xref: /linux/mm/memcontrol.c (revision b1c5f3085149e9643b125eb10aae0e74644d7dcc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <linux/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 /* Active memory cgroup to use from an interrupt context */
81 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
82 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket __ro_after_init;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem __ro_after_init;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 bool cgroup_memory_noswap __ro_after_init;
93 #else
94 #define cgroup_memory_noswap		1
95 #endif
96 
97 #ifdef CONFIG_CGROUP_WRITEBACK
98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 #endif
100 
101 /* Whether legacy memory+swap accounting is active */
102 static bool do_memsw_account(void)
103 {
104 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
105 }
106 
107 #define THRESHOLDS_EVENTS_TARGET 128
108 #define SOFTLIMIT_EVENTS_TARGET 1024
109 
110 /*
111  * Cgroups above their limits are maintained in a RB-Tree, independent of
112  * their hierarchy representation
113  */
114 
115 struct mem_cgroup_tree_per_node {
116 	struct rb_root rb_root;
117 	struct rb_node *rb_rightmost;
118 	spinlock_t lock;
119 };
120 
121 struct mem_cgroup_tree {
122 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 };
124 
125 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 
127 /* for OOM */
128 struct mem_cgroup_eventfd_list {
129 	struct list_head list;
130 	struct eventfd_ctx *eventfd;
131 };
132 
133 /*
134  * cgroup_event represents events which userspace want to receive.
135  */
136 struct mem_cgroup_event {
137 	/*
138 	 * memcg which the event belongs to.
139 	 */
140 	struct mem_cgroup *memcg;
141 	/*
142 	 * eventfd to signal userspace about the event.
143 	 */
144 	struct eventfd_ctx *eventfd;
145 	/*
146 	 * Each of these stored in a list by the cgroup.
147 	 */
148 	struct list_head list;
149 	/*
150 	 * register_event() callback will be used to add new userspace
151 	 * waiter for changes related to this event.  Use eventfd_signal()
152 	 * on eventfd to send notification to userspace.
153 	 */
154 	int (*register_event)(struct mem_cgroup *memcg,
155 			      struct eventfd_ctx *eventfd, const char *args);
156 	/*
157 	 * unregister_event() callback will be called when userspace closes
158 	 * the eventfd or on cgroup removing.  This callback must be set,
159 	 * if you want provide notification functionality.
160 	 */
161 	void (*unregister_event)(struct mem_cgroup *memcg,
162 				 struct eventfd_ctx *eventfd);
163 	/*
164 	 * All fields below needed to unregister event when
165 	 * userspace closes eventfd.
166 	 */
167 	poll_table pt;
168 	wait_queue_head_t *wqh;
169 	wait_queue_entry_t wait;
170 	struct work_struct remove;
171 };
172 
173 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175 
176 /* Stuffs for move charges at task migration. */
177 /*
178  * Types of charges to be moved.
179  */
180 #define MOVE_ANON	0x1U
181 #define MOVE_FILE	0x2U
182 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
183 
184 /* "mc" and its members are protected by cgroup_mutex */
185 static struct move_charge_struct {
186 	spinlock_t	  lock; /* for from, to */
187 	struct mm_struct  *mm;
188 	struct mem_cgroup *from;
189 	struct mem_cgroup *to;
190 	unsigned long flags;
191 	unsigned long precharge;
192 	unsigned long moved_charge;
193 	unsigned long moved_swap;
194 	struct task_struct *moving_task;	/* a task moving charges */
195 	wait_queue_head_t waitq;		/* a waitq for other context */
196 } mc = {
197 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199 };
200 
201 /*
202  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
203  * limit reclaim to prevent infinite loops, if they ever occur.
204  */
205 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
206 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
207 
208 /* for encoding cft->private value on file */
209 enum res_type {
210 	_MEM,
211 	_MEMSWAP,
212 	_OOM_TYPE,
213 	_KMEM,
214 	_TCP,
215 };
216 
217 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)	((val) & 0xffff)
220 /* Used for OOM notifier */
221 #define OOM_CONTROL		(0)
222 
223 /*
224  * Iteration constructs for visiting all cgroups (under a tree).  If
225  * loops are exited prematurely (break), mem_cgroup_iter_break() must
226  * be used for reference counting.
227  */
228 #define for_each_mem_cgroup_tree(iter, root)		\
229 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(root, iter, NULL))
232 
233 #define for_each_mem_cgroup(iter)			\
234 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
235 	     iter != NULL;				\
236 	     iter = mem_cgroup_iter(NULL, iter, NULL))
237 
238 static inline bool task_is_dying(void)
239 {
240 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 		(current->flags & PF_EXITING);
242 }
243 
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247 	if (!memcg)
248 		memcg = root_mem_cgroup;
249 	return &memcg->vmpressure;
250 }
251 
252 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
253 {
254 	return container_of(vmpr, struct mem_cgroup, vmpressure);
255 }
256 
257 #ifdef CONFIG_MEMCG_KMEM
258 static DEFINE_SPINLOCK(objcg_lock);
259 
260 bool mem_cgroup_kmem_disabled(void)
261 {
262 	return cgroup_memory_nokmem;
263 }
264 
265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 				      unsigned int nr_pages);
267 
268 static void obj_cgroup_release(struct percpu_ref *ref)
269 {
270 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 	unsigned int nr_bytes;
272 	unsigned int nr_pages;
273 	unsigned long flags;
274 
275 	/*
276 	 * At this point all allocated objects are freed, and
277 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 	 *
280 	 * The following sequence can lead to it:
281 	 * 1) CPU0: objcg == stock->cached_objcg
282 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 	 *          PAGE_SIZE bytes are charged
284 	 * 3) CPU1: a process from another memcg is allocating something,
285 	 *          the stock if flushed,
286 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
287 	 * 5) CPU0: we do release this object,
288 	 *          92 bytes are added to stock->nr_bytes
289 	 * 6) CPU0: stock is flushed,
290 	 *          92 bytes are added to objcg->nr_charged_bytes
291 	 *
292 	 * In the result, nr_charged_bytes == PAGE_SIZE.
293 	 * This page will be uncharged in obj_cgroup_release().
294 	 */
295 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 	nr_pages = nr_bytes >> PAGE_SHIFT;
298 
299 	if (nr_pages)
300 		obj_cgroup_uncharge_pages(objcg, nr_pages);
301 
302 	spin_lock_irqsave(&objcg_lock, flags);
303 	list_del(&objcg->list);
304 	spin_unlock_irqrestore(&objcg_lock, flags);
305 
306 	percpu_ref_exit(ref);
307 	kfree_rcu(objcg, rcu);
308 }
309 
310 static struct obj_cgroup *obj_cgroup_alloc(void)
311 {
312 	struct obj_cgroup *objcg;
313 	int ret;
314 
315 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 	if (!objcg)
317 		return NULL;
318 
319 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 			      GFP_KERNEL);
321 	if (ret) {
322 		kfree(objcg);
323 		return NULL;
324 	}
325 	INIT_LIST_HEAD(&objcg->list);
326 	return objcg;
327 }
328 
329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 				  struct mem_cgroup *parent)
331 {
332 	struct obj_cgroup *objcg, *iter;
333 
334 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335 
336 	spin_lock_irq(&objcg_lock);
337 
338 	/* 1) Ready to reparent active objcg. */
339 	list_add(&objcg->list, &memcg->objcg_list);
340 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
341 	list_for_each_entry(iter, &memcg->objcg_list, list)
342 		WRITE_ONCE(iter->memcg, parent);
343 	/* 3) Move already reparented objcgs to the parent's list */
344 	list_splice(&memcg->objcg_list, &parent->objcg_list);
345 
346 	spin_unlock_irq(&objcg_lock);
347 
348 	percpu_ref_kill(&objcg->refcnt);
349 }
350 
351 /*
352  * A lot of the calls to the cache allocation functions are expected to be
353  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354  * conditional to this static branch, we'll have to allow modules that does
355  * kmem_cache_alloc and the such to see this symbol as well
356  */
357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
358 EXPORT_SYMBOL(memcg_kmem_enabled_key);
359 #endif
360 
361 /**
362  * mem_cgroup_css_from_page - css of the memcg associated with a page
363  * @page: page of interest
364  *
365  * If memcg is bound to the default hierarchy, css of the memcg associated
366  * with @page is returned.  The returned css remains associated with @page
367  * until it is released.
368  *
369  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
370  * is returned.
371  */
372 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
373 {
374 	struct mem_cgroup *memcg;
375 
376 	memcg = page_memcg(page);
377 
378 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
379 		memcg = root_mem_cgroup;
380 
381 	return &memcg->css;
382 }
383 
384 /**
385  * page_cgroup_ino - return inode number of the memcg a page is charged to
386  * @page: the page
387  *
388  * Look up the closest online ancestor of the memory cgroup @page is charged to
389  * and return its inode number or 0 if @page is not charged to any cgroup. It
390  * is safe to call this function without holding a reference to @page.
391  *
392  * Note, this function is inherently racy, because there is nothing to prevent
393  * the cgroup inode from getting torn down and potentially reallocated a moment
394  * after page_cgroup_ino() returns, so it only should be used by callers that
395  * do not care (such as procfs interfaces).
396  */
397 ino_t page_cgroup_ino(struct page *page)
398 {
399 	struct mem_cgroup *memcg;
400 	unsigned long ino = 0;
401 
402 	rcu_read_lock();
403 	memcg = page_memcg_check(page);
404 
405 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 		memcg = parent_mem_cgroup(memcg);
407 	if (memcg)
408 		ino = cgroup_ino(memcg->css.cgroup);
409 	rcu_read_unlock();
410 	return ino;
411 }
412 
413 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 					 struct mem_cgroup_tree_per_node *mctz,
415 					 unsigned long new_usage_in_excess)
416 {
417 	struct rb_node **p = &mctz->rb_root.rb_node;
418 	struct rb_node *parent = NULL;
419 	struct mem_cgroup_per_node *mz_node;
420 	bool rightmost = true;
421 
422 	if (mz->on_tree)
423 		return;
424 
425 	mz->usage_in_excess = new_usage_in_excess;
426 	if (!mz->usage_in_excess)
427 		return;
428 	while (*p) {
429 		parent = *p;
430 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
431 					tree_node);
432 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
433 			p = &(*p)->rb_left;
434 			rightmost = false;
435 		} else {
436 			p = &(*p)->rb_right;
437 		}
438 	}
439 
440 	if (rightmost)
441 		mctz->rb_rightmost = &mz->tree_node;
442 
443 	rb_link_node(&mz->tree_node, parent, p);
444 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 	mz->on_tree = true;
446 }
447 
448 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 					 struct mem_cgroup_tree_per_node *mctz)
450 {
451 	if (!mz->on_tree)
452 		return;
453 
454 	if (&mz->tree_node == mctz->rb_rightmost)
455 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
456 
457 	rb_erase(&mz->tree_node, &mctz->rb_root);
458 	mz->on_tree = false;
459 }
460 
461 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 				       struct mem_cgroup_tree_per_node *mctz)
463 {
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&mctz->lock, flags);
467 	__mem_cgroup_remove_exceeded(mz, mctz);
468 	spin_unlock_irqrestore(&mctz->lock, flags);
469 }
470 
471 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472 {
473 	unsigned long nr_pages = page_counter_read(&memcg->memory);
474 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
475 	unsigned long excess = 0;
476 
477 	if (nr_pages > soft_limit)
478 		excess = nr_pages - soft_limit;
479 
480 	return excess;
481 }
482 
483 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
484 {
485 	unsigned long excess;
486 	struct mem_cgroup_per_node *mz;
487 	struct mem_cgroup_tree_per_node *mctz;
488 
489 	mctz = soft_limit_tree.rb_tree_per_node[nid];
490 	if (!mctz)
491 		return;
492 	/*
493 	 * Necessary to update all ancestors when hierarchy is used.
494 	 * because their event counter is not touched.
495 	 */
496 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
497 		mz = memcg->nodeinfo[nid];
498 		excess = soft_limit_excess(memcg);
499 		/*
500 		 * We have to update the tree if mz is on RB-tree or
501 		 * mem is over its softlimit.
502 		 */
503 		if (excess || mz->on_tree) {
504 			unsigned long flags;
505 
506 			spin_lock_irqsave(&mctz->lock, flags);
507 			/* if on-tree, remove it */
508 			if (mz->on_tree)
509 				__mem_cgroup_remove_exceeded(mz, mctz);
510 			/*
511 			 * Insert again. mz->usage_in_excess will be updated.
512 			 * If excess is 0, no tree ops.
513 			 */
514 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
515 			spin_unlock_irqrestore(&mctz->lock, flags);
516 		}
517 	}
518 }
519 
520 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
521 {
522 	struct mem_cgroup_tree_per_node *mctz;
523 	struct mem_cgroup_per_node *mz;
524 	int nid;
525 
526 	for_each_node(nid) {
527 		mz = memcg->nodeinfo[nid];
528 		mctz = soft_limit_tree.rb_tree_per_node[nid];
529 		if (mctz)
530 			mem_cgroup_remove_exceeded(mz, mctz);
531 	}
532 }
533 
534 static struct mem_cgroup_per_node *
535 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 	struct mem_cgroup_per_node *mz;
538 
539 retry:
540 	mz = NULL;
541 	if (!mctz->rb_rightmost)
542 		goto done;		/* Nothing to reclaim from */
543 
544 	mz = rb_entry(mctz->rb_rightmost,
545 		      struct mem_cgroup_per_node, tree_node);
546 	/*
547 	 * Remove the node now but someone else can add it back,
548 	 * we will to add it back at the end of reclaim to its correct
549 	 * position in the tree.
550 	 */
551 	__mem_cgroup_remove_exceeded(mz, mctz);
552 	if (!soft_limit_excess(mz->memcg) ||
553 	    !css_tryget(&mz->memcg->css))
554 		goto retry;
555 done:
556 	return mz;
557 }
558 
559 static struct mem_cgroup_per_node *
560 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
561 {
562 	struct mem_cgroup_per_node *mz;
563 
564 	spin_lock_irq(&mctz->lock);
565 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
566 	spin_unlock_irq(&mctz->lock);
567 	return mz;
568 }
569 
570 /*
571  * memcg and lruvec stats flushing
572  *
573  * Many codepaths leading to stats update or read are performance sensitive and
574  * adding stats flushing in such codepaths is not desirable. So, to optimize the
575  * flushing the kernel does:
576  *
577  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
578  *    rstat update tree grow unbounded.
579  *
580  * 2) Flush the stats synchronously on reader side only when there are more than
581  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
582  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
583  *    only for 2 seconds due to (1).
584  */
585 static void flush_memcg_stats_dwork(struct work_struct *w);
586 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
587 static DEFINE_SPINLOCK(stats_flush_lock);
588 static DEFINE_PER_CPU(unsigned int, stats_updates);
589 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
590 static u64 flush_next_time;
591 
592 #define FLUSH_TIME (2UL*HZ)
593 
594 /*
595  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
596  * not rely on this as part of an acquired spinlock_t lock. These functions are
597  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
598  * is sufficient.
599  */
600 static void memcg_stats_lock(void)
601 {
602 #ifdef CONFIG_PREEMPT_RT
603       preempt_disable();
604 #else
605       VM_BUG_ON(!irqs_disabled());
606 #endif
607 }
608 
609 static void __memcg_stats_lock(void)
610 {
611 #ifdef CONFIG_PREEMPT_RT
612       preempt_disable();
613 #endif
614 }
615 
616 static void memcg_stats_unlock(void)
617 {
618 #ifdef CONFIG_PREEMPT_RT
619       preempt_enable();
620 #endif
621 }
622 
623 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
624 {
625 	unsigned int x;
626 
627 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
628 
629 	x = __this_cpu_add_return(stats_updates, abs(val));
630 	if (x > MEMCG_CHARGE_BATCH) {
631 		atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
632 		__this_cpu_write(stats_updates, 0);
633 	}
634 }
635 
636 static void __mem_cgroup_flush_stats(void)
637 {
638 	unsigned long flag;
639 
640 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
641 		return;
642 
643 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
644 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
645 	atomic_set(&stats_flush_threshold, 0);
646 	spin_unlock_irqrestore(&stats_flush_lock, flag);
647 }
648 
649 void mem_cgroup_flush_stats(void)
650 {
651 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
652 		__mem_cgroup_flush_stats();
653 }
654 
655 void mem_cgroup_flush_stats_delayed(void)
656 {
657 	if (time_after64(jiffies_64, flush_next_time))
658 		mem_cgroup_flush_stats();
659 }
660 
661 static void flush_memcg_stats_dwork(struct work_struct *w)
662 {
663 	__mem_cgroup_flush_stats();
664 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
665 }
666 
667 /**
668  * __mod_memcg_state - update cgroup memory statistics
669  * @memcg: the memory cgroup
670  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
671  * @val: delta to add to the counter, can be negative
672  */
673 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
674 {
675 	if (mem_cgroup_disabled())
676 		return;
677 
678 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
679 	memcg_rstat_updated(memcg, val);
680 }
681 
682 /* idx can be of type enum memcg_stat_item or node_stat_item. */
683 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
684 {
685 	long x = 0;
686 	int cpu;
687 
688 	for_each_possible_cpu(cpu)
689 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
690 #ifdef CONFIG_SMP
691 	if (x < 0)
692 		x = 0;
693 #endif
694 	return x;
695 }
696 
697 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
698 			      int val)
699 {
700 	struct mem_cgroup_per_node *pn;
701 	struct mem_cgroup *memcg;
702 
703 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
704 	memcg = pn->memcg;
705 
706 	/*
707 	 * The caller from rmap relay on disabled preemption becase they never
708 	 * update their counter from in-interrupt context. For these two
709 	 * counters we check that the update is never performed from an
710 	 * interrupt context while other caller need to have disabled interrupt.
711 	 */
712 	__memcg_stats_lock();
713 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
714 		switch (idx) {
715 		case NR_ANON_MAPPED:
716 		case NR_FILE_MAPPED:
717 		case NR_ANON_THPS:
718 		case NR_SHMEM_PMDMAPPED:
719 		case NR_FILE_PMDMAPPED:
720 			WARN_ON_ONCE(!in_task());
721 			break;
722 		default:
723 			WARN_ON_ONCE(!irqs_disabled());
724 		}
725 	}
726 
727 	/* Update memcg */
728 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
729 
730 	/* Update lruvec */
731 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
732 
733 	memcg_rstat_updated(memcg, val);
734 	memcg_stats_unlock();
735 }
736 
737 /**
738  * __mod_lruvec_state - update lruvec memory statistics
739  * @lruvec: the lruvec
740  * @idx: the stat item
741  * @val: delta to add to the counter, can be negative
742  *
743  * The lruvec is the intersection of the NUMA node and a cgroup. This
744  * function updates the all three counters that are affected by a
745  * change of state at this level: per-node, per-cgroup, per-lruvec.
746  */
747 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
748 			int val)
749 {
750 	/* Update node */
751 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
752 
753 	/* Update memcg and lruvec */
754 	if (!mem_cgroup_disabled())
755 		__mod_memcg_lruvec_state(lruvec, idx, val);
756 }
757 
758 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
759 			     int val)
760 {
761 	struct page *head = compound_head(page); /* rmap on tail pages */
762 	struct mem_cgroup *memcg;
763 	pg_data_t *pgdat = page_pgdat(page);
764 	struct lruvec *lruvec;
765 
766 	rcu_read_lock();
767 	memcg = page_memcg(head);
768 	/* Untracked pages have no memcg, no lruvec. Update only the node */
769 	if (!memcg) {
770 		rcu_read_unlock();
771 		__mod_node_page_state(pgdat, idx, val);
772 		return;
773 	}
774 
775 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
776 	__mod_lruvec_state(lruvec, idx, val);
777 	rcu_read_unlock();
778 }
779 EXPORT_SYMBOL(__mod_lruvec_page_state);
780 
781 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
782 {
783 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
784 	struct mem_cgroup *memcg;
785 	struct lruvec *lruvec;
786 
787 	rcu_read_lock();
788 	memcg = mem_cgroup_from_obj(p);
789 
790 	/*
791 	 * Untracked pages have no memcg, no lruvec. Update only the
792 	 * node. If we reparent the slab objects to the root memcg,
793 	 * when we free the slab object, we need to update the per-memcg
794 	 * vmstats to keep it correct for the root memcg.
795 	 */
796 	if (!memcg) {
797 		__mod_node_page_state(pgdat, idx, val);
798 	} else {
799 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
800 		__mod_lruvec_state(lruvec, idx, val);
801 	}
802 	rcu_read_unlock();
803 }
804 
805 /**
806  * __count_memcg_events - account VM events in a cgroup
807  * @memcg: the memory cgroup
808  * @idx: the event item
809  * @count: the number of events that occurred
810  */
811 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 			  unsigned long count)
813 {
814 	if (mem_cgroup_disabled())
815 		return;
816 
817 	memcg_stats_lock();
818 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
819 	memcg_rstat_updated(memcg, count);
820 	memcg_stats_unlock();
821 }
822 
823 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
824 {
825 	return READ_ONCE(memcg->vmstats.events[event]);
826 }
827 
828 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
829 {
830 	long x = 0;
831 	int cpu;
832 
833 	for_each_possible_cpu(cpu)
834 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
835 	return x;
836 }
837 
838 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
839 					 int nr_pages)
840 {
841 	/* pagein of a big page is an event. So, ignore page size */
842 	if (nr_pages > 0)
843 		__count_memcg_events(memcg, PGPGIN, 1);
844 	else {
845 		__count_memcg_events(memcg, PGPGOUT, 1);
846 		nr_pages = -nr_pages; /* for event */
847 	}
848 
849 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
850 }
851 
852 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
853 				       enum mem_cgroup_events_target target)
854 {
855 	unsigned long val, next;
856 
857 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
858 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
859 	/* from time_after() in jiffies.h */
860 	if ((long)(next - val) < 0) {
861 		switch (target) {
862 		case MEM_CGROUP_TARGET_THRESH:
863 			next = val + THRESHOLDS_EVENTS_TARGET;
864 			break;
865 		case MEM_CGROUP_TARGET_SOFTLIMIT:
866 			next = val + SOFTLIMIT_EVENTS_TARGET;
867 			break;
868 		default:
869 			break;
870 		}
871 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
872 		return true;
873 	}
874 	return false;
875 }
876 
877 /*
878  * Check events in order.
879  *
880  */
881 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
882 {
883 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
884 		return;
885 
886 	/* threshold event is triggered in finer grain than soft limit */
887 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 						MEM_CGROUP_TARGET_THRESH))) {
889 		bool do_softlimit;
890 
891 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 						MEM_CGROUP_TARGET_SOFTLIMIT);
893 		mem_cgroup_threshold(memcg);
894 		if (unlikely(do_softlimit))
895 			mem_cgroup_update_tree(memcg, nid);
896 	}
897 }
898 
899 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
900 {
901 	/*
902 	 * mm_update_next_owner() may clear mm->owner to NULL
903 	 * if it races with swapoff, page migration, etc.
904 	 * So this can be called with p == NULL.
905 	 */
906 	if (unlikely(!p))
907 		return NULL;
908 
909 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
910 }
911 EXPORT_SYMBOL(mem_cgroup_from_task);
912 
913 static __always_inline struct mem_cgroup *active_memcg(void)
914 {
915 	if (!in_task())
916 		return this_cpu_read(int_active_memcg);
917 	else
918 		return current->active_memcg;
919 }
920 
921 /**
922  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
923  * @mm: mm from which memcg should be extracted. It can be NULL.
924  *
925  * Obtain a reference on mm->memcg and returns it if successful. If mm
926  * is NULL, then the memcg is chosen as follows:
927  * 1) The active memcg, if set.
928  * 2) current->mm->memcg, if available
929  * 3) root memcg
930  * If mem_cgroup is disabled, NULL is returned.
931  */
932 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
933 {
934 	struct mem_cgroup *memcg;
935 
936 	if (mem_cgroup_disabled())
937 		return NULL;
938 
939 	/*
940 	 * Page cache insertions can happen without an
941 	 * actual mm context, e.g. during disk probing
942 	 * on boot, loopback IO, acct() writes etc.
943 	 *
944 	 * No need to css_get on root memcg as the reference
945 	 * counting is disabled on the root level in the
946 	 * cgroup core. See CSS_NO_REF.
947 	 */
948 	if (unlikely(!mm)) {
949 		memcg = active_memcg();
950 		if (unlikely(memcg)) {
951 			/* remote memcg must hold a ref */
952 			css_get(&memcg->css);
953 			return memcg;
954 		}
955 		mm = current->mm;
956 		if (unlikely(!mm))
957 			return root_mem_cgroup;
958 	}
959 
960 	rcu_read_lock();
961 	do {
962 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
963 		if (unlikely(!memcg))
964 			memcg = root_mem_cgroup;
965 	} while (!css_tryget(&memcg->css));
966 	rcu_read_unlock();
967 	return memcg;
968 }
969 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
970 
971 static __always_inline bool memcg_kmem_bypass(void)
972 {
973 	/* Allow remote memcg charging from any context. */
974 	if (unlikely(active_memcg()))
975 		return false;
976 
977 	/* Memcg to charge can't be determined. */
978 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
979 		return true;
980 
981 	return false;
982 }
983 
984 /**
985  * mem_cgroup_iter - iterate over memory cgroup hierarchy
986  * @root: hierarchy root
987  * @prev: previously returned memcg, NULL on first invocation
988  * @reclaim: cookie for shared reclaim walks, NULL for full walks
989  *
990  * Returns references to children of the hierarchy below @root, or
991  * @root itself, or %NULL after a full round-trip.
992  *
993  * Caller must pass the return value in @prev on subsequent
994  * invocations for reference counting, or use mem_cgroup_iter_break()
995  * to cancel a hierarchy walk before the round-trip is complete.
996  *
997  * Reclaimers can specify a node in @reclaim to divide up the memcgs
998  * in the hierarchy among all concurrent reclaimers operating on the
999  * same node.
1000  */
1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1002 				   struct mem_cgroup *prev,
1003 				   struct mem_cgroup_reclaim_cookie *reclaim)
1004 {
1005 	struct mem_cgroup_reclaim_iter *iter;
1006 	struct cgroup_subsys_state *css = NULL;
1007 	struct mem_cgroup *memcg = NULL;
1008 	struct mem_cgroup *pos = NULL;
1009 
1010 	if (mem_cgroup_disabled())
1011 		return NULL;
1012 
1013 	if (!root)
1014 		root = root_mem_cgroup;
1015 
1016 	if (prev && !reclaim)
1017 		pos = prev;
1018 
1019 	rcu_read_lock();
1020 
1021 	if (reclaim) {
1022 		struct mem_cgroup_per_node *mz;
1023 
1024 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1025 		iter = &mz->iter;
1026 
1027 		if (prev && reclaim->generation != iter->generation)
1028 			goto out_unlock;
1029 
1030 		while (1) {
1031 			pos = READ_ONCE(iter->position);
1032 			if (!pos || css_tryget(&pos->css))
1033 				break;
1034 			/*
1035 			 * css reference reached zero, so iter->position will
1036 			 * be cleared by ->css_released. However, we should not
1037 			 * rely on this happening soon, because ->css_released
1038 			 * is called from a work queue, and by busy-waiting we
1039 			 * might block it. So we clear iter->position right
1040 			 * away.
1041 			 */
1042 			(void)cmpxchg(&iter->position, pos, NULL);
1043 		}
1044 	}
1045 
1046 	if (pos)
1047 		css = &pos->css;
1048 
1049 	for (;;) {
1050 		css = css_next_descendant_pre(css, &root->css);
1051 		if (!css) {
1052 			/*
1053 			 * Reclaimers share the hierarchy walk, and a
1054 			 * new one might jump in right at the end of
1055 			 * the hierarchy - make sure they see at least
1056 			 * one group and restart from the beginning.
1057 			 */
1058 			if (!prev)
1059 				continue;
1060 			break;
1061 		}
1062 
1063 		/*
1064 		 * Verify the css and acquire a reference.  The root
1065 		 * is provided by the caller, so we know it's alive
1066 		 * and kicking, and don't take an extra reference.
1067 		 */
1068 		memcg = mem_cgroup_from_css(css);
1069 
1070 		if (css == &root->css)
1071 			break;
1072 
1073 		if (css_tryget(css))
1074 			break;
1075 
1076 		memcg = NULL;
1077 	}
1078 
1079 	if (reclaim) {
1080 		/*
1081 		 * The position could have already been updated by a competing
1082 		 * thread, so check that the value hasn't changed since we read
1083 		 * it to avoid reclaiming from the same cgroup twice.
1084 		 */
1085 		(void)cmpxchg(&iter->position, pos, memcg);
1086 
1087 		if (pos)
1088 			css_put(&pos->css);
1089 
1090 		if (!memcg)
1091 			iter->generation++;
1092 		else if (!prev)
1093 			reclaim->generation = iter->generation;
1094 	}
1095 
1096 out_unlock:
1097 	rcu_read_unlock();
1098 	if (prev && prev != root)
1099 		css_put(&prev->css);
1100 
1101 	return memcg;
1102 }
1103 
1104 /**
1105  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1106  * @root: hierarchy root
1107  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1108  */
1109 void mem_cgroup_iter_break(struct mem_cgroup *root,
1110 			   struct mem_cgroup *prev)
1111 {
1112 	if (!root)
1113 		root = root_mem_cgroup;
1114 	if (prev && prev != root)
1115 		css_put(&prev->css);
1116 }
1117 
1118 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1119 					struct mem_cgroup *dead_memcg)
1120 {
1121 	struct mem_cgroup_reclaim_iter *iter;
1122 	struct mem_cgroup_per_node *mz;
1123 	int nid;
1124 
1125 	for_each_node(nid) {
1126 		mz = from->nodeinfo[nid];
1127 		iter = &mz->iter;
1128 		cmpxchg(&iter->position, dead_memcg, NULL);
1129 	}
1130 }
1131 
1132 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1133 {
1134 	struct mem_cgroup *memcg = dead_memcg;
1135 	struct mem_cgroup *last;
1136 
1137 	do {
1138 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1139 		last = memcg;
1140 	} while ((memcg = parent_mem_cgroup(memcg)));
1141 
1142 	/*
1143 	 * When cgruop1 non-hierarchy mode is used,
1144 	 * parent_mem_cgroup() does not walk all the way up to the
1145 	 * cgroup root (root_mem_cgroup). So we have to handle
1146 	 * dead_memcg from cgroup root separately.
1147 	 */
1148 	if (last != root_mem_cgroup)
1149 		__invalidate_reclaim_iterators(root_mem_cgroup,
1150 						dead_memcg);
1151 }
1152 
1153 /**
1154  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1155  * @memcg: hierarchy root
1156  * @fn: function to call for each task
1157  * @arg: argument passed to @fn
1158  *
1159  * This function iterates over tasks attached to @memcg or to any of its
1160  * descendants and calls @fn for each task. If @fn returns a non-zero
1161  * value, the function breaks the iteration loop and returns the value.
1162  * Otherwise, it will iterate over all tasks and return 0.
1163  *
1164  * This function must not be called for the root memory cgroup.
1165  */
1166 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1167 			  int (*fn)(struct task_struct *, void *), void *arg)
1168 {
1169 	struct mem_cgroup *iter;
1170 	int ret = 0;
1171 
1172 	BUG_ON(memcg == root_mem_cgroup);
1173 
1174 	for_each_mem_cgroup_tree(iter, memcg) {
1175 		struct css_task_iter it;
1176 		struct task_struct *task;
1177 
1178 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1179 		while (!ret && (task = css_task_iter_next(&it)))
1180 			ret = fn(task, arg);
1181 		css_task_iter_end(&it);
1182 		if (ret) {
1183 			mem_cgroup_iter_break(memcg, iter);
1184 			break;
1185 		}
1186 	}
1187 	return ret;
1188 }
1189 
1190 #ifdef CONFIG_DEBUG_VM
1191 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1192 {
1193 	struct mem_cgroup *memcg;
1194 
1195 	if (mem_cgroup_disabled())
1196 		return;
1197 
1198 	memcg = folio_memcg(folio);
1199 
1200 	if (!memcg)
1201 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1202 	else
1203 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1204 }
1205 #endif
1206 
1207 /**
1208  * folio_lruvec_lock - Lock the lruvec for a folio.
1209  * @folio: Pointer to the folio.
1210  *
1211  * These functions are safe to use under any of the following conditions:
1212  * - folio locked
1213  * - folio_test_lru false
1214  * - folio_memcg_lock()
1215  * - folio frozen (refcount of 0)
1216  *
1217  * Return: The lruvec this folio is on with its lock held.
1218  */
1219 struct lruvec *folio_lruvec_lock(struct folio *folio)
1220 {
1221 	struct lruvec *lruvec = folio_lruvec(folio);
1222 
1223 	spin_lock(&lruvec->lru_lock);
1224 	lruvec_memcg_debug(lruvec, folio);
1225 
1226 	return lruvec;
1227 }
1228 
1229 /**
1230  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1231  * @folio: Pointer to the folio.
1232  *
1233  * These functions are safe to use under any of the following conditions:
1234  * - folio locked
1235  * - folio_test_lru false
1236  * - folio_memcg_lock()
1237  * - folio frozen (refcount of 0)
1238  *
1239  * Return: The lruvec this folio is on with its lock held and interrupts
1240  * disabled.
1241  */
1242 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1243 {
1244 	struct lruvec *lruvec = folio_lruvec(folio);
1245 
1246 	spin_lock_irq(&lruvec->lru_lock);
1247 	lruvec_memcg_debug(lruvec, folio);
1248 
1249 	return lruvec;
1250 }
1251 
1252 /**
1253  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1254  * @folio: Pointer to the folio.
1255  * @flags: Pointer to irqsave flags.
1256  *
1257  * These functions are safe to use under any of the following conditions:
1258  * - folio locked
1259  * - folio_test_lru false
1260  * - folio_memcg_lock()
1261  * - folio frozen (refcount of 0)
1262  *
1263  * Return: The lruvec this folio is on with its lock held and interrupts
1264  * disabled.
1265  */
1266 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1267 		unsigned long *flags)
1268 {
1269 	struct lruvec *lruvec = folio_lruvec(folio);
1270 
1271 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1272 	lruvec_memcg_debug(lruvec, folio);
1273 
1274 	return lruvec;
1275 }
1276 
1277 /**
1278  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1279  * @lruvec: mem_cgroup per zone lru vector
1280  * @lru: index of lru list the page is sitting on
1281  * @zid: zone id of the accounted pages
1282  * @nr_pages: positive when adding or negative when removing
1283  *
1284  * This function must be called under lru_lock, just before a page is added
1285  * to or just after a page is removed from an lru list.
1286  */
1287 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1288 				int zid, int nr_pages)
1289 {
1290 	struct mem_cgroup_per_node *mz;
1291 	unsigned long *lru_size;
1292 	long size;
1293 
1294 	if (mem_cgroup_disabled())
1295 		return;
1296 
1297 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1298 	lru_size = &mz->lru_zone_size[zid][lru];
1299 
1300 	if (nr_pages < 0)
1301 		*lru_size += nr_pages;
1302 
1303 	size = *lru_size;
1304 	if (WARN_ONCE(size < 0,
1305 		"%s(%p, %d, %d): lru_size %ld\n",
1306 		__func__, lruvec, lru, nr_pages, size)) {
1307 		VM_BUG_ON(1);
1308 		*lru_size = 0;
1309 	}
1310 
1311 	if (nr_pages > 0)
1312 		*lru_size += nr_pages;
1313 }
1314 
1315 /**
1316  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317  * @memcg: the memory cgroup
1318  *
1319  * Returns the maximum amount of memory @mem can be charged with, in
1320  * pages.
1321  */
1322 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1323 {
1324 	unsigned long margin = 0;
1325 	unsigned long count;
1326 	unsigned long limit;
1327 
1328 	count = page_counter_read(&memcg->memory);
1329 	limit = READ_ONCE(memcg->memory.max);
1330 	if (count < limit)
1331 		margin = limit - count;
1332 
1333 	if (do_memsw_account()) {
1334 		count = page_counter_read(&memcg->memsw);
1335 		limit = READ_ONCE(memcg->memsw.max);
1336 		if (count < limit)
1337 			margin = min(margin, limit - count);
1338 		else
1339 			margin = 0;
1340 	}
1341 
1342 	return margin;
1343 }
1344 
1345 /*
1346  * A routine for checking "mem" is under move_account() or not.
1347  *
1348  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1349  * moving cgroups. This is for waiting at high-memory pressure
1350  * caused by "move".
1351  */
1352 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1353 {
1354 	struct mem_cgroup *from;
1355 	struct mem_cgroup *to;
1356 	bool ret = false;
1357 	/*
1358 	 * Unlike task_move routines, we access mc.to, mc.from not under
1359 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1360 	 */
1361 	spin_lock(&mc.lock);
1362 	from = mc.from;
1363 	to = mc.to;
1364 	if (!from)
1365 		goto unlock;
1366 
1367 	ret = mem_cgroup_is_descendant(from, memcg) ||
1368 		mem_cgroup_is_descendant(to, memcg);
1369 unlock:
1370 	spin_unlock(&mc.lock);
1371 	return ret;
1372 }
1373 
1374 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1375 {
1376 	if (mc.moving_task && current != mc.moving_task) {
1377 		if (mem_cgroup_under_move(memcg)) {
1378 			DEFINE_WAIT(wait);
1379 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1380 			/* moving charge context might have finished. */
1381 			if (mc.moving_task)
1382 				schedule();
1383 			finish_wait(&mc.waitq, &wait);
1384 			return true;
1385 		}
1386 	}
1387 	return false;
1388 }
1389 
1390 struct memory_stat {
1391 	const char *name;
1392 	unsigned int idx;
1393 };
1394 
1395 static const struct memory_stat memory_stats[] = {
1396 	{ "anon",			NR_ANON_MAPPED			},
1397 	{ "file",			NR_FILE_PAGES			},
1398 	{ "kernel",			MEMCG_KMEM			},
1399 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1400 	{ "pagetables",			NR_PAGETABLE			},
1401 	{ "percpu",			MEMCG_PERCPU_B			},
1402 	{ "sock",			MEMCG_SOCK			},
1403 	{ "vmalloc",			MEMCG_VMALLOC			},
1404 	{ "shmem",			NR_SHMEM			},
1405 	{ "file_mapped",		NR_FILE_MAPPED			},
1406 	{ "file_dirty",			NR_FILE_DIRTY			},
1407 	{ "file_writeback",		NR_WRITEBACK			},
1408 #ifdef CONFIG_SWAP
1409 	{ "swapcached",			NR_SWAPCACHE			},
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 	{ "anon_thp",			NR_ANON_THPS			},
1413 	{ "file_thp",			NR_FILE_THPS			},
1414 	{ "shmem_thp",			NR_SHMEM_THPS			},
1415 #endif
1416 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1417 	{ "active_anon",		NR_ACTIVE_ANON			},
1418 	{ "inactive_file",		NR_INACTIVE_FILE		},
1419 	{ "active_file",		NR_ACTIVE_FILE			},
1420 	{ "unevictable",		NR_UNEVICTABLE			},
1421 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1422 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1423 
1424 	/* The memory events */
1425 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1426 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1427 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1428 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1429 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1430 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1431 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1432 };
1433 
1434 /* Translate stat items to the correct unit for memory.stat output */
1435 static int memcg_page_state_unit(int item)
1436 {
1437 	switch (item) {
1438 	case MEMCG_PERCPU_B:
1439 	case NR_SLAB_RECLAIMABLE_B:
1440 	case NR_SLAB_UNRECLAIMABLE_B:
1441 	case WORKINGSET_REFAULT_ANON:
1442 	case WORKINGSET_REFAULT_FILE:
1443 	case WORKINGSET_ACTIVATE_ANON:
1444 	case WORKINGSET_ACTIVATE_FILE:
1445 	case WORKINGSET_RESTORE_ANON:
1446 	case WORKINGSET_RESTORE_FILE:
1447 	case WORKINGSET_NODERECLAIM:
1448 		return 1;
1449 	case NR_KERNEL_STACK_KB:
1450 		return SZ_1K;
1451 	default:
1452 		return PAGE_SIZE;
1453 	}
1454 }
1455 
1456 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1457 						    int item)
1458 {
1459 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1460 }
1461 
1462 static char *memory_stat_format(struct mem_cgroup *memcg)
1463 {
1464 	struct seq_buf s;
1465 	int i;
1466 
1467 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1468 	if (!s.buffer)
1469 		return NULL;
1470 
1471 	/*
1472 	 * Provide statistics on the state of the memory subsystem as
1473 	 * well as cumulative event counters that show past behavior.
1474 	 *
1475 	 * This list is ordered following a combination of these gradients:
1476 	 * 1) generic big picture -> specifics and details
1477 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1478 	 *
1479 	 * Current memory state:
1480 	 */
1481 	mem_cgroup_flush_stats();
1482 
1483 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1484 		u64 size;
1485 
1486 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1487 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1488 
1489 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1490 			size += memcg_page_state_output(memcg,
1491 							NR_SLAB_RECLAIMABLE_B);
1492 			seq_buf_printf(&s, "slab %llu\n", size);
1493 		}
1494 	}
1495 
1496 	/* Accumulated memory events */
1497 
1498 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1499 		       memcg_events(memcg, PGFAULT));
1500 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1501 		       memcg_events(memcg, PGMAJFAULT));
1502 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1503 		       memcg_events(memcg, PGREFILL));
1504 	seq_buf_printf(&s, "pgscan %lu\n",
1505 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1506 		       memcg_events(memcg, PGSCAN_DIRECT));
1507 	seq_buf_printf(&s, "pgsteal %lu\n",
1508 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1509 		       memcg_events(memcg, PGSTEAL_DIRECT));
1510 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1511 		       memcg_events(memcg, PGACTIVATE));
1512 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1513 		       memcg_events(memcg, PGDEACTIVATE));
1514 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1515 		       memcg_events(memcg, PGLAZYFREE));
1516 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1517 		       memcg_events(memcg, PGLAZYFREED));
1518 
1519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1521 		       memcg_events(memcg, THP_FAULT_ALLOC));
1522 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1523 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1524 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1525 
1526 	/* The above should easily fit into one page */
1527 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1528 
1529 	return s.buffer;
1530 }
1531 
1532 #define K(x) ((x) << (PAGE_SHIFT-10))
1533 /**
1534  * mem_cgroup_print_oom_context: Print OOM information relevant to
1535  * memory controller.
1536  * @memcg: The memory cgroup that went over limit
1537  * @p: Task that is going to be killed
1538  *
1539  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1540  * enabled
1541  */
1542 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1543 {
1544 	rcu_read_lock();
1545 
1546 	if (memcg) {
1547 		pr_cont(",oom_memcg=");
1548 		pr_cont_cgroup_path(memcg->css.cgroup);
1549 	} else
1550 		pr_cont(",global_oom");
1551 	if (p) {
1552 		pr_cont(",task_memcg=");
1553 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1554 	}
1555 	rcu_read_unlock();
1556 }
1557 
1558 /**
1559  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1560  * memory controller.
1561  * @memcg: The memory cgroup that went over limit
1562  */
1563 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1564 {
1565 	char *buf;
1566 
1567 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1568 		K((u64)page_counter_read(&memcg->memory)),
1569 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1570 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1571 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1572 			K((u64)page_counter_read(&memcg->swap)),
1573 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1574 	else {
1575 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1576 			K((u64)page_counter_read(&memcg->memsw)),
1577 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1578 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1579 			K((u64)page_counter_read(&memcg->kmem)),
1580 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1581 	}
1582 
1583 	pr_info("Memory cgroup stats for ");
1584 	pr_cont_cgroup_path(memcg->css.cgroup);
1585 	pr_cont(":");
1586 	buf = memory_stat_format(memcg);
1587 	if (!buf)
1588 		return;
1589 	pr_info("%s", buf);
1590 	kfree(buf);
1591 }
1592 
1593 /*
1594  * Return the memory (and swap, if configured) limit for a memcg.
1595  */
1596 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1597 {
1598 	unsigned long max = READ_ONCE(memcg->memory.max);
1599 
1600 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1601 		if (mem_cgroup_swappiness(memcg))
1602 			max += min(READ_ONCE(memcg->swap.max),
1603 				   (unsigned long)total_swap_pages);
1604 	} else { /* v1 */
1605 		if (mem_cgroup_swappiness(memcg)) {
1606 			/* Calculate swap excess capacity from memsw limit */
1607 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1608 
1609 			max += min(swap, (unsigned long)total_swap_pages);
1610 		}
1611 	}
1612 	return max;
1613 }
1614 
1615 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1616 {
1617 	return page_counter_read(&memcg->memory);
1618 }
1619 
1620 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1621 				     int order)
1622 {
1623 	struct oom_control oc = {
1624 		.zonelist = NULL,
1625 		.nodemask = NULL,
1626 		.memcg = memcg,
1627 		.gfp_mask = gfp_mask,
1628 		.order = order,
1629 	};
1630 	bool ret = true;
1631 
1632 	if (mutex_lock_killable(&oom_lock))
1633 		return true;
1634 
1635 	if (mem_cgroup_margin(memcg) >= (1 << order))
1636 		goto unlock;
1637 
1638 	/*
1639 	 * A few threads which were not waiting at mutex_lock_killable() can
1640 	 * fail to bail out. Therefore, check again after holding oom_lock.
1641 	 */
1642 	ret = task_is_dying() || out_of_memory(&oc);
1643 
1644 unlock:
1645 	mutex_unlock(&oom_lock);
1646 	return ret;
1647 }
1648 
1649 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1650 				   pg_data_t *pgdat,
1651 				   gfp_t gfp_mask,
1652 				   unsigned long *total_scanned)
1653 {
1654 	struct mem_cgroup *victim = NULL;
1655 	int total = 0;
1656 	int loop = 0;
1657 	unsigned long excess;
1658 	unsigned long nr_scanned;
1659 	struct mem_cgroup_reclaim_cookie reclaim = {
1660 		.pgdat = pgdat,
1661 	};
1662 
1663 	excess = soft_limit_excess(root_memcg);
1664 
1665 	while (1) {
1666 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1667 		if (!victim) {
1668 			loop++;
1669 			if (loop >= 2) {
1670 				/*
1671 				 * If we have not been able to reclaim
1672 				 * anything, it might because there are
1673 				 * no reclaimable pages under this hierarchy
1674 				 */
1675 				if (!total)
1676 					break;
1677 				/*
1678 				 * We want to do more targeted reclaim.
1679 				 * excess >> 2 is not to excessive so as to
1680 				 * reclaim too much, nor too less that we keep
1681 				 * coming back to reclaim from this cgroup
1682 				 */
1683 				if (total >= (excess >> 2) ||
1684 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1685 					break;
1686 			}
1687 			continue;
1688 		}
1689 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1690 					pgdat, &nr_scanned);
1691 		*total_scanned += nr_scanned;
1692 		if (!soft_limit_excess(root_memcg))
1693 			break;
1694 	}
1695 	mem_cgroup_iter_break(root_memcg, victim);
1696 	return total;
1697 }
1698 
1699 #ifdef CONFIG_LOCKDEP
1700 static struct lockdep_map memcg_oom_lock_dep_map = {
1701 	.name = "memcg_oom_lock",
1702 };
1703 #endif
1704 
1705 static DEFINE_SPINLOCK(memcg_oom_lock);
1706 
1707 /*
1708  * Check OOM-Killer is already running under our hierarchy.
1709  * If someone is running, return false.
1710  */
1711 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1712 {
1713 	struct mem_cgroup *iter, *failed = NULL;
1714 
1715 	spin_lock(&memcg_oom_lock);
1716 
1717 	for_each_mem_cgroup_tree(iter, memcg) {
1718 		if (iter->oom_lock) {
1719 			/*
1720 			 * this subtree of our hierarchy is already locked
1721 			 * so we cannot give a lock.
1722 			 */
1723 			failed = iter;
1724 			mem_cgroup_iter_break(memcg, iter);
1725 			break;
1726 		} else
1727 			iter->oom_lock = true;
1728 	}
1729 
1730 	if (failed) {
1731 		/*
1732 		 * OK, we failed to lock the whole subtree so we have
1733 		 * to clean up what we set up to the failing subtree
1734 		 */
1735 		for_each_mem_cgroup_tree(iter, memcg) {
1736 			if (iter == failed) {
1737 				mem_cgroup_iter_break(memcg, iter);
1738 				break;
1739 			}
1740 			iter->oom_lock = false;
1741 		}
1742 	} else
1743 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1744 
1745 	spin_unlock(&memcg_oom_lock);
1746 
1747 	return !failed;
1748 }
1749 
1750 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1751 {
1752 	struct mem_cgroup *iter;
1753 
1754 	spin_lock(&memcg_oom_lock);
1755 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1756 	for_each_mem_cgroup_tree(iter, memcg)
1757 		iter->oom_lock = false;
1758 	spin_unlock(&memcg_oom_lock);
1759 }
1760 
1761 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1762 {
1763 	struct mem_cgroup *iter;
1764 
1765 	spin_lock(&memcg_oom_lock);
1766 	for_each_mem_cgroup_tree(iter, memcg)
1767 		iter->under_oom++;
1768 	spin_unlock(&memcg_oom_lock);
1769 }
1770 
1771 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1772 {
1773 	struct mem_cgroup *iter;
1774 
1775 	/*
1776 	 * Be careful about under_oom underflows because a child memcg
1777 	 * could have been added after mem_cgroup_mark_under_oom.
1778 	 */
1779 	spin_lock(&memcg_oom_lock);
1780 	for_each_mem_cgroup_tree(iter, memcg)
1781 		if (iter->under_oom > 0)
1782 			iter->under_oom--;
1783 	spin_unlock(&memcg_oom_lock);
1784 }
1785 
1786 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1787 
1788 struct oom_wait_info {
1789 	struct mem_cgroup *memcg;
1790 	wait_queue_entry_t	wait;
1791 };
1792 
1793 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1794 	unsigned mode, int sync, void *arg)
1795 {
1796 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1797 	struct mem_cgroup *oom_wait_memcg;
1798 	struct oom_wait_info *oom_wait_info;
1799 
1800 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1801 	oom_wait_memcg = oom_wait_info->memcg;
1802 
1803 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1804 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1805 		return 0;
1806 	return autoremove_wake_function(wait, mode, sync, arg);
1807 }
1808 
1809 static void memcg_oom_recover(struct mem_cgroup *memcg)
1810 {
1811 	/*
1812 	 * For the following lockless ->under_oom test, the only required
1813 	 * guarantee is that it must see the state asserted by an OOM when
1814 	 * this function is called as a result of userland actions
1815 	 * triggered by the notification of the OOM.  This is trivially
1816 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1817 	 * triggering notification.
1818 	 */
1819 	if (memcg && memcg->under_oom)
1820 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1821 }
1822 
1823 /*
1824  * Returns true if successfully killed one or more processes. Though in some
1825  * corner cases it can return true even without killing any process.
1826  */
1827 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1828 {
1829 	bool locked, ret;
1830 
1831 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1832 		return false;
1833 
1834 	memcg_memory_event(memcg, MEMCG_OOM);
1835 
1836 	/*
1837 	 * We are in the middle of the charge context here, so we
1838 	 * don't want to block when potentially sitting on a callstack
1839 	 * that holds all kinds of filesystem and mm locks.
1840 	 *
1841 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1842 	 * handling until the charge can succeed; remember the context and put
1843 	 * the task to sleep at the end of the page fault when all locks are
1844 	 * released.
1845 	 *
1846 	 * On the other hand, in-kernel OOM killer allows for an async victim
1847 	 * memory reclaim (oom_reaper) and that means that we are not solely
1848 	 * relying on the oom victim to make a forward progress and we can
1849 	 * invoke the oom killer here.
1850 	 *
1851 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1852 	 * victim and then we have to bail out from the charge path.
1853 	 */
1854 	if (memcg->oom_kill_disable) {
1855 		if (current->in_user_fault) {
1856 			css_get(&memcg->css);
1857 			current->memcg_in_oom = memcg;
1858 			current->memcg_oom_gfp_mask = mask;
1859 			current->memcg_oom_order = order;
1860 		}
1861 		return false;
1862 	}
1863 
1864 	mem_cgroup_mark_under_oom(memcg);
1865 
1866 	locked = mem_cgroup_oom_trylock(memcg);
1867 
1868 	if (locked)
1869 		mem_cgroup_oom_notify(memcg);
1870 
1871 	mem_cgroup_unmark_under_oom(memcg);
1872 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1873 
1874 	if (locked)
1875 		mem_cgroup_oom_unlock(memcg);
1876 
1877 	return ret;
1878 }
1879 
1880 /**
1881  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1882  * @handle: actually kill/wait or just clean up the OOM state
1883  *
1884  * This has to be called at the end of a page fault if the memcg OOM
1885  * handler was enabled.
1886  *
1887  * Memcg supports userspace OOM handling where failed allocations must
1888  * sleep on a waitqueue until the userspace task resolves the
1889  * situation.  Sleeping directly in the charge context with all kinds
1890  * of locks held is not a good idea, instead we remember an OOM state
1891  * in the task and mem_cgroup_oom_synchronize() has to be called at
1892  * the end of the page fault to complete the OOM handling.
1893  *
1894  * Returns %true if an ongoing memcg OOM situation was detected and
1895  * completed, %false otherwise.
1896  */
1897 bool mem_cgroup_oom_synchronize(bool handle)
1898 {
1899 	struct mem_cgroup *memcg = current->memcg_in_oom;
1900 	struct oom_wait_info owait;
1901 	bool locked;
1902 
1903 	/* OOM is global, do not handle */
1904 	if (!memcg)
1905 		return false;
1906 
1907 	if (!handle)
1908 		goto cleanup;
1909 
1910 	owait.memcg = memcg;
1911 	owait.wait.flags = 0;
1912 	owait.wait.func = memcg_oom_wake_function;
1913 	owait.wait.private = current;
1914 	INIT_LIST_HEAD(&owait.wait.entry);
1915 
1916 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1917 	mem_cgroup_mark_under_oom(memcg);
1918 
1919 	locked = mem_cgroup_oom_trylock(memcg);
1920 
1921 	if (locked)
1922 		mem_cgroup_oom_notify(memcg);
1923 
1924 	if (locked && !memcg->oom_kill_disable) {
1925 		mem_cgroup_unmark_under_oom(memcg);
1926 		finish_wait(&memcg_oom_waitq, &owait.wait);
1927 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1928 					 current->memcg_oom_order);
1929 	} else {
1930 		schedule();
1931 		mem_cgroup_unmark_under_oom(memcg);
1932 		finish_wait(&memcg_oom_waitq, &owait.wait);
1933 	}
1934 
1935 	if (locked) {
1936 		mem_cgroup_oom_unlock(memcg);
1937 		/*
1938 		 * There is no guarantee that an OOM-lock contender
1939 		 * sees the wakeups triggered by the OOM kill
1940 		 * uncharges.  Wake any sleepers explicitly.
1941 		 */
1942 		memcg_oom_recover(memcg);
1943 	}
1944 cleanup:
1945 	current->memcg_in_oom = NULL;
1946 	css_put(&memcg->css);
1947 	return true;
1948 }
1949 
1950 /**
1951  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1952  * @victim: task to be killed by the OOM killer
1953  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1954  *
1955  * Returns a pointer to a memory cgroup, which has to be cleaned up
1956  * by killing all belonging OOM-killable tasks.
1957  *
1958  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1959  */
1960 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1961 					    struct mem_cgroup *oom_domain)
1962 {
1963 	struct mem_cgroup *oom_group = NULL;
1964 	struct mem_cgroup *memcg;
1965 
1966 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1967 		return NULL;
1968 
1969 	if (!oom_domain)
1970 		oom_domain = root_mem_cgroup;
1971 
1972 	rcu_read_lock();
1973 
1974 	memcg = mem_cgroup_from_task(victim);
1975 	if (memcg == root_mem_cgroup)
1976 		goto out;
1977 
1978 	/*
1979 	 * If the victim task has been asynchronously moved to a different
1980 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1981 	 * In this case it's better to ignore memory.group.oom.
1982 	 */
1983 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1984 		goto out;
1985 
1986 	/*
1987 	 * Traverse the memory cgroup hierarchy from the victim task's
1988 	 * cgroup up to the OOMing cgroup (or root) to find the
1989 	 * highest-level memory cgroup with oom.group set.
1990 	 */
1991 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1992 		if (memcg->oom_group)
1993 			oom_group = memcg;
1994 
1995 		if (memcg == oom_domain)
1996 			break;
1997 	}
1998 
1999 	if (oom_group)
2000 		css_get(&oom_group->css);
2001 out:
2002 	rcu_read_unlock();
2003 
2004 	return oom_group;
2005 }
2006 
2007 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2008 {
2009 	pr_info("Tasks in ");
2010 	pr_cont_cgroup_path(memcg->css.cgroup);
2011 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2012 }
2013 
2014 /**
2015  * folio_memcg_lock - Bind a folio to its memcg.
2016  * @folio: The folio.
2017  *
2018  * This function prevents unlocked LRU folios from being moved to
2019  * another cgroup.
2020  *
2021  * It ensures lifetime of the bound memcg.  The caller is responsible
2022  * for the lifetime of the folio.
2023  */
2024 void folio_memcg_lock(struct folio *folio)
2025 {
2026 	struct mem_cgroup *memcg;
2027 	unsigned long flags;
2028 
2029 	/*
2030 	 * The RCU lock is held throughout the transaction.  The fast
2031 	 * path can get away without acquiring the memcg->move_lock
2032 	 * because page moving starts with an RCU grace period.
2033          */
2034 	rcu_read_lock();
2035 
2036 	if (mem_cgroup_disabled())
2037 		return;
2038 again:
2039 	memcg = folio_memcg(folio);
2040 	if (unlikely(!memcg))
2041 		return;
2042 
2043 #ifdef CONFIG_PROVE_LOCKING
2044 	local_irq_save(flags);
2045 	might_lock(&memcg->move_lock);
2046 	local_irq_restore(flags);
2047 #endif
2048 
2049 	if (atomic_read(&memcg->moving_account) <= 0)
2050 		return;
2051 
2052 	spin_lock_irqsave(&memcg->move_lock, flags);
2053 	if (memcg != folio_memcg(folio)) {
2054 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 		goto again;
2056 	}
2057 
2058 	/*
2059 	 * When charge migration first begins, we can have multiple
2060 	 * critical sections holding the fast-path RCU lock and one
2061 	 * holding the slowpath move_lock. Track the task who has the
2062 	 * move_lock for unlock_page_memcg().
2063 	 */
2064 	memcg->move_lock_task = current;
2065 	memcg->move_lock_flags = flags;
2066 }
2067 
2068 void lock_page_memcg(struct page *page)
2069 {
2070 	folio_memcg_lock(page_folio(page));
2071 }
2072 
2073 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2074 {
2075 	if (memcg && memcg->move_lock_task == current) {
2076 		unsigned long flags = memcg->move_lock_flags;
2077 
2078 		memcg->move_lock_task = NULL;
2079 		memcg->move_lock_flags = 0;
2080 
2081 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2082 	}
2083 
2084 	rcu_read_unlock();
2085 }
2086 
2087 /**
2088  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2089  * @folio: The folio.
2090  *
2091  * This releases the binding created by folio_memcg_lock().  This does
2092  * not change the accounting of this folio to its memcg, but it does
2093  * permit others to change it.
2094  */
2095 void folio_memcg_unlock(struct folio *folio)
2096 {
2097 	__folio_memcg_unlock(folio_memcg(folio));
2098 }
2099 
2100 void unlock_page_memcg(struct page *page)
2101 {
2102 	folio_memcg_unlock(page_folio(page));
2103 }
2104 
2105 struct memcg_stock_pcp {
2106 	local_lock_t stock_lock;
2107 	struct mem_cgroup *cached; /* this never be root cgroup */
2108 	unsigned int nr_pages;
2109 
2110 #ifdef CONFIG_MEMCG_KMEM
2111 	struct obj_cgroup *cached_objcg;
2112 	struct pglist_data *cached_pgdat;
2113 	unsigned int nr_bytes;
2114 	int nr_slab_reclaimable_b;
2115 	int nr_slab_unreclaimable_b;
2116 #endif
2117 
2118 	struct work_struct work;
2119 	unsigned long flags;
2120 #define FLUSHING_CACHED_CHARGE	0
2121 };
2122 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2123 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2124 };
2125 static DEFINE_MUTEX(percpu_charge_mutex);
2126 
2127 #ifdef CONFIG_MEMCG_KMEM
2128 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2129 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2130 				     struct mem_cgroup *root_memcg);
2131 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2132 
2133 #else
2134 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2135 {
2136 	return NULL;
2137 }
2138 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2139 				     struct mem_cgroup *root_memcg)
2140 {
2141 	return false;
2142 }
2143 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2144 {
2145 }
2146 #endif
2147 
2148 /**
2149  * consume_stock: Try to consume stocked charge on this cpu.
2150  * @memcg: memcg to consume from.
2151  * @nr_pages: how many pages to charge.
2152  *
2153  * The charges will only happen if @memcg matches the current cpu's memcg
2154  * stock, and at least @nr_pages are available in that stock.  Failure to
2155  * service an allocation will refill the stock.
2156  *
2157  * returns true if successful, false otherwise.
2158  */
2159 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160 {
2161 	struct memcg_stock_pcp *stock;
2162 	unsigned long flags;
2163 	bool ret = false;
2164 
2165 	if (nr_pages > MEMCG_CHARGE_BATCH)
2166 		return ret;
2167 
2168 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2169 
2170 	stock = this_cpu_ptr(&memcg_stock);
2171 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 		stock->nr_pages -= nr_pages;
2173 		ret = true;
2174 	}
2175 
2176 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2177 
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Returns stocks cached in percpu and reset cached information.
2183  */
2184 static void drain_stock(struct memcg_stock_pcp *stock)
2185 {
2186 	struct mem_cgroup *old = stock->cached;
2187 
2188 	if (!old)
2189 		return;
2190 
2191 	if (stock->nr_pages) {
2192 		page_counter_uncharge(&old->memory, stock->nr_pages);
2193 		if (do_memsw_account())
2194 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 		stock->nr_pages = 0;
2196 	}
2197 
2198 	css_put(&old->css);
2199 	stock->cached = NULL;
2200 }
2201 
2202 static void drain_local_stock(struct work_struct *dummy)
2203 {
2204 	struct memcg_stock_pcp *stock;
2205 	struct obj_cgroup *old = NULL;
2206 	unsigned long flags;
2207 
2208 	/*
2209 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2210 	 * drain_stock races is that we always operate on local CPU stock
2211 	 * here with IRQ disabled
2212 	 */
2213 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2214 
2215 	stock = this_cpu_ptr(&memcg_stock);
2216 	old = drain_obj_stock(stock);
2217 	drain_stock(stock);
2218 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219 
2220 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2221 	if (old)
2222 		obj_cgroup_put(old);
2223 }
2224 
2225 /*
2226  * Cache charges(val) to local per_cpu area.
2227  * This will be consumed by consume_stock() function, later.
2228  */
2229 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2230 {
2231 	struct memcg_stock_pcp *stock;
2232 
2233 	stock = this_cpu_ptr(&memcg_stock);
2234 	if (stock->cached != memcg) { /* reset if necessary */
2235 		drain_stock(stock);
2236 		css_get(&memcg->css);
2237 		stock->cached = memcg;
2238 	}
2239 	stock->nr_pages += nr_pages;
2240 
2241 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2242 		drain_stock(stock);
2243 }
2244 
2245 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2246 {
2247 	unsigned long flags;
2248 
2249 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2250 	__refill_stock(memcg, nr_pages);
2251 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2252 }
2253 
2254 /*
2255  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2256  * of the hierarchy under it.
2257  */
2258 static void drain_all_stock(struct mem_cgroup *root_memcg)
2259 {
2260 	int cpu, curcpu;
2261 
2262 	/* If someone's already draining, avoid adding running more workers. */
2263 	if (!mutex_trylock(&percpu_charge_mutex))
2264 		return;
2265 	/*
2266 	 * Notify other cpus that system-wide "drain" is running
2267 	 * We do not care about races with the cpu hotplug because cpu down
2268 	 * as well as workers from this path always operate on the local
2269 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2270 	 */
2271 	migrate_disable();
2272 	curcpu = smp_processor_id();
2273 	for_each_online_cpu(cpu) {
2274 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2275 		struct mem_cgroup *memcg;
2276 		bool flush = false;
2277 
2278 		rcu_read_lock();
2279 		memcg = stock->cached;
2280 		if (memcg && stock->nr_pages &&
2281 		    mem_cgroup_is_descendant(memcg, root_memcg))
2282 			flush = true;
2283 		else if (obj_stock_flush_required(stock, root_memcg))
2284 			flush = true;
2285 		rcu_read_unlock();
2286 
2287 		if (flush &&
2288 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2289 			if (cpu == curcpu)
2290 				drain_local_stock(&stock->work);
2291 			else
2292 				schedule_work_on(cpu, &stock->work);
2293 		}
2294 	}
2295 	migrate_enable();
2296 	mutex_unlock(&percpu_charge_mutex);
2297 }
2298 
2299 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2300 {
2301 	struct memcg_stock_pcp *stock;
2302 
2303 	stock = &per_cpu(memcg_stock, cpu);
2304 	drain_stock(stock);
2305 
2306 	return 0;
2307 }
2308 
2309 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2310 				  unsigned int nr_pages,
2311 				  gfp_t gfp_mask)
2312 {
2313 	unsigned long nr_reclaimed = 0;
2314 
2315 	do {
2316 		unsigned long pflags;
2317 
2318 		if (page_counter_read(&memcg->memory) <=
2319 		    READ_ONCE(memcg->memory.high))
2320 			continue;
2321 
2322 		memcg_memory_event(memcg, MEMCG_HIGH);
2323 
2324 		psi_memstall_enter(&pflags);
2325 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2326 							     gfp_mask, true);
2327 		psi_memstall_leave(&pflags);
2328 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2329 		 !mem_cgroup_is_root(memcg));
2330 
2331 	return nr_reclaimed;
2332 }
2333 
2334 static void high_work_func(struct work_struct *work)
2335 {
2336 	struct mem_cgroup *memcg;
2337 
2338 	memcg = container_of(work, struct mem_cgroup, high_work);
2339 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2340 }
2341 
2342 /*
2343  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2344  * enough to still cause a significant slowdown in most cases, while still
2345  * allowing diagnostics and tracing to proceed without becoming stuck.
2346  */
2347 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2348 
2349 /*
2350  * When calculating the delay, we use these either side of the exponentiation to
2351  * maintain precision and scale to a reasonable number of jiffies (see the table
2352  * below.
2353  *
2354  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2355  *   overage ratio to a delay.
2356  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2357  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2358  *   to produce a reasonable delay curve.
2359  *
2360  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2361  * reasonable delay curve compared to precision-adjusted overage, not
2362  * penalising heavily at first, but still making sure that growth beyond the
2363  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2364  * example, with a high of 100 megabytes:
2365  *
2366  *  +-------+------------------------+
2367  *  | usage | time to allocate in ms |
2368  *  +-------+------------------------+
2369  *  | 100M  |                      0 |
2370  *  | 101M  |                      6 |
2371  *  | 102M  |                     25 |
2372  *  | 103M  |                     57 |
2373  *  | 104M  |                    102 |
2374  *  | 105M  |                    159 |
2375  *  | 106M  |                    230 |
2376  *  | 107M  |                    313 |
2377  *  | 108M  |                    409 |
2378  *  | 109M  |                    518 |
2379  *  | 110M  |                    639 |
2380  *  | 111M  |                    774 |
2381  *  | 112M  |                    921 |
2382  *  | 113M  |                   1081 |
2383  *  | 114M  |                   1254 |
2384  *  | 115M  |                   1439 |
2385  *  | 116M  |                   1638 |
2386  *  | 117M  |                   1849 |
2387  *  | 118M  |                   2000 |
2388  *  | 119M  |                   2000 |
2389  *  | 120M  |                   2000 |
2390  *  +-------+------------------------+
2391  */
2392  #define MEMCG_DELAY_PRECISION_SHIFT 20
2393  #define MEMCG_DELAY_SCALING_SHIFT 14
2394 
2395 static u64 calculate_overage(unsigned long usage, unsigned long high)
2396 {
2397 	u64 overage;
2398 
2399 	if (usage <= high)
2400 		return 0;
2401 
2402 	/*
2403 	 * Prevent division by 0 in overage calculation by acting as if
2404 	 * it was a threshold of 1 page
2405 	 */
2406 	high = max(high, 1UL);
2407 
2408 	overage = usage - high;
2409 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2410 	return div64_u64(overage, high);
2411 }
2412 
2413 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2414 {
2415 	u64 overage, max_overage = 0;
2416 
2417 	do {
2418 		overage = calculate_overage(page_counter_read(&memcg->memory),
2419 					    READ_ONCE(memcg->memory.high));
2420 		max_overage = max(overage, max_overage);
2421 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2422 		 !mem_cgroup_is_root(memcg));
2423 
2424 	return max_overage;
2425 }
2426 
2427 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2428 {
2429 	u64 overage, max_overage = 0;
2430 
2431 	do {
2432 		overage = calculate_overage(page_counter_read(&memcg->swap),
2433 					    READ_ONCE(memcg->swap.high));
2434 		if (overage)
2435 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2436 		max_overage = max(overage, max_overage);
2437 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2438 		 !mem_cgroup_is_root(memcg));
2439 
2440 	return max_overage;
2441 }
2442 
2443 /*
2444  * Get the number of jiffies that we should penalise a mischievous cgroup which
2445  * is exceeding its memory.high by checking both it and its ancestors.
2446  */
2447 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2448 					  unsigned int nr_pages,
2449 					  u64 max_overage)
2450 {
2451 	unsigned long penalty_jiffies;
2452 
2453 	if (!max_overage)
2454 		return 0;
2455 
2456 	/*
2457 	 * We use overage compared to memory.high to calculate the number of
2458 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2459 	 * fairly lenient on small overages, and increasingly harsh when the
2460 	 * memcg in question makes it clear that it has no intention of stopping
2461 	 * its crazy behaviour, so we exponentially increase the delay based on
2462 	 * overage amount.
2463 	 */
2464 	penalty_jiffies = max_overage * max_overage * HZ;
2465 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2466 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2467 
2468 	/*
2469 	 * Factor in the task's own contribution to the overage, such that four
2470 	 * N-sized allocations are throttled approximately the same as one
2471 	 * 4N-sized allocation.
2472 	 *
2473 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2474 	 * larger the current charge patch is than that.
2475 	 */
2476 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2477 }
2478 
2479 /*
2480  * Scheduled by try_charge() to be executed from the userland return path
2481  * and reclaims memory over the high limit.
2482  */
2483 void mem_cgroup_handle_over_high(void)
2484 {
2485 	unsigned long penalty_jiffies;
2486 	unsigned long pflags;
2487 	unsigned long nr_reclaimed;
2488 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2489 	int nr_retries = MAX_RECLAIM_RETRIES;
2490 	struct mem_cgroup *memcg;
2491 	bool in_retry = false;
2492 
2493 	if (likely(!nr_pages))
2494 		return;
2495 
2496 	memcg = get_mem_cgroup_from_mm(current->mm);
2497 	current->memcg_nr_pages_over_high = 0;
2498 
2499 retry_reclaim:
2500 	/*
2501 	 * The allocating task should reclaim at least the batch size, but for
2502 	 * subsequent retries we only want to do what's necessary to prevent oom
2503 	 * or breaching resource isolation.
2504 	 *
2505 	 * This is distinct from memory.max or page allocator behaviour because
2506 	 * memory.high is currently batched, whereas memory.max and the page
2507 	 * allocator run every time an allocation is made.
2508 	 */
2509 	nr_reclaimed = reclaim_high(memcg,
2510 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2511 				    GFP_KERNEL);
2512 
2513 	/*
2514 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2515 	 * allocators proactively to slow down excessive growth.
2516 	 */
2517 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2518 					       mem_find_max_overage(memcg));
2519 
2520 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2521 						swap_find_max_overage(memcg));
2522 
2523 	/*
2524 	 * Clamp the max delay per usermode return so as to still keep the
2525 	 * application moving forwards and also permit diagnostics, albeit
2526 	 * extremely slowly.
2527 	 */
2528 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2529 
2530 	/*
2531 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2532 	 * that it's not even worth doing, in an attempt to be nice to those who
2533 	 * go only a small amount over their memory.high value and maybe haven't
2534 	 * been aggressively reclaimed enough yet.
2535 	 */
2536 	if (penalty_jiffies <= HZ / 100)
2537 		goto out;
2538 
2539 	/*
2540 	 * If reclaim is making forward progress but we're still over
2541 	 * memory.high, we want to encourage that rather than doing allocator
2542 	 * throttling.
2543 	 */
2544 	if (nr_reclaimed || nr_retries--) {
2545 		in_retry = true;
2546 		goto retry_reclaim;
2547 	}
2548 
2549 	/*
2550 	 * If we exit early, we're guaranteed to die (since
2551 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2552 	 * need to account for any ill-begotten jiffies to pay them off later.
2553 	 */
2554 	psi_memstall_enter(&pflags);
2555 	schedule_timeout_killable(penalty_jiffies);
2556 	psi_memstall_leave(&pflags);
2557 
2558 out:
2559 	css_put(&memcg->css);
2560 }
2561 
2562 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2563 			unsigned int nr_pages)
2564 {
2565 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2566 	int nr_retries = MAX_RECLAIM_RETRIES;
2567 	struct mem_cgroup *mem_over_limit;
2568 	struct page_counter *counter;
2569 	unsigned long nr_reclaimed;
2570 	bool passed_oom = false;
2571 	bool may_swap = true;
2572 	bool drained = false;
2573 	unsigned long pflags;
2574 
2575 retry:
2576 	if (consume_stock(memcg, nr_pages))
2577 		return 0;
2578 
2579 	if (!do_memsw_account() ||
2580 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2581 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2582 			goto done_restock;
2583 		if (do_memsw_account())
2584 			page_counter_uncharge(&memcg->memsw, batch);
2585 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2586 	} else {
2587 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2588 		may_swap = false;
2589 	}
2590 
2591 	if (batch > nr_pages) {
2592 		batch = nr_pages;
2593 		goto retry;
2594 	}
2595 
2596 	/*
2597 	 * Prevent unbounded recursion when reclaim operations need to
2598 	 * allocate memory. This might exceed the limits temporarily,
2599 	 * but we prefer facilitating memory reclaim and getting back
2600 	 * under the limit over triggering OOM kills in these cases.
2601 	 */
2602 	if (unlikely(current->flags & PF_MEMALLOC))
2603 		goto force;
2604 
2605 	if (unlikely(task_in_memcg_oom(current)))
2606 		goto nomem;
2607 
2608 	if (!gfpflags_allow_blocking(gfp_mask))
2609 		goto nomem;
2610 
2611 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2612 
2613 	psi_memstall_enter(&pflags);
2614 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2615 						    gfp_mask, may_swap);
2616 	psi_memstall_leave(&pflags);
2617 
2618 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2619 		goto retry;
2620 
2621 	if (!drained) {
2622 		drain_all_stock(mem_over_limit);
2623 		drained = true;
2624 		goto retry;
2625 	}
2626 
2627 	if (gfp_mask & __GFP_NORETRY)
2628 		goto nomem;
2629 	/*
2630 	 * Even though the limit is exceeded at this point, reclaim
2631 	 * may have been able to free some pages.  Retry the charge
2632 	 * before killing the task.
2633 	 *
2634 	 * Only for regular pages, though: huge pages are rather
2635 	 * unlikely to succeed so close to the limit, and we fall back
2636 	 * to regular pages anyway in case of failure.
2637 	 */
2638 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2639 		goto retry;
2640 	/*
2641 	 * At task move, charge accounts can be doubly counted. So, it's
2642 	 * better to wait until the end of task_move if something is going on.
2643 	 */
2644 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2645 		goto retry;
2646 
2647 	if (nr_retries--)
2648 		goto retry;
2649 
2650 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2651 		goto nomem;
2652 
2653 	/* Avoid endless loop for tasks bypassed by the oom killer */
2654 	if (passed_oom && task_is_dying())
2655 		goto nomem;
2656 
2657 	/*
2658 	 * keep retrying as long as the memcg oom killer is able to make
2659 	 * a forward progress or bypass the charge if the oom killer
2660 	 * couldn't make any progress.
2661 	 */
2662 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2663 			   get_order(nr_pages * PAGE_SIZE))) {
2664 		passed_oom = true;
2665 		nr_retries = MAX_RECLAIM_RETRIES;
2666 		goto retry;
2667 	}
2668 nomem:
2669 	/*
2670 	 * Memcg doesn't have a dedicated reserve for atomic
2671 	 * allocations. But like the global atomic pool, we need to
2672 	 * put the burden of reclaim on regular allocation requests
2673 	 * and let these go through as privileged allocations.
2674 	 */
2675 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2676 		return -ENOMEM;
2677 force:
2678 	/*
2679 	 * The allocation either can't fail or will lead to more memory
2680 	 * being freed very soon.  Allow memory usage go over the limit
2681 	 * temporarily by force charging it.
2682 	 */
2683 	page_counter_charge(&memcg->memory, nr_pages);
2684 	if (do_memsw_account())
2685 		page_counter_charge(&memcg->memsw, nr_pages);
2686 
2687 	return 0;
2688 
2689 done_restock:
2690 	if (batch > nr_pages)
2691 		refill_stock(memcg, batch - nr_pages);
2692 
2693 	/*
2694 	 * If the hierarchy is above the normal consumption range, schedule
2695 	 * reclaim on returning to userland.  We can perform reclaim here
2696 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2697 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2698 	 * not recorded as it most likely matches current's and won't
2699 	 * change in the meantime.  As high limit is checked again before
2700 	 * reclaim, the cost of mismatch is negligible.
2701 	 */
2702 	do {
2703 		bool mem_high, swap_high;
2704 
2705 		mem_high = page_counter_read(&memcg->memory) >
2706 			READ_ONCE(memcg->memory.high);
2707 		swap_high = page_counter_read(&memcg->swap) >
2708 			READ_ONCE(memcg->swap.high);
2709 
2710 		/* Don't bother a random interrupted task */
2711 		if (!in_task()) {
2712 			if (mem_high) {
2713 				schedule_work(&memcg->high_work);
2714 				break;
2715 			}
2716 			continue;
2717 		}
2718 
2719 		if (mem_high || swap_high) {
2720 			/*
2721 			 * The allocating tasks in this cgroup will need to do
2722 			 * reclaim or be throttled to prevent further growth
2723 			 * of the memory or swap footprints.
2724 			 *
2725 			 * Target some best-effort fairness between the tasks,
2726 			 * and distribute reclaim work and delay penalties
2727 			 * based on how much each task is actually allocating.
2728 			 */
2729 			current->memcg_nr_pages_over_high += batch;
2730 			set_notify_resume(current);
2731 			break;
2732 		}
2733 	} while ((memcg = parent_mem_cgroup(memcg)));
2734 
2735 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2736 	    !(current->flags & PF_MEMALLOC) &&
2737 	    gfpflags_allow_blocking(gfp_mask)) {
2738 		mem_cgroup_handle_over_high();
2739 	}
2740 	return 0;
2741 }
2742 
2743 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2744 			     unsigned int nr_pages)
2745 {
2746 	if (mem_cgroup_is_root(memcg))
2747 		return 0;
2748 
2749 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2750 }
2751 
2752 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2753 {
2754 	if (mem_cgroup_is_root(memcg))
2755 		return;
2756 
2757 	page_counter_uncharge(&memcg->memory, nr_pages);
2758 	if (do_memsw_account())
2759 		page_counter_uncharge(&memcg->memsw, nr_pages);
2760 }
2761 
2762 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2763 {
2764 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2765 	/*
2766 	 * Any of the following ensures page's memcg stability:
2767 	 *
2768 	 * - the page lock
2769 	 * - LRU isolation
2770 	 * - lock_page_memcg()
2771 	 * - exclusive reference
2772 	 */
2773 	folio->memcg_data = (unsigned long)memcg;
2774 }
2775 
2776 #ifdef CONFIG_MEMCG_KMEM
2777 /*
2778  * The allocated objcg pointers array is not accounted directly.
2779  * Moreover, it should not come from DMA buffer and is not readily
2780  * reclaimable. So those GFP bits should be masked off.
2781  */
2782 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2783 
2784 /*
2785  * mod_objcg_mlstate() may be called with irq enabled, so
2786  * mod_memcg_lruvec_state() should be used.
2787  */
2788 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2789 				     struct pglist_data *pgdat,
2790 				     enum node_stat_item idx, int nr)
2791 {
2792 	struct mem_cgroup *memcg;
2793 	struct lruvec *lruvec;
2794 
2795 	rcu_read_lock();
2796 	memcg = obj_cgroup_memcg(objcg);
2797 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2798 	mod_memcg_lruvec_state(lruvec, idx, nr);
2799 	rcu_read_unlock();
2800 }
2801 
2802 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2803 				 gfp_t gfp, bool new_slab)
2804 {
2805 	unsigned int objects = objs_per_slab(s, slab);
2806 	unsigned long memcg_data;
2807 	void *vec;
2808 
2809 	gfp &= ~OBJCGS_CLEAR_MASK;
2810 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2811 			   slab_nid(slab));
2812 	if (!vec)
2813 		return -ENOMEM;
2814 
2815 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2816 	if (new_slab) {
2817 		/*
2818 		 * If the slab is brand new and nobody can yet access its
2819 		 * memcg_data, no synchronization is required and memcg_data can
2820 		 * be simply assigned.
2821 		 */
2822 		slab->memcg_data = memcg_data;
2823 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2824 		/*
2825 		 * If the slab is already in use, somebody can allocate and
2826 		 * assign obj_cgroups in parallel. In this case the existing
2827 		 * objcg vector should be reused.
2828 		 */
2829 		kfree(vec);
2830 		return 0;
2831 	}
2832 
2833 	kmemleak_not_leak(vec);
2834 	return 0;
2835 }
2836 
2837 /*
2838  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2839  *
2840  * A passed kernel object can be a slab object or a generic kernel page, so
2841  * different mechanisms for getting the memory cgroup pointer should be used.
2842  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2843  * can not know for sure how the kernel object is implemented.
2844  * mem_cgroup_from_obj() can be safely used in such cases.
2845  *
2846  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2847  * cgroup_mutex, etc.
2848  */
2849 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2850 {
2851 	struct folio *folio;
2852 
2853 	if (mem_cgroup_disabled())
2854 		return NULL;
2855 
2856 	folio = virt_to_folio(p);
2857 
2858 	/*
2859 	 * Slab objects are accounted individually, not per-page.
2860 	 * Memcg membership data for each individual object is saved in
2861 	 * slab->memcg_data.
2862 	 */
2863 	if (folio_test_slab(folio)) {
2864 		struct obj_cgroup **objcgs;
2865 		struct slab *slab;
2866 		unsigned int off;
2867 
2868 		slab = folio_slab(folio);
2869 		objcgs = slab_objcgs(slab);
2870 		if (!objcgs)
2871 			return NULL;
2872 
2873 		off = obj_to_index(slab->slab_cache, slab, p);
2874 		if (objcgs[off])
2875 			return obj_cgroup_memcg(objcgs[off]);
2876 
2877 		return NULL;
2878 	}
2879 
2880 	/*
2881 	 * page_memcg_check() is used here, because in theory we can encounter
2882 	 * a folio where the slab flag has been cleared already, but
2883 	 * slab->memcg_data has not been freed yet
2884 	 * page_memcg_check(page) will guarantee that a proper memory
2885 	 * cgroup pointer or NULL will be returned.
2886 	 */
2887 	return page_memcg_check(folio_page(folio, 0));
2888 }
2889 
2890 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2891 {
2892 	struct obj_cgroup *objcg = NULL;
2893 	struct mem_cgroup *memcg;
2894 
2895 	if (memcg_kmem_bypass())
2896 		return NULL;
2897 
2898 	rcu_read_lock();
2899 	if (unlikely(active_memcg()))
2900 		memcg = active_memcg();
2901 	else
2902 		memcg = mem_cgroup_from_task(current);
2903 
2904 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2905 		objcg = rcu_dereference(memcg->objcg);
2906 		if (objcg && obj_cgroup_tryget(objcg))
2907 			break;
2908 		objcg = NULL;
2909 	}
2910 	rcu_read_unlock();
2911 
2912 	return objcg;
2913 }
2914 
2915 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2916 {
2917 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2918 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2919 		if (nr_pages > 0)
2920 			page_counter_charge(&memcg->kmem, nr_pages);
2921 		else
2922 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2923 	}
2924 }
2925 
2926 
2927 /*
2928  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2929  * @objcg: object cgroup to uncharge
2930  * @nr_pages: number of pages to uncharge
2931  */
2932 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2933 				      unsigned int nr_pages)
2934 {
2935 	struct mem_cgroup *memcg;
2936 
2937 	memcg = get_mem_cgroup_from_objcg(objcg);
2938 
2939 	memcg_account_kmem(memcg, -nr_pages);
2940 	refill_stock(memcg, nr_pages);
2941 
2942 	css_put(&memcg->css);
2943 }
2944 
2945 /*
2946  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2947  * @objcg: object cgroup to charge
2948  * @gfp: reclaim mode
2949  * @nr_pages: number of pages to charge
2950  *
2951  * Returns 0 on success, an error code on failure.
2952  */
2953 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2954 				   unsigned int nr_pages)
2955 {
2956 	struct mem_cgroup *memcg;
2957 	int ret;
2958 
2959 	memcg = get_mem_cgroup_from_objcg(objcg);
2960 
2961 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2962 	if (ret)
2963 		goto out;
2964 
2965 	memcg_account_kmem(memcg, nr_pages);
2966 out:
2967 	css_put(&memcg->css);
2968 
2969 	return ret;
2970 }
2971 
2972 /**
2973  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2974  * @page: page to charge
2975  * @gfp: reclaim mode
2976  * @order: allocation order
2977  *
2978  * Returns 0 on success, an error code on failure.
2979  */
2980 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2981 {
2982 	struct obj_cgroup *objcg;
2983 	int ret = 0;
2984 
2985 	objcg = get_obj_cgroup_from_current();
2986 	if (objcg) {
2987 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2988 		if (!ret) {
2989 			page->memcg_data = (unsigned long)objcg |
2990 				MEMCG_DATA_KMEM;
2991 			return 0;
2992 		}
2993 		obj_cgroup_put(objcg);
2994 	}
2995 	return ret;
2996 }
2997 
2998 /**
2999  * __memcg_kmem_uncharge_page: uncharge a kmem page
3000  * @page: page to uncharge
3001  * @order: allocation order
3002  */
3003 void __memcg_kmem_uncharge_page(struct page *page, int order)
3004 {
3005 	struct folio *folio = page_folio(page);
3006 	struct obj_cgroup *objcg;
3007 	unsigned int nr_pages = 1 << order;
3008 
3009 	if (!folio_memcg_kmem(folio))
3010 		return;
3011 
3012 	objcg = __folio_objcg(folio);
3013 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3014 	folio->memcg_data = 0;
3015 	obj_cgroup_put(objcg);
3016 }
3017 
3018 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3019 		     enum node_stat_item idx, int nr)
3020 {
3021 	struct memcg_stock_pcp *stock;
3022 	struct obj_cgroup *old = NULL;
3023 	unsigned long flags;
3024 	int *bytes;
3025 
3026 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3027 	stock = this_cpu_ptr(&memcg_stock);
3028 
3029 	/*
3030 	 * Save vmstat data in stock and skip vmstat array update unless
3031 	 * accumulating over a page of vmstat data or when pgdat or idx
3032 	 * changes.
3033 	 */
3034 	if (stock->cached_objcg != objcg) {
3035 		old = drain_obj_stock(stock);
3036 		obj_cgroup_get(objcg);
3037 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3038 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3039 		stock->cached_objcg = objcg;
3040 		stock->cached_pgdat = pgdat;
3041 	} else if (stock->cached_pgdat != pgdat) {
3042 		/* Flush the existing cached vmstat data */
3043 		struct pglist_data *oldpg = stock->cached_pgdat;
3044 
3045 		if (stock->nr_slab_reclaimable_b) {
3046 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3047 					  stock->nr_slab_reclaimable_b);
3048 			stock->nr_slab_reclaimable_b = 0;
3049 		}
3050 		if (stock->nr_slab_unreclaimable_b) {
3051 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3052 					  stock->nr_slab_unreclaimable_b);
3053 			stock->nr_slab_unreclaimable_b = 0;
3054 		}
3055 		stock->cached_pgdat = pgdat;
3056 	}
3057 
3058 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3059 					       : &stock->nr_slab_unreclaimable_b;
3060 	/*
3061 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3062 	 * cached locally at least once before pushing it out.
3063 	 */
3064 	if (!*bytes) {
3065 		*bytes = nr;
3066 		nr = 0;
3067 	} else {
3068 		*bytes += nr;
3069 		if (abs(*bytes) > PAGE_SIZE) {
3070 			nr = *bytes;
3071 			*bytes = 0;
3072 		} else {
3073 			nr = 0;
3074 		}
3075 	}
3076 	if (nr)
3077 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3078 
3079 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3080 	if (old)
3081 		obj_cgroup_put(old);
3082 }
3083 
3084 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3085 {
3086 	struct memcg_stock_pcp *stock;
3087 	unsigned long flags;
3088 	bool ret = false;
3089 
3090 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3091 
3092 	stock = this_cpu_ptr(&memcg_stock);
3093 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3094 		stock->nr_bytes -= nr_bytes;
3095 		ret = true;
3096 	}
3097 
3098 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3099 
3100 	return ret;
3101 }
3102 
3103 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3104 {
3105 	struct obj_cgroup *old = stock->cached_objcg;
3106 
3107 	if (!old)
3108 		return NULL;
3109 
3110 	if (stock->nr_bytes) {
3111 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3112 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3113 
3114 		if (nr_pages) {
3115 			struct mem_cgroup *memcg;
3116 
3117 			memcg = get_mem_cgroup_from_objcg(old);
3118 
3119 			memcg_account_kmem(memcg, -nr_pages);
3120 			__refill_stock(memcg, nr_pages);
3121 
3122 			css_put(&memcg->css);
3123 		}
3124 
3125 		/*
3126 		 * The leftover is flushed to the centralized per-memcg value.
3127 		 * On the next attempt to refill obj stock it will be moved
3128 		 * to a per-cpu stock (probably, on an other CPU), see
3129 		 * refill_obj_stock().
3130 		 *
3131 		 * How often it's flushed is a trade-off between the memory
3132 		 * limit enforcement accuracy and potential CPU contention,
3133 		 * so it might be changed in the future.
3134 		 */
3135 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3136 		stock->nr_bytes = 0;
3137 	}
3138 
3139 	/*
3140 	 * Flush the vmstat data in current stock
3141 	 */
3142 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3143 		if (stock->nr_slab_reclaimable_b) {
3144 			mod_objcg_mlstate(old, stock->cached_pgdat,
3145 					  NR_SLAB_RECLAIMABLE_B,
3146 					  stock->nr_slab_reclaimable_b);
3147 			stock->nr_slab_reclaimable_b = 0;
3148 		}
3149 		if (stock->nr_slab_unreclaimable_b) {
3150 			mod_objcg_mlstate(old, stock->cached_pgdat,
3151 					  NR_SLAB_UNRECLAIMABLE_B,
3152 					  stock->nr_slab_unreclaimable_b);
3153 			stock->nr_slab_unreclaimable_b = 0;
3154 		}
3155 		stock->cached_pgdat = NULL;
3156 	}
3157 
3158 	stock->cached_objcg = NULL;
3159 	/*
3160 	 * The `old' objects needs to be released by the caller via
3161 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3162 	 */
3163 	return old;
3164 }
3165 
3166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3167 				     struct mem_cgroup *root_memcg)
3168 {
3169 	struct mem_cgroup *memcg;
3170 
3171 	if (stock->cached_objcg) {
3172 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3173 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3174 			return true;
3175 	}
3176 
3177 	return false;
3178 }
3179 
3180 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3181 			     bool allow_uncharge)
3182 {
3183 	struct memcg_stock_pcp *stock;
3184 	struct obj_cgroup *old = NULL;
3185 	unsigned long flags;
3186 	unsigned int nr_pages = 0;
3187 
3188 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3189 
3190 	stock = this_cpu_ptr(&memcg_stock);
3191 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3192 		old = drain_obj_stock(stock);
3193 		obj_cgroup_get(objcg);
3194 		stock->cached_objcg = objcg;
3195 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3196 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3197 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3198 	}
3199 	stock->nr_bytes += nr_bytes;
3200 
3201 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3202 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3203 		stock->nr_bytes &= (PAGE_SIZE - 1);
3204 	}
3205 
3206 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3207 	if (old)
3208 		obj_cgroup_put(old);
3209 
3210 	if (nr_pages)
3211 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3212 }
3213 
3214 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3215 {
3216 	unsigned int nr_pages, nr_bytes;
3217 	int ret;
3218 
3219 	if (consume_obj_stock(objcg, size))
3220 		return 0;
3221 
3222 	/*
3223 	 * In theory, objcg->nr_charged_bytes can have enough
3224 	 * pre-charged bytes to satisfy the allocation. However,
3225 	 * flushing objcg->nr_charged_bytes requires two atomic
3226 	 * operations, and objcg->nr_charged_bytes can't be big.
3227 	 * The shared objcg->nr_charged_bytes can also become a
3228 	 * performance bottleneck if all tasks of the same memcg are
3229 	 * trying to update it. So it's better to ignore it and try
3230 	 * grab some new pages. The stock's nr_bytes will be flushed to
3231 	 * objcg->nr_charged_bytes later on when objcg changes.
3232 	 *
3233 	 * The stock's nr_bytes may contain enough pre-charged bytes
3234 	 * to allow one less page from being charged, but we can't rely
3235 	 * on the pre-charged bytes not being changed outside of
3236 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3237 	 * pre-charged bytes as well when charging pages. To avoid a
3238 	 * page uncharge right after a page charge, we set the
3239 	 * allow_uncharge flag to false when calling refill_obj_stock()
3240 	 * to temporarily allow the pre-charged bytes to exceed the page
3241 	 * size limit. The maximum reachable value of the pre-charged
3242 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3243 	 * race.
3244 	 */
3245 	nr_pages = size >> PAGE_SHIFT;
3246 	nr_bytes = size & (PAGE_SIZE - 1);
3247 
3248 	if (nr_bytes)
3249 		nr_pages += 1;
3250 
3251 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3252 	if (!ret && nr_bytes)
3253 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3254 
3255 	return ret;
3256 }
3257 
3258 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3259 {
3260 	refill_obj_stock(objcg, size, true);
3261 }
3262 
3263 #endif /* CONFIG_MEMCG_KMEM */
3264 
3265 /*
3266  * Because page_memcg(head) is not set on tails, set it now.
3267  */
3268 void split_page_memcg(struct page *head, unsigned int nr)
3269 {
3270 	struct folio *folio = page_folio(head);
3271 	struct mem_cgroup *memcg = folio_memcg(folio);
3272 	int i;
3273 
3274 	if (mem_cgroup_disabled() || !memcg)
3275 		return;
3276 
3277 	for (i = 1; i < nr; i++)
3278 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3279 
3280 	if (folio_memcg_kmem(folio))
3281 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3282 	else
3283 		css_get_many(&memcg->css, nr - 1);
3284 }
3285 
3286 #ifdef CONFIG_MEMCG_SWAP
3287 /**
3288  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3289  * @entry: swap entry to be moved
3290  * @from:  mem_cgroup which the entry is moved from
3291  * @to:  mem_cgroup which the entry is moved to
3292  *
3293  * It succeeds only when the swap_cgroup's record for this entry is the same
3294  * as the mem_cgroup's id of @from.
3295  *
3296  * Returns 0 on success, -EINVAL on failure.
3297  *
3298  * The caller must have charged to @to, IOW, called page_counter_charge() about
3299  * both res and memsw, and called css_get().
3300  */
3301 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3302 				struct mem_cgroup *from, struct mem_cgroup *to)
3303 {
3304 	unsigned short old_id, new_id;
3305 
3306 	old_id = mem_cgroup_id(from);
3307 	new_id = mem_cgroup_id(to);
3308 
3309 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3310 		mod_memcg_state(from, MEMCG_SWAP, -1);
3311 		mod_memcg_state(to, MEMCG_SWAP, 1);
3312 		return 0;
3313 	}
3314 	return -EINVAL;
3315 }
3316 #else
3317 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3318 				struct mem_cgroup *from, struct mem_cgroup *to)
3319 {
3320 	return -EINVAL;
3321 }
3322 #endif
3323 
3324 static DEFINE_MUTEX(memcg_max_mutex);
3325 
3326 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3327 				 unsigned long max, bool memsw)
3328 {
3329 	bool enlarge = false;
3330 	bool drained = false;
3331 	int ret;
3332 	bool limits_invariant;
3333 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3334 
3335 	do {
3336 		if (signal_pending(current)) {
3337 			ret = -EINTR;
3338 			break;
3339 		}
3340 
3341 		mutex_lock(&memcg_max_mutex);
3342 		/*
3343 		 * Make sure that the new limit (memsw or memory limit) doesn't
3344 		 * break our basic invariant rule memory.max <= memsw.max.
3345 		 */
3346 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3347 					   max <= memcg->memsw.max;
3348 		if (!limits_invariant) {
3349 			mutex_unlock(&memcg_max_mutex);
3350 			ret = -EINVAL;
3351 			break;
3352 		}
3353 		if (max > counter->max)
3354 			enlarge = true;
3355 		ret = page_counter_set_max(counter, max);
3356 		mutex_unlock(&memcg_max_mutex);
3357 
3358 		if (!ret)
3359 			break;
3360 
3361 		if (!drained) {
3362 			drain_all_stock(memcg);
3363 			drained = true;
3364 			continue;
3365 		}
3366 
3367 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3368 					GFP_KERNEL, !memsw)) {
3369 			ret = -EBUSY;
3370 			break;
3371 		}
3372 	} while (true);
3373 
3374 	if (!ret && enlarge)
3375 		memcg_oom_recover(memcg);
3376 
3377 	return ret;
3378 }
3379 
3380 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3381 					    gfp_t gfp_mask,
3382 					    unsigned long *total_scanned)
3383 {
3384 	unsigned long nr_reclaimed = 0;
3385 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3386 	unsigned long reclaimed;
3387 	int loop = 0;
3388 	struct mem_cgroup_tree_per_node *mctz;
3389 	unsigned long excess;
3390 	unsigned long nr_scanned;
3391 
3392 	if (order > 0)
3393 		return 0;
3394 
3395 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3396 
3397 	/*
3398 	 * Do not even bother to check the largest node if the root
3399 	 * is empty. Do it lockless to prevent lock bouncing. Races
3400 	 * are acceptable as soft limit is best effort anyway.
3401 	 */
3402 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3403 		return 0;
3404 
3405 	/*
3406 	 * This loop can run a while, specially if mem_cgroup's continuously
3407 	 * keep exceeding their soft limit and putting the system under
3408 	 * pressure
3409 	 */
3410 	do {
3411 		if (next_mz)
3412 			mz = next_mz;
3413 		else
3414 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3415 		if (!mz)
3416 			break;
3417 
3418 		nr_scanned = 0;
3419 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3420 						    gfp_mask, &nr_scanned);
3421 		nr_reclaimed += reclaimed;
3422 		*total_scanned += nr_scanned;
3423 		spin_lock_irq(&mctz->lock);
3424 		__mem_cgroup_remove_exceeded(mz, mctz);
3425 
3426 		/*
3427 		 * If we failed to reclaim anything from this memory cgroup
3428 		 * it is time to move on to the next cgroup
3429 		 */
3430 		next_mz = NULL;
3431 		if (!reclaimed)
3432 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3433 
3434 		excess = soft_limit_excess(mz->memcg);
3435 		/*
3436 		 * One school of thought says that we should not add
3437 		 * back the node to the tree if reclaim returns 0.
3438 		 * But our reclaim could return 0, simply because due
3439 		 * to priority we are exposing a smaller subset of
3440 		 * memory to reclaim from. Consider this as a longer
3441 		 * term TODO.
3442 		 */
3443 		/* If excess == 0, no tree ops */
3444 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3445 		spin_unlock_irq(&mctz->lock);
3446 		css_put(&mz->memcg->css);
3447 		loop++;
3448 		/*
3449 		 * Could not reclaim anything and there are no more
3450 		 * mem cgroups to try or we seem to be looping without
3451 		 * reclaiming anything.
3452 		 */
3453 		if (!nr_reclaimed &&
3454 			(next_mz == NULL ||
3455 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3456 			break;
3457 	} while (!nr_reclaimed);
3458 	if (next_mz)
3459 		css_put(&next_mz->memcg->css);
3460 	return nr_reclaimed;
3461 }
3462 
3463 /*
3464  * Reclaims as many pages from the given memcg as possible.
3465  *
3466  * Caller is responsible for holding css reference for memcg.
3467  */
3468 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3469 {
3470 	int nr_retries = MAX_RECLAIM_RETRIES;
3471 
3472 	/* we call try-to-free pages for make this cgroup empty */
3473 	lru_add_drain_all();
3474 
3475 	drain_all_stock(memcg);
3476 
3477 	/* try to free all pages in this cgroup */
3478 	while (nr_retries && page_counter_read(&memcg->memory)) {
3479 		if (signal_pending(current))
3480 			return -EINTR;
3481 
3482 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3483 			nr_retries--;
3484 	}
3485 
3486 	return 0;
3487 }
3488 
3489 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3490 					    char *buf, size_t nbytes,
3491 					    loff_t off)
3492 {
3493 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3494 
3495 	if (mem_cgroup_is_root(memcg))
3496 		return -EINVAL;
3497 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3498 }
3499 
3500 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3501 				     struct cftype *cft)
3502 {
3503 	return 1;
3504 }
3505 
3506 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3507 				      struct cftype *cft, u64 val)
3508 {
3509 	if (val == 1)
3510 		return 0;
3511 
3512 	pr_warn_once("Non-hierarchical mode is deprecated. "
3513 		     "Please report your usecase to linux-mm@kvack.org if you "
3514 		     "depend on this functionality.\n");
3515 
3516 	return -EINVAL;
3517 }
3518 
3519 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3520 {
3521 	unsigned long val;
3522 
3523 	if (mem_cgroup_is_root(memcg)) {
3524 		mem_cgroup_flush_stats();
3525 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3526 			memcg_page_state(memcg, NR_ANON_MAPPED);
3527 		if (swap)
3528 			val += memcg_page_state(memcg, MEMCG_SWAP);
3529 	} else {
3530 		if (!swap)
3531 			val = page_counter_read(&memcg->memory);
3532 		else
3533 			val = page_counter_read(&memcg->memsw);
3534 	}
3535 	return val;
3536 }
3537 
3538 enum {
3539 	RES_USAGE,
3540 	RES_LIMIT,
3541 	RES_MAX_USAGE,
3542 	RES_FAILCNT,
3543 	RES_SOFT_LIMIT,
3544 };
3545 
3546 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3547 			       struct cftype *cft)
3548 {
3549 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3550 	struct page_counter *counter;
3551 
3552 	switch (MEMFILE_TYPE(cft->private)) {
3553 	case _MEM:
3554 		counter = &memcg->memory;
3555 		break;
3556 	case _MEMSWAP:
3557 		counter = &memcg->memsw;
3558 		break;
3559 	case _KMEM:
3560 		counter = &memcg->kmem;
3561 		break;
3562 	case _TCP:
3563 		counter = &memcg->tcpmem;
3564 		break;
3565 	default:
3566 		BUG();
3567 	}
3568 
3569 	switch (MEMFILE_ATTR(cft->private)) {
3570 	case RES_USAGE:
3571 		if (counter == &memcg->memory)
3572 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3573 		if (counter == &memcg->memsw)
3574 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3575 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3576 	case RES_LIMIT:
3577 		return (u64)counter->max * PAGE_SIZE;
3578 	case RES_MAX_USAGE:
3579 		return (u64)counter->watermark * PAGE_SIZE;
3580 	case RES_FAILCNT:
3581 		return counter->failcnt;
3582 	case RES_SOFT_LIMIT:
3583 		return (u64)memcg->soft_limit * PAGE_SIZE;
3584 	default:
3585 		BUG();
3586 	}
3587 }
3588 
3589 #ifdef CONFIG_MEMCG_KMEM
3590 static int memcg_online_kmem(struct mem_cgroup *memcg)
3591 {
3592 	struct obj_cgroup *objcg;
3593 
3594 	if (cgroup_memory_nokmem)
3595 		return 0;
3596 
3597 	if (unlikely(mem_cgroup_is_root(memcg)))
3598 		return 0;
3599 
3600 	objcg = obj_cgroup_alloc();
3601 	if (!objcg)
3602 		return -ENOMEM;
3603 
3604 	objcg->memcg = memcg;
3605 	rcu_assign_pointer(memcg->objcg, objcg);
3606 
3607 	static_branch_enable(&memcg_kmem_enabled_key);
3608 
3609 	memcg->kmemcg_id = memcg->id.id;
3610 
3611 	return 0;
3612 }
3613 
3614 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3615 {
3616 	struct mem_cgroup *parent;
3617 
3618 	if (cgroup_memory_nokmem)
3619 		return;
3620 
3621 	if (unlikely(mem_cgroup_is_root(memcg)))
3622 		return;
3623 
3624 	parent = parent_mem_cgroup(memcg);
3625 	if (!parent)
3626 		parent = root_mem_cgroup;
3627 
3628 	memcg_reparent_objcgs(memcg, parent);
3629 
3630 	/*
3631 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3632 	 * corresponding to this cgroup are guaranteed to remain empty.
3633 	 * The ordering is imposed by list_lru_node->lock taken by
3634 	 * memcg_reparent_list_lrus().
3635 	 */
3636 	memcg_reparent_list_lrus(memcg, parent);
3637 }
3638 #else
3639 static int memcg_online_kmem(struct mem_cgroup *memcg)
3640 {
3641 	return 0;
3642 }
3643 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3644 {
3645 }
3646 #endif /* CONFIG_MEMCG_KMEM */
3647 
3648 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3649 {
3650 	int ret;
3651 
3652 	mutex_lock(&memcg_max_mutex);
3653 
3654 	ret = page_counter_set_max(&memcg->tcpmem, max);
3655 	if (ret)
3656 		goto out;
3657 
3658 	if (!memcg->tcpmem_active) {
3659 		/*
3660 		 * The active flag needs to be written after the static_key
3661 		 * update. This is what guarantees that the socket activation
3662 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3663 		 * for details, and note that we don't mark any socket as
3664 		 * belonging to this memcg until that flag is up.
3665 		 *
3666 		 * We need to do this, because static_keys will span multiple
3667 		 * sites, but we can't control their order. If we mark a socket
3668 		 * as accounted, but the accounting functions are not patched in
3669 		 * yet, we'll lose accounting.
3670 		 *
3671 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3672 		 * because when this value change, the code to process it is not
3673 		 * patched in yet.
3674 		 */
3675 		static_branch_inc(&memcg_sockets_enabled_key);
3676 		memcg->tcpmem_active = true;
3677 	}
3678 out:
3679 	mutex_unlock(&memcg_max_mutex);
3680 	return ret;
3681 }
3682 
3683 /*
3684  * The user of this function is...
3685  * RES_LIMIT.
3686  */
3687 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3688 				char *buf, size_t nbytes, loff_t off)
3689 {
3690 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3691 	unsigned long nr_pages;
3692 	int ret;
3693 
3694 	buf = strstrip(buf);
3695 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3696 	if (ret)
3697 		return ret;
3698 
3699 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3700 	case RES_LIMIT:
3701 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3702 			ret = -EINVAL;
3703 			break;
3704 		}
3705 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3706 		case _MEM:
3707 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3708 			break;
3709 		case _MEMSWAP:
3710 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3711 			break;
3712 		case _KMEM:
3713 			/* kmem.limit_in_bytes is deprecated. */
3714 			ret = -EOPNOTSUPP;
3715 			break;
3716 		case _TCP:
3717 			ret = memcg_update_tcp_max(memcg, nr_pages);
3718 			break;
3719 		}
3720 		break;
3721 	case RES_SOFT_LIMIT:
3722 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3723 			ret = -EOPNOTSUPP;
3724 		} else {
3725 			memcg->soft_limit = nr_pages;
3726 			ret = 0;
3727 		}
3728 		break;
3729 	}
3730 	return ret ?: nbytes;
3731 }
3732 
3733 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3734 				size_t nbytes, loff_t off)
3735 {
3736 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3737 	struct page_counter *counter;
3738 
3739 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740 	case _MEM:
3741 		counter = &memcg->memory;
3742 		break;
3743 	case _MEMSWAP:
3744 		counter = &memcg->memsw;
3745 		break;
3746 	case _KMEM:
3747 		counter = &memcg->kmem;
3748 		break;
3749 	case _TCP:
3750 		counter = &memcg->tcpmem;
3751 		break;
3752 	default:
3753 		BUG();
3754 	}
3755 
3756 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3757 	case RES_MAX_USAGE:
3758 		page_counter_reset_watermark(counter);
3759 		break;
3760 	case RES_FAILCNT:
3761 		counter->failcnt = 0;
3762 		break;
3763 	default:
3764 		BUG();
3765 	}
3766 
3767 	return nbytes;
3768 }
3769 
3770 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3771 					struct cftype *cft)
3772 {
3773 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3774 }
3775 
3776 #ifdef CONFIG_MMU
3777 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3778 					struct cftype *cft, u64 val)
3779 {
3780 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 
3782 	if (val & ~MOVE_MASK)
3783 		return -EINVAL;
3784 
3785 	/*
3786 	 * No kind of locking is needed in here, because ->can_attach() will
3787 	 * check this value once in the beginning of the process, and then carry
3788 	 * on with stale data. This means that changes to this value will only
3789 	 * affect task migrations starting after the change.
3790 	 */
3791 	memcg->move_charge_at_immigrate = val;
3792 	return 0;
3793 }
3794 #else
3795 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3796 					struct cftype *cft, u64 val)
3797 {
3798 	return -ENOSYS;
3799 }
3800 #endif
3801 
3802 #ifdef CONFIG_NUMA
3803 
3804 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3805 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3806 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3807 
3808 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3809 				int nid, unsigned int lru_mask, bool tree)
3810 {
3811 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3812 	unsigned long nr = 0;
3813 	enum lru_list lru;
3814 
3815 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3816 
3817 	for_each_lru(lru) {
3818 		if (!(BIT(lru) & lru_mask))
3819 			continue;
3820 		if (tree)
3821 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3822 		else
3823 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3824 	}
3825 	return nr;
3826 }
3827 
3828 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3829 					     unsigned int lru_mask,
3830 					     bool tree)
3831 {
3832 	unsigned long nr = 0;
3833 	enum lru_list lru;
3834 
3835 	for_each_lru(lru) {
3836 		if (!(BIT(lru) & lru_mask))
3837 			continue;
3838 		if (tree)
3839 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3840 		else
3841 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3842 	}
3843 	return nr;
3844 }
3845 
3846 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3847 {
3848 	struct numa_stat {
3849 		const char *name;
3850 		unsigned int lru_mask;
3851 	};
3852 
3853 	static const struct numa_stat stats[] = {
3854 		{ "total", LRU_ALL },
3855 		{ "file", LRU_ALL_FILE },
3856 		{ "anon", LRU_ALL_ANON },
3857 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3858 	};
3859 	const struct numa_stat *stat;
3860 	int nid;
3861 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3862 
3863 	mem_cgroup_flush_stats();
3864 
3865 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3866 		seq_printf(m, "%s=%lu", stat->name,
3867 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3868 						   false));
3869 		for_each_node_state(nid, N_MEMORY)
3870 			seq_printf(m, " N%d=%lu", nid,
3871 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3872 							stat->lru_mask, false));
3873 		seq_putc(m, '\n');
3874 	}
3875 
3876 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3877 
3878 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3879 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3880 						   true));
3881 		for_each_node_state(nid, N_MEMORY)
3882 			seq_printf(m, " N%d=%lu", nid,
3883 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3884 							stat->lru_mask, true));
3885 		seq_putc(m, '\n');
3886 	}
3887 
3888 	return 0;
3889 }
3890 #endif /* CONFIG_NUMA */
3891 
3892 static const unsigned int memcg1_stats[] = {
3893 	NR_FILE_PAGES,
3894 	NR_ANON_MAPPED,
3895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3896 	NR_ANON_THPS,
3897 #endif
3898 	NR_SHMEM,
3899 	NR_FILE_MAPPED,
3900 	NR_FILE_DIRTY,
3901 	NR_WRITEBACK,
3902 	MEMCG_SWAP,
3903 };
3904 
3905 static const char *const memcg1_stat_names[] = {
3906 	"cache",
3907 	"rss",
3908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3909 	"rss_huge",
3910 #endif
3911 	"shmem",
3912 	"mapped_file",
3913 	"dirty",
3914 	"writeback",
3915 	"swap",
3916 };
3917 
3918 /* Universal VM events cgroup1 shows, original sort order */
3919 static const unsigned int memcg1_events[] = {
3920 	PGPGIN,
3921 	PGPGOUT,
3922 	PGFAULT,
3923 	PGMAJFAULT,
3924 };
3925 
3926 static int memcg_stat_show(struct seq_file *m, void *v)
3927 {
3928 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3929 	unsigned long memory, memsw;
3930 	struct mem_cgroup *mi;
3931 	unsigned int i;
3932 
3933 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3934 
3935 	mem_cgroup_flush_stats();
3936 
3937 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3938 		unsigned long nr;
3939 
3940 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3941 			continue;
3942 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3943 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3944 	}
3945 
3946 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3947 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3948 			   memcg_events_local(memcg, memcg1_events[i]));
3949 
3950 	for (i = 0; i < NR_LRU_LISTS; i++)
3951 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3952 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3953 			   PAGE_SIZE);
3954 
3955 	/* Hierarchical information */
3956 	memory = memsw = PAGE_COUNTER_MAX;
3957 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3958 		memory = min(memory, READ_ONCE(mi->memory.max));
3959 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3960 	}
3961 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3962 		   (u64)memory * PAGE_SIZE);
3963 	if (do_memsw_account())
3964 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3965 			   (u64)memsw * PAGE_SIZE);
3966 
3967 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3968 		unsigned long nr;
3969 
3970 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3971 			continue;
3972 		nr = memcg_page_state(memcg, memcg1_stats[i]);
3973 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3974 						(u64)nr * PAGE_SIZE);
3975 	}
3976 
3977 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3978 		seq_printf(m, "total_%s %llu\n",
3979 			   vm_event_name(memcg1_events[i]),
3980 			   (u64)memcg_events(memcg, memcg1_events[i]));
3981 
3982 	for (i = 0; i < NR_LRU_LISTS; i++)
3983 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3984 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3985 			   PAGE_SIZE);
3986 
3987 #ifdef CONFIG_DEBUG_VM
3988 	{
3989 		pg_data_t *pgdat;
3990 		struct mem_cgroup_per_node *mz;
3991 		unsigned long anon_cost = 0;
3992 		unsigned long file_cost = 0;
3993 
3994 		for_each_online_pgdat(pgdat) {
3995 			mz = memcg->nodeinfo[pgdat->node_id];
3996 
3997 			anon_cost += mz->lruvec.anon_cost;
3998 			file_cost += mz->lruvec.file_cost;
3999 		}
4000 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4001 		seq_printf(m, "file_cost %lu\n", file_cost);
4002 	}
4003 #endif
4004 
4005 	return 0;
4006 }
4007 
4008 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4009 				      struct cftype *cft)
4010 {
4011 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4012 
4013 	return mem_cgroup_swappiness(memcg);
4014 }
4015 
4016 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4017 				       struct cftype *cft, u64 val)
4018 {
4019 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4020 
4021 	if (val > 200)
4022 		return -EINVAL;
4023 
4024 	if (!mem_cgroup_is_root(memcg))
4025 		memcg->swappiness = val;
4026 	else
4027 		vm_swappiness = val;
4028 
4029 	return 0;
4030 }
4031 
4032 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4033 {
4034 	struct mem_cgroup_threshold_ary *t;
4035 	unsigned long usage;
4036 	int i;
4037 
4038 	rcu_read_lock();
4039 	if (!swap)
4040 		t = rcu_dereference(memcg->thresholds.primary);
4041 	else
4042 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4043 
4044 	if (!t)
4045 		goto unlock;
4046 
4047 	usage = mem_cgroup_usage(memcg, swap);
4048 
4049 	/*
4050 	 * current_threshold points to threshold just below or equal to usage.
4051 	 * If it's not true, a threshold was crossed after last
4052 	 * call of __mem_cgroup_threshold().
4053 	 */
4054 	i = t->current_threshold;
4055 
4056 	/*
4057 	 * Iterate backward over array of thresholds starting from
4058 	 * current_threshold and check if a threshold is crossed.
4059 	 * If none of thresholds below usage is crossed, we read
4060 	 * only one element of the array here.
4061 	 */
4062 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4063 		eventfd_signal(t->entries[i].eventfd, 1);
4064 
4065 	/* i = current_threshold + 1 */
4066 	i++;
4067 
4068 	/*
4069 	 * Iterate forward over array of thresholds starting from
4070 	 * current_threshold+1 and check if a threshold is crossed.
4071 	 * If none of thresholds above usage is crossed, we read
4072 	 * only one element of the array here.
4073 	 */
4074 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4075 		eventfd_signal(t->entries[i].eventfd, 1);
4076 
4077 	/* Update current_threshold */
4078 	t->current_threshold = i - 1;
4079 unlock:
4080 	rcu_read_unlock();
4081 }
4082 
4083 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4084 {
4085 	while (memcg) {
4086 		__mem_cgroup_threshold(memcg, false);
4087 		if (do_memsw_account())
4088 			__mem_cgroup_threshold(memcg, true);
4089 
4090 		memcg = parent_mem_cgroup(memcg);
4091 	}
4092 }
4093 
4094 static int compare_thresholds(const void *a, const void *b)
4095 {
4096 	const struct mem_cgroup_threshold *_a = a;
4097 	const struct mem_cgroup_threshold *_b = b;
4098 
4099 	if (_a->threshold > _b->threshold)
4100 		return 1;
4101 
4102 	if (_a->threshold < _b->threshold)
4103 		return -1;
4104 
4105 	return 0;
4106 }
4107 
4108 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4109 {
4110 	struct mem_cgroup_eventfd_list *ev;
4111 
4112 	spin_lock(&memcg_oom_lock);
4113 
4114 	list_for_each_entry(ev, &memcg->oom_notify, list)
4115 		eventfd_signal(ev->eventfd, 1);
4116 
4117 	spin_unlock(&memcg_oom_lock);
4118 	return 0;
4119 }
4120 
4121 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4122 {
4123 	struct mem_cgroup *iter;
4124 
4125 	for_each_mem_cgroup_tree(iter, memcg)
4126 		mem_cgroup_oom_notify_cb(iter);
4127 }
4128 
4129 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4130 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4131 {
4132 	struct mem_cgroup_thresholds *thresholds;
4133 	struct mem_cgroup_threshold_ary *new;
4134 	unsigned long threshold;
4135 	unsigned long usage;
4136 	int i, size, ret;
4137 
4138 	ret = page_counter_memparse(args, "-1", &threshold);
4139 	if (ret)
4140 		return ret;
4141 
4142 	mutex_lock(&memcg->thresholds_lock);
4143 
4144 	if (type == _MEM) {
4145 		thresholds = &memcg->thresholds;
4146 		usage = mem_cgroup_usage(memcg, false);
4147 	} else if (type == _MEMSWAP) {
4148 		thresholds = &memcg->memsw_thresholds;
4149 		usage = mem_cgroup_usage(memcg, true);
4150 	} else
4151 		BUG();
4152 
4153 	/* Check if a threshold crossed before adding a new one */
4154 	if (thresholds->primary)
4155 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4156 
4157 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4158 
4159 	/* Allocate memory for new array of thresholds */
4160 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4161 	if (!new) {
4162 		ret = -ENOMEM;
4163 		goto unlock;
4164 	}
4165 	new->size = size;
4166 
4167 	/* Copy thresholds (if any) to new array */
4168 	if (thresholds->primary)
4169 		memcpy(new->entries, thresholds->primary->entries,
4170 		       flex_array_size(new, entries, size - 1));
4171 
4172 	/* Add new threshold */
4173 	new->entries[size - 1].eventfd = eventfd;
4174 	new->entries[size - 1].threshold = threshold;
4175 
4176 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4177 	sort(new->entries, size, sizeof(*new->entries),
4178 			compare_thresholds, NULL);
4179 
4180 	/* Find current threshold */
4181 	new->current_threshold = -1;
4182 	for (i = 0; i < size; i++) {
4183 		if (new->entries[i].threshold <= usage) {
4184 			/*
4185 			 * new->current_threshold will not be used until
4186 			 * rcu_assign_pointer(), so it's safe to increment
4187 			 * it here.
4188 			 */
4189 			++new->current_threshold;
4190 		} else
4191 			break;
4192 	}
4193 
4194 	/* Free old spare buffer and save old primary buffer as spare */
4195 	kfree(thresholds->spare);
4196 	thresholds->spare = thresholds->primary;
4197 
4198 	rcu_assign_pointer(thresholds->primary, new);
4199 
4200 	/* To be sure that nobody uses thresholds */
4201 	synchronize_rcu();
4202 
4203 unlock:
4204 	mutex_unlock(&memcg->thresholds_lock);
4205 
4206 	return ret;
4207 }
4208 
4209 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4210 	struct eventfd_ctx *eventfd, const char *args)
4211 {
4212 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4213 }
4214 
4215 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4216 	struct eventfd_ctx *eventfd, const char *args)
4217 {
4218 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4219 }
4220 
4221 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4222 	struct eventfd_ctx *eventfd, enum res_type type)
4223 {
4224 	struct mem_cgroup_thresholds *thresholds;
4225 	struct mem_cgroup_threshold_ary *new;
4226 	unsigned long usage;
4227 	int i, j, size, entries;
4228 
4229 	mutex_lock(&memcg->thresholds_lock);
4230 
4231 	if (type == _MEM) {
4232 		thresholds = &memcg->thresholds;
4233 		usage = mem_cgroup_usage(memcg, false);
4234 	} else if (type == _MEMSWAP) {
4235 		thresholds = &memcg->memsw_thresholds;
4236 		usage = mem_cgroup_usage(memcg, true);
4237 	} else
4238 		BUG();
4239 
4240 	if (!thresholds->primary)
4241 		goto unlock;
4242 
4243 	/* Check if a threshold crossed before removing */
4244 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4245 
4246 	/* Calculate new number of threshold */
4247 	size = entries = 0;
4248 	for (i = 0; i < thresholds->primary->size; i++) {
4249 		if (thresholds->primary->entries[i].eventfd != eventfd)
4250 			size++;
4251 		else
4252 			entries++;
4253 	}
4254 
4255 	new = thresholds->spare;
4256 
4257 	/* If no items related to eventfd have been cleared, nothing to do */
4258 	if (!entries)
4259 		goto unlock;
4260 
4261 	/* Set thresholds array to NULL if we don't have thresholds */
4262 	if (!size) {
4263 		kfree(new);
4264 		new = NULL;
4265 		goto swap_buffers;
4266 	}
4267 
4268 	new->size = size;
4269 
4270 	/* Copy thresholds and find current threshold */
4271 	new->current_threshold = -1;
4272 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4273 		if (thresholds->primary->entries[i].eventfd == eventfd)
4274 			continue;
4275 
4276 		new->entries[j] = thresholds->primary->entries[i];
4277 		if (new->entries[j].threshold <= usage) {
4278 			/*
4279 			 * new->current_threshold will not be used
4280 			 * until rcu_assign_pointer(), so it's safe to increment
4281 			 * it here.
4282 			 */
4283 			++new->current_threshold;
4284 		}
4285 		j++;
4286 	}
4287 
4288 swap_buffers:
4289 	/* Swap primary and spare array */
4290 	thresholds->spare = thresholds->primary;
4291 
4292 	rcu_assign_pointer(thresholds->primary, new);
4293 
4294 	/* To be sure that nobody uses thresholds */
4295 	synchronize_rcu();
4296 
4297 	/* If all events are unregistered, free the spare array */
4298 	if (!new) {
4299 		kfree(thresholds->spare);
4300 		thresholds->spare = NULL;
4301 	}
4302 unlock:
4303 	mutex_unlock(&memcg->thresholds_lock);
4304 }
4305 
4306 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4307 	struct eventfd_ctx *eventfd)
4308 {
4309 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4310 }
4311 
4312 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4313 	struct eventfd_ctx *eventfd)
4314 {
4315 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4316 }
4317 
4318 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4319 	struct eventfd_ctx *eventfd, const char *args)
4320 {
4321 	struct mem_cgroup_eventfd_list *event;
4322 
4323 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4324 	if (!event)
4325 		return -ENOMEM;
4326 
4327 	spin_lock(&memcg_oom_lock);
4328 
4329 	event->eventfd = eventfd;
4330 	list_add(&event->list, &memcg->oom_notify);
4331 
4332 	/* already in OOM ? */
4333 	if (memcg->under_oom)
4334 		eventfd_signal(eventfd, 1);
4335 	spin_unlock(&memcg_oom_lock);
4336 
4337 	return 0;
4338 }
4339 
4340 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4341 	struct eventfd_ctx *eventfd)
4342 {
4343 	struct mem_cgroup_eventfd_list *ev, *tmp;
4344 
4345 	spin_lock(&memcg_oom_lock);
4346 
4347 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4348 		if (ev->eventfd == eventfd) {
4349 			list_del(&ev->list);
4350 			kfree(ev);
4351 		}
4352 	}
4353 
4354 	spin_unlock(&memcg_oom_lock);
4355 }
4356 
4357 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4358 {
4359 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4360 
4361 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4362 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4363 	seq_printf(sf, "oom_kill %lu\n",
4364 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4365 	return 0;
4366 }
4367 
4368 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4369 	struct cftype *cft, u64 val)
4370 {
4371 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4372 
4373 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4374 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4375 		return -EINVAL;
4376 
4377 	memcg->oom_kill_disable = val;
4378 	if (!val)
4379 		memcg_oom_recover(memcg);
4380 
4381 	return 0;
4382 }
4383 
4384 #ifdef CONFIG_CGROUP_WRITEBACK
4385 
4386 #include <trace/events/writeback.h>
4387 
4388 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4389 {
4390 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4391 }
4392 
4393 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4394 {
4395 	wb_domain_exit(&memcg->cgwb_domain);
4396 }
4397 
4398 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4399 {
4400 	wb_domain_size_changed(&memcg->cgwb_domain);
4401 }
4402 
4403 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4404 {
4405 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4406 
4407 	if (!memcg->css.parent)
4408 		return NULL;
4409 
4410 	return &memcg->cgwb_domain;
4411 }
4412 
4413 /**
4414  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4415  * @wb: bdi_writeback in question
4416  * @pfilepages: out parameter for number of file pages
4417  * @pheadroom: out parameter for number of allocatable pages according to memcg
4418  * @pdirty: out parameter for number of dirty pages
4419  * @pwriteback: out parameter for number of pages under writeback
4420  *
4421  * Determine the numbers of file, headroom, dirty, and writeback pages in
4422  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4423  * is a bit more involved.
4424  *
4425  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4426  * headroom is calculated as the lowest headroom of itself and the
4427  * ancestors.  Note that this doesn't consider the actual amount of
4428  * available memory in the system.  The caller should further cap
4429  * *@pheadroom accordingly.
4430  */
4431 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4432 			 unsigned long *pheadroom, unsigned long *pdirty,
4433 			 unsigned long *pwriteback)
4434 {
4435 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4436 	struct mem_cgroup *parent;
4437 
4438 	mem_cgroup_flush_stats();
4439 
4440 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4441 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4442 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4443 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4444 
4445 	*pheadroom = PAGE_COUNTER_MAX;
4446 	while ((parent = parent_mem_cgroup(memcg))) {
4447 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4448 					    READ_ONCE(memcg->memory.high));
4449 		unsigned long used = page_counter_read(&memcg->memory);
4450 
4451 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4452 		memcg = parent;
4453 	}
4454 }
4455 
4456 /*
4457  * Foreign dirty flushing
4458  *
4459  * There's an inherent mismatch between memcg and writeback.  The former
4460  * tracks ownership per-page while the latter per-inode.  This was a
4461  * deliberate design decision because honoring per-page ownership in the
4462  * writeback path is complicated, may lead to higher CPU and IO overheads
4463  * and deemed unnecessary given that write-sharing an inode across
4464  * different cgroups isn't a common use-case.
4465  *
4466  * Combined with inode majority-writer ownership switching, this works well
4467  * enough in most cases but there are some pathological cases.  For
4468  * example, let's say there are two cgroups A and B which keep writing to
4469  * different but confined parts of the same inode.  B owns the inode and
4470  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4471  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4472  * triggering background writeback.  A will be slowed down without a way to
4473  * make writeback of the dirty pages happen.
4474  *
4475  * Conditions like the above can lead to a cgroup getting repeatedly and
4476  * severely throttled after making some progress after each
4477  * dirty_expire_interval while the underlying IO device is almost
4478  * completely idle.
4479  *
4480  * Solving this problem completely requires matching the ownership tracking
4481  * granularities between memcg and writeback in either direction.  However,
4482  * the more egregious behaviors can be avoided by simply remembering the
4483  * most recent foreign dirtying events and initiating remote flushes on
4484  * them when local writeback isn't enough to keep the memory clean enough.
4485  *
4486  * The following two functions implement such mechanism.  When a foreign
4487  * page - a page whose memcg and writeback ownerships don't match - is
4488  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4489  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4490  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4491  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4492  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4493  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4494  * limited to MEMCG_CGWB_FRN_CNT.
4495  *
4496  * The mechanism only remembers IDs and doesn't hold any object references.
4497  * As being wrong occasionally doesn't matter, updates and accesses to the
4498  * records are lockless and racy.
4499  */
4500 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4501 					     struct bdi_writeback *wb)
4502 {
4503 	struct mem_cgroup *memcg = folio_memcg(folio);
4504 	struct memcg_cgwb_frn *frn;
4505 	u64 now = get_jiffies_64();
4506 	u64 oldest_at = now;
4507 	int oldest = -1;
4508 	int i;
4509 
4510 	trace_track_foreign_dirty(folio, wb);
4511 
4512 	/*
4513 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4514 	 * using it.  If not replace the oldest one which isn't being
4515 	 * written out.
4516 	 */
4517 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4518 		frn = &memcg->cgwb_frn[i];
4519 		if (frn->bdi_id == wb->bdi->id &&
4520 		    frn->memcg_id == wb->memcg_css->id)
4521 			break;
4522 		if (time_before64(frn->at, oldest_at) &&
4523 		    atomic_read(&frn->done.cnt) == 1) {
4524 			oldest = i;
4525 			oldest_at = frn->at;
4526 		}
4527 	}
4528 
4529 	if (i < MEMCG_CGWB_FRN_CNT) {
4530 		/*
4531 		 * Re-using an existing one.  Update timestamp lazily to
4532 		 * avoid making the cacheline hot.  We want them to be
4533 		 * reasonably up-to-date and significantly shorter than
4534 		 * dirty_expire_interval as that's what expires the record.
4535 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4536 		 */
4537 		unsigned long update_intv =
4538 			min_t(unsigned long, HZ,
4539 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4540 
4541 		if (time_before64(frn->at, now - update_intv))
4542 			frn->at = now;
4543 	} else if (oldest >= 0) {
4544 		/* replace the oldest free one */
4545 		frn = &memcg->cgwb_frn[oldest];
4546 		frn->bdi_id = wb->bdi->id;
4547 		frn->memcg_id = wb->memcg_css->id;
4548 		frn->at = now;
4549 	}
4550 }
4551 
4552 /* issue foreign writeback flushes for recorded foreign dirtying events */
4553 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4554 {
4555 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4556 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4557 	u64 now = jiffies_64;
4558 	int i;
4559 
4560 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4561 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4562 
4563 		/*
4564 		 * If the record is older than dirty_expire_interval,
4565 		 * writeback on it has already started.  No need to kick it
4566 		 * off again.  Also, don't start a new one if there's
4567 		 * already one in flight.
4568 		 */
4569 		if (time_after64(frn->at, now - intv) &&
4570 		    atomic_read(&frn->done.cnt) == 1) {
4571 			frn->at = 0;
4572 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4573 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4574 					       WB_REASON_FOREIGN_FLUSH,
4575 					       &frn->done);
4576 		}
4577 	}
4578 }
4579 
4580 #else	/* CONFIG_CGROUP_WRITEBACK */
4581 
4582 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4583 {
4584 	return 0;
4585 }
4586 
4587 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4588 {
4589 }
4590 
4591 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4592 {
4593 }
4594 
4595 #endif	/* CONFIG_CGROUP_WRITEBACK */
4596 
4597 /*
4598  * DO NOT USE IN NEW FILES.
4599  *
4600  * "cgroup.event_control" implementation.
4601  *
4602  * This is way over-engineered.  It tries to support fully configurable
4603  * events for each user.  Such level of flexibility is completely
4604  * unnecessary especially in the light of the planned unified hierarchy.
4605  *
4606  * Please deprecate this and replace with something simpler if at all
4607  * possible.
4608  */
4609 
4610 /*
4611  * Unregister event and free resources.
4612  *
4613  * Gets called from workqueue.
4614  */
4615 static void memcg_event_remove(struct work_struct *work)
4616 {
4617 	struct mem_cgroup_event *event =
4618 		container_of(work, struct mem_cgroup_event, remove);
4619 	struct mem_cgroup *memcg = event->memcg;
4620 
4621 	remove_wait_queue(event->wqh, &event->wait);
4622 
4623 	event->unregister_event(memcg, event->eventfd);
4624 
4625 	/* Notify userspace the event is going away. */
4626 	eventfd_signal(event->eventfd, 1);
4627 
4628 	eventfd_ctx_put(event->eventfd);
4629 	kfree(event);
4630 	css_put(&memcg->css);
4631 }
4632 
4633 /*
4634  * Gets called on EPOLLHUP on eventfd when user closes it.
4635  *
4636  * Called with wqh->lock held and interrupts disabled.
4637  */
4638 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4639 			    int sync, void *key)
4640 {
4641 	struct mem_cgroup_event *event =
4642 		container_of(wait, struct mem_cgroup_event, wait);
4643 	struct mem_cgroup *memcg = event->memcg;
4644 	__poll_t flags = key_to_poll(key);
4645 
4646 	if (flags & EPOLLHUP) {
4647 		/*
4648 		 * If the event has been detached at cgroup removal, we
4649 		 * can simply return knowing the other side will cleanup
4650 		 * for us.
4651 		 *
4652 		 * We can't race against event freeing since the other
4653 		 * side will require wqh->lock via remove_wait_queue(),
4654 		 * which we hold.
4655 		 */
4656 		spin_lock(&memcg->event_list_lock);
4657 		if (!list_empty(&event->list)) {
4658 			list_del_init(&event->list);
4659 			/*
4660 			 * We are in atomic context, but cgroup_event_remove()
4661 			 * may sleep, so we have to call it in workqueue.
4662 			 */
4663 			schedule_work(&event->remove);
4664 		}
4665 		spin_unlock(&memcg->event_list_lock);
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 static void memcg_event_ptable_queue_proc(struct file *file,
4672 		wait_queue_head_t *wqh, poll_table *pt)
4673 {
4674 	struct mem_cgroup_event *event =
4675 		container_of(pt, struct mem_cgroup_event, pt);
4676 
4677 	event->wqh = wqh;
4678 	add_wait_queue(wqh, &event->wait);
4679 }
4680 
4681 /*
4682  * DO NOT USE IN NEW FILES.
4683  *
4684  * Parse input and register new cgroup event handler.
4685  *
4686  * Input must be in format '<event_fd> <control_fd> <args>'.
4687  * Interpretation of args is defined by control file implementation.
4688  */
4689 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4690 					 char *buf, size_t nbytes, loff_t off)
4691 {
4692 	struct cgroup_subsys_state *css = of_css(of);
4693 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4694 	struct mem_cgroup_event *event;
4695 	struct cgroup_subsys_state *cfile_css;
4696 	unsigned int efd, cfd;
4697 	struct fd efile;
4698 	struct fd cfile;
4699 	const char *name;
4700 	char *endp;
4701 	int ret;
4702 
4703 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4704 		return -EOPNOTSUPP;
4705 
4706 	buf = strstrip(buf);
4707 
4708 	efd = simple_strtoul(buf, &endp, 10);
4709 	if (*endp != ' ')
4710 		return -EINVAL;
4711 	buf = endp + 1;
4712 
4713 	cfd = simple_strtoul(buf, &endp, 10);
4714 	if ((*endp != ' ') && (*endp != '\0'))
4715 		return -EINVAL;
4716 	buf = endp + 1;
4717 
4718 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4719 	if (!event)
4720 		return -ENOMEM;
4721 
4722 	event->memcg = memcg;
4723 	INIT_LIST_HEAD(&event->list);
4724 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4725 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4726 	INIT_WORK(&event->remove, memcg_event_remove);
4727 
4728 	efile = fdget(efd);
4729 	if (!efile.file) {
4730 		ret = -EBADF;
4731 		goto out_kfree;
4732 	}
4733 
4734 	event->eventfd = eventfd_ctx_fileget(efile.file);
4735 	if (IS_ERR(event->eventfd)) {
4736 		ret = PTR_ERR(event->eventfd);
4737 		goto out_put_efile;
4738 	}
4739 
4740 	cfile = fdget(cfd);
4741 	if (!cfile.file) {
4742 		ret = -EBADF;
4743 		goto out_put_eventfd;
4744 	}
4745 
4746 	/* the process need read permission on control file */
4747 	/* AV: shouldn't we check that it's been opened for read instead? */
4748 	ret = file_permission(cfile.file, MAY_READ);
4749 	if (ret < 0)
4750 		goto out_put_cfile;
4751 
4752 	/*
4753 	 * Determine the event callbacks and set them in @event.  This used
4754 	 * to be done via struct cftype but cgroup core no longer knows
4755 	 * about these events.  The following is crude but the whole thing
4756 	 * is for compatibility anyway.
4757 	 *
4758 	 * DO NOT ADD NEW FILES.
4759 	 */
4760 	name = cfile.file->f_path.dentry->d_name.name;
4761 
4762 	if (!strcmp(name, "memory.usage_in_bytes")) {
4763 		event->register_event = mem_cgroup_usage_register_event;
4764 		event->unregister_event = mem_cgroup_usage_unregister_event;
4765 	} else if (!strcmp(name, "memory.oom_control")) {
4766 		event->register_event = mem_cgroup_oom_register_event;
4767 		event->unregister_event = mem_cgroup_oom_unregister_event;
4768 	} else if (!strcmp(name, "memory.pressure_level")) {
4769 		event->register_event = vmpressure_register_event;
4770 		event->unregister_event = vmpressure_unregister_event;
4771 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4772 		event->register_event = memsw_cgroup_usage_register_event;
4773 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4774 	} else {
4775 		ret = -EINVAL;
4776 		goto out_put_cfile;
4777 	}
4778 
4779 	/*
4780 	 * Verify @cfile should belong to @css.  Also, remaining events are
4781 	 * automatically removed on cgroup destruction but the removal is
4782 	 * asynchronous, so take an extra ref on @css.
4783 	 */
4784 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4785 					       &memory_cgrp_subsys);
4786 	ret = -EINVAL;
4787 	if (IS_ERR(cfile_css))
4788 		goto out_put_cfile;
4789 	if (cfile_css != css) {
4790 		css_put(cfile_css);
4791 		goto out_put_cfile;
4792 	}
4793 
4794 	ret = event->register_event(memcg, event->eventfd, buf);
4795 	if (ret)
4796 		goto out_put_css;
4797 
4798 	vfs_poll(efile.file, &event->pt);
4799 
4800 	spin_lock_irq(&memcg->event_list_lock);
4801 	list_add(&event->list, &memcg->event_list);
4802 	spin_unlock_irq(&memcg->event_list_lock);
4803 
4804 	fdput(cfile);
4805 	fdput(efile);
4806 
4807 	return nbytes;
4808 
4809 out_put_css:
4810 	css_put(css);
4811 out_put_cfile:
4812 	fdput(cfile);
4813 out_put_eventfd:
4814 	eventfd_ctx_put(event->eventfd);
4815 out_put_efile:
4816 	fdput(efile);
4817 out_kfree:
4818 	kfree(event);
4819 
4820 	return ret;
4821 }
4822 
4823 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4824 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4825 {
4826 	/*
4827 	 * Deprecated.
4828 	 * Please, take a look at tools/cgroup/slabinfo.py .
4829 	 */
4830 	return 0;
4831 }
4832 #endif
4833 
4834 static struct cftype mem_cgroup_legacy_files[] = {
4835 	{
4836 		.name = "usage_in_bytes",
4837 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4838 		.read_u64 = mem_cgroup_read_u64,
4839 	},
4840 	{
4841 		.name = "max_usage_in_bytes",
4842 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4843 		.write = mem_cgroup_reset,
4844 		.read_u64 = mem_cgroup_read_u64,
4845 	},
4846 	{
4847 		.name = "limit_in_bytes",
4848 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4849 		.write = mem_cgroup_write,
4850 		.read_u64 = mem_cgroup_read_u64,
4851 	},
4852 	{
4853 		.name = "soft_limit_in_bytes",
4854 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4855 		.write = mem_cgroup_write,
4856 		.read_u64 = mem_cgroup_read_u64,
4857 	},
4858 	{
4859 		.name = "failcnt",
4860 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4861 		.write = mem_cgroup_reset,
4862 		.read_u64 = mem_cgroup_read_u64,
4863 	},
4864 	{
4865 		.name = "stat",
4866 		.seq_show = memcg_stat_show,
4867 	},
4868 	{
4869 		.name = "force_empty",
4870 		.write = mem_cgroup_force_empty_write,
4871 	},
4872 	{
4873 		.name = "use_hierarchy",
4874 		.write_u64 = mem_cgroup_hierarchy_write,
4875 		.read_u64 = mem_cgroup_hierarchy_read,
4876 	},
4877 	{
4878 		.name = "cgroup.event_control",		/* XXX: for compat */
4879 		.write = memcg_write_event_control,
4880 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4881 	},
4882 	{
4883 		.name = "swappiness",
4884 		.read_u64 = mem_cgroup_swappiness_read,
4885 		.write_u64 = mem_cgroup_swappiness_write,
4886 	},
4887 	{
4888 		.name = "move_charge_at_immigrate",
4889 		.read_u64 = mem_cgroup_move_charge_read,
4890 		.write_u64 = mem_cgroup_move_charge_write,
4891 	},
4892 	{
4893 		.name = "oom_control",
4894 		.seq_show = mem_cgroup_oom_control_read,
4895 		.write_u64 = mem_cgroup_oom_control_write,
4896 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4897 	},
4898 	{
4899 		.name = "pressure_level",
4900 	},
4901 #ifdef CONFIG_NUMA
4902 	{
4903 		.name = "numa_stat",
4904 		.seq_show = memcg_numa_stat_show,
4905 	},
4906 #endif
4907 	{
4908 		.name = "kmem.limit_in_bytes",
4909 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4910 		.write = mem_cgroup_write,
4911 		.read_u64 = mem_cgroup_read_u64,
4912 	},
4913 	{
4914 		.name = "kmem.usage_in_bytes",
4915 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4916 		.read_u64 = mem_cgroup_read_u64,
4917 	},
4918 	{
4919 		.name = "kmem.failcnt",
4920 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4921 		.write = mem_cgroup_reset,
4922 		.read_u64 = mem_cgroup_read_u64,
4923 	},
4924 	{
4925 		.name = "kmem.max_usage_in_bytes",
4926 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4927 		.write = mem_cgroup_reset,
4928 		.read_u64 = mem_cgroup_read_u64,
4929 	},
4930 #if defined(CONFIG_MEMCG_KMEM) && \
4931 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4932 	{
4933 		.name = "kmem.slabinfo",
4934 		.seq_show = mem_cgroup_slab_show,
4935 	},
4936 #endif
4937 	{
4938 		.name = "kmem.tcp.limit_in_bytes",
4939 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4940 		.write = mem_cgroup_write,
4941 		.read_u64 = mem_cgroup_read_u64,
4942 	},
4943 	{
4944 		.name = "kmem.tcp.usage_in_bytes",
4945 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4946 		.read_u64 = mem_cgroup_read_u64,
4947 	},
4948 	{
4949 		.name = "kmem.tcp.failcnt",
4950 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4951 		.write = mem_cgroup_reset,
4952 		.read_u64 = mem_cgroup_read_u64,
4953 	},
4954 	{
4955 		.name = "kmem.tcp.max_usage_in_bytes",
4956 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4957 		.write = mem_cgroup_reset,
4958 		.read_u64 = mem_cgroup_read_u64,
4959 	},
4960 	{ },	/* terminate */
4961 };
4962 
4963 /*
4964  * Private memory cgroup IDR
4965  *
4966  * Swap-out records and page cache shadow entries need to store memcg
4967  * references in constrained space, so we maintain an ID space that is
4968  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4969  * memory-controlled cgroups to 64k.
4970  *
4971  * However, there usually are many references to the offline CSS after
4972  * the cgroup has been destroyed, such as page cache or reclaimable
4973  * slab objects, that don't need to hang on to the ID. We want to keep
4974  * those dead CSS from occupying IDs, or we might quickly exhaust the
4975  * relatively small ID space and prevent the creation of new cgroups
4976  * even when there are much fewer than 64k cgroups - possibly none.
4977  *
4978  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4979  * be freed and recycled when it's no longer needed, which is usually
4980  * when the CSS is offlined.
4981  *
4982  * The only exception to that are records of swapped out tmpfs/shmem
4983  * pages that need to be attributed to live ancestors on swapin. But
4984  * those references are manageable from userspace.
4985  */
4986 
4987 static DEFINE_IDR(mem_cgroup_idr);
4988 
4989 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4990 {
4991 	if (memcg->id.id > 0) {
4992 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4993 		memcg->id.id = 0;
4994 	}
4995 }
4996 
4997 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4998 						  unsigned int n)
4999 {
5000 	refcount_add(n, &memcg->id.ref);
5001 }
5002 
5003 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5004 {
5005 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5006 		mem_cgroup_id_remove(memcg);
5007 
5008 		/* Memcg ID pins CSS */
5009 		css_put(&memcg->css);
5010 	}
5011 }
5012 
5013 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5014 {
5015 	mem_cgroup_id_put_many(memcg, 1);
5016 }
5017 
5018 /**
5019  * mem_cgroup_from_id - look up a memcg from a memcg id
5020  * @id: the memcg id to look up
5021  *
5022  * Caller must hold rcu_read_lock().
5023  */
5024 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5025 {
5026 	WARN_ON_ONCE(!rcu_read_lock_held());
5027 	return idr_find(&mem_cgroup_idr, id);
5028 }
5029 
5030 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5031 {
5032 	struct mem_cgroup_per_node *pn;
5033 
5034 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5035 	if (!pn)
5036 		return 1;
5037 
5038 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5039 						   GFP_KERNEL_ACCOUNT);
5040 	if (!pn->lruvec_stats_percpu) {
5041 		kfree(pn);
5042 		return 1;
5043 	}
5044 
5045 	lruvec_init(&pn->lruvec);
5046 	pn->memcg = memcg;
5047 
5048 	memcg->nodeinfo[node] = pn;
5049 	return 0;
5050 }
5051 
5052 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5053 {
5054 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5055 
5056 	if (!pn)
5057 		return;
5058 
5059 	free_percpu(pn->lruvec_stats_percpu);
5060 	kfree(pn);
5061 }
5062 
5063 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5064 {
5065 	int node;
5066 
5067 	for_each_node(node)
5068 		free_mem_cgroup_per_node_info(memcg, node);
5069 	free_percpu(memcg->vmstats_percpu);
5070 	kfree(memcg);
5071 }
5072 
5073 static void mem_cgroup_free(struct mem_cgroup *memcg)
5074 {
5075 	memcg_wb_domain_exit(memcg);
5076 	__mem_cgroup_free(memcg);
5077 }
5078 
5079 static struct mem_cgroup *mem_cgroup_alloc(void)
5080 {
5081 	struct mem_cgroup *memcg;
5082 	int node;
5083 	int __maybe_unused i;
5084 	long error = -ENOMEM;
5085 
5086 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5087 	if (!memcg)
5088 		return ERR_PTR(error);
5089 
5090 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5091 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5092 	if (memcg->id.id < 0) {
5093 		error = memcg->id.id;
5094 		goto fail;
5095 	}
5096 
5097 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5098 						 GFP_KERNEL_ACCOUNT);
5099 	if (!memcg->vmstats_percpu)
5100 		goto fail;
5101 
5102 	for_each_node(node)
5103 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5104 			goto fail;
5105 
5106 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5107 		goto fail;
5108 
5109 	INIT_WORK(&memcg->high_work, high_work_func);
5110 	INIT_LIST_HEAD(&memcg->oom_notify);
5111 	mutex_init(&memcg->thresholds_lock);
5112 	spin_lock_init(&memcg->move_lock);
5113 	vmpressure_init(&memcg->vmpressure);
5114 	INIT_LIST_HEAD(&memcg->event_list);
5115 	spin_lock_init(&memcg->event_list_lock);
5116 	memcg->socket_pressure = jiffies;
5117 #ifdef CONFIG_MEMCG_KMEM
5118 	memcg->kmemcg_id = -1;
5119 	INIT_LIST_HEAD(&memcg->objcg_list);
5120 #endif
5121 #ifdef CONFIG_CGROUP_WRITEBACK
5122 	INIT_LIST_HEAD(&memcg->cgwb_list);
5123 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5124 		memcg->cgwb_frn[i].done =
5125 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5126 #endif
5127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5128 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5129 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5130 	memcg->deferred_split_queue.split_queue_len = 0;
5131 #endif
5132 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5133 	return memcg;
5134 fail:
5135 	mem_cgroup_id_remove(memcg);
5136 	__mem_cgroup_free(memcg);
5137 	return ERR_PTR(error);
5138 }
5139 
5140 static struct cgroup_subsys_state * __ref
5141 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5142 {
5143 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5144 	struct mem_cgroup *memcg, *old_memcg;
5145 
5146 	old_memcg = set_active_memcg(parent);
5147 	memcg = mem_cgroup_alloc();
5148 	set_active_memcg(old_memcg);
5149 	if (IS_ERR(memcg))
5150 		return ERR_CAST(memcg);
5151 
5152 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5153 	memcg->soft_limit = PAGE_COUNTER_MAX;
5154 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5155 	if (parent) {
5156 		memcg->swappiness = mem_cgroup_swappiness(parent);
5157 		memcg->oom_kill_disable = parent->oom_kill_disable;
5158 
5159 		page_counter_init(&memcg->memory, &parent->memory);
5160 		page_counter_init(&memcg->swap, &parent->swap);
5161 		page_counter_init(&memcg->kmem, &parent->kmem);
5162 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5163 	} else {
5164 		page_counter_init(&memcg->memory, NULL);
5165 		page_counter_init(&memcg->swap, NULL);
5166 		page_counter_init(&memcg->kmem, NULL);
5167 		page_counter_init(&memcg->tcpmem, NULL);
5168 
5169 		root_mem_cgroup = memcg;
5170 		return &memcg->css;
5171 	}
5172 
5173 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5174 		static_branch_inc(&memcg_sockets_enabled_key);
5175 
5176 	return &memcg->css;
5177 }
5178 
5179 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5180 {
5181 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5182 
5183 	if (memcg_online_kmem(memcg))
5184 		goto remove_id;
5185 
5186 	/*
5187 	 * A memcg must be visible for expand_shrinker_info()
5188 	 * by the time the maps are allocated. So, we allocate maps
5189 	 * here, when for_each_mem_cgroup() can't skip it.
5190 	 */
5191 	if (alloc_shrinker_info(memcg))
5192 		goto offline_kmem;
5193 
5194 	/* Online state pins memcg ID, memcg ID pins CSS */
5195 	refcount_set(&memcg->id.ref, 1);
5196 	css_get(css);
5197 
5198 	if (unlikely(mem_cgroup_is_root(memcg)))
5199 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5200 				   2UL*HZ);
5201 	return 0;
5202 offline_kmem:
5203 	memcg_offline_kmem(memcg);
5204 remove_id:
5205 	mem_cgroup_id_remove(memcg);
5206 	return -ENOMEM;
5207 }
5208 
5209 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5210 {
5211 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5212 	struct mem_cgroup_event *event, *tmp;
5213 
5214 	/*
5215 	 * Unregister events and notify userspace.
5216 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5217 	 * directory to avoid race between userspace and kernelspace.
5218 	 */
5219 	spin_lock_irq(&memcg->event_list_lock);
5220 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5221 		list_del_init(&event->list);
5222 		schedule_work(&event->remove);
5223 	}
5224 	spin_unlock_irq(&memcg->event_list_lock);
5225 
5226 	page_counter_set_min(&memcg->memory, 0);
5227 	page_counter_set_low(&memcg->memory, 0);
5228 
5229 	memcg_offline_kmem(memcg);
5230 	reparent_shrinker_deferred(memcg);
5231 	wb_memcg_offline(memcg);
5232 
5233 	drain_all_stock(memcg);
5234 
5235 	mem_cgroup_id_put(memcg);
5236 }
5237 
5238 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5239 {
5240 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5241 
5242 	invalidate_reclaim_iterators(memcg);
5243 }
5244 
5245 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5246 {
5247 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5248 	int __maybe_unused i;
5249 
5250 #ifdef CONFIG_CGROUP_WRITEBACK
5251 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5252 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5253 #endif
5254 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5255 		static_branch_dec(&memcg_sockets_enabled_key);
5256 
5257 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5258 		static_branch_dec(&memcg_sockets_enabled_key);
5259 
5260 	vmpressure_cleanup(&memcg->vmpressure);
5261 	cancel_work_sync(&memcg->high_work);
5262 	mem_cgroup_remove_from_trees(memcg);
5263 	free_shrinker_info(memcg);
5264 	mem_cgroup_free(memcg);
5265 }
5266 
5267 /**
5268  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5269  * @css: the target css
5270  *
5271  * Reset the states of the mem_cgroup associated with @css.  This is
5272  * invoked when the userland requests disabling on the default hierarchy
5273  * but the memcg is pinned through dependency.  The memcg should stop
5274  * applying policies and should revert to the vanilla state as it may be
5275  * made visible again.
5276  *
5277  * The current implementation only resets the essential configurations.
5278  * This needs to be expanded to cover all the visible parts.
5279  */
5280 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5281 {
5282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283 
5284 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5285 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5286 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5287 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5288 	page_counter_set_min(&memcg->memory, 0);
5289 	page_counter_set_low(&memcg->memory, 0);
5290 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5291 	memcg->soft_limit = PAGE_COUNTER_MAX;
5292 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5293 	memcg_wb_domain_size_changed(memcg);
5294 }
5295 
5296 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5297 {
5298 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5299 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5300 	struct memcg_vmstats_percpu *statc;
5301 	long delta, v;
5302 	int i, nid;
5303 
5304 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5305 
5306 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5307 		/*
5308 		 * Collect the aggregated propagation counts of groups
5309 		 * below us. We're in a per-cpu loop here and this is
5310 		 * a global counter, so the first cycle will get them.
5311 		 */
5312 		delta = memcg->vmstats.state_pending[i];
5313 		if (delta)
5314 			memcg->vmstats.state_pending[i] = 0;
5315 
5316 		/* Add CPU changes on this level since the last flush */
5317 		v = READ_ONCE(statc->state[i]);
5318 		if (v != statc->state_prev[i]) {
5319 			delta += v - statc->state_prev[i];
5320 			statc->state_prev[i] = v;
5321 		}
5322 
5323 		if (!delta)
5324 			continue;
5325 
5326 		/* Aggregate counts on this level and propagate upwards */
5327 		memcg->vmstats.state[i] += delta;
5328 		if (parent)
5329 			parent->vmstats.state_pending[i] += delta;
5330 	}
5331 
5332 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5333 		delta = memcg->vmstats.events_pending[i];
5334 		if (delta)
5335 			memcg->vmstats.events_pending[i] = 0;
5336 
5337 		v = READ_ONCE(statc->events[i]);
5338 		if (v != statc->events_prev[i]) {
5339 			delta += v - statc->events_prev[i];
5340 			statc->events_prev[i] = v;
5341 		}
5342 
5343 		if (!delta)
5344 			continue;
5345 
5346 		memcg->vmstats.events[i] += delta;
5347 		if (parent)
5348 			parent->vmstats.events_pending[i] += delta;
5349 	}
5350 
5351 	for_each_node_state(nid, N_MEMORY) {
5352 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5353 		struct mem_cgroup_per_node *ppn = NULL;
5354 		struct lruvec_stats_percpu *lstatc;
5355 
5356 		if (parent)
5357 			ppn = parent->nodeinfo[nid];
5358 
5359 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5360 
5361 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5362 			delta = pn->lruvec_stats.state_pending[i];
5363 			if (delta)
5364 				pn->lruvec_stats.state_pending[i] = 0;
5365 
5366 			v = READ_ONCE(lstatc->state[i]);
5367 			if (v != lstatc->state_prev[i]) {
5368 				delta += v - lstatc->state_prev[i];
5369 				lstatc->state_prev[i] = v;
5370 			}
5371 
5372 			if (!delta)
5373 				continue;
5374 
5375 			pn->lruvec_stats.state[i] += delta;
5376 			if (ppn)
5377 				ppn->lruvec_stats.state_pending[i] += delta;
5378 		}
5379 	}
5380 }
5381 
5382 #ifdef CONFIG_MMU
5383 /* Handlers for move charge at task migration. */
5384 static int mem_cgroup_do_precharge(unsigned long count)
5385 {
5386 	int ret;
5387 
5388 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5389 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5390 	if (!ret) {
5391 		mc.precharge += count;
5392 		return ret;
5393 	}
5394 
5395 	/* Try charges one by one with reclaim, but do not retry */
5396 	while (count--) {
5397 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5398 		if (ret)
5399 			return ret;
5400 		mc.precharge++;
5401 		cond_resched();
5402 	}
5403 	return 0;
5404 }
5405 
5406 union mc_target {
5407 	struct page	*page;
5408 	swp_entry_t	ent;
5409 };
5410 
5411 enum mc_target_type {
5412 	MC_TARGET_NONE = 0,
5413 	MC_TARGET_PAGE,
5414 	MC_TARGET_SWAP,
5415 	MC_TARGET_DEVICE,
5416 };
5417 
5418 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5419 						unsigned long addr, pte_t ptent)
5420 {
5421 	struct page *page = vm_normal_page(vma, addr, ptent);
5422 
5423 	if (!page || !page_mapped(page))
5424 		return NULL;
5425 	if (PageAnon(page)) {
5426 		if (!(mc.flags & MOVE_ANON))
5427 			return NULL;
5428 	} else {
5429 		if (!(mc.flags & MOVE_FILE))
5430 			return NULL;
5431 	}
5432 	if (!get_page_unless_zero(page))
5433 		return NULL;
5434 
5435 	return page;
5436 }
5437 
5438 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5439 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5440 			pte_t ptent, swp_entry_t *entry)
5441 {
5442 	struct page *page = NULL;
5443 	swp_entry_t ent = pte_to_swp_entry(ptent);
5444 
5445 	if (!(mc.flags & MOVE_ANON))
5446 		return NULL;
5447 
5448 	/*
5449 	 * Handle device private pages that are not accessible by the CPU, but
5450 	 * stored as special swap entries in the page table.
5451 	 */
5452 	if (is_device_private_entry(ent)) {
5453 		page = pfn_swap_entry_to_page(ent);
5454 		if (!get_page_unless_zero(page))
5455 			return NULL;
5456 		return page;
5457 	}
5458 
5459 	if (non_swap_entry(ent))
5460 		return NULL;
5461 
5462 	/*
5463 	 * Because lookup_swap_cache() updates some statistics counter,
5464 	 * we call find_get_page() with swapper_space directly.
5465 	 */
5466 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5467 	entry->val = ent.val;
5468 
5469 	return page;
5470 }
5471 #else
5472 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5473 			pte_t ptent, swp_entry_t *entry)
5474 {
5475 	return NULL;
5476 }
5477 #endif
5478 
5479 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5480 			unsigned long addr, pte_t ptent)
5481 {
5482 	if (!vma->vm_file) /* anonymous vma */
5483 		return NULL;
5484 	if (!(mc.flags & MOVE_FILE))
5485 		return NULL;
5486 
5487 	/* page is moved even if it's not RSS of this task(page-faulted). */
5488 	/* shmem/tmpfs may report page out on swap: account for that too. */
5489 	return find_get_incore_page(vma->vm_file->f_mapping,
5490 			linear_page_index(vma, addr));
5491 }
5492 
5493 /**
5494  * mem_cgroup_move_account - move account of the page
5495  * @page: the page
5496  * @compound: charge the page as compound or small page
5497  * @from: mem_cgroup which the page is moved from.
5498  * @to:	mem_cgroup which the page is moved to. @from != @to.
5499  *
5500  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5501  *
5502  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5503  * from old cgroup.
5504  */
5505 static int mem_cgroup_move_account(struct page *page,
5506 				   bool compound,
5507 				   struct mem_cgroup *from,
5508 				   struct mem_cgroup *to)
5509 {
5510 	struct folio *folio = page_folio(page);
5511 	struct lruvec *from_vec, *to_vec;
5512 	struct pglist_data *pgdat;
5513 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5514 	int nid, ret;
5515 
5516 	VM_BUG_ON(from == to);
5517 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5518 	VM_BUG_ON(compound && !folio_test_large(folio));
5519 
5520 	/*
5521 	 * Prevent mem_cgroup_migrate() from looking at
5522 	 * page's memory cgroup of its source page while we change it.
5523 	 */
5524 	ret = -EBUSY;
5525 	if (!folio_trylock(folio))
5526 		goto out;
5527 
5528 	ret = -EINVAL;
5529 	if (folio_memcg(folio) != from)
5530 		goto out_unlock;
5531 
5532 	pgdat = folio_pgdat(folio);
5533 	from_vec = mem_cgroup_lruvec(from, pgdat);
5534 	to_vec = mem_cgroup_lruvec(to, pgdat);
5535 
5536 	folio_memcg_lock(folio);
5537 
5538 	if (folio_test_anon(folio)) {
5539 		if (folio_mapped(folio)) {
5540 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5541 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5542 			if (folio_test_transhuge(folio)) {
5543 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5544 						   -nr_pages);
5545 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5546 						   nr_pages);
5547 			}
5548 		}
5549 	} else {
5550 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5551 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5552 
5553 		if (folio_test_swapbacked(folio)) {
5554 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5555 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5556 		}
5557 
5558 		if (folio_mapped(folio)) {
5559 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5560 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5561 		}
5562 
5563 		if (folio_test_dirty(folio)) {
5564 			struct address_space *mapping = folio_mapping(folio);
5565 
5566 			if (mapping_can_writeback(mapping)) {
5567 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5568 						   -nr_pages);
5569 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5570 						   nr_pages);
5571 			}
5572 		}
5573 	}
5574 
5575 	if (folio_test_writeback(folio)) {
5576 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5577 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5578 	}
5579 
5580 	/*
5581 	 * All state has been migrated, let's switch to the new memcg.
5582 	 *
5583 	 * It is safe to change page's memcg here because the page
5584 	 * is referenced, charged, isolated, and locked: we can't race
5585 	 * with (un)charging, migration, LRU putback, or anything else
5586 	 * that would rely on a stable page's memory cgroup.
5587 	 *
5588 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5589 	 * to save space. As soon as we switch page's memory cgroup to a
5590 	 * new memcg that isn't locked, the above state can change
5591 	 * concurrently again. Make sure we're truly done with it.
5592 	 */
5593 	smp_mb();
5594 
5595 	css_get(&to->css);
5596 	css_put(&from->css);
5597 
5598 	folio->memcg_data = (unsigned long)to;
5599 
5600 	__folio_memcg_unlock(from);
5601 
5602 	ret = 0;
5603 	nid = folio_nid(folio);
5604 
5605 	local_irq_disable();
5606 	mem_cgroup_charge_statistics(to, nr_pages);
5607 	memcg_check_events(to, nid);
5608 	mem_cgroup_charge_statistics(from, -nr_pages);
5609 	memcg_check_events(from, nid);
5610 	local_irq_enable();
5611 out_unlock:
5612 	folio_unlock(folio);
5613 out:
5614 	return ret;
5615 }
5616 
5617 /**
5618  * get_mctgt_type - get target type of moving charge
5619  * @vma: the vma the pte to be checked belongs
5620  * @addr: the address corresponding to the pte to be checked
5621  * @ptent: the pte to be checked
5622  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5623  *
5624  * Returns
5625  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5626  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5627  *     move charge. if @target is not NULL, the page is stored in target->page
5628  *     with extra refcnt got(Callers should handle it).
5629  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5630  *     target for charge migration. if @target is not NULL, the entry is stored
5631  *     in target->ent.
5632  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5633  *     (so ZONE_DEVICE page and thus not on the lru).
5634  *     For now we such page is charge like a regular page would be as for all
5635  *     intent and purposes it is just special memory taking the place of a
5636  *     regular page.
5637  *
5638  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5639  *
5640  * Called with pte lock held.
5641  */
5642 
5643 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5644 		unsigned long addr, pte_t ptent, union mc_target *target)
5645 {
5646 	struct page *page = NULL;
5647 	enum mc_target_type ret = MC_TARGET_NONE;
5648 	swp_entry_t ent = { .val = 0 };
5649 
5650 	if (pte_present(ptent))
5651 		page = mc_handle_present_pte(vma, addr, ptent);
5652 	else if (is_swap_pte(ptent))
5653 		page = mc_handle_swap_pte(vma, ptent, &ent);
5654 	else if (pte_none(ptent))
5655 		page = mc_handle_file_pte(vma, addr, ptent);
5656 
5657 	if (!page && !ent.val)
5658 		return ret;
5659 	if (page) {
5660 		/*
5661 		 * Do only loose check w/o serialization.
5662 		 * mem_cgroup_move_account() checks the page is valid or
5663 		 * not under LRU exclusion.
5664 		 */
5665 		if (page_memcg(page) == mc.from) {
5666 			ret = MC_TARGET_PAGE;
5667 			if (is_device_private_page(page))
5668 				ret = MC_TARGET_DEVICE;
5669 			if (target)
5670 				target->page = page;
5671 		}
5672 		if (!ret || !target)
5673 			put_page(page);
5674 	}
5675 	/*
5676 	 * There is a swap entry and a page doesn't exist or isn't charged.
5677 	 * But we cannot move a tail-page in a THP.
5678 	 */
5679 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5680 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5681 		ret = MC_TARGET_SWAP;
5682 		if (target)
5683 			target->ent = ent;
5684 	}
5685 	return ret;
5686 }
5687 
5688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5689 /*
5690  * We don't consider PMD mapped swapping or file mapped pages because THP does
5691  * not support them for now.
5692  * Caller should make sure that pmd_trans_huge(pmd) is true.
5693  */
5694 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5695 		unsigned long addr, pmd_t pmd, union mc_target *target)
5696 {
5697 	struct page *page = NULL;
5698 	enum mc_target_type ret = MC_TARGET_NONE;
5699 
5700 	if (unlikely(is_swap_pmd(pmd))) {
5701 		VM_BUG_ON(thp_migration_supported() &&
5702 				  !is_pmd_migration_entry(pmd));
5703 		return ret;
5704 	}
5705 	page = pmd_page(pmd);
5706 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5707 	if (!(mc.flags & MOVE_ANON))
5708 		return ret;
5709 	if (page_memcg(page) == mc.from) {
5710 		ret = MC_TARGET_PAGE;
5711 		if (target) {
5712 			get_page(page);
5713 			target->page = page;
5714 		}
5715 	}
5716 	return ret;
5717 }
5718 #else
5719 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5720 		unsigned long addr, pmd_t pmd, union mc_target *target)
5721 {
5722 	return MC_TARGET_NONE;
5723 }
5724 #endif
5725 
5726 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5727 					unsigned long addr, unsigned long end,
5728 					struct mm_walk *walk)
5729 {
5730 	struct vm_area_struct *vma = walk->vma;
5731 	pte_t *pte;
5732 	spinlock_t *ptl;
5733 
5734 	ptl = pmd_trans_huge_lock(pmd, vma);
5735 	if (ptl) {
5736 		/*
5737 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5738 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5739 		 * this might change.
5740 		 */
5741 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5742 			mc.precharge += HPAGE_PMD_NR;
5743 		spin_unlock(ptl);
5744 		return 0;
5745 	}
5746 
5747 	if (pmd_trans_unstable(pmd))
5748 		return 0;
5749 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5750 	for (; addr != end; pte++, addr += PAGE_SIZE)
5751 		if (get_mctgt_type(vma, addr, *pte, NULL))
5752 			mc.precharge++;	/* increment precharge temporarily */
5753 	pte_unmap_unlock(pte - 1, ptl);
5754 	cond_resched();
5755 
5756 	return 0;
5757 }
5758 
5759 static const struct mm_walk_ops precharge_walk_ops = {
5760 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5761 };
5762 
5763 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5764 {
5765 	unsigned long precharge;
5766 
5767 	mmap_read_lock(mm);
5768 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5769 	mmap_read_unlock(mm);
5770 
5771 	precharge = mc.precharge;
5772 	mc.precharge = 0;
5773 
5774 	return precharge;
5775 }
5776 
5777 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5778 {
5779 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5780 
5781 	VM_BUG_ON(mc.moving_task);
5782 	mc.moving_task = current;
5783 	return mem_cgroup_do_precharge(precharge);
5784 }
5785 
5786 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5787 static void __mem_cgroup_clear_mc(void)
5788 {
5789 	struct mem_cgroup *from = mc.from;
5790 	struct mem_cgroup *to = mc.to;
5791 
5792 	/* we must uncharge all the leftover precharges from mc.to */
5793 	if (mc.precharge) {
5794 		cancel_charge(mc.to, mc.precharge);
5795 		mc.precharge = 0;
5796 	}
5797 	/*
5798 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5799 	 * we must uncharge here.
5800 	 */
5801 	if (mc.moved_charge) {
5802 		cancel_charge(mc.from, mc.moved_charge);
5803 		mc.moved_charge = 0;
5804 	}
5805 	/* we must fixup refcnts and charges */
5806 	if (mc.moved_swap) {
5807 		/* uncharge swap account from the old cgroup */
5808 		if (!mem_cgroup_is_root(mc.from))
5809 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5810 
5811 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5812 
5813 		/*
5814 		 * we charged both to->memory and to->memsw, so we
5815 		 * should uncharge to->memory.
5816 		 */
5817 		if (!mem_cgroup_is_root(mc.to))
5818 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5819 
5820 		mc.moved_swap = 0;
5821 	}
5822 	memcg_oom_recover(from);
5823 	memcg_oom_recover(to);
5824 	wake_up_all(&mc.waitq);
5825 }
5826 
5827 static void mem_cgroup_clear_mc(void)
5828 {
5829 	struct mm_struct *mm = mc.mm;
5830 
5831 	/*
5832 	 * we must clear moving_task before waking up waiters at the end of
5833 	 * task migration.
5834 	 */
5835 	mc.moving_task = NULL;
5836 	__mem_cgroup_clear_mc();
5837 	spin_lock(&mc.lock);
5838 	mc.from = NULL;
5839 	mc.to = NULL;
5840 	mc.mm = NULL;
5841 	spin_unlock(&mc.lock);
5842 
5843 	mmput(mm);
5844 }
5845 
5846 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5847 {
5848 	struct cgroup_subsys_state *css;
5849 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5850 	struct mem_cgroup *from;
5851 	struct task_struct *leader, *p;
5852 	struct mm_struct *mm;
5853 	unsigned long move_flags;
5854 	int ret = 0;
5855 
5856 	/* charge immigration isn't supported on the default hierarchy */
5857 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5858 		return 0;
5859 
5860 	/*
5861 	 * Multi-process migrations only happen on the default hierarchy
5862 	 * where charge immigration is not used.  Perform charge
5863 	 * immigration if @tset contains a leader and whine if there are
5864 	 * multiple.
5865 	 */
5866 	p = NULL;
5867 	cgroup_taskset_for_each_leader(leader, css, tset) {
5868 		WARN_ON_ONCE(p);
5869 		p = leader;
5870 		memcg = mem_cgroup_from_css(css);
5871 	}
5872 	if (!p)
5873 		return 0;
5874 
5875 	/*
5876 	 * We are now committed to this value whatever it is. Changes in this
5877 	 * tunable will only affect upcoming migrations, not the current one.
5878 	 * So we need to save it, and keep it going.
5879 	 */
5880 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5881 	if (!move_flags)
5882 		return 0;
5883 
5884 	from = mem_cgroup_from_task(p);
5885 
5886 	VM_BUG_ON(from == memcg);
5887 
5888 	mm = get_task_mm(p);
5889 	if (!mm)
5890 		return 0;
5891 	/* We move charges only when we move a owner of the mm */
5892 	if (mm->owner == p) {
5893 		VM_BUG_ON(mc.from);
5894 		VM_BUG_ON(mc.to);
5895 		VM_BUG_ON(mc.precharge);
5896 		VM_BUG_ON(mc.moved_charge);
5897 		VM_BUG_ON(mc.moved_swap);
5898 
5899 		spin_lock(&mc.lock);
5900 		mc.mm = mm;
5901 		mc.from = from;
5902 		mc.to = memcg;
5903 		mc.flags = move_flags;
5904 		spin_unlock(&mc.lock);
5905 		/* We set mc.moving_task later */
5906 
5907 		ret = mem_cgroup_precharge_mc(mm);
5908 		if (ret)
5909 			mem_cgroup_clear_mc();
5910 	} else {
5911 		mmput(mm);
5912 	}
5913 	return ret;
5914 }
5915 
5916 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5917 {
5918 	if (mc.to)
5919 		mem_cgroup_clear_mc();
5920 }
5921 
5922 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5923 				unsigned long addr, unsigned long end,
5924 				struct mm_walk *walk)
5925 {
5926 	int ret = 0;
5927 	struct vm_area_struct *vma = walk->vma;
5928 	pte_t *pte;
5929 	spinlock_t *ptl;
5930 	enum mc_target_type target_type;
5931 	union mc_target target;
5932 	struct page *page;
5933 
5934 	ptl = pmd_trans_huge_lock(pmd, vma);
5935 	if (ptl) {
5936 		if (mc.precharge < HPAGE_PMD_NR) {
5937 			spin_unlock(ptl);
5938 			return 0;
5939 		}
5940 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5941 		if (target_type == MC_TARGET_PAGE) {
5942 			page = target.page;
5943 			if (!isolate_lru_page(page)) {
5944 				if (!mem_cgroup_move_account(page, true,
5945 							     mc.from, mc.to)) {
5946 					mc.precharge -= HPAGE_PMD_NR;
5947 					mc.moved_charge += HPAGE_PMD_NR;
5948 				}
5949 				putback_lru_page(page);
5950 			}
5951 			put_page(page);
5952 		} else if (target_type == MC_TARGET_DEVICE) {
5953 			page = target.page;
5954 			if (!mem_cgroup_move_account(page, true,
5955 						     mc.from, mc.to)) {
5956 				mc.precharge -= HPAGE_PMD_NR;
5957 				mc.moved_charge += HPAGE_PMD_NR;
5958 			}
5959 			put_page(page);
5960 		}
5961 		spin_unlock(ptl);
5962 		return 0;
5963 	}
5964 
5965 	if (pmd_trans_unstable(pmd))
5966 		return 0;
5967 retry:
5968 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5969 	for (; addr != end; addr += PAGE_SIZE) {
5970 		pte_t ptent = *(pte++);
5971 		bool device = false;
5972 		swp_entry_t ent;
5973 
5974 		if (!mc.precharge)
5975 			break;
5976 
5977 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5978 		case MC_TARGET_DEVICE:
5979 			device = true;
5980 			fallthrough;
5981 		case MC_TARGET_PAGE:
5982 			page = target.page;
5983 			/*
5984 			 * We can have a part of the split pmd here. Moving it
5985 			 * can be done but it would be too convoluted so simply
5986 			 * ignore such a partial THP and keep it in original
5987 			 * memcg. There should be somebody mapping the head.
5988 			 */
5989 			if (PageTransCompound(page))
5990 				goto put;
5991 			if (!device && isolate_lru_page(page))
5992 				goto put;
5993 			if (!mem_cgroup_move_account(page, false,
5994 						mc.from, mc.to)) {
5995 				mc.precharge--;
5996 				/* we uncharge from mc.from later. */
5997 				mc.moved_charge++;
5998 			}
5999 			if (!device)
6000 				putback_lru_page(page);
6001 put:			/* get_mctgt_type() gets the page */
6002 			put_page(page);
6003 			break;
6004 		case MC_TARGET_SWAP:
6005 			ent = target.ent;
6006 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6007 				mc.precharge--;
6008 				mem_cgroup_id_get_many(mc.to, 1);
6009 				/* we fixup other refcnts and charges later. */
6010 				mc.moved_swap++;
6011 			}
6012 			break;
6013 		default:
6014 			break;
6015 		}
6016 	}
6017 	pte_unmap_unlock(pte - 1, ptl);
6018 	cond_resched();
6019 
6020 	if (addr != end) {
6021 		/*
6022 		 * We have consumed all precharges we got in can_attach().
6023 		 * We try charge one by one, but don't do any additional
6024 		 * charges to mc.to if we have failed in charge once in attach()
6025 		 * phase.
6026 		 */
6027 		ret = mem_cgroup_do_precharge(1);
6028 		if (!ret)
6029 			goto retry;
6030 	}
6031 
6032 	return ret;
6033 }
6034 
6035 static const struct mm_walk_ops charge_walk_ops = {
6036 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6037 };
6038 
6039 static void mem_cgroup_move_charge(void)
6040 {
6041 	lru_add_drain_all();
6042 	/*
6043 	 * Signal lock_page_memcg() to take the memcg's move_lock
6044 	 * while we're moving its pages to another memcg. Then wait
6045 	 * for already started RCU-only updates to finish.
6046 	 */
6047 	atomic_inc(&mc.from->moving_account);
6048 	synchronize_rcu();
6049 retry:
6050 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6051 		/*
6052 		 * Someone who are holding the mmap_lock might be waiting in
6053 		 * waitq. So we cancel all extra charges, wake up all waiters,
6054 		 * and retry. Because we cancel precharges, we might not be able
6055 		 * to move enough charges, but moving charge is a best-effort
6056 		 * feature anyway, so it wouldn't be a big problem.
6057 		 */
6058 		__mem_cgroup_clear_mc();
6059 		cond_resched();
6060 		goto retry;
6061 	}
6062 	/*
6063 	 * When we have consumed all precharges and failed in doing
6064 	 * additional charge, the page walk just aborts.
6065 	 */
6066 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6067 			NULL);
6068 
6069 	mmap_read_unlock(mc.mm);
6070 	atomic_dec(&mc.from->moving_account);
6071 }
6072 
6073 static void mem_cgroup_move_task(void)
6074 {
6075 	if (mc.to) {
6076 		mem_cgroup_move_charge();
6077 		mem_cgroup_clear_mc();
6078 	}
6079 }
6080 #else	/* !CONFIG_MMU */
6081 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6082 {
6083 	return 0;
6084 }
6085 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6086 {
6087 }
6088 static void mem_cgroup_move_task(void)
6089 {
6090 }
6091 #endif
6092 
6093 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6094 {
6095 	if (value == PAGE_COUNTER_MAX)
6096 		seq_puts(m, "max\n");
6097 	else
6098 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6099 
6100 	return 0;
6101 }
6102 
6103 static u64 memory_current_read(struct cgroup_subsys_state *css,
6104 			       struct cftype *cft)
6105 {
6106 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6107 
6108 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6109 }
6110 
6111 static int memory_min_show(struct seq_file *m, void *v)
6112 {
6113 	return seq_puts_memcg_tunable(m,
6114 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6115 }
6116 
6117 static ssize_t memory_min_write(struct kernfs_open_file *of,
6118 				char *buf, size_t nbytes, loff_t off)
6119 {
6120 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6121 	unsigned long min;
6122 	int err;
6123 
6124 	buf = strstrip(buf);
6125 	err = page_counter_memparse(buf, "max", &min);
6126 	if (err)
6127 		return err;
6128 
6129 	page_counter_set_min(&memcg->memory, min);
6130 
6131 	return nbytes;
6132 }
6133 
6134 static int memory_low_show(struct seq_file *m, void *v)
6135 {
6136 	return seq_puts_memcg_tunable(m,
6137 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6138 }
6139 
6140 static ssize_t memory_low_write(struct kernfs_open_file *of,
6141 				char *buf, size_t nbytes, loff_t off)
6142 {
6143 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6144 	unsigned long low;
6145 	int err;
6146 
6147 	buf = strstrip(buf);
6148 	err = page_counter_memparse(buf, "max", &low);
6149 	if (err)
6150 		return err;
6151 
6152 	page_counter_set_low(&memcg->memory, low);
6153 
6154 	return nbytes;
6155 }
6156 
6157 static int memory_high_show(struct seq_file *m, void *v)
6158 {
6159 	return seq_puts_memcg_tunable(m,
6160 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6161 }
6162 
6163 static ssize_t memory_high_write(struct kernfs_open_file *of,
6164 				 char *buf, size_t nbytes, loff_t off)
6165 {
6166 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6167 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6168 	bool drained = false;
6169 	unsigned long high;
6170 	int err;
6171 
6172 	buf = strstrip(buf);
6173 	err = page_counter_memparse(buf, "max", &high);
6174 	if (err)
6175 		return err;
6176 
6177 	page_counter_set_high(&memcg->memory, high);
6178 
6179 	for (;;) {
6180 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6181 		unsigned long reclaimed;
6182 
6183 		if (nr_pages <= high)
6184 			break;
6185 
6186 		if (signal_pending(current))
6187 			break;
6188 
6189 		if (!drained) {
6190 			drain_all_stock(memcg);
6191 			drained = true;
6192 			continue;
6193 		}
6194 
6195 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6196 							 GFP_KERNEL, true);
6197 
6198 		if (!reclaimed && !nr_retries--)
6199 			break;
6200 	}
6201 
6202 	memcg_wb_domain_size_changed(memcg);
6203 	return nbytes;
6204 }
6205 
6206 static int memory_max_show(struct seq_file *m, void *v)
6207 {
6208 	return seq_puts_memcg_tunable(m,
6209 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6210 }
6211 
6212 static ssize_t memory_max_write(struct kernfs_open_file *of,
6213 				char *buf, size_t nbytes, loff_t off)
6214 {
6215 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6216 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6217 	bool drained = false;
6218 	unsigned long max;
6219 	int err;
6220 
6221 	buf = strstrip(buf);
6222 	err = page_counter_memparse(buf, "max", &max);
6223 	if (err)
6224 		return err;
6225 
6226 	xchg(&memcg->memory.max, max);
6227 
6228 	for (;;) {
6229 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6230 
6231 		if (nr_pages <= max)
6232 			break;
6233 
6234 		if (signal_pending(current))
6235 			break;
6236 
6237 		if (!drained) {
6238 			drain_all_stock(memcg);
6239 			drained = true;
6240 			continue;
6241 		}
6242 
6243 		if (nr_reclaims) {
6244 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6245 							  GFP_KERNEL, true))
6246 				nr_reclaims--;
6247 			continue;
6248 		}
6249 
6250 		memcg_memory_event(memcg, MEMCG_OOM);
6251 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6252 			break;
6253 	}
6254 
6255 	memcg_wb_domain_size_changed(memcg);
6256 	return nbytes;
6257 }
6258 
6259 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6260 {
6261 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6262 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6263 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6264 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6265 	seq_printf(m, "oom_kill %lu\n",
6266 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6267 	seq_printf(m, "oom_group_kill %lu\n",
6268 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6269 }
6270 
6271 static int memory_events_show(struct seq_file *m, void *v)
6272 {
6273 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6274 
6275 	__memory_events_show(m, memcg->memory_events);
6276 	return 0;
6277 }
6278 
6279 static int memory_events_local_show(struct seq_file *m, void *v)
6280 {
6281 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6282 
6283 	__memory_events_show(m, memcg->memory_events_local);
6284 	return 0;
6285 }
6286 
6287 static int memory_stat_show(struct seq_file *m, void *v)
6288 {
6289 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6290 	char *buf;
6291 
6292 	buf = memory_stat_format(memcg);
6293 	if (!buf)
6294 		return -ENOMEM;
6295 	seq_puts(m, buf);
6296 	kfree(buf);
6297 	return 0;
6298 }
6299 
6300 #ifdef CONFIG_NUMA
6301 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6302 						     int item)
6303 {
6304 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6305 }
6306 
6307 static int memory_numa_stat_show(struct seq_file *m, void *v)
6308 {
6309 	int i;
6310 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6311 
6312 	mem_cgroup_flush_stats();
6313 
6314 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6315 		int nid;
6316 
6317 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6318 			continue;
6319 
6320 		seq_printf(m, "%s", memory_stats[i].name);
6321 		for_each_node_state(nid, N_MEMORY) {
6322 			u64 size;
6323 			struct lruvec *lruvec;
6324 
6325 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6326 			size = lruvec_page_state_output(lruvec,
6327 							memory_stats[i].idx);
6328 			seq_printf(m, " N%d=%llu", nid, size);
6329 		}
6330 		seq_putc(m, '\n');
6331 	}
6332 
6333 	return 0;
6334 }
6335 #endif
6336 
6337 static int memory_oom_group_show(struct seq_file *m, void *v)
6338 {
6339 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6340 
6341 	seq_printf(m, "%d\n", memcg->oom_group);
6342 
6343 	return 0;
6344 }
6345 
6346 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6347 				      char *buf, size_t nbytes, loff_t off)
6348 {
6349 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6350 	int ret, oom_group;
6351 
6352 	buf = strstrip(buf);
6353 	if (!buf)
6354 		return -EINVAL;
6355 
6356 	ret = kstrtoint(buf, 0, &oom_group);
6357 	if (ret)
6358 		return ret;
6359 
6360 	if (oom_group != 0 && oom_group != 1)
6361 		return -EINVAL;
6362 
6363 	memcg->oom_group = oom_group;
6364 
6365 	return nbytes;
6366 }
6367 
6368 static struct cftype memory_files[] = {
6369 	{
6370 		.name = "current",
6371 		.flags = CFTYPE_NOT_ON_ROOT,
6372 		.read_u64 = memory_current_read,
6373 	},
6374 	{
6375 		.name = "min",
6376 		.flags = CFTYPE_NOT_ON_ROOT,
6377 		.seq_show = memory_min_show,
6378 		.write = memory_min_write,
6379 	},
6380 	{
6381 		.name = "low",
6382 		.flags = CFTYPE_NOT_ON_ROOT,
6383 		.seq_show = memory_low_show,
6384 		.write = memory_low_write,
6385 	},
6386 	{
6387 		.name = "high",
6388 		.flags = CFTYPE_NOT_ON_ROOT,
6389 		.seq_show = memory_high_show,
6390 		.write = memory_high_write,
6391 	},
6392 	{
6393 		.name = "max",
6394 		.flags = CFTYPE_NOT_ON_ROOT,
6395 		.seq_show = memory_max_show,
6396 		.write = memory_max_write,
6397 	},
6398 	{
6399 		.name = "events",
6400 		.flags = CFTYPE_NOT_ON_ROOT,
6401 		.file_offset = offsetof(struct mem_cgroup, events_file),
6402 		.seq_show = memory_events_show,
6403 	},
6404 	{
6405 		.name = "events.local",
6406 		.flags = CFTYPE_NOT_ON_ROOT,
6407 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6408 		.seq_show = memory_events_local_show,
6409 	},
6410 	{
6411 		.name = "stat",
6412 		.seq_show = memory_stat_show,
6413 	},
6414 #ifdef CONFIG_NUMA
6415 	{
6416 		.name = "numa_stat",
6417 		.seq_show = memory_numa_stat_show,
6418 	},
6419 #endif
6420 	{
6421 		.name = "oom.group",
6422 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6423 		.seq_show = memory_oom_group_show,
6424 		.write = memory_oom_group_write,
6425 	},
6426 	{ }	/* terminate */
6427 };
6428 
6429 struct cgroup_subsys memory_cgrp_subsys = {
6430 	.css_alloc = mem_cgroup_css_alloc,
6431 	.css_online = mem_cgroup_css_online,
6432 	.css_offline = mem_cgroup_css_offline,
6433 	.css_released = mem_cgroup_css_released,
6434 	.css_free = mem_cgroup_css_free,
6435 	.css_reset = mem_cgroup_css_reset,
6436 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6437 	.can_attach = mem_cgroup_can_attach,
6438 	.cancel_attach = mem_cgroup_cancel_attach,
6439 	.post_attach = mem_cgroup_move_task,
6440 	.dfl_cftypes = memory_files,
6441 	.legacy_cftypes = mem_cgroup_legacy_files,
6442 	.early_init = 0,
6443 };
6444 
6445 /*
6446  * This function calculates an individual cgroup's effective
6447  * protection which is derived from its own memory.min/low, its
6448  * parent's and siblings' settings, as well as the actual memory
6449  * distribution in the tree.
6450  *
6451  * The following rules apply to the effective protection values:
6452  *
6453  * 1. At the first level of reclaim, effective protection is equal to
6454  *    the declared protection in memory.min and memory.low.
6455  *
6456  * 2. To enable safe delegation of the protection configuration, at
6457  *    subsequent levels the effective protection is capped to the
6458  *    parent's effective protection.
6459  *
6460  * 3. To make complex and dynamic subtrees easier to configure, the
6461  *    user is allowed to overcommit the declared protection at a given
6462  *    level. If that is the case, the parent's effective protection is
6463  *    distributed to the children in proportion to how much protection
6464  *    they have declared and how much of it they are utilizing.
6465  *
6466  *    This makes distribution proportional, but also work-conserving:
6467  *    if one cgroup claims much more protection than it uses memory,
6468  *    the unused remainder is available to its siblings.
6469  *
6470  * 4. Conversely, when the declared protection is undercommitted at a
6471  *    given level, the distribution of the larger parental protection
6472  *    budget is NOT proportional. A cgroup's protection from a sibling
6473  *    is capped to its own memory.min/low setting.
6474  *
6475  * 5. However, to allow protecting recursive subtrees from each other
6476  *    without having to declare each individual cgroup's fixed share
6477  *    of the ancestor's claim to protection, any unutilized -
6478  *    "floating" - protection from up the tree is distributed in
6479  *    proportion to each cgroup's *usage*. This makes the protection
6480  *    neutral wrt sibling cgroups and lets them compete freely over
6481  *    the shared parental protection budget, but it protects the
6482  *    subtree as a whole from neighboring subtrees.
6483  *
6484  * Note that 4. and 5. are not in conflict: 4. is about protecting
6485  * against immediate siblings whereas 5. is about protecting against
6486  * neighboring subtrees.
6487  */
6488 static unsigned long effective_protection(unsigned long usage,
6489 					  unsigned long parent_usage,
6490 					  unsigned long setting,
6491 					  unsigned long parent_effective,
6492 					  unsigned long siblings_protected)
6493 {
6494 	unsigned long protected;
6495 	unsigned long ep;
6496 
6497 	protected = min(usage, setting);
6498 	/*
6499 	 * If all cgroups at this level combined claim and use more
6500 	 * protection then what the parent affords them, distribute
6501 	 * shares in proportion to utilization.
6502 	 *
6503 	 * We are using actual utilization rather than the statically
6504 	 * claimed protection in order to be work-conserving: claimed
6505 	 * but unused protection is available to siblings that would
6506 	 * otherwise get a smaller chunk than what they claimed.
6507 	 */
6508 	if (siblings_protected > parent_effective)
6509 		return protected * parent_effective / siblings_protected;
6510 
6511 	/*
6512 	 * Ok, utilized protection of all children is within what the
6513 	 * parent affords them, so we know whatever this child claims
6514 	 * and utilizes is effectively protected.
6515 	 *
6516 	 * If there is unprotected usage beyond this value, reclaim
6517 	 * will apply pressure in proportion to that amount.
6518 	 *
6519 	 * If there is unutilized protection, the cgroup will be fully
6520 	 * shielded from reclaim, but we do return a smaller value for
6521 	 * protection than what the group could enjoy in theory. This
6522 	 * is okay. With the overcommit distribution above, effective
6523 	 * protection is always dependent on how memory is actually
6524 	 * consumed among the siblings anyway.
6525 	 */
6526 	ep = protected;
6527 
6528 	/*
6529 	 * If the children aren't claiming (all of) the protection
6530 	 * afforded to them by the parent, distribute the remainder in
6531 	 * proportion to the (unprotected) memory of each cgroup. That
6532 	 * way, cgroups that aren't explicitly prioritized wrt each
6533 	 * other compete freely over the allowance, but they are
6534 	 * collectively protected from neighboring trees.
6535 	 *
6536 	 * We're using unprotected memory for the weight so that if
6537 	 * some cgroups DO claim explicit protection, we don't protect
6538 	 * the same bytes twice.
6539 	 *
6540 	 * Check both usage and parent_usage against the respective
6541 	 * protected values. One should imply the other, but they
6542 	 * aren't read atomically - make sure the division is sane.
6543 	 */
6544 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6545 		return ep;
6546 	if (parent_effective > siblings_protected &&
6547 	    parent_usage > siblings_protected &&
6548 	    usage > protected) {
6549 		unsigned long unclaimed;
6550 
6551 		unclaimed = parent_effective - siblings_protected;
6552 		unclaimed *= usage - protected;
6553 		unclaimed /= parent_usage - siblings_protected;
6554 
6555 		ep += unclaimed;
6556 	}
6557 
6558 	return ep;
6559 }
6560 
6561 /**
6562  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6563  * @root: the top ancestor of the sub-tree being checked
6564  * @memcg: the memory cgroup to check
6565  *
6566  * WARNING: This function is not stateless! It can only be used as part
6567  *          of a top-down tree iteration, not for isolated queries.
6568  */
6569 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6570 				     struct mem_cgroup *memcg)
6571 {
6572 	unsigned long usage, parent_usage;
6573 	struct mem_cgroup *parent;
6574 
6575 	if (mem_cgroup_disabled())
6576 		return;
6577 
6578 	if (!root)
6579 		root = root_mem_cgroup;
6580 
6581 	/*
6582 	 * Effective values of the reclaim targets are ignored so they
6583 	 * can be stale. Have a look at mem_cgroup_protection for more
6584 	 * details.
6585 	 * TODO: calculation should be more robust so that we do not need
6586 	 * that special casing.
6587 	 */
6588 	if (memcg == root)
6589 		return;
6590 
6591 	usage = page_counter_read(&memcg->memory);
6592 	if (!usage)
6593 		return;
6594 
6595 	parent = parent_mem_cgroup(memcg);
6596 	/* No parent means a non-hierarchical mode on v1 memcg */
6597 	if (!parent)
6598 		return;
6599 
6600 	if (parent == root) {
6601 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6602 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6603 		return;
6604 	}
6605 
6606 	parent_usage = page_counter_read(&parent->memory);
6607 
6608 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6609 			READ_ONCE(memcg->memory.min),
6610 			READ_ONCE(parent->memory.emin),
6611 			atomic_long_read(&parent->memory.children_min_usage)));
6612 
6613 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6614 			READ_ONCE(memcg->memory.low),
6615 			READ_ONCE(parent->memory.elow),
6616 			atomic_long_read(&parent->memory.children_low_usage)));
6617 }
6618 
6619 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6620 			gfp_t gfp)
6621 {
6622 	long nr_pages = folio_nr_pages(folio);
6623 	int ret;
6624 
6625 	ret = try_charge(memcg, gfp, nr_pages);
6626 	if (ret)
6627 		goto out;
6628 
6629 	css_get(&memcg->css);
6630 	commit_charge(folio, memcg);
6631 
6632 	local_irq_disable();
6633 	mem_cgroup_charge_statistics(memcg, nr_pages);
6634 	memcg_check_events(memcg, folio_nid(folio));
6635 	local_irq_enable();
6636 out:
6637 	return ret;
6638 }
6639 
6640 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6641 {
6642 	struct mem_cgroup *memcg;
6643 	int ret;
6644 
6645 	memcg = get_mem_cgroup_from_mm(mm);
6646 	ret = charge_memcg(folio, memcg, gfp);
6647 	css_put(&memcg->css);
6648 
6649 	return ret;
6650 }
6651 
6652 /**
6653  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6654  * @page: page to charge
6655  * @mm: mm context of the victim
6656  * @gfp: reclaim mode
6657  * @entry: swap entry for which the page is allocated
6658  *
6659  * This function charges a page allocated for swapin. Please call this before
6660  * adding the page to the swapcache.
6661  *
6662  * Returns 0 on success. Otherwise, an error code is returned.
6663  */
6664 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6665 				  gfp_t gfp, swp_entry_t entry)
6666 {
6667 	struct folio *folio = page_folio(page);
6668 	struct mem_cgroup *memcg;
6669 	unsigned short id;
6670 	int ret;
6671 
6672 	if (mem_cgroup_disabled())
6673 		return 0;
6674 
6675 	id = lookup_swap_cgroup_id(entry);
6676 	rcu_read_lock();
6677 	memcg = mem_cgroup_from_id(id);
6678 	if (!memcg || !css_tryget_online(&memcg->css))
6679 		memcg = get_mem_cgroup_from_mm(mm);
6680 	rcu_read_unlock();
6681 
6682 	ret = charge_memcg(folio, memcg, gfp);
6683 
6684 	css_put(&memcg->css);
6685 	return ret;
6686 }
6687 
6688 /*
6689  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6690  * @entry: swap entry for which the page is charged
6691  *
6692  * Call this function after successfully adding the charged page to swapcache.
6693  *
6694  * Note: This function assumes the page for which swap slot is being uncharged
6695  * is order 0 page.
6696  */
6697 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6698 {
6699 	/*
6700 	 * Cgroup1's unified memory+swap counter has been charged with the
6701 	 * new swapcache page, finish the transfer by uncharging the swap
6702 	 * slot. The swap slot would also get uncharged when it dies, but
6703 	 * it can stick around indefinitely and we'd count the page twice
6704 	 * the entire time.
6705 	 *
6706 	 * Cgroup2 has separate resource counters for memory and swap,
6707 	 * so this is a non-issue here. Memory and swap charge lifetimes
6708 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6709 	 * page to memory here, and uncharge swap when the slot is freed.
6710 	 */
6711 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6712 		/*
6713 		 * The swap entry might not get freed for a long time,
6714 		 * let's not wait for it.  The page already received a
6715 		 * memory+swap charge, drop the swap entry duplicate.
6716 		 */
6717 		mem_cgroup_uncharge_swap(entry, 1);
6718 	}
6719 }
6720 
6721 struct uncharge_gather {
6722 	struct mem_cgroup *memcg;
6723 	unsigned long nr_memory;
6724 	unsigned long pgpgout;
6725 	unsigned long nr_kmem;
6726 	int nid;
6727 };
6728 
6729 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6730 {
6731 	memset(ug, 0, sizeof(*ug));
6732 }
6733 
6734 static void uncharge_batch(const struct uncharge_gather *ug)
6735 {
6736 	unsigned long flags;
6737 
6738 	if (ug->nr_memory) {
6739 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6740 		if (do_memsw_account())
6741 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6742 		if (ug->nr_kmem)
6743 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6744 		memcg_oom_recover(ug->memcg);
6745 	}
6746 
6747 	local_irq_save(flags);
6748 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6749 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6750 	memcg_check_events(ug->memcg, ug->nid);
6751 	local_irq_restore(flags);
6752 
6753 	/* drop reference from uncharge_folio */
6754 	css_put(&ug->memcg->css);
6755 }
6756 
6757 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6758 {
6759 	long nr_pages;
6760 	struct mem_cgroup *memcg;
6761 	struct obj_cgroup *objcg;
6762 
6763 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6764 
6765 	/*
6766 	 * Nobody should be changing or seriously looking at
6767 	 * folio memcg or objcg at this point, we have fully
6768 	 * exclusive access to the folio.
6769 	 */
6770 	if (folio_memcg_kmem(folio)) {
6771 		objcg = __folio_objcg(folio);
6772 		/*
6773 		 * This get matches the put at the end of the function and
6774 		 * kmem pages do not hold memcg references anymore.
6775 		 */
6776 		memcg = get_mem_cgroup_from_objcg(objcg);
6777 	} else {
6778 		memcg = __folio_memcg(folio);
6779 	}
6780 
6781 	if (!memcg)
6782 		return;
6783 
6784 	if (ug->memcg != memcg) {
6785 		if (ug->memcg) {
6786 			uncharge_batch(ug);
6787 			uncharge_gather_clear(ug);
6788 		}
6789 		ug->memcg = memcg;
6790 		ug->nid = folio_nid(folio);
6791 
6792 		/* pairs with css_put in uncharge_batch */
6793 		css_get(&memcg->css);
6794 	}
6795 
6796 	nr_pages = folio_nr_pages(folio);
6797 
6798 	if (folio_memcg_kmem(folio)) {
6799 		ug->nr_memory += nr_pages;
6800 		ug->nr_kmem += nr_pages;
6801 
6802 		folio->memcg_data = 0;
6803 		obj_cgroup_put(objcg);
6804 	} else {
6805 		/* LRU pages aren't accounted at the root level */
6806 		if (!mem_cgroup_is_root(memcg))
6807 			ug->nr_memory += nr_pages;
6808 		ug->pgpgout++;
6809 
6810 		folio->memcg_data = 0;
6811 	}
6812 
6813 	css_put(&memcg->css);
6814 }
6815 
6816 void __mem_cgroup_uncharge(struct folio *folio)
6817 {
6818 	struct uncharge_gather ug;
6819 
6820 	/* Don't touch folio->lru of any random page, pre-check: */
6821 	if (!folio_memcg(folio))
6822 		return;
6823 
6824 	uncharge_gather_clear(&ug);
6825 	uncharge_folio(folio, &ug);
6826 	uncharge_batch(&ug);
6827 }
6828 
6829 /**
6830  * __mem_cgroup_uncharge_list - uncharge a list of page
6831  * @page_list: list of pages to uncharge
6832  *
6833  * Uncharge a list of pages previously charged with
6834  * __mem_cgroup_charge().
6835  */
6836 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6837 {
6838 	struct uncharge_gather ug;
6839 	struct folio *folio;
6840 
6841 	uncharge_gather_clear(&ug);
6842 	list_for_each_entry(folio, page_list, lru)
6843 		uncharge_folio(folio, &ug);
6844 	if (ug.memcg)
6845 		uncharge_batch(&ug);
6846 }
6847 
6848 /**
6849  * mem_cgroup_migrate - Charge a folio's replacement.
6850  * @old: Currently circulating folio.
6851  * @new: Replacement folio.
6852  *
6853  * Charge @new as a replacement folio for @old. @old will
6854  * be uncharged upon free.
6855  *
6856  * Both folios must be locked, @new->mapping must be set up.
6857  */
6858 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6859 {
6860 	struct mem_cgroup *memcg;
6861 	long nr_pages = folio_nr_pages(new);
6862 	unsigned long flags;
6863 
6864 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6865 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6866 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6867 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6868 
6869 	if (mem_cgroup_disabled())
6870 		return;
6871 
6872 	/* Page cache replacement: new folio already charged? */
6873 	if (folio_memcg(new))
6874 		return;
6875 
6876 	memcg = folio_memcg(old);
6877 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6878 	if (!memcg)
6879 		return;
6880 
6881 	/* Force-charge the new page. The old one will be freed soon */
6882 	if (!mem_cgroup_is_root(memcg)) {
6883 		page_counter_charge(&memcg->memory, nr_pages);
6884 		if (do_memsw_account())
6885 			page_counter_charge(&memcg->memsw, nr_pages);
6886 	}
6887 
6888 	css_get(&memcg->css);
6889 	commit_charge(new, memcg);
6890 
6891 	local_irq_save(flags);
6892 	mem_cgroup_charge_statistics(memcg, nr_pages);
6893 	memcg_check_events(memcg, folio_nid(new));
6894 	local_irq_restore(flags);
6895 }
6896 
6897 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6898 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6899 
6900 void mem_cgroup_sk_alloc(struct sock *sk)
6901 {
6902 	struct mem_cgroup *memcg;
6903 
6904 	if (!mem_cgroup_sockets_enabled)
6905 		return;
6906 
6907 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6908 	if (!in_task())
6909 		return;
6910 
6911 	rcu_read_lock();
6912 	memcg = mem_cgroup_from_task(current);
6913 	if (memcg == root_mem_cgroup)
6914 		goto out;
6915 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6916 		goto out;
6917 	if (css_tryget(&memcg->css))
6918 		sk->sk_memcg = memcg;
6919 out:
6920 	rcu_read_unlock();
6921 }
6922 
6923 void mem_cgroup_sk_free(struct sock *sk)
6924 {
6925 	if (sk->sk_memcg)
6926 		css_put(&sk->sk_memcg->css);
6927 }
6928 
6929 /**
6930  * mem_cgroup_charge_skmem - charge socket memory
6931  * @memcg: memcg to charge
6932  * @nr_pages: number of pages to charge
6933  * @gfp_mask: reclaim mode
6934  *
6935  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6936  * @memcg's configured limit, %false if it doesn't.
6937  */
6938 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6939 			     gfp_t gfp_mask)
6940 {
6941 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6942 		struct page_counter *fail;
6943 
6944 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6945 			memcg->tcpmem_pressure = 0;
6946 			return true;
6947 		}
6948 		memcg->tcpmem_pressure = 1;
6949 		if (gfp_mask & __GFP_NOFAIL) {
6950 			page_counter_charge(&memcg->tcpmem, nr_pages);
6951 			return true;
6952 		}
6953 		return false;
6954 	}
6955 
6956 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6957 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6958 		return true;
6959 	}
6960 
6961 	return false;
6962 }
6963 
6964 /**
6965  * mem_cgroup_uncharge_skmem - uncharge socket memory
6966  * @memcg: memcg to uncharge
6967  * @nr_pages: number of pages to uncharge
6968  */
6969 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6970 {
6971 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6972 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6973 		return;
6974 	}
6975 
6976 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6977 
6978 	refill_stock(memcg, nr_pages);
6979 }
6980 
6981 static int __init cgroup_memory(char *s)
6982 {
6983 	char *token;
6984 
6985 	while ((token = strsep(&s, ",")) != NULL) {
6986 		if (!*token)
6987 			continue;
6988 		if (!strcmp(token, "nosocket"))
6989 			cgroup_memory_nosocket = true;
6990 		if (!strcmp(token, "nokmem"))
6991 			cgroup_memory_nokmem = true;
6992 	}
6993 	return 1;
6994 }
6995 __setup("cgroup.memory=", cgroup_memory);
6996 
6997 /*
6998  * subsys_initcall() for memory controller.
6999  *
7000  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7001  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7002  * basically everything that doesn't depend on a specific mem_cgroup structure
7003  * should be initialized from here.
7004  */
7005 static int __init mem_cgroup_init(void)
7006 {
7007 	int cpu, node;
7008 
7009 	/*
7010 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7011 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7012 	 * to work fine, we should make sure that the overfill threshold can't
7013 	 * exceed S32_MAX / PAGE_SIZE.
7014 	 */
7015 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7016 
7017 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7018 				  memcg_hotplug_cpu_dead);
7019 
7020 	for_each_possible_cpu(cpu)
7021 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7022 			  drain_local_stock);
7023 
7024 	for_each_node(node) {
7025 		struct mem_cgroup_tree_per_node *rtpn;
7026 
7027 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7028 				    node_online(node) ? node : NUMA_NO_NODE);
7029 
7030 		rtpn->rb_root = RB_ROOT;
7031 		rtpn->rb_rightmost = NULL;
7032 		spin_lock_init(&rtpn->lock);
7033 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7034 	}
7035 
7036 	return 0;
7037 }
7038 subsys_initcall(mem_cgroup_init);
7039 
7040 #ifdef CONFIG_MEMCG_SWAP
7041 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7042 {
7043 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7044 		/*
7045 		 * The root cgroup cannot be destroyed, so it's refcount must
7046 		 * always be >= 1.
7047 		 */
7048 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7049 			VM_BUG_ON(1);
7050 			break;
7051 		}
7052 		memcg = parent_mem_cgroup(memcg);
7053 		if (!memcg)
7054 			memcg = root_mem_cgroup;
7055 	}
7056 	return memcg;
7057 }
7058 
7059 /**
7060  * mem_cgroup_swapout - transfer a memsw charge to swap
7061  * @folio: folio whose memsw charge to transfer
7062  * @entry: swap entry to move the charge to
7063  *
7064  * Transfer the memsw charge of @folio to @entry.
7065  */
7066 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7067 {
7068 	struct mem_cgroup *memcg, *swap_memcg;
7069 	unsigned int nr_entries;
7070 	unsigned short oldid;
7071 
7072 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7073 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7074 
7075 	if (mem_cgroup_disabled())
7076 		return;
7077 
7078 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7079 		return;
7080 
7081 	memcg = folio_memcg(folio);
7082 
7083 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7084 	if (!memcg)
7085 		return;
7086 
7087 	/*
7088 	 * In case the memcg owning these pages has been offlined and doesn't
7089 	 * have an ID allocated to it anymore, charge the closest online
7090 	 * ancestor for the swap instead and transfer the memory+swap charge.
7091 	 */
7092 	swap_memcg = mem_cgroup_id_get_online(memcg);
7093 	nr_entries = folio_nr_pages(folio);
7094 	/* Get references for the tail pages, too */
7095 	if (nr_entries > 1)
7096 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7097 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7098 				   nr_entries);
7099 	VM_BUG_ON_FOLIO(oldid, folio);
7100 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7101 
7102 	folio->memcg_data = 0;
7103 
7104 	if (!mem_cgroup_is_root(memcg))
7105 		page_counter_uncharge(&memcg->memory, nr_entries);
7106 
7107 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7108 		if (!mem_cgroup_is_root(swap_memcg))
7109 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7110 		page_counter_uncharge(&memcg->memsw, nr_entries);
7111 	}
7112 
7113 	/*
7114 	 * Interrupts should be disabled here because the caller holds the
7115 	 * i_pages lock which is taken with interrupts-off. It is
7116 	 * important here to have the interrupts disabled because it is the
7117 	 * only synchronisation we have for updating the per-CPU variables.
7118 	 */
7119 	memcg_stats_lock();
7120 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7121 	memcg_stats_unlock();
7122 	memcg_check_events(memcg, folio_nid(folio));
7123 
7124 	css_put(&memcg->css);
7125 }
7126 
7127 /**
7128  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7129  * @page: page being added to swap
7130  * @entry: swap entry to charge
7131  *
7132  * Try to charge @page's memcg for the swap space at @entry.
7133  *
7134  * Returns 0 on success, -ENOMEM on failure.
7135  */
7136 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7137 {
7138 	unsigned int nr_pages = thp_nr_pages(page);
7139 	struct page_counter *counter;
7140 	struct mem_cgroup *memcg;
7141 	unsigned short oldid;
7142 
7143 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7144 		return 0;
7145 
7146 	memcg = page_memcg(page);
7147 
7148 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7149 	if (!memcg)
7150 		return 0;
7151 
7152 	if (!entry.val) {
7153 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7154 		return 0;
7155 	}
7156 
7157 	memcg = mem_cgroup_id_get_online(memcg);
7158 
7159 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7160 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7161 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7162 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163 		mem_cgroup_id_put(memcg);
7164 		return -ENOMEM;
7165 	}
7166 
7167 	/* Get references for the tail pages, too */
7168 	if (nr_pages > 1)
7169 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7170 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7171 	VM_BUG_ON_PAGE(oldid, page);
7172 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7173 
7174 	return 0;
7175 }
7176 
7177 /**
7178  * __mem_cgroup_uncharge_swap - uncharge swap space
7179  * @entry: swap entry to uncharge
7180  * @nr_pages: the amount of swap space to uncharge
7181  */
7182 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7183 {
7184 	struct mem_cgroup *memcg;
7185 	unsigned short id;
7186 
7187 	id = swap_cgroup_record(entry, 0, nr_pages);
7188 	rcu_read_lock();
7189 	memcg = mem_cgroup_from_id(id);
7190 	if (memcg) {
7191 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7192 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7193 				page_counter_uncharge(&memcg->swap, nr_pages);
7194 			else
7195 				page_counter_uncharge(&memcg->memsw, nr_pages);
7196 		}
7197 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7198 		mem_cgroup_id_put_many(memcg, nr_pages);
7199 	}
7200 	rcu_read_unlock();
7201 }
7202 
7203 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7204 {
7205 	long nr_swap_pages = get_nr_swap_pages();
7206 
7207 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7208 		return nr_swap_pages;
7209 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7210 		nr_swap_pages = min_t(long, nr_swap_pages,
7211 				      READ_ONCE(memcg->swap.max) -
7212 				      page_counter_read(&memcg->swap));
7213 	return nr_swap_pages;
7214 }
7215 
7216 bool mem_cgroup_swap_full(struct page *page)
7217 {
7218 	struct mem_cgroup *memcg;
7219 
7220 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7221 
7222 	if (vm_swap_full())
7223 		return true;
7224 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7225 		return false;
7226 
7227 	memcg = page_memcg(page);
7228 	if (!memcg)
7229 		return false;
7230 
7231 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7232 		unsigned long usage = page_counter_read(&memcg->swap);
7233 
7234 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7235 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7236 			return true;
7237 	}
7238 
7239 	return false;
7240 }
7241 
7242 static int __init setup_swap_account(char *s)
7243 {
7244 	if (!strcmp(s, "1"))
7245 		cgroup_memory_noswap = false;
7246 	else if (!strcmp(s, "0"))
7247 		cgroup_memory_noswap = true;
7248 	return 1;
7249 }
7250 __setup("swapaccount=", setup_swap_account);
7251 
7252 static u64 swap_current_read(struct cgroup_subsys_state *css,
7253 			     struct cftype *cft)
7254 {
7255 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7256 
7257 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7258 }
7259 
7260 static int swap_high_show(struct seq_file *m, void *v)
7261 {
7262 	return seq_puts_memcg_tunable(m,
7263 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7264 }
7265 
7266 static ssize_t swap_high_write(struct kernfs_open_file *of,
7267 			       char *buf, size_t nbytes, loff_t off)
7268 {
7269 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7270 	unsigned long high;
7271 	int err;
7272 
7273 	buf = strstrip(buf);
7274 	err = page_counter_memparse(buf, "max", &high);
7275 	if (err)
7276 		return err;
7277 
7278 	page_counter_set_high(&memcg->swap, high);
7279 
7280 	return nbytes;
7281 }
7282 
7283 static int swap_max_show(struct seq_file *m, void *v)
7284 {
7285 	return seq_puts_memcg_tunable(m,
7286 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7287 }
7288 
7289 static ssize_t swap_max_write(struct kernfs_open_file *of,
7290 			      char *buf, size_t nbytes, loff_t off)
7291 {
7292 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7293 	unsigned long max;
7294 	int err;
7295 
7296 	buf = strstrip(buf);
7297 	err = page_counter_memparse(buf, "max", &max);
7298 	if (err)
7299 		return err;
7300 
7301 	xchg(&memcg->swap.max, max);
7302 
7303 	return nbytes;
7304 }
7305 
7306 static int swap_events_show(struct seq_file *m, void *v)
7307 {
7308 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7309 
7310 	seq_printf(m, "high %lu\n",
7311 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7312 	seq_printf(m, "max %lu\n",
7313 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7314 	seq_printf(m, "fail %lu\n",
7315 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7316 
7317 	return 0;
7318 }
7319 
7320 static struct cftype swap_files[] = {
7321 	{
7322 		.name = "swap.current",
7323 		.flags = CFTYPE_NOT_ON_ROOT,
7324 		.read_u64 = swap_current_read,
7325 	},
7326 	{
7327 		.name = "swap.high",
7328 		.flags = CFTYPE_NOT_ON_ROOT,
7329 		.seq_show = swap_high_show,
7330 		.write = swap_high_write,
7331 	},
7332 	{
7333 		.name = "swap.max",
7334 		.flags = CFTYPE_NOT_ON_ROOT,
7335 		.seq_show = swap_max_show,
7336 		.write = swap_max_write,
7337 	},
7338 	{
7339 		.name = "swap.events",
7340 		.flags = CFTYPE_NOT_ON_ROOT,
7341 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7342 		.seq_show = swap_events_show,
7343 	},
7344 	{ }	/* terminate */
7345 };
7346 
7347 static struct cftype memsw_files[] = {
7348 	{
7349 		.name = "memsw.usage_in_bytes",
7350 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7351 		.read_u64 = mem_cgroup_read_u64,
7352 	},
7353 	{
7354 		.name = "memsw.max_usage_in_bytes",
7355 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7356 		.write = mem_cgroup_reset,
7357 		.read_u64 = mem_cgroup_read_u64,
7358 	},
7359 	{
7360 		.name = "memsw.limit_in_bytes",
7361 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7362 		.write = mem_cgroup_write,
7363 		.read_u64 = mem_cgroup_read_u64,
7364 	},
7365 	{
7366 		.name = "memsw.failcnt",
7367 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7368 		.write = mem_cgroup_reset,
7369 		.read_u64 = mem_cgroup_read_u64,
7370 	},
7371 	{ },	/* terminate */
7372 };
7373 
7374 /*
7375  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7376  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7377  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7378  * boot parameter. This may result in premature OOPS inside
7379  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7380  */
7381 static int __init mem_cgroup_swap_init(void)
7382 {
7383 	/* No memory control -> no swap control */
7384 	if (mem_cgroup_disabled())
7385 		cgroup_memory_noswap = true;
7386 
7387 	if (cgroup_memory_noswap)
7388 		return 0;
7389 
7390 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7391 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7392 
7393 	return 0;
7394 }
7395 core_initcall(mem_cgroup_swap_init);
7396 
7397 #endif /* CONFIG_MEMCG_SWAP */
7398