1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/parser.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/resume_user_mode.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include <linux/sched/isolation.h> 66 #include <linux/kmemleak.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "memcontrol-v1.h" 72 73 #include <linux/uaccess.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/memcg.h> 77 #undef CREATE_TRACE_POINTS 78 79 #include <trace/events/vmscan.h> 80 81 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 82 EXPORT_SYMBOL(memory_cgrp_subsys); 83 84 struct mem_cgroup *root_mem_cgroup __read_mostly; 85 86 /* Active memory cgroup to use from an interrupt context */ 87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 89 90 /* Socket memory accounting disabled? */ 91 static bool cgroup_memory_nosocket __ro_after_init; 92 93 /* Kernel memory accounting disabled? */ 94 static bool cgroup_memory_nokmem __ro_after_init; 95 96 /* BPF memory accounting disabled? */ 97 static bool cgroup_memory_nobpf __ro_after_init; 98 99 static struct kmem_cache *memcg_cachep; 100 static struct kmem_cache *memcg_pn_cachep; 101 102 #ifdef CONFIG_CGROUP_WRITEBACK 103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 104 #endif 105 106 static inline bool task_is_dying(void) 107 { 108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 109 (current->flags & PF_EXITING); 110 } 111 112 /* Some nice accessors for the vmpressure. */ 113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 114 { 115 if (!memcg) 116 memcg = root_mem_cgroup; 117 return &memcg->vmpressure; 118 } 119 120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 121 { 122 return container_of(vmpr, struct mem_cgroup, vmpressure); 123 } 124 125 #define SEQ_BUF_SIZE SZ_4K 126 #define CURRENT_OBJCG_UPDATE_BIT 0 127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 128 129 static DEFINE_SPINLOCK(objcg_lock); 130 131 bool mem_cgroup_kmem_disabled(void) 132 { 133 return cgroup_memory_nokmem; 134 } 135 136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 137 138 static void obj_cgroup_release(struct percpu_ref *ref) 139 { 140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 141 unsigned int nr_bytes; 142 unsigned int nr_pages; 143 unsigned long flags; 144 145 /* 146 * At this point all allocated objects are freed, and 147 * objcg->nr_charged_bytes can't have an arbitrary byte value. 148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 149 * 150 * The following sequence can lead to it: 151 * 1) CPU0: objcg == stock->cached_objcg 152 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 153 * PAGE_SIZE bytes are charged 154 * 3) CPU1: a process from another memcg is allocating something, 155 * the stock if flushed, 156 * objcg->nr_charged_bytes = PAGE_SIZE - 92 157 * 5) CPU0: we do release this object, 158 * 92 bytes are added to stock->nr_bytes 159 * 6) CPU0: stock is flushed, 160 * 92 bytes are added to objcg->nr_charged_bytes 161 * 162 * In the result, nr_charged_bytes == PAGE_SIZE. 163 * This page will be uncharged in obj_cgroup_release(). 164 */ 165 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 167 nr_pages = nr_bytes >> PAGE_SHIFT; 168 169 if (nr_pages) { 170 struct mem_cgroup *memcg; 171 172 memcg = get_mem_cgroup_from_objcg(objcg); 173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 174 memcg1_account_kmem(memcg, -nr_pages); 175 if (!mem_cgroup_is_root(memcg)) 176 memcg_uncharge(memcg, nr_pages); 177 mem_cgroup_put(memcg); 178 } 179 180 spin_lock_irqsave(&objcg_lock, flags); 181 list_del(&objcg->list); 182 spin_unlock_irqrestore(&objcg_lock, flags); 183 184 percpu_ref_exit(ref); 185 kfree_rcu(objcg, rcu); 186 } 187 188 static struct obj_cgroup *obj_cgroup_alloc(void) 189 { 190 struct obj_cgroup *objcg; 191 int ret; 192 193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 194 if (!objcg) 195 return NULL; 196 197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 198 GFP_KERNEL); 199 if (ret) { 200 kfree(objcg); 201 return NULL; 202 } 203 INIT_LIST_HEAD(&objcg->list); 204 return objcg; 205 } 206 207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 208 struct mem_cgroup *parent) 209 { 210 struct obj_cgroup *objcg, *iter; 211 212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 213 214 spin_lock_irq(&objcg_lock); 215 216 /* 1) Ready to reparent active objcg. */ 217 list_add(&objcg->list, &memcg->objcg_list); 218 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 219 list_for_each_entry(iter, &memcg->objcg_list, list) 220 WRITE_ONCE(iter->memcg, parent); 221 /* 3) Move already reparented objcgs to the parent's list */ 222 list_splice(&memcg->objcg_list, &parent->objcg_list); 223 224 spin_unlock_irq(&objcg_lock); 225 226 percpu_ref_kill(&objcg->refcnt); 227 } 228 229 /* 230 * A lot of the calls to the cache allocation functions are expected to be 231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 232 * conditional to this static branch, we'll have to allow modules that does 233 * kmem_cache_alloc and the such to see this symbol as well 234 */ 235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 236 EXPORT_SYMBOL(memcg_kmem_online_key); 237 238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 239 EXPORT_SYMBOL(memcg_bpf_enabled_key); 240 241 /** 242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 243 * @folio: folio of interest 244 * 245 * If memcg is bound to the default hierarchy, css of the memcg associated 246 * with @folio is returned. The returned css remains associated with @folio 247 * until it is released. 248 * 249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 250 * is returned. 251 */ 252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 253 { 254 struct mem_cgroup *memcg = folio_memcg(folio); 255 256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 257 memcg = root_mem_cgroup; 258 259 return &memcg->css; 260 } 261 262 /** 263 * page_cgroup_ino - return inode number of the memcg a page is charged to 264 * @page: the page 265 * 266 * Look up the closest online ancestor of the memory cgroup @page is charged to 267 * and return its inode number or 0 if @page is not charged to any cgroup. It 268 * is safe to call this function without holding a reference to @page. 269 * 270 * Note, this function is inherently racy, because there is nothing to prevent 271 * the cgroup inode from getting torn down and potentially reallocated a moment 272 * after page_cgroup_ino() returns, so it only should be used by callers that 273 * do not care (such as procfs interfaces). 274 */ 275 ino_t page_cgroup_ino(struct page *page) 276 { 277 struct mem_cgroup *memcg; 278 unsigned long ino = 0; 279 280 rcu_read_lock(); 281 /* page_folio() is racy here, but the entire function is racy anyway */ 282 memcg = folio_memcg_check(page_folio(page)); 283 284 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 285 memcg = parent_mem_cgroup(memcg); 286 if (memcg) 287 ino = cgroup_ino(memcg->css.cgroup); 288 rcu_read_unlock(); 289 return ino; 290 } 291 292 /* Subset of node_stat_item for memcg stats */ 293 static const unsigned int memcg_node_stat_items[] = { 294 NR_INACTIVE_ANON, 295 NR_ACTIVE_ANON, 296 NR_INACTIVE_FILE, 297 NR_ACTIVE_FILE, 298 NR_UNEVICTABLE, 299 NR_SLAB_RECLAIMABLE_B, 300 NR_SLAB_UNRECLAIMABLE_B, 301 WORKINGSET_REFAULT_ANON, 302 WORKINGSET_REFAULT_FILE, 303 WORKINGSET_ACTIVATE_ANON, 304 WORKINGSET_ACTIVATE_FILE, 305 WORKINGSET_RESTORE_ANON, 306 WORKINGSET_RESTORE_FILE, 307 WORKINGSET_NODERECLAIM, 308 NR_ANON_MAPPED, 309 NR_FILE_MAPPED, 310 NR_FILE_PAGES, 311 NR_FILE_DIRTY, 312 NR_WRITEBACK, 313 NR_SHMEM, 314 NR_SHMEM_THPS, 315 NR_FILE_THPS, 316 NR_ANON_THPS, 317 NR_KERNEL_STACK_KB, 318 NR_PAGETABLE, 319 NR_SECONDARY_PAGETABLE, 320 #ifdef CONFIG_SWAP 321 NR_SWAPCACHE, 322 #endif 323 #ifdef CONFIG_NUMA_BALANCING 324 PGPROMOTE_SUCCESS, 325 #endif 326 PGDEMOTE_KSWAPD, 327 PGDEMOTE_DIRECT, 328 PGDEMOTE_KHUGEPAGED, 329 PGDEMOTE_PROACTIVE, 330 #ifdef CONFIG_HUGETLB_PAGE 331 NR_HUGETLB, 332 #endif 333 }; 334 335 static const unsigned int memcg_stat_items[] = { 336 MEMCG_SWAP, 337 MEMCG_SOCK, 338 MEMCG_PERCPU_B, 339 MEMCG_VMALLOC, 340 MEMCG_KMEM, 341 MEMCG_ZSWAP_B, 342 MEMCG_ZSWAPPED, 343 }; 344 345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 347 ARRAY_SIZE(memcg_stat_items)) 348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 350 351 static void init_memcg_stats(void) 352 { 353 u8 i, j = 0; 354 355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 356 357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 358 359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 361 362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 363 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 364 } 365 366 static inline int memcg_stats_index(int idx) 367 { 368 return mem_cgroup_stats_index[idx]; 369 } 370 371 struct lruvec_stats_percpu { 372 /* Local (CPU and cgroup) state */ 373 long state[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Delta calculation for lockless upward propagation */ 376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 struct lruvec_stats { 380 /* Aggregated (CPU and subtree) state */ 381 long state[NR_MEMCG_NODE_STAT_ITEMS]; 382 383 /* Non-hierarchical (CPU aggregated) state */ 384 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Pending child counts during tree propagation */ 387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 388 }; 389 390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 391 { 392 struct mem_cgroup_per_node *pn; 393 long x; 394 int i; 395 396 if (mem_cgroup_disabled()) 397 return node_page_state(lruvec_pgdat(lruvec), idx); 398 399 i = memcg_stats_index(idx); 400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 401 return 0; 402 403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 404 x = READ_ONCE(pn->lruvec_stats->state[i]); 405 #ifdef CONFIG_SMP 406 if (x < 0) 407 x = 0; 408 #endif 409 return x; 410 } 411 412 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 413 enum node_stat_item idx) 414 { 415 struct mem_cgroup_per_node *pn; 416 long x; 417 int i; 418 419 if (mem_cgroup_disabled()) 420 return node_page_state(lruvec_pgdat(lruvec), idx); 421 422 i = memcg_stats_index(idx); 423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 424 return 0; 425 426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 428 #ifdef CONFIG_SMP 429 if (x < 0) 430 x = 0; 431 #endif 432 return x; 433 } 434 435 /* Subset of vm_event_item to report for memcg event stats */ 436 static const unsigned int memcg_vm_event_stat[] = { 437 #ifdef CONFIG_MEMCG_V1 438 PGPGIN, 439 PGPGOUT, 440 #endif 441 PSWPIN, 442 PSWPOUT, 443 PGSCAN_KSWAPD, 444 PGSCAN_DIRECT, 445 PGSCAN_KHUGEPAGED, 446 PGSCAN_PROACTIVE, 447 PGSTEAL_KSWAPD, 448 PGSTEAL_DIRECT, 449 PGSTEAL_KHUGEPAGED, 450 PGSTEAL_PROACTIVE, 451 PGFAULT, 452 PGMAJFAULT, 453 PGREFILL, 454 PGACTIVATE, 455 PGDEACTIVATE, 456 PGLAZYFREE, 457 PGLAZYFREED, 458 #ifdef CONFIG_SWAP 459 SWPIN_ZERO, 460 SWPOUT_ZERO, 461 #endif 462 #ifdef CONFIG_ZSWAP 463 ZSWPIN, 464 ZSWPOUT, 465 ZSWPWB, 466 #endif 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 THP_FAULT_ALLOC, 469 THP_COLLAPSE_ALLOC, 470 THP_SWPOUT, 471 THP_SWPOUT_FALLBACK, 472 #endif 473 #ifdef CONFIG_NUMA_BALANCING 474 NUMA_PAGE_MIGRATE, 475 NUMA_PTE_UPDATES, 476 NUMA_HINT_FAULTS, 477 #endif 478 }; 479 480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 482 483 static void init_memcg_events(void) 484 { 485 u8 i; 486 487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 488 489 memset(mem_cgroup_events_index, U8_MAX, 490 sizeof(mem_cgroup_events_index)); 491 492 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 494 } 495 496 static inline int memcg_events_index(enum vm_event_item idx) 497 { 498 return mem_cgroup_events_index[idx]; 499 } 500 501 struct memcg_vmstats_percpu { 502 /* Stats updates since the last flush */ 503 unsigned int stats_updates; 504 505 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 506 struct memcg_vmstats_percpu __percpu *parent_pcpu; 507 struct memcg_vmstats *vmstats; 508 509 /* The above should fit a single cacheline for memcg_rstat_updated() */ 510 511 /* Local (CPU and cgroup) page state & events */ 512 long state[MEMCG_VMSTAT_SIZE]; 513 unsigned long events[NR_MEMCG_EVENTS]; 514 515 /* Delta calculation for lockless upward propagation */ 516 long state_prev[MEMCG_VMSTAT_SIZE]; 517 unsigned long events_prev[NR_MEMCG_EVENTS]; 518 } ____cacheline_aligned; 519 520 struct memcg_vmstats { 521 /* Aggregated (CPU and subtree) page state & events */ 522 long state[MEMCG_VMSTAT_SIZE]; 523 unsigned long events[NR_MEMCG_EVENTS]; 524 525 /* Non-hierarchical (CPU aggregated) page state & events */ 526 long state_local[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_local[NR_MEMCG_EVENTS]; 528 529 /* Pending child counts during tree propagation */ 530 long state_pending[MEMCG_VMSTAT_SIZE]; 531 unsigned long events_pending[NR_MEMCG_EVENTS]; 532 533 /* Stats updates since the last flush */ 534 atomic_t stats_updates; 535 }; 536 537 /* 538 * memcg and lruvec stats flushing 539 * 540 * Many codepaths leading to stats update or read are performance sensitive and 541 * adding stats flushing in such codepaths is not desirable. So, to optimize the 542 * flushing the kernel does: 543 * 544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 545 * rstat update tree grow unbounded. 546 * 547 * 2) Flush the stats synchronously on reader side only when there are more than 548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 550 * only for 2 seconds due to (1). 551 */ 552 static void flush_memcg_stats_dwork(struct work_struct *w); 553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 554 static u64 flush_last_time; 555 556 #define FLUSH_TIME (2UL*HZ) 557 558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 559 { 560 return atomic_read(&vmstats->stats_updates) > 561 MEMCG_CHARGE_BATCH * num_online_cpus(); 562 } 563 564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, 565 int cpu) 566 { 567 struct memcg_vmstats_percpu __percpu *statc_pcpu; 568 struct memcg_vmstats_percpu *statc; 569 unsigned int stats_updates; 570 571 if (!val) 572 return; 573 574 /* TODO: add to cgroup update tree once it is nmi-safe. */ 575 if (!in_nmi()) 576 css_rstat_updated(&memcg->css, cpu); 577 statc_pcpu = memcg->vmstats_percpu; 578 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { 579 statc = this_cpu_ptr(statc_pcpu); 580 /* 581 * If @memcg is already flushable then all its ancestors are 582 * flushable as well and also there is no need to increase 583 * stats_updates. 584 */ 585 if (memcg_vmstats_needs_flush(statc->vmstats)) 586 break; 587 588 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, 589 abs(val)); 590 if (stats_updates < MEMCG_CHARGE_BATCH) 591 continue; 592 593 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); 594 atomic_add(stats_updates, &statc->vmstats->stats_updates); 595 } 596 } 597 598 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 599 { 600 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 601 602 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), 603 force, needs_flush); 604 605 if (!force && !needs_flush) 606 return; 607 608 if (mem_cgroup_is_root(memcg)) 609 WRITE_ONCE(flush_last_time, jiffies_64); 610 611 css_rstat_flush(&memcg->css); 612 } 613 614 /* 615 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 616 * @memcg: root of the subtree to flush 617 * 618 * Flushing is serialized by the underlying global rstat lock. There is also a 619 * minimum amount of work to be done even if there are no stat updates to flush. 620 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 621 * avoids unnecessary work and contention on the underlying lock. 622 */ 623 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 624 { 625 if (mem_cgroup_disabled()) 626 return; 627 628 if (!memcg) 629 memcg = root_mem_cgroup; 630 631 __mem_cgroup_flush_stats(memcg, false); 632 } 633 634 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 635 { 636 /* Only flush if the periodic flusher is one full cycle late */ 637 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 638 mem_cgroup_flush_stats(memcg); 639 } 640 641 static void flush_memcg_stats_dwork(struct work_struct *w) 642 { 643 /* 644 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 645 * in latency-sensitive paths is as cheap as possible. 646 */ 647 __mem_cgroup_flush_stats(root_mem_cgroup, true); 648 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 649 } 650 651 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 652 { 653 long x; 654 int i = memcg_stats_index(idx); 655 656 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 657 return 0; 658 659 x = READ_ONCE(memcg->vmstats->state[i]); 660 #ifdef CONFIG_SMP 661 if (x < 0) 662 x = 0; 663 #endif 664 return x; 665 } 666 667 static int memcg_page_state_unit(int item); 668 669 /* 670 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 671 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 672 */ 673 static int memcg_state_val_in_pages(int idx, int val) 674 { 675 int unit = memcg_page_state_unit(idx); 676 677 if (!val || unit == PAGE_SIZE) 678 return val; 679 else 680 return max(val * unit / PAGE_SIZE, 1UL); 681 } 682 683 /** 684 * mod_memcg_state - update cgroup memory statistics 685 * @memcg: the memory cgroup 686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 687 * @val: delta to add to the counter, can be negative 688 */ 689 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 690 int val) 691 { 692 int i = memcg_stats_index(idx); 693 int cpu; 694 695 if (mem_cgroup_disabled()) 696 return; 697 698 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 699 return; 700 701 cpu = get_cpu(); 702 703 this_cpu_add(memcg->vmstats_percpu->state[i], val); 704 val = memcg_state_val_in_pages(idx, val); 705 memcg_rstat_updated(memcg, val, cpu); 706 trace_mod_memcg_state(memcg, idx, val); 707 708 put_cpu(); 709 } 710 711 #ifdef CONFIG_MEMCG_V1 712 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 713 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 714 { 715 long x; 716 int i = memcg_stats_index(idx); 717 718 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 719 return 0; 720 721 x = READ_ONCE(memcg->vmstats->state_local[i]); 722 #ifdef CONFIG_SMP 723 if (x < 0) 724 x = 0; 725 #endif 726 return x; 727 } 728 #endif 729 730 static void mod_memcg_lruvec_state(struct lruvec *lruvec, 731 enum node_stat_item idx, 732 int val) 733 { 734 struct mem_cgroup_per_node *pn; 735 struct mem_cgroup *memcg; 736 int i = memcg_stats_index(idx); 737 int cpu; 738 739 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 740 return; 741 742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 743 memcg = pn->memcg; 744 745 cpu = get_cpu(); 746 747 /* Update memcg */ 748 this_cpu_add(memcg->vmstats_percpu->state[i], val); 749 750 /* Update lruvec */ 751 this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 752 753 val = memcg_state_val_in_pages(idx, val); 754 memcg_rstat_updated(memcg, val, cpu); 755 trace_mod_memcg_lruvec_state(memcg, idx, val); 756 757 put_cpu(); 758 } 759 760 /** 761 * __mod_lruvec_state - update lruvec memory statistics 762 * @lruvec: the lruvec 763 * @idx: the stat item 764 * @val: delta to add to the counter, can be negative 765 * 766 * The lruvec is the intersection of the NUMA node and a cgroup. This 767 * function updates the all three counters that are affected by a 768 * change of state at this level: per-node, per-cgroup, per-lruvec. 769 */ 770 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 771 int val) 772 { 773 /* Update node */ 774 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 775 776 /* Update memcg and lruvec */ 777 if (!mem_cgroup_disabled()) 778 mod_memcg_lruvec_state(lruvec, idx, val); 779 } 780 781 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 782 int val) 783 { 784 struct mem_cgroup *memcg; 785 pg_data_t *pgdat = folio_pgdat(folio); 786 struct lruvec *lruvec; 787 788 rcu_read_lock(); 789 memcg = folio_memcg(folio); 790 /* Untracked pages have no memcg, no lruvec. Update only the node */ 791 if (!memcg) { 792 rcu_read_unlock(); 793 __mod_node_page_state(pgdat, idx, val); 794 return; 795 } 796 797 lruvec = mem_cgroup_lruvec(memcg, pgdat); 798 __mod_lruvec_state(lruvec, idx, val); 799 rcu_read_unlock(); 800 } 801 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 802 803 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 804 { 805 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 806 struct mem_cgroup *memcg; 807 struct lruvec *lruvec; 808 809 rcu_read_lock(); 810 memcg = mem_cgroup_from_slab_obj(p); 811 812 /* 813 * Untracked pages have no memcg, no lruvec. Update only the 814 * node. If we reparent the slab objects to the root memcg, 815 * when we free the slab object, we need to update the per-memcg 816 * vmstats to keep it correct for the root memcg. 817 */ 818 if (!memcg) { 819 __mod_node_page_state(pgdat, idx, val); 820 } else { 821 lruvec = mem_cgroup_lruvec(memcg, pgdat); 822 __mod_lruvec_state(lruvec, idx, val); 823 } 824 rcu_read_unlock(); 825 } 826 827 /** 828 * count_memcg_events - account VM events in a cgroup 829 * @memcg: the memory cgroup 830 * @idx: the event item 831 * @count: the number of events that occurred 832 */ 833 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 834 unsigned long count) 835 { 836 int i = memcg_events_index(idx); 837 int cpu; 838 839 if (mem_cgroup_disabled()) 840 return; 841 842 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 843 return; 844 845 cpu = get_cpu(); 846 847 this_cpu_add(memcg->vmstats_percpu->events[i], count); 848 memcg_rstat_updated(memcg, count, cpu); 849 trace_count_memcg_events(memcg, idx, count); 850 851 put_cpu(); 852 } 853 854 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 855 { 856 int i = memcg_events_index(event); 857 858 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 859 return 0; 860 861 return READ_ONCE(memcg->vmstats->events[i]); 862 } 863 864 #ifdef CONFIG_MEMCG_V1 865 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 866 { 867 int i = memcg_events_index(event); 868 869 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 870 return 0; 871 872 return READ_ONCE(memcg->vmstats->events_local[i]); 873 } 874 #endif 875 876 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 877 { 878 /* 879 * mm_update_next_owner() may clear mm->owner to NULL 880 * if it races with swapoff, page migration, etc. 881 * So this can be called with p == NULL. 882 */ 883 if (unlikely(!p)) 884 return NULL; 885 886 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 887 } 888 EXPORT_SYMBOL(mem_cgroup_from_task); 889 890 static __always_inline struct mem_cgroup *active_memcg(void) 891 { 892 if (!in_task()) 893 return this_cpu_read(int_active_memcg); 894 else 895 return current->active_memcg; 896 } 897 898 /** 899 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 900 * @mm: mm from which memcg should be extracted. It can be NULL. 901 * 902 * Obtain a reference on mm->memcg and returns it if successful. If mm 903 * is NULL, then the memcg is chosen as follows: 904 * 1) The active memcg, if set. 905 * 2) current->mm->memcg, if available 906 * 3) root memcg 907 * If mem_cgroup is disabled, NULL is returned. 908 */ 909 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 910 { 911 struct mem_cgroup *memcg; 912 913 if (mem_cgroup_disabled()) 914 return NULL; 915 916 /* 917 * Page cache insertions can happen without an 918 * actual mm context, e.g. during disk probing 919 * on boot, loopback IO, acct() writes etc. 920 * 921 * No need to css_get on root memcg as the reference 922 * counting is disabled on the root level in the 923 * cgroup core. See CSS_NO_REF. 924 */ 925 if (unlikely(!mm)) { 926 memcg = active_memcg(); 927 if (unlikely(memcg)) { 928 /* remote memcg must hold a ref */ 929 css_get(&memcg->css); 930 return memcg; 931 } 932 mm = current->mm; 933 if (unlikely(!mm)) 934 return root_mem_cgroup; 935 } 936 937 rcu_read_lock(); 938 do { 939 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 940 if (unlikely(!memcg)) 941 memcg = root_mem_cgroup; 942 } while (!css_tryget(&memcg->css)); 943 rcu_read_unlock(); 944 return memcg; 945 } 946 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 947 948 /** 949 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 950 */ 951 struct mem_cgroup *get_mem_cgroup_from_current(void) 952 { 953 struct mem_cgroup *memcg; 954 955 if (mem_cgroup_disabled()) 956 return NULL; 957 958 again: 959 rcu_read_lock(); 960 memcg = mem_cgroup_from_task(current); 961 if (!css_tryget(&memcg->css)) { 962 rcu_read_unlock(); 963 goto again; 964 } 965 rcu_read_unlock(); 966 return memcg; 967 } 968 969 /** 970 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 971 * @folio: folio from which memcg should be extracted. 972 */ 973 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 974 { 975 struct mem_cgroup *memcg = folio_memcg(folio); 976 977 if (mem_cgroup_disabled()) 978 return NULL; 979 980 rcu_read_lock(); 981 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 982 memcg = root_mem_cgroup; 983 rcu_read_unlock(); 984 return memcg; 985 } 986 987 /** 988 * mem_cgroup_iter - iterate over memory cgroup hierarchy 989 * @root: hierarchy root 990 * @prev: previously returned memcg, NULL on first invocation 991 * @reclaim: cookie for shared reclaim walks, NULL for full walks 992 * 993 * Returns references to children of the hierarchy below @root, or 994 * @root itself, or %NULL after a full round-trip. 995 * 996 * Caller must pass the return value in @prev on subsequent 997 * invocations for reference counting, or use mem_cgroup_iter_break() 998 * to cancel a hierarchy walk before the round-trip is complete. 999 * 1000 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1001 * in the hierarchy among all concurrent reclaimers operating on the 1002 * same node. 1003 */ 1004 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1005 struct mem_cgroup *prev, 1006 struct mem_cgroup_reclaim_cookie *reclaim) 1007 { 1008 struct mem_cgroup_reclaim_iter *iter; 1009 struct cgroup_subsys_state *css; 1010 struct mem_cgroup *pos; 1011 struct mem_cgroup *next; 1012 1013 if (mem_cgroup_disabled()) 1014 return NULL; 1015 1016 if (!root) 1017 root = root_mem_cgroup; 1018 1019 rcu_read_lock(); 1020 restart: 1021 next = NULL; 1022 1023 if (reclaim) { 1024 int gen; 1025 int nid = reclaim->pgdat->node_id; 1026 1027 iter = &root->nodeinfo[nid]->iter; 1028 gen = atomic_read(&iter->generation); 1029 1030 /* 1031 * On start, join the current reclaim iteration cycle. 1032 * Exit when a concurrent walker completes it. 1033 */ 1034 if (!prev) 1035 reclaim->generation = gen; 1036 else if (reclaim->generation != gen) 1037 goto out_unlock; 1038 1039 pos = READ_ONCE(iter->position); 1040 } else 1041 pos = prev; 1042 1043 css = pos ? &pos->css : NULL; 1044 1045 while ((css = css_next_descendant_pre(css, &root->css))) { 1046 /* 1047 * Verify the css and acquire a reference. The root 1048 * is provided by the caller, so we know it's alive 1049 * and kicking, and don't take an extra reference. 1050 */ 1051 if (css == &root->css || css_tryget(css)) 1052 break; 1053 } 1054 1055 next = mem_cgroup_from_css(css); 1056 1057 if (reclaim) { 1058 /* 1059 * The position could have already been updated by a competing 1060 * thread, so check that the value hasn't changed since we read 1061 * it to avoid reclaiming from the same cgroup twice. 1062 */ 1063 if (cmpxchg(&iter->position, pos, next) != pos) { 1064 if (css && css != &root->css) 1065 css_put(css); 1066 goto restart; 1067 } 1068 1069 if (!next) { 1070 atomic_inc(&iter->generation); 1071 1072 /* 1073 * Reclaimers share the hierarchy walk, and a 1074 * new one might jump in right at the end of 1075 * the hierarchy - make sure they see at least 1076 * one group and restart from the beginning. 1077 */ 1078 if (!prev) 1079 goto restart; 1080 } 1081 } 1082 1083 out_unlock: 1084 rcu_read_unlock(); 1085 if (prev && prev != root) 1086 css_put(&prev->css); 1087 1088 return next; 1089 } 1090 1091 /** 1092 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1093 * @root: hierarchy root 1094 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1095 */ 1096 void mem_cgroup_iter_break(struct mem_cgroup *root, 1097 struct mem_cgroup *prev) 1098 { 1099 if (!root) 1100 root = root_mem_cgroup; 1101 if (prev && prev != root) 1102 css_put(&prev->css); 1103 } 1104 1105 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1106 struct mem_cgroup *dead_memcg) 1107 { 1108 struct mem_cgroup_reclaim_iter *iter; 1109 struct mem_cgroup_per_node *mz; 1110 int nid; 1111 1112 for_each_node(nid) { 1113 mz = from->nodeinfo[nid]; 1114 iter = &mz->iter; 1115 cmpxchg(&iter->position, dead_memcg, NULL); 1116 } 1117 } 1118 1119 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1120 { 1121 struct mem_cgroup *memcg = dead_memcg; 1122 struct mem_cgroup *last; 1123 1124 do { 1125 __invalidate_reclaim_iterators(memcg, dead_memcg); 1126 last = memcg; 1127 } while ((memcg = parent_mem_cgroup(memcg))); 1128 1129 /* 1130 * When cgroup1 non-hierarchy mode is used, 1131 * parent_mem_cgroup() does not walk all the way up to the 1132 * cgroup root (root_mem_cgroup). So we have to handle 1133 * dead_memcg from cgroup root separately. 1134 */ 1135 if (!mem_cgroup_is_root(last)) 1136 __invalidate_reclaim_iterators(root_mem_cgroup, 1137 dead_memcg); 1138 } 1139 1140 /** 1141 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1142 * @memcg: hierarchy root 1143 * @fn: function to call for each task 1144 * @arg: argument passed to @fn 1145 * 1146 * This function iterates over tasks attached to @memcg or to any of its 1147 * descendants and calls @fn for each task. If @fn returns a non-zero 1148 * value, the function breaks the iteration loop. Otherwise, it will iterate 1149 * over all tasks and return 0. 1150 * 1151 * This function must not be called for the root memory cgroup. 1152 */ 1153 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1154 int (*fn)(struct task_struct *, void *), void *arg) 1155 { 1156 struct mem_cgroup *iter; 1157 int ret = 0; 1158 1159 BUG_ON(mem_cgroup_is_root(memcg)); 1160 1161 for_each_mem_cgroup_tree(iter, memcg) { 1162 struct css_task_iter it; 1163 struct task_struct *task; 1164 1165 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1166 while (!ret && (task = css_task_iter_next(&it))) { 1167 ret = fn(task, arg); 1168 /* Avoid potential softlockup warning */ 1169 cond_resched(); 1170 } 1171 css_task_iter_end(&it); 1172 if (ret) { 1173 mem_cgroup_iter_break(memcg, iter); 1174 break; 1175 } 1176 } 1177 } 1178 1179 #ifdef CONFIG_DEBUG_VM 1180 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1181 { 1182 struct mem_cgroup *memcg; 1183 1184 if (mem_cgroup_disabled()) 1185 return; 1186 1187 memcg = folio_memcg(folio); 1188 1189 if (!memcg) 1190 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1191 else 1192 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1193 } 1194 #endif 1195 1196 /** 1197 * folio_lruvec_lock - Lock the lruvec for a folio. 1198 * @folio: Pointer to the folio. 1199 * 1200 * These functions are safe to use under any of the following conditions: 1201 * - folio locked 1202 * - folio_test_lru false 1203 * - folio frozen (refcount of 0) 1204 * 1205 * Return: The lruvec this folio is on with its lock held. 1206 */ 1207 struct lruvec *folio_lruvec_lock(struct folio *folio) 1208 { 1209 struct lruvec *lruvec = folio_lruvec(folio); 1210 1211 spin_lock(&lruvec->lru_lock); 1212 lruvec_memcg_debug(lruvec, folio); 1213 1214 return lruvec; 1215 } 1216 1217 /** 1218 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1219 * @folio: Pointer to the folio. 1220 * 1221 * These functions are safe to use under any of the following conditions: 1222 * - folio locked 1223 * - folio_test_lru false 1224 * - folio frozen (refcount of 0) 1225 * 1226 * Return: The lruvec this folio is on with its lock held and interrupts 1227 * disabled. 1228 */ 1229 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1230 { 1231 struct lruvec *lruvec = folio_lruvec(folio); 1232 1233 spin_lock_irq(&lruvec->lru_lock); 1234 lruvec_memcg_debug(lruvec, folio); 1235 1236 return lruvec; 1237 } 1238 1239 /** 1240 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1241 * @folio: Pointer to the folio. 1242 * @flags: Pointer to irqsave flags. 1243 * 1244 * These functions are safe to use under any of the following conditions: 1245 * - folio locked 1246 * - folio_test_lru false 1247 * - folio frozen (refcount of 0) 1248 * 1249 * Return: The lruvec this folio is on with its lock held and interrupts 1250 * disabled. 1251 */ 1252 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1253 unsigned long *flags) 1254 { 1255 struct lruvec *lruvec = folio_lruvec(folio); 1256 1257 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1258 lruvec_memcg_debug(lruvec, folio); 1259 1260 return lruvec; 1261 } 1262 1263 /** 1264 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1265 * @lruvec: mem_cgroup per zone lru vector 1266 * @lru: index of lru list the page is sitting on 1267 * @zid: zone id of the accounted pages 1268 * @nr_pages: positive when adding or negative when removing 1269 * 1270 * This function must be called under lru_lock, just before a page is added 1271 * to or just after a page is removed from an lru list. 1272 */ 1273 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1274 int zid, int nr_pages) 1275 { 1276 struct mem_cgroup_per_node *mz; 1277 unsigned long *lru_size; 1278 long size; 1279 1280 if (mem_cgroup_disabled()) 1281 return; 1282 1283 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1284 lru_size = &mz->lru_zone_size[zid][lru]; 1285 1286 if (nr_pages < 0) 1287 *lru_size += nr_pages; 1288 1289 size = *lru_size; 1290 if (WARN_ONCE(size < 0, 1291 "%s(%p, %d, %d): lru_size %ld\n", 1292 __func__, lruvec, lru, nr_pages, size)) { 1293 VM_BUG_ON(1); 1294 *lru_size = 0; 1295 } 1296 1297 if (nr_pages > 0) 1298 *lru_size += nr_pages; 1299 } 1300 1301 /** 1302 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1303 * @memcg: the memory cgroup 1304 * 1305 * Returns the maximum amount of memory @mem can be charged with, in 1306 * pages. 1307 */ 1308 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1309 { 1310 unsigned long margin = 0; 1311 unsigned long count; 1312 unsigned long limit; 1313 1314 count = page_counter_read(&memcg->memory); 1315 limit = READ_ONCE(memcg->memory.max); 1316 if (count < limit) 1317 margin = limit - count; 1318 1319 if (do_memsw_account()) { 1320 count = page_counter_read(&memcg->memsw); 1321 limit = READ_ONCE(memcg->memsw.max); 1322 if (count < limit) 1323 margin = min(margin, limit - count); 1324 else 1325 margin = 0; 1326 } 1327 1328 return margin; 1329 } 1330 1331 struct memory_stat { 1332 const char *name; 1333 unsigned int idx; 1334 }; 1335 1336 static const struct memory_stat memory_stats[] = { 1337 { "anon", NR_ANON_MAPPED }, 1338 { "file", NR_FILE_PAGES }, 1339 { "kernel", MEMCG_KMEM }, 1340 { "kernel_stack", NR_KERNEL_STACK_KB }, 1341 { "pagetables", NR_PAGETABLE }, 1342 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1343 { "percpu", MEMCG_PERCPU_B }, 1344 { "sock", MEMCG_SOCK }, 1345 { "vmalloc", MEMCG_VMALLOC }, 1346 { "shmem", NR_SHMEM }, 1347 #ifdef CONFIG_ZSWAP 1348 { "zswap", MEMCG_ZSWAP_B }, 1349 { "zswapped", MEMCG_ZSWAPPED }, 1350 #endif 1351 { "file_mapped", NR_FILE_MAPPED }, 1352 { "file_dirty", NR_FILE_DIRTY }, 1353 { "file_writeback", NR_WRITEBACK }, 1354 #ifdef CONFIG_SWAP 1355 { "swapcached", NR_SWAPCACHE }, 1356 #endif 1357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1358 { "anon_thp", NR_ANON_THPS }, 1359 { "file_thp", NR_FILE_THPS }, 1360 { "shmem_thp", NR_SHMEM_THPS }, 1361 #endif 1362 { "inactive_anon", NR_INACTIVE_ANON }, 1363 { "active_anon", NR_ACTIVE_ANON }, 1364 { "inactive_file", NR_INACTIVE_FILE }, 1365 { "active_file", NR_ACTIVE_FILE }, 1366 { "unevictable", NR_UNEVICTABLE }, 1367 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1368 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1369 #ifdef CONFIG_HUGETLB_PAGE 1370 { "hugetlb", NR_HUGETLB }, 1371 #endif 1372 1373 /* The memory events */ 1374 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1375 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1376 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1377 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1378 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1379 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1380 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1381 1382 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1383 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1384 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1385 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1386 #ifdef CONFIG_NUMA_BALANCING 1387 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1388 #endif 1389 }; 1390 1391 /* The actual unit of the state item, not the same as the output unit */ 1392 static int memcg_page_state_unit(int item) 1393 { 1394 switch (item) { 1395 case MEMCG_PERCPU_B: 1396 case MEMCG_ZSWAP_B: 1397 case NR_SLAB_RECLAIMABLE_B: 1398 case NR_SLAB_UNRECLAIMABLE_B: 1399 return 1; 1400 case NR_KERNEL_STACK_KB: 1401 return SZ_1K; 1402 default: 1403 return PAGE_SIZE; 1404 } 1405 } 1406 1407 /* Translate stat items to the correct unit for memory.stat output */ 1408 static int memcg_page_state_output_unit(int item) 1409 { 1410 /* 1411 * Workingset state is actually in pages, but we export it to userspace 1412 * as a scalar count of events, so special case it here. 1413 * 1414 * Demotion and promotion activities are exported in pages, consistent 1415 * with their global counterparts. 1416 */ 1417 switch (item) { 1418 case WORKINGSET_REFAULT_ANON: 1419 case WORKINGSET_REFAULT_FILE: 1420 case WORKINGSET_ACTIVATE_ANON: 1421 case WORKINGSET_ACTIVATE_FILE: 1422 case WORKINGSET_RESTORE_ANON: 1423 case WORKINGSET_RESTORE_FILE: 1424 case WORKINGSET_NODERECLAIM: 1425 case PGDEMOTE_KSWAPD: 1426 case PGDEMOTE_DIRECT: 1427 case PGDEMOTE_KHUGEPAGED: 1428 case PGDEMOTE_PROACTIVE: 1429 #ifdef CONFIG_NUMA_BALANCING 1430 case PGPROMOTE_SUCCESS: 1431 #endif 1432 return 1; 1433 default: 1434 return memcg_page_state_unit(item); 1435 } 1436 } 1437 1438 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1439 { 1440 return memcg_page_state(memcg, item) * 1441 memcg_page_state_output_unit(item); 1442 } 1443 1444 #ifdef CONFIG_MEMCG_V1 1445 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1446 { 1447 return memcg_page_state_local(memcg, item) * 1448 memcg_page_state_output_unit(item); 1449 } 1450 #endif 1451 1452 #ifdef CONFIG_HUGETLB_PAGE 1453 static bool memcg_accounts_hugetlb(void) 1454 { 1455 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1456 } 1457 #else /* CONFIG_HUGETLB_PAGE */ 1458 static bool memcg_accounts_hugetlb(void) 1459 { 1460 return false; 1461 } 1462 #endif /* CONFIG_HUGETLB_PAGE */ 1463 1464 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1465 { 1466 int i; 1467 1468 /* 1469 * Provide statistics on the state of the memory subsystem as 1470 * well as cumulative event counters that show past behavior. 1471 * 1472 * This list is ordered following a combination of these gradients: 1473 * 1) generic big picture -> specifics and details 1474 * 2) reflecting userspace activity -> reflecting kernel heuristics 1475 * 1476 * Current memory state: 1477 */ 1478 mem_cgroup_flush_stats(memcg); 1479 1480 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1481 u64 size; 1482 1483 #ifdef CONFIG_HUGETLB_PAGE 1484 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1485 !memcg_accounts_hugetlb()) 1486 continue; 1487 #endif 1488 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1489 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1490 1491 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1492 size += memcg_page_state_output(memcg, 1493 NR_SLAB_RECLAIMABLE_B); 1494 seq_buf_printf(s, "slab %llu\n", size); 1495 } 1496 } 1497 1498 /* Accumulated memory events */ 1499 seq_buf_printf(s, "pgscan %lu\n", 1500 memcg_events(memcg, PGSCAN_KSWAPD) + 1501 memcg_events(memcg, PGSCAN_DIRECT) + 1502 memcg_events(memcg, PGSCAN_PROACTIVE) + 1503 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1504 seq_buf_printf(s, "pgsteal %lu\n", 1505 memcg_events(memcg, PGSTEAL_KSWAPD) + 1506 memcg_events(memcg, PGSTEAL_DIRECT) + 1507 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1508 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1509 1510 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1511 #ifdef CONFIG_MEMCG_V1 1512 if (memcg_vm_event_stat[i] == PGPGIN || 1513 memcg_vm_event_stat[i] == PGPGOUT) 1514 continue; 1515 #endif 1516 seq_buf_printf(s, "%s %lu\n", 1517 vm_event_name(memcg_vm_event_stat[i]), 1518 memcg_events(memcg, memcg_vm_event_stat[i])); 1519 } 1520 } 1521 1522 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1523 { 1524 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1525 memcg_stat_format(memcg, s); 1526 else 1527 memcg1_stat_format(memcg, s); 1528 if (seq_buf_has_overflowed(s)) 1529 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1530 } 1531 1532 /** 1533 * mem_cgroup_print_oom_context: Print OOM information relevant to 1534 * memory controller. 1535 * @memcg: The memory cgroup that went over limit 1536 * @p: Task that is going to be killed 1537 * 1538 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1539 * enabled 1540 */ 1541 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1542 { 1543 rcu_read_lock(); 1544 1545 if (memcg) { 1546 pr_cont(",oom_memcg="); 1547 pr_cont_cgroup_path(memcg->css.cgroup); 1548 } else 1549 pr_cont(",global_oom"); 1550 if (p) { 1551 pr_cont(",task_memcg="); 1552 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1553 } 1554 rcu_read_unlock(); 1555 } 1556 1557 /** 1558 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1559 * memory controller. 1560 * @memcg: The memory cgroup that went over limit 1561 */ 1562 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1563 { 1564 /* Use static buffer, for the caller is holding oom_lock. */ 1565 static char buf[SEQ_BUF_SIZE]; 1566 struct seq_buf s; 1567 unsigned long memory_failcnt; 1568 1569 lockdep_assert_held(&oom_lock); 1570 1571 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1572 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1573 else 1574 memory_failcnt = memcg->memory.failcnt; 1575 1576 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1577 K((u64)page_counter_read(&memcg->memory)), 1578 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1579 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1580 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1581 K((u64)page_counter_read(&memcg->swap)), 1582 K((u64)READ_ONCE(memcg->swap.max)), 1583 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1584 #ifdef CONFIG_MEMCG_V1 1585 else { 1586 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1587 K((u64)page_counter_read(&memcg->memsw)), 1588 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1589 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1590 K((u64)page_counter_read(&memcg->kmem)), 1591 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1592 } 1593 #endif 1594 1595 pr_info("Memory cgroup stats for "); 1596 pr_cont_cgroup_path(memcg->css.cgroup); 1597 pr_cont(":"); 1598 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1599 memory_stat_format(memcg, &s); 1600 seq_buf_do_printk(&s, KERN_INFO); 1601 } 1602 1603 /* 1604 * Return the memory (and swap, if configured) limit for a memcg. 1605 */ 1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1607 { 1608 unsigned long max = READ_ONCE(memcg->memory.max); 1609 1610 if (do_memsw_account()) { 1611 if (mem_cgroup_swappiness(memcg)) { 1612 /* Calculate swap excess capacity from memsw limit */ 1613 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1614 1615 max += min(swap, (unsigned long)total_swap_pages); 1616 } 1617 } else { 1618 if (mem_cgroup_swappiness(memcg)) 1619 max += min(READ_ONCE(memcg->swap.max), 1620 (unsigned long)total_swap_pages); 1621 } 1622 return max; 1623 } 1624 1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1626 { 1627 return page_counter_read(&memcg->memory); 1628 } 1629 1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1631 int order) 1632 { 1633 struct oom_control oc = { 1634 .zonelist = NULL, 1635 .nodemask = NULL, 1636 .memcg = memcg, 1637 .gfp_mask = gfp_mask, 1638 .order = order, 1639 }; 1640 bool ret = true; 1641 1642 if (mutex_lock_killable(&oom_lock)) 1643 return true; 1644 1645 if (mem_cgroup_margin(memcg) >= (1 << order)) 1646 goto unlock; 1647 1648 /* 1649 * A few threads which were not waiting at mutex_lock_killable() can 1650 * fail to bail out. Therefore, check again after holding oom_lock. 1651 */ 1652 ret = out_of_memory(&oc); 1653 1654 unlock: 1655 mutex_unlock(&oom_lock); 1656 return ret; 1657 } 1658 1659 /* 1660 * Returns true if successfully killed one or more processes. Though in some 1661 * corner cases it can return true even without killing any process. 1662 */ 1663 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1664 { 1665 bool locked, ret; 1666 1667 if (order > PAGE_ALLOC_COSTLY_ORDER) 1668 return false; 1669 1670 memcg_memory_event(memcg, MEMCG_OOM); 1671 1672 if (!memcg1_oom_prepare(memcg, &locked)) 1673 return false; 1674 1675 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1676 1677 memcg1_oom_finish(memcg, locked); 1678 1679 return ret; 1680 } 1681 1682 /** 1683 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1684 * @victim: task to be killed by the OOM killer 1685 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1686 * 1687 * Returns a pointer to a memory cgroup, which has to be cleaned up 1688 * by killing all belonging OOM-killable tasks. 1689 * 1690 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1691 */ 1692 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1693 struct mem_cgroup *oom_domain) 1694 { 1695 struct mem_cgroup *oom_group = NULL; 1696 struct mem_cgroup *memcg; 1697 1698 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1699 return NULL; 1700 1701 if (!oom_domain) 1702 oom_domain = root_mem_cgroup; 1703 1704 rcu_read_lock(); 1705 1706 memcg = mem_cgroup_from_task(victim); 1707 if (mem_cgroup_is_root(memcg)) 1708 goto out; 1709 1710 /* 1711 * If the victim task has been asynchronously moved to a different 1712 * memory cgroup, we might end up killing tasks outside oom_domain. 1713 * In this case it's better to ignore memory.group.oom. 1714 */ 1715 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1716 goto out; 1717 1718 /* 1719 * Traverse the memory cgroup hierarchy from the victim task's 1720 * cgroup up to the OOMing cgroup (or root) to find the 1721 * highest-level memory cgroup with oom.group set. 1722 */ 1723 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1724 if (READ_ONCE(memcg->oom_group)) 1725 oom_group = memcg; 1726 1727 if (memcg == oom_domain) 1728 break; 1729 } 1730 1731 if (oom_group) 1732 css_get(&oom_group->css); 1733 out: 1734 rcu_read_unlock(); 1735 1736 return oom_group; 1737 } 1738 1739 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1740 { 1741 pr_info("Tasks in "); 1742 pr_cont_cgroup_path(memcg->css.cgroup); 1743 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1744 } 1745 1746 /* 1747 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1748 * nr_pages in a single cacheline. This may change in future. 1749 */ 1750 #define NR_MEMCG_STOCK 7 1751 #define FLUSHING_CACHED_CHARGE 0 1752 struct memcg_stock_pcp { 1753 local_trylock_t lock; 1754 uint8_t nr_pages[NR_MEMCG_STOCK]; 1755 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1756 1757 struct work_struct work; 1758 unsigned long flags; 1759 }; 1760 1761 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1762 .lock = INIT_LOCAL_TRYLOCK(lock), 1763 }; 1764 1765 struct obj_stock_pcp { 1766 local_trylock_t lock; 1767 unsigned int nr_bytes; 1768 struct obj_cgroup *cached_objcg; 1769 struct pglist_data *cached_pgdat; 1770 int nr_slab_reclaimable_b; 1771 int nr_slab_unreclaimable_b; 1772 1773 struct work_struct work; 1774 unsigned long flags; 1775 }; 1776 1777 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { 1778 .lock = INIT_LOCAL_TRYLOCK(lock), 1779 }; 1780 1781 static DEFINE_MUTEX(percpu_charge_mutex); 1782 1783 static void drain_obj_stock(struct obj_stock_pcp *stock); 1784 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 1785 struct mem_cgroup *root_memcg); 1786 1787 /** 1788 * consume_stock: Try to consume stocked charge on this cpu. 1789 * @memcg: memcg to consume from. 1790 * @nr_pages: how many pages to charge. 1791 * 1792 * Consume the cached charge if enough nr_pages are present otherwise return 1793 * failure. Also return failure for charge request larger than 1794 * MEMCG_CHARGE_BATCH or if the local lock is already taken. 1795 * 1796 * returns true if successful, false otherwise. 1797 */ 1798 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1799 { 1800 struct memcg_stock_pcp *stock; 1801 uint8_t stock_pages; 1802 bool ret = false; 1803 int i; 1804 1805 if (nr_pages > MEMCG_CHARGE_BATCH || 1806 !local_trylock(&memcg_stock.lock)) 1807 return ret; 1808 1809 stock = this_cpu_ptr(&memcg_stock); 1810 1811 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1812 if (memcg != READ_ONCE(stock->cached[i])) 1813 continue; 1814 1815 stock_pages = READ_ONCE(stock->nr_pages[i]); 1816 if (stock_pages >= nr_pages) { 1817 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1818 ret = true; 1819 } 1820 break; 1821 } 1822 1823 local_unlock(&memcg_stock.lock); 1824 1825 return ret; 1826 } 1827 1828 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1829 { 1830 page_counter_uncharge(&memcg->memory, nr_pages); 1831 if (do_memsw_account()) 1832 page_counter_uncharge(&memcg->memsw, nr_pages); 1833 } 1834 1835 /* 1836 * Returns stocks cached in percpu and reset cached information. 1837 */ 1838 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1839 { 1840 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1841 uint8_t stock_pages; 1842 1843 if (!old) 1844 return; 1845 1846 stock_pages = READ_ONCE(stock->nr_pages[i]); 1847 if (stock_pages) { 1848 memcg_uncharge(old, stock_pages); 1849 WRITE_ONCE(stock->nr_pages[i], 0); 1850 } 1851 1852 css_put(&old->css); 1853 WRITE_ONCE(stock->cached[i], NULL); 1854 } 1855 1856 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1857 { 1858 int i; 1859 1860 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1861 drain_stock(stock, i); 1862 } 1863 1864 static void drain_local_memcg_stock(struct work_struct *dummy) 1865 { 1866 struct memcg_stock_pcp *stock; 1867 1868 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1869 return; 1870 1871 local_lock(&memcg_stock.lock); 1872 1873 stock = this_cpu_ptr(&memcg_stock); 1874 drain_stock_fully(stock); 1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1876 1877 local_unlock(&memcg_stock.lock); 1878 } 1879 1880 static void drain_local_obj_stock(struct work_struct *dummy) 1881 { 1882 struct obj_stock_pcp *stock; 1883 1884 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1885 return; 1886 1887 local_lock(&obj_stock.lock); 1888 1889 stock = this_cpu_ptr(&obj_stock); 1890 drain_obj_stock(stock); 1891 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1892 1893 local_unlock(&obj_stock.lock); 1894 } 1895 1896 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1897 { 1898 struct memcg_stock_pcp *stock; 1899 struct mem_cgroup *cached; 1900 uint8_t stock_pages; 1901 bool success = false; 1902 int empty_slot = -1; 1903 int i; 1904 1905 /* 1906 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1907 * decide to increase it more than 127 then we will need more careful 1908 * handling of nr_pages[] in struct memcg_stock_pcp. 1909 */ 1910 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1911 1912 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1913 1914 if (nr_pages > MEMCG_CHARGE_BATCH || 1915 !local_trylock(&memcg_stock.lock)) { 1916 /* 1917 * In case of larger than batch refill or unlikely failure to 1918 * lock the percpu memcg_stock.lock, uncharge memcg directly. 1919 */ 1920 memcg_uncharge(memcg, nr_pages); 1921 return; 1922 } 1923 1924 stock = this_cpu_ptr(&memcg_stock); 1925 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1926 cached = READ_ONCE(stock->cached[i]); 1927 if (!cached && empty_slot == -1) 1928 empty_slot = i; 1929 if (memcg == READ_ONCE(stock->cached[i])) { 1930 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1931 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1932 if (stock_pages > MEMCG_CHARGE_BATCH) 1933 drain_stock(stock, i); 1934 success = true; 1935 break; 1936 } 1937 } 1938 1939 if (!success) { 1940 i = empty_slot; 1941 if (i == -1) { 1942 i = get_random_u32_below(NR_MEMCG_STOCK); 1943 drain_stock(stock, i); 1944 } 1945 css_get(&memcg->css); 1946 WRITE_ONCE(stock->cached[i], memcg); 1947 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1948 } 1949 1950 local_unlock(&memcg_stock.lock); 1951 } 1952 1953 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, 1954 struct mem_cgroup *root_memcg) 1955 { 1956 struct mem_cgroup *memcg; 1957 bool flush = false; 1958 int i; 1959 1960 rcu_read_lock(); 1961 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1962 memcg = READ_ONCE(stock->cached[i]); 1963 if (!memcg) 1964 continue; 1965 1966 if (READ_ONCE(stock->nr_pages[i]) && 1967 mem_cgroup_is_descendant(memcg, root_memcg)) { 1968 flush = true; 1969 break; 1970 } 1971 } 1972 rcu_read_unlock(); 1973 return flush; 1974 } 1975 1976 /* 1977 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1978 * of the hierarchy under it. 1979 */ 1980 void drain_all_stock(struct mem_cgroup *root_memcg) 1981 { 1982 int cpu, curcpu; 1983 1984 /* If someone's already draining, avoid adding running more workers. */ 1985 if (!mutex_trylock(&percpu_charge_mutex)) 1986 return; 1987 /* 1988 * Notify other cpus that system-wide "drain" is running 1989 * We do not care about races with the cpu hotplug because cpu down 1990 * as well as workers from this path always operate on the local 1991 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1992 */ 1993 migrate_disable(); 1994 curcpu = smp_processor_id(); 1995 for_each_online_cpu(cpu) { 1996 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); 1997 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); 1998 1999 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && 2000 is_memcg_drain_needed(memcg_st, root_memcg) && 2001 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2002 &memcg_st->flags)) { 2003 if (cpu == curcpu) 2004 drain_local_memcg_stock(&memcg_st->work); 2005 else if (!cpu_is_isolated(cpu)) 2006 schedule_work_on(cpu, &memcg_st->work); 2007 } 2008 2009 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && 2010 obj_stock_flush_required(obj_st, root_memcg) && 2011 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2012 &obj_st->flags)) { 2013 if (cpu == curcpu) 2014 drain_local_obj_stock(&obj_st->work); 2015 else if (!cpu_is_isolated(cpu)) 2016 schedule_work_on(cpu, &obj_st->work); 2017 } 2018 } 2019 migrate_enable(); 2020 mutex_unlock(&percpu_charge_mutex); 2021 } 2022 2023 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2024 { 2025 /* no need for the local lock */ 2026 drain_obj_stock(&per_cpu(obj_stock, cpu)); 2027 drain_stock_fully(&per_cpu(memcg_stock, cpu)); 2028 2029 return 0; 2030 } 2031 2032 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2033 unsigned int nr_pages, 2034 gfp_t gfp_mask) 2035 { 2036 unsigned long nr_reclaimed = 0; 2037 2038 do { 2039 unsigned long pflags; 2040 2041 if (page_counter_read(&memcg->memory) <= 2042 READ_ONCE(memcg->memory.high)) 2043 continue; 2044 2045 memcg_memory_event(memcg, MEMCG_HIGH); 2046 2047 psi_memstall_enter(&pflags); 2048 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2049 gfp_mask, 2050 MEMCG_RECLAIM_MAY_SWAP, 2051 NULL); 2052 psi_memstall_leave(&pflags); 2053 } while ((memcg = parent_mem_cgroup(memcg)) && 2054 !mem_cgroup_is_root(memcg)); 2055 2056 return nr_reclaimed; 2057 } 2058 2059 static void high_work_func(struct work_struct *work) 2060 { 2061 struct mem_cgroup *memcg; 2062 2063 memcg = container_of(work, struct mem_cgroup, high_work); 2064 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2065 } 2066 2067 /* 2068 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2069 * enough to still cause a significant slowdown in most cases, while still 2070 * allowing diagnostics and tracing to proceed without becoming stuck. 2071 */ 2072 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2073 2074 /* 2075 * When calculating the delay, we use these either side of the exponentiation to 2076 * maintain precision and scale to a reasonable number of jiffies (see the table 2077 * below. 2078 * 2079 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2080 * overage ratio to a delay. 2081 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2082 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2083 * to produce a reasonable delay curve. 2084 * 2085 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2086 * reasonable delay curve compared to precision-adjusted overage, not 2087 * penalising heavily at first, but still making sure that growth beyond the 2088 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2089 * example, with a high of 100 megabytes: 2090 * 2091 * +-------+------------------------+ 2092 * | usage | time to allocate in ms | 2093 * +-------+------------------------+ 2094 * | 100M | 0 | 2095 * | 101M | 6 | 2096 * | 102M | 25 | 2097 * | 103M | 57 | 2098 * | 104M | 102 | 2099 * | 105M | 159 | 2100 * | 106M | 230 | 2101 * | 107M | 313 | 2102 * | 108M | 409 | 2103 * | 109M | 518 | 2104 * | 110M | 639 | 2105 * | 111M | 774 | 2106 * | 112M | 921 | 2107 * | 113M | 1081 | 2108 * | 114M | 1254 | 2109 * | 115M | 1439 | 2110 * | 116M | 1638 | 2111 * | 117M | 1849 | 2112 * | 118M | 2000 | 2113 * | 119M | 2000 | 2114 * | 120M | 2000 | 2115 * +-------+------------------------+ 2116 */ 2117 #define MEMCG_DELAY_PRECISION_SHIFT 20 2118 #define MEMCG_DELAY_SCALING_SHIFT 14 2119 2120 static u64 calculate_overage(unsigned long usage, unsigned long high) 2121 { 2122 u64 overage; 2123 2124 if (usage <= high) 2125 return 0; 2126 2127 /* 2128 * Prevent division by 0 in overage calculation by acting as if 2129 * it was a threshold of 1 page 2130 */ 2131 high = max(high, 1UL); 2132 2133 overage = usage - high; 2134 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2135 return div64_u64(overage, high); 2136 } 2137 2138 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2139 { 2140 u64 overage, max_overage = 0; 2141 2142 do { 2143 overage = calculate_overage(page_counter_read(&memcg->memory), 2144 READ_ONCE(memcg->memory.high)); 2145 max_overage = max(overage, max_overage); 2146 } while ((memcg = parent_mem_cgroup(memcg)) && 2147 !mem_cgroup_is_root(memcg)); 2148 2149 return max_overage; 2150 } 2151 2152 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2153 { 2154 u64 overage, max_overage = 0; 2155 2156 do { 2157 overage = calculate_overage(page_counter_read(&memcg->swap), 2158 READ_ONCE(memcg->swap.high)); 2159 if (overage) 2160 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2161 max_overage = max(overage, max_overage); 2162 } while ((memcg = parent_mem_cgroup(memcg)) && 2163 !mem_cgroup_is_root(memcg)); 2164 2165 return max_overage; 2166 } 2167 2168 /* 2169 * Get the number of jiffies that we should penalise a mischievous cgroup which 2170 * is exceeding its memory.high by checking both it and its ancestors. 2171 */ 2172 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2173 unsigned int nr_pages, 2174 u64 max_overage) 2175 { 2176 unsigned long penalty_jiffies; 2177 2178 if (!max_overage) 2179 return 0; 2180 2181 /* 2182 * We use overage compared to memory.high to calculate the number of 2183 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2184 * fairly lenient on small overages, and increasingly harsh when the 2185 * memcg in question makes it clear that it has no intention of stopping 2186 * its crazy behaviour, so we exponentially increase the delay based on 2187 * overage amount. 2188 */ 2189 penalty_jiffies = max_overage * max_overage * HZ; 2190 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2191 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2192 2193 /* 2194 * Factor in the task's own contribution to the overage, such that four 2195 * N-sized allocations are throttled approximately the same as one 2196 * 4N-sized allocation. 2197 * 2198 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2199 * larger the current charge patch is than that. 2200 */ 2201 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2202 } 2203 2204 /* 2205 * Reclaims memory over the high limit. Called directly from 2206 * try_charge() (context permitting), as well as from the userland 2207 * return path where reclaim is always able to block. 2208 */ 2209 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2210 { 2211 unsigned long penalty_jiffies; 2212 unsigned long pflags; 2213 unsigned long nr_reclaimed; 2214 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2215 int nr_retries = MAX_RECLAIM_RETRIES; 2216 struct mem_cgroup *memcg; 2217 bool in_retry = false; 2218 2219 if (likely(!nr_pages)) 2220 return; 2221 2222 memcg = get_mem_cgroup_from_mm(current->mm); 2223 current->memcg_nr_pages_over_high = 0; 2224 2225 retry_reclaim: 2226 /* 2227 * Bail if the task is already exiting. Unlike memory.max, 2228 * memory.high enforcement isn't as strict, and there is no 2229 * OOM killer involved, which means the excess could already 2230 * be much bigger (and still growing) than it could for 2231 * memory.max; the dying task could get stuck in fruitless 2232 * reclaim for a long time, which isn't desirable. 2233 */ 2234 if (task_is_dying()) 2235 goto out; 2236 2237 /* 2238 * The allocating task should reclaim at least the batch size, but for 2239 * subsequent retries we only want to do what's necessary to prevent oom 2240 * or breaching resource isolation. 2241 * 2242 * This is distinct from memory.max or page allocator behaviour because 2243 * memory.high is currently batched, whereas memory.max and the page 2244 * allocator run every time an allocation is made. 2245 */ 2246 nr_reclaimed = reclaim_high(memcg, 2247 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2248 gfp_mask); 2249 2250 /* 2251 * memory.high is breached and reclaim is unable to keep up. Throttle 2252 * allocators proactively to slow down excessive growth. 2253 */ 2254 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2255 mem_find_max_overage(memcg)); 2256 2257 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2258 swap_find_max_overage(memcg)); 2259 2260 /* 2261 * Clamp the max delay per usermode return so as to still keep the 2262 * application moving forwards and also permit diagnostics, albeit 2263 * extremely slowly. 2264 */ 2265 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2266 2267 /* 2268 * Don't sleep if the amount of jiffies this memcg owes us is so low 2269 * that it's not even worth doing, in an attempt to be nice to those who 2270 * go only a small amount over their memory.high value and maybe haven't 2271 * been aggressively reclaimed enough yet. 2272 */ 2273 if (penalty_jiffies <= HZ / 100) 2274 goto out; 2275 2276 /* 2277 * If reclaim is making forward progress but we're still over 2278 * memory.high, we want to encourage that rather than doing allocator 2279 * throttling. 2280 */ 2281 if (nr_reclaimed || nr_retries--) { 2282 in_retry = true; 2283 goto retry_reclaim; 2284 } 2285 2286 /* 2287 * Reclaim didn't manage to push usage below the limit, slow 2288 * this allocating task down. 2289 * 2290 * If we exit early, we're guaranteed to die (since 2291 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2292 * need to account for any ill-begotten jiffies to pay them off later. 2293 */ 2294 psi_memstall_enter(&pflags); 2295 schedule_timeout_killable(penalty_jiffies); 2296 psi_memstall_leave(&pflags); 2297 2298 out: 2299 css_put(&memcg->css); 2300 } 2301 2302 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2303 unsigned int nr_pages) 2304 { 2305 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2306 int nr_retries = MAX_RECLAIM_RETRIES; 2307 struct mem_cgroup *mem_over_limit; 2308 struct page_counter *counter; 2309 unsigned long nr_reclaimed; 2310 bool passed_oom = false; 2311 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2312 bool drained = false; 2313 bool raised_max_event = false; 2314 unsigned long pflags; 2315 2316 retry: 2317 if (consume_stock(memcg, nr_pages)) 2318 return 0; 2319 2320 if (!gfpflags_allow_spinning(gfp_mask)) 2321 /* Avoid the refill and flush of the older stock */ 2322 batch = nr_pages; 2323 2324 if (!do_memsw_account() || 2325 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2326 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2327 goto done_restock; 2328 if (do_memsw_account()) 2329 page_counter_uncharge(&memcg->memsw, batch); 2330 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2331 } else { 2332 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2333 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2334 } 2335 2336 if (batch > nr_pages) { 2337 batch = nr_pages; 2338 goto retry; 2339 } 2340 2341 /* 2342 * Prevent unbounded recursion when reclaim operations need to 2343 * allocate memory. This might exceed the limits temporarily, 2344 * but we prefer facilitating memory reclaim and getting back 2345 * under the limit over triggering OOM kills in these cases. 2346 */ 2347 if (unlikely(current->flags & PF_MEMALLOC)) 2348 goto force; 2349 2350 if (unlikely(task_in_memcg_oom(current))) 2351 goto nomem; 2352 2353 if (!gfpflags_allow_blocking(gfp_mask)) 2354 goto nomem; 2355 2356 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2357 raised_max_event = true; 2358 2359 psi_memstall_enter(&pflags); 2360 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2361 gfp_mask, reclaim_options, NULL); 2362 psi_memstall_leave(&pflags); 2363 2364 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2365 goto retry; 2366 2367 if (!drained) { 2368 drain_all_stock(mem_over_limit); 2369 drained = true; 2370 goto retry; 2371 } 2372 2373 if (gfp_mask & __GFP_NORETRY) 2374 goto nomem; 2375 /* 2376 * Even though the limit is exceeded at this point, reclaim 2377 * may have been able to free some pages. Retry the charge 2378 * before killing the task. 2379 * 2380 * Only for regular pages, though: huge pages are rather 2381 * unlikely to succeed so close to the limit, and we fall back 2382 * to regular pages anyway in case of failure. 2383 */ 2384 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2385 goto retry; 2386 2387 if (nr_retries--) 2388 goto retry; 2389 2390 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2391 goto nomem; 2392 2393 /* Avoid endless loop for tasks bypassed by the oom killer */ 2394 if (passed_oom && task_is_dying()) 2395 goto nomem; 2396 2397 /* 2398 * keep retrying as long as the memcg oom killer is able to make 2399 * a forward progress or bypass the charge if the oom killer 2400 * couldn't make any progress. 2401 */ 2402 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2403 get_order(nr_pages * PAGE_SIZE))) { 2404 passed_oom = true; 2405 nr_retries = MAX_RECLAIM_RETRIES; 2406 goto retry; 2407 } 2408 nomem: 2409 /* 2410 * Memcg doesn't have a dedicated reserve for atomic 2411 * allocations. But like the global atomic pool, we need to 2412 * put the burden of reclaim on regular allocation requests 2413 * and let these go through as privileged allocations. 2414 */ 2415 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2416 return -ENOMEM; 2417 force: 2418 /* 2419 * If the allocation has to be enforced, don't forget to raise 2420 * a MEMCG_MAX event. 2421 */ 2422 if (!raised_max_event) 2423 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2424 2425 /* 2426 * The allocation either can't fail or will lead to more memory 2427 * being freed very soon. Allow memory usage go over the limit 2428 * temporarily by force charging it. 2429 */ 2430 page_counter_charge(&memcg->memory, nr_pages); 2431 if (do_memsw_account()) 2432 page_counter_charge(&memcg->memsw, nr_pages); 2433 2434 return 0; 2435 2436 done_restock: 2437 if (batch > nr_pages) 2438 refill_stock(memcg, batch - nr_pages); 2439 2440 /* 2441 * If the hierarchy is above the normal consumption range, schedule 2442 * reclaim on returning to userland. We can perform reclaim here 2443 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2444 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2445 * not recorded as it most likely matches current's and won't 2446 * change in the meantime. As high limit is checked again before 2447 * reclaim, the cost of mismatch is negligible. 2448 */ 2449 do { 2450 bool mem_high, swap_high; 2451 2452 mem_high = page_counter_read(&memcg->memory) > 2453 READ_ONCE(memcg->memory.high); 2454 swap_high = page_counter_read(&memcg->swap) > 2455 READ_ONCE(memcg->swap.high); 2456 2457 /* Don't bother a random interrupted task */ 2458 if (!in_task()) { 2459 if (mem_high) { 2460 schedule_work(&memcg->high_work); 2461 break; 2462 } 2463 continue; 2464 } 2465 2466 if (mem_high || swap_high) { 2467 /* 2468 * The allocating tasks in this cgroup will need to do 2469 * reclaim or be throttled to prevent further growth 2470 * of the memory or swap footprints. 2471 * 2472 * Target some best-effort fairness between the tasks, 2473 * and distribute reclaim work and delay penalties 2474 * based on how much each task is actually allocating. 2475 */ 2476 current->memcg_nr_pages_over_high += batch; 2477 set_notify_resume(current); 2478 break; 2479 } 2480 } while ((memcg = parent_mem_cgroup(memcg))); 2481 2482 /* 2483 * Reclaim is set up above to be called from the userland 2484 * return path. But also attempt synchronous reclaim to avoid 2485 * excessive overrun while the task is still inside the 2486 * kernel. If this is successful, the return path will see it 2487 * when it rechecks the overage and simply bail out. 2488 */ 2489 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2490 !(current->flags & PF_MEMALLOC) && 2491 gfpflags_allow_blocking(gfp_mask)) 2492 mem_cgroup_handle_over_high(gfp_mask); 2493 return 0; 2494 } 2495 2496 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2497 unsigned int nr_pages) 2498 { 2499 if (mem_cgroup_is_root(memcg)) 2500 return 0; 2501 2502 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2503 } 2504 2505 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2506 { 2507 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2508 /* 2509 * Any of the following ensures page's memcg stability: 2510 * 2511 * - the page lock 2512 * - LRU isolation 2513 * - exclusive reference 2514 */ 2515 folio->memcg_data = (unsigned long)memcg; 2516 } 2517 2518 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2519 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2520 struct pglist_data *pgdat, 2521 enum node_stat_item idx, int nr) 2522 { 2523 struct lruvec *lruvec; 2524 2525 if (likely(!in_nmi())) { 2526 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2527 mod_memcg_lruvec_state(lruvec, idx, nr); 2528 } else { 2529 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; 2530 2531 /* TODO: add to cgroup update tree once it is nmi-safe. */ 2532 if (idx == NR_SLAB_RECLAIMABLE_B) 2533 atomic_add(nr, &pn->slab_reclaimable); 2534 else 2535 atomic_add(nr, &pn->slab_unreclaimable); 2536 } 2537 } 2538 #else 2539 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2540 struct pglist_data *pgdat, 2541 enum node_stat_item idx, int nr) 2542 { 2543 struct lruvec *lruvec; 2544 2545 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2546 mod_memcg_lruvec_state(lruvec, idx, nr); 2547 } 2548 #endif 2549 2550 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2551 struct pglist_data *pgdat, 2552 enum node_stat_item idx, int nr) 2553 { 2554 struct mem_cgroup *memcg; 2555 2556 rcu_read_lock(); 2557 memcg = obj_cgroup_memcg(objcg); 2558 account_slab_nmi_safe(memcg, pgdat, idx, nr); 2559 rcu_read_unlock(); 2560 } 2561 2562 static __always_inline 2563 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2564 { 2565 /* 2566 * Slab objects are accounted individually, not per-page. 2567 * Memcg membership data for each individual object is saved in 2568 * slab->obj_exts. 2569 */ 2570 if (folio_test_slab(folio)) { 2571 struct slabobj_ext *obj_exts; 2572 struct slab *slab; 2573 unsigned int off; 2574 2575 slab = folio_slab(folio); 2576 obj_exts = slab_obj_exts(slab); 2577 if (!obj_exts) 2578 return NULL; 2579 2580 off = obj_to_index(slab->slab_cache, slab, p); 2581 if (obj_exts[off].objcg) 2582 return obj_cgroup_memcg(obj_exts[off].objcg); 2583 2584 return NULL; 2585 } 2586 2587 /* 2588 * folio_memcg_check() is used here, because in theory we can encounter 2589 * a folio where the slab flag has been cleared already, but 2590 * slab->obj_exts has not been freed yet 2591 * folio_memcg_check() will guarantee that a proper memory 2592 * cgroup pointer or NULL will be returned. 2593 */ 2594 return folio_memcg_check(folio); 2595 } 2596 2597 /* 2598 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2599 * It is not suitable for objects allocated using vmalloc(). 2600 * 2601 * A passed kernel object must be a slab object or a generic kernel page. 2602 * 2603 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2604 * cgroup_mutex, etc. 2605 */ 2606 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2607 { 2608 if (mem_cgroup_disabled()) 2609 return NULL; 2610 2611 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2612 } 2613 2614 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2615 { 2616 struct obj_cgroup *objcg = NULL; 2617 2618 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2619 objcg = rcu_dereference(memcg->objcg); 2620 if (likely(objcg && obj_cgroup_tryget(objcg))) 2621 break; 2622 objcg = NULL; 2623 } 2624 return objcg; 2625 } 2626 2627 static struct obj_cgroup *current_objcg_update(void) 2628 { 2629 struct mem_cgroup *memcg; 2630 struct obj_cgroup *old, *objcg = NULL; 2631 2632 do { 2633 /* Atomically drop the update bit. */ 2634 old = xchg(¤t->objcg, NULL); 2635 if (old) { 2636 old = (struct obj_cgroup *) 2637 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2638 obj_cgroup_put(old); 2639 2640 old = NULL; 2641 } 2642 2643 /* If new objcg is NULL, no reason for the second atomic update. */ 2644 if (!current->mm || (current->flags & PF_KTHREAD)) 2645 return NULL; 2646 2647 /* 2648 * Release the objcg pointer from the previous iteration, 2649 * if try_cmpxcg() below fails. 2650 */ 2651 if (unlikely(objcg)) { 2652 obj_cgroup_put(objcg); 2653 objcg = NULL; 2654 } 2655 2656 /* 2657 * Obtain the new objcg pointer. The current task can be 2658 * asynchronously moved to another memcg and the previous 2659 * memcg can be offlined. So let's get the memcg pointer 2660 * and try get a reference to objcg under a rcu read lock. 2661 */ 2662 2663 rcu_read_lock(); 2664 memcg = mem_cgroup_from_task(current); 2665 objcg = __get_obj_cgroup_from_memcg(memcg); 2666 rcu_read_unlock(); 2667 2668 /* 2669 * Try set up a new objcg pointer atomically. If it 2670 * fails, it means the update flag was set concurrently, so 2671 * the whole procedure should be repeated. 2672 */ 2673 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2674 2675 return objcg; 2676 } 2677 2678 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2679 { 2680 struct mem_cgroup *memcg; 2681 struct obj_cgroup *objcg; 2682 2683 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) 2684 return NULL; 2685 2686 if (in_task()) { 2687 memcg = current->active_memcg; 2688 if (unlikely(memcg)) 2689 goto from_memcg; 2690 2691 objcg = READ_ONCE(current->objcg); 2692 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2693 objcg = current_objcg_update(); 2694 /* 2695 * Objcg reference is kept by the task, so it's safe 2696 * to use the objcg by the current task. 2697 */ 2698 return objcg; 2699 } 2700 2701 memcg = this_cpu_read(int_active_memcg); 2702 if (unlikely(memcg)) 2703 goto from_memcg; 2704 2705 return NULL; 2706 2707 from_memcg: 2708 objcg = NULL; 2709 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2710 /* 2711 * Memcg pointer is protected by scope (see set_active_memcg()) 2712 * and is pinning the corresponding objcg, so objcg can't go 2713 * away and can be used within the scope without any additional 2714 * protection. 2715 */ 2716 objcg = rcu_dereference_check(memcg->objcg, 1); 2717 if (likely(objcg)) 2718 break; 2719 } 2720 2721 return objcg; 2722 } 2723 2724 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2725 { 2726 struct obj_cgroup *objcg; 2727 2728 if (!memcg_kmem_online()) 2729 return NULL; 2730 2731 if (folio_memcg_kmem(folio)) { 2732 objcg = __folio_objcg(folio); 2733 obj_cgroup_get(objcg); 2734 } else { 2735 struct mem_cgroup *memcg; 2736 2737 rcu_read_lock(); 2738 memcg = __folio_memcg(folio); 2739 if (memcg) 2740 objcg = __get_obj_cgroup_from_memcg(memcg); 2741 else 2742 objcg = NULL; 2743 rcu_read_unlock(); 2744 } 2745 return objcg; 2746 } 2747 2748 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2749 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2750 { 2751 if (likely(!in_nmi())) { 2752 mod_memcg_state(memcg, MEMCG_KMEM, val); 2753 } else { 2754 /* TODO: add to cgroup update tree once it is nmi-safe. */ 2755 atomic_add(val, &memcg->kmem_stat); 2756 } 2757 } 2758 #else 2759 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2760 { 2761 mod_memcg_state(memcg, MEMCG_KMEM, val); 2762 } 2763 #endif 2764 2765 /* 2766 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2767 * @objcg: object cgroup to uncharge 2768 * @nr_pages: number of pages to uncharge 2769 */ 2770 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2771 unsigned int nr_pages) 2772 { 2773 struct mem_cgroup *memcg; 2774 2775 memcg = get_mem_cgroup_from_objcg(objcg); 2776 2777 account_kmem_nmi_safe(memcg, -nr_pages); 2778 memcg1_account_kmem(memcg, -nr_pages); 2779 if (!mem_cgroup_is_root(memcg)) 2780 refill_stock(memcg, nr_pages); 2781 2782 css_put(&memcg->css); 2783 } 2784 2785 /* 2786 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2787 * @objcg: object cgroup to charge 2788 * @gfp: reclaim mode 2789 * @nr_pages: number of pages to charge 2790 * 2791 * Returns 0 on success, an error code on failure. 2792 */ 2793 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2794 unsigned int nr_pages) 2795 { 2796 struct mem_cgroup *memcg; 2797 int ret; 2798 2799 memcg = get_mem_cgroup_from_objcg(objcg); 2800 2801 ret = try_charge_memcg(memcg, gfp, nr_pages); 2802 if (ret) 2803 goto out; 2804 2805 account_kmem_nmi_safe(memcg, nr_pages); 2806 memcg1_account_kmem(memcg, nr_pages); 2807 out: 2808 css_put(&memcg->css); 2809 2810 return ret; 2811 } 2812 2813 static struct obj_cgroup *page_objcg(const struct page *page) 2814 { 2815 unsigned long memcg_data = page->memcg_data; 2816 2817 if (mem_cgroup_disabled() || !memcg_data) 2818 return NULL; 2819 2820 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2821 page); 2822 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2823 } 2824 2825 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2826 { 2827 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2828 } 2829 2830 /** 2831 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2832 * @page: page to charge 2833 * @gfp: reclaim mode 2834 * @order: allocation order 2835 * 2836 * Returns 0 on success, an error code on failure. 2837 */ 2838 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2839 { 2840 struct obj_cgroup *objcg; 2841 int ret = 0; 2842 2843 objcg = current_obj_cgroup(); 2844 if (objcg) { 2845 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2846 if (!ret) { 2847 obj_cgroup_get(objcg); 2848 page_set_objcg(page, objcg); 2849 return 0; 2850 } 2851 } 2852 return ret; 2853 } 2854 2855 /** 2856 * __memcg_kmem_uncharge_page: uncharge a kmem page 2857 * @page: page to uncharge 2858 * @order: allocation order 2859 */ 2860 void __memcg_kmem_uncharge_page(struct page *page, int order) 2861 { 2862 struct obj_cgroup *objcg = page_objcg(page); 2863 unsigned int nr_pages = 1 << order; 2864 2865 if (!objcg) 2866 return; 2867 2868 obj_cgroup_uncharge_pages(objcg, nr_pages); 2869 page->memcg_data = 0; 2870 obj_cgroup_put(objcg); 2871 } 2872 2873 static void __account_obj_stock(struct obj_cgroup *objcg, 2874 struct obj_stock_pcp *stock, int nr, 2875 struct pglist_data *pgdat, enum node_stat_item idx) 2876 { 2877 int *bytes; 2878 2879 /* 2880 * Save vmstat data in stock and skip vmstat array update unless 2881 * accumulating over a page of vmstat data or when pgdat changes. 2882 */ 2883 if (stock->cached_pgdat != pgdat) { 2884 /* Flush the existing cached vmstat data */ 2885 struct pglist_data *oldpg = stock->cached_pgdat; 2886 2887 if (stock->nr_slab_reclaimable_b) { 2888 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2889 stock->nr_slab_reclaimable_b); 2890 stock->nr_slab_reclaimable_b = 0; 2891 } 2892 if (stock->nr_slab_unreclaimable_b) { 2893 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2894 stock->nr_slab_unreclaimable_b); 2895 stock->nr_slab_unreclaimable_b = 0; 2896 } 2897 stock->cached_pgdat = pgdat; 2898 } 2899 2900 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2901 : &stock->nr_slab_unreclaimable_b; 2902 /* 2903 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2904 * cached locally at least once before pushing it out. 2905 */ 2906 if (!*bytes) { 2907 *bytes = nr; 2908 nr = 0; 2909 } else { 2910 *bytes += nr; 2911 if (abs(*bytes) > PAGE_SIZE) { 2912 nr = *bytes; 2913 *bytes = 0; 2914 } else { 2915 nr = 0; 2916 } 2917 } 2918 if (nr) 2919 mod_objcg_mlstate(objcg, pgdat, idx, nr); 2920 } 2921 2922 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2923 struct pglist_data *pgdat, enum node_stat_item idx) 2924 { 2925 struct obj_stock_pcp *stock; 2926 bool ret = false; 2927 2928 if (!local_trylock(&obj_stock.lock)) 2929 return ret; 2930 2931 stock = this_cpu_ptr(&obj_stock); 2932 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2933 stock->nr_bytes -= nr_bytes; 2934 ret = true; 2935 2936 if (pgdat) 2937 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2938 } 2939 2940 local_unlock(&obj_stock.lock); 2941 2942 return ret; 2943 } 2944 2945 static void drain_obj_stock(struct obj_stock_pcp *stock) 2946 { 2947 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2948 2949 if (!old) 2950 return; 2951 2952 if (stock->nr_bytes) { 2953 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2954 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2955 2956 if (nr_pages) { 2957 struct mem_cgroup *memcg; 2958 2959 memcg = get_mem_cgroup_from_objcg(old); 2960 2961 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2962 memcg1_account_kmem(memcg, -nr_pages); 2963 if (!mem_cgroup_is_root(memcg)) 2964 memcg_uncharge(memcg, nr_pages); 2965 2966 css_put(&memcg->css); 2967 } 2968 2969 /* 2970 * The leftover is flushed to the centralized per-memcg value. 2971 * On the next attempt to refill obj stock it will be moved 2972 * to a per-cpu stock (probably, on an other CPU), see 2973 * refill_obj_stock(). 2974 * 2975 * How often it's flushed is a trade-off between the memory 2976 * limit enforcement accuracy and potential CPU contention, 2977 * so it might be changed in the future. 2978 */ 2979 atomic_add(nr_bytes, &old->nr_charged_bytes); 2980 stock->nr_bytes = 0; 2981 } 2982 2983 /* 2984 * Flush the vmstat data in current stock 2985 */ 2986 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2987 if (stock->nr_slab_reclaimable_b) { 2988 mod_objcg_mlstate(old, stock->cached_pgdat, 2989 NR_SLAB_RECLAIMABLE_B, 2990 stock->nr_slab_reclaimable_b); 2991 stock->nr_slab_reclaimable_b = 0; 2992 } 2993 if (stock->nr_slab_unreclaimable_b) { 2994 mod_objcg_mlstate(old, stock->cached_pgdat, 2995 NR_SLAB_UNRECLAIMABLE_B, 2996 stock->nr_slab_unreclaimable_b); 2997 stock->nr_slab_unreclaimable_b = 0; 2998 } 2999 stock->cached_pgdat = NULL; 3000 } 3001 3002 WRITE_ONCE(stock->cached_objcg, NULL); 3003 obj_cgroup_put(old); 3004 } 3005 3006 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 3007 struct mem_cgroup *root_memcg) 3008 { 3009 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3010 struct mem_cgroup *memcg; 3011 bool flush = false; 3012 3013 rcu_read_lock(); 3014 if (objcg) { 3015 memcg = obj_cgroup_memcg(objcg); 3016 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3017 flush = true; 3018 } 3019 rcu_read_unlock(); 3020 3021 return flush; 3022 } 3023 3024 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3025 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 3026 enum node_stat_item idx) 3027 { 3028 struct obj_stock_pcp *stock; 3029 unsigned int nr_pages = 0; 3030 3031 if (!local_trylock(&obj_stock.lock)) { 3032 if (pgdat) 3033 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); 3034 nr_pages = nr_bytes >> PAGE_SHIFT; 3035 nr_bytes = nr_bytes & (PAGE_SIZE - 1); 3036 atomic_add(nr_bytes, &objcg->nr_charged_bytes); 3037 goto out; 3038 } 3039 3040 stock = this_cpu_ptr(&obj_stock); 3041 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3042 drain_obj_stock(stock); 3043 obj_cgroup_get(objcg); 3044 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3045 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3046 WRITE_ONCE(stock->cached_objcg, objcg); 3047 3048 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3049 } 3050 stock->nr_bytes += nr_bytes; 3051 3052 if (pgdat) 3053 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3054 3055 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3056 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3057 stock->nr_bytes &= (PAGE_SIZE - 1); 3058 } 3059 3060 local_unlock(&obj_stock.lock); 3061 out: 3062 if (nr_pages) 3063 obj_cgroup_uncharge_pages(objcg, nr_pages); 3064 } 3065 3066 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3067 struct pglist_data *pgdat, enum node_stat_item idx) 3068 { 3069 unsigned int nr_pages, nr_bytes; 3070 int ret; 3071 3072 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3073 return 0; 3074 3075 /* 3076 * In theory, objcg->nr_charged_bytes can have enough 3077 * pre-charged bytes to satisfy the allocation. However, 3078 * flushing objcg->nr_charged_bytes requires two atomic 3079 * operations, and objcg->nr_charged_bytes can't be big. 3080 * The shared objcg->nr_charged_bytes can also become a 3081 * performance bottleneck if all tasks of the same memcg are 3082 * trying to update it. So it's better to ignore it and try 3083 * grab some new pages. The stock's nr_bytes will be flushed to 3084 * objcg->nr_charged_bytes later on when objcg changes. 3085 * 3086 * The stock's nr_bytes may contain enough pre-charged bytes 3087 * to allow one less page from being charged, but we can't rely 3088 * on the pre-charged bytes not being changed outside of 3089 * consume_obj_stock() or refill_obj_stock(). So ignore those 3090 * pre-charged bytes as well when charging pages. To avoid a 3091 * page uncharge right after a page charge, we set the 3092 * allow_uncharge flag to false when calling refill_obj_stock() 3093 * to temporarily allow the pre-charged bytes to exceed the page 3094 * size limit. The maximum reachable value of the pre-charged 3095 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3096 * race. 3097 */ 3098 nr_pages = size >> PAGE_SHIFT; 3099 nr_bytes = size & (PAGE_SIZE - 1); 3100 3101 if (nr_bytes) 3102 nr_pages += 1; 3103 3104 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3105 if (!ret && (nr_bytes || pgdat)) 3106 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3107 false, size, pgdat, idx); 3108 3109 return ret; 3110 } 3111 3112 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3113 { 3114 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3115 } 3116 3117 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3118 { 3119 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3120 } 3121 3122 static inline size_t obj_full_size(struct kmem_cache *s) 3123 { 3124 /* 3125 * For each accounted object there is an extra space which is used 3126 * to store obj_cgroup membership. Charge it too. 3127 */ 3128 return s->size + sizeof(struct obj_cgroup *); 3129 } 3130 3131 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3132 gfp_t flags, size_t size, void **p) 3133 { 3134 struct obj_cgroup *objcg; 3135 struct slab *slab; 3136 unsigned long off; 3137 size_t i; 3138 3139 /* 3140 * The obtained objcg pointer is safe to use within the current scope, 3141 * defined by current task or set_active_memcg() pair. 3142 * obj_cgroup_get() is used to get a permanent reference. 3143 */ 3144 objcg = current_obj_cgroup(); 3145 if (!objcg) 3146 return true; 3147 3148 /* 3149 * slab_alloc_node() avoids the NULL check, so we might be called with a 3150 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3151 * the whole requested size. 3152 * return success as there's nothing to free back 3153 */ 3154 if (unlikely(*p == NULL)) 3155 return true; 3156 3157 flags &= gfp_allowed_mask; 3158 3159 if (lru) { 3160 int ret; 3161 struct mem_cgroup *memcg; 3162 3163 memcg = get_mem_cgroup_from_objcg(objcg); 3164 ret = memcg_list_lru_alloc(memcg, lru, flags); 3165 css_put(&memcg->css); 3166 3167 if (ret) 3168 return false; 3169 } 3170 3171 for (i = 0; i < size; i++) { 3172 slab = virt_to_slab(p[i]); 3173 3174 if (!slab_obj_exts(slab) && 3175 alloc_slab_obj_exts(slab, s, flags, false)) { 3176 continue; 3177 } 3178 3179 /* 3180 * if we fail and size is 1, memcg_alloc_abort_single() will 3181 * just free the object, which is ok as we have not assigned 3182 * objcg to its obj_ext yet 3183 * 3184 * for larger sizes, kmem_cache_free_bulk() will uncharge 3185 * any objects that were already charged and obj_ext assigned 3186 * 3187 * TODO: we could batch this until slab_pgdat(slab) changes 3188 * between iterations, with a more complicated undo 3189 */ 3190 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3191 slab_pgdat(slab), cache_vmstat_idx(s))) 3192 return false; 3193 3194 off = obj_to_index(s, slab, p[i]); 3195 obj_cgroup_get(objcg); 3196 slab_obj_exts(slab)[off].objcg = objcg; 3197 } 3198 3199 return true; 3200 } 3201 3202 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3203 void **p, int objects, struct slabobj_ext *obj_exts) 3204 { 3205 size_t obj_size = obj_full_size(s); 3206 3207 for (int i = 0; i < objects; i++) { 3208 struct obj_cgroup *objcg; 3209 unsigned int off; 3210 3211 off = obj_to_index(s, slab, p[i]); 3212 objcg = obj_exts[off].objcg; 3213 if (!objcg) 3214 continue; 3215 3216 obj_exts[off].objcg = NULL; 3217 refill_obj_stock(objcg, obj_size, true, -obj_size, 3218 slab_pgdat(slab), cache_vmstat_idx(s)); 3219 obj_cgroup_put(objcg); 3220 } 3221 } 3222 3223 /* 3224 * The objcg is only set on the first page, so transfer it to all the 3225 * other pages. 3226 */ 3227 void split_page_memcg(struct page *page, unsigned order) 3228 { 3229 struct obj_cgroup *objcg = page_objcg(page); 3230 unsigned int i, nr = 1 << order; 3231 3232 if (!objcg) 3233 return; 3234 3235 for (i = 1; i < nr; i++) 3236 page_set_objcg(&page[i], objcg); 3237 3238 obj_cgroup_get_many(objcg, nr - 1); 3239 } 3240 3241 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3242 unsigned new_order) 3243 { 3244 unsigned new_refs; 3245 3246 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3247 return; 3248 3249 new_refs = (1 << (old_order - new_order)) - 1; 3250 css_get_many(&__folio_memcg(folio)->css, new_refs); 3251 } 3252 3253 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3254 { 3255 unsigned long val; 3256 3257 if (mem_cgroup_is_root(memcg)) { 3258 /* 3259 * Approximate root's usage from global state. This isn't 3260 * perfect, but the root usage was always an approximation. 3261 */ 3262 val = global_node_page_state(NR_FILE_PAGES) + 3263 global_node_page_state(NR_ANON_MAPPED); 3264 if (swap) 3265 val += total_swap_pages - get_nr_swap_pages(); 3266 } else { 3267 if (!swap) 3268 val = page_counter_read(&memcg->memory); 3269 else 3270 val = page_counter_read(&memcg->memsw); 3271 } 3272 return val; 3273 } 3274 3275 static int memcg_online_kmem(struct mem_cgroup *memcg) 3276 { 3277 struct obj_cgroup *objcg; 3278 3279 if (mem_cgroup_kmem_disabled()) 3280 return 0; 3281 3282 if (unlikely(mem_cgroup_is_root(memcg))) 3283 return 0; 3284 3285 objcg = obj_cgroup_alloc(); 3286 if (!objcg) 3287 return -ENOMEM; 3288 3289 objcg->memcg = memcg; 3290 rcu_assign_pointer(memcg->objcg, objcg); 3291 obj_cgroup_get(objcg); 3292 memcg->orig_objcg = objcg; 3293 3294 static_branch_enable(&memcg_kmem_online_key); 3295 3296 memcg->kmemcg_id = memcg->id.id; 3297 3298 return 0; 3299 } 3300 3301 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3302 { 3303 struct mem_cgroup *parent; 3304 3305 if (mem_cgroup_kmem_disabled()) 3306 return; 3307 3308 if (unlikely(mem_cgroup_is_root(memcg))) 3309 return; 3310 3311 parent = parent_mem_cgroup(memcg); 3312 if (!parent) 3313 parent = root_mem_cgroup; 3314 3315 memcg_reparent_list_lrus(memcg, parent); 3316 3317 /* 3318 * Objcg's reparenting must be after list_lru's, make sure list_lru 3319 * helpers won't use parent's list_lru until child is drained. 3320 */ 3321 memcg_reparent_objcgs(memcg, parent); 3322 } 3323 3324 #ifdef CONFIG_CGROUP_WRITEBACK 3325 3326 #include <trace/events/writeback.h> 3327 3328 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3329 { 3330 return wb_domain_init(&memcg->cgwb_domain, gfp); 3331 } 3332 3333 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3334 { 3335 wb_domain_exit(&memcg->cgwb_domain); 3336 } 3337 3338 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3339 { 3340 wb_domain_size_changed(&memcg->cgwb_domain); 3341 } 3342 3343 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3344 { 3345 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3346 3347 if (!memcg->css.parent) 3348 return NULL; 3349 3350 return &memcg->cgwb_domain; 3351 } 3352 3353 /** 3354 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3355 * @wb: bdi_writeback in question 3356 * @pfilepages: out parameter for number of file pages 3357 * @pheadroom: out parameter for number of allocatable pages according to memcg 3358 * @pdirty: out parameter for number of dirty pages 3359 * @pwriteback: out parameter for number of pages under writeback 3360 * 3361 * Determine the numbers of file, headroom, dirty, and writeback pages in 3362 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3363 * is a bit more involved. 3364 * 3365 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3366 * headroom is calculated as the lowest headroom of itself and the 3367 * ancestors. Note that this doesn't consider the actual amount of 3368 * available memory in the system. The caller should further cap 3369 * *@pheadroom accordingly. 3370 */ 3371 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3372 unsigned long *pheadroom, unsigned long *pdirty, 3373 unsigned long *pwriteback) 3374 { 3375 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3376 struct mem_cgroup *parent; 3377 3378 mem_cgroup_flush_stats_ratelimited(memcg); 3379 3380 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3381 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3382 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3383 memcg_page_state(memcg, NR_ACTIVE_FILE); 3384 3385 *pheadroom = PAGE_COUNTER_MAX; 3386 while ((parent = parent_mem_cgroup(memcg))) { 3387 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3388 READ_ONCE(memcg->memory.high)); 3389 unsigned long used = page_counter_read(&memcg->memory); 3390 3391 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3392 memcg = parent; 3393 } 3394 } 3395 3396 /* 3397 * Foreign dirty flushing 3398 * 3399 * There's an inherent mismatch between memcg and writeback. The former 3400 * tracks ownership per-page while the latter per-inode. This was a 3401 * deliberate design decision because honoring per-page ownership in the 3402 * writeback path is complicated, may lead to higher CPU and IO overheads 3403 * and deemed unnecessary given that write-sharing an inode across 3404 * different cgroups isn't a common use-case. 3405 * 3406 * Combined with inode majority-writer ownership switching, this works well 3407 * enough in most cases but there are some pathological cases. For 3408 * example, let's say there are two cgroups A and B which keep writing to 3409 * different but confined parts of the same inode. B owns the inode and 3410 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3411 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3412 * triggering background writeback. A will be slowed down without a way to 3413 * make writeback of the dirty pages happen. 3414 * 3415 * Conditions like the above can lead to a cgroup getting repeatedly and 3416 * severely throttled after making some progress after each 3417 * dirty_expire_interval while the underlying IO device is almost 3418 * completely idle. 3419 * 3420 * Solving this problem completely requires matching the ownership tracking 3421 * granularities between memcg and writeback in either direction. However, 3422 * the more egregious behaviors can be avoided by simply remembering the 3423 * most recent foreign dirtying events and initiating remote flushes on 3424 * them when local writeback isn't enough to keep the memory clean enough. 3425 * 3426 * The following two functions implement such mechanism. When a foreign 3427 * page - a page whose memcg and writeback ownerships don't match - is 3428 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3429 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3430 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3431 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3432 * foreign bdi_writebacks which haven't expired. Both the numbers of 3433 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3434 * limited to MEMCG_CGWB_FRN_CNT. 3435 * 3436 * The mechanism only remembers IDs and doesn't hold any object references. 3437 * As being wrong occasionally doesn't matter, updates and accesses to the 3438 * records are lockless and racy. 3439 */ 3440 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3441 struct bdi_writeback *wb) 3442 { 3443 struct mem_cgroup *memcg = folio_memcg(folio); 3444 struct memcg_cgwb_frn *frn; 3445 u64 now = get_jiffies_64(); 3446 u64 oldest_at = now; 3447 int oldest = -1; 3448 int i; 3449 3450 trace_track_foreign_dirty(folio, wb); 3451 3452 /* 3453 * Pick the slot to use. If there is already a slot for @wb, keep 3454 * using it. If not replace the oldest one which isn't being 3455 * written out. 3456 */ 3457 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3458 frn = &memcg->cgwb_frn[i]; 3459 if (frn->bdi_id == wb->bdi->id && 3460 frn->memcg_id == wb->memcg_css->id) 3461 break; 3462 if (time_before64(frn->at, oldest_at) && 3463 atomic_read(&frn->done.cnt) == 1) { 3464 oldest = i; 3465 oldest_at = frn->at; 3466 } 3467 } 3468 3469 if (i < MEMCG_CGWB_FRN_CNT) { 3470 /* 3471 * Re-using an existing one. Update timestamp lazily to 3472 * avoid making the cacheline hot. We want them to be 3473 * reasonably up-to-date and significantly shorter than 3474 * dirty_expire_interval as that's what expires the record. 3475 * Use the shorter of 1s and dirty_expire_interval / 8. 3476 */ 3477 unsigned long update_intv = 3478 min_t(unsigned long, HZ, 3479 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3480 3481 if (time_before64(frn->at, now - update_intv)) 3482 frn->at = now; 3483 } else if (oldest >= 0) { 3484 /* replace the oldest free one */ 3485 frn = &memcg->cgwb_frn[oldest]; 3486 frn->bdi_id = wb->bdi->id; 3487 frn->memcg_id = wb->memcg_css->id; 3488 frn->at = now; 3489 } 3490 } 3491 3492 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3493 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3494 { 3495 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3496 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3497 u64 now = jiffies_64; 3498 int i; 3499 3500 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3501 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3502 3503 /* 3504 * If the record is older than dirty_expire_interval, 3505 * writeback on it has already started. No need to kick it 3506 * off again. Also, don't start a new one if there's 3507 * already one in flight. 3508 */ 3509 if (time_after64(frn->at, now - intv) && 3510 atomic_read(&frn->done.cnt) == 1) { 3511 frn->at = 0; 3512 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3513 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3514 WB_REASON_FOREIGN_FLUSH, 3515 &frn->done); 3516 } 3517 } 3518 } 3519 3520 #else /* CONFIG_CGROUP_WRITEBACK */ 3521 3522 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3523 { 3524 return 0; 3525 } 3526 3527 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3528 { 3529 } 3530 3531 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3532 { 3533 } 3534 3535 #endif /* CONFIG_CGROUP_WRITEBACK */ 3536 3537 /* 3538 * Private memory cgroup IDR 3539 * 3540 * Swap-out records and page cache shadow entries need to store memcg 3541 * references in constrained space, so we maintain an ID space that is 3542 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3543 * memory-controlled cgroups to 64k. 3544 * 3545 * However, there usually are many references to the offline CSS after 3546 * the cgroup has been destroyed, such as page cache or reclaimable 3547 * slab objects, that don't need to hang on to the ID. We want to keep 3548 * those dead CSS from occupying IDs, or we might quickly exhaust the 3549 * relatively small ID space and prevent the creation of new cgroups 3550 * even when there are much fewer than 64k cgroups - possibly none. 3551 * 3552 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3553 * be freed and recycled when it's no longer needed, which is usually 3554 * when the CSS is offlined. 3555 * 3556 * The only exception to that are records of swapped out tmpfs/shmem 3557 * pages that need to be attributed to live ancestors on swapin. But 3558 * those references are manageable from userspace. 3559 */ 3560 3561 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3562 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3563 3564 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3565 { 3566 if (memcg->id.id > 0) { 3567 xa_erase(&mem_cgroup_ids, memcg->id.id); 3568 memcg->id.id = 0; 3569 } 3570 } 3571 3572 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3573 unsigned int n) 3574 { 3575 refcount_add(n, &memcg->id.ref); 3576 } 3577 3578 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3579 { 3580 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3581 mem_cgroup_id_remove(memcg); 3582 3583 /* Memcg ID pins CSS */ 3584 css_put(&memcg->css); 3585 } 3586 } 3587 3588 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3589 { 3590 mem_cgroup_id_put_many(memcg, 1); 3591 } 3592 3593 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3594 { 3595 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3596 /* 3597 * The root cgroup cannot be destroyed, so it's refcount must 3598 * always be >= 1. 3599 */ 3600 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3601 VM_BUG_ON(1); 3602 break; 3603 } 3604 memcg = parent_mem_cgroup(memcg); 3605 if (!memcg) 3606 memcg = root_mem_cgroup; 3607 } 3608 return memcg; 3609 } 3610 3611 /** 3612 * mem_cgroup_from_id - look up a memcg from a memcg id 3613 * @id: the memcg id to look up 3614 * 3615 * Caller must hold rcu_read_lock(). 3616 */ 3617 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3618 { 3619 WARN_ON_ONCE(!rcu_read_lock_held()); 3620 return xa_load(&mem_cgroup_ids, id); 3621 } 3622 3623 #ifdef CONFIG_SHRINKER_DEBUG 3624 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3625 { 3626 struct cgroup *cgrp; 3627 struct cgroup_subsys_state *css; 3628 struct mem_cgroup *memcg; 3629 3630 cgrp = cgroup_get_from_id(ino); 3631 if (IS_ERR(cgrp)) 3632 return ERR_CAST(cgrp); 3633 3634 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3635 if (css) 3636 memcg = container_of(css, struct mem_cgroup, css); 3637 else 3638 memcg = ERR_PTR(-ENOENT); 3639 3640 cgroup_put(cgrp); 3641 3642 return memcg; 3643 } 3644 #endif 3645 3646 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3647 { 3648 if (!pn) 3649 return; 3650 3651 free_percpu(pn->lruvec_stats_percpu); 3652 kfree(pn->lruvec_stats); 3653 kfree(pn); 3654 } 3655 3656 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3657 { 3658 struct mem_cgroup_per_node *pn; 3659 3660 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3661 node); 3662 if (!pn) 3663 return false; 3664 3665 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3666 GFP_KERNEL_ACCOUNT, node); 3667 if (!pn->lruvec_stats) 3668 goto fail; 3669 3670 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3671 GFP_KERNEL_ACCOUNT); 3672 if (!pn->lruvec_stats_percpu) 3673 goto fail; 3674 3675 lruvec_init(&pn->lruvec); 3676 pn->memcg = memcg; 3677 3678 memcg->nodeinfo[node] = pn; 3679 return true; 3680 fail: 3681 free_mem_cgroup_per_node_info(pn); 3682 return false; 3683 } 3684 3685 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3686 { 3687 int node; 3688 3689 obj_cgroup_put(memcg->orig_objcg); 3690 3691 for_each_node(node) 3692 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3693 memcg1_free_events(memcg); 3694 kfree(memcg->vmstats); 3695 free_percpu(memcg->vmstats_percpu); 3696 kfree(memcg); 3697 } 3698 3699 static void mem_cgroup_free(struct mem_cgroup *memcg) 3700 { 3701 lru_gen_exit_memcg(memcg); 3702 memcg_wb_domain_exit(memcg); 3703 __mem_cgroup_free(memcg); 3704 } 3705 3706 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3707 { 3708 struct memcg_vmstats_percpu *statc; 3709 struct memcg_vmstats_percpu __percpu *pstatc_pcpu; 3710 struct mem_cgroup *memcg; 3711 int node, cpu; 3712 int __maybe_unused i; 3713 long error; 3714 3715 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3716 if (!memcg) 3717 return ERR_PTR(-ENOMEM); 3718 3719 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3720 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3721 if (error) 3722 goto fail; 3723 error = -ENOMEM; 3724 3725 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3726 GFP_KERNEL_ACCOUNT); 3727 if (!memcg->vmstats) 3728 goto fail; 3729 3730 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3731 GFP_KERNEL_ACCOUNT); 3732 if (!memcg->vmstats_percpu) 3733 goto fail; 3734 3735 if (!memcg1_alloc_events(memcg)) 3736 goto fail; 3737 3738 for_each_possible_cpu(cpu) { 3739 if (parent) 3740 pstatc_pcpu = parent->vmstats_percpu; 3741 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3742 statc->parent_pcpu = parent ? pstatc_pcpu : NULL; 3743 statc->vmstats = memcg->vmstats; 3744 } 3745 3746 for_each_node(node) 3747 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3748 goto fail; 3749 3750 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3751 goto fail; 3752 3753 INIT_WORK(&memcg->high_work, high_work_func); 3754 vmpressure_init(&memcg->vmpressure); 3755 INIT_LIST_HEAD(&memcg->memory_peaks); 3756 INIT_LIST_HEAD(&memcg->swap_peaks); 3757 spin_lock_init(&memcg->peaks_lock); 3758 memcg->socket_pressure = jiffies; 3759 memcg1_memcg_init(memcg); 3760 memcg->kmemcg_id = -1; 3761 INIT_LIST_HEAD(&memcg->objcg_list); 3762 #ifdef CONFIG_CGROUP_WRITEBACK 3763 INIT_LIST_HEAD(&memcg->cgwb_list); 3764 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3765 memcg->cgwb_frn[i].done = 3766 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3767 #endif 3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3769 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3770 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3771 memcg->deferred_split_queue.split_queue_len = 0; 3772 #endif 3773 lru_gen_init_memcg(memcg); 3774 return memcg; 3775 fail: 3776 mem_cgroup_id_remove(memcg); 3777 __mem_cgroup_free(memcg); 3778 return ERR_PTR(error); 3779 } 3780 3781 static struct cgroup_subsys_state * __ref 3782 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3783 { 3784 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3785 struct mem_cgroup *memcg, *old_memcg; 3786 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3787 3788 old_memcg = set_active_memcg(parent); 3789 memcg = mem_cgroup_alloc(parent); 3790 set_active_memcg(old_memcg); 3791 if (IS_ERR(memcg)) 3792 return ERR_CAST(memcg); 3793 3794 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3795 memcg1_soft_limit_reset(memcg); 3796 #ifdef CONFIG_ZSWAP 3797 memcg->zswap_max = PAGE_COUNTER_MAX; 3798 WRITE_ONCE(memcg->zswap_writeback, true); 3799 #endif 3800 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3801 if (parent) { 3802 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3803 3804 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3805 page_counter_init(&memcg->swap, &parent->swap, false); 3806 #ifdef CONFIG_MEMCG_V1 3807 memcg->memory.track_failcnt = !memcg_on_dfl; 3808 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3809 page_counter_init(&memcg->kmem, &parent->kmem, false); 3810 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3811 #endif 3812 } else { 3813 init_memcg_stats(); 3814 init_memcg_events(); 3815 page_counter_init(&memcg->memory, NULL, true); 3816 page_counter_init(&memcg->swap, NULL, false); 3817 #ifdef CONFIG_MEMCG_V1 3818 page_counter_init(&memcg->kmem, NULL, false); 3819 page_counter_init(&memcg->tcpmem, NULL, false); 3820 #endif 3821 root_mem_cgroup = memcg; 3822 return &memcg->css; 3823 } 3824 3825 if (memcg_on_dfl && !cgroup_memory_nosocket) 3826 static_branch_inc(&memcg_sockets_enabled_key); 3827 3828 if (!cgroup_memory_nobpf) 3829 static_branch_inc(&memcg_bpf_enabled_key); 3830 3831 return &memcg->css; 3832 } 3833 3834 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3835 { 3836 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3837 3838 if (memcg_online_kmem(memcg)) 3839 goto remove_id; 3840 3841 /* 3842 * A memcg must be visible for expand_shrinker_info() 3843 * by the time the maps are allocated. So, we allocate maps 3844 * here, when for_each_mem_cgroup() can't skip it. 3845 */ 3846 if (alloc_shrinker_info(memcg)) 3847 goto offline_kmem; 3848 3849 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3850 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3851 FLUSH_TIME); 3852 lru_gen_online_memcg(memcg); 3853 3854 /* Online state pins memcg ID, memcg ID pins CSS */ 3855 refcount_set(&memcg->id.ref, 1); 3856 css_get(css); 3857 3858 /* 3859 * Ensure mem_cgroup_from_id() works once we're fully online. 3860 * 3861 * We could do this earlier and require callers to filter with 3862 * css_tryget_online(). But right now there are no users that 3863 * need earlier access, and the workingset code relies on the 3864 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3865 * publish it here at the end of onlining. This matches the 3866 * regular ID destruction during offlining. 3867 */ 3868 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3869 3870 return 0; 3871 offline_kmem: 3872 memcg_offline_kmem(memcg); 3873 remove_id: 3874 mem_cgroup_id_remove(memcg); 3875 return -ENOMEM; 3876 } 3877 3878 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3879 { 3880 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3881 3882 memcg1_css_offline(memcg); 3883 3884 page_counter_set_min(&memcg->memory, 0); 3885 page_counter_set_low(&memcg->memory, 0); 3886 3887 zswap_memcg_offline_cleanup(memcg); 3888 3889 memcg_offline_kmem(memcg); 3890 reparent_shrinker_deferred(memcg); 3891 wb_memcg_offline(memcg); 3892 lru_gen_offline_memcg(memcg); 3893 3894 drain_all_stock(memcg); 3895 3896 mem_cgroup_id_put(memcg); 3897 } 3898 3899 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3900 { 3901 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3902 3903 invalidate_reclaim_iterators(memcg); 3904 lru_gen_release_memcg(memcg); 3905 } 3906 3907 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3908 { 3909 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3910 int __maybe_unused i; 3911 3912 #ifdef CONFIG_CGROUP_WRITEBACK 3913 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3914 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3915 #endif 3916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3917 static_branch_dec(&memcg_sockets_enabled_key); 3918 3919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3920 static_branch_dec(&memcg_sockets_enabled_key); 3921 3922 if (!cgroup_memory_nobpf) 3923 static_branch_dec(&memcg_bpf_enabled_key); 3924 3925 vmpressure_cleanup(&memcg->vmpressure); 3926 cancel_work_sync(&memcg->high_work); 3927 memcg1_remove_from_trees(memcg); 3928 free_shrinker_info(memcg); 3929 mem_cgroup_free(memcg); 3930 } 3931 3932 /** 3933 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3934 * @css: the target css 3935 * 3936 * Reset the states of the mem_cgroup associated with @css. This is 3937 * invoked when the userland requests disabling on the default hierarchy 3938 * but the memcg is pinned through dependency. The memcg should stop 3939 * applying policies and should revert to the vanilla state as it may be 3940 * made visible again. 3941 * 3942 * The current implementation only resets the essential configurations. 3943 * This needs to be expanded to cover all the visible parts. 3944 */ 3945 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3946 { 3947 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3948 3949 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3950 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3951 #ifdef CONFIG_MEMCG_V1 3952 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3953 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3954 #endif 3955 page_counter_set_min(&memcg->memory, 0); 3956 page_counter_set_low(&memcg->memory, 0); 3957 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3958 memcg1_soft_limit_reset(memcg); 3959 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3960 memcg_wb_domain_size_changed(memcg); 3961 } 3962 3963 struct aggregate_control { 3964 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3965 long *aggregate; 3966 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3967 long *local; 3968 /* pointer to the pending child counters during tree propagation */ 3969 long *pending; 3970 /* pointer to the parent's pending counters, could be NULL */ 3971 long *ppending; 3972 /* pointer to the percpu counters to be aggregated */ 3973 long *cstat; 3974 /* pointer to the percpu counters of the last aggregation*/ 3975 long *cstat_prev; 3976 /* size of the above counters */ 3977 int size; 3978 }; 3979 3980 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3981 { 3982 int i; 3983 long delta, delta_cpu, v; 3984 3985 for (i = 0; i < ac->size; i++) { 3986 /* 3987 * Collect the aggregated propagation counts of groups 3988 * below us. We're in a per-cpu loop here and this is 3989 * a global counter, so the first cycle will get them. 3990 */ 3991 delta = ac->pending[i]; 3992 if (delta) 3993 ac->pending[i] = 0; 3994 3995 /* Add CPU changes on this level since the last flush */ 3996 delta_cpu = 0; 3997 v = READ_ONCE(ac->cstat[i]); 3998 if (v != ac->cstat_prev[i]) { 3999 delta_cpu = v - ac->cstat_prev[i]; 4000 delta += delta_cpu; 4001 ac->cstat_prev[i] = v; 4002 } 4003 4004 /* Aggregate counts on this level and propagate upwards */ 4005 if (delta_cpu) 4006 ac->local[i] += delta_cpu; 4007 4008 if (delta) { 4009 ac->aggregate[i] += delta; 4010 if (ac->ppending) 4011 ac->ppending[i] += delta; 4012 } 4013 } 4014 } 4015 4016 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 4017 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4018 int cpu) 4019 { 4020 int nid; 4021 4022 if (atomic_read(&memcg->kmem_stat)) { 4023 int kmem = atomic_xchg(&memcg->kmem_stat, 0); 4024 int index = memcg_stats_index(MEMCG_KMEM); 4025 4026 memcg->vmstats->state[index] += kmem; 4027 if (parent) 4028 parent->vmstats->state_pending[index] += kmem; 4029 } 4030 4031 for_each_node_state(nid, N_MEMORY) { 4032 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4033 struct lruvec_stats *lstats = pn->lruvec_stats; 4034 struct lruvec_stats *plstats = NULL; 4035 4036 if (parent) 4037 plstats = parent->nodeinfo[nid]->lruvec_stats; 4038 4039 if (atomic_read(&pn->slab_reclaimable)) { 4040 int slab = atomic_xchg(&pn->slab_reclaimable, 0); 4041 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); 4042 4043 lstats->state[index] += slab; 4044 if (plstats) 4045 plstats->state_pending[index] += slab; 4046 } 4047 if (atomic_read(&pn->slab_unreclaimable)) { 4048 int slab = atomic_xchg(&pn->slab_unreclaimable, 0); 4049 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); 4050 4051 lstats->state[index] += slab; 4052 if (plstats) 4053 plstats->state_pending[index] += slab; 4054 } 4055 } 4056 } 4057 #else 4058 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4059 int cpu) 4060 {} 4061 #endif 4062 4063 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 4064 { 4065 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4066 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4067 struct memcg_vmstats_percpu *statc; 4068 struct aggregate_control ac; 4069 int nid; 4070 4071 flush_nmi_stats(memcg, parent, cpu); 4072 4073 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 4074 4075 ac = (struct aggregate_control) { 4076 .aggregate = memcg->vmstats->state, 4077 .local = memcg->vmstats->state_local, 4078 .pending = memcg->vmstats->state_pending, 4079 .ppending = parent ? parent->vmstats->state_pending : NULL, 4080 .cstat = statc->state, 4081 .cstat_prev = statc->state_prev, 4082 .size = MEMCG_VMSTAT_SIZE, 4083 }; 4084 mem_cgroup_stat_aggregate(&ac); 4085 4086 ac = (struct aggregate_control) { 4087 .aggregate = memcg->vmstats->events, 4088 .local = memcg->vmstats->events_local, 4089 .pending = memcg->vmstats->events_pending, 4090 .ppending = parent ? parent->vmstats->events_pending : NULL, 4091 .cstat = statc->events, 4092 .cstat_prev = statc->events_prev, 4093 .size = NR_MEMCG_EVENTS, 4094 }; 4095 mem_cgroup_stat_aggregate(&ac); 4096 4097 for_each_node_state(nid, N_MEMORY) { 4098 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4099 struct lruvec_stats *lstats = pn->lruvec_stats; 4100 struct lruvec_stats *plstats = NULL; 4101 struct lruvec_stats_percpu *lstatc; 4102 4103 if (parent) 4104 plstats = parent->nodeinfo[nid]->lruvec_stats; 4105 4106 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4107 4108 ac = (struct aggregate_control) { 4109 .aggregate = lstats->state, 4110 .local = lstats->state_local, 4111 .pending = lstats->state_pending, 4112 .ppending = plstats ? plstats->state_pending : NULL, 4113 .cstat = lstatc->state, 4114 .cstat_prev = lstatc->state_prev, 4115 .size = NR_MEMCG_NODE_STAT_ITEMS, 4116 }; 4117 mem_cgroup_stat_aggregate(&ac); 4118 4119 } 4120 WRITE_ONCE(statc->stats_updates, 0); 4121 /* We are in a per-cpu loop here, only do the atomic write once */ 4122 if (atomic_read(&memcg->vmstats->stats_updates)) 4123 atomic_set(&memcg->vmstats->stats_updates, 0); 4124 } 4125 4126 static void mem_cgroup_fork(struct task_struct *task) 4127 { 4128 /* 4129 * Set the update flag to cause task->objcg to be initialized lazily 4130 * on the first allocation. It can be done without any synchronization 4131 * because it's always performed on the current task, so does 4132 * current_objcg_update(). 4133 */ 4134 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4135 } 4136 4137 static void mem_cgroup_exit(struct task_struct *task) 4138 { 4139 struct obj_cgroup *objcg = task->objcg; 4140 4141 objcg = (struct obj_cgroup *) 4142 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4143 obj_cgroup_put(objcg); 4144 4145 /* 4146 * Some kernel allocations can happen after this point, 4147 * but let's ignore them. It can be done without any synchronization 4148 * because it's always performed on the current task, so does 4149 * current_objcg_update(). 4150 */ 4151 task->objcg = NULL; 4152 } 4153 4154 #ifdef CONFIG_LRU_GEN 4155 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4156 { 4157 struct task_struct *task; 4158 struct cgroup_subsys_state *css; 4159 4160 /* find the first leader if there is any */ 4161 cgroup_taskset_for_each_leader(task, css, tset) 4162 break; 4163 4164 if (!task) 4165 return; 4166 4167 task_lock(task); 4168 if (task->mm && READ_ONCE(task->mm->owner) == task) 4169 lru_gen_migrate_mm(task->mm); 4170 task_unlock(task); 4171 } 4172 #else 4173 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4174 #endif /* CONFIG_LRU_GEN */ 4175 4176 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4177 { 4178 struct task_struct *task; 4179 struct cgroup_subsys_state *css; 4180 4181 cgroup_taskset_for_each(task, css, tset) { 4182 /* atomically set the update bit */ 4183 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4184 } 4185 } 4186 4187 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4188 { 4189 mem_cgroup_lru_gen_attach(tset); 4190 mem_cgroup_kmem_attach(tset); 4191 } 4192 4193 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4194 { 4195 if (value == PAGE_COUNTER_MAX) 4196 seq_puts(m, "max\n"); 4197 else 4198 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4199 4200 return 0; 4201 } 4202 4203 static u64 memory_current_read(struct cgroup_subsys_state *css, 4204 struct cftype *cft) 4205 { 4206 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4207 4208 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4209 } 4210 4211 #define OFP_PEAK_UNSET (((-1UL))) 4212 4213 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4214 { 4215 struct cgroup_of_peak *ofp = of_peak(sf->private); 4216 u64 fd_peak = READ_ONCE(ofp->value), peak; 4217 4218 /* User wants global or local peak? */ 4219 if (fd_peak == OFP_PEAK_UNSET) 4220 peak = pc->watermark; 4221 else 4222 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4223 4224 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4225 return 0; 4226 } 4227 4228 static int memory_peak_show(struct seq_file *sf, void *v) 4229 { 4230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4231 4232 return peak_show(sf, v, &memcg->memory); 4233 } 4234 4235 static int peak_open(struct kernfs_open_file *of) 4236 { 4237 struct cgroup_of_peak *ofp = of_peak(of); 4238 4239 ofp->value = OFP_PEAK_UNSET; 4240 return 0; 4241 } 4242 4243 static void peak_release(struct kernfs_open_file *of) 4244 { 4245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4246 struct cgroup_of_peak *ofp = of_peak(of); 4247 4248 if (ofp->value == OFP_PEAK_UNSET) { 4249 /* fast path (no writes on this fd) */ 4250 return; 4251 } 4252 spin_lock(&memcg->peaks_lock); 4253 list_del(&ofp->list); 4254 spin_unlock(&memcg->peaks_lock); 4255 } 4256 4257 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4258 loff_t off, struct page_counter *pc, 4259 struct list_head *watchers) 4260 { 4261 unsigned long usage; 4262 struct cgroup_of_peak *peer_ctx; 4263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4264 struct cgroup_of_peak *ofp = of_peak(of); 4265 4266 spin_lock(&memcg->peaks_lock); 4267 4268 usage = page_counter_read(pc); 4269 WRITE_ONCE(pc->local_watermark, usage); 4270 4271 list_for_each_entry(peer_ctx, watchers, list) 4272 if (usage > peer_ctx->value) 4273 WRITE_ONCE(peer_ctx->value, usage); 4274 4275 /* initial write, register watcher */ 4276 if (ofp->value == OFP_PEAK_UNSET) 4277 list_add(&ofp->list, watchers); 4278 4279 WRITE_ONCE(ofp->value, usage); 4280 spin_unlock(&memcg->peaks_lock); 4281 4282 return nbytes; 4283 } 4284 4285 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4286 size_t nbytes, loff_t off) 4287 { 4288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4289 4290 return peak_write(of, buf, nbytes, off, &memcg->memory, 4291 &memcg->memory_peaks); 4292 } 4293 4294 #undef OFP_PEAK_UNSET 4295 4296 static int memory_min_show(struct seq_file *m, void *v) 4297 { 4298 return seq_puts_memcg_tunable(m, 4299 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4300 } 4301 4302 static ssize_t memory_min_write(struct kernfs_open_file *of, 4303 char *buf, size_t nbytes, loff_t off) 4304 { 4305 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4306 unsigned long min; 4307 int err; 4308 4309 buf = strstrip(buf); 4310 err = page_counter_memparse(buf, "max", &min); 4311 if (err) 4312 return err; 4313 4314 page_counter_set_min(&memcg->memory, min); 4315 4316 return nbytes; 4317 } 4318 4319 static int memory_low_show(struct seq_file *m, void *v) 4320 { 4321 return seq_puts_memcg_tunable(m, 4322 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4323 } 4324 4325 static ssize_t memory_low_write(struct kernfs_open_file *of, 4326 char *buf, size_t nbytes, loff_t off) 4327 { 4328 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4329 unsigned long low; 4330 int err; 4331 4332 buf = strstrip(buf); 4333 err = page_counter_memparse(buf, "max", &low); 4334 if (err) 4335 return err; 4336 4337 page_counter_set_low(&memcg->memory, low); 4338 4339 return nbytes; 4340 } 4341 4342 static int memory_high_show(struct seq_file *m, void *v) 4343 { 4344 return seq_puts_memcg_tunable(m, 4345 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4346 } 4347 4348 static ssize_t memory_high_write(struct kernfs_open_file *of, 4349 char *buf, size_t nbytes, loff_t off) 4350 { 4351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4352 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4353 bool drained = false; 4354 unsigned long high; 4355 int err; 4356 4357 buf = strstrip(buf); 4358 err = page_counter_memparse(buf, "max", &high); 4359 if (err) 4360 return err; 4361 4362 page_counter_set_high(&memcg->memory, high); 4363 4364 if (of->file->f_flags & O_NONBLOCK) 4365 goto out; 4366 4367 for (;;) { 4368 unsigned long nr_pages = page_counter_read(&memcg->memory); 4369 unsigned long reclaimed; 4370 4371 if (nr_pages <= high) 4372 break; 4373 4374 if (signal_pending(current)) 4375 break; 4376 4377 if (!drained) { 4378 drain_all_stock(memcg); 4379 drained = true; 4380 continue; 4381 } 4382 4383 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4384 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4385 4386 if (!reclaimed && !nr_retries--) 4387 break; 4388 } 4389 out: 4390 memcg_wb_domain_size_changed(memcg); 4391 return nbytes; 4392 } 4393 4394 static int memory_max_show(struct seq_file *m, void *v) 4395 { 4396 return seq_puts_memcg_tunable(m, 4397 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4398 } 4399 4400 static ssize_t memory_max_write(struct kernfs_open_file *of, 4401 char *buf, size_t nbytes, loff_t off) 4402 { 4403 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4404 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4405 bool drained = false; 4406 unsigned long max; 4407 int err; 4408 4409 buf = strstrip(buf); 4410 err = page_counter_memparse(buf, "max", &max); 4411 if (err) 4412 return err; 4413 4414 xchg(&memcg->memory.max, max); 4415 4416 if (of->file->f_flags & O_NONBLOCK) 4417 goto out; 4418 4419 for (;;) { 4420 unsigned long nr_pages = page_counter_read(&memcg->memory); 4421 4422 if (nr_pages <= max) 4423 break; 4424 4425 if (signal_pending(current)) 4426 break; 4427 4428 if (!drained) { 4429 drain_all_stock(memcg); 4430 drained = true; 4431 continue; 4432 } 4433 4434 if (nr_reclaims) { 4435 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4436 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4437 nr_reclaims--; 4438 continue; 4439 } 4440 4441 memcg_memory_event(memcg, MEMCG_OOM); 4442 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4443 break; 4444 cond_resched(); 4445 } 4446 out: 4447 memcg_wb_domain_size_changed(memcg); 4448 return nbytes; 4449 } 4450 4451 /* 4452 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4453 * if any new events become available. 4454 */ 4455 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4456 { 4457 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4458 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4459 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4460 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4461 seq_printf(m, "oom_kill %lu\n", 4462 atomic_long_read(&events[MEMCG_OOM_KILL])); 4463 seq_printf(m, "oom_group_kill %lu\n", 4464 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4465 } 4466 4467 static int memory_events_show(struct seq_file *m, void *v) 4468 { 4469 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4470 4471 __memory_events_show(m, memcg->memory_events); 4472 return 0; 4473 } 4474 4475 static int memory_events_local_show(struct seq_file *m, void *v) 4476 { 4477 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4478 4479 __memory_events_show(m, memcg->memory_events_local); 4480 return 0; 4481 } 4482 4483 int memory_stat_show(struct seq_file *m, void *v) 4484 { 4485 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4486 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4487 struct seq_buf s; 4488 4489 if (!buf) 4490 return -ENOMEM; 4491 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4492 memory_stat_format(memcg, &s); 4493 seq_puts(m, buf); 4494 kfree(buf); 4495 return 0; 4496 } 4497 4498 #ifdef CONFIG_NUMA 4499 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4500 int item) 4501 { 4502 return lruvec_page_state(lruvec, item) * 4503 memcg_page_state_output_unit(item); 4504 } 4505 4506 static int memory_numa_stat_show(struct seq_file *m, void *v) 4507 { 4508 int i; 4509 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4510 4511 mem_cgroup_flush_stats(memcg); 4512 4513 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4514 int nid; 4515 4516 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4517 continue; 4518 4519 seq_printf(m, "%s", memory_stats[i].name); 4520 for_each_node_state(nid, N_MEMORY) { 4521 u64 size; 4522 struct lruvec *lruvec; 4523 4524 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4525 size = lruvec_page_state_output(lruvec, 4526 memory_stats[i].idx); 4527 seq_printf(m, " N%d=%llu", nid, size); 4528 } 4529 seq_putc(m, '\n'); 4530 } 4531 4532 return 0; 4533 } 4534 #endif 4535 4536 static int memory_oom_group_show(struct seq_file *m, void *v) 4537 { 4538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4539 4540 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4541 4542 return 0; 4543 } 4544 4545 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4546 char *buf, size_t nbytes, loff_t off) 4547 { 4548 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4549 int ret, oom_group; 4550 4551 buf = strstrip(buf); 4552 if (!buf) 4553 return -EINVAL; 4554 4555 ret = kstrtoint(buf, 0, &oom_group); 4556 if (ret) 4557 return ret; 4558 4559 if (oom_group != 0 && oom_group != 1) 4560 return -EINVAL; 4561 4562 WRITE_ONCE(memcg->oom_group, oom_group); 4563 4564 return nbytes; 4565 } 4566 4567 enum { 4568 MEMORY_RECLAIM_SWAPPINESS = 0, 4569 MEMORY_RECLAIM_SWAPPINESS_MAX, 4570 MEMORY_RECLAIM_NULL, 4571 }; 4572 4573 static const match_table_t tokens = { 4574 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4575 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 4576 { MEMORY_RECLAIM_NULL, NULL }, 4577 }; 4578 4579 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4580 size_t nbytes, loff_t off) 4581 { 4582 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4583 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4584 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4585 int swappiness = -1; 4586 unsigned int reclaim_options; 4587 char *old_buf, *start; 4588 substring_t args[MAX_OPT_ARGS]; 4589 4590 buf = strstrip(buf); 4591 4592 old_buf = buf; 4593 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4594 if (buf == old_buf) 4595 return -EINVAL; 4596 4597 buf = strstrip(buf); 4598 4599 while ((start = strsep(&buf, " ")) != NULL) { 4600 if (!strlen(start)) 4601 continue; 4602 switch (match_token(start, tokens, args)) { 4603 case MEMORY_RECLAIM_SWAPPINESS: 4604 if (match_int(&args[0], &swappiness)) 4605 return -EINVAL; 4606 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4607 return -EINVAL; 4608 break; 4609 case MEMORY_RECLAIM_SWAPPINESS_MAX: 4610 swappiness = SWAPPINESS_ANON_ONLY; 4611 break; 4612 default: 4613 return -EINVAL; 4614 } 4615 } 4616 4617 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4618 while (nr_reclaimed < nr_to_reclaim) { 4619 /* Will converge on zero, but reclaim enforces a minimum */ 4620 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4621 unsigned long reclaimed; 4622 4623 if (signal_pending(current)) 4624 return -EINTR; 4625 4626 /* 4627 * This is the final attempt, drain percpu lru caches in the 4628 * hope of introducing more evictable pages for 4629 * try_to_free_mem_cgroup_pages(). 4630 */ 4631 if (!nr_retries) 4632 lru_add_drain_all(); 4633 4634 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4635 batch_size, GFP_KERNEL, 4636 reclaim_options, 4637 swappiness == -1 ? NULL : &swappiness); 4638 4639 if (!reclaimed && !nr_retries--) 4640 return -EAGAIN; 4641 4642 nr_reclaimed += reclaimed; 4643 } 4644 4645 return nbytes; 4646 } 4647 4648 static struct cftype memory_files[] = { 4649 { 4650 .name = "current", 4651 .flags = CFTYPE_NOT_ON_ROOT, 4652 .read_u64 = memory_current_read, 4653 }, 4654 { 4655 .name = "peak", 4656 .flags = CFTYPE_NOT_ON_ROOT, 4657 .open = peak_open, 4658 .release = peak_release, 4659 .seq_show = memory_peak_show, 4660 .write = memory_peak_write, 4661 }, 4662 { 4663 .name = "min", 4664 .flags = CFTYPE_NOT_ON_ROOT, 4665 .seq_show = memory_min_show, 4666 .write = memory_min_write, 4667 }, 4668 { 4669 .name = "low", 4670 .flags = CFTYPE_NOT_ON_ROOT, 4671 .seq_show = memory_low_show, 4672 .write = memory_low_write, 4673 }, 4674 { 4675 .name = "high", 4676 .flags = CFTYPE_NOT_ON_ROOT, 4677 .seq_show = memory_high_show, 4678 .write = memory_high_write, 4679 }, 4680 { 4681 .name = "max", 4682 .flags = CFTYPE_NOT_ON_ROOT, 4683 .seq_show = memory_max_show, 4684 .write = memory_max_write, 4685 }, 4686 { 4687 .name = "events", 4688 .flags = CFTYPE_NOT_ON_ROOT, 4689 .file_offset = offsetof(struct mem_cgroup, events_file), 4690 .seq_show = memory_events_show, 4691 }, 4692 { 4693 .name = "events.local", 4694 .flags = CFTYPE_NOT_ON_ROOT, 4695 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4696 .seq_show = memory_events_local_show, 4697 }, 4698 { 4699 .name = "stat", 4700 .seq_show = memory_stat_show, 4701 }, 4702 #ifdef CONFIG_NUMA 4703 { 4704 .name = "numa_stat", 4705 .seq_show = memory_numa_stat_show, 4706 }, 4707 #endif 4708 { 4709 .name = "oom.group", 4710 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4711 .seq_show = memory_oom_group_show, 4712 .write = memory_oom_group_write, 4713 }, 4714 { 4715 .name = "reclaim", 4716 .flags = CFTYPE_NS_DELEGATABLE, 4717 .write = memory_reclaim, 4718 }, 4719 { } /* terminate */ 4720 }; 4721 4722 struct cgroup_subsys memory_cgrp_subsys = { 4723 .css_alloc = mem_cgroup_css_alloc, 4724 .css_online = mem_cgroup_css_online, 4725 .css_offline = mem_cgroup_css_offline, 4726 .css_released = mem_cgroup_css_released, 4727 .css_free = mem_cgroup_css_free, 4728 .css_reset = mem_cgroup_css_reset, 4729 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4730 .attach = mem_cgroup_attach, 4731 .fork = mem_cgroup_fork, 4732 .exit = mem_cgroup_exit, 4733 .dfl_cftypes = memory_files, 4734 #ifdef CONFIG_MEMCG_V1 4735 .legacy_cftypes = mem_cgroup_legacy_files, 4736 #endif 4737 .early_init = 0, 4738 }; 4739 4740 /** 4741 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4742 * @root: the top ancestor of the sub-tree being checked 4743 * @memcg: the memory cgroup to check 4744 * 4745 * WARNING: This function is not stateless! It can only be used as part 4746 * of a top-down tree iteration, not for isolated queries. 4747 */ 4748 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4749 struct mem_cgroup *memcg) 4750 { 4751 bool recursive_protection = 4752 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4753 4754 if (mem_cgroup_disabled()) 4755 return; 4756 4757 if (!root) 4758 root = root_mem_cgroup; 4759 4760 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4761 } 4762 4763 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4764 gfp_t gfp) 4765 { 4766 int ret; 4767 4768 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4769 if (ret) 4770 goto out; 4771 4772 css_get(&memcg->css); 4773 commit_charge(folio, memcg); 4774 memcg1_commit_charge(folio, memcg); 4775 out: 4776 return ret; 4777 } 4778 4779 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4780 { 4781 struct mem_cgroup *memcg; 4782 int ret; 4783 4784 memcg = get_mem_cgroup_from_mm(mm); 4785 ret = charge_memcg(folio, memcg, gfp); 4786 css_put(&memcg->css); 4787 4788 return ret; 4789 } 4790 4791 /** 4792 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4793 * @folio: folio being charged 4794 * @gfp: reclaim mode 4795 * 4796 * This function is called when allocating a huge page folio, after the page has 4797 * already been obtained and charged to the appropriate hugetlb cgroup 4798 * controller (if it is enabled). 4799 * 4800 * Returns ENOMEM if the memcg is already full. 4801 * Returns 0 if either the charge was successful, or if we skip the charging. 4802 */ 4803 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4804 { 4805 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4806 int ret = 0; 4807 4808 /* 4809 * Even memcg does not account for hugetlb, we still want to update 4810 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4811 * charging the memcg. 4812 */ 4813 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4814 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4815 goto out; 4816 4817 if (charge_memcg(folio, memcg, gfp)) 4818 ret = -ENOMEM; 4819 4820 out: 4821 mem_cgroup_put(memcg); 4822 return ret; 4823 } 4824 4825 /** 4826 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4827 * @folio: folio to charge. 4828 * @mm: mm context of the victim 4829 * @gfp: reclaim mode 4830 * @entry: swap entry for which the folio is allocated 4831 * 4832 * This function charges a folio allocated for swapin. Please call this before 4833 * adding the folio to the swapcache. 4834 * 4835 * Returns 0 on success. Otherwise, an error code is returned. 4836 */ 4837 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4838 gfp_t gfp, swp_entry_t entry) 4839 { 4840 struct mem_cgroup *memcg; 4841 unsigned short id; 4842 int ret; 4843 4844 if (mem_cgroup_disabled()) 4845 return 0; 4846 4847 id = lookup_swap_cgroup_id(entry); 4848 rcu_read_lock(); 4849 memcg = mem_cgroup_from_id(id); 4850 if (!memcg || !css_tryget_online(&memcg->css)) 4851 memcg = get_mem_cgroup_from_mm(mm); 4852 rcu_read_unlock(); 4853 4854 ret = charge_memcg(folio, memcg, gfp); 4855 4856 css_put(&memcg->css); 4857 return ret; 4858 } 4859 4860 struct uncharge_gather { 4861 struct mem_cgroup *memcg; 4862 unsigned long nr_memory; 4863 unsigned long pgpgout; 4864 unsigned long nr_kmem; 4865 int nid; 4866 }; 4867 4868 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4869 { 4870 memset(ug, 0, sizeof(*ug)); 4871 } 4872 4873 static void uncharge_batch(const struct uncharge_gather *ug) 4874 { 4875 if (ug->nr_memory) { 4876 memcg_uncharge(ug->memcg, ug->nr_memory); 4877 if (ug->nr_kmem) { 4878 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4879 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4880 } 4881 memcg1_oom_recover(ug->memcg); 4882 } 4883 4884 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4885 4886 /* drop reference from uncharge_folio */ 4887 css_put(&ug->memcg->css); 4888 } 4889 4890 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4891 { 4892 long nr_pages; 4893 struct mem_cgroup *memcg; 4894 struct obj_cgroup *objcg; 4895 4896 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4897 4898 /* 4899 * Nobody should be changing or seriously looking at 4900 * folio memcg or objcg at this point, we have fully 4901 * exclusive access to the folio. 4902 */ 4903 if (folio_memcg_kmem(folio)) { 4904 objcg = __folio_objcg(folio); 4905 /* 4906 * This get matches the put at the end of the function and 4907 * kmem pages do not hold memcg references anymore. 4908 */ 4909 memcg = get_mem_cgroup_from_objcg(objcg); 4910 } else { 4911 memcg = __folio_memcg(folio); 4912 } 4913 4914 if (!memcg) 4915 return; 4916 4917 if (ug->memcg != memcg) { 4918 if (ug->memcg) { 4919 uncharge_batch(ug); 4920 uncharge_gather_clear(ug); 4921 } 4922 ug->memcg = memcg; 4923 ug->nid = folio_nid(folio); 4924 4925 /* pairs with css_put in uncharge_batch */ 4926 css_get(&memcg->css); 4927 } 4928 4929 nr_pages = folio_nr_pages(folio); 4930 4931 if (folio_memcg_kmem(folio)) { 4932 ug->nr_memory += nr_pages; 4933 ug->nr_kmem += nr_pages; 4934 4935 folio->memcg_data = 0; 4936 obj_cgroup_put(objcg); 4937 } else { 4938 /* LRU pages aren't accounted at the root level */ 4939 if (!mem_cgroup_is_root(memcg)) 4940 ug->nr_memory += nr_pages; 4941 ug->pgpgout++; 4942 4943 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4944 folio->memcg_data = 0; 4945 } 4946 4947 css_put(&memcg->css); 4948 } 4949 4950 void __mem_cgroup_uncharge(struct folio *folio) 4951 { 4952 struct uncharge_gather ug; 4953 4954 /* Don't touch folio->lru of any random page, pre-check: */ 4955 if (!folio_memcg_charged(folio)) 4956 return; 4957 4958 uncharge_gather_clear(&ug); 4959 uncharge_folio(folio, &ug); 4960 uncharge_batch(&ug); 4961 } 4962 4963 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4964 { 4965 struct uncharge_gather ug; 4966 unsigned int i; 4967 4968 uncharge_gather_clear(&ug); 4969 for (i = 0; i < folios->nr; i++) 4970 uncharge_folio(folios->folios[i], &ug); 4971 if (ug.memcg) 4972 uncharge_batch(&ug); 4973 } 4974 4975 /** 4976 * mem_cgroup_replace_folio - Charge a folio's replacement. 4977 * @old: Currently circulating folio. 4978 * @new: Replacement folio. 4979 * 4980 * Charge @new as a replacement folio for @old. @old will 4981 * be uncharged upon free. 4982 * 4983 * Both folios must be locked, @new->mapping must be set up. 4984 */ 4985 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4986 { 4987 struct mem_cgroup *memcg; 4988 long nr_pages = folio_nr_pages(new); 4989 4990 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4991 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4992 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4993 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4994 4995 if (mem_cgroup_disabled()) 4996 return; 4997 4998 /* Page cache replacement: new folio already charged? */ 4999 if (folio_memcg_charged(new)) 5000 return; 5001 5002 memcg = folio_memcg(old); 5003 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 5004 if (!memcg) 5005 return; 5006 5007 /* Force-charge the new page. The old one will be freed soon */ 5008 if (!mem_cgroup_is_root(memcg)) { 5009 page_counter_charge(&memcg->memory, nr_pages); 5010 if (do_memsw_account()) 5011 page_counter_charge(&memcg->memsw, nr_pages); 5012 } 5013 5014 css_get(&memcg->css); 5015 commit_charge(new, memcg); 5016 memcg1_commit_charge(new, memcg); 5017 } 5018 5019 /** 5020 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 5021 * @old: Currently circulating folio. 5022 * @new: Replacement folio. 5023 * 5024 * Transfer the memcg data from the old folio to the new folio for migration. 5025 * The old folio's data info will be cleared. Note that the memory counters 5026 * will remain unchanged throughout the process. 5027 * 5028 * Both folios must be locked, @new->mapping must be set up. 5029 */ 5030 void mem_cgroup_migrate(struct folio *old, struct folio *new) 5031 { 5032 struct mem_cgroup *memcg; 5033 5034 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 5035 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 5036 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 5037 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 5038 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 5039 5040 if (mem_cgroup_disabled()) 5041 return; 5042 5043 memcg = folio_memcg(old); 5044 /* 5045 * Note that it is normal to see !memcg for a hugetlb folio. 5046 * For e.g, itt could have been allocated when memory_hugetlb_accounting 5047 * was not selected. 5048 */ 5049 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 5050 if (!memcg) 5051 return; 5052 5053 /* Transfer the charge and the css ref */ 5054 commit_charge(new, memcg); 5055 5056 /* Warning should never happen, so don't worry about refcount non-0 */ 5057 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 5058 old->memcg_data = 0; 5059 } 5060 5061 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5062 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5063 5064 void mem_cgroup_sk_alloc(struct sock *sk) 5065 { 5066 struct mem_cgroup *memcg; 5067 5068 if (!mem_cgroup_sockets_enabled) 5069 return; 5070 5071 /* Do not associate the sock with unrelated interrupted task's memcg. */ 5072 if (!in_task()) 5073 return; 5074 5075 rcu_read_lock(); 5076 memcg = mem_cgroup_from_task(current); 5077 if (mem_cgroup_is_root(memcg)) 5078 goto out; 5079 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 5080 goto out; 5081 if (css_tryget(&memcg->css)) 5082 sk->sk_memcg = memcg; 5083 out: 5084 rcu_read_unlock(); 5085 } 5086 5087 void mem_cgroup_sk_free(struct sock *sk) 5088 { 5089 if (sk->sk_memcg) 5090 css_put(&sk->sk_memcg->css); 5091 } 5092 5093 /** 5094 * mem_cgroup_charge_skmem - charge socket memory 5095 * @memcg: memcg to charge 5096 * @nr_pages: number of pages to charge 5097 * @gfp_mask: reclaim mode 5098 * 5099 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5100 * @memcg's configured limit, %false if it doesn't. 5101 */ 5102 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 5103 gfp_t gfp_mask) 5104 { 5105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5106 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5107 5108 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5109 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5110 return true; 5111 } 5112 5113 return false; 5114 } 5115 5116 /** 5117 * mem_cgroup_uncharge_skmem - uncharge socket memory 5118 * @memcg: memcg to uncharge 5119 * @nr_pages: number of pages to uncharge 5120 */ 5121 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5122 { 5123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5124 memcg1_uncharge_skmem(memcg, nr_pages); 5125 return; 5126 } 5127 5128 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5129 5130 refill_stock(memcg, nr_pages); 5131 } 5132 5133 static int __init cgroup_memory(char *s) 5134 { 5135 char *token; 5136 5137 while ((token = strsep(&s, ",")) != NULL) { 5138 if (!*token) 5139 continue; 5140 if (!strcmp(token, "nosocket")) 5141 cgroup_memory_nosocket = true; 5142 if (!strcmp(token, "nokmem")) 5143 cgroup_memory_nokmem = true; 5144 if (!strcmp(token, "nobpf")) 5145 cgroup_memory_nobpf = true; 5146 } 5147 return 1; 5148 } 5149 __setup("cgroup.memory=", cgroup_memory); 5150 5151 /* 5152 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5153 * 5154 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5155 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5156 * basically everything that doesn't depend on a specific mem_cgroup structure 5157 * should be initialized from here. 5158 */ 5159 int __init mem_cgroup_init(void) 5160 { 5161 unsigned int memcg_size; 5162 int cpu; 5163 5164 /* 5165 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5166 * used for per-memcg-per-cpu caching of per-node statistics. In order 5167 * to work fine, we should make sure that the overfill threshold can't 5168 * exceed S32_MAX / PAGE_SIZE. 5169 */ 5170 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5171 5172 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5173 memcg_hotplug_cpu_dead); 5174 5175 for_each_possible_cpu(cpu) { 5176 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5177 drain_local_memcg_stock); 5178 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, 5179 drain_local_obj_stock); 5180 } 5181 5182 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5183 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5184 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5185 5186 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5187 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5188 5189 return 0; 5190 } 5191 5192 #ifdef CONFIG_SWAP 5193 /** 5194 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5195 * @folio: folio being added to swap 5196 * @entry: swap entry to charge 5197 * 5198 * Try to charge @folio's memcg for the swap space at @entry. 5199 * 5200 * Returns 0 on success, -ENOMEM on failure. 5201 */ 5202 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5203 { 5204 unsigned int nr_pages = folio_nr_pages(folio); 5205 struct page_counter *counter; 5206 struct mem_cgroup *memcg; 5207 5208 if (do_memsw_account()) 5209 return 0; 5210 5211 memcg = folio_memcg(folio); 5212 5213 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5214 if (!memcg) 5215 return 0; 5216 5217 if (!entry.val) { 5218 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5219 return 0; 5220 } 5221 5222 memcg = mem_cgroup_id_get_online(memcg); 5223 5224 if (!mem_cgroup_is_root(memcg) && 5225 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5226 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5227 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5228 mem_cgroup_id_put(memcg); 5229 return -ENOMEM; 5230 } 5231 5232 /* Get references for the tail pages, too */ 5233 if (nr_pages > 1) 5234 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5235 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5236 5237 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5238 5239 return 0; 5240 } 5241 5242 /** 5243 * __mem_cgroup_uncharge_swap - uncharge swap space 5244 * @entry: swap entry to uncharge 5245 * @nr_pages: the amount of swap space to uncharge 5246 */ 5247 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5248 { 5249 struct mem_cgroup *memcg; 5250 unsigned short id; 5251 5252 id = swap_cgroup_clear(entry, nr_pages); 5253 rcu_read_lock(); 5254 memcg = mem_cgroup_from_id(id); 5255 if (memcg) { 5256 if (!mem_cgroup_is_root(memcg)) { 5257 if (do_memsw_account()) 5258 page_counter_uncharge(&memcg->memsw, nr_pages); 5259 else 5260 page_counter_uncharge(&memcg->swap, nr_pages); 5261 } 5262 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5263 mem_cgroup_id_put_many(memcg, nr_pages); 5264 } 5265 rcu_read_unlock(); 5266 } 5267 5268 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5269 { 5270 long nr_swap_pages = get_nr_swap_pages(); 5271 5272 if (mem_cgroup_disabled() || do_memsw_account()) 5273 return nr_swap_pages; 5274 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5275 nr_swap_pages = min_t(long, nr_swap_pages, 5276 READ_ONCE(memcg->swap.max) - 5277 page_counter_read(&memcg->swap)); 5278 return nr_swap_pages; 5279 } 5280 5281 bool mem_cgroup_swap_full(struct folio *folio) 5282 { 5283 struct mem_cgroup *memcg; 5284 5285 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5286 5287 if (vm_swap_full()) 5288 return true; 5289 if (do_memsw_account()) 5290 return false; 5291 5292 memcg = folio_memcg(folio); 5293 if (!memcg) 5294 return false; 5295 5296 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5297 unsigned long usage = page_counter_read(&memcg->swap); 5298 5299 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5300 usage * 2 >= READ_ONCE(memcg->swap.max)) 5301 return true; 5302 } 5303 5304 return false; 5305 } 5306 5307 static int __init setup_swap_account(char *s) 5308 { 5309 bool res; 5310 5311 if (!kstrtobool(s, &res) && !res) 5312 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5313 "in favor of configuring swap control via cgroupfs. " 5314 "Please report your usecase to linux-mm@kvack.org if you " 5315 "depend on this functionality.\n"); 5316 return 1; 5317 } 5318 __setup("swapaccount=", setup_swap_account); 5319 5320 static u64 swap_current_read(struct cgroup_subsys_state *css, 5321 struct cftype *cft) 5322 { 5323 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5324 5325 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5326 } 5327 5328 static int swap_peak_show(struct seq_file *sf, void *v) 5329 { 5330 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5331 5332 return peak_show(sf, v, &memcg->swap); 5333 } 5334 5335 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5336 size_t nbytes, loff_t off) 5337 { 5338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5339 5340 return peak_write(of, buf, nbytes, off, &memcg->swap, 5341 &memcg->swap_peaks); 5342 } 5343 5344 static int swap_high_show(struct seq_file *m, void *v) 5345 { 5346 return seq_puts_memcg_tunable(m, 5347 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5348 } 5349 5350 static ssize_t swap_high_write(struct kernfs_open_file *of, 5351 char *buf, size_t nbytes, loff_t off) 5352 { 5353 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5354 unsigned long high; 5355 int err; 5356 5357 buf = strstrip(buf); 5358 err = page_counter_memparse(buf, "max", &high); 5359 if (err) 5360 return err; 5361 5362 page_counter_set_high(&memcg->swap, high); 5363 5364 return nbytes; 5365 } 5366 5367 static int swap_max_show(struct seq_file *m, void *v) 5368 { 5369 return seq_puts_memcg_tunable(m, 5370 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5371 } 5372 5373 static ssize_t swap_max_write(struct kernfs_open_file *of, 5374 char *buf, size_t nbytes, loff_t off) 5375 { 5376 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5377 unsigned long max; 5378 int err; 5379 5380 buf = strstrip(buf); 5381 err = page_counter_memparse(buf, "max", &max); 5382 if (err) 5383 return err; 5384 5385 xchg(&memcg->swap.max, max); 5386 5387 return nbytes; 5388 } 5389 5390 static int swap_events_show(struct seq_file *m, void *v) 5391 { 5392 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5393 5394 seq_printf(m, "high %lu\n", 5395 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5396 seq_printf(m, "max %lu\n", 5397 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5398 seq_printf(m, "fail %lu\n", 5399 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5400 5401 return 0; 5402 } 5403 5404 static struct cftype swap_files[] = { 5405 { 5406 .name = "swap.current", 5407 .flags = CFTYPE_NOT_ON_ROOT, 5408 .read_u64 = swap_current_read, 5409 }, 5410 { 5411 .name = "swap.high", 5412 .flags = CFTYPE_NOT_ON_ROOT, 5413 .seq_show = swap_high_show, 5414 .write = swap_high_write, 5415 }, 5416 { 5417 .name = "swap.max", 5418 .flags = CFTYPE_NOT_ON_ROOT, 5419 .seq_show = swap_max_show, 5420 .write = swap_max_write, 5421 }, 5422 { 5423 .name = "swap.peak", 5424 .flags = CFTYPE_NOT_ON_ROOT, 5425 .open = peak_open, 5426 .release = peak_release, 5427 .seq_show = swap_peak_show, 5428 .write = swap_peak_write, 5429 }, 5430 { 5431 .name = "swap.events", 5432 .flags = CFTYPE_NOT_ON_ROOT, 5433 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5434 .seq_show = swap_events_show, 5435 }, 5436 { } /* terminate */ 5437 }; 5438 5439 #ifdef CONFIG_ZSWAP 5440 /** 5441 * obj_cgroup_may_zswap - check if this cgroup can zswap 5442 * @objcg: the object cgroup 5443 * 5444 * Check if the hierarchical zswap limit has been reached. 5445 * 5446 * This doesn't check for specific headroom, and it is not atomic 5447 * either. But with zswap, the size of the allocation is only known 5448 * once compression has occurred, and this optimistic pre-check avoids 5449 * spending cycles on compression when there is already no room left 5450 * or zswap is disabled altogether somewhere in the hierarchy. 5451 */ 5452 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5453 { 5454 struct mem_cgroup *memcg, *original_memcg; 5455 bool ret = true; 5456 5457 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5458 return true; 5459 5460 original_memcg = get_mem_cgroup_from_objcg(objcg); 5461 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5462 memcg = parent_mem_cgroup(memcg)) { 5463 unsigned long max = READ_ONCE(memcg->zswap_max); 5464 unsigned long pages; 5465 5466 if (max == PAGE_COUNTER_MAX) 5467 continue; 5468 if (max == 0) { 5469 ret = false; 5470 break; 5471 } 5472 5473 /* Force flush to get accurate stats for charging */ 5474 __mem_cgroup_flush_stats(memcg, true); 5475 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5476 if (pages < max) 5477 continue; 5478 ret = false; 5479 break; 5480 } 5481 mem_cgroup_put(original_memcg); 5482 return ret; 5483 } 5484 5485 /** 5486 * obj_cgroup_charge_zswap - charge compression backend memory 5487 * @objcg: the object cgroup 5488 * @size: size of compressed object 5489 * 5490 * This forces the charge after obj_cgroup_may_zswap() allowed 5491 * compression and storage in zwap for this cgroup to go ahead. 5492 */ 5493 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5494 { 5495 struct mem_cgroup *memcg; 5496 5497 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5498 return; 5499 5500 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5501 5502 /* PF_MEMALLOC context, charging must succeed */ 5503 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5504 VM_WARN_ON_ONCE(1); 5505 5506 rcu_read_lock(); 5507 memcg = obj_cgroup_memcg(objcg); 5508 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5509 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5510 rcu_read_unlock(); 5511 } 5512 5513 /** 5514 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5515 * @objcg: the object cgroup 5516 * @size: size of compressed object 5517 * 5518 * Uncharges zswap memory on page in. 5519 */ 5520 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5521 { 5522 struct mem_cgroup *memcg; 5523 5524 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5525 return; 5526 5527 obj_cgroup_uncharge(objcg, size); 5528 5529 rcu_read_lock(); 5530 memcg = obj_cgroup_memcg(objcg); 5531 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5532 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5533 rcu_read_unlock(); 5534 } 5535 5536 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5537 { 5538 /* if zswap is disabled, do not block pages going to the swapping device */ 5539 if (!zswap_is_enabled()) 5540 return true; 5541 5542 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5543 if (!READ_ONCE(memcg->zswap_writeback)) 5544 return false; 5545 5546 return true; 5547 } 5548 5549 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5550 struct cftype *cft) 5551 { 5552 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5553 5554 mem_cgroup_flush_stats(memcg); 5555 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5556 } 5557 5558 static int zswap_max_show(struct seq_file *m, void *v) 5559 { 5560 return seq_puts_memcg_tunable(m, 5561 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5562 } 5563 5564 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5565 char *buf, size_t nbytes, loff_t off) 5566 { 5567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5568 unsigned long max; 5569 int err; 5570 5571 buf = strstrip(buf); 5572 err = page_counter_memparse(buf, "max", &max); 5573 if (err) 5574 return err; 5575 5576 xchg(&memcg->zswap_max, max); 5577 5578 return nbytes; 5579 } 5580 5581 static int zswap_writeback_show(struct seq_file *m, void *v) 5582 { 5583 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5584 5585 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5586 return 0; 5587 } 5588 5589 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5590 char *buf, size_t nbytes, loff_t off) 5591 { 5592 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5593 int zswap_writeback; 5594 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5595 5596 if (parse_ret) 5597 return parse_ret; 5598 5599 if (zswap_writeback != 0 && zswap_writeback != 1) 5600 return -EINVAL; 5601 5602 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5603 return nbytes; 5604 } 5605 5606 static struct cftype zswap_files[] = { 5607 { 5608 .name = "zswap.current", 5609 .flags = CFTYPE_NOT_ON_ROOT, 5610 .read_u64 = zswap_current_read, 5611 }, 5612 { 5613 .name = "zswap.max", 5614 .flags = CFTYPE_NOT_ON_ROOT, 5615 .seq_show = zswap_max_show, 5616 .write = zswap_max_write, 5617 }, 5618 { 5619 .name = "zswap.writeback", 5620 .seq_show = zswap_writeback_show, 5621 .write = zswap_writeback_write, 5622 }, 5623 { } /* terminate */ 5624 }; 5625 #endif /* CONFIG_ZSWAP */ 5626 5627 static int __init mem_cgroup_swap_init(void) 5628 { 5629 if (mem_cgroup_disabled()) 5630 return 0; 5631 5632 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5633 #ifdef CONFIG_MEMCG_V1 5634 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5635 #endif 5636 #ifdef CONFIG_ZSWAP 5637 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5638 #endif 5639 return 0; 5640 } 5641 subsys_initcall(mem_cgroup_swap_init); 5642 5643 #endif /* CONFIG_SWAP */ 5644 5645 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5646 { 5647 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5648 } 5649