroup_stolen(memcg)) 2268 return; 2269 2270 move_lock_mem_cgroup(memcg, flags); 2271 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2272 move_unlock_mem_cgroup(memcg, flags); 2273 goto again; 2274 } 2275 *locked = true; 2276 } 2277 2278 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2279 { 2280 struct page_cgroup *pc = lookup_page_cgroup(page); 2281 2282 /* 2283 * It's guaranteed that pc->mem_cgroup never changes while 2284 * lock is held because a routine modifies pc->mem_cgroup 2285 * should take move_lock_mem_cgroup(). 2286 */ 2287 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2288 } 2289 2290 void mem_cgroup_update_page_stat(struct page *page, 2291 enum mem_cgroup_page_stat_item idx, int val) 2292 { 2293 struct mem_cgroup *memcg; 2294 struct page_cgroup *pc = lookup_page_cgroup(page); 2295 unsigned long uninitialized_var(flags); 2296 2297 if (mem_cgroup_disabled()) 2298 return; 2299 2300 memcg = pc->mem_cgroup; 2301 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2302 return; 2303 2304 switch (idx) { 2305 case MEMCG_NR_FILE_MAPPED: 2306 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2307 break; 2308 default: 2309 BUG(); 2310 } 2311 2312 this_cpu_add(memcg->stat->count[idx], val); 2313 } 2314 2315 /* 2316 * size of first charge trial. "32" comes from vmscan.c's magic value. 2317 * TODO: maybe necessary to use big numbers in big irons. 2318 */ 2319 #define CHARGE_BATCH 32U 2320 struct memcg_stock_pcp { 2321 struct mem_cgroup *cached; /* this never be root cgroup */ 2322 unsigned int nr_pages; 2323 struct work_struct work; 2324 unsigned long flags; 2325 #define FLUSHING_CACHED_CHARGE 0 2326 }; 2327 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2328 static DEFINE_MUTEX(percpu_charge_mutex); 2329 2330 /** 2331 * consume_stock: Try to consume stocked charge on this cpu. 2332 * @memcg: memcg to consume from. 2333 * @nr_pages: how many pages to charge. 2334 * 2335 * The charges will only happen if @memcg matches the current cpu's memcg 2336 * stock, and at least @nr_pages are available in that stock. Failure to 2337 * service an allocation will refill the stock. 2338 * 2339 * returns true if successful, false otherwise. 2340 */ 2341 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2342 { 2343 struct memcg_stock_pcp *stock; 2344 bool ret = true; 2345 2346 if (nr_pages > CHARGE_BATCH) 2347 return false; 2348 2349 stock = &get_cpu_var(memcg_stock); 2350 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2351 stock->nr_pages -= nr_pages; 2352 else /* need to call res_counter_charge */ 2353 ret = false; 2354 put_cpu_var(memcg_stock); 2355 return ret; 2356 } 2357 2358 /* 2359 * Returns stocks cached in percpu to res_counter and reset cached information. 2360 */ 2361 static void drain_stock(struct memcg_stock_pcp *stock) 2362 { 2363 struct mem_cgroup *old = stock->cached; 2364 2365 if (stock->nr_pages) { 2366 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2367 2368 res_counter_uncharge(&old->res, bytes); 2369 if (do_swap_account) 2370 res_counter_uncharge(&old->memsw, bytes); 2371 stock->nr_pages = 0; 2372 } 2373 stock->cached = NULL; 2374 } 2375 2376 /* 2377 * This must be called under preempt disabled or must be called by 2378 * a thread which is pinned to local cpu. 2379 */ 2380 static void drain_local_stock(struct work_struct *dummy) 2381 { 2382 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2383 drain_stock(stock); 2384 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2385 } 2386 2387 static void __init memcg_stock_init(void) 2388 { 2389 int cpu; 2390 2391 for_each_possible_cpu(cpu) { 2392 struct memcg_stock_pcp *stock = 2393 &per_cpu(memcg_stock, cpu); 2394 INIT_WORK(&stock->work, drain_local_stock); 2395 } 2396 } 2397 2398 /* 2399 * Cache charges(val) which is from res_counter, to local per_cpu area. 2400 * This will be consumed by consume_stock() function, later. 2401 */ 2402 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2403 { 2404 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2405 2406 if (stock->cached != memcg) { /* reset if necessary */ 2407 drain_stock(stock); 2408 stock->cached = memcg; 2409 } 2410 stock->nr_pages += nr_pages; 2411 put_cpu_var(memcg_stock); 2412 } 2413 2414 /* 2415 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2416 * of the hierarchy under it. sync flag says whether we should block 2417 * until the work is done. 2418 */ 2419 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2420 { 2421 int cpu, curcpu; 2422 2423 /* Notify other cpus that system-wide "drain" is running */ 2424 get_online_cpus(); 2425 curcpu = get_cpu(); 2426 for_each_online_cpu(cpu) { 2427 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2428 struct mem_cgroup *memcg; 2429 2430 memcg = stock->cached; 2431 if (!memcg || !stock->nr_pages) 2432 continue; 2433 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2434 continue; 2435 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2436 if (cpu == curcpu) 2437 drain_local_stock(&stock->work); 2438 else 2439 schedule_work_on(cpu, &stock->work); 2440 } 2441 } 2442 put_cpu(); 2443 2444 if (!sync) 2445 goto out; 2446 2447 for_each_online_cpu(cpu) { 2448 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2449 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2450 flush_work(&stock->work); 2451 } 2452 out: 2453 put_online_cpus(); 2454 } 2455 2456 /* 2457 * Tries to drain stocked charges in other cpus. This function is asynchronous 2458 * and just put a work per cpu for draining localy on each cpu. Caller can 2459 * expects some charges will be back to res_counter later but cannot wait for 2460 * it. 2461 */ 2462 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2463 { 2464 /* 2465 * If someone calls draining, avoid adding more kworker runs. 2466 */ 2467 if (!mutex_trylock(&percpu_charge_mutex)) 2468 return; 2469 drain_all_stock(root_memcg, false); 2470 mutex_unlock(&percpu_charge_mutex); 2471 } 2472 2473 /* This is a synchronous drain interface. */ 2474 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2475 { 2476 /* called when force_empty is called */ 2477 mutex_lock(&percpu_charge_mutex); 2478 drain_all_stock(root_memcg, true); 2479 mutex_unlock(&percpu_charge_mutex); 2480 } 2481 2482 /* 2483 * This function drains percpu counter value from DEAD cpu and 2484 * move it to local cpu. Note that this function can be preempted. 2485 */ 2486 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2487 { 2488 int i; 2489 2490 spin_lock(&memcg->pcp_counter_lock); 2491 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2492 long x = per_cpu(memcg->stat->count[i], cpu); 2493 2494 per_cpu(memcg->stat->count[i], cpu) = 0; 2495 memcg->nocpu_base.count[i] += x; 2496 } 2497 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2498 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2499 2500 per_cpu(memcg->stat->events[i], cpu) = 0; 2501 memcg->nocpu_base.events[i] += x; 2502 } 2503 spin_unlock(&memcg->pcp_counter_lock); 2504 } 2505 2506 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2507 unsigned long action, 2508 void *hcpu) 2509 { 2510 int cpu = (unsigned long)hcpu; 2511 struct memcg_stock_pcp *stock; 2512 struct mem_cgroup *iter; 2513 2514 if (action == CPU_ONLINE) 2515 return NOTIFY_OK; 2516 2517 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2518 return NOTIFY_OK; 2519 2520 for_each_mem_cgroup(iter) 2521 mem_cgroup_drain_pcp_counter(iter, cpu); 2522 2523 stock = &per_cpu(memcg_stock, cpu); 2524 drain_stock(stock); 2525 return NOTIFY_OK; 2526 } 2527 2528 2529 /* See __mem_cgroup_try_charge() for details */ 2530 enum { 2531 CHARGE_OK, /* success */ 2532 CHARGE_RETRY, /* need to retry but retry is not bad */ 2533 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2534 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2535 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2536 }; 2537 2538 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2539 unsigned int nr_pages, unsigned int min_pages, 2540 bool oom_check) 2541 { 2542 unsigned long csize = nr_pages * PAGE_SIZE; 2543 struct mem_cgroup *mem_over_limit; 2544 struct res_counter *fail_res; 2545 unsigned long flags = 0; 2546 int ret; 2547 2548 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2549 2550 if (likely(!ret)) { 2551 if (!do_swap_account) 2552 return CHARGE_OK; 2553 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2554 if (likely(!ret)) 2555 return CHARGE_OK; 2556 2557 res_counter_uncharge(&memcg->res, csize); 2558 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2559 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2560 } else 2561 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2562 /* 2563 * Never reclaim on behalf of optional batching, retry with a 2564 * single page instead. 2565 */ 2566 if (nr_pages > min_pages) 2567 return CHARGE_RETRY; 2568 2569 if (!(gfp_mask & __GFP_WAIT)) 2570 return CHARGE_WOULDBLOCK; 2571 2572 if (gfp_mask & __GFP_NORETRY) 2573 return CHARGE_NOMEM; 2574 2575 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2576 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2577 return CHARGE_RETRY; 2578 /* 2579 * Even though the limit is exceeded at this point, reclaim 2580 * may have been able to free some pages. Retry the charge 2581 * before killing the task. 2582 * 2583 * Only for regular pages, though: huge pages are rather 2584 * unlikely to succeed so close to the limit, and we fall back 2585 * to regular pages anyway in case of failure. 2586 */ 2587 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2588 return CHARGE_RETRY; 2589 2590 /* 2591 * At task move, charge accounts can be doubly counted. So, it's 2592 * better to wait until the end of task_move if something is going on. 2593 */ 2594 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2595 return CHARGE_RETRY; 2596 2597 /* If we don't need to call oom-killer at el, return immediately */ 2598 if (!oom_check) 2599 return CHARGE_NOMEM; 2600 /* check OOM */ 2601 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2602 return CHARGE_OOM_DIE; 2603 2604 return CHARGE_RETRY; 2605 } 2606 2607 /* 2608 * __mem_cgroup_try_charge() does 2609 * 1. detect memcg to be charged against from passed *mm and *ptr, 2610 * 2. update res_counter 2611 * 3. call memory reclaim if necessary. 2612 * 2613 * In some special case, if the task is fatal, fatal_signal_pending() or 2614 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2615 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2616 * as possible without any hazards. 2: all pages should have a valid 2617 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2618 * pointer, that is treated as a charge to root_mem_cgroup. 2619 * 2620 * So __mem_cgroup_try_charge() will return 2621 * 0 ... on success, filling *ptr with a valid memcg pointer. 2622 * -ENOMEM ... charge failure because of resource limits. 2623 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2624 * 2625 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2626 * the oom-killer can be invoked. 2627 */ 2628 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2629 gfp_t gfp_mask, 2630 unsigned int nr_pages, 2631 struct mem_cgroup **ptr, 2632 bool oom) 2633 { 2634 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2635 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2636 struct mem_cgroup *memcg = NULL; 2637 int ret; 2638 2639 /* 2640 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2641 * in system level. So, allow to go ahead dying process in addition to 2642 * MEMDIE process. 2643 */ 2644 if (unlikely(test_thread_flag(TIF_MEMDIE) 2645 || fatal_signal_pending(current))) 2646 goto bypass; 2647 2648 /* 2649 * We always charge the cgroup the mm_struct belongs to. 2650 * The mm_struct's mem_cgroup changes on task migration if the 2651 * thread group leader migrates. It's possible that mm is not 2652 * set, if so charge the root memcg (happens for pagecache usage). 2653 */ 2654 if (!*ptr && !mm) 2655 *ptr = root_mem_cgroup; 2656 again: 2657 if (*ptr) { /* css should be a valid one */ 2658 memcg = *ptr; 2659 if (mem_cgroup_is_root(memcg)) 2660 goto done; 2661 if (consume_stock(memcg, nr_pages)) 2662 goto done; 2663 css_get(&memcg->css); 2664 } else { 2665 struct task_struct *p; 2666 2667 rcu_read_lock(); 2668 p = rcu_dereference(mm->owner); 2669 /* 2670 * Because we don't have task_lock(), "p" can exit. 2671 * In that case, "memcg" can point to root or p can be NULL with 2672 * race with swapoff. Then, we have small risk of mis-accouning. 2673 * But such kind of mis-account by race always happens because 2674 * we don't have cgroup_mutex(). It's overkill and we allo that 2675 * small race, here. 2676 * (*) swapoff at el will charge against mm-struct not against 2677 * task-struct. So, mm->owner can be NULL. 2678 */ 2679 memcg = mem_cgroup_from_task(p); 2680 if (!memcg) 2681 memcg = root_mem_cgroup; 2682 if (mem_cgroup_is_root(memcg)) { 2683 rcu_read_unlock(); 2684 goto done; 2685 } 2686 if (consume_stock(memcg, nr_pages)) { 2687 /* 2688 * It seems dagerous to access memcg without css_get(). 2689 * But considering how consume_stok works, it's not 2690 * necessary. If consume_stock success, some charges 2691 * from this memcg are cached on this cpu. So, we 2692 * don't need to call css_get()/css_tryget() before 2693 * calling consume_stock(). 2694 */ 2695 rcu_read_unlock(); 2696 goto done; 2697 } 2698 /* after here, we may be blocked. we need to get refcnt */ 2699 if (!css_tryget(&memcg->css)) { 2700 rcu_read_unlock(); 2701 goto again; 2702 } 2703 rcu_read_unlock(); 2704 } 2705 2706 do { 2707 bool oom_check; 2708 2709 /* If killed, bypass charge */ 2710 if (fatal_signal_pending(current)) { 2711 css_put(&memcg->css); 2712 goto bypass; 2713 } 2714 2715 oom_check = false; 2716 if (oom && !nr_oom_retries) { 2717 oom_check = true; 2718 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2719 } 2720 2721 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2722 oom_check); 2723 switch (ret) { 2724 case CHARGE_OK: 2725 break; 2726 case CHARGE_RETRY: /* not in OOM situation but retry */ 2727 batch = nr_pages; 2728 css_put(&memcg->css); 2729 memcg = NULL; 2730 goto again; 2731 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2732 css_put(&memcg->css); 2733 goto nomem; 2734 case CHARGE_NOMEM: /* OOM routine works */ 2735 if (!oom) { 2736 css_put(&memcg->css); 2737 goto nomem; 2738 } 2739 /* If oom, we never return -ENOMEM */ 2740 nr_oom_retries--; 2741 break; 2742 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2743 css_put(&memcg->css); 2744 goto bypass; 2745 } 2746 } while (ret != CHARGE_OK); 2747 2748 if (batch > nr_pages) 2749 refill_stock(memcg, batch - nr_pages); 2750 css_put(&memcg->css); 2751 done: 2752 *ptr = memcg; 2753 return 0; 2754 nomem: 2755 *ptr = NULL; 2756 return -ENOMEM; 2757 bypass: 2758 *ptr = root_mem_cgroup; 2759 return -EINTR; 2760 } 2761 2762 /* 2763 * Somemtimes we have to undo a charge we got by try_charge(). 2764 * This function is for that and do uncharge, put css's refcnt. 2765 * gotten by try_charge(). 2766 */ 2767 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2768 unsigned int nr_pages) 2769 { 2770 if (!mem_cgroup_is_root(memcg)) { 2771 unsigned long bytes = nr_pages * PAGE_SIZE; 2772 2773 res_counter_uncharge(&memcg->res, bytes); 2774 if (do_swap_account) 2775 res_counter_uncharge(&memcg->memsw, bytes); 2776 } 2777 } 2778 2779 /* 2780 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2781 * This is useful when moving usage to parent cgroup. 2782 */ 2783 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2784 unsigned int nr_pages) 2785 { 2786 unsigned long bytes = nr_pages * PAGE_SIZE; 2787 2788 if (mem_cgroup_is_root(memcg)) 2789 return; 2790 2791 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2792 if (do_swap_account) 2793 res_counter_uncharge_until(&memcg->memsw, 2794 memcg->memsw.parent, bytes); 2795 } 2796 2797 /* 2798 * A helper function to get mem_cgroup from ID. must be called under 2799 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2800 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2801 * called against removed memcg.) 2802 */ 2803 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2804 { 2805 struct cgroup_subsys_state *css; 2806 2807 /* ID 0 is unused ID */ 2808 if (!id) 2809 return NULL; 2810 css = css_lookup(&mem_cgroup_subsys, id); 2811 if (!css) 2812 return NULL; 2813 return mem_cgroup_from_css(css); 2814 } 2815 2816 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2817 { 2818 struct mem_cgroup *memcg = NULL; 2819 struct page_cgroup *pc; 2820 unsigned short id; 2821 swp_entry_t ent; 2822 2823 VM_BUG_ON(!PageLocked(page)); 2824 2825 pc = lookup_page_cgroup(page); 2826 lock_page_cgroup(pc); 2827 if (PageCgroupUsed(pc)) { 2828 memcg = pc->mem_cgroup; 2829 if (memcg && !css_tryget(&memcg->css)) 2830 memcg = NULL; 2831 } else if (PageSwapCache(page)) { 2832 ent.val = page_private(page); 2833 id = lookup_swap_cgroup_id(ent); 2834 rcu_read_lock(); 2835 memcg = mem_cgroup_lookup(id); 2836 if (memcg && !css_tryget(&memcg->css)) 2837 memcg = NULL; 2838 rcu_read_unlock(); 2839 } 2840 unlock_page_cgroup(pc); 2841 return memcg; 2842 } 2843 2844 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2845 struct page *page, 2846 unsigned int nr_pages, 2847 enum charge_type ctype, 2848 bool lrucare) 2849 { 2850 struct page_cgroup *pc = lookup_page_cgroup(page); 2851 struct zone *uninitialized_var(zone); 2852 struct lruvec *lruvec; 2853 bool was_on_lru = false; 2854 bool anon; 2855 2856 lock_page_cgroup(pc); 2857 VM_BUG_ON(PageCgroupUsed(pc)); 2858 /* 2859 * we don't need page_cgroup_lock about tail pages, becase they are not 2860 * accessed by any other context at this point. 2861 */ 2862 2863 /* 2864 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2865 * may already be on some other mem_cgroup's LRU. Take care of it. 2866 */ 2867 if (lrucare) { 2868 zone = page_zone(page); 2869 spin_lock_irq(&zone->lru_lock); 2870 if (PageLRU(page)) { 2871 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2872 ClearPageLRU(page); 2873 del_page_from_lru_list(page, lruvec, page_lru(page)); 2874 was_on_lru = true; 2875 } 2876 } 2877 2878 pc->mem_cgroup = memcg; 2879 /* 2880 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2881 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2882 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2883 * before USED bit, we need memory barrier here. 2884 * See mem_cgroup_add_lru_list(), etc. 2885 */ 2886 smp_wmb(); 2887 SetPageCgroupUsed(pc); 2888 2889 if (lrucare) { 2890 if (was_on_lru) { 2891 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2892 VM_BUG_ON(PageLRU(page)); 2893 SetPageLRU(page); 2894 add_page_to_lru_list(page, lruvec, page_lru(page)); 2895 } 2896 spin_unlock_irq(&zone->lru_lock); 2897 } 2898 2899 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2900 anon = true; 2901 else 2902 anon = false; 2903 2904 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2905 unlock_page_cgroup(pc); 2906 2907 /* 2908 * "charge_statistics" updated event counter. Then, check it. 2909 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2910 * if they exceeds softlimit. 2911 */ 2912 memcg_check_events(memcg, page); 2913 } 2914 2915 static DEFINE_MUTEX(set_limit_mutex); 2916 2917 #ifdef CONFIG_MEMCG_KMEM 2918 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2919 { 2920 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2921 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2922 } 2923 2924 /* 2925 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2926 * in the memcg_cache_params struct. 2927 */ 2928 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2929 { 2930 struct kmem_cache *cachep; 2931 2932 VM_BUG_ON(p->is_root_cache); 2933 cachep = p->root_cache; 2934 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2935 } 2936 2937 #ifdef CONFIG_SLABINFO 2938 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, 2939 struct cftype *cft, struct seq_file *m) 2940 { 2941 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2942 struct memcg_cache_params *params; 2943 2944 if (!memcg_can_account_kmem(memcg)) 2945 return -EIO; 2946 2947 print_slabinfo_header(m); 2948 2949 mutex_lock(&memcg->slab_caches_mutex); 2950 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2951 cache_show(memcg_params_to_cache(params), m); 2952 mutex_unlock(&memcg->slab_caches_mutex); 2953 2954 return 0; 2955 } 2956 #endif 2957 2958 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2959 { 2960 struct res_counter *fail_res; 2961 struct mem_cgroup *_memcg; 2962 int ret = 0; 2963 bool may_oom; 2964 2965 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2966 if (ret) 2967 return ret; 2968 2969 /* 2970 * Conditions under which we can wait for the oom_killer. Those are 2971 * the same conditions tested by the core page allocator 2972 */ 2973 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2974 2975 _memcg = memcg; 2976 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2977 &_memcg, may_oom); 2978 2979 if (ret == -EINTR) { 2980 /* 2981 * __mem_cgroup_try_charge() chosed to bypass to root due to 2982 * OOM kill or fatal signal. Since our only options are to 2983 * either fail the allocation or charge it to this cgroup, do 2984 * it as a temporary condition. But we can't fail. From a 2985 * kmem/slab perspective, the cache has already been selected, 2986 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2987 * our minds. 2988 * 2989 * This condition will only trigger if the task entered 2990 * memcg_charge_kmem in a sane state, but was OOM-killed during 2991 * __mem_cgroup_try_charge() above. Tasks that were already 2992 * dying when the allocation triggers should have been already 2993 * directed to the root cgroup in memcontrol.h 2994 */ 2995 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2996 if (do_swap_account) 2997 res_counter_charge_nofail(&memcg->memsw, size, 2998 &fail_res); 2999 ret = 0; 3000 } else if (ret) 3001 res_counter_uncharge(&memcg->kmem, size); 3002 3003 return ret; 3004 } 3005 3006 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3007 { 3008 res_counter_uncharge(&memcg->res, size); 3009 if (do_swap_account) 3010 res_counter_uncharge(&memcg->memsw, size); 3011 3012 /* Not down to 0 */ 3013 if (res_counter_uncharge(&memcg->kmem, size)) 3014 return; 3015 3016 /* 3017 * Releases a reference taken in kmem_cgroup_css_offline in case 3018 * this last uncharge is racing with the offlining code or it is 3019 * outliving the memcg existence. 3020 * 3021 * The memory barrier imposed by test&clear is paired with the 3022 * explicit one in memcg_kmem_mark_dead(). 3023 */ 3024 if (memcg_kmem_test_and_clear_dead(memcg)) 3025 css_put(&memcg->css); 3026 } 3027 3028 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3029 { 3030 if (!memcg) 3031 return; 3032 3033 mutex_lock(&memcg->slab_caches_mutex); 3034 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3035 mutex_unlock(&memcg->slab_caches_mutex); 3036 } 3037 3038 /* 3039 * helper for acessing a memcg's index. It will be used as an index in the 3040 * child cache array in kmem_cache, and also to derive its name. This function 3041 * will return -1 when this is not a kmem-limited memcg. 3042 */ 3043 int memcg_cache_id(struct mem_cgroup *memcg) 3044 { 3045 return memcg ? memcg->kmemcg_id : -1; 3046 } 3047 3048 /* 3049 * This ends up being protected by the set_limit mutex, during normal 3050 * operation, because that is its main call site. 3051 * 3052 * But when we create a new cache, we can call this as well if its parent 3053 * is kmem-limited. That will have to hold set_limit_mutex as well. 3054 */ 3055 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3056 { 3057 int num, ret; 3058 3059 num = ida_simple_get(&kmem_limited_groups, 3060 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3061 if (num < 0) 3062 return num; 3063 /* 3064 * After this point, kmem_accounted (that we test atomically in 3065 * the beginning of this conditional), is no longer 0. This 3066 * guarantees only one process will set the following boolean 3067 * to true. We don't need test_and_set because we're protected 3068 * by the set_limit_mutex anyway. 3069 */ 3070 memcg_kmem_set_activated(memcg); 3071 3072 ret = memcg_update_all_caches(num+1); 3073 if (ret) { 3074 ida_simple_remove(&kmem_limited_groups, num); 3075 memcg_kmem_clear_activated(memcg); 3076 return ret; 3077 } 3078 3079 memcg->kmemcg_id = num; 3080 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3081 mutex_init(&memcg->slab_caches_mutex); 3082 return 0; 3083 } 3084 3085 static size_t memcg_caches_array_size(int num_groups) 3086 { 3087 ssize_t size; 3088 if (num_groups <= 0) 3089 return 0; 3090 3091 size = 2 * num_groups; 3092 if (size < MEMCG_CACHES_MIN_SIZE) 3093 size = MEMCG_CACHES_MIN_SIZE; 3094 else if (size > MEMCG_CACHES_MAX_SIZE) 3095 size = MEMCG_CACHES_MAX_SIZE; 3096 3097 return size; 3098 } 3099 3100 /* 3101 * We should update the current array size iff all caches updates succeed. This 3102 * can only be done from the slab side. The slab mutex needs to be held when 3103 * calling this. 3104 */ 3105 void memcg_update_array_size(int num) 3106 { 3107 if (num > memcg_limited_groups_array_size) 3108 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3109 } 3110 3111 static void kmem_cache_destroy_work_func(struct work_struct *w); 3112 3113 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3114 { 3115 struct memcg_cache_params *cur_params = s->memcg_params; 3116 3117 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3118 3119 if (num_groups > memcg_limited_groups_array_size) { 3120 int i; 3121 ssize_t size = memcg_caches_array_size(num_groups); 3122 3123 size *= sizeof(void *); 3124 size += offsetof(struct memcg_cache_params, memcg_caches); 3125 3126 s->memcg_params = kzalloc(size, GFP_KERNEL); 3127 if (!s->memcg_params) { 3128 s->memcg_params = cur_params; 3129 return -ENOMEM; 3130 } 3131 3132 s->memcg_params->is_root_cache = true; 3133 3134 /* 3135 * There is the chance it will be bigger than 3136 * memcg_limited_groups_array_size, if we failed an allocation 3137 * in a cache, in which case all caches updated before it, will 3138 * have a bigger array. 3139 * 3140 * But if that is the case, the data after 3141 * memcg_limited_groups_array_size is certainly unused 3142 */ 3143 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3144 if (!cur_params->memcg_caches[i]) 3145 continue; 3146 s->memcg_params->memcg_caches[i] = 3147 cur_params->memcg_caches[i]; 3148 } 3149 3150 /* 3151 * Ideally, we would wait until all caches succeed, and only 3152 * then free the old one. But this is not worth the extra 3153 * pointer per-cache we'd have to have for this. 3154 * 3155 * It is not a big deal if some caches are left with a size 3156 * bigger than the others. And all updates will reset this 3157 * anyway. 3158 */ 3159 kfree(cur_params); 3160 } 3161 return 0; 3162 } 3163 3164 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3165 struct kmem_cache *root_cache) 3166 { 3167 size_t size; 3168 3169 if (!memcg_kmem_enabled()) 3170 return 0; 3171 3172 if (!memcg) { 3173 size = offsetof(struct memcg_cache_params, memcg_caches); 3174 size += memcg_limited_groups_array_size * sizeof(void *); 3175 } else 3176 size = sizeof(struct memcg_cache_params); 3177 3178 s->memcg_params = kzalloc(size, GFP_KERNEL); 3179 if (!s->memcg_params) 3180 return -ENOMEM; 3181 3182 if (memcg) { 3183 s->memcg_params->memcg = memcg; 3184 s->memcg_params->root_cache = root_cache; 3185 INIT_WORK(&s->memcg_params->destroy, 3186 kmem_cache_destroy_work_func); 3187 } else 3188 s->memcg_params->is_root_cache = true; 3189 3190 return 0; 3191 } 3192 3193 void memcg_release_cache(struct kmem_cache *s) 3194 { 3195 struct kmem_cache *root; 3196 struct mem_cgroup *memcg; 3197 int id; 3198 3199 /* 3200 * This happens, for instance, when a root cache goes away before we 3201 * add any memcg. 3202 */ 3203 if (!s->memcg_params) 3204 return; 3205 3206 if (s->memcg_params->is_root_cache) 3207 goto out; 3208 3209 memcg = s->memcg_params->memcg; 3210 id = memcg_cache_id(memcg); 3211 3212 root = s->memcg_params->root_cache; 3213 root->memcg_params->memcg_caches[id] = NULL; 3214 3215 mutex_lock(&memcg->slab_caches_mutex); 3216 list_del(&s->memcg_params->list); 3217 mutex_unlock(&memcg->slab_caches_mutex); 3218 3219 css_put(&memcg->css); 3220 out: 3221 kfree(s->memcg_params); 3222 } 3223 3224 /* 3225 * During the creation a new cache, we need to disable our accounting mechanism 3226 * altogether. This is true even if we are not creating, but rather just 3227 * enqueing new caches to be created. 3228 * 3229 * This is because that process will trigger allocations; some visible, like 3230 * explicit kmallocs to auxiliary data structures, name strings and internal 3231 * cache structures; some well concealed, like INIT_WORK() that can allocate 3232 * objects during debug. 3233 * 3234 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3235 * to it. This may not be a bounded recursion: since the first cache creation 3236 * failed to complete (waiting on the allocation), we'll just try to create the 3237 * cache again, failing at the same point. 3238 * 3239 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3240 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3241 * inside the following two functions. 3242 */ 3243 static inline void memcg_stop_kmem_account(void) 3244 { 3245 VM_BUG_ON(!current->mm); 3246 current->memcg_kmem_skip_account++; 3247 } 3248 3249 static inline void memcg_resume_kmem_account(void) 3250 { 3251 VM_BUG_ON(!current->mm); 3252 current->memcg_kmem_skip_account--; 3253 } 3254 3255 static void kmem_cache_destroy_work_func(struct work_struct *w) 3256 { 3257 struct kmem_cache *cachep; 3258 struct memcg_cache_params *p; 3259 3260 p = container_of(w, struct memcg_cache_params, destroy); 3261 3262 cachep = memcg_params_to_cache(p); 3263 3264 /* 3265 * If we get down to 0 after shrink, we could delete right away. 3266 * However, memcg_release_pages() already puts us back in the workqueue 3267 * in that case. If we proceed deleting, we'll get a dangling 3268 * reference, and removing the object from the workqueue in that case 3269 * is unnecessary complication. We are not a fast path. 3270 * 3271 * Note that this case is fundamentally different from racing with 3272 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3273 * kmem_cache_shrink, not only we would be reinserting a dead cache 3274 * into the queue, but doing so from inside the worker racing to 3275 * destroy it. 3276 * 3277 * So if we aren't down to zero, we'll just schedule a worker and try 3278 * again 3279 */ 3280 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3281 kmem_cache_shrink(cachep); 3282 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3283 return; 3284 } else 3285 kmem_cache_destroy(cachep); 3286 } 3287 3288 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3289 { 3290 if (!cachep->memcg_params->dead) 3291 return; 3292 3293 /* 3294 * There are many ways in which we can get here. 3295 * 3296 * We can get to a memory-pressure situation while the delayed work is 3297 * still pending to run. The vmscan shrinkers can then release all 3298 * cache memory and get us to destruction. If this is the case, we'll 3299 * be executed twice, which is a bug (the second time will execute over 3300 * bogus data). In this case, cancelling the work should be fine. 3301 * 3302 * But we can also get here from the worker itself, if 3303 * kmem_cache_shrink is enough to shake all the remaining objects and 3304 * get the page count to 0. In this case, we'll deadlock if we try to 3305 * cancel the work (the worker runs with an internal lock held, which 3306 * is the same lock we would hold for cancel_work_sync().) 3307 * 3308 * Since we can't possibly know who got us here, just refrain from 3309 * running if there is already work pending 3310 */ 3311 if (work_pending(&cachep->memcg_params->destroy)) 3312 return; 3313 /* 3314 * We have to defer the actual destroying to a workqueue, because 3315 * we might currently be in a context that cannot sleep. 3316 */ 3317 schedule_work(&cachep->memcg_params->destroy); 3318 } 3319 3320 /* 3321 * This lock protects updaters, not readers. We want readers to be as fast as 3322 * they can, and they will either see NULL or a valid cache value. Our model 3323 * allow them to see NULL, in which case the root memcg will be selected. 3324 * 3325 * We need this lock because multiple allocations to the same cache from a non 3326 * will span more than one worker. Only one of them can create the cache. 3327 */ 3328 static DEFINE_MUTEX(memcg_cache_mutex); 3329 3330 /* 3331 * Called with memcg_cache_mutex held 3332 */ 3333 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3334 struct kmem_cache *s) 3335 { 3336 struct kmem_cache *new; 3337 static char *tmp_name = NULL; 3338 3339 lockdep_assert_held(&memcg_cache_mutex); 3340 3341 /* 3342 * kmem_cache_create_memcg duplicates the given name and 3343 * cgroup_name for this name requires RCU context. 3344 * This static temporary buffer is used to prevent from 3345 * pointless shortliving allocation. 3346 */ 3347 if (!tmp_name) { 3348 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3349 if (!tmp_name) 3350 return NULL; 3351 } 3352 3353 rcu_read_lock(); 3354 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3355 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3356 rcu_read_unlock(); 3357 3358 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3359 (s->flags & ~SLAB_PANIC), s->ctor, s); 3360 3361 if (new) 3362 new->allocflags |= __GFP_KMEMCG; 3363 3364 return new; 3365 } 3366 3367 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3368 struct kmem_cache *cachep) 3369 { 3370 struct kmem_cache *new_cachep; 3371 int idx; 3372 3373 BUG_ON(!memcg_can_account_kmem(memcg)); 3374 3375 idx = memcg_cache_id(memcg); 3376 3377 mutex_lock(&memcg_cache_mutex); 3378 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3379 if (new_cachep) { 3380 css_put(&memcg->css); 3381 goto out; 3382 } 3383 3384 new_cachep = kmem_cache_dup(memcg, cachep); 3385 if (new_cachep == NULL) { 3386 new_cachep = cachep; 3387 css_put(&memcg->css); 3388 goto out; 3389 } 3390 3391 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3392 3393 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3394 /* 3395 * the readers won't lock, make sure everybody sees the updated value, 3396 * so they won't put stuff in the queue again for no reason 3397 */ 3398 wmb(); 3399 out: 3400 mutex_unlock(&memcg_cache_mutex); 3401 return new_cachep; 3402 } 3403 3404 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3405 { 3406 struct kmem_cache *c; 3407 int i; 3408 3409 if (!s->memcg_params) 3410 return; 3411 if (!s->memcg_params->is_root_cache) 3412 return; 3413 3414 /* 3415 * If the cache is being destroyed, we trust that there is no one else 3416 * requesting objects from it. Even if there are, the sanity checks in 3417 * kmem_cache_destroy should caught this ill-case. 3418 * 3419 * Still, we don't want anyone else freeing memcg_caches under our 3420 * noses, which can happen if a new memcg comes to life. As usual, 3421 * we'll take the set_limit_mutex to protect ourselves against this. 3422 */ 3423 mutex_lock(&set_limit_mutex); 3424 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3425 c = s->memcg_params->memcg_caches[i]; 3426 if (!c) 3427 continue; 3428 3429 /* 3430 * We will now manually delete the caches, so to avoid races 3431 * we need to cancel all pending destruction workers and 3432 * proceed with destruction ourselves. 3433 * 3434 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3435 * and that could spawn the workers again: it is likely that 3436 * the cache still have active pages until this very moment. 3437 * This would lead us back to mem_cgroup_destroy_cache. 3438 * 3439 * But that will not execute at all if the "dead" flag is not 3440 * set, so flip it down to guarantee we are in control. 3441 */ 3442 c->memcg_params->dead = false; 3443 cancel_work_sync(&c->memcg_params->destroy); 3444 kmem_cache_destroy(c); 3445 } 3446 mutex_unlock(&set_limit_mutex); 3447 } 3448 3449 struct create_work { 3450 struct mem_cgroup *memcg; 3451 struct kmem_cache *cachep; 3452 struct work_struct work; 3453 }; 3454 3455 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3456 { 3457 struct kmem_cache *cachep; 3458 struct memcg_cache_params *params; 3459 3460 if (!memcg_kmem_is_active(memcg)) 3461 return; 3462 3463 mutex_lock(&memcg->slab_caches_mutex); 3464 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3465 cachep = memcg_params_to_cache(params); 3466 cachep->memcg_params->dead = true; 3467 schedule_work(&cachep->memcg_params->destroy); 3468 } 3469 mutex_unlock(&memcg->slab_caches_mutex); 3470 } 3471 3472 static void memcg_create_cache_work_func(struct work_struct *w) 3473 { 3474 struct create_work *cw; 3475 3476 cw = container_of(w, struct create_work, work); 3477 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3478 kfree(cw); 3479 } 3480 3481 /* 3482 * Enqueue the creation of a per-memcg kmem_cache. 3483 */ 3484 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3485 struct kmem_cache *cachep) 3486 { 3487 struct create_work *cw; 3488 3489 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3490 if (cw == NULL) { 3491 css_put(&memcg->css); 3492 return; 3493 } 3494 3495 cw->memcg = memcg; 3496 cw->cachep = cachep; 3497 3498 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3499 schedule_work(&cw->work); 3500 } 3501 3502 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3503 struct kmem_cache *cachep) 3504 { 3505 /* 3506 * We need to stop accounting when we kmalloc, because if the 3507 * corresponding kmalloc cache is not yet created, the first allocation 3508 * in __memcg_create_cache_enqueue will recurse. 3509 * 3510 * However, it is better to enclose the whole function. Depending on 3511 * the debugging options enabled, INIT_WORK(), for instance, can 3512 * trigger an allocation. This too, will make us recurse. Because at 3513 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3514 * the safest choice is to do it like this, wrapping the whole function. 3515 */ 3516 memcg_stop_kmem_account(); 3517 __memcg_create_cache_enqueue(memcg, cachep); 3518 memcg_resume_kmem_account(); 3519 } 3520 /* 3521 * Return the kmem_cache we're supposed to use for a slab allocation. 3522 * We try to use the current memcg's version of the cache. 3523 * 3524 * If the cache does not exist yet, if we are the first user of it, 3525 * we either create it immediately, if possible, or create it asynchronously 3526 * in a workqueue. 3527 * In the latter case, we will let the current allocation go through with 3528 * the original cache. 3529 * 3530 * Can't be called in interrupt context or from kernel threads. 3531 * This function needs to be called with rcu_read_lock() held. 3532 */ 3533 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3534 gfp_t gfp) 3535 { 3536 struct mem_cgroup *memcg; 3537 int idx; 3538 3539 VM_BUG_ON(!cachep->memcg_params); 3540 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3541 3542 if (!current->mm || current->memcg_kmem_skip_account) 3543 return cachep; 3544 3545 rcu_read_lock(); 3546 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3547 3548 if (!memcg_can_account_kmem(memcg)) 3549 goto out; 3550 3551 idx = memcg_cache_id(memcg); 3552 3553 /* 3554 * barrier to mare sure we're always seeing the up to date value. The 3555 * code updating memcg_caches will issue a write barrier to match this. 3556 */ 3557 read_barrier_depends(); 3558 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3559 cachep = cachep->memcg_params->memcg_caches[idx]; 3560 goto out; 3561 } 3562 3563 /* The corresponding put will be done in the workqueue. */ 3564 if (!css_tryget(&memcg->css)) 3565 goto out; 3566 rcu_read_unlock(); 3567 3568 /* 3569 * If we are in a safe context (can wait, and not in interrupt 3570 * context), we could be be predictable and return right away. 3571 * This would guarantee that the allocation being performed 3572 * already belongs in the new cache. 3573 * 3574 * However, there are some clashes that can arrive from locking. 3575 * For instance, because we acquire the slab_mutex while doing 3576 * kmem_cache_dup, this means no further allocation could happen 3577 * with the slab_mutex held. 3578 * 3579 * Also, because cache creation issue get_online_cpus(), this 3580 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3581 * that ends up reversed during cpu hotplug. (cpuset allocates 3582 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3583 * better to defer everything. 3584 */ 3585 memcg_create_cache_enqueue(memcg, cachep); 3586 return cachep; 3587 out: 3588 rcu_read_unlock(); 3589 return cachep; 3590 } 3591 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3592 3593 /* 3594 * We need to verify if the allocation against current->mm->owner's memcg is 3595 * possible for the given order. But the page is not allocated yet, so we'll 3596 * need a further commit step to do the final arrangements. 3597 * 3598 * It is possible for the task to switch cgroups in this mean time, so at 3599 * commit time, we can't rely on task conversion any longer. We'll then use 3600 * the handle argument to return to the caller which cgroup we should commit 3601 * against. We could also return the memcg directly and avoid the pointer 3602 * passing, but a boolean return value gives better semantics considering 3603 * the compiled-out case as well. 3604 * 3605 * Returning true means the allocation is possible. 3606 */ 3607 bool 3608 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3609 { 3610 struct mem_cgroup *memcg; 3611 int ret; 3612 3613 *_memcg = NULL; 3614 3615 /* 3616 * Disabling accounting is only relevant for some specific memcg 3617 * internal allocations. Therefore we would initially not have such 3618 * check here, since direct calls to the page allocator that are marked 3619 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3620 * concerned with cache allocations, and by having this test at 3621 * memcg_kmem_get_cache, we are already able to relay the allocation to 3622 * the root cache and bypass the memcg cache altogether. 3623 * 3624 * There is one exception, though: the SLUB allocator does not create 3625 * large order caches, but rather service large kmallocs directly from 3626 * the page allocator. Therefore, the following sequence when backed by 3627 * the SLUB allocator: 3628 * 3629 * memcg_stop_kmem_account(); 3630 * kmalloc(<large_number>) 3631 * memcg_resume_kmem_account(); 3632 * 3633 * would effectively ignore the fact that we should skip accounting, 3634 * since it will drive us directly to this function without passing 3635 * through the cache selector memcg_kmem_get_cache. Such large 3636 * allocations are extremely rare but can happen, for instance, for the 3637 * cache arrays. We bring this test here. 3638 */ 3639 if (!current->mm || current->memcg_kmem_skip_account) 3640 return true; 3641 3642 memcg = try_get_mem_cgroup_from_mm(current->mm); 3643 3644 /* 3645 * very rare case described in mem_cgroup_from_task. Unfortunately there 3646 * isn't much we can do without complicating this too much, and it would 3647 * be gfp-dependent anyway. Just let it go 3648 */ 3649 if (unlikely(!memcg)) 3650 return true; 3651 3652 if (!memcg_can_account_kmem(memcg)) { 3653 css_put(&memcg->css); 3654 return true; 3655 } 3656 3657 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3658 if (!ret) 3659 *_memcg = memcg; 3660 3661 css_put(&memcg->css); 3662 return (ret == 0); 3663 } 3664 3665 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3666 int order) 3667 { 3668 struct page_cgroup *pc; 3669 3670 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3671 3672 /* The page allocation failed. Revert */ 3673 if (!page) { 3674 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3675 return; 3676 } 3677 3678 pc = lookup_page_cgroup(page); 3679 lock_page_cgroup(pc); 3680 pc->mem_cgroup = memcg; 3681 SetPageCgroupUsed(pc); 3682 unlock_page_cgroup(pc); 3683 } 3684 3685 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3686 { 3687 struct mem_cgroup *memcg = NULL; 3688 struct page_cgroup *pc; 3689 3690 3691 pc = lookup_page_cgroup(page); 3692 /* 3693 * Fast unlocked return. Theoretically might have changed, have to 3694 * check again after locking. 3695 */ 3696 if (!PageCgroupUsed(pc)) 3697 return; 3698 3699 lock_page_cgroup(pc); 3700 if (PageCgroupUsed(pc)) { 3701 memcg = pc->mem_cgroup; 3702 ClearPageCgroupUsed(pc); 3703 } 3704 unlock_page_cgroup(pc); 3705 3706 /* 3707 * We trust that only if there is a memcg associated with the page, it 3708 * is a valid allocation 3709 */ 3710 if (!memcg) 3711 return; 3712 3713 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3714 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3715 } 3716 #else 3717 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3718 { 3719 } 3720 #endif /* CONFIG_MEMCG_KMEM */ 3721 3722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3723 3724 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3725 /* 3726 * Because tail pages are not marked as "used", set it. We're under 3727 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3728 * charge/uncharge will be never happen and move_account() is done under 3729 * compound_lock(), so we don't have to take care of races. 3730 */ 3731 void mem_cgroup_split_huge_fixup(struct page *head) 3732 { 3733 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3734 struct page_cgroup *pc; 3735 struct mem_cgroup *memcg; 3736 int i; 3737 3738 if (mem_cgroup_disabled()) 3739 return; 3740 3741 memcg = head_pc->mem_cgroup; 3742 for (i = 1; i < HPAGE_PMD_NR; i++) { 3743 pc = head_pc + i; 3744 pc->mem_cgroup = memcg; 3745 smp_wmb();/* see __commit_charge() */ 3746 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3747 } 3748 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3749 HPAGE_PMD_NR); 3750 } 3751 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3752 3753 /** 3754 * mem_cgroup_move_account - move account of the page 3755 * @page: the page 3756 * @nr_pages: number of regular pages (>1 for huge pages) 3757 * @pc: page_cgroup of the page. 3758 * @from: mem_cgroup which the page is moved from. 3759 * @to: mem_cgroup which the page is moved to. @from != @to. 3760 * 3761 * The caller must confirm following. 3762 * - page is not on LRU (isolate_page() is useful.) 3763 * - compound_lock is held when nr_pages > 1 3764 * 3765 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3766 * from old cgroup. 3767 */ 3768 static int mem_cgroup_move_account(struct page *page, 3769 unsigned int nr_pages, 3770 struct page_cgroup *pc, 3771 struct mem_cgroup *from, 3772 struct mem_cgroup *to) 3773 { 3774 unsigned long flags; 3775 int ret; 3776 bool anon = PageAnon(page); 3777 3778 VM_BUG_ON(from == to); 3779 VM_BUG_ON(PageLRU(page)); 3780 /* 3781 * The page is isolated from LRU. So, collapse function 3782 * will not handle this page. But page splitting can happen. 3783 * Do this check under compound_page_lock(). The caller should 3784 * hold it. 3785 */ 3786 ret = -EBUSY; 3787 if (nr_pages > 1 && !PageTransHuge(page)) 3788 goto out; 3789 3790 lock_page_cgroup(pc); 3791 3792 ret = -EINVAL; 3793 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3794 goto unlock; 3795 3796 move_lock_mem_cgroup(from, &flags); 3797 3798 if (!anon && page_mapped(page)) { 3799 /* Update mapped_file data for mem_cgroup */ 3800 preempt_disable(); 3801 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3802 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3803 preempt_enable(); 3804 } 3805 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3806 3807 /* caller should have done css_get */ 3808 pc->mem_cgroup = to; 3809 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3810 move_unlock_mem_cgroup(from, &flags); 3811 ret = 0; 3812 unlock: 3813 unlock_page_cgroup(pc); 3814 /* 3815 * check events 3816 */ 3817 memcg_check_events(to, page); 3818 memcg_check_events(from, page); 3819 out: 3820 return ret; 3821 } 3822 3823 /** 3824 * mem_cgroup_move_parent - moves page to the parent group 3825 * @page: the page to move 3826 * @pc: page_cgroup of the page 3827 * @child: page's cgroup 3828 * 3829 * move charges to its parent or the root cgroup if the group has no 3830 * parent (aka use_hierarchy==0). 3831 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3832 * mem_cgroup_move_account fails) the failure is always temporary and 3833 * it signals a race with a page removal/uncharge or migration. In the 3834 * first case the page is on the way out and it will vanish from the LRU 3835 * on the next attempt and the call should be retried later. 3836 * Isolation from the LRU fails only if page has been isolated from 3837 * the LRU since we looked at it and that usually means either global 3838 * reclaim or migration going on. The page will either get back to the 3839 * LRU or vanish. 3840 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3841 * (!PageCgroupUsed) or moved to a different group. The page will 3842 * disappear in the next attempt. 3843 */ 3844 static int mem_cgroup_move_parent(struct page *page, 3845 struct page_cgroup *pc, 3846 struct mem_cgroup *child) 3847 { 3848 struct mem_cgroup *parent; 3849 unsigned int nr_pages; 3850 unsigned long uninitialized_var(flags); 3851 int ret; 3852 3853 VM_BUG_ON(mem_cgroup_is_root(child)); 3854 3855 ret = -EBUSY; 3856 if (!get_page_unless_zero(page)) 3857 goto out; 3858 if (isolate_lru_page(page)) 3859 goto put; 3860 3861 nr_pages = hpage_nr_pages(page); 3862 3863 parent = parent_mem_cgroup(child); 3864 /* 3865 * If no parent, move charges to root cgroup. 3866 */ 3867 if (!parent) 3868 parent = root_mem_cgroup; 3869 3870 if (nr_pages > 1) { 3871 VM_BUG_ON(!PageTransHuge(page)); 3872 flags = compound_lock_irqsave(page); 3873 } 3874 3875 ret = mem_cgroup_move_account(page, nr_pages, 3876 pc, child, parent); 3877 if (!ret) 3878 __mem_cgroup_cancel_local_charge(child, nr_pages); 3879 3880 if (nr_pages > 1) 3881 compound_unlock_irqrestore(page, flags); 3882 putback_lru_page(page); 3883 put: 3884 put_page(page); 3885 out: 3886 return ret; 3887 } 3888 3889 /* 3890 * Charge the memory controller for page usage. 3891 * Return 3892 * 0 if the charge was successful 3893 * < 0 if the cgroup is over its limit 3894 */ 3895 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3896 gfp_t gfp_mask, enum charge_type ctype) 3897 { 3898 struct mem_cgroup *memcg = NULL; 3899 unsigned int nr_pages = 1; 3900 bool oom = true; 3901 int ret; 3902 3903 if (PageTransHuge(page)) { 3904 nr_pages <<= compound_order(page); 3905 VM_BUG_ON(!PageTransHuge(page)); 3906 /* 3907 * Never OOM-kill a process for a huge page. The 3908 * fault handler will fall back to regular pages. 3909 */ 3910 oom = false; 3911 } 3912 3913 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3914 if (ret == -ENOMEM) 3915 return ret; 3916 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3917 return 0; 3918 } 3919 3920 int mem_cgroup_newpage_charge(struct page *page, 3921 struct mm_struct *mm, gfp_t gfp_mask) 3922 { 3923 if (mem_cgroup_disabled()) 3924 return 0; 3925 VM_BUG_ON(page_mapped(page)); 3926 VM_BUG_ON(page->mapping && !PageAnon(page)); 3927 VM_BUG_ON(!mm); 3928 return mem_cgroup_charge_common(page, mm, gfp_mask, 3929 MEM_CGROUP_CHARGE_TYPE_ANON); 3930 } 3931 3932 /* 3933 * While swap-in, try_charge -> commit or cancel, the page is locked. 3934 * And when try_charge() successfully returns, one refcnt to memcg without 3935 * struct page_cgroup is acquired. This refcnt will be consumed by 3936 * "commit()" or removed by "cancel()" 3937 */ 3938 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3939 struct page *page, 3940 gfp_t mask, 3941 struct mem_cgroup **memcgp) 3942 { 3943 struct mem_cgroup *memcg; 3944 struct page_cgroup *pc; 3945 int ret; 3946 3947 pc = lookup_page_cgroup(page); 3948 /* 3949 * Every swap fault against a single page tries to charge the 3950 * page, bail as early as possible. shmem_unuse() encounters 3951 * already charged pages, too. The USED bit is protected by 3952 * the page lock, which serializes swap cache removal, which 3953 * in turn serializes uncharging. 3954 */ 3955 if (PageCgroupUsed(pc)) 3956 return 0; 3957 if (!do_swap_account) 3958 goto charge_cur_mm; 3959 memcg = try_get_mem_cgroup_from_page(page); 3960 if (!memcg) 3961 goto charge_cur_mm; 3962 *memcgp = memcg; 3963 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3964 css_put(&memcg->css); 3965 if (ret == -EINTR) 3966 ret = 0; 3967 return ret; 3968 charge_cur_mm: 3969 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3970 if (ret == -EINTR) 3971 ret = 0; 3972 return ret; 3973 } 3974 3975 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3976 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3977 { 3978 *memcgp = NULL; 3979 if (mem_cgroup_disabled()) 3980 return 0; 3981 /* 3982 * A racing thread's fault, or swapoff, may have already 3983 * updated the pte, and even removed page from swap cache: in 3984 * those cases unuse_pte()'s pte_same() test will fail; but 3985 * there's also a KSM case which does need to charge the page. 3986 */ 3987 if (!PageSwapCache(page)) { 3988 int ret; 3989 3990 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3991 if (ret == -EINTR) 3992 ret = 0; 3993 return ret; 3994 } 3995 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3996 } 3997 3998 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3999 { 4000 if (mem_cgroup_disabled()) 4001 return; 4002 if (!memcg) 4003 return; 4004 __mem_cgroup_cancel_charge(memcg, 1); 4005 } 4006 4007 static void 4008 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 4009 enum charge_type ctype) 4010 { 4011 if (mem_cgroup_disabled()) 4012 return; 4013 if (!memcg) 4014 return; 4015 4016 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 4017 /* 4018 * Now swap is on-memory. This means this page may be 4019 * counted both as mem and swap....double count. 4020 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 4021 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 4022 * may call delete_from_swap_cache() before reach here. 4023 */ 4024 if (do_swap_account && PageSwapCache(page)) { 4025 swp_entry_t ent = {.val = page_private(page)}; 4026 mem_cgroup_uncharge_swap(ent); 4027 } 4028 } 4029 4030 void mem_cgroup_commit_charge_swapin(struct page *page, 4031 struct mem_cgroup *memcg) 4032 { 4033 __mem_cgroup_commit_charge_swapin(page, memcg, 4034 MEM_CGROUP_CHARGE_TYPE_ANON); 4035 } 4036 4037 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4038 gfp_t gfp_mask) 4039 { 4040 struct mem_cgroup *memcg = NULL; 4041 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4042 int ret; 4043 4044 if (mem_cgroup_disabled()) 4045 return 0; 4046 if (PageCompound(page)) 4047 return 0; 4048 4049 if (!PageSwapCache(page)) 4050 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4051 else { /* page is swapcache/shmem */ 4052 ret = __mem_cgroup_try_charge_swapin(mm, page, 4053 gfp_mask, &memcg); 4054 if (!ret) 4055 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4056 } 4057 return ret; 4058 } 4059 4060 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4061 unsigned int nr_pages, 4062 const enum charge_type ctype) 4063 { 4064 struct memcg_batch_info *batch = NULL; 4065 bool uncharge_memsw = true; 4066 4067 /* If swapout, usage of swap doesn't decrease */ 4068 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4069 uncharge_memsw = false; 4070 4071 batch = ¤t->memcg_batch; 4072 /* 4073 * In usual, we do css_get() when we remember memcg pointer. 4074 * But in this case, we keep res->usage until end of a series of 4075 * uncharges. Then, it's ok to ignore memcg's refcnt. 4076 */ 4077 if (!batch->memcg) 4078 batch->memcg = memcg; 4079 /* 4080 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4081 * In those cases, all pages freed continuously can be expected to be in 4082 * the same cgroup and we have chance to coalesce uncharges. 4083 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4084 * because we want to do uncharge as soon as possible. 4085 */ 4086 4087 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4088 goto direct_uncharge; 4089 4090 if (nr_pages > 1) 4091 goto direct_uncharge; 4092 4093 /* 4094 * In typical case, batch->memcg == mem. This means we can 4095 * merge a series of uncharges to an uncharge of res_counter. 4096 * If not, we uncharge res_counter ony by one. 4097 */ 4098 if (batch->memcg != memcg) 4099 goto direct_uncharge; 4100 /* remember freed charge and uncharge it later */ 4101 batch->nr_pages++; 4102 if (uncharge_memsw) 4103 batch->memsw_nr_pages++; 4104 return; 4105 direct_uncharge: 4106 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4107 if (uncharge_memsw) 4108 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4109 if (unlikely(batch->memcg != memcg)) 4110 memcg_oom_recover(memcg); 4111 } 4112 4113 /* 4114 * uncharge if !page_mapped(page) 4115 */ 4116 static struct mem_cgroup * 4117 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4118 bool end_migration) 4119 { 4120 struct mem_cgroup *memcg = NULL; 4121 unsigned int nr_pages = 1; 4122 struct page_cgroup *pc; 4123 bool anon; 4124 4125 if (mem_cgroup_disabled()) 4126 return NULL; 4127 4128 if (PageTransHuge(page)) { 4129 nr_pages <<= compound_order(page); 4130 VM_BUG_ON(!PageTransHuge(page)); 4131 } 4132 /* 4133 * Check if our page_cgroup is valid 4134 */ 4135 pc = lookup_page_cgroup(page); 4136 if (unlikely(!PageCgroupUsed(pc))) 4137 return NULL; 4138 4139 lock_page_cgroup(pc); 4140 4141 memcg = pc->mem_cgroup; 4142 4143 if (!PageCgroupUsed(pc)) 4144 goto unlock_out; 4145 4146 anon = PageAnon(page); 4147 4148 switch (ctype) { 4149 case MEM_CGROUP_CHARGE_TYPE_ANON: 4150 /* 4151 * Generally PageAnon tells if it's the anon statistics to be 4152 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4153 * used before page reached the stage of being marked PageAnon. 4154 */ 4155 anon = true; 4156 /* fallthrough */ 4157 case MEM_CGROUP_CHARGE_TYPE_DROP: 4158 /* See mem_cgroup_prepare_migration() */ 4159 if (page_mapped(page)) 4160 goto unlock_out; 4161 /* 4162 * Pages under migration may not be uncharged. But 4163 * end_migration() /must/ be the one uncharging the 4164 * unused post-migration page and so it has to call 4165 * here with the migration bit still set. See the 4166 * res_counter handling below. 4167 */ 4168 if (!end_migration && PageCgroupMigration(pc)) 4169 goto unlock_out; 4170 break; 4171 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4172 if (!PageAnon(page)) { /* Shared memory */ 4173 if (page->mapping && !page_is_file_cache(page)) 4174 goto unlock_out; 4175 } else if (page_mapped(page)) /* Anon */ 4176 goto unlock_out; 4177 break; 4178 default: 4179 break; 4180 } 4181 4182 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4183 4184 ClearPageCgroupUsed(pc); 4185 /* 4186 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4187 * freed from LRU. This is safe because uncharged page is expected not 4188 * to be reused (freed soon). Exception is SwapCache, it's handled by 4189 * special functions. 4190 */ 4191 4192 unlock_page_cgroup(pc); 4193 /* 4194 * even after unlock, we have memcg->res.usage here and this memcg 4195 * will never be freed, so it's safe to call css_get(). 4196 */ 4197 memcg_check_events(memcg, page); 4198 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4199 mem_cgroup_swap_statistics(memcg, true); 4200 css_get(&memcg->css); 4201 } 4202 /* 4203 * Migration does not charge the res_counter for the 4204 * replacement page, so leave it alone when phasing out the 4205 * page that is unused after the migration. 4206 */ 4207 if (!end_migration && !mem_cgroup_is_root(memcg)) 4208 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4209 4210 return memcg; 4211 4212 unlock_out: 4213 unlock_page_cgroup(pc); 4214 return NULL; 4215 } 4216 4217 void mem_cgroup_uncharge_page(struct page *page) 4218 { 4219 /* early check. */ 4220 if (page_mapped(page)) 4221 return; 4222 VM_BUG_ON(page->mapping && !PageAnon(page)); 4223 /* 4224 * If the page is in swap cache, uncharge should be deferred 4225 * to the swap path, which also properly accounts swap usage 4226 * and handles memcg lifetime. 4227 * 4228 * Note that this check is not stable and reclaim may add the 4229 * page to swap cache at any time after this. However, if the 4230 * page is not in swap cache by the time page->mapcount hits 4231 * 0, there won't be any page table references to the swap 4232 * slot, and reclaim will free it and not actually write the 4233 * page to disk. 4234 */ 4235 if (PageSwapCache(page)) 4236 return; 4237 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4238 } 4239 4240 void mem_cgroup_uncharge_cache_page(struct page *page) 4241 { 4242 VM_BUG_ON(page_mapped(page)); 4243 VM_BUG_ON(page->mapping); 4244 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4245 } 4246 4247 /* 4248 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4249 * In that cases, pages are freed continuously and we can expect pages 4250 * are in the same memcg. All these calls itself limits the number of 4251 * pages freed at once, then uncharge_start/end() is called properly. 4252 * This may be called prural(2) times in a context, 4253 */ 4254 4255 void mem_cgroup_uncharge_start(void) 4256 { 4257 current->memcg_batch.do_batch++; 4258 /* We can do nest. */ 4259 if (current->memcg_batch.do_batch == 1) { 4260 current->memcg_batch.memcg = NULL; 4261 current->memcg_batch.nr_pages = 0; 4262 current->memcg_batch.memsw_nr_pages = 0; 4263 } 4264 } 4265 4266 void mem_cgroup_uncharge_end(void) 4267 { 4268 struct memcg_batch_info *batch = ¤t->memcg_batch; 4269 4270 if (!batch->do_batch) 4271 return; 4272 4273 batch->do_batch--; 4274 if (batch->do_batch) /* If stacked, do nothing. */ 4275 return; 4276 4277 if (!batch->memcg) 4278 return; 4279 /* 4280 * This "batch->memcg" is valid without any css_get/put etc... 4281 * bacause we hide charges behind us. 4282 */ 4283 if (batch->nr_pages) 4284 res_counter_uncharge(&batch->memcg->res, 4285 batch->nr_pages * PAGE_SIZE); 4286 if (batch->memsw_nr_pages) 4287 res_counter_uncharge(&batch->memcg->memsw, 4288 batch->memsw_nr_pages * PAGE_SIZE); 4289 memcg_oom_recover(batch->memcg); 4290 /* forget this pointer (for sanity check) */ 4291 batch->memcg = NULL; 4292 } 4293 4294 #ifdef CONFIG_SWAP 4295 /* 4296 * called after __delete_from_swap_cache() and drop "page" account. 4297 * memcg information is recorded to swap_cgroup of "ent" 4298 */ 4299 void 4300 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4301 { 4302 struct mem_cgroup *memcg; 4303 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4304 4305 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4306 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4307 4308 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4309 4310 /* 4311 * record memcg information, if swapout && memcg != NULL, 4312 * css_get() was called in uncharge(). 4313 */ 4314 if (do_swap_account && swapout && memcg) 4315 swap_cgroup_record(ent, css_id(&memcg->css)); 4316 } 4317 #endif 4318 4319 #ifdef CONFIG_MEMCG_SWAP 4320 /* 4321 * called from swap_entry_free(). remove record in swap_cgroup and 4322 * uncharge "memsw" account. 4323 */ 4324 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4325 { 4326 struct mem_cgroup *memcg; 4327 unsigned short id; 4328 4329 if (!do_swap_account) 4330 return; 4331 4332 id = swap_cgroup_record(ent, 0); 4333 rcu_read_lock(); 4334 memcg = mem_cgroup_lookup(id); 4335 if (memcg) { 4336 /* 4337 * We uncharge this because swap is freed. 4338 * This memcg can be obsolete one. We avoid calling css_tryget 4339 */ 4340 if (!mem_cgroup_is_root(memcg)) 4341 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4342 mem_cgroup_swap_statistics(memcg, false); 4343 css_put(&memcg->css); 4344 } 4345 rcu_read_unlock(); 4346 } 4347 4348 /** 4349 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4350 * @entry: swap entry to be moved 4351 * @from: mem_cgroup which the entry is moved from 4352 * @to: mem_cgroup which the entry is moved to 4353 * 4354 * It succeeds only when the swap_cgroup's record for this entry is the same 4355 * as the mem_cgroup's id of @from. 4356 * 4357 * Returns 0 on success, -EINVAL on failure. 4358 * 4359 * The caller must have charged to @to, IOW, called res_counter_charge() about 4360 * both res and memsw, and called css_get(). 4361 */ 4362 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4363 struct mem_cgroup *from, struct mem_cgroup *to) 4364 { 4365 unsigned short old_id, new_id; 4366 4367 old_id = css_id(&from->css); 4368 new_id = css_id(&to->css); 4369 4370 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4371 mem_cgroup_swap_statistics(from, false); 4372 mem_cgroup_swap_statistics(to, true); 4373 /* 4374 * This function is only called from task migration context now. 4375 * It postpones res_counter and refcount handling till the end 4376 * of task migration(mem_cgroup_clear_mc()) for performance 4377 * improvement. But we cannot postpone css_get(to) because if 4378 * the process that has been moved to @to does swap-in, the 4379 * refcount of @to might be decreased to 0. 4380 * 4381 * We are in attach() phase, so the cgroup is guaranteed to be 4382 * alive, so we can just call css_get(). 4383 */ 4384 css_get(&to->css); 4385 return 0; 4386 } 4387 return -EINVAL; 4388 } 4389 #else 4390 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4391 struct mem_cgroup *from, struct mem_cgroup *to) 4392 { 4393 return -EINVAL; 4394 } 4395 #endif 4396 4397 /* 4398 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4399 * page belongs to. 4400 */ 4401 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4402 struct mem_cgroup **memcgp) 4403 { 4404 struct mem_cgroup *memcg = NULL; 4405 unsigned int nr_pages = 1; 4406 struct page_cgroup *pc; 4407 enum charge_type ctype; 4408 4409 *memcgp = NULL; 4410 4411 if (mem_cgroup_disabled()) 4412 return; 4413 4414 if (PageTransHuge(page)) 4415 nr_pages <<= compound_order(page); 4416 4417 pc = lookup_page_cgroup(page); 4418 lock_page_cgroup(pc); 4419 if (PageCgroupUsed(pc)) { 4420 memcg = pc->mem_cgroup; 4421 css_get(&memcg->css); 4422 /* 4423 * At migrating an anonymous page, its mapcount goes down 4424 * to 0 and uncharge() will be called. But, even if it's fully 4425 * unmapped, migration may fail and this page has to be 4426 * charged again. We set MIGRATION flag here and delay uncharge 4427 * until end_migration() is called 4428 * 4429 * Corner Case Thinking 4430 * A) 4431 * When the old page was mapped as Anon and it's unmap-and-freed 4432 * while migration was ongoing. 4433 * If unmap finds the old page, uncharge() of it will be delayed 4434 * until end_migration(). If unmap finds a new page, it's 4435 * uncharged when it make mapcount to be 1->0. If unmap code 4436 * finds swap_migration_entry, the new page will not be mapped 4437 * and end_migration() will find it(mapcount==0). 4438 * 4439 * B) 4440 * When the old page was mapped but migraion fails, the kernel 4441 * remaps it. A charge for it is kept by MIGRATION flag even 4442 * if mapcount goes down to 0. We can do remap successfully 4443 * without charging it again. 4444 * 4445 * C) 4446 * The "old" page is under lock_page() until the end of 4447 * migration, so, the old page itself will not be swapped-out. 4448 * If the new page is swapped out before end_migraton, our 4449 * hook to usual swap-out path will catch the event. 4450 */ 4451 if (PageAnon(page)) 4452 SetPageCgroupMigration(pc); 4453 } 4454 unlock_page_cgroup(pc); 4455 /* 4456 * If the page is not charged at this point, 4457 * we return here. 4458 */ 4459 if (!memcg) 4460 return; 4461 4462 *memcgp = memcg; 4463 /* 4464 * We charge new page before it's used/mapped. So, even if unlock_page() 4465 * is called before end_migration, we can catch all events on this new 4466 * page. In the case new page is migrated but not remapped, new page's 4467 * mapcount will be finally 0 and we call uncharge in end_migration(). 4468 */ 4469 if (PageAnon(page)) 4470 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4471 else 4472 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4473 /* 4474 * The page is committed to the memcg, but it's not actually 4475 * charged to the res_counter since we plan on replacing the 4476 * old one and only one page is going to be left afterwards. 4477 */ 4478 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4479 } 4480 4481 /* remove redundant charge if migration failed*/ 4482 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4483 struct page *oldpage, struct page *newpage, bool migration_ok) 4484 { 4485 struct page *used, *unused; 4486 struct page_cgroup *pc; 4487 bool anon; 4488 4489 if (!memcg) 4490 return; 4491 4492 if (!migration_ok) { 4493 used = oldpage; 4494 unused = newpage; 4495 } else { 4496 used = newpage; 4497 unused = oldpage; 4498 } 4499 anon = PageAnon(used); 4500 __mem_cgroup_uncharge_common(unused, 4501 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4502 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4503 true); 4504 css_put(&memcg->css); 4505 /* 4506 * We disallowed uncharge of pages under migration because mapcount 4507 * of the page goes down to zero, temporarly. 4508 * Clear the flag and check the page should be charged. 4509 */ 4510 pc = lookup_page_cgroup(oldpage); 4511 lock_page_cgroup(pc); 4512 ClearPageCgroupMigration(pc); 4513 unlock_page_cgroup(pc); 4514 4515 /* 4516 * If a page is a file cache, radix-tree replacement is very atomic 4517 * and we can skip this check. When it was an Anon page, its mapcount 4518 * goes down to 0. But because we added MIGRATION flage, it's not 4519 * uncharged yet. There are several case but page->mapcount check 4520 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4521 * check. (see prepare_charge() also) 4522 */ 4523 if (anon) 4524 mem_cgroup_uncharge_page(used); 4525 } 4526 4527 /* 4528 * At replace page cache, newpage is not under any memcg but it's on 4529 * LRU. So, this function doesn't touch res_counter but handles LRU 4530 * in correct way. Both pages are locked so we cannot race with uncharge. 4531 */ 4532 void mem_cgroup_replace_page_cache(struct page *oldpage, 4533 struct page *newpage) 4534 { 4535 struct mem_cgroup *memcg = NULL; 4536 struct page_cgroup *pc; 4537 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4538 4539 if (mem_cgroup_disabled()) 4540 return; 4541 4542 pc = lookup_page_cgroup(oldpage); 4543 /* fix accounting on old pages */ 4544 lock_page_cgroup(pc); 4545 if (PageCgroupUsed(pc)) { 4546 memcg = pc->mem_cgroup; 4547 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4548 ClearPageCgroupUsed(pc); 4549 } 4550 unlock_page_cgroup(pc); 4551 4552 /* 4553 * When called from shmem_replace_page(), in some cases the 4554 * oldpage has already been charged, and in some cases not. 4555 */ 4556 if (!memcg) 4557 return; 4558 /* 4559 * Even if newpage->mapping was NULL before starting replacement, 4560 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4561 * LRU while we overwrite pc->mem_cgroup. 4562 */ 4563 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4564 } 4565 4566 #ifdef CONFIG_DEBUG_VM 4567 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4568 { 4569 struct page_cgroup *pc; 4570 4571 pc = lookup_page_cgroup(page); 4572 /* 4573 * Can be NULL while feeding pages into the page allocator for 4574 * the first time, i.e. during boot or memory hotplug; 4575 * or when mem_cgroup_disabled(). 4576 */ 4577 if (likely(pc) && PageCgroupUsed(pc)) 4578 return pc; 4579 return NULL; 4580 } 4581 4582 bool mem_cgroup_bad_page_check(struct page *page) 4583 { 4584 if (mem_cgroup_disabled()) 4585 return false; 4586 4587 return lookup_page_cgroup_used(page) != NULL; 4588 } 4589 4590 void mem_cgroup_print_bad_page(struct page *page) 4591 { 4592 struct page_cgroup *pc; 4593 4594 pc = lookup_page_cgroup_used(page); 4595 if (pc) { 4596 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4597 pc, pc->flags, pc->mem_cgroup); 4598 } 4599 } 4600 #endif 4601 4602 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4603 unsigned long long val) 4604 { 4605 int retry_count; 4606 u64 memswlimit, memlimit; 4607 int ret = 0; 4608 int children = mem_cgroup_count_children(memcg); 4609 u64 curusage, oldusage; 4610 int enlarge; 4611 4612 /* 4613 * For keeping hierarchical_reclaim simple, how long we should retry 4614 * is depends on callers. We set our retry-count to be function 4615 * of # of children which we should visit in this loop. 4616 */ 4617 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4618 4619 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4620 4621 enlarge = 0; 4622 while (retry_count) { 4623 if (signal_pending(current)) { 4624 ret = -EINTR; 4625 break; 4626 } 4627 /* 4628 * Rather than hide all in some function, I do this in 4629 * open coded manner. You see what this really does. 4630 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4631 */ 4632 mutex_lock(&set_limit_mutex); 4633 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4634 if (memswlimit < val) { 4635 ret = -EINVAL; 4636 mutex_unlock(&set_limit_mutex); 4637 break; 4638 } 4639 4640 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4641 if (memlimit < val) 4642 enlarge = 1; 4643 4644 ret = res_counter_set_limit(&memcg->res, val); 4645 if (!ret) { 4646 if (memswlimit == val) 4647 memcg->memsw_is_minimum = true; 4648 else 4649 memcg->memsw_is_minimum = false; 4650 } 4651 mutex_unlock(&set_limit_mutex); 4652 4653 if (!ret) 4654 break; 4655 4656 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4657 MEM_CGROUP_RECLAIM_SHRINK); 4658 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4659 /* Usage is reduced ? */ 4660 if (curusage >= oldusage) 4661 retry_count--; 4662 else 4663 oldusage = curusage; 4664 } 4665 if (!ret && enlarge) 4666 memcg_oom_recover(memcg); 4667 4668 return ret; 4669 } 4670 4671 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4672 unsigned long long val) 4673 { 4674 int retry_count; 4675 u64 memlimit, memswlimit, oldusage, curusage; 4676 int children = mem_cgroup_count_children(memcg); 4677 int ret = -EBUSY; 4678 int enlarge = 0; 4679 4680 /* see mem_cgroup_resize_res_limit */ 4681 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4682 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4683 while (retry_count) { 4684 if (signal_pending(current)) { 4685 ret = -EINTR; 4686 break; 4687 } 4688 /* 4689 * Rather than hide all in some function, I do this in 4690 * open coded manner. You see what this really does. 4691 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4692 */ 4693 mutex_lock(&set_limit_mutex); 4694 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4695 if (memlimit > val) { 4696 ret = -EINVAL; 4697 mutex_unlock(&set_limit_mutex); 4698 break; 4699 } 4700 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4701 if (memswlimit < val) 4702 enlarge = 1; 4703 ret = res_counter_set_limit(&memcg->memsw, val); 4704 if (!ret) { 4705 if (memlimit == val) 4706 memcg->memsw_is_minimum = true; 4707 else 4708 memcg->memsw_is_minimum = false; 4709 } 4710 mutex_unlock(&set_limit_mutex); 4711 4712 if (!ret) 4713 break; 4714 4715 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4716 MEM_CGROUP_RECLAIM_NOSWAP | 4717 MEM_CGROUP_RECLAIM_SHRINK); 4718 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4719 /* Usage is reduced ? */ 4720 if (curusage >= oldusage) 4721 retry_count--; 4722 else 4723 oldusage = curusage; 4724 } 4725 if (!ret && enlarge) 4726 memcg_oom_recover(memcg); 4727 return ret; 4728 } 4729 4730 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4731 gfp_t gfp_mask, 4732 unsigned long *total_scanned) 4733 { 4734 unsigned long nr_reclaimed = 0; 4735 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4736 unsigned long reclaimed; 4737 int loop = 0; 4738 struct mem_cgroup_tree_per_zone *mctz; 4739 unsigned long long excess; 4740 unsigned long nr_scanned; 4741 4742 if (order > 0) 4743 return 0; 4744 4745 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4746 /* 4747 * This loop can run a while, specially if mem_cgroup's continuously 4748 * keep exceeding their soft limit and putting the system under 4749 * pressure 4750 */ 4751 do { 4752 if (next_mz) 4753 mz = next_mz; 4754 else 4755 mz = mem_cgroup_largest_soft_limit_node(mctz); 4756 if (!mz) 4757 break; 4758 4759 nr_scanned = 0; 4760 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4761 gfp_mask, &nr_scanned); 4762 nr_reclaimed += reclaimed; 4763 *total_scanned += nr_scanned; 4764 spin_lock(&mctz->lock); 4765 4766 /* 4767 * If we failed to reclaim anything from this memory cgroup 4768 * it is time to move on to the next cgroup 4769 */ 4770 next_mz = NULL; 4771 if (!reclaimed) { 4772 do { 4773 /* 4774 * Loop until we find yet another one. 4775 * 4776 * By the time we get the soft_limit lock 4777 * again, someone might have aded the 4778 * group back on the RB tree. Iterate to 4779 * make sure we get a different mem. 4780 * mem_cgroup_largest_soft_limit_node returns 4781 * NULL if no other cgroup is present on 4782 * the tree 4783 */ 4784 next_mz = 4785 __mem_cgroup_largest_soft_limit_node(mctz); 4786 if (next_mz == mz) 4787 css_put(&next_mz->memcg->css); 4788 else /* next_mz == NULL or other memcg */ 4789 break; 4790 } while (1); 4791 } 4792 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4793 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4794 /* 4795 * One school of thought says that we should not add 4796 * back the node to the tree if reclaim returns 0. 4797 * But our reclaim could return 0, simply because due 4798 * to priority we are exposing a smaller subset of 4799 * memory to reclaim from. Consider this as a longer 4800 * term TODO. 4801 */ 4802 /* If excess == 0, no tree ops */ 4803 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4804 spin_unlock(&mctz->lock); 4805 css_put(&mz->memcg->css); 4806 loop++; 4807 /* 4808 * Could not reclaim anything and there are no more 4809 * mem cgroups to try or we seem to be looping without 4810 * reclaiming anything. 4811 */ 4812 if (!nr_reclaimed && 4813 (next_mz == NULL || 4814 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4815 break; 4816 } while (!nr_reclaimed); 4817 if (next_mz) 4818 css_put(&next_mz->memcg->css); 4819 return nr_reclaimed; 4820 } 4821 4822 /** 4823 * mem_cgroup_force_empty_list - clears LRU of a group 4824 * @memcg: group to clear 4825 * @node: NUMA node 4826 * @zid: zone id 4827 * @lru: lru to to clear 4828 * 4829 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4830 * reclaim the pages page themselves - pages are moved to the parent (or root) 4831 * group. 4832 */ 4833 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4834 int node, int zid, enum lru_list lru) 4835 { 4836 struct lruvec *lruvec; 4837 unsigned long flags; 4838 struct list_head *list; 4839 struct page *busy; 4840 struct zone *zone; 4841 4842 zone = &NODE_DATA(node)->node_zones[zid]; 4843 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4844 list = &lruvec->lists[lru]; 4845 4846 busy = NULL; 4847 do { 4848 struct page_cgroup *pc; 4849 struct page *page; 4850 4851 spin_lock_irqsave(&zone->lru_lock, flags); 4852 if (list_empty(list)) { 4853 spin_unlock_irqrestore(&zone->lru_lock, flags); 4854 break; 4855 } 4856 page = list_entry(list->prev, struct page, lru); 4857 if (busy == page) { 4858 list_move(&page->lru, list); 4859 busy = NULL; 4860 spin_unlock_irqrestore(&zone->lru_lock, flags); 4861 continue; 4862 } 4863 spin_unlock_irqrestore(&zone->lru_lock, flags); 4864 4865 pc = lookup_page_cgroup(page); 4866 4867 if (mem_cgroup_move_parent(page, pc, memcg)) { 4868 /* found lock contention or "pc" is obsolete. */ 4869 busy = page; 4870 cond_resched(); 4871 } else 4872 busy = NULL; 4873 } while (!list_empty(list)); 4874 } 4875 4876 /* 4877 * make mem_cgroup's charge to be 0 if there is no task by moving 4878 * all the charges and pages to the parent. 4879 * This enables deleting this mem_cgroup. 4880 * 4881 * Caller is responsible for holding css reference on the memcg. 4882 */ 4883 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4884 { 4885 int node, zid; 4886 u64 usage; 4887 4888 do { 4889 /* This is for making all *used* pages to be on LRU. */ 4890 lru_add_drain_all(); 4891 drain_all_stock_sync(memcg); 4892 mem_cgroup_start_move(memcg); 4893 for_each_node_state(node, N_MEMORY) { 4894 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4895 enum lru_list lru; 4896 for_each_lru(lru) { 4897 mem_cgroup_force_empty_list(memcg, 4898 node, zid, lru); 4899 } 4900 } 4901 } 4902 mem_cgroup_end_move(memcg); 4903 memcg_oom_recover(memcg); 4904 cond_resched(); 4905 4906 /* 4907 * Kernel memory may not necessarily be trackable to a specific 4908 * process. So they are not migrated, and therefore we can't 4909 * expect their value to drop to 0 here. 4910 * Having res filled up with kmem only is enough. 4911 * 4912 * This is a safety check because mem_cgroup_force_empty_list 4913 * could have raced with mem_cgroup_replace_page_cache callers 4914 * so the lru seemed empty but the page could have been added 4915 * right after the check. RES_USAGE should be safe as we always 4916 * charge before adding to the LRU. 4917 */ 4918 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4919 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4920 } while (usage > 0); 4921 } 4922 4923 /* 4924 * This mainly exists for tests during the setting of set of use_hierarchy. 4925 * Since this is the very setting we are changing, the current hierarchy value 4926 * is meaningless 4927 */ 4928 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4929 { 4930 struct cgroup_subsys_state *pos; 4931 4932 /* bounce at first found */ 4933 css_for_each_child(pos, &memcg->css) 4934 return true; 4935 return false; 4936 } 4937 4938 /* 4939 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4940 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4941 * from mem_cgroup_count_children(), in the sense that we don't really care how 4942 * many children we have; we only need to know if we have any. It also counts 4943 * any memcg without hierarchy as infertile. 4944 */ 4945 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4946 { 4947 return memcg->use_hierarchy && __memcg_has_children(memcg); 4948 } 4949 4950 /* 4951 * Reclaims as many pages from the given memcg as possible and moves 4952 * the rest to the parent. 4953 * 4954 * Caller is responsible for holding css reference for memcg. 4955 */ 4956 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4957 { 4958 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4959 struct cgroup *cgrp = memcg->css.cgroup; 4960 4961 /* returns EBUSY if there is a task or if we come here twice. */ 4962 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4963 return -EBUSY; 4964 4965 /* we call try-to-free pages for make this cgroup empty */ 4966 lru_add_drain_all(); 4967 /* try to free all pages in this cgroup */ 4968 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4969 int progress; 4970 4971 if (signal_pending(current)) 4972 return -EINTR; 4973 4974 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4975 false); 4976 if (!progress) { 4977 nr_retries--; 4978 /* maybe some writeback is necessary */ 4979 congestion_wait(BLK_RW_ASYNC, HZ/10); 4980 } 4981 4982 } 4983 lru_add_drain(); 4984 mem_cgroup_reparent_charges(memcg); 4985 4986 return 0; 4987 } 4988 4989 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 4990 unsigned int event) 4991 { 4992 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4993 int ret; 4994 4995 if (mem_cgroup_is_root(memcg)) 4996 return -EINVAL; 4997 css_get(&memcg->css); 4998 ret = mem_cgroup_force_empty(memcg); 4999 css_put(&memcg->css); 5000 5001 return ret; 5002 } 5003 5004 5005 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 5006 struct cftype *cft) 5007 { 5008 return mem_cgroup_from_css(css)->use_hierarchy; 5009 } 5010 5011 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 5012 struct cftype *cft, u64 val) 5013 { 5014 int retval = 0; 5015 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5016 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5017 5018 mutex_lock(&memcg_create_mutex); 5019 5020 if (memcg->use_hierarchy == val) 5021 goto out; 5022 5023 /* 5024 * If parent's use_hierarchy is set, we can't make any modifications 5025 * in the child subtrees. If it is unset, then the change can 5026 * occur, provided the current cgroup has no children. 5027 * 5028 * For the root cgroup, parent_mem is NULL, we allow value to be 5029 * set if there are no children. 5030 */ 5031 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 5032 (val == 1 || val == 0)) { 5033 if (!__memcg_has_children(memcg)) 5034 memcg->use_hierarchy = val; 5035 else 5036 retval = -EBUSY; 5037 } else 5038 retval = -EINVAL; 5039 5040 out: 5041 mutex_unlock(&memcg_create_mutex); 5042 5043 return retval; 5044 } 5045 5046 5047 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5048 enum mem_cgroup_stat_index idx) 5049 { 5050 struct mem_cgroup *iter; 5051 long val = 0; 5052 5053 /* Per-cpu values can be negative, use a signed accumulator */ 5054 for_each_mem_cgroup_tree(iter, memcg) 5055 val += mem_cgroup_read_stat(iter, idx); 5056 5057 if (val < 0) /* race ? */ 5058 val = 0; 5059 return val; 5060 } 5061 5062 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5063 { 5064 u64 val; 5065 5066 if (!mem_cgroup_is_root(memcg)) { 5067 if (!swap) 5068 return res_counter_read_u64(&memcg->res, RES_USAGE); 5069 else 5070 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5071 } 5072 5073 /* 5074 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 5075 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 5076 */ 5077 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5078 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5079 5080 if (swap) 5081 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5082 5083 return val << PAGE_SHIFT; 5084 } 5085 5086 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, 5087 struct cftype *cft, struct file *file, 5088 char __user *buf, size_t nbytes, loff_t *ppos) 5089 { 5090 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5091 char str[64]; 5092 u64 val; 5093 int name, len; 5094 enum res_type type; 5095 5096 type = MEMFILE_TYPE(cft->private); 5097 name = MEMFILE_ATTR(cft->private); 5098 5099 switch (type) { 5100 case _MEM: 5101 if (name == RES_USAGE) 5102 val = mem_cgroup_usage(memcg, false); 5103 else 5104 val = res_counter_read_u64(&memcg->res, name); 5105 break; 5106 case _MEMSWAP: 5107 if (name == RES_USAGE) 5108 val = mem_cgroup_usage(memcg, true); 5109 else 5110 val = res_counter_read_u64(&memcg->memsw, name); 5111 break; 5112 case _KMEM: 5113 val = res_counter_read_u64(&memcg->kmem, name); 5114 break; 5115 default: 5116 BUG(); 5117 } 5118 5119 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5120 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5121 } 5122 5123 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) 5124 { 5125 int ret = -EINVAL; 5126 #ifdef CONFIG_MEMCG_KMEM 5127 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5128 /* 5129 * For simplicity, we won't allow this to be disabled. It also can't 5130 * be changed if the cgroup has children already, or if tasks had 5131 * already joined. 5132 * 5133 * If tasks join before we set the limit, a person looking at 5134 * kmem.usage_in_bytes will have no way to determine when it took 5135 * place, which makes the value quite meaningless. 5136 * 5137 * After it first became limited, changes in the value of the limit are 5138 * of course permitted. 5139 */ 5140 mutex_lock(&memcg_create_mutex); 5141 mutex_lock(&set_limit_mutex); 5142 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 5143 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { 5144 ret = -EBUSY; 5145 goto out; 5146 } 5147 ret = res_counter_set_limit(&memcg->kmem, val); 5148 VM_BUG_ON(ret); 5149 5150 ret = memcg_update_cache_sizes(memcg); 5151 if (ret) { 5152 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 5153 goto out; 5154 } 5155 static_key_slow_inc(&memcg_kmem_enabled_key); 5156 /* 5157 * setting the active bit after the inc will guarantee no one 5158 * starts accounting before all call sites are patched 5159 */ 5160 memcg_kmem_set_active(memcg); 5161 } else 5162 ret = res_counter_set_limit(&memcg->kmem, val); 5163 out: 5164 mutex_unlock(&set_limit_mutex); 5165 mutex_unlock(&memcg_create_mutex); 5166 #endif 5167 return ret; 5168 } 5169 5170 #ifdef CONFIG_MEMCG_KMEM 5171 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5172 { 5173 int ret = 0; 5174 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5175 if (!parent) 5176 goto out; 5177 5178 memcg->kmem_account_flags = parent->kmem_account_flags; 5179 /* 5180 * When that happen, we need to disable the static branch only on those 5181 * memcgs that enabled it. To achieve this, we would be forced to 5182 * complicate the code by keeping track of which memcgs were the ones 5183 * that actually enabled limits, and which ones got it from its 5184 * parents. 5185 * 5186 * It is a lot simpler just to do static_key_slow_inc() on every child 5187 * that is accounted. 5188 */ 5189 if (!memcg_kmem_is_active(memcg)) 5190 goto out; 5191 5192 /* 5193 * __mem_cgroup_free() will issue static_key_slow_dec() because this 5194 * memcg is active already. If the later initialization fails then the 5195 * cgroup core triggers the cleanup so we do not have to do it here. 5196 */ 5197 static_key_slow_inc(&memcg_kmem_enabled_key); 5198 5199 mutex_lock(&set_limit_mutex); 5200 memcg_stop_kmem_account(); 5201 ret = memcg_update_cache_sizes(memcg); 5202 memcg_resume_kmem_account(); 5203 mutex_unlock(&set_limit_mutex); 5204 out: 5205 return ret; 5206 } 5207 #endif /* CONFIG_MEMCG_KMEM */ 5208 5209 /* 5210 * The user of this function is... 5211 * RES_LIMIT. 5212 */ 5213 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5214 const char *buffer) 5215 { 5216 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5217 enum res_type type; 5218 int name; 5219 unsigned long long val; 5220 int ret; 5221 5222 type = MEMFILE_TYPE(cft->private); 5223 name = MEMFILE_ATTR(cft->private); 5224 5225 switch (name) { 5226 case RES_LIMIT: 5227 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5228 ret = -EINVAL; 5229 break; 5230 } 5231 /* This function does all necessary parse...reuse it */ 5232 ret = res_counter_memparse_write_strategy(buffer, &val); 5233 if (ret) 5234 break; 5235 if (type == _MEM) 5236 ret = mem_cgroup_resize_limit(memcg, val); 5237 else if (type == _MEMSWAP) 5238 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5239 else if (type == _KMEM) 5240 ret = memcg_update_kmem_limit(css, val); 5241 else 5242 return -EINVAL; 5243 break; 5244 case RES_SOFT_LIMIT: 5245 ret = res_counter_memparse_write_strategy(buffer, &val); 5246 if (ret) 5247 break; 5248 /* 5249 * For memsw, soft limits are hard to implement in terms 5250 * of semantics, for now, we support soft limits for 5251 * control without swap 5252 */ 5253 if (type == _MEM) 5254 ret = res_counter_set_soft_limit(&memcg->res, val); 5255 else 5256 ret = -EINVAL; 5257 break; 5258 default: 5259 ret = -EINVAL; /* should be BUG() ? */ 5260 break; 5261 } 5262 return ret; 5263 } 5264 5265 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5266 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5267 { 5268 unsigned long long min_limit, min_memsw_limit, tmp; 5269 5270 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5271 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5272 if (!memcg->use_hierarchy) 5273 goto out; 5274 5275 while (css_parent(&memcg->css)) { 5276 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5277 if (!memcg->use_hierarchy) 5278 break; 5279 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5280 min_limit = min(min_limit, tmp); 5281 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5282 min_memsw_limit = min(min_memsw_limit, tmp); 5283 } 5284 out: 5285 *mem_limit = min_limit; 5286 *memsw_limit = min_memsw_limit; 5287 } 5288 5289 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5290 { 5291 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5292 int name; 5293 enum res_type type; 5294 5295 type = MEMFILE_TYPE(event); 5296 name = MEMFILE_ATTR(event); 5297 5298 switch (name) { 5299 case RES_MAX_USAGE: 5300 if (type == _MEM) 5301 res_counter_reset_max(&memcg->res); 5302 else if (type == _MEMSWAP) 5303 res_counter_reset_max(&memcg->memsw); 5304 else if (type == _KMEM) 5305 res_counter_reset_max(&memcg->kmem); 5306 else 5307 return -EINVAL; 5308 break; 5309 case RES_FAILCNT: 5310 if (type == _MEM) 5311 res_counter_reset_failcnt(&memcg->res); 5312 else if (type == _MEMSWAP) 5313 res_counter_reset_failcnt(&memcg->memsw); 5314 else if (type == _KMEM) 5315 res_counter_reset_failcnt(&memcg->kmem); 5316 else 5317 return -EINVAL; 5318 break; 5319 } 5320 5321 return 0; 5322 } 5323 5324 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5325 struct cftype *cft) 5326 { 5327 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5328 } 5329 5330 #ifdef CONFIG_MMU 5331 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5332 struct cftype *cft, u64 val) 5333 { 5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5335 5336 if (val >= (1 << NR_MOVE_TYPE)) 5337 return -EINVAL; 5338 5339 /* 5340 * No kind of locking is needed in here, because ->can_attach() will 5341 * check this value once in the beginning of the process, and then carry 5342 * on with stale data. This means that changes to this value will only 5343 * affect task migrations starting after the change. 5344 */ 5345 memcg->move_charge_at_immigrate = val; 5346 return 0; 5347 } 5348 #else 5349 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5350 struct cftype *cft, u64 val) 5351 { 5352 return -ENOSYS; 5353 } 5354 #endif 5355 5356 #ifdef CONFIG_NUMA 5357 static int memcg_numa_stat_show(struct cgroup_subsys_state *css, 5358 struct cftype *cft, struct seq_file *m) 5359 { 5360 int nid; 5361 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5362 unsigned long node_nr; 5363 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5364 5365 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5366 seq_printf(m, "total=%lu", total_nr); 5367 for_each_node_state(nid, N_MEMORY) { 5368 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5369 seq_printf(m, " N%d=%lu", nid, node_nr); 5370 } 5371 seq_putc(m, '\n'); 5372 5373 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5374 seq_printf(m, "file=%lu", file_nr); 5375 for_each_node_state(nid, N_MEMORY) { 5376 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5377 LRU_ALL_FILE); 5378 seq_printf(m, " N%d=%lu", nid, node_nr); 5379 } 5380 seq_putc(m, '\n'); 5381 5382 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5383 seq_printf(m, "anon=%lu", anon_nr); 5384 for_each_node_state(nid, N_MEMORY) { 5385 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5386 LRU_ALL_ANON); 5387 seq_printf(m, " N%d=%lu", nid, node_nr); 5388 } 5389 seq_putc(m, '\n'); 5390 5391 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5392 seq_printf(m, "unevictable=%lu", unevictable_nr); 5393 for_each_node_state(nid, N_MEMORY) { 5394 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5395 BIT(LRU_UNEVICTABLE)); 5396 seq_printf(m, " N%d=%lu", nid, node_nr); 5397 } 5398 seq_putc(m, '\n'); 5399 return 0; 5400 } 5401 #endif /* CONFIG_NUMA */ 5402 5403 static inline void mem_cgroup_lru_names_not_uptodate(void) 5404 { 5405 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5406 } 5407 5408 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, 5409 struct seq_file *m) 5410 { 5411 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5412 struct mem_cgroup *mi; 5413 unsigned int i; 5414 5415 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5416 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5417 continue; 5418 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5419 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5420 } 5421 5422 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5423 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5424 mem_cgroup_read_events(memcg, i)); 5425 5426 for (i = 0; i < NR_LRU_LISTS; i++) 5427 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5428 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5429 5430 /* Hierarchical information */ 5431 { 5432 unsigned long long limit, memsw_limit; 5433 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5434 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5435 if (do_swap_account) 5436 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5437 memsw_limit); 5438 } 5439 5440 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5441 long long val = 0; 5442 5443 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5444 continue; 5445 for_each_mem_cgroup_tree(mi, memcg) 5446 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5447 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5448 } 5449 5450 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5451 unsigned long long val = 0; 5452 5453 for_each_mem_cgroup_tree(mi, memcg) 5454 val += mem_cgroup_read_events(mi, i); 5455 seq_printf(m, "total_%s %llu\n", 5456 mem_cgroup_events_names[i], val); 5457 } 5458 5459 for (i = 0; i < NR_LRU_LISTS; i++) { 5460 unsigned long long val = 0; 5461 5462 for_each_mem_cgroup_tree(mi, memcg) 5463 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5464 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5465 } 5466 5467 #ifdef CONFIG_DEBUG_VM 5468 { 5469 int nid, zid; 5470 struct mem_cgroup_per_zone *mz; 5471 struct zone_reclaim_stat *rstat; 5472 unsigned long recent_rotated[2] = {0, 0}; 5473 unsigned long recent_scanned[2] = {0, 0}; 5474 5475 for_each_online_node(nid) 5476 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5477 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5478 rstat = &mz->lruvec.reclaim_stat; 5479 5480 recent_rotated[0] += rstat->recent_rotated[0]; 5481 recent_rotated[1] += rstat->recent_rotated[1]; 5482 recent_scanned[0] += rstat->recent_scanned[0]; 5483 recent_scanned[1] += rstat->recent_scanned[1]; 5484 } 5485 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5486 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5487 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5488 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5489 } 5490 #endif 5491 5492 return 0; 5493 } 5494 5495 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5496 struct cftype *cft) 5497 { 5498 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5499 5500 return mem_cgroup_swappiness(memcg); 5501 } 5502 5503 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5504 struct cftype *cft, u64 val) 5505 { 5506 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5507 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5508 5509 if (val > 100 || !parent) 5510 return -EINVAL; 5511 5512 mutex_lock(&memcg_create_mutex); 5513 5514 /* If under hierarchy, only empty-root can set this value */ 5515 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5516 mutex_unlock(&memcg_create_mutex); 5517 return -EINVAL; 5518 } 5519 5520 memcg->swappiness = val; 5521 5522 mutex_unlock(&memcg_create_mutex); 5523 5524 return 0; 5525 } 5526 5527 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5528 { 5529 struct mem_cgroup_threshold_ary *t; 5530 u64 usage; 5531 int i; 5532 5533 rcu_read_lock(); 5534 if (!swap) 5535 t = rcu_dereference(memcg->thresholds.primary); 5536 else 5537 t = rcu_dereference(memcg->memsw_thresholds.primary); 5538 5539 if (!t) 5540 goto unlock; 5541 5542 usage = mem_cgroup_usage(memcg, swap); 5543 5544 /* 5545 * current_threshold points to threshold just below or equal to usage. 5546 * If it's not true, a threshold was crossed after last 5547 * call of __mem_cgroup_threshold(). 5548 */ 5549 i = t->current_threshold; 5550 5551 /* 5552 * Iterate backward over array of thresholds starting from 5553 * current_threshold and check if a threshold is crossed. 5554 * If none of thresholds below usage is crossed, we read 5555 * only one element of the array here. 5556 */ 5557 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5558 eventfd_signal(t->entries[i].eventfd, 1); 5559 5560 /* i = current_threshold + 1 */ 5561 i++; 5562 5563 /* 5564 * Iterate forward over array of thresholds starting from 5565 * current_threshold+1 and check if a threshold is crossed. 5566 * If none of thresholds above usage is crossed, we read 5567 * only one element of the array here. 5568 */ 5569 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5570 eventfd_signal(t->entries[i].eventfd, 1); 5571 5572 /* Update current_threshold */ 5573 t->current_threshold = i - 1; 5574 unlock: 5575 rcu_read_unlock(); 5576 } 5577 5578 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5579 { 5580 while (memcg) { 5581 __mem_cgroup_threshold(memcg, false); 5582 if (do_swap_account) 5583 __mem_cgroup_threshold(memcg, true); 5584 5585 memcg = parent_mem_cgroup(memcg); 5586 } 5587 } 5588 5589 static int compare_thresholds(const void *a, const void *b) 5590 { 5591 const struct mem_cgroup_threshold *_a = a; 5592 const struct mem_cgroup_threshold *_b = b; 5593 5594 if (_a->threshold > _b->threshold) 5595 return 1; 5596 5597 if (_a->threshold < _b->threshold) 5598 return -1; 5599 5600 return 0; 5601 } 5602 5603 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5604 { 5605 struct mem_cgroup_eventfd_list *ev; 5606 5607 list_for_each_entry(ev, &memcg->oom_notify, list) 5608 eventfd_signal(ev->eventfd, 1); 5609 return 0; 5610 } 5611 5612 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5613 { 5614 struct mem_cgroup *iter; 5615 5616 for_each_mem_cgroup_tree(iter, memcg) 5617 mem_cgroup_oom_notify_cb(iter); 5618 } 5619 5620 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, 5621 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5622 { 5623 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5624 struct mem_cgroup_thresholds *thresholds; 5625 struct mem_cgroup_threshold_ary *new; 5626 enum res_type type = MEMFILE_TYPE(cft->private); 5627 u64 threshold, usage; 5628 int i, size, ret; 5629 5630 ret = res_counter_memparse_write_strategy(args, &threshold); 5631 if (ret) 5632 return ret; 5633 5634 mutex_lock(&memcg->thresholds_lock); 5635 5636 if (type == _MEM) 5637 thresholds = &memcg->thresholds; 5638 else if (type == _MEMSWAP) 5639 thresholds = &memcg->memsw_thresholds; 5640 else 5641 BUG(); 5642 5643 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5644 5645 /* Check if a threshold crossed before adding a new one */ 5646 if (thresholds->primary) 5647 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5648 5649 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5650 5651 /* Allocate memory for new array of thresholds */ 5652 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5653 GFP_KERNEL); 5654 if (!new) { 5655 ret = -ENOMEM; 5656 goto unlock; 5657 } 5658 new->size = size; 5659 5660 /* Copy thresholds (if any) to new array */ 5661 if (thresholds->primary) { 5662 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5663 sizeof(struct mem_cgroup_threshold)); 5664 } 5665 5666 /* Add new threshold */ 5667 new->entries[size - 1].eventfd = eventfd; 5668 new->entries[size - 1].threshold = threshold; 5669 5670 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5671 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5672 compare_thresholds, NULL); 5673 5674 /* Find current threshold */ 5675 new->current_threshold = -1; 5676 for (i = 0; i < size; i++) { 5677 if (new->entries[i].threshold <= usage) { 5678 /* 5679 * new->current_threshold will not be used until 5680 * rcu_assign_pointer(), so it's safe to increment 5681 * it here. 5682 */ 5683 ++new->current_threshold; 5684 } else 5685 break; 5686 } 5687 5688 /* Free old spare buffer and save old primary buffer as spare */ 5689 kfree(thresholds->spare); 5690 thresholds->spare = thresholds->primary; 5691 5692 rcu_assign_pointer(thresholds->primary, new); 5693 5694 /* To be sure that nobody uses thresholds */ 5695 synchronize_rcu(); 5696 5697 unlock: 5698 mutex_unlock(&memcg->thresholds_lock); 5699 5700 return ret; 5701 } 5702 5703 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, 5704 struct cftype *cft, struct eventfd_ctx *eventfd) 5705 { 5706 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5707 struct mem_cgroup_thresholds *thresholds; 5708 struct mem_cgroup_threshold_ary *new; 5709 enum res_type type = MEMFILE_TYPE(cft->private); 5710 u64 usage; 5711 int i, j, size; 5712 5713 mutex_lock(&memcg->thresholds_lock); 5714 if (type == _MEM) 5715 thresholds = &memcg->thresholds; 5716 else if (type == _MEMSWAP) 5717 thresholds = &memcg->memsw_thresholds; 5718 else 5719 BUG(); 5720 5721 if (!thresholds->primary) 5722 goto unlock; 5723 5724 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5725 5726 /* Check if a threshold crossed before removing */ 5727 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5728 5729 /* Calculate new number of threshold */ 5730 size = 0; 5731 for (i = 0; i < thresholds->primary->size; i++) { 5732 if (thresholds->primary->entries[i].eventfd != eventfd) 5733 size++; 5734 } 5735 5736 new = thresholds->spare; 5737 5738 /* Set thresholds array to NULL if we don't have thresholds */ 5739 if (!size) { 5740 kfree(new); 5741 new = NULL; 5742 goto swap_buffers; 5743 } 5744 5745 new->size = size; 5746 5747 /* Copy thresholds and find current threshold */ 5748 new->current_threshold = -1; 5749 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5750 if (thresholds->primary->entries[i].eventfd == eventfd) 5751 continue; 5752 5753 new->entries[j] = thresholds->primary->entries[i]; 5754 if (new->entries[j].threshold <= usage) { 5755 /* 5756 * new->current_threshold will not be used 5757 * until rcu_assign_pointer(), so it's safe to increment 5758 * it here. 5759 */ 5760 ++new->current_threshold; 5761 } 5762 j++; 5763 } 5764 5765 swap_buffers: 5766 /* Swap primary and spare array */ 5767 thresholds->spare = thresholds->primary; 5768 /* If all events are unregistered, free the spare array */ 5769 if (!new) { 5770 kfree(thresholds->spare); 5771 thresholds->spare = NULL; 5772 } 5773 5774 rcu_assign_pointer(thresholds->primary, new); 5775 5776 /* To be sure that nobody uses thresholds */ 5777 synchronize_rcu(); 5778 unlock: 5779 mutex_unlock(&memcg->thresholds_lock); 5780 } 5781 5782 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, 5783 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5784 { 5785 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5786 struct mem_cgroup_eventfd_list *event; 5787 enum res_type type = MEMFILE_TYPE(cft->private); 5788 5789 BUG_ON(type != _OOM_TYPE); 5790 event = kmalloc(sizeof(*event), GFP_KERNEL); 5791 if (!event) 5792 return -ENOMEM; 5793 5794 spin_lock(&memcg_oom_lock); 5795 5796 event->eventfd = eventfd; 5797 list_add(&event->list, &memcg->oom_notify); 5798 5799 /* already in OOM ? */ 5800 if (atomic_read(&memcg->under_oom)) 5801 eventfd_signal(eventfd, 1); 5802 spin_unlock(&memcg_oom_lock); 5803 5804 return 0; 5805 } 5806 5807 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, 5808 struct cftype *cft, struct eventfd_ctx *eventfd) 5809 { 5810 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5811 struct mem_cgroup_eventfd_list *ev, *tmp; 5812 enum res_type type = MEMFILE_TYPE(cft->private); 5813 5814 BUG_ON(type != _OOM_TYPE); 5815 5816 spin_lock(&memcg_oom_lock); 5817 5818 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5819 if (ev->eventfd == eventfd) { 5820 list_del(&ev->list); 5821 kfree(ev); 5822 } 5823 } 5824 5825 spin_unlock(&memcg_oom_lock); 5826 } 5827 5828 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, 5829 struct cftype *cft, struct cgroup_map_cb *cb) 5830 { 5831 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5832 5833 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5834 5835 if (atomic_read(&memcg->under_oom)) 5836 cb->fill(cb, "under_oom", 1); 5837 else 5838 cb->fill(cb, "under_oom", 0); 5839 return 0; 5840 } 5841 5842 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5843 struct cftype *cft, u64 val) 5844 { 5845 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5846 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5847 5848 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5849 if (!parent || !((val == 0) || (val == 1))) 5850 return -EINVAL; 5851 5852 mutex_lock(&memcg_create_mutex); 5853 /* oom-kill-disable is a flag for subhierarchy. */ 5854 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5855 mutex_unlock(&memcg_create_mutex); 5856 return -EINVAL; 5857 } 5858 memcg->oom_kill_disable = val; 5859 if (!val) 5860 memcg_oom_recover(memcg); 5861 mutex_unlock(&memcg_create_mutex); 5862 return 0; 5863 } 5864 5865 #ifdef CONFIG_MEMCG_KMEM 5866 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5867 { 5868 int ret; 5869 5870 memcg->kmemcg_id = -1; 5871 ret = memcg_propagate_kmem(memcg); 5872 if (ret) 5873 return ret; 5874 5875 return mem_cgroup_sockets_init(memcg, ss); 5876 } 5877 5878 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5879 { 5880 mem_cgroup_sockets_destroy(memcg); 5881 } 5882 5883 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5884 { 5885 if (!memcg_kmem_is_active(memcg)) 5886 return; 5887 5888 /* 5889 * kmem charges can outlive the cgroup. In the case of slab 5890 * pages, for instance, a page contain objects from various 5891 * processes. As we prevent from taking a reference for every 5892 * such allocation we have to be careful when doing uncharge 5893 * (see memcg_uncharge_kmem) and here during offlining. 5894 * 5895 * The idea is that that only the _last_ uncharge which sees 5896 * the dead memcg will drop the last reference. An additional 5897 * reference is taken here before the group is marked dead 5898 * which is then paired with css_put during uncharge resp. here. 5899 * 5900 * Although this might sound strange as this path is called from 5901 * css_offline() when the referencemight have dropped down to 0 5902 * and shouldn't be incremented anymore (css_tryget would fail) 5903 * we do not have other options because of the kmem allocations 5904 * lifetime. 5905 */ 5906 css_get(&memcg->css); 5907 5908 memcg_kmem_mark_dead(memcg); 5909 5910 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5911 return; 5912 5913 if (memcg_kmem_test_and_clear_dead(memcg)) 5914 css_put(&memcg->css); 5915 } 5916 #else 5917 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5918 { 5919 return 0; 5920 } 5921 5922 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5923 { 5924 } 5925 5926 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5927 { 5928 } 5929 #endif 5930 5931 static struct cftype mem_cgroup_files[] = { 5932 { 5933 .name = "usage_in_bytes", 5934 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5935 .read = mem_cgroup_read, 5936 .register_event = mem_cgroup_usage_register_event, 5937 .unregister_event = mem_cgroup_usage_unregister_event, 5938 }, 5939 { 5940 .name = "max_usage_in_bytes", 5941 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5942 .trigger = mem_cgroup_reset, 5943 .read = mem_cgroup_read, 5944 }, 5945 { 5946 .name = "limit_in_bytes", 5947 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5948 .write_string = mem_cgroup_write, 5949 .read = mem_cgroup_read, 5950 }, 5951 { 5952 .name = "soft_limit_in_bytes", 5953 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5954 .write_string = mem_cgroup_write, 5955 .read = mem_cgroup_read, 5956 }, 5957 { 5958 .name = "failcnt", 5959 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5960 .trigger = mem_cgroup_reset, 5961 .read = mem_cgroup_read, 5962 }, 5963 { 5964 .name = "stat", 5965 .read_seq_string = memcg_stat_show, 5966 }, 5967 { 5968 .name = "force_empty", 5969 .trigger = mem_cgroup_force_empty_write, 5970 }, 5971 { 5972 .name = "use_hierarchy", 5973 .flags = CFTYPE_INSANE, 5974 .write_u64 = mem_cgroup_hierarchy_write, 5975 .read_u64 = mem_cgroup_hierarchy_read, 5976 }, 5977 { 5978 .name = "swappiness", 5979 .read_u64 = mem_cgroup_swappiness_read, 5980 .write_u64 = mem_cgroup_swappiness_write, 5981 }, 5982 { 5983 .name = "move_charge_at_immigrate", 5984 .read_u64 = mem_cgroup_move_charge_read, 5985 .write_u64 = mem_cgroup_move_charge_write, 5986 }, 5987 { 5988 .name = "oom_control", 5989 .read_map = mem_cgroup_oom_control_read, 5990 .write_u64 = mem_cgroup_oom_control_write, 5991 .register_event = mem_cgroup_oom_register_event, 5992 .unregister_event = mem_cgroup_oom_unregister_event, 5993 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5994 }, 5995 { 5996 .name = "pressure_level", 5997 .register_event = vmpressure_register_event, 5998 .unregister_event = vmpressure_unregister_event, 5999 }, 6000 #ifdef CONFIG_NUMA 6001 { 6002 .name = "numa_stat", 6003 .read_seq_string = memcg_numa_stat_show, 6004 }, 6005 #endif 6006 #ifdef CONFIG_MEMCG_KMEM 6007 { 6008 .name = "kmem.limit_in_bytes", 6009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6010 .write_string = mem_cgroup_write, 6011 .read = mem_cgroup_read, 6012 }, 6013 { 6014 .name = "kmem.usage_in_bytes", 6015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6016 .read = mem_cgroup_read, 6017 }, 6018 { 6019 .name = "kmem.failcnt", 6020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6021 .trigger = mem_cgroup_reset, 6022 .read = mem_cgroup_read, 6023 }, 6024 { 6025 .name = "kmem.max_usage_in_bytes", 6026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6027 .trigger = mem_cgroup_reset, 6028 .read = mem_cgroup_read, 6029 }, 6030 #ifdef CONFIG_SLABINFO 6031 { 6032 .name = "kmem.slabinfo", 6033 .read_seq_string = mem_cgroup_slabinfo_read, 6034 }, 6035 #endif 6036 #endif 6037 { }, /* terminate */ 6038 }; 6039 6040 #ifdef CONFIG_MEMCG_SWAP 6041 static struct cftype memsw_cgroup_files[] = { 6042 { 6043 .name = "memsw.usage_in_bytes", 6044 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6045 .read = mem_cgroup_read, 6046 .register_event = mem_cgroup_usage_register_event, 6047 .unregister_event = mem_cgroup_usage_unregister_event, 6048 }, 6049 { 6050 .name = "memsw.max_usage_in_bytes", 6051 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6052 .trigger = mem_cgroup_reset, 6053 .read = mem_cgroup_read, 6054 }, 6055 { 6056 .name = "memsw.limit_in_bytes", 6057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6058 .write_string = mem_cgroup_write, 6059 .read = mem_cgroup_read, 6060 }, 6061 { 6062 .name = "memsw.failcnt", 6063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6064 .trigger = mem_cgroup_reset, 6065 .read = mem_cgroup_read, 6066 }, 6067 { }, /* terminate */ 6068 }; 6069 #endif 6070 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6071 { 6072 struct mem_cgroup_per_node *pn; 6073 struct mem_cgroup_per_zone *mz; 6074 int zone, tmp = node; 6075 /* 6076 * This routine is called against possible nodes. 6077 * But it's BUG to call kmalloc() against offline node. 6078 * 6079 * TODO: this routine can waste much memory for nodes which will 6080 * never be onlined. It's better to use memory hotplug callback 6081 * function. 6082 */ 6083 if (!node_state(node, N_NORMAL_MEMORY)) 6084 tmp = -1; 6085 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6086 if (!pn) 6087 return 1; 6088 6089 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6090 mz = &pn->zoneinfo[zone]; 6091 lruvec_init(&mz->lruvec); 6092 mz->usage_in_excess = 0; 6093 mz->on_tree = false; 6094 mz->memcg = memcg; 6095 } 6096 memcg->nodeinfo[node] = pn; 6097 return 0; 6098 } 6099 6100 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6101 { 6102 kfree(memcg->nodeinfo[node]); 6103 } 6104 6105 static struct mem_cgroup *mem_cgroup_alloc(void) 6106 { 6107 struct mem_cgroup *memcg; 6108 size_t size = memcg_size(); 6109 6110 /* Can be very big if nr_node_ids is very big */ 6111 if (size < PAGE_SIZE) 6112 memcg = kzalloc(size, GFP_KERNEL); 6113 else 6114 memcg = vzalloc(size); 6115 6116 if (!memcg) 6117 return NULL; 6118 6119 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6120 if (!memcg->stat) 6121 goto out_free; 6122 spin_lock_init(&memcg->pcp_counter_lock); 6123 return memcg; 6124 6125 out_free: 6126 if (size < PAGE_SIZE) 6127 kfree(memcg); 6128 else 6129 vfree(memcg); 6130 return NULL; 6131 } 6132 6133 /* 6134 * At destroying mem_cgroup, references from swap_cgroup can remain. 6135 * (scanning all at force_empty is too costly...) 6136 * 6137 * Instead of clearing all references at force_empty, we remember 6138 * the number of reference from swap_cgroup and free mem_cgroup when 6139 * it goes down to 0. 6140 * 6141 * Removal of cgroup itself succeeds regardless of refs from swap. 6142 */ 6143 6144 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6145 { 6146 int node; 6147 size_t size = memcg_size(); 6148 6149 mem_cgroup_remove_from_trees(memcg); 6150 free_css_id(&mem_cgroup_subsys, &memcg->css); 6151 6152 for_each_node(node) 6153 free_mem_cgroup_per_zone_info(memcg, node); 6154 6155 free_percpu(memcg->stat); 6156 6157 /* 6158 * We need to make sure that (at least for now), the jump label 6159 * destruction code runs outside of the cgroup lock. This is because 6160 * get_online_cpus(), which is called from the static_branch update, 6161 * can't be called inside the cgroup_lock. cpusets are the ones 6162 * enforcing this dependency, so if they ever change, we might as well. 6163 * 6164 * schedule_work() will guarantee this happens. Be careful if you need 6165 * to move this code around, and make sure it is outside 6166 * the cgroup_lock. 6167 */ 6168 disarm_static_keys(memcg); 6169 if (size < PAGE_SIZE) 6170 kfree(memcg); 6171 else 6172 vfree(memcg); 6173 } 6174 6175 /* 6176 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6177 */ 6178 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6179 { 6180 if (!memcg->res.parent) 6181 return NULL; 6182 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6183 } 6184 EXPORT_SYMBOL(parent_mem_cgroup); 6185 6186 static void __init mem_cgroup_soft_limit_tree_init(void) 6187 { 6188 struct mem_cgroup_tree_per_node *rtpn; 6189 struct mem_cgroup_tree_per_zone *rtpz; 6190 int tmp, node, zone; 6191 6192 for_each_node(node) { 6193 tmp = node; 6194 if (!node_state(node, N_NORMAL_MEMORY)) 6195 tmp = -1; 6196 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6197 BUG_ON(!rtpn); 6198 6199 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6200 6201 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6202 rtpz = &rtpn->rb_tree_per_zone[zone]; 6203 rtpz->rb_root = RB_ROOT; 6204 spin_lock_init(&rtpz->lock); 6205 } 6206 } 6207 } 6208 6209 static struct cgroup_subsys_state * __ref 6210 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6211 { 6212 struct mem_cgroup *memcg; 6213 long error = -ENOMEM; 6214 int node; 6215 6216 memcg = mem_cgroup_alloc(); 6217 if (!memcg) 6218 return ERR_PTR(error); 6219 6220 for_each_node(node) 6221 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6222 goto free_out; 6223 6224 /* root ? */ 6225 if (parent_css == NULL) { 6226 root_mem_cgroup = memcg; 6227 res_counter_init(&memcg->res, NULL); 6228 res_counter_init(&memcg->memsw, NULL); 6229 res_counter_init(&memcg->kmem, NULL); 6230 } 6231 6232 memcg->last_scanned_node = MAX_NUMNODES; 6233 INIT_LIST_HEAD(&memcg->oom_notify); 6234 memcg->move_charge_at_immigrate = 0; 6235 mutex_init(&memcg->thresholds_lock); 6236 spin_lock_init(&memcg->move_lock); 6237 vmpressure_init(&memcg->vmpressure); 6238 6239 return &memcg->css; 6240 6241 free_out: 6242 __mem_cgroup_free(memcg); 6243 return ERR_PTR(error); 6244 } 6245 6246 static int 6247 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6248 { 6249 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6250 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6251 int error = 0; 6252 6253 if (!parent) 6254 return 0; 6255 6256 mutex_lock(&memcg_create_mutex); 6257 6258 memcg->use_hierarchy = parent->use_hierarchy; 6259 memcg->oom_kill_disable = parent->oom_kill_disable; 6260 memcg->swappiness = mem_cgroup_swappiness(parent); 6261 6262 if (parent->use_hierarchy) { 6263 res_counter_init(&memcg->res, &parent->res); 6264 res_counter_init(&memcg->memsw, &parent->memsw); 6265 res_counter_init(&memcg->kmem, &parent->kmem); 6266 6267 /* 6268 * No need to take a reference to the parent because cgroup 6269 * core guarantees its existence. 6270 */ 6271 } else { 6272 res_counter_init(&memcg->res, NULL); 6273 res_counter_init(&memcg->memsw, NULL); 6274 res_counter_init(&memcg->kmem, NULL); 6275 /* 6276 * Deeper hierachy with use_hierarchy == false doesn't make 6277 * much sense so let cgroup subsystem know about this 6278 * unfortunate state in our controller. 6279 */ 6280 if (parent != root_mem_cgroup) 6281 mem_cgroup_subsys.broken_hierarchy = true; 6282 } 6283 6284 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6285 mutex_unlock(&memcg_create_mutex); 6286 return error; 6287 } 6288 6289 /* 6290 * Announce all parents that a group from their hierarchy is gone. 6291 */ 6292 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6293 { 6294 struct mem_cgroup *parent = memcg; 6295 6296 while ((parent = parent_mem_cgroup(parent))) 6297 mem_cgroup_iter_invalidate(parent); 6298 6299 /* 6300 * if the root memcg is not hierarchical we have to check it 6301 * explicitely. 6302 */ 6303 if (!root_mem_cgroup->use_hierarchy) 6304 mem_cgroup_iter_invalidate(root_mem_cgroup); 6305 } 6306 6307 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6308 { 6309 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6310 6311 kmem_cgroup_css_offline(memcg); 6312 6313 mem_cgroup_invalidate_reclaim_iterators(memcg); 6314 mem_cgroup_reparent_charges(memcg); 6315 mem_cgroup_destroy_all_caches(memcg); 6316 vmpressure_cleanup(&memcg->vmpressure); 6317 } 6318 6319 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6320 { 6321 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6322 6323 memcg_destroy_kmem(memcg); 6324 __mem_cgroup_free(memcg); 6325 } 6326 6327 #ifdef CONFIG_MMU 6328 /* Handlers for move charge at task migration. */ 6329 #define PRECHARGE_COUNT_AT_ONCE 256 6330 static int mem_cgroup_do_precharge(unsigned long count) 6331 { 6332 int ret = 0; 6333 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6334 struct mem_cgroup *memcg = mc.to; 6335 6336 if (mem_cgroup_is_root(memcg)) { 6337 mc.precharge += count; 6338 /* we don't need css_get for root */ 6339 return ret; 6340 } 6341 /* try to charge at once */ 6342 if (count > 1) { 6343 struct res_counter *dummy; 6344 /* 6345 * "memcg" cannot be under rmdir() because we've already checked 6346 * by cgroup_lock_live_cgroup() that it is not removed and we 6347 * are still under the same cgroup_mutex. So we can postpone 6348 * css_get(). 6349 */ 6350 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6351 goto one_by_one; 6352 if (do_swap_account && res_counter_charge(&memcg->memsw, 6353 PAGE_SIZE * count, &dummy)) { 6354 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6355 goto one_by_one; 6356 } 6357 mc.precharge += count; 6358 return ret; 6359 } 6360 one_by_one: 6361 /* fall back to one by one charge */ 6362 while (count--) { 6363 if (signal_pending(current)) { 6364 ret = -EINTR; 6365 break; 6366 } 6367 if (!batch_count--) { 6368 batch_count = PRECHARGE_COUNT_AT_ONCE; 6369 cond_resched(); 6370 } 6371 ret = __mem_cgroup_try_charge(NULL, 6372 GFP_KERNEL, 1, &memcg, false); 6373 if (ret) 6374 /* mem_cgroup_clear_mc() will do uncharge later */ 6375 return ret; 6376 mc.precharge++; 6377 } 6378 return ret; 6379 } 6380 6381 /** 6382 * get_mctgt_type - get target type of moving charge 6383 * @vma: the vma the pte to be checked belongs 6384 * @addr: the address corresponding to the pte to be checked 6385 * @ptent: the pte to be checked 6386 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6387 * 6388 * Returns 6389 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6390 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6391 * move charge. if @target is not NULL, the page is stored in target->page 6392 * with extra refcnt got(Callers should handle it). 6393 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6394 * target for charge migration. if @target is not NULL, the entry is stored 6395 * in target->ent. 6396 * 6397 * Called with pte lock held. 6398 */ 6399 union mc_target { 6400 struct page *page; 6401 swp_entry_t ent; 6402 }; 6403 6404 enum mc_target_type { 6405 MC_TARGET_NONE = 0, 6406 MC_TARGET_PAGE, 6407 MC_TARGET_SWAP, 6408 }; 6409 6410 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6411 unsigned long addr, pte_t ptent) 6412 { 6413 struct page *page = vm_normal_page(vma, addr, ptent); 6414 6415 if (!page || !page_mapped(page)) 6416 return NULL; 6417 if (PageAnon(page)) { 6418 /* we don't move shared anon */ 6419 if (!move_anon()) 6420 return NULL; 6421 } else if (!move_file()) 6422 /* we ignore mapcount for file pages */ 6423 return NULL; 6424 if (!get_page_unless_zero(page)) 6425 return NULL; 6426 6427 return page; 6428 } 6429 6430 #ifdef CONFIG_SWAP 6431 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6432 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6433 { 6434 struct page *page = NULL; 6435 swp_entry_t ent = pte_to_swp_entry(ptent); 6436 6437 if (!move_anon() || non_swap_entry(ent)) 6438 return NULL; 6439 /* 6440 * Because lookup_swap_cache() updates some statistics counter, 6441 * we call find_get_page() with swapper_space directly. 6442 */ 6443 page = find_get_page(swap_address_space(ent), ent.val); 6444 if (do_swap_account) 6445 entry->val = ent.val; 6446 6447 return page; 6448 } 6449 #else 6450 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6451 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6452 { 6453 return NULL; 6454 } 6455 #endif 6456 6457 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6458 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6459 { 6460 struct page *page = NULL; 6461 struct address_space *mapping; 6462 pgoff_t pgoff; 6463 6464 if (!vma->vm_file) /* anonymous vma */ 6465 return NULL; 6466 if (!move_file()) 6467 return NULL; 6468 6469 mapping = vma->vm_file->f_mapping; 6470 if (pte_none(ptent)) 6471 pgoff = linear_page_index(vma, addr); 6472 else /* pte_file(ptent) is true */ 6473 pgoff = pte_to_pgoff(ptent); 6474 6475 /* page is moved even if it's not RSS of this task(page-faulted). */ 6476 page = find_get_page(mapping, pgoff); 6477 6478 #ifdef CONFIG_SWAP 6479 /* shmem/tmpfs may report page out on swap: account for that too. */ 6480 if (radix_tree_exceptional_entry(page)) { 6481 swp_entry_t swap = radix_to_swp_entry(page); 6482 if (do_swap_account) 6483 *entry = swap; 6484 page = find_get_page(swap_address_space(swap), swap.val); 6485 } 6486 #endif 6487 return page; 6488 } 6489 6490 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6491 unsigned long addr, pte_t ptent, union mc_target *target) 6492 { 6493 struct page *page = NULL; 6494 struct page_cgroup *pc; 6495 enum mc_target_type ret = MC_TARGET_NONE; 6496 swp_entry_t ent = { .val = 0 }; 6497 6498 if (pte_present(ptent)) 6499 page = mc_handle_present_pte(vma, addr, ptent); 6500 else if (is_swap_pte(ptent)) 6501 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6502 else if (pte_none(ptent) || pte_file(ptent)) 6503 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6504 6505 if (!page && !ent.val) 6506 return ret; 6507 if (page) { 6508 pc = lookup_page_cgroup(page); 6509 /* 6510 * Do only loose check w/o page_cgroup lock. 6511 * mem_cgroup_move_account() checks the pc is valid or not under 6512 * the lock. 6513 */ 6514 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6515 ret = MC_TARGET_PAGE; 6516 if (target) 6517 target->page = page; 6518 } 6519 if (!ret || !target) 6520 put_page(page); 6521 } 6522 /* There is a swap entry and a page doesn't exist or isn't charged */ 6523 if (ent.val && !ret && 6524 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6525 ret = MC_TARGET_SWAP; 6526 if (target) 6527 target->ent = ent; 6528 } 6529 return ret; 6530 } 6531 6532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6533 /* 6534 * We don't consider swapping or file mapped pages because THP does not 6535 * support them for now. 6536 * Caller should make sure that pmd_trans_huge(pmd) is true. 6537 */ 6538 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6539 unsigned long addr, pmd_t pmd, union mc_target *target) 6540 { 6541 struct page *page = NULL; 6542 struct page_cgroup *pc; 6543 enum mc_target_type ret = MC_TARGET_NONE; 6544 6545 page = pmd_page(pmd); 6546 VM_BUG_ON(!page || !PageHead(page)); 6547 if (!move_anon()) 6548 return ret; 6549 pc = lookup_page_cgroup(page); 6550 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6551 ret = MC_TARGET_PAGE; 6552 if (target) { 6553 get_page(page); 6554 target->page = page; 6555 } 6556 } 6557 return ret; 6558 } 6559 #else 6560 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6561 unsigned long addr, pmd_t pmd, union mc_target *target) 6562 { 6563 return MC_TARGET_NONE; 6564 } 6565 #endif 6566 6567 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6568 unsigned long addr, unsigned long end, 6569 struct mm_walk *walk) 6570 { 6571 struct vm_area_struct *vma = walk->private; 6572 pte_t *pte; 6573 spinlock_t *ptl; 6574 6575 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6576 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6577 mc.precharge += HPAGE_PMD_NR; 6578 spin_unlock(&vma->vm_mm->page_table_lock); 6579 return 0; 6580 } 6581 6582 if (pmd_trans_unstable(pmd)) 6583 return 0; 6584 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6585 for (; addr != end; pte++, addr += PAGE_SIZE) 6586 if (get_mctgt_type(vma, addr, *pte, NULL)) 6587 mc.precharge++; /* increment precharge temporarily */ 6588 pte_unmap_unlock(pte - 1, ptl); 6589 cond_resched(); 6590 6591 return 0; 6592 } 6593 6594 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6595 { 6596 unsigned long precharge; 6597 struct vm_area_struct *vma; 6598 6599 down_read(&mm->mmap_sem); 6600 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6601 struct mm_walk mem_cgroup_count_precharge_walk = { 6602 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6603 .mm = mm, 6604 .private = vma, 6605 }; 6606 if (is_vm_hugetlb_page(vma)) 6607 continue; 6608 walk_page_range(vma->vm_start, vma->vm_end, 6609 &mem_cgroup_count_precharge_walk); 6610 } 6611 up_read(&mm->mmap_sem); 6612 6613 precharge = mc.precharge; 6614 mc.precharge = 0; 6615 6616 return precharge; 6617 } 6618 6619 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6620 { 6621 unsigned long precharge = mem_cgroup_count_precharge(mm); 6622 6623 VM_BUG_ON(mc.moving_task); 6624 mc.moving_task = current; 6625 return mem_cgroup_do_precharge(precharge); 6626 } 6627 6628 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6629 static void __mem_cgroup_clear_mc(void) 6630 { 6631 struct mem_cgroup *from = mc.from; 6632 struct mem_cgroup *to = mc.to; 6633 int i; 6634 6635 /* we must uncharge all the leftover precharges from mc.to */ 6636 if (mc.precharge) { 6637 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6638 mc.precharge = 0; 6639 } 6640 /* 6641 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6642 * we must uncharge here. 6643 */ 6644 if (mc.moved_charge) { 6645 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6646 mc.moved_charge = 0; 6647 } 6648 /* we must fixup refcnts and charges */ 6649 if (mc.moved_swap) { 6650 /* uncharge swap account from the old cgroup */ 6651 if (!mem_cgroup_is_root(mc.from)) 6652 res_counter_uncharge(&mc.from->memsw, 6653 PAGE_SIZE * mc.moved_swap); 6654 6655 for (i = 0; i < mc.moved_swap; i++) 6656 css_put(&mc.from->css); 6657 6658 if (!mem_cgroup_is_root(mc.to)) { 6659 /* 6660 * we charged both to->res and to->memsw, so we should 6661 * uncharge to->res. 6662 */ 6663 res_counter_uncharge(&mc.to->res, 6664 PAGE_SIZE * mc.moved_swap); 6665 } 6666 /* we've already done css_get(mc.to) */ 6667 mc.moved_swap = 0; 6668 } 6669 memcg_oom_recover(from); 6670 memcg_oom_recover(to); 6671 wake_up_all(&mc.waitq); 6672 } 6673 6674 static void mem_cgroup_clear_mc(void) 6675 { 6676 struct mem_cgroup *from = mc.from; 6677 6678 /* 6679 * we must clear moving_task before waking up waiters at the end of 6680 * task migration. 6681 */ 6682 mc.moving_task = NULL; 6683 __mem_cgroup_clear_mc(); 6684 spin_lock(&mc.lock); 6685 mc.from = NULL; 6686 mc.to = NULL; 6687 spin_unlock(&mc.lock); 6688 mem_cgroup_end_move(from); 6689 } 6690 6691 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6692 struct cgroup_taskset *tset) 6693 { 6694 struct task_struct *p = cgroup_taskset_first(tset); 6695 int ret = 0; 6696 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6697 unsigned long move_charge_at_immigrate; 6698 6699 /* 6700 * We are now commited to this value whatever it is. Changes in this 6701 * tunable will only affect upcoming migrations, not the current one. 6702 * So we need to save it, and keep it going. 6703 */ 6704 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6705 if (move_charge_at_immigrate) { 6706 struct mm_struct *mm; 6707 struct mem_cgroup *from = mem_cgroup_from_task(p); 6708 6709 VM_BUG_ON(from == memcg); 6710 6711 mm = get_task_mm(p); 6712 if (!mm) 6713 return 0; 6714 /* We move charges only when we move a owner of the mm */ 6715 if (mm->owner == p) { 6716 VM_BUG_ON(mc.from); 6717 VM_BUG_ON(mc.to); 6718 VM_BUG_ON(mc.precharge); 6719 VM_BUG_ON(mc.moved_charge); 6720 VM_BUG_ON(mc.moved_swap); 6721 mem_cgroup_start_move(from); 6722 spin_lock(&mc.lock); 6723 mc.from = from; 6724 mc.to = memcg; 6725 mc.immigrate_flags = move_charge_at_immigrate; 6726 spin_unlock(&mc.lock); 6727 /* We set mc.moving_task later */ 6728 6729 ret = mem_cgroup_precharge_mc(mm); 6730 if (ret) 6731 mem_cgroup_clear_mc(); 6732 } 6733 mmput(mm); 6734 } 6735 return ret; 6736 } 6737 6738 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6739 struct cgroup_taskset *tset) 6740 { 6741 mem_cgroup_clear_mc(); 6742 } 6743 6744 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6745 unsigned long addr, unsigned long end, 6746 struct mm_walk *walk) 6747 { 6748 int ret = 0; 6749 struct vm_area_struct *vma = walk->private; 6750 pte_t *pte; 6751 spinlock_t *ptl; 6752 enum mc_target_type target_type; 6753 union mc_target target; 6754 struct page *page; 6755 struct page_cgroup *pc; 6756 6757 /* 6758 * We don't take compound_lock() here but no race with splitting thp 6759 * happens because: 6760 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6761 * under splitting, which means there's no concurrent thp split, 6762 * - if another thread runs into split_huge_page() just after we 6763 * entered this if-block, the thread must wait for page table lock 6764 * to be unlocked in __split_huge_page_splitting(), where the main 6765 * part of thp split is not executed yet. 6766 */ 6767 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6768 if (mc.precharge < HPAGE_PMD_NR) { 6769 spin_unlock(&vma->vm_mm->page_table_lock); 6770 return 0; 6771 } 6772 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6773 if (target_type == MC_TARGET_PAGE) { 6774 page = target.page; 6775 if (!isolate_lru_page(page)) { 6776 pc = lookup_page_cgroup(page); 6777 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6778 pc, mc.from, mc.to)) { 6779 mc.precharge -= HPAGE_PMD_NR; 6780 mc.moved_charge += HPAGE_PMD_NR; 6781 } 6782 putback_lru_page(page); 6783 } 6784 put_page(page); 6785 } 6786 spin_unlock(&vma->vm_mm->page_table_lock); 6787 return 0; 6788 } 6789 6790 if (pmd_trans_unstable(pmd)) 6791 return 0; 6792 retry: 6793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6794 for (; addr != end; addr += PAGE_SIZE) { 6795 pte_t ptent = *(pte++); 6796 swp_entry_t ent; 6797 6798 if (!mc.precharge) 6799 break; 6800 6801 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6802 case MC_TARGET_PAGE: 6803 page = target.page; 6804 if (isolate_lru_page(page)) 6805 goto put; 6806 pc = lookup_page_cgroup(page); 6807 if (!mem_cgroup_move_account(page, 1, pc, 6808 mc.from, mc.to)) { 6809 mc.precharge--; 6810 /* we uncharge from mc.from later. */ 6811 mc.moved_charge++; 6812 } 6813 putback_lru_page(page); 6814 put: /* get_mctgt_type() gets the page */ 6815 put_page(page); 6816 break; 6817 case MC_TARGET_SWAP: 6818 ent = target.ent; 6819 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6820 mc.precharge--; 6821 /* we fixup refcnts and charges later. */ 6822 mc.moved_swap++; 6823 } 6824 break; 6825 default: 6826 break; 6827 } 6828 } 6829 pte_unmap_unlock(pte - 1, ptl); 6830 cond_resched(); 6831 6832 if (addr != end) { 6833 /* 6834 * We have consumed all precharges we got in can_attach(). 6835 * We try charge one by one, but don't do any additional 6836 * charges to mc.to if we have failed in charge once in attach() 6837 * phase. 6838 */ 6839 ret = mem_cgroup_do_precharge(1); 6840 if (!ret) 6841 goto retry; 6842 } 6843 6844 return ret; 6845 } 6846 6847 static void mem_cgroup_move_charge(struct mm_struct *mm) 6848 { 6849 struct vm_area_struct *vma; 6850 6851 lru_add_drain_all(); 6852 retry: 6853 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6854 /* 6855 * Someone who are holding the mmap_sem might be waiting in 6856 * waitq. So we cancel all extra charges, wake up all waiters, 6857 * and retry. Because we cancel precharges, we might not be able 6858 * to move enough charges, but moving charge is a best-effort 6859 * feature anyway, so it wouldn't be a big problem. 6860 */ 6861 __mem_cgroup_clear_mc(); 6862 cond_resched(); 6863 goto retry; 6864 } 6865 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6866 int ret; 6867 struct mm_walk mem_cgroup_move_charge_walk = { 6868 .pmd_entry = mem_cgroup_move_charge_pte_range, 6869 .mm = mm, 6870 .private = vma, 6871 }; 6872 if (is_vm_hugetlb_page(vma)) 6873 continue; 6874 ret = walk_page_range(vma->vm_start, vma->vm_end, 6875 &mem_cgroup_move_charge_walk); 6876 if (ret) 6877 /* 6878 * means we have consumed all precharges and failed in 6879 * doing additional charge. Just abandon here. 6880 */ 6881 break; 6882 } 6883 up_read(&mm->mmap_sem); 6884 } 6885 6886 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6887 struct cgroup_taskset *tset) 6888 { 6889 struct task_struct *p = cgroup_taskset_first(tset); 6890 struct mm_struct *mm = get_task_mm(p); 6891 6892 if (mm) { 6893 if (mc.to) 6894 mem_cgroup_move_charge(mm); 6895 mmput(mm); 6896 } 6897 if (mc.to) 6898 mem_cgroup_clear_mc(); 6899 } 6900 #else /* !CONFIG_MMU */ 6901 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6902 struct cgroup_taskset *tset) 6903 { 6904 return 0; 6905 } 6906 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6907 struct cgroup_taskset *tset) 6908 { 6909 } 6910 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6911 struct cgroup_taskset *tset) 6912 { 6913 } 6914 #endif 6915 6916 /* 6917 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6918 * to verify sane_behavior flag on each mount attempt. 6919 */ 6920 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6921 { 6922 /* 6923 * use_hierarchy is forced with sane_behavior. cgroup core 6924 * guarantees that @root doesn't have any children, so turning it 6925 * on for the root memcg is enough. 6926 */ 6927 if (cgroup_sane_behavior(root_css->cgroup)) 6928 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6929 } 6930 6931 struct cgroup_subsys mem_cgroup_subsys = { 6932 .name = "memory", 6933 .subsys_id = mem_cgroup_subsys_id, 6934 .css_alloc = mem_cgroup_css_alloc, 6935 .css_online = mem_cgroup_css_online, 6936 .css_offline = mem_cgroup_css_offline, 6937 .css_free = mem_cgroup_css_free, 6938 .can_attach = mem_cgroup_can_attach, 6939 .cancel_attach = mem_cgroup_cancel_attach, 6940 .attach = mem_cgroup_move_task, 6941 .bind = mem_cgroup_bind, 6942 .base_cftypes = mem_cgroup_files, 6943 .early_init = 0, 6944 .use_id = 1, 6945 }; 6946 6947 #ifdef CONFIG_MEMCG_SWAP 6948 static int __init enable_swap_account(char *s) 6949 { 6950 if (!strcmp(s, "1")) 6951 really_do_swap_account = 1; 6952 else if (!strcmp(s, "0")) 6953 really_do_swap_account = 0; 6954 return 1; 6955 } 6956 __setup("swapaccount=", enable_swap_account); 6957 6958 static void __init memsw_file_init(void) 6959 { 6960 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6961 } 6962 6963 static void __init enable_swap_cgroup(void) 6964 { 6965 if (!mem_cgroup_disabled() && really_do_swap_account) { 6966 do_swap_account = 1; 6967 memsw_file_init(); 6968 } 6969 } 6970 6971 #else 6972 static void __init enable_swap_cgroup(void) 6973 { 6974 } 6975 #endif 6976 6977 /* 6978 * subsys_initcall() for memory controller. 6979 * 6980 * Some parts like hotcpu_notifier() have to be initialized from this context 6981 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 6982 * everything that doesn't depend on a specific mem_cgroup structure should 6983 * be initialized from here. 6984 */ 6985 static int __init mem_cgroup_init(void) 6986 { 6987 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6988 enable_swap_cgroup(); 6989 mem_cgroup_soft_limit_tree_init(); 6990 memcg_stock_init(); 6991 return 0; 6992 } 6993 subsys_initcall(mem_cgroup_init); 6994