1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/parser.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/resume_user_mode.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include <linux/sched/isolation.h> 66 #include <linux/kmemleak.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "memcontrol-v1.h" 72 73 #include <linux/uaccess.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/memcg.h> 77 #undef CREATE_TRACE_POINTS 78 79 #include <trace/events/vmscan.h> 80 81 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 82 EXPORT_SYMBOL(memory_cgrp_subsys); 83 84 struct mem_cgroup *root_mem_cgroup __read_mostly; 85 86 /* Active memory cgroup to use from an interrupt context */ 87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 89 90 /* Socket memory accounting disabled? */ 91 static bool cgroup_memory_nosocket __ro_after_init; 92 93 /* Kernel memory accounting disabled? */ 94 static bool cgroup_memory_nokmem __ro_after_init; 95 96 /* BPF memory accounting disabled? */ 97 static bool cgroup_memory_nobpf __ro_after_init; 98 99 static struct kmem_cache *memcg_cachep; 100 static struct kmem_cache *memcg_pn_cachep; 101 102 #ifdef CONFIG_CGROUP_WRITEBACK 103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 104 #endif 105 106 static inline bool task_is_dying(void) 107 { 108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 109 (current->flags & PF_EXITING); 110 } 111 112 /* Some nice accessors for the vmpressure. */ 113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 114 { 115 if (!memcg) 116 memcg = root_mem_cgroup; 117 return &memcg->vmpressure; 118 } 119 120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 121 { 122 return container_of(vmpr, struct mem_cgroup, vmpressure); 123 } 124 125 #define SEQ_BUF_SIZE SZ_4K 126 #define CURRENT_OBJCG_UPDATE_BIT 0 127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 128 129 static DEFINE_SPINLOCK(objcg_lock); 130 131 bool mem_cgroup_kmem_disabled(void) 132 { 133 return cgroup_memory_nokmem; 134 } 135 136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 137 138 static void obj_cgroup_release(struct percpu_ref *ref) 139 { 140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 141 unsigned int nr_bytes; 142 unsigned int nr_pages; 143 unsigned long flags; 144 145 /* 146 * At this point all allocated objects are freed, and 147 * objcg->nr_charged_bytes can't have an arbitrary byte value. 148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 149 * 150 * The following sequence can lead to it: 151 * 1) CPU0: objcg == stock->cached_objcg 152 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 153 * PAGE_SIZE bytes are charged 154 * 3) CPU1: a process from another memcg is allocating something, 155 * the stock if flushed, 156 * objcg->nr_charged_bytes = PAGE_SIZE - 92 157 * 5) CPU0: we do release this object, 158 * 92 bytes are added to stock->nr_bytes 159 * 6) CPU0: stock is flushed, 160 * 92 bytes are added to objcg->nr_charged_bytes 161 * 162 * In the result, nr_charged_bytes == PAGE_SIZE. 163 * This page will be uncharged in obj_cgroup_release(). 164 */ 165 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 167 nr_pages = nr_bytes >> PAGE_SHIFT; 168 169 if (nr_pages) { 170 struct mem_cgroup *memcg; 171 172 memcg = get_mem_cgroup_from_objcg(objcg); 173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 174 memcg1_account_kmem(memcg, -nr_pages); 175 if (!mem_cgroup_is_root(memcg)) 176 memcg_uncharge(memcg, nr_pages); 177 mem_cgroup_put(memcg); 178 } 179 180 spin_lock_irqsave(&objcg_lock, flags); 181 list_del(&objcg->list); 182 spin_unlock_irqrestore(&objcg_lock, flags); 183 184 percpu_ref_exit(ref); 185 kfree_rcu(objcg, rcu); 186 } 187 188 static struct obj_cgroup *obj_cgroup_alloc(void) 189 { 190 struct obj_cgroup *objcg; 191 int ret; 192 193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 194 if (!objcg) 195 return NULL; 196 197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 198 GFP_KERNEL); 199 if (ret) { 200 kfree(objcg); 201 return NULL; 202 } 203 INIT_LIST_HEAD(&objcg->list); 204 return objcg; 205 } 206 207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 208 struct mem_cgroup *parent) 209 { 210 struct obj_cgroup *objcg, *iter; 211 212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 213 214 spin_lock_irq(&objcg_lock); 215 216 /* 1) Ready to reparent active objcg. */ 217 list_add(&objcg->list, &memcg->objcg_list); 218 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 219 list_for_each_entry(iter, &memcg->objcg_list, list) 220 WRITE_ONCE(iter->memcg, parent); 221 /* 3) Move already reparented objcgs to the parent's list */ 222 list_splice(&memcg->objcg_list, &parent->objcg_list); 223 224 spin_unlock_irq(&objcg_lock); 225 226 percpu_ref_kill(&objcg->refcnt); 227 } 228 229 /* 230 * A lot of the calls to the cache allocation functions are expected to be 231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 232 * conditional to this static branch, we'll have to allow modules that does 233 * kmem_cache_alloc and the such to see this symbol as well 234 */ 235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 236 EXPORT_SYMBOL(memcg_kmem_online_key); 237 238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 239 EXPORT_SYMBOL(memcg_bpf_enabled_key); 240 241 /** 242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 243 * @folio: folio of interest 244 * 245 * If memcg is bound to the default hierarchy, css of the memcg associated 246 * with @folio is returned. The returned css remains associated with @folio 247 * until it is released. 248 * 249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 250 * is returned. 251 */ 252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 253 { 254 struct mem_cgroup *memcg = folio_memcg(folio); 255 256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 257 memcg = root_mem_cgroup; 258 259 return &memcg->css; 260 } 261 262 /** 263 * page_cgroup_ino - return inode number of the memcg a page is charged to 264 * @page: the page 265 * 266 * Look up the closest online ancestor of the memory cgroup @page is charged to 267 * and return its inode number or 0 if @page is not charged to any cgroup. It 268 * is safe to call this function without holding a reference to @page. 269 * 270 * Note, this function is inherently racy, because there is nothing to prevent 271 * the cgroup inode from getting torn down and potentially reallocated a moment 272 * after page_cgroup_ino() returns, so it only should be used by callers that 273 * do not care (such as procfs interfaces). 274 */ 275 ino_t page_cgroup_ino(struct page *page) 276 { 277 struct mem_cgroup *memcg; 278 unsigned long ino = 0; 279 280 rcu_read_lock(); 281 /* page_folio() is racy here, but the entire function is racy anyway */ 282 memcg = folio_memcg_check(page_folio(page)); 283 284 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 285 memcg = parent_mem_cgroup(memcg); 286 if (memcg) 287 ino = cgroup_ino(memcg->css.cgroup); 288 rcu_read_unlock(); 289 return ino; 290 } 291 292 /* Subset of node_stat_item for memcg stats */ 293 static const unsigned int memcg_node_stat_items[] = { 294 NR_INACTIVE_ANON, 295 NR_ACTIVE_ANON, 296 NR_INACTIVE_FILE, 297 NR_ACTIVE_FILE, 298 NR_UNEVICTABLE, 299 NR_SLAB_RECLAIMABLE_B, 300 NR_SLAB_UNRECLAIMABLE_B, 301 WORKINGSET_REFAULT_ANON, 302 WORKINGSET_REFAULT_FILE, 303 WORKINGSET_ACTIVATE_ANON, 304 WORKINGSET_ACTIVATE_FILE, 305 WORKINGSET_RESTORE_ANON, 306 WORKINGSET_RESTORE_FILE, 307 WORKINGSET_NODERECLAIM, 308 NR_ANON_MAPPED, 309 NR_FILE_MAPPED, 310 NR_FILE_PAGES, 311 NR_FILE_DIRTY, 312 NR_WRITEBACK, 313 NR_SHMEM, 314 NR_SHMEM_THPS, 315 NR_FILE_THPS, 316 NR_ANON_THPS, 317 NR_KERNEL_STACK_KB, 318 NR_PAGETABLE, 319 NR_SECONDARY_PAGETABLE, 320 #ifdef CONFIG_SWAP 321 NR_SWAPCACHE, 322 #endif 323 #ifdef CONFIG_NUMA_BALANCING 324 PGPROMOTE_SUCCESS, 325 #endif 326 PGDEMOTE_KSWAPD, 327 PGDEMOTE_DIRECT, 328 PGDEMOTE_KHUGEPAGED, 329 PGDEMOTE_PROACTIVE, 330 #ifdef CONFIG_HUGETLB_PAGE 331 NR_HUGETLB, 332 #endif 333 }; 334 335 static const unsigned int memcg_stat_items[] = { 336 MEMCG_SWAP, 337 MEMCG_SOCK, 338 MEMCG_PERCPU_B, 339 MEMCG_VMALLOC, 340 MEMCG_KMEM, 341 MEMCG_ZSWAP_B, 342 MEMCG_ZSWAPPED, 343 }; 344 345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 347 ARRAY_SIZE(memcg_stat_items)) 348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 350 351 static void init_memcg_stats(void) 352 { 353 u8 i, j = 0; 354 355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 356 357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 358 359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 361 362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 363 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 364 } 365 366 static inline int memcg_stats_index(int idx) 367 { 368 return mem_cgroup_stats_index[idx]; 369 } 370 371 struct lruvec_stats_percpu { 372 /* Local (CPU and cgroup) state */ 373 long state[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Delta calculation for lockless upward propagation */ 376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 struct lruvec_stats { 380 /* Aggregated (CPU and subtree) state */ 381 long state[NR_MEMCG_NODE_STAT_ITEMS]; 382 383 /* Non-hierarchical (CPU aggregated) state */ 384 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Pending child counts during tree propagation */ 387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 388 }; 389 390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 391 { 392 struct mem_cgroup_per_node *pn; 393 long x; 394 int i; 395 396 if (mem_cgroup_disabled()) 397 return node_page_state(lruvec_pgdat(lruvec), idx); 398 399 i = memcg_stats_index(idx); 400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 401 return 0; 402 403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 404 x = READ_ONCE(pn->lruvec_stats->state[i]); 405 #ifdef CONFIG_SMP 406 if (x < 0) 407 x = 0; 408 #endif 409 return x; 410 } 411 412 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 413 enum node_stat_item idx) 414 { 415 struct mem_cgroup_per_node *pn; 416 long x; 417 int i; 418 419 if (mem_cgroup_disabled()) 420 return node_page_state(lruvec_pgdat(lruvec), idx); 421 422 i = memcg_stats_index(idx); 423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 424 return 0; 425 426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 428 #ifdef CONFIG_SMP 429 if (x < 0) 430 x = 0; 431 #endif 432 return x; 433 } 434 435 /* Subset of vm_event_item to report for memcg event stats */ 436 static const unsigned int memcg_vm_event_stat[] = { 437 #ifdef CONFIG_MEMCG_V1 438 PGPGIN, 439 PGPGOUT, 440 #endif 441 PSWPIN, 442 PSWPOUT, 443 PGSCAN_KSWAPD, 444 PGSCAN_DIRECT, 445 PGSCAN_KHUGEPAGED, 446 PGSCAN_PROACTIVE, 447 PGSTEAL_KSWAPD, 448 PGSTEAL_DIRECT, 449 PGSTEAL_KHUGEPAGED, 450 PGSTEAL_PROACTIVE, 451 PGFAULT, 452 PGMAJFAULT, 453 PGREFILL, 454 PGACTIVATE, 455 PGDEACTIVATE, 456 PGLAZYFREE, 457 PGLAZYFREED, 458 #ifdef CONFIG_SWAP 459 SWPIN_ZERO, 460 SWPOUT_ZERO, 461 #endif 462 #ifdef CONFIG_ZSWAP 463 ZSWPIN, 464 ZSWPOUT, 465 ZSWPWB, 466 #endif 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 THP_FAULT_ALLOC, 469 THP_COLLAPSE_ALLOC, 470 THP_SWPOUT, 471 THP_SWPOUT_FALLBACK, 472 #endif 473 #ifdef CONFIG_NUMA_BALANCING 474 NUMA_PAGE_MIGRATE, 475 NUMA_PTE_UPDATES, 476 NUMA_HINT_FAULTS, 477 #endif 478 }; 479 480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 482 483 static void init_memcg_events(void) 484 { 485 u8 i; 486 487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 488 489 memset(mem_cgroup_events_index, U8_MAX, 490 sizeof(mem_cgroup_events_index)); 491 492 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 494 } 495 496 static inline int memcg_events_index(enum vm_event_item idx) 497 { 498 return mem_cgroup_events_index[idx]; 499 } 500 501 struct memcg_vmstats_percpu { 502 /* Stats updates since the last flush */ 503 unsigned int stats_updates; 504 505 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 506 struct memcg_vmstats_percpu __percpu *parent_pcpu; 507 struct memcg_vmstats *vmstats; 508 509 /* The above should fit a single cacheline for memcg_rstat_updated() */ 510 511 /* Local (CPU and cgroup) page state & events */ 512 long state[MEMCG_VMSTAT_SIZE]; 513 unsigned long events[NR_MEMCG_EVENTS]; 514 515 /* Delta calculation for lockless upward propagation */ 516 long state_prev[MEMCG_VMSTAT_SIZE]; 517 unsigned long events_prev[NR_MEMCG_EVENTS]; 518 } ____cacheline_aligned; 519 520 struct memcg_vmstats { 521 /* Aggregated (CPU and subtree) page state & events */ 522 long state[MEMCG_VMSTAT_SIZE]; 523 unsigned long events[NR_MEMCG_EVENTS]; 524 525 /* Non-hierarchical (CPU aggregated) page state & events */ 526 long state_local[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_local[NR_MEMCG_EVENTS]; 528 529 /* Pending child counts during tree propagation */ 530 long state_pending[MEMCG_VMSTAT_SIZE]; 531 unsigned long events_pending[NR_MEMCG_EVENTS]; 532 533 /* Stats updates since the last flush */ 534 atomic64_t stats_updates; 535 }; 536 537 /* 538 * memcg and lruvec stats flushing 539 * 540 * Many codepaths leading to stats update or read are performance sensitive and 541 * adding stats flushing in such codepaths is not desirable. So, to optimize the 542 * flushing the kernel does: 543 * 544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 545 * rstat update tree grow unbounded. 546 * 547 * 2) Flush the stats synchronously on reader side only when there are more than 548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 550 * only for 2 seconds due to (1). 551 */ 552 static void flush_memcg_stats_dwork(struct work_struct *w); 553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 554 static u64 flush_last_time; 555 556 #define FLUSH_TIME (2UL*HZ) 557 558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 559 { 560 return atomic64_read(&vmstats->stats_updates) > 561 MEMCG_CHARGE_BATCH * num_online_cpus(); 562 } 563 564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, 565 int cpu) 566 { 567 struct memcg_vmstats_percpu __percpu *statc_pcpu; 568 struct memcg_vmstats_percpu *statc; 569 unsigned int stats_updates; 570 571 if (!val) 572 return; 573 574 cgroup_rstat_updated(memcg->css.cgroup, cpu); 575 statc_pcpu = memcg->vmstats_percpu; 576 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { 577 statc = this_cpu_ptr(statc_pcpu); 578 /* 579 * If @memcg is already flushable then all its ancestors are 580 * flushable as well and also there is no need to increase 581 * stats_updates. 582 */ 583 if (memcg_vmstats_needs_flush(statc->vmstats)) 584 break; 585 586 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, 587 abs(val)); 588 if (stats_updates < MEMCG_CHARGE_BATCH) 589 continue; 590 591 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); 592 atomic64_add(stats_updates, &statc->vmstats->stats_updates); 593 } 594 } 595 596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 597 { 598 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 599 600 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 601 force, needs_flush); 602 603 if (!force && !needs_flush) 604 return; 605 606 if (mem_cgroup_is_root(memcg)) 607 WRITE_ONCE(flush_last_time, jiffies_64); 608 609 cgroup_rstat_flush(memcg->css.cgroup); 610 } 611 612 /* 613 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 614 * @memcg: root of the subtree to flush 615 * 616 * Flushing is serialized by the underlying global rstat lock. There is also a 617 * minimum amount of work to be done even if there are no stat updates to flush. 618 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 619 * avoids unnecessary work and contention on the underlying lock. 620 */ 621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 622 { 623 if (mem_cgroup_disabled()) 624 return; 625 626 if (!memcg) 627 memcg = root_mem_cgroup; 628 629 __mem_cgroup_flush_stats(memcg, false); 630 } 631 632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 633 { 634 /* Only flush if the periodic flusher is one full cycle late */ 635 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 636 mem_cgroup_flush_stats(memcg); 637 } 638 639 static void flush_memcg_stats_dwork(struct work_struct *w) 640 { 641 /* 642 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 643 * in latency-sensitive paths is as cheap as possible. 644 */ 645 __mem_cgroup_flush_stats(root_mem_cgroup, true); 646 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 647 } 648 649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 650 { 651 long x; 652 int i = memcg_stats_index(idx); 653 654 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 655 return 0; 656 657 x = READ_ONCE(memcg->vmstats->state[i]); 658 #ifdef CONFIG_SMP 659 if (x < 0) 660 x = 0; 661 #endif 662 return x; 663 } 664 665 static int memcg_page_state_unit(int item); 666 667 /* 668 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 669 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 670 */ 671 static int memcg_state_val_in_pages(int idx, int val) 672 { 673 int unit = memcg_page_state_unit(idx); 674 675 if (!val || unit == PAGE_SIZE) 676 return val; 677 else 678 return max(val * unit / PAGE_SIZE, 1UL); 679 } 680 681 /** 682 * mod_memcg_state - update cgroup memory statistics 683 * @memcg: the memory cgroup 684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 685 * @val: delta to add to the counter, can be negative 686 */ 687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 688 int val) 689 { 690 int i = memcg_stats_index(idx); 691 int cpu; 692 693 if (mem_cgroup_disabled()) 694 return; 695 696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 697 return; 698 699 cpu = get_cpu(); 700 701 this_cpu_add(memcg->vmstats_percpu->state[i], val); 702 val = memcg_state_val_in_pages(idx, val); 703 memcg_rstat_updated(memcg, val, cpu); 704 trace_mod_memcg_state(memcg, idx, val); 705 706 put_cpu(); 707 } 708 709 #ifdef CONFIG_MEMCG_V1 710 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 712 { 713 long x; 714 int i = memcg_stats_index(idx); 715 716 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 717 return 0; 718 719 x = READ_ONCE(memcg->vmstats->state_local[i]); 720 #ifdef CONFIG_SMP 721 if (x < 0) 722 x = 0; 723 #endif 724 return x; 725 } 726 #endif 727 728 static void mod_memcg_lruvec_state(struct lruvec *lruvec, 729 enum node_stat_item idx, 730 int val) 731 { 732 struct mem_cgroup_per_node *pn; 733 struct mem_cgroup *memcg; 734 int i = memcg_stats_index(idx); 735 int cpu; 736 737 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 cpu = get_cpu(); 744 745 /* Update memcg */ 746 this_cpu_add(memcg->vmstats_percpu->state[i], val); 747 748 /* Update lruvec */ 749 this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 750 751 val = memcg_state_val_in_pages(idx, val); 752 memcg_rstat_updated(memcg, val, cpu); 753 trace_mod_memcg_lruvec_state(memcg, idx, val); 754 755 put_cpu(); 756 } 757 758 /** 759 * __mod_lruvec_state - update lruvec memory statistics 760 * @lruvec: the lruvec 761 * @idx: the stat item 762 * @val: delta to add to the counter, can be negative 763 * 764 * The lruvec is the intersection of the NUMA node and a cgroup. This 765 * function updates the all three counters that are affected by a 766 * change of state at this level: per-node, per-cgroup, per-lruvec. 767 */ 768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 769 int val) 770 { 771 /* Update node */ 772 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 773 774 /* Update memcg and lruvec */ 775 if (!mem_cgroup_disabled()) 776 mod_memcg_lruvec_state(lruvec, idx, val); 777 } 778 779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 780 int val) 781 { 782 struct mem_cgroup *memcg; 783 pg_data_t *pgdat = folio_pgdat(folio); 784 struct lruvec *lruvec; 785 786 rcu_read_lock(); 787 memcg = folio_memcg(folio); 788 /* Untracked pages have no memcg, no lruvec. Update only the node */ 789 if (!memcg) { 790 rcu_read_unlock(); 791 __mod_node_page_state(pgdat, idx, val); 792 return; 793 } 794 795 lruvec = mem_cgroup_lruvec(memcg, pgdat); 796 __mod_lruvec_state(lruvec, idx, val); 797 rcu_read_unlock(); 798 } 799 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 800 801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 802 { 803 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 804 struct mem_cgroup *memcg; 805 struct lruvec *lruvec; 806 807 rcu_read_lock(); 808 memcg = mem_cgroup_from_slab_obj(p); 809 810 /* 811 * Untracked pages have no memcg, no lruvec. Update only the 812 * node. If we reparent the slab objects to the root memcg, 813 * when we free the slab object, we need to update the per-memcg 814 * vmstats to keep it correct for the root memcg. 815 */ 816 if (!memcg) { 817 __mod_node_page_state(pgdat, idx, val); 818 } else { 819 lruvec = mem_cgroup_lruvec(memcg, pgdat); 820 __mod_lruvec_state(lruvec, idx, val); 821 } 822 rcu_read_unlock(); 823 } 824 825 /** 826 * count_memcg_events - account VM events in a cgroup 827 * @memcg: the memory cgroup 828 * @idx: the event item 829 * @count: the number of events that occurred 830 */ 831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 832 unsigned long count) 833 { 834 int i = memcg_events_index(idx); 835 int cpu; 836 837 if (mem_cgroup_disabled()) 838 return; 839 840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 841 return; 842 843 cpu = get_cpu(); 844 845 this_cpu_add(memcg->vmstats_percpu->events[i], count); 846 memcg_rstat_updated(memcg, count, cpu); 847 trace_count_memcg_events(memcg, idx, count); 848 849 put_cpu(); 850 } 851 852 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 853 { 854 int i = memcg_events_index(event); 855 856 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 857 return 0; 858 859 return READ_ONCE(memcg->vmstats->events[i]); 860 } 861 862 #ifdef CONFIG_MEMCG_V1 863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 864 { 865 int i = memcg_events_index(event); 866 867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 868 return 0; 869 870 return READ_ONCE(memcg->vmstats->events_local[i]); 871 } 872 #endif 873 874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 875 { 876 /* 877 * mm_update_next_owner() may clear mm->owner to NULL 878 * if it races with swapoff, page migration, etc. 879 * So this can be called with p == NULL. 880 */ 881 if (unlikely(!p)) 882 return NULL; 883 884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 885 } 886 EXPORT_SYMBOL(mem_cgroup_from_task); 887 888 static __always_inline struct mem_cgroup *active_memcg(void) 889 { 890 if (!in_task()) 891 return this_cpu_read(int_active_memcg); 892 else 893 return current->active_memcg; 894 } 895 896 /** 897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 898 * @mm: mm from which memcg should be extracted. It can be NULL. 899 * 900 * Obtain a reference on mm->memcg and returns it if successful. If mm 901 * is NULL, then the memcg is chosen as follows: 902 * 1) The active memcg, if set. 903 * 2) current->mm->memcg, if available 904 * 3) root memcg 905 * If mem_cgroup is disabled, NULL is returned. 906 */ 907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 908 { 909 struct mem_cgroup *memcg; 910 911 if (mem_cgroup_disabled()) 912 return NULL; 913 914 /* 915 * Page cache insertions can happen without an 916 * actual mm context, e.g. during disk probing 917 * on boot, loopback IO, acct() writes etc. 918 * 919 * No need to css_get on root memcg as the reference 920 * counting is disabled on the root level in the 921 * cgroup core. See CSS_NO_REF. 922 */ 923 if (unlikely(!mm)) { 924 memcg = active_memcg(); 925 if (unlikely(memcg)) { 926 /* remote memcg must hold a ref */ 927 css_get(&memcg->css); 928 return memcg; 929 } 930 mm = current->mm; 931 if (unlikely(!mm)) 932 return root_mem_cgroup; 933 } 934 935 rcu_read_lock(); 936 do { 937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 938 if (unlikely(!memcg)) 939 memcg = root_mem_cgroup; 940 } while (!css_tryget(&memcg->css)); 941 rcu_read_unlock(); 942 return memcg; 943 } 944 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 945 946 /** 947 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 948 */ 949 struct mem_cgroup *get_mem_cgroup_from_current(void) 950 { 951 struct mem_cgroup *memcg; 952 953 if (mem_cgroup_disabled()) 954 return NULL; 955 956 again: 957 rcu_read_lock(); 958 memcg = mem_cgroup_from_task(current); 959 if (!css_tryget(&memcg->css)) { 960 rcu_read_unlock(); 961 goto again; 962 } 963 rcu_read_unlock(); 964 return memcg; 965 } 966 967 /** 968 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 969 * @folio: folio from which memcg should be extracted. 970 */ 971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 972 { 973 struct mem_cgroup *memcg = folio_memcg(folio); 974 975 if (mem_cgroup_disabled()) 976 return NULL; 977 978 rcu_read_lock(); 979 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 980 memcg = root_mem_cgroup; 981 rcu_read_unlock(); 982 return memcg; 983 } 984 985 /** 986 * mem_cgroup_iter - iterate over memory cgroup hierarchy 987 * @root: hierarchy root 988 * @prev: previously returned memcg, NULL on first invocation 989 * @reclaim: cookie for shared reclaim walks, NULL for full walks 990 * 991 * Returns references to children of the hierarchy below @root, or 992 * @root itself, or %NULL after a full round-trip. 993 * 994 * Caller must pass the return value in @prev on subsequent 995 * invocations for reference counting, or use mem_cgroup_iter_break() 996 * to cancel a hierarchy walk before the round-trip is complete. 997 * 998 * Reclaimers can specify a node in @reclaim to divide up the memcgs 999 * in the hierarchy among all concurrent reclaimers operating on the 1000 * same node. 1001 */ 1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1003 struct mem_cgroup *prev, 1004 struct mem_cgroup_reclaim_cookie *reclaim) 1005 { 1006 struct mem_cgroup_reclaim_iter *iter; 1007 struct cgroup_subsys_state *css; 1008 struct mem_cgroup *pos; 1009 struct mem_cgroup *next; 1010 1011 if (mem_cgroup_disabled()) 1012 return NULL; 1013 1014 if (!root) 1015 root = root_mem_cgroup; 1016 1017 rcu_read_lock(); 1018 restart: 1019 next = NULL; 1020 1021 if (reclaim) { 1022 int gen; 1023 int nid = reclaim->pgdat->node_id; 1024 1025 iter = &root->nodeinfo[nid]->iter; 1026 gen = atomic_read(&iter->generation); 1027 1028 /* 1029 * On start, join the current reclaim iteration cycle. 1030 * Exit when a concurrent walker completes it. 1031 */ 1032 if (!prev) 1033 reclaim->generation = gen; 1034 else if (reclaim->generation != gen) 1035 goto out_unlock; 1036 1037 pos = READ_ONCE(iter->position); 1038 } else 1039 pos = prev; 1040 1041 css = pos ? &pos->css : NULL; 1042 1043 while ((css = css_next_descendant_pre(css, &root->css))) { 1044 /* 1045 * Verify the css and acquire a reference. The root 1046 * is provided by the caller, so we know it's alive 1047 * and kicking, and don't take an extra reference. 1048 */ 1049 if (css == &root->css || css_tryget(css)) 1050 break; 1051 } 1052 1053 next = mem_cgroup_from_css(css); 1054 1055 if (reclaim) { 1056 /* 1057 * The position could have already been updated by a competing 1058 * thread, so check that the value hasn't changed since we read 1059 * it to avoid reclaiming from the same cgroup twice. 1060 */ 1061 if (cmpxchg(&iter->position, pos, next) != pos) { 1062 if (css && css != &root->css) 1063 css_put(css); 1064 goto restart; 1065 } 1066 1067 if (!next) { 1068 atomic_inc(&iter->generation); 1069 1070 /* 1071 * Reclaimers share the hierarchy walk, and a 1072 * new one might jump in right at the end of 1073 * the hierarchy - make sure they see at least 1074 * one group and restart from the beginning. 1075 */ 1076 if (!prev) 1077 goto restart; 1078 } 1079 } 1080 1081 out_unlock: 1082 rcu_read_unlock(); 1083 if (prev && prev != root) 1084 css_put(&prev->css); 1085 1086 return next; 1087 } 1088 1089 /** 1090 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1091 * @root: hierarchy root 1092 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1093 */ 1094 void mem_cgroup_iter_break(struct mem_cgroup *root, 1095 struct mem_cgroup *prev) 1096 { 1097 if (!root) 1098 root = root_mem_cgroup; 1099 if (prev && prev != root) 1100 css_put(&prev->css); 1101 } 1102 1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1104 struct mem_cgroup *dead_memcg) 1105 { 1106 struct mem_cgroup_reclaim_iter *iter; 1107 struct mem_cgroup_per_node *mz; 1108 int nid; 1109 1110 for_each_node(nid) { 1111 mz = from->nodeinfo[nid]; 1112 iter = &mz->iter; 1113 cmpxchg(&iter->position, dead_memcg, NULL); 1114 } 1115 } 1116 1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1118 { 1119 struct mem_cgroup *memcg = dead_memcg; 1120 struct mem_cgroup *last; 1121 1122 do { 1123 __invalidate_reclaim_iterators(memcg, dead_memcg); 1124 last = memcg; 1125 } while ((memcg = parent_mem_cgroup(memcg))); 1126 1127 /* 1128 * When cgroup1 non-hierarchy mode is used, 1129 * parent_mem_cgroup() does not walk all the way up to the 1130 * cgroup root (root_mem_cgroup). So we have to handle 1131 * dead_memcg from cgroup root separately. 1132 */ 1133 if (!mem_cgroup_is_root(last)) 1134 __invalidate_reclaim_iterators(root_mem_cgroup, 1135 dead_memcg); 1136 } 1137 1138 /** 1139 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1140 * @memcg: hierarchy root 1141 * @fn: function to call for each task 1142 * @arg: argument passed to @fn 1143 * 1144 * This function iterates over tasks attached to @memcg or to any of its 1145 * descendants and calls @fn for each task. If @fn returns a non-zero 1146 * value, the function breaks the iteration loop. Otherwise, it will iterate 1147 * over all tasks and return 0. 1148 * 1149 * This function must not be called for the root memory cgroup. 1150 */ 1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1152 int (*fn)(struct task_struct *, void *), void *arg) 1153 { 1154 struct mem_cgroup *iter; 1155 int ret = 0; 1156 int i = 0; 1157 1158 BUG_ON(mem_cgroup_is_root(memcg)); 1159 1160 for_each_mem_cgroup_tree(iter, memcg) { 1161 struct css_task_iter it; 1162 struct task_struct *task; 1163 1164 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1165 while (!ret && (task = css_task_iter_next(&it))) { 1166 /* Avoid potential softlockup warning */ 1167 if ((++i & 1023) == 0) 1168 cond_resched(); 1169 ret = fn(task, arg); 1170 } 1171 css_task_iter_end(&it); 1172 if (ret) { 1173 mem_cgroup_iter_break(memcg, iter); 1174 break; 1175 } 1176 } 1177 } 1178 1179 #ifdef CONFIG_DEBUG_VM 1180 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1181 { 1182 struct mem_cgroup *memcg; 1183 1184 if (mem_cgroup_disabled()) 1185 return; 1186 1187 memcg = folio_memcg(folio); 1188 1189 if (!memcg) 1190 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1191 else 1192 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1193 } 1194 #endif 1195 1196 /** 1197 * folio_lruvec_lock - Lock the lruvec for a folio. 1198 * @folio: Pointer to the folio. 1199 * 1200 * These functions are safe to use under any of the following conditions: 1201 * - folio locked 1202 * - folio_test_lru false 1203 * - folio frozen (refcount of 0) 1204 * 1205 * Return: The lruvec this folio is on with its lock held. 1206 */ 1207 struct lruvec *folio_lruvec_lock(struct folio *folio) 1208 { 1209 struct lruvec *lruvec = folio_lruvec(folio); 1210 1211 spin_lock(&lruvec->lru_lock); 1212 lruvec_memcg_debug(lruvec, folio); 1213 1214 return lruvec; 1215 } 1216 1217 /** 1218 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1219 * @folio: Pointer to the folio. 1220 * 1221 * These functions are safe to use under any of the following conditions: 1222 * - folio locked 1223 * - folio_test_lru false 1224 * - folio frozen (refcount of 0) 1225 * 1226 * Return: The lruvec this folio is on with its lock held and interrupts 1227 * disabled. 1228 */ 1229 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1230 { 1231 struct lruvec *lruvec = folio_lruvec(folio); 1232 1233 spin_lock_irq(&lruvec->lru_lock); 1234 lruvec_memcg_debug(lruvec, folio); 1235 1236 return lruvec; 1237 } 1238 1239 /** 1240 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1241 * @folio: Pointer to the folio. 1242 * @flags: Pointer to irqsave flags. 1243 * 1244 * These functions are safe to use under any of the following conditions: 1245 * - folio locked 1246 * - folio_test_lru false 1247 * - folio frozen (refcount of 0) 1248 * 1249 * Return: The lruvec this folio is on with its lock held and interrupts 1250 * disabled. 1251 */ 1252 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1253 unsigned long *flags) 1254 { 1255 struct lruvec *lruvec = folio_lruvec(folio); 1256 1257 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1258 lruvec_memcg_debug(lruvec, folio); 1259 1260 return lruvec; 1261 } 1262 1263 /** 1264 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1265 * @lruvec: mem_cgroup per zone lru vector 1266 * @lru: index of lru list the page is sitting on 1267 * @zid: zone id of the accounted pages 1268 * @nr_pages: positive when adding or negative when removing 1269 * 1270 * This function must be called under lru_lock, just before a page is added 1271 * to or just after a page is removed from an lru list. 1272 */ 1273 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1274 int zid, int nr_pages) 1275 { 1276 struct mem_cgroup_per_node *mz; 1277 unsigned long *lru_size; 1278 long size; 1279 1280 if (mem_cgroup_disabled()) 1281 return; 1282 1283 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1284 lru_size = &mz->lru_zone_size[zid][lru]; 1285 1286 if (nr_pages < 0) 1287 *lru_size += nr_pages; 1288 1289 size = *lru_size; 1290 if (WARN_ONCE(size < 0, 1291 "%s(%p, %d, %d): lru_size %ld\n", 1292 __func__, lruvec, lru, nr_pages, size)) { 1293 VM_BUG_ON(1); 1294 *lru_size = 0; 1295 } 1296 1297 if (nr_pages > 0) 1298 *lru_size += nr_pages; 1299 } 1300 1301 /** 1302 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1303 * @memcg: the memory cgroup 1304 * 1305 * Returns the maximum amount of memory @mem can be charged with, in 1306 * pages. 1307 */ 1308 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1309 { 1310 unsigned long margin = 0; 1311 unsigned long count; 1312 unsigned long limit; 1313 1314 count = page_counter_read(&memcg->memory); 1315 limit = READ_ONCE(memcg->memory.max); 1316 if (count < limit) 1317 margin = limit - count; 1318 1319 if (do_memsw_account()) { 1320 count = page_counter_read(&memcg->memsw); 1321 limit = READ_ONCE(memcg->memsw.max); 1322 if (count < limit) 1323 margin = min(margin, limit - count); 1324 else 1325 margin = 0; 1326 } 1327 1328 return margin; 1329 } 1330 1331 struct memory_stat { 1332 const char *name; 1333 unsigned int idx; 1334 }; 1335 1336 static const struct memory_stat memory_stats[] = { 1337 { "anon", NR_ANON_MAPPED }, 1338 { "file", NR_FILE_PAGES }, 1339 { "kernel", MEMCG_KMEM }, 1340 { "kernel_stack", NR_KERNEL_STACK_KB }, 1341 { "pagetables", NR_PAGETABLE }, 1342 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1343 { "percpu", MEMCG_PERCPU_B }, 1344 { "sock", MEMCG_SOCK }, 1345 { "vmalloc", MEMCG_VMALLOC }, 1346 { "shmem", NR_SHMEM }, 1347 #ifdef CONFIG_ZSWAP 1348 { "zswap", MEMCG_ZSWAP_B }, 1349 { "zswapped", MEMCG_ZSWAPPED }, 1350 #endif 1351 { "file_mapped", NR_FILE_MAPPED }, 1352 { "file_dirty", NR_FILE_DIRTY }, 1353 { "file_writeback", NR_WRITEBACK }, 1354 #ifdef CONFIG_SWAP 1355 { "swapcached", NR_SWAPCACHE }, 1356 #endif 1357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1358 { "anon_thp", NR_ANON_THPS }, 1359 { "file_thp", NR_FILE_THPS }, 1360 { "shmem_thp", NR_SHMEM_THPS }, 1361 #endif 1362 { "inactive_anon", NR_INACTIVE_ANON }, 1363 { "active_anon", NR_ACTIVE_ANON }, 1364 { "inactive_file", NR_INACTIVE_FILE }, 1365 { "active_file", NR_ACTIVE_FILE }, 1366 { "unevictable", NR_UNEVICTABLE }, 1367 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1368 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1369 #ifdef CONFIG_HUGETLB_PAGE 1370 { "hugetlb", NR_HUGETLB }, 1371 #endif 1372 1373 /* The memory events */ 1374 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1375 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1376 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1377 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1378 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1379 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1380 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1381 1382 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1383 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1384 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1385 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1386 #ifdef CONFIG_NUMA_BALANCING 1387 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1388 #endif 1389 }; 1390 1391 /* The actual unit of the state item, not the same as the output unit */ 1392 static int memcg_page_state_unit(int item) 1393 { 1394 switch (item) { 1395 case MEMCG_PERCPU_B: 1396 case MEMCG_ZSWAP_B: 1397 case NR_SLAB_RECLAIMABLE_B: 1398 case NR_SLAB_UNRECLAIMABLE_B: 1399 return 1; 1400 case NR_KERNEL_STACK_KB: 1401 return SZ_1K; 1402 default: 1403 return PAGE_SIZE; 1404 } 1405 } 1406 1407 /* Translate stat items to the correct unit for memory.stat output */ 1408 static int memcg_page_state_output_unit(int item) 1409 { 1410 /* 1411 * Workingset state is actually in pages, but we export it to userspace 1412 * as a scalar count of events, so special case it here. 1413 * 1414 * Demotion and promotion activities are exported in pages, consistent 1415 * with their global counterparts. 1416 */ 1417 switch (item) { 1418 case WORKINGSET_REFAULT_ANON: 1419 case WORKINGSET_REFAULT_FILE: 1420 case WORKINGSET_ACTIVATE_ANON: 1421 case WORKINGSET_ACTIVATE_FILE: 1422 case WORKINGSET_RESTORE_ANON: 1423 case WORKINGSET_RESTORE_FILE: 1424 case WORKINGSET_NODERECLAIM: 1425 case PGDEMOTE_KSWAPD: 1426 case PGDEMOTE_DIRECT: 1427 case PGDEMOTE_KHUGEPAGED: 1428 case PGDEMOTE_PROACTIVE: 1429 #ifdef CONFIG_NUMA_BALANCING 1430 case PGPROMOTE_SUCCESS: 1431 #endif 1432 return 1; 1433 default: 1434 return memcg_page_state_unit(item); 1435 } 1436 } 1437 1438 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1439 { 1440 return memcg_page_state(memcg, item) * 1441 memcg_page_state_output_unit(item); 1442 } 1443 1444 #ifdef CONFIG_MEMCG_V1 1445 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1446 { 1447 return memcg_page_state_local(memcg, item) * 1448 memcg_page_state_output_unit(item); 1449 } 1450 #endif 1451 1452 #ifdef CONFIG_HUGETLB_PAGE 1453 static bool memcg_accounts_hugetlb(void) 1454 { 1455 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1456 } 1457 #else /* CONFIG_HUGETLB_PAGE */ 1458 static bool memcg_accounts_hugetlb(void) 1459 { 1460 return false; 1461 } 1462 #endif /* CONFIG_HUGETLB_PAGE */ 1463 1464 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1465 { 1466 int i; 1467 1468 /* 1469 * Provide statistics on the state of the memory subsystem as 1470 * well as cumulative event counters that show past behavior. 1471 * 1472 * This list is ordered following a combination of these gradients: 1473 * 1) generic big picture -> specifics and details 1474 * 2) reflecting userspace activity -> reflecting kernel heuristics 1475 * 1476 * Current memory state: 1477 */ 1478 mem_cgroup_flush_stats(memcg); 1479 1480 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1481 u64 size; 1482 1483 #ifdef CONFIG_HUGETLB_PAGE 1484 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1485 !memcg_accounts_hugetlb()) 1486 continue; 1487 #endif 1488 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1489 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1490 1491 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1492 size += memcg_page_state_output(memcg, 1493 NR_SLAB_RECLAIMABLE_B); 1494 seq_buf_printf(s, "slab %llu\n", size); 1495 } 1496 } 1497 1498 /* Accumulated memory events */ 1499 seq_buf_printf(s, "pgscan %lu\n", 1500 memcg_events(memcg, PGSCAN_KSWAPD) + 1501 memcg_events(memcg, PGSCAN_DIRECT) + 1502 memcg_events(memcg, PGSCAN_PROACTIVE) + 1503 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1504 seq_buf_printf(s, "pgsteal %lu\n", 1505 memcg_events(memcg, PGSTEAL_KSWAPD) + 1506 memcg_events(memcg, PGSTEAL_DIRECT) + 1507 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1508 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1509 1510 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1511 #ifdef CONFIG_MEMCG_V1 1512 if (memcg_vm_event_stat[i] == PGPGIN || 1513 memcg_vm_event_stat[i] == PGPGOUT) 1514 continue; 1515 #endif 1516 seq_buf_printf(s, "%s %lu\n", 1517 vm_event_name(memcg_vm_event_stat[i]), 1518 memcg_events(memcg, memcg_vm_event_stat[i])); 1519 } 1520 } 1521 1522 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1523 { 1524 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1525 memcg_stat_format(memcg, s); 1526 else 1527 memcg1_stat_format(memcg, s); 1528 if (seq_buf_has_overflowed(s)) 1529 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1530 } 1531 1532 /** 1533 * mem_cgroup_print_oom_context: Print OOM information relevant to 1534 * memory controller. 1535 * @memcg: The memory cgroup that went over limit 1536 * @p: Task that is going to be killed 1537 * 1538 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1539 * enabled 1540 */ 1541 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1542 { 1543 rcu_read_lock(); 1544 1545 if (memcg) { 1546 pr_cont(",oom_memcg="); 1547 pr_cont_cgroup_path(memcg->css.cgroup); 1548 } else 1549 pr_cont(",global_oom"); 1550 if (p) { 1551 pr_cont(",task_memcg="); 1552 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1553 } 1554 rcu_read_unlock(); 1555 } 1556 1557 /** 1558 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1559 * memory controller. 1560 * @memcg: The memory cgroup that went over limit 1561 */ 1562 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1563 { 1564 /* Use static buffer, for the caller is holding oom_lock. */ 1565 static char buf[SEQ_BUF_SIZE]; 1566 struct seq_buf s; 1567 unsigned long memory_failcnt; 1568 1569 lockdep_assert_held(&oom_lock); 1570 1571 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1572 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1573 else 1574 memory_failcnt = memcg->memory.failcnt; 1575 1576 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1577 K((u64)page_counter_read(&memcg->memory)), 1578 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1579 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1580 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1581 K((u64)page_counter_read(&memcg->swap)), 1582 K((u64)READ_ONCE(memcg->swap.max)), 1583 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1584 #ifdef CONFIG_MEMCG_V1 1585 else { 1586 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1587 K((u64)page_counter_read(&memcg->memsw)), 1588 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1589 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1590 K((u64)page_counter_read(&memcg->kmem)), 1591 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1592 } 1593 #endif 1594 1595 pr_info("Memory cgroup stats for "); 1596 pr_cont_cgroup_path(memcg->css.cgroup); 1597 pr_cont(":"); 1598 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1599 memory_stat_format(memcg, &s); 1600 seq_buf_do_printk(&s, KERN_INFO); 1601 } 1602 1603 /* 1604 * Return the memory (and swap, if configured) limit for a memcg. 1605 */ 1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1607 { 1608 unsigned long max = READ_ONCE(memcg->memory.max); 1609 1610 if (do_memsw_account()) { 1611 if (mem_cgroup_swappiness(memcg)) { 1612 /* Calculate swap excess capacity from memsw limit */ 1613 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1614 1615 max += min(swap, (unsigned long)total_swap_pages); 1616 } 1617 } else { 1618 if (mem_cgroup_swappiness(memcg)) 1619 max += min(READ_ONCE(memcg->swap.max), 1620 (unsigned long)total_swap_pages); 1621 } 1622 return max; 1623 } 1624 1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1626 { 1627 return page_counter_read(&memcg->memory); 1628 } 1629 1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1631 int order) 1632 { 1633 struct oom_control oc = { 1634 .zonelist = NULL, 1635 .nodemask = NULL, 1636 .memcg = memcg, 1637 .gfp_mask = gfp_mask, 1638 .order = order, 1639 }; 1640 bool ret = true; 1641 1642 if (mutex_lock_killable(&oom_lock)) 1643 return true; 1644 1645 if (mem_cgroup_margin(memcg) >= (1 << order)) 1646 goto unlock; 1647 1648 /* 1649 * A few threads which were not waiting at mutex_lock_killable() can 1650 * fail to bail out. Therefore, check again after holding oom_lock. 1651 */ 1652 ret = out_of_memory(&oc); 1653 1654 unlock: 1655 mutex_unlock(&oom_lock); 1656 return ret; 1657 } 1658 1659 /* 1660 * Returns true if successfully killed one or more processes. Though in some 1661 * corner cases it can return true even without killing any process. 1662 */ 1663 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1664 { 1665 bool locked, ret; 1666 1667 if (order > PAGE_ALLOC_COSTLY_ORDER) 1668 return false; 1669 1670 memcg_memory_event(memcg, MEMCG_OOM); 1671 1672 if (!memcg1_oom_prepare(memcg, &locked)) 1673 return false; 1674 1675 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1676 1677 memcg1_oom_finish(memcg, locked); 1678 1679 return ret; 1680 } 1681 1682 /** 1683 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1684 * @victim: task to be killed by the OOM killer 1685 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1686 * 1687 * Returns a pointer to a memory cgroup, which has to be cleaned up 1688 * by killing all belonging OOM-killable tasks. 1689 * 1690 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1691 */ 1692 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1693 struct mem_cgroup *oom_domain) 1694 { 1695 struct mem_cgroup *oom_group = NULL; 1696 struct mem_cgroup *memcg; 1697 1698 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1699 return NULL; 1700 1701 if (!oom_domain) 1702 oom_domain = root_mem_cgroup; 1703 1704 rcu_read_lock(); 1705 1706 memcg = mem_cgroup_from_task(victim); 1707 if (mem_cgroup_is_root(memcg)) 1708 goto out; 1709 1710 /* 1711 * If the victim task has been asynchronously moved to a different 1712 * memory cgroup, we might end up killing tasks outside oom_domain. 1713 * In this case it's better to ignore memory.group.oom. 1714 */ 1715 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1716 goto out; 1717 1718 /* 1719 * Traverse the memory cgroup hierarchy from the victim task's 1720 * cgroup up to the OOMing cgroup (or root) to find the 1721 * highest-level memory cgroup with oom.group set. 1722 */ 1723 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1724 if (READ_ONCE(memcg->oom_group)) 1725 oom_group = memcg; 1726 1727 if (memcg == oom_domain) 1728 break; 1729 } 1730 1731 if (oom_group) 1732 css_get(&oom_group->css); 1733 out: 1734 rcu_read_unlock(); 1735 1736 return oom_group; 1737 } 1738 1739 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1740 { 1741 pr_info("Tasks in "); 1742 pr_cont_cgroup_path(memcg->css.cgroup); 1743 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1744 } 1745 1746 /* 1747 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1748 * nr_pages in a single cacheline. This may change in future. 1749 */ 1750 #define NR_MEMCG_STOCK 7 1751 #define FLUSHING_CACHED_CHARGE 0 1752 struct memcg_stock_pcp { 1753 local_trylock_t lock; 1754 uint8_t nr_pages[NR_MEMCG_STOCK]; 1755 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1756 1757 struct work_struct work; 1758 unsigned long flags; 1759 }; 1760 1761 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1762 .lock = INIT_LOCAL_TRYLOCK(lock), 1763 }; 1764 1765 struct obj_stock_pcp { 1766 local_trylock_t lock; 1767 unsigned int nr_bytes; 1768 struct obj_cgroup *cached_objcg; 1769 struct pglist_data *cached_pgdat; 1770 int nr_slab_reclaimable_b; 1771 int nr_slab_unreclaimable_b; 1772 1773 struct work_struct work; 1774 unsigned long flags; 1775 }; 1776 1777 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { 1778 .lock = INIT_LOCAL_TRYLOCK(lock), 1779 }; 1780 1781 static DEFINE_MUTEX(percpu_charge_mutex); 1782 1783 static void drain_obj_stock(struct obj_stock_pcp *stock); 1784 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 1785 struct mem_cgroup *root_memcg); 1786 1787 /** 1788 * consume_stock: Try to consume stocked charge on this cpu. 1789 * @memcg: memcg to consume from. 1790 * @nr_pages: how many pages to charge. 1791 * 1792 * Consume the cached charge if enough nr_pages are present otherwise return 1793 * failure. Also return failure for charge request larger than 1794 * MEMCG_CHARGE_BATCH or if the local lock is already taken. 1795 * 1796 * returns true if successful, false otherwise. 1797 */ 1798 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1799 { 1800 struct memcg_stock_pcp *stock; 1801 uint8_t stock_pages; 1802 bool ret = false; 1803 int i; 1804 1805 if (nr_pages > MEMCG_CHARGE_BATCH || 1806 !local_trylock(&memcg_stock.lock)) 1807 return ret; 1808 1809 stock = this_cpu_ptr(&memcg_stock); 1810 1811 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1812 if (memcg != READ_ONCE(stock->cached[i])) 1813 continue; 1814 1815 stock_pages = READ_ONCE(stock->nr_pages[i]); 1816 if (stock_pages >= nr_pages) { 1817 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1818 ret = true; 1819 } 1820 break; 1821 } 1822 1823 local_unlock(&memcg_stock.lock); 1824 1825 return ret; 1826 } 1827 1828 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1829 { 1830 page_counter_uncharge(&memcg->memory, nr_pages); 1831 if (do_memsw_account()) 1832 page_counter_uncharge(&memcg->memsw, nr_pages); 1833 } 1834 1835 /* 1836 * Returns stocks cached in percpu and reset cached information. 1837 */ 1838 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1839 { 1840 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1841 uint8_t stock_pages; 1842 1843 if (!old) 1844 return; 1845 1846 stock_pages = READ_ONCE(stock->nr_pages[i]); 1847 if (stock_pages) { 1848 memcg_uncharge(old, stock_pages); 1849 WRITE_ONCE(stock->nr_pages[i], 0); 1850 } 1851 1852 css_put(&old->css); 1853 WRITE_ONCE(stock->cached[i], NULL); 1854 } 1855 1856 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1857 { 1858 int i; 1859 1860 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1861 drain_stock(stock, i); 1862 } 1863 1864 static void drain_local_memcg_stock(struct work_struct *dummy) 1865 { 1866 struct memcg_stock_pcp *stock; 1867 1868 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1869 return; 1870 1871 local_lock(&memcg_stock.lock); 1872 1873 stock = this_cpu_ptr(&memcg_stock); 1874 drain_stock_fully(stock); 1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1876 1877 local_unlock(&memcg_stock.lock); 1878 } 1879 1880 static void drain_local_obj_stock(struct work_struct *dummy) 1881 { 1882 struct obj_stock_pcp *stock; 1883 1884 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1885 return; 1886 1887 local_lock(&obj_stock.lock); 1888 1889 stock = this_cpu_ptr(&obj_stock); 1890 drain_obj_stock(stock); 1891 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1892 1893 local_unlock(&obj_stock.lock); 1894 } 1895 1896 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1897 { 1898 struct memcg_stock_pcp *stock; 1899 struct mem_cgroup *cached; 1900 uint8_t stock_pages; 1901 bool success = false; 1902 int empty_slot = -1; 1903 int i; 1904 1905 /* 1906 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1907 * decide to increase it more than 127 then we will need more careful 1908 * handling of nr_pages[] in struct memcg_stock_pcp. 1909 */ 1910 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1911 1912 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1913 1914 if (nr_pages > MEMCG_CHARGE_BATCH || 1915 !local_trylock(&memcg_stock.lock)) { 1916 /* 1917 * In case of larger than batch refill or unlikely failure to 1918 * lock the percpu memcg_stock.lock, uncharge memcg directly. 1919 */ 1920 memcg_uncharge(memcg, nr_pages); 1921 return; 1922 } 1923 1924 stock = this_cpu_ptr(&memcg_stock); 1925 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1926 cached = READ_ONCE(stock->cached[i]); 1927 if (!cached && empty_slot == -1) 1928 empty_slot = i; 1929 if (memcg == READ_ONCE(stock->cached[i])) { 1930 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1931 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1932 if (stock_pages > MEMCG_CHARGE_BATCH) 1933 drain_stock(stock, i); 1934 success = true; 1935 break; 1936 } 1937 } 1938 1939 if (!success) { 1940 i = empty_slot; 1941 if (i == -1) { 1942 i = get_random_u32_below(NR_MEMCG_STOCK); 1943 drain_stock(stock, i); 1944 } 1945 css_get(&memcg->css); 1946 WRITE_ONCE(stock->cached[i], memcg); 1947 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1948 } 1949 1950 local_unlock(&memcg_stock.lock); 1951 } 1952 1953 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, 1954 struct mem_cgroup *root_memcg) 1955 { 1956 struct mem_cgroup *memcg; 1957 bool flush = false; 1958 int i; 1959 1960 rcu_read_lock(); 1961 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1962 memcg = READ_ONCE(stock->cached[i]); 1963 if (!memcg) 1964 continue; 1965 1966 if (READ_ONCE(stock->nr_pages[i]) && 1967 mem_cgroup_is_descendant(memcg, root_memcg)) { 1968 flush = true; 1969 break; 1970 } 1971 } 1972 rcu_read_unlock(); 1973 return flush; 1974 } 1975 1976 /* 1977 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1978 * of the hierarchy under it. 1979 */ 1980 void drain_all_stock(struct mem_cgroup *root_memcg) 1981 { 1982 int cpu, curcpu; 1983 1984 /* If someone's already draining, avoid adding running more workers. */ 1985 if (!mutex_trylock(&percpu_charge_mutex)) 1986 return; 1987 /* 1988 * Notify other cpus that system-wide "drain" is running 1989 * We do not care about races with the cpu hotplug because cpu down 1990 * as well as workers from this path always operate on the local 1991 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1992 */ 1993 migrate_disable(); 1994 curcpu = smp_processor_id(); 1995 for_each_online_cpu(cpu) { 1996 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); 1997 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); 1998 1999 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && 2000 is_memcg_drain_needed(memcg_st, root_memcg) && 2001 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2002 &memcg_st->flags)) { 2003 if (cpu == curcpu) 2004 drain_local_memcg_stock(&memcg_st->work); 2005 else if (!cpu_is_isolated(cpu)) 2006 schedule_work_on(cpu, &memcg_st->work); 2007 } 2008 2009 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && 2010 obj_stock_flush_required(obj_st, root_memcg) && 2011 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2012 &obj_st->flags)) { 2013 if (cpu == curcpu) 2014 drain_local_obj_stock(&obj_st->work); 2015 else if (!cpu_is_isolated(cpu)) 2016 schedule_work_on(cpu, &obj_st->work); 2017 } 2018 } 2019 migrate_enable(); 2020 mutex_unlock(&percpu_charge_mutex); 2021 } 2022 2023 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2024 { 2025 /* no need for the local lock */ 2026 drain_obj_stock(&per_cpu(obj_stock, cpu)); 2027 drain_stock_fully(&per_cpu(memcg_stock, cpu)); 2028 2029 return 0; 2030 } 2031 2032 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2033 unsigned int nr_pages, 2034 gfp_t gfp_mask) 2035 { 2036 unsigned long nr_reclaimed = 0; 2037 2038 do { 2039 unsigned long pflags; 2040 2041 if (page_counter_read(&memcg->memory) <= 2042 READ_ONCE(memcg->memory.high)) 2043 continue; 2044 2045 memcg_memory_event(memcg, MEMCG_HIGH); 2046 2047 psi_memstall_enter(&pflags); 2048 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2049 gfp_mask, 2050 MEMCG_RECLAIM_MAY_SWAP, 2051 NULL); 2052 psi_memstall_leave(&pflags); 2053 } while ((memcg = parent_mem_cgroup(memcg)) && 2054 !mem_cgroup_is_root(memcg)); 2055 2056 return nr_reclaimed; 2057 } 2058 2059 static void high_work_func(struct work_struct *work) 2060 { 2061 struct mem_cgroup *memcg; 2062 2063 memcg = container_of(work, struct mem_cgroup, high_work); 2064 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2065 } 2066 2067 /* 2068 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2069 * enough to still cause a significant slowdown in most cases, while still 2070 * allowing diagnostics and tracing to proceed without becoming stuck. 2071 */ 2072 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2073 2074 /* 2075 * When calculating the delay, we use these either side of the exponentiation to 2076 * maintain precision and scale to a reasonable number of jiffies (see the table 2077 * below. 2078 * 2079 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2080 * overage ratio to a delay. 2081 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2082 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2083 * to produce a reasonable delay curve. 2084 * 2085 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2086 * reasonable delay curve compared to precision-adjusted overage, not 2087 * penalising heavily at first, but still making sure that growth beyond the 2088 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2089 * example, with a high of 100 megabytes: 2090 * 2091 * +-------+------------------------+ 2092 * | usage | time to allocate in ms | 2093 * +-------+------------------------+ 2094 * | 100M | 0 | 2095 * | 101M | 6 | 2096 * | 102M | 25 | 2097 * | 103M | 57 | 2098 * | 104M | 102 | 2099 * | 105M | 159 | 2100 * | 106M | 230 | 2101 * | 107M | 313 | 2102 * | 108M | 409 | 2103 * | 109M | 518 | 2104 * | 110M | 639 | 2105 * | 111M | 774 | 2106 * | 112M | 921 | 2107 * | 113M | 1081 | 2108 * | 114M | 1254 | 2109 * | 115M | 1439 | 2110 * | 116M | 1638 | 2111 * | 117M | 1849 | 2112 * | 118M | 2000 | 2113 * | 119M | 2000 | 2114 * | 120M | 2000 | 2115 * +-------+------------------------+ 2116 */ 2117 #define MEMCG_DELAY_PRECISION_SHIFT 20 2118 #define MEMCG_DELAY_SCALING_SHIFT 14 2119 2120 static u64 calculate_overage(unsigned long usage, unsigned long high) 2121 { 2122 u64 overage; 2123 2124 if (usage <= high) 2125 return 0; 2126 2127 /* 2128 * Prevent division by 0 in overage calculation by acting as if 2129 * it was a threshold of 1 page 2130 */ 2131 high = max(high, 1UL); 2132 2133 overage = usage - high; 2134 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2135 return div64_u64(overage, high); 2136 } 2137 2138 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2139 { 2140 u64 overage, max_overage = 0; 2141 2142 do { 2143 overage = calculate_overage(page_counter_read(&memcg->memory), 2144 READ_ONCE(memcg->memory.high)); 2145 max_overage = max(overage, max_overage); 2146 } while ((memcg = parent_mem_cgroup(memcg)) && 2147 !mem_cgroup_is_root(memcg)); 2148 2149 return max_overage; 2150 } 2151 2152 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2153 { 2154 u64 overage, max_overage = 0; 2155 2156 do { 2157 overage = calculate_overage(page_counter_read(&memcg->swap), 2158 READ_ONCE(memcg->swap.high)); 2159 if (overage) 2160 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2161 max_overage = max(overage, max_overage); 2162 } while ((memcg = parent_mem_cgroup(memcg)) && 2163 !mem_cgroup_is_root(memcg)); 2164 2165 return max_overage; 2166 } 2167 2168 /* 2169 * Get the number of jiffies that we should penalise a mischievous cgroup which 2170 * is exceeding its memory.high by checking both it and its ancestors. 2171 */ 2172 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2173 unsigned int nr_pages, 2174 u64 max_overage) 2175 { 2176 unsigned long penalty_jiffies; 2177 2178 if (!max_overage) 2179 return 0; 2180 2181 /* 2182 * We use overage compared to memory.high to calculate the number of 2183 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2184 * fairly lenient on small overages, and increasingly harsh when the 2185 * memcg in question makes it clear that it has no intention of stopping 2186 * its crazy behaviour, so we exponentially increase the delay based on 2187 * overage amount. 2188 */ 2189 penalty_jiffies = max_overage * max_overage * HZ; 2190 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2191 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2192 2193 /* 2194 * Factor in the task's own contribution to the overage, such that four 2195 * N-sized allocations are throttled approximately the same as one 2196 * 4N-sized allocation. 2197 * 2198 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2199 * larger the current charge patch is than that. 2200 */ 2201 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2202 } 2203 2204 /* 2205 * Reclaims memory over the high limit. Called directly from 2206 * try_charge() (context permitting), as well as from the userland 2207 * return path where reclaim is always able to block. 2208 */ 2209 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2210 { 2211 unsigned long penalty_jiffies; 2212 unsigned long pflags; 2213 unsigned long nr_reclaimed; 2214 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2215 int nr_retries = MAX_RECLAIM_RETRIES; 2216 struct mem_cgroup *memcg; 2217 bool in_retry = false; 2218 2219 if (likely(!nr_pages)) 2220 return; 2221 2222 memcg = get_mem_cgroup_from_mm(current->mm); 2223 current->memcg_nr_pages_over_high = 0; 2224 2225 retry_reclaim: 2226 /* 2227 * Bail if the task is already exiting. Unlike memory.max, 2228 * memory.high enforcement isn't as strict, and there is no 2229 * OOM killer involved, which means the excess could already 2230 * be much bigger (and still growing) than it could for 2231 * memory.max; the dying task could get stuck in fruitless 2232 * reclaim for a long time, which isn't desirable. 2233 */ 2234 if (task_is_dying()) 2235 goto out; 2236 2237 /* 2238 * The allocating task should reclaim at least the batch size, but for 2239 * subsequent retries we only want to do what's necessary to prevent oom 2240 * or breaching resource isolation. 2241 * 2242 * This is distinct from memory.max or page allocator behaviour because 2243 * memory.high is currently batched, whereas memory.max and the page 2244 * allocator run every time an allocation is made. 2245 */ 2246 nr_reclaimed = reclaim_high(memcg, 2247 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2248 gfp_mask); 2249 2250 /* 2251 * memory.high is breached and reclaim is unable to keep up. Throttle 2252 * allocators proactively to slow down excessive growth. 2253 */ 2254 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2255 mem_find_max_overage(memcg)); 2256 2257 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2258 swap_find_max_overage(memcg)); 2259 2260 /* 2261 * Clamp the max delay per usermode return so as to still keep the 2262 * application moving forwards and also permit diagnostics, albeit 2263 * extremely slowly. 2264 */ 2265 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2266 2267 /* 2268 * Don't sleep if the amount of jiffies this memcg owes us is so low 2269 * that it's not even worth doing, in an attempt to be nice to those who 2270 * go only a small amount over their memory.high value and maybe haven't 2271 * been aggressively reclaimed enough yet. 2272 */ 2273 if (penalty_jiffies <= HZ / 100) 2274 goto out; 2275 2276 /* 2277 * If reclaim is making forward progress but we're still over 2278 * memory.high, we want to encourage that rather than doing allocator 2279 * throttling. 2280 */ 2281 if (nr_reclaimed || nr_retries--) { 2282 in_retry = true; 2283 goto retry_reclaim; 2284 } 2285 2286 /* 2287 * Reclaim didn't manage to push usage below the limit, slow 2288 * this allocating task down. 2289 * 2290 * If we exit early, we're guaranteed to die (since 2291 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2292 * need to account for any ill-begotten jiffies to pay them off later. 2293 */ 2294 psi_memstall_enter(&pflags); 2295 schedule_timeout_killable(penalty_jiffies); 2296 psi_memstall_leave(&pflags); 2297 2298 out: 2299 css_put(&memcg->css); 2300 } 2301 2302 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2303 unsigned int nr_pages) 2304 { 2305 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2306 int nr_retries = MAX_RECLAIM_RETRIES; 2307 struct mem_cgroup *mem_over_limit; 2308 struct page_counter *counter; 2309 unsigned long nr_reclaimed; 2310 bool passed_oom = false; 2311 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2312 bool drained = false; 2313 bool raised_max_event = false; 2314 unsigned long pflags; 2315 2316 retry: 2317 if (consume_stock(memcg, nr_pages)) 2318 return 0; 2319 2320 if (!gfpflags_allow_spinning(gfp_mask)) 2321 /* Avoid the refill and flush of the older stock */ 2322 batch = nr_pages; 2323 2324 if (!do_memsw_account() || 2325 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2326 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2327 goto done_restock; 2328 if (do_memsw_account()) 2329 page_counter_uncharge(&memcg->memsw, batch); 2330 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2331 } else { 2332 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2333 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2334 } 2335 2336 if (batch > nr_pages) { 2337 batch = nr_pages; 2338 goto retry; 2339 } 2340 2341 /* 2342 * Prevent unbounded recursion when reclaim operations need to 2343 * allocate memory. This might exceed the limits temporarily, 2344 * but we prefer facilitating memory reclaim and getting back 2345 * under the limit over triggering OOM kills in these cases. 2346 */ 2347 if (unlikely(current->flags & PF_MEMALLOC)) 2348 goto force; 2349 2350 if (unlikely(task_in_memcg_oom(current))) 2351 goto nomem; 2352 2353 if (!gfpflags_allow_blocking(gfp_mask)) 2354 goto nomem; 2355 2356 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2357 raised_max_event = true; 2358 2359 psi_memstall_enter(&pflags); 2360 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2361 gfp_mask, reclaim_options, NULL); 2362 psi_memstall_leave(&pflags); 2363 2364 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2365 goto retry; 2366 2367 if (!drained) { 2368 drain_all_stock(mem_over_limit); 2369 drained = true; 2370 goto retry; 2371 } 2372 2373 if (gfp_mask & __GFP_NORETRY) 2374 goto nomem; 2375 /* 2376 * Even though the limit is exceeded at this point, reclaim 2377 * may have been able to free some pages. Retry the charge 2378 * before killing the task. 2379 * 2380 * Only for regular pages, though: huge pages are rather 2381 * unlikely to succeed so close to the limit, and we fall back 2382 * to regular pages anyway in case of failure. 2383 */ 2384 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2385 goto retry; 2386 2387 if (nr_retries--) 2388 goto retry; 2389 2390 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2391 goto nomem; 2392 2393 /* Avoid endless loop for tasks bypassed by the oom killer */ 2394 if (passed_oom && task_is_dying()) 2395 goto nomem; 2396 2397 /* 2398 * keep retrying as long as the memcg oom killer is able to make 2399 * a forward progress or bypass the charge if the oom killer 2400 * couldn't make any progress. 2401 */ 2402 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2403 get_order(nr_pages * PAGE_SIZE))) { 2404 passed_oom = true; 2405 nr_retries = MAX_RECLAIM_RETRIES; 2406 goto retry; 2407 } 2408 nomem: 2409 /* 2410 * Memcg doesn't have a dedicated reserve for atomic 2411 * allocations. But like the global atomic pool, we need to 2412 * put the burden of reclaim on regular allocation requests 2413 * and let these go through as privileged allocations. 2414 */ 2415 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2416 return -ENOMEM; 2417 force: 2418 /* 2419 * If the allocation has to be enforced, don't forget to raise 2420 * a MEMCG_MAX event. 2421 */ 2422 if (!raised_max_event) 2423 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2424 2425 /* 2426 * The allocation either can't fail or will lead to more memory 2427 * being freed very soon. Allow memory usage go over the limit 2428 * temporarily by force charging it. 2429 */ 2430 page_counter_charge(&memcg->memory, nr_pages); 2431 if (do_memsw_account()) 2432 page_counter_charge(&memcg->memsw, nr_pages); 2433 2434 return 0; 2435 2436 done_restock: 2437 if (batch > nr_pages) 2438 refill_stock(memcg, batch - nr_pages); 2439 2440 /* 2441 * If the hierarchy is above the normal consumption range, schedule 2442 * reclaim on returning to userland. We can perform reclaim here 2443 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2444 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2445 * not recorded as it most likely matches current's and won't 2446 * change in the meantime. As high limit is checked again before 2447 * reclaim, the cost of mismatch is negligible. 2448 */ 2449 do { 2450 bool mem_high, swap_high; 2451 2452 mem_high = page_counter_read(&memcg->memory) > 2453 READ_ONCE(memcg->memory.high); 2454 swap_high = page_counter_read(&memcg->swap) > 2455 READ_ONCE(memcg->swap.high); 2456 2457 /* Don't bother a random interrupted task */ 2458 if (!in_task()) { 2459 if (mem_high) { 2460 schedule_work(&memcg->high_work); 2461 break; 2462 } 2463 continue; 2464 } 2465 2466 if (mem_high || swap_high) { 2467 /* 2468 * The allocating tasks in this cgroup will need to do 2469 * reclaim or be throttled to prevent further growth 2470 * of the memory or swap footprints. 2471 * 2472 * Target some best-effort fairness between the tasks, 2473 * and distribute reclaim work and delay penalties 2474 * based on how much each task is actually allocating. 2475 */ 2476 current->memcg_nr_pages_over_high += batch; 2477 set_notify_resume(current); 2478 break; 2479 } 2480 } while ((memcg = parent_mem_cgroup(memcg))); 2481 2482 /* 2483 * Reclaim is set up above to be called from the userland 2484 * return path. But also attempt synchronous reclaim to avoid 2485 * excessive overrun while the task is still inside the 2486 * kernel. If this is successful, the return path will see it 2487 * when it rechecks the overage and simply bail out. 2488 */ 2489 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2490 !(current->flags & PF_MEMALLOC) && 2491 gfpflags_allow_blocking(gfp_mask)) 2492 mem_cgroup_handle_over_high(gfp_mask); 2493 return 0; 2494 } 2495 2496 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2497 unsigned int nr_pages) 2498 { 2499 if (mem_cgroup_is_root(memcg)) 2500 return 0; 2501 2502 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2503 } 2504 2505 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2506 { 2507 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2508 /* 2509 * Any of the following ensures page's memcg stability: 2510 * 2511 * - the page lock 2512 * - LRU isolation 2513 * - exclusive reference 2514 */ 2515 folio->memcg_data = (unsigned long)memcg; 2516 } 2517 2518 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2519 struct pglist_data *pgdat, 2520 enum node_stat_item idx, int nr) 2521 { 2522 struct mem_cgroup *memcg; 2523 struct lruvec *lruvec; 2524 2525 rcu_read_lock(); 2526 memcg = obj_cgroup_memcg(objcg); 2527 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2528 mod_memcg_lruvec_state(lruvec, idx, nr); 2529 rcu_read_unlock(); 2530 } 2531 2532 static __always_inline 2533 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2534 { 2535 /* 2536 * Slab objects are accounted individually, not per-page. 2537 * Memcg membership data for each individual object is saved in 2538 * slab->obj_exts. 2539 */ 2540 if (folio_test_slab(folio)) { 2541 struct slabobj_ext *obj_exts; 2542 struct slab *slab; 2543 unsigned int off; 2544 2545 slab = folio_slab(folio); 2546 obj_exts = slab_obj_exts(slab); 2547 if (!obj_exts) 2548 return NULL; 2549 2550 off = obj_to_index(slab->slab_cache, slab, p); 2551 if (obj_exts[off].objcg) 2552 return obj_cgroup_memcg(obj_exts[off].objcg); 2553 2554 return NULL; 2555 } 2556 2557 /* 2558 * folio_memcg_check() is used here, because in theory we can encounter 2559 * a folio where the slab flag has been cleared already, but 2560 * slab->obj_exts has not been freed yet 2561 * folio_memcg_check() will guarantee that a proper memory 2562 * cgroup pointer or NULL will be returned. 2563 */ 2564 return folio_memcg_check(folio); 2565 } 2566 2567 /* 2568 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2569 * It is not suitable for objects allocated using vmalloc(). 2570 * 2571 * A passed kernel object must be a slab object or a generic kernel page. 2572 * 2573 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2574 * cgroup_mutex, etc. 2575 */ 2576 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2577 { 2578 if (mem_cgroup_disabled()) 2579 return NULL; 2580 2581 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2582 } 2583 2584 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2585 { 2586 struct obj_cgroup *objcg = NULL; 2587 2588 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2589 objcg = rcu_dereference(memcg->objcg); 2590 if (likely(objcg && obj_cgroup_tryget(objcg))) 2591 break; 2592 objcg = NULL; 2593 } 2594 return objcg; 2595 } 2596 2597 static struct obj_cgroup *current_objcg_update(void) 2598 { 2599 struct mem_cgroup *memcg; 2600 struct obj_cgroup *old, *objcg = NULL; 2601 2602 do { 2603 /* Atomically drop the update bit. */ 2604 old = xchg(¤t->objcg, NULL); 2605 if (old) { 2606 old = (struct obj_cgroup *) 2607 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2608 obj_cgroup_put(old); 2609 2610 old = NULL; 2611 } 2612 2613 /* If new objcg is NULL, no reason for the second atomic update. */ 2614 if (!current->mm || (current->flags & PF_KTHREAD)) 2615 return NULL; 2616 2617 /* 2618 * Release the objcg pointer from the previous iteration, 2619 * if try_cmpxcg() below fails. 2620 */ 2621 if (unlikely(objcg)) { 2622 obj_cgroup_put(objcg); 2623 objcg = NULL; 2624 } 2625 2626 /* 2627 * Obtain the new objcg pointer. The current task can be 2628 * asynchronously moved to another memcg and the previous 2629 * memcg can be offlined. So let's get the memcg pointer 2630 * and try get a reference to objcg under a rcu read lock. 2631 */ 2632 2633 rcu_read_lock(); 2634 memcg = mem_cgroup_from_task(current); 2635 objcg = __get_obj_cgroup_from_memcg(memcg); 2636 rcu_read_unlock(); 2637 2638 /* 2639 * Try set up a new objcg pointer atomically. If it 2640 * fails, it means the update flag was set concurrently, so 2641 * the whole procedure should be repeated. 2642 */ 2643 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2644 2645 return objcg; 2646 } 2647 2648 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2649 { 2650 struct mem_cgroup *memcg; 2651 struct obj_cgroup *objcg; 2652 2653 if (in_task()) { 2654 memcg = current->active_memcg; 2655 if (unlikely(memcg)) 2656 goto from_memcg; 2657 2658 objcg = READ_ONCE(current->objcg); 2659 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2660 objcg = current_objcg_update(); 2661 /* 2662 * Objcg reference is kept by the task, so it's safe 2663 * to use the objcg by the current task. 2664 */ 2665 return objcg; 2666 } 2667 2668 memcg = this_cpu_read(int_active_memcg); 2669 if (unlikely(memcg)) 2670 goto from_memcg; 2671 2672 return NULL; 2673 2674 from_memcg: 2675 objcg = NULL; 2676 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2677 /* 2678 * Memcg pointer is protected by scope (see set_active_memcg()) 2679 * and is pinning the corresponding objcg, so objcg can't go 2680 * away and can be used within the scope without any additional 2681 * protection. 2682 */ 2683 objcg = rcu_dereference_check(memcg->objcg, 1); 2684 if (likely(objcg)) 2685 break; 2686 } 2687 2688 return objcg; 2689 } 2690 2691 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2692 { 2693 struct obj_cgroup *objcg; 2694 2695 if (!memcg_kmem_online()) 2696 return NULL; 2697 2698 if (folio_memcg_kmem(folio)) { 2699 objcg = __folio_objcg(folio); 2700 obj_cgroup_get(objcg); 2701 } else { 2702 struct mem_cgroup *memcg; 2703 2704 rcu_read_lock(); 2705 memcg = __folio_memcg(folio); 2706 if (memcg) 2707 objcg = __get_obj_cgroup_from_memcg(memcg); 2708 else 2709 objcg = NULL; 2710 rcu_read_unlock(); 2711 } 2712 return objcg; 2713 } 2714 2715 /* 2716 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2717 * @objcg: object cgroup to uncharge 2718 * @nr_pages: number of pages to uncharge 2719 */ 2720 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2721 unsigned int nr_pages) 2722 { 2723 struct mem_cgroup *memcg; 2724 2725 memcg = get_mem_cgroup_from_objcg(objcg); 2726 2727 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2728 memcg1_account_kmem(memcg, -nr_pages); 2729 if (!mem_cgroup_is_root(memcg)) 2730 refill_stock(memcg, nr_pages); 2731 2732 css_put(&memcg->css); 2733 } 2734 2735 /* 2736 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2737 * @objcg: object cgroup to charge 2738 * @gfp: reclaim mode 2739 * @nr_pages: number of pages to charge 2740 * 2741 * Returns 0 on success, an error code on failure. 2742 */ 2743 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2744 unsigned int nr_pages) 2745 { 2746 struct mem_cgroup *memcg; 2747 int ret; 2748 2749 memcg = get_mem_cgroup_from_objcg(objcg); 2750 2751 ret = try_charge_memcg(memcg, gfp, nr_pages); 2752 if (ret) 2753 goto out; 2754 2755 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2756 memcg1_account_kmem(memcg, nr_pages); 2757 out: 2758 css_put(&memcg->css); 2759 2760 return ret; 2761 } 2762 2763 static struct obj_cgroup *page_objcg(const struct page *page) 2764 { 2765 unsigned long memcg_data = page->memcg_data; 2766 2767 if (mem_cgroup_disabled() || !memcg_data) 2768 return NULL; 2769 2770 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2771 page); 2772 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2773 } 2774 2775 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2776 { 2777 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2778 } 2779 2780 /** 2781 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2782 * @page: page to charge 2783 * @gfp: reclaim mode 2784 * @order: allocation order 2785 * 2786 * Returns 0 on success, an error code on failure. 2787 */ 2788 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2789 { 2790 struct obj_cgroup *objcg; 2791 int ret = 0; 2792 2793 objcg = current_obj_cgroup(); 2794 if (objcg) { 2795 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2796 if (!ret) { 2797 obj_cgroup_get(objcg); 2798 page_set_objcg(page, objcg); 2799 return 0; 2800 } 2801 } 2802 return ret; 2803 } 2804 2805 /** 2806 * __memcg_kmem_uncharge_page: uncharge a kmem page 2807 * @page: page to uncharge 2808 * @order: allocation order 2809 */ 2810 void __memcg_kmem_uncharge_page(struct page *page, int order) 2811 { 2812 struct obj_cgroup *objcg = page_objcg(page); 2813 unsigned int nr_pages = 1 << order; 2814 2815 if (!objcg) 2816 return; 2817 2818 obj_cgroup_uncharge_pages(objcg, nr_pages); 2819 page->memcg_data = 0; 2820 obj_cgroup_put(objcg); 2821 } 2822 2823 static void __account_obj_stock(struct obj_cgroup *objcg, 2824 struct obj_stock_pcp *stock, int nr, 2825 struct pglist_data *pgdat, enum node_stat_item idx) 2826 { 2827 int *bytes; 2828 2829 /* 2830 * Save vmstat data in stock and skip vmstat array update unless 2831 * accumulating over a page of vmstat data or when pgdat changes. 2832 */ 2833 if (stock->cached_pgdat != pgdat) { 2834 /* Flush the existing cached vmstat data */ 2835 struct pglist_data *oldpg = stock->cached_pgdat; 2836 2837 if (stock->nr_slab_reclaimable_b) { 2838 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2839 stock->nr_slab_reclaimable_b); 2840 stock->nr_slab_reclaimable_b = 0; 2841 } 2842 if (stock->nr_slab_unreclaimable_b) { 2843 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2844 stock->nr_slab_unreclaimable_b); 2845 stock->nr_slab_unreclaimable_b = 0; 2846 } 2847 stock->cached_pgdat = pgdat; 2848 } 2849 2850 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2851 : &stock->nr_slab_unreclaimable_b; 2852 /* 2853 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2854 * cached locally at least once before pushing it out. 2855 */ 2856 if (!*bytes) { 2857 *bytes = nr; 2858 nr = 0; 2859 } else { 2860 *bytes += nr; 2861 if (abs(*bytes) > PAGE_SIZE) { 2862 nr = *bytes; 2863 *bytes = 0; 2864 } else { 2865 nr = 0; 2866 } 2867 } 2868 if (nr) 2869 mod_objcg_mlstate(objcg, pgdat, idx, nr); 2870 } 2871 2872 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2873 struct pglist_data *pgdat, enum node_stat_item idx) 2874 { 2875 struct obj_stock_pcp *stock; 2876 bool ret = false; 2877 2878 if (!local_trylock(&obj_stock.lock)) 2879 return ret; 2880 2881 stock = this_cpu_ptr(&obj_stock); 2882 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2883 stock->nr_bytes -= nr_bytes; 2884 ret = true; 2885 2886 if (pgdat) 2887 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2888 } 2889 2890 local_unlock(&obj_stock.lock); 2891 2892 return ret; 2893 } 2894 2895 static void drain_obj_stock(struct obj_stock_pcp *stock) 2896 { 2897 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2898 2899 if (!old) 2900 return; 2901 2902 if (stock->nr_bytes) { 2903 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2904 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2905 2906 if (nr_pages) { 2907 struct mem_cgroup *memcg; 2908 2909 memcg = get_mem_cgroup_from_objcg(old); 2910 2911 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2912 memcg1_account_kmem(memcg, -nr_pages); 2913 if (!mem_cgroup_is_root(memcg)) 2914 memcg_uncharge(memcg, nr_pages); 2915 2916 css_put(&memcg->css); 2917 } 2918 2919 /* 2920 * The leftover is flushed to the centralized per-memcg value. 2921 * On the next attempt to refill obj stock it will be moved 2922 * to a per-cpu stock (probably, on an other CPU), see 2923 * refill_obj_stock(). 2924 * 2925 * How often it's flushed is a trade-off between the memory 2926 * limit enforcement accuracy and potential CPU contention, 2927 * so it might be changed in the future. 2928 */ 2929 atomic_add(nr_bytes, &old->nr_charged_bytes); 2930 stock->nr_bytes = 0; 2931 } 2932 2933 /* 2934 * Flush the vmstat data in current stock 2935 */ 2936 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2937 if (stock->nr_slab_reclaimable_b) { 2938 mod_objcg_mlstate(old, stock->cached_pgdat, 2939 NR_SLAB_RECLAIMABLE_B, 2940 stock->nr_slab_reclaimable_b); 2941 stock->nr_slab_reclaimable_b = 0; 2942 } 2943 if (stock->nr_slab_unreclaimable_b) { 2944 mod_objcg_mlstate(old, stock->cached_pgdat, 2945 NR_SLAB_UNRECLAIMABLE_B, 2946 stock->nr_slab_unreclaimable_b); 2947 stock->nr_slab_unreclaimable_b = 0; 2948 } 2949 stock->cached_pgdat = NULL; 2950 } 2951 2952 WRITE_ONCE(stock->cached_objcg, NULL); 2953 obj_cgroup_put(old); 2954 } 2955 2956 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 2957 struct mem_cgroup *root_memcg) 2958 { 2959 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2960 struct mem_cgroup *memcg; 2961 bool flush = false; 2962 2963 rcu_read_lock(); 2964 if (objcg) { 2965 memcg = obj_cgroup_memcg(objcg); 2966 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2967 flush = true; 2968 } 2969 rcu_read_unlock(); 2970 2971 return flush; 2972 } 2973 2974 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2975 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 2976 enum node_stat_item idx) 2977 { 2978 struct obj_stock_pcp *stock; 2979 unsigned int nr_pages = 0; 2980 2981 if (!local_trylock(&obj_stock.lock)) { 2982 if (pgdat) 2983 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); 2984 nr_pages = nr_bytes >> PAGE_SHIFT; 2985 nr_bytes = nr_bytes & (PAGE_SIZE - 1); 2986 atomic_add(nr_bytes, &objcg->nr_charged_bytes); 2987 goto out; 2988 } 2989 2990 stock = this_cpu_ptr(&obj_stock); 2991 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2992 drain_obj_stock(stock); 2993 obj_cgroup_get(objcg); 2994 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2995 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2996 WRITE_ONCE(stock->cached_objcg, objcg); 2997 2998 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2999 } 3000 stock->nr_bytes += nr_bytes; 3001 3002 if (pgdat) 3003 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3004 3005 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3006 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3007 stock->nr_bytes &= (PAGE_SIZE - 1); 3008 } 3009 3010 local_unlock(&obj_stock.lock); 3011 out: 3012 if (nr_pages) 3013 obj_cgroup_uncharge_pages(objcg, nr_pages); 3014 } 3015 3016 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3017 struct pglist_data *pgdat, enum node_stat_item idx) 3018 { 3019 unsigned int nr_pages, nr_bytes; 3020 int ret; 3021 3022 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3023 return 0; 3024 3025 /* 3026 * In theory, objcg->nr_charged_bytes can have enough 3027 * pre-charged bytes to satisfy the allocation. However, 3028 * flushing objcg->nr_charged_bytes requires two atomic 3029 * operations, and objcg->nr_charged_bytes can't be big. 3030 * The shared objcg->nr_charged_bytes can also become a 3031 * performance bottleneck if all tasks of the same memcg are 3032 * trying to update it. So it's better to ignore it and try 3033 * grab some new pages. The stock's nr_bytes will be flushed to 3034 * objcg->nr_charged_bytes later on when objcg changes. 3035 * 3036 * The stock's nr_bytes may contain enough pre-charged bytes 3037 * to allow one less page from being charged, but we can't rely 3038 * on the pre-charged bytes not being changed outside of 3039 * consume_obj_stock() or refill_obj_stock(). So ignore those 3040 * pre-charged bytes as well when charging pages. To avoid a 3041 * page uncharge right after a page charge, we set the 3042 * allow_uncharge flag to false when calling refill_obj_stock() 3043 * to temporarily allow the pre-charged bytes to exceed the page 3044 * size limit. The maximum reachable value of the pre-charged 3045 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3046 * race. 3047 */ 3048 nr_pages = size >> PAGE_SHIFT; 3049 nr_bytes = size & (PAGE_SIZE - 1); 3050 3051 if (nr_bytes) 3052 nr_pages += 1; 3053 3054 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3055 if (!ret && (nr_bytes || pgdat)) 3056 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3057 false, size, pgdat, idx); 3058 3059 return ret; 3060 } 3061 3062 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3063 { 3064 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3065 } 3066 3067 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3068 { 3069 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3070 } 3071 3072 static inline size_t obj_full_size(struct kmem_cache *s) 3073 { 3074 /* 3075 * For each accounted object there is an extra space which is used 3076 * to store obj_cgroup membership. Charge it too. 3077 */ 3078 return s->size + sizeof(struct obj_cgroup *); 3079 } 3080 3081 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3082 gfp_t flags, size_t size, void **p) 3083 { 3084 struct obj_cgroup *objcg; 3085 struct slab *slab; 3086 unsigned long off; 3087 size_t i; 3088 3089 /* 3090 * The obtained objcg pointer is safe to use within the current scope, 3091 * defined by current task or set_active_memcg() pair. 3092 * obj_cgroup_get() is used to get a permanent reference. 3093 */ 3094 objcg = current_obj_cgroup(); 3095 if (!objcg) 3096 return true; 3097 3098 /* 3099 * slab_alloc_node() avoids the NULL check, so we might be called with a 3100 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3101 * the whole requested size. 3102 * return success as there's nothing to free back 3103 */ 3104 if (unlikely(*p == NULL)) 3105 return true; 3106 3107 flags &= gfp_allowed_mask; 3108 3109 if (lru) { 3110 int ret; 3111 struct mem_cgroup *memcg; 3112 3113 memcg = get_mem_cgroup_from_objcg(objcg); 3114 ret = memcg_list_lru_alloc(memcg, lru, flags); 3115 css_put(&memcg->css); 3116 3117 if (ret) 3118 return false; 3119 } 3120 3121 for (i = 0; i < size; i++) { 3122 slab = virt_to_slab(p[i]); 3123 3124 if (!slab_obj_exts(slab) && 3125 alloc_slab_obj_exts(slab, s, flags, false)) { 3126 continue; 3127 } 3128 3129 /* 3130 * if we fail and size is 1, memcg_alloc_abort_single() will 3131 * just free the object, which is ok as we have not assigned 3132 * objcg to its obj_ext yet 3133 * 3134 * for larger sizes, kmem_cache_free_bulk() will uncharge 3135 * any objects that were already charged and obj_ext assigned 3136 * 3137 * TODO: we could batch this until slab_pgdat(slab) changes 3138 * between iterations, with a more complicated undo 3139 */ 3140 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3141 slab_pgdat(slab), cache_vmstat_idx(s))) 3142 return false; 3143 3144 off = obj_to_index(s, slab, p[i]); 3145 obj_cgroup_get(objcg); 3146 slab_obj_exts(slab)[off].objcg = objcg; 3147 } 3148 3149 return true; 3150 } 3151 3152 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3153 void **p, int objects, struct slabobj_ext *obj_exts) 3154 { 3155 size_t obj_size = obj_full_size(s); 3156 3157 for (int i = 0; i < objects; i++) { 3158 struct obj_cgroup *objcg; 3159 unsigned int off; 3160 3161 off = obj_to_index(s, slab, p[i]); 3162 objcg = obj_exts[off].objcg; 3163 if (!objcg) 3164 continue; 3165 3166 obj_exts[off].objcg = NULL; 3167 refill_obj_stock(objcg, obj_size, true, -obj_size, 3168 slab_pgdat(slab), cache_vmstat_idx(s)); 3169 obj_cgroup_put(objcg); 3170 } 3171 } 3172 3173 /* 3174 * The objcg is only set on the first page, so transfer it to all the 3175 * other pages. 3176 */ 3177 void split_page_memcg(struct page *page, unsigned order) 3178 { 3179 struct obj_cgroup *objcg = page_objcg(page); 3180 unsigned int i, nr = 1 << order; 3181 3182 if (!objcg) 3183 return; 3184 3185 for (i = 1; i < nr; i++) 3186 page_set_objcg(&page[i], objcg); 3187 3188 obj_cgroup_get_many(objcg, nr - 1); 3189 } 3190 3191 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3192 unsigned new_order) 3193 { 3194 unsigned new_refs; 3195 3196 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3197 return; 3198 3199 new_refs = (1 << (old_order - new_order)) - 1; 3200 css_get_many(&__folio_memcg(folio)->css, new_refs); 3201 } 3202 3203 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3204 { 3205 unsigned long val; 3206 3207 if (mem_cgroup_is_root(memcg)) { 3208 /* 3209 * Approximate root's usage from global state. This isn't 3210 * perfect, but the root usage was always an approximation. 3211 */ 3212 val = global_node_page_state(NR_FILE_PAGES) + 3213 global_node_page_state(NR_ANON_MAPPED); 3214 if (swap) 3215 val += total_swap_pages - get_nr_swap_pages(); 3216 } else { 3217 if (!swap) 3218 val = page_counter_read(&memcg->memory); 3219 else 3220 val = page_counter_read(&memcg->memsw); 3221 } 3222 return val; 3223 } 3224 3225 static int memcg_online_kmem(struct mem_cgroup *memcg) 3226 { 3227 struct obj_cgroup *objcg; 3228 3229 if (mem_cgroup_kmem_disabled()) 3230 return 0; 3231 3232 if (unlikely(mem_cgroup_is_root(memcg))) 3233 return 0; 3234 3235 objcg = obj_cgroup_alloc(); 3236 if (!objcg) 3237 return -ENOMEM; 3238 3239 objcg->memcg = memcg; 3240 rcu_assign_pointer(memcg->objcg, objcg); 3241 obj_cgroup_get(objcg); 3242 memcg->orig_objcg = objcg; 3243 3244 static_branch_enable(&memcg_kmem_online_key); 3245 3246 memcg->kmemcg_id = memcg->id.id; 3247 3248 return 0; 3249 } 3250 3251 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3252 { 3253 struct mem_cgroup *parent; 3254 3255 if (mem_cgroup_kmem_disabled()) 3256 return; 3257 3258 if (unlikely(mem_cgroup_is_root(memcg))) 3259 return; 3260 3261 parent = parent_mem_cgroup(memcg); 3262 if (!parent) 3263 parent = root_mem_cgroup; 3264 3265 memcg_reparent_list_lrus(memcg, parent); 3266 3267 /* 3268 * Objcg's reparenting must be after list_lru's, make sure list_lru 3269 * helpers won't use parent's list_lru until child is drained. 3270 */ 3271 memcg_reparent_objcgs(memcg, parent); 3272 } 3273 3274 #ifdef CONFIG_CGROUP_WRITEBACK 3275 3276 #include <trace/events/writeback.h> 3277 3278 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3279 { 3280 return wb_domain_init(&memcg->cgwb_domain, gfp); 3281 } 3282 3283 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3284 { 3285 wb_domain_exit(&memcg->cgwb_domain); 3286 } 3287 3288 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3289 { 3290 wb_domain_size_changed(&memcg->cgwb_domain); 3291 } 3292 3293 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3294 { 3295 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3296 3297 if (!memcg->css.parent) 3298 return NULL; 3299 3300 return &memcg->cgwb_domain; 3301 } 3302 3303 /** 3304 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3305 * @wb: bdi_writeback in question 3306 * @pfilepages: out parameter for number of file pages 3307 * @pheadroom: out parameter for number of allocatable pages according to memcg 3308 * @pdirty: out parameter for number of dirty pages 3309 * @pwriteback: out parameter for number of pages under writeback 3310 * 3311 * Determine the numbers of file, headroom, dirty, and writeback pages in 3312 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3313 * is a bit more involved. 3314 * 3315 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3316 * headroom is calculated as the lowest headroom of itself and the 3317 * ancestors. Note that this doesn't consider the actual amount of 3318 * available memory in the system. The caller should further cap 3319 * *@pheadroom accordingly. 3320 */ 3321 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3322 unsigned long *pheadroom, unsigned long *pdirty, 3323 unsigned long *pwriteback) 3324 { 3325 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3326 struct mem_cgroup *parent; 3327 3328 mem_cgroup_flush_stats_ratelimited(memcg); 3329 3330 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3331 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3332 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3333 memcg_page_state(memcg, NR_ACTIVE_FILE); 3334 3335 *pheadroom = PAGE_COUNTER_MAX; 3336 while ((parent = parent_mem_cgroup(memcg))) { 3337 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3338 READ_ONCE(memcg->memory.high)); 3339 unsigned long used = page_counter_read(&memcg->memory); 3340 3341 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3342 memcg = parent; 3343 } 3344 } 3345 3346 /* 3347 * Foreign dirty flushing 3348 * 3349 * There's an inherent mismatch between memcg and writeback. The former 3350 * tracks ownership per-page while the latter per-inode. This was a 3351 * deliberate design decision because honoring per-page ownership in the 3352 * writeback path is complicated, may lead to higher CPU and IO overheads 3353 * and deemed unnecessary given that write-sharing an inode across 3354 * different cgroups isn't a common use-case. 3355 * 3356 * Combined with inode majority-writer ownership switching, this works well 3357 * enough in most cases but there are some pathological cases. For 3358 * example, let's say there are two cgroups A and B which keep writing to 3359 * different but confined parts of the same inode. B owns the inode and 3360 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3361 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3362 * triggering background writeback. A will be slowed down without a way to 3363 * make writeback of the dirty pages happen. 3364 * 3365 * Conditions like the above can lead to a cgroup getting repeatedly and 3366 * severely throttled after making some progress after each 3367 * dirty_expire_interval while the underlying IO device is almost 3368 * completely idle. 3369 * 3370 * Solving this problem completely requires matching the ownership tracking 3371 * granularities between memcg and writeback in either direction. However, 3372 * the more egregious behaviors can be avoided by simply remembering the 3373 * most recent foreign dirtying events and initiating remote flushes on 3374 * them when local writeback isn't enough to keep the memory clean enough. 3375 * 3376 * The following two functions implement such mechanism. When a foreign 3377 * page - a page whose memcg and writeback ownerships don't match - is 3378 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3379 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3380 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3381 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3382 * foreign bdi_writebacks which haven't expired. Both the numbers of 3383 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3384 * limited to MEMCG_CGWB_FRN_CNT. 3385 * 3386 * The mechanism only remembers IDs and doesn't hold any object references. 3387 * As being wrong occasionally doesn't matter, updates and accesses to the 3388 * records are lockless and racy. 3389 */ 3390 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3391 struct bdi_writeback *wb) 3392 { 3393 struct mem_cgroup *memcg = folio_memcg(folio); 3394 struct memcg_cgwb_frn *frn; 3395 u64 now = get_jiffies_64(); 3396 u64 oldest_at = now; 3397 int oldest = -1; 3398 int i; 3399 3400 trace_track_foreign_dirty(folio, wb); 3401 3402 /* 3403 * Pick the slot to use. If there is already a slot for @wb, keep 3404 * using it. If not replace the oldest one which isn't being 3405 * written out. 3406 */ 3407 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3408 frn = &memcg->cgwb_frn[i]; 3409 if (frn->bdi_id == wb->bdi->id && 3410 frn->memcg_id == wb->memcg_css->id) 3411 break; 3412 if (time_before64(frn->at, oldest_at) && 3413 atomic_read(&frn->done.cnt) == 1) { 3414 oldest = i; 3415 oldest_at = frn->at; 3416 } 3417 } 3418 3419 if (i < MEMCG_CGWB_FRN_CNT) { 3420 /* 3421 * Re-using an existing one. Update timestamp lazily to 3422 * avoid making the cacheline hot. We want them to be 3423 * reasonably up-to-date and significantly shorter than 3424 * dirty_expire_interval as that's what expires the record. 3425 * Use the shorter of 1s and dirty_expire_interval / 8. 3426 */ 3427 unsigned long update_intv = 3428 min_t(unsigned long, HZ, 3429 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3430 3431 if (time_before64(frn->at, now - update_intv)) 3432 frn->at = now; 3433 } else if (oldest >= 0) { 3434 /* replace the oldest free one */ 3435 frn = &memcg->cgwb_frn[oldest]; 3436 frn->bdi_id = wb->bdi->id; 3437 frn->memcg_id = wb->memcg_css->id; 3438 frn->at = now; 3439 } 3440 } 3441 3442 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3443 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3444 { 3445 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3446 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3447 u64 now = jiffies_64; 3448 int i; 3449 3450 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3451 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3452 3453 /* 3454 * If the record is older than dirty_expire_interval, 3455 * writeback on it has already started. No need to kick it 3456 * off again. Also, don't start a new one if there's 3457 * already one in flight. 3458 */ 3459 if (time_after64(frn->at, now - intv) && 3460 atomic_read(&frn->done.cnt) == 1) { 3461 frn->at = 0; 3462 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3463 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3464 WB_REASON_FOREIGN_FLUSH, 3465 &frn->done); 3466 } 3467 } 3468 } 3469 3470 #else /* CONFIG_CGROUP_WRITEBACK */ 3471 3472 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3473 { 3474 return 0; 3475 } 3476 3477 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3478 { 3479 } 3480 3481 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3482 { 3483 } 3484 3485 #endif /* CONFIG_CGROUP_WRITEBACK */ 3486 3487 /* 3488 * Private memory cgroup IDR 3489 * 3490 * Swap-out records and page cache shadow entries need to store memcg 3491 * references in constrained space, so we maintain an ID space that is 3492 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3493 * memory-controlled cgroups to 64k. 3494 * 3495 * However, there usually are many references to the offline CSS after 3496 * the cgroup has been destroyed, such as page cache or reclaimable 3497 * slab objects, that don't need to hang on to the ID. We want to keep 3498 * those dead CSS from occupying IDs, or we might quickly exhaust the 3499 * relatively small ID space and prevent the creation of new cgroups 3500 * even when there are much fewer than 64k cgroups - possibly none. 3501 * 3502 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3503 * be freed and recycled when it's no longer needed, which is usually 3504 * when the CSS is offlined. 3505 * 3506 * The only exception to that are records of swapped out tmpfs/shmem 3507 * pages that need to be attributed to live ancestors on swapin. But 3508 * those references are manageable from userspace. 3509 */ 3510 3511 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3512 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3513 3514 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3515 { 3516 if (memcg->id.id > 0) { 3517 xa_erase(&mem_cgroup_ids, memcg->id.id); 3518 memcg->id.id = 0; 3519 } 3520 } 3521 3522 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3523 unsigned int n) 3524 { 3525 refcount_add(n, &memcg->id.ref); 3526 } 3527 3528 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3529 { 3530 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3531 mem_cgroup_id_remove(memcg); 3532 3533 /* Memcg ID pins CSS */ 3534 css_put(&memcg->css); 3535 } 3536 } 3537 3538 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3539 { 3540 mem_cgroup_id_put_many(memcg, 1); 3541 } 3542 3543 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3544 { 3545 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3546 /* 3547 * The root cgroup cannot be destroyed, so it's refcount must 3548 * always be >= 1. 3549 */ 3550 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3551 VM_BUG_ON(1); 3552 break; 3553 } 3554 memcg = parent_mem_cgroup(memcg); 3555 if (!memcg) 3556 memcg = root_mem_cgroup; 3557 } 3558 return memcg; 3559 } 3560 3561 /** 3562 * mem_cgroup_from_id - look up a memcg from a memcg id 3563 * @id: the memcg id to look up 3564 * 3565 * Caller must hold rcu_read_lock(). 3566 */ 3567 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3568 { 3569 WARN_ON_ONCE(!rcu_read_lock_held()); 3570 return xa_load(&mem_cgroup_ids, id); 3571 } 3572 3573 #ifdef CONFIG_SHRINKER_DEBUG 3574 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3575 { 3576 struct cgroup *cgrp; 3577 struct cgroup_subsys_state *css; 3578 struct mem_cgroup *memcg; 3579 3580 cgrp = cgroup_get_from_id(ino); 3581 if (IS_ERR(cgrp)) 3582 return ERR_CAST(cgrp); 3583 3584 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3585 if (css) 3586 memcg = container_of(css, struct mem_cgroup, css); 3587 else 3588 memcg = ERR_PTR(-ENOENT); 3589 3590 cgroup_put(cgrp); 3591 3592 return memcg; 3593 } 3594 #endif 3595 3596 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3597 { 3598 if (!pn) 3599 return; 3600 3601 free_percpu(pn->lruvec_stats_percpu); 3602 kfree(pn->lruvec_stats); 3603 kfree(pn); 3604 } 3605 3606 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3607 { 3608 struct mem_cgroup_per_node *pn; 3609 3610 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3611 node); 3612 if (!pn) 3613 return false; 3614 3615 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3616 GFP_KERNEL_ACCOUNT, node); 3617 if (!pn->lruvec_stats) 3618 goto fail; 3619 3620 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3621 GFP_KERNEL_ACCOUNT); 3622 if (!pn->lruvec_stats_percpu) 3623 goto fail; 3624 3625 lruvec_init(&pn->lruvec); 3626 pn->memcg = memcg; 3627 3628 memcg->nodeinfo[node] = pn; 3629 return true; 3630 fail: 3631 free_mem_cgroup_per_node_info(pn); 3632 return false; 3633 } 3634 3635 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3636 { 3637 int node; 3638 3639 obj_cgroup_put(memcg->orig_objcg); 3640 3641 for_each_node(node) 3642 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3643 memcg1_free_events(memcg); 3644 kfree(memcg->vmstats); 3645 free_percpu(memcg->vmstats_percpu); 3646 kfree(memcg); 3647 } 3648 3649 static void mem_cgroup_free(struct mem_cgroup *memcg) 3650 { 3651 lru_gen_exit_memcg(memcg); 3652 memcg_wb_domain_exit(memcg); 3653 __mem_cgroup_free(memcg); 3654 } 3655 3656 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3657 { 3658 struct memcg_vmstats_percpu *statc; 3659 struct memcg_vmstats_percpu __percpu *pstatc_pcpu; 3660 struct mem_cgroup *memcg; 3661 int node, cpu; 3662 int __maybe_unused i; 3663 long error; 3664 3665 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3666 if (!memcg) 3667 return ERR_PTR(-ENOMEM); 3668 3669 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3670 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3671 if (error) 3672 goto fail; 3673 error = -ENOMEM; 3674 3675 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3676 GFP_KERNEL_ACCOUNT); 3677 if (!memcg->vmstats) 3678 goto fail; 3679 3680 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3681 GFP_KERNEL_ACCOUNT); 3682 if (!memcg->vmstats_percpu) 3683 goto fail; 3684 3685 if (!memcg1_alloc_events(memcg)) 3686 goto fail; 3687 3688 for_each_possible_cpu(cpu) { 3689 if (parent) 3690 pstatc_pcpu = parent->vmstats_percpu; 3691 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3692 statc->parent_pcpu = parent ? pstatc_pcpu : NULL; 3693 statc->vmstats = memcg->vmstats; 3694 } 3695 3696 for_each_node(node) 3697 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3698 goto fail; 3699 3700 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3701 goto fail; 3702 3703 INIT_WORK(&memcg->high_work, high_work_func); 3704 vmpressure_init(&memcg->vmpressure); 3705 INIT_LIST_HEAD(&memcg->memory_peaks); 3706 INIT_LIST_HEAD(&memcg->swap_peaks); 3707 spin_lock_init(&memcg->peaks_lock); 3708 memcg->socket_pressure = jiffies; 3709 memcg1_memcg_init(memcg); 3710 memcg->kmemcg_id = -1; 3711 INIT_LIST_HEAD(&memcg->objcg_list); 3712 #ifdef CONFIG_CGROUP_WRITEBACK 3713 INIT_LIST_HEAD(&memcg->cgwb_list); 3714 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3715 memcg->cgwb_frn[i].done = 3716 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3717 #endif 3718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3719 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3720 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3721 memcg->deferred_split_queue.split_queue_len = 0; 3722 #endif 3723 lru_gen_init_memcg(memcg); 3724 return memcg; 3725 fail: 3726 mem_cgroup_id_remove(memcg); 3727 __mem_cgroup_free(memcg); 3728 return ERR_PTR(error); 3729 } 3730 3731 static struct cgroup_subsys_state * __ref 3732 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3733 { 3734 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3735 struct mem_cgroup *memcg, *old_memcg; 3736 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3737 3738 old_memcg = set_active_memcg(parent); 3739 memcg = mem_cgroup_alloc(parent); 3740 set_active_memcg(old_memcg); 3741 if (IS_ERR(memcg)) 3742 return ERR_CAST(memcg); 3743 3744 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3745 memcg1_soft_limit_reset(memcg); 3746 #ifdef CONFIG_ZSWAP 3747 memcg->zswap_max = PAGE_COUNTER_MAX; 3748 WRITE_ONCE(memcg->zswap_writeback, true); 3749 #endif 3750 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3751 if (parent) { 3752 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3753 3754 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3755 page_counter_init(&memcg->swap, &parent->swap, false); 3756 #ifdef CONFIG_MEMCG_V1 3757 memcg->memory.track_failcnt = !memcg_on_dfl; 3758 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3759 page_counter_init(&memcg->kmem, &parent->kmem, false); 3760 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3761 #endif 3762 } else { 3763 init_memcg_stats(); 3764 init_memcg_events(); 3765 page_counter_init(&memcg->memory, NULL, true); 3766 page_counter_init(&memcg->swap, NULL, false); 3767 #ifdef CONFIG_MEMCG_V1 3768 page_counter_init(&memcg->kmem, NULL, false); 3769 page_counter_init(&memcg->tcpmem, NULL, false); 3770 #endif 3771 root_mem_cgroup = memcg; 3772 return &memcg->css; 3773 } 3774 3775 if (memcg_on_dfl && !cgroup_memory_nosocket) 3776 static_branch_inc(&memcg_sockets_enabled_key); 3777 3778 if (!cgroup_memory_nobpf) 3779 static_branch_inc(&memcg_bpf_enabled_key); 3780 3781 return &memcg->css; 3782 } 3783 3784 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3785 { 3786 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3787 3788 if (memcg_online_kmem(memcg)) 3789 goto remove_id; 3790 3791 /* 3792 * A memcg must be visible for expand_shrinker_info() 3793 * by the time the maps are allocated. So, we allocate maps 3794 * here, when for_each_mem_cgroup() can't skip it. 3795 */ 3796 if (alloc_shrinker_info(memcg)) 3797 goto offline_kmem; 3798 3799 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3800 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3801 FLUSH_TIME); 3802 lru_gen_online_memcg(memcg); 3803 3804 /* Online state pins memcg ID, memcg ID pins CSS */ 3805 refcount_set(&memcg->id.ref, 1); 3806 css_get(css); 3807 3808 /* 3809 * Ensure mem_cgroup_from_id() works once we're fully online. 3810 * 3811 * We could do this earlier and require callers to filter with 3812 * css_tryget_online(). But right now there are no users that 3813 * need earlier access, and the workingset code relies on the 3814 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3815 * publish it here at the end of onlining. This matches the 3816 * regular ID destruction during offlining. 3817 */ 3818 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3819 3820 return 0; 3821 offline_kmem: 3822 memcg_offline_kmem(memcg); 3823 remove_id: 3824 mem_cgroup_id_remove(memcg); 3825 return -ENOMEM; 3826 } 3827 3828 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3829 { 3830 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3831 3832 memcg1_css_offline(memcg); 3833 3834 page_counter_set_min(&memcg->memory, 0); 3835 page_counter_set_low(&memcg->memory, 0); 3836 3837 zswap_memcg_offline_cleanup(memcg); 3838 3839 memcg_offline_kmem(memcg); 3840 reparent_shrinker_deferred(memcg); 3841 wb_memcg_offline(memcg); 3842 lru_gen_offline_memcg(memcg); 3843 3844 drain_all_stock(memcg); 3845 3846 mem_cgroup_id_put(memcg); 3847 } 3848 3849 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3850 { 3851 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3852 3853 invalidate_reclaim_iterators(memcg); 3854 lru_gen_release_memcg(memcg); 3855 } 3856 3857 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3858 { 3859 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3860 int __maybe_unused i; 3861 3862 #ifdef CONFIG_CGROUP_WRITEBACK 3863 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3864 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3865 #endif 3866 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3867 static_branch_dec(&memcg_sockets_enabled_key); 3868 3869 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3870 static_branch_dec(&memcg_sockets_enabled_key); 3871 3872 if (!cgroup_memory_nobpf) 3873 static_branch_dec(&memcg_bpf_enabled_key); 3874 3875 vmpressure_cleanup(&memcg->vmpressure); 3876 cancel_work_sync(&memcg->high_work); 3877 memcg1_remove_from_trees(memcg); 3878 free_shrinker_info(memcg); 3879 mem_cgroup_free(memcg); 3880 } 3881 3882 /** 3883 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3884 * @css: the target css 3885 * 3886 * Reset the states of the mem_cgroup associated with @css. This is 3887 * invoked when the userland requests disabling on the default hierarchy 3888 * but the memcg is pinned through dependency. The memcg should stop 3889 * applying policies and should revert to the vanilla state as it may be 3890 * made visible again. 3891 * 3892 * The current implementation only resets the essential configurations. 3893 * This needs to be expanded to cover all the visible parts. 3894 */ 3895 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3896 { 3897 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3898 3899 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3900 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3901 #ifdef CONFIG_MEMCG_V1 3902 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3903 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3904 #endif 3905 page_counter_set_min(&memcg->memory, 0); 3906 page_counter_set_low(&memcg->memory, 0); 3907 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3908 memcg1_soft_limit_reset(memcg); 3909 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3910 memcg_wb_domain_size_changed(memcg); 3911 } 3912 3913 struct aggregate_control { 3914 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3915 long *aggregate; 3916 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3917 long *local; 3918 /* pointer to the pending child counters during tree propagation */ 3919 long *pending; 3920 /* pointer to the parent's pending counters, could be NULL */ 3921 long *ppending; 3922 /* pointer to the percpu counters to be aggregated */ 3923 long *cstat; 3924 /* pointer to the percpu counters of the last aggregation*/ 3925 long *cstat_prev; 3926 /* size of the above counters */ 3927 int size; 3928 }; 3929 3930 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3931 { 3932 int i; 3933 long delta, delta_cpu, v; 3934 3935 for (i = 0; i < ac->size; i++) { 3936 /* 3937 * Collect the aggregated propagation counts of groups 3938 * below us. We're in a per-cpu loop here and this is 3939 * a global counter, so the first cycle will get them. 3940 */ 3941 delta = ac->pending[i]; 3942 if (delta) 3943 ac->pending[i] = 0; 3944 3945 /* Add CPU changes on this level since the last flush */ 3946 delta_cpu = 0; 3947 v = READ_ONCE(ac->cstat[i]); 3948 if (v != ac->cstat_prev[i]) { 3949 delta_cpu = v - ac->cstat_prev[i]; 3950 delta += delta_cpu; 3951 ac->cstat_prev[i] = v; 3952 } 3953 3954 /* Aggregate counts on this level and propagate upwards */ 3955 if (delta_cpu) 3956 ac->local[i] += delta_cpu; 3957 3958 if (delta) { 3959 ac->aggregate[i] += delta; 3960 if (ac->ppending) 3961 ac->ppending[i] += delta; 3962 } 3963 } 3964 } 3965 3966 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3967 { 3968 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3969 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3970 struct memcg_vmstats_percpu *statc; 3971 struct aggregate_control ac; 3972 int nid; 3973 3974 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3975 3976 ac = (struct aggregate_control) { 3977 .aggregate = memcg->vmstats->state, 3978 .local = memcg->vmstats->state_local, 3979 .pending = memcg->vmstats->state_pending, 3980 .ppending = parent ? parent->vmstats->state_pending : NULL, 3981 .cstat = statc->state, 3982 .cstat_prev = statc->state_prev, 3983 .size = MEMCG_VMSTAT_SIZE, 3984 }; 3985 mem_cgroup_stat_aggregate(&ac); 3986 3987 ac = (struct aggregate_control) { 3988 .aggregate = memcg->vmstats->events, 3989 .local = memcg->vmstats->events_local, 3990 .pending = memcg->vmstats->events_pending, 3991 .ppending = parent ? parent->vmstats->events_pending : NULL, 3992 .cstat = statc->events, 3993 .cstat_prev = statc->events_prev, 3994 .size = NR_MEMCG_EVENTS, 3995 }; 3996 mem_cgroup_stat_aggregate(&ac); 3997 3998 for_each_node_state(nid, N_MEMORY) { 3999 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4000 struct lruvec_stats *lstats = pn->lruvec_stats; 4001 struct lruvec_stats *plstats = NULL; 4002 struct lruvec_stats_percpu *lstatc; 4003 4004 if (parent) 4005 plstats = parent->nodeinfo[nid]->lruvec_stats; 4006 4007 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4008 4009 ac = (struct aggregate_control) { 4010 .aggregate = lstats->state, 4011 .local = lstats->state_local, 4012 .pending = lstats->state_pending, 4013 .ppending = plstats ? plstats->state_pending : NULL, 4014 .cstat = lstatc->state, 4015 .cstat_prev = lstatc->state_prev, 4016 .size = NR_MEMCG_NODE_STAT_ITEMS, 4017 }; 4018 mem_cgroup_stat_aggregate(&ac); 4019 4020 } 4021 WRITE_ONCE(statc->stats_updates, 0); 4022 /* We are in a per-cpu loop here, only do the atomic write once */ 4023 if (atomic64_read(&memcg->vmstats->stats_updates)) 4024 atomic64_set(&memcg->vmstats->stats_updates, 0); 4025 } 4026 4027 static void mem_cgroup_fork(struct task_struct *task) 4028 { 4029 /* 4030 * Set the update flag to cause task->objcg to be initialized lazily 4031 * on the first allocation. It can be done without any synchronization 4032 * because it's always performed on the current task, so does 4033 * current_objcg_update(). 4034 */ 4035 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4036 } 4037 4038 static void mem_cgroup_exit(struct task_struct *task) 4039 { 4040 struct obj_cgroup *objcg = task->objcg; 4041 4042 objcg = (struct obj_cgroup *) 4043 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4044 obj_cgroup_put(objcg); 4045 4046 /* 4047 * Some kernel allocations can happen after this point, 4048 * but let's ignore them. It can be done without any synchronization 4049 * because it's always performed on the current task, so does 4050 * current_objcg_update(). 4051 */ 4052 task->objcg = NULL; 4053 } 4054 4055 #ifdef CONFIG_LRU_GEN 4056 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4057 { 4058 struct task_struct *task; 4059 struct cgroup_subsys_state *css; 4060 4061 /* find the first leader if there is any */ 4062 cgroup_taskset_for_each_leader(task, css, tset) 4063 break; 4064 4065 if (!task) 4066 return; 4067 4068 task_lock(task); 4069 if (task->mm && READ_ONCE(task->mm->owner) == task) 4070 lru_gen_migrate_mm(task->mm); 4071 task_unlock(task); 4072 } 4073 #else 4074 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4075 #endif /* CONFIG_LRU_GEN */ 4076 4077 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4078 { 4079 struct task_struct *task; 4080 struct cgroup_subsys_state *css; 4081 4082 cgroup_taskset_for_each(task, css, tset) { 4083 /* atomically set the update bit */ 4084 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4085 } 4086 } 4087 4088 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4089 { 4090 mem_cgroup_lru_gen_attach(tset); 4091 mem_cgroup_kmem_attach(tset); 4092 } 4093 4094 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4095 { 4096 if (value == PAGE_COUNTER_MAX) 4097 seq_puts(m, "max\n"); 4098 else 4099 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4100 4101 return 0; 4102 } 4103 4104 static u64 memory_current_read(struct cgroup_subsys_state *css, 4105 struct cftype *cft) 4106 { 4107 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4108 4109 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4110 } 4111 4112 #define OFP_PEAK_UNSET (((-1UL))) 4113 4114 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4115 { 4116 struct cgroup_of_peak *ofp = of_peak(sf->private); 4117 u64 fd_peak = READ_ONCE(ofp->value), peak; 4118 4119 /* User wants global or local peak? */ 4120 if (fd_peak == OFP_PEAK_UNSET) 4121 peak = pc->watermark; 4122 else 4123 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4124 4125 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4126 return 0; 4127 } 4128 4129 static int memory_peak_show(struct seq_file *sf, void *v) 4130 { 4131 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4132 4133 return peak_show(sf, v, &memcg->memory); 4134 } 4135 4136 static int peak_open(struct kernfs_open_file *of) 4137 { 4138 struct cgroup_of_peak *ofp = of_peak(of); 4139 4140 ofp->value = OFP_PEAK_UNSET; 4141 return 0; 4142 } 4143 4144 static void peak_release(struct kernfs_open_file *of) 4145 { 4146 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4147 struct cgroup_of_peak *ofp = of_peak(of); 4148 4149 if (ofp->value == OFP_PEAK_UNSET) { 4150 /* fast path (no writes on this fd) */ 4151 return; 4152 } 4153 spin_lock(&memcg->peaks_lock); 4154 list_del(&ofp->list); 4155 spin_unlock(&memcg->peaks_lock); 4156 } 4157 4158 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4159 loff_t off, struct page_counter *pc, 4160 struct list_head *watchers) 4161 { 4162 unsigned long usage; 4163 struct cgroup_of_peak *peer_ctx; 4164 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4165 struct cgroup_of_peak *ofp = of_peak(of); 4166 4167 spin_lock(&memcg->peaks_lock); 4168 4169 usage = page_counter_read(pc); 4170 WRITE_ONCE(pc->local_watermark, usage); 4171 4172 list_for_each_entry(peer_ctx, watchers, list) 4173 if (usage > peer_ctx->value) 4174 WRITE_ONCE(peer_ctx->value, usage); 4175 4176 /* initial write, register watcher */ 4177 if (ofp->value == OFP_PEAK_UNSET) 4178 list_add(&ofp->list, watchers); 4179 4180 WRITE_ONCE(ofp->value, usage); 4181 spin_unlock(&memcg->peaks_lock); 4182 4183 return nbytes; 4184 } 4185 4186 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4187 size_t nbytes, loff_t off) 4188 { 4189 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4190 4191 return peak_write(of, buf, nbytes, off, &memcg->memory, 4192 &memcg->memory_peaks); 4193 } 4194 4195 #undef OFP_PEAK_UNSET 4196 4197 static int memory_min_show(struct seq_file *m, void *v) 4198 { 4199 return seq_puts_memcg_tunable(m, 4200 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4201 } 4202 4203 static ssize_t memory_min_write(struct kernfs_open_file *of, 4204 char *buf, size_t nbytes, loff_t off) 4205 { 4206 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4207 unsigned long min; 4208 int err; 4209 4210 buf = strstrip(buf); 4211 err = page_counter_memparse(buf, "max", &min); 4212 if (err) 4213 return err; 4214 4215 page_counter_set_min(&memcg->memory, min); 4216 4217 return nbytes; 4218 } 4219 4220 static int memory_low_show(struct seq_file *m, void *v) 4221 { 4222 return seq_puts_memcg_tunable(m, 4223 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4224 } 4225 4226 static ssize_t memory_low_write(struct kernfs_open_file *of, 4227 char *buf, size_t nbytes, loff_t off) 4228 { 4229 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4230 unsigned long low; 4231 int err; 4232 4233 buf = strstrip(buf); 4234 err = page_counter_memparse(buf, "max", &low); 4235 if (err) 4236 return err; 4237 4238 page_counter_set_low(&memcg->memory, low); 4239 4240 return nbytes; 4241 } 4242 4243 static int memory_high_show(struct seq_file *m, void *v) 4244 { 4245 return seq_puts_memcg_tunable(m, 4246 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4247 } 4248 4249 static ssize_t memory_high_write(struct kernfs_open_file *of, 4250 char *buf, size_t nbytes, loff_t off) 4251 { 4252 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4253 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4254 bool drained = false; 4255 unsigned long high; 4256 int err; 4257 4258 buf = strstrip(buf); 4259 err = page_counter_memparse(buf, "max", &high); 4260 if (err) 4261 return err; 4262 4263 page_counter_set_high(&memcg->memory, high); 4264 4265 if (of->file->f_flags & O_NONBLOCK) 4266 goto out; 4267 4268 for (;;) { 4269 unsigned long nr_pages = page_counter_read(&memcg->memory); 4270 unsigned long reclaimed; 4271 4272 if (nr_pages <= high) 4273 break; 4274 4275 if (signal_pending(current)) 4276 break; 4277 4278 if (!drained) { 4279 drain_all_stock(memcg); 4280 drained = true; 4281 continue; 4282 } 4283 4284 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4285 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4286 4287 if (!reclaimed && !nr_retries--) 4288 break; 4289 } 4290 out: 4291 memcg_wb_domain_size_changed(memcg); 4292 return nbytes; 4293 } 4294 4295 static int memory_max_show(struct seq_file *m, void *v) 4296 { 4297 return seq_puts_memcg_tunable(m, 4298 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4299 } 4300 4301 static ssize_t memory_max_write(struct kernfs_open_file *of, 4302 char *buf, size_t nbytes, loff_t off) 4303 { 4304 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4305 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4306 bool drained = false; 4307 unsigned long max; 4308 int err; 4309 4310 buf = strstrip(buf); 4311 err = page_counter_memparse(buf, "max", &max); 4312 if (err) 4313 return err; 4314 4315 xchg(&memcg->memory.max, max); 4316 4317 if (of->file->f_flags & O_NONBLOCK) 4318 goto out; 4319 4320 for (;;) { 4321 unsigned long nr_pages = page_counter_read(&memcg->memory); 4322 4323 if (nr_pages <= max) 4324 break; 4325 4326 if (signal_pending(current)) 4327 break; 4328 4329 if (!drained) { 4330 drain_all_stock(memcg); 4331 drained = true; 4332 continue; 4333 } 4334 4335 if (nr_reclaims) { 4336 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4337 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4338 nr_reclaims--; 4339 continue; 4340 } 4341 4342 memcg_memory_event(memcg, MEMCG_OOM); 4343 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4344 break; 4345 cond_resched(); 4346 } 4347 out: 4348 memcg_wb_domain_size_changed(memcg); 4349 return nbytes; 4350 } 4351 4352 /* 4353 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4354 * if any new events become available. 4355 */ 4356 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4357 { 4358 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4359 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4360 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4361 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4362 seq_printf(m, "oom_kill %lu\n", 4363 atomic_long_read(&events[MEMCG_OOM_KILL])); 4364 seq_printf(m, "oom_group_kill %lu\n", 4365 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4366 } 4367 4368 static int memory_events_show(struct seq_file *m, void *v) 4369 { 4370 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4371 4372 __memory_events_show(m, memcg->memory_events); 4373 return 0; 4374 } 4375 4376 static int memory_events_local_show(struct seq_file *m, void *v) 4377 { 4378 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4379 4380 __memory_events_show(m, memcg->memory_events_local); 4381 return 0; 4382 } 4383 4384 int memory_stat_show(struct seq_file *m, void *v) 4385 { 4386 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4387 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4388 struct seq_buf s; 4389 4390 if (!buf) 4391 return -ENOMEM; 4392 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4393 memory_stat_format(memcg, &s); 4394 seq_puts(m, buf); 4395 kfree(buf); 4396 return 0; 4397 } 4398 4399 #ifdef CONFIG_NUMA 4400 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4401 int item) 4402 { 4403 return lruvec_page_state(lruvec, item) * 4404 memcg_page_state_output_unit(item); 4405 } 4406 4407 static int memory_numa_stat_show(struct seq_file *m, void *v) 4408 { 4409 int i; 4410 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4411 4412 mem_cgroup_flush_stats(memcg); 4413 4414 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4415 int nid; 4416 4417 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4418 continue; 4419 4420 seq_printf(m, "%s", memory_stats[i].name); 4421 for_each_node_state(nid, N_MEMORY) { 4422 u64 size; 4423 struct lruvec *lruvec; 4424 4425 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4426 size = lruvec_page_state_output(lruvec, 4427 memory_stats[i].idx); 4428 seq_printf(m, " N%d=%llu", nid, size); 4429 } 4430 seq_putc(m, '\n'); 4431 } 4432 4433 return 0; 4434 } 4435 #endif 4436 4437 static int memory_oom_group_show(struct seq_file *m, void *v) 4438 { 4439 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4440 4441 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4442 4443 return 0; 4444 } 4445 4446 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4447 char *buf, size_t nbytes, loff_t off) 4448 { 4449 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4450 int ret, oom_group; 4451 4452 buf = strstrip(buf); 4453 if (!buf) 4454 return -EINVAL; 4455 4456 ret = kstrtoint(buf, 0, &oom_group); 4457 if (ret) 4458 return ret; 4459 4460 if (oom_group != 0 && oom_group != 1) 4461 return -EINVAL; 4462 4463 WRITE_ONCE(memcg->oom_group, oom_group); 4464 4465 return nbytes; 4466 } 4467 4468 enum { 4469 MEMORY_RECLAIM_SWAPPINESS = 0, 4470 MEMORY_RECLAIM_SWAPPINESS_MAX, 4471 MEMORY_RECLAIM_NULL, 4472 }; 4473 4474 static const match_table_t tokens = { 4475 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4476 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 4477 { MEMORY_RECLAIM_NULL, NULL }, 4478 }; 4479 4480 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4481 size_t nbytes, loff_t off) 4482 { 4483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4484 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4485 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4486 int swappiness = -1; 4487 unsigned int reclaim_options; 4488 char *old_buf, *start; 4489 substring_t args[MAX_OPT_ARGS]; 4490 4491 buf = strstrip(buf); 4492 4493 old_buf = buf; 4494 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4495 if (buf == old_buf) 4496 return -EINVAL; 4497 4498 buf = strstrip(buf); 4499 4500 while ((start = strsep(&buf, " ")) != NULL) { 4501 if (!strlen(start)) 4502 continue; 4503 switch (match_token(start, tokens, args)) { 4504 case MEMORY_RECLAIM_SWAPPINESS: 4505 if (match_int(&args[0], &swappiness)) 4506 return -EINVAL; 4507 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4508 return -EINVAL; 4509 break; 4510 case MEMORY_RECLAIM_SWAPPINESS_MAX: 4511 swappiness = SWAPPINESS_ANON_ONLY; 4512 break; 4513 default: 4514 return -EINVAL; 4515 } 4516 } 4517 4518 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4519 while (nr_reclaimed < nr_to_reclaim) { 4520 /* Will converge on zero, but reclaim enforces a minimum */ 4521 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4522 unsigned long reclaimed; 4523 4524 if (signal_pending(current)) 4525 return -EINTR; 4526 4527 /* 4528 * This is the final attempt, drain percpu lru caches in the 4529 * hope of introducing more evictable pages for 4530 * try_to_free_mem_cgroup_pages(). 4531 */ 4532 if (!nr_retries) 4533 lru_add_drain_all(); 4534 4535 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4536 batch_size, GFP_KERNEL, 4537 reclaim_options, 4538 swappiness == -1 ? NULL : &swappiness); 4539 4540 if (!reclaimed && !nr_retries--) 4541 return -EAGAIN; 4542 4543 nr_reclaimed += reclaimed; 4544 } 4545 4546 return nbytes; 4547 } 4548 4549 static struct cftype memory_files[] = { 4550 { 4551 .name = "current", 4552 .flags = CFTYPE_NOT_ON_ROOT, 4553 .read_u64 = memory_current_read, 4554 }, 4555 { 4556 .name = "peak", 4557 .flags = CFTYPE_NOT_ON_ROOT, 4558 .open = peak_open, 4559 .release = peak_release, 4560 .seq_show = memory_peak_show, 4561 .write = memory_peak_write, 4562 }, 4563 { 4564 .name = "min", 4565 .flags = CFTYPE_NOT_ON_ROOT, 4566 .seq_show = memory_min_show, 4567 .write = memory_min_write, 4568 }, 4569 { 4570 .name = "low", 4571 .flags = CFTYPE_NOT_ON_ROOT, 4572 .seq_show = memory_low_show, 4573 .write = memory_low_write, 4574 }, 4575 { 4576 .name = "high", 4577 .flags = CFTYPE_NOT_ON_ROOT, 4578 .seq_show = memory_high_show, 4579 .write = memory_high_write, 4580 }, 4581 { 4582 .name = "max", 4583 .flags = CFTYPE_NOT_ON_ROOT, 4584 .seq_show = memory_max_show, 4585 .write = memory_max_write, 4586 }, 4587 { 4588 .name = "events", 4589 .flags = CFTYPE_NOT_ON_ROOT, 4590 .file_offset = offsetof(struct mem_cgroup, events_file), 4591 .seq_show = memory_events_show, 4592 }, 4593 { 4594 .name = "events.local", 4595 .flags = CFTYPE_NOT_ON_ROOT, 4596 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4597 .seq_show = memory_events_local_show, 4598 }, 4599 { 4600 .name = "stat", 4601 .seq_show = memory_stat_show, 4602 }, 4603 #ifdef CONFIG_NUMA 4604 { 4605 .name = "numa_stat", 4606 .seq_show = memory_numa_stat_show, 4607 }, 4608 #endif 4609 { 4610 .name = "oom.group", 4611 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4612 .seq_show = memory_oom_group_show, 4613 .write = memory_oom_group_write, 4614 }, 4615 { 4616 .name = "reclaim", 4617 .flags = CFTYPE_NS_DELEGATABLE, 4618 .write = memory_reclaim, 4619 }, 4620 { } /* terminate */ 4621 }; 4622 4623 struct cgroup_subsys memory_cgrp_subsys = { 4624 .css_alloc = mem_cgroup_css_alloc, 4625 .css_online = mem_cgroup_css_online, 4626 .css_offline = mem_cgroup_css_offline, 4627 .css_released = mem_cgroup_css_released, 4628 .css_free = mem_cgroup_css_free, 4629 .css_reset = mem_cgroup_css_reset, 4630 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4631 .attach = mem_cgroup_attach, 4632 .fork = mem_cgroup_fork, 4633 .exit = mem_cgroup_exit, 4634 .dfl_cftypes = memory_files, 4635 #ifdef CONFIG_MEMCG_V1 4636 .legacy_cftypes = mem_cgroup_legacy_files, 4637 #endif 4638 .early_init = 0, 4639 }; 4640 4641 /** 4642 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4643 * @root: the top ancestor of the sub-tree being checked 4644 * @memcg: the memory cgroup to check 4645 * 4646 * WARNING: This function is not stateless! It can only be used as part 4647 * of a top-down tree iteration, not for isolated queries. 4648 */ 4649 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4650 struct mem_cgroup *memcg) 4651 { 4652 bool recursive_protection = 4653 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4654 4655 if (mem_cgroup_disabled()) 4656 return; 4657 4658 if (!root) 4659 root = root_mem_cgroup; 4660 4661 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4662 } 4663 4664 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4665 gfp_t gfp) 4666 { 4667 int ret; 4668 4669 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4670 if (ret) 4671 goto out; 4672 4673 css_get(&memcg->css); 4674 commit_charge(folio, memcg); 4675 memcg1_commit_charge(folio, memcg); 4676 out: 4677 return ret; 4678 } 4679 4680 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4681 { 4682 struct mem_cgroup *memcg; 4683 int ret; 4684 4685 memcg = get_mem_cgroup_from_mm(mm); 4686 ret = charge_memcg(folio, memcg, gfp); 4687 css_put(&memcg->css); 4688 4689 return ret; 4690 } 4691 4692 /** 4693 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4694 * @folio: folio being charged 4695 * @gfp: reclaim mode 4696 * 4697 * This function is called when allocating a huge page folio, after the page has 4698 * already been obtained and charged to the appropriate hugetlb cgroup 4699 * controller (if it is enabled). 4700 * 4701 * Returns ENOMEM if the memcg is already full. 4702 * Returns 0 if either the charge was successful, or if we skip the charging. 4703 */ 4704 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4705 { 4706 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4707 int ret = 0; 4708 4709 /* 4710 * Even memcg does not account for hugetlb, we still want to update 4711 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4712 * charging the memcg. 4713 */ 4714 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4715 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4716 goto out; 4717 4718 if (charge_memcg(folio, memcg, gfp)) 4719 ret = -ENOMEM; 4720 4721 out: 4722 mem_cgroup_put(memcg); 4723 return ret; 4724 } 4725 4726 /** 4727 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4728 * @folio: folio to charge. 4729 * @mm: mm context of the victim 4730 * @gfp: reclaim mode 4731 * @entry: swap entry for which the folio is allocated 4732 * 4733 * This function charges a folio allocated for swapin. Please call this before 4734 * adding the folio to the swapcache. 4735 * 4736 * Returns 0 on success. Otherwise, an error code is returned. 4737 */ 4738 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4739 gfp_t gfp, swp_entry_t entry) 4740 { 4741 struct mem_cgroup *memcg; 4742 unsigned short id; 4743 int ret; 4744 4745 if (mem_cgroup_disabled()) 4746 return 0; 4747 4748 id = lookup_swap_cgroup_id(entry); 4749 rcu_read_lock(); 4750 memcg = mem_cgroup_from_id(id); 4751 if (!memcg || !css_tryget_online(&memcg->css)) 4752 memcg = get_mem_cgroup_from_mm(mm); 4753 rcu_read_unlock(); 4754 4755 ret = charge_memcg(folio, memcg, gfp); 4756 4757 css_put(&memcg->css); 4758 return ret; 4759 } 4760 4761 struct uncharge_gather { 4762 struct mem_cgroup *memcg; 4763 unsigned long nr_memory; 4764 unsigned long pgpgout; 4765 unsigned long nr_kmem; 4766 int nid; 4767 }; 4768 4769 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4770 { 4771 memset(ug, 0, sizeof(*ug)); 4772 } 4773 4774 static void uncharge_batch(const struct uncharge_gather *ug) 4775 { 4776 if (ug->nr_memory) { 4777 memcg_uncharge(ug->memcg, ug->nr_memory); 4778 if (ug->nr_kmem) { 4779 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4780 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4781 } 4782 memcg1_oom_recover(ug->memcg); 4783 } 4784 4785 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4786 4787 /* drop reference from uncharge_folio */ 4788 css_put(&ug->memcg->css); 4789 } 4790 4791 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4792 { 4793 long nr_pages; 4794 struct mem_cgroup *memcg; 4795 struct obj_cgroup *objcg; 4796 4797 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4798 4799 /* 4800 * Nobody should be changing or seriously looking at 4801 * folio memcg or objcg at this point, we have fully 4802 * exclusive access to the folio. 4803 */ 4804 if (folio_memcg_kmem(folio)) { 4805 objcg = __folio_objcg(folio); 4806 /* 4807 * This get matches the put at the end of the function and 4808 * kmem pages do not hold memcg references anymore. 4809 */ 4810 memcg = get_mem_cgroup_from_objcg(objcg); 4811 } else { 4812 memcg = __folio_memcg(folio); 4813 } 4814 4815 if (!memcg) 4816 return; 4817 4818 if (ug->memcg != memcg) { 4819 if (ug->memcg) { 4820 uncharge_batch(ug); 4821 uncharge_gather_clear(ug); 4822 } 4823 ug->memcg = memcg; 4824 ug->nid = folio_nid(folio); 4825 4826 /* pairs with css_put in uncharge_batch */ 4827 css_get(&memcg->css); 4828 } 4829 4830 nr_pages = folio_nr_pages(folio); 4831 4832 if (folio_memcg_kmem(folio)) { 4833 ug->nr_memory += nr_pages; 4834 ug->nr_kmem += nr_pages; 4835 4836 folio->memcg_data = 0; 4837 obj_cgroup_put(objcg); 4838 } else { 4839 /* LRU pages aren't accounted at the root level */ 4840 if (!mem_cgroup_is_root(memcg)) 4841 ug->nr_memory += nr_pages; 4842 ug->pgpgout++; 4843 4844 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4845 folio->memcg_data = 0; 4846 } 4847 4848 css_put(&memcg->css); 4849 } 4850 4851 void __mem_cgroup_uncharge(struct folio *folio) 4852 { 4853 struct uncharge_gather ug; 4854 4855 /* Don't touch folio->lru of any random page, pre-check: */ 4856 if (!folio_memcg_charged(folio)) 4857 return; 4858 4859 uncharge_gather_clear(&ug); 4860 uncharge_folio(folio, &ug); 4861 uncharge_batch(&ug); 4862 } 4863 4864 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4865 { 4866 struct uncharge_gather ug; 4867 unsigned int i; 4868 4869 uncharge_gather_clear(&ug); 4870 for (i = 0; i < folios->nr; i++) 4871 uncharge_folio(folios->folios[i], &ug); 4872 if (ug.memcg) 4873 uncharge_batch(&ug); 4874 } 4875 4876 /** 4877 * mem_cgroup_replace_folio - Charge a folio's replacement. 4878 * @old: Currently circulating folio. 4879 * @new: Replacement folio. 4880 * 4881 * Charge @new as a replacement folio for @old. @old will 4882 * be uncharged upon free. 4883 * 4884 * Both folios must be locked, @new->mapping must be set up. 4885 */ 4886 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4887 { 4888 struct mem_cgroup *memcg; 4889 long nr_pages = folio_nr_pages(new); 4890 4891 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4892 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4893 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4894 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4895 4896 if (mem_cgroup_disabled()) 4897 return; 4898 4899 /* Page cache replacement: new folio already charged? */ 4900 if (folio_memcg_charged(new)) 4901 return; 4902 4903 memcg = folio_memcg(old); 4904 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4905 if (!memcg) 4906 return; 4907 4908 /* Force-charge the new page. The old one will be freed soon */ 4909 if (!mem_cgroup_is_root(memcg)) { 4910 page_counter_charge(&memcg->memory, nr_pages); 4911 if (do_memsw_account()) 4912 page_counter_charge(&memcg->memsw, nr_pages); 4913 } 4914 4915 css_get(&memcg->css); 4916 commit_charge(new, memcg); 4917 memcg1_commit_charge(new, memcg); 4918 } 4919 4920 /** 4921 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4922 * @old: Currently circulating folio. 4923 * @new: Replacement folio. 4924 * 4925 * Transfer the memcg data from the old folio to the new folio for migration. 4926 * The old folio's data info will be cleared. Note that the memory counters 4927 * will remain unchanged throughout the process. 4928 * 4929 * Both folios must be locked, @new->mapping must be set up. 4930 */ 4931 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4932 { 4933 struct mem_cgroup *memcg; 4934 4935 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4936 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4937 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4938 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4939 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4940 4941 if (mem_cgroup_disabled()) 4942 return; 4943 4944 memcg = folio_memcg(old); 4945 /* 4946 * Note that it is normal to see !memcg for a hugetlb folio. 4947 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4948 * was not selected. 4949 */ 4950 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4951 if (!memcg) 4952 return; 4953 4954 /* Transfer the charge and the css ref */ 4955 commit_charge(new, memcg); 4956 4957 /* Warning should never happen, so don't worry about refcount non-0 */ 4958 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4959 old->memcg_data = 0; 4960 } 4961 4962 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4963 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4964 4965 void mem_cgroup_sk_alloc(struct sock *sk) 4966 { 4967 struct mem_cgroup *memcg; 4968 4969 if (!mem_cgroup_sockets_enabled) 4970 return; 4971 4972 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4973 if (!in_task()) 4974 return; 4975 4976 rcu_read_lock(); 4977 memcg = mem_cgroup_from_task(current); 4978 if (mem_cgroup_is_root(memcg)) 4979 goto out; 4980 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4981 goto out; 4982 if (css_tryget(&memcg->css)) 4983 sk->sk_memcg = memcg; 4984 out: 4985 rcu_read_unlock(); 4986 } 4987 4988 void mem_cgroup_sk_free(struct sock *sk) 4989 { 4990 if (sk->sk_memcg) 4991 css_put(&sk->sk_memcg->css); 4992 } 4993 4994 /** 4995 * mem_cgroup_charge_skmem - charge socket memory 4996 * @memcg: memcg to charge 4997 * @nr_pages: number of pages to charge 4998 * @gfp_mask: reclaim mode 4999 * 5000 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5001 * @memcg's configured limit, %false if it doesn't. 5002 */ 5003 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 5004 gfp_t gfp_mask) 5005 { 5006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5007 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5008 5009 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5010 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5011 return true; 5012 } 5013 5014 return false; 5015 } 5016 5017 /** 5018 * mem_cgroup_uncharge_skmem - uncharge socket memory 5019 * @memcg: memcg to uncharge 5020 * @nr_pages: number of pages to uncharge 5021 */ 5022 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5023 { 5024 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5025 memcg1_uncharge_skmem(memcg, nr_pages); 5026 return; 5027 } 5028 5029 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5030 5031 refill_stock(memcg, nr_pages); 5032 } 5033 5034 static int __init cgroup_memory(char *s) 5035 { 5036 char *token; 5037 5038 while ((token = strsep(&s, ",")) != NULL) { 5039 if (!*token) 5040 continue; 5041 if (!strcmp(token, "nosocket")) 5042 cgroup_memory_nosocket = true; 5043 if (!strcmp(token, "nokmem")) 5044 cgroup_memory_nokmem = true; 5045 if (!strcmp(token, "nobpf")) 5046 cgroup_memory_nobpf = true; 5047 } 5048 return 1; 5049 } 5050 __setup("cgroup.memory=", cgroup_memory); 5051 5052 /* 5053 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5054 * 5055 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5056 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5057 * basically everything that doesn't depend on a specific mem_cgroup structure 5058 * should be initialized from here. 5059 */ 5060 int __init mem_cgroup_init(void) 5061 { 5062 unsigned int memcg_size; 5063 int cpu; 5064 5065 /* 5066 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5067 * used for per-memcg-per-cpu caching of per-node statistics. In order 5068 * to work fine, we should make sure that the overfill threshold can't 5069 * exceed S32_MAX / PAGE_SIZE. 5070 */ 5071 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5072 5073 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5074 memcg_hotplug_cpu_dead); 5075 5076 for_each_possible_cpu(cpu) { 5077 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5078 drain_local_memcg_stock); 5079 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, 5080 drain_local_obj_stock); 5081 } 5082 5083 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5084 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5085 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5086 5087 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5088 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5089 5090 return 0; 5091 } 5092 5093 #ifdef CONFIG_SWAP 5094 /** 5095 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5096 * @folio: folio being added to swap 5097 * @entry: swap entry to charge 5098 * 5099 * Try to charge @folio's memcg for the swap space at @entry. 5100 * 5101 * Returns 0 on success, -ENOMEM on failure. 5102 */ 5103 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5104 { 5105 unsigned int nr_pages = folio_nr_pages(folio); 5106 struct page_counter *counter; 5107 struct mem_cgroup *memcg; 5108 5109 if (do_memsw_account()) 5110 return 0; 5111 5112 memcg = folio_memcg(folio); 5113 5114 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5115 if (!memcg) 5116 return 0; 5117 5118 if (!entry.val) { 5119 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5120 return 0; 5121 } 5122 5123 memcg = mem_cgroup_id_get_online(memcg); 5124 5125 if (!mem_cgroup_is_root(memcg) && 5126 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5127 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5128 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5129 mem_cgroup_id_put(memcg); 5130 return -ENOMEM; 5131 } 5132 5133 /* Get references for the tail pages, too */ 5134 if (nr_pages > 1) 5135 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5136 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5137 5138 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5139 5140 return 0; 5141 } 5142 5143 /** 5144 * __mem_cgroup_uncharge_swap - uncharge swap space 5145 * @entry: swap entry to uncharge 5146 * @nr_pages: the amount of swap space to uncharge 5147 */ 5148 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5149 { 5150 struct mem_cgroup *memcg; 5151 unsigned short id; 5152 5153 id = swap_cgroup_clear(entry, nr_pages); 5154 rcu_read_lock(); 5155 memcg = mem_cgroup_from_id(id); 5156 if (memcg) { 5157 if (!mem_cgroup_is_root(memcg)) { 5158 if (do_memsw_account()) 5159 page_counter_uncharge(&memcg->memsw, nr_pages); 5160 else 5161 page_counter_uncharge(&memcg->swap, nr_pages); 5162 } 5163 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5164 mem_cgroup_id_put_many(memcg, nr_pages); 5165 } 5166 rcu_read_unlock(); 5167 } 5168 5169 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5170 { 5171 long nr_swap_pages = get_nr_swap_pages(); 5172 5173 if (mem_cgroup_disabled() || do_memsw_account()) 5174 return nr_swap_pages; 5175 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5176 nr_swap_pages = min_t(long, nr_swap_pages, 5177 READ_ONCE(memcg->swap.max) - 5178 page_counter_read(&memcg->swap)); 5179 return nr_swap_pages; 5180 } 5181 5182 bool mem_cgroup_swap_full(struct folio *folio) 5183 { 5184 struct mem_cgroup *memcg; 5185 5186 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5187 5188 if (vm_swap_full()) 5189 return true; 5190 if (do_memsw_account()) 5191 return false; 5192 5193 memcg = folio_memcg(folio); 5194 if (!memcg) 5195 return false; 5196 5197 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5198 unsigned long usage = page_counter_read(&memcg->swap); 5199 5200 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5201 usage * 2 >= READ_ONCE(memcg->swap.max)) 5202 return true; 5203 } 5204 5205 return false; 5206 } 5207 5208 static int __init setup_swap_account(char *s) 5209 { 5210 bool res; 5211 5212 if (!kstrtobool(s, &res) && !res) 5213 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5214 "in favor of configuring swap control via cgroupfs. " 5215 "Please report your usecase to linux-mm@kvack.org if you " 5216 "depend on this functionality.\n"); 5217 return 1; 5218 } 5219 __setup("swapaccount=", setup_swap_account); 5220 5221 static u64 swap_current_read(struct cgroup_subsys_state *css, 5222 struct cftype *cft) 5223 { 5224 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5225 5226 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5227 } 5228 5229 static int swap_peak_show(struct seq_file *sf, void *v) 5230 { 5231 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5232 5233 return peak_show(sf, v, &memcg->swap); 5234 } 5235 5236 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5237 size_t nbytes, loff_t off) 5238 { 5239 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5240 5241 return peak_write(of, buf, nbytes, off, &memcg->swap, 5242 &memcg->swap_peaks); 5243 } 5244 5245 static int swap_high_show(struct seq_file *m, void *v) 5246 { 5247 return seq_puts_memcg_tunable(m, 5248 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5249 } 5250 5251 static ssize_t swap_high_write(struct kernfs_open_file *of, 5252 char *buf, size_t nbytes, loff_t off) 5253 { 5254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5255 unsigned long high; 5256 int err; 5257 5258 buf = strstrip(buf); 5259 err = page_counter_memparse(buf, "max", &high); 5260 if (err) 5261 return err; 5262 5263 page_counter_set_high(&memcg->swap, high); 5264 5265 return nbytes; 5266 } 5267 5268 static int swap_max_show(struct seq_file *m, void *v) 5269 { 5270 return seq_puts_memcg_tunable(m, 5271 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5272 } 5273 5274 static ssize_t swap_max_write(struct kernfs_open_file *of, 5275 char *buf, size_t nbytes, loff_t off) 5276 { 5277 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5278 unsigned long max; 5279 int err; 5280 5281 buf = strstrip(buf); 5282 err = page_counter_memparse(buf, "max", &max); 5283 if (err) 5284 return err; 5285 5286 xchg(&memcg->swap.max, max); 5287 5288 return nbytes; 5289 } 5290 5291 static int swap_events_show(struct seq_file *m, void *v) 5292 { 5293 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5294 5295 seq_printf(m, "high %lu\n", 5296 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5297 seq_printf(m, "max %lu\n", 5298 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5299 seq_printf(m, "fail %lu\n", 5300 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5301 5302 return 0; 5303 } 5304 5305 static struct cftype swap_files[] = { 5306 { 5307 .name = "swap.current", 5308 .flags = CFTYPE_NOT_ON_ROOT, 5309 .read_u64 = swap_current_read, 5310 }, 5311 { 5312 .name = "swap.high", 5313 .flags = CFTYPE_NOT_ON_ROOT, 5314 .seq_show = swap_high_show, 5315 .write = swap_high_write, 5316 }, 5317 { 5318 .name = "swap.max", 5319 .flags = CFTYPE_NOT_ON_ROOT, 5320 .seq_show = swap_max_show, 5321 .write = swap_max_write, 5322 }, 5323 { 5324 .name = "swap.peak", 5325 .flags = CFTYPE_NOT_ON_ROOT, 5326 .open = peak_open, 5327 .release = peak_release, 5328 .seq_show = swap_peak_show, 5329 .write = swap_peak_write, 5330 }, 5331 { 5332 .name = "swap.events", 5333 .flags = CFTYPE_NOT_ON_ROOT, 5334 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5335 .seq_show = swap_events_show, 5336 }, 5337 { } /* terminate */ 5338 }; 5339 5340 #ifdef CONFIG_ZSWAP 5341 /** 5342 * obj_cgroup_may_zswap - check if this cgroup can zswap 5343 * @objcg: the object cgroup 5344 * 5345 * Check if the hierarchical zswap limit has been reached. 5346 * 5347 * This doesn't check for specific headroom, and it is not atomic 5348 * either. But with zswap, the size of the allocation is only known 5349 * once compression has occurred, and this optimistic pre-check avoids 5350 * spending cycles on compression when there is already no room left 5351 * or zswap is disabled altogether somewhere in the hierarchy. 5352 */ 5353 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5354 { 5355 struct mem_cgroup *memcg, *original_memcg; 5356 bool ret = true; 5357 5358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5359 return true; 5360 5361 original_memcg = get_mem_cgroup_from_objcg(objcg); 5362 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5363 memcg = parent_mem_cgroup(memcg)) { 5364 unsigned long max = READ_ONCE(memcg->zswap_max); 5365 unsigned long pages; 5366 5367 if (max == PAGE_COUNTER_MAX) 5368 continue; 5369 if (max == 0) { 5370 ret = false; 5371 break; 5372 } 5373 5374 /* Force flush to get accurate stats for charging */ 5375 __mem_cgroup_flush_stats(memcg, true); 5376 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5377 if (pages < max) 5378 continue; 5379 ret = false; 5380 break; 5381 } 5382 mem_cgroup_put(original_memcg); 5383 return ret; 5384 } 5385 5386 /** 5387 * obj_cgroup_charge_zswap - charge compression backend memory 5388 * @objcg: the object cgroup 5389 * @size: size of compressed object 5390 * 5391 * This forces the charge after obj_cgroup_may_zswap() allowed 5392 * compression and storage in zwap for this cgroup to go ahead. 5393 */ 5394 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5395 { 5396 struct mem_cgroup *memcg; 5397 5398 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5399 return; 5400 5401 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5402 5403 /* PF_MEMALLOC context, charging must succeed */ 5404 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5405 VM_WARN_ON_ONCE(1); 5406 5407 rcu_read_lock(); 5408 memcg = obj_cgroup_memcg(objcg); 5409 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5410 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5411 rcu_read_unlock(); 5412 } 5413 5414 /** 5415 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5416 * @objcg: the object cgroup 5417 * @size: size of compressed object 5418 * 5419 * Uncharges zswap memory on page in. 5420 */ 5421 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5422 { 5423 struct mem_cgroup *memcg; 5424 5425 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5426 return; 5427 5428 obj_cgroup_uncharge(objcg, size); 5429 5430 rcu_read_lock(); 5431 memcg = obj_cgroup_memcg(objcg); 5432 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5433 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5434 rcu_read_unlock(); 5435 } 5436 5437 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5438 { 5439 /* if zswap is disabled, do not block pages going to the swapping device */ 5440 if (!zswap_is_enabled()) 5441 return true; 5442 5443 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5444 if (!READ_ONCE(memcg->zswap_writeback)) 5445 return false; 5446 5447 return true; 5448 } 5449 5450 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5451 struct cftype *cft) 5452 { 5453 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5454 5455 mem_cgroup_flush_stats(memcg); 5456 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5457 } 5458 5459 static int zswap_max_show(struct seq_file *m, void *v) 5460 { 5461 return seq_puts_memcg_tunable(m, 5462 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5463 } 5464 5465 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5466 char *buf, size_t nbytes, loff_t off) 5467 { 5468 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5469 unsigned long max; 5470 int err; 5471 5472 buf = strstrip(buf); 5473 err = page_counter_memparse(buf, "max", &max); 5474 if (err) 5475 return err; 5476 5477 xchg(&memcg->zswap_max, max); 5478 5479 return nbytes; 5480 } 5481 5482 static int zswap_writeback_show(struct seq_file *m, void *v) 5483 { 5484 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5485 5486 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5487 return 0; 5488 } 5489 5490 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5491 char *buf, size_t nbytes, loff_t off) 5492 { 5493 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5494 int zswap_writeback; 5495 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5496 5497 if (parse_ret) 5498 return parse_ret; 5499 5500 if (zswap_writeback != 0 && zswap_writeback != 1) 5501 return -EINVAL; 5502 5503 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5504 return nbytes; 5505 } 5506 5507 static struct cftype zswap_files[] = { 5508 { 5509 .name = "zswap.current", 5510 .flags = CFTYPE_NOT_ON_ROOT, 5511 .read_u64 = zswap_current_read, 5512 }, 5513 { 5514 .name = "zswap.max", 5515 .flags = CFTYPE_NOT_ON_ROOT, 5516 .seq_show = zswap_max_show, 5517 .write = zswap_max_write, 5518 }, 5519 { 5520 .name = "zswap.writeback", 5521 .seq_show = zswap_writeback_show, 5522 .write = zswap_writeback_write, 5523 }, 5524 { } /* terminate */ 5525 }; 5526 #endif /* CONFIG_ZSWAP */ 5527 5528 static int __init mem_cgroup_swap_init(void) 5529 { 5530 if (mem_cgroup_disabled()) 5531 return 0; 5532 5533 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5534 #ifdef CONFIG_MEMCG_V1 5535 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5536 #endif 5537 #ifdef CONFIG_ZSWAP 5538 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5539 #endif 5540 return 0; 5541 } 5542 subsys_initcall(mem_cgroup_swap_init); 5543 5544 #endif /* CONFIG_SWAP */ 5545 5546 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5547 { 5548 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5549 } 5550