1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/mm.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/seq_buf.h> 61 #include "internal.h" 62 #include <net/sock.h> 63 #include <net/ip.h> 64 #include "slab.h" 65 66 #include <linux/uaccess.h> 67 68 #include <trace/events/vmscan.h> 69 70 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 71 EXPORT_SYMBOL(memory_cgrp_subsys); 72 73 struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 #define MEM_CGROUP_RECLAIM_RETRIES 5 76 77 /* Socket memory accounting disabled? */ 78 static bool cgroup_memory_nosocket; 79 80 /* Kernel memory accounting disabled? */ 81 static bool cgroup_memory_nokmem; 82 83 /* Whether the swap controller is active */ 84 #ifdef CONFIG_MEMCG_SWAP 85 int do_swap_account __read_mostly; 86 #else 87 #define do_swap_account 0 88 #endif 89 90 /* Whether legacy memory+swap accounting is active */ 91 static bool do_memsw_account(void) 92 { 93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 94 } 95 96 static const char *const mem_cgroup_lru_names[] = { 97 "inactive_anon", 98 "active_anon", 99 "inactive_file", 100 "active_file", 101 "unevictable", 102 }; 103 104 #define THRESHOLDS_EVENTS_TARGET 128 105 #define SOFTLIMIT_EVENTS_TARGET 1024 106 #define NUMAINFO_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 enum charge_type { 207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 208 MEM_CGROUP_CHARGE_TYPE_ANON, 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 211 NR_CHARGE_TYPE, 212 }; 213 214 /* for encoding cft->private value on file */ 215 enum res_type { 216 _MEM, 217 _MEMSWAP, 218 _OOM_TYPE, 219 _KMEM, 220 _TCP, 221 }; 222 223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 225 #define MEMFILE_ATTR(val) ((val) & 0xffff) 226 /* Used for OOM nofiier */ 227 #define OOM_CONTROL (0) 228 229 /* 230 * Iteration constructs for visiting all cgroups (under a tree). If 231 * loops are exited prematurely (break), mem_cgroup_iter_break() must 232 * be used for reference counting. 233 */ 234 #define for_each_mem_cgroup_tree(iter, root) \ 235 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 236 iter != NULL; \ 237 iter = mem_cgroup_iter(root, iter, NULL)) 238 239 #define for_each_mem_cgroup(iter) \ 240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(NULL, iter, NULL)) 243 244 static inline bool should_force_charge(void) 245 { 246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 247 (current->flags & PF_EXITING); 248 } 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 #ifdef CONFIG_MEMCG_KMEM 264 /* 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 266 * The main reason for not using cgroup id for this: 267 * this works better in sparse environments, where we have a lot of memcgs, 268 * but only a few kmem-limited. Or also, if we have, for instance, 200 269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 270 * 200 entry array for that. 271 * 272 * The current size of the caches array is stored in memcg_nr_cache_ids. It 273 * will double each time we have to increase it. 274 */ 275 static DEFINE_IDA(memcg_cache_ida); 276 int memcg_nr_cache_ids; 277 278 /* Protects memcg_nr_cache_ids */ 279 static DECLARE_RWSEM(memcg_cache_ids_sem); 280 281 void memcg_get_cache_ids(void) 282 { 283 down_read(&memcg_cache_ids_sem); 284 } 285 286 void memcg_put_cache_ids(void) 287 { 288 up_read(&memcg_cache_ids_sem); 289 } 290 291 /* 292 * MIN_SIZE is different than 1, because we would like to avoid going through 293 * the alloc/free process all the time. In a small machine, 4 kmem-limited 294 * cgroups is a reasonable guess. In the future, it could be a parameter or 295 * tunable, but that is strictly not necessary. 296 * 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 298 * this constant directly from cgroup, but it is understandable that this is 299 * better kept as an internal representation in cgroup.c. In any case, the 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily 301 * increase ours as well if it increases. 302 */ 303 #define MEMCG_CACHES_MIN_SIZE 4 304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 305 306 /* 307 * A lot of the calls to the cache allocation functions are expected to be 308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 309 * conditional to this static branch, we'll have to allow modules that does 310 * kmem_cache_alloc and the such to see this symbol as well 311 */ 312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 313 EXPORT_SYMBOL(memcg_kmem_enabled_key); 314 315 struct workqueue_struct *memcg_kmem_cache_wq; 316 317 static int memcg_shrinker_map_size; 318 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 319 320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 321 { 322 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 323 } 324 325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 326 int size, int old_size) 327 { 328 struct memcg_shrinker_map *new, *old; 329 int nid; 330 331 lockdep_assert_held(&memcg_shrinker_map_mutex); 332 333 for_each_node(nid) { 334 old = rcu_dereference_protected( 335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 336 /* Not yet online memcg */ 337 if (!old) 338 return 0; 339 340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 341 if (!new) 342 return -ENOMEM; 343 344 /* Set all old bits, clear all new bits */ 345 memset(new->map, (int)0xff, old_size); 346 memset((void *)new->map + old_size, 0, size - old_size); 347 348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 350 } 351 352 return 0; 353 } 354 355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 356 { 357 struct mem_cgroup_per_node *pn; 358 struct memcg_shrinker_map *map; 359 int nid; 360 361 if (mem_cgroup_is_root(memcg)) 362 return; 363 364 for_each_node(nid) { 365 pn = mem_cgroup_nodeinfo(memcg, nid); 366 map = rcu_dereference_protected(pn->shrinker_map, true); 367 if (map) 368 kvfree(map); 369 rcu_assign_pointer(pn->shrinker_map, NULL); 370 } 371 } 372 373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 374 { 375 struct memcg_shrinker_map *map; 376 int nid, size, ret = 0; 377 378 if (mem_cgroup_is_root(memcg)) 379 return 0; 380 381 mutex_lock(&memcg_shrinker_map_mutex); 382 size = memcg_shrinker_map_size; 383 for_each_node(nid) { 384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 385 if (!map) { 386 memcg_free_shrinker_maps(memcg); 387 ret = -ENOMEM; 388 break; 389 } 390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 391 } 392 mutex_unlock(&memcg_shrinker_map_mutex); 393 394 return ret; 395 } 396 397 int memcg_expand_shrinker_maps(int new_id) 398 { 399 int size, old_size, ret = 0; 400 struct mem_cgroup *memcg; 401 402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 403 old_size = memcg_shrinker_map_size; 404 if (size <= old_size) 405 return 0; 406 407 mutex_lock(&memcg_shrinker_map_mutex); 408 if (!root_mem_cgroup) 409 goto unlock; 410 411 for_each_mem_cgroup(memcg) { 412 if (mem_cgroup_is_root(memcg)) 413 continue; 414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 415 if (ret) 416 goto unlock; 417 } 418 unlock: 419 if (!ret) 420 memcg_shrinker_map_size = size; 421 mutex_unlock(&memcg_shrinker_map_mutex); 422 return ret; 423 } 424 425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 426 { 427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 428 struct memcg_shrinker_map *map; 429 430 rcu_read_lock(); 431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 432 /* Pairs with smp mb in shrink_slab() */ 433 smp_mb__before_atomic(); 434 set_bit(shrinker_id, map->map); 435 rcu_read_unlock(); 436 } 437 } 438 439 #else /* CONFIG_MEMCG_KMEM */ 440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 441 { 442 return 0; 443 } 444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 445 #endif /* CONFIG_MEMCG_KMEM */ 446 447 /** 448 * mem_cgroup_css_from_page - css of the memcg associated with a page 449 * @page: page of interest 450 * 451 * If memcg is bound to the default hierarchy, css of the memcg associated 452 * with @page is returned. The returned css remains associated with @page 453 * until it is released. 454 * 455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 456 * is returned. 457 */ 458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 459 { 460 struct mem_cgroup *memcg; 461 462 memcg = page->mem_cgroup; 463 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 465 memcg = root_mem_cgroup; 466 467 return &memcg->css; 468 } 469 470 /** 471 * page_cgroup_ino - return inode number of the memcg a page is charged to 472 * @page: the page 473 * 474 * Look up the closest online ancestor of the memory cgroup @page is charged to 475 * and return its inode number or 0 if @page is not charged to any cgroup. It 476 * is safe to call this function without holding a reference to @page. 477 * 478 * Note, this function is inherently racy, because there is nothing to prevent 479 * the cgroup inode from getting torn down and potentially reallocated a moment 480 * after page_cgroup_ino() returns, so it only should be used by callers that 481 * do not care (such as procfs interfaces). 482 */ 483 ino_t page_cgroup_ino(struct page *page) 484 { 485 struct mem_cgroup *memcg; 486 unsigned long ino = 0; 487 488 rcu_read_lock(); 489 if (PageHead(page) && PageSlab(page)) 490 memcg = memcg_from_slab_page(page); 491 else 492 memcg = READ_ONCE(page->mem_cgroup); 493 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 494 memcg = parent_mem_cgroup(memcg); 495 if (memcg) 496 ino = cgroup_ino(memcg->css.cgroup); 497 rcu_read_unlock(); 498 return ino; 499 } 500 501 static struct mem_cgroup_per_node * 502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 503 { 504 int nid = page_to_nid(page); 505 506 return memcg->nodeinfo[nid]; 507 } 508 509 static struct mem_cgroup_tree_per_node * 510 soft_limit_tree_node(int nid) 511 { 512 return soft_limit_tree.rb_tree_per_node[nid]; 513 } 514 515 static struct mem_cgroup_tree_per_node * 516 soft_limit_tree_from_page(struct page *page) 517 { 518 int nid = page_to_nid(page); 519 520 return soft_limit_tree.rb_tree_per_node[nid]; 521 } 522 523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 524 struct mem_cgroup_tree_per_node *mctz, 525 unsigned long new_usage_in_excess) 526 { 527 struct rb_node **p = &mctz->rb_root.rb_node; 528 struct rb_node *parent = NULL; 529 struct mem_cgroup_per_node *mz_node; 530 bool rightmost = true; 531 532 if (mz->on_tree) 533 return; 534 535 mz->usage_in_excess = new_usage_in_excess; 536 if (!mz->usage_in_excess) 537 return; 538 while (*p) { 539 parent = *p; 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 541 tree_node); 542 if (mz->usage_in_excess < mz_node->usage_in_excess) { 543 p = &(*p)->rb_left; 544 rightmost = false; 545 } 546 547 /* 548 * We can't avoid mem cgroups that are over their soft 549 * limit by the same amount 550 */ 551 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 552 p = &(*p)->rb_right; 553 } 554 555 if (rightmost) 556 mctz->rb_rightmost = &mz->tree_node; 557 558 rb_link_node(&mz->tree_node, parent, p); 559 rb_insert_color(&mz->tree_node, &mctz->rb_root); 560 mz->on_tree = true; 561 } 562 563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 564 struct mem_cgroup_tree_per_node *mctz) 565 { 566 if (!mz->on_tree) 567 return; 568 569 if (&mz->tree_node == mctz->rb_rightmost) 570 mctz->rb_rightmost = rb_prev(&mz->tree_node); 571 572 rb_erase(&mz->tree_node, &mctz->rb_root); 573 mz->on_tree = false; 574 } 575 576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 577 struct mem_cgroup_tree_per_node *mctz) 578 { 579 unsigned long flags; 580 581 spin_lock_irqsave(&mctz->lock, flags); 582 __mem_cgroup_remove_exceeded(mz, mctz); 583 spin_unlock_irqrestore(&mctz->lock, flags); 584 } 585 586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 587 { 588 unsigned long nr_pages = page_counter_read(&memcg->memory); 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 590 unsigned long excess = 0; 591 592 if (nr_pages > soft_limit) 593 excess = nr_pages - soft_limit; 594 595 return excess; 596 } 597 598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 599 { 600 unsigned long excess; 601 struct mem_cgroup_per_node *mz; 602 struct mem_cgroup_tree_per_node *mctz; 603 604 mctz = soft_limit_tree_from_page(page); 605 if (!mctz) 606 return; 607 /* 608 * Necessary to update all ancestors when hierarchy is used. 609 * because their event counter is not touched. 610 */ 611 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 612 mz = mem_cgroup_page_nodeinfo(memcg, page); 613 excess = soft_limit_excess(memcg); 614 /* 615 * We have to update the tree if mz is on RB-tree or 616 * mem is over its softlimit. 617 */ 618 if (excess || mz->on_tree) { 619 unsigned long flags; 620 621 spin_lock_irqsave(&mctz->lock, flags); 622 /* if on-tree, remove it */ 623 if (mz->on_tree) 624 __mem_cgroup_remove_exceeded(mz, mctz); 625 /* 626 * Insert again. mz->usage_in_excess will be updated. 627 * If excess is 0, no tree ops. 628 */ 629 __mem_cgroup_insert_exceeded(mz, mctz, excess); 630 spin_unlock_irqrestore(&mctz->lock, flags); 631 } 632 } 633 } 634 635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 636 { 637 struct mem_cgroup_tree_per_node *mctz; 638 struct mem_cgroup_per_node *mz; 639 int nid; 640 641 for_each_node(nid) { 642 mz = mem_cgroup_nodeinfo(memcg, nid); 643 mctz = soft_limit_tree_node(nid); 644 if (mctz) 645 mem_cgroup_remove_exceeded(mz, mctz); 646 } 647 } 648 649 static struct mem_cgroup_per_node * 650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 651 { 652 struct mem_cgroup_per_node *mz; 653 654 retry: 655 mz = NULL; 656 if (!mctz->rb_rightmost) 657 goto done; /* Nothing to reclaim from */ 658 659 mz = rb_entry(mctz->rb_rightmost, 660 struct mem_cgroup_per_node, tree_node); 661 /* 662 * Remove the node now but someone else can add it back, 663 * we will to add it back at the end of reclaim to its correct 664 * position in the tree. 665 */ 666 __mem_cgroup_remove_exceeded(mz, mctz); 667 if (!soft_limit_excess(mz->memcg) || 668 !css_tryget_online(&mz->memcg->css)) 669 goto retry; 670 done: 671 return mz; 672 } 673 674 static struct mem_cgroup_per_node * 675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 676 { 677 struct mem_cgroup_per_node *mz; 678 679 spin_lock_irq(&mctz->lock); 680 mz = __mem_cgroup_largest_soft_limit_node(mctz); 681 spin_unlock_irq(&mctz->lock); 682 return mz; 683 } 684 685 /** 686 * __mod_memcg_state - update cgroup memory statistics 687 * @memcg: the memory cgroup 688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 689 * @val: delta to add to the counter, can be negative 690 */ 691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 692 { 693 long x; 694 695 if (mem_cgroup_disabled()) 696 return; 697 698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 700 struct mem_cgroup *mi; 701 702 /* 703 * Batch local counters to keep them in sync with 704 * the hierarchical ones. 705 */ 706 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 708 atomic_long_add(x, &mi->vmstats[idx]); 709 x = 0; 710 } 711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 712 } 713 714 static struct mem_cgroup_per_node * 715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 716 { 717 struct mem_cgroup *parent; 718 719 parent = parent_mem_cgroup(pn->memcg); 720 if (!parent) 721 return NULL; 722 return mem_cgroup_nodeinfo(parent, nid); 723 } 724 725 /** 726 * __mod_lruvec_state - update lruvec memory statistics 727 * @lruvec: the lruvec 728 * @idx: the stat item 729 * @val: delta to add to the counter, can be negative 730 * 731 * The lruvec is the intersection of the NUMA node and a cgroup. This 732 * function updates the all three counters that are affected by a 733 * change of state at this level: per-node, per-cgroup, per-lruvec. 734 */ 735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 736 int val) 737 { 738 pg_data_t *pgdat = lruvec_pgdat(lruvec); 739 struct mem_cgroup_per_node *pn; 740 struct mem_cgroup *memcg; 741 long x; 742 743 /* Update node */ 744 __mod_node_page_state(pgdat, idx, val); 745 746 if (mem_cgroup_disabled()) 747 return; 748 749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 750 memcg = pn->memcg; 751 752 /* Update memcg */ 753 __mod_memcg_state(memcg, idx, val); 754 755 /* Update lruvec */ 756 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 757 758 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 759 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 760 struct mem_cgroup_per_node *pi; 761 762 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 763 atomic_long_add(x, &pi->lruvec_stat[idx]); 764 x = 0; 765 } 766 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 767 } 768 769 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 770 { 771 struct page *page = virt_to_head_page(p); 772 pg_data_t *pgdat = page_pgdat(page); 773 struct mem_cgroup *memcg; 774 struct lruvec *lruvec; 775 776 rcu_read_lock(); 777 memcg = memcg_from_slab_page(page); 778 779 /* Untracked pages have no memcg, no lruvec. Update only the node */ 780 if (!memcg || memcg == root_mem_cgroup) { 781 __mod_node_page_state(pgdat, idx, val); 782 } else { 783 lruvec = mem_cgroup_lruvec(pgdat, memcg); 784 __mod_lruvec_state(lruvec, idx, val); 785 } 786 rcu_read_unlock(); 787 } 788 789 /** 790 * __count_memcg_events - account VM events in a cgroup 791 * @memcg: the memory cgroup 792 * @idx: the event item 793 * @count: the number of events that occured 794 */ 795 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 796 unsigned long count) 797 { 798 unsigned long x; 799 800 if (mem_cgroup_disabled()) 801 return; 802 803 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 804 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 805 struct mem_cgroup *mi; 806 807 /* 808 * Batch local counters to keep them in sync with 809 * the hierarchical ones. 810 */ 811 __this_cpu_add(memcg->vmstats_local->events[idx], x); 812 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 813 atomic_long_add(x, &mi->vmevents[idx]); 814 x = 0; 815 } 816 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 817 } 818 819 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 820 { 821 return atomic_long_read(&memcg->vmevents[event]); 822 } 823 824 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 825 { 826 long x = 0; 827 int cpu; 828 829 for_each_possible_cpu(cpu) 830 x += per_cpu(memcg->vmstats_local->events[event], cpu); 831 return x; 832 } 833 834 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 835 struct page *page, 836 bool compound, int nr_pages) 837 { 838 /* 839 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 840 * counted as CACHE even if it's on ANON LRU. 841 */ 842 if (PageAnon(page)) 843 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 844 else { 845 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 846 if (PageSwapBacked(page)) 847 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 848 } 849 850 if (compound) { 851 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 852 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 853 } 854 855 /* pagein of a big page is an event. So, ignore page size */ 856 if (nr_pages > 0) 857 __count_memcg_events(memcg, PGPGIN, 1); 858 else { 859 __count_memcg_events(memcg, PGPGOUT, 1); 860 nr_pages = -nr_pages; /* for event */ 861 } 862 863 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 864 } 865 866 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 867 enum mem_cgroup_events_target target) 868 { 869 unsigned long val, next; 870 871 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 872 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 873 /* from time_after() in jiffies.h */ 874 if ((long)(next - val) < 0) { 875 switch (target) { 876 case MEM_CGROUP_TARGET_THRESH: 877 next = val + THRESHOLDS_EVENTS_TARGET; 878 break; 879 case MEM_CGROUP_TARGET_SOFTLIMIT: 880 next = val + SOFTLIMIT_EVENTS_TARGET; 881 break; 882 case MEM_CGROUP_TARGET_NUMAINFO: 883 next = val + NUMAINFO_EVENTS_TARGET; 884 break; 885 default: 886 break; 887 } 888 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 889 return true; 890 } 891 return false; 892 } 893 894 /* 895 * Check events in order. 896 * 897 */ 898 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 899 { 900 /* threshold event is triggered in finer grain than soft limit */ 901 if (unlikely(mem_cgroup_event_ratelimit(memcg, 902 MEM_CGROUP_TARGET_THRESH))) { 903 bool do_softlimit; 904 bool do_numainfo __maybe_unused; 905 906 do_softlimit = mem_cgroup_event_ratelimit(memcg, 907 MEM_CGROUP_TARGET_SOFTLIMIT); 908 #if MAX_NUMNODES > 1 909 do_numainfo = mem_cgroup_event_ratelimit(memcg, 910 MEM_CGROUP_TARGET_NUMAINFO); 911 #endif 912 mem_cgroup_threshold(memcg); 913 if (unlikely(do_softlimit)) 914 mem_cgroup_update_tree(memcg, page); 915 #if MAX_NUMNODES > 1 916 if (unlikely(do_numainfo)) 917 atomic_inc(&memcg->numainfo_events); 918 #endif 919 } 920 } 921 922 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 923 { 924 /* 925 * mm_update_next_owner() may clear mm->owner to NULL 926 * if it races with swapoff, page migration, etc. 927 * So this can be called with p == NULL. 928 */ 929 if (unlikely(!p)) 930 return NULL; 931 932 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 933 } 934 EXPORT_SYMBOL(mem_cgroup_from_task); 935 936 /** 937 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 938 * @mm: mm from which memcg should be extracted. It can be NULL. 939 * 940 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 941 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 942 * returned. 943 */ 944 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 945 { 946 struct mem_cgroup *memcg; 947 948 if (mem_cgroup_disabled()) 949 return NULL; 950 951 rcu_read_lock(); 952 do { 953 /* 954 * Page cache insertions can happen withou an 955 * actual mm context, e.g. during disk probing 956 * on boot, loopback IO, acct() writes etc. 957 */ 958 if (unlikely(!mm)) 959 memcg = root_mem_cgroup; 960 else { 961 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 962 if (unlikely(!memcg)) 963 memcg = root_mem_cgroup; 964 } 965 } while (!css_tryget_online(&memcg->css)); 966 rcu_read_unlock(); 967 return memcg; 968 } 969 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 970 971 /** 972 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 973 * @page: page from which memcg should be extracted. 974 * 975 * Obtain a reference on page->memcg and returns it if successful. Otherwise 976 * root_mem_cgroup is returned. 977 */ 978 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 979 { 980 struct mem_cgroup *memcg = page->mem_cgroup; 981 982 if (mem_cgroup_disabled()) 983 return NULL; 984 985 rcu_read_lock(); 986 if (!memcg || !css_tryget_online(&memcg->css)) 987 memcg = root_mem_cgroup; 988 rcu_read_unlock(); 989 return memcg; 990 } 991 EXPORT_SYMBOL(get_mem_cgroup_from_page); 992 993 /** 994 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 995 */ 996 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 997 { 998 if (unlikely(current->active_memcg)) { 999 struct mem_cgroup *memcg = root_mem_cgroup; 1000 1001 rcu_read_lock(); 1002 if (css_tryget_online(¤t->active_memcg->css)) 1003 memcg = current->active_memcg; 1004 rcu_read_unlock(); 1005 return memcg; 1006 } 1007 return get_mem_cgroup_from_mm(current->mm); 1008 } 1009 1010 /** 1011 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1012 * @root: hierarchy root 1013 * @prev: previously returned memcg, NULL on first invocation 1014 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1015 * 1016 * Returns references to children of the hierarchy below @root, or 1017 * @root itself, or %NULL after a full round-trip. 1018 * 1019 * Caller must pass the return value in @prev on subsequent 1020 * invocations for reference counting, or use mem_cgroup_iter_break() 1021 * to cancel a hierarchy walk before the round-trip is complete. 1022 * 1023 * Reclaimers can specify a node and a priority level in @reclaim to 1024 * divide up the memcgs in the hierarchy among all concurrent 1025 * reclaimers operating on the same node and priority. 1026 */ 1027 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1028 struct mem_cgroup *prev, 1029 struct mem_cgroup_reclaim_cookie *reclaim) 1030 { 1031 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1032 struct cgroup_subsys_state *css = NULL; 1033 struct mem_cgroup *memcg = NULL; 1034 struct mem_cgroup *pos = NULL; 1035 1036 if (mem_cgroup_disabled()) 1037 return NULL; 1038 1039 if (!root) 1040 root = root_mem_cgroup; 1041 1042 if (prev && !reclaim) 1043 pos = prev; 1044 1045 if (!root->use_hierarchy && root != root_mem_cgroup) { 1046 if (prev) 1047 goto out; 1048 return root; 1049 } 1050 1051 rcu_read_lock(); 1052 1053 if (reclaim) { 1054 struct mem_cgroup_per_node *mz; 1055 1056 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1057 iter = &mz->iter[reclaim->priority]; 1058 1059 if (prev && reclaim->generation != iter->generation) 1060 goto out_unlock; 1061 1062 while (1) { 1063 pos = READ_ONCE(iter->position); 1064 if (!pos || css_tryget(&pos->css)) 1065 break; 1066 /* 1067 * css reference reached zero, so iter->position will 1068 * be cleared by ->css_released. However, we should not 1069 * rely on this happening soon, because ->css_released 1070 * is called from a work queue, and by busy-waiting we 1071 * might block it. So we clear iter->position right 1072 * away. 1073 */ 1074 (void)cmpxchg(&iter->position, pos, NULL); 1075 } 1076 } 1077 1078 if (pos) 1079 css = &pos->css; 1080 1081 for (;;) { 1082 css = css_next_descendant_pre(css, &root->css); 1083 if (!css) { 1084 /* 1085 * Reclaimers share the hierarchy walk, and a 1086 * new one might jump in right at the end of 1087 * the hierarchy - make sure they see at least 1088 * one group and restart from the beginning. 1089 */ 1090 if (!prev) 1091 continue; 1092 break; 1093 } 1094 1095 /* 1096 * Verify the css and acquire a reference. The root 1097 * is provided by the caller, so we know it's alive 1098 * and kicking, and don't take an extra reference. 1099 */ 1100 memcg = mem_cgroup_from_css(css); 1101 1102 if (css == &root->css) 1103 break; 1104 1105 if (css_tryget(css)) 1106 break; 1107 1108 memcg = NULL; 1109 } 1110 1111 if (reclaim) { 1112 /* 1113 * The position could have already been updated by a competing 1114 * thread, so check that the value hasn't changed since we read 1115 * it to avoid reclaiming from the same cgroup twice. 1116 */ 1117 (void)cmpxchg(&iter->position, pos, memcg); 1118 1119 if (pos) 1120 css_put(&pos->css); 1121 1122 if (!memcg) 1123 iter->generation++; 1124 else if (!prev) 1125 reclaim->generation = iter->generation; 1126 } 1127 1128 out_unlock: 1129 rcu_read_unlock(); 1130 out: 1131 if (prev && prev != root) 1132 css_put(&prev->css); 1133 1134 return memcg; 1135 } 1136 1137 /** 1138 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1139 * @root: hierarchy root 1140 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1141 */ 1142 void mem_cgroup_iter_break(struct mem_cgroup *root, 1143 struct mem_cgroup *prev) 1144 { 1145 if (!root) 1146 root = root_mem_cgroup; 1147 if (prev && prev != root) 1148 css_put(&prev->css); 1149 } 1150 1151 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1152 struct mem_cgroup *dead_memcg) 1153 { 1154 struct mem_cgroup_reclaim_iter *iter; 1155 struct mem_cgroup_per_node *mz; 1156 int nid; 1157 int i; 1158 1159 for_each_node(nid) { 1160 mz = mem_cgroup_nodeinfo(from, nid); 1161 for (i = 0; i <= DEF_PRIORITY; i++) { 1162 iter = &mz->iter[i]; 1163 cmpxchg(&iter->position, 1164 dead_memcg, NULL); 1165 } 1166 } 1167 } 1168 1169 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1170 { 1171 struct mem_cgroup *memcg = dead_memcg; 1172 struct mem_cgroup *last; 1173 1174 do { 1175 __invalidate_reclaim_iterators(memcg, dead_memcg); 1176 last = memcg; 1177 } while ((memcg = parent_mem_cgroup(memcg))); 1178 1179 /* 1180 * When cgruop1 non-hierarchy mode is used, 1181 * parent_mem_cgroup() does not walk all the way up to the 1182 * cgroup root (root_mem_cgroup). So we have to handle 1183 * dead_memcg from cgroup root separately. 1184 */ 1185 if (last != root_mem_cgroup) 1186 __invalidate_reclaim_iterators(root_mem_cgroup, 1187 dead_memcg); 1188 } 1189 1190 /** 1191 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1192 * @memcg: hierarchy root 1193 * @fn: function to call for each task 1194 * @arg: argument passed to @fn 1195 * 1196 * This function iterates over tasks attached to @memcg or to any of its 1197 * descendants and calls @fn for each task. If @fn returns a non-zero 1198 * value, the function breaks the iteration loop and returns the value. 1199 * Otherwise, it will iterate over all tasks and return 0. 1200 * 1201 * This function must not be called for the root memory cgroup. 1202 */ 1203 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1204 int (*fn)(struct task_struct *, void *), void *arg) 1205 { 1206 struct mem_cgroup *iter; 1207 int ret = 0; 1208 1209 BUG_ON(memcg == root_mem_cgroup); 1210 1211 for_each_mem_cgroup_tree(iter, memcg) { 1212 struct css_task_iter it; 1213 struct task_struct *task; 1214 1215 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1216 while (!ret && (task = css_task_iter_next(&it))) 1217 ret = fn(task, arg); 1218 css_task_iter_end(&it); 1219 if (ret) { 1220 mem_cgroup_iter_break(memcg, iter); 1221 break; 1222 } 1223 } 1224 return ret; 1225 } 1226 1227 /** 1228 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1229 * @page: the page 1230 * @pgdat: pgdat of the page 1231 * 1232 * This function is only safe when following the LRU page isolation 1233 * and putback protocol: the LRU lock must be held, and the page must 1234 * either be PageLRU() or the caller must have isolated/allocated it. 1235 */ 1236 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1237 { 1238 struct mem_cgroup_per_node *mz; 1239 struct mem_cgroup *memcg; 1240 struct lruvec *lruvec; 1241 1242 if (mem_cgroup_disabled()) { 1243 lruvec = &pgdat->lruvec; 1244 goto out; 1245 } 1246 1247 memcg = page->mem_cgroup; 1248 /* 1249 * Swapcache readahead pages are added to the LRU - and 1250 * possibly migrated - before they are charged. 1251 */ 1252 if (!memcg) 1253 memcg = root_mem_cgroup; 1254 1255 mz = mem_cgroup_page_nodeinfo(memcg, page); 1256 lruvec = &mz->lruvec; 1257 out: 1258 /* 1259 * Since a node can be onlined after the mem_cgroup was created, 1260 * we have to be prepared to initialize lruvec->zone here; 1261 * and if offlined then reonlined, we need to reinitialize it. 1262 */ 1263 if (unlikely(lruvec->pgdat != pgdat)) 1264 lruvec->pgdat = pgdat; 1265 return lruvec; 1266 } 1267 1268 /** 1269 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1270 * @lruvec: mem_cgroup per zone lru vector 1271 * @lru: index of lru list the page is sitting on 1272 * @zid: zone id of the accounted pages 1273 * @nr_pages: positive when adding or negative when removing 1274 * 1275 * This function must be called under lru_lock, just before a page is added 1276 * to or just after a page is removed from an lru list (that ordering being 1277 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1278 */ 1279 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1280 int zid, int nr_pages) 1281 { 1282 struct mem_cgroup_per_node *mz; 1283 unsigned long *lru_size; 1284 long size; 1285 1286 if (mem_cgroup_disabled()) 1287 return; 1288 1289 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1290 lru_size = &mz->lru_zone_size[zid][lru]; 1291 1292 if (nr_pages < 0) 1293 *lru_size += nr_pages; 1294 1295 size = *lru_size; 1296 if (WARN_ONCE(size < 0, 1297 "%s(%p, %d, %d): lru_size %ld\n", 1298 __func__, lruvec, lru, nr_pages, size)) { 1299 VM_BUG_ON(1); 1300 *lru_size = 0; 1301 } 1302 1303 if (nr_pages > 0) 1304 *lru_size += nr_pages; 1305 } 1306 1307 /** 1308 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1309 * @memcg: the memory cgroup 1310 * 1311 * Returns the maximum amount of memory @mem can be charged with, in 1312 * pages. 1313 */ 1314 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1315 { 1316 unsigned long margin = 0; 1317 unsigned long count; 1318 unsigned long limit; 1319 1320 count = page_counter_read(&memcg->memory); 1321 limit = READ_ONCE(memcg->memory.max); 1322 if (count < limit) 1323 margin = limit - count; 1324 1325 if (do_memsw_account()) { 1326 count = page_counter_read(&memcg->memsw); 1327 limit = READ_ONCE(memcg->memsw.max); 1328 if (count <= limit) 1329 margin = min(margin, limit - count); 1330 else 1331 margin = 0; 1332 } 1333 1334 return margin; 1335 } 1336 1337 /* 1338 * A routine for checking "mem" is under move_account() or not. 1339 * 1340 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1341 * moving cgroups. This is for waiting at high-memory pressure 1342 * caused by "move". 1343 */ 1344 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1345 { 1346 struct mem_cgroup *from; 1347 struct mem_cgroup *to; 1348 bool ret = false; 1349 /* 1350 * Unlike task_move routines, we access mc.to, mc.from not under 1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1352 */ 1353 spin_lock(&mc.lock); 1354 from = mc.from; 1355 to = mc.to; 1356 if (!from) 1357 goto unlock; 1358 1359 ret = mem_cgroup_is_descendant(from, memcg) || 1360 mem_cgroup_is_descendant(to, memcg); 1361 unlock: 1362 spin_unlock(&mc.lock); 1363 return ret; 1364 } 1365 1366 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1367 { 1368 if (mc.moving_task && current != mc.moving_task) { 1369 if (mem_cgroup_under_move(memcg)) { 1370 DEFINE_WAIT(wait); 1371 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1372 /* moving charge context might have finished. */ 1373 if (mc.moving_task) 1374 schedule(); 1375 finish_wait(&mc.waitq, &wait); 1376 return true; 1377 } 1378 } 1379 return false; 1380 } 1381 1382 static char *memory_stat_format(struct mem_cgroup *memcg) 1383 { 1384 struct seq_buf s; 1385 int i; 1386 1387 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1388 if (!s.buffer) 1389 return NULL; 1390 1391 /* 1392 * Provide statistics on the state of the memory subsystem as 1393 * well as cumulative event counters that show past behavior. 1394 * 1395 * This list is ordered following a combination of these gradients: 1396 * 1) generic big picture -> specifics and details 1397 * 2) reflecting userspace activity -> reflecting kernel heuristics 1398 * 1399 * Current memory state: 1400 */ 1401 1402 seq_buf_printf(&s, "anon %llu\n", 1403 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1404 PAGE_SIZE); 1405 seq_buf_printf(&s, "file %llu\n", 1406 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1407 PAGE_SIZE); 1408 seq_buf_printf(&s, "kernel_stack %llu\n", 1409 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1410 1024); 1411 seq_buf_printf(&s, "slab %llu\n", 1412 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1413 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1414 PAGE_SIZE); 1415 seq_buf_printf(&s, "sock %llu\n", 1416 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1417 PAGE_SIZE); 1418 1419 seq_buf_printf(&s, "shmem %llu\n", 1420 (u64)memcg_page_state(memcg, NR_SHMEM) * 1421 PAGE_SIZE); 1422 seq_buf_printf(&s, "file_mapped %llu\n", 1423 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1424 PAGE_SIZE); 1425 seq_buf_printf(&s, "file_dirty %llu\n", 1426 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1427 PAGE_SIZE); 1428 seq_buf_printf(&s, "file_writeback %llu\n", 1429 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1430 PAGE_SIZE); 1431 1432 /* 1433 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1434 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1435 * arse because it requires migrating the work out of rmap to a place 1436 * where the page->mem_cgroup is set up and stable. 1437 */ 1438 seq_buf_printf(&s, "anon_thp %llu\n", 1439 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1440 PAGE_SIZE); 1441 1442 for (i = 0; i < NR_LRU_LISTS; i++) 1443 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1444 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1445 PAGE_SIZE); 1446 1447 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1448 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1449 PAGE_SIZE); 1450 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1451 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1452 PAGE_SIZE); 1453 1454 /* Accumulated memory events */ 1455 1456 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1457 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1458 1459 seq_buf_printf(&s, "workingset_refault %lu\n", 1460 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1461 seq_buf_printf(&s, "workingset_activate %lu\n", 1462 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1463 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1464 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1465 1466 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1467 seq_buf_printf(&s, "pgscan %lu\n", 1468 memcg_events(memcg, PGSCAN_KSWAPD) + 1469 memcg_events(memcg, PGSCAN_DIRECT)); 1470 seq_buf_printf(&s, "pgsteal %lu\n", 1471 memcg_events(memcg, PGSTEAL_KSWAPD) + 1472 memcg_events(memcg, PGSTEAL_DIRECT)); 1473 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1474 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1475 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1476 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1477 1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1479 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1480 memcg_events(memcg, THP_FAULT_ALLOC)); 1481 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1482 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1483 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1484 1485 /* The above should easily fit into one page */ 1486 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1487 1488 return s.buffer; 1489 } 1490 1491 #define K(x) ((x) << (PAGE_SHIFT-10)) 1492 /** 1493 * mem_cgroup_print_oom_context: Print OOM information relevant to 1494 * memory controller. 1495 * @memcg: The memory cgroup that went over limit 1496 * @p: Task that is going to be killed 1497 * 1498 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1499 * enabled 1500 */ 1501 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1502 { 1503 rcu_read_lock(); 1504 1505 if (memcg) { 1506 pr_cont(",oom_memcg="); 1507 pr_cont_cgroup_path(memcg->css.cgroup); 1508 } else 1509 pr_cont(",global_oom"); 1510 if (p) { 1511 pr_cont(",task_memcg="); 1512 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1513 } 1514 rcu_read_unlock(); 1515 } 1516 1517 /** 1518 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1519 * memory controller. 1520 * @memcg: The memory cgroup that went over limit 1521 */ 1522 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1523 { 1524 char *buf; 1525 1526 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1527 K((u64)page_counter_read(&memcg->memory)), 1528 K((u64)memcg->memory.max), memcg->memory.failcnt); 1529 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1530 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1531 K((u64)page_counter_read(&memcg->swap)), 1532 K((u64)memcg->swap.max), memcg->swap.failcnt); 1533 else { 1534 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1535 K((u64)page_counter_read(&memcg->memsw)), 1536 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1537 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1538 K((u64)page_counter_read(&memcg->kmem)), 1539 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1540 } 1541 1542 pr_info("Memory cgroup stats for "); 1543 pr_cont_cgroup_path(memcg->css.cgroup); 1544 pr_cont(":"); 1545 buf = memory_stat_format(memcg); 1546 if (!buf) 1547 return; 1548 pr_info("%s", buf); 1549 kfree(buf); 1550 } 1551 1552 /* 1553 * Return the memory (and swap, if configured) limit for a memcg. 1554 */ 1555 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1556 { 1557 unsigned long max; 1558 1559 max = memcg->memory.max; 1560 if (mem_cgroup_swappiness(memcg)) { 1561 unsigned long memsw_max; 1562 unsigned long swap_max; 1563 1564 memsw_max = memcg->memsw.max; 1565 swap_max = memcg->swap.max; 1566 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1567 max = min(max + swap_max, memsw_max); 1568 } 1569 return max; 1570 } 1571 1572 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1573 int order) 1574 { 1575 struct oom_control oc = { 1576 .zonelist = NULL, 1577 .nodemask = NULL, 1578 .memcg = memcg, 1579 .gfp_mask = gfp_mask, 1580 .order = order, 1581 }; 1582 bool ret; 1583 1584 if (mutex_lock_killable(&oom_lock)) 1585 return true; 1586 /* 1587 * A few threads which were not waiting at mutex_lock_killable() can 1588 * fail to bail out. Therefore, check again after holding oom_lock. 1589 */ 1590 ret = should_force_charge() || out_of_memory(&oc); 1591 mutex_unlock(&oom_lock); 1592 return ret; 1593 } 1594 1595 #if MAX_NUMNODES > 1 1596 1597 /** 1598 * test_mem_cgroup_node_reclaimable 1599 * @memcg: the target memcg 1600 * @nid: the node ID to be checked. 1601 * @noswap : specify true here if the user wants flle only information. 1602 * 1603 * This function returns whether the specified memcg contains any 1604 * reclaimable pages on a node. Returns true if there are any reclaimable 1605 * pages in the node. 1606 */ 1607 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1608 int nid, bool noswap) 1609 { 1610 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1611 1612 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1613 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1614 return true; 1615 if (noswap || !total_swap_pages) 1616 return false; 1617 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1618 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1619 return true; 1620 return false; 1621 1622 } 1623 1624 /* 1625 * Always updating the nodemask is not very good - even if we have an empty 1626 * list or the wrong list here, we can start from some node and traverse all 1627 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1628 * 1629 */ 1630 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1631 { 1632 int nid; 1633 /* 1634 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1635 * pagein/pageout changes since the last update. 1636 */ 1637 if (!atomic_read(&memcg->numainfo_events)) 1638 return; 1639 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1640 return; 1641 1642 /* make a nodemask where this memcg uses memory from */ 1643 memcg->scan_nodes = node_states[N_MEMORY]; 1644 1645 for_each_node_mask(nid, node_states[N_MEMORY]) { 1646 1647 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1648 node_clear(nid, memcg->scan_nodes); 1649 } 1650 1651 atomic_set(&memcg->numainfo_events, 0); 1652 atomic_set(&memcg->numainfo_updating, 0); 1653 } 1654 1655 /* 1656 * Selecting a node where we start reclaim from. Because what we need is just 1657 * reducing usage counter, start from anywhere is O,K. Considering 1658 * memory reclaim from current node, there are pros. and cons. 1659 * 1660 * Freeing memory from current node means freeing memory from a node which 1661 * we'll use or we've used. So, it may make LRU bad. And if several threads 1662 * hit limits, it will see a contention on a node. But freeing from remote 1663 * node means more costs for memory reclaim because of memory latency. 1664 * 1665 * Now, we use round-robin. Better algorithm is welcomed. 1666 */ 1667 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1668 { 1669 int node; 1670 1671 mem_cgroup_may_update_nodemask(memcg); 1672 node = memcg->last_scanned_node; 1673 1674 node = next_node_in(node, memcg->scan_nodes); 1675 /* 1676 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1677 * last time it really checked all the LRUs due to rate limiting. 1678 * Fallback to the current node in that case for simplicity. 1679 */ 1680 if (unlikely(node == MAX_NUMNODES)) 1681 node = numa_node_id(); 1682 1683 memcg->last_scanned_node = node; 1684 return node; 1685 } 1686 #else 1687 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1688 { 1689 return 0; 1690 } 1691 #endif 1692 1693 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1694 pg_data_t *pgdat, 1695 gfp_t gfp_mask, 1696 unsigned long *total_scanned) 1697 { 1698 struct mem_cgroup *victim = NULL; 1699 int total = 0; 1700 int loop = 0; 1701 unsigned long excess; 1702 unsigned long nr_scanned; 1703 struct mem_cgroup_reclaim_cookie reclaim = { 1704 .pgdat = pgdat, 1705 .priority = 0, 1706 }; 1707 1708 excess = soft_limit_excess(root_memcg); 1709 1710 while (1) { 1711 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1712 if (!victim) { 1713 loop++; 1714 if (loop >= 2) { 1715 /* 1716 * If we have not been able to reclaim 1717 * anything, it might because there are 1718 * no reclaimable pages under this hierarchy 1719 */ 1720 if (!total) 1721 break; 1722 /* 1723 * We want to do more targeted reclaim. 1724 * excess >> 2 is not to excessive so as to 1725 * reclaim too much, nor too less that we keep 1726 * coming back to reclaim from this cgroup 1727 */ 1728 if (total >= (excess >> 2) || 1729 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1730 break; 1731 } 1732 continue; 1733 } 1734 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1735 pgdat, &nr_scanned); 1736 *total_scanned += nr_scanned; 1737 if (!soft_limit_excess(root_memcg)) 1738 break; 1739 } 1740 mem_cgroup_iter_break(root_memcg, victim); 1741 return total; 1742 } 1743 1744 #ifdef CONFIG_LOCKDEP 1745 static struct lockdep_map memcg_oom_lock_dep_map = { 1746 .name = "memcg_oom_lock", 1747 }; 1748 #endif 1749 1750 static DEFINE_SPINLOCK(memcg_oom_lock); 1751 1752 /* 1753 * Check OOM-Killer is already running under our hierarchy. 1754 * If someone is running, return false. 1755 */ 1756 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1757 { 1758 struct mem_cgroup *iter, *failed = NULL; 1759 1760 spin_lock(&memcg_oom_lock); 1761 1762 for_each_mem_cgroup_tree(iter, memcg) { 1763 if (iter->oom_lock) { 1764 /* 1765 * this subtree of our hierarchy is already locked 1766 * so we cannot give a lock. 1767 */ 1768 failed = iter; 1769 mem_cgroup_iter_break(memcg, iter); 1770 break; 1771 } else 1772 iter->oom_lock = true; 1773 } 1774 1775 if (failed) { 1776 /* 1777 * OK, we failed to lock the whole subtree so we have 1778 * to clean up what we set up to the failing subtree 1779 */ 1780 for_each_mem_cgroup_tree(iter, memcg) { 1781 if (iter == failed) { 1782 mem_cgroup_iter_break(memcg, iter); 1783 break; 1784 } 1785 iter->oom_lock = false; 1786 } 1787 } else 1788 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1789 1790 spin_unlock(&memcg_oom_lock); 1791 1792 return !failed; 1793 } 1794 1795 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1796 { 1797 struct mem_cgroup *iter; 1798 1799 spin_lock(&memcg_oom_lock); 1800 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1801 for_each_mem_cgroup_tree(iter, memcg) 1802 iter->oom_lock = false; 1803 spin_unlock(&memcg_oom_lock); 1804 } 1805 1806 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1807 { 1808 struct mem_cgroup *iter; 1809 1810 spin_lock(&memcg_oom_lock); 1811 for_each_mem_cgroup_tree(iter, memcg) 1812 iter->under_oom++; 1813 spin_unlock(&memcg_oom_lock); 1814 } 1815 1816 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1817 { 1818 struct mem_cgroup *iter; 1819 1820 /* 1821 * When a new child is created while the hierarchy is under oom, 1822 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1823 */ 1824 spin_lock(&memcg_oom_lock); 1825 for_each_mem_cgroup_tree(iter, memcg) 1826 if (iter->under_oom > 0) 1827 iter->under_oom--; 1828 spin_unlock(&memcg_oom_lock); 1829 } 1830 1831 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1832 1833 struct oom_wait_info { 1834 struct mem_cgroup *memcg; 1835 wait_queue_entry_t wait; 1836 }; 1837 1838 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1839 unsigned mode, int sync, void *arg) 1840 { 1841 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1842 struct mem_cgroup *oom_wait_memcg; 1843 struct oom_wait_info *oom_wait_info; 1844 1845 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1846 oom_wait_memcg = oom_wait_info->memcg; 1847 1848 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1849 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1850 return 0; 1851 return autoremove_wake_function(wait, mode, sync, arg); 1852 } 1853 1854 static void memcg_oom_recover(struct mem_cgroup *memcg) 1855 { 1856 /* 1857 * For the following lockless ->under_oom test, the only required 1858 * guarantee is that it must see the state asserted by an OOM when 1859 * this function is called as a result of userland actions 1860 * triggered by the notification of the OOM. This is trivially 1861 * achieved by invoking mem_cgroup_mark_under_oom() before 1862 * triggering notification. 1863 */ 1864 if (memcg && memcg->under_oom) 1865 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1866 } 1867 1868 enum oom_status { 1869 OOM_SUCCESS, 1870 OOM_FAILED, 1871 OOM_ASYNC, 1872 OOM_SKIPPED 1873 }; 1874 1875 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1876 { 1877 enum oom_status ret; 1878 bool locked; 1879 1880 if (order > PAGE_ALLOC_COSTLY_ORDER) 1881 return OOM_SKIPPED; 1882 1883 memcg_memory_event(memcg, MEMCG_OOM); 1884 1885 /* 1886 * We are in the middle of the charge context here, so we 1887 * don't want to block when potentially sitting on a callstack 1888 * that holds all kinds of filesystem and mm locks. 1889 * 1890 * cgroup1 allows disabling the OOM killer and waiting for outside 1891 * handling until the charge can succeed; remember the context and put 1892 * the task to sleep at the end of the page fault when all locks are 1893 * released. 1894 * 1895 * On the other hand, in-kernel OOM killer allows for an async victim 1896 * memory reclaim (oom_reaper) and that means that we are not solely 1897 * relying on the oom victim to make a forward progress and we can 1898 * invoke the oom killer here. 1899 * 1900 * Please note that mem_cgroup_out_of_memory might fail to find a 1901 * victim and then we have to bail out from the charge path. 1902 */ 1903 if (memcg->oom_kill_disable) { 1904 if (!current->in_user_fault) 1905 return OOM_SKIPPED; 1906 css_get(&memcg->css); 1907 current->memcg_in_oom = memcg; 1908 current->memcg_oom_gfp_mask = mask; 1909 current->memcg_oom_order = order; 1910 1911 return OOM_ASYNC; 1912 } 1913 1914 mem_cgroup_mark_under_oom(memcg); 1915 1916 locked = mem_cgroup_oom_trylock(memcg); 1917 1918 if (locked) 1919 mem_cgroup_oom_notify(memcg); 1920 1921 mem_cgroup_unmark_under_oom(memcg); 1922 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1923 ret = OOM_SUCCESS; 1924 else 1925 ret = OOM_FAILED; 1926 1927 if (locked) 1928 mem_cgroup_oom_unlock(memcg); 1929 1930 return ret; 1931 } 1932 1933 /** 1934 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1935 * @handle: actually kill/wait or just clean up the OOM state 1936 * 1937 * This has to be called at the end of a page fault if the memcg OOM 1938 * handler was enabled. 1939 * 1940 * Memcg supports userspace OOM handling where failed allocations must 1941 * sleep on a waitqueue until the userspace task resolves the 1942 * situation. Sleeping directly in the charge context with all kinds 1943 * of locks held is not a good idea, instead we remember an OOM state 1944 * in the task and mem_cgroup_oom_synchronize() has to be called at 1945 * the end of the page fault to complete the OOM handling. 1946 * 1947 * Returns %true if an ongoing memcg OOM situation was detected and 1948 * completed, %false otherwise. 1949 */ 1950 bool mem_cgroup_oom_synchronize(bool handle) 1951 { 1952 struct mem_cgroup *memcg = current->memcg_in_oom; 1953 struct oom_wait_info owait; 1954 bool locked; 1955 1956 /* OOM is global, do not handle */ 1957 if (!memcg) 1958 return false; 1959 1960 if (!handle) 1961 goto cleanup; 1962 1963 owait.memcg = memcg; 1964 owait.wait.flags = 0; 1965 owait.wait.func = memcg_oom_wake_function; 1966 owait.wait.private = current; 1967 INIT_LIST_HEAD(&owait.wait.entry); 1968 1969 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1970 mem_cgroup_mark_under_oom(memcg); 1971 1972 locked = mem_cgroup_oom_trylock(memcg); 1973 1974 if (locked) 1975 mem_cgroup_oom_notify(memcg); 1976 1977 if (locked && !memcg->oom_kill_disable) { 1978 mem_cgroup_unmark_under_oom(memcg); 1979 finish_wait(&memcg_oom_waitq, &owait.wait); 1980 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1981 current->memcg_oom_order); 1982 } else { 1983 schedule(); 1984 mem_cgroup_unmark_under_oom(memcg); 1985 finish_wait(&memcg_oom_waitq, &owait.wait); 1986 } 1987 1988 if (locked) { 1989 mem_cgroup_oom_unlock(memcg); 1990 /* 1991 * There is no guarantee that an OOM-lock contender 1992 * sees the wakeups triggered by the OOM kill 1993 * uncharges. Wake any sleepers explicitely. 1994 */ 1995 memcg_oom_recover(memcg); 1996 } 1997 cleanup: 1998 current->memcg_in_oom = NULL; 1999 css_put(&memcg->css); 2000 return true; 2001 } 2002 2003 /** 2004 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2005 * @victim: task to be killed by the OOM killer 2006 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2007 * 2008 * Returns a pointer to a memory cgroup, which has to be cleaned up 2009 * by killing all belonging OOM-killable tasks. 2010 * 2011 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2012 */ 2013 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2014 struct mem_cgroup *oom_domain) 2015 { 2016 struct mem_cgroup *oom_group = NULL; 2017 struct mem_cgroup *memcg; 2018 2019 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2020 return NULL; 2021 2022 if (!oom_domain) 2023 oom_domain = root_mem_cgroup; 2024 2025 rcu_read_lock(); 2026 2027 memcg = mem_cgroup_from_task(victim); 2028 if (memcg == root_mem_cgroup) 2029 goto out; 2030 2031 /* 2032 * Traverse the memory cgroup hierarchy from the victim task's 2033 * cgroup up to the OOMing cgroup (or root) to find the 2034 * highest-level memory cgroup with oom.group set. 2035 */ 2036 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2037 if (memcg->oom_group) 2038 oom_group = memcg; 2039 2040 if (memcg == oom_domain) 2041 break; 2042 } 2043 2044 if (oom_group) 2045 css_get(&oom_group->css); 2046 out: 2047 rcu_read_unlock(); 2048 2049 return oom_group; 2050 } 2051 2052 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2053 { 2054 pr_info("Tasks in "); 2055 pr_cont_cgroup_path(memcg->css.cgroup); 2056 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2057 } 2058 2059 /** 2060 * lock_page_memcg - lock a page->mem_cgroup binding 2061 * @page: the page 2062 * 2063 * This function protects unlocked LRU pages from being moved to 2064 * another cgroup. 2065 * 2066 * It ensures lifetime of the returned memcg. Caller is responsible 2067 * for the lifetime of the page; __unlock_page_memcg() is available 2068 * when @page might get freed inside the locked section. 2069 */ 2070 struct mem_cgroup *lock_page_memcg(struct page *page) 2071 { 2072 struct mem_cgroup *memcg; 2073 unsigned long flags; 2074 2075 /* 2076 * The RCU lock is held throughout the transaction. The fast 2077 * path can get away without acquiring the memcg->move_lock 2078 * because page moving starts with an RCU grace period. 2079 * 2080 * The RCU lock also protects the memcg from being freed when 2081 * the page state that is going to change is the only thing 2082 * preventing the page itself from being freed. E.g. writeback 2083 * doesn't hold a page reference and relies on PG_writeback to 2084 * keep off truncation, migration and so forth. 2085 */ 2086 rcu_read_lock(); 2087 2088 if (mem_cgroup_disabled()) 2089 return NULL; 2090 again: 2091 memcg = page->mem_cgroup; 2092 if (unlikely(!memcg)) 2093 return NULL; 2094 2095 if (atomic_read(&memcg->moving_account) <= 0) 2096 return memcg; 2097 2098 spin_lock_irqsave(&memcg->move_lock, flags); 2099 if (memcg != page->mem_cgroup) { 2100 spin_unlock_irqrestore(&memcg->move_lock, flags); 2101 goto again; 2102 } 2103 2104 /* 2105 * When charge migration first begins, we can have locked and 2106 * unlocked page stat updates happening concurrently. Track 2107 * the task who has the lock for unlock_page_memcg(). 2108 */ 2109 memcg->move_lock_task = current; 2110 memcg->move_lock_flags = flags; 2111 2112 return memcg; 2113 } 2114 EXPORT_SYMBOL(lock_page_memcg); 2115 2116 /** 2117 * __unlock_page_memcg - unlock and unpin a memcg 2118 * @memcg: the memcg 2119 * 2120 * Unlock and unpin a memcg returned by lock_page_memcg(). 2121 */ 2122 void __unlock_page_memcg(struct mem_cgroup *memcg) 2123 { 2124 if (memcg && memcg->move_lock_task == current) { 2125 unsigned long flags = memcg->move_lock_flags; 2126 2127 memcg->move_lock_task = NULL; 2128 memcg->move_lock_flags = 0; 2129 2130 spin_unlock_irqrestore(&memcg->move_lock, flags); 2131 } 2132 2133 rcu_read_unlock(); 2134 } 2135 2136 /** 2137 * unlock_page_memcg - unlock a page->mem_cgroup binding 2138 * @page: the page 2139 */ 2140 void unlock_page_memcg(struct page *page) 2141 { 2142 __unlock_page_memcg(page->mem_cgroup); 2143 } 2144 EXPORT_SYMBOL(unlock_page_memcg); 2145 2146 struct memcg_stock_pcp { 2147 struct mem_cgroup *cached; /* this never be root cgroup */ 2148 unsigned int nr_pages; 2149 struct work_struct work; 2150 unsigned long flags; 2151 #define FLUSHING_CACHED_CHARGE 0 2152 }; 2153 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2154 static DEFINE_MUTEX(percpu_charge_mutex); 2155 2156 /** 2157 * consume_stock: Try to consume stocked charge on this cpu. 2158 * @memcg: memcg to consume from. 2159 * @nr_pages: how many pages to charge. 2160 * 2161 * The charges will only happen if @memcg matches the current cpu's memcg 2162 * stock, and at least @nr_pages are available in that stock. Failure to 2163 * service an allocation will refill the stock. 2164 * 2165 * returns true if successful, false otherwise. 2166 */ 2167 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2168 { 2169 struct memcg_stock_pcp *stock; 2170 unsigned long flags; 2171 bool ret = false; 2172 2173 if (nr_pages > MEMCG_CHARGE_BATCH) 2174 return ret; 2175 2176 local_irq_save(flags); 2177 2178 stock = this_cpu_ptr(&memcg_stock); 2179 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2180 stock->nr_pages -= nr_pages; 2181 ret = true; 2182 } 2183 2184 local_irq_restore(flags); 2185 2186 return ret; 2187 } 2188 2189 /* 2190 * Returns stocks cached in percpu and reset cached information. 2191 */ 2192 static void drain_stock(struct memcg_stock_pcp *stock) 2193 { 2194 struct mem_cgroup *old = stock->cached; 2195 2196 if (stock->nr_pages) { 2197 page_counter_uncharge(&old->memory, stock->nr_pages); 2198 if (do_memsw_account()) 2199 page_counter_uncharge(&old->memsw, stock->nr_pages); 2200 css_put_many(&old->css, stock->nr_pages); 2201 stock->nr_pages = 0; 2202 } 2203 stock->cached = NULL; 2204 } 2205 2206 static void drain_local_stock(struct work_struct *dummy) 2207 { 2208 struct memcg_stock_pcp *stock; 2209 unsigned long flags; 2210 2211 /* 2212 * The only protection from memory hotplug vs. drain_stock races is 2213 * that we always operate on local CPU stock here with IRQ disabled 2214 */ 2215 local_irq_save(flags); 2216 2217 stock = this_cpu_ptr(&memcg_stock); 2218 drain_stock(stock); 2219 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2220 2221 local_irq_restore(flags); 2222 } 2223 2224 /* 2225 * Cache charges(val) to local per_cpu area. 2226 * This will be consumed by consume_stock() function, later. 2227 */ 2228 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2229 { 2230 struct memcg_stock_pcp *stock; 2231 unsigned long flags; 2232 2233 local_irq_save(flags); 2234 2235 stock = this_cpu_ptr(&memcg_stock); 2236 if (stock->cached != memcg) { /* reset if necessary */ 2237 drain_stock(stock); 2238 stock->cached = memcg; 2239 } 2240 stock->nr_pages += nr_pages; 2241 2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2243 drain_stock(stock); 2244 2245 local_irq_restore(flags); 2246 } 2247 2248 /* 2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2250 * of the hierarchy under it. 2251 */ 2252 static void drain_all_stock(struct mem_cgroup *root_memcg) 2253 { 2254 int cpu, curcpu; 2255 2256 /* If someone's already draining, avoid adding running more workers. */ 2257 if (!mutex_trylock(&percpu_charge_mutex)) 2258 return; 2259 /* 2260 * Notify other cpus that system-wide "drain" is running 2261 * We do not care about races with the cpu hotplug because cpu down 2262 * as well as workers from this path always operate on the local 2263 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2264 */ 2265 curcpu = get_cpu(); 2266 for_each_online_cpu(cpu) { 2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2268 struct mem_cgroup *memcg; 2269 2270 memcg = stock->cached; 2271 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2272 continue; 2273 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2274 css_put(&memcg->css); 2275 continue; 2276 } 2277 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2278 if (cpu == curcpu) 2279 drain_local_stock(&stock->work); 2280 else 2281 schedule_work_on(cpu, &stock->work); 2282 } 2283 css_put(&memcg->css); 2284 } 2285 put_cpu(); 2286 mutex_unlock(&percpu_charge_mutex); 2287 } 2288 2289 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2290 { 2291 struct memcg_stock_pcp *stock; 2292 struct mem_cgroup *memcg, *mi; 2293 2294 stock = &per_cpu(memcg_stock, cpu); 2295 drain_stock(stock); 2296 2297 for_each_mem_cgroup(memcg) { 2298 int i; 2299 2300 for (i = 0; i < MEMCG_NR_STAT; i++) { 2301 int nid; 2302 long x; 2303 2304 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2305 if (x) 2306 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2307 atomic_long_add(x, &memcg->vmstats[i]); 2308 2309 if (i >= NR_VM_NODE_STAT_ITEMS) 2310 continue; 2311 2312 for_each_node(nid) { 2313 struct mem_cgroup_per_node *pn; 2314 2315 pn = mem_cgroup_nodeinfo(memcg, nid); 2316 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2317 if (x) 2318 do { 2319 atomic_long_add(x, &pn->lruvec_stat[i]); 2320 } while ((pn = parent_nodeinfo(pn, nid))); 2321 } 2322 } 2323 2324 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2325 long x; 2326 2327 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2328 if (x) 2329 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2330 atomic_long_add(x, &memcg->vmevents[i]); 2331 } 2332 } 2333 2334 return 0; 2335 } 2336 2337 static void reclaim_high(struct mem_cgroup *memcg, 2338 unsigned int nr_pages, 2339 gfp_t gfp_mask) 2340 { 2341 do { 2342 if (page_counter_read(&memcg->memory) <= memcg->high) 2343 continue; 2344 memcg_memory_event(memcg, MEMCG_HIGH); 2345 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2346 } while ((memcg = parent_mem_cgroup(memcg))); 2347 } 2348 2349 static void high_work_func(struct work_struct *work) 2350 { 2351 struct mem_cgroup *memcg; 2352 2353 memcg = container_of(work, struct mem_cgroup, high_work); 2354 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2355 } 2356 2357 /* 2358 * Scheduled by try_charge() to be executed from the userland return path 2359 * and reclaims memory over the high limit. 2360 */ 2361 void mem_cgroup_handle_over_high(void) 2362 { 2363 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2364 struct mem_cgroup *memcg; 2365 2366 if (likely(!nr_pages)) 2367 return; 2368 2369 memcg = get_mem_cgroup_from_mm(current->mm); 2370 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2371 css_put(&memcg->css); 2372 current->memcg_nr_pages_over_high = 0; 2373 } 2374 2375 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2376 unsigned int nr_pages) 2377 { 2378 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2379 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2380 struct mem_cgroup *mem_over_limit; 2381 struct page_counter *counter; 2382 unsigned long nr_reclaimed; 2383 bool may_swap = true; 2384 bool drained = false; 2385 enum oom_status oom_status; 2386 2387 if (mem_cgroup_is_root(memcg)) 2388 return 0; 2389 retry: 2390 if (consume_stock(memcg, nr_pages)) 2391 return 0; 2392 2393 if (!do_memsw_account() || 2394 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2395 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2396 goto done_restock; 2397 if (do_memsw_account()) 2398 page_counter_uncharge(&memcg->memsw, batch); 2399 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2400 } else { 2401 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2402 may_swap = false; 2403 } 2404 2405 if (batch > nr_pages) { 2406 batch = nr_pages; 2407 goto retry; 2408 } 2409 2410 /* 2411 * Unlike in global OOM situations, memcg is not in a physical 2412 * memory shortage. Allow dying and OOM-killed tasks to 2413 * bypass the last charges so that they can exit quickly and 2414 * free their memory. 2415 */ 2416 if (unlikely(should_force_charge())) 2417 goto force; 2418 2419 /* 2420 * Prevent unbounded recursion when reclaim operations need to 2421 * allocate memory. This might exceed the limits temporarily, 2422 * but we prefer facilitating memory reclaim and getting back 2423 * under the limit over triggering OOM kills in these cases. 2424 */ 2425 if (unlikely(current->flags & PF_MEMALLOC)) 2426 goto force; 2427 2428 if (unlikely(task_in_memcg_oom(current))) 2429 goto nomem; 2430 2431 if (!gfpflags_allow_blocking(gfp_mask)) 2432 goto nomem; 2433 2434 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2435 2436 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2437 gfp_mask, may_swap); 2438 2439 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2440 goto retry; 2441 2442 if (!drained) { 2443 drain_all_stock(mem_over_limit); 2444 drained = true; 2445 goto retry; 2446 } 2447 2448 if (gfp_mask & __GFP_NORETRY) 2449 goto nomem; 2450 /* 2451 * Even though the limit is exceeded at this point, reclaim 2452 * may have been able to free some pages. Retry the charge 2453 * before killing the task. 2454 * 2455 * Only for regular pages, though: huge pages are rather 2456 * unlikely to succeed so close to the limit, and we fall back 2457 * to regular pages anyway in case of failure. 2458 */ 2459 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2460 goto retry; 2461 /* 2462 * At task move, charge accounts can be doubly counted. So, it's 2463 * better to wait until the end of task_move if something is going on. 2464 */ 2465 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2466 goto retry; 2467 2468 if (nr_retries--) 2469 goto retry; 2470 2471 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2472 goto nomem; 2473 2474 if (gfp_mask & __GFP_NOFAIL) 2475 goto force; 2476 2477 if (fatal_signal_pending(current)) 2478 goto force; 2479 2480 /* 2481 * keep retrying as long as the memcg oom killer is able to make 2482 * a forward progress or bypass the charge if the oom killer 2483 * couldn't make any progress. 2484 */ 2485 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2486 get_order(nr_pages * PAGE_SIZE)); 2487 switch (oom_status) { 2488 case OOM_SUCCESS: 2489 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2490 goto retry; 2491 case OOM_FAILED: 2492 goto force; 2493 default: 2494 goto nomem; 2495 } 2496 nomem: 2497 if (!(gfp_mask & __GFP_NOFAIL)) 2498 return -ENOMEM; 2499 force: 2500 /* 2501 * The allocation either can't fail or will lead to more memory 2502 * being freed very soon. Allow memory usage go over the limit 2503 * temporarily by force charging it. 2504 */ 2505 page_counter_charge(&memcg->memory, nr_pages); 2506 if (do_memsw_account()) 2507 page_counter_charge(&memcg->memsw, nr_pages); 2508 css_get_many(&memcg->css, nr_pages); 2509 2510 return 0; 2511 2512 done_restock: 2513 css_get_many(&memcg->css, batch); 2514 if (batch > nr_pages) 2515 refill_stock(memcg, batch - nr_pages); 2516 2517 /* 2518 * If the hierarchy is above the normal consumption range, schedule 2519 * reclaim on returning to userland. We can perform reclaim here 2520 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2521 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2522 * not recorded as it most likely matches current's and won't 2523 * change in the meantime. As high limit is checked again before 2524 * reclaim, the cost of mismatch is negligible. 2525 */ 2526 do { 2527 if (page_counter_read(&memcg->memory) > memcg->high) { 2528 /* Don't bother a random interrupted task */ 2529 if (in_interrupt()) { 2530 schedule_work(&memcg->high_work); 2531 break; 2532 } 2533 current->memcg_nr_pages_over_high += batch; 2534 set_notify_resume(current); 2535 break; 2536 } 2537 } while ((memcg = parent_mem_cgroup(memcg))); 2538 2539 return 0; 2540 } 2541 2542 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2543 { 2544 if (mem_cgroup_is_root(memcg)) 2545 return; 2546 2547 page_counter_uncharge(&memcg->memory, nr_pages); 2548 if (do_memsw_account()) 2549 page_counter_uncharge(&memcg->memsw, nr_pages); 2550 2551 css_put_many(&memcg->css, nr_pages); 2552 } 2553 2554 static void lock_page_lru(struct page *page, int *isolated) 2555 { 2556 pg_data_t *pgdat = page_pgdat(page); 2557 2558 spin_lock_irq(&pgdat->lru_lock); 2559 if (PageLRU(page)) { 2560 struct lruvec *lruvec; 2561 2562 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2563 ClearPageLRU(page); 2564 del_page_from_lru_list(page, lruvec, page_lru(page)); 2565 *isolated = 1; 2566 } else 2567 *isolated = 0; 2568 } 2569 2570 static void unlock_page_lru(struct page *page, int isolated) 2571 { 2572 pg_data_t *pgdat = page_pgdat(page); 2573 2574 if (isolated) { 2575 struct lruvec *lruvec; 2576 2577 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2578 VM_BUG_ON_PAGE(PageLRU(page), page); 2579 SetPageLRU(page); 2580 add_page_to_lru_list(page, lruvec, page_lru(page)); 2581 } 2582 spin_unlock_irq(&pgdat->lru_lock); 2583 } 2584 2585 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2586 bool lrucare) 2587 { 2588 int isolated; 2589 2590 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2591 2592 /* 2593 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2594 * may already be on some other mem_cgroup's LRU. Take care of it. 2595 */ 2596 if (lrucare) 2597 lock_page_lru(page, &isolated); 2598 2599 /* 2600 * Nobody should be changing or seriously looking at 2601 * page->mem_cgroup at this point: 2602 * 2603 * - the page is uncharged 2604 * 2605 * - the page is off-LRU 2606 * 2607 * - an anonymous fault has exclusive page access, except for 2608 * a locked page table 2609 * 2610 * - a page cache insertion, a swapin fault, or a migration 2611 * have the page locked 2612 */ 2613 page->mem_cgroup = memcg; 2614 2615 if (lrucare) 2616 unlock_page_lru(page, isolated); 2617 } 2618 2619 #ifdef CONFIG_MEMCG_KMEM 2620 static int memcg_alloc_cache_id(void) 2621 { 2622 int id, size; 2623 int err; 2624 2625 id = ida_simple_get(&memcg_cache_ida, 2626 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2627 if (id < 0) 2628 return id; 2629 2630 if (id < memcg_nr_cache_ids) 2631 return id; 2632 2633 /* 2634 * There's no space for the new id in memcg_caches arrays, 2635 * so we have to grow them. 2636 */ 2637 down_write(&memcg_cache_ids_sem); 2638 2639 size = 2 * (id + 1); 2640 if (size < MEMCG_CACHES_MIN_SIZE) 2641 size = MEMCG_CACHES_MIN_SIZE; 2642 else if (size > MEMCG_CACHES_MAX_SIZE) 2643 size = MEMCG_CACHES_MAX_SIZE; 2644 2645 err = memcg_update_all_caches(size); 2646 if (!err) 2647 err = memcg_update_all_list_lrus(size); 2648 if (!err) 2649 memcg_nr_cache_ids = size; 2650 2651 up_write(&memcg_cache_ids_sem); 2652 2653 if (err) { 2654 ida_simple_remove(&memcg_cache_ida, id); 2655 return err; 2656 } 2657 return id; 2658 } 2659 2660 static void memcg_free_cache_id(int id) 2661 { 2662 ida_simple_remove(&memcg_cache_ida, id); 2663 } 2664 2665 struct memcg_kmem_cache_create_work { 2666 struct mem_cgroup *memcg; 2667 struct kmem_cache *cachep; 2668 struct work_struct work; 2669 }; 2670 2671 static void memcg_kmem_cache_create_func(struct work_struct *w) 2672 { 2673 struct memcg_kmem_cache_create_work *cw = 2674 container_of(w, struct memcg_kmem_cache_create_work, work); 2675 struct mem_cgroup *memcg = cw->memcg; 2676 struct kmem_cache *cachep = cw->cachep; 2677 2678 memcg_create_kmem_cache(memcg, cachep); 2679 2680 css_put(&memcg->css); 2681 kfree(cw); 2682 } 2683 2684 /* 2685 * Enqueue the creation of a per-memcg kmem_cache. 2686 */ 2687 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2688 struct kmem_cache *cachep) 2689 { 2690 struct memcg_kmem_cache_create_work *cw; 2691 2692 if (!css_tryget_online(&memcg->css)) 2693 return; 2694 2695 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2696 if (!cw) 2697 return; 2698 2699 cw->memcg = memcg; 2700 cw->cachep = cachep; 2701 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2702 2703 queue_work(memcg_kmem_cache_wq, &cw->work); 2704 } 2705 2706 static inline bool memcg_kmem_bypass(void) 2707 { 2708 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2709 return true; 2710 return false; 2711 } 2712 2713 /** 2714 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2715 * @cachep: the original global kmem cache 2716 * 2717 * Return the kmem_cache we're supposed to use for a slab allocation. 2718 * We try to use the current memcg's version of the cache. 2719 * 2720 * If the cache does not exist yet, if we are the first user of it, we 2721 * create it asynchronously in a workqueue and let the current allocation 2722 * go through with the original cache. 2723 * 2724 * This function takes a reference to the cache it returns to assure it 2725 * won't get destroyed while we are working with it. Once the caller is 2726 * done with it, memcg_kmem_put_cache() must be called to release the 2727 * reference. 2728 */ 2729 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2730 { 2731 struct mem_cgroup *memcg; 2732 struct kmem_cache *memcg_cachep; 2733 struct memcg_cache_array *arr; 2734 int kmemcg_id; 2735 2736 VM_BUG_ON(!is_root_cache(cachep)); 2737 2738 if (memcg_kmem_bypass()) 2739 return cachep; 2740 2741 rcu_read_lock(); 2742 2743 if (unlikely(current->active_memcg)) 2744 memcg = current->active_memcg; 2745 else 2746 memcg = mem_cgroup_from_task(current); 2747 2748 if (!memcg || memcg == root_mem_cgroup) 2749 goto out_unlock; 2750 2751 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2752 if (kmemcg_id < 0) 2753 goto out_unlock; 2754 2755 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2756 2757 /* 2758 * Make sure we will access the up-to-date value. The code updating 2759 * memcg_caches issues a write barrier to match the data dependency 2760 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2761 */ 2762 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2763 2764 /* 2765 * If we are in a safe context (can wait, and not in interrupt 2766 * context), we could be be predictable and return right away. 2767 * This would guarantee that the allocation being performed 2768 * already belongs in the new cache. 2769 * 2770 * However, there are some clashes that can arrive from locking. 2771 * For instance, because we acquire the slab_mutex while doing 2772 * memcg_create_kmem_cache, this means no further allocation 2773 * could happen with the slab_mutex held. So it's better to 2774 * defer everything. 2775 * 2776 * If the memcg is dying or memcg_cache is about to be released, 2777 * don't bother creating new kmem_caches. Because memcg_cachep 2778 * is ZEROed as the fist step of kmem offlining, we don't need 2779 * percpu_ref_tryget_live() here. css_tryget_online() check in 2780 * memcg_schedule_kmem_cache_create() will prevent us from 2781 * creation of a new kmem_cache. 2782 */ 2783 if (unlikely(!memcg_cachep)) 2784 memcg_schedule_kmem_cache_create(memcg, cachep); 2785 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2786 cachep = memcg_cachep; 2787 out_unlock: 2788 rcu_read_unlock(); 2789 return cachep; 2790 } 2791 2792 /** 2793 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2794 * @cachep: the cache returned by memcg_kmem_get_cache 2795 */ 2796 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2797 { 2798 if (!is_root_cache(cachep)) 2799 percpu_ref_put(&cachep->memcg_params.refcnt); 2800 } 2801 2802 /** 2803 * __memcg_kmem_charge_memcg: charge a kmem page 2804 * @page: page to charge 2805 * @gfp: reclaim mode 2806 * @order: allocation order 2807 * @memcg: memory cgroup to charge 2808 * 2809 * Returns 0 on success, an error code on failure. 2810 */ 2811 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2812 struct mem_cgroup *memcg) 2813 { 2814 unsigned int nr_pages = 1 << order; 2815 struct page_counter *counter; 2816 int ret; 2817 2818 ret = try_charge(memcg, gfp, nr_pages); 2819 if (ret) 2820 return ret; 2821 2822 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2823 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2824 cancel_charge(memcg, nr_pages); 2825 return -ENOMEM; 2826 } 2827 return 0; 2828 } 2829 2830 /** 2831 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2832 * @page: page to charge 2833 * @gfp: reclaim mode 2834 * @order: allocation order 2835 * 2836 * Returns 0 on success, an error code on failure. 2837 */ 2838 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2839 { 2840 struct mem_cgroup *memcg; 2841 int ret = 0; 2842 2843 if (memcg_kmem_bypass()) 2844 return 0; 2845 2846 memcg = get_mem_cgroup_from_current(); 2847 if (!mem_cgroup_is_root(memcg)) { 2848 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2849 if (!ret) { 2850 page->mem_cgroup = memcg; 2851 __SetPageKmemcg(page); 2852 } 2853 } 2854 css_put(&memcg->css); 2855 return ret; 2856 } 2857 2858 /** 2859 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2860 * @memcg: memcg to uncharge 2861 * @nr_pages: number of pages to uncharge 2862 */ 2863 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2864 unsigned int nr_pages) 2865 { 2866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2867 page_counter_uncharge(&memcg->kmem, nr_pages); 2868 2869 page_counter_uncharge(&memcg->memory, nr_pages); 2870 if (do_memsw_account()) 2871 page_counter_uncharge(&memcg->memsw, nr_pages); 2872 } 2873 /** 2874 * __memcg_kmem_uncharge: uncharge a kmem page 2875 * @page: page to uncharge 2876 * @order: allocation order 2877 */ 2878 void __memcg_kmem_uncharge(struct page *page, int order) 2879 { 2880 struct mem_cgroup *memcg = page->mem_cgroup; 2881 unsigned int nr_pages = 1 << order; 2882 2883 if (!memcg) 2884 return; 2885 2886 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2887 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2888 page->mem_cgroup = NULL; 2889 2890 /* slab pages do not have PageKmemcg flag set */ 2891 if (PageKmemcg(page)) 2892 __ClearPageKmemcg(page); 2893 2894 css_put_many(&memcg->css, nr_pages); 2895 } 2896 #endif /* CONFIG_MEMCG_KMEM */ 2897 2898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2899 2900 /* 2901 * Because tail pages are not marked as "used", set it. We're under 2902 * pgdat->lru_lock and migration entries setup in all page mappings. 2903 */ 2904 void mem_cgroup_split_huge_fixup(struct page *head) 2905 { 2906 int i; 2907 2908 if (mem_cgroup_disabled()) 2909 return; 2910 2911 for (i = 1; i < HPAGE_PMD_NR; i++) 2912 head[i].mem_cgroup = head->mem_cgroup; 2913 2914 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2915 } 2916 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2917 2918 #ifdef CONFIG_MEMCG_SWAP 2919 /** 2920 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2921 * @entry: swap entry to be moved 2922 * @from: mem_cgroup which the entry is moved from 2923 * @to: mem_cgroup which the entry is moved to 2924 * 2925 * It succeeds only when the swap_cgroup's record for this entry is the same 2926 * as the mem_cgroup's id of @from. 2927 * 2928 * Returns 0 on success, -EINVAL on failure. 2929 * 2930 * The caller must have charged to @to, IOW, called page_counter_charge() about 2931 * both res and memsw, and called css_get(). 2932 */ 2933 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2934 struct mem_cgroup *from, struct mem_cgroup *to) 2935 { 2936 unsigned short old_id, new_id; 2937 2938 old_id = mem_cgroup_id(from); 2939 new_id = mem_cgroup_id(to); 2940 2941 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2942 mod_memcg_state(from, MEMCG_SWAP, -1); 2943 mod_memcg_state(to, MEMCG_SWAP, 1); 2944 return 0; 2945 } 2946 return -EINVAL; 2947 } 2948 #else 2949 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2950 struct mem_cgroup *from, struct mem_cgroup *to) 2951 { 2952 return -EINVAL; 2953 } 2954 #endif 2955 2956 static DEFINE_MUTEX(memcg_max_mutex); 2957 2958 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2959 unsigned long max, bool memsw) 2960 { 2961 bool enlarge = false; 2962 bool drained = false; 2963 int ret; 2964 bool limits_invariant; 2965 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2966 2967 do { 2968 if (signal_pending(current)) { 2969 ret = -EINTR; 2970 break; 2971 } 2972 2973 mutex_lock(&memcg_max_mutex); 2974 /* 2975 * Make sure that the new limit (memsw or memory limit) doesn't 2976 * break our basic invariant rule memory.max <= memsw.max. 2977 */ 2978 limits_invariant = memsw ? max >= memcg->memory.max : 2979 max <= memcg->memsw.max; 2980 if (!limits_invariant) { 2981 mutex_unlock(&memcg_max_mutex); 2982 ret = -EINVAL; 2983 break; 2984 } 2985 if (max > counter->max) 2986 enlarge = true; 2987 ret = page_counter_set_max(counter, max); 2988 mutex_unlock(&memcg_max_mutex); 2989 2990 if (!ret) 2991 break; 2992 2993 if (!drained) { 2994 drain_all_stock(memcg); 2995 drained = true; 2996 continue; 2997 } 2998 2999 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3000 GFP_KERNEL, !memsw)) { 3001 ret = -EBUSY; 3002 break; 3003 } 3004 } while (true); 3005 3006 if (!ret && enlarge) 3007 memcg_oom_recover(memcg); 3008 3009 return ret; 3010 } 3011 3012 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3013 gfp_t gfp_mask, 3014 unsigned long *total_scanned) 3015 { 3016 unsigned long nr_reclaimed = 0; 3017 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3018 unsigned long reclaimed; 3019 int loop = 0; 3020 struct mem_cgroup_tree_per_node *mctz; 3021 unsigned long excess; 3022 unsigned long nr_scanned; 3023 3024 if (order > 0) 3025 return 0; 3026 3027 mctz = soft_limit_tree_node(pgdat->node_id); 3028 3029 /* 3030 * Do not even bother to check the largest node if the root 3031 * is empty. Do it lockless to prevent lock bouncing. Races 3032 * are acceptable as soft limit is best effort anyway. 3033 */ 3034 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3035 return 0; 3036 3037 /* 3038 * This loop can run a while, specially if mem_cgroup's continuously 3039 * keep exceeding their soft limit and putting the system under 3040 * pressure 3041 */ 3042 do { 3043 if (next_mz) 3044 mz = next_mz; 3045 else 3046 mz = mem_cgroup_largest_soft_limit_node(mctz); 3047 if (!mz) 3048 break; 3049 3050 nr_scanned = 0; 3051 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3052 gfp_mask, &nr_scanned); 3053 nr_reclaimed += reclaimed; 3054 *total_scanned += nr_scanned; 3055 spin_lock_irq(&mctz->lock); 3056 __mem_cgroup_remove_exceeded(mz, mctz); 3057 3058 /* 3059 * If we failed to reclaim anything from this memory cgroup 3060 * it is time to move on to the next cgroup 3061 */ 3062 next_mz = NULL; 3063 if (!reclaimed) 3064 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3065 3066 excess = soft_limit_excess(mz->memcg); 3067 /* 3068 * One school of thought says that we should not add 3069 * back the node to the tree if reclaim returns 0. 3070 * But our reclaim could return 0, simply because due 3071 * to priority we are exposing a smaller subset of 3072 * memory to reclaim from. Consider this as a longer 3073 * term TODO. 3074 */ 3075 /* If excess == 0, no tree ops */ 3076 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3077 spin_unlock_irq(&mctz->lock); 3078 css_put(&mz->memcg->css); 3079 loop++; 3080 /* 3081 * Could not reclaim anything and there are no more 3082 * mem cgroups to try or we seem to be looping without 3083 * reclaiming anything. 3084 */ 3085 if (!nr_reclaimed && 3086 (next_mz == NULL || 3087 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3088 break; 3089 } while (!nr_reclaimed); 3090 if (next_mz) 3091 css_put(&next_mz->memcg->css); 3092 return nr_reclaimed; 3093 } 3094 3095 /* 3096 * Test whether @memcg has children, dead or alive. Note that this 3097 * function doesn't care whether @memcg has use_hierarchy enabled and 3098 * returns %true if there are child csses according to the cgroup 3099 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3100 */ 3101 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3102 { 3103 bool ret; 3104 3105 rcu_read_lock(); 3106 ret = css_next_child(NULL, &memcg->css); 3107 rcu_read_unlock(); 3108 return ret; 3109 } 3110 3111 /* 3112 * Reclaims as many pages from the given memcg as possible. 3113 * 3114 * Caller is responsible for holding css reference for memcg. 3115 */ 3116 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3117 { 3118 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3119 3120 /* we call try-to-free pages for make this cgroup empty */ 3121 lru_add_drain_all(); 3122 3123 drain_all_stock(memcg); 3124 3125 /* try to free all pages in this cgroup */ 3126 while (nr_retries && page_counter_read(&memcg->memory)) { 3127 int progress; 3128 3129 if (signal_pending(current)) 3130 return -EINTR; 3131 3132 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3133 GFP_KERNEL, true); 3134 if (!progress) { 3135 nr_retries--; 3136 /* maybe some writeback is necessary */ 3137 congestion_wait(BLK_RW_ASYNC, HZ/10); 3138 } 3139 3140 } 3141 3142 return 0; 3143 } 3144 3145 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3146 char *buf, size_t nbytes, 3147 loff_t off) 3148 { 3149 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3150 3151 if (mem_cgroup_is_root(memcg)) 3152 return -EINVAL; 3153 return mem_cgroup_force_empty(memcg) ?: nbytes; 3154 } 3155 3156 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3157 struct cftype *cft) 3158 { 3159 return mem_cgroup_from_css(css)->use_hierarchy; 3160 } 3161 3162 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3163 struct cftype *cft, u64 val) 3164 { 3165 int retval = 0; 3166 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3167 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3168 3169 if (memcg->use_hierarchy == val) 3170 return 0; 3171 3172 /* 3173 * If parent's use_hierarchy is set, we can't make any modifications 3174 * in the child subtrees. If it is unset, then the change can 3175 * occur, provided the current cgroup has no children. 3176 * 3177 * For the root cgroup, parent_mem is NULL, we allow value to be 3178 * set if there are no children. 3179 */ 3180 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3181 (val == 1 || val == 0)) { 3182 if (!memcg_has_children(memcg)) 3183 memcg->use_hierarchy = val; 3184 else 3185 retval = -EBUSY; 3186 } else 3187 retval = -EINVAL; 3188 3189 return retval; 3190 } 3191 3192 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3193 { 3194 unsigned long val; 3195 3196 if (mem_cgroup_is_root(memcg)) { 3197 val = memcg_page_state(memcg, MEMCG_CACHE) + 3198 memcg_page_state(memcg, MEMCG_RSS); 3199 if (swap) 3200 val += memcg_page_state(memcg, MEMCG_SWAP); 3201 } else { 3202 if (!swap) 3203 val = page_counter_read(&memcg->memory); 3204 else 3205 val = page_counter_read(&memcg->memsw); 3206 } 3207 return val; 3208 } 3209 3210 enum { 3211 RES_USAGE, 3212 RES_LIMIT, 3213 RES_MAX_USAGE, 3214 RES_FAILCNT, 3215 RES_SOFT_LIMIT, 3216 }; 3217 3218 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3219 struct cftype *cft) 3220 { 3221 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3222 struct page_counter *counter; 3223 3224 switch (MEMFILE_TYPE(cft->private)) { 3225 case _MEM: 3226 counter = &memcg->memory; 3227 break; 3228 case _MEMSWAP: 3229 counter = &memcg->memsw; 3230 break; 3231 case _KMEM: 3232 counter = &memcg->kmem; 3233 break; 3234 case _TCP: 3235 counter = &memcg->tcpmem; 3236 break; 3237 default: 3238 BUG(); 3239 } 3240 3241 switch (MEMFILE_ATTR(cft->private)) { 3242 case RES_USAGE: 3243 if (counter == &memcg->memory) 3244 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3245 if (counter == &memcg->memsw) 3246 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3247 return (u64)page_counter_read(counter) * PAGE_SIZE; 3248 case RES_LIMIT: 3249 return (u64)counter->max * PAGE_SIZE; 3250 case RES_MAX_USAGE: 3251 return (u64)counter->watermark * PAGE_SIZE; 3252 case RES_FAILCNT: 3253 return counter->failcnt; 3254 case RES_SOFT_LIMIT: 3255 return (u64)memcg->soft_limit * PAGE_SIZE; 3256 default: 3257 BUG(); 3258 } 3259 } 3260 3261 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only) 3262 { 3263 unsigned long stat[MEMCG_NR_STAT]; 3264 struct mem_cgroup *mi; 3265 int node, cpu, i; 3266 int min_idx, max_idx; 3267 3268 if (slab_only) { 3269 min_idx = NR_SLAB_RECLAIMABLE; 3270 max_idx = NR_SLAB_UNRECLAIMABLE; 3271 } else { 3272 min_idx = 0; 3273 max_idx = MEMCG_NR_STAT; 3274 } 3275 3276 for (i = min_idx; i < max_idx; i++) 3277 stat[i] = 0; 3278 3279 for_each_online_cpu(cpu) 3280 for (i = min_idx; i < max_idx; i++) 3281 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3282 3283 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3284 for (i = min_idx; i < max_idx; i++) 3285 atomic_long_add(stat[i], &mi->vmstats[i]); 3286 3287 if (!slab_only) 3288 max_idx = NR_VM_NODE_STAT_ITEMS; 3289 3290 for_each_node(node) { 3291 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3292 struct mem_cgroup_per_node *pi; 3293 3294 for (i = min_idx; i < max_idx; i++) 3295 stat[i] = 0; 3296 3297 for_each_online_cpu(cpu) 3298 for (i = min_idx; i < max_idx; i++) 3299 stat[i] += per_cpu( 3300 pn->lruvec_stat_cpu->count[i], cpu); 3301 3302 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3303 for (i = min_idx; i < max_idx; i++) 3304 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3305 } 3306 } 3307 3308 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3309 { 3310 unsigned long events[NR_VM_EVENT_ITEMS]; 3311 struct mem_cgroup *mi; 3312 int cpu, i; 3313 3314 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3315 events[i] = 0; 3316 3317 for_each_online_cpu(cpu) 3318 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3319 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3320 cpu); 3321 3322 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3323 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3324 atomic_long_add(events[i], &mi->vmevents[i]); 3325 } 3326 3327 #ifdef CONFIG_MEMCG_KMEM 3328 static int memcg_online_kmem(struct mem_cgroup *memcg) 3329 { 3330 int memcg_id; 3331 3332 if (cgroup_memory_nokmem) 3333 return 0; 3334 3335 BUG_ON(memcg->kmemcg_id >= 0); 3336 BUG_ON(memcg->kmem_state); 3337 3338 memcg_id = memcg_alloc_cache_id(); 3339 if (memcg_id < 0) 3340 return memcg_id; 3341 3342 static_branch_inc(&memcg_kmem_enabled_key); 3343 /* 3344 * A memory cgroup is considered kmem-online as soon as it gets 3345 * kmemcg_id. Setting the id after enabling static branching will 3346 * guarantee no one starts accounting before all call sites are 3347 * patched. 3348 */ 3349 memcg->kmemcg_id = memcg_id; 3350 memcg->kmem_state = KMEM_ONLINE; 3351 INIT_LIST_HEAD(&memcg->kmem_caches); 3352 3353 return 0; 3354 } 3355 3356 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3357 { 3358 struct cgroup_subsys_state *css; 3359 struct mem_cgroup *parent, *child; 3360 int kmemcg_id; 3361 3362 if (memcg->kmem_state != KMEM_ONLINE) 3363 return; 3364 /* 3365 * Clear the online state before clearing memcg_caches array 3366 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3367 * guarantees that no cache will be created for this cgroup 3368 * after we are done (see memcg_create_kmem_cache()). 3369 */ 3370 memcg->kmem_state = KMEM_ALLOCATED; 3371 3372 parent = parent_mem_cgroup(memcg); 3373 if (!parent) 3374 parent = root_mem_cgroup; 3375 3376 /* 3377 * Deactivate and reparent kmem_caches. Then flush percpu 3378 * slab statistics to have precise values at the parent and 3379 * all ancestor levels. It's required to keep slab stats 3380 * accurate after the reparenting of kmem_caches. 3381 */ 3382 memcg_deactivate_kmem_caches(memcg, parent); 3383 memcg_flush_percpu_vmstats(memcg, true); 3384 3385 kmemcg_id = memcg->kmemcg_id; 3386 BUG_ON(kmemcg_id < 0); 3387 3388 /* 3389 * Change kmemcg_id of this cgroup and all its descendants to the 3390 * parent's id, and then move all entries from this cgroup's list_lrus 3391 * to ones of the parent. After we have finished, all list_lrus 3392 * corresponding to this cgroup are guaranteed to remain empty. The 3393 * ordering is imposed by list_lru_node->lock taken by 3394 * memcg_drain_all_list_lrus(). 3395 */ 3396 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3397 css_for_each_descendant_pre(css, &memcg->css) { 3398 child = mem_cgroup_from_css(css); 3399 BUG_ON(child->kmemcg_id != kmemcg_id); 3400 child->kmemcg_id = parent->kmemcg_id; 3401 if (!memcg->use_hierarchy) 3402 break; 3403 } 3404 rcu_read_unlock(); 3405 3406 memcg_drain_all_list_lrus(kmemcg_id, parent); 3407 3408 memcg_free_cache_id(kmemcg_id); 3409 } 3410 3411 static void memcg_free_kmem(struct mem_cgroup *memcg) 3412 { 3413 /* css_alloc() failed, offlining didn't happen */ 3414 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3415 memcg_offline_kmem(memcg); 3416 3417 if (memcg->kmem_state == KMEM_ALLOCATED) { 3418 WARN_ON(!list_empty(&memcg->kmem_caches)); 3419 static_branch_dec(&memcg_kmem_enabled_key); 3420 } 3421 } 3422 #else 3423 static int memcg_online_kmem(struct mem_cgroup *memcg) 3424 { 3425 return 0; 3426 } 3427 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3428 { 3429 } 3430 static void memcg_free_kmem(struct mem_cgroup *memcg) 3431 { 3432 } 3433 #endif /* CONFIG_MEMCG_KMEM */ 3434 3435 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3436 unsigned long max) 3437 { 3438 int ret; 3439 3440 mutex_lock(&memcg_max_mutex); 3441 ret = page_counter_set_max(&memcg->kmem, max); 3442 mutex_unlock(&memcg_max_mutex); 3443 return ret; 3444 } 3445 3446 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3447 { 3448 int ret; 3449 3450 mutex_lock(&memcg_max_mutex); 3451 3452 ret = page_counter_set_max(&memcg->tcpmem, max); 3453 if (ret) 3454 goto out; 3455 3456 if (!memcg->tcpmem_active) { 3457 /* 3458 * The active flag needs to be written after the static_key 3459 * update. This is what guarantees that the socket activation 3460 * function is the last one to run. See mem_cgroup_sk_alloc() 3461 * for details, and note that we don't mark any socket as 3462 * belonging to this memcg until that flag is up. 3463 * 3464 * We need to do this, because static_keys will span multiple 3465 * sites, but we can't control their order. If we mark a socket 3466 * as accounted, but the accounting functions are not patched in 3467 * yet, we'll lose accounting. 3468 * 3469 * We never race with the readers in mem_cgroup_sk_alloc(), 3470 * because when this value change, the code to process it is not 3471 * patched in yet. 3472 */ 3473 static_branch_inc(&memcg_sockets_enabled_key); 3474 memcg->tcpmem_active = true; 3475 } 3476 out: 3477 mutex_unlock(&memcg_max_mutex); 3478 return ret; 3479 } 3480 3481 /* 3482 * The user of this function is... 3483 * RES_LIMIT. 3484 */ 3485 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3486 char *buf, size_t nbytes, loff_t off) 3487 { 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3489 unsigned long nr_pages; 3490 int ret; 3491 3492 buf = strstrip(buf); 3493 ret = page_counter_memparse(buf, "-1", &nr_pages); 3494 if (ret) 3495 return ret; 3496 3497 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3498 case RES_LIMIT: 3499 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3500 ret = -EINVAL; 3501 break; 3502 } 3503 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3504 case _MEM: 3505 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3506 break; 3507 case _MEMSWAP: 3508 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3509 break; 3510 case _KMEM: 3511 ret = memcg_update_kmem_max(memcg, nr_pages); 3512 break; 3513 case _TCP: 3514 ret = memcg_update_tcp_max(memcg, nr_pages); 3515 break; 3516 } 3517 break; 3518 case RES_SOFT_LIMIT: 3519 memcg->soft_limit = nr_pages; 3520 ret = 0; 3521 break; 3522 } 3523 return ret ?: nbytes; 3524 } 3525 3526 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3527 size_t nbytes, loff_t off) 3528 { 3529 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3530 struct page_counter *counter; 3531 3532 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3533 case _MEM: 3534 counter = &memcg->memory; 3535 break; 3536 case _MEMSWAP: 3537 counter = &memcg->memsw; 3538 break; 3539 case _KMEM: 3540 counter = &memcg->kmem; 3541 break; 3542 case _TCP: 3543 counter = &memcg->tcpmem; 3544 break; 3545 default: 3546 BUG(); 3547 } 3548 3549 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3550 case RES_MAX_USAGE: 3551 page_counter_reset_watermark(counter); 3552 break; 3553 case RES_FAILCNT: 3554 counter->failcnt = 0; 3555 break; 3556 default: 3557 BUG(); 3558 } 3559 3560 return nbytes; 3561 } 3562 3563 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3564 struct cftype *cft) 3565 { 3566 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3567 } 3568 3569 #ifdef CONFIG_MMU 3570 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3571 struct cftype *cft, u64 val) 3572 { 3573 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3574 3575 if (val & ~MOVE_MASK) 3576 return -EINVAL; 3577 3578 /* 3579 * No kind of locking is needed in here, because ->can_attach() will 3580 * check this value once in the beginning of the process, and then carry 3581 * on with stale data. This means that changes to this value will only 3582 * affect task migrations starting after the change. 3583 */ 3584 memcg->move_charge_at_immigrate = val; 3585 return 0; 3586 } 3587 #else 3588 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3589 struct cftype *cft, u64 val) 3590 { 3591 return -ENOSYS; 3592 } 3593 #endif 3594 3595 #ifdef CONFIG_NUMA 3596 3597 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3598 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3599 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3600 3601 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3602 int nid, unsigned int lru_mask) 3603 { 3604 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3605 unsigned long nr = 0; 3606 enum lru_list lru; 3607 3608 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3609 3610 for_each_lru(lru) { 3611 if (!(BIT(lru) & lru_mask)) 3612 continue; 3613 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3614 } 3615 return nr; 3616 } 3617 3618 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3619 unsigned int lru_mask) 3620 { 3621 unsigned long nr = 0; 3622 enum lru_list lru; 3623 3624 for_each_lru(lru) { 3625 if (!(BIT(lru) & lru_mask)) 3626 continue; 3627 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3628 } 3629 return nr; 3630 } 3631 3632 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3633 { 3634 struct numa_stat { 3635 const char *name; 3636 unsigned int lru_mask; 3637 }; 3638 3639 static const struct numa_stat stats[] = { 3640 { "total", LRU_ALL }, 3641 { "file", LRU_ALL_FILE }, 3642 { "anon", LRU_ALL_ANON }, 3643 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3644 }; 3645 const struct numa_stat *stat; 3646 int nid; 3647 unsigned long nr; 3648 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3649 3650 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3651 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3652 seq_printf(m, "%s=%lu", stat->name, nr); 3653 for_each_node_state(nid, N_MEMORY) { 3654 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3655 stat->lru_mask); 3656 seq_printf(m, " N%d=%lu", nid, nr); 3657 } 3658 seq_putc(m, '\n'); 3659 } 3660 3661 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3662 struct mem_cgroup *iter; 3663 3664 nr = 0; 3665 for_each_mem_cgroup_tree(iter, memcg) 3666 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3667 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3668 for_each_node_state(nid, N_MEMORY) { 3669 nr = 0; 3670 for_each_mem_cgroup_tree(iter, memcg) 3671 nr += mem_cgroup_node_nr_lru_pages( 3672 iter, nid, stat->lru_mask); 3673 seq_printf(m, " N%d=%lu", nid, nr); 3674 } 3675 seq_putc(m, '\n'); 3676 } 3677 3678 return 0; 3679 } 3680 #endif /* CONFIG_NUMA */ 3681 3682 static const unsigned int memcg1_stats[] = { 3683 MEMCG_CACHE, 3684 MEMCG_RSS, 3685 MEMCG_RSS_HUGE, 3686 NR_SHMEM, 3687 NR_FILE_MAPPED, 3688 NR_FILE_DIRTY, 3689 NR_WRITEBACK, 3690 MEMCG_SWAP, 3691 }; 3692 3693 static const char *const memcg1_stat_names[] = { 3694 "cache", 3695 "rss", 3696 "rss_huge", 3697 "shmem", 3698 "mapped_file", 3699 "dirty", 3700 "writeback", 3701 "swap", 3702 }; 3703 3704 /* Universal VM events cgroup1 shows, original sort order */ 3705 static const unsigned int memcg1_events[] = { 3706 PGPGIN, 3707 PGPGOUT, 3708 PGFAULT, 3709 PGMAJFAULT, 3710 }; 3711 3712 static const char *const memcg1_event_names[] = { 3713 "pgpgin", 3714 "pgpgout", 3715 "pgfault", 3716 "pgmajfault", 3717 }; 3718 3719 static int memcg_stat_show(struct seq_file *m, void *v) 3720 { 3721 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3722 unsigned long memory, memsw; 3723 struct mem_cgroup *mi; 3724 unsigned int i; 3725 3726 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3727 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3728 3729 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3730 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3731 continue; 3732 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3733 memcg_page_state_local(memcg, memcg1_stats[i]) * 3734 PAGE_SIZE); 3735 } 3736 3737 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3738 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3739 memcg_events_local(memcg, memcg1_events[i])); 3740 3741 for (i = 0; i < NR_LRU_LISTS; i++) 3742 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3743 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3744 PAGE_SIZE); 3745 3746 /* Hierarchical information */ 3747 memory = memsw = PAGE_COUNTER_MAX; 3748 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3749 memory = min(memory, mi->memory.max); 3750 memsw = min(memsw, mi->memsw.max); 3751 } 3752 seq_printf(m, "hierarchical_memory_limit %llu\n", 3753 (u64)memory * PAGE_SIZE); 3754 if (do_memsw_account()) 3755 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3756 (u64)memsw * PAGE_SIZE); 3757 3758 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3759 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3760 continue; 3761 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3762 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3763 PAGE_SIZE); 3764 } 3765 3766 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3767 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3768 (u64)memcg_events(memcg, memcg1_events[i])); 3769 3770 for (i = 0; i < NR_LRU_LISTS; i++) 3771 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3772 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3773 PAGE_SIZE); 3774 3775 #ifdef CONFIG_DEBUG_VM 3776 { 3777 pg_data_t *pgdat; 3778 struct mem_cgroup_per_node *mz; 3779 struct zone_reclaim_stat *rstat; 3780 unsigned long recent_rotated[2] = {0, 0}; 3781 unsigned long recent_scanned[2] = {0, 0}; 3782 3783 for_each_online_pgdat(pgdat) { 3784 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3785 rstat = &mz->lruvec.reclaim_stat; 3786 3787 recent_rotated[0] += rstat->recent_rotated[0]; 3788 recent_rotated[1] += rstat->recent_rotated[1]; 3789 recent_scanned[0] += rstat->recent_scanned[0]; 3790 recent_scanned[1] += rstat->recent_scanned[1]; 3791 } 3792 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3793 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3794 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3795 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3796 } 3797 #endif 3798 3799 return 0; 3800 } 3801 3802 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3803 struct cftype *cft) 3804 { 3805 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3806 3807 return mem_cgroup_swappiness(memcg); 3808 } 3809 3810 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3811 struct cftype *cft, u64 val) 3812 { 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3814 3815 if (val > 100) 3816 return -EINVAL; 3817 3818 if (css->parent) 3819 memcg->swappiness = val; 3820 else 3821 vm_swappiness = val; 3822 3823 return 0; 3824 } 3825 3826 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3827 { 3828 struct mem_cgroup_threshold_ary *t; 3829 unsigned long usage; 3830 int i; 3831 3832 rcu_read_lock(); 3833 if (!swap) 3834 t = rcu_dereference(memcg->thresholds.primary); 3835 else 3836 t = rcu_dereference(memcg->memsw_thresholds.primary); 3837 3838 if (!t) 3839 goto unlock; 3840 3841 usage = mem_cgroup_usage(memcg, swap); 3842 3843 /* 3844 * current_threshold points to threshold just below or equal to usage. 3845 * If it's not true, a threshold was crossed after last 3846 * call of __mem_cgroup_threshold(). 3847 */ 3848 i = t->current_threshold; 3849 3850 /* 3851 * Iterate backward over array of thresholds starting from 3852 * current_threshold and check if a threshold is crossed. 3853 * If none of thresholds below usage is crossed, we read 3854 * only one element of the array here. 3855 */ 3856 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3857 eventfd_signal(t->entries[i].eventfd, 1); 3858 3859 /* i = current_threshold + 1 */ 3860 i++; 3861 3862 /* 3863 * Iterate forward over array of thresholds starting from 3864 * current_threshold+1 and check if a threshold is crossed. 3865 * If none of thresholds above usage is crossed, we read 3866 * only one element of the array here. 3867 */ 3868 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3869 eventfd_signal(t->entries[i].eventfd, 1); 3870 3871 /* Update current_threshold */ 3872 t->current_threshold = i - 1; 3873 unlock: 3874 rcu_read_unlock(); 3875 } 3876 3877 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3878 { 3879 while (memcg) { 3880 __mem_cgroup_threshold(memcg, false); 3881 if (do_memsw_account()) 3882 __mem_cgroup_threshold(memcg, true); 3883 3884 memcg = parent_mem_cgroup(memcg); 3885 } 3886 } 3887 3888 static int compare_thresholds(const void *a, const void *b) 3889 { 3890 const struct mem_cgroup_threshold *_a = a; 3891 const struct mem_cgroup_threshold *_b = b; 3892 3893 if (_a->threshold > _b->threshold) 3894 return 1; 3895 3896 if (_a->threshold < _b->threshold) 3897 return -1; 3898 3899 return 0; 3900 } 3901 3902 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3903 { 3904 struct mem_cgroup_eventfd_list *ev; 3905 3906 spin_lock(&memcg_oom_lock); 3907 3908 list_for_each_entry(ev, &memcg->oom_notify, list) 3909 eventfd_signal(ev->eventfd, 1); 3910 3911 spin_unlock(&memcg_oom_lock); 3912 return 0; 3913 } 3914 3915 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3916 { 3917 struct mem_cgroup *iter; 3918 3919 for_each_mem_cgroup_tree(iter, memcg) 3920 mem_cgroup_oom_notify_cb(iter); 3921 } 3922 3923 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3924 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3925 { 3926 struct mem_cgroup_thresholds *thresholds; 3927 struct mem_cgroup_threshold_ary *new; 3928 unsigned long threshold; 3929 unsigned long usage; 3930 int i, size, ret; 3931 3932 ret = page_counter_memparse(args, "-1", &threshold); 3933 if (ret) 3934 return ret; 3935 3936 mutex_lock(&memcg->thresholds_lock); 3937 3938 if (type == _MEM) { 3939 thresholds = &memcg->thresholds; 3940 usage = mem_cgroup_usage(memcg, false); 3941 } else if (type == _MEMSWAP) { 3942 thresholds = &memcg->memsw_thresholds; 3943 usage = mem_cgroup_usage(memcg, true); 3944 } else 3945 BUG(); 3946 3947 /* Check if a threshold crossed before adding a new one */ 3948 if (thresholds->primary) 3949 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3950 3951 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3952 3953 /* Allocate memory for new array of thresholds */ 3954 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3955 if (!new) { 3956 ret = -ENOMEM; 3957 goto unlock; 3958 } 3959 new->size = size; 3960 3961 /* Copy thresholds (if any) to new array */ 3962 if (thresholds->primary) { 3963 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3964 sizeof(struct mem_cgroup_threshold)); 3965 } 3966 3967 /* Add new threshold */ 3968 new->entries[size - 1].eventfd = eventfd; 3969 new->entries[size - 1].threshold = threshold; 3970 3971 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3972 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3973 compare_thresholds, NULL); 3974 3975 /* Find current threshold */ 3976 new->current_threshold = -1; 3977 for (i = 0; i < size; i++) { 3978 if (new->entries[i].threshold <= usage) { 3979 /* 3980 * new->current_threshold will not be used until 3981 * rcu_assign_pointer(), so it's safe to increment 3982 * it here. 3983 */ 3984 ++new->current_threshold; 3985 } else 3986 break; 3987 } 3988 3989 /* Free old spare buffer and save old primary buffer as spare */ 3990 kfree(thresholds->spare); 3991 thresholds->spare = thresholds->primary; 3992 3993 rcu_assign_pointer(thresholds->primary, new); 3994 3995 /* To be sure that nobody uses thresholds */ 3996 synchronize_rcu(); 3997 3998 unlock: 3999 mutex_unlock(&memcg->thresholds_lock); 4000 4001 return ret; 4002 } 4003 4004 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4005 struct eventfd_ctx *eventfd, const char *args) 4006 { 4007 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4008 } 4009 4010 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4011 struct eventfd_ctx *eventfd, const char *args) 4012 { 4013 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4014 } 4015 4016 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4017 struct eventfd_ctx *eventfd, enum res_type type) 4018 { 4019 struct mem_cgroup_thresholds *thresholds; 4020 struct mem_cgroup_threshold_ary *new; 4021 unsigned long usage; 4022 int i, j, size; 4023 4024 mutex_lock(&memcg->thresholds_lock); 4025 4026 if (type == _MEM) { 4027 thresholds = &memcg->thresholds; 4028 usage = mem_cgroup_usage(memcg, false); 4029 } else if (type == _MEMSWAP) { 4030 thresholds = &memcg->memsw_thresholds; 4031 usage = mem_cgroup_usage(memcg, true); 4032 } else 4033 BUG(); 4034 4035 if (!thresholds->primary) 4036 goto unlock; 4037 4038 /* Check if a threshold crossed before removing */ 4039 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4040 4041 /* Calculate new number of threshold */ 4042 size = 0; 4043 for (i = 0; i < thresholds->primary->size; i++) { 4044 if (thresholds->primary->entries[i].eventfd != eventfd) 4045 size++; 4046 } 4047 4048 new = thresholds->spare; 4049 4050 /* Set thresholds array to NULL if we don't have thresholds */ 4051 if (!size) { 4052 kfree(new); 4053 new = NULL; 4054 goto swap_buffers; 4055 } 4056 4057 new->size = size; 4058 4059 /* Copy thresholds and find current threshold */ 4060 new->current_threshold = -1; 4061 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4062 if (thresholds->primary->entries[i].eventfd == eventfd) 4063 continue; 4064 4065 new->entries[j] = thresholds->primary->entries[i]; 4066 if (new->entries[j].threshold <= usage) { 4067 /* 4068 * new->current_threshold will not be used 4069 * until rcu_assign_pointer(), so it's safe to increment 4070 * it here. 4071 */ 4072 ++new->current_threshold; 4073 } 4074 j++; 4075 } 4076 4077 swap_buffers: 4078 /* Swap primary and spare array */ 4079 thresholds->spare = thresholds->primary; 4080 4081 rcu_assign_pointer(thresholds->primary, new); 4082 4083 /* To be sure that nobody uses thresholds */ 4084 synchronize_rcu(); 4085 4086 /* If all events are unregistered, free the spare array */ 4087 if (!new) { 4088 kfree(thresholds->spare); 4089 thresholds->spare = NULL; 4090 } 4091 unlock: 4092 mutex_unlock(&memcg->thresholds_lock); 4093 } 4094 4095 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4096 struct eventfd_ctx *eventfd) 4097 { 4098 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4099 } 4100 4101 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4102 struct eventfd_ctx *eventfd) 4103 { 4104 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4105 } 4106 4107 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4108 struct eventfd_ctx *eventfd, const char *args) 4109 { 4110 struct mem_cgroup_eventfd_list *event; 4111 4112 event = kmalloc(sizeof(*event), GFP_KERNEL); 4113 if (!event) 4114 return -ENOMEM; 4115 4116 spin_lock(&memcg_oom_lock); 4117 4118 event->eventfd = eventfd; 4119 list_add(&event->list, &memcg->oom_notify); 4120 4121 /* already in OOM ? */ 4122 if (memcg->under_oom) 4123 eventfd_signal(eventfd, 1); 4124 spin_unlock(&memcg_oom_lock); 4125 4126 return 0; 4127 } 4128 4129 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4130 struct eventfd_ctx *eventfd) 4131 { 4132 struct mem_cgroup_eventfd_list *ev, *tmp; 4133 4134 spin_lock(&memcg_oom_lock); 4135 4136 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4137 if (ev->eventfd == eventfd) { 4138 list_del(&ev->list); 4139 kfree(ev); 4140 } 4141 } 4142 4143 spin_unlock(&memcg_oom_lock); 4144 } 4145 4146 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4147 { 4148 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4149 4150 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4151 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4152 seq_printf(sf, "oom_kill %lu\n", 4153 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4154 return 0; 4155 } 4156 4157 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4158 struct cftype *cft, u64 val) 4159 { 4160 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4161 4162 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4163 if (!css->parent || !((val == 0) || (val == 1))) 4164 return -EINVAL; 4165 4166 memcg->oom_kill_disable = val; 4167 if (!val) 4168 memcg_oom_recover(memcg); 4169 4170 return 0; 4171 } 4172 4173 #ifdef CONFIG_CGROUP_WRITEBACK 4174 4175 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4176 { 4177 return wb_domain_init(&memcg->cgwb_domain, gfp); 4178 } 4179 4180 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4181 { 4182 wb_domain_exit(&memcg->cgwb_domain); 4183 } 4184 4185 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4186 { 4187 wb_domain_size_changed(&memcg->cgwb_domain); 4188 } 4189 4190 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4191 { 4192 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4193 4194 if (!memcg->css.parent) 4195 return NULL; 4196 4197 return &memcg->cgwb_domain; 4198 } 4199 4200 /* 4201 * idx can be of type enum memcg_stat_item or node_stat_item. 4202 * Keep in sync with memcg_exact_page(). 4203 */ 4204 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4205 { 4206 long x = atomic_long_read(&memcg->vmstats[idx]); 4207 int cpu; 4208 4209 for_each_online_cpu(cpu) 4210 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4211 if (x < 0) 4212 x = 0; 4213 return x; 4214 } 4215 4216 /** 4217 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4218 * @wb: bdi_writeback in question 4219 * @pfilepages: out parameter for number of file pages 4220 * @pheadroom: out parameter for number of allocatable pages according to memcg 4221 * @pdirty: out parameter for number of dirty pages 4222 * @pwriteback: out parameter for number of pages under writeback 4223 * 4224 * Determine the numbers of file, headroom, dirty, and writeback pages in 4225 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4226 * is a bit more involved. 4227 * 4228 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4229 * headroom is calculated as the lowest headroom of itself and the 4230 * ancestors. Note that this doesn't consider the actual amount of 4231 * available memory in the system. The caller should further cap 4232 * *@pheadroom accordingly. 4233 */ 4234 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4235 unsigned long *pheadroom, unsigned long *pdirty, 4236 unsigned long *pwriteback) 4237 { 4238 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4239 struct mem_cgroup *parent; 4240 4241 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4242 4243 /* this should eventually include NR_UNSTABLE_NFS */ 4244 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4245 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4246 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4247 *pheadroom = PAGE_COUNTER_MAX; 4248 4249 while ((parent = parent_mem_cgroup(memcg))) { 4250 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4251 unsigned long used = page_counter_read(&memcg->memory); 4252 4253 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4254 memcg = parent; 4255 } 4256 } 4257 4258 #else /* CONFIG_CGROUP_WRITEBACK */ 4259 4260 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4261 { 4262 return 0; 4263 } 4264 4265 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4266 { 4267 } 4268 4269 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4270 { 4271 } 4272 4273 #endif /* CONFIG_CGROUP_WRITEBACK */ 4274 4275 /* 4276 * DO NOT USE IN NEW FILES. 4277 * 4278 * "cgroup.event_control" implementation. 4279 * 4280 * This is way over-engineered. It tries to support fully configurable 4281 * events for each user. Such level of flexibility is completely 4282 * unnecessary especially in the light of the planned unified hierarchy. 4283 * 4284 * Please deprecate this and replace with something simpler if at all 4285 * possible. 4286 */ 4287 4288 /* 4289 * Unregister event and free resources. 4290 * 4291 * Gets called from workqueue. 4292 */ 4293 static void memcg_event_remove(struct work_struct *work) 4294 { 4295 struct mem_cgroup_event *event = 4296 container_of(work, struct mem_cgroup_event, remove); 4297 struct mem_cgroup *memcg = event->memcg; 4298 4299 remove_wait_queue(event->wqh, &event->wait); 4300 4301 event->unregister_event(memcg, event->eventfd); 4302 4303 /* Notify userspace the event is going away. */ 4304 eventfd_signal(event->eventfd, 1); 4305 4306 eventfd_ctx_put(event->eventfd); 4307 kfree(event); 4308 css_put(&memcg->css); 4309 } 4310 4311 /* 4312 * Gets called on EPOLLHUP on eventfd when user closes it. 4313 * 4314 * Called with wqh->lock held and interrupts disabled. 4315 */ 4316 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4317 int sync, void *key) 4318 { 4319 struct mem_cgroup_event *event = 4320 container_of(wait, struct mem_cgroup_event, wait); 4321 struct mem_cgroup *memcg = event->memcg; 4322 __poll_t flags = key_to_poll(key); 4323 4324 if (flags & EPOLLHUP) { 4325 /* 4326 * If the event has been detached at cgroup removal, we 4327 * can simply return knowing the other side will cleanup 4328 * for us. 4329 * 4330 * We can't race against event freeing since the other 4331 * side will require wqh->lock via remove_wait_queue(), 4332 * which we hold. 4333 */ 4334 spin_lock(&memcg->event_list_lock); 4335 if (!list_empty(&event->list)) { 4336 list_del_init(&event->list); 4337 /* 4338 * We are in atomic context, but cgroup_event_remove() 4339 * may sleep, so we have to call it in workqueue. 4340 */ 4341 schedule_work(&event->remove); 4342 } 4343 spin_unlock(&memcg->event_list_lock); 4344 } 4345 4346 return 0; 4347 } 4348 4349 static void memcg_event_ptable_queue_proc(struct file *file, 4350 wait_queue_head_t *wqh, poll_table *pt) 4351 { 4352 struct mem_cgroup_event *event = 4353 container_of(pt, struct mem_cgroup_event, pt); 4354 4355 event->wqh = wqh; 4356 add_wait_queue(wqh, &event->wait); 4357 } 4358 4359 /* 4360 * DO NOT USE IN NEW FILES. 4361 * 4362 * Parse input and register new cgroup event handler. 4363 * 4364 * Input must be in format '<event_fd> <control_fd> <args>'. 4365 * Interpretation of args is defined by control file implementation. 4366 */ 4367 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4368 char *buf, size_t nbytes, loff_t off) 4369 { 4370 struct cgroup_subsys_state *css = of_css(of); 4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4372 struct mem_cgroup_event *event; 4373 struct cgroup_subsys_state *cfile_css; 4374 unsigned int efd, cfd; 4375 struct fd efile; 4376 struct fd cfile; 4377 const char *name; 4378 char *endp; 4379 int ret; 4380 4381 buf = strstrip(buf); 4382 4383 efd = simple_strtoul(buf, &endp, 10); 4384 if (*endp != ' ') 4385 return -EINVAL; 4386 buf = endp + 1; 4387 4388 cfd = simple_strtoul(buf, &endp, 10); 4389 if ((*endp != ' ') && (*endp != '\0')) 4390 return -EINVAL; 4391 buf = endp + 1; 4392 4393 event = kzalloc(sizeof(*event), GFP_KERNEL); 4394 if (!event) 4395 return -ENOMEM; 4396 4397 event->memcg = memcg; 4398 INIT_LIST_HEAD(&event->list); 4399 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4400 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4401 INIT_WORK(&event->remove, memcg_event_remove); 4402 4403 efile = fdget(efd); 4404 if (!efile.file) { 4405 ret = -EBADF; 4406 goto out_kfree; 4407 } 4408 4409 event->eventfd = eventfd_ctx_fileget(efile.file); 4410 if (IS_ERR(event->eventfd)) { 4411 ret = PTR_ERR(event->eventfd); 4412 goto out_put_efile; 4413 } 4414 4415 cfile = fdget(cfd); 4416 if (!cfile.file) { 4417 ret = -EBADF; 4418 goto out_put_eventfd; 4419 } 4420 4421 /* the process need read permission on control file */ 4422 /* AV: shouldn't we check that it's been opened for read instead? */ 4423 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4424 if (ret < 0) 4425 goto out_put_cfile; 4426 4427 /* 4428 * Determine the event callbacks and set them in @event. This used 4429 * to be done via struct cftype but cgroup core no longer knows 4430 * about these events. The following is crude but the whole thing 4431 * is for compatibility anyway. 4432 * 4433 * DO NOT ADD NEW FILES. 4434 */ 4435 name = cfile.file->f_path.dentry->d_name.name; 4436 4437 if (!strcmp(name, "memory.usage_in_bytes")) { 4438 event->register_event = mem_cgroup_usage_register_event; 4439 event->unregister_event = mem_cgroup_usage_unregister_event; 4440 } else if (!strcmp(name, "memory.oom_control")) { 4441 event->register_event = mem_cgroup_oom_register_event; 4442 event->unregister_event = mem_cgroup_oom_unregister_event; 4443 } else if (!strcmp(name, "memory.pressure_level")) { 4444 event->register_event = vmpressure_register_event; 4445 event->unregister_event = vmpressure_unregister_event; 4446 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4447 event->register_event = memsw_cgroup_usage_register_event; 4448 event->unregister_event = memsw_cgroup_usage_unregister_event; 4449 } else { 4450 ret = -EINVAL; 4451 goto out_put_cfile; 4452 } 4453 4454 /* 4455 * Verify @cfile should belong to @css. Also, remaining events are 4456 * automatically removed on cgroup destruction but the removal is 4457 * asynchronous, so take an extra ref on @css. 4458 */ 4459 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4460 &memory_cgrp_subsys); 4461 ret = -EINVAL; 4462 if (IS_ERR(cfile_css)) 4463 goto out_put_cfile; 4464 if (cfile_css != css) { 4465 css_put(cfile_css); 4466 goto out_put_cfile; 4467 } 4468 4469 ret = event->register_event(memcg, event->eventfd, buf); 4470 if (ret) 4471 goto out_put_css; 4472 4473 vfs_poll(efile.file, &event->pt); 4474 4475 spin_lock(&memcg->event_list_lock); 4476 list_add(&event->list, &memcg->event_list); 4477 spin_unlock(&memcg->event_list_lock); 4478 4479 fdput(cfile); 4480 fdput(efile); 4481 4482 return nbytes; 4483 4484 out_put_css: 4485 css_put(css); 4486 out_put_cfile: 4487 fdput(cfile); 4488 out_put_eventfd: 4489 eventfd_ctx_put(event->eventfd); 4490 out_put_efile: 4491 fdput(efile); 4492 out_kfree: 4493 kfree(event); 4494 4495 return ret; 4496 } 4497 4498 static struct cftype mem_cgroup_legacy_files[] = { 4499 { 4500 .name = "usage_in_bytes", 4501 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4502 .read_u64 = mem_cgroup_read_u64, 4503 }, 4504 { 4505 .name = "max_usage_in_bytes", 4506 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4507 .write = mem_cgroup_reset, 4508 .read_u64 = mem_cgroup_read_u64, 4509 }, 4510 { 4511 .name = "limit_in_bytes", 4512 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4513 .write = mem_cgroup_write, 4514 .read_u64 = mem_cgroup_read_u64, 4515 }, 4516 { 4517 .name = "soft_limit_in_bytes", 4518 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4519 .write = mem_cgroup_write, 4520 .read_u64 = mem_cgroup_read_u64, 4521 }, 4522 { 4523 .name = "failcnt", 4524 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4525 .write = mem_cgroup_reset, 4526 .read_u64 = mem_cgroup_read_u64, 4527 }, 4528 { 4529 .name = "stat", 4530 .seq_show = memcg_stat_show, 4531 }, 4532 { 4533 .name = "force_empty", 4534 .write = mem_cgroup_force_empty_write, 4535 }, 4536 { 4537 .name = "use_hierarchy", 4538 .write_u64 = mem_cgroup_hierarchy_write, 4539 .read_u64 = mem_cgroup_hierarchy_read, 4540 }, 4541 { 4542 .name = "cgroup.event_control", /* XXX: for compat */ 4543 .write = memcg_write_event_control, 4544 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4545 }, 4546 { 4547 .name = "swappiness", 4548 .read_u64 = mem_cgroup_swappiness_read, 4549 .write_u64 = mem_cgroup_swappiness_write, 4550 }, 4551 { 4552 .name = "move_charge_at_immigrate", 4553 .read_u64 = mem_cgroup_move_charge_read, 4554 .write_u64 = mem_cgroup_move_charge_write, 4555 }, 4556 { 4557 .name = "oom_control", 4558 .seq_show = mem_cgroup_oom_control_read, 4559 .write_u64 = mem_cgroup_oom_control_write, 4560 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4561 }, 4562 { 4563 .name = "pressure_level", 4564 }, 4565 #ifdef CONFIG_NUMA 4566 { 4567 .name = "numa_stat", 4568 .seq_show = memcg_numa_stat_show, 4569 }, 4570 #endif 4571 { 4572 .name = "kmem.limit_in_bytes", 4573 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4574 .write = mem_cgroup_write, 4575 .read_u64 = mem_cgroup_read_u64, 4576 }, 4577 { 4578 .name = "kmem.usage_in_bytes", 4579 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4580 .read_u64 = mem_cgroup_read_u64, 4581 }, 4582 { 4583 .name = "kmem.failcnt", 4584 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4585 .write = mem_cgroup_reset, 4586 .read_u64 = mem_cgroup_read_u64, 4587 }, 4588 { 4589 .name = "kmem.max_usage_in_bytes", 4590 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4591 .write = mem_cgroup_reset, 4592 .read_u64 = mem_cgroup_read_u64, 4593 }, 4594 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4595 { 4596 .name = "kmem.slabinfo", 4597 .seq_start = memcg_slab_start, 4598 .seq_next = memcg_slab_next, 4599 .seq_stop = memcg_slab_stop, 4600 .seq_show = memcg_slab_show, 4601 }, 4602 #endif 4603 { 4604 .name = "kmem.tcp.limit_in_bytes", 4605 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4606 .write = mem_cgroup_write, 4607 .read_u64 = mem_cgroup_read_u64, 4608 }, 4609 { 4610 .name = "kmem.tcp.usage_in_bytes", 4611 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4612 .read_u64 = mem_cgroup_read_u64, 4613 }, 4614 { 4615 .name = "kmem.tcp.failcnt", 4616 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4617 .write = mem_cgroup_reset, 4618 .read_u64 = mem_cgroup_read_u64, 4619 }, 4620 { 4621 .name = "kmem.tcp.max_usage_in_bytes", 4622 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4623 .write = mem_cgroup_reset, 4624 .read_u64 = mem_cgroup_read_u64, 4625 }, 4626 { }, /* terminate */ 4627 }; 4628 4629 /* 4630 * Private memory cgroup IDR 4631 * 4632 * Swap-out records and page cache shadow entries need to store memcg 4633 * references in constrained space, so we maintain an ID space that is 4634 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4635 * memory-controlled cgroups to 64k. 4636 * 4637 * However, there usually are many references to the oflline CSS after 4638 * the cgroup has been destroyed, such as page cache or reclaimable 4639 * slab objects, that don't need to hang on to the ID. We want to keep 4640 * those dead CSS from occupying IDs, or we might quickly exhaust the 4641 * relatively small ID space and prevent the creation of new cgroups 4642 * even when there are much fewer than 64k cgroups - possibly none. 4643 * 4644 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4645 * be freed and recycled when it's no longer needed, which is usually 4646 * when the CSS is offlined. 4647 * 4648 * The only exception to that are records of swapped out tmpfs/shmem 4649 * pages that need to be attributed to live ancestors on swapin. But 4650 * those references are manageable from userspace. 4651 */ 4652 4653 static DEFINE_IDR(mem_cgroup_idr); 4654 4655 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4656 { 4657 if (memcg->id.id > 0) { 4658 idr_remove(&mem_cgroup_idr, memcg->id.id); 4659 memcg->id.id = 0; 4660 } 4661 } 4662 4663 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4664 { 4665 refcount_add(n, &memcg->id.ref); 4666 } 4667 4668 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4669 { 4670 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4671 mem_cgroup_id_remove(memcg); 4672 4673 /* Memcg ID pins CSS */ 4674 css_put(&memcg->css); 4675 } 4676 } 4677 4678 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4679 { 4680 mem_cgroup_id_get_many(memcg, 1); 4681 } 4682 4683 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4684 { 4685 mem_cgroup_id_put_many(memcg, 1); 4686 } 4687 4688 /** 4689 * mem_cgroup_from_id - look up a memcg from a memcg id 4690 * @id: the memcg id to look up 4691 * 4692 * Caller must hold rcu_read_lock(). 4693 */ 4694 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4695 { 4696 WARN_ON_ONCE(!rcu_read_lock_held()); 4697 return idr_find(&mem_cgroup_idr, id); 4698 } 4699 4700 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4701 { 4702 struct mem_cgroup_per_node *pn; 4703 int tmp = node; 4704 /* 4705 * This routine is called against possible nodes. 4706 * But it's BUG to call kmalloc() against offline node. 4707 * 4708 * TODO: this routine can waste much memory for nodes which will 4709 * never be onlined. It's better to use memory hotplug callback 4710 * function. 4711 */ 4712 if (!node_state(node, N_NORMAL_MEMORY)) 4713 tmp = -1; 4714 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4715 if (!pn) 4716 return 1; 4717 4718 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4719 if (!pn->lruvec_stat_local) { 4720 kfree(pn); 4721 return 1; 4722 } 4723 4724 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4725 if (!pn->lruvec_stat_cpu) { 4726 free_percpu(pn->lruvec_stat_local); 4727 kfree(pn); 4728 return 1; 4729 } 4730 4731 lruvec_init(&pn->lruvec); 4732 pn->usage_in_excess = 0; 4733 pn->on_tree = false; 4734 pn->memcg = memcg; 4735 4736 memcg->nodeinfo[node] = pn; 4737 return 0; 4738 } 4739 4740 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4741 { 4742 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4743 4744 if (!pn) 4745 return; 4746 4747 free_percpu(pn->lruvec_stat_cpu); 4748 free_percpu(pn->lruvec_stat_local); 4749 kfree(pn); 4750 } 4751 4752 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4753 { 4754 int node; 4755 4756 /* 4757 * Flush percpu vmstats and vmevents to guarantee the value correctness 4758 * on parent's and all ancestor levels. 4759 */ 4760 memcg_flush_percpu_vmstats(memcg, false); 4761 memcg_flush_percpu_vmevents(memcg); 4762 for_each_node(node) 4763 free_mem_cgroup_per_node_info(memcg, node); 4764 free_percpu(memcg->vmstats_percpu); 4765 free_percpu(memcg->vmstats_local); 4766 kfree(memcg); 4767 } 4768 4769 static void mem_cgroup_free(struct mem_cgroup *memcg) 4770 { 4771 memcg_wb_domain_exit(memcg); 4772 __mem_cgroup_free(memcg); 4773 } 4774 4775 static struct mem_cgroup *mem_cgroup_alloc(void) 4776 { 4777 struct mem_cgroup *memcg; 4778 unsigned int size; 4779 int node; 4780 4781 size = sizeof(struct mem_cgroup); 4782 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4783 4784 memcg = kzalloc(size, GFP_KERNEL); 4785 if (!memcg) 4786 return NULL; 4787 4788 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4789 1, MEM_CGROUP_ID_MAX, 4790 GFP_KERNEL); 4791 if (memcg->id.id < 0) 4792 goto fail; 4793 4794 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4795 if (!memcg->vmstats_local) 4796 goto fail; 4797 4798 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4799 if (!memcg->vmstats_percpu) 4800 goto fail; 4801 4802 for_each_node(node) 4803 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4804 goto fail; 4805 4806 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4807 goto fail; 4808 4809 INIT_WORK(&memcg->high_work, high_work_func); 4810 memcg->last_scanned_node = MAX_NUMNODES; 4811 INIT_LIST_HEAD(&memcg->oom_notify); 4812 mutex_init(&memcg->thresholds_lock); 4813 spin_lock_init(&memcg->move_lock); 4814 vmpressure_init(&memcg->vmpressure); 4815 INIT_LIST_HEAD(&memcg->event_list); 4816 spin_lock_init(&memcg->event_list_lock); 4817 memcg->socket_pressure = jiffies; 4818 #ifdef CONFIG_MEMCG_KMEM 4819 memcg->kmemcg_id = -1; 4820 #endif 4821 #ifdef CONFIG_CGROUP_WRITEBACK 4822 INIT_LIST_HEAD(&memcg->cgwb_list); 4823 #endif 4824 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4825 return memcg; 4826 fail: 4827 mem_cgroup_id_remove(memcg); 4828 __mem_cgroup_free(memcg); 4829 return NULL; 4830 } 4831 4832 static struct cgroup_subsys_state * __ref 4833 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4834 { 4835 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4836 struct mem_cgroup *memcg; 4837 long error = -ENOMEM; 4838 4839 memcg = mem_cgroup_alloc(); 4840 if (!memcg) 4841 return ERR_PTR(error); 4842 4843 memcg->high = PAGE_COUNTER_MAX; 4844 memcg->soft_limit = PAGE_COUNTER_MAX; 4845 if (parent) { 4846 memcg->swappiness = mem_cgroup_swappiness(parent); 4847 memcg->oom_kill_disable = parent->oom_kill_disable; 4848 } 4849 if (parent && parent->use_hierarchy) { 4850 memcg->use_hierarchy = true; 4851 page_counter_init(&memcg->memory, &parent->memory); 4852 page_counter_init(&memcg->swap, &parent->swap); 4853 page_counter_init(&memcg->memsw, &parent->memsw); 4854 page_counter_init(&memcg->kmem, &parent->kmem); 4855 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4856 } else { 4857 page_counter_init(&memcg->memory, NULL); 4858 page_counter_init(&memcg->swap, NULL); 4859 page_counter_init(&memcg->memsw, NULL); 4860 page_counter_init(&memcg->kmem, NULL); 4861 page_counter_init(&memcg->tcpmem, NULL); 4862 /* 4863 * Deeper hierachy with use_hierarchy == false doesn't make 4864 * much sense so let cgroup subsystem know about this 4865 * unfortunate state in our controller. 4866 */ 4867 if (parent != root_mem_cgroup) 4868 memory_cgrp_subsys.broken_hierarchy = true; 4869 } 4870 4871 /* The following stuff does not apply to the root */ 4872 if (!parent) { 4873 #ifdef CONFIG_MEMCG_KMEM 4874 INIT_LIST_HEAD(&memcg->kmem_caches); 4875 #endif 4876 root_mem_cgroup = memcg; 4877 return &memcg->css; 4878 } 4879 4880 error = memcg_online_kmem(memcg); 4881 if (error) 4882 goto fail; 4883 4884 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4885 static_branch_inc(&memcg_sockets_enabled_key); 4886 4887 return &memcg->css; 4888 fail: 4889 mem_cgroup_id_remove(memcg); 4890 mem_cgroup_free(memcg); 4891 return ERR_PTR(-ENOMEM); 4892 } 4893 4894 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4895 { 4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4897 4898 /* 4899 * A memcg must be visible for memcg_expand_shrinker_maps() 4900 * by the time the maps are allocated. So, we allocate maps 4901 * here, when for_each_mem_cgroup() can't skip it. 4902 */ 4903 if (memcg_alloc_shrinker_maps(memcg)) { 4904 mem_cgroup_id_remove(memcg); 4905 return -ENOMEM; 4906 } 4907 4908 /* Online state pins memcg ID, memcg ID pins CSS */ 4909 refcount_set(&memcg->id.ref, 1); 4910 css_get(css); 4911 return 0; 4912 } 4913 4914 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4915 { 4916 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4917 struct mem_cgroup_event *event, *tmp; 4918 4919 /* 4920 * Unregister events and notify userspace. 4921 * Notify userspace about cgroup removing only after rmdir of cgroup 4922 * directory to avoid race between userspace and kernelspace. 4923 */ 4924 spin_lock(&memcg->event_list_lock); 4925 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4926 list_del_init(&event->list); 4927 schedule_work(&event->remove); 4928 } 4929 spin_unlock(&memcg->event_list_lock); 4930 4931 page_counter_set_min(&memcg->memory, 0); 4932 page_counter_set_low(&memcg->memory, 0); 4933 4934 memcg_offline_kmem(memcg); 4935 wb_memcg_offline(memcg); 4936 4937 drain_all_stock(memcg); 4938 4939 mem_cgroup_id_put(memcg); 4940 } 4941 4942 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4943 { 4944 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4945 4946 invalidate_reclaim_iterators(memcg); 4947 } 4948 4949 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4950 { 4951 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4952 4953 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4954 static_branch_dec(&memcg_sockets_enabled_key); 4955 4956 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4957 static_branch_dec(&memcg_sockets_enabled_key); 4958 4959 vmpressure_cleanup(&memcg->vmpressure); 4960 cancel_work_sync(&memcg->high_work); 4961 mem_cgroup_remove_from_trees(memcg); 4962 memcg_free_shrinker_maps(memcg); 4963 memcg_free_kmem(memcg); 4964 mem_cgroup_free(memcg); 4965 } 4966 4967 /** 4968 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4969 * @css: the target css 4970 * 4971 * Reset the states of the mem_cgroup associated with @css. This is 4972 * invoked when the userland requests disabling on the default hierarchy 4973 * but the memcg is pinned through dependency. The memcg should stop 4974 * applying policies and should revert to the vanilla state as it may be 4975 * made visible again. 4976 * 4977 * The current implementation only resets the essential configurations. 4978 * This needs to be expanded to cover all the visible parts. 4979 */ 4980 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4981 { 4982 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4983 4984 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4985 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4986 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4987 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4988 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4989 page_counter_set_min(&memcg->memory, 0); 4990 page_counter_set_low(&memcg->memory, 0); 4991 memcg->high = PAGE_COUNTER_MAX; 4992 memcg->soft_limit = PAGE_COUNTER_MAX; 4993 memcg_wb_domain_size_changed(memcg); 4994 } 4995 4996 #ifdef CONFIG_MMU 4997 /* Handlers for move charge at task migration. */ 4998 static int mem_cgroup_do_precharge(unsigned long count) 4999 { 5000 int ret; 5001 5002 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5003 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5004 if (!ret) { 5005 mc.precharge += count; 5006 return ret; 5007 } 5008 5009 /* Try charges one by one with reclaim, but do not retry */ 5010 while (count--) { 5011 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5012 if (ret) 5013 return ret; 5014 mc.precharge++; 5015 cond_resched(); 5016 } 5017 return 0; 5018 } 5019 5020 union mc_target { 5021 struct page *page; 5022 swp_entry_t ent; 5023 }; 5024 5025 enum mc_target_type { 5026 MC_TARGET_NONE = 0, 5027 MC_TARGET_PAGE, 5028 MC_TARGET_SWAP, 5029 MC_TARGET_DEVICE, 5030 }; 5031 5032 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5033 unsigned long addr, pte_t ptent) 5034 { 5035 struct page *page = vm_normal_page(vma, addr, ptent); 5036 5037 if (!page || !page_mapped(page)) 5038 return NULL; 5039 if (PageAnon(page)) { 5040 if (!(mc.flags & MOVE_ANON)) 5041 return NULL; 5042 } else { 5043 if (!(mc.flags & MOVE_FILE)) 5044 return NULL; 5045 } 5046 if (!get_page_unless_zero(page)) 5047 return NULL; 5048 5049 return page; 5050 } 5051 5052 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5053 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5054 pte_t ptent, swp_entry_t *entry) 5055 { 5056 struct page *page = NULL; 5057 swp_entry_t ent = pte_to_swp_entry(ptent); 5058 5059 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5060 return NULL; 5061 5062 /* 5063 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5064 * a device and because they are not accessible by CPU they are store 5065 * as special swap entry in the CPU page table. 5066 */ 5067 if (is_device_private_entry(ent)) { 5068 page = device_private_entry_to_page(ent); 5069 /* 5070 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5071 * a refcount of 1 when free (unlike normal page) 5072 */ 5073 if (!page_ref_add_unless(page, 1, 1)) 5074 return NULL; 5075 return page; 5076 } 5077 5078 /* 5079 * Because lookup_swap_cache() updates some statistics counter, 5080 * we call find_get_page() with swapper_space directly. 5081 */ 5082 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5083 if (do_memsw_account()) 5084 entry->val = ent.val; 5085 5086 return page; 5087 } 5088 #else 5089 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5090 pte_t ptent, swp_entry_t *entry) 5091 { 5092 return NULL; 5093 } 5094 #endif 5095 5096 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5097 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5098 { 5099 struct page *page = NULL; 5100 struct address_space *mapping; 5101 pgoff_t pgoff; 5102 5103 if (!vma->vm_file) /* anonymous vma */ 5104 return NULL; 5105 if (!(mc.flags & MOVE_FILE)) 5106 return NULL; 5107 5108 mapping = vma->vm_file->f_mapping; 5109 pgoff = linear_page_index(vma, addr); 5110 5111 /* page is moved even if it's not RSS of this task(page-faulted). */ 5112 #ifdef CONFIG_SWAP 5113 /* shmem/tmpfs may report page out on swap: account for that too. */ 5114 if (shmem_mapping(mapping)) { 5115 page = find_get_entry(mapping, pgoff); 5116 if (xa_is_value(page)) { 5117 swp_entry_t swp = radix_to_swp_entry(page); 5118 if (do_memsw_account()) 5119 *entry = swp; 5120 page = find_get_page(swap_address_space(swp), 5121 swp_offset(swp)); 5122 } 5123 } else 5124 page = find_get_page(mapping, pgoff); 5125 #else 5126 page = find_get_page(mapping, pgoff); 5127 #endif 5128 return page; 5129 } 5130 5131 /** 5132 * mem_cgroup_move_account - move account of the page 5133 * @page: the page 5134 * @compound: charge the page as compound or small page 5135 * @from: mem_cgroup which the page is moved from. 5136 * @to: mem_cgroup which the page is moved to. @from != @to. 5137 * 5138 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5139 * 5140 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5141 * from old cgroup. 5142 */ 5143 static int mem_cgroup_move_account(struct page *page, 5144 bool compound, 5145 struct mem_cgroup *from, 5146 struct mem_cgroup *to) 5147 { 5148 unsigned long flags; 5149 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5150 int ret; 5151 bool anon; 5152 5153 VM_BUG_ON(from == to); 5154 VM_BUG_ON_PAGE(PageLRU(page), page); 5155 VM_BUG_ON(compound && !PageTransHuge(page)); 5156 5157 /* 5158 * Prevent mem_cgroup_migrate() from looking at 5159 * page->mem_cgroup of its source page while we change it. 5160 */ 5161 ret = -EBUSY; 5162 if (!trylock_page(page)) 5163 goto out; 5164 5165 ret = -EINVAL; 5166 if (page->mem_cgroup != from) 5167 goto out_unlock; 5168 5169 anon = PageAnon(page); 5170 5171 spin_lock_irqsave(&from->move_lock, flags); 5172 5173 if (!anon && page_mapped(page)) { 5174 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 5175 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 5176 } 5177 5178 /* 5179 * move_lock grabbed above and caller set from->moving_account, so 5180 * mod_memcg_page_state will serialize updates to PageDirty. 5181 * So mapping should be stable for dirty pages. 5182 */ 5183 if (!anon && PageDirty(page)) { 5184 struct address_space *mapping = page_mapping(page); 5185 5186 if (mapping_cap_account_dirty(mapping)) { 5187 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 5188 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 5189 } 5190 } 5191 5192 if (PageWriteback(page)) { 5193 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 5194 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 5195 } 5196 5197 /* 5198 * It is safe to change page->mem_cgroup here because the page 5199 * is referenced, charged, and isolated - we can't race with 5200 * uncharging, charging, migration, or LRU putback. 5201 */ 5202 5203 /* caller should have done css_get */ 5204 page->mem_cgroup = to; 5205 spin_unlock_irqrestore(&from->move_lock, flags); 5206 5207 ret = 0; 5208 5209 local_irq_disable(); 5210 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5211 memcg_check_events(to, page); 5212 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5213 memcg_check_events(from, page); 5214 local_irq_enable(); 5215 out_unlock: 5216 unlock_page(page); 5217 out: 5218 return ret; 5219 } 5220 5221 /** 5222 * get_mctgt_type - get target type of moving charge 5223 * @vma: the vma the pte to be checked belongs 5224 * @addr: the address corresponding to the pte to be checked 5225 * @ptent: the pte to be checked 5226 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5227 * 5228 * Returns 5229 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5230 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5231 * move charge. if @target is not NULL, the page is stored in target->page 5232 * with extra refcnt got(Callers should handle it). 5233 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5234 * target for charge migration. if @target is not NULL, the entry is stored 5235 * in target->ent. 5236 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5237 * (so ZONE_DEVICE page and thus not on the lru). 5238 * For now we such page is charge like a regular page would be as for all 5239 * intent and purposes it is just special memory taking the place of a 5240 * regular page. 5241 * 5242 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5243 * 5244 * Called with pte lock held. 5245 */ 5246 5247 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5248 unsigned long addr, pte_t ptent, union mc_target *target) 5249 { 5250 struct page *page = NULL; 5251 enum mc_target_type ret = MC_TARGET_NONE; 5252 swp_entry_t ent = { .val = 0 }; 5253 5254 if (pte_present(ptent)) 5255 page = mc_handle_present_pte(vma, addr, ptent); 5256 else if (is_swap_pte(ptent)) 5257 page = mc_handle_swap_pte(vma, ptent, &ent); 5258 else if (pte_none(ptent)) 5259 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5260 5261 if (!page && !ent.val) 5262 return ret; 5263 if (page) { 5264 /* 5265 * Do only loose check w/o serialization. 5266 * mem_cgroup_move_account() checks the page is valid or 5267 * not under LRU exclusion. 5268 */ 5269 if (page->mem_cgroup == mc.from) { 5270 ret = MC_TARGET_PAGE; 5271 if (is_device_private_page(page)) 5272 ret = MC_TARGET_DEVICE; 5273 if (target) 5274 target->page = page; 5275 } 5276 if (!ret || !target) 5277 put_page(page); 5278 } 5279 /* 5280 * There is a swap entry and a page doesn't exist or isn't charged. 5281 * But we cannot move a tail-page in a THP. 5282 */ 5283 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5284 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5285 ret = MC_TARGET_SWAP; 5286 if (target) 5287 target->ent = ent; 5288 } 5289 return ret; 5290 } 5291 5292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5293 /* 5294 * We don't consider PMD mapped swapping or file mapped pages because THP does 5295 * not support them for now. 5296 * Caller should make sure that pmd_trans_huge(pmd) is true. 5297 */ 5298 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5299 unsigned long addr, pmd_t pmd, union mc_target *target) 5300 { 5301 struct page *page = NULL; 5302 enum mc_target_type ret = MC_TARGET_NONE; 5303 5304 if (unlikely(is_swap_pmd(pmd))) { 5305 VM_BUG_ON(thp_migration_supported() && 5306 !is_pmd_migration_entry(pmd)); 5307 return ret; 5308 } 5309 page = pmd_page(pmd); 5310 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5311 if (!(mc.flags & MOVE_ANON)) 5312 return ret; 5313 if (page->mem_cgroup == mc.from) { 5314 ret = MC_TARGET_PAGE; 5315 if (target) { 5316 get_page(page); 5317 target->page = page; 5318 } 5319 } 5320 return ret; 5321 } 5322 #else 5323 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5324 unsigned long addr, pmd_t pmd, union mc_target *target) 5325 { 5326 return MC_TARGET_NONE; 5327 } 5328 #endif 5329 5330 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5331 unsigned long addr, unsigned long end, 5332 struct mm_walk *walk) 5333 { 5334 struct vm_area_struct *vma = walk->vma; 5335 pte_t *pte; 5336 spinlock_t *ptl; 5337 5338 ptl = pmd_trans_huge_lock(pmd, vma); 5339 if (ptl) { 5340 /* 5341 * Note their can not be MC_TARGET_DEVICE for now as we do not 5342 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5343 * this might change. 5344 */ 5345 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5346 mc.precharge += HPAGE_PMD_NR; 5347 spin_unlock(ptl); 5348 return 0; 5349 } 5350 5351 if (pmd_trans_unstable(pmd)) 5352 return 0; 5353 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5354 for (; addr != end; pte++, addr += PAGE_SIZE) 5355 if (get_mctgt_type(vma, addr, *pte, NULL)) 5356 mc.precharge++; /* increment precharge temporarily */ 5357 pte_unmap_unlock(pte - 1, ptl); 5358 cond_resched(); 5359 5360 return 0; 5361 } 5362 5363 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5364 { 5365 unsigned long precharge; 5366 5367 struct mm_walk mem_cgroup_count_precharge_walk = { 5368 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5369 .mm = mm, 5370 }; 5371 down_read(&mm->mmap_sem); 5372 walk_page_range(0, mm->highest_vm_end, 5373 &mem_cgroup_count_precharge_walk); 5374 up_read(&mm->mmap_sem); 5375 5376 precharge = mc.precharge; 5377 mc.precharge = 0; 5378 5379 return precharge; 5380 } 5381 5382 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5383 { 5384 unsigned long precharge = mem_cgroup_count_precharge(mm); 5385 5386 VM_BUG_ON(mc.moving_task); 5387 mc.moving_task = current; 5388 return mem_cgroup_do_precharge(precharge); 5389 } 5390 5391 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5392 static void __mem_cgroup_clear_mc(void) 5393 { 5394 struct mem_cgroup *from = mc.from; 5395 struct mem_cgroup *to = mc.to; 5396 5397 /* we must uncharge all the leftover precharges from mc.to */ 5398 if (mc.precharge) { 5399 cancel_charge(mc.to, mc.precharge); 5400 mc.precharge = 0; 5401 } 5402 /* 5403 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5404 * we must uncharge here. 5405 */ 5406 if (mc.moved_charge) { 5407 cancel_charge(mc.from, mc.moved_charge); 5408 mc.moved_charge = 0; 5409 } 5410 /* we must fixup refcnts and charges */ 5411 if (mc.moved_swap) { 5412 /* uncharge swap account from the old cgroup */ 5413 if (!mem_cgroup_is_root(mc.from)) 5414 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5415 5416 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5417 5418 /* 5419 * we charged both to->memory and to->memsw, so we 5420 * should uncharge to->memory. 5421 */ 5422 if (!mem_cgroup_is_root(mc.to)) 5423 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5424 5425 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5426 css_put_many(&mc.to->css, mc.moved_swap); 5427 5428 mc.moved_swap = 0; 5429 } 5430 memcg_oom_recover(from); 5431 memcg_oom_recover(to); 5432 wake_up_all(&mc.waitq); 5433 } 5434 5435 static void mem_cgroup_clear_mc(void) 5436 { 5437 struct mm_struct *mm = mc.mm; 5438 5439 /* 5440 * we must clear moving_task before waking up waiters at the end of 5441 * task migration. 5442 */ 5443 mc.moving_task = NULL; 5444 __mem_cgroup_clear_mc(); 5445 spin_lock(&mc.lock); 5446 mc.from = NULL; 5447 mc.to = NULL; 5448 mc.mm = NULL; 5449 spin_unlock(&mc.lock); 5450 5451 mmput(mm); 5452 } 5453 5454 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5455 { 5456 struct cgroup_subsys_state *css; 5457 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5458 struct mem_cgroup *from; 5459 struct task_struct *leader, *p; 5460 struct mm_struct *mm; 5461 unsigned long move_flags; 5462 int ret = 0; 5463 5464 /* charge immigration isn't supported on the default hierarchy */ 5465 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5466 return 0; 5467 5468 /* 5469 * Multi-process migrations only happen on the default hierarchy 5470 * where charge immigration is not used. Perform charge 5471 * immigration if @tset contains a leader and whine if there are 5472 * multiple. 5473 */ 5474 p = NULL; 5475 cgroup_taskset_for_each_leader(leader, css, tset) { 5476 WARN_ON_ONCE(p); 5477 p = leader; 5478 memcg = mem_cgroup_from_css(css); 5479 } 5480 if (!p) 5481 return 0; 5482 5483 /* 5484 * We are now commited to this value whatever it is. Changes in this 5485 * tunable will only affect upcoming migrations, not the current one. 5486 * So we need to save it, and keep it going. 5487 */ 5488 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5489 if (!move_flags) 5490 return 0; 5491 5492 from = mem_cgroup_from_task(p); 5493 5494 VM_BUG_ON(from == memcg); 5495 5496 mm = get_task_mm(p); 5497 if (!mm) 5498 return 0; 5499 /* We move charges only when we move a owner of the mm */ 5500 if (mm->owner == p) { 5501 VM_BUG_ON(mc.from); 5502 VM_BUG_ON(mc.to); 5503 VM_BUG_ON(mc.precharge); 5504 VM_BUG_ON(mc.moved_charge); 5505 VM_BUG_ON(mc.moved_swap); 5506 5507 spin_lock(&mc.lock); 5508 mc.mm = mm; 5509 mc.from = from; 5510 mc.to = memcg; 5511 mc.flags = move_flags; 5512 spin_unlock(&mc.lock); 5513 /* We set mc.moving_task later */ 5514 5515 ret = mem_cgroup_precharge_mc(mm); 5516 if (ret) 5517 mem_cgroup_clear_mc(); 5518 } else { 5519 mmput(mm); 5520 } 5521 return ret; 5522 } 5523 5524 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5525 { 5526 if (mc.to) 5527 mem_cgroup_clear_mc(); 5528 } 5529 5530 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5531 unsigned long addr, unsigned long end, 5532 struct mm_walk *walk) 5533 { 5534 int ret = 0; 5535 struct vm_area_struct *vma = walk->vma; 5536 pte_t *pte; 5537 spinlock_t *ptl; 5538 enum mc_target_type target_type; 5539 union mc_target target; 5540 struct page *page; 5541 5542 ptl = pmd_trans_huge_lock(pmd, vma); 5543 if (ptl) { 5544 if (mc.precharge < HPAGE_PMD_NR) { 5545 spin_unlock(ptl); 5546 return 0; 5547 } 5548 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5549 if (target_type == MC_TARGET_PAGE) { 5550 page = target.page; 5551 if (!isolate_lru_page(page)) { 5552 if (!mem_cgroup_move_account(page, true, 5553 mc.from, mc.to)) { 5554 mc.precharge -= HPAGE_PMD_NR; 5555 mc.moved_charge += HPAGE_PMD_NR; 5556 } 5557 putback_lru_page(page); 5558 } 5559 put_page(page); 5560 } else if (target_type == MC_TARGET_DEVICE) { 5561 page = target.page; 5562 if (!mem_cgroup_move_account(page, true, 5563 mc.from, mc.to)) { 5564 mc.precharge -= HPAGE_PMD_NR; 5565 mc.moved_charge += HPAGE_PMD_NR; 5566 } 5567 put_page(page); 5568 } 5569 spin_unlock(ptl); 5570 return 0; 5571 } 5572 5573 if (pmd_trans_unstable(pmd)) 5574 return 0; 5575 retry: 5576 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5577 for (; addr != end; addr += PAGE_SIZE) { 5578 pte_t ptent = *(pte++); 5579 bool device = false; 5580 swp_entry_t ent; 5581 5582 if (!mc.precharge) 5583 break; 5584 5585 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5586 case MC_TARGET_DEVICE: 5587 device = true; 5588 /* fall through */ 5589 case MC_TARGET_PAGE: 5590 page = target.page; 5591 /* 5592 * We can have a part of the split pmd here. Moving it 5593 * can be done but it would be too convoluted so simply 5594 * ignore such a partial THP and keep it in original 5595 * memcg. There should be somebody mapping the head. 5596 */ 5597 if (PageTransCompound(page)) 5598 goto put; 5599 if (!device && isolate_lru_page(page)) 5600 goto put; 5601 if (!mem_cgroup_move_account(page, false, 5602 mc.from, mc.to)) { 5603 mc.precharge--; 5604 /* we uncharge from mc.from later. */ 5605 mc.moved_charge++; 5606 } 5607 if (!device) 5608 putback_lru_page(page); 5609 put: /* get_mctgt_type() gets the page */ 5610 put_page(page); 5611 break; 5612 case MC_TARGET_SWAP: 5613 ent = target.ent; 5614 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5615 mc.precharge--; 5616 /* we fixup refcnts and charges later. */ 5617 mc.moved_swap++; 5618 } 5619 break; 5620 default: 5621 break; 5622 } 5623 } 5624 pte_unmap_unlock(pte - 1, ptl); 5625 cond_resched(); 5626 5627 if (addr != end) { 5628 /* 5629 * We have consumed all precharges we got in can_attach(). 5630 * We try charge one by one, but don't do any additional 5631 * charges to mc.to if we have failed in charge once in attach() 5632 * phase. 5633 */ 5634 ret = mem_cgroup_do_precharge(1); 5635 if (!ret) 5636 goto retry; 5637 } 5638 5639 return ret; 5640 } 5641 5642 static void mem_cgroup_move_charge(void) 5643 { 5644 struct mm_walk mem_cgroup_move_charge_walk = { 5645 .pmd_entry = mem_cgroup_move_charge_pte_range, 5646 .mm = mc.mm, 5647 }; 5648 5649 lru_add_drain_all(); 5650 /* 5651 * Signal lock_page_memcg() to take the memcg's move_lock 5652 * while we're moving its pages to another memcg. Then wait 5653 * for already started RCU-only updates to finish. 5654 */ 5655 atomic_inc(&mc.from->moving_account); 5656 synchronize_rcu(); 5657 retry: 5658 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5659 /* 5660 * Someone who are holding the mmap_sem might be waiting in 5661 * waitq. So we cancel all extra charges, wake up all waiters, 5662 * and retry. Because we cancel precharges, we might not be able 5663 * to move enough charges, but moving charge is a best-effort 5664 * feature anyway, so it wouldn't be a big problem. 5665 */ 5666 __mem_cgroup_clear_mc(); 5667 cond_resched(); 5668 goto retry; 5669 } 5670 /* 5671 * When we have consumed all precharges and failed in doing 5672 * additional charge, the page walk just aborts. 5673 */ 5674 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5675 5676 up_read(&mc.mm->mmap_sem); 5677 atomic_dec(&mc.from->moving_account); 5678 } 5679 5680 static void mem_cgroup_move_task(void) 5681 { 5682 if (mc.to) { 5683 mem_cgroup_move_charge(); 5684 mem_cgroup_clear_mc(); 5685 } 5686 } 5687 #else /* !CONFIG_MMU */ 5688 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5689 { 5690 return 0; 5691 } 5692 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5693 { 5694 } 5695 static void mem_cgroup_move_task(void) 5696 { 5697 } 5698 #endif 5699 5700 /* 5701 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5702 * to verify whether we're attached to the default hierarchy on each mount 5703 * attempt. 5704 */ 5705 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5706 { 5707 /* 5708 * use_hierarchy is forced on the default hierarchy. cgroup core 5709 * guarantees that @root doesn't have any children, so turning it 5710 * on for the root memcg is enough. 5711 */ 5712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5713 root_mem_cgroup->use_hierarchy = true; 5714 else 5715 root_mem_cgroup->use_hierarchy = false; 5716 } 5717 5718 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5719 { 5720 if (value == PAGE_COUNTER_MAX) 5721 seq_puts(m, "max\n"); 5722 else 5723 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5724 5725 return 0; 5726 } 5727 5728 static u64 memory_current_read(struct cgroup_subsys_state *css, 5729 struct cftype *cft) 5730 { 5731 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5732 5733 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5734 } 5735 5736 static int memory_min_show(struct seq_file *m, void *v) 5737 { 5738 return seq_puts_memcg_tunable(m, 5739 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5740 } 5741 5742 static ssize_t memory_min_write(struct kernfs_open_file *of, 5743 char *buf, size_t nbytes, loff_t off) 5744 { 5745 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5746 unsigned long min; 5747 int err; 5748 5749 buf = strstrip(buf); 5750 err = page_counter_memparse(buf, "max", &min); 5751 if (err) 5752 return err; 5753 5754 page_counter_set_min(&memcg->memory, min); 5755 5756 return nbytes; 5757 } 5758 5759 static int memory_low_show(struct seq_file *m, void *v) 5760 { 5761 return seq_puts_memcg_tunable(m, 5762 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5763 } 5764 5765 static ssize_t memory_low_write(struct kernfs_open_file *of, 5766 char *buf, size_t nbytes, loff_t off) 5767 { 5768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5769 unsigned long low; 5770 int err; 5771 5772 buf = strstrip(buf); 5773 err = page_counter_memparse(buf, "max", &low); 5774 if (err) 5775 return err; 5776 5777 page_counter_set_low(&memcg->memory, low); 5778 5779 return nbytes; 5780 } 5781 5782 static int memory_high_show(struct seq_file *m, void *v) 5783 { 5784 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5785 } 5786 5787 static ssize_t memory_high_write(struct kernfs_open_file *of, 5788 char *buf, size_t nbytes, loff_t off) 5789 { 5790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5791 unsigned long nr_pages; 5792 unsigned long high; 5793 int err; 5794 5795 buf = strstrip(buf); 5796 err = page_counter_memparse(buf, "max", &high); 5797 if (err) 5798 return err; 5799 5800 memcg->high = high; 5801 5802 nr_pages = page_counter_read(&memcg->memory); 5803 if (nr_pages > high) 5804 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5805 GFP_KERNEL, true); 5806 5807 memcg_wb_domain_size_changed(memcg); 5808 return nbytes; 5809 } 5810 5811 static int memory_max_show(struct seq_file *m, void *v) 5812 { 5813 return seq_puts_memcg_tunable(m, 5814 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5815 } 5816 5817 static ssize_t memory_max_write(struct kernfs_open_file *of, 5818 char *buf, size_t nbytes, loff_t off) 5819 { 5820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5821 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5822 bool drained = false; 5823 unsigned long max; 5824 int err; 5825 5826 buf = strstrip(buf); 5827 err = page_counter_memparse(buf, "max", &max); 5828 if (err) 5829 return err; 5830 5831 xchg(&memcg->memory.max, max); 5832 5833 for (;;) { 5834 unsigned long nr_pages = page_counter_read(&memcg->memory); 5835 5836 if (nr_pages <= max) 5837 break; 5838 5839 if (signal_pending(current)) { 5840 err = -EINTR; 5841 break; 5842 } 5843 5844 if (!drained) { 5845 drain_all_stock(memcg); 5846 drained = true; 5847 continue; 5848 } 5849 5850 if (nr_reclaims) { 5851 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5852 GFP_KERNEL, true)) 5853 nr_reclaims--; 5854 continue; 5855 } 5856 5857 memcg_memory_event(memcg, MEMCG_OOM); 5858 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5859 break; 5860 } 5861 5862 memcg_wb_domain_size_changed(memcg); 5863 return nbytes; 5864 } 5865 5866 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 5867 { 5868 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 5869 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 5870 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 5871 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 5872 seq_printf(m, "oom_kill %lu\n", 5873 atomic_long_read(&events[MEMCG_OOM_KILL])); 5874 } 5875 5876 static int memory_events_show(struct seq_file *m, void *v) 5877 { 5878 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5879 5880 __memory_events_show(m, memcg->memory_events); 5881 return 0; 5882 } 5883 5884 static int memory_events_local_show(struct seq_file *m, void *v) 5885 { 5886 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5887 5888 __memory_events_show(m, memcg->memory_events_local); 5889 return 0; 5890 } 5891 5892 static int memory_stat_show(struct seq_file *m, void *v) 5893 { 5894 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5895 char *buf; 5896 5897 buf = memory_stat_format(memcg); 5898 if (!buf) 5899 return -ENOMEM; 5900 seq_puts(m, buf); 5901 kfree(buf); 5902 return 0; 5903 } 5904 5905 static int memory_oom_group_show(struct seq_file *m, void *v) 5906 { 5907 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5908 5909 seq_printf(m, "%d\n", memcg->oom_group); 5910 5911 return 0; 5912 } 5913 5914 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5915 char *buf, size_t nbytes, loff_t off) 5916 { 5917 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5918 int ret, oom_group; 5919 5920 buf = strstrip(buf); 5921 if (!buf) 5922 return -EINVAL; 5923 5924 ret = kstrtoint(buf, 0, &oom_group); 5925 if (ret) 5926 return ret; 5927 5928 if (oom_group != 0 && oom_group != 1) 5929 return -EINVAL; 5930 5931 memcg->oom_group = oom_group; 5932 5933 return nbytes; 5934 } 5935 5936 static struct cftype memory_files[] = { 5937 { 5938 .name = "current", 5939 .flags = CFTYPE_NOT_ON_ROOT, 5940 .read_u64 = memory_current_read, 5941 }, 5942 { 5943 .name = "min", 5944 .flags = CFTYPE_NOT_ON_ROOT, 5945 .seq_show = memory_min_show, 5946 .write = memory_min_write, 5947 }, 5948 { 5949 .name = "low", 5950 .flags = CFTYPE_NOT_ON_ROOT, 5951 .seq_show = memory_low_show, 5952 .write = memory_low_write, 5953 }, 5954 { 5955 .name = "high", 5956 .flags = CFTYPE_NOT_ON_ROOT, 5957 .seq_show = memory_high_show, 5958 .write = memory_high_write, 5959 }, 5960 { 5961 .name = "max", 5962 .flags = CFTYPE_NOT_ON_ROOT, 5963 .seq_show = memory_max_show, 5964 .write = memory_max_write, 5965 }, 5966 { 5967 .name = "events", 5968 .flags = CFTYPE_NOT_ON_ROOT, 5969 .file_offset = offsetof(struct mem_cgroup, events_file), 5970 .seq_show = memory_events_show, 5971 }, 5972 { 5973 .name = "events.local", 5974 .flags = CFTYPE_NOT_ON_ROOT, 5975 .file_offset = offsetof(struct mem_cgroup, events_local_file), 5976 .seq_show = memory_events_local_show, 5977 }, 5978 { 5979 .name = "stat", 5980 .flags = CFTYPE_NOT_ON_ROOT, 5981 .seq_show = memory_stat_show, 5982 }, 5983 { 5984 .name = "oom.group", 5985 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5986 .seq_show = memory_oom_group_show, 5987 .write = memory_oom_group_write, 5988 }, 5989 { } /* terminate */ 5990 }; 5991 5992 struct cgroup_subsys memory_cgrp_subsys = { 5993 .css_alloc = mem_cgroup_css_alloc, 5994 .css_online = mem_cgroup_css_online, 5995 .css_offline = mem_cgroup_css_offline, 5996 .css_released = mem_cgroup_css_released, 5997 .css_free = mem_cgroup_css_free, 5998 .css_reset = mem_cgroup_css_reset, 5999 .can_attach = mem_cgroup_can_attach, 6000 .cancel_attach = mem_cgroup_cancel_attach, 6001 .post_attach = mem_cgroup_move_task, 6002 .bind = mem_cgroup_bind, 6003 .dfl_cftypes = memory_files, 6004 .legacy_cftypes = mem_cgroup_legacy_files, 6005 .early_init = 0, 6006 }; 6007 6008 /** 6009 * mem_cgroup_protected - check if memory consumption is in the normal range 6010 * @root: the top ancestor of the sub-tree being checked 6011 * @memcg: the memory cgroup to check 6012 * 6013 * WARNING: This function is not stateless! It can only be used as part 6014 * of a top-down tree iteration, not for isolated queries. 6015 * 6016 * Returns one of the following: 6017 * MEMCG_PROT_NONE: cgroup memory is not protected 6018 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6019 * an unprotected supply of reclaimable memory from other cgroups. 6020 * MEMCG_PROT_MIN: cgroup memory is protected 6021 * 6022 * @root is exclusive; it is never protected when looked at directly 6023 * 6024 * To provide a proper hierarchical behavior, effective memory.min/low values 6025 * are used. Below is the description of how effective memory.low is calculated. 6026 * Effective memory.min values is calculated in the same way. 6027 * 6028 * Effective memory.low is always equal or less than the original memory.low. 6029 * If there is no memory.low overcommittment (which is always true for 6030 * top-level memory cgroups), these two values are equal. 6031 * Otherwise, it's a part of parent's effective memory.low, 6032 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6033 * memory.low usages, where memory.low usage is the size of actually 6034 * protected memory. 6035 * 6036 * low_usage 6037 * elow = min( memory.low, parent->elow * ------------------ ), 6038 * siblings_low_usage 6039 * 6040 * | memory.current, if memory.current < memory.low 6041 * low_usage = | 6042 * | 0, otherwise. 6043 * 6044 * 6045 * Such definition of the effective memory.low provides the expected 6046 * hierarchical behavior: parent's memory.low value is limiting 6047 * children, unprotected memory is reclaimed first and cgroups, 6048 * which are not using their guarantee do not affect actual memory 6049 * distribution. 6050 * 6051 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6052 * 6053 * A A/memory.low = 2G, A/memory.current = 6G 6054 * //\\ 6055 * BC DE B/memory.low = 3G B/memory.current = 2G 6056 * C/memory.low = 1G C/memory.current = 2G 6057 * D/memory.low = 0 D/memory.current = 2G 6058 * E/memory.low = 10G E/memory.current = 0 6059 * 6060 * and the memory pressure is applied, the following memory distribution 6061 * is expected (approximately): 6062 * 6063 * A/memory.current = 2G 6064 * 6065 * B/memory.current = 1.3G 6066 * C/memory.current = 0.6G 6067 * D/memory.current = 0 6068 * E/memory.current = 0 6069 * 6070 * These calculations require constant tracking of the actual low usages 6071 * (see propagate_protected_usage()), as well as recursive calculation of 6072 * effective memory.low values. But as we do call mem_cgroup_protected() 6073 * path for each memory cgroup top-down from the reclaim, 6074 * it's possible to optimize this part, and save calculated elow 6075 * for next usage. This part is intentionally racy, but it's ok, 6076 * as memory.low is a best-effort mechanism. 6077 */ 6078 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6079 struct mem_cgroup *memcg) 6080 { 6081 struct mem_cgroup *parent; 6082 unsigned long emin, parent_emin; 6083 unsigned long elow, parent_elow; 6084 unsigned long usage; 6085 6086 if (mem_cgroup_disabled()) 6087 return MEMCG_PROT_NONE; 6088 6089 if (!root) 6090 root = root_mem_cgroup; 6091 if (memcg == root) 6092 return MEMCG_PROT_NONE; 6093 6094 usage = page_counter_read(&memcg->memory); 6095 if (!usage) 6096 return MEMCG_PROT_NONE; 6097 6098 emin = memcg->memory.min; 6099 elow = memcg->memory.low; 6100 6101 parent = parent_mem_cgroup(memcg); 6102 /* No parent means a non-hierarchical mode on v1 memcg */ 6103 if (!parent) 6104 return MEMCG_PROT_NONE; 6105 6106 if (parent == root) 6107 goto exit; 6108 6109 parent_emin = READ_ONCE(parent->memory.emin); 6110 emin = min(emin, parent_emin); 6111 if (emin && parent_emin) { 6112 unsigned long min_usage, siblings_min_usage; 6113 6114 min_usage = min(usage, memcg->memory.min); 6115 siblings_min_usage = atomic_long_read( 6116 &parent->memory.children_min_usage); 6117 6118 if (min_usage && siblings_min_usage) 6119 emin = min(emin, parent_emin * min_usage / 6120 siblings_min_usage); 6121 } 6122 6123 parent_elow = READ_ONCE(parent->memory.elow); 6124 elow = min(elow, parent_elow); 6125 if (elow && parent_elow) { 6126 unsigned long low_usage, siblings_low_usage; 6127 6128 low_usage = min(usage, memcg->memory.low); 6129 siblings_low_usage = atomic_long_read( 6130 &parent->memory.children_low_usage); 6131 6132 if (low_usage && siblings_low_usage) 6133 elow = min(elow, parent_elow * low_usage / 6134 siblings_low_usage); 6135 } 6136 6137 exit: 6138 memcg->memory.emin = emin; 6139 memcg->memory.elow = elow; 6140 6141 if (usage <= emin) 6142 return MEMCG_PROT_MIN; 6143 else if (usage <= elow) 6144 return MEMCG_PROT_LOW; 6145 else 6146 return MEMCG_PROT_NONE; 6147 } 6148 6149 /** 6150 * mem_cgroup_try_charge - try charging a page 6151 * @page: page to charge 6152 * @mm: mm context of the victim 6153 * @gfp_mask: reclaim mode 6154 * @memcgp: charged memcg return 6155 * @compound: charge the page as compound or small page 6156 * 6157 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6158 * pages according to @gfp_mask if necessary. 6159 * 6160 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6161 * Otherwise, an error code is returned. 6162 * 6163 * After page->mapping has been set up, the caller must finalize the 6164 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6165 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6166 */ 6167 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6168 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6169 bool compound) 6170 { 6171 struct mem_cgroup *memcg = NULL; 6172 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6173 int ret = 0; 6174 6175 if (mem_cgroup_disabled()) 6176 goto out; 6177 6178 if (PageSwapCache(page)) { 6179 /* 6180 * Every swap fault against a single page tries to charge the 6181 * page, bail as early as possible. shmem_unuse() encounters 6182 * already charged pages, too. The USED bit is protected by 6183 * the page lock, which serializes swap cache removal, which 6184 * in turn serializes uncharging. 6185 */ 6186 VM_BUG_ON_PAGE(!PageLocked(page), page); 6187 if (compound_head(page)->mem_cgroup) 6188 goto out; 6189 6190 if (do_swap_account) { 6191 swp_entry_t ent = { .val = page_private(page), }; 6192 unsigned short id = lookup_swap_cgroup_id(ent); 6193 6194 rcu_read_lock(); 6195 memcg = mem_cgroup_from_id(id); 6196 if (memcg && !css_tryget_online(&memcg->css)) 6197 memcg = NULL; 6198 rcu_read_unlock(); 6199 } 6200 } 6201 6202 if (!memcg) 6203 memcg = get_mem_cgroup_from_mm(mm); 6204 6205 ret = try_charge(memcg, gfp_mask, nr_pages); 6206 6207 css_put(&memcg->css); 6208 out: 6209 *memcgp = memcg; 6210 return ret; 6211 } 6212 6213 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6214 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6215 bool compound) 6216 { 6217 struct mem_cgroup *memcg; 6218 int ret; 6219 6220 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6221 memcg = *memcgp; 6222 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6223 return ret; 6224 } 6225 6226 /** 6227 * mem_cgroup_commit_charge - commit a page charge 6228 * @page: page to charge 6229 * @memcg: memcg to charge the page to 6230 * @lrucare: page might be on LRU already 6231 * @compound: charge the page as compound or small page 6232 * 6233 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6234 * after page->mapping has been set up. This must happen atomically 6235 * as part of the page instantiation, i.e. under the page table lock 6236 * for anonymous pages, under the page lock for page and swap cache. 6237 * 6238 * In addition, the page must not be on the LRU during the commit, to 6239 * prevent racing with task migration. If it might be, use @lrucare. 6240 * 6241 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6242 */ 6243 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6244 bool lrucare, bool compound) 6245 { 6246 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6247 6248 VM_BUG_ON_PAGE(!page->mapping, page); 6249 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6250 6251 if (mem_cgroup_disabled()) 6252 return; 6253 /* 6254 * Swap faults will attempt to charge the same page multiple 6255 * times. But reuse_swap_page() might have removed the page 6256 * from swapcache already, so we can't check PageSwapCache(). 6257 */ 6258 if (!memcg) 6259 return; 6260 6261 commit_charge(page, memcg, lrucare); 6262 6263 local_irq_disable(); 6264 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6265 memcg_check_events(memcg, page); 6266 local_irq_enable(); 6267 6268 if (do_memsw_account() && PageSwapCache(page)) { 6269 swp_entry_t entry = { .val = page_private(page) }; 6270 /* 6271 * The swap entry might not get freed for a long time, 6272 * let's not wait for it. The page already received a 6273 * memory+swap charge, drop the swap entry duplicate. 6274 */ 6275 mem_cgroup_uncharge_swap(entry, nr_pages); 6276 } 6277 } 6278 6279 /** 6280 * mem_cgroup_cancel_charge - cancel a page charge 6281 * @page: page to charge 6282 * @memcg: memcg to charge the page to 6283 * @compound: charge the page as compound or small page 6284 * 6285 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6286 */ 6287 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6288 bool compound) 6289 { 6290 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6291 6292 if (mem_cgroup_disabled()) 6293 return; 6294 /* 6295 * Swap faults will attempt to charge the same page multiple 6296 * times. But reuse_swap_page() might have removed the page 6297 * from swapcache already, so we can't check PageSwapCache(). 6298 */ 6299 if (!memcg) 6300 return; 6301 6302 cancel_charge(memcg, nr_pages); 6303 } 6304 6305 struct uncharge_gather { 6306 struct mem_cgroup *memcg; 6307 unsigned long pgpgout; 6308 unsigned long nr_anon; 6309 unsigned long nr_file; 6310 unsigned long nr_kmem; 6311 unsigned long nr_huge; 6312 unsigned long nr_shmem; 6313 struct page *dummy_page; 6314 }; 6315 6316 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6317 { 6318 memset(ug, 0, sizeof(*ug)); 6319 } 6320 6321 static void uncharge_batch(const struct uncharge_gather *ug) 6322 { 6323 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6324 unsigned long flags; 6325 6326 if (!mem_cgroup_is_root(ug->memcg)) { 6327 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6328 if (do_memsw_account()) 6329 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6330 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6331 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6332 memcg_oom_recover(ug->memcg); 6333 } 6334 6335 local_irq_save(flags); 6336 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6337 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6338 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6339 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6340 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6341 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6342 memcg_check_events(ug->memcg, ug->dummy_page); 6343 local_irq_restore(flags); 6344 6345 if (!mem_cgroup_is_root(ug->memcg)) 6346 css_put_many(&ug->memcg->css, nr_pages); 6347 } 6348 6349 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6350 { 6351 VM_BUG_ON_PAGE(PageLRU(page), page); 6352 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6353 !PageHWPoison(page) , page); 6354 6355 if (!page->mem_cgroup) 6356 return; 6357 6358 /* 6359 * Nobody should be changing or seriously looking at 6360 * page->mem_cgroup at this point, we have fully 6361 * exclusive access to the page. 6362 */ 6363 6364 if (ug->memcg != page->mem_cgroup) { 6365 if (ug->memcg) { 6366 uncharge_batch(ug); 6367 uncharge_gather_clear(ug); 6368 } 6369 ug->memcg = page->mem_cgroup; 6370 } 6371 6372 if (!PageKmemcg(page)) { 6373 unsigned int nr_pages = 1; 6374 6375 if (PageTransHuge(page)) { 6376 nr_pages <<= compound_order(page); 6377 ug->nr_huge += nr_pages; 6378 } 6379 if (PageAnon(page)) 6380 ug->nr_anon += nr_pages; 6381 else { 6382 ug->nr_file += nr_pages; 6383 if (PageSwapBacked(page)) 6384 ug->nr_shmem += nr_pages; 6385 } 6386 ug->pgpgout++; 6387 } else { 6388 ug->nr_kmem += 1 << compound_order(page); 6389 __ClearPageKmemcg(page); 6390 } 6391 6392 ug->dummy_page = page; 6393 page->mem_cgroup = NULL; 6394 } 6395 6396 static void uncharge_list(struct list_head *page_list) 6397 { 6398 struct uncharge_gather ug; 6399 struct list_head *next; 6400 6401 uncharge_gather_clear(&ug); 6402 6403 /* 6404 * Note that the list can be a single page->lru; hence the 6405 * do-while loop instead of a simple list_for_each_entry(). 6406 */ 6407 next = page_list->next; 6408 do { 6409 struct page *page; 6410 6411 page = list_entry(next, struct page, lru); 6412 next = page->lru.next; 6413 6414 uncharge_page(page, &ug); 6415 } while (next != page_list); 6416 6417 if (ug.memcg) 6418 uncharge_batch(&ug); 6419 } 6420 6421 /** 6422 * mem_cgroup_uncharge - uncharge a page 6423 * @page: page to uncharge 6424 * 6425 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6426 * mem_cgroup_commit_charge(). 6427 */ 6428 void mem_cgroup_uncharge(struct page *page) 6429 { 6430 struct uncharge_gather ug; 6431 6432 if (mem_cgroup_disabled()) 6433 return; 6434 6435 /* Don't touch page->lru of any random page, pre-check: */ 6436 if (!page->mem_cgroup) 6437 return; 6438 6439 uncharge_gather_clear(&ug); 6440 uncharge_page(page, &ug); 6441 uncharge_batch(&ug); 6442 } 6443 6444 /** 6445 * mem_cgroup_uncharge_list - uncharge a list of page 6446 * @page_list: list of pages to uncharge 6447 * 6448 * Uncharge a list of pages previously charged with 6449 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6450 */ 6451 void mem_cgroup_uncharge_list(struct list_head *page_list) 6452 { 6453 if (mem_cgroup_disabled()) 6454 return; 6455 6456 if (!list_empty(page_list)) 6457 uncharge_list(page_list); 6458 } 6459 6460 /** 6461 * mem_cgroup_migrate - charge a page's replacement 6462 * @oldpage: currently circulating page 6463 * @newpage: replacement page 6464 * 6465 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6466 * be uncharged upon free. 6467 * 6468 * Both pages must be locked, @newpage->mapping must be set up. 6469 */ 6470 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6471 { 6472 struct mem_cgroup *memcg; 6473 unsigned int nr_pages; 6474 bool compound; 6475 unsigned long flags; 6476 6477 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6478 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6479 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6480 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6481 newpage); 6482 6483 if (mem_cgroup_disabled()) 6484 return; 6485 6486 /* Page cache replacement: new page already charged? */ 6487 if (newpage->mem_cgroup) 6488 return; 6489 6490 /* Swapcache readahead pages can get replaced before being charged */ 6491 memcg = oldpage->mem_cgroup; 6492 if (!memcg) 6493 return; 6494 6495 /* Force-charge the new page. The old one will be freed soon */ 6496 compound = PageTransHuge(newpage); 6497 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6498 6499 page_counter_charge(&memcg->memory, nr_pages); 6500 if (do_memsw_account()) 6501 page_counter_charge(&memcg->memsw, nr_pages); 6502 css_get_many(&memcg->css, nr_pages); 6503 6504 commit_charge(newpage, memcg, false); 6505 6506 local_irq_save(flags); 6507 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6508 memcg_check_events(memcg, newpage); 6509 local_irq_restore(flags); 6510 } 6511 6512 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6513 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6514 6515 void mem_cgroup_sk_alloc(struct sock *sk) 6516 { 6517 struct mem_cgroup *memcg; 6518 6519 if (!mem_cgroup_sockets_enabled) 6520 return; 6521 6522 /* 6523 * Socket cloning can throw us here with sk_memcg already 6524 * filled. It won't however, necessarily happen from 6525 * process context. So the test for root memcg given 6526 * the current task's memcg won't help us in this case. 6527 * 6528 * Respecting the original socket's memcg is a better 6529 * decision in this case. 6530 */ 6531 if (sk->sk_memcg) { 6532 css_get(&sk->sk_memcg->css); 6533 return; 6534 } 6535 6536 rcu_read_lock(); 6537 memcg = mem_cgroup_from_task(current); 6538 if (memcg == root_mem_cgroup) 6539 goto out; 6540 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6541 goto out; 6542 if (css_tryget_online(&memcg->css)) 6543 sk->sk_memcg = memcg; 6544 out: 6545 rcu_read_unlock(); 6546 } 6547 6548 void mem_cgroup_sk_free(struct sock *sk) 6549 { 6550 if (sk->sk_memcg) 6551 css_put(&sk->sk_memcg->css); 6552 } 6553 6554 /** 6555 * mem_cgroup_charge_skmem - charge socket memory 6556 * @memcg: memcg to charge 6557 * @nr_pages: number of pages to charge 6558 * 6559 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6560 * @memcg's configured limit, %false if the charge had to be forced. 6561 */ 6562 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6563 { 6564 gfp_t gfp_mask = GFP_KERNEL; 6565 6566 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6567 struct page_counter *fail; 6568 6569 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6570 memcg->tcpmem_pressure = 0; 6571 return true; 6572 } 6573 page_counter_charge(&memcg->tcpmem, nr_pages); 6574 memcg->tcpmem_pressure = 1; 6575 return false; 6576 } 6577 6578 /* Don't block in the packet receive path */ 6579 if (in_softirq()) 6580 gfp_mask = GFP_NOWAIT; 6581 6582 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6583 6584 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6585 return true; 6586 6587 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6588 return false; 6589 } 6590 6591 /** 6592 * mem_cgroup_uncharge_skmem - uncharge socket memory 6593 * @memcg: memcg to uncharge 6594 * @nr_pages: number of pages to uncharge 6595 */ 6596 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6597 { 6598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6599 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6600 return; 6601 } 6602 6603 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6604 6605 refill_stock(memcg, nr_pages); 6606 } 6607 6608 static int __init cgroup_memory(char *s) 6609 { 6610 char *token; 6611 6612 while ((token = strsep(&s, ",")) != NULL) { 6613 if (!*token) 6614 continue; 6615 if (!strcmp(token, "nosocket")) 6616 cgroup_memory_nosocket = true; 6617 if (!strcmp(token, "nokmem")) 6618 cgroup_memory_nokmem = true; 6619 } 6620 return 0; 6621 } 6622 __setup("cgroup.memory=", cgroup_memory); 6623 6624 /* 6625 * subsys_initcall() for memory controller. 6626 * 6627 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6628 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6629 * basically everything that doesn't depend on a specific mem_cgroup structure 6630 * should be initialized from here. 6631 */ 6632 static int __init mem_cgroup_init(void) 6633 { 6634 int cpu, node; 6635 6636 #ifdef CONFIG_MEMCG_KMEM 6637 /* 6638 * Kmem cache creation is mostly done with the slab_mutex held, 6639 * so use a workqueue with limited concurrency to avoid stalling 6640 * all worker threads in case lots of cgroups are created and 6641 * destroyed simultaneously. 6642 */ 6643 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6644 BUG_ON(!memcg_kmem_cache_wq); 6645 #endif 6646 6647 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6648 memcg_hotplug_cpu_dead); 6649 6650 for_each_possible_cpu(cpu) 6651 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6652 drain_local_stock); 6653 6654 for_each_node(node) { 6655 struct mem_cgroup_tree_per_node *rtpn; 6656 6657 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6658 node_online(node) ? node : NUMA_NO_NODE); 6659 6660 rtpn->rb_root = RB_ROOT; 6661 rtpn->rb_rightmost = NULL; 6662 spin_lock_init(&rtpn->lock); 6663 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6664 } 6665 6666 return 0; 6667 } 6668 subsys_initcall(mem_cgroup_init); 6669 6670 #ifdef CONFIG_MEMCG_SWAP 6671 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6672 { 6673 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6674 /* 6675 * The root cgroup cannot be destroyed, so it's refcount must 6676 * always be >= 1. 6677 */ 6678 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6679 VM_BUG_ON(1); 6680 break; 6681 } 6682 memcg = parent_mem_cgroup(memcg); 6683 if (!memcg) 6684 memcg = root_mem_cgroup; 6685 } 6686 return memcg; 6687 } 6688 6689 /** 6690 * mem_cgroup_swapout - transfer a memsw charge to swap 6691 * @page: page whose memsw charge to transfer 6692 * @entry: swap entry to move the charge to 6693 * 6694 * Transfer the memsw charge of @page to @entry. 6695 */ 6696 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6697 { 6698 struct mem_cgroup *memcg, *swap_memcg; 6699 unsigned int nr_entries; 6700 unsigned short oldid; 6701 6702 VM_BUG_ON_PAGE(PageLRU(page), page); 6703 VM_BUG_ON_PAGE(page_count(page), page); 6704 6705 if (!do_memsw_account()) 6706 return; 6707 6708 memcg = page->mem_cgroup; 6709 6710 /* Readahead page, never charged */ 6711 if (!memcg) 6712 return; 6713 6714 /* 6715 * In case the memcg owning these pages has been offlined and doesn't 6716 * have an ID allocated to it anymore, charge the closest online 6717 * ancestor for the swap instead and transfer the memory+swap charge. 6718 */ 6719 swap_memcg = mem_cgroup_id_get_online(memcg); 6720 nr_entries = hpage_nr_pages(page); 6721 /* Get references for the tail pages, too */ 6722 if (nr_entries > 1) 6723 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6724 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6725 nr_entries); 6726 VM_BUG_ON_PAGE(oldid, page); 6727 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6728 6729 page->mem_cgroup = NULL; 6730 6731 if (!mem_cgroup_is_root(memcg)) 6732 page_counter_uncharge(&memcg->memory, nr_entries); 6733 6734 if (memcg != swap_memcg) { 6735 if (!mem_cgroup_is_root(swap_memcg)) 6736 page_counter_charge(&swap_memcg->memsw, nr_entries); 6737 page_counter_uncharge(&memcg->memsw, nr_entries); 6738 } 6739 6740 /* 6741 * Interrupts should be disabled here because the caller holds the 6742 * i_pages lock which is taken with interrupts-off. It is 6743 * important here to have the interrupts disabled because it is the 6744 * only synchronisation we have for updating the per-CPU variables. 6745 */ 6746 VM_BUG_ON(!irqs_disabled()); 6747 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6748 -nr_entries); 6749 memcg_check_events(memcg, page); 6750 6751 if (!mem_cgroup_is_root(memcg)) 6752 css_put_many(&memcg->css, nr_entries); 6753 } 6754 6755 /** 6756 * mem_cgroup_try_charge_swap - try charging swap space for a page 6757 * @page: page being added to swap 6758 * @entry: swap entry to charge 6759 * 6760 * Try to charge @page's memcg for the swap space at @entry. 6761 * 6762 * Returns 0 on success, -ENOMEM on failure. 6763 */ 6764 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6765 { 6766 unsigned int nr_pages = hpage_nr_pages(page); 6767 struct page_counter *counter; 6768 struct mem_cgroup *memcg; 6769 unsigned short oldid; 6770 6771 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6772 return 0; 6773 6774 memcg = page->mem_cgroup; 6775 6776 /* Readahead page, never charged */ 6777 if (!memcg) 6778 return 0; 6779 6780 if (!entry.val) { 6781 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6782 return 0; 6783 } 6784 6785 memcg = mem_cgroup_id_get_online(memcg); 6786 6787 if (!mem_cgroup_is_root(memcg) && 6788 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6789 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6790 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6791 mem_cgroup_id_put(memcg); 6792 return -ENOMEM; 6793 } 6794 6795 /* Get references for the tail pages, too */ 6796 if (nr_pages > 1) 6797 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6799 VM_BUG_ON_PAGE(oldid, page); 6800 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6801 6802 return 0; 6803 } 6804 6805 /** 6806 * mem_cgroup_uncharge_swap - uncharge swap space 6807 * @entry: swap entry to uncharge 6808 * @nr_pages: the amount of swap space to uncharge 6809 */ 6810 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6811 { 6812 struct mem_cgroup *memcg; 6813 unsigned short id; 6814 6815 if (!do_swap_account) 6816 return; 6817 6818 id = swap_cgroup_record(entry, 0, nr_pages); 6819 rcu_read_lock(); 6820 memcg = mem_cgroup_from_id(id); 6821 if (memcg) { 6822 if (!mem_cgroup_is_root(memcg)) { 6823 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6824 page_counter_uncharge(&memcg->swap, nr_pages); 6825 else 6826 page_counter_uncharge(&memcg->memsw, nr_pages); 6827 } 6828 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6829 mem_cgroup_id_put_many(memcg, nr_pages); 6830 } 6831 rcu_read_unlock(); 6832 } 6833 6834 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6835 { 6836 long nr_swap_pages = get_nr_swap_pages(); 6837 6838 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6839 return nr_swap_pages; 6840 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6841 nr_swap_pages = min_t(long, nr_swap_pages, 6842 READ_ONCE(memcg->swap.max) - 6843 page_counter_read(&memcg->swap)); 6844 return nr_swap_pages; 6845 } 6846 6847 bool mem_cgroup_swap_full(struct page *page) 6848 { 6849 struct mem_cgroup *memcg; 6850 6851 VM_BUG_ON_PAGE(!PageLocked(page), page); 6852 6853 if (vm_swap_full()) 6854 return true; 6855 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6856 return false; 6857 6858 memcg = page->mem_cgroup; 6859 if (!memcg) 6860 return false; 6861 6862 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6863 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6864 return true; 6865 6866 return false; 6867 } 6868 6869 /* for remember boot option*/ 6870 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6871 static int really_do_swap_account __initdata = 1; 6872 #else 6873 static int really_do_swap_account __initdata; 6874 #endif 6875 6876 static int __init enable_swap_account(char *s) 6877 { 6878 if (!strcmp(s, "1")) 6879 really_do_swap_account = 1; 6880 else if (!strcmp(s, "0")) 6881 really_do_swap_account = 0; 6882 return 1; 6883 } 6884 __setup("swapaccount=", enable_swap_account); 6885 6886 static u64 swap_current_read(struct cgroup_subsys_state *css, 6887 struct cftype *cft) 6888 { 6889 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6890 6891 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6892 } 6893 6894 static int swap_max_show(struct seq_file *m, void *v) 6895 { 6896 return seq_puts_memcg_tunable(m, 6897 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6898 } 6899 6900 static ssize_t swap_max_write(struct kernfs_open_file *of, 6901 char *buf, size_t nbytes, loff_t off) 6902 { 6903 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6904 unsigned long max; 6905 int err; 6906 6907 buf = strstrip(buf); 6908 err = page_counter_memparse(buf, "max", &max); 6909 if (err) 6910 return err; 6911 6912 xchg(&memcg->swap.max, max); 6913 6914 return nbytes; 6915 } 6916 6917 static int swap_events_show(struct seq_file *m, void *v) 6918 { 6919 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6920 6921 seq_printf(m, "max %lu\n", 6922 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6923 seq_printf(m, "fail %lu\n", 6924 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6925 6926 return 0; 6927 } 6928 6929 static struct cftype swap_files[] = { 6930 { 6931 .name = "swap.current", 6932 .flags = CFTYPE_NOT_ON_ROOT, 6933 .read_u64 = swap_current_read, 6934 }, 6935 { 6936 .name = "swap.max", 6937 .flags = CFTYPE_NOT_ON_ROOT, 6938 .seq_show = swap_max_show, 6939 .write = swap_max_write, 6940 }, 6941 { 6942 .name = "swap.events", 6943 .flags = CFTYPE_NOT_ON_ROOT, 6944 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6945 .seq_show = swap_events_show, 6946 }, 6947 { } /* terminate */ 6948 }; 6949 6950 static struct cftype memsw_cgroup_files[] = { 6951 { 6952 .name = "memsw.usage_in_bytes", 6953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6954 .read_u64 = mem_cgroup_read_u64, 6955 }, 6956 { 6957 .name = "memsw.max_usage_in_bytes", 6958 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6959 .write = mem_cgroup_reset, 6960 .read_u64 = mem_cgroup_read_u64, 6961 }, 6962 { 6963 .name = "memsw.limit_in_bytes", 6964 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6965 .write = mem_cgroup_write, 6966 .read_u64 = mem_cgroup_read_u64, 6967 }, 6968 { 6969 .name = "memsw.failcnt", 6970 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6971 .write = mem_cgroup_reset, 6972 .read_u64 = mem_cgroup_read_u64, 6973 }, 6974 { }, /* terminate */ 6975 }; 6976 6977 static int __init mem_cgroup_swap_init(void) 6978 { 6979 if (!mem_cgroup_disabled() && really_do_swap_account) { 6980 do_swap_account = 1; 6981 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6982 swap_files)); 6983 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6984 memsw_cgroup_files)); 6985 } 6986 return 0; 6987 } 6988 subsys_initcall(mem_cgroup_swap_init); 6989 6990 #endif /* CONFIG_MEMCG_SWAP */ 6991