xref: /linux/mm/memcontrol.c (revision b22bb139dcb370cd3a7f3c5ae29d55bb69235ace)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65 
66 #include <linux/uaccess.h>
67 
68 #include <trace/events/vmscan.h>
69 
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72 
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #define MEM_CGROUP_RECLAIM_RETRIES	5
76 
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79 
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95 
96 static const char *const mem_cgroup_lru_names[] = {
97 	"inactive_anon",
98 	"active_anon",
99 	"inactive_file",
100 	"active_file",
101 	"unevictable",
102 };
103 
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET	1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 enum charge_type {
207 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 	MEM_CGROUP_CHARGE_TYPE_ANON,
209 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
210 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
211 	NR_CHARGE_TYPE,
212 };
213 
214 /* for encoding cft->private value on file */
215 enum res_type {
216 	_MEM,
217 	_MEMSWAP,
218 	_OOM_TYPE,
219 	_KMEM,
220 	_TCP,
221 };
222 
223 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
224 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val)	((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL		(0)
228 
229 /*
230  * Iteration constructs for visiting all cgroups (under a tree).  If
231  * loops are exited prematurely (break), mem_cgroup_iter_break() must
232  * be used for reference counting.
233  */
234 #define for_each_mem_cgroup_tree(iter, root)		\
235 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
236 	     iter != NULL;				\
237 	     iter = mem_cgroup_iter(root, iter, NULL))
238 
239 #define for_each_mem_cgroup(iter)			\
240 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(NULL, iter, NULL))
243 
244 static inline bool should_force_charge(void)
245 {
246 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 		(current->flags & PF_EXITING);
248 }
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266  * The main reason for not using cgroup id for this:
267  *  this works better in sparse environments, where we have a lot of memcgs,
268  *  but only a few kmem-limited. Or also, if we have, for instance, 200
269  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
270  *  200 entry array for that.
271  *
272  * The current size of the caches array is stored in memcg_nr_cache_ids. It
273  * will double each time we have to increase it.
274  */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277 
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280 
281 void memcg_get_cache_ids(void)
282 {
283 	down_read(&memcg_cache_ids_sem);
284 }
285 
286 void memcg_put_cache_ids(void)
287 {
288 	up_read(&memcg_cache_ids_sem);
289 }
290 
291 /*
292  * MIN_SIZE is different than 1, because we would like to avoid going through
293  * the alloc/free process all the time. In a small machine, 4 kmem-limited
294  * cgroups is a reasonable guess. In the future, it could be a parameter or
295  * tunable, but that is strictly not necessary.
296  *
297  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298  * this constant directly from cgroup, but it is understandable that this is
299  * better kept as an internal representation in cgroup.c. In any case, the
300  * cgrp_id space is not getting any smaller, and we don't have to necessarily
301  * increase ours as well if it increases.
302  */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305 
306 /*
307  * A lot of the calls to the cache allocation functions are expected to be
308  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309  * conditional to this static branch, we'll have to allow modules that does
310  * kmem_cache_alloc and the such to see this symbol as well
311  */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314 
315 struct workqueue_struct *memcg_kmem_cache_wq;
316 
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319 
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324 
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 					 int size, int old_size)
327 {
328 	struct memcg_shrinker_map *new, *old;
329 	int nid;
330 
331 	lockdep_assert_held(&memcg_shrinker_map_mutex);
332 
333 	for_each_node(nid) {
334 		old = rcu_dereference_protected(
335 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 		/* Not yet online memcg */
337 		if (!old)
338 			return 0;
339 
340 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 		if (!new)
342 			return -ENOMEM;
343 
344 		/* Set all old bits, clear all new bits */
345 		memset(new->map, (int)0xff, old_size);
346 		memset((void *)new->map + old_size, 0, size - old_size);
347 
348 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 	}
351 
352 	return 0;
353 }
354 
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 	struct mem_cgroup_per_node *pn;
358 	struct memcg_shrinker_map *map;
359 	int nid;
360 
361 	if (mem_cgroup_is_root(memcg))
362 		return;
363 
364 	for_each_node(nid) {
365 		pn = mem_cgroup_nodeinfo(memcg, nid);
366 		map = rcu_dereference_protected(pn->shrinker_map, true);
367 		if (map)
368 			kvfree(map);
369 		rcu_assign_pointer(pn->shrinker_map, NULL);
370 	}
371 }
372 
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 	struct memcg_shrinker_map *map;
376 	int nid, size, ret = 0;
377 
378 	if (mem_cgroup_is_root(memcg))
379 		return 0;
380 
381 	mutex_lock(&memcg_shrinker_map_mutex);
382 	size = memcg_shrinker_map_size;
383 	for_each_node(nid) {
384 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 		if (!map) {
386 			memcg_free_shrinker_maps(memcg);
387 			ret = -ENOMEM;
388 			break;
389 		}
390 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 	}
392 	mutex_unlock(&memcg_shrinker_map_mutex);
393 
394 	return ret;
395 }
396 
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 	int size, old_size, ret = 0;
400 	struct mem_cgroup *memcg;
401 
402 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 	old_size = memcg_shrinker_map_size;
404 	if (size <= old_size)
405 		return 0;
406 
407 	mutex_lock(&memcg_shrinker_map_mutex);
408 	if (!root_mem_cgroup)
409 		goto unlock;
410 
411 	for_each_mem_cgroup(memcg) {
412 		if (mem_cgroup_is_root(memcg))
413 			continue;
414 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 		if (ret)
416 			goto unlock;
417 	}
418 unlock:
419 	if (!ret)
420 		memcg_shrinker_map_size = size;
421 	mutex_unlock(&memcg_shrinker_map_mutex);
422 	return ret;
423 }
424 
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 		struct memcg_shrinker_map *map;
429 
430 		rcu_read_lock();
431 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 		/* Pairs with smp mb in shrink_slab() */
433 		smp_mb__before_atomic();
434 		set_bit(shrinker_id, map->map);
435 		rcu_read_unlock();
436 	}
437 }
438 
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 	return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446 
447 /**
448  * mem_cgroup_css_from_page - css of the memcg associated with a page
449  * @page: page of interest
450  *
451  * If memcg is bound to the default hierarchy, css of the memcg associated
452  * with @page is returned.  The returned css remains associated with @page
453  * until it is released.
454  *
455  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456  * is returned.
457  */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 
462 	memcg = page->mem_cgroup;
463 
464 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 		memcg = root_mem_cgroup;
466 
467 	return &memcg->css;
468 }
469 
470 /**
471  * page_cgroup_ino - return inode number of the memcg a page is charged to
472  * @page: the page
473  *
474  * Look up the closest online ancestor of the memory cgroup @page is charged to
475  * and return its inode number or 0 if @page is not charged to any cgroup. It
476  * is safe to call this function without holding a reference to @page.
477  *
478  * Note, this function is inherently racy, because there is nothing to prevent
479  * the cgroup inode from getting torn down and potentially reallocated a moment
480  * after page_cgroup_ino() returns, so it only should be used by callers that
481  * do not care (such as procfs interfaces).
482  */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 	struct mem_cgroup *memcg;
486 	unsigned long ino = 0;
487 
488 	rcu_read_lock();
489 	if (PageHead(page) && PageSlab(page))
490 		memcg = memcg_from_slab_page(page);
491 	else
492 		memcg = READ_ONCE(page->mem_cgroup);
493 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 		memcg = parent_mem_cgroup(memcg);
495 	if (memcg)
496 		ino = cgroup_ino(memcg->css.cgroup);
497 	rcu_read_unlock();
498 	return ino;
499 }
500 
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 
506 	return memcg->nodeinfo[nid];
507 }
508 
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 	return soft_limit_tree.rb_tree_per_node[nid];
513 }
514 
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 	int nid = page_to_nid(page);
519 
520 	return soft_limit_tree.rb_tree_per_node[nid];
521 }
522 
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 					 struct mem_cgroup_tree_per_node *mctz,
525 					 unsigned long new_usage_in_excess)
526 {
527 	struct rb_node **p = &mctz->rb_root.rb_node;
528 	struct rb_node *parent = NULL;
529 	struct mem_cgroup_per_node *mz_node;
530 	bool rightmost = true;
531 
532 	if (mz->on_tree)
533 		return;
534 
535 	mz->usage_in_excess = new_usage_in_excess;
536 	if (!mz->usage_in_excess)
537 		return;
538 	while (*p) {
539 		parent = *p;
540 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 					tree_node);
542 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 			p = &(*p)->rb_left;
544 			rightmost = false;
545 		}
546 
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 
555 	if (rightmost)
556 		mctz->rb_rightmost = &mz->tree_node;
557 
558 	rb_link_node(&mz->tree_node, parent, p);
559 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 	mz->on_tree = true;
561 }
562 
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 					 struct mem_cgroup_tree_per_node *mctz)
565 {
566 	if (!mz->on_tree)
567 		return;
568 
569 	if (&mz->tree_node == mctz->rb_rightmost)
570 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
571 
572 	rb_erase(&mz->tree_node, &mctz->rb_root);
573 	mz->on_tree = false;
574 }
575 
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 				       struct mem_cgroup_tree_per_node *mctz)
578 {
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&mctz->lock, flags);
582 	__mem_cgroup_remove_exceeded(mz, mctz);
583 	spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585 
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 	unsigned long nr_pages = page_counter_read(&memcg->memory);
589 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 	unsigned long excess = 0;
591 
592 	if (nr_pages > soft_limit)
593 		excess = nr_pages - soft_limit;
594 
595 	return excess;
596 }
597 
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 	unsigned long excess;
601 	struct mem_cgroup_per_node *mz;
602 	struct mem_cgroup_tree_per_node *mctz;
603 
604 	mctz = soft_limit_tree_from_page(page);
605 	if (!mctz)
606 		return;
607 	/*
608 	 * Necessary to update all ancestors when hierarchy is used.
609 	 * because their event counter is not touched.
610 	 */
611 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 		mz = mem_cgroup_page_nodeinfo(memcg, page);
613 		excess = soft_limit_excess(memcg);
614 		/*
615 		 * We have to update the tree if mz is on RB-tree or
616 		 * mem is over its softlimit.
617 		 */
618 		if (excess || mz->on_tree) {
619 			unsigned long flags;
620 
621 			spin_lock_irqsave(&mctz->lock, flags);
622 			/* if on-tree, remove it */
623 			if (mz->on_tree)
624 				__mem_cgroup_remove_exceeded(mz, mctz);
625 			/*
626 			 * Insert again. mz->usage_in_excess will be updated.
627 			 * If excess is 0, no tree ops.
628 			 */
629 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630 			spin_unlock_irqrestore(&mctz->lock, flags);
631 		}
632 	}
633 }
634 
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 	struct mem_cgroup_tree_per_node *mctz;
638 	struct mem_cgroup_per_node *mz;
639 	int nid;
640 
641 	for_each_node(nid) {
642 		mz = mem_cgroup_nodeinfo(memcg, nid);
643 		mctz = soft_limit_tree_node(nid);
644 		if (mctz)
645 			mem_cgroup_remove_exceeded(mz, mctz);
646 	}
647 }
648 
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 	struct mem_cgroup_per_node *mz;
653 
654 retry:
655 	mz = NULL;
656 	if (!mctz->rb_rightmost)
657 		goto done;		/* Nothing to reclaim from */
658 
659 	mz = rb_entry(mctz->rb_rightmost,
660 		      struct mem_cgroup_per_node, tree_node);
661 	/*
662 	 * Remove the node now but someone else can add it back,
663 	 * we will to add it back at the end of reclaim to its correct
664 	 * position in the tree.
665 	 */
666 	__mem_cgroup_remove_exceeded(mz, mctz);
667 	if (!soft_limit_excess(mz->memcg) ||
668 	    !css_tryget_online(&mz->memcg->css))
669 		goto retry;
670 done:
671 	return mz;
672 }
673 
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 	struct mem_cgroup_per_node *mz;
678 
679 	spin_lock_irq(&mctz->lock);
680 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 	spin_unlock_irq(&mctz->lock);
682 	return mz;
683 }
684 
685 /**
686  * __mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 	long x;
694 
695 	if (mem_cgroup_disabled())
696 		return;
697 
698 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 		struct mem_cgroup *mi;
701 
702 		/*
703 		 * Batch local counters to keep them in sync with
704 		 * the hierarchical ones.
705 		 */
706 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 			atomic_long_add(x, &mi->vmstats[idx]);
709 		x = 0;
710 	}
711 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713 
714 static struct mem_cgroup_per_node *
715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 	struct mem_cgroup *parent;
718 
719 	parent = parent_mem_cgroup(pn->memcg);
720 	if (!parent)
721 		return NULL;
722 	return mem_cgroup_nodeinfo(parent, nid);
723 }
724 
725 /**
726  * __mod_lruvec_state - update lruvec memory statistics
727  * @lruvec: the lruvec
728  * @idx: the stat item
729  * @val: delta to add to the counter, can be negative
730  *
731  * The lruvec is the intersection of the NUMA node and a cgroup. This
732  * function updates the all three counters that are affected by a
733  * change of state at this level: per-node, per-cgroup, per-lruvec.
734  */
735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 			int val)
737 {
738 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 	struct mem_cgroup_per_node *pn;
740 	struct mem_cgroup *memcg;
741 	long x;
742 
743 	/* Update node */
744 	__mod_node_page_state(pgdat, idx, val);
745 
746 	if (mem_cgroup_disabled())
747 		return;
748 
749 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 	memcg = pn->memcg;
751 
752 	/* Update memcg */
753 	__mod_memcg_state(memcg, idx, val);
754 
755 	/* Update lruvec */
756 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
757 
758 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
759 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
760 		struct mem_cgroup_per_node *pi;
761 
762 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
763 			atomic_long_add(x, &pi->lruvec_stat[idx]);
764 		x = 0;
765 	}
766 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
767 }
768 
769 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
770 {
771 	struct page *page = virt_to_head_page(p);
772 	pg_data_t *pgdat = page_pgdat(page);
773 	struct mem_cgroup *memcg;
774 	struct lruvec *lruvec;
775 
776 	rcu_read_lock();
777 	memcg = memcg_from_slab_page(page);
778 
779 	/* Untracked pages have no memcg, no lruvec. Update only the node */
780 	if (!memcg || memcg == root_mem_cgroup) {
781 		__mod_node_page_state(pgdat, idx, val);
782 	} else {
783 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
784 		__mod_lruvec_state(lruvec, idx, val);
785 	}
786 	rcu_read_unlock();
787 }
788 
789 /**
790  * __count_memcg_events - account VM events in a cgroup
791  * @memcg: the memory cgroup
792  * @idx: the event item
793  * @count: the number of events that occured
794  */
795 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
796 			  unsigned long count)
797 {
798 	unsigned long x;
799 
800 	if (mem_cgroup_disabled())
801 		return;
802 
803 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
804 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
805 		struct mem_cgroup *mi;
806 
807 		/*
808 		 * Batch local counters to keep them in sync with
809 		 * the hierarchical ones.
810 		 */
811 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
812 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
813 			atomic_long_add(x, &mi->vmevents[idx]);
814 		x = 0;
815 	}
816 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
817 }
818 
819 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
820 {
821 	return atomic_long_read(&memcg->vmevents[event]);
822 }
823 
824 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
825 {
826 	long x = 0;
827 	int cpu;
828 
829 	for_each_possible_cpu(cpu)
830 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
831 	return x;
832 }
833 
834 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
835 					 struct page *page,
836 					 bool compound, int nr_pages)
837 {
838 	/*
839 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
840 	 * counted as CACHE even if it's on ANON LRU.
841 	 */
842 	if (PageAnon(page))
843 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
844 	else {
845 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
846 		if (PageSwapBacked(page))
847 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
848 	}
849 
850 	if (compound) {
851 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
852 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
853 	}
854 
855 	/* pagein of a big page is an event. So, ignore page size */
856 	if (nr_pages > 0)
857 		__count_memcg_events(memcg, PGPGIN, 1);
858 	else {
859 		__count_memcg_events(memcg, PGPGOUT, 1);
860 		nr_pages = -nr_pages; /* for event */
861 	}
862 
863 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
864 }
865 
866 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
867 				       enum mem_cgroup_events_target target)
868 {
869 	unsigned long val, next;
870 
871 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
872 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
873 	/* from time_after() in jiffies.h */
874 	if ((long)(next - val) < 0) {
875 		switch (target) {
876 		case MEM_CGROUP_TARGET_THRESH:
877 			next = val + THRESHOLDS_EVENTS_TARGET;
878 			break;
879 		case MEM_CGROUP_TARGET_SOFTLIMIT:
880 			next = val + SOFTLIMIT_EVENTS_TARGET;
881 			break;
882 		case MEM_CGROUP_TARGET_NUMAINFO:
883 			next = val + NUMAINFO_EVENTS_TARGET;
884 			break;
885 		default:
886 			break;
887 		}
888 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
889 		return true;
890 	}
891 	return false;
892 }
893 
894 /*
895  * Check events in order.
896  *
897  */
898 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
899 {
900 	/* threshold event is triggered in finer grain than soft limit */
901 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
902 						MEM_CGROUP_TARGET_THRESH))) {
903 		bool do_softlimit;
904 		bool do_numainfo __maybe_unused;
905 
906 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
907 						MEM_CGROUP_TARGET_SOFTLIMIT);
908 #if MAX_NUMNODES > 1
909 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
910 						MEM_CGROUP_TARGET_NUMAINFO);
911 #endif
912 		mem_cgroup_threshold(memcg);
913 		if (unlikely(do_softlimit))
914 			mem_cgroup_update_tree(memcg, page);
915 #if MAX_NUMNODES > 1
916 		if (unlikely(do_numainfo))
917 			atomic_inc(&memcg->numainfo_events);
918 #endif
919 	}
920 }
921 
922 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
923 {
924 	/*
925 	 * mm_update_next_owner() may clear mm->owner to NULL
926 	 * if it races with swapoff, page migration, etc.
927 	 * So this can be called with p == NULL.
928 	 */
929 	if (unlikely(!p))
930 		return NULL;
931 
932 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
933 }
934 EXPORT_SYMBOL(mem_cgroup_from_task);
935 
936 /**
937  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
938  * @mm: mm from which memcg should be extracted. It can be NULL.
939  *
940  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
941  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
942  * returned.
943  */
944 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
945 {
946 	struct mem_cgroup *memcg;
947 
948 	if (mem_cgroup_disabled())
949 		return NULL;
950 
951 	rcu_read_lock();
952 	do {
953 		/*
954 		 * Page cache insertions can happen withou an
955 		 * actual mm context, e.g. during disk probing
956 		 * on boot, loopback IO, acct() writes etc.
957 		 */
958 		if (unlikely(!mm))
959 			memcg = root_mem_cgroup;
960 		else {
961 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
962 			if (unlikely(!memcg))
963 				memcg = root_mem_cgroup;
964 		}
965 	} while (!css_tryget_online(&memcg->css));
966 	rcu_read_unlock();
967 	return memcg;
968 }
969 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
970 
971 /**
972  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
973  * @page: page from which memcg should be extracted.
974  *
975  * Obtain a reference on page->memcg and returns it if successful. Otherwise
976  * root_mem_cgroup is returned.
977  */
978 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
979 {
980 	struct mem_cgroup *memcg = page->mem_cgroup;
981 
982 	if (mem_cgroup_disabled())
983 		return NULL;
984 
985 	rcu_read_lock();
986 	if (!memcg || !css_tryget_online(&memcg->css))
987 		memcg = root_mem_cgroup;
988 	rcu_read_unlock();
989 	return memcg;
990 }
991 EXPORT_SYMBOL(get_mem_cgroup_from_page);
992 
993 /**
994  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
995  */
996 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
997 {
998 	if (unlikely(current->active_memcg)) {
999 		struct mem_cgroup *memcg = root_mem_cgroup;
1000 
1001 		rcu_read_lock();
1002 		if (css_tryget_online(&current->active_memcg->css))
1003 			memcg = current->active_memcg;
1004 		rcu_read_unlock();
1005 		return memcg;
1006 	}
1007 	return get_mem_cgroup_from_mm(current->mm);
1008 }
1009 
1010 /**
1011  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1012  * @root: hierarchy root
1013  * @prev: previously returned memcg, NULL on first invocation
1014  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1015  *
1016  * Returns references to children of the hierarchy below @root, or
1017  * @root itself, or %NULL after a full round-trip.
1018  *
1019  * Caller must pass the return value in @prev on subsequent
1020  * invocations for reference counting, or use mem_cgroup_iter_break()
1021  * to cancel a hierarchy walk before the round-trip is complete.
1022  *
1023  * Reclaimers can specify a node and a priority level in @reclaim to
1024  * divide up the memcgs in the hierarchy among all concurrent
1025  * reclaimers operating on the same node and priority.
1026  */
1027 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1028 				   struct mem_cgroup *prev,
1029 				   struct mem_cgroup_reclaim_cookie *reclaim)
1030 {
1031 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1032 	struct cgroup_subsys_state *css = NULL;
1033 	struct mem_cgroup *memcg = NULL;
1034 	struct mem_cgroup *pos = NULL;
1035 
1036 	if (mem_cgroup_disabled())
1037 		return NULL;
1038 
1039 	if (!root)
1040 		root = root_mem_cgroup;
1041 
1042 	if (prev && !reclaim)
1043 		pos = prev;
1044 
1045 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1046 		if (prev)
1047 			goto out;
1048 		return root;
1049 	}
1050 
1051 	rcu_read_lock();
1052 
1053 	if (reclaim) {
1054 		struct mem_cgroup_per_node *mz;
1055 
1056 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1057 		iter = &mz->iter[reclaim->priority];
1058 
1059 		if (prev && reclaim->generation != iter->generation)
1060 			goto out_unlock;
1061 
1062 		while (1) {
1063 			pos = READ_ONCE(iter->position);
1064 			if (!pos || css_tryget(&pos->css))
1065 				break;
1066 			/*
1067 			 * css reference reached zero, so iter->position will
1068 			 * be cleared by ->css_released. However, we should not
1069 			 * rely on this happening soon, because ->css_released
1070 			 * is called from a work queue, and by busy-waiting we
1071 			 * might block it. So we clear iter->position right
1072 			 * away.
1073 			 */
1074 			(void)cmpxchg(&iter->position, pos, NULL);
1075 		}
1076 	}
1077 
1078 	if (pos)
1079 		css = &pos->css;
1080 
1081 	for (;;) {
1082 		css = css_next_descendant_pre(css, &root->css);
1083 		if (!css) {
1084 			/*
1085 			 * Reclaimers share the hierarchy walk, and a
1086 			 * new one might jump in right at the end of
1087 			 * the hierarchy - make sure they see at least
1088 			 * one group and restart from the beginning.
1089 			 */
1090 			if (!prev)
1091 				continue;
1092 			break;
1093 		}
1094 
1095 		/*
1096 		 * Verify the css and acquire a reference.  The root
1097 		 * is provided by the caller, so we know it's alive
1098 		 * and kicking, and don't take an extra reference.
1099 		 */
1100 		memcg = mem_cgroup_from_css(css);
1101 
1102 		if (css == &root->css)
1103 			break;
1104 
1105 		if (css_tryget(css))
1106 			break;
1107 
1108 		memcg = NULL;
1109 	}
1110 
1111 	if (reclaim) {
1112 		/*
1113 		 * The position could have already been updated by a competing
1114 		 * thread, so check that the value hasn't changed since we read
1115 		 * it to avoid reclaiming from the same cgroup twice.
1116 		 */
1117 		(void)cmpxchg(&iter->position, pos, memcg);
1118 
1119 		if (pos)
1120 			css_put(&pos->css);
1121 
1122 		if (!memcg)
1123 			iter->generation++;
1124 		else if (!prev)
1125 			reclaim->generation = iter->generation;
1126 	}
1127 
1128 out_unlock:
1129 	rcu_read_unlock();
1130 out:
1131 	if (prev && prev != root)
1132 		css_put(&prev->css);
1133 
1134 	return memcg;
1135 }
1136 
1137 /**
1138  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1139  * @root: hierarchy root
1140  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1141  */
1142 void mem_cgroup_iter_break(struct mem_cgroup *root,
1143 			   struct mem_cgroup *prev)
1144 {
1145 	if (!root)
1146 		root = root_mem_cgroup;
1147 	if (prev && prev != root)
1148 		css_put(&prev->css);
1149 }
1150 
1151 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1152 					struct mem_cgroup *dead_memcg)
1153 {
1154 	struct mem_cgroup_reclaim_iter *iter;
1155 	struct mem_cgroup_per_node *mz;
1156 	int nid;
1157 	int i;
1158 
1159 	for_each_node(nid) {
1160 		mz = mem_cgroup_nodeinfo(from, nid);
1161 		for (i = 0; i <= DEF_PRIORITY; i++) {
1162 			iter = &mz->iter[i];
1163 			cmpxchg(&iter->position,
1164 				dead_memcg, NULL);
1165 		}
1166 	}
1167 }
1168 
1169 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1170 {
1171 	struct mem_cgroup *memcg = dead_memcg;
1172 	struct mem_cgroup *last;
1173 
1174 	do {
1175 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1176 		last = memcg;
1177 	} while ((memcg = parent_mem_cgroup(memcg)));
1178 
1179 	/*
1180 	 * When cgruop1 non-hierarchy mode is used,
1181 	 * parent_mem_cgroup() does not walk all the way up to the
1182 	 * cgroup root (root_mem_cgroup). So we have to handle
1183 	 * dead_memcg from cgroup root separately.
1184 	 */
1185 	if (last != root_mem_cgroup)
1186 		__invalidate_reclaim_iterators(root_mem_cgroup,
1187 						dead_memcg);
1188 }
1189 
1190 /**
1191  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1192  * @memcg: hierarchy root
1193  * @fn: function to call for each task
1194  * @arg: argument passed to @fn
1195  *
1196  * This function iterates over tasks attached to @memcg or to any of its
1197  * descendants and calls @fn for each task. If @fn returns a non-zero
1198  * value, the function breaks the iteration loop and returns the value.
1199  * Otherwise, it will iterate over all tasks and return 0.
1200  *
1201  * This function must not be called for the root memory cgroup.
1202  */
1203 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1204 			  int (*fn)(struct task_struct *, void *), void *arg)
1205 {
1206 	struct mem_cgroup *iter;
1207 	int ret = 0;
1208 
1209 	BUG_ON(memcg == root_mem_cgroup);
1210 
1211 	for_each_mem_cgroup_tree(iter, memcg) {
1212 		struct css_task_iter it;
1213 		struct task_struct *task;
1214 
1215 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1216 		while (!ret && (task = css_task_iter_next(&it)))
1217 			ret = fn(task, arg);
1218 		css_task_iter_end(&it);
1219 		if (ret) {
1220 			mem_cgroup_iter_break(memcg, iter);
1221 			break;
1222 		}
1223 	}
1224 	return ret;
1225 }
1226 
1227 /**
1228  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1229  * @page: the page
1230  * @pgdat: pgdat of the page
1231  *
1232  * This function is only safe when following the LRU page isolation
1233  * and putback protocol: the LRU lock must be held, and the page must
1234  * either be PageLRU() or the caller must have isolated/allocated it.
1235  */
1236 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1237 {
1238 	struct mem_cgroup_per_node *mz;
1239 	struct mem_cgroup *memcg;
1240 	struct lruvec *lruvec;
1241 
1242 	if (mem_cgroup_disabled()) {
1243 		lruvec = &pgdat->lruvec;
1244 		goto out;
1245 	}
1246 
1247 	memcg = page->mem_cgroup;
1248 	/*
1249 	 * Swapcache readahead pages are added to the LRU - and
1250 	 * possibly migrated - before they are charged.
1251 	 */
1252 	if (!memcg)
1253 		memcg = root_mem_cgroup;
1254 
1255 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1256 	lruvec = &mz->lruvec;
1257 out:
1258 	/*
1259 	 * Since a node can be onlined after the mem_cgroup was created,
1260 	 * we have to be prepared to initialize lruvec->zone here;
1261 	 * and if offlined then reonlined, we need to reinitialize it.
1262 	 */
1263 	if (unlikely(lruvec->pgdat != pgdat))
1264 		lruvec->pgdat = pgdat;
1265 	return lruvec;
1266 }
1267 
1268 /**
1269  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1270  * @lruvec: mem_cgroup per zone lru vector
1271  * @lru: index of lru list the page is sitting on
1272  * @zid: zone id of the accounted pages
1273  * @nr_pages: positive when adding or negative when removing
1274  *
1275  * This function must be called under lru_lock, just before a page is added
1276  * to or just after a page is removed from an lru list (that ordering being
1277  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1278  */
1279 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1280 				int zid, int nr_pages)
1281 {
1282 	struct mem_cgroup_per_node *mz;
1283 	unsigned long *lru_size;
1284 	long size;
1285 
1286 	if (mem_cgroup_disabled())
1287 		return;
1288 
1289 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1290 	lru_size = &mz->lru_zone_size[zid][lru];
1291 
1292 	if (nr_pages < 0)
1293 		*lru_size += nr_pages;
1294 
1295 	size = *lru_size;
1296 	if (WARN_ONCE(size < 0,
1297 		"%s(%p, %d, %d): lru_size %ld\n",
1298 		__func__, lruvec, lru, nr_pages, size)) {
1299 		VM_BUG_ON(1);
1300 		*lru_size = 0;
1301 	}
1302 
1303 	if (nr_pages > 0)
1304 		*lru_size += nr_pages;
1305 }
1306 
1307 /**
1308  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1309  * @memcg: the memory cgroup
1310  *
1311  * Returns the maximum amount of memory @mem can be charged with, in
1312  * pages.
1313  */
1314 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1315 {
1316 	unsigned long margin = 0;
1317 	unsigned long count;
1318 	unsigned long limit;
1319 
1320 	count = page_counter_read(&memcg->memory);
1321 	limit = READ_ONCE(memcg->memory.max);
1322 	if (count < limit)
1323 		margin = limit - count;
1324 
1325 	if (do_memsw_account()) {
1326 		count = page_counter_read(&memcg->memsw);
1327 		limit = READ_ONCE(memcg->memsw.max);
1328 		if (count <= limit)
1329 			margin = min(margin, limit - count);
1330 		else
1331 			margin = 0;
1332 	}
1333 
1334 	return margin;
1335 }
1336 
1337 /*
1338  * A routine for checking "mem" is under move_account() or not.
1339  *
1340  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1341  * moving cgroups. This is for waiting at high-memory pressure
1342  * caused by "move".
1343  */
1344 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1345 {
1346 	struct mem_cgroup *from;
1347 	struct mem_cgroup *to;
1348 	bool ret = false;
1349 	/*
1350 	 * Unlike task_move routines, we access mc.to, mc.from not under
1351 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1352 	 */
1353 	spin_lock(&mc.lock);
1354 	from = mc.from;
1355 	to = mc.to;
1356 	if (!from)
1357 		goto unlock;
1358 
1359 	ret = mem_cgroup_is_descendant(from, memcg) ||
1360 		mem_cgroup_is_descendant(to, memcg);
1361 unlock:
1362 	spin_unlock(&mc.lock);
1363 	return ret;
1364 }
1365 
1366 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1367 {
1368 	if (mc.moving_task && current != mc.moving_task) {
1369 		if (mem_cgroup_under_move(memcg)) {
1370 			DEFINE_WAIT(wait);
1371 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372 			/* moving charge context might have finished. */
1373 			if (mc.moving_task)
1374 				schedule();
1375 			finish_wait(&mc.waitq, &wait);
1376 			return true;
1377 		}
1378 	}
1379 	return false;
1380 }
1381 
1382 static char *memory_stat_format(struct mem_cgroup *memcg)
1383 {
1384 	struct seq_buf s;
1385 	int i;
1386 
1387 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1388 	if (!s.buffer)
1389 		return NULL;
1390 
1391 	/*
1392 	 * Provide statistics on the state of the memory subsystem as
1393 	 * well as cumulative event counters that show past behavior.
1394 	 *
1395 	 * This list is ordered following a combination of these gradients:
1396 	 * 1) generic big picture -> specifics and details
1397 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1398 	 *
1399 	 * Current memory state:
1400 	 */
1401 
1402 	seq_buf_printf(&s, "anon %llu\n",
1403 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1404 		       PAGE_SIZE);
1405 	seq_buf_printf(&s, "file %llu\n",
1406 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1407 		       PAGE_SIZE);
1408 	seq_buf_printf(&s, "kernel_stack %llu\n",
1409 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1410 		       1024);
1411 	seq_buf_printf(&s, "slab %llu\n",
1412 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1413 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1414 		       PAGE_SIZE);
1415 	seq_buf_printf(&s, "sock %llu\n",
1416 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1417 		       PAGE_SIZE);
1418 
1419 	seq_buf_printf(&s, "shmem %llu\n",
1420 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1421 		       PAGE_SIZE);
1422 	seq_buf_printf(&s, "file_mapped %llu\n",
1423 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1424 		       PAGE_SIZE);
1425 	seq_buf_printf(&s, "file_dirty %llu\n",
1426 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1427 		       PAGE_SIZE);
1428 	seq_buf_printf(&s, "file_writeback %llu\n",
1429 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1430 		       PAGE_SIZE);
1431 
1432 	/*
1433 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1434 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1435 	 * arse because it requires migrating the work out of rmap to a place
1436 	 * where the page->mem_cgroup is set up and stable.
1437 	 */
1438 	seq_buf_printf(&s, "anon_thp %llu\n",
1439 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1440 		       PAGE_SIZE);
1441 
1442 	for (i = 0; i < NR_LRU_LISTS; i++)
1443 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1444 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1445 			       PAGE_SIZE);
1446 
1447 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1448 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1449 		       PAGE_SIZE);
1450 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1451 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1452 		       PAGE_SIZE);
1453 
1454 	/* Accumulated memory events */
1455 
1456 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1457 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1458 
1459 	seq_buf_printf(&s, "workingset_refault %lu\n",
1460 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1461 	seq_buf_printf(&s, "workingset_activate %lu\n",
1462 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1463 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1464 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1465 
1466 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1467 	seq_buf_printf(&s, "pgscan %lu\n",
1468 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1469 		       memcg_events(memcg, PGSCAN_DIRECT));
1470 	seq_buf_printf(&s, "pgsteal %lu\n",
1471 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1472 		       memcg_events(memcg, PGSTEAL_DIRECT));
1473 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1474 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1475 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1476 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1477 
1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1480 		       memcg_events(memcg, THP_FAULT_ALLOC));
1481 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1482 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1483 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1484 
1485 	/* The above should easily fit into one page */
1486 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1487 
1488 	return s.buffer;
1489 }
1490 
1491 #define K(x) ((x) << (PAGE_SHIFT-10))
1492 /**
1493  * mem_cgroup_print_oom_context: Print OOM information relevant to
1494  * memory controller.
1495  * @memcg: The memory cgroup that went over limit
1496  * @p: Task that is going to be killed
1497  *
1498  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1499  * enabled
1500  */
1501 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1502 {
1503 	rcu_read_lock();
1504 
1505 	if (memcg) {
1506 		pr_cont(",oom_memcg=");
1507 		pr_cont_cgroup_path(memcg->css.cgroup);
1508 	} else
1509 		pr_cont(",global_oom");
1510 	if (p) {
1511 		pr_cont(",task_memcg=");
1512 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1513 	}
1514 	rcu_read_unlock();
1515 }
1516 
1517 /**
1518  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1519  * memory controller.
1520  * @memcg: The memory cgroup that went over limit
1521  */
1522 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1523 {
1524 	char *buf;
1525 
1526 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1527 		K((u64)page_counter_read(&memcg->memory)),
1528 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1529 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1530 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 			K((u64)page_counter_read(&memcg->swap)),
1532 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1533 	else {
1534 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 			K((u64)page_counter_read(&memcg->memsw)),
1536 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1537 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1538 			K((u64)page_counter_read(&memcg->kmem)),
1539 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1540 	}
1541 
1542 	pr_info("Memory cgroup stats for ");
1543 	pr_cont_cgroup_path(memcg->css.cgroup);
1544 	pr_cont(":");
1545 	buf = memory_stat_format(memcg);
1546 	if (!buf)
1547 		return;
1548 	pr_info("%s", buf);
1549 	kfree(buf);
1550 }
1551 
1552 /*
1553  * Return the memory (and swap, if configured) limit for a memcg.
1554  */
1555 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1556 {
1557 	unsigned long max;
1558 
1559 	max = memcg->memory.max;
1560 	if (mem_cgroup_swappiness(memcg)) {
1561 		unsigned long memsw_max;
1562 		unsigned long swap_max;
1563 
1564 		memsw_max = memcg->memsw.max;
1565 		swap_max = memcg->swap.max;
1566 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1567 		max = min(max + swap_max, memsw_max);
1568 	}
1569 	return max;
1570 }
1571 
1572 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1573 				     int order)
1574 {
1575 	struct oom_control oc = {
1576 		.zonelist = NULL,
1577 		.nodemask = NULL,
1578 		.memcg = memcg,
1579 		.gfp_mask = gfp_mask,
1580 		.order = order,
1581 	};
1582 	bool ret;
1583 
1584 	if (mutex_lock_killable(&oom_lock))
1585 		return true;
1586 	/*
1587 	 * A few threads which were not waiting at mutex_lock_killable() can
1588 	 * fail to bail out. Therefore, check again after holding oom_lock.
1589 	 */
1590 	ret = should_force_charge() || out_of_memory(&oc);
1591 	mutex_unlock(&oom_lock);
1592 	return ret;
1593 }
1594 
1595 #if MAX_NUMNODES > 1
1596 
1597 /**
1598  * test_mem_cgroup_node_reclaimable
1599  * @memcg: the target memcg
1600  * @nid: the node ID to be checked.
1601  * @noswap : specify true here if the user wants flle only information.
1602  *
1603  * This function returns whether the specified memcg contains any
1604  * reclaimable pages on a node. Returns true if there are any reclaimable
1605  * pages in the node.
1606  */
1607 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608 		int nid, bool noswap)
1609 {
1610 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1611 
1612 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1613 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1614 		return true;
1615 	if (noswap || !total_swap_pages)
1616 		return false;
1617 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1618 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1619 		return true;
1620 	return false;
1621 
1622 }
1623 
1624 /*
1625  * Always updating the nodemask is not very good - even if we have an empty
1626  * list or the wrong list here, we can start from some node and traverse all
1627  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1628  *
1629  */
1630 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1631 {
1632 	int nid;
1633 	/*
1634 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1635 	 * pagein/pageout changes since the last update.
1636 	 */
1637 	if (!atomic_read(&memcg->numainfo_events))
1638 		return;
1639 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1640 		return;
1641 
1642 	/* make a nodemask where this memcg uses memory from */
1643 	memcg->scan_nodes = node_states[N_MEMORY];
1644 
1645 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1646 
1647 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1648 			node_clear(nid, memcg->scan_nodes);
1649 	}
1650 
1651 	atomic_set(&memcg->numainfo_events, 0);
1652 	atomic_set(&memcg->numainfo_updating, 0);
1653 }
1654 
1655 /*
1656  * Selecting a node where we start reclaim from. Because what we need is just
1657  * reducing usage counter, start from anywhere is O,K. Considering
1658  * memory reclaim from current node, there are pros. and cons.
1659  *
1660  * Freeing memory from current node means freeing memory from a node which
1661  * we'll use or we've used. So, it may make LRU bad. And if several threads
1662  * hit limits, it will see a contention on a node. But freeing from remote
1663  * node means more costs for memory reclaim because of memory latency.
1664  *
1665  * Now, we use round-robin. Better algorithm is welcomed.
1666  */
1667 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668 {
1669 	int node;
1670 
1671 	mem_cgroup_may_update_nodemask(memcg);
1672 	node = memcg->last_scanned_node;
1673 
1674 	node = next_node_in(node, memcg->scan_nodes);
1675 	/*
1676 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1677 	 * last time it really checked all the LRUs due to rate limiting.
1678 	 * Fallback to the current node in that case for simplicity.
1679 	 */
1680 	if (unlikely(node == MAX_NUMNODES))
1681 		node = numa_node_id();
1682 
1683 	memcg->last_scanned_node = node;
1684 	return node;
1685 }
1686 #else
1687 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1688 {
1689 	return 0;
1690 }
1691 #endif
1692 
1693 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694 				   pg_data_t *pgdat,
1695 				   gfp_t gfp_mask,
1696 				   unsigned long *total_scanned)
1697 {
1698 	struct mem_cgroup *victim = NULL;
1699 	int total = 0;
1700 	int loop = 0;
1701 	unsigned long excess;
1702 	unsigned long nr_scanned;
1703 	struct mem_cgroup_reclaim_cookie reclaim = {
1704 		.pgdat = pgdat,
1705 		.priority = 0,
1706 	};
1707 
1708 	excess = soft_limit_excess(root_memcg);
1709 
1710 	while (1) {
1711 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1712 		if (!victim) {
1713 			loop++;
1714 			if (loop >= 2) {
1715 				/*
1716 				 * If we have not been able to reclaim
1717 				 * anything, it might because there are
1718 				 * no reclaimable pages under this hierarchy
1719 				 */
1720 				if (!total)
1721 					break;
1722 				/*
1723 				 * We want to do more targeted reclaim.
1724 				 * excess >> 2 is not to excessive so as to
1725 				 * reclaim too much, nor too less that we keep
1726 				 * coming back to reclaim from this cgroup
1727 				 */
1728 				if (total >= (excess >> 2) ||
1729 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1730 					break;
1731 			}
1732 			continue;
1733 		}
1734 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1735 					pgdat, &nr_scanned);
1736 		*total_scanned += nr_scanned;
1737 		if (!soft_limit_excess(root_memcg))
1738 			break;
1739 	}
1740 	mem_cgroup_iter_break(root_memcg, victim);
1741 	return total;
1742 }
1743 
1744 #ifdef CONFIG_LOCKDEP
1745 static struct lockdep_map memcg_oom_lock_dep_map = {
1746 	.name = "memcg_oom_lock",
1747 };
1748 #endif
1749 
1750 static DEFINE_SPINLOCK(memcg_oom_lock);
1751 
1752 /*
1753  * Check OOM-Killer is already running under our hierarchy.
1754  * If someone is running, return false.
1755  */
1756 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1757 {
1758 	struct mem_cgroup *iter, *failed = NULL;
1759 
1760 	spin_lock(&memcg_oom_lock);
1761 
1762 	for_each_mem_cgroup_tree(iter, memcg) {
1763 		if (iter->oom_lock) {
1764 			/*
1765 			 * this subtree of our hierarchy is already locked
1766 			 * so we cannot give a lock.
1767 			 */
1768 			failed = iter;
1769 			mem_cgroup_iter_break(memcg, iter);
1770 			break;
1771 		} else
1772 			iter->oom_lock = true;
1773 	}
1774 
1775 	if (failed) {
1776 		/*
1777 		 * OK, we failed to lock the whole subtree so we have
1778 		 * to clean up what we set up to the failing subtree
1779 		 */
1780 		for_each_mem_cgroup_tree(iter, memcg) {
1781 			if (iter == failed) {
1782 				mem_cgroup_iter_break(memcg, iter);
1783 				break;
1784 			}
1785 			iter->oom_lock = false;
1786 		}
1787 	} else
1788 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1789 
1790 	spin_unlock(&memcg_oom_lock);
1791 
1792 	return !failed;
1793 }
1794 
1795 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1796 {
1797 	struct mem_cgroup *iter;
1798 
1799 	spin_lock(&memcg_oom_lock);
1800 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1801 	for_each_mem_cgroup_tree(iter, memcg)
1802 		iter->oom_lock = false;
1803 	spin_unlock(&memcg_oom_lock);
1804 }
1805 
1806 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1807 {
1808 	struct mem_cgroup *iter;
1809 
1810 	spin_lock(&memcg_oom_lock);
1811 	for_each_mem_cgroup_tree(iter, memcg)
1812 		iter->under_oom++;
1813 	spin_unlock(&memcg_oom_lock);
1814 }
1815 
1816 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1817 {
1818 	struct mem_cgroup *iter;
1819 
1820 	/*
1821 	 * When a new child is created while the hierarchy is under oom,
1822 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1823 	 */
1824 	spin_lock(&memcg_oom_lock);
1825 	for_each_mem_cgroup_tree(iter, memcg)
1826 		if (iter->under_oom > 0)
1827 			iter->under_oom--;
1828 	spin_unlock(&memcg_oom_lock);
1829 }
1830 
1831 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1832 
1833 struct oom_wait_info {
1834 	struct mem_cgroup *memcg;
1835 	wait_queue_entry_t	wait;
1836 };
1837 
1838 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1839 	unsigned mode, int sync, void *arg)
1840 {
1841 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1842 	struct mem_cgroup *oom_wait_memcg;
1843 	struct oom_wait_info *oom_wait_info;
1844 
1845 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1846 	oom_wait_memcg = oom_wait_info->memcg;
1847 
1848 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1849 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1850 		return 0;
1851 	return autoremove_wake_function(wait, mode, sync, arg);
1852 }
1853 
1854 static void memcg_oom_recover(struct mem_cgroup *memcg)
1855 {
1856 	/*
1857 	 * For the following lockless ->under_oom test, the only required
1858 	 * guarantee is that it must see the state asserted by an OOM when
1859 	 * this function is called as a result of userland actions
1860 	 * triggered by the notification of the OOM.  This is trivially
1861 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1862 	 * triggering notification.
1863 	 */
1864 	if (memcg && memcg->under_oom)
1865 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1866 }
1867 
1868 enum oom_status {
1869 	OOM_SUCCESS,
1870 	OOM_FAILED,
1871 	OOM_ASYNC,
1872 	OOM_SKIPPED
1873 };
1874 
1875 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1876 {
1877 	enum oom_status ret;
1878 	bool locked;
1879 
1880 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1881 		return OOM_SKIPPED;
1882 
1883 	memcg_memory_event(memcg, MEMCG_OOM);
1884 
1885 	/*
1886 	 * We are in the middle of the charge context here, so we
1887 	 * don't want to block when potentially sitting on a callstack
1888 	 * that holds all kinds of filesystem and mm locks.
1889 	 *
1890 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1891 	 * handling until the charge can succeed; remember the context and put
1892 	 * the task to sleep at the end of the page fault when all locks are
1893 	 * released.
1894 	 *
1895 	 * On the other hand, in-kernel OOM killer allows for an async victim
1896 	 * memory reclaim (oom_reaper) and that means that we are not solely
1897 	 * relying on the oom victim to make a forward progress and we can
1898 	 * invoke the oom killer here.
1899 	 *
1900 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1901 	 * victim and then we have to bail out from the charge path.
1902 	 */
1903 	if (memcg->oom_kill_disable) {
1904 		if (!current->in_user_fault)
1905 			return OOM_SKIPPED;
1906 		css_get(&memcg->css);
1907 		current->memcg_in_oom = memcg;
1908 		current->memcg_oom_gfp_mask = mask;
1909 		current->memcg_oom_order = order;
1910 
1911 		return OOM_ASYNC;
1912 	}
1913 
1914 	mem_cgroup_mark_under_oom(memcg);
1915 
1916 	locked = mem_cgroup_oom_trylock(memcg);
1917 
1918 	if (locked)
1919 		mem_cgroup_oom_notify(memcg);
1920 
1921 	mem_cgroup_unmark_under_oom(memcg);
1922 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1923 		ret = OOM_SUCCESS;
1924 	else
1925 		ret = OOM_FAILED;
1926 
1927 	if (locked)
1928 		mem_cgroup_oom_unlock(memcg);
1929 
1930 	return ret;
1931 }
1932 
1933 /**
1934  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1935  * @handle: actually kill/wait or just clean up the OOM state
1936  *
1937  * This has to be called at the end of a page fault if the memcg OOM
1938  * handler was enabled.
1939  *
1940  * Memcg supports userspace OOM handling where failed allocations must
1941  * sleep on a waitqueue until the userspace task resolves the
1942  * situation.  Sleeping directly in the charge context with all kinds
1943  * of locks held is not a good idea, instead we remember an OOM state
1944  * in the task and mem_cgroup_oom_synchronize() has to be called at
1945  * the end of the page fault to complete the OOM handling.
1946  *
1947  * Returns %true if an ongoing memcg OOM situation was detected and
1948  * completed, %false otherwise.
1949  */
1950 bool mem_cgroup_oom_synchronize(bool handle)
1951 {
1952 	struct mem_cgroup *memcg = current->memcg_in_oom;
1953 	struct oom_wait_info owait;
1954 	bool locked;
1955 
1956 	/* OOM is global, do not handle */
1957 	if (!memcg)
1958 		return false;
1959 
1960 	if (!handle)
1961 		goto cleanup;
1962 
1963 	owait.memcg = memcg;
1964 	owait.wait.flags = 0;
1965 	owait.wait.func = memcg_oom_wake_function;
1966 	owait.wait.private = current;
1967 	INIT_LIST_HEAD(&owait.wait.entry);
1968 
1969 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1970 	mem_cgroup_mark_under_oom(memcg);
1971 
1972 	locked = mem_cgroup_oom_trylock(memcg);
1973 
1974 	if (locked)
1975 		mem_cgroup_oom_notify(memcg);
1976 
1977 	if (locked && !memcg->oom_kill_disable) {
1978 		mem_cgroup_unmark_under_oom(memcg);
1979 		finish_wait(&memcg_oom_waitq, &owait.wait);
1980 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1981 					 current->memcg_oom_order);
1982 	} else {
1983 		schedule();
1984 		mem_cgroup_unmark_under_oom(memcg);
1985 		finish_wait(&memcg_oom_waitq, &owait.wait);
1986 	}
1987 
1988 	if (locked) {
1989 		mem_cgroup_oom_unlock(memcg);
1990 		/*
1991 		 * There is no guarantee that an OOM-lock contender
1992 		 * sees the wakeups triggered by the OOM kill
1993 		 * uncharges.  Wake any sleepers explicitely.
1994 		 */
1995 		memcg_oom_recover(memcg);
1996 	}
1997 cleanup:
1998 	current->memcg_in_oom = NULL;
1999 	css_put(&memcg->css);
2000 	return true;
2001 }
2002 
2003 /**
2004  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2005  * @victim: task to be killed by the OOM killer
2006  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2007  *
2008  * Returns a pointer to a memory cgroup, which has to be cleaned up
2009  * by killing all belonging OOM-killable tasks.
2010  *
2011  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2012  */
2013 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2014 					    struct mem_cgroup *oom_domain)
2015 {
2016 	struct mem_cgroup *oom_group = NULL;
2017 	struct mem_cgroup *memcg;
2018 
2019 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2020 		return NULL;
2021 
2022 	if (!oom_domain)
2023 		oom_domain = root_mem_cgroup;
2024 
2025 	rcu_read_lock();
2026 
2027 	memcg = mem_cgroup_from_task(victim);
2028 	if (memcg == root_mem_cgroup)
2029 		goto out;
2030 
2031 	/*
2032 	 * Traverse the memory cgroup hierarchy from the victim task's
2033 	 * cgroup up to the OOMing cgroup (or root) to find the
2034 	 * highest-level memory cgroup with oom.group set.
2035 	 */
2036 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2037 		if (memcg->oom_group)
2038 			oom_group = memcg;
2039 
2040 		if (memcg == oom_domain)
2041 			break;
2042 	}
2043 
2044 	if (oom_group)
2045 		css_get(&oom_group->css);
2046 out:
2047 	rcu_read_unlock();
2048 
2049 	return oom_group;
2050 }
2051 
2052 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2053 {
2054 	pr_info("Tasks in ");
2055 	pr_cont_cgroup_path(memcg->css.cgroup);
2056 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2057 }
2058 
2059 /**
2060  * lock_page_memcg - lock a page->mem_cgroup binding
2061  * @page: the page
2062  *
2063  * This function protects unlocked LRU pages from being moved to
2064  * another cgroup.
2065  *
2066  * It ensures lifetime of the returned memcg. Caller is responsible
2067  * for the lifetime of the page; __unlock_page_memcg() is available
2068  * when @page might get freed inside the locked section.
2069  */
2070 struct mem_cgroup *lock_page_memcg(struct page *page)
2071 {
2072 	struct mem_cgroup *memcg;
2073 	unsigned long flags;
2074 
2075 	/*
2076 	 * The RCU lock is held throughout the transaction.  The fast
2077 	 * path can get away without acquiring the memcg->move_lock
2078 	 * because page moving starts with an RCU grace period.
2079 	 *
2080 	 * The RCU lock also protects the memcg from being freed when
2081 	 * the page state that is going to change is the only thing
2082 	 * preventing the page itself from being freed. E.g. writeback
2083 	 * doesn't hold a page reference and relies on PG_writeback to
2084 	 * keep off truncation, migration and so forth.
2085          */
2086 	rcu_read_lock();
2087 
2088 	if (mem_cgroup_disabled())
2089 		return NULL;
2090 again:
2091 	memcg = page->mem_cgroup;
2092 	if (unlikely(!memcg))
2093 		return NULL;
2094 
2095 	if (atomic_read(&memcg->moving_account) <= 0)
2096 		return memcg;
2097 
2098 	spin_lock_irqsave(&memcg->move_lock, flags);
2099 	if (memcg != page->mem_cgroup) {
2100 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2101 		goto again;
2102 	}
2103 
2104 	/*
2105 	 * When charge migration first begins, we can have locked and
2106 	 * unlocked page stat updates happening concurrently.  Track
2107 	 * the task who has the lock for unlock_page_memcg().
2108 	 */
2109 	memcg->move_lock_task = current;
2110 	memcg->move_lock_flags = flags;
2111 
2112 	return memcg;
2113 }
2114 EXPORT_SYMBOL(lock_page_memcg);
2115 
2116 /**
2117  * __unlock_page_memcg - unlock and unpin a memcg
2118  * @memcg: the memcg
2119  *
2120  * Unlock and unpin a memcg returned by lock_page_memcg().
2121  */
2122 void __unlock_page_memcg(struct mem_cgroup *memcg)
2123 {
2124 	if (memcg && memcg->move_lock_task == current) {
2125 		unsigned long flags = memcg->move_lock_flags;
2126 
2127 		memcg->move_lock_task = NULL;
2128 		memcg->move_lock_flags = 0;
2129 
2130 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2131 	}
2132 
2133 	rcu_read_unlock();
2134 }
2135 
2136 /**
2137  * unlock_page_memcg - unlock a page->mem_cgroup binding
2138  * @page: the page
2139  */
2140 void unlock_page_memcg(struct page *page)
2141 {
2142 	__unlock_page_memcg(page->mem_cgroup);
2143 }
2144 EXPORT_SYMBOL(unlock_page_memcg);
2145 
2146 struct memcg_stock_pcp {
2147 	struct mem_cgroup *cached; /* this never be root cgroup */
2148 	unsigned int nr_pages;
2149 	struct work_struct work;
2150 	unsigned long flags;
2151 #define FLUSHING_CACHED_CHARGE	0
2152 };
2153 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2154 static DEFINE_MUTEX(percpu_charge_mutex);
2155 
2156 /**
2157  * consume_stock: Try to consume stocked charge on this cpu.
2158  * @memcg: memcg to consume from.
2159  * @nr_pages: how many pages to charge.
2160  *
2161  * The charges will only happen if @memcg matches the current cpu's memcg
2162  * stock, and at least @nr_pages are available in that stock.  Failure to
2163  * service an allocation will refill the stock.
2164  *
2165  * returns true if successful, false otherwise.
2166  */
2167 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2168 {
2169 	struct memcg_stock_pcp *stock;
2170 	unsigned long flags;
2171 	bool ret = false;
2172 
2173 	if (nr_pages > MEMCG_CHARGE_BATCH)
2174 		return ret;
2175 
2176 	local_irq_save(flags);
2177 
2178 	stock = this_cpu_ptr(&memcg_stock);
2179 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2180 		stock->nr_pages -= nr_pages;
2181 		ret = true;
2182 	}
2183 
2184 	local_irq_restore(flags);
2185 
2186 	return ret;
2187 }
2188 
2189 /*
2190  * Returns stocks cached in percpu and reset cached information.
2191  */
2192 static void drain_stock(struct memcg_stock_pcp *stock)
2193 {
2194 	struct mem_cgroup *old = stock->cached;
2195 
2196 	if (stock->nr_pages) {
2197 		page_counter_uncharge(&old->memory, stock->nr_pages);
2198 		if (do_memsw_account())
2199 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2200 		css_put_many(&old->css, stock->nr_pages);
2201 		stock->nr_pages = 0;
2202 	}
2203 	stock->cached = NULL;
2204 }
2205 
2206 static void drain_local_stock(struct work_struct *dummy)
2207 {
2208 	struct memcg_stock_pcp *stock;
2209 	unsigned long flags;
2210 
2211 	/*
2212 	 * The only protection from memory hotplug vs. drain_stock races is
2213 	 * that we always operate on local CPU stock here with IRQ disabled
2214 	 */
2215 	local_irq_save(flags);
2216 
2217 	stock = this_cpu_ptr(&memcg_stock);
2218 	drain_stock(stock);
2219 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2220 
2221 	local_irq_restore(flags);
2222 }
2223 
2224 /*
2225  * Cache charges(val) to local per_cpu area.
2226  * This will be consumed by consume_stock() function, later.
2227  */
2228 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2229 {
2230 	struct memcg_stock_pcp *stock;
2231 	unsigned long flags;
2232 
2233 	local_irq_save(flags);
2234 
2235 	stock = this_cpu_ptr(&memcg_stock);
2236 	if (stock->cached != memcg) { /* reset if necessary */
2237 		drain_stock(stock);
2238 		stock->cached = memcg;
2239 	}
2240 	stock->nr_pages += nr_pages;
2241 
2242 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 		drain_stock(stock);
2244 
2245 	local_irq_restore(flags);
2246 }
2247 
2248 /*
2249  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250  * of the hierarchy under it.
2251  */
2252 static void drain_all_stock(struct mem_cgroup *root_memcg)
2253 {
2254 	int cpu, curcpu;
2255 
2256 	/* If someone's already draining, avoid adding running more workers. */
2257 	if (!mutex_trylock(&percpu_charge_mutex))
2258 		return;
2259 	/*
2260 	 * Notify other cpus that system-wide "drain" is running
2261 	 * We do not care about races with the cpu hotplug because cpu down
2262 	 * as well as workers from this path always operate on the local
2263 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 	 */
2265 	curcpu = get_cpu();
2266 	for_each_online_cpu(cpu) {
2267 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 		struct mem_cgroup *memcg;
2269 
2270 		memcg = stock->cached;
2271 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2272 			continue;
2273 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2274 			css_put(&memcg->css);
2275 			continue;
2276 		}
2277 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2278 			if (cpu == curcpu)
2279 				drain_local_stock(&stock->work);
2280 			else
2281 				schedule_work_on(cpu, &stock->work);
2282 		}
2283 		css_put(&memcg->css);
2284 	}
2285 	put_cpu();
2286 	mutex_unlock(&percpu_charge_mutex);
2287 }
2288 
2289 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2290 {
2291 	struct memcg_stock_pcp *stock;
2292 	struct mem_cgroup *memcg, *mi;
2293 
2294 	stock = &per_cpu(memcg_stock, cpu);
2295 	drain_stock(stock);
2296 
2297 	for_each_mem_cgroup(memcg) {
2298 		int i;
2299 
2300 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2301 			int nid;
2302 			long x;
2303 
2304 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2305 			if (x)
2306 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2307 					atomic_long_add(x, &memcg->vmstats[i]);
2308 
2309 			if (i >= NR_VM_NODE_STAT_ITEMS)
2310 				continue;
2311 
2312 			for_each_node(nid) {
2313 				struct mem_cgroup_per_node *pn;
2314 
2315 				pn = mem_cgroup_nodeinfo(memcg, nid);
2316 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2317 				if (x)
2318 					do {
2319 						atomic_long_add(x, &pn->lruvec_stat[i]);
2320 					} while ((pn = parent_nodeinfo(pn, nid)));
2321 			}
2322 		}
2323 
2324 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2325 			long x;
2326 
2327 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2328 			if (x)
2329 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2330 					atomic_long_add(x, &memcg->vmevents[i]);
2331 		}
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 static void reclaim_high(struct mem_cgroup *memcg,
2338 			 unsigned int nr_pages,
2339 			 gfp_t gfp_mask)
2340 {
2341 	do {
2342 		if (page_counter_read(&memcg->memory) <= memcg->high)
2343 			continue;
2344 		memcg_memory_event(memcg, MEMCG_HIGH);
2345 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2346 	} while ((memcg = parent_mem_cgroup(memcg)));
2347 }
2348 
2349 static void high_work_func(struct work_struct *work)
2350 {
2351 	struct mem_cgroup *memcg;
2352 
2353 	memcg = container_of(work, struct mem_cgroup, high_work);
2354 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2355 }
2356 
2357 /*
2358  * Scheduled by try_charge() to be executed from the userland return path
2359  * and reclaims memory over the high limit.
2360  */
2361 void mem_cgroup_handle_over_high(void)
2362 {
2363 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2364 	struct mem_cgroup *memcg;
2365 
2366 	if (likely(!nr_pages))
2367 		return;
2368 
2369 	memcg = get_mem_cgroup_from_mm(current->mm);
2370 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2371 	css_put(&memcg->css);
2372 	current->memcg_nr_pages_over_high = 0;
2373 }
2374 
2375 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2376 		      unsigned int nr_pages)
2377 {
2378 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2379 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380 	struct mem_cgroup *mem_over_limit;
2381 	struct page_counter *counter;
2382 	unsigned long nr_reclaimed;
2383 	bool may_swap = true;
2384 	bool drained = false;
2385 	enum oom_status oom_status;
2386 
2387 	if (mem_cgroup_is_root(memcg))
2388 		return 0;
2389 retry:
2390 	if (consume_stock(memcg, nr_pages))
2391 		return 0;
2392 
2393 	if (!do_memsw_account() ||
2394 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2395 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2396 			goto done_restock;
2397 		if (do_memsw_account())
2398 			page_counter_uncharge(&memcg->memsw, batch);
2399 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2400 	} else {
2401 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2402 		may_swap = false;
2403 	}
2404 
2405 	if (batch > nr_pages) {
2406 		batch = nr_pages;
2407 		goto retry;
2408 	}
2409 
2410 	/*
2411 	 * Unlike in global OOM situations, memcg is not in a physical
2412 	 * memory shortage.  Allow dying and OOM-killed tasks to
2413 	 * bypass the last charges so that they can exit quickly and
2414 	 * free their memory.
2415 	 */
2416 	if (unlikely(should_force_charge()))
2417 		goto force;
2418 
2419 	/*
2420 	 * Prevent unbounded recursion when reclaim operations need to
2421 	 * allocate memory. This might exceed the limits temporarily,
2422 	 * but we prefer facilitating memory reclaim and getting back
2423 	 * under the limit over triggering OOM kills in these cases.
2424 	 */
2425 	if (unlikely(current->flags & PF_MEMALLOC))
2426 		goto force;
2427 
2428 	if (unlikely(task_in_memcg_oom(current)))
2429 		goto nomem;
2430 
2431 	if (!gfpflags_allow_blocking(gfp_mask))
2432 		goto nomem;
2433 
2434 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2435 
2436 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2437 						    gfp_mask, may_swap);
2438 
2439 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2440 		goto retry;
2441 
2442 	if (!drained) {
2443 		drain_all_stock(mem_over_limit);
2444 		drained = true;
2445 		goto retry;
2446 	}
2447 
2448 	if (gfp_mask & __GFP_NORETRY)
2449 		goto nomem;
2450 	/*
2451 	 * Even though the limit is exceeded at this point, reclaim
2452 	 * may have been able to free some pages.  Retry the charge
2453 	 * before killing the task.
2454 	 *
2455 	 * Only for regular pages, though: huge pages are rather
2456 	 * unlikely to succeed so close to the limit, and we fall back
2457 	 * to regular pages anyway in case of failure.
2458 	 */
2459 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2460 		goto retry;
2461 	/*
2462 	 * At task move, charge accounts can be doubly counted. So, it's
2463 	 * better to wait until the end of task_move if something is going on.
2464 	 */
2465 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2466 		goto retry;
2467 
2468 	if (nr_retries--)
2469 		goto retry;
2470 
2471 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2472 		goto nomem;
2473 
2474 	if (gfp_mask & __GFP_NOFAIL)
2475 		goto force;
2476 
2477 	if (fatal_signal_pending(current))
2478 		goto force;
2479 
2480 	/*
2481 	 * keep retrying as long as the memcg oom killer is able to make
2482 	 * a forward progress or bypass the charge if the oom killer
2483 	 * couldn't make any progress.
2484 	 */
2485 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2486 		       get_order(nr_pages * PAGE_SIZE));
2487 	switch (oom_status) {
2488 	case OOM_SUCCESS:
2489 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2490 		goto retry;
2491 	case OOM_FAILED:
2492 		goto force;
2493 	default:
2494 		goto nomem;
2495 	}
2496 nomem:
2497 	if (!(gfp_mask & __GFP_NOFAIL))
2498 		return -ENOMEM;
2499 force:
2500 	/*
2501 	 * The allocation either can't fail or will lead to more memory
2502 	 * being freed very soon.  Allow memory usage go over the limit
2503 	 * temporarily by force charging it.
2504 	 */
2505 	page_counter_charge(&memcg->memory, nr_pages);
2506 	if (do_memsw_account())
2507 		page_counter_charge(&memcg->memsw, nr_pages);
2508 	css_get_many(&memcg->css, nr_pages);
2509 
2510 	return 0;
2511 
2512 done_restock:
2513 	css_get_many(&memcg->css, batch);
2514 	if (batch > nr_pages)
2515 		refill_stock(memcg, batch - nr_pages);
2516 
2517 	/*
2518 	 * If the hierarchy is above the normal consumption range, schedule
2519 	 * reclaim on returning to userland.  We can perform reclaim here
2520 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2521 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2522 	 * not recorded as it most likely matches current's and won't
2523 	 * change in the meantime.  As high limit is checked again before
2524 	 * reclaim, the cost of mismatch is negligible.
2525 	 */
2526 	do {
2527 		if (page_counter_read(&memcg->memory) > memcg->high) {
2528 			/* Don't bother a random interrupted task */
2529 			if (in_interrupt()) {
2530 				schedule_work(&memcg->high_work);
2531 				break;
2532 			}
2533 			current->memcg_nr_pages_over_high += batch;
2534 			set_notify_resume(current);
2535 			break;
2536 		}
2537 	} while ((memcg = parent_mem_cgroup(memcg)));
2538 
2539 	return 0;
2540 }
2541 
2542 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2543 {
2544 	if (mem_cgroup_is_root(memcg))
2545 		return;
2546 
2547 	page_counter_uncharge(&memcg->memory, nr_pages);
2548 	if (do_memsw_account())
2549 		page_counter_uncharge(&memcg->memsw, nr_pages);
2550 
2551 	css_put_many(&memcg->css, nr_pages);
2552 }
2553 
2554 static void lock_page_lru(struct page *page, int *isolated)
2555 {
2556 	pg_data_t *pgdat = page_pgdat(page);
2557 
2558 	spin_lock_irq(&pgdat->lru_lock);
2559 	if (PageLRU(page)) {
2560 		struct lruvec *lruvec;
2561 
2562 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2563 		ClearPageLRU(page);
2564 		del_page_from_lru_list(page, lruvec, page_lru(page));
2565 		*isolated = 1;
2566 	} else
2567 		*isolated = 0;
2568 }
2569 
2570 static void unlock_page_lru(struct page *page, int isolated)
2571 {
2572 	pg_data_t *pgdat = page_pgdat(page);
2573 
2574 	if (isolated) {
2575 		struct lruvec *lruvec;
2576 
2577 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2578 		VM_BUG_ON_PAGE(PageLRU(page), page);
2579 		SetPageLRU(page);
2580 		add_page_to_lru_list(page, lruvec, page_lru(page));
2581 	}
2582 	spin_unlock_irq(&pgdat->lru_lock);
2583 }
2584 
2585 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2586 			  bool lrucare)
2587 {
2588 	int isolated;
2589 
2590 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2591 
2592 	/*
2593 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2594 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2595 	 */
2596 	if (lrucare)
2597 		lock_page_lru(page, &isolated);
2598 
2599 	/*
2600 	 * Nobody should be changing or seriously looking at
2601 	 * page->mem_cgroup at this point:
2602 	 *
2603 	 * - the page is uncharged
2604 	 *
2605 	 * - the page is off-LRU
2606 	 *
2607 	 * - an anonymous fault has exclusive page access, except for
2608 	 *   a locked page table
2609 	 *
2610 	 * - a page cache insertion, a swapin fault, or a migration
2611 	 *   have the page locked
2612 	 */
2613 	page->mem_cgroup = memcg;
2614 
2615 	if (lrucare)
2616 		unlock_page_lru(page, isolated);
2617 }
2618 
2619 #ifdef CONFIG_MEMCG_KMEM
2620 static int memcg_alloc_cache_id(void)
2621 {
2622 	int id, size;
2623 	int err;
2624 
2625 	id = ida_simple_get(&memcg_cache_ida,
2626 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2627 	if (id < 0)
2628 		return id;
2629 
2630 	if (id < memcg_nr_cache_ids)
2631 		return id;
2632 
2633 	/*
2634 	 * There's no space for the new id in memcg_caches arrays,
2635 	 * so we have to grow them.
2636 	 */
2637 	down_write(&memcg_cache_ids_sem);
2638 
2639 	size = 2 * (id + 1);
2640 	if (size < MEMCG_CACHES_MIN_SIZE)
2641 		size = MEMCG_CACHES_MIN_SIZE;
2642 	else if (size > MEMCG_CACHES_MAX_SIZE)
2643 		size = MEMCG_CACHES_MAX_SIZE;
2644 
2645 	err = memcg_update_all_caches(size);
2646 	if (!err)
2647 		err = memcg_update_all_list_lrus(size);
2648 	if (!err)
2649 		memcg_nr_cache_ids = size;
2650 
2651 	up_write(&memcg_cache_ids_sem);
2652 
2653 	if (err) {
2654 		ida_simple_remove(&memcg_cache_ida, id);
2655 		return err;
2656 	}
2657 	return id;
2658 }
2659 
2660 static void memcg_free_cache_id(int id)
2661 {
2662 	ida_simple_remove(&memcg_cache_ida, id);
2663 }
2664 
2665 struct memcg_kmem_cache_create_work {
2666 	struct mem_cgroup *memcg;
2667 	struct kmem_cache *cachep;
2668 	struct work_struct work;
2669 };
2670 
2671 static void memcg_kmem_cache_create_func(struct work_struct *w)
2672 {
2673 	struct memcg_kmem_cache_create_work *cw =
2674 		container_of(w, struct memcg_kmem_cache_create_work, work);
2675 	struct mem_cgroup *memcg = cw->memcg;
2676 	struct kmem_cache *cachep = cw->cachep;
2677 
2678 	memcg_create_kmem_cache(memcg, cachep);
2679 
2680 	css_put(&memcg->css);
2681 	kfree(cw);
2682 }
2683 
2684 /*
2685  * Enqueue the creation of a per-memcg kmem_cache.
2686  */
2687 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2688 					       struct kmem_cache *cachep)
2689 {
2690 	struct memcg_kmem_cache_create_work *cw;
2691 
2692 	if (!css_tryget_online(&memcg->css))
2693 		return;
2694 
2695 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2696 	if (!cw)
2697 		return;
2698 
2699 	cw->memcg = memcg;
2700 	cw->cachep = cachep;
2701 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2702 
2703 	queue_work(memcg_kmem_cache_wq, &cw->work);
2704 }
2705 
2706 static inline bool memcg_kmem_bypass(void)
2707 {
2708 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2709 		return true;
2710 	return false;
2711 }
2712 
2713 /**
2714  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2715  * @cachep: the original global kmem cache
2716  *
2717  * Return the kmem_cache we're supposed to use for a slab allocation.
2718  * We try to use the current memcg's version of the cache.
2719  *
2720  * If the cache does not exist yet, if we are the first user of it, we
2721  * create it asynchronously in a workqueue and let the current allocation
2722  * go through with the original cache.
2723  *
2724  * This function takes a reference to the cache it returns to assure it
2725  * won't get destroyed while we are working with it. Once the caller is
2726  * done with it, memcg_kmem_put_cache() must be called to release the
2727  * reference.
2728  */
2729 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2730 {
2731 	struct mem_cgroup *memcg;
2732 	struct kmem_cache *memcg_cachep;
2733 	struct memcg_cache_array *arr;
2734 	int kmemcg_id;
2735 
2736 	VM_BUG_ON(!is_root_cache(cachep));
2737 
2738 	if (memcg_kmem_bypass())
2739 		return cachep;
2740 
2741 	rcu_read_lock();
2742 
2743 	if (unlikely(current->active_memcg))
2744 		memcg = current->active_memcg;
2745 	else
2746 		memcg = mem_cgroup_from_task(current);
2747 
2748 	if (!memcg || memcg == root_mem_cgroup)
2749 		goto out_unlock;
2750 
2751 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2752 	if (kmemcg_id < 0)
2753 		goto out_unlock;
2754 
2755 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2756 
2757 	/*
2758 	 * Make sure we will access the up-to-date value. The code updating
2759 	 * memcg_caches issues a write barrier to match the data dependency
2760 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2761 	 */
2762 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2763 
2764 	/*
2765 	 * If we are in a safe context (can wait, and not in interrupt
2766 	 * context), we could be be predictable and return right away.
2767 	 * This would guarantee that the allocation being performed
2768 	 * already belongs in the new cache.
2769 	 *
2770 	 * However, there are some clashes that can arrive from locking.
2771 	 * For instance, because we acquire the slab_mutex while doing
2772 	 * memcg_create_kmem_cache, this means no further allocation
2773 	 * could happen with the slab_mutex held. So it's better to
2774 	 * defer everything.
2775 	 *
2776 	 * If the memcg is dying or memcg_cache is about to be released,
2777 	 * don't bother creating new kmem_caches. Because memcg_cachep
2778 	 * is ZEROed as the fist step of kmem offlining, we don't need
2779 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2780 	 * memcg_schedule_kmem_cache_create() will prevent us from
2781 	 * creation of a new kmem_cache.
2782 	 */
2783 	if (unlikely(!memcg_cachep))
2784 		memcg_schedule_kmem_cache_create(memcg, cachep);
2785 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2786 		cachep = memcg_cachep;
2787 out_unlock:
2788 	rcu_read_unlock();
2789 	return cachep;
2790 }
2791 
2792 /**
2793  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2794  * @cachep: the cache returned by memcg_kmem_get_cache
2795  */
2796 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2797 {
2798 	if (!is_root_cache(cachep))
2799 		percpu_ref_put(&cachep->memcg_params.refcnt);
2800 }
2801 
2802 /**
2803  * __memcg_kmem_charge_memcg: charge a kmem page
2804  * @page: page to charge
2805  * @gfp: reclaim mode
2806  * @order: allocation order
2807  * @memcg: memory cgroup to charge
2808  *
2809  * Returns 0 on success, an error code on failure.
2810  */
2811 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2812 			    struct mem_cgroup *memcg)
2813 {
2814 	unsigned int nr_pages = 1 << order;
2815 	struct page_counter *counter;
2816 	int ret;
2817 
2818 	ret = try_charge(memcg, gfp, nr_pages);
2819 	if (ret)
2820 		return ret;
2821 
2822 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2823 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2824 		cancel_charge(memcg, nr_pages);
2825 		return -ENOMEM;
2826 	}
2827 	return 0;
2828 }
2829 
2830 /**
2831  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2832  * @page: page to charge
2833  * @gfp: reclaim mode
2834  * @order: allocation order
2835  *
2836  * Returns 0 on success, an error code on failure.
2837  */
2838 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2839 {
2840 	struct mem_cgroup *memcg;
2841 	int ret = 0;
2842 
2843 	if (memcg_kmem_bypass())
2844 		return 0;
2845 
2846 	memcg = get_mem_cgroup_from_current();
2847 	if (!mem_cgroup_is_root(memcg)) {
2848 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2849 		if (!ret) {
2850 			page->mem_cgroup = memcg;
2851 			__SetPageKmemcg(page);
2852 		}
2853 	}
2854 	css_put(&memcg->css);
2855 	return ret;
2856 }
2857 
2858 /**
2859  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2860  * @memcg: memcg to uncharge
2861  * @nr_pages: number of pages to uncharge
2862  */
2863 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2864 				 unsigned int nr_pages)
2865 {
2866 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2867 		page_counter_uncharge(&memcg->kmem, nr_pages);
2868 
2869 	page_counter_uncharge(&memcg->memory, nr_pages);
2870 	if (do_memsw_account())
2871 		page_counter_uncharge(&memcg->memsw, nr_pages);
2872 }
2873 /**
2874  * __memcg_kmem_uncharge: uncharge a kmem page
2875  * @page: page to uncharge
2876  * @order: allocation order
2877  */
2878 void __memcg_kmem_uncharge(struct page *page, int order)
2879 {
2880 	struct mem_cgroup *memcg = page->mem_cgroup;
2881 	unsigned int nr_pages = 1 << order;
2882 
2883 	if (!memcg)
2884 		return;
2885 
2886 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2887 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2888 	page->mem_cgroup = NULL;
2889 
2890 	/* slab pages do not have PageKmemcg flag set */
2891 	if (PageKmemcg(page))
2892 		__ClearPageKmemcg(page);
2893 
2894 	css_put_many(&memcg->css, nr_pages);
2895 }
2896 #endif /* CONFIG_MEMCG_KMEM */
2897 
2898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2899 
2900 /*
2901  * Because tail pages are not marked as "used", set it. We're under
2902  * pgdat->lru_lock and migration entries setup in all page mappings.
2903  */
2904 void mem_cgroup_split_huge_fixup(struct page *head)
2905 {
2906 	int i;
2907 
2908 	if (mem_cgroup_disabled())
2909 		return;
2910 
2911 	for (i = 1; i < HPAGE_PMD_NR; i++)
2912 		head[i].mem_cgroup = head->mem_cgroup;
2913 
2914 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2915 }
2916 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2917 
2918 #ifdef CONFIG_MEMCG_SWAP
2919 /**
2920  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2921  * @entry: swap entry to be moved
2922  * @from:  mem_cgroup which the entry is moved from
2923  * @to:  mem_cgroup which the entry is moved to
2924  *
2925  * It succeeds only when the swap_cgroup's record for this entry is the same
2926  * as the mem_cgroup's id of @from.
2927  *
2928  * Returns 0 on success, -EINVAL on failure.
2929  *
2930  * The caller must have charged to @to, IOW, called page_counter_charge() about
2931  * both res and memsw, and called css_get().
2932  */
2933 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2934 				struct mem_cgroup *from, struct mem_cgroup *to)
2935 {
2936 	unsigned short old_id, new_id;
2937 
2938 	old_id = mem_cgroup_id(from);
2939 	new_id = mem_cgroup_id(to);
2940 
2941 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2942 		mod_memcg_state(from, MEMCG_SWAP, -1);
2943 		mod_memcg_state(to, MEMCG_SWAP, 1);
2944 		return 0;
2945 	}
2946 	return -EINVAL;
2947 }
2948 #else
2949 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2950 				struct mem_cgroup *from, struct mem_cgroup *to)
2951 {
2952 	return -EINVAL;
2953 }
2954 #endif
2955 
2956 static DEFINE_MUTEX(memcg_max_mutex);
2957 
2958 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2959 				 unsigned long max, bool memsw)
2960 {
2961 	bool enlarge = false;
2962 	bool drained = false;
2963 	int ret;
2964 	bool limits_invariant;
2965 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2966 
2967 	do {
2968 		if (signal_pending(current)) {
2969 			ret = -EINTR;
2970 			break;
2971 		}
2972 
2973 		mutex_lock(&memcg_max_mutex);
2974 		/*
2975 		 * Make sure that the new limit (memsw or memory limit) doesn't
2976 		 * break our basic invariant rule memory.max <= memsw.max.
2977 		 */
2978 		limits_invariant = memsw ? max >= memcg->memory.max :
2979 					   max <= memcg->memsw.max;
2980 		if (!limits_invariant) {
2981 			mutex_unlock(&memcg_max_mutex);
2982 			ret = -EINVAL;
2983 			break;
2984 		}
2985 		if (max > counter->max)
2986 			enlarge = true;
2987 		ret = page_counter_set_max(counter, max);
2988 		mutex_unlock(&memcg_max_mutex);
2989 
2990 		if (!ret)
2991 			break;
2992 
2993 		if (!drained) {
2994 			drain_all_stock(memcg);
2995 			drained = true;
2996 			continue;
2997 		}
2998 
2999 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3000 					GFP_KERNEL, !memsw)) {
3001 			ret = -EBUSY;
3002 			break;
3003 		}
3004 	} while (true);
3005 
3006 	if (!ret && enlarge)
3007 		memcg_oom_recover(memcg);
3008 
3009 	return ret;
3010 }
3011 
3012 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3013 					    gfp_t gfp_mask,
3014 					    unsigned long *total_scanned)
3015 {
3016 	unsigned long nr_reclaimed = 0;
3017 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3018 	unsigned long reclaimed;
3019 	int loop = 0;
3020 	struct mem_cgroup_tree_per_node *mctz;
3021 	unsigned long excess;
3022 	unsigned long nr_scanned;
3023 
3024 	if (order > 0)
3025 		return 0;
3026 
3027 	mctz = soft_limit_tree_node(pgdat->node_id);
3028 
3029 	/*
3030 	 * Do not even bother to check the largest node if the root
3031 	 * is empty. Do it lockless to prevent lock bouncing. Races
3032 	 * are acceptable as soft limit is best effort anyway.
3033 	 */
3034 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3035 		return 0;
3036 
3037 	/*
3038 	 * This loop can run a while, specially if mem_cgroup's continuously
3039 	 * keep exceeding their soft limit and putting the system under
3040 	 * pressure
3041 	 */
3042 	do {
3043 		if (next_mz)
3044 			mz = next_mz;
3045 		else
3046 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3047 		if (!mz)
3048 			break;
3049 
3050 		nr_scanned = 0;
3051 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3052 						    gfp_mask, &nr_scanned);
3053 		nr_reclaimed += reclaimed;
3054 		*total_scanned += nr_scanned;
3055 		spin_lock_irq(&mctz->lock);
3056 		__mem_cgroup_remove_exceeded(mz, mctz);
3057 
3058 		/*
3059 		 * If we failed to reclaim anything from this memory cgroup
3060 		 * it is time to move on to the next cgroup
3061 		 */
3062 		next_mz = NULL;
3063 		if (!reclaimed)
3064 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3065 
3066 		excess = soft_limit_excess(mz->memcg);
3067 		/*
3068 		 * One school of thought says that we should not add
3069 		 * back the node to the tree if reclaim returns 0.
3070 		 * But our reclaim could return 0, simply because due
3071 		 * to priority we are exposing a smaller subset of
3072 		 * memory to reclaim from. Consider this as a longer
3073 		 * term TODO.
3074 		 */
3075 		/* If excess == 0, no tree ops */
3076 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3077 		spin_unlock_irq(&mctz->lock);
3078 		css_put(&mz->memcg->css);
3079 		loop++;
3080 		/*
3081 		 * Could not reclaim anything and there are no more
3082 		 * mem cgroups to try or we seem to be looping without
3083 		 * reclaiming anything.
3084 		 */
3085 		if (!nr_reclaimed &&
3086 			(next_mz == NULL ||
3087 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3088 			break;
3089 	} while (!nr_reclaimed);
3090 	if (next_mz)
3091 		css_put(&next_mz->memcg->css);
3092 	return nr_reclaimed;
3093 }
3094 
3095 /*
3096  * Test whether @memcg has children, dead or alive.  Note that this
3097  * function doesn't care whether @memcg has use_hierarchy enabled and
3098  * returns %true if there are child csses according to the cgroup
3099  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3100  */
3101 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3102 {
3103 	bool ret;
3104 
3105 	rcu_read_lock();
3106 	ret = css_next_child(NULL, &memcg->css);
3107 	rcu_read_unlock();
3108 	return ret;
3109 }
3110 
3111 /*
3112  * Reclaims as many pages from the given memcg as possible.
3113  *
3114  * Caller is responsible for holding css reference for memcg.
3115  */
3116 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3117 {
3118 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3119 
3120 	/* we call try-to-free pages for make this cgroup empty */
3121 	lru_add_drain_all();
3122 
3123 	drain_all_stock(memcg);
3124 
3125 	/* try to free all pages in this cgroup */
3126 	while (nr_retries && page_counter_read(&memcg->memory)) {
3127 		int progress;
3128 
3129 		if (signal_pending(current))
3130 			return -EINTR;
3131 
3132 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3133 							GFP_KERNEL, true);
3134 		if (!progress) {
3135 			nr_retries--;
3136 			/* maybe some writeback is necessary */
3137 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3138 		}
3139 
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3146 					    char *buf, size_t nbytes,
3147 					    loff_t off)
3148 {
3149 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3150 
3151 	if (mem_cgroup_is_root(memcg))
3152 		return -EINVAL;
3153 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3154 }
3155 
3156 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3157 				     struct cftype *cft)
3158 {
3159 	return mem_cgroup_from_css(css)->use_hierarchy;
3160 }
3161 
3162 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3163 				      struct cftype *cft, u64 val)
3164 {
3165 	int retval = 0;
3166 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3167 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3168 
3169 	if (memcg->use_hierarchy == val)
3170 		return 0;
3171 
3172 	/*
3173 	 * If parent's use_hierarchy is set, we can't make any modifications
3174 	 * in the child subtrees. If it is unset, then the change can
3175 	 * occur, provided the current cgroup has no children.
3176 	 *
3177 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3178 	 * set if there are no children.
3179 	 */
3180 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3181 				(val == 1 || val == 0)) {
3182 		if (!memcg_has_children(memcg))
3183 			memcg->use_hierarchy = val;
3184 		else
3185 			retval = -EBUSY;
3186 	} else
3187 		retval = -EINVAL;
3188 
3189 	return retval;
3190 }
3191 
3192 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3193 {
3194 	unsigned long val;
3195 
3196 	if (mem_cgroup_is_root(memcg)) {
3197 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3198 			memcg_page_state(memcg, MEMCG_RSS);
3199 		if (swap)
3200 			val += memcg_page_state(memcg, MEMCG_SWAP);
3201 	} else {
3202 		if (!swap)
3203 			val = page_counter_read(&memcg->memory);
3204 		else
3205 			val = page_counter_read(&memcg->memsw);
3206 	}
3207 	return val;
3208 }
3209 
3210 enum {
3211 	RES_USAGE,
3212 	RES_LIMIT,
3213 	RES_MAX_USAGE,
3214 	RES_FAILCNT,
3215 	RES_SOFT_LIMIT,
3216 };
3217 
3218 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3219 			       struct cftype *cft)
3220 {
3221 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3222 	struct page_counter *counter;
3223 
3224 	switch (MEMFILE_TYPE(cft->private)) {
3225 	case _MEM:
3226 		counter = &memcg->memory;
3227 		break;
3228 	case _MEMSWAP:
3229 		counter = &memcg->memsw;
3230 		break;
3231 	case _KMEM:
3232 		counter = &memcg->kmem;
3233 		break;
3234 	case _TCP:
3235 		counter = &memcg->tcpmem;
3236 		break;
3237 	default:
3238 		BUG();
3239 	}
3240 
3241 	switch (MEMFILE_ATTR(cft->private)) {
3242 	case RES_USAGE:
3243 		if (counter == &memcg->memory)
3244 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3245 		if (counter == &memcg->memsw)
3246 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3247 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3248 	case RES_LIMIT:
3249 		return (u64)counter->max * PAGE_SIZE;
3250 	case RES_MAX_USAGE:
3251 		return (u64)counter->watermark * PAGE_SIZE;
3252 	case RES_FAILCNT:
3253 		return counter->failcnt;
3254 	case RES_SOFT_LIMIT:
3255 		return (u64)memcg->soft_limit * PAGE_SIZE;
3256 	default:
3257 		BUG();
3258 	}
3259 }
3260 
3261 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3262 {
3263 	unsigned long stat[MEMCG_NR_STAT];
3264 	struct mem_cgroup *mi;
3265 	int node, cpu, i;
3266 	int min_idx, max_idx;
3267 
3268 	if (slab_only) {
3269 		min_idx = NR_SLAB_RECLAIMABLE;
3270 		max_idx = NR_SLAB_UNRECLAIMABLE;
3271 	} else {
3272 		min_idx = 0;
3273 		max_idx = MEMCG_NR_STAT;
3274 	}
3275 
3276 	for (i = min_idx; i < max_idx; i++)
3277 		stat[i] = 0;
3278 
3279 	for_each_online_cpu(cpu)
3280 		for (i = min_idx; i < max_idx; i++)
3281 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3282 
3283 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3284 		for (i = min_idx; i < max_idx; i++)
3285 			atomic_long_add(stat[i], &mi->vmstats[i]);
3286 
3287 	if (!slab_only)
3288 		max_idx = NR_VM_NODE_STAT_ITEMS;
3289 
3290 	for_each_node(node) {
3291 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3292 		struct mem_cgroup_per_node *pi;
3293 
3294 		for (i = min_idx; i < max_idx; i++)
3295 			stat[i] = 0;
3296 
3297 		for_each_online_cpu(cpu)
3298 			for (i = min_idx; i < max_idx; i++)
3299 				stat[i] += per_cpu(
3300 					pn->lruvec_stat_cpu->count[i], cpu);
3301 
3302 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3303 			for (i = min_idx; i < max_idx; i++)
3304 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3305 	}
3306 }
3307 
3308 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3309 {
3310 	unsigned long events[NR_VM_EVENT_ITEMS];
3311 	struct mem_cgroup *mi;
3312 	int cpu, i;
3313 
3314 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3315 		events[i] = 0;
3316 
3317 	for_each_online_cpu(cpu)
3318 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3319 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3320 					     cpu);
3321 
3322 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3323 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3324 			atomic_long_add(events[i], &mi->vmevents[i]);
3325 }
3326 
3327 #ifdef CONFIG_MEMCG_KMEM
3328 static int memcg_online_kmem(struct mem_cgroup *memcg)
3329 {
3330 	int memcg_id;
3331 
3332 	if (cgroup_memory_nokmem)
3333 		return 0;
3334 
3335 	BUG_ON(memcg->kmemcg_id >= 0);
3336 	BUG_ON(memcg->kmem_state);
3337 
3338 	memcg_id = memcg_alloc_cache_id();
3339 	if (memcg_id < 0)
3340 		return memcg_id;
3341 
3342 	static_branch_inc(&memcg_kmem_enabled_key);
3343 	/*
3344 	 * A memory cgroup is considered kmem-online as soon as it gets
3345 	 * kmemcg_id. Setting the id after enabling static branching will
3346 	 * guarantee no one starts accounting before all call sites are
3347 	 * patched.
3348 	 */
3349 	memcg->kmemcg_id = memcg_id;
3350 	memcg->kmem_state = KMEM_ONLINE;
3351 	INIT_LIST_HEAD(&memcg->kmem_caches);
3352 
3353 	return 0;
3354 }
3355 
3356 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3357 {
3358 	struct cgroup_subsys_state *css;
3359 	struct mem_cgroup *parent, *child;
3360 	int kmemcg_id;
3361 
3362 	if (memcg->kmem_state != KMEM_ONLINE)
3363 		return;
3364 	/*
3365 	 * Clear the online state before clearing memcg_caches array
3366 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3367 	 * guarantees that no cache will be created for this cgroup
3368 	 * after we are done (see memcg_create_kmem_cache()).
3369 	 */
3370 	memcg->kmem_state = KMEM_ALLOCATED;
3371 
3372 	parent = parent_mem_cgroup(memcg);
3373 	if (!parent)
3374 		parent = root_mem_cgroup;
3375 
3376 	/*
3377 	 * Deactivate and reparent kmem_caches. Then flush percpu
3378 	 * slab statistics to have precise values at the parent and
3379 	 * all ancestor levels. It's required to keep slab stats
3380 	 * accurate after the reparenting of kmem_caches.
3381 	 */
3382 	memcg_deactivate_kmem_caches(memcg, parent);
3383 	memcg_flush_percpu_vmstats(memcg, true);
3384 
3385 	kmemcg_id = memcg->kmemcg_id;
3386 	BUG_ON(kmemcg_id < 0);
3387 
3388 	/*
3389 	 * Change kmemcg_id of this cgroup and all its descendants to the
3390 	 * parent's id, and then move all entries from this cgroup's list_lrus
3391 	 * to ones of the parent. After we have finished, all list_lrus
3392 	 * corresponding to this cgroup are guaranteed to remain empty. The
3393 	 * ordering is imposed by list_lru_node->lock taken by
3394 	 * memcg_drain_all_list_lrus().
3395 	 */
3396 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3397 	css_for_each_descendant_pre(css, &memcg->css) {
3398 		child = mem_cgroup_from_css(css);
3399 		BUG_ON(child->kmemcg_id != kmemcg_id);
3400 		child->kmemcg_id = parent->kmemcg_id;
3401 		if (!memcg->use_hierarchy)
3402 			break;
3403 	}
3404 	rcu_read_unlock();
3405 
3406 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3407 
3408 	memcg_free_cache_id(kmemcg_id);
3409 }
3410 
3411 static void memcg_free_kmem(struct mem_cgroup *memcg)
3412 {
3413 	/* css_alloc() failed, offlining didn't happen */
3414 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3415 		memcg_offline_kmem(memcg);
3416 
3417 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3418 		WARN_ON(!list_empty(&memcg->kmem_caches));
3419 		static_branch_dec(&memcg_kmem_enabled_key);
3420 	}
3421 }
3422 #else
3423 static int memcg_online_kmem(struct mem_cgroup *memcg)
3424 {
3425 	return 0;
3426 }
3427 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3428 {
3429 }
3430 static void memcg_free_kmem(struct mem_cgroup *memcg)
3431 {
3432 }
3433 #endif /* CONFIG_MEMCG_KMEM */
3434 
3435 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3436 				 unsigned long max)
3437 {
3438 	int ret;
3439 
3440 	mutex_lock(&memcg_max_mutex);
3441 	ret = page_counter_set_max(&memcg->kmem, max);
3442 	mutex_unlock(&memcg_max_mutex);
3443 	return ret;
3444 }
3445 
3446 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3447 {
3448 	int ret;
3449 
3450 	mutex_lock(&memcg_max_mutex);
3451 
3452 	ret = page_counter_set_max(&memcg->tcpmem, max);
3453 	if (ret)
3454 		goto out;
3455 
3456 	if (!memcg->tcpmem_active) {
3457 		/*
3458 		 * The active flag needs to be written after the static_key
3459 		 * update. This is what guarantees that the socket activation
3460 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3461 		 * for details, and note that we don't mark any socket as
3462 		 * belonging to this memcg until that flag is up.
3463 		 *
3464 		 * We need to do this, because static_keys will span multiple
3465 		 * sites, but we can't control their order. If we mark a socket
3466 		 * as accounted, but the accounting functions are not patched in
3467 		 * yet, we'll lose accounting.
3468 		 *
3469 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3470 		 * because when this value change, the code to process it is not
3471 		 * patched in yet.
3472 		 */
3473 		static_branch_inc(&memcg_sockets_enabled_key);
3474 		memcg->tcpmem_active = true;
3475 	}
3476 out:
3477 	mutex_unlock(&memcg_max_mutex);
3478 	return ret;
3479 }
3480 
3481 /*
3482  * The user of this function is...
3483  * RES_LIMIT.
3484  */
3485 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3486 				char *buf, size_t nbytes, loff_t off)
3487 {
3488 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3489 	unsigned long nr_pages;
3490 	int ret;
3491 
3492 	buf = strstrip(buf);
3493 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3494 	if (ret)
3495 		return ret;
3496 
3497 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3498 	case RES_LIMIT:
3499 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3500 			ret = -EINVAL;
3501 			break;
3502 		}
3503 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3504 		case _MEM:
3505 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3506 			break;
3507 		case _MEMSWAP:
3508 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3509 			break;
3510 		case _KMEM:
3511 			ret = memcg_update_kmem_max(memcg, nr_pages);
3512 			break;
3513 		case _TCP:
3514 			ret = memcg_update_tcp_max(memcg, nr_pages);
3515 			break;
3516 		}
3517 		break;
3518 	case RES_SOFT_LIMIT:
3519 		memcg->soft_limit = nr_pages;
3520 		ret = 0;
3521 		break;
3522 	}
3523 	return ret ?: nbytes;
3524 }
3525 
3526 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3527 				size_t nbytes, loff_t off)
3528 {
3529 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3530 	struct page_counter *counter;
3531 
3532 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3533 	case _MEM:
3534 		counter = &memcg->memory;
3535 		break;
3536 	case _MEMSWAP:
3537 		counter = &memcg->memsw;
3538 		break;
3539 	case _KMEM:
3540 		counter = &memcg->kmem;
3541 		break;
3542 	case _TCP:
3543 		counter = &memcg->tcpmem;
3544 		break;
3545 	default:
3546 		BUG();
3547 	}
3548 
3549 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3550 	case RES_MAX_USAGE:
3551 		page_counter_reset_watermark(counter);
3552 		break;
3553 	case RES_FAILCNT:
3554 		counter->failcnt = 0;
3555 		break;
3556 	default:
3557 		BUG();
3558 	}
3559 
3560 	return nbytes;
3561 }
3562 
3563 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3564 					struct cftype *cft)
3565 {
3566 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3567 }
3568 
3569 #ifdef CONFIG_MMU
3570 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3571 					struct cftype *cft, u64 val)
3572 {
3573 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574 
3575 	if (val & ~MOVE_MASK)
3576 		return -EINVAL;
3577 
3578 	/*
3579 	 * No kind of locking is needed in here, because ->can_attach() will
3580 	 * check this value once in the beginning of the process, and then carry
3581 	 * on with stale data. This means that changes to this value will only
3582 	 * affect task migrations starting after the change.
3583 	 */
3584 	memcg->move_charge_at_immigrate = val;
3585 	return 0;
3586 }
3587 #else
3588 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3589 					struct cftype *cft, u64 val)
3590 {
3591 	return -ENOSYS;
3592 }
3593 #endif
3594 
3595 #ifdef CONFIG_NUMA
3596 
3597 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3598 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3599 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3600 
3601 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3602 					   int nid, unsigned int lru_mask)
3603 {
3604 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3605 	unsigned long nr = 0;
3606 	enum lru_list lru;
3607 
3608 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3609 
3610 	for_each_lru(lru) {
3611 		if (!(BIT(lru) & lru_mask))
3612 			continue;
3613 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3614 	}
3615 	return nr;
3616 }
3617 
3618 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3619 					     unsigned int lru_mask)
3620 {
3621 	unsigned long nr = 0;
3622 	enum lru_list lru;
3623 
3624 	for_each_lru(lru) {
3625 		if (!(BIT(lru) & lru_mask))
3626 			continue;
3627 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3628 	}
3629 	return nr;
3630 }
3631 
3632 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3633 {
3634 	struct numa_stat {
3635 		const char *name;
3636 		unsigned int lru_mask;
3637 	};
3638 
3639 	static const struct numa_stat stats[] = {
3640 		{ "total", LRU_ALL },
3641 		{ "file", LRU_ALL_FILE },
3642 		{ "anon", LRU_ALL_ANON },
3643 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3644 	};
3645 	const struct numa_stat *stat;
3646 	int nid;
3647 	unsigned long nr;
3648 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3649 
3650 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3651 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3652 		seq_printf(m, "%s=%lu", stat->name, nr);
3653 		for_each_node_state(nid, N_MEMORY) {
3654 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3655 							  stat->lru_mask);
3656 			seq_printf(m, " N%d=%lu", nid, nr);
3657 		}
3658 		seq_putc(m, '\n');
3659 	}
3660 
3661 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3662 		struct mem_cgroup *iter;
3663 
3664 		nr = 0;
3665 		for_each_mem_cgroup_tree(iter, memcg)
3666 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3667 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3668 		for_each_node_state(nid, N_MEMORY) {
3669 			nr = 0;
3670 			for_each_mem_cgroup_tree(iter, memcg)
3671 				nr += mem_cgroup_node_nr_lru_pages(
3672 					iter, nid, stat->lru_mask);
3673 			seq_printf(m, " N%d=%lu", nid, nr);
3674 		}
3675 		seq_putc(m, '\n');
3676 	}
3677 
3678 	return 0;
3679 }
3680 #endif /* CONFIG_NUMA */
3681 
3682 static const unsigned int memcg1_stats[] = {
3683 	MEMCG_CACHE,
3684 	MEMCG_RSS,
3685 	MEMCG_RSS_HUGE,
3686 	NR_SHMEM,
3687 	NR_FILE_MAPPED,
3688 	NR_FILE_DIRTY,
3689 	NR_WRITEBACK,
3690 	MEMCG_SWAP,
3691 };
3692 
3693 static const char *const memcg1_stat_names[] = {
3694 	"cache",
3695 	"rss",
3696 	"rss_huge",
3697 	"shmem",
3698 	"mapped_file",
3699 	"dirty",
3700 	"writeback",
3701 	"swap",
3702 };
3703 
3704 /* Universal VM events cgroup1 shows, original sort order */
3705 static const unsigned int memcg1_events[] = {
3706 	PGPGIN,
3707 	PGPGOUT,
3708 	PGFAULT,
3709 	PGMAJFAULT,
3710 };
3711 
3712 static const char *const memcg1_event_names[] = {
3713 	"pgpgin",
3714 	"pgpgout",
3715 	"pgfault",
3716 	"pgmajfault",
3717 };
3718 
3719 static int memcg_stat_show(struct seq_file *m, void *v)
3720 {
3721 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3722 	unsigned long memory, memsw;
3723 	struct mem_cgroup *mi;
3724 	unsigned int i;
3725 
3726 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3727 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3728 
3729 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3730 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3731 			continue;
3732 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3733 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3734 			   PAGE_SIZE);
3735 	}
3736 
3737 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3738 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3739 			   memcg_events_local(memcg, memcg1_events[i]));
3740 
3741 	for (i = 0; i < NR_LRU_LISTS; i++)
3742 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3743 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3744 			   PAGE_SIZE);
3745 
3746 	/* Hierarchical information */
3747 	memory = memsw = PAGE_COUNTER_MAX;
3748 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3749 		memory = min(memory, mi->memory.max);
3750 		memsw = min(memsw, mi->memsw.max);
3751 	}
3752 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3753 		   (u64)memory * PAGE_SIZE);
3754 	if (do_memsw_account())
3755 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3756 			   (u64)memsw * PAGE_SIZE);
3757 
3758 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3759 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3760 			continue;
3761 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3762 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3763 			   PAGE_SIZE);
3764 	}
3765 
3766 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3767 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3768 			   (u64)memcg_events(memcg, memcg1_events[i]));
3769 
3770 	for (i = 0; i < NR_LRU_LISTS; i++)
3771 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3772 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3773 			   PAGE_SIZE);
3774 
3775 #ifdef CONFIG_DEBUG_VM
3776 	{
3777 		pg_data_t *pgdat;
3778 		struct mem_cgroup_per_node *mz;
3779 		struct zone_reclaim_stat *rstat;
3780 		unsigned long recent_rotated[2] = {0, 0};
3781 		unsigned long recent_scanned[2] = {0, 0};
3782 
3783 		for_each_online_pgdat(pgdat) {
3784 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3785 			rstat = &mz->lruvec.reclaim_stat;
3786 
3787 			recent_rotated[0] += rstat->recent_rotated[0];
3788 			recent_rotated[1] += rstat->recent_rotated[1];
3789 			recent_scanned[0] += rstat->recent_scanned[0];
3790 			recent_scanned[1] += rstat->recent_scanned[1];
3791 		}
3792 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3793 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3794 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3795 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3796 	}
3797 #endif
3798 
3799 	return 0;
3800 }
3801 
3802 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3803 				      struct cftype *cft)
3804 {
3805 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3806 
3807 	return mem_cgroup_swappiness(memcg);
3808 }
3809 
3810 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3811 				       struct cftype *cft, u64 val)
3812 {
3813 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814 
3815 	if (val > 100)
3816 		return -EINVAL;
3817 
3818 	if (css->parent)
3819 		memcg->swappiness = val;
3820 	else
3821 		vm_swappiness = val;
3822 
3823 	return 0;
3824 }
3825 
3826 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3827 {
3828 	struct mem_cgroup_threshold_ary *t;
3829 	unsigned long usage;
3830 	int i;
3831 
3832 	rcu_read_lock();
3833 	if (!swap)
3834 		t = rcu_dereference(memcg->thresholds.primary);
3835 	else
3836 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3837 
3838 	if (!t)
3839 		goto unlock;
3840 
3841 	usage = mem_cgroup_usage(memcg, swap);
3842 
3843 	/*
3844 	 * current_threshold points to threshold just below or equal to usage.
3845 	 * If it's not true, a threshold was crossed after last
3846 	 * call of __mem_cgroup_threshold().
3847 	 */
3848 	i = t->current_threshold;
3849 
3850 	/*
3851 	 * Iterate backward over array of thresholds starting from
3852 	 * current_threshold and check if a threshold is crossed.
3853 	 * If none of thresholds below usage is crossed, we read
3854 	 * only one element of the array here.
3855 	 */
3856 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3857 		eventfd_signal(t->entries[i].eventfd, 1);
3858 
3859 	/* i = current_threshold + 1 */
3860 	i++;
3861 
3862 	/*
3863 	 * Iterate forward over array of thresholds starting from
3864 	 * current_threshold+1 and check if a threshold is crossed.
3865 	 * If none of thresholds above usage is crossed, we read
3866 	 * only one element of the array here.
3867 	 */
3868 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3869 		eventfd_signal(t->entries[i].eventfd, 1);
3870 
3871 	/* Update current_threshold */
3872 	t->current_threshold = i - 1;
3873 unlock:
3874 	rcu_read_unlock();
3875 }
3876 
3877 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3878 {
3879 	while (memcg) {
3880 		__mem_cgroup_threshold(memcg, false);
3881 		if (do_memsw_account())
3882 			__mem_cgroup_threshold(memcg, true);
3883 
3884 		memcg = parent_mem_cgroup(memcg);
3885 	}
3886 }
3887 
3888 static int compare_thresholds(const void *a, const void *b)
3889 {
3890 	const struct mem_cgroup_threshold *_a = a;
3891 	const struct mem_cgroup_threshold *_b = b;
3892 
3893 	if (_a->threshold > _b->threshold)
3894 		return 1;
3895 
3896 	if (_a->threshold < _b->threshold)
3897 		return -1;
3898 
3899 	return 0;
3900 }
3901 
3902 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3903 {
3904 	struct mem_cgroup_eventfd_list *ev;
3905 
3906 	spin_lock(&memcg_oom_lock);
3907 
3908 	list_for_each_entry(ev, &memcg->oom_notify, list)
3909 		eventfd_signal(ev->eventfd, 1);
3910 
3911 	spin_unlock(&memcg_oom_lock);
3912 	return 0;
3913 }
3914 
3915 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3916 {
3917 	struct mem_cgroup *iter;
3918 
3919 	for_each_mem_cgroup_tree(iter, memcg)
3920 		mem_cgroup_oom_notify_cb(iter);
3921 }
3922 
3923 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3924 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3925 {
3926 	struct mem_cgroup_thresholds *thresholds;
3927 	struct mem_cgroup_threshold_ary *new;
3928 	unsigned long threshold;
3929 	unsigned long usage;
3930 	int i, size, ret;
3931 
3932 	ret = page_counter_memparse(args, "-1", &threshold);
3933 	if (ret)
3934 		return ret;
3935 
3936 	mutex_lock(&memcg->thresholds_lock);
3937 
3938 	if (type == _MEM) {
3939 		thresholds = &memcg->thresholds;
3940 		usage = mem_cgroup_usage(memcg, false);
3941 	} else if (type == _MEMSWAP) {
3942 		thresholds = &memcg->memsw_thresholds;
3943 		usage = mem_cgroup_usage(memcg, true);
3944 	} else
3945 		BUG();
3946 
3947 	/* Check if a threshold crossed before adding a new one */
3948 	if (thresholds->primary)
3949 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3950 
3951 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3952 
3953 	/* Allocate memory for new array of thresholds */
3954 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3955 	if (!new) {
3956 		ret = -ENOMEM;
3957 		goto unlock;
3958 	}
3959 	new->size = size;
3960 
3961 	/* Copy thresholds (if any) to new array */
3962 	if (thresholds->primary) {
3963 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3964 				sizeof(struct mem_cgroup_threshold));
3965 	}
3966 
3967 	/* Add new threshold */
3968 	new->entries[size - 1].eventfd = eventfd;
3969 	new->entries[size - 1].threshold = threshold;
3970 
3971 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3972 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3973 			compare_thresholds, NULL);
3974 
3975 	/* Find current threshold */
3976 	new->current_threshold = -1;
3977 	for (i = 0; i < size; i++) {
3978 		if (new->entries[i].threshold <= usage) {
3979 			/*
3980 			 * new->current_threshold will not be used until
3981 			 * rcu_assign_pointer(), so it's safe to increment
3982 			 * it here.
3983 			 */
3984 			++new->current_threshold;
3985 		} else
3986 			break;
3987 	}
3988 
3989 	/* Free old spare buffer and save old primary buffer as spare */
3990 	kfree(thresholds->spare);
3991 	thresholds->spare = thresholds->primary;
3992 
3993 	rcu_assign_pointer(thresholds->primary, new);
3994 
3995 	/* To be sure that nobody uses thresholds */
3996 	synchronize_rcu();
3997 
3998 unlock:
3999 	mutex_unlock(&memcg->thresholds_lock);
4000 
4001 	return ret;
4002 }
4003 
4004 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4005 	struct eventfd_ctx *eventfd, const char *args)
4006 {
4007 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4008 }
4009 
4010 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4011 	struct eventfd_ctx *eventfd, const char *args)
4012 {
4013 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4014 }
4015 
4016 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4017 	struct eventfd_ctx *eventfd, enum res_type type)
4018 {
4019 	struct mem_cgroup_thresholds *thresholds;
4020 	struct mem_cgroup_threshold_ary *new;
4021 	unsigned long usage;
4022 	int i, j, size;
4023 
4024 	mutex_lock(&memcg->thresholds_lock);
4025 
4026 	if (type == _MEM) {
4027 		thresholds = &memcg->thresholds;
4028 		usage = mem_cgroup_usage(memcg, false);
4029 	} else if (type == _MEMSWAP) {
4030 		thresholds = &memcg->memsw_thresholds;
4031 		usage = mem_cgroup_usage(memcg, true);
4032 	} else
4033 		BUG();
4034 
4035 	if (!thresholds->primary)
4036 		goto unlock;
4037 
4038 	/* Check if a threshold crossed before removing */
4039 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4040 
4041 	/* Calculate new number of threshold */
4042 	size = 0;
4043 	for (i = 0; i < thresholds->primary->size; i++) {
4044 		if (thresholds->primary->entries[i].eventfd != eventfd)
4045 			size++;
4046 	}
4047 
4048 	new = thresholds->spare;
4049 
4050 	/* Set thresholds array to NULL if we don't have thresholds */
4051 	if (!size) {
4052 		kfree(new);
4053 		new = NULL;
4054 		goto swap_buffers;
4055 	}
4056 
4057 	new->size = size;
4058 
4059 	/* Copy thresholds and find current threshold */
4060 	new->current_threshold = -1;
4061 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4062 		if (thresholds->primary->entries[i].eventfd == eventfd)
4063 			continue;
4064 
4065 		new->entries[j] = thresholds->primary->entries[i];
4066 		if (new->entries[j].threshold <= usage) {
4067 			/*
4068 			 * new->current_threshold will not be used
4069 			 * until rcu_assign_pointer(), so it's safe to increment
4070 			 * it here.
4071 			 */
4072 			++new->current_threshold;
4073 		}
4074 		j++;
4075 	}
4076 
4077 swap_buffers:
4078 	/* Swap primary and spare array */
4079 	thresholds->spare = thresholds->primary;
4080 
4081 	rcu_assign_pointer(thresholds->primary, new);
4082 
4083 	/* To be sure that nobody uses thresholds */
4084 	synchronize_rcu();
4085 
4086 	/* If all events are unregistered, free the spare array */
4087 	if (!new) {
4088 		kfree(thresholds->spare);
4089 		thresholds->spare = NULL;
4090 	}
4091 unlock:
4092 	mutex_unlock(&memcg->thresholds_lock);
4093 }
4094 
4095 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4096 	struct eventfd_ctx *eventfd)
4097 {
4098 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4099 }
4100 
4101 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4102 	struct eventfd_ctx *eventfd)
4103 {
4104 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4105 }
4106 
4107 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4108 	struct eventfd_ctx *eventfd, const char *args)
4109 {
4110 	struct mem_cgroup_eventfd_list *event;
4111 
4112 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4113 	if (!event)
4114 		return -ENOMEM;
4115 
4116 	spin_lock(&memcg_oom_lock);
4117 
4118 	event->eventfd = eventfd;
4119 	list_add(&event->list, &memcg->oom_notify);
4120 
4121 	/* already in OOM ? */
4122 	if (memcg->under_oom)
4123 		eventfd_signal(eventfd, 1);
4124 	spin_unlock(&memcg_oom_lock);
4125 
4126 	return 0;
4127 }
4128 
4129 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4130 	struct eventfd_ctx *eventfd)
4131 {
4132 	struct mem_cgroup_eventfd_list *ev, *tmp;
4133 
4134 	spin_lock(&memcg_oom_lock);
4135 
4136 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4137 		if (ev->eventfd == eventfd) {
4138 			list_del(&ev->list);
4139 			kfree(ev);
4140 		}
4141 	}
4142 
4143 	spin_unlock(&memcg_oom_lock);
4144 }
4145 
4146 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4147 {
4148 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4149 
4150 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4151 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4152 	seq_printf(sf, "oom_kill %lu\n",
4153 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4154 	return 0;
4155 }
4156 
4157 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4158 	struct cftype *cft, u64 val)
4159 {
4160 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4161 
4162 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4163 	if (!css->parent || !((val == 0) || (val == 1)))
4164 		return -EINVAL;
4165 
4166 	memcg->oom_kill_disable = val;
4167 	if (!val)
4168 		memcg_oom_recover(memcg);
4169 
4170 	return 0;
4171 }
4172 
4173 #ifdef CONFIG_CGROUP_WRITEBACK
4174 
4175 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4176 {
4177 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4178 }
4179 
4180 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4181 {
4182 	wb_domain_exit(&memcg->cgwb_domain);
4183 }
4184 
4185 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4186 {
4187 	wb_domain_size_changed(&memcg->cgwb_domain);
4188 }
4189 
4190 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4191 {
4192 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4193 
4194 	if (!memcg->css.parent)
4195 		return NULL;
4196 
4197 	return &memcg->cgwb_domain;
4198 }
4199 
4200 /*
4201  * idx can be of type enum memcg_stat_item or node_stat_item.
4202  * Keep in sync with memcg_exact_page().
4203  */
4204 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4205 {
4206 	long x = atomic_long_read(&memcg->vmstats[idx]);
4207 	int cpu;
4208 
4209 	for_each_online_cpu(cpu)
4210 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4211 	if (x < 0)
4212 		x = 0;
4213 	return x;
4214 }
4215 
4216 /**
4217  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4218  * @wb: bdi_writeback in question
4219  * @pfilepages: out parameter for number of file pages
4220  * @pheadroom: out parameter for number of allocatable pages according to memcg
4221  * @pdirty: out parameter for number of dirty pages
4222  * @pwriteback: out parameter for number of pages under writeback
4223  *
4224  * Determine the numbers of file, headroom, dirty, and writeback pages in
4225  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4226  * is a bit more involved.
4227  *
4228  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4229  * headroom is calculated as the lowest headroom of itself and the
4230  * ancestors.  Note that this doesn't consider the actual amount of
4231  * available memory in the system.  The caller should further cap
4232  * *@pheadroom accordingly.
4233  */
4234 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4235 			 unsigned long *pheadroom, unsigned long *pdirty,
4236 			 unsigned long *pwriteback)
4237 {
4238 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4239 	struct mem_cgroup *parent;
4240 
4241 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4242 
4243 	/* this should eventually include NR_UNSTABLE_NFS */
4244 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4245 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4246 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4247 	*pheadroom = PAGE_COUNTER_MAX;
4248 
4249 	while ((parent = parent_mem_cgroup(memcg))) {
4250 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4251 		unsigned long used = page_counter_read(&memcg->memory);
4252 
4253 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4254 		memcg = parent;
4255 	}
4256 }
4257 
4258 #else	/* CONFIG_CGROUP_WRITEBACK */
4259 
4260 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4261 {
4262 	return 0;
4263 }
4264 
4265 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4266 {
4267 }
4268 
4269 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4270 {
4271 }
4272 
4273 #endif	/* CONFIG_CGROUP_WRITEBACK */
4274 
4275 /*
4276  * DO NOT USE IN NEW FILES.
4277  *
4278  * "cgroup.event_control" implementation.
4279  *
4280  * This is way over-engineered.  It tries to support fully configurable
4281  * events for each user.  Such level of flexibility is completely
4282  * unnecessary especially in the light of the planned unified hierarchy.
4283  *
4284  * Please deprecate this and replace with something simpler if at all
4285  * possible.
4286  */
4287 
4288 /*
4289  * Unregister event and free resources.
4290  *
4291  * Gets called from workqueue.
4292  */
4293 static void memcg_event_remove(struct work_struct *work)
4294 {
4295 	struct mem_cgroup_event *event =
4296 		container_of(work, struct mem_cgroup_event, remove);
4297 	struct mem_cgroup *memcg = event->memcg;
4298 
4299 	remove_wait_queue(event->wqh, &event->wait);
4300 
4301 	event->unregister_event(memcg, event->eventfd);
4302 
4303 	/* Notify userspace the event is going away. */
4304 	eventfd_signal(event->eventfd, 1);
4305 
4306 	eventfd_ctx_put(event->eventfd);
4307 	kfree(event);
4308 	css_put(&memcg->css);
4309 }
4310 
4311 /*
4312  * Gets called on EPOLLHUP on eventfd when user closes it.
4313  *
4314  * Called with wqh->lock held and interrupts disabled.
4315  */
4316 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4317 			    int sync, void *key)
4318 {
4319 	struct mem_cgroup_event *event =
4320 		container_of(wait, struct mem_cgroup_event, wait);
4321 	struct mem_cgroup *memcg = event->memcg;
4322 	__poll_t flags = key_to_poll(key);
4323 
4324 	if (flags & EPOLLHUP) {
4325 		/*
4326 		 * If the event has been detached at cgroup removal, we
4327 		 * can simply return knowing the other side will cleanup
4328 		 * for us.
4329 		 *
4330 		 * We can't race against event freeing since the other
4331 		 * side will require wqh->lock via remove_wait_queue(),
4332 		 * which we hold.
4333 		 */
4334 		spin_lock(&memcg->event_list_lock);
4335 		if (!list_empty(&event->list)) {
4336 			list_del_init(&event->list);
4337 			/*
4338 			 * We are in atomic context, but cgroup_event_remove()
4339 			 * may sleep, so we have to call it in workqueue.
4340 			 */
4341 			schedule_work(&event->remove);
4342 		}
4343 		spin_unlock(&memcg->event_list_lock);
4344 	}
4345 
4346 	return 0;
4347 }
4348 
4349 static void memcg_event_ptable_queue_proc(struct file *file,
4350 		wait_queue_head_t *wqh, poll_table *pt)
4351 {
4352 	struct mem_cgroup_event *event =
4353 		container_of(pt, struct mem_cgroup_event, pt);
4354 
4355 	event->wqh = wqh;
4356 	add_wait_queue(wqh, &event->wait);
4357 }
4358 
4359 /*
4360  * DO NOT USE IN NEW FILES.
4361  *
4362  * Parse input and register new cgroup event handler.
4363  *
4364  * Input must be in format '<event_fd> <control_fd> <args>'.
4365  * Interpretation of args is defined by control file implementation.
4366  */
4367 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4368 					 char *buf, size_t nbytes, loff_t off)
4369 {
4370 	struct cgroup_subsys_state *css = of_css(of);
4371 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4372 	struct mem_cgroup_event *event;
4373 	struct cgroup_subsys_state *cfile_css;
4374 	unsigned int efd, cfd;
4375 	struct fd efile;
4376 	struct fd cfile;
4377 	const char *name;
4378 	char *endp;
4379 	int ret;
4380 
4381 	buf = strstrip(buf);
4382 
4383 	efd = simple_strtoul(buf, &endp, 10);
4384 	if (*endp != ' ')
4385 		return -EINVAL;
4386 	buf = endp + 1;
4387 
4388 	cfd = simple_strtoul(buf, &endp, 10);
4389 	if ((*endp != ' ') && (*endp != '\0'))
4390 		return -EINVAL;
4391 	buf = endp + 1;
4392 
4393 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4394 	if (!event)
4395 		return -ENOMEM;
4396 
4397 	event->memcg = memcg;
4398 	INIT_LIST_HEAD(&event->list);
4399 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4400 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4401 	INIT_WORK(&event->remove, memcg_event_remove);
4402 
4403 	efile = fdget(efd);
4404 	if (!efile.file) {
4405 		ret = -EBADF;
4406 		goto out_kfree;
4407 	}
4408 
4409 	event->eventfd = eventfd_ctx_fileget(efile.file);
4410 	if (IS_ERR(event->eventfd)) {
4411 		ret = PTR_ERR(event->eventfd);
4412 		goto out_put_efile;
4413 	}
4414 
4415 	cfile = fdget(cfd);
4416 	if (!cfile.file) {
4417 		ret = -EBADF;
4418 		goto out_put_eventfd;
4419 	}
4420 
4421 	/* the process need read permission on control file */
4422 	/* AV: shouldn't we check that it's been opened for read instead? */
4423 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4424 	if (ret < 0)
4425 		goto out_put_cfile;
4426 
4427 	/*
4428 	 * Determine the event callbacks and set them in @event.  This used
4429 	 * to be done via struct cftype but cgroup core no longer knows
4430 	 * about these events.  The following is crude but the whole thing
4431 	 * is for compatibility anyway.
4432 	 *
4433 	 * DO NOT ADD NEW FILES.
4434 	 */
4435 	name = cfile.file->f_path.dentry->d_name.name;
4436 
4437 	if (!strcmp(name, "memory.usage_in_bytes")) {
4438 		event->register_event = mem_cgroup_usage_register_event;
4439 		event->unregister_event = mem_cgroup_usage_unregister_event;
4440 	} else if (!strcmp(name, "memory.oom_control")) {
4441 		event->register_event = mem_cgroup_oom_register_event;
4442 		event->unregister_event = mem_cgroup_oom_unregister_event;
4443 	} else if (!strcmp(name, "memory.pressure_level")) {
4444 		event->register_event = vmpressure_register_event;
4445 		event->unregister_event = vmpressure_unregister_event;
4446 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4447 		event->register_event = memsw_cgroup_usage_register_event;
4448 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4449 	} else {
4450 		ret = -EINVAL;
4451 		goto out_put_cfile;
4452 	}
4453 
4454 	/*
4455 	 * Verify @cfile should belong to @css.  Also, remaining events are
4456 	 * automatically removed on cgroup destruction but the removal is
4457 	 * asynchronous, so take an extra ref on @css.
4458 	 */
4459 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4460 					       &memory_cgrp_subsys);
4461 	ret = -EINVAL;
4462 	if (IS_ERR(cfile_css))
4463 		goto out_put_cfile;
4464 	if (cfile_css != css) {
4465 		css_put(cfile_css);
4466 		goto out_put_cfile;
4467 	}
4468 
4469 	ret = event->register_event(memcg, event->eventfd, buf);
4470 	if (ret)
4471 		goto out_put_css;
4472 
4473 	vfs_poll(efile.file, &event->pt);
4474 
4475 	spin_lock(&memcg->event_list_lock);
4476 	list_add(&event->list, &memcg->event_list);
4477 	spin_unlock(&memcg->event_list_lock);
4478 
4479 	fdput(cfile);
4480 	fdput(efile);
4481 
4482 	return nbytes;
4483 
4484 out_put_css:
4485 	css_put(css);
4486 out_put_cfile:
4487 	fdput(cfile);
4488 out_put_eventfd:
4489 	eventfd_ctx_put(event->eventfd);
4490 out_put_efile:
4491 	fdput(efile);
4492 out_kfree:
4493 	kfree(event);
4494 
4495 	return ret;
4496 }
4497 
4498 static struct cftype mem_cgroup_legacy_files[] = {
4499 	{
4500 		.name = "usage_in_bytes",
4501 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4502 		.read_u64 = mem_cgroup_read_u64,
4503 	},
4504 	{
4505 		.name = "max_usage_in_bytes",
4506 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4507 		.write = mem_cgroup_reset,
4508 		.read_u64 = mem_cgroup_read_u64,
4509 	},
4510 	{
4511 		.name = "limit_in_bytes",
4512 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4513 		.write = mem_cgroup_write,
4514 		.read_u64 = mem_cgroup_read_u64,
4515 	},
4516 	{
4517 		.name = "soft_limit_in_bytes",
4518 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4519 		.write = mem_cgroup_write,
4520 		.read_u64 = mem_cgroup_read_u64,
4521 	},
4522 	{
4523 		.name = "failcnt",
4524 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4525 		.write = mem_cgroup_reset,
4526 		.read_u64 = mem_cgroup_read_u64,
4527 	},
4528 	{
4529 		.name = "stat",
4530 		.seq_show = memcg_stat_show,
4531 	},
4532 	{
4533 		.name = "force_empty",
4534 		.write = mem_cgroup_force_empty_write,
4535 	},
4536 	{
4537 		.name = "use_hierarchy",
4538 		.write_u64 = mem_cgroup_hierarchy_write,
4539 		.read_u64 = mem_cgroup_hierarchy_read,
4540 	},
4541 	{
4542 		.name = "cgroup.event_control",		/* XXX: for compat */
4543 		.write = memcg_write_event_control,
4544 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4545 	},
4546 	{
4547 		.name = "swappiness",
4548 		.read_u64 = mem_cgroup_swappiness_read,
4549 		.write_u64 = mem_cgroup_swappiness_write,
4550 	},
4551 	{
4552 		.name = "move_charge_at_immigrate",
4553 		.read_u64 = mem_cgroup_move_charge_read,
4554 		.write_u64 = mem_cgroup_move_charge_write,
4555 	},
4556 	{
4557 		.name = "oom_control",
4558 		.seq_show = mem_cgroup_oom_control_read,
4559 		.write_u64 = mem_cgroup_oom_control_write,
4560 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4561 	},
4562 	{
4563 		.name = "pressure_level",
4564 	},
4565 #ifdef CONFIG_NUMA
4566 	{
4567 		.name = "numa_stat",
4568 		.seq_show = memcg_numa_stat_show,
4569 	},
4570 #endif
4571 	{
4572 		.name = "kmem.limit_in_bytes",
4573 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4574 		.write = mem_cgroup_write,
4575 		.read_u64 = mem_cgroup_read_u64,
4576 	},
4577 	{
4578 		.name = "kmem.usage_in_bytes",
4579 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4580 		.read_u64 = mem_cgroup_read_u64,
4581 	},
4582 	{
4583 		.name = "kmem.failcnt",
4584 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4585 		.write = mem_cgroup_reset,
4586 		.read_u64 = mem_cgroup_read_u64,
4587 	},
4588 	{
4589 		.name = "kmem.max_usage_in_bytes",
4590 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4591 		.write = mem_cgroup_reset,
4592 		.read_u64 = mem_cgroup_read_u64,
4593 	},
4594 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4595 	{
4596 		.name = "kmem.slabinfo",
4597 		.seq_start = memcg_slab_start,
4598 		.seq_next = memcg_slab_next,
4599 		.seq_stop = memcg_slab_stop,
4600 		.seq_show = memcg_slab_show,
4601 	},
4602 #endif
4603 	{
4604 		.name = "kmem.tcp.limit_in_bytes",
4605 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4606 		.write = mem_cgroup_write,
4607 		.read_u64 = mem_cgroup_read_u64,
4608 	},
4609 	{
4610 		.name = "kmem.tcp.usage_in_bytes",
4611 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4612 		.read_u64 = mem_cgroup_read_u64,
4613 	},
4614 	{
4615 		.name = "kmem.tcp.failcnt",
4616 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4617 		.write = mem_cgroup_reset,
4618 		.read_u64 = mem_cgroup_read_u64,
4619 	},
4620 	{
4621 		.name = "kmem.tcp.max_usage_in_bytes",
4622 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4623 		.write = mem_cgroup_reset,
4624 		.read_u64 = mem_cgroup_read_u64,
4625 	},
4626 	{ },	/* terminate */
4627 };
4628 
4629 /*
4630  * Private memory cgroup IDR
4631  *
4632  * Swap-out records and page cache shadow entries need to store memcg
4633  * references in constrained space, so we maintain an ID space that is
4634  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4635  * memory-controlled cgroups to 64k.
4636  *
4637  * However, there usually are many references to the oflline CSS after
4638  * the cgroup has been destroyed, such as page cache or reclaimable
4639  * slab objects, that don't need to hang on to the ID. We want to keep
4640  * those dead CSS from occupying IDs, or we might quickly exhaust the
4641  * relatively small ID space and prevent the creation of new cgroups
4642  * even when there are much fewer than 64k cgroups - possibly none.
4643  *
4644  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4645  * be freed and recycled when it's no longer needed, which is usually
4646  * when the CSS is offlined.
4647  *
4648  * The only exception to that are records of swapped out tmpfs/shmem
4649  * pages that need to be attributed to live ancestors on swapin. But
4650  * those references are manageable from userspace.
4651  */
4652 
4653 static DEFINE_IDR(mem_cgroup_idr);
4654 
4655 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4656 {
4657 	if (memcg->id.id > 0) {
4658 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4659 		memcg->id.id = 0;
4660 	}
4661 }
4662 
4663 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4664 {
4665 	refcount_add(n, &memcg->id.ref);
4666 }
4667 
4668 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4669 {
4670 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4671 		mem_cgroup_id_remove(memcg);
4672 
4673 		/* Memcg ID pins CSS */
4674 		css_put(&memcg->css);
4675 	}
4676 }
4677 
4678 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4679 {
4680 	mem_cgroup_id_get_many(memcg, 1);
4681 }
4682 
4683 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4684 {
4685 	mem_cgroup_id_put_many(memcg, 1);
4686 }
4687 
4688 /**
4689  * mem_cgroup_from_id - look up a memcg from a memcg id
4690  * @id: the memcg id to look up
4691  *
4692  * Caller must hold rcu_read_lock().
4693  */
4694 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4695 {
4696 	WARN_ON_ONCE(!rcu_read_lock_held());
4697 	return idr_find(&mem_cgroup_idr, id);
4698 }
4699 
4700 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4701 {
4702 	struct mem_cgroup_per_node *pn;
4703 	int tmp = node;
4704 	/*
4705 	 * This routine is called against possible nodes.
4706 	 * But it's BUG to call kmalloc() against offline node.
4707 	 *
4708 	 * TODO: this routine can waste much memory for nodes which will
4709 	 *       never be onlined. It's better to use memory hotplug callback
4710 	 *       function.
4711 	 */
4712 	if (!node_state(node, N_NORMAL_MEMORY))
4713 		tmp = -1;
4714 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4715 	if (!pn)
4716 		return 1;
4717 
4718 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4719 	if (!pn->lruvec_stat_local) {
4720 		kfree(pn);
4721 		return 1;
4722 	}
4723 
4724 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4725 	if (!pn->lruvec_stat_cpu) {
4726 		free_percpu(pn->lruvec_stat_local);
4727 		kfree(pn);
4728 		return 1;
4729 	}
4730 
4731 	lruvec_init(&pn->lruvec);
4732 	pn->usage_in_excess = 0;
4733 	pn->on_tree = false;
4734 	pn->memcg = memcg;
4735 
4736 	memcg->nodeinfo[node] = pn;
4737 	return 0;
4738 }
4739 
4740 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4741 {
4742 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4743 
4744 	if (!pn)
4745 		return;
4746 
4747 	free_percpu(pn->lruvec_stat_cpu);
4748 	free_percpu(pn->lruvec_stat_local);
4749 	kfree(pn);
4750 }
4751 
4752 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4753 {
4754 	int node;
4755 
4756 	/*
4757 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4758 	 * on parent's and all ancestor levels.
4759 	 */
4760 	memcg_flush_percpu_vmstats(memcg, false);
4761 	memcg_flush_percpu_vmevents(memcg);
4762 	for_each_node(node)
4763 		free_mem_cgroup_per_node_info(memcg, node);
4764 	free_percpu(memcg->vmstats_percpu);
4765 	free_percpu(memcg->vmstats_local);
4766 	kfree(memcg);
4767 }
4768 
4769 static void mem_cgroup_free(struct mem_cgroup *memcg)
4770 {
4771 	memcg_wb_domain_exit(memcg);
4772 	__mem_cgroup_free(memcg);
4773 }
4774 
4775 static struct mem_cgroup *mem_cgroup_alloc(void)
4776 {
4777 	struct mem_cgroup *memcg;
4778 	unsigned int size;
4779 	int node;
4780 
4781 	size = sizeof(struct mem_cgroup);
4782 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4783 
4784 	memcg = kzalloc(size, GFP_KERNEL);
4785 	if (!memcg)
4786 		return NULL;
4787 
4788 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4789 				 1, MEM_CGROUP_ID_MAX,
4790 				 GFP_KERNEL);
4791 	if (memcg->id.id < 0)
4792 		goto fail;
4793 
4794 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4795 	if (!memcg->vmstats_local)
4796 		goto fail;
4797 
4798 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4799 	if (!memcg->vmstats_percpu)
4800 		goto fail;
4801 
4802 	for_each_node(node)
4803 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4804 			goto fail;
4805 
4806 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4807 		goto fail;
4808 
4809 	INIT_WORK(&memcg->high_work, high_work_func);
4810 	memcg->last_scanned_node = MAX_NUMNODES;
4811 	INIT_LIST_HEAD(&memcg->oom_notify);
4812 	mutex_init(&memcg->thresholds_lock);
4813 	spin_lock_init(&memcg->move_lock);
4814 	vmpressure_init(&memcg->vmpressure);
4815 	INIT_LIST_HEAD(&memcg->event_list);
4816 	spin_lock_init(&memcg->event_list_lock);
4817 	memcg->socket_pressure = jiffies;
4818 #ifdef CONFIG_MEMCG_KMEM
4819 	memcg->kmemcg_id = -1;
4820 #endif
4821 #ifdef CONFIG_CGROUP_WRITEBACK
4822 	INIT_LIST_HEAD(&memcg->cgwb_list);
4823 #endif
4824 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4825 	return memcg;
4826 fail:
4827 	mem_cgroup_id_remove(memcg);
4828 	__mem_cgroup_free(memcg);
4829 	return NULL;
4830 }
4831 
4832 static struct cgroup_subsys_state * __ref
4833 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4834 {
4835 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4836 	struct mem_cgroup *memcg;
4837 	long error = -ENOMEM;
4838 
4839 	memcg = mem_cgroup_alloc();
4840 	if (!memcg)
4841 		return ERR_PTR(error);
4842 
4843 	memcg->high = PAGE_COUNTER_MAX;
4844 	memcg->soft_limit = PAGE_COUNTER_MAX;
4845 	if (parent) {
4846 		memcg->swappiness = mem_cgroup_swappiness(parent);
4847 		memcg->oom_kill_disable = parent->oom_kill_disable;
4848 	}
4849 	if (parent && parent->use_hierarchy) {
4850 		memcg->use_hierarchy = true;
4851 		page_counter_init(&memcg->memory, &parent->memory);
4852 		page_counter_init(&memcg->swap, &parent->swap);
4853 		page_counter_init(&memcg->memsw, &parent->memsw);
4854 		page_counter_init(&memcg->kmem, &parent->kmem);
4855 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4856 	} else {
4857 		page_counter_init(&memcg->memory, NULL);
4858 		page_counter_init(&memcg->swap, NULL);
4859 		page_counter_init(&memcg->memsw, NULL);
4860 		page_counter_init(&memcg->kmem, NULL);
4861 		page_counter_init(&memcg->tcpmem, NULL);
4862 		/*
4863 		 * Deeper hierachy with use_hierarchy == false doesn't make
4864 		 * much sense so let cgroup subsystem know about this
4865 		 * unfortunate state in our controller.
4866 		 */
4867 		if (parent != root_mem_cgroup)
4868 			memory_cgrp_subsys.broken_hierarchy = true;
4869 	}
4870 
4871 	/* The following stuff does not apply to the root */
4872 	if (!parent) {
4873 #ifdef CONFIG_MEMCG_KMEM
4874 		INIT_LIST_HEAD(&memcg->kmem_caches);
4875 #endif
4876 		root_mem_cgroup = memcg;
4877 		return &memcg->css;
4878 	}
4879 
4880 	error = memcg_online_kmem(memcg);
4881 	if (error)
4882 		goto fail;
4883 
4884 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4885 		static_branch_inc(&memcg_sockets_enabled_key);
4886 
4887 	return &memcg->css;
4888 fail:
4889 	mem_cgroup_id_remove(memcg);
4890 	mem_cgroup_free(memcg);
4891 	return ERR_PTR(-ENOMEM);
4892 }
4893 
4894 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4895 {
4896 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897 
4898 	/*
4899 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4900 	 * by the time the maps are allocated. So, we allocate maps
4901 	 * here, when for_each_mem_cgroup() can't skip it.
4902 	 */
4903 	if (memcg_alloc_shrinker_maps(memcg)) {
4904 		mem_cgroup_id_remove(memcg);
4905 		return -ENOMEM;
4906 	}
4907 
4908 	/* Online state pins memcg ID, memcg ID pins CSS */
4909 	refcount_set(&memcg->id.ref, 1);
4910 	css_get(css);
4911 	return 0;
4912 }
4913 
4914 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4915 {
4916 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4917 	struct mem_cgroup_event *event, *tmp;
4918 
4919 	/*
4920 	 * Unregister events and notify userspace.
4921 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4922 	 * directory to avoid race between userspace and kernelspace.
4923 	 */
4924 	spin_lock(&memcg->event_list_lock);
4925 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4926 		list_del_init(&event->list);
4927 		schedule_work(&event->remove);
4928 	}
4929 	spin_unlock(&memcg->event_list_lock);
4930 
4931 	page_counter_set_min(&memcg->memory, 0);
4932 	page_counter_set_low(&memcg->memory, 0);
4933 
4934 	memcg_offline_kmem(memcg);
4935 	wb_memcg_offline(memcg);
4936 
4937 	drain_all_stock(memcg);
4938 
4939 	mem_cgroup_id_put(memcg);
4940 }
4941 
4942 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4943 {
4944 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4945 
4946 	invalidate_reclaim_iterators(memcg);
4947 }
4948 
4949 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4950 {
4951 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4952 
4953 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4954 		static_branch_dec(&memcg_sockets_enabled_key);
4955 
4956 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4957 		static_branch_dec(&memcg_sockets_enabled_key);
4958 
4959 	vmpressure_cleanup(&memcg->vmpressure);
4960 	cancel_work_sync(&memcg->high_work);
4961 	mem_cgroup_remove_from_trees(memcg);
4962 	memcg_free_shrinker_maps(memcg);
4963 	memcg_free_kmem(memcg);
4964 	mem_cgroup_free(memcg);
4965 }
4966 
4967 /**
4968  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4969  * @css: the target css
4970  *
4971  * Reset the states of the mem_cgroup associated with @css.  This is
4972  * invoked when the userland requests disabling on the default hierarchy
4973  * but the memcg is pinned through dependency.  The memcg should stop
4974  * applying policies and should revert to the vanilla state as it may be
4975  * made visible again.
4976  *
4977  * The current implementation only resets the essential configurations.
4978  * This needs to be expanded to cover all the visible parts.
4979  */
4980 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4981 {
4982 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4983 
4984 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4985 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4986 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4987 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4988 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4989 	page_counter_set_min(&memcg->memory, 0);
4990 	page_counter_set_low(&memcg->memory, 0);
4991 	memcg->high = PAGE_COUNTER_MAX;
4992 	memcg->soft_limit = PAGE_COUNTER_MAX;
4993 	memcg_wb_domain_size_changed(memcg);
4994 }
4995 
4996 #ifdef CONFIG_MMU
4997 /* Handlers for move charge at task migration. */
4998 static int mem_cgroup_do_precharge(unsigned long count)
4999 {
5000 	int ret;
5001 
5002 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5003 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5004 	if (!ret) {
5005 		mc.precharge += count;
5006 		return ret;
5007 	}
5008 
5009 	/* Try charges one by one with reclaim, but do not retry */
5010 	while (count--) {
5011 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5012 		if (ret)
5013 			return ret;
5014 		mc.precharge++;
5015 		cond_resched();
5016 	}
5017 	return 0;
5018 }
5019 
5020 union mc_target {
5021 	struct page	*page;
5022 	swp_entry_t	ent;
5023 };
5024 
5025 enum mc_target_type {
5026 	MC_TARGET_NONE = 0,
5027 	MC_TARGET_PAGE,
5028 	MC_TARGET_SWAP,
5029 	MC_TARGET_DEVICE,
5030 };
5031 
5032 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5033 						unsigned long addr, pte_t ptent)
5034 {
5035 	struct page *page = vm_normal_page(vma, addr, ptent);
5036 
5037 	if (!page || !page_mapped(page))
5038 		return NULL;
5039 	if (PageAnon(page)) {
5040 		if (!(mc.flags & MOVE_ANON))
5041 			return NULL;
5042 	} else {
5043 		if (!(mc.flags & MOVE_FILE))
5044 			return NULL;
5045 	}
5046 	if (!get_page_unless_zero(page))
5047 		return NULL;
5048 
5049 	return page;
5050 }
5051 
5052 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5053 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5054 			pte_t ptent, swp_entry_t *entry)
5055 {
5056 	struct page *page = NULL;
5057 	swp_entry_t ent = pte_to_swp_entry(ptent);
5058 
5059 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5060 		return NULL;
5061 
5062 	/*
5063 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5064 	 * a device and because they are not accessible by CPU they are store
5065 	 * as special swap entry in the CPU page table.
5066 	 */
5067 	if (is_device_private_entry(ent)) {
5068 		page = device_private_entry_to_page(ent);
5069 		/*
5070 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5071 		 * a refcount of 1 when free (unlike normal page)
5072 		 */
5073 		if (!page_ref_add_unless(page, 1, 1))
5074 			return NULL;
5075 		return page;
5076 	}
5077 
5078 	/*
5079 	 * Because lookup_swap_cache() updates some statistics counter,
5080 	 * we call find_get_page() with swapper_space directly.
5081 	 */
5082 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5083 	if (do_memsw_account())
5084 		entry->val = ent.val;
5085 
5086 	return page;
5087 }
5088 #else
5089 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5090 			pte_t ptent, swp_entry_t *entry)
5091 {
5092 	return NULL;
5093 }
5094 #endif
5095 
5096 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5097 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5098 {
5099 	struct page *page = NULL;
5100 	struct address_space *mapping;
5101 	pgoff_t pgoff;
5102 
5103 	if (!vma->vm_file) /* anonymous vma */
5104 		return NULL;
5105 	if (!(mc.flags & MOVE_FILE))
5106 		return NULL;
5107 
5108 	mapping = vma->vm_file->f_mapping;
5109 	pgoff = linear_page_index(vma, addr);
5110 
5111 	/* page is moved even if it's not RSS of this task(page-faulted). */
5112 #ifdef CONFIG_SWAP
5113 	/* shmem/tmpfs may report page out on swap: account for that too. */
5114 	if (shmem_mapping(mapping)) {
5115 		page = find_get_entry(mapping, pgoff);
5116 		if (xa_is_value(page)) {
5117 			swp_entry_t swp = radix_to_swp_entry(page);
5118 			if (do_memsw_account())
5119 				*entry = swp;
5120 			page = find_get_page(swap_address_space(swp),
5121 					     swp_offset(swp));
5122 		}
5123 	} else
5124 		page = find_get_page(mapping, pgoff);
5125 #else
5126 	page = find_get_page(mapping, pgoff);
5127 #endif
5128 	return page;
5129 }
5130 
5131 /**
5132  * mem_cgroup_move_account - move account of the page
5133  * @page: the page
5134  * @compound: charge the page as compound or small page
5135  * @from: mem_cgroup which the page is moved from.
5136  * @to:	mem_cgroup which the page is moved to. @from != @to.
5137  *
5138  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5139  *
5140  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5141  * from old cgroup.
5142  */
5143 static int mem_cgroup_move_account(struct page *page,
5144 				   bool compound,
5145 				   struct mem_cgroup *from,
5146 				   struct mem_cgroup *to)
5147 {
5148 	unsigned long flags;
5149 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5150 	int ret;
5151 	bool anon;
5152 
5153 	VM_BUG_ON(from == to);
5154 	VM_BUG_ON_PAGE(PageLRU(page), page);
5155 	VM_BUG_ON(compound && !PageTransHuge(page));
5156 
5157 	/*
5158 	 * Prevent mem_cgroup_migrate() from looking at
5159 	 * page->mem_cgroup of its source page while we change it.
5160 	 */
5161 	ret = -EBUSY;
5162 	if (!trylock_page(page))
5163 		goto out;
5164 
5165 	ret = -EINVAL;
5166 	if (page->mem_cgroup != from)
5167 		goto out_unlock;
5168 
5169 	anon = PageAnon(page);
5170 
5171 	spin_lock_irqsave(&from->move_lock, flags);
5172 
5173 	if (!anon && page_mapped(page)) {
5174 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5175 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5176 	}
5177 
5178 	/*
5179 	 * move_lock grabbed above and caller set from->moving_account, so
5180 	 * mod_memcg_page_state will serialize updates to PageDirty.
5181 	 * So mapping should be stable for dirty pages.
5182 	 */
5183 	if (!anon && PageDirty(page)) {
5184 		struct address_space *mapping = page_mapping(page);
5185 
5186 		if (mapping_cap_account_dirty(mapping)) {
5187 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5188 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5189 		}
5190 	}
5191 
5192 	if (PageWriteback(page)) {
5193 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5194 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5195 	}
5196 
5197 	/*
5198 	 * It is safe to change page->mem_cgroup here because the page
5199 	 * is referenced, charged, and isolated - we can't race with
5200 	 * uncharging, charging, migration, or LRU putback.
5201 	 */
5202 
5203 	/* caller should have done css_get */
5204 	page->mem_cgroup = to;
5205 	spin_unlock_irqrestore(&from->move_lock, flags);
5206 
5207 	ret = 0;
5208 
5209 	local_irq_disable();
5210 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5211 	memcg_check_events(to, page);
5212 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5213 	memcg_check_events(from, page);
5214 	local_irq_enable();
5215 out_unlock:
5216 	unlock_page(page);
5217 out:
5218 	return ret;
5219 }
5220 
5221 /**
5222  * get_mctgt_type - get target type of moving charge
5223  * @vma: the vma the pte to be checked belongs
5224  * @addr: the address corresponding to the pte to be checked
5225  * @ptent: the pte to be checked
5226  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5227  *
5228  * Returns
5229  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5230  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5231  *     move charge. if @target is not NULL, the page is stored in target->page
5232  *     with extra refcnt got(Callers should handle it).
5233  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5234  *     target for charge migration. if @target is not NULL, the entry is stored
5235  *     in target->ent.
5236  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5237  *     (so ZONE_DEVICE page and thus not on the lru).
5238  *     For now we such page is charge like a regular page would be as for all
5239  *     intent and purposes it is just special memory taking the place of a
5240  *     regular page.
5241  *
5242  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5243  *
5244  * Called with pte lock held.
5245  */
5246 
5247 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5248 		unsigned long addr, pte_t ptent, union mc_target *target)
5249 {
5250 	struct page *page = NULL;
5251 	enum mc_target_type ret = MC_TARGET_NONE;
5252 	swp_entry_t ent = { .val = 0 };
5253 
5254 	if (pte_present(ptent))
5255 		page = mc_handle_present_pte(vma, addr, ptent);
5256 	else if (is_swap_pte(ptent))
5257 		page = mc_handle_swap_pte(vma, ptent, &ent);
5258 	else if (pte_none(ptent))
5259 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5260 
5261 	if (!page && !ent.val)
5262 		return ret;
5263 	if (page) {
5264 		/*
5265 		 * Do only loose check w/o serialization.
5266 		 * mem_cgroup_move_account() checks the page is valid or
5267 		 * not under LRU exclusion.
5268 		 */
5269 		if (page->mem_cgroup == mc.from) {
5270 			ret = MC_TARGET_PAGE;
5271 			if (is_device_private_page(page))
5272 				ret = MC_TARGET_DEVICE;
5273 			if (target)
5274 				target->page = page;
5275 		}
5276 		if (!ret || !target)
5277 			put_page(page);
5278 	}
5279 	/*
5280 	 * There is a swap entry and a page doesn't exist or isn't charged.
5281 	 * But we cannot move a tail-page in a THP.
5282 	 */
5283 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5284 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5285 		ret = MC_TARGET_SWAP;
5286 		if (target)
5287 			target->ent = ent;
5288 	}
5289 	return ret;
5290 }
5291 
5292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5293 /*
5294  * We don't consider PMD mapped swapping or file mapped pages because THP does
5295  * not support them for now.
5296  * Caller should make sure that pmd_trans_huge(pmd) is true.
5297  */
5298 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5299 		unsigned long addr, pmd_t pmd, union mc_target *target)
5300 {
5301 	struct page *page = NULL;
5302 	enum mc_target_type ret = MC_TARGET_NONE;
5303 
5304 	if (unlikely(is_swap_pmd(pmd))) {
5305 		VM_BUG_ON(thp_migration_supported() &&
5306 				  !is_pmd_migration_entry(pmd));
5307 		return ret;
5308 	}
5309 	page = pmd_page(pmd);
5310 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5311 	if (!(mc.flags & MOVE_ANON))
5312 		return ret;
5313 	if (page->mem_cgroup == mc.from) {
5314 		ret = MC_TARGET_PAGE;
5315 		if (target) {
5316 			get_page(page);
5317 			target->page = page;
5318 		}
5319 	}
5320 	return ret;
5321 }
5322 #else
5323 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5324 		unsigned long addr, pmd_t pmd, union mc_target *target)
5325 {
5326 	return MC_TARGET_NONE;
5327 }
5328 #endif
5329 
5330 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5331 					unsigned long addr, unsigned long end,
5332 					struct mm_walk *walk)
5333 {
5334 	struct vm_area_struct *vma = walk->vma;
5335 	pte_t *pte;
5336 	spinlock_t *ptl;
5337 
5338 	ptl = pmd_trans_huge_lock(pmd, vma);
5339 	if (ptl) {
5340 		/*
5341 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5342 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5343 		 * this might change.
5344 		 */
5345 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5346 			mc.precharge += HPAGE_PMD_NR;
5347 		spin_unlock(ptl);
5348 		return 0;
5349 	}
5350 
5351 	if (pmd_trans_unstable(pmd))
5352 		return 0;
5353 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5354 	for (; addr != end; pte++, addr += PAGE_SIZE)
5355 		if (get_mctgt_type(vma, addr, *pte, NULL))
5356 			mc.precharge++;	/* increment precharge temporarily */
5357 	pte_unmap_unlock(pte - 1, ptl);
5358 	cond_resched();
5359 
5360 	return 0;
5361 }
5362 
5363 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5364 {
5365 	unsigned long precharge;
5366 
5367 	struct mm_walk mem_cgroup_count_precharge_walk = {
5368 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5369 		.mm = mm,
5370 	};
5371 	down_read(&mm->mmap_sem);
5372 	walk_page_range(0, mm->highest_vm_end,
5373 			&mem_cgroup_count_precharge_walk);
5374 	up_read(&mm->mmap_sem);
5375 
5376 	precharge = mc.precharge;
5377 	mc.precharge = 0;
5378 
5379 	return precharge;
5380 }
5381 
5382 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5383 {
5384 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5385 
5386 	VM_BUG_ON(mc.moving_task);
5387 	mc.moving_task = current;
5388 	return mem_cgroup_do_precharge(precharge);
5389 }
5390 
5391 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5392 static void __mem_cgroup_clear_mc(void)
5393 {
5394 	struct mem_cgroup *from = mc.from;
5395 	struct mem_cgroup *to = mc.to;
5396 
5397 	/* we must uncharge all the leftover precharges from mc.to */
5398 	if (mc.precharge) {
5399 		cancel_charge(mc.to, mc.precharge);
5400 		mc.precharge = 0;
5401 	}
5402 	/*
5403 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5404 	 * we must uncharge here.
5405 	 */
5406 	if (mc.moved_charge) {
5407 		cancel_charge(mc.from, mc.moved_charge);
5408 		mc.moved_charge = 0;
5409 	}
5410 	/* we must fixup refcnts and charges */
5411 	if (mc.moved_swap) {
5412 		/* uncharge swap account from the old cgroup */
5413 		if (!mem_cgroup_is_root(mc.from))
5414 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5415 
5416 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5417 
5418 		/*
5419 		 * we charged both to->memory and to->memsw, so we
5420 		 * should uncharge to->memory.
5421 		 */
5422 		if (!mem_cgroup_is_root(mc.to))
5423 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5424 
5425 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5426 		css_put_many(&mc.to->css, mc.moved_swap);
5427 
5428 		mc.moved_swap = 0;
5429 	}
5430 	memcg_oom_recover(from);
5431 	memcg_oom_recover(to);
5432 	wake_up_all(&mc.waitq);
5433 }
5434 
5435 static void mem_cgroup_clear_mc(void)
5436 {
5437 	struct mm_struct *mm = mc.mm;
5438 
5439 	/*
5440 	 * we must clear moving_task before waking up waiters at the end of
5441 	 * task migration.
5442 	 */
5443 	mc.moving_task = NULL;
5444 	__mem_cgroup_clear_mc();
5445 	spin_lock(&mc.lock);
5446 	mc.from = NULL;
5447 	mc.to = NULL;
5448 	mc.mm = NULL;
5449 	spin_unlock(&mc.lock);
5450 
5451 	mmput(mm);
5452 }
5453 
5454 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5455 {
5456 	struct cgroup_subsys_state *css;
5457 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5458 	struct mem_cgroup *from;
5459 	struct task_struct *leader, *p;
5460 	struct mm_struct *mm;
5461 	unsigned long move_flags;
5462 	int ret = 0;
5463 
5464 	/* charge immigration isn't supported on the default hierarchy */
5465 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5466 		return 0;
5467 
5468 	/*
5469 	 * Multi-process migrations only happen on the default hierarchy
5470 	 * where charge immigration is not used.  Perform charge
5471 	 * immigration if @tset contains a leader and whine if there are
5472 	 * multiple.
5473 	 */
5474 	p = NULL;
5475 	cgroup_taskset_for_each_leader(leader, css, tset) {
5476 		WARN_ON_ONCE(p);
5477 		p = leader;
5478 		memcg = mem_cgroup_from_css(css);
5479 	}
5480 	if (!p)
5481 		return 0;
5482 
5483 	/*
5484 	 * We are now commited to this value whatever it is. Changes in this
5485 	 * tunable will only affect upcoming migrations, not the current one.
5486 	 * So we need to save it, and keep it going.
5487 	 */
5488 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5489 	if (!move_flags)
5490 		return 0;
5491 
5492 	from = mem_cgroup_from_task(p);
5493 
5494 	VM_BUG_ON(from == memcg);
5495 
5496 	mm = get_task_mm(p);
5497 	if (!mm)
5498 		return 0;
5499 	/* We move charges only when we move a owner of the mm */
5500 	if (mm->owner == p) {
5501 		VM_BUG_ON(mc.from);
5502 		VM_BUG_ON(mc.to);
5503 		VM_BUG_ON(mc.precharge);
5504 		VM_BUG_ON(mc.moved_charge);
5505 		VM_BUG_ON(mc.moved_swap);
5506 
5507 		spin_lock(&mc.lock);
5508 		mc.mm = mm;
5509 		mc.from = from;
5510 		mc.to = memcg;
5511 		mc.flags = move_flags;
5512 		spin_unlock(&mc.lock);
5513 		/* We set mc.moving_task later */
5514 
5515 		ret = mem_cgroup_precharge_mc(mm);
5516 		if (ret)
5517 			mem_cgroup_clear_mc();
5518 	} else {
5519 		mmput(mm);
5520 	}
5521 	return ret;
5522 }
5523 
5524 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5525 {
5526 	if (mc.to)
5527 		mem_cgroup_clear_mc();
5528 }
5529 
5530 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5531 				unsigned long addr, unsigned long end,
5532 				struct mm_walk *walk)
5533 {
5534 	int ret = 0;
5535 	struct vm_area_struct *vma = walk->vma;
5536 	pte_t *pte;
5537 	spinlock_t *ptl;
5538 	enum mc_target_type target_type;
5539 	union mc_target target;
5540 	struct page *page;
5541 
5542 	ptl = pmd_trans_huge_lock(pmd, vma);
5543 	if (ptl) {
5544 		if (mc.precharge < HPAGE_PMD_NR) {
5545 			spin_unlock(ptl);
5546 			return 0;
5547 		}
5548 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5549 		if (target_type == MC_TARGET_PAGE) {
5550 			page = target.page;
5551 			if (!isolate_lru_page(page)) {
5552 				if (!mem_cgroup_move_account(page, true,
5553 							     mc.from, mc.to)) {
5554 					mc.precharge -= HPAGE_PMD_NR;
5555 					mc.moved_charge += HPAGE_PMD_NR;
5556 				}
5557 				putback_lru_page(page);
5558 			}
5559 			put_page(page);
5560 		} else if (target_type == MC_TARGET_DEVICE) {
5561 			page = target.page;
5562 			if (!mem_cgroup_move_account(page, true,
5563 						     mc.from, mc.to)) {
5564 				mc.precharge -= HPAGE_PMD_NR;
5565 				mc.moved_charge += HPAGE_PMD_NR;
5566 			}
5567 			put_page(page);
5568 		}
5569 		spin_unlock(ptl);
5570 		return 0;
5571 	}
5572 
5573 	if (pmd_trans_unstable(pmd))
5574 		return 0;
5575 retry:
5576 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5577 	for (; addr != end; addr += PAGE_SIZE) {
5578 		pte_t ptent = *(pte++);
5579 		bool device = false;
5580 		swp_entry_t ent;
5581 
5582 		if (!mc.precharge)
5583 			break;
5584 
5585 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5586 		case MC_TARGET_DEVICE:
5587 			device = true;
5588 			/* fall through */
5589 		case MC_TARGET_PAGE:
5590 			page = target.page;
5591 			/*
5592 			 * We can have a part of the split pmd here. Moving it
5593 			 * can be done but it would be too convoluted so simply
5594 			 * ignore such a partial THP and keep it in original
5595 			 * memcg. There should be somebody mapping the head.
5596 			 */
5597 			if (PageTransCompound(page))
5598 				goto put;
5599 			if (!device && isolate_lru_page(page))
5600 				goto put;
5601 			if (!mem_cgroup_move_account(page, false,
5602 						mc.from, mc.to)) {
5603 				mc.precharge--;
5604 				/* we uncharge from mc.from later. */
5605 				mc.moved_charge++;
5606 			}
5607 			if (!device)
5608 				putback_lru_page(page);
5609 put:			/* get_mctgt_type() gets the page */
5610 			put_page(page);
5611 			break;
5612 		case MC_TARGET_SWAP:
5613 			ent = target.ent;
5614 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5615 				mc.precharge--;
5616 				/* we fixup refcnts and charges later. */
5617 				mc.moved_swap++;
5618 			}
5619 			break;
5620 		default:
5621 			break;
5622 		}
5623 	}
5624 	pte_unmap_unlock(pte - 1, ptl);
5625 	cond_resched();
5626 
5627 	if (addr != end) {
5628 		/*
5629 		 * We have consumed all precharges we got in can_attach().
5630 		 * We try charge one by one, but don't do any additional
5631 		 * charges to mc.to if we have failed in charge once in attach()
5632 		 * phase.
5633 		 */
5634 		ret = mem_cgroup_do_precharge(1);
5635 		if (!ret)
5636 			goto retry;
5637 	}
5638 
5639 	return ret;
5640 }
5641 
5642 static void mem_cgroup_move_charge(void)
5643 {
5644 	struct mm_walk mem_cgroup_move_charge_walk = {
5645 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5646 		.mm = mc.mm,
5647 	};
5648 
5649 	lru_add_drain_all();
5650 	/*
5651 	 * Signal lock_page_memcg() to take the memcg's move_lock
5652 	 * while we're moving its pages to another memcg. Then wait
5653 	 * for already started RCU-only updates to finish.
5654 	 */
5655 	atomic_inc(&mc.from->moving_account);
5656 	synchronize_rcu();
5657 retry:
5658 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5659 		/*
5660 		 * Someone who are holding the mmap_sem might be waiting in
5661 		 * waitq. So we cancel all extra charges, wake up all waiters,
5662 		 * and retry. Because we cancel precharges, we might not be able
5663 		 * to move enough charges, but moving charge is a best-effort
5664 		 * feature anyway, so it wouldn't be a big problem.
5665 		 */
5666 		__mem_cgroup_clear_mc();
5667 		cond_resched();
5668 		goto retry;
5669 	}
5670 	/*
5671 	 * When we have consumed all precharges and failed in doing
5672 	 * additional charge, the page walk just aborts.
5673 	 */
5674 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5675 
5676 	up_read(&mc.mm->mmap_sem);
5677 	atomic_dec(&mc.from->moving_account);
5678 }
5679 
5680 static void mem_cgroup_move_task(void)
5681 {
5682 	if (mc.to) {
5683 		mem_cgroup_move_charge();
5684 		mem_cgroup_clear_mc();
5685 	}
5686 }
5687 #else	/* !CONFIG_MMU */
5688 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5689 {
5690 	return 0;
5691 }
5692 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5693 {
5694 }
5695 static void mem_cgroup_move_task(void)
5696 {
5697 }
5698 #endif
5699 
5700 /*
5701  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5702  * to verify whether we're attached to the default hierarchy on each mount
5703  * attempt.
5704  */
5705 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5706 {
5707 	/*
5708 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5709 	 * guarantees that @root doesn't have any children, so turning it
5710 	 * on for the root memcg is enough.
5711 	 */
5712 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5713 		root_mem_cgroup->use_hierarchy = true;
5714 	else
5715 		root_mem_cgroup->use_hierarchy = false;
5716 }
5717 
5718 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5719 {
5720 	if (value == PAGE_COUNTER_MAX)
5721 		seq_puts(m, "max\n");
5722 	else
5723 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5724 
5725 	return 0;
5726 }
5727 
5728 static u64 memory_current_read(struct cgroup_subsys_state *css,
5729 			       struct cftype *cft)
5730 {
5731 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5732 
5733 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5734 }
5735 
5736 static int memory_min_show(struct seq_file *m, void *v)
5737 {
5738 	return seq_puts_memcg_tunable(m,
5739 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5740 }
5741 
5742 static ssize_t memory_min_write(struct kernfs_open_file *of,
5743 				char *buf, size_t nbytes, loff_t off)
5744 {
5745 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5746 	unsigned long min;
5747 	int err;
5748 
5749 	buf = strstrip(buf);
5750 	err = page_counter_memparse(buf, "max", &min);
5751 	if (err)
5752 		return err;
5753 
5754 	page_counter_set_min(&memcg->memory, min);
5755 
5756 	return nbytes;
5757 }
5758 
5759 static int memory_low_show(struct seq_file *m, void *v)
5760 {
5761 	return seq_puts_memcg_tunable(m,
5762 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5763 }
5764 
5765 static ssize_t memory_low_write(struct kernfs_open_file *of,
5766 				char *buf, size_t nbytes, loff_t off)
5767 {
5768 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5769 	unsigned long low;
5770 	int err;
5771 
5772 	buf = strstrip(buf);
5773 	err = page_counter_memparse(buf, "max", &low);
5774 	if (err)
5775 		return err;
5776 
5777 	page_counter_set_low(&memcg->memory, low);
5778 
5779 	return nbytes;
5780 }
5781 
5782 static int memory_high_show(struct seq_file *m, void *v)
5783 {
5784 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5785 }
5786 
5787 static ssize_t memory_high_write(struct kernfs_open_file *of,
5788 				 char *buf, size_t nbytes, loff_t off)
5789 {
5790 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5791 	unsigned long nr_pages;
5792 	unsigned long high;
5793 	int err;
5794 
5795 	buf = strstrip(buf);
5796 	err = page_counter_memparse(buf, "max", &high);
5797 	if (err)
5798 		return err;
5799 
5800 	memcg->high = high;
5801 
5802 	nr_pages = page_counter_read(&memcg->memory);
5803 	if (nr_pages > high)
5804 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5805 					     GFP_KERNEL, true);
5806 
5807 	memcg_wb_domain_size_changed(memcg);
5808 	return nbytes;
5809 }
5810 
5811 static int memory_max_show(struct seq_file *m, void *v)
5812 {
5813 	return seq_puts_memcg_tunable(m,
5814 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5815 }
5816 
5817 static ssize_t memory_max_write(struct kernfs_open_file *of,
5818 				char *buf, size_t nbytes, loff_t off)
5819 {
5820 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5821 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5822 	bool drained = false;
5823 	unsigned long max;
5824 	int err;
5825 
5826 	buf = strstrip(buf);
5827 	err = page_counter_memparse(buf, "max", &max);
5828 	if (err)
5829 		return err;
5830 
5831 	xchg(&memcg->memory.max, max);
5832 
5833 	for (;;) {
5834 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5835 
5836 		if (nr_pages <= max)
5837 			break;
5838 
5839 		if (signal_pending(current)) {
5840 			err = -EINTR;
5841 			break;
5842 		}
5843 
5844 		if (!drained) {
5845 			drain_all_stock(memcg);
5846 			drained = true;
5847 			continue;
5848 		}
5849 
5850 		if (nr_reclaims) {
5851 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5852 							  GFP_KERNEL, true))
5853 				nr_reclaims--;
5854 			continue;
5855 		}
5856 
5857 		memcg_memory_event(memcg, MEMCG_OOM);
5858 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5859 			break;
5860 	}
5861 
5862 	memcg_wb_domain_size_changed(memcg);
5863 	return nbytes;
5864 }
5865 
5866 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5867 {
5868 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5869 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5870 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5871 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5872 	seq_printf(m, "oom_kill %lu\n",
5873 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
5874 }
5875 
5876 static int memory_events_show(struct seq_file *m, void *v)
5877 {
5878 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5879 
5880 	__memory_events_show(m, memcg->memory_events);
5881 	return 0;
5882 }
5883 
5884 static int memory_events_local_show(struct seq_file *m, void *v)
5885 {
5886 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5887 
5888 	__memory_events_show(m, memcg->memory_events_local);
5889 	return 0;
5890 }
5891 
5892 static int memory_stat_show(struct seq_file *m, void *v)
5893 {
5894 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5895 	char *buf;
5896 
5897 	buf = memory_stat_format(memcg);
5898 	if (!buf)
5899 		return -ENOMEM;
5900 	seq_puts(m, buf);
5901 	kfree(buf);
5902 	return 0;
5903 }
5904 
5905 static int memory_oom_group_show(struct seq_file *m, void *v)
5906 {
5907 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5908 
5909 	seq_printf(m, "%d\n", memcg->oom_group);
5910 
5911 	return 0;
5912 }
5913 
5914 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5915 				      char *buf, size_t nbytes, loff_t off)
5916 {
5917 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5918 	int ret, oom_group;
5919 
5920 	buf = strstrip(buf);
5921 	if (!buf)
5922 		return -EINVAL;
5923 
5924 	ret = kstrtoint(buf, 0, &oom_group);
5925 	if (ret)
5926 		return ret;
5927 
5928 	if (oom_group != 0 && oom_group != 1)
5929 		return -EINVAL;
5930 
5931 	memcg->oom_group = oom_group;
5932 
5933 	return nbytes;
5934 }
5935 
5936 static struct cftype memory_files[] = {
5937 	{
5938 		.name = "current",
5939 		.flags = CFTYPE_NOT_ON_ROOT,
5940 		.read_u64 = memory_current_read,
5941 	},
5942 	{
5943 		.name = "min",
5944 		.flags = CFTYPE_NOT_ON_ROOT,
5945 		.seq_show = memory_min_show,
5946 		.write = memory_min_write,
5947 	},
5948 	{
5949 		.name = "low",
5950 		.flags = CFTYPE_NOT_ON_ROOT,
5951 		.seq_show = memory_low_show,
5952 		.write = memory_low_write,
5953 	},
5954 	{
5955 		.name = "high",
5956 		.flags = CFTYPE_NOT_ON_ROOT,
5957 		.seq_show = memory_high_show,
5958 		.write = memory_high_write,
5959 	},
5960 	{
5961 		.name = "max",
5962 		.flags = CFTYPE_NOT_ON_ROOT,
5963 		.seq_show = memory_max_show,
5964 		.write = memory_max_write,
5965 	},
5966 	{
5967 		.name = "events",
5968 		.flags = CFTYPE_NOT_ON_ROOT,
5969 		.file_offset = offsetof(struct mem_cgroup, events_file),
5970 		.seq_show = memory_events_show,
5971 	},
5972 	{
5973 		.name = "events.local",
5974 		.flags = CFTYPE_NOT_ON_ROOT,
5975 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
5976 		.seq_show = memory_events_local_show,
5977 	},
5978 	{
5979 		.name = "stat",
5980 		.flags = CFTYPE_NOT_ON_ROOT,
5981 		.seq_show = memory_stat_show,
5982 	},
5983 	{
5984 		.name = "oom.group",
5985 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5986 		.seq_show = memory_oom_group_show,
5987 		.write = memory_oom_group_write,
5988 	},
5989 	{ }	/* terminate */
5990 };
5991 
5992 struct cgroup_subsys memory_cgrp_subsys = {
5993 	.css_alloc = mem_cgroup_css_alloc,
5994 	.css_online = mem_cgroup_css_online,
5995 	.css_offline = mem_cgroup_css_offline,
5996 	.css_released = mem_cgroup_css_released,
5997 	.css_free = mem_cgroup_css_free,
5998 	.css_reset = mem_cgroup_css_reset,
5999 	.can_attach = mem_cgroup_can_attach,
6000 	.cancel_attach = mem_cgroup_cancel_attach,
6001 	.post_attach = mem_cgroup_move_task,
6002 	.bind = mem_cgroup_bind,
6003 	.dfl_cftypes = memory_files,
6004 	.legacy_cftypes = mem_cgroup_legacy_files,
6005 	.early_init = 0,
6006 };
6007 
6008 /**
6009  * mem_cgroup_protected - check if memory consumption is in the normal range
6010  * @root: the top ancestor of the sub-tree being checked
6011  * @memcg: the memory cgroup to check
6012  *
6013  * WARNING: This function is not stateless! It can only be used as part
6014  *          of a top-down tree iteration, not for isolated queries.
6015  *
6016  * Returns one of the following:
6017  *   MEMCG_PROT_NONE: cgroup memory is not protected
6018  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6019  *     an unprotected supply of reclaimable memory from other cgroups.
6020  *   MEMCG_PROT_MIN: cgroup memory is protected
6021  *
6022  * @root is exclusive; it is never protected when looked at directly
6023  *
6024  * To provide a proper hierarchical behavior, effective memory.min/low values
6025  * are used. Below is the description of how effective memory.low is calculated.
6026  * Effective memory.min values is calculated in the same way.
6027  *
6028  * Effective memory.low is always equal or less than the original memory.low.
6029  * If there is no memory.low overcommittment (which is always true for
6030  * top-level memory cgroups), these two values are equal.
6031  * Otherwise, it's a part of parent's effective memory.low,
6032  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6033  * memory.low usages, where memory.low usage is the size of actually
6034  * protected memory.
6035  *
6036  *                                             low_usage
6037  * elow = min( memory.low, parent->elow * ------------------ ),
6038  *                                        siblings_low_usage
6039  *
6040  *             | memory.current, if memory.current < memory.low
6041  * low_usage = |
6042  *	       | 0, otherwise.
6043  *
6044  *
6045  * Such definition of the effective memory.low provides the expected
6046  * hierarchical behavior: parent's memory.low value is limiting
6047  * children, unprotected memory is reclaimed first and cgroups,
6048  * which are not using their guarantee do not affect actual memory
6049  * distribution.
6050  *
6051  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6052  *
6053  *     A      A/memory.low = 2G, A/memory.current = 6G
6054  *    //\\
6055  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6056  *            C/memory.low = 1G  C/memory.current = 2G
6057  *            D/memory.low = 0   D/memory.current = 2G
6058  *            E/memory.low = 10G E/memory.current = 0
6059  *
6060  * and the memory pressure is applied, the following memory distribution
6061  * is expected (approximately):
6062  *
6063  *     A/memory.current = 2G
6064  *
6065  *     B/memory.current = 1.3G
6066  *     C/memory.current = 0.6G
6067  *     D/memory.current = 0
6068  *     E/memory.current = 0
6069  *
6070  * These calculations require constant tracking of the actual low usages
6071  * (see propagate_protected_usage()), as well as recursive calculation of
6072  * effective memory.low values. But as we do call mem_cgroup_protected()
6073  * path for each memory cgroup top-down from the reclaim,
6074  * it's possible to optimize this part, and save calculated elow
6075  * for next usage. This part is intentionally racy, but it's ok,
6076  * as memory.low is a best-effort mechanism.
6077  */
6078 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6079 						struct mem_cgroup *memcg)
6080 {
6081 	struct mem_cgroup *parent;
6082 	unsigned long emin, parent_emin;
6083 	unsigned long elow, parent_elow;
6084 	unsigned long usage;
6085 
6086 	if (mem_cgroup_disabled())
6087 		return MEMCG_PROT_NONE;
6088 
6089 	if (!root)
6090 		root = root_mem_cgroup;
6091 	if (memcg == root)
6092 		return MEMCG_PROT_NONE;
6093 
6094 	usage = page_counter_read(&memcg->memory);
6095 	if (!usage)
6096 		return MEMCG_PROT_NONE;
6097 
6098 	emin = memcg->memory.min;
6099 	elow = memcg->memory.low;
6100 
6101 	parent = parent_mem_cgroup(memcg);
6102 	/* No parent means a non-hierarchical mode on v1 memcg */
6103 	if (!parent)
6104 		return MEMCG_PROT_NONE;
6105 
6106 	if (parent == root)
6107 		goto exit;
6108 
6109 	parent_emin = READ_ONCE(parent->memory.emin);
6110 	emin = min(emin, parent_emin);
6111 	if (emin && parent_emin) {
6112 		unsigned long min_usage, siblings_min_usage;
6113 
6114 		min_usage = min(usage, memcg->memory.min);
6115 		siblings_min_usage = atomic_long_read(
6116 			&parent->memory.children_min_usage);
6117 
6118 		if (min_usage && siblings_min_usage)
6119 			emin = min(emin, parent_emin * min_usage /
6120 				   siblings_min_usage);
6121 	}
6122 
6123 	parent_elow = READ_ONCE(parent->memory.elow);
6124 	elow = min(elow, parent_elow);
6125 	if (elow && parent_elow) {
6126 		unsigned long low_usage, siblings_low_usage;
6127 
6128 		low_usage = min(usage, memcg->memory.low);
6129 		siblings_low_usage = atomic_long_read(
6130 			&parent->memory.children_low_usage);
6131 
6132 		if (low_usage && siblings_low_usage)
6133 			elow = min(elow, parent_elow * low_usage /
6134 				   siblings_low_usage);
6135 	}
6136 
6137 exit:
6138 	memcg->memory.emin = emin;
6139 	memcg->memory.elow = elow;
6140 
6141 	if (usage <= emin)
6142 		return MEMCG_PROT_MIN;
6143 	else if (usage <= elow)
6144 		return MEMCG_PROT_LOW;
6145 	else
6146 		return MEMCG_PROT_NONE;
6147 }
6148 
6149 /**
6150  * mem_cgroup_try_charge - try charging a page
6151  * @page: page to charge
6152  * @mm: mm context of the victim
6153  * @gfp_mask: reclaim mode
6154  * @memcgp: charged memcg return
6155  * @compound: charge the page as compound or small page
6156  *
6157  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6158  * pages according to @gfp_mask if necessary.
6159  *
6160  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6161  * Otherwise, an error code is returned.
6162  *
6163  * After page->mapping has been set up, the caller must finalize the
6164  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6165  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6166  */
6167 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6168 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6169 			  bool compound)
6170 {
6171 	struct mem_cgroup *memcg = NULL;
6172 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6173 	int ret = 0;
6174 
6175 	if (mem_cgroup_disabled())
6176 		goto out;
6177 
6178 	if (PageSwapCache(page)) {
6179 		/*
6180 		 * Every swap fault against a single page tries to charge the
6181 		 * page, bail as early as possible.  shmem_unuse() encounters
6182 		 * already charged pages, too.  The USED bit is protected by
6183 		 * the page lock, which serializes swap cache removal, which
6184 		 * in turn serializes uncharging.
6185 		 */
6186 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6187 		if (compound_head(page)->mem_cgroup)
6188 			goto out;
6189 
6190 		if (do_swap_account) {
6191 			swp_entry_t ent = { .val = page_private(page), };
6192 			unsigned short id = lookup_swap_cgroup_id(ent);
6193 
6194 			rcu_read_lock();
6195 			memcg = mem_cgroup_from_id(id);
6196 			if (memcg && !css_tryget_online(&memcg->css))
6197 				memcg = NULL;
6198 			rcu_read_unlock();
6199 		}
6200 	}
6201 
6202 	if (!memcg)
6203 		memcg = get_mem_cgroup_from_mm(mm);
6204 
6205 	ret = try_charge(memcg, gfp_mask, nr_pages);
6206 
6207 	css_put(&memcg->css);
6208 out:
6209 	*memcgp = memcg;
6210 	return ret;
6211 }
6212 
6213 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6214 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6215 			  bool compound)
6216 {
6217 	struct mem_cgroup *memcg;
6218 	int ret;
6219 
6220 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6221 	memcg = *memcgp;
6222 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6223 	return ret;
6224 }
6225 
6226 /**
6227  * mem_cgroup_commit_charge - commit a page charge
6228  * @page: page to charge
6229  * @memcg: memcg to charge the page to
6230  * @lrucare: page might be on LRU already
6231  * @compound: charge the page as compound or small page
6232  *
6233  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6234  * after page->mapping has been set up.  This must happen atomically
6235  * as part of the page instantiation, i.e. under the page table lock
6236  * for anonymous pages, under the page lock for page and swap cache.
6237  *
6238  * In addition, the page must not be on the LRU during the commit, to
6239  * prevent racing with task migration.  If it might be, use @lrucare.
6240  *
6241  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6242  */
6243 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6244 			      bool lrucare, bool compound)
6245 {
6246 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6247 
6248 	VM_BUG_ON_PAGE(!page->mapping, page);
6249 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6250 
6251 	if (mem_cgroup_disabled())
6252 		return;
6253 	/*
6254 	 * Swap faults will attempt to charge the same page multiple
6255 	 * times.  But reuse_swap_page() might have removed the page
6256 	 * from swapcache already, so we can't check PageSwapCache().
6257 	 */
6258 	if (!memcg)
6259 		return;
6260 
6261 	commit_charge(page, memcg, lrucare);
6262 
6263 	local_irq_disable();
6264 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6265 	memcg_check_events(memcg, page);
6266 	local_irq_enable();
6267 
6268 	if (do_memsw_account() && PageSwapCache(page)) {
6269 		swp_entry_t entry = { .val = page_private(page) };
6270 		/*
6271 		 * The swap entry might not get freed for a long time,
6272 		 * let's not wait for it.  The page already received a
6273 		 * memory+swap charge, drop the swap entry duplicate.
6274 		 */
6275 		mem_cgroup_uncharge_swap(entry, nr_pages);
6276 	}
6277 }
6278 
6279 /**
6280  * mem_cgroup_cancel_charge - cancel a page charge
6281  * @page: page to charge
6282  * @memcg: memcg to charge the page to
6283  * @compound: charge the page as compound or small page
6284  *
6285  * Cancel a charge transaction started by mem_cgroup_try_charge().
6286  */
6287 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6288 		bool compound)
6289 {
6290 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6291 
6292 	if (mem_cgroup_disabled())
6293 		return;
6294 	/*
6295 	 * Swap faults will attempt to charge the same page multiple
6296 	 * times.  But reuse_swap_page() might have removed the page
6297 	 * from swapcache already, so we can't check PageSwapCache().
6298 	 */
6299 	if (!memcg)
6300 		return;
6301 
6302 	cancel_charge(memcg, nr_pages);
6303 }
6304 
6305 struct uncharge_gather {
6306 	struct mem_cgroup *memcg;
6307 	unsigned long pgpgout;
6308 	unsigned long nr_anon;
6309 	unsigned long nr_file;
6310 	unsigned long nr_kmem;
6311 	unsigned long nr_huge;
6312 	unsigned long nr_shmem;
6313 	struct page *dummy_page;
6314 };
6315 
6316 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6317 {
6318 	memset(ug, 0, sizeof(*ug));
6319 }
6320 
6321 static void uncharge_batch(const struct uncharge_gather *ug)
6322 {
6323 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6324 	unsigned long flags;
6325 
6326 	if (!mem_cgroup_is_root(ug->memcg)) {
6327 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6328 		if (do_memsw_account())
6329 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6330 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6331 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6332 		memcg_oom_recover(ug->memcg);
6333 	}
6334 
6335 	local_irq_save(flags);
6336 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6337 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6338 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6339 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6340 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6341 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6342 	memcg_check_events(ug->memcg, ug->dummy_page);
6343 	local_irq_restore(flags);
6344 
6345 	if (!mem_cgroup_is_root(ug->memcg))
6346 		css_put_many(&ug->memcg->css, nr_pages);
6347 }
6348 
6349 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6350 {
6351 	VM_BUG_ON_PAGE(PageLRU(page), page);
6352 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6353 			!PageHWPoison(page) , page);
6354 
6355 	if (!page->mem_cgroup)
6356 		return;
6357 
6358 	/*
6359 	 * Nobody should be changing or seriously looking at
6360 	 * page->mem_cgroup at this point, we have fully
6361 	 * exclusive access to the page.
6362 	 */
6363 
6364 	if (ug->memcg != page->mem_cgroup) {
6365 		if (ug->memcg) {
6366 			uncharge_batch(ug);
6367 			uncharge_gather_clear(ug);
6368 		}
6369 		ug->memcg = page->mem_cgroup;
6370 	}
6371 
6372 	if (!PageKmemcg(page)) {
6373 		unsigned int nr_pages = 1;
6374 
6375 		if (PageTransHuge(page)) {
6376 			nr_pages <<= compound_order(page);
6377 			ug->nr_huge += nr_pages;
6378 		}
6379 		if (PageAnon(page))
6380 			ug->nr_anon += nr_pages;
6381 		else {
6382 			ug->nr_file += nr_pages;
6383 			if (PageSwapBacked(page))
6384 				ug->nr_shmem += nr_pages;
6385 		}
6386 		ug->pgpgout++;
6387 	} else {
6388 		ug->nr_kmem += 1 << compound_order(page);
6389 		__ClearPageKmemcg(page);
6390 	}
6391 
6392 	ug->dummy_page = page;
6393 	page->mem_cgroup = NULL;
6394 }
6395 
6396 static void uncharge_list(struct list_head *page_list)
6397 {
6398 	struct uncharge_gather ug;
6399 	struct list_head *next;
6400 
6401 	uncharge_gather_clear(&ug);
6402 
6403 	/*
6404 	 * Note that the list can be a single page->lru; hence the
6405 	 * do-while loop instead of a simple list_for_each_entry().
6406 	 */
6407 	next = page_list->next;
6408 	do {
6409 		struct page *page;
6410 
6411 		page = list_entry(next, struct page, lru);
6412 		next = page->lru.next;
6413 
6414 		uncharge_page(page, &ug);
6415 	} while (next != page_list);
6416 
6417 	if (ug.memcg)
6418 		uncharge_batch(&ug);
6419 }
6420 
6421 /**
6422  * mem_cgroup_uncharge - uncharge a page
6423  * @page: page to uncharge
6424  *
6425  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6426  * mem_cgroup_commit_charge().
6427  */
6428 void mem_cgroup_uncharge(struct page *page)
6429 {
6430 	struct uncharge_gather ug;
6431 
6432 	if (mem_cgroup_disabled())
6433 		return;
6434 
6435 	/* Don't touch page->lru of any random page, pre-check: */
6436 	if (!page->mem_cgroup)
6437 		return;
6438 
6439 	uncharge_gather_clear(&ug);
6440 	uncharge_page(page, &ug);
6441 	uncharge_batch(&ug);
6442 }
6443 
6444 /**
6445  * mem_cgroup_uncharge_list - uncharge a list of page
6446  * @page_list: list of pages to uncharge
6447  *
6448  * Uncharge a list of pages previously charged with
6449  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6450  */
6451 void mem_cgroup_uncharge_list(struct list_head *page_list)
6452 {
6453 	if (mem_cgroup_disabled())
6454 		return;
6455 
6456 	if (!list_empty(page_list))
6457 		uncharge_list(page_list);
6458 }
6459 
6460 /**
6461  * mem_cgroup_migrate - charge a page's replacement
6462  * @oldpage: currently circulating page
6463  * @newpage: replacement page
6464  *
6465  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6466  * be uncharged upon free.
6467  *
6468  * Both pages must be locked, @newpage->mapping must be set up.
6469  */
6470 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6471 {
6472 	struct mem_cgroup *memcg;
6473 	unsigned int nr_pages;
6474 	bool compound;
6475 	unsigned long flags;
6476 
6477 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6478 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6479 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6480 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6481 		       newpage);
6482 
6483 	if (mem_cgroup_disabled())
6484 		return;
6485 
6486 	/* Page cache replacement: new page already charged? */
6487 	if (newpage->mem_cgroup)
6488 		return;
6489 
6490 	/* Swapcache readahead pages can get replaced before being charged */
6491 	memcg = oldpage->mem_cgroup;
6492 	if (!memcg)
6493 		return;
6494 
6495 	/* Force-charge the new page. The old one will be freed soon */
6496 	compound = PageTransHuge(newpage);
6497 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6498 
6499 	page_counter_charge(&memcg->memory, nr_pages);
6500 	if (do_memsw_account())
6501 		page_counter_charge(&memcg->memsw, nr_pages);
6502 	css_get_many(&memcg->css, nr_pages);
6503 
6504 	commit_charge(newpage, memcg, false);
6505 
6506 	local_irq_save(flags);
6507 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6508 	memcg_check_events(memcg, newpage);
6509 	local_irq_restore(flags);
6510 }
6511 
6512 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6513 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6514 
6515 void mem_cgroup_sk_alloc(struct sock *sk)
6516 {
6517 	struct mem_cgroup *memcg;
6518 
6519 	if (!mem_cgroup_sockets_enabled)
6520 		return;
6521 
6522 	/*
6523 	 * Socket cloning can throw us here with sk_memcg already
6524 	 * filled. It won't however, necessarily happen from
6525 	 * process context. So the test for root memcg given
6526 	 * the current task's memcg won't help us in this case.
6527 	 *
6528 	 * Respecting the original socket's memcg is a better
6529 	 * decision in this case.
6530 	 */
6531 	if (sk->sk_memcg) {
6532 		css_get(&sk->sk_memcg->css);
6533 		return;
6534 	}
6535 
6536 	rcu_read_lock();
6537 	memcg = mem_cgroup_from_task(current);
6538 	if (memcg == root_mem_cgroup)
6539 		goto out;
6540 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6541 		goto out;
6542 	if (css_tryget_online(&memcg->css))
6543 		sk->sk_memcg = memcg;
6544 out:
6545 	rcu_read_unlock();
6546 }
6547 
6548 void mem_cgroup_sk_free(struct sock *sk)
6549 {
6550 	if (sk->sk_memcg)
6551 		css_put(&sk->sk_memcg->css);
6552 }
6553 
6554 /**
6555  * mem_cgroup_charge_skmem - charge socket memory
6556  * @memcg: memcg to charge
6557  * @nr_pages: number of pages to charge
6558  *
6559  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6560  * @memcg's configured limit, %false if the charge had to be forced.
6561  */
6562 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6563 {
6564 	gfp_t gfp_mask = GFP_KERNEL;
6565 
6566 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6567 		struct page_counter *fail;
6568 
6569 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6570 			memcg->tcpmem_pressure = 0;
6571 			return true;
6572 		}
6573 		page_counter_charge(&memcg->tcpmem, nr_pages);
6574 		memcg->tcpmem_pressure = 1;
6575 		return false;
6576 	}
6577 
6578 	/* Don't block in the packet receive path */
6579 	if (in_softirq())
6580 		gfp_mask = GFP_NOWAIT;
6581 
6582 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6583 
6584 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6585 		return true;
6586 
6587 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6588 	return false;
6589 }
6590 
6591 /**
6592  * mem_cgroup_uncharge_skmem - uncharge socket memory
6593  * @memcg: memcg to uncharge
6594  * @nr_pages: number of pages to uncharge
6595  */
6596 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6597 {
6598 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6599 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6600 		return;
6601 	}
6602 
6603 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6604 
6605 	refill_stock(memcg, nr_pages);
6606 }
6607 
6608 static int __init cgroup_memory(char *s)
6609 {
6610 	char *token;
6611 
6612 	while ((token = strsep(&s, ",")) != NULL) {
6613 		if (!*token)
6614 			continue;
6615 		if (!strcmp(token, "nosocket"))
6616 			cgroup_memory_nosocket = true;
6617 		if (!strcmp(token, "nokmem"))
6618 			cgroup_memory_nokmem = true;
6619 	}
6620 	return 0;
6621 }
6622 __setup("cgroup.memory=", cgroup_memory);
6623 
6624 /*
6625  * subsys_initcall() for memory controller.
6626  *
6627  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6628  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6629  * basically everything that doesn't depend on a specific mem_cgroup structure
6630  * should be initialized from here.
6631  */
6632 static int __init mem_cgroup_init(void)
6633 {
6634 	int cpu, node;
6635 
6636 #ifdef CONFIG_MEMCG_KMEM
6637 	/*
6638 	 * Kmem cache creation is mostly done with the slab_mutex held,
6639 	 * so use a workqueue with limited concurrency to avoid stalling
6640 	 * all worker threads in case lots of cgroups are created and
6641 	 * destroyed simultaneously.
6642 	 */
6643 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6644 	BUG_ON(!memcg_kmem_cache_wq);
6645 #endif
6646 
6647 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6648 				  memcg_hotplug_cpu_dead);
6649 
6650 	for_each_possible_cpu(cpu)
6651 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6652 			  drain_local_stock);
6653 
6654 	for_each_node(node) {
6655 		struct mem_cgroup_tree_per_node *rtpn;
6656 
6657 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6658 				    node_online(node) ? node : NUMA_NO_NODE);
6659 
6660 		rtpn->rb_root = RB_ROOT;
6661 		rtpn->rb_rightmost = NULL;
6662 		spin_lock_init(&rtpn->lock);
6663 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6664 	}
6665 
6666 	return 0;
6667 }
6668 subsys_initcall(mem_cgroup_init);
6669 
6670 #ifdef CONFIG_MEMCG_SWAP
6671 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6672 {
6673 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6674 		/*
6675 		 * The root cgroup cannot be destroyed, so it's refcount must
6676 		 * always be >= 1.
6677 		 */
6678 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6679 			VM_BUG_ON(1);
6680 			break;
6681 		}
6682 		memcg = parent_mem_cgroup(memcg);
6683 		if (!memcg)
6684 			memcg = root_mem_cgroup;
6685 	}
6686 	return memcg;
6687 }
6688 
6689 /**
6690  * mem_cgroup_swapout - transfer a memsw charge to swap
6691  * @page: page whose memsw charge to transfer
6692  * @entry: swap entry to move the charge to
6693  *
6694  * Transfer the memsw charge of @page to @entry.
6695  */
6696 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6697 {
6698 	struct mem_cgroup *memcg, *swap_memcg;
6699 	unsigned int nr_entries;
6700 	unsigned short oldid;
6701 
6702 	VM_BUG_ON_PAGE(PageLRU(page), page);
6703 	VM_BUG_ON_PAGE(page_count(page), page);
6704 
6705 	if (!do_memsw_account())
6706 		return;
6707 
6708 	memcg = page->mem_cgroup;
6709 
6710 	/* Readahead page, never charged */
6711 	if (!memcg)
6712 		return;
6713 
6714 	/*
6715 	 * In case the memcg owning these pages has been offlined and doesn't
6716 	 * have an ID allocated to it anymore, charge the closest online
6717 	 * ancestor for the swap instead and transfer the memory+swap charge.
6718 	 */
6719 	swap_memcg = mem_cgroup_id_get_online(memcg);
6720 	nr_entries = hpage_nr_pages(page);
6721 	/* Get references for the tail pages, too */
6722 	if (nr_entries > 1)
6723 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6724 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6725 				   nr_entries);
6726 	VM_BUG_ON_PAGE(oldid, page);
6727 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6728 
6729 	page->mem_cgroup = NULL;
6730 
6731 	if (!mem_cgroup_is_root(memcg))
6732 		page_counter_uncharge(&memcg->memory, nr_entries);
6733 
6734 	if (memcg != swap_memcg) {
6735 		if (!mem_cgroup_is_root(swap_memcg))
6736 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6737 		page_counter_uncharge(&memcg->memsw, nr_entries);
6738 	}
6739 
6740 	/*
6741 	 * Interrupts should be disabled here because the caller holds the
6742 	 * i_pages lock which is taken with interrupts-off. It is
6743 	 * important here to have the interrupts disabled because it is the
6744 	 * only synchronisation we have for updating the per-CPU variables.
6745 	 */
6746 	VM_BUG_ON(!irqs_disabled());
6747 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6748 				     -nr_entries);
6749 	memcg_check_events(memcg, page);
6750 
6751 	if (!mem_cgroup_is_root(memcg))
6752 		css_put_many(&memcg->css, nr_entries);
6753 }
6754 
6755 /**
6756  * mem_cgroup_try_charge_swap - try charging swap space for a page
6757  * @page: page being added to swap
6758  * @entry: swap entry to charge
6759  *
6760  * Try to charge @page's memcg for the swap space at @entry.
6761  *
6762  * Returns 0 on success, -ENOMEM on failure.
6763  */
6764 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6765 {
6766 	unsigned int nr_pages = hpage_nr_pages(page);
6767 	struct page_counter *counter;
6768 	struct mem_cgroup *memcg;
6769 	unsigned short oldid;
6770 
6771 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6772 		return 0;
6773 
6774 	memcg = page->mem_cgroup;
6775 
6776 	/* Readahead page, never charged */
6777 	if (!memcg)
6778 		return 0;
6779 
6780 	if (!entry.val) {
6781 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6782 		return 0;
6783 	}
6784 
6785 	memcg = mem_cgroup_id_get_online(memcg);
6786 
6787 	if (!mem_cgroup_is_root(memcg) &&
6788 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6789 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6790 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6791 		mem_cgroup_id_put(memcg);
6792 		return -ENOMEM;
6793 	}
6794 
6795 	/* Get references for the tail pages, too */
6796 	if (nr_pages > 1)
6797 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6798 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6799 	VM_BUG_ON_PAGE(oldid, page);
6800 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6801 
6802 	return 0;
6803 }
6804 
6805 /**
6806  * mem_cgroup_uncharge_swap - uncharge swap space
6807  * @entry: swap entry to uncharge
6808  * @nr_pages: the amount of swap space to uncharge
6809  */
6810 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6811 {
6812 	struct mem_cgroup *memcg;
6813 	unsigned short id;
6814 
6815 	if (!do_swap_account)
6816 		return;
6817 
6818 	id = swap_cgroup_record(entry, 0, nr_pages);
6819 	rcu_read_lock();
6820 	memcg = mem_cgroup_from_id(id);
6821 	if (memcg) {
6822 		if (!mem_cgroup_is_root(memcg)) {
6823 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6824 				page_counter_uncharge(&memcg->swap, nr_pages);
6825 			else
6826 				page_counter_uncharge(&memcg->memsw, nr_pages);
6827 		}
6828 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6829 		mem_cgroup_id_put_many(memcg, nr_pages);
6830 	}
6831 	rcu_read_unlock();
6832 }
6833 
6834 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6835 {
6836 	long nr_swap_pages = get_nr_swap_pages();
6837 
6838 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6839 		return nr_swap_pages;
6840 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6841 		nr_swap_pages = min_t(long, nr_swap_pages,
6842 				      READ_ONCE(memcg->swap.max) -
6843 				      page_counter_read(&memcg->swap));
6844 	return nr_swap_pages;
6845 }
6846 
6847 bool mem_cgroup_swap_full(struct page *page)
6848 {
6849 	struct mem_cgroup *memcg;
6850 
6851 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6852 
6853 	if (vm_swap_full())
6854 		return true;
6855 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6856 		return false;
6857 
6858 	memcg = page->mem_cgroup;
6859 	if (!memcg)
6860 		return false;
6861 
6862 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6863 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6864 			return true;
6865 
6866 	return false;
6867 }
6868 
6869 /* for remember boot option*/
6870 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6871 static int really_do_swap_account __initdata = 1;
6872 #else
6873 static int really_do_swap_account __initdata;
6874 #endif
6875 
6876 static int __init enable_swap_account(char *s)
6877 {
6878 	if (!strcmp(s, "1"))
6879 		really_do_swap_account = 1;
6880 	else if (!strcmp(s, "0"))
6881 		really_do_swap_account = 0;
6882 	return 1;
6883 }
6884 __setup("swapaccount=", enable_swap_account);
6885 
6886 static u64 swap_current_read(struct cgroup_subsys_state *css,
6887 			     struct cftype *cft)
6888 {
6889 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6890 
6891 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6892 }
6893 
6894 static int swap_max_show(struct seq_file *m, void *v)
6895 {
6896 	return seq_puts_memcg_tunable(m,
6897 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6898 }
6899 
6900 static ssize_t swap_max_write(struct kernfs_open_file *of,
6901 			      char *buf, size_t nbytes, loff_t off)
6902 {
6903 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6904 	unsigned long max;
6905 	int err;
6906 
6907 	buf = strstrip(buf);
6908 	err = page_counter_memparse(buf, "max", &max);
6909 	if (err)
6910 		return err;
6911 
6912 	xchg(&memcg->swap.max, max);
6913 
6914 	return nbytes;
6915 }
6916 
6917 static int swap_events_show(struct seq_file *m, void *v)
6918 {
6919 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6920 
6921 	seq_printf(m, "max %lu\n",
6922 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6923 	seq_printf(m, "fail %lu\n",
6924 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6925 
6926 	return 0;
6927 }
6928 
6929 static struct cftype swap_files[] = {
6930 	{
6931 		.name = "swap.current",
6932 		.flags = CFTYPE_NOT_ON_ROOT,
6933 		.read_u64 = swap_current_read,
6934 	},
6935 	{
6936 		.name = "swap.max",
6937 		.flags = CFTYPE_NOT_ON_ROOT,
6938 		.seq_show = swap_max_show,
6939 		.write = swap_max_write,
6940 	},
6941 	{
6942 		.name = "swap.events",
6943 		.flags = CFTYPE_NOT_ON_ROOT,
6944 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6945 		.seq_show = swap_events_show,
6946 	},
6947 	{ }	/* terminate */
6948 };
6949 
6950 static struct cftype memsw_cgroup_files[] = {
6951 	{
6952 		.name = "memsw.usage_in_bytes",
6953 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6954 		.read_u64 = mem_cgroup_read_u64,
6955 	},
6956 	{
6957 		.name = "memsw.max_usage_in_bytes",
6958 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6959 		.write = mem_cgroup_reset,
6960 		.read_u64 = mem_cgroup_read_u64,
6961 	},
6962 	{
6963 		.name = "memsw.limit_in_bytes",
6964 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6965 		.write = mem_cgroup_write,
6966 		.read_u64 = mem_cgroup_read_u64,
6967 	},
6968 	{
6969 		.name = "memsw.failcnt",
6970 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6971 		.write = mem_cgroup_reset,
6972 		.read_u64 = mem_cgroup_read_u64,
6973 	},
6974 	{ },	/* terminate */
6975 };
6976 
6977 static int __init mem_cgroup_swap_init(void)
6978 {
6979 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6980 		do_swap_account = 1;
6981 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6982 					       swap_files));
6983 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6984 						  memsw_cgroup_files));
6985 	}
6986 	return 0;
6987 }
6988 subsys_initcall(mem_cgroup_swap_init);
6989 
6990 #endif /* CONFIG_MEMCG_SWAP */
6991