1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 133 134 static void obj_cgroup_release(struct percpu_ref *ref) 135 { 136 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 137 unsigned int nr_bytes; 138 unsigned int nr_pages; 139 unsigned long flags; 140 141 /* 142 * At this point all allocated objects are freed, and 143 * objcg->nr_charged_bytes can't have an arbitrary byte value. 144 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 145 * 146 * The following sequence can lead to it: 147 * 1) CPU0: objcg == stock->cached_objcg 148 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 149 * PAGE_SIZE bytes are charged 150 * 3) CPU1: a process from another memcg is allocating something, 151 * the stock if flushed, 152 * objcg->nr_charged_bytes = PAGE_SIZE - 92 153 * 5) CPU0: we do release this object, 154 * 92 bytes are added to stock->nr_bytes 155 * 6) CPU0: stock is flushed, 156 * 92 bytes are added to objcg->nr_charged_bytes 157 * 158 * In the result, nr_charged_bytes == PAGE_SIZE. 159 * This page will be uncharged in obj_cgroup_release(). 160 */ 161 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 162 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 163 nr_pages = nr_bytes >> PAGE_SHIFT; 164 165 if (nr_pages) { 166 struct mem_cgroup *memcg; 167 168 memcg = get_mem_cgroup_from_objcg(objcg); 169 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 170 memcg1_account_kmem(memcg, -nr_pages); 171 if (!mem_cgroup_is_root(memcg)) 172 memcg_uncharge(memcg, nr_pages); 173 mem_cgroup_put(memcg); 174 } 175 176 spin_lock_irqsave(&objcg_lock, flags); 177 list_del(&objcg->list); 178 spin_unlock_irqrestore(&objcg_lock, flags); 179 180 percpu_ref_exit(ref); 181 kfree_rcu(objcg, rcu); 182 } 183 184 static struct obj_cgroup *obj_cgroup_alloc(void) 185 { 186 struct obj_cgroup *objcg; 187 int ret; 188 189 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 190 if (!objcg) 191 return NULL; 192 193 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 194 GFP_KERNEL); 195 if (ret) { 196 kfree(objcg); 197 return NULL; 198 } 199 INIT_LIST_HEAD(&objcg->list); 200 return objcg; 201 } 202 203 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 204 struct mem_cgroup *parent) 205 { 206 struct obj_cgroup *objcg, *iter; 207 208 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 209 210 spin_lock_irq(&objcg_lock); 211 212 /* 1) Ready to reparent active objcg. */ 213 list_add(&objcg->list, &memcg->objcg_list); 214 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 215 list_for_each_entry(iter, &memcg->objcg_list, list) 216 WRITE_ONCE(iter->memcg, parent); 217 /* 3) Move already reparented objcgs to the parent's list */ 218 list_splice(&memcg->objcg_list, &parent->objcg_list); 219 220 spin_unlock_irq(&objcg_lock); 221 222 percpu_ref_kill(&objcg->refcnt); 223 } 224 225 /* 226 * A lot of the calls to the cache allocation functions are expected to be 227 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 228 * conditional to this static branch, we'll have to allow modules that does 229 * kmem_cache_alloc and the such to see this symbol as well 230 */ 231 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 232 EXPORT_SYMBOL(memcg_kmem_online_key); 233 234 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 235 EXPORT_SYMBOL(memcg_bpf_enabled_key); 236 237 /** 238 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 239 * @folio: folio of interest 240 * 241 * If memcg is bound to the default hierarchy, css of the memcg associated 242 * with @folio is returned. The returned css remains associated with @folio 243 * until it is released. 244 * 245 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 246 * is returned. 247 */ 248 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 249 { 250 struct mem_cgroup *memcg = folio_memcg(folio); 251 252 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 253 memcg = root_mem_cgroup; 254 255 return &memcg->css; 256 } 257 258 /** 259 * page_cgroup_ino - return inode number of the memcg a page is charged to 260 * @page: the page 261 * 262 * Look up the closest online ancestor of the memory cgroup @page is charged to 263 * and return its inode number or 0 if @page is not charged to any cgroup. It 264 * is safe to call this function without holding a reference to @page. 265 * 266 * Note, this function is inherently racy, because there is nothing to prevent 267 * the cgroup inode from getting torn down and potentially reallocated a moment 268 * after page_cgroup_ino() returns, so it only should be used by callers that 269 * do not care (such as procfs interfaces). 270 */ 271 ino_t page_cgroup_ino(struct page *page) 272 { 273 struct mem_cgroup *memcg; 274 unsigned long ino = 0; 275 276 rcu_read_lock(); 277 /* page_folio() is racy here, but the entire function is racy anyway */ 278 memcg = folio_memcg_check(page_folio(page)); 279 280 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 281 memcg = parent_mem_cgroup(memcg); 282 if (memcg) 283 ino = cgroup_ino(memcg->css.cgroup); 284 rcu_read_unlock(); 285 return ino; 286 } 287 288 /* Subset of node_stat_item for memcg stats */ 289 static const unsigned int memcg_node_stat_items[] = { 290 NR_INACTIVE_ANON, 291 NR_ACTIVE_ANON, 292 NR_INACTIVE_FILE, 293 NR_ACTIVE_FILE, 294 NR_UNEVICTABLE, 295 NR_SLAB_RECLAIMABLE_B, 296 NR_SLAB_UNRECLAIMABLE_B, 297 WORKINGSET_REFAULT_ANON, 298 WORKINGSET_REFAULT_FILE, 299 WORKINGSET_ACTIVATE_ANON, 300 WORKINGSET_ACTIVATE_FILE, 301 WORKINGSET_RESTORE_ANON, 302 WORKINGSET_RESTORE_FILE, 303 WORKINGSET_NODERECLAIM, 304 NR_ANON_MAPPED, 305 NR_FILE_MAPPED, 306 NR_FILE_PAGES, 307 NR_FILE_DIRTY, 308 NR_WRITEBACK, 309 NR_SHMEM, 310 NR_SHMEM_THPS, 311 NR_FILE_THPS, 312 NR_ANON_THPS, 313 NR_KERNEL_STACK_KB, 314 NR_PAGETABLE, 315 NR_SECONDARY_PAGETABLE, 316 #ifdef CONFIG_SWAP 317 NR_SWAPCACHE, 318 #endif 319 #ifdef CONFIG_NUMA_BALANCING 320 PGPROMOTE_SUCCESS, 321 #endif 322 PGDEMOTE_KSWAPD, 323 PGDEMOTE_DIRECT, 324 PGDEMOTE_KHUGEPAGED, 325 PGDEMOTE_PROACTIVE, 326 #ifdef CONFIG_HUGETLB_PAGE 327 NR_HUGETLB, 328 #endif 329 }; 330 331 static const unsigned int memcg_stat_items[] = { 332 MEMCG_SWAP, 333 MEMCG_SOCK, 334 MEMCG_PERCPU_B, 335 MEMCG_VMALLOC, 336 MEMCG_KMEM, 337 MEMCG_ZSWAP_B, 338 MEMCG_ZSWAPPED, 339 }; 340 341 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 342 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 343 ARRAY_SIZE(memcg_stat_items)) 344 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 345 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 346 347 static void init_memcg_stats(void) 348 { 349 u8 i, j = 0; 350 351 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 352 353 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 354 355 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 356 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 357 358 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 359 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 360 } 361 362 static inline int memcg_stats_index(int idx) 363 { 364 return mem_cgroup_stats_index[idx]; 365 } 366 367 struct lruvec_stats_percpu { 368 /* Local (CPU and cgroup) state */ 369 long state[NR_MEMCG_NODE_STAT_ITEMS]; 370 371 /* Delta calculation for lockless upward propagation */ 372 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 373 }; 374 375 struct lruvec_stats { 376 /* Aggregated (CPU and subtree) state */ 377 long state[NR_MEMCG_NODE_STAT_ITEMS]; 378 379 /* Non-hierarchical (CPU aggregated) state */ 380 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 381 382 /* Pending child counts during tree propagation */ 383 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 384 }; 385 386 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 387 { 388 struct mem_cgroup_per_node *pn; 389 long x; 390 int i; 391 392 if (mem_cgroup_disabled()) 393 return node_page_state(lruvec_pgdat(lruvec), idx); 394 395 i = memcg_stats_index(idx); 396 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 397 return 0; 398 399 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 400 x = READ_ONCE(pn->lruvec_stats->state[i]); 401 #ifdef CONFIG_SMP 402 if (x < 0) 403 x = 0; 404 #endif 405 return x; 406 } 407 408 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 409 enum node_stat_item idx) 410 { 411 struct mem_cgroup_per_node *pn; 412 long x; 413 int i; 414 415 if (mem_cgroup_disabled()) 416 return node_page_state(lruvec_pgdat(lruvec), idx); 417 418 i = memcg_stats_index(idx); 419 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 420 return 0; 421 422 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 423 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 424 #ifdef CONFIG_SMP 425 if (x < 0) 426 x = 0; 427 #endif 428 return x; 429 } 430 431 /* Subset of vm_event_item to report for memcg event stats */ 432 static const unsigned int memcg_vm_event_stat[] = { 433 #ifdef CONFIG_MEMCG_V1 434 PGPGIN, 435 PGPGOUT, 436 #endif 437 PSWPIN, 438 PSWPOUT, 439 PGSCAN_KSWAPD, 440 PGSCAN_DIRECT, 441 PGSCAN_KHUGEPAGED, 442 PGSCAN_PROACTIVE, 443 PGSTEAL_KSWAPD, 444 PGSTEAL_DIRECT, 445 PGSTEAL_KHUGEPAGED, 446 PGSTEAL_PROACTIVE, 447 PGFAULT, 448 PGMAJFAULT, 449 PGREFILL, 450 PGACTIVATE, 451 PGDEACTIVATE, 452 PGLAZYFREE, 453 PGLAZYFREED, 454 #ifdef CONFIG_SWAP 455 SWPIN_ZERO, 456 SWPOUT_ZERO, 457 #endif 458 #ifdef CONFIG_ZSWAP 459 ZSWPIN, 460 ZSWPOUT, 461 ZSWPWB, 462 #endif 463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 464 THP_FAULT_ALLOC, 465 THP_COLLAPSE_ALLOC, 466 THP_SWPOUT, 467 THP_SWPOUT_FALLBACK, 468 #endif 469 #ifdef CONFIG_NUMA_BALANCING 470 NUMA_PAGE_MIGRATE, 471 NUMA_PTE_UPDATES, 472 NUMA_HINT_FAULTS, 473 #endif 474 }; 475 476 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 477 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 478 479 static void init_memcg_events(void) 480 { 481 u8 i; 482 483 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 484 485 memset(mem_cgroup_events_index, U8_MAX, 486 sizeof(mem_cgroup_events_index)); 487 488 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 489 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 490 } 491 492 static inline int memcg_events_index(enum vm_event_item idx) 493 { 494 return mem_cgroup_events_index[idx]; 495 } 496 497 struct memcg_vmstats_percpu { 498 /* Stats updates since the last flush */ 499 unsigned int stats_updates; 500 501 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 502 struct memcg_vmstats_percpu *parent; 503 struct memcg_vmstats *vmstats; 504 505 /* The above should fit a single cacheline for memcg_rstat_updated() */ 506 507 /* Local (CPU and cgroup) page state & events */ 508 long state[MEMCG_VMSTAT_SIZE]; 509 unsigned long events[NR_MEMCG_EVENTS]; 510 511 /* Delta calculation for lockless upward propagation */ 512 long state_prev[MEMCG_VMSTAT_SIZE]; 513 unsigned long events_prev[NR_MEMCG_EVENTS]; 514 } ____cacheline_aligned; 515 516 struct memcg_vmstats { 517 /* Aggregated (CPU and subtree) page state & events */ 518 long state[MEMCG_VMSTAT_SIZE]; 519 unsigned long events[NR_MEMCG_EVENTS]; 520 521 /* Non-hierarchical (CPU aggregated) page state & events */ 522 long state_local[MEMCG_VMSTAT_SIZE]; 523 unsigned long events_local[NR_MEMCG_EVENTS]; 524 525 /* Pending child counts during tree propagation */ 526 long state_pending[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_pending[NR_MEMCG_EVENTS]; 528 529 /* Stats updates since the last flush */ 530 atomic64_t stats_updates; 531 }; 532 533 /* 534 * memcg and lruvec stats flushing 535 * 536 * Many codepaths leading to stats update or read are performance sensitive and 537 * adding stats flushing in such codepaths is not desirable. So, to optimize the 538 * flushing the kernel does: 539 * 540 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 541 * rstat update tree grow unbounded. 542 * 543 * 2) Flush the stats synchronously on reader side only when there are more than 544 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 545 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 546 * only for 2 seconds due to (1). 547 */ 548 static void flush_memcg_stats_dwork(struct work_struct *w); 549 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 550 static u64 flush_last_time; 551 552 #define FLUSH_TIME (2UL*HZ) 553 554 /* 555 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 556 * not rely on this as part of an acquired spinlock_t lock. These functions are 557 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 558 * is sufficient. 559 */ 560 static void memcg_stats_lock(void) 561 { 562 preempt_disable_nested(); 563 VM_WARN_ON_IRQS_ENABLED(); 564 } 565 566 static void __memcg_stats_lock(void) 567 { 568 preempt_disable_nested(); 569 } 570 571 static void memcg_stats_unlock(void) 572 { 573 preempt_enable_nested(); 574 } 575 576 577 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 578 { 579 return atomic64_read(&vmstats->stats_updates) > 580 MEMCG_CHARGE_BATCH * num_online_cpus(); 581 } 582 583 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 584 { 585 struct memcg_vmstats_percpu *statc; 586 int cpu = smp_processor_id(); 587 unsigned int stats_updates; 588 589 if (!val) 590 return; 591 592 cgroup_rstat_updated(memcg->css.cgroup, cpu); 593 statc = this_cpu_ptr(memcg->vmstats_percpu); 594 for (; statc; statc = statc->parent) { 595 /* 596 * If @memcg is already flushable then all its ancestors are 597 * flushable as well and also there is no need to increase 598 * stats_updates. 599 */ 600 if (memcg_vmstats_needs_flush(statc->vmstats)) 601 break; 602 603 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 604 WRITE_ONCE(statc->stats_updates, stats_updates); 605 if (stats_updates < MEMCG_CHARGE_BATCH) 606 continue; 607 608 atomic64_add(stats_updates, &statc->vmstats->stats_updates); 609 WRITE_ONCE(statc->stats_updates, 0); 610 } 611 } 612 613 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 614 { 615 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 616 617 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 618 force, needs_flush); 619 620 if (!force && !needs_flush) 621 return; 622 623 if (mem_cgroup_is_root(memcg)) 624 WRITE_ONCE(flush_last_time, jiffies_64); 625 626 cgroup_rstat_flush(memcg->css.cgroup); 627 } 628 629 /* 630 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 631 * @memcg: root of the subtree to flush 632 * 633 * Flushing is serialized by the underlying global rstat lock. There is also a 634 * minimum amount of work to be done even if there are no stat updates to flush. 635 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 636 * avoids unnecessary work and contention on the underlying lock. 637 */ 638 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 639 { 640 if (mem_cgroup_disabled()) 641 return; 642 643 if (!memcg) 644 memcg = root_mem_cgroup; 645 646 __mem_cgroup_flush_stats(memcg, false); 647 } 648 649 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 650 { 651 /* Only flush if the periodic flusher is one full cycle late */ 652 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 653 mem_cgroup_flush_stats(memcg); 654 } 655 656 static void flush_memcg_stats_dwork(struct work_struct *w) 657 { 658 /* 659 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 660 * in latency-sensitive paths is as cheap as possible. 661 */ 662 __mem_cgroup_flush_stats(root_mem_cgroup, true); 663 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 664 } 665 666 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 667 { 668 long x; 669 int i = memcg_stats_index(idx); 670 671 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 672 return 0; 673 674 x = READ_ONCE(memcg->vmstats->state[i]); 675 #ifdef CONFIG_SMP 676 if (x < 0) 677 x = 0; 678 #endif 679 return x; 680 } 681 682 static int memcg_page_state_unit(int item); 683 684 /* 685 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 686 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 687 */ 688 static int memcg_state_val_in_pages(int idx, int val) 689 { 690 int unit = memcg_page_state_unit(idx); 691 692 if (!val || unit == PAGE_SIZE) 693 return val; 694 else 695 return max(val * unit / PAGE_SIZE, 1UL); 696 } 697 698 /** 699 * __mod_memcg_state - update cgroup memory statistics 700 * @memcg: the memory cgroup 701 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 702 * @val: delta to add to the counter, can be negative 703 */ 704 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 705 int val) 706 { 707 int i = memcg_stats_index(idx); 708 709 if (mem_cgroup_disabled()) 710 return; 711 712 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 713 return; 714 715 memcg_stats_lock(); 716 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 717 val = memcg_state_val_in_pages(idx, val); 718 memcg_rstat_updated(memcg, val); 719 trace_mod_memcg_state(memcg, idx, val); 720 memcg_stats_unlock(); 721 } 722 723 #ifdef CONFIG_MEMCG_V1 724 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 725 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 726 { 727 long x; 728 int i = memcg_stats_index(idx); 729 730 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 731 return 0; 732 733 x = READ_ONCE(memcg->vmstats->state_local[i]); 734 #ifdef CONFIG_SMP 735 if (x < 0) 736 x = 0; 737 #endif 738 return x; 739 } 740 #endif 741 742 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 743 enum node_stat_item idx, 744 int val) 745 { 746 struct mem_cgroup_per_node *pn; 747 struct mem_cgroup *memcg; 748 int i = memcg_stats_index(idx); 749 750 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 751 return; 752 753 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 754 memcg = pn->memcg; 755 756 /* 757 * The caller from rmap relies on disabled preemption because they never 758 * update their counter from in-interrupt context. For these two 759 * counters we check that the update is never performed from an 760 * interrupt context while other caller need to have disabled interrupt. 761 */ 762 __memcg_stats_lock(); 763 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 764 switch (idx) { 765 case NR_ANON_MAPPED: 766 case NR_FILE_MAPPED: 767 case NR_ANON_THPS: 768 WARN_ON_ONCE(!in_task()); 769 break; 770 default: 771 VM_WARN_ON_IRQS_ENABLED(); 772 } 773 } 774 775 /* Update memcg */ 776 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 777 778 /* Update lruvec */ 779 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 780 781 val = memcg_state_val_in_pages(idx, val); 782 memcg_rstat_updated(memcg, val); 783 trace_mod_memcg_lruvec_state(memcg, idx, val); 784 memcg_stats_unlock(); 785 } 786 787 /** 788 * __mod_lruvec_state - update lruvec memory statistics 789 * @lruvec: the lruvec 790 * @idx: the stat item 791 * @val: delta to add to the counter, can be negative 792 * 793 * The lruvec is the intersection of the NUMA node and a cgroup. This 794 * function updates the all three counters that are affected by a 795 * change of state at this level: per-node, per-cgroup, per-lruvec. 796 */ 797 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 798 int val) 799 { 800 /* Update node */ 801 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 802 803 /* Update memcg and lruvec */ 804 if (!mem_cgroup_disabled()) 805 __mod_memcg_lruvec_state(lruvec, idx, val); 806 } 807 808 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 809 int val) 810 { 811 struct mem_cgroup *memcg; 812 pg_data_t *pgdat = folio_pgdat(folio); 813 struct lruvec *lruvec; 814 815 rcu_read_lock(); 816 memcg = folio_memcg(folio); 817 /* Untracked pages have no memcg, no lruvec. Update only the node */ 818 if (!memcg) { 819 rcu_read_unlock(); 820 __mod_node_page_state(pgdat, idx, val); 821 return; 822 } 823 824 lruvec = mem_cgroup_lruvec(memcg, pgdat); 825 __mod_lruvec_state(lruvec, idx, val); 826 rcu_read_unlock(); 827 } 828 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 829 830 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 831 { 832 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 833 struct mem_cgroup *memcg; 834 struct lruvec *lruvec; 835 836 rcu_read_lock(); 837 memcg = mem_cgroup_from_slab_obj(p); 838 839 /* 840 * Untracked pages have no memcg, no lruvec. Update only the 841 * node. If we reparent the slab objects to the root memcg, 842 * when we free the slab object, we need to update the per-memcg 843 * vmstats to keep it correct for the root memcg. 844 */ 845 if (!memcg) { 846 __mod_node_page_state(pgdat, idx, val); 847 } else { 848 lruvec = mem_cgroup_lruvec(memcg, pgdat); 849 __mod_lruvec_state(lruvec, idx, val); 850 } 851 rcu_read_unlock(); 852 } 853 854 /** 855 * __count_memcg_events - account VM events in a cgroup 856 * @memcg: the memory cgroup 857 * @idx: the event item 858 * @count: the number of events that occurred 859 */ 860 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 861 unsigned long count) 862 { 863 int i = memcg_events_index(idx); 864 865 if (mem_cgroup_disabled()) 866 return; 867 868 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 869 return; 870 871 memcg_stats_lock(); 872 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 873 memcg_rstat_updated(memcg, count); 874 trace_count_memcg_events(memcg, idx, count); 875 memcg_stats_unlock(); 876 } 877 878 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 879 { 880 int i = memcg_events_index(event); 881 882 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 883 return 0; 884 885 return READ_ONCE(memcg->vmstats->events[i]); 886 } 887 888 #ifdef CONFIG_MEMCG_V1 889 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 890 { 891 int i = memcg_events_index(event); 892 893 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 894 return 0; 895 896 return READ_ONCE(memcg->vmstats->events_local[i]); 897 } 898 #endif 899 900 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 901 { 902 /* 903 * mm_update_next_owner() may clear mm->owner to NULL 904 * if it races with swapoff, page migration, etc. 905 * So this can be called with p == NULL. 906 */ 907 if (unlikely(!p)) 908 return NULL; 909 910 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 911 } 912 EXPORT_SYMBOL(mem_cgroup_from_task); 913 914 static __always_inline struct mem_cgroup *active_memcg(void) 915 { 916 if (!in_task()) 917 return this_cpu_read(int_active_memcg); 918 else 919 return current->active_memcg; 920 } 921 922 /** 923 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 924 * @mm: mm from which memcg should be extracted. It can be NULL. 925 * 926 * Obtain a reference on mm->memcg and returns it if successful. If mm 927 * is NULL, then the memcg is chosen as follows: 928 * 1) The active memcg, if set. 929 * 2) current->mm->memcg, if available 930 * 3) root memcg 931 * If mem_cgroup is disabled, NULL is returned. 932 */ 933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 934 { 935 struct mem_cgroup *memcg; 936 937 if (mem_cgroup_disabled()) 938 return NULL; 939 940 /* 941 * Page cache insertions can happen without an 942 * actual mm context, e.g. during disk probing 943 * on boot, loopback IO, acct() writes etc. 944 * 945 * No need to css_get on root memcg as the reference 946 * counting is disabled on the root level in the 947 * cgroup core. See CSS_NO_REF. 948 */ 949 if (unlikely(!mm)) { 950 memcg = active_memcg(); 951 if (unlikely(memcg)) { 952 /* remote memcg must hold a ref */ 953 css_get(&memcg->css); 954 return memcg; 955 } 956 mm = current->mm; 957 if (unlikely(!mm)) 958 return root_mem_cgroup; 959 } 960 961 rcu_read_lock(); 962 do { 963 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 964 if (unlikely(!memcg)) 965 memcg = root_mem_cgroup; 966 } while (!css_tryget(&memcg->css)); 967 rcu_read_unlock(); 968 return memcg; 969 } 970 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 971 972 /** 973 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 974 */ 975 struct mem_cgroup *get_mem_cgroup_from_current(void) 976 { 977 struct mem_cgroup *memcg; 978 979 if (mem_cgroup_disabled()) 980 return NULL; 981 982 again: 983 rcu_read_lock(); 984 memcg = mem_cgroup_from_task(current); 985 if (!css_tryget(&memcg->css)) { 986 rcu_read_unlock(); 987 goto again; 988 } 989 rcu_read_unlock(); 990 return memcg; 991 } 992 993 /** 994 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 995 * @folio: folio from which memcg should be extracted. 996 */ 997 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 998 { 999 struct mem_cgroup *memcg = folio_memcg(folio); 1000 1001 if (mem_cgroup_disabled()) 1002 return NULL; 1003 1004 rcu_read_lock(); 1005 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1006 memcg = root_mem_cgroup; 1007 rcu_read_unlock(); 1008 return memcg; 1009 } 1010 1011 /** 1012 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1013 * @root: hierarchy root 1014 * @prev: previously returned memcg, NULL on first invocation 1015 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1016 * 1017 * Returns references to children of the hierarchy below @root, or 1018 * @root itself, or %NULL after a full round-trip. 1019 * 1020 * Caller must pass the return value in @prev on subsequent 1021 * invocations for reference counting, or use mem_cgroup_iter_break() 1022 * to cancel a hierarchy walk before the round-trip is complete. 1023 * 1024 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1025 * in the hierarchy among all concurrent reclaimers operating on the 1026 * same node. 1027 */ 1028 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1029 struct mem_cgroup *prev, 1030 struct mem_cgroup_reclaim_cookie *reclaim) 1031 { 1032 struct mem_cgroup_reclaim_iter *iter; 1033 struct cgroup_subsys_state *css; 1034 struct mem_cgroup *pos; 1035 struct mem_cgroup *next; 1036 1037 if (mem_cgroup_disabled()) 1038 return NULL; 1039 1040 if (!root) 1041 root = root_mem_cgroup; 1042 1043 rcu_read_lock(); 1044 restart: 1045 next = NULL; 1046 1047 if (reclaim) { 1048 int gen; 1049 int nid = reclaim->pgdat->node_id; 1050 1051 iter = &root->nodeinfo[nid]->iter; 1052 gen = atomic_read(&iter->generation); 1053 1054 /* 1055 * On start, join the current reclaim iteration cycle. 1056 * Exit when a concurrent walker completes it. 1057 */ 1058 if (!prev) 1059 reclaim->generation = gen; 1060 else if (reclaim->generation != gen) 1061 goto out_unlock; 1062 1063 pos = READ_ONCE(iter->position); 1064 } else 1065 pos = prev; 1066 1067 css = pos ? &pos->css : NULL; 1068 1069 while ((css = css_next_descendant_pre(css, &root->css))) { 1070 /* 1071 * Verify the css and acquire a reference. The root 1072 * is provided by the caller, so we know it's alive 1073 * and kicking, and don't take an extra reference. 1074 */ 1075 if (css == &root->css || css_tryget(css)) 1076 break; 1077 } 1078 1079 next = mem_cgroup_from_css(css); 1080 1081 if (reclaim) { 1082 /* 1083 * The position could have already been updated by a competing 1084 * thread, so check that the value hasn't changed since we read 1085 * it to avoid reclaiming from the same cgroup twice. 1086 */ 1087 if (cmpxchg(&iter->position, pos, next) != pos) { 1088 if (css && css != &root->css) 1089 css_put(css); 1090 goto restart; 1091 } 1092 1093 if (!next) { 1094 atomic_inc(&iter->generation); 1095 1096 /* 1097 * Reclaimers share the hierarchy walk, and a 1098 * new one might jump in right at the end of 1099 * the hierarchy - make sure they see at least 1100 * one group and restart from the beginning. 1101 */ 1102 if (!prev) 1103 goto restart; 1104 } 1105 } 1106 1107 out_unlock: 1108 rcu_read_unlock(); 1109 if (prev && prev != root) 1110 css_put(&prev->css); 1111 1112 return next; 1113 } 1114 1115 /** 1116 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1117 * @root: hierarchy root 1118 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1119 */ 1120 void mem_cgroup_iter_break(struct mem_cgroup *root, 1121 struct mem_cgroup *prev) 1122 { 1123 if (!root) 1124 root = root_mem_cgroup; 1125 if (prev && prev != root) 1126 css_put(&prev->css); 1127 } 1128 1129 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1130 struct mem_cgroup *dead_memcg) 1131 { 1132 struct mem_cgroup_reclaim_iter *iter; 1133 struct mem_cgroup_per_node *mz; 1134 int nid; 1135 1136 for_each_node(nid) { 1137 mz = from->nodeinfo[nid]; 1138 iter = &mz->iter; 1139 cmpxchg(&iter->position, dead_memcg, NULL); 1140 } 1141 } 1142 1143 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1144 { 1145 struct mem_cgroup *memcg = dead_memcg; 1146 struct mem_cgroup *last; 1147 1148 do { 1149 __invalidate_reclaim_iterators(memcg, dead_memcg); 1150 last = memcg; 1151 } while ((memcg = parent_mem_cgroup(memcg))); 1152 1153 /* 1154 * When cgroup1 non-hierarchy mode is used, 1155 * parent_mem_cgroup() does not walk all the way up to the 1156 * cgroup root (root_mem_cgroup). So we have to handle 1157 * dead_memcg from cgroup root separately. 1158 */ 1159 if (!mem_cgroup_is_root(last)) 1160 __invalidate_reclaim_iterators(root_mem_cgroup, 1161 dead_memcg); 1162 } 1163 1164 /** 1165 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1166 * @memcg: hierarchy root 1167 * @fn: function to call for each task 1168 * @arg: argument passed to @fn 1169 * 1170 * This function iterates over tasks attached to @memcg or to any of its 1171 * descendants and calls @fn for each task. If @fn returns a non-zero 1172 * value, the function breaks the iteration loop. Otherwise, it will iterate 1173 * over all tasks and return 0. 1174 * 1175 * This function must not be called for the root memory cgroup. 1176 */ 1177 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1178 int (*fn)(struct task_struct *, void *), void *arg) 1179 { 1180 struct mem_cgroup *iter; 1181 int ret = 0; 1182 int i = 0; 1183 1184 BUG_ON(mem_cgroup_is_root(memcg)); 1185 1186 for_each_mem_cgroup_tree(iter, memcg) { 1187 struct css_task_iter it; 1188 struct task_struct *task; 1189 1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1191 while (!ret && (task = css_task_iter_next(&it))) { 1192 /* Avoid potential softlockup warning */ 1193 if ((++i & 1023) == 0) 1194 cond_resched(); 1195 ret = fn(task, arg); 1196 } 1197 css_task_iter_end(&it); 1198 if (ret) { 1199 mem_cgroup_iter_break(memcg, iter); 1200 break; 1201 } 1202 } 1203 } 1204 1205 #ifdef CONFIG_DEBUG_VM 1206 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1207 { 1208 struct mem_cgroup *memcg; 1209 1210 if (mem_cgroup_disabled()) 1211 return; 1212 1213 memcg = folio_memcg(folio); 1214 1215 if (!memcg) 1216 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1217 else 1218 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1219 } 1220 #endif 1221 1222 /** 1223 * folio_lruvec_lock - Lock the lruvec for a folio. 1224 * @folio: Pointer to the folio. 1225 * 1226 * These functions are safe to use under any of the following conditions: 1227 * - folio locked 1228 * - folio_test_lru false 1229 * - folio frozen (refcount of 0) 1230 * 1231 * Return: The lruvec this folio is on with its lock held. 1232 */ 1233 struct lruvec *folio_lruvec_lock(struct folio *folio) 1234 { 1235 struct lruvec *lruvec = folio_lruvec(folio); 1236 1237 spin_lock(&lruvec->lru_lock); 1238 lruvec_memcg_debug(lruvec, folio); 1239 1240 return lruvec; 1241 } 1242 1243 /** 1244 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1245 * @folio: Pointer to the folio. 1246 * 1247 * These functions are safe to use under any of the following conditions: 1248 * - folio locked 1249 * - folio_test_lru false 1250 * - folio frozen (refcount of 0) 1251 * 1252 * Return: The lruvec this folio is on with its lock held and interrupts 1253 * disabled. 1254 */ 1255 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1256 { 1257 struct lruvec *lruvec = folio_lruvec(folio); 1258 1259 spin_lock_irq(&lruvec->lru_lock); 1260 lruvec_memcg_debug(lruvec, folio); 1261 1262 return lruvec; 1263 } 1264 1265 /** 1266 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1267 * @folio: Pointer to the folio. 1268 * @flags: Pointer to irqsave flags. 1269 * 1270 * These functions are safe to use under any of the following conditions: 1271 * - folio locked 1272 * - folio_test_lru false 1273 * - folio frozen (refcount of 0) 1274 * 1275 * Return: The lruvec this folio is on with its lock held and interrupts 1276 * disabled. 1277 */ 1278 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1279 unsigned long *flags) 1280 { 1281 struct lruvec *lruvec = folio_lruvec(folio); 1282 1283 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1284 lruvec_memcg_debug(lruvec, folio); 1285 1286 return lruvec; 1287 } 1288 1289 /** 1290 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1291 * @lruvec: mem_cgroup per zone lru vector 1292 * @lru: index of lru list the page is sitting on 1293 * @zid: zone id of the accounted pages 1294 * @nr_pages: positive when adding or negative when removing 1295 * 1296 * This function must be called under lru_lock, just before a page is added 1297 * to or just after a page is removed from an lru list. 1298 */ 1299 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1300 int zid, int nr_pages) 1301 { 1302 struct mem_cgroup_per_node *mz; 1303 unsigned long *lru_size; 1304 long size; 1305 1306 if (mem_cgroup_disabled()) 1307 return; 1308 1309 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1310 lru_size = &mz->lru_zone_size[zid][lru]; 1311 1312 if (nr_pages < 0) 1313 *lru_size += nr_pages; 1314 1315 size = *lru_size; 1316 if (WARN_ONCE(size < 0, 1317 "%s(%p, %d, %d): lru_size %ld\n", 1318 __func__, lruvec, lru, nr_pages, size)) { 1319 VM_BUG_ON(1); 1320 *lru_size = 0; 1321 } 1322 1323 if (nr_pages > 0) 1324 *lru_size += nr_pages; 1325 } 1326 1327 /** 1328 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1329 * @memcg: the memory cgroup 1330 * 1331 * Returns the maximum amount of memory @mem can be charged with, in 1332 * pages. 1333 */ 1334 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1335 { 1336 unsigned long margin = 0; 1337 unsigned long count; 1338 unsigned long limit; 1339 1340 count = page_counter_read(&memcg->memory); 1341 limit = READ_ONCE(memcg->memory.max); 1342 if (count < limit) 1343 margin = limit - count; 1344 1345 if (do_memsw_account()) { 1346 count = page_counter_read(&memcg->memsw); 1347 limit = READ_ONCE(memcg->memsw.max); 1348 if (count < limit) 1349 margin = min(margin, limit - count); 1350 else 1351 margin = 0; 1352 } 1353 1354 return margin; 1355 } 1356 1357 struct memory_stat { 1358 const char *name; 1359 unsigned int idx; 1360 }; 1361 1362 static const struct memory_stat memory_stats[] = { 1363 { "anon", NR_ANON_MAPPED }, 1364 { "file", NR_FILE_PAGES }, 1365 { "kernel", MEMCG_KMEM }, 1366 { "kernel_stack", NR_KERNEL_STACK_KB }, 1367 { "pagetables", NR_PAGETABLE }, 1368 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1369 { "percpu", MEMCG_PERCPU_B }, 1370 { "sock", MEMCG_SOCK }, 1371 { "vmalloc", MEMCG_VMALLOC }, 1372 { "shmem", NR_SHMEM }, 1373 #ifdef CONFIG_ZSWAP 1374 { "zswap", MEMCG_ZSWAP_B }, 1375 { "zswapped", MEMCG_ZSWAPPED }, 1376 #endif 1377 { "file_mapped", NR_FILE_MAPPED }, 1378 { "file_dirty", NR_FILE_DIRTY }, 1379 { "file_writeback", NR_WRITEBACK }, 1380 #ifdef CONFIG_SWAP 1381 { "swapcached", NR_SWAPCACHE }, 1382 #endif 1383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1384 { "anon_thp", NR_ANON_THPS }, 1385 { "file_thp", NR_FILE_THPS }, 1386 { "shmem_thp", NR_SHMEM_THPS }, 1387 #endif 1388 { "inactive_anon", NR_INACTIVE_ANON }, 1389 { "active_anon", NR_ACTIVE_ANON }, 1390 { "inactive_file", NR_INACTIVE_FILE }, 1391 { "active_file", NR_ACTIVE_FILE }, 1392 { "unevictable", NR_UNEVICTABLE }, 1393 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1394 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1395 #ifdef CONFIG_HUGETLB_PAGE 1396 { "hugetlb", NR_HUGETLB }, 1397 #endif 1398 1399 /* The memory events */ 1400 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1401 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1402 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1403 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1404 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1405 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1406 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1407 1408 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1409 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1410 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1411 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1412 #ifdef CONFIG_NUMA_BALANCING 1413 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1414 #endif 1415 }; 1416 1417 /* The actual unit of the state item, not the same as the output unit */ 1418 static int memcg_page_state_unit(int item) 1419 { 1420 switch (item) { 1421 case MEMCG_PERCPU_B: 1422 case MEMCG_ZSWAP_B: 1423 case NR_SLAB_RECLAIMABLE_B: 1424 case NR_SLAB_UNRECLAIMABLE_B: 1425 return 1; 1426 case NR_KERNEL_STACK_KB: 1427 return SZ_1K; 1428 default: 1429 return PAGE_SIZE; 1430 } 1431 } 1432 1433 /* Translate stat items to the correct unit for memory.stat output */ 1434 static int memcg_page_state_output_unit(int item) 1435 { 1436 /* 1437 * Workingset state is actually in pages, but we export it to userspace 1438 * as a scalar count of events, so special case it here. 1439 * 1440 * Demotion and promotion activities are exported in pages, consistent 1441 * with their global counterparts. 1442 */ 1443 switch (item) { 1444 case WORKINGSET_REFAULT_ANON: 1445 case WORKINGSET_REFAULT_FILE: 1446 case WORKINGSET_ACTIVATE_ANON: 1447 case WORKINGSET_ACTIVATE_FILE: 1448 case WORKINGSET_RESTORE_ANON: 1449 case WORKINGSET_RESTORE_FILE: 1450 case WORKINGSET_NODERECLAIM: 1451 case PGDEMOTE_KSWAPD: 1452 case PGDEMOTE_DIRECT: 1453 case PGDEMOTE_KHUGEPAGED: 1454 case PGDEMOTE_PROACTIVE: 1455 #ifdef CONFIG_NUMA_BALANCING 1456 case PGPROMOTE_SUCCESS: 1457 #endif 1458 return 1; 1459 default: 1460 return memcg_page_state_unit(item); 1461 } 1462 } 1463 1464 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1465 { 1466 return memcg_page_state(memcg, item) * 1467 memcg_page_state_output_unit(item); 1468 } 1469 1470 #ifdef CONFIG_MEMCG_V1 1471 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1472 { 1473 return memcg_page_state_local(memcg, item) * 1474 memcg_page_state_output_unit(item); 1475 } 1476 #endif 1477 1478 #ifdef CONFIG_HUGETLB_PAGE 1479 static bool memcg_accounts_hugetlb(void) 1480 { 1481 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1482 } 1483 #else /* CONFIG_HUGETLB_PAGE */ 1484 static bool memcg_accounts_hugetlb(void) 1485 { 1486 return false; 1487 } 1488 #endif /* CONFIG_HUGETLB_PAGE */ 1489 1490 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1491 { 1492 int i; 1493 1494 /* 1495 * Provide statistics on the state of the memory subsystem as 1496 * well as cumulative event counters that show past behavior. 1497 * 1498 * This list is ordered following a combination of these gradients: 1499 * 1) generic big picture -> specifics and details 1500 * 2) reflecting userspace activity -> reflecting kernel heuristics 1501 * 1502 * Current memory state: 1503 */ 1504 mem_cgroup_flush_stats(memcg); 1505 1506 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1507 u64 size; 1508 1509 #ifdef CONFIG_HUGETLB_PAGE 1510 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1511 !memcg_accounts_hugetlb()) 1512 continue; 1513 #endif 1514 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1515 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1516 1517 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1518 size += memcg_page_state_output(memcg, 1519 NR_SLAB_RECLAIMABLE_B); 1520 seq_buf_printf(s, "slab %llu\n", size); 1521 } 1522 } 1523 1524 /* Accumulated memory events */ 1525 seq_buf_printf(s, "pgscan %lu\n", 1526 memcg_events(memcg, PGSCAN_KSWAPD) + 1527 memcg_events(memcg, PGSCAN_DIRECT) + 1528 memcg_events(memcg, PGSCAN_PROACTIVE) + 1529 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1530 seq_buf_printf(s, "pgsteal %lu\n", 1531 memcg_events(memcg, PGSTEAL_KSWAPD) + 1532 memcg_events(memcg, PGSTEAL_DIRECT) + 1533 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1534 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1535 1536 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1537 #ifdef CONFIG_MEMCG_V1 1538 if (memcg_vm_event_stat[i] == PGPGIN || 1539 memcg_vm_event_stat[i] == PGPGOUT) 1540 continue; 1541 #endif 1542 seq_buf_printf(s, "%s %lu\n", 1543 vm_event_name(memcg_vm_event_stat[i]), 1544 memcg_events(memcg, memcg_vm_event_stat[i])); 1545 } 1546 } 1547 1548 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1549 { 1550 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1551 memcg_stat_format(memcg, s); 1552 else 1553 memcg1_stat_format(memcg, s); 1554 if (seq_buf_has_overflowed(s)) 1555 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1556 } 1557 1558 /** 1559 * mem_cgroup_print_oom_context: Print OOM information relevant to 1560 * memory controller. 1561 * @memcg: The memory cgroup that went over limit 1562 * @p: Task that is going to be killed 1563 * 1564 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1565 * enabled 1566 */ 1567 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1568 { 1569 rcu_read_lock(); 1570 1571 if (memcg) { 1572 pr_cont(",oom_memcg="); 1573 pr_cont_cgroup_path(memcg->css.cgroup); 1574 } else 1575 pr_cont(",global_oom"); 1576 if (p) { 1577 pr_cont(",task_memcg="); 1578 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1579 } 1580 rcu_read_unlock(); 1581 } 1582 1583 /** 1584 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1585 * memory controller. 1586 * @memcg: The memory cgroup that went over limit 1587 */ 1588 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1589 { 1590 /* Use static buffer, for the caller is holding oom_lock. */ 1591 static char buf[SEQ_BUF_SIZE]; 1592 struct seq_buf s; 1593 unsigned long memory_failcnt; 1594 1595 lockdep_assert_held(&oom_lock); 1596 1597 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1598 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1599 else 1600 memory_failcnt = memcg->memory.failcnt; 1601 1602 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1603 K((u64)page_counter_read(&memcg->memory)), 1604 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1605 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1606 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1607 K((u64)page_counter_read(&memcg->swap)), 1608 K((u64)READ_ONCE(memcg->swap.max)), 1609 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1610 #ifdef CONFIG_MEMCG_V1 1611 else { 1612 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1613 K((u64)page_counter_read(&memcg->memsw)), 1614 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1615 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1616 K((u64)page_counter_read(&memcg->kmem)), 1617 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1618 } 1619 #endif 1620 1621 pr_info("Memory cgroup stats for "); 1622 pr_cont_cgroup_path(memcg->css.cgroup); 1623 pr_cont(":"); 1624 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1625 memory_stat_format(memcg, &s); 1626 seq_buf_do_printk(&s, KERN_INFO); 1627 } 1628 1629 /* 1630 * Return the memory (and swap, if configured) limit for a memcg. 1631 */ 1632 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1633 { 1634 unsigned long max = READ_ONCE(memcg->memory.max); 1635 1636 if (do_memsw_account()) { 1637 if (mem_cgroup_swappiness(memcg)) { 1638 /* Calculate swap excess capacity from memsw limit */ 1639 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1640 1641 max += min(swap, (unsigned long)total_swap_pages); 1642 } 1643 } else { 1644 if (mem_cgroup_swappiness(memcg)) 1645 max += min(READ_ONCE(memcg->swap.max), 1646 (unsigned long)total_swap_pages); 1647 } 1648 return max; 1649 } 1650 1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1652 { 1653 return page_counter_read(&memcg->memory); 1654 } 1655 1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1657 int order) 1658 { 1659 struct oom_control oc = { 1660 .zonelist = NULL, 1661 .nodemask = NULL, 1662 .memcg = memcg, 1663 .gfp_mask = gfp_mask, 1664 .order = order, 1665 }; 1666 bool ret = true; 1667 1668 if (mutex_lock_killable(&oom_lock)) 1669 return true; 1670 1671 if (mem_cgroup_margin(memcg) >= (1 << order)) 1672 goto unlock; 1673 1674 /* 1675 * A few threads which were not waiting at mutex_lock_killable() can 1676 * fail to bail out. Therefore, check again after holding oom_lock. 1677 */ 1678 ret = out_of_memory(&oc); 1679 1680 unlock: 1681 mutex_unlock(&oom_lock); 1682 return ret; 1683 } 1684 1685 /* 1686 * Returns true if successfully killed one or more processes. Though in some 1687 * corner cases it can return true even without killing any process. 1688 */ 1689 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1690 { 1691 bool locked, ret; 1692 1693 if (order > PAGE_ALLOC_COSTLY_ORDER) 1694 return false; 1695 1696 memcg_memory_event(memcg, MEMCG_OOM); 1697 1698 if (!memcg1_oom_prepare(memcg, &locked)) 1699 return false; 1700 1701 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1702 1703 memcg1_oom_finish(memcg, locked); 1704 1705 return ret; 1706 } 1707 1708 /** 1709 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1710 * @victim: task to be killed by the OOM killer 1711 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1712 * 1713 * Returns a pointer to a memory cgroup, which has to be cleaned up 1714 * by killing all belonging OOM-killable tasks. 1715 * 1716 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1717 */ 1718 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1719 struct mem_cgroup *oom_domain) 1720 { 1721 struct mem_cgroup *oom_group = NULL; 1722 struct mem_cgroup *memcg; 1723 1724 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1725 return NULL; 1726 1727 if (!oom_domain) 1728 oom_domain = root_mem_cgroup; 1729 1730 rcu_read_lock(); 1731 1732 memcg = mem_cgroup_from_task(victim); 1733 if (mem_cgroup_is_root(memcg)) 1734 goto out; 1735 1736 /* 1737 * If the victim task has been asynchronously moved to a different 1738 * memory cgroup, we might end up killing tasks outside oom_domain. 1739 * In this case it's better to ignore memory.group.oom. 1740 */ 1741 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1742 goto out; 1743 1744 /* 1745 * Traverse the memory cgroup hierarchy from the victim task's 1746 * cgroup up to the OOMing cgroup (or root) to find the 1747 * highest-level memory cgroup with oom.group set. 1748 */ 1749 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1750 if (READ_ONCE(memcg->oom_group)) 1751 oom_group = memcg; 1752 1753 if (memcg == oom_domain) 1754 break; 1755 } 1756 1757 if (oom_group) 1758 css_get(&oom_group->css); 1759 out: 1760 rcu_read_unlock(); 1761 1762 return oom_group; 1763 } 1764 1765 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1766 { 1767 pr_info("Tasks in "); 1768 pr_cont_cgroup_path(memcg->css.cgroup); 1769 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1770 } 1771 1772 /* 1773 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1774 * nr_pages in a single cacheline. This may change in future. 1775 */ 1776 #define NR_MEMCG_STOCK 7 1777 struct memcg_stock_pcp { 1778 local_trylock_t stock_lock; 1779 uint8_t nr_pages[NR_MEMCG_STOCK]; 1780 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1781 1782 struct obj_cgroup *cached_objcg; 1783 struct pglist_data *cached_pgdat; 1784 unsigned int nr_bytes; 1785 int nr_slab_reclaimable_b; 1786 int nr_slab_unreclaimable_b; 1787 1788 struct work_struct work; 1789 unsigned long flags; 1790 #define FLUSHING_CACHED_CHARGE 0 1791 }; 1792 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1793 .stock_lock = INIT_LOCAL_TRYLOCK(stock_lock), 1794 }; 1795 static DEFINE_MUTEX(percpu_charge_mutex); 1796 1797 static void drain_obj_stock(struct memcg_stock_pcp *stock); 1798 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1799 struct mem_cgroup *root_memcg); 1800 1801 /** 1802 * consume_stock: Try to consume stocked charge on this cpu. 1803 * @memcg: memcg to consume from. 1804 * @nr_pages: how many pages to charge. 1805 * @gfp_mask: allocation mask. 1806 * 1807 * The charges will only happen if @memcg matches the current cpu's memcg 1808 * stock, and at least @nr_pages are available in that stock. Failure to 1809 * service an allocation will refill the stock. 1810 * 1811 * returns true if successful, false otherwise. 1812 */ 1813 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1814 gfp_t gfp_mask) 1815 { 1816 struct memcg_stock_pcp *stock; 1817 uint8_t stock_pages; 1818 unsigned long flags; 1819 bool ret = false; 1820 int i; 1821 1822 if (nr_pages > MEMCG_CHARGE_BATCH) 1823 return ret; 1824 1825 if (gfpflags_allow_spinning(gfp_mask)) 1826 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1827 else if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) 1828 return ret; 1829 1830 stock = this_cpu_ptr(&memcg_stock); 1831 1832 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1833 if (memcg != READ_ONCE(stock->cached[i])) 1834 continue; 1835 1836 stock_pages = READ_ONCE(stock->nr_pages[i]); 1837 if (stock_pages >= nr_pages) { 1838 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1839 ret = true; 1840 } 1841 break; 1842 } 1843 1844 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1845 1846 return ret; 1847 } 1848 1849 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1850 { 1851 page_counter_uncharge(&memcg->memory, nr_pages); 1852 if (do_memsw_account()) 1853 page_counter_uncharge(&memcg->memsw, nr_pages); 1854 } 1855 1856 /* 1857 * Returns stocks cached in percpu and reset cached information. 1858 */ 1859 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1860 { 1861 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1862 uint8_t stock_pages; 1863 1864 if (!old) 1865 return; 1866 1867 stock_pages = READ_ONCE(stock->nr_pages[i]); 1868 if (stock_pages) { 1869 memcg_uncharge(old, stock_pages); 1870 WRITE_ONCE(stock->nr_pages[i], 0); 1871 } 1872 1873 css_put(&old->css); 1874 WRITE_ONCE(stock->cached[i], NULL); 1875 } 1876 1877 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1878 { 1879 int i; 1880 1881 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1882 drain_stock(stock, i); 1883 } 1884 1885 static void drain_local_stock(struct work_struct *dummy) 1886 { 1887 struct memcg_stock_pcp *stock; 1888 unsigned long flags; 1889 1890 /* 1891 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1892 * drain_stock races is that we always operate on local CPU stock 1893 * here with IRQ disabled 1894 */ 1895 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1896 1897 stock = this_cpu_ptr(&memcg_stock); 1898 drain_obj_stock(stock); 1899 drain_stock_fully(stock); 1900 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1901 1902 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1903 } 1904 1905 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1906 { 1907 struct memcg_stock_pcp *stock; 1908 struct mem_cgroup *cached; 1909 uint8_t stock_pages; 1910 unsigned long flags; 1911 bool success = false; 1912 int empty_slot = -1; 1913 int i; 1914 1915 /* 1916 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1917 * decide to increase it more than 127 then we will need more careful 1918 * handling of nr_pages[] in struct memcg_stock_pcp. 1919 */ 1920 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1921 1922 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1923 1924 if (nr_pages > MEMCG_CHARGE_BATCH || 1925 !local_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1926 /* 1927 * In case of larger than batch refill or unlikely failure to 1928 * lock the percpu stock_lock, uncharge memcg directly. 1929 */ 1930 memcg_uncharge(memcg, nr_pages); 1931 return; 1932 } 1933 1934 stock = this_cpu_ptr(&memcg_stock); 1935 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1936 cached = READ_ONCE(stock->cached[i]); 1937 if (!cached && empty_slot == -1) 1938 empty_slot = i; 1939 if (memcg == READ_ONCE(stock->cached[i])) { 1940 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1941 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1942 if (stock_pages > MEMCG_CHARGE_BATCH) 1943 drain_stock(stock, i); 1944 success = true; 1945 break; 1946 } 1947 } 1948 1949 if (!success) { 1950 i = empty_slot; 1951 if (i == -1) { 1952 i = get_random_u32_below(NR_MEMCG_STOCK); 1953 drain_stock(stock, i); 1954 } 1955 css_get(&memcg->css); 1956 WRITE_ONCE(stock->cached[i], memcg); 1957 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1958 } 1959 1960 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1961 } 1962 1963 static bool is_drain_needed(struct memcg_stock_pcp *stock, 1964 struct mem_cgroup *root_memcg) 1965 { 1966 struct mem_cgroup *memcg; 1967 bool flush = false; 1968 int i; 1969 1970 rcu_read_lock(); 1971 1972 if (obj_stock_flush_required(stock, root_memcg)) { 1973 flush = true; 1974 goto out; 1975 } 1976 1977 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1978 memcg = READ_ONCE(stock->cached[i]); 1979 if (!memcg) 1980 continue; 1981 1982 if (READ_ONCE(stock->nr_pages[i]) && 1983 mem_cgroup_is_descendant(memcg, root_memcg)) { 1984 flush = true; 1985 break; 1986 } 1987 } 1988 out: 1989 rcu_read_unlock(); 1990 return flush; 1991 } 1992 1993 /* 1994 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1995 * of the hierarchy under it. 1996 */ 1997 void drain_all_stock(struct mem_cgroup *root_memcg) 1998 { 1999 int cpu, curcpu; 2000 2001 /* If someone's already draining, avoid adding running more workers. */ 2002 if (!mutex_trylock(&percpu_charge_mutex)) 2003 return; 2004 /* 2005 * Notify other cpus that system-wide "drain" is running 2006 * We do not care about races with the cpu hotplug because cpu down 2007 * as well as workers from this path always operate on the local 2008 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2009 */ 2010 migrate_disable(); 2011 curcpu = smp_processor_id(); 2012 for_each_online_cpu(cpu) { 2013 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2014 bool flush = is_drain_needed(stock, root_memcg); 2015 2016 if (flush && 2017 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2018 if (cpu == curcpu) 2019 drain_local_stock(&stock->work); 2020 else if (!cpu_is_isolated(cpu)) 2021 schedule_work_on(cpu, &stock->work); 2022 } 2023 } 2024 migrate_enable(); 2025 mutex_unlock(&percpu_charge_mutex); 2026 } 2027 2028 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2029 { 2030 struct memcg_stock_pcp *stock; 2031 unsigned long flags; 2032 2033 stock = &per_cpu(memcg_stock, cpu); 2034 2035 /* drain_obj_stock requires stock_lock */ 2036 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2037 drain_obj_stock(stock); 2038 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2039 2040 drain_stock_fully(stock); 2041 2042 return 0; 2043 } 2044 2045 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2046 unsigned int nr_pages, 2047 gfp_t gfp_mask) 2048 { 2049 unsigned long nr_reclaimed = 0; 2050 2051 do { 2052 unsigned long pflags; 2053 2054 if (page_counter_read(&memcg->memory) <= 2055 READ_ONCE(memcg->memory.high)) 2056 continue; 2057 2058 memcg_memory_event(memcg, MEMCG_HIGH); 2059 2060 psi_memstall_enter(&pflags); 2061 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2062 gfp_mask, 2063 MEMCG_RECLAIM_MAY_SWAP, 2064 NULL); 2065 psi_memstall_leave(&pflags); 2066 } while ((memcg = parent_mem_cgroup(memcg)) && 2067 !mem_cgroup_is_root(memcg)); 2068 2069 return nr_reclaimed; 2070 } 2071 2072 static void high_work_func(struct work_struct *work) 2073 { 2074 struct mem_cgroup *memcg; 2075 2076 memcg = container_of(work, struct mem_cgroup, high_work); 2077 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2078 } 2079 2080 /* 2081 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2082 * enough to still cause a significant slowdown in most cases, while still 2083 * allowing diagnostics and tracing to proceed without becoming stuck. 2084 */ 2085 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2086 2087 /* 2088 * When calculating the delay, we use these either side of the exponentiation to 2089 * maintain precision and scale to a reasonable number of jiffies (see the table 2090 * below. 2091 * 2092 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2093 * overage ratio to a delay. 2094 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2095 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2096 * to produce a reasonable delay curve. 2097 * 2098 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2099 * reasonable delay curve compared to precision-adjusted overage, not 2100 * penalising heavily at first, but still making sure that growth beyond the 2101 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2102 * example, with a high of 100 megabytes: 2103 * 2104 * +-------+------------------------+ 2105 * | usage | time to allocate in ms | 2106 * +-------+------------------------+ 2107 * | 100M | 0 | 2108 * | 101M | 6 | 2109 * | 102M | 25 | 2110 * | 103M | 57 | 2111 * | 104M | 102 | 2112 * | 105M | 159 | 2113 * | 106M | 230 | 2114 * | 107M | 313 | 2115 * | 108M | 409 | 2116 * | 109M | 518 | 2117 * | 110M | 639 | 2118 * | 111M | 774 | 2119 * | 112M | 921 | 2120 * | 113M | 1081 | 2121 * | 114M | 1254 | 2122 * | 115M | 1439 | 2123 * | 116M | 1638 | 2124 * | 117M | 1849 | 2125 * | 118M | 2000 | 2126 * | 119M | 2000 | 2127 * | 120M | 2000 | 2128 * +-------+------------------------+ 2129 */ 2130 #define MEMCG_DELAY_PRECISION_SHIFT 20 2131 #define MEMCG_DELAY_SCALING_SHIFT 14 2132 2133 static u64 calculate_overage(unsigned long usage, unsigned long high) 2134 { 2135 u64 overage; 2136 2137 if (usage <= high) 2138 return 0; 2139 2140 /* 2141 * Prevent division by 0 in overage calculation by acting as if 2142 * it was a threshold of 1 page 2143 */ 2144 high = max(high, 1UL); 2145 2146 overage = usage - high; 2147 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2148 return div64_u64(overage, high); 2149 } 2150 2151 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2152 { 2153 u64 overage, max_overage = 0; 2154 2155 do { 2156 overage = calculate_overage(page_counter_read(&memcg->memory), 2157 READ_ONCE(memcg->memory.high)); 2158 max_overage = max(overage, max_overage); 2159 } while ((memcg = parent_mem_cgroup(memcg)) && 2160 !mem_cgroup_is_root(memcg)); 2161 2162 return max_overage; 2163 } 2164 2165 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2166 { 2167 u64 overage, max_overage = 0; 2168 2169 do { 2170 overage = calculate_overage(page_counter_read(&memcg->swap), 2171 READ_ONCE(memcg->swap.high)); 2172 if (overage) 2173 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2174 max_overage = max(overage, max_overage); 2175 } while ((memcg = parent_mem_cgroup(memcg)) && 2176 !mem_cgroup_is_root(memcg)); 2177 2178 return max_overage; 2179 } 2180 2181 /* 2182 * Get the number of jiffies that we should penalise a mischievous cgroup which 2183 * is exceeding its memory.high by checking both it and its ancestors. 2184 */ 2185 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2186 unsigned int nr_pages, 2187 u64 max_overage) 2188 { 2189 unsigned long penalty_jiffies; 2190 2191 if (!max_overage) 2192 return 0; 2193 2194 /* 2195 * We use overage compared to memory.high to calculate the number of 2196 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2197 * fairly lenient on small overages, and increasingly harsh when the 2198 * memcg in question makes it clear that it has no intention of stopping 2199 * its crazy behaviour, so we exponentially increase the delay based on 2200 * overage amount. 2201 */ 2202 penalty_jiffies = max_overage * max_overage * HZ; 2203 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2204 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2205 2206 /* 2207 * Factor in the task's own contribution to the overage, such that four 2208 * N-sized allocations are throttled approximately the same as one 2209 * 4N-sized allocation. 2210 * 2211 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2212 * larger the current charge patch is than that. 2213 */ 2214 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2215 } 2216 2217 /* 2218 * Reclaims memory over the high limit. Called directly from 2219 * try_charge() (context permitting), as well as from the userland 2220 * return path where reclaim is always able to block. 2221 */ 2222 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2223 { 2224 unsigned long penalty_jiffies; 2225 unsigned long pflags; 2226 unsigned long nr_reclaimed; 2227 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2228 int nr_retries = MAX_RECLAIM_RETRIES; 2229 struct mem_cgroup *memcg; 2230 bool in_retry = false; 2231 2232 if (likely(!nr_pages)) 2233 return; 2234 2235 memcg = get_mem_cgroup_from_mm(current->mm); 2236 current->memcg_nr_pages_over_high = 0; 2237 2238 retry_reclaim: 2239 /* 2240 * Bail if the task is already exiting. Unlike memory.max, 2241 * memory.high enforcement isn't as strict, and there is no 2242 * OOM killer involved, which means the excess could already 2243 * be much bigger (and still growing) than it could for 2244 * memory.max; the dying task could get stuck in fruitless 2245 * reclaim for a long time, which isn't desirable. 2246 */ 2247 if (task_is_dying()) 2248 goto out; 2249 2250 /* 2251 * The allocating task should reclaim at least the batch size, but for 2252 * subsequent retries we only want to do what's necessary to prevent oom 2253 * or breaching resource isolation. 2254 * 2255 * This is distinct from memory.max or page allocator behaviour because 2256 * memory.high is currently batched, whereas memory.max and the page 2257 * allocator run every time an allocation is made. 2258 */ 2259 nr_reclaimed = reclaim_high(memcg, 2260 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2261 gfp_mask); 2262 2263 /* 2264 * memory.high is breached and reclaim is unable to keep up. Throttle 2265 * allocators proactively to slow down excessive growth. 2266 */ 2267 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2268 mem_find_max_overage(memcg)); 2269 2270 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2271 swap_find_max_overage(memcg)); 2272 2273 /* 2274 * Clamp the max delay per usermode return so as to still keep the 2275 * application moving forwards and also permit diagnostics, albeit 2276 * extremely slowly. 2277 */ 2278 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2279 2280 /* 2281 * Don't sleep if the amount of jiffies this memcg owes us is so low 2282 * that it's not even worth doing, in an attempt to be nice to those who 2283 * go only a small amount over their memory.high value and maybe haven't 2284 * been aggressively reclaimed enough yet. 2285 */ 2286 if (penalty_jiffies <= HZ / 100) 2287 goto out; 2288 2289 /* 2290 * If reclaim is making forward progress but we're still over 2291 * memory.high, we want to encourage that rather than doing allocator 2292 * throttling. 2293 */ 2294 if (nr_reclaimed || nr_retries--) { 2295 in_retry = true; 2296 goto retry_reclaim; 2297 } 2298 2299 /* 2300 * Reclaim didn't manage to push usage below the limit, slow 2301 * this allocating task down. 2302 * 2303 * If we exit early, we're guaranteed to die (since 2304 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2305 * need to account for any ill-begotten jiffies to pay them off later. 2306 */ 2307 psi_memstall_enter(&pflags); 2308 schedule_timeout_killable(penalty_jiffies); 2309 psi_memstall_leave(&pflags); 2310 2311 out: 2312 css_put(&memcg->css); 2313 } 2314 2315 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2316 unsigned int nr_pages) 2317 { 2318 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2319 int nr_retries = MAX_RECLAIM_RETRIES; 2320 struct mem_cgroup *mem_over_limit; 2321 struct page_counter *counter; 2322 unsigned long nr_reclaimed; 2323 bool passed_oom = false; 2324 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2325 bool drained = false; 2326 bool raised_max_event = false; 2327 unsigned long pflags; 2328 2329 retry: 2330 if (consume_stock(memcg, nr_pages, gfp_mask)) 2331 return 0; 2332 2333 if (!gfpflags_allow_spinning(gfp_mask)) 2334 /* Avoid the refill and flush of the older stock */ 2335 batch = nr_pages; 2336 2337 if (!do_memsw_account() || 2338 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2339 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2340 goto done_restock; 2341 if (do_memsw_account()) 2342 page_counter_uncharge(&memcg->memsw, batch); 2343 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2344 } else { 2345 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2346 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2347 } 2348 2349 if (batch > nr_pages) { 2350 batch = nr_pages; 2351 goto retry; 2352 } 2353 2354 /* 2355 * Prevent unbounded recursion when reclaim operations need to 2356 * allocate memory. This might exceed the limits temporarily, 2357 * but we prefer facilitating memory reclaim and getting back 2358 * under the limit over triggering OOM kills in these cases. 2359 */ 2360 if (unlikely(current->flags & PF_MEMALLOC)) 2361 goto force; 2362 2363 if (unlikely(task_in_memcg_oom(current))) 2364 goto nomem; 2365 2366 if (!gfpflags_allow_blocking(gfp_mask)) 2367 goto nomem; 2368 2369 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2370 raised_max_event = true; 2371 2372 psi_memstall_enter(&pflags); 2373 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2374 gfp_mask, reclaim_options, NULL); 2375 psi_memstall_leave(&pflags); 2376 2377 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2378 goto retry; 2379 2380 if (!drained) { 2381 drain_all_stock(mem_over_limit); 2382 drained = true; 2383 goto retry; 2384 } 2385 2386 if (gfp_mask & __GFP_NORETRY) 2387 goto nomem; 2388 /* 2389 * Even though the limit is exceeded at this point, reclaim 2390 * may have been able to free some pages. Retry the charge 2391 * before killing the task. 2392 * 2393 * Only for regular pages, though: huge pages are rather 2394 * unlikely to succeed so close to the limit, and we fall back 2395 * to regular pages anyway in case of failure. 2396 */ 2397 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2398 goto retry; 2399 2400 if (nr_retries--) 2401 goto retry; 2402 2403 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2404 goto nomem; 2405 2406 /* Avoid endless loop for tasks bypassed by the oom killer */ 2407 if (passed_oom && task_is_dying()) 2408 goto nomem; 2409 2410 /* 2411 * keep retrying as long as the memcg oom killer is able to make 2412 * a forward progress or bypass the charge if the oom killer 2413 * couldn't make any progress. 2414 */ 2415 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2416 get_order(nr_pages * PAGE_SIZE))) { 2417 passed_oom = true; 2418 nr_retries = MAX_RECLAIM_RETRIES; 2419 goto retry; 2420 } 2421 nomem: 2422 /* 2423 * Memcg doesn't have a dedicated reserve for atomic 2424 * allocations. But like the global atomic pool, we need to 2425 * put the burden of reclaim on regular allocation requests 2426 * and let these go through as privileged allocations. 2427 */ 2428 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2429 return -ENOMEM; 2430 force: 2431 /* 2432 * If the allocation has to be enforced, don't forget to raise 2433 * a MEMCG_MAX event. 2434 */ 2435 if (!raised_max_event) 2436 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2437 2438 /* 2439 * The allocation either can't fail or will lead to more memory 2440 * being freed very soon. Allow memory usage go over the limit 2441 * temporarily by force charging it. 2442 */ 2443 page_counter_charge(&memcg->memory, nr_pages); 2444 if (do_memsw_account()) 2445 page_counter_charge(&memcg->memsw, nr_pages); 2446 2447 return 0; 2448 2449 done_restock: 2450 if (batch > nr_pages) 2451 refill_stock(memcg, batch - nr_pages); 2452 2453 /* 2454 * If the hierarchy is above the normal consumption range, schedule 2455 * reclaim on returning to userland. We can perform reclaim here 2456 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2457 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2458 * not recorded as it most likely matches current's and won't 2459 * change in the meantime. As high limit is checked again before 2460 * reclaim, the cost of mismatch is negligible. 2461 */ 2462 do { 2463 bool mem_high, swap_high; 2464 2465 mem_high = page_counter_read(&memcg->memory) > 2466 READ_ONCE(memcg->memory.high); 2467 swap_high = page_counter_read(&memcg->swap) > 2468 READ_ONCE(memcg->swap.high); 2469 2470 /* Don't bother a random interrupted task */ 2471 if (!in_task()) { 2472 if (mem_high) { 2473 schedule_work(&memcg->high_work); 2474 break; 2475 } 2476 continue; 2477 } 2478 2479 if (mem_high || swap_high) { 2480 /* 2481 * The allocating tasks in this cgroup will need to do 2482 * reclaim or be throttled to prevent further growth 2483 * of the memory or swap footprints. 2484 * 2485 * Target some best-effort fairness between the tasks, 2486 * and distribute reclaim work and delay penalties 2487 * based on how much each task is actually allocating. 2488 */ 2489 current->memcg_nr_pages_over_high += batch; 2490 set_notify_resume(current); 2491 break; 2492 } 2493 } while ((memcg = parent_mem_cgroup(memcg))); 2494 2495 /* 2496 * Reclaim is set up above to be called from the userland 2497 * return path. But also attempt synchronous reclaim to avoid 2498 * excessive overrun while the task is still inside the 2499 * kernel. If this is successful, the return path will see it 2500 * when it rechecks the overage and simply bail out. 2501 */ 2502 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2503 !(current->flags & PF_MEMALLOC) && 2504 gfpflags_allow_blocking(gfp_mask)) 2505 mem_cgroup_handle_over_high(gfp_mask); 2506 return 0; 2507 } 2508 2509 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2510 unsigned int nr_pages) 2511 { 2512 if (mem_cgroup_is_root(memcg)) 2513 return 0; 2514 2515 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2516 } 2517 2518 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2519 { 2520 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2521 /* 2522 * Any of the following ensures page's memcg stability: 2523 * 2524 * - the page lock 2525 * - LRU isolation 2526 * - exclusive reference 2527 */ 2528 folio->memcg_data = (unsigned long)memcg; 2529 } 2530 2531 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2532 struct pglist_data *pgdat, 2533 enum node_stat_item idx, int nr) 2534 { 2535 struct mem_cgroup *memcg; 2536 struct lruvec *lruvec; 2537 2538 rcu_read_lock(); 2539 memcg = obj_cgroup_memcg(objcg); 2540 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2541 __mod_memcg_lruvec_state(lruvec, idx, nr); 2542 rcu_read_unlock(); 2543 } 2544 2545 static __always_inline 2546 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2547 { 2548 /* 2549 * Slab objects are accounted individually, not per-page. 2550 * Memcg membership data for each individual object is saved in 2551 * slab->obj_exts. 2552 */ 2553 if (folio_test_slab(folio)) { 2554 struct slabobj_ext *obj_exts; 2555 struct slab *slab; 2556 unsigned int off; 2557 2558 slab = folio_slab(folio); 2559 obj_exts = slab_obj_exts(slab); 2560 if (!obj_exts) 2561 return NULL; 2562 2563 off = obj_to_index(slab->slab_cache, slab, p); 2564 if (obj_exts[off].objcg) 2565 return obj_cgroup_memcg(obj_exts[off].objcg); 2566 2567 return NULL; 2568 } 2569 2570 /* 2571 * folio_memcg_check() is used here, because in theory we can encounter 2572 * a folio where the slab flag has been cleared already, but 2573 * slab->obj_exts has not been freed yet 2574 * folio_memcg_check() will guarantee that a proper memory 2575 * cgroup pointer or NULL will be returned. 2576 */ 2577 return folio_memcg_check(folio); 2578 } 2579 2580 /* 2581 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2582 * It is not suitable for objects allocated using vmalloc(). 2583 * 2584 * A passed kernel object must be a slab object or a generic kernel page. 2585 * 2586 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2587 * cgroup_mutex, etc. 2588 */ 2589 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2590 { 2591 if (mem_cgroup_disabled()) 2592 return NULL; 2593 2594 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2595 } 2596 2597 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2598 { 2599 struct obj_cgroup *objcg = NULL; 2600 2601 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2602 objcg = rcu_dereference(memcg->objcg); 2603 if (likely(objcg && obj_cgroup_tryget(objcg))) 2604 break; 2605 objcg = NULL; 2606 } 2607 return objcg; 2608 } 2609 2610 static struct obj_cgroup *current_objcg_update(void) 2611 { 2612 struct mem_cgroup *memcg; 2613 struct obj_cgroup *old, *objcg = NULL; 2614 2615 do { 2616 /* Atomically drop the update bit. */ 2617 old = xchg(¤t->objcg, NULL); 2618 if (old) { 2619 old = (struct obj_cgroup *) 2620 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2621 obj_cgroup_put(old); 2622 2623 old = NULL; 2624 } 2625 2626 /* If new objcg is NULL, no reason for the second atomic update. */ 2627 if (!current->mm || (current->flags & PF_KTHREAD)) 2628 return NULL; 2629 2630 /* 2631 * Release the objcg pointer from the previous iteration, 2632 * if try_cmpxcg() below fails. 2633 */ 2634 if (unlikely(objcg)) { 2635 obj_cgroup_put(objcg); 2636 objcg = NULL; 2637 } 2638 2639 /* 2640 * Obtain the new objcg pointer. The current task can be 2641 * asynchronously moved to another memcg and the previous 2642 * memcg can be offlined. So let's get the memcg pointer 2643 * and try get a reference to objcg under a rcu read lock. 2644 */ 2645 2646 rcu_read_lock(); 2647 memcg = mem_cgroup_from_task(current); 2648 objcg = __get_obj_cgroup_from_memcg(memcg); 2649 rcu_read_unlock(); 2650 2651 /* 2652 * Try set up a new objcg pointer atomically. If it 2653 * fails, it means the update flag was set concurrently, so 2654 * the whole procedure should be repeated. 2655 */ 2656 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2657 2658 return objcg; 2659 } 2660 2661 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2662 { 2663 struct mem_cgroup *memcg; 2664 struct obj_cgroup *objcg; 2665 2666 if (in_task()) { 2667 memcg = current->active_memcg; 2668 if (unlikely(memcg)) 2669 goto from_memcg; 2670 2671 objcg = READ_ONCE(current->objcg); 2672 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2673 objcg = current_objcg_update(); 2674 /* 2675 * Objcg reference is kept by the task, so it's safe 2676 * to use the objcg by the current task. 2677 */ 2678 return objcg; 2679 } 2680 2681 memcg = this_cpu_read(int_active_memcg); 2682 if (unlikely(memcg)) 2683 goto from_memcg; 2684 2685 return NULL; 2686 2687 from_memcg: 2688 objcg = NULL; 2689 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2690 /* 2691 * Memcg pointer is protected by scope (see set_active_memcg()) 2692 * and is pinning the corresponding objcg, so objcg can't go 2693 * away and can be used within the scope without any additional 2694 * protection. 2695 */ 2696 objcg = rcu_dereference_check(memcg->objcg, 1); 2697 if (likely(objcg)) 2698 break; 2699 } 2700 2701 return objcg; 2702 } 2703 2704 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2705 { 2706 struct obj_cgroup *objcg; 2707 2708 if (!memcg_kmem_online()) 2709 return NULL; 2710 2711 if (folio_memcg_kmem(folio)) { 2712 objcg = __folio_objcg(folio); 2713 obj_cgroup_get(objcg); 2714 } else { 2715 struct mem_cgroup *memcg; 2716 2717 rcu_read_lock(); 2718 memcg = __folio_memcg(folio); 2719 if (memcg) 2720 objcg = __get_obj_cgroup_from_memcg(memcg); 2721 else 2722 objcg = NULL; 2723 rcu_read_unlock(); 2724 } 2725 return objcg; 2726 } 2727 2728 /* 2729 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2730 * @objcg: object cgroup to uncharge 2731 * @nr_pages: number of pages to uncharge 2732 */ 2733 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2734 unsigned int nr_pages) 2735 { 2736 struct mem_cgroup *memcg; 2737 2738 memcg = get_mem_cgroup_from_objcg(objcg); 2739 2740 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2741 memcg1_account_kmem(memcg, -nr_pages); 2742 if (!mem_cgroup_is_root(memcg)) 2743 refill_stock(memcg, nr_pages); 2744 2745 css_put(&memcg->css); 2746 } 2747 2748 /* 2749 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2750 * @objcg: object cgroup to charge 2751 * @gfp: reclaim mode 2752 * @nr_pages: number of pages to charge 2753 * 2754 * Returns 0 on success, an error code on failure. 2755 */ 2756 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2757 unsigned int nr_pages) 2758 { 2759 struct mem_cgroup *memcg; 2760 int ret; 2761 2762 memcg = get_mem_cgroup_from_objcg(objcg); 2763 2764 ret = try_charge_memcg(memcg, gfp, nr_pages); 2765 if (ret) 2766 goto out; 2767 2768 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2769 memcg1_account_kmem(memcg, nr_pages); 2770 out: 2771 css_put(&memcg->css); 2772 2773 return ret; 2774 } 2775 2776 static struct obj_cgroup *page_objcg(const struct page *page) 2777 { 2778 unsigned long memcg_data = page->memcg_data; 2779 2780 if (mem_cgroup_disabled() || !memcg_data) 2781 return NULL; 2782 2783 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2784 page); 2785 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2786 } 2787 2788 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2789 { 2790 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2791 } 2792 2793 /** 2794 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2795 * @page: page to charge 2796 * @gfp: reclaim mode 2797 * @order: allocation order 2798 * 2799 * Returns 0 on success, an error code on failure. 2800 */ 2801 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2802 { 2803 struct obj_cgroup *objcg; 2804 int ret = 0; 2805 2806 objcg = current_obj_cgroup(); 2807 if (objcg) { 2808 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2809 if (!ret) { 2810 obj_cgroup_get(objcg); 2811 page_set_objcg(page, objcg); 2812 return 0; 2813 } 2814 } 2815 return ret; 2816 } 2817 2818 /** 2819 * __memcg_kmem_uncharge_page: uncharge a kmem page 2820 * @page: page to uncharge 2821 * @order: allocation order 2822 */ 2823 void __memcg_kmem_uncharge_page(struct page *page, int order) 2824 { 2825 struct obj_cgroup *objcg = page_objcg(page); 2826 unsigned int nr_pages = 1 << order; 2827 2828 if (!objcg) 2829 return; 2830 2831 obj_cgroup_uncharge_pages(objcg, nr_pages); 2832 page->memcg_data = 0; 2833 obj_cgroup_put(objcg); 2834 } 2835 2836 static void __account_obj_stock(struct obj_cgroup *objcg, 2837 struct memcg_stock_pcp *stock, int nr, 2838 struct pglist_data *pgdat, enum node_stat_item idx) 2839 { 2840 int *bytes; 2841 2842 /* 2843 * Save vmstat data in stock and skip vmstat array update unless 2844 * accumulating over a page of vmstat data or when pgdat changes. 2845 */ 2846 if (stock->cached_pgdat != pgdat) { 2847 /* Flush the existing cached vmstat data */ 2848 struct pglist_data *oldpg = stock->cached_pgdat; 2849 2850 if (stock->nr_slab_reclaimable_b) { 2851 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2852 stock->nr_slab_reclaimable_b); 2853 stock->nr_slab_reclaimable_b = 0; 2854 } 2855 if (stock->nr_slab_unreclaimable_b) { 2856 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2857 stock->nr_slab_unreclaimable_b); 2858 stock->nr_slab_unreclaimable_b = 0; 2859 } 2860 stock->cached_pgdat = pgdat; 2861 } 2862 2863 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2864 : &stock->nr_slab_unreclaimable_b; 2865 /* 2866 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2867 * cached locally at least once before pushing it out. 2868 */ 2869 if (!*bytes) { 2870 *bytes = nr; 2871 nr = 0; 2872 } else { 2873 *bytes += nr; 2874 if (abs(*bytes) > PAGE_SIZE) { 2875 nr = *bytes; 2876 *bytes = 0; 2877 } else { 2878 nr = 0; 2879 } 2880 } 2881 if (nr) 2882 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2883 } 2884 2885 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2886 struct pglist_data *pgdat, enum node_stat_item idx) 2887 { 2888 struct memcg_stock_pcp *stock; 2889 unsigned long flags; 2890 bool ret = false; 2891 2892 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2893 2894 stock = this_cpu_ptr(&memcg_stock); 2895 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2896 stock->nr_bytes -= nr_bytes; 2897 ret = true; 2898 2899 if (pgdat) 2900 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2901 } 2902 2903 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2904 2905 return ret; 2906 } 2907 2908 static void drain_obj_stock(struct memcg_stock_pcp *stock) 2909 { 2910 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2911 2912 if (!old) 2913 return; 2914 2915 if (stock->nr_bytes) { 2916 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2917 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2918 2919 if (nr_pages) { 2920 struct mem_cgroup *memcg; 2921 2922 memcg = get_mem_cgroup_from_objcg(old); 2923 2924 __mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2925 memcg1_account_kmem(memcg, -nr_pages); 2926 if (!mem_cgroup_is_root(memcg)) 2927 memcg_uncharge(memcg, nr_pages); 2928 2929 css_put(&memcg->css); 2930 } 2931 2932 /* 2933 * The leftover is flushed to the centralized per-memcg value. 2934 * On the next attempt to refill obj stock it will be moved 2935 * to a per-cpu stock (probably, on an other CPU), see 2936 * refill_obj_stock(). 2937 * 2938 * How often it's flushed is a trade-off between the memory 2939 * limit enforcement accuracy and potential CPU contention, 2940 * so it might be changed in the future. 2941 */ 2942 atomic_add(nr_bytes, &old->nr_charged_bytes); 2943 stock->nr_bytes = 0; 2944 } 2945 2946 /* 2947 * Flush the vmstat data in current stock 2948 */ 2949 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2950 if (stock->nr_slab_reclaimable_b) { 2951 __mod_objcg_mlstate(old, stock->cached_pgdat, 2952 NR_SLAB_RECLAIMABLE_B, 2953 stock->nr_slab_reclaimable_b); 2954 stock->nr_slab_reclaimable_b = 0; 2955 } 2956 if (stock->nr_slab_unreclaimable_b) { 2957 __mod_objcg_mlstate(old, stock->cached_pgdat, 2958 NR_SLAB_UNRECLAIMABLE_B, 2959 stock->nr_slab_unreclaimable_b); 2960 stock->nr_slab_unreclaimable_b = 0; 2961 } 2962 stock->cached_pgdat = NULL; 2963 } 2964 2965 WRITE_ONCE(stock->cached_objcg, NULL); 2966 obj_cgroup_put(old); 2967 } 2968 2969 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2970 struct mem_cgroup *root_memcg) 2971 { 2972 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2973 struct mem_cgroup *memcg; 2974 2975 if (objcg) { 2976 memcg = obj_cgroup_memcg(objcg); 2977 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2978 return true; 2979 } 2980 2981 return false; 2982 } 2983 2984 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2985 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 2986 enum node_stat_item idx) 2987 { 2988 struct memcg_stock_pcp *stock; 2989 unsigned long flags; 2990 unsigned int nr_pages = 0; 2991 2992 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2993 2994 stock = this_cpu_ptr(&memcg_stock); 2995 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2996 drain_obj_stock(stock); 2997 obj_cgroup_get(objcg); 2998 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2999 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3000 WRITE_ONCE(stock->cached_objcg, objcg); 3001 3002 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3003 } 3004 stock->nr_bytes += nr_bytes; 3005 3006 if (pgdat) 3007 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3008 3009 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3010 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3011 stock->nr_bytes &= (PAGE_SIZE - 1); 3012 } 3013 3014 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3015 3016 if (nr_pages) 3017 obj_cgroup_uncharge_pages(objcg, nr_pages); 3018 } 3019 3020 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3021 struct pglist_data *pgdat, enum node_stat_item idx) 3022 { 3023 unsigned int nr_pages, nr_bytes; 3024 int ret; 3025 3026 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3027 return 0; 3028 3029 /* 3030 * In theory, objcg->nr_charged_bytes can have enough 3031 * pre-charged bytes to satisfy the allocation. However, 3032 * flushing objcg->nr_charged_bytes requires two atomic 3033 * operations, and objcg->nr_charged_bytes can't be big. 3034 * The shared objcg->nr_charged_bytes can also become a 3035 * performance bottleneck if all tasks of the same memcg are 3036 * trying to update it. So it's better to ignore it and try 3037 * grab some new pages. The stock's nr_bytes will be flushed to 3038 * objcg->nr_charged_bytes later on when objcg changes. 3039 * 3040 * The stock's nr_bytes may contain enough pre-charged bytes 3041 * to allow one less page from being charged, but we can't rely 3042 * on the pre-charged bytes not being changed outside of 3043 * consume_obj_stock() or refill_obj_stock(). So ignore those 3044 * pre-charged bytes as well when charging pages. To avoid a 3045 * page uncharge right after a page charge, we set the 3046 * allow_uncharge flag to false when calling refill_obj_stock() 3047 * to temporarily allow the pre-charged bytes to exceed the page 3048 * size limit. The maximum reachable value of the pre-charged 3049 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3050 * race. 3051 */ 3052 nr_pages = size >> PAGE_SHIFT; 3053 nr_bytes = size & (PAGE_SIZE - 1); 3054 3055 if (nr_bytes) 3056 nr_pages += 1; 3057 3058 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3059 if (!ret && (nr_bytes || pgdat)) 3060 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3061 false, size, pgdat, idx); 3062 3063 return ret; 3064 } 3065 3066 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3067 { 3068 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3069 } 3070 3071 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3072 { 3073 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3074 } 3075 3076 static inline size_t obj_full_size(struct kmem_cache *s) 3077 { 3078 /* 3079 * For each accounted object there is an extra space which is used 3080 * to store obj_cgroup membership. Charge it too. 3081 */ 3082 return s->size + sizeof(struct obj_cgroup *); 3083 } 3084 3085 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3086 gfp_t flags, size_t size, void **p) 3087 { 3088 struct obj_cgroup *objcg; 3089 struct slab *slab; 3090 unsigned long off; 3091 size_t i; 3092 3093 /* 3094 * The obtained objcg pointer is safe to use within the current scope, 3095 * defined by current task or set_active_memcg() pair. 3096 * obj_cgroup_get() is used to get a permanent reference. 3097 */ 3098 objcg = current_obj_cgroup(); 3099 if (!objcg) 3100 return true; 3101 3102 /* 3103 * slab_alloc_node() avoids the NULL check, so we might be called with a 3104 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3105 * the whole requested size. 3106 * return success as there's nothing to free back 3107 */ 3108 if (unlikely(*p == NULL)) 3109 return true; 3110 3111 flags &= gfp_allowed_mask; 3112 3113 if (lru) { 3114 int ret; 3115 struct mem_cgroup *memcg; 3116 3117 memcg = get_mem_cgroup_from_objcg(objcg); 3118 ret = memcg_list_lru_alloc(memcg, lru, flags); 3119 css_put(&memcg->css); 3120 3121 if (ret) 3122 return false; 3123 } 3124 3125 for (i = 0; i < size; i++) { 3126 slab = virt_to_slab(p[i]); 3127 3128 if (!slab_obj_exts(slab) && 3129 alloc_slab_obj_exts(slab, s, flags, false)) { 3130 continue; 3131 } 3132 3133 /* 3134 * if we fail and size is 1, memcg_alloc_abort_single() will 3135 * just free the object, which is ok as we have not assigned 3136 * objcg to its obj_ext yet 3137 * 3138 * for larger sizes, kmem_cache_free_bulk() will uncharge 3139 * any objects that were already charged and obj_ext assigned 3140 * 3141 * TODO: we could batch this until slab_pgdat(slab) changes 3142 * between iterations, with a more complicated undo 3143 */ 3144 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3145 slab_pgdat(slab), cache_vmstat_idx(s))) 3146 return false; 3147 3148 off = obj_to_index(s, slab, p[i]); 3149 obj_cgroup_get(objcg); 3150 slab_obj_exts(slab)[off].objcg = objcg; 3151 } 3152 3153 return true; 3154 } 3155 3156 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3157 void **p, int objects, struct slabobj_ext *obj_exts) 3158 { 3159 size_t obj_size = obj_full_size(s); 3160 3161 for (int i = 0; i < objects; i++) { 3162 struct obj_cgroup *objcg; 3163 unsigned int off; 3164 3165 off = obj_to_index(s, slab, p[i]); 3166 objcg = obj_exts[off].objcg; 3167 if (!objcg) 3168 continue; 3169 3170 obj_exts[off].objcg = NULL; 3171 refill_obj_stock(objcg, obj_size, true, -obj_size, 3172 slab_pgdat(slab), cache_vmstat_idx(s)); 3173 obj_cgroup_put(objcg); 3174 } 3175 } 3176 3177 /* 3178 * The objcg is only set on the first page, so transfer it to all the 3179 * other pages. 3180 */ 3181 void split_page_memcg(struct page *page, unsigned order) 3182 { 3183 struct obj_cgroup *objcg = page_objcg(page); 3184 unsigned int i, nr = 1 << order; 3185 3186 if (!objcg) 3187 return; 3188 3189 for (i = 1; i < nr; i++) 3190 page_set_objcg(&page[i], objcg); 3191 3192 obj_cgroup_get_many(objcg, nr - 1); 3193 } 3194 3195 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3196 unsigned new_order) 3197 { 3198 unsigned new_refs; 3199 3200 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3201 return; 3202 3203 new_refs = (1 << (old_order - new_order)) - 1; 3204 css_get_many(&__folio_memcg(folio)->css, new_refs); 3205 } 3206 3207 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3208 { 3209 unsigned long val; 3210 3211 if (mem_cgroup_is_root(memcg)) { 3212 /* 3213 * Approximate root's usage from global state. This isn't 3214 * perfect, but the root usage was always an approximation. 3215 */ 3216 val = global_node_page_state(NR_FILE_PAGES) + 3217 global_node_page_state(NR_ANON_MAPPED); 3218 if (swap) 3219 val += total_swap_pages - get_nr_swap_pages(); 3220 } else { 3221 if (!swap) 3222 val = page_counter_read(&memcg->memory); 3223 else 3224 val = page_counter_read(&memcg->memsw); 3225 } 3226 return val; 3227 } 3228 3229 static int memcg_online_kmem(struct mem_cgroup *memcg) 3230 { 3231 struct obj_cgroup *objcg; 3232 3233 if (mem_cgroup_kmem_disabled()) 3234 return 0; 3235 3236 if (unlikely(mem_cgroup_is_root(memcg))) 3237 return 0; 3238 3239 objcg = obj_cgroup_alloc(); 3240 if (!objcg) 3241 return -ENOMEM; 3242 3243 objcg->memcg = memcg; 3244 rcu_assign_pointer(memcg->objcg, objcg); 3245 obj_cgroup_get(objcg); 3246 memcg->orig_objcg = objcg; 3247 3248 static_branch_enable(&memcg_kmem_online_key); 3249 3250 memcg->kmemcg_id = memcg->id.id; 3251 3252 return 0; 3253 } 3254 3255 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3256 { 3257 struct mem_cgroup *parent; 3258 3259 if (mem_cgroup_kmem_disabled()) 3260 return; 3261 3262 if (unlikely(mem_cgroup_is_root(memcg))) 3263 return; 3264 3265 parent = parent_mem_cgroup(memcg); 3266 if (!parent) 3267 parent = root_mem_cgroup; 3268 3269 memcg_reparent_list_lrus(memcg, parent); 3270 3271 /* 3272 * Objcg's reparenting must be after list_lru's, make sure list_lru 3273 * helpers won't use parent's list_lru until child is drained. 3274 */ 3275 memcg_reparent_objcgs(memcg, parent); 3276 } 3277 3278 #ifdef CONFIG_CGROUP_WRITEBACK 3279 3280 #include <trace/events/writeback.h> 3281 3282 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3283 { 3284 return wb_domain_init(&memcg->cgwb_domain, gfp); 3285 } 3286 3287 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3288 { 3289 wb_domain_exit(&memcg->cgwb_domain); 3290 } 3291 3292 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3293 { 3294 wb_domain_size_changed(&memcg->cgwb_domain); 3295 } 3296 3297 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3298 { 3299 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3300 3301 if (!memcg->css.parent) 3302 return NULL; 3303 3304 return &memcg->cgwb_domain; 3305 } 3306 3307 /** 3308 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3309 * @wb: bdi_writeback in question 3310 * @pfilepages: out parameter for number of file pages 3311 * @pheadroom: out parameter for number of allocatable pages according to memcg 3312 * @pdirty: out parameter for number of dirty pages 3313 * @pwriteback: out parameter for number of pages under writeback 3314 * 3315 * Determine the numbers of file, headroom, dirty, and writeback pages in 3316 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3317 * is a bit more involved. 3318 * 3319 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3320 * headroom is calculated as the lowest headroom of itself and the 3321 * ancestors. Note that this doesn't consider the actual amount of 3322 * available memory in the system. The caller should further cap 3323 * *@pheadroom accordingly. 3324 */ 3325 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3326 unsigned long *pheadroom, unsigned long *pdirty, 3327 unsigned long *pwriteback) 3328 { 3329 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3330 struct mem_cgroup *parent; 3331 3332 mem_cgroup_flush_stats_ratelimited(memcg); 3333 3334 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3335 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3336 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3337 memcg_page_state(memcg, NR_ACTIVE_FILE); 3338 3339 *pheadroom = PAGE_COUNTER_MAX; 3340 while ((parent = parent_mem_cgroup(memcg))) { 3341 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3342 READ_ONCE(memcg->memory.high)); 3343 unsigned long used = page_counter_read(&memcg->memory); 3344 3345 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3346 memcg = parent; 3347 } 3348 } 3349 3350 /* 3351 * Foreign dirty flushing 3352 * 3353 * There's an inherent mismatch between memcg and writeback. The former 3354 * tracks ownership per-page while the latter per-inode. This was a 3355 * deliberate design decision because honoring per-page ownership in the 3356 * writeback path is complicated, may lead to higher CPU and IO overheads 3357 * and deemed unnecessary given that write-sharing an inode across 3358 * different cgroups isn't a common use-case. 3359 * 3360 * Combined with inode majority-writer ownership switching, this works well 3361 * enough in most cases but there are some pathological cases. For 3362 * example, let's say there are two cgroups A and B which keep writing to 3363 * different but confined parts of the same inode. B owns the inode and 3364 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3365 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3366 * triggering background writeback. A will be slowed down without a way to 3367 * make writeback of the dirty pages happen. 3368 * 3369 * Conditions like the above can lead to a cgroup getting repeatedly and 3370 * severely throttled after making some progress after each 3371 * dirty_expire_interval while the underlying IO device is almost 3372 * completely idle. 3373 * 3374 * Solving this problem completely requires matching the ownership tracking 3375 * granularities between memcg and writeback in either direction. However, 3376 * the more egregious behaviors can be avoided by simply remembering the 3377 * most recent foreign dirtying events and initiating remote flushes on 3378 * them when local writeback isn't enough to keep the memory clean enough. 3379 * 3380 * The following two functions implement such mechanism. When a foreign 3381 * page - a page whose memcg and writeback ownerships don't match - is 3382 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3383 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3384 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3385 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3386 * foreign bdi_writebacks which haven't expired. Both the numbers of 3387 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3388 * limited to MEMCG_CGWB_FRN_CNT. 3389 * 3390 * The mechanism only remembers IDs and doesn't hold any object references. 3391 * As being wrong occasionally doesn't matter, updates and accesses to the 3392 * records are lockless and racy. 3393 */ 3394 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3395 struct bdi_writeback *wb) 3396 { 3397 struct mem_cgroup *memcg = folio_memcg(folio); 3398 struct memcg_cgwb_frn *frn; 3399 u64 now = get_jiffies_64(); 3400 u64 oldest_at = now; 3401 int oldest = -1; 3402 int i; 3403 3404 trace_track_foreign_dirty(folio, wb); 3405 3406 /* 3407 * Pick the slot to use. If there is already a slot for @wb, keep 3408 * using it. If not replace the oldest one which isn't being 3409 * written out. 3410 */ 3411 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3412 frn = &memcg->cgwb_frn[i]; 3413 if (frn->bdi_id == wb->bdi->id && 3414 frn->memcg_id == wb->memcg_css->id) 3415 break; 3416 if (time_before64(frn->at, oldest_at) && 3417 atomic_read(&frn->done.cnt) == 1) { 3418 oldest = i; 3419 oldest_at = frn->at; 3420 } 3421 } 3422 3423 if (i < MEMCG_CGWB_FRN_CNT) { 3424 /* 3425 * Re-using an existing one. Update timestamp lazily to 3426 * avoid making the cacheline hot. We want them to be 3427 * reasonably up-to-date and significantly shorter than 3428 * dirty_expire_interval as that's what expires the record. 3429 * Use the shorter of 1s and dirty_expire_interval / 8. 3430 */ 3431 unsigned long update_intv = 3432 min_t(unsigned long, HZ, 3433 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3434 3435 if (time_before64(frn->at, now - update_intv)) 3436 frn->at = now; 3437 } else if (oldest >= 0) { 3438 /* replace the oldest free one */ 3439 frn = &memcg->cgwb_frn[oldest]; 3440 frn->bdi_id = wb->bdi->id; 3441 frn->memcg_id = wb->memcg_css->id; 3442 frn->at = now; 3443 } 3444 } 3445 3446 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3447 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3448 { 3449 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3450 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3451 u64 now = jiffies_64; 3452 int i; 3453 3454 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3455 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3456 3457 /* 3458 * If the record is older than dirty_expire_interval, 3459 * writeback on it has already started. No need to kick it 3460 * off again. Also, don't start a new one if there's 3461 * already one in flight. 3462 */ 3463 if (time_after64(frn->at, now - intv) && 3464 atomic_read(&frn->done.cnt) == 1) { 3465 frn->at = 0; 3466 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3467 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3468 WB_REASON_FOREIGN_FLUSH, 3469 &frn->done); 3470 } 3471 } 3472 } 3473 3474 #else /* CONFIG_CGROUP_WRITEBACK */ 3475 3476 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3477 { 3478 return 0; 3479 } 3480 3481 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3482 { 3483 } 3484 3485 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3486 { 3487 } 3488 3489 #endif /* CONFIG_CGROUP_WRITEBACK */ 3490 3491 /* 3492 * Private memory cgroup IDR 3493 * 3494 * Swap-out records and page cache shadow entries need to store memcg 3495 * references in constrained space, so we maintain an ID space that is 3496 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3497 * memory-controlled cgroups to 64k. 3498 * 3499 * However, there usually are many references to the offline CSS after 3500 * the cgroup has been destroyed, such as page cache or reclaimable 3501 * slab objects, that don't need to hang on to the ID. We want to keep 3502 * those dead CSS from occupying IDs, or we might quickly exhaust the 3503 * relatively small ID space and prevent the creation of new cgroups 3504 * even when there are much fewer than 64k cgroups - possibly none. 3505 * 3506 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3507 * be freed and recycled when it's no longer needed, which is usually 3508 * when the CSS is offlined. 3509 * 3510 * The only exception to that are records of swapped out tmpfs/shmem 3511 * pages that need to be attributed to live ancestors on swapin. But 3512 * those references are manageable from userspace. 3513 */ 3514 3515 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3516 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3517 3518 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3519 { 3520 if (memcg->id.id > 0) { 3521 xa_erase(&mem_cgroup_ids, memcg->id.id); 3522 memcg->id.id = 0; 3523 } 3524 } 3525 3526 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3527 unsigned int n) 3528 { 3529 refcount_add(n, &memcg->id.ref); 3530 } 3531 3532 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3533 { 3534 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3535 mem_cgroup_id_remove(memcg); 3536 3537 /* Memcg ID pins CSS */ 3538 css_put(&memcg->css); 3539 } 3540 } 3541 3542 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3543 { 3544 mem_cgroup_id_put_many(memcg, 1); 3545 } 3546 3547 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3548 { 3549 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3550 /* 3551 * The root cgroup cannot be destroyed, so it's refcount must 3552 * always be >= 1. 3553 */ 3554 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3555 VM_BUG_ON(1); 3556 break; 3557 } 3558 memcg = parent_mem_cgroup(memcg); 3559 if (!memcg) 3560 memcg = root_mem_cgroup; 3561 } 3562 return memcg; 3563 } 3564 3565 /** 3566 * mem_cgroup_from_id - look up a memcg from a memcg id 3567 * @id: the memcg id to look up 3568 * 3569 * Caller must hold rcu_read_lock(). 3570 */ 3571 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3572 { 3573 WARN_ON_ONCE(!rcu_read_lock_held()); 3574 return xa_load(&mem_cgroup_ids, id); 3575 } 3576 3577 #ifdef CONFIG_SHRINKER_DEBUG 3578 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3579 { 3580 struct cgroup *cgrp; 3581 struct cgroup_subsys_state *css; 3582 struct mem_cgroup *memcg; 3583 3584 cgrp = cgroup_get_from_id(ino); 3585 if (IS_ERR(cgrp)) 3586 return ERR_CAST(cgrp); 3587 3588 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3589 if (css) 3590 memcg = container_of(css, struct mem_cgroup, css); 3591 else 3592 memcg = ERR_PTR(-ENOENT); 3593 3594 cgroup_put(cgrp); 3595 3596 return memcg; 3597 } 3598 #endif 3599 3600 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3601 { 3602 if (!pn) 3603 return; 3604 3605 free_percpu(pn->lruvec_stats_percpu); 3606 kfree(pn->lruvec_stats); 3607 kfree(pn); 3608 } 3609 3610 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3611 { 3612 struct mem_cgroup_per_node *pn; 3613 3614 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3615 if (!pn) 3616 return false; 3617 3618 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3619 GFP_KERNEL_ACCOUNT, node); 3620 if (!pn->lruvec_stats) 3621 goto fail; 3622 3623 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3624 GFP_KERNEL_ACCOUNT); 3625 if (!pn->lruvec_stats_percpu) 3626 goto fail; 3627 3628 lruvec_init(&pn->lruvec); 3629 pn->memcg = memcg; 3630 3631 memcg->nodeinfo[node] = pn; 3632 return true; 3633 fail: 3634 free_mem_cgroup_per_node_info(pn); 3635 return false; 3636 } 3637 3638 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3639 { 3640 int node; 3641 3642 obj_cgroup_put(memcg->orig_objcg); 3643 3644 for_each_node(node) 3645 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3646 memcg1_free_events(memcg); 3647 kfree(memcg->vmstats); 3648 free_percpu(memcg->vmstats_percpu); 3649 kfree(memcg); 3650 } 3651 3652 static void mem_cgroup_free(struct mem_cgroup *memcg) 3653 { 3654 lru_gen_exit_memcg(memcg); 3655 memcg_wb_domain_exit(memcg); 3656 __mem_cgroup_free(memcg); 3657 } 3658 3659 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3660 { 3661 struct memcg_vmstats_percpu *statc, *pstatc; 3662 struct mem_cgroup *memcg; 3663 int node, cpu; 3664 int __maybe_unused i; 3665 long error; 3666 3667 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3668 if (!memcg) 3669 return ERR_PTR(-ENOMEM); 3670 3671 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3672 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3673 if (error) 3674 goto fail; 3675 error = -ENOMEM; 3676 3677 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3678 GFP_KERNEL_ACCOUNT); 3679 if (!memcg->vmstats) 3680 goto fail; 3681 3682 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3683 GFP_KERNEL_ACCOUNT); 3684 if (!memcg->vmstats_percpu) 3685 goto fail; 3686 3687 if (!memcg1_alloc_events(memcg)) 3688 goto fail; 3689 3690 for_each_possible_cpu(cpu) { 3691 if (parent) 3692 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3693 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3694 statc->parent = parent ? pstatc : NULL; 3695 statc->vmstats = memcg->vmstats; 3696 } 3697 3698 for_each_node(node) 3699 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3700 goto fail; 3701 3702 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3703 goto fail; 3704 3705 INIT_WORK(&memcg->high_work, high_work_func); 3706 vmpressure_init(&memcg->vmpressure); 3707 INIT_LIST_HEAD(&memcg->memory_peaks); 3708 INIT_LIST_HEAD(&memcg->swap_peaks); 3709 spin_lock_init(&memcg->peaks_lock); 3710 memcg->socket_pressure = jiffies; 3711 memcg1_memcg_init(memcg); 3712 memcg->kmemcg_id = -1; 3713 INIT_LIST_HEAD(&memcg->objcg_list); 3714 #ifdef CONFIG_CGROUP_WRITEBACK 3715 INIT_LIST_HEAD(&memcg->cgwb_list); 3716 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3717 memcg->cgwb_frn[i].done = 3718 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3719 #endif 3720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3721 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3722 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3723 memcg->deferred_split_queue.split_queue_len = 0; 3724 #endif 3725 lru_gen_init_memcg(memcg); 3726 return memcg; 3727 fail: 3728 mem_cgroup_id_remove(memcg); 3729 __mem_cgroup_free(memcg); 3730 return ERR_PTR(error); 3731 } 3732 3733 static struct cgroup_subsys_state * __ref 3734 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3735 { 3736 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3737 struct mem_cgroup *memcg, *old_memcg; 3738 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3739 3740 old_memcg = set_active_memcg(parent); 3741 memcg = mem_cgroup_alloc(parent); 3742 set_active_memcg(old_memcg); 3743 if (IS_ERR(memcg)) 3744 return ERR_CAST(memcg); 3745 3746 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3747 memcg1_soft_limit_reset(memcg); 3748 #ifdef CONFIG_ZSWAP 3749 memcg->zswap_max = PAGE_COUNTER_MAX; 3750 WRITE_ONCE(memcg->zswap_writeback, true); 3751 #endif 3752 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3753 if (parent) { 3754 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3755 3756 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3757 page_counter_init(&memcg->swap, &parent->swap, false); 3758 #ifdef CONFIG_MEMCG_V1 3759 memcg->memory.track_failcnt = !memcg_on_dfl; 3760 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3761 page_counter_init(&memcg->kmem, &parent->kmem, false); 3762 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3763 #endif 3764 } else { 3765 init_memcg_stats(); 3766 init_memcg_events(); 3767 page_counter_init(&memcg->memory, NULL, true); 3768 page_counter_init(&memcg->swap, NULL, false); 3769 #ifdef CONFIG_MEMCG_V1 3770 page_counter_init(&memcg->kmem, NULL, false); 3771 page_counter_init(&memcg->tcpmem, NULL, false); 3772 #endif 3773 root_mem_cgroup = memcg; 3774 return &memcg->css; 3775 } 3776 3777 if (memcg_on_dfl && !cgroup_memory_nosocket) 3778 static_branch_inc(&memcg_sockets_enabled_key); 3779 3780 if (!cgroup_memory_nobpf) 3781 static_branch_inc(&memcg_bpf_enabled_key); 3782 3783 return &memcg->css; 3784 } 3785 3786 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3787 { 3788 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3789 3790 if (memcg_online_kmem(memcg)) 3791 goto remove_id; 3792 3793 /* 3794 * A memcg must be visible for expand_shrinker_info() 3795 * by the time the maps are allocated. So, we allocate maps 3796 * here, when for_each_mem_cgroup() can't skip it. 3797 */ 3798 if (alloc_shrinker_info(memcg)) 3799 goto offline_kmem; 3800 3801 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3802 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3803 FLUSH_TIME); 3804 lru_gen_online_memcg(memcg); 3805 3806 /* Online state pins memcg ID, memcg ID pins CSS */ 3807 refcount_set(&memcg->id.ref, 1); 3808 css_get(css); 3809 3810 /* 3811 * Ensure mem_cgroup_from_id() works once we're fully online. 3812 * 3813 * We could do this earlier and require callers to filter with 3814 * css_tryget_online(). But right now there are no users that 3815 * need earlier access, and the workingset code relies on the 3816 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3817 * publish it here at the end of onlining. This matches the 3818 * regular ID destruction during offlining. 3819 */ 3820 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3821 3822 return 0; 3823 offline_kmem: 3824 memcg_offline_kmem(memcg); 3825 remove_id: 3826 mem_cgroup_id_remove(memcg); 3827 return -ENOMEM; 3828 } 3829 3830 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3831 { 3832 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3833 3834 memcg1_css_offline(memcg); 3835 3836 page_counter_set_min(&memcg->memory, 0); 3837 page_counter_set_low(&memcg->memory, 0); 3838 3839 zswap_memcg_offline_cleanup(memcg); 3840 3841 memcg_offline_kmem(memcg); 3842 reparent_shrinker_deferred(memcg); 3843 wb_memcg_offline(memcg); 3844 lru_gen_offline_memcg(memcg); 3845 3846 drain_all_stock(memcg); 3847 3848 mem_cgroup_id_put(memcg); 3849 } 3850 3851 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3852 { 3853 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3854 3855 invalidate_reclaim_iterators(memcg); 3856 lru_gen_release_memcg(memcg); 3857 } 3858 3859 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3860 { 3861 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3862 int __maybe_unused i; 3863 3864 #ifdef CONFIG_CGROUP_WRITEBACK 3865 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3866 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3867 #endif 3868 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3869 static_branch_dec(&memcg_sockets_enabled_key); 3870 3871 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3872 static_branch_dec(&memcg_sockets_enabled_key); 3873 3874 if (!cgroup_memory_nobpf) 3875 static_branch_dec(&memcg_bpf_enabled_key); 3876 3877 vmpressure_cleanup(&memcg->vmpressure); 3878 cancel_work_sync(&memcg->high_work); 3879 memcg1_remove_from_trees(memcg); 3880 free_shrinker_info(memcg); 3881 mem_cgroup_free(memcg); 3882 } 3883 3884 /** 3885 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3886 * @css: the target css 3887 * 3888 * Reset the states of the mem_cgroup associated with @css. This is 3889 * invoked when the userland requests disabling on the default hierarchy 3890 * but the memcg is pinned through dependency. The memcg should stop 3891 * applying policies and should revert to the vanilla state as it may be 3892 * made visible again. 3893 * 3894 * The current implementation only resets the essential configurations. 3895 * This needs to be expanded to cover all the visible parts. 3896 */ 3897 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3898 { 3899 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3900 3901 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3902 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3903 #ifdef CONFIG_MEMCG_V1 3904 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3905 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3906 #endif 3907 page_counter_set_min(&memcg->memory, 0); 3908 page_counter_set_low(&memcg->memory, 0); 3909 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3910 memcg1_soft_limit_reset(memcg); 3911 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3912 memcg_wb_domain_size_changed(memcg); 3913 } 3914 3915 struct aggregate_control { 3916 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3917 long *aggregate; 3918 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3919 long *local; 3920 /* pointer to the pending child counters during tree propagation */ 3921 long *pending; 3922 /* pointer to the parent's pending counters, could be NULL */ 3923 long *ppending; 3924 /* pointer to the percpu counters to be aggregated */ 3925 long *cstat; 3926 /* pointer to the percpu counters of the last aggregation*/ 3927 long *cstat_prev; 3928 /* size of the above counters */ 3929 int size; 3930 }; 3931 3932 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3933 { 3934 int i; 3935 long delta, delta_cpu, v; 3936 3937 for (i = 0; i < ac->size; i++) { 3938 /* 3939 * Collect the aggregated propagation counts of groups 3940 * below us. We're in a per-cpu loop here and this is 3941 * a global counter, so the first cycle will get them. 3942 */ 3943 delta = ac->pending[i]; 3944 if (delta) 3945 ac->pending[i] = 0; 3946 3947 /* Add CPU changes on this level since the last flush */ 3948 delta_cpu = 0; 3949 v = READ_ONCE(ac->cstat[i]); 3950 if (v != ac->cstat_prev[i]) { 3951 delta_cpu = v - ac->cstat_prev[i]; 3952 delta += delta_cpu; 3953 ac->cstat_prev[i] = v; 3954 } 3955 3956 /* Aggregate counts on this level and propagate upwards */ 3957 if (delta_cpu) 3958 ac->local[i] += delta_cpu; 3959 3960 if (delta) { 3961 ac->aggregate[i] += delta; 3962 if (ac->ppending) 3963 ac->ppending[i] += delta; 3964 } 3965 } 3966 } 3967 3968 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3969 { 3970 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3971 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3972 struct memcg_vmstats_percpu *statc; 3973 struct aggregate_control ac; 3974 int nid; 3975 3976 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3977 3978 ac = (struct aggregate_control) { 3979 .aggregate = memcg->vmstats->state, 3980 .local = memcg->vmstats->state_local, 3981 .pending = memcg->vmstats->state_pending, 3982 .ppending = parent ? parent->vmstats->state_pending : NULL, 3983 .cstat = statc->state, 3984 .cstat_prev = statc->state_prev, 3985 .size = MEMCG_VMSTAT_SIZE, 3986 }; 3987 mem_cgroup_stat_aggregate(&ac); 3988 3989 ac = (struct aggregate_control) { 3990 .aggregate = memcg->vmstats->events, 3991 .local = memcg->vmstats->events_local, 3992 .pending = memcg->vmstats->events_pending, 3993 .ppending = parent ? parent->vmstats->events_pending : NULL, 3994 .cstat = statc->events, 3995 .cstat_prev = statc->events_prev, 3996 .size = NR_MEMCG_EVENTS, 3997 }; 3998 mem_cgroup_stat_aggregate(&ac); 3999 4000 for_each_node_state(nid, N_MEMORY) { 4001 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4002 struct lruvec_stats *lstats = pn->lruvec_stats; 4003 struct lruvec_stats *plstats = NULL; 4004 struct lruvec_stats_percpu *lstatc; 4005 4006 if (parent) 4007 plstats = parent->nodeinfo[nid]->lruvec_stats; 4008 4009 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4010 4011 ac = (struct aggregate_control) { 4012 .aggregate = lstats->state, 4013 .local = lstats->state_local, 4014 .pending = lstats->state_pending, 4015 .ppending = plstats ? plstats->state_pending : NULL, 4016 .cstat = lstatc->state, 4017 .cstat_prev = lstatc->state_prev, 4018 .size = NR_MEMCG_NODE_STAT_ITEMS, 4019 }; 4020 mem_cgroup_stat_aggregate(&ac); 4021 4022 } 4023 WRITE_ONCE(statc->stats_updates, 0); 4024 /* We are in a per-cpu loop here, only do the atomic write once */ 4025 if (atomic64_read(&memcg->vmstats->stats_updates)) 4026 atomic64_set(&memcg->vmstats->stats_updates, 0); 4027 } 4028 4029 static void mem_cgroup_fork(struct task_struct *task) 4030 { 4031 /* 4032 * Set the update flag to cause task->objcg to be initialized lazily 4033 * on the first allocation. It can be done without any synchronization 4034 * because it's always performed on the current task, so does 4035 * current_objcg_update(). 4036 */ 4037 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4038 } 4039 4040 static void mem_cgroup_exit(struct task_struct *task) 4041 { 4042 struct obj_cgroup *objcg = task->objcg; 4043 4044 objcg = (struct obj_cgroup *) 4045 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4046 obj_cgroup_put(objcg); 4047 4048 /* 4049 * Some kernel allocations can happen after this point, 4050 * but let's ignore them. It can be done without any synchronization 4051 * because it's always performed on the current task, so does 4052 * current_objcg_update(). 4053 */ 4054 task->objcg = NULL; 4055 } 4056 4057 #ifdef CONFIG_LRU_GEN 4058 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4059 { 4060 struct task_struct *task; 4061 struct cgroup_subsys_state *css; 4062 4063 /* find the first leader if there is any */ 4064 cgroup_taskset_for_each_leader(task, css, tset) 4065 break; 4066 4067 if (!task) 4068 return; 4069 4070 task_lock(task); 4071 if (task->mm && READ_ONCE(task->mm->owner) == task) 4072 lru_gen_migrate_mm(task->mm); 4073 task_unlock(task); 4074 } 4075 #else 4076 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4077 #endif /* CONFIG_LRU_GEN */ 4078 4079 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4080 { 4081 struct task_struct *task; 4082 struct cgroup_subsys_state *css; 4083 4084 cgroup_taskset_for_each(task, css, tset) { 4085 /* atomically set the update bit */ 4086 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4087 } 4088 } 4089 4090 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4091 { 4092 mem_cgroup_lru_gen_attach(tset); 4093 mem_cgroup_kmem_attach(tset); 4094 } 4095 4096 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4097 { 4098 if (value == PAGE_COUNTER_MAX) 4099 seq_puts(m, "max\n"); 4100 else 4101 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4102 4103 return 0; 4104 } 4105 4106 static u64 memory_current_read(struct cgroup_subsys_state *css, 4107 struct cftype *cft) 4108 { 4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4110 4111 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4112 } 4113 4114 #define OFP_PEAK_UNSET (((-1UL))) 4115 4116 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4117 { 4118 struct cgroup_of_peak *ofp = of_peak(sf->private); 4119 u64 fd_peak = READ_ONCE(ofp->value), peak; 4120 4121 /* User wants global or local peak? */ 4122 if (fd_peak == OFP_PEAK_UNSET) 4123 peak = pc->watermark; 4124 else 4125 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4126 4127 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4128 return 0; 4129 } 4130 4131 static int memory_peak_show(struct seq_file *sf, void *v) 4132 { 4133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4134 4135 return peak_show(sf, v, &memcg->memory); 4136 } 4137 4138 static int peak_open(struct kernfs_open_file *of) 4139 { 4140 struct cgroup_of_peak *ofp = of_peak(of); 4141 4142 ofp->value = OFP_PEAK_UNSET; 4143 return 0; 4144 } 4145 4146 static void peak_release(struct kernfs_open_file *of) 4147 { 4148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4149 struct cgroup_of_peak *ofp = of_peak(of); 4150 4151 if (ofp->value == OFP_PEAK_UNSET) { 4152 /* fast path (no writes on this fd) */ 4153 return; 4154 } 4155 spin_lock(&memcg->peaks_lock); 4156 list_del(&ofp->list); 4157 spin_unlock(&memcg->peaks_lock); 4158 } 4159 4160 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4161 loff_t off, struct page_counter *pc, 4162 struct list_head *watchers) 4163 { 4164 unsigned long usage; 4165 struct cgroup_of_peak *peer_ctx; 4166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4167 struct cgroup_of_peak *ofp = of_peak(of); 4168 4169 spin_lock(&memcg->peaks_lock); 4170 4171 usage = page_counter_read(pc); 4172 WRITE_ONCE(pc->local_watermark, usage); 4173 4174 list_for_each_entry(peer_ctx, watchers, list) 4175 if (usage > peer_ctx->value) 4176 WRITE_ONCE(peer_ctx->value, usage); 4177 4178 /* initial write, register watcher */ 4179 if (ofp->value == OFP_PEAK_UNSET) 4180 list_add(&ofp->list, watchers); 4181 4182 WRITE_ONCE(ofp->value, usage); 4183 spin_unlock(&memcg->peaks_lock); 4184 4185 return nbytes; 4186 } 4187 4188 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4189 size_t nbytes, loff_t off) 4190 { 4191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4192 4193 return peak_write(of, buf, nbytes, off, &memcg->memory, 4194 &memcg->memory_peaks); 4195 } 4196 4197 #undef OFP_PEAK_UNSET 4198 4199 static int memory_min_show(struct seq_file *m, void *v) 4200 { 4201 return seq_puts_memcg_tunable(m, 4202 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4203 } 4204 4205 static ssize_t memory_min_write(struct kernfs_open_file *of, 4206 char *buf, size_t nbytes, loff_t off) 4207 { 4208 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4209 unsigned long min; 4210 int err; 4211 4212 buf = strstrip(buf); 4213 err = page_counter_memparse(buf, "max", &min); 4214 if (err) 4215 return err; 4216 4217 page_counter_set_min(&memcg->memory, min); 4218 4219 return nbytes; 4220 } 4221 4222 static int memory_low_show(struct seq_file *m, void *v) 4223 { 4224 return seq_puts_memcg_tunable(m, 4225 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4226 } 4227 4228 static ssize_t memory_low_write(struct kernfs_open_file *of, 4229 char *buf, size_t nbytes, loff_t off) 4230 { 4231 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4232 unsigned long low; 4233 int err; 4234 4235 buf = strstrip(buf); 4236 err = page_counter_memparse(buf, "max", &low); 4237 if (err) 4238 return err; 4239 4240 page_counter_set_low(&memcg->memory, low); 4241 4242 return nbytes; 4243 } 4244 4245 static int memory_high_show(struct seq_file *m, void *v) 4246 { 4247 return seq_puts_memcg_tunable(m, 4248 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4249 } 4250 4251 static ssize_t memory_high_write(struct kernfs_open_file *of, 4252 char *buf, size_t nbytes, loff_t off) 4253 { 4254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4255 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4256 bool drained = false; 4257 unsigned long high; 4258 int err; 4259 4260 buf = strstrip(buf); 4261 err = page_counter_memparse(buf, "max", &high); 4262 if (err) 4263 return err; 4264 4265 page_counter_set_high(&memcg->memory, high); 4266 4267 for (;;) { 4268 unsigned long nr_pages = page_counter_read(&memcg->memory); 4269 unsigned long reclaimed; 4270 4271 if (nr_pages <= high) 4272 break; 4273 4274 if (signal_pending(current)) 4275 break; 4276 4277 if (!drained) { 4278 drain_all_stock(memcg); 4279 drained = true; 4280 continue; 4281 } 4282 4283 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4284 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4285 4286 if (!reclaimed && !nr_retries--) 4287 break; 4288 } 4289 4290 memcg_wb_domain_size_changed(memcg); 4291 return nbytes; 4292 } 4293 4294 static int memory_max_show(struct seq_file *m, void *v) 4295 { 4296 return seq_puts_memcg_tunable(m, 4297 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4298 } 4299 4300 static ssize_t memory_max_write(struct kernfs_open_file *of, 4301 char *buf, size_t nbytes, loff_t off) 4302 { 4303 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4304 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4305 bool drained = false; 4306 unsigned long max; 4307 int err; 4308 4309 buf = strstrip(buf); 4310 err = page_counter_memparse(buf, "max", &max); 4311 if (err) 4312 return err; 4313 4314 xchg(&memcg->memory.max, max); 4315 4316 for (;;) { 4317 unsigned long nr_pages = page_counter_read(&memcg->memory); 4318 4319 if (nr_pages <= max) 4320 break; 4321 4322 if (signal_pending(current)) 4323 break; 4324 4325 if (!drained) { 4326 drain_all_stock(memcg); 4327 drained = true; 4328 continue; 4329 } 4330 4331 if (nr_reclaims) { 4332 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4333 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4334 nr_reclaims--; 4335 continue; 4336 } 4337 4338 memcg_memory_event(memcg, MEMCG_OOM); 4339 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4340 break; 4341 cond_resched(); 4342 } 4343 4344 memcg_wb_domain_size_changed(memcg); 4345 return nbytes; 4346 } 4347 4348 /* 4349 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4350 * if any new events become available. 4351 */ 4352 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4353 { 4354 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4355 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4356 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4357 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4358 seq_printf(m, "oom_kill %lu\n", 4359 atomic_long_read(&events[MEMCG_OOM_KILL])); 4360 seq_printf(m, "oom_group_kill %lu\n", 4361 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4362 } 4363 4364 static int memory_events_show(struct seq_file *m, void *v) 4365 { 4366 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4367 4368 __memory_events_show(m, memcg->memory_events); 4369 return 0; 4370 } 4371 4372 static int memory_events_local_show(struct seq_file *m, void *v) 4373 { 4374 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4375 4376 __memory_events_show(m, memcg->memory_events_local); 4377 return 0; 4378 } 4379 4380 int memory_stat_show(struct seq_file *m, void *v) 4381 { 4382 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4383 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4384 struct seq_buf s; 4385 4386 if (!buf) 4387 return -ENOMEM; 4388 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4389 memory_stat_format(memcg, &s); 4390 seq_puts(m, buf); 4391 kfree(buf); 4392 return 0; 4393 } 4394 4395 #ifdef CONFIG_NUMA 4396 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4397 int item) 4398 { 4399 return lruvec_page_state(lruvec, item) * 4400 memcg_page_state_output_unit(item); 4401 } 4402 4403 static int memory_numa_stat_show(struct seq_file *m, void *v) 4404 { 4405 int i; 4406 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4407 4408 mem_cgroup_flush_stats(memcg); 4409 4410 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4411 int nid; 4412 4413 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4414 continue; 4415 4416 seq_printf(m, "%s", memory_stats[i].name); 4417 for_each_node_state(nid, N_MEMORY) { 4418 u64 size; 4419 struct lruvec *lruvec; 4420 4421 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4422 size = lruvec_page_state_output(lruvec, 4423 memory_stats[i].idx); 4424 seq_printf(m, " N%d=%llu", nid, size); 4425 } 4426 seq_putc(m, '\n'); 4427 } 4428 4429 return 0; 4430 } 4431 #endif 4432 4433 static int memory_oom_group_show(struct seq_file *m, void *v) 4434 { 4435 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4436 4437 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4438 4439 return 0; 4440 } 4441 4442 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4443 char *buf, size_t nbytes, loff_t off) 4444 { 4445 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4446 int ret, oom_group; 4447 4448 buf = strstrip(buf); 4449 if (!buf) 4450 return -EINVAL; 4451 4452 ret = kstrtoint(buf, 0, &oom_group); 4453 if (ret) 4454 return ret; 4455 4456 if (oom_group != 0 && oom_group != 1) 4457 return -EINVAL; 4458 4459 WRITE_ONCE(memcg->oom_group, oom_group); 4460 4461 return nbytes; 4462 } 4463 4464 enum { 4465 MEMORY_RECLAIM_SWAPPINESS = 0, 4466 MEMORY_RECLAIM_NULL, 4467 }; 4468 4469 static const match_table_t tokens = { 4470 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4471 { MEMORY_RECLAIM_NULL, NULL }, 4472 }; 4473 4474 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4475 size_t nbytes, loff_t off) 4476 { 4477 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4478 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4479 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4480 int swappiness = -1; 4481 unsigned int reclaim_options; 4482 char *old_buf, *start; 4483 substring_t args[MAX_OPT_ARGS]; 4484 4485 buf = strstrip(buf); 4486 4487 old_buf = buf; 4488 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4489 if (buf == old_buf) 4490 return -EINVAL; 4491 4492 buf = strstrip(buf); 4493 4494 while ((start = strsep(&buf, " ")) != NULL) { 4495 if (!strlen(start)) 4496 continue; 4497 switch (match_token(start, tokens, args)) { 4498 case MEMORY_RECLAIM_SWAPPINESS: 4499 if (match_int(&args[0], &swappiness)) 4500 return -EINVAL; 4501 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4502 return -EINVAL; 4503 break; 4504 default: 4505 return -EINVAL; 4506 } 4507 } 4508 4509 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4510 while (nr_reclaimed < nr_to_reclaim) { 4511 /* Will converge on zero, but reclaim enforces a minimum */ 4512 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4513 unsigned long reclaimed; 4514 4515 if (signal_pending(current)) 4516 return -EINTR; 4517 4518 /* 4519 * This is the final attempt, drain percpu lru caches in the 4520 * hope of introducing more evictable pages for 4521 * try_to_free_mem_cgroup_pages(). 4522 */ 4523 if (!nr_retries) 4524 lru_add_drain_all(); 4525 4526 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4527 batch_size, GFP_KERNEL, 4528 reclaim_options, 4529 swappiness == -1 ? NULL : &swappiness); 4530 4531 if (!reclaimed && !nr_retries--) 4532 return -EAGAIN; 4533 4534 nr_reclaimed += reclaimed; 4535 } 4536 4537 return nbytes; 4538 } 4539 4540 static struct cftype memory_files[] = { 4541 { 4542 .name = "current", 4543 .flags = CFTYPE_NOT_ON_ROOT, 4544 .read_u64 = memory_current_read, 4545 }, 4546 { 4547 .name = "peak", 4548 .flags = CFTYPE_NOT_ON_ROOT, 4549 .open = peak_open, 4550 .release = peak_release, 4551 .seq_show = memory_peak_show, 4552 .write = memory_peak_write, 4553 }, 4554 { 4555 .name = "min", 4556 .flags = CFTYPE_NOT_ON_ROOT, 4557 .seq_show = memory_min_show, 4558 .write = memory_min_write, 4559 }, 4560 { 4561 .name = "low", 4562 .flags = CFTYPE_NOT_ON_ROOT, 4563 .seq_show = memory_low_show, 4564 .write = memory_low_write, 4565 }, 4566 { 4567 .name = "high", 4568 .flags = CFTYPE_NOT_ON_ROOT, 4569 .seq_show = memory_high_show, 4570 .write = memory_high_write, 4571 }, 4572 { 4573 .name = "max", 4574 .flags = CFTYPE_NOT_ON_ROOT, 4575 .seq_show = memory_max_show, 4576 .write = memory_max_write, 4577 }, 4578 { 4579 .name = "events", 4580 .flags = CFTYPE_NOT_ON_ROOT, 4581 .file_offset = offsetof(struct mem_cgroup, events_file), 4582 .seq_show = memory_events_show, 4583 }, 4584 { 4585 .name = "events.local", 4586 .flags = CFTYPE_NOT_ON_ROOT, 4587 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4588 .seq_show = memory_events_local_show, 4589 }, 4590 { 4591 .name = "stat", 4592 .seq_show = memory_stat_show, 4593 }, 4594 #ifdef CONFIG_NUMA 4595 { 4596 .name = "numa_stat", 4597 .seq_show = memory_numa_stat_show, 4598 }, 4599 #endif 4600 { 4601 .name = "oom.group", 4602 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4603 .seq_show = memory_oom_group_show, 4604 .write = memory_oom_group_write, 4605 }, 4606 { 4607 .name = "reclaim", 4608 .flags = CFTYPE_NS_DELEGATABLE, 4609 .write = memory_reclaim, 4610 }, 4611 { } /* terminate */ 4612 }; 4613 4614 struct cgroup_subsys memory_cgrp_subsys = { 4615 .css_alloc = mem_cgroup_css_alloc, 4616 .css_online = mem_cgroup_css_online, 4617 .css_offline = mem_cgroup_css_offline, 4618 .css_released = mem_cgroup_css_released, 4619 .css_free = mem_cgroup_css_free, 4620 .css_reset = mem_cgroup_css_reset, 4621 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4622 .attach = mem_cgroup_attach, 4623 .fork = mem_cgroup_fork, 4624 .exit = mem_cgroup_exit, 4625 .dfl_cftypes = memory_files, 4626 #ifdef CONFIG_MEMCG_V1 4627 .legacy_cftypes = mem_cgroup_legacy_files, 4628 #endif 4629 .early_init = 0, 4630 }; 4631 4632 /** 4633 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4634 * @root: the top ancestor of the sub-tree being checked 4635 * @memcg: the memory cgroup to check 4636 * 4637 * WARNING: This function is not stateless! It can only be used as part 4638 * of a top-down tree iteration, not for isolated queries. 4639 */ 4640 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4641 struct mem_cgroup *memcg) 4642 { 4643 bool recursive_protection = 4644 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4645 4646 if (mem_cgroup_disabled()) 4647 return; 4648 4649 if (!root) 4650 root = root_mem_cgroup; 4651 4652 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4653 } 4654 4655 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4656 gfp_t gfp) 4657 { 4658 int ret; 4659 4660 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4661 if (ret) 4662 goto out; 4663 4664 css_get(&memcg->css); 4665 commit_charge(folio, memcg); 4666 memcg1_commit_charge(folio, memcg); 4667 out: 4668 return ret; 4669 } 4670 4671 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4672 { 4673 struct mem_cgroup *memcg; 4674 int ret; 4675 4676 memcg = get_mem_cgroup_from_mm(mm); 4677 ret = charge_memcg(folio, memcg, gfp); 4678 css_put(&memcg->css); 4679 4680 return ret; 4681 } 4682 4683 /** 4684 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4685 * @folio: folio being charged 4686 * @gfp: reclaim mode 4687 * 4688 * This function is called when allocating a huge page folio, after the page has 4689 * already been obtained and charged to the appropriate hugetlb cgroup 4690 * controller (if it is enabled). 4691 * 4692 * Returns ENOMEM if the memcg is already full. 4693 * Returns 0 if either the charge was successful, or if we skip the charging. 4694 */ 4695 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4696 { 4697 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4698 int ret = 0; 4699 4700 /* 4701 * Even memcg does not account for hugetlb, we still want to update 4702 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4703 * charging the memcg. 4704 */ 4705 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4706 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4707 goto out; 4708 4709 if (charge_memcg(folio, memcg, gfp)) 4710 ret = -ENOMEM; 4711 4712 out: 4713 mem_cgroup_put(memcg); 4714 return ret; 4715 } 4716 4717 /** 4718 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4719 * @folio: folio to charge. 4720 * @mm: mm context of the victim 4721 * @gfp: reclaim mode 4722 * @entry: swap entry for which the folio is allocated 4723 * 4724 * This function charges a folio allocated for swapin. Please call this before 4725 * adding the folio to the swapcache. 4726 * 4727 * Returns 0 on success. Otherwise, an error code is returned. 4728 */ 4729 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4730 gfp_t gfp, swp_entry_t entry) 4731 { 4732 struct mem_cgroup *memcg; 4733 unsigned short id; 4734 int ret; 4735 4736 if (mem_cgroup_disabled()) 4737 return 0; 4738 4739 id = lookup_swap_cgroup_id(entry); 4740 rcu_read_lock(); 4741 memcg = mem_cgroup_from_id(id); 4742 if (!memcg || !css_tryget_online(&memcg->css)) 4743 memcg = get_mem_cgroup_from_mm(mm); 4744 rcu_read_unlock(); 4745 4746 ret = charge_memcg(folio, memcg, gfp); 4747 4748 css_put(&memcg->css); 4749 return ret; 4750 } 4751 4752 struct uncharge_gather { 4753 struct mem_cgroup *memcg; 4754 unsigned long nr_memory; 4755 unsigned long pgpgout; 4756 unsigned long nr_kmem; 4757 int nid; 4758 }; 4759 4760 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4761 { 4762 memset(ug, 0, sizeof(*ug)); 4763 } 4764 4765 static void uncharge_batch(const struct uncharge_gather *ug) 4766 { 4767 if (ug->nr_memory) { 4768 memcg_uncharge(ug->memcg, ug->nr_memory); 4769 if (ug->nr_kmem) { 4770 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4771 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4772 } 4773 memcg1_oom_recover(ug->memcg); 4774 } 4775 4776 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4777 4778 /* drop reference from uncharge_folio */ 4779 css_put(&ug->memcg->css); 4780 } 4781 4782 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4783 { 4784 long nr_pages; 4785 struct mem_cgroup *memcg; 4786 struct obj_cgroup *objcg; 4787 4788 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4789 4790 /* 4791 * Nobody should be changing or seriously looking at 4792 * folio memcg or objcg at this point, we have fully 4793 * exclusive access to the folio. 4794 */ 4795 if (folio_memcg_kmem(folio)) { 4796 objcg = __folio_objcg(folio); 4797 /* 4798 * This get matches the put at the end of the function and 4799 * kmem pages do not hold memcg references anymore. 4800 */ 4801 memcg = get_mem_cgroup_from_objcg(objcg); 4802 } else { 4803 memcg = __folio_memcg(folio); 4804 } 4805 4806 if (!memcg) 4807 return; 4808 4809 if (ug->memcg != memcg) { 4810 if (ug->memcg) { 4811 uncharge_batch(ug); 4812 uncharge_gather_clear(ug); 4813 } 4814 ug->memcg = memcg; 4815 ug->nid = folio_nid(folio); 4816 4817 /* pairs with css_put in uncharge_batch */ 4818 css_get(&memcg->css); 4819 } 4820 4821 nr_pages = folio_nr_pages(folio); 4822 4823 if (folio_memcg_kmem(folio)) { 4824 ug->nr_memory += nr_pages; 4825 ug->nr_kmem += nr_pages; 4826 4827 folio->memcg_data = 0; 4828 obj_cgroup_put(objcg); 4829 } else { 4830 /* LRU pages aren't accounted at the root level */ 4831 if (!mem_cgroup_is_root(memcg)) 4832 ug->nr_memory += nr_pages; 4833 ug->pgpgout++; 4834 4835 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4836 folio->memcg_data = 0; 4837 } 4838 4839 css_put(&memcg->css); 4840 } 4841 4842 void __mem_cgroup_uncharge(struct folio *folio) 4843 { 4844 struct uncharge_gather ug; 4845 4846 /* Don't touch folio->lru of any random page, pre-check: */ 4847 if (!folio_memcg_charged(folio)) 4848 return; 4849 4850 uncharge_gather_clear(&ug); 4851 uncharge_folio(folio, &ug); 4852 uncharge_batch(&ug); 4853 } 4854 4855 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4856 { 4857 struct uncharge_gather ug; 4858 unsigned int i; 4859 4860 uncharge_gather_clear(&ug); 4861 for (i = 0; i < folios->nr; i++) 4862 uncharge_folio(folios->folios[i], &ug); 4863 if (ug.memcg) 4864 uncharge_batch(&ug); 4865 } 4866 4867 /** 4868 * mem_cgroup_replace_folio - Charge a folio's replacement. 4869 * @old: Currently circulating folio. 4870 * @new: Replacement folio. 4871 * 4872 * Charge @new as a replacement folio for @old. @old will 4873 * be uncharged upon free. 4874 * 4875 * Both folios must be locked, @new->mapping must be set up. 4876 */ 4877 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4878 { 4879 struct mem_cgroup *memcg; 4880 long nr_pages = folio_nr_pages(new); 4881 4882 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4883 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4884 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4885 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4886 4887 if (mem_cgroup_disabled()) 4888 return; 4889 4890 /* Page cache replacement: new folio already charged? */ 4891 if (folio_memcg_charged(new)) 4892 return; 4893 4894 memcg = folio_memcg(old); 4895 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4896 if (!memcg) 4897 return; 4898 4899 /* Force-charge the new page. The old one will be freed soon */ 4900 if (!mem_cgroup_is_root(memcg)) { 4901 page_counter_charge(&memcg->memory, nr_pages); 4902 if (do_memsw_account()) 4903 page_counter_charge(&memcg->memsw, nr_pages); 4904 } 4905 4906 css_get(&memcg->css); 4907 commit_charge(new, memcg); 4908 memcg1_commit_charge(new, memcg); 4909 } 4910 4911 /** 4912 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4913 * @old: Currently circulating folio. 4914 * @new: Replacement folio. 4915 * 4916 * Transfer the memcg data from the old folio to the new folio for migration. 4917 * The old folio's data info will be cleared. Note that the memory counters 4918 * will remain unchanged throughout the process. 4919 * 4920 * Both folios must be locked, @new->mapping must be set up. 4921 */ 4922 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4923 { 4924 struct mem_cgroup *memcg; 4925 4926 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4927 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4928 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4929 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4930 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4931 4932 if (mem_cgroup_disabled()) 4933 return; 4934 4935 memcg = folio_memcg(old); 4936 /* 4937 * Note that it is normal to see !memcg for a hugetlb folio. 4938 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4939 * was not selected. 4940 */ 4941 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4942 if (!memcg) 4943 return; 4944 4945 /* Transfer the charge and the css ref */ 4946 commit_charge(new, memcg); 4947 4948 /* Warning should never happen, so don't worry about refcount non-0 */ 4949 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4950 old->memcg_data = 0; 4951 } 4952 4953 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4954 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4955 4956 void mem_cgroup_sk_alloc(struct sock *sk) 4957 { 4958 struct mem_cgroup *memcg; 4959 4960 if (!mem_cgroup_sockets_enabled) 4961 return; 4962 4963 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4964 if (!in_task()) 4965 return; 4966 4967 rcu_read_lock(); 4968 memcg = mem_cgroup_from_task(current); 4969 if (mem_cgroup_is_root(memcg)) 4970 goto out; 4971 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4972 goto out; 4973 if (css_tryget(&memcg->css)) 4974 sk->sk_memcg = memcg; 4975 out: 4976 rcu_read_unlock(); 4977 } 4978 4979 void mem_cgroup_sk_free(struct sock *sk) 4980 { 4981 if (sk->sk_memcg) 4982 css_put(&sk->sk_memcg->css); 4983 } 4984 4985 /** 4986 * mem_cgroup_charge_skmem - charge socket memory 4987 * @memcg: memcg to charge 4988 * @nr_pages: number of pages to charge 4989 * @gfp_mask: reclaim mode 4990 * 4991 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4992 * @memcg's configured limit, %false if it doesn't. 4993 */ 4994 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4995 gfp_t gfp_mask) 4996 { 4997 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4998 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4999 5000 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5001 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5002 return true; 5003 } 5004 5005 return false; 5006 } 5007 5008 /** 5009 * mem_cgroup_uncharge_skmem - uncharge socket memory 5010 * @memcg: memcg to uncharge 5011 * @nr_pages: number of pages to uncharge 5012 */ 5013 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5014 { 5015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5016 memcg1_uncharge_skmem(memcg, nr_pages); 5017 return; 5018 } 5019 5020 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5021 5022 refill_stock(memcg, nr_pages); 5023 } 5024 5025 static int __init cgroup_memory(char *s) 5026 { 5027 char *token; 5028 5029 while ((token = strsep(&s, ",")) != NULL) { 5030 if (!*token) 5031 continue; 5032 if (!strcmp(token, "nosocket")) 5033 cgroup_memory_nosocket = true; 5034 if (!strcmp(token, "nokmem")) 5035 cgroup_memory_nokmem = true; 5036 if (!strcmp(token, "nobpf")) 5037 cgroup_memory_nobpf = true; 5038 } 5039 return 1; 5040 } 5041 __setup("cgroup.memory=", cgroup_memory); 5042 5043 /* 5044 * subsys_initcall() for memory controller. 5045 * 5046 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5047 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5048 * basically everything that doesn't depend on a specific mem_cgroup structure 5049 * should be initialized from here. 5050 */ 5051 static int __init mem_cgroup_init(void) 5052 { 5053 int cpu; 5054 5055 /* 5056 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5057 * used for per-memcg-per-cpu caching of per-node statistics. In order 5058 * to work fine, we should make sure that the overfill threshold can't 5059 * exceed S32_MAX / PAGE_SIZE. 5060 */ 5061 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5062 5063 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5064 memcg_hotplug_cpu_dead); 5065 5066 for_each_possible_cpu(cpu) 5067 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5068 drain_local_stock); 5069 5070 return 0; 5071 } 5072 subsys_initcall(mem_cgroup_init); 5073 5074 #ifdef CONFIG_SWAP 5075 /** 5076 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5077 * @folio: folio being added to swap 5078 * @entry: swap entry to charge 5079 * 5080 * Try to charge @folio's memcg for the swap space at @entry. 5081 * 5082 * Returns 0 on success, -ENOMEM on failure. 5083 */ 5084 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5085 { 5086 unsigned int nr_pages = folio_nr_pages(folio); 5087 struct page_counter *counter; 5088 struct mem_cgroup *memcg; 5089 5090 if (do_memsw_account()) 5091 return 0; 5092 5093 memcg = folio_memcg(folio); 5094 5095 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5096 if (!memcg) 5097 return 0; 5098 5099 if (!entry.val) { 5100 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5101 return 0; 5102 } 5103 5104 memcg = mem_cgroup_id_get_online(memcg); 5105 5106 if (!mem_cgroup_is_root(memcg) && 5107 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5108 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5109 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5110 mem_cgroup_id_put(memcg); 5111 return -ENOMEM; 5112 } 5113 5114 /* Get references for the tail pages, too */ 5115 if (nr_pages > 1) 5116 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5117 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5118 5119 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5120 5121 return 0; 5122 } 5123 5124 /** 5125 * __mem_cgroup_uncharge_swap - uncharge swap space 5126 * @entry: swap entry to uncharge 5127 * @nr_pages: the amount of swap space to uncharge 5128 */ 5129 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5130 { 5131 struct mem_cgroup *memcg; 5132 unsigned short id; 5133 5134 id = swap_cgroup_clear(entry, nr_pages); 5135 rcu_read_lock(); 5136 memcg = mem_cgroup_from_id(id); 5137 if (memcg) { 5138 if (!mem_cgroup_is_root(memcg)) { 5139 if (do_memsw_account()) 5140 page_counter_uncharge(&memcg->memsw, nr_pages); 5141 else 5142 page_counter_uncharge(&memcg->swap, nr_pages); 5143 } 5144 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5145 mem_cgroup_id_put_many(memcg, nr_pages); 5146 } 5147 rcu_read_unlock(); 5148 } 5149 5150 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5151 { 5152 long nr_swap_pages = get_nr_swap_pages(); 5153 5154 if (mem_cgroup_disabled() || do_memsw_account()) 5155 return nr_swap_pages; 5156 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5157 nr_swap_pages = min_t(long, nr_swap_pages, 5158 READ_ONCE(memcg->swap.max) - 5159 page_counter_read(&memcg->swap)); 5160 return nr_swap_pages; 5161 } 5162 5163 bool mem_cgroup_swap_full(struct folio *folio) 5164 { 5165 struct mem_cgroup *memcg; 5166 5167 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5168 5169 if (vm_swap_full()) 5170 return true; 5171 if (do_memsw_account()) 5172 return false; 5173 5174 memcg = folio_memcg(folio); 5175 if (!memcg) 5176 return false; 5177 5178 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5179 unsigned long usage = page_counter_read(&memcg->swap); 5180 5181 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5182 usage * 2 >= READ_ONCE(memcg->swap.max)) 5183 return true; 5184 } 5185 5186 return false; 5187 } 5188 5189 static int __init setup_swap_account(char *s) 5190 { 5191 bool res; 5192 5193 if (!kstrtobool(s, &res) && !res) 5194 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5195 "in favor of configuring swap control via cgroupfs. " 5196 "Please report your usecase to linux-mm@kvack.org if you " 5197 "depend on this functionality.\n"); 5198 return 1; 5199 } 5200 __setup("swapaccount=", setup_swap_account); 5201 5202 static u64 swap_current_read(struct cgroup_subsys_state *css, 5203 struct cftype *cft) 5204 { 5205 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5206 5207 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5208 } 5209 5210 static int swap_peak_show(struct seq_file *sf, void *v) 5211 { 5212 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5213 5214 return peak_show(sf, v, &memcg->swap); 5215 } 5216 5217 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5218 size_t nbytes, loff_t off) 5219 { 5220 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5221 5222 return peak_write(of, buf, nbytes, off, &memcg->swap, 5223 &memcg->swap_peaks); 5224 } 5225 5226 static int swap_high_show(struct seq_file *m, void *v) 5227 { 5228 return seq_puts_memcg_tunable(m, 5229 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5230 } 5231 5232 static ssize_t swap_high_write(struct kernfs_open_file *of, 5233 char *buf, size_t nbytes, loff_t off) 5234 { 5235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5236 unsigned long high; 5237 int err; 5238 5239 buf = strstrip(buf); 5240 err = page_counter_memparse(buf, "max", &high); 5241 if (err) 5242 return err; 5243 5244 page_counter_set_high(&memcg->swap, high); 5245 5246 return nbytes; 5247 } 5248 5249 static int swap_max_show(struct seq_file *m, void *v) 5250 { 5251 return seq_puts_memcg_tunable(m, 5252 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5253 } 5254 5255 static ssize_t swap_max_write(struct kernfs_open_file *of, 5256 char *buf, size_t nbytes, loff_t off) 5257 { 5258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5259 unsigned long max; 5260 int err; 5261 5262 buf = strstrip(buf); 5263 err = page_counter_memparse(buf, "max", &max); 5264 if (err) 5265 return err; 5266 5267 xchg(&memcg->swap.max, max); 5268 5269 return nbytes; 5270 } 5271 5272 static int swap_events_show(struct seq_file *m, void *v) 5273 { 5274 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5275 5276 seq_printf(m, "high %lu\n", 5277 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5278 seq_printf(m, "max %lu\n", 5279 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5280 seq_printf(m, "fail %lu\n", 5281 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5282 5283 return 0; 5284 } 5285 5286 static struct cftype swap_files[] = { 5287 { 5288 .name = "swap.current", 5289 .flags = CFTYPE_NOT_ON_ROOT, 5290 .read_u64 = swap_current_read, 5291 }, 5292 { 5293 .name = "swap.high", 5294 .flags = CFTYPE_NOT_ON_ROOT, 5295 .seq_show = swap_high_show, 5296 .write = swap_high_write, 5297 }, 5298 { 5299 .name = "swap.max", 5300 .flags = CFTYPE_NOT_ON_ROOT, 5301 .seq_show = swap_max_show, 5302 .write = swap_max_write, 5303 }, 5304 { 5305 .name = "swap.peak", 5306 .flags = CFTYPE_NOT_ON_ROOT, 5307 .open = peak_open, 5308 .release = peak_release, 5309 .seq_show = swap_peak_show, 5310 .write = swap_peak_write, 5311 }, 5312 { 5313 .name = "swap.events", 5314 .flags = CFTYPE_NOT_ON_ROOT, 5315 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5316 .seq_show = swap_events_show, 5317 }, 5318 { } /* terminate */ 5319 }; 5320 5321 #ifdef CONFIG_ZSWAP 5322 /** 5323 * obj_cgroup_may_zswap - check if this cgroup can zswap 5324 * @objcg: the object cgroup 5325 * 5326 * Check if the hierarchical zswap limit has been reached. 5327 * 5328 * This doesn't check for specific headroom, and it is not atomic 5329 * either. But with zswap, the size of the allocation is only known 5330 * once compression has occurred, and this optimistic pre-check avoids 5331 * spending cycles on compression when there is already no room left 5332 * or zswap is disabled altogether somewhere in the hierarchy. 5333 */ 5334 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5335 { 5336 struct mem_cgroup *memcg, *original_memcg; 5337 bool ret = true; 5338 5339 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5340 return true; 5341 5342 original_memcg = get_mem_cgroup_from_objcg(objcg); 5343 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5344 memcg = parent_mem_cgroup(memcg)) { 5345 unsigned long max = READ_ONCE(memcg->zswap_max); 5346 unsigned long pages; 5347 5348 if (max == PAGE_COUNTER_MAX) 5349 continue; 5350 if (max == 0) { 5351 ret = false; 5352 break; 5353 } 5354 5355 /* Force flush to get accurate stats for charging */ 5356 __mem_cgroup_flush_stats(memcg, true); 5357 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5358 if (pages < max) 5359 continue; 5360 ret = false; 5361 break; 5362 } 5363 mem_cgroup_put(original_memcg); 5364 return ret; 5365 } 5366 5367 /** 5368 * obj_cgroup_charge_zswap - charge compression backend memory 5369 * @objcg: the object cgroup 5370 * @size: size of compressed object 5371 * 5372 * This forces the charge after obj_cgroup_may_zswap() allowed 5373 * compression and storage in zwap for this cgroup to go ahead. 5374 */ 5375 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5376 { 5377 struct mem_cgroup *memcg; 5378 5379 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5380 return; 5381 5382 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5383 5384 /* PF_MEMALLOC context, charging must succeed */ 5385 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5386 VM_WARN_ON_ONCE(1); 5387 5388 rcu_read_lock(); 5389 memcg = obj_cgroup_memcg(objcg); 5390 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5391 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5392 rcu_read_unlock(); 5393 } 5394 5395 /** 5396 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5397 * @objcg: the object cgroup 5398 * @size: size of compressed object 5399 * 5400 * Uncharges zswap memory on page in. 5401 */ 5402 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5403 { 5404 struct mem_cgroup *memcg; 5405 5406 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5407 return; 5408 5409 obj_cgroup_uncharge(objcg, size); 5410 5411 rcu_read_lock(); 5412 memcg = obj_cgroup_memcg(objcg); 5413 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5414 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5415 rcu_read_unlock(); 5416 } 5417 5418 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5419 { 5420 /* if zswap is disabled, do not block pages going to the swapping device */ 5421 if (!zswap_is_enabled()) 5422 return true; 5423 5424 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5425 if (!READ_ONCE(memcg->zswap_writeback)) 5426 return false; 5427 5428 return true; 5429 } 5430 5431 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5432 struct cftype *cft) 5433 { 5434 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5435 5436 mem_cgroup_flush_stats(memcg); 5437 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5438 } 5439 5440 static int zswap_max_show(struct seq_file *m, void *v) 5441 { 5442 return seq_puts_memcg_tunable(m, 5443 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5444 } 5445 5446 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5447 char *buf, size_t nbytes, loff_t off) 5448 { 5449 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5450 unsigned long max; 5451 int err; 5452 5453 buf = strstrip(buf); 5454 err = page_counter_memparse(buf, "max", &max); 5455 if (err) 5456 return err; 5457 5458 xchg(&memcg->zswap_max, max); 5459 5460 return nbytes; 5461 } 5462 5463 static int zswap_writeback_show(struct seq_file *m, void *v) 5464 { 5465 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5466 5467 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5468 return 0; 5469 } 5470 5471 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5472 char *buf, size_t nbytes, loff_t off) 5473 { 5474 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5475 int zswap_writeback; 5476 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5477 5478 if (parse_ret) 5479 return parse_ret; 5480 5481 if (zswap_writeback != 0 && zswap_writeback != 1) 5482 return -EINVAL; 5483 5484 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5485 return nbytes; 5486 } 5487 5488 static struct cftype zswap_files[] = { 5489 { 5490 .name = "zswap.current", 5491 .flags = CFTYPE_NOT_ON_ROOT, 5492 .read_u64 = zswap_current_read, 5493 }, 5494 { 5495 .name = "zswap.max", 5496 .flags = CFTYPE_NOT_ON_ROOT, 5497 .seq_show = zswap_max_show, 5498 .write = zswap_max_write, 5499 }, 5500 { 5501 .name = "zswap.writeback", 5502 .seq_show = zswap_writeback_show, 5503 .write = zswap_writeback_write, 5504 }, 5505 { } /* terminate */ 5506 }; 5507 #endif /* CONFIG_ZSWAP */ 5508 5509 static int __init mem_cgroup_swap_init(void) 5510 { 5511 if (mem_cgroup_disabled()) 5512 return 0; 5513 5514 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5515 #ifdef CONFIG_MEMCG_V1 5516 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5517 #endif 5518 #ifdef CONFIG_ZSWAP 5519 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5520 #endif 5521 return 0; 5522 } 5523 subsys_initcall(mem_cgroup_swap_init); 5524 5525 #endif /* CONFIG_SWAP */ 5526