xref: /linux/mm/memcontrol.c (revision a58130ddc896e5a15e4de2bf50a1d89247118c23)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56 
57 #include <asm/uaccess.h>
58 
59 #include <trace/events/vmscan.h>
60 
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 EXPORT_SYMBOL(mem_cgroup_subsys);
63 
64 #define MEM_CGROUP_RECLAIM_RETRIES	5
65 static struct mem_cgroup *root_mem_cgroup __read_mostly;
66 
67 #ifdef CONFIG_MEMCG_SWAP
68 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69 int do_swap_account __read_mostly;
70 
71 /* for remember boot option*/
72 #ifdef CONFIG_MEMCG_SWAP_ENABLED
73 static int really_do_swap_account __initdata = 1;
74 #else
75 static int really_do_swap_account __initdata = 0;
76 #endif
77 
78 #else
79 #define do_swap_account		0
80 #endif
81 
82 
83 /*
84  * Statistics for memory cgroup.
85  */
86 enum mem_cgroup_stat_index {
87 	/*
88 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
89 	 */
90 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
91 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
92 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
93 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 	MEM_CGROUP_STAT_NSTATS,
95 };
96 
97 static const char * const mem_cgroup_stat_names[] = {
98 	"cache",
99 	"rss",
100 	"mapped_file",
101 	"swap",
102 };
103 
104 enum mem_cgroup_events_index {
105 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
106 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
107 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
108 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
109 	MEM_CGROUP_EVENTS_NSTATS,
110 };
111 
112 static const char * const mem_cgroup_events_names[] = {
113 	"pgpgin",
114 	"pgpgout",
115 	"pgfault",
116 	"pgmajfault",
117 };
118 
119 /*
120  * Per memcg event counter is incremented at every pagein/pageout. With THP,
121  * it will be incremated by the number of pages. This counter is used for
122  * for trigger some periodic events. This is straightforward and better
123  * than using jiffies etc. to handle periodic memcg event.
124  */
125 enum mem_cgroup_events_target {
126 	MEM_CGROUP_TARGET_THRESH,
127 	MEM_CGROUP_TARGET_SOFTLIMIT,
128 	MEM_CGROUP_TARGET_NUMAINFO,
129 	MEM_CGROUP_NTARGETS,
130 };
131 #define THRESHOLDS_EVENTS_TARGET 128
132 #define SOFTLIMIT_EVENTS_TARGET 1024
133 #define NUMAINFO_EVENTS_TARGET	1024
134 
135 struct mem_cgroup_stat_cpu {
136 	long count[MEM_CGROUP_STAT_NSTATS];
137 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138 	unsigned long nr_page_events;
139 	unsigned long targets[MEM_CGROUP_NTARGETS];
140 };
141 
142 struct mem_cgroup_reclaim_iter {
143 	/* css_id of the last scanned hierarchy member */
144 	int position;
145 	/* scan generation, increased every round-trip */
146 	unsigned int generation;
147 };
148 
149 /*
150  * per-zone information in memory controller.
151  */
152 struct mem_cgroup_per_zone {
153 	struct lruvec		lruvec;
154 	unsigned long		lru_size[NR_LRU_LISTS];
155 
156 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
157 
158 	struct rb_node		tree_node;	/* RB tree node */
159 	unsigned long long	usage_in_excess;/* Set to the value by which */
160 						/* the soft limit is exceeded*/
161 	bool			on_tree;
162 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163 						/* use container_of	   */
164 };
165 
166 struct mem_cgroup_per_node {
167 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168 };
169 
170 struct mem_cgroup_lru_info {
171 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172 };
173 
174 /*
175  * Cgroups above their limits are maintained in a RB-Tree, independent of
176  * their hierarchy representation
177  */
178 
179 struct mem_cgroup_tree_per_zone {
180 	struct rb_root rb_root;
181 	spinlock_t lock;
182 };
183 
184 struct mem_cgroup_tree_per_node {
185 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
186 };
187 
188 struct mem_cgroup_tree {
189 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
190 };
191 
192 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
193 
194 struct mem_cgroup_threshold {
195 	struct eventfd_ctx *eventfd;
196 	u64 threshold;
197 };
198 
199 /* For threshold */
200 struct mem_cgroup_threshold_ary {
201 	/* An array index points to threshold just below or equal to usage. */
202 	int current_threshold;
203 	/* Size of entries[] */
204 	unsigned int size;
205 	/* Array of thresholds */
206 	struct mem_cgroup_threshold entries[0];
207 };
208 
209 struct mem_cgroup_thresholds {
210 	/* Primary thresholds array */
211 	struct mem_cgroup_threshold_ary *primary;
212 	/*
213 	 * Spare threshold array.
214 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
215 	 * It must be able to store at least primary->size - 1 entries.
216 	 */
217 	struct mem_cgroup_threshold_ary *spare;
218 };
219 
220 /* for OOM */
221 struct mem_cgroup_eventfd_list {
222 	struct list_head list;
223 	struct eventfd_ctx *eventfd;
224 };
225 
226 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
227 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228 
229 /*
230  * The memory controller data structure. The memory controller controls both
231  * page cache and RSS per cgroup. We would eventually like to provide
232  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
233  * to help the administrator determine what knobs to tune.
234  *
235  * TODO: Add a water mark for the memory controller. Reclaim will begin when
236  * we hit the water mark. May be even add a low water mark, such that
237  * no reclaim occurs from a cgroup at it's low water mark, this is
238  * a feature that will be implemented much later in the future.
239  */
240 struct mem_cgroup {
241 	struct cgroup_subsys_state css;
242 	/*
243 	 * the counter to account for memory usage
244 	 */
245 	struct res_counter res;
246 
247 	union {
248 		/*
249 		 * the counter to account for mem+swap usage.
250 		 */
251 		struct res_counter memsw;
252 
253 		/*
254 		 * rcu_freeing is used only when freeing struct mem_cgroup,
255 		 * so put it into a union to avoid wasting more memory.
256 		 * It must be disjoint from the css field.  It could be
257 		 * in a union with the res field, but res plays a much
258 		 * larger part in mem_cgroup life than memsw, and might
259 		 * be of interest, even at time of free, when debugging.
260 		 * So share rcu_head with the less interesting memsw.
261 		 */
262 		struct rcu_head rcu_freeing;
263 		/*
264 		 * We also need some space for a worker in deferred freeing.
265 		 * By the time we call it, rcu_freeing is no longer in use.
266 		 */
267 		struct work_struct work_freeing;
268 	};
269 
270 	/*
271 	 * Per cgroup active and inactive list, similar to the
272 	 * per zone LRU lists.
273 	 */
274 	struct mem_cgroup_lru_info info;
275 	int last_scanned_node;
276 #if MAX_NUMNODES > 1
277 	nodemask_t	scan_nodes;
278 	atomic_t	numainfo_events;
279 	atomic_t	numainfo_updating;
280 #endif
281 	/*
282 	 * Should the accounting and control be hierarchical, per subtree?
283 	 */
284 	bool use_hierarchy;
285 
286 	bool		oom_lock;
287 	atomic_t	under_oom;
288 
289 	atomic_t	refcnt;
290 
291 	int	swappiness;
292 	/* OOM-Killer disable */
293 	int		oom_kill_disable;
294 
295 	/* set when res.limit == memsw.limit */
296 	bool		memsw_is_minimum;
297 
298 	/* protect arrays of thresholds */
299 	struct mutex thresholds_lock;
300 
301 	/* thresholds for memory usage. RCU-protected */
302 	struct mem_cgroup_thresholds thresholds;
303 
304 	/* thresholds for mem+swap usage. RCU-protected */
305 	struct mem_cgroup_thresholds memsw_thresholds;
306 
307 	/* For oom notifier event fd */
308 	struct list_head oom_notify;
309 
310 	/*
311 	 * Should we move charges of a task when a task is moved into this
312 	 * mem_cgroup ? And what type of charges should we move ?
313 	 */
314 	unsigned long 	move_charge_at_immigrate;
315 	/*
316 	 * set > 0 if pages under this cgroup are moving to other cgroup.
317 	 */
318 	atomic_t	moving_account;
319 	/* taken only while moving_account > 0 */
320 	spinlock_t	move_lock;
321 	/*
322 	 * percpu counter.
323 	 */
324 	struct mem_cgroup_stat_cpu __percpu *stat;
325 	/*
326 	 * used when a cpu is offlined or other synchronizations
327 	 * See mem_cgroup_read_stat().
328 	 */
329 	struct mem_cgroup_stat_cpu nocpu_base;
330 	spinlock_t pcp_counter_lock;
331 
332 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333 	struct tcp_memcontrol tcp_mem;
334 #endif
335 };
336 
337 /* Stuffs for move charges at task migration. */
338 /*
339  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
340  * left-shifted bitmap of these types.
341  */
342 enum move_type {
343 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
344 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
345 	NR_MOVE_TYPE,
346 };
347 
348 /* "mc" and its members are protected by cgroup_mutex */
349 static struct move_charge_struct {
350 	spinlock_t	  lock; /* for from, to */
351 	struct mem_cgroup *from;
352 	struct mem_cgroup *to;
353 	unsigned long precharge;
354 	unsigned long moved_charge;
355 	unsigned long moved_swap;
356 	struct task_struct *moving_task;	/* a task moving charges */
357 	wait_queue_head_t waitq;		/* a waitq for other context */
358 } mc = {
359 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
360 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
361 };
362 
363 static bool move_anon(void)
364 {
365 	return test_bit(MOVE_CHARGE_TYPE_ANON,
366 					&mc.to->move_charge_at_immigrate);
367 }
368 
369 static bool move_file(void)
370 {
371 	return test_bit(MOVE_CHARGE_TYPE_FILE,
372 					&mc.to->move_charge_at_immigrate);
373 }
374 
375 /*
376  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
377  * limit reclaim to prevent infinite loops, if they ever occur.
378  */
379 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
380 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
381 
382 enum charge_type {
383 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
384 	MEM_CGROUP_CHARGE_TYPE_ANON,
385 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
386 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387 	NR_CHARGE_TYPE,
388 };
389 
390 /* for encoding cft->private value on file */
391 #define _MEM			(0)
392 #define _MEMSWAP		(1)
393 #define _OOM_TYPE		(2)
394 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
395 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
396 #define MEMFILE_ATTR(val)	((val) & 0xffff)
397 /* Used for OOM nofiier */
398 #define OOM_CONTROL		(0)
399 
400 /*
401  * Reclaim flags for mem_cgroup_hierarchical_reclaim
402  */
403 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
404 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
406 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407 
408 static void mem_cgroup_get(struct mem_cgroup *memcg);
409 static void mem_cgroup_put(struct mem_cgroup *memcg);
410 
411 static inline
412 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
413 {
414 	return container_of(s, struct mem_cgroup, css);
415 }
416 
417 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
418 {
419 	return (memcg == root_mem_cgroup);
420 }
421 
422 /* Writing them here to avoid exposing memcg's inner layout */
423 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
424 
425 void sock_update_memcg(struct sock *sk)
426 {
427 	if (mem_cgroup_sockets_enabled) {
428 		struct mem_cgroup *memcg;
429 		struct cg_proto *cg_proto;
430 
431 		BUG_ON(!sk->sk_prot->proto_cgroup);
432 
433 		/* Socket cloning can throw us here with sk_cgrp already
434 		 * filled. It won't however, necessarily happen from
435 		 * process context. So the test for root memcg given
436 		 * the current task's memcg won't help us in this case.
437 		 *
438 		 * Respecting the original socket's memcg is a better
439 		 * decision in this case.
440 		 */
441 		if (sk->sk_cgrp) {
442 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
443 			mem_cgroup_get(sk->sk_cgrp->memcg);
444 			return;
445 		}
446 
447 		rcu_read_lock();
448 		memcg = mem_cgroup_from_task(current);
449 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
450 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
451 			mem_cgroup_get(memcg);
452 			sk->sk_cgrp = cg_proto;
453 		}
454 		rcu_read_unlock();
455 	}
456 }
457 EXPORT_SYMBOL(sock_update_memcg);
458 
459 void sock_release_memcg(struct sock *sk)
460 {
461 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
462 		struct mem_cgroup *memcg;
463 		WARN_ON(!sk->sk_cgrp->memcg);
464 		memcg = sk->sk_cgrp->memcg;
465 		mem_cgroup_put(memcg);
466 	}
467 }
468 
469 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
470 {
471 	if (!memcg || mem_cgroup_is_root(memcg))
472 		return NULL;
473 
474 	return &memcg->tcp_mem.cg_proto;
475 }
476 EXPORT_SYMBOL(tcp_proto_cgroup);
477 
478 static void disarm_sock_keys(struct mem_cgroup *memcg)
479 {
480 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
481 		return;
482 	static_key_slow_dec(&memcg_socket_limit_enabled);
483 }
484 #else
485 static void disarm_sock_keys(struct mem_cgroup *memcg)
486 {
487 }
488 #endif
489 
490 static void drain_all_stock_async(struct mem_cgroup *memcg);
491 
492 static struct mem_cgroup_per_zone *
493 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
494 {
495 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
496 }
497 
498 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
499 {
500 	return &memcg->css;
501 }
502 
503 static struct mem_cgroup_per_zone *
504 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
505 {
506 	int nid = page_to_nid(page);
507 	int zid = page_zonenum(page);
508 
509 	return mem_cgroup_zoneinfo(memcg, nid, zid);
510 }
511 
512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_node_zone(int nid, int zid)
514 {
515 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
516 }
517 
518 static struct mem_cgroup_tree_per_zone *
519 soft_limit_tree_from_page(struct page *page)
520 {
521 	int nid = page_to_nid(page);
522 	int zid = page_zonenum(page);
523 
524 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
525 }
526 
527 static void
528 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
529 				struct mem_cgroup_per_zone *mz,
530 				struct mem_cgroup_tree_per_zone *mctz,
531 				unsigned long long new_usage_in_excess)
532 {
533 	struct rb_node **p = &mctz->rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct mem_cgroup_per_zone *mz_node;
536 
537 	if (mz->on_tree)
538 		return;
539 
540 	mz->usage_in_excess = new_usage_in_excess;
541 	if (!mz->usage_in_excess)
542 		return;
543 	while (*p) {
544 		parent = *p;
545 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
546 					tree_node);
547 		if (mz->usage_in_excess < mz_node->usage_in_excess)
548 			p = &(*p)->rb_left;
549 		/*
550 		 * We can't avoid mem cgroups that are over their soft
551 		 * limit by the same amount
552 		 */
553 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
554 			p = &(*p)->rb_right;
555 	}
556 	rb_link_node(&mz->tree_node, parent, p);
557 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 	mz->on_tree = true;
559 }
560 
561 static void
562 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
563 				struct mem_cgroup_per_zone *mz,
564 				struct mem_cgroup_tree_per_zone *mctz)
565 {
566 	if (!mz->on_tree)
567 		return;
568 	rb_erase(&mz->tree_node, &mctz->rb_root);
569 	mz->on_tree = false;
570 }
571 
572 static void
573 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
574 				struct mem_cgroup_per_zone *mz,
575 				struct mem_cgroup_tree_per_zone *mctz)
576 {
577 	spin_lock(&mctz->lock);
578 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
579 	spin_unlock(&mctz->lock);
580 }
581 
582 
583 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
584 {
585 	unsigned long long excess;
586 	struct mem_cgroup_per_zone *mz;
587 	struct mem_cgroup_tree_per_zone *mctz;
588 	int nid = page_to_nid(page);
589 	int zid = page_zonenum(page);
590 	mctz = soft_limit_tree_from_page(page);
591 
592 	/*
593 	 * Necessary to update all ancestors when hierarchy is used.
594 	 * because their event counter is not touched.
595 	 */
596 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
597 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598 		excess = res_counter_soft_limit_excess(&memcg->res);
599 		/*
600 		 * We have to update the tree if mz is on RB-tree or
601 		 * mem is over its softlimit.
602 		 */
603 		if (excess || mz->on_tree) {
604 			spin_lock(&mctz->lock);
605 			/* if on-tree, remove it */
606 			if (mz->on_tree)
607 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
608 			/*
609 			 * Insert again. mz->usage_in_excess will be updated.
610 			 * If excess is 0, no tree ops.
611 			 */
612 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
613 			spin_unlock(&mctz->lock);
614 		}
615 	}
616 }
617 
618 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
619 {
620 	int node, zone;
621 	struct mem_cgroup_per_zone *mz;
622 	struct mem_cgroup_tree_per_zone *mctz;
623 
624 	for_each_node(node) {
625 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
626 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
627 			mctz = soft_limit_tree_node_zone(node, zone);
628 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
629 		}
630 	}
631 }
632 
633 static struct mem_cgroup_per_zone *
634 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
635 {
636 	struct rb_node *rightmost = NULL;
637 	struct mem_cgroup_per_zone *mz;
638 
639 retry:
640 	mz = NULL;
641 	rightmost = rb_last(&mctz->rb_root);
642 	if (!rightmost)
643 		goto done;		/* Nothing to reclaim from */
644 
645 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
646 	/*
647 	 * Remove the node now but someone else can add it back,
648 	 * we will to add it back at the end of reclaim to its correct
649 	 * position in the tree.
650 	 */
651 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
652 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
653 		!css_tryget(&mz->memcg->css))
654 		goto retry;
655 done:
656 	return mz;
657 }
658 
659 static struct mem_cgroup_per_zone *
660 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
661 {
662 	struct mem_cgroup_per_zone *mz;
663 
664 	spin_lock(&mctz->lock);
665 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
666 	spin_unlock(&mctz->lock);
667 	return mz;
668 }
669 
670 /*
671  * Implementation Note: reading percpu statistics for memcg.
672  *
673  * Both of vmstat[] and percpu_counter has threshold and do periodic
674  * synchronization to implement "quick" read. There are trade-off between
675  * reading cost and precision of value. Then, we may have a chance to implement
676  * a periodic synchronizion of counter in memcg's counter.
677  *
678  * But this _read() function is used for user interface now. The user accounts
679  * memory usage by memory cgroup and he _always_ requires exact value because
680  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
681  * have to visit all online cpus and make sum. So, for now, unnecessary
682  * synchronization is not implemented. (just implemented for cpu hotplug)
683  *
684  * If there are kernel internal actions which can make use of some not-exact
685  * value, and reading all cpu value can be performance bottleneck in some
686  * common workload, threashold and synchonization as vmstat[] should be
687  * implemented.
688  */
689 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
690 				 enum mem_cgroup_stat_index idx)
691 {
692 	long val = 0;
693 	int cpu;
694 
695 	get_online_cpus();
696 	for_each_online_cpu(cpu)
697 		val += per_cpu(memcg->stat->count[idx], cpu);
698 #ifdef CONFIG_HOTPLUG_CPU
699 	spin_lock(&memcg->pcp_counter_lock);
700 	val += memcg->nocpu_base.count[idx];
701 	spin_unlock(&memcg->pcp_counter_lock);
702 #endif
703 	put_online_cpus();
704 	return val;
705 }
706 
707 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
708 					 bool charge)
709 {
710 	int val = (charge) ? 1 : -1;
711 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
712 }
713 
714 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
715 					    enum mem_cgroup_events_index idx)
716 {
717 	unsigned long val = 0;
718 	int cpu;
719 
720 	for_each_online_cpu(cpu)
721 		val += per_cpu(memcg->stat->events[idx], cpu);
722 #ifdef CONFIG_HOTPLUG_CPU
723 	spin_lock(&memcg->pcp_counter_lock);
724 	val += memcg->nocpu_base.events[idx];
725 	spin_unlock(&memcg->pcp_counter_lock);
726 #endif
727 	return val;
728 }
729 
730 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
731 					 bool anon, int nr_pages)
732 {
733 	preempt_disable();
734 
735 	/*
736 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
737 	 * counted as CACHE even if it's on ANON LRU.
738 	 */
739 	if (anon)
740 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
741 				nr_pages);
742 	else
743 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
744 				nr_pages);
745 
746 	/* pagein of a big page is an event. So, ignore page size */
747 	if (nr_pages > 0)
748 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
749 	else {
750 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
751 		nr_pages = -nr_pages; /* for event */
752 	}
753 
754 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
755 
756 	preempt_enable();
757 }
758 
759 unsigned long
760 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
761 {
762 	struct mem_cgroup_per_zone *mz;
763 
764 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
765 	return mz->lru_size[lru];
766 }
767 
768 static unsigned long
769 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
770 			unsigned int lru_mask)
771 {
772 	struct mem_cgroup_per_zone *mz;
773 	enum lru_list lru;
774 	unsigned long ret = 0;
775 
776 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
777 
778 	for_each_lru(lru) {
779 		if (BIT(lru) & lru_mask)
780 			ret += mz->lru_size[lru];
781 	}
782 	return ret;
783 }
784 
785 static unsigned long
786 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
787 			int nid, unsigned int lru_mask)
788 {
789 	u64 total = 0;
790 	int zid;
791 
792 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
793 		total += mem_cgroup_zone_nr_lru_pages(memcg,
794 						nid, zid, lru_mask);
795 
796 	return total;
797 }
798 
799 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
800 			unsigned int lru_mask)
801 {
802 	int nid;
803 	u64 total = 0;
804 
805 	for_each_node_state(nid, N_MEMORY)
806 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
807 	return total;
808 }
809 
810 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
811 				       enum mem_cgroup_events_target target)
812 {
813 	unsigned long val, next;
814 
815 	val = __this_cpu_read(memcg->stat->nr_page_events);
816 	next = __this_cpu_read(memcg->stat->targets[target]);
817 	/* from time_after() in jiffies.h */
818 	if ((long)next - (long)val < 0) {
819 		switch (target) {
820 		case MEM_CGROUP_TARGET_THRESH:
821 			next = val + THRESHOLDS_EVENTS_TARGET;
822 			break;
823 		case MEM_CGROUP_TARGET_SOFTLIMIT:
824 			next = val + SOFTLIMIT_EVENTS_TARGET;
825 			break;
826 		case MEM_CGROUP_TARGET_NUMAINFO:
827 			next = val + NUMAINFO_EVENTS_TARGET;
828 			break;
829 		default:
830 			break;
831 		}
832 		__this_cpu_write(memcg->stat->targets[target], next);
833 		return true;
834 	}
835 	return false;
836 }
837 
838 /*
839  * Check events in order.
840  *
841  */
842 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
843 {
844 	preempt_disable();
845 	/* threshold event is triggered in finer grain than soft limit */
846 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
847 						MEM_CGROUP_TARGET_THRESH))) {
848 		bool do_softlimit;
849 		bool do_numainfo __maybe_unused;
850 
851 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
852 						MEM_CGROUP_TARGET_SOFTLIMIT);
853 #if MAX_NUMNODES > 1
854 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
855 						MEM_CGROUP_TARGET_NUMAINFO);
856 #endif
857 		preempt_enable();
858 
859 		mem_cgroup_threshold(memcg);
860 		if (unlikely(do_softlimit))
861 			mem_cgroup_update_tree(memcg, page);
862 #if MAX_NUMNODES > 1
863 		if (unlikely(do_numainfo))
864 			atomic_inc(&memcg->numainfo_events);
865 #endif
866 	} else
867 		preempt_enable();
868 }
869 
870 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
871 {
872 	return mem_cgroup_from_css(
873 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
874 }
875 
876 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
877 {
878 	/*
879 	 * mm_update_next_owner() may clear mm->owner to NULL
880 	 * if it races with swapoff, page migration, etc.
881 	 * So this can be called with p == NULL.
882 	 */
883 	if (unlikely(!p))
884 		return NULL;
885 
886 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
887 }
888 
889 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
890 {
891 	struct mem_cgroup *memcg = NULL;
892 
893 	if (!mm)
894 		return NULL;
895 	/*
896 	 * Because we have no locks, mm->owner's may be being moved to other
897 	 * cgroup. We use css_tryget() here even if this looks
898 	 * pessimistic (rather than adding locks here).
899 	 */
900 	rcu_read_lock();
901 	do {
902 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
903 		if (unlikely(!memcg))
904 			break;
905 	} while (!css_tryget(&memcg->css));
906 	rcu_read_unlock();
907 	return memcg;
908 }
909 
910 /**
911  * mem_cgroup_iter - iterate over memory cgroup hierarchy
912  * @root: hierarchy root
913  * @prev: previously returned memcg, NULL on first invocation
914  * @reclaim: cookie for shared reclaim walks, NULL for full walks
915  *
916  * Returns references to children of the hierarchy below @root, or
917  * @root itself, or %NULL after a full round-trip.
918  *
919  * Caller must pass the return value in @prev on subsequent
920  * invocations for reference counting, or use mem_cgroup_iter_break()
921  * to cancel a hierarchy walk before the round-trip is complete.
922  *
923  * Reclaimers can specify a zone and a priority level in @reclaim to
924  * divide up the memcgs in the hierarchy among all concurrent
925  * reclaimers operating on the same zone and priority.
926  */
927 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
928 				   struct mem_cgroup *prev,
929 				   struct mem_cgroup_reclaim_cookie *reclaim)
930 {
931 	struct mem_cgroup *memcg = NULL;
932 	int id = 0;
933 
934 	if (mem_cgroup_disabled())
935 		return NULL;
936 
937 	if (!root)
938 		root = root_mem_cgroup;
939 
940 	if (prev && !reclaim)
941 		id = css_id(&prev->css);
942 
943 	if (prev && prev != root)
944 		css_put(&prev->css);
945 
946 	if (!root->use_hierarchy && root != root_mem_cgroup) {
947 		if (prev)
948 			return NULL;
949 		return root;
950 	}
951 
952 	while (!memcg) {
953 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
954 		struct cgroup_subsys_state *css;
955 
956 		if (reclaim) {
957 			int nid = zone_to_nid(reclaim->zone);
958 			int zid = zone_idx(reclaim->zone);
959 			struct mem_cgroup_per_zone *mz;
960 
961 			mz = mem_cgroup_zoneinfo(root, nid, zid);
962 			iter = &mz->reclaim_iter[reclaim->priority];
963 			if (prev && reclaim->generation != iter->generation)
964 				return NULL;
965 			id = iter->position;
966 		}
967 
968 		rcu_read_lock();
969 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
970 		if (css) {
971 			if (css == &root->css || css_tryget(css))
972 				memcg = mem_cgroup_from_css(css);
973 		} else
974 			id = 0;
975 		rcu_read_unlock();
976 
977 		if (reclaim) {
978 			iter->position = id;
979 			if (!css)
980 				iter->generation++;
981 			else if (!prev && memcg)
982 				reclaim->generation = iter->generation;
983 		}
984 
985 		if (prev && !css)
986 			return NULL;
987 	}
988 	return memcg;
989 }
990 
991 /**
992  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993  * @root: hierarchy root
994  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995  */
996 void mem_cgroup_iter_break(struct mem_cgroup *root,
997 			   struct mem_cgroup *prev)
998 {
999 	if (!root)
1000 		root = root_mem_cgroup;
1001 	if (prev && prev != root)
1002 		css_put(&prev->css);
1003 }
1004 
1005 /*
1006  * Iteration constructs for visiting all cgroups (under a tree).  If
1007  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1008  * be used for reference counting.
1009  */
1010 #define for_each_mem_cgroup_tree(iter, root)		\
1011 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1012 	     iter != NULL;				\
1013 	     iter = mem_cgroup_iter(root, iter, NULL))
1014 
1015 #define for_each_mem_cgroup(iter)			\
1016 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1017 	     iter != NULL;				\
1018 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1019 
1020 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1021 {
1022 	struct mem_cgroup *memcg;
1023 
1024 	rcu_read_lock();
1025 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1026 	if (unlikely(!memcg))
1027 		goto out;
1028 
1029 	switch (idx) {
1030 	case PGFAULT:
1031 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1032 		break;
1033 	case PGMAJFAULT:
1034 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1035 		break;
1036 	default:
1037 		BUG();
1038 	}
1039 out:
1040 	rcu_read_unlock();
1041 }
1042 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1043 
1044 /**
1045  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1046  * @zone: zone of the wanted lruvec
1047  * @memcg: memcg of the wanted lruvec
1048  *
1049  * Returns the lru list vector holding pages for the given @zone and
1050  * @mem.  This can be the global zone lruvec, if the memory controller
1051  * is disabled.
1052  */
1053 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1054 				      struct mem_cgroup *memcg)
1055 {
1056 	struct mem_cgroup_per_zone *mz;
1057 	struct lruvec *lruvec;
1058 
1059 	if (mem_cgroup_disabled()) {
1060 		lruvec = &zone->lruvec;
1061 		goto out;
1062 	}
1063 
1064 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1065 	lruvec = &mz->lruvec;
1066 out:
1067 	/*
1068 	 * Since a node can be onlined after the mem_cgroup was created,
1069 	 * we have to be prepared to initialize lruvec->zone here;
1070 	 * and if offlined then reonlined, we need to reinitialize it.
1071 	 */
1072 	if (unlikely(lruvec->zone != zone))
1073 		lruvec->zone = zone;
1074 	return lruvec;
1075 }
1076 
1077 /*
1078  * Following LRU functions are allowed to be used without PCG_LOCK.
1079  * Operations are called by routine of global LRU independently from memcg.
1080  * What we have to take care of here is validness of pc->mem_cgroup.
1081  *
1082  * Changes to pc->mem_cgroup happens when
1083  * 1. charge
1084  * 2. moving account
1085  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1086  * It is added to LRU before charge.
1087  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1088  * When moving account, the page is not on LRU. It's isolated.
1089  */
1090 
1091 /**
1092  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1093  * @page: the page
1094  * @zone: zone of the page
1095  */
1096 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1097 {
1098 	struct mem_cgroup_per_zone *mz;
1099 	struct mem_cgroup *memcg;
1100 	struct page_cgroup *pc;
1101 	struct lruvec *lruvec;
1102 
1103 	if (mem_cgroup_disabled()) {
1104 		lruvec = &zone->lruvec;
1105 		goto out;
1106 	}
1107 
1108 	pc = lookup_page_cgroup(page);
1109 	memcg = pc->mem_cgroup;
1110 
1111 	/*
1112 	 * Surreptitiously switch any uncharged offlist page to root:
1113 	 * an uncharged page off lru does nothing to secure
1114 	 * its former mem_cgroup from sudden removal.
1115 	 *
1116 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1117 	 * under page_cgroup lock: between them, they make all uses
1118 	 * of pc->mem_cgroup safe.
1119 	 */
1120 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1121 		pc->mem_cgroup = memcg = root_mem_cgroup;
1122 
1123 	mz = page_cgroup_zoneinfo(memcg, page);
1124 	lruvec = &mz->lruvec;
1125 out:
1126 	/*
1127 	 * Since a node can be onlined after the mem_cgroup was created,
1128 	 * we have to be prepared to initialize lruvec->zone here;
1129 	 * and if offlined then reonlined, we need to reinitialize it.
1130 	 */
1131 	if (unlikely(lruvec->zone != zone))
1132 		lruvec->zone = zone;
1133 	return lruvec;
1134 }
1135 
1136 /**
1137  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1138  * @lruvec: mem_cgroup per zone lru vector
1139  * @lru: index of lru list the page is sitting on
1140  * @nr_pages: positive when adding or negative when removing
1141  *
1142  * This function must be called when a page is added to or removed from an
1143  * lru list.
1144  */
1145 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1146 				int nr_pages)
1147 {
1148 	struct mem_cgroup_per_zone *mz;
1149 	unsigned long *lru_size;
1150 
1151 	if (mem_cgroup_disabled())
1152 		return;
1153 
1154 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1155 	lru_size = mz->lru_size + lru;
1156 	*lru_size += nr_pages;
1157 	VM_BUG_ON((long)(*lru_size) < 0);
1158 }
1159 
1160 /*
1161  * Checks whether given mem is same or in the root_mem_cgroup's
1162  * hierarchy subtree
1163  */
1164 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1165 				  struct mem_cgroup *memcg)
1166 {
1167 	if (root_memcg == memcg)
1168 		return true;
1169 	if (!root_memcg->use_hierarchy || !memcg)
1170 		return false;
1171 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1172 }
1173 
1174 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1175 				       struct mem_cgroup *memcg)
1176 {
1177 	bool ret;
1178 
1179 	rcu_read_lock();
1180 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1181 	rcu_read_unlock();
1182 	return ret;
1183 }
1184 
1185 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1186 {
1187 	int ret;
1188 	struct mem_cgroup *curr = NULL;
1189 	struct task_struct *p;
1190 
1191 	p = find_lock_task_mm(task);
1192 	if (p) {
1193 		curr = try_get_mem_cgroup_from_mm(p->mm);
1194 		task_unlock(p);
1195 	} else {
1196 		/*
1197 		 * All threads may have already detached their mm's, but the oom
1198 		 * killer still needs to detect if they have already been oom
1199 		 * killed to prevent needlessly killing additional tasks.
1200 		 */
1201 		task_lock(task);
1202 		curr = mem_cgroup_from_task(task);
1203 		if (curr)
1204 			css_get(&curr->css);
1205 		task_unlock(task);
1206 	}
1207 	if (!curr)
1208 		return 0;
1209 	/*
1210 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1211 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1212 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1213 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1214 	 */
1215 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1216 	css_put(&curr->css);
1217 	return ret;
1218 }
1219 
1220 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1221 {
1222 	unsigned long inactive_ratio;
1223 	unsigned long inactive;
1224 	unsigned long active;
1225 	unsigned long gb;
1226 
1227 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1228 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1229 
1230 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1231 	if (gb)
1232 		inactive_ratio = int_sqrt(10 * gb);
1233 	else
1234 		inactive_ratio = 1;
1235 
1236 	return inactive * inactive_ratio < active;
1237 }
1238 
1239 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1240 {
1241 	unsigned long active;
1242 	unsigned long inactive;
1243 
1244 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1245 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1246 
1247 	return (active > inactive);
1248 }
1249 
1250 #define mem_cgroup_from_res_counter(counter, member)	\
1251 	container_of(counter, struct mem_cgroup, member)
1252 
1253 /**
1254  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1255  * @memcg: the memory cgroup
1256  *
1257  * Returns the maximum amount of memory @mem can be charged with, in
1258  * pages.
1259  */
1260 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261 {
1262 	unsigned long long margin;
1263 
1264 	margin = res_counter_margin(&memcg->res);
1265 	if (do_swap_account)
1266 		margin = min(margin, res_counter_margin(&memcg->memsw));
1267 	return margin >> PAGE_SHIFT;
1268 }
1269 
1270 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1271 {
1272 	struct cgroup *cgrp = memcg->css.cgroup;
1273 
1274 	/* root ? */
1275 	if (cgrp->parent == NULL)
1276 		return vm_swappiness;
1277 
1278 	return memcg->swappiness;
1279 }
1280 
1281 /*
1282  * memcg->moving_account is used for checking possibility that some thread is
1283  * calling move_account(). When a thread on CPU-A starts moving pages under
1284  * a memcg, other threads should check memcg->moving_account under
1285  * rcu_read_lock(), like this:
1286  *
1287  *         CPU-A                                    CPU-B
1288  *                                              rcu_read_lock()
1289  *         memcg->moving_account+1              if (memcg->mocing_account)
1290  *                                                   take heavy locks.
1291  *         synchronize_rcu()                    update something.
1292  *                                              rcu_read_unlock()
1293  *         start move here.
1294  */
1295 
1296 /* for quick checking without looking up memcg */
1297 atomic_t memcg_moving __read_mostly;
1298 
1299 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1300 {
1301 	atomic_inc(&memcg_moving);
1302 	atomic_inc(&memcg->moving_account);
1303 	synchronize_rcu();
1304 }
1305 
1306 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1307 {
1308 	/*
1309 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1310 	 * We check NULL in callee rather than caller.
1311 	 */
1312 	if (memcg) {
1313 		atomic_dec(&memcg_moving);
1314 		atomic_dec(&memcg->moving_account);
1315 	}
1316 }
1317 
1318 /*
1319  * 2 routines for checking "mem" is under move_account() or not.
1320  *
1321  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1322  *			  is used for avoiding races in accounting.  If true,
1323  *			  pc->mem_cgroup may be overwritten.
1324  *
1325  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1326  *			  under hierarchy of moving cgroups. This is for
1327  *			  waiting at hith-memory prressure caused by "move".
1328  */
1329 
1330 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1331 {
1332 	VM_BUG_ON(!rcu_read_lock_held());
1333 	return atomic_read(&memcg->moving_account) > 0;
1334 }
1335 
1336 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1337 {
1338 	struct mem_cgroup *from;
1339 	struct mem_cgroup *to;
1340 	bool ret = false;
1341 	/*
1342 	 * Unlike task_move routines, we access mc.to, mc.from not under
1343 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1344 	 */
1345 	spin_lock(&mc.lock);
1346 	from = mc.from;
1347 	to = mc.to;
1348 	if (!from)
1349 		goto unlock;
1350 
1351 	ret = mem_cgroup_same_or_subtree(memcg, from)
1352 		|| mem_cgroup_same_or_subtree(memcg, to);
1353 unlock:
1354 	spin_unlock(&mc.lock);
1355 	return ret;
1356 }
1357 
1358 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1359 {
1360 	if (mc.moving_task && current != mc.moving_task) {
1361 		if (mem_cgroup_under_move(memcg)) {
1362 			DEFINE_WAIT(wait);
1363 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1364 			/* moving charge context might have finished. */
1365 			if (mc.moving_task)
1366 				schedule();
1367 			finish_wait(&mc.waitq, &wait);
1368 			return true;
1369 		}
1370 	}
1371 	return false;
1372 }
1373 
1374 /*
1375  * Take this lock when
1376  * - a code tries to modify page's memcg while it's USED.
1377  * - a code tries to modify page state accounting in a memcg.
1378  * see mem_cgroup_stolen(), too.
1379  */
1380 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1381 				  unsigned long *flags)
1382 {
1383 	spin_lock_irqsave(&memcg->move_lock, *flags);
1384 }
1385 
1386 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1387 				unsigned long *flags)
1388 {
1389 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1390 }
1391 
1392 /**
1393  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1394  * @memcg: The memory cgroup that went over limit
1395  * @p: Task that is going to be killed
1396  *
1397  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1398  * enabled
1399  */
1400 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1401 {
1402 	struct cgroup *task_cgrp;
1403 	struct cgroup *mem_cgrp;
1404 	/*
1405 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1406 	 * on the assumption that OOM is serialized for memory controller.
1407 	 * If this assumption is broken, revisit this code.
1408 	 */
1409 	static char memcg_name[PATH_MAX];
1410 	int ret;
1411 
1412 	if (!memcg || !p)
1413 		return;
1414 
1415 	rcu_read_lock();
1416 
1417 	mem_cgrp = memcg->css.cgroup;
1418 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1419 
1420 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1421 	if (ret < 0) {
1422 		/*
1423 		 * Unfortunately, we are unable to convert to a useful name
1424 		 * But we'll still print out the usage information
1425 		 */
1426 		rcu_read_unlock();
1427 		goto done;
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	printk(KERN_INFO "Task in %s killed", memcg_name);
1432 
1433 	rcu_read_lock();
1434 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1435 	if (ret < 0) {
1436 		rcu_read_unlock();
1437 		goto done;
1438 	}
1439 	rcu_read_unlock();
1440 
1441 	/*
1442 	 * Continues from above, so we don't need an KERN_ level
1443 	 */
1444 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1445 done:
1446 
1447 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1448 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1449 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1450 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1451 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1452 		"failcnt %llu\n",
1453 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1454 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1455 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1456 }
1457 
1458 /*
1459  * This function returns the number of memcg under hierarchy tree. Returns
1460  * 1(self count) if no children.
1461  */
1462 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1463 {
1464 	int num = 0;
1465 	struct mem_cgroup *iter;
1466 
1467 	for_each_mem_cgroup_tree(iter, memcg)
1468 		num++;
1469 	return num;
1470 }
1471 
1472 /*
1473  * Return the memory (and swap, if configured) limit for a memcg.
1474  */
1475 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1476 {
1477 	u64 limit;
1478 
1479 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1480 
1481 	/*
1482 	 * Do not consider swap space if we cannot swap due to swappiness
1483 	 */
1484 	if (mem_cgroup_swappiness(memcg)) {
1485 		u64 memsw;
1486 
1487 		limit += total_swap_pages << PAGE_SHIFT;
1488 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1489 
1490 		/*
1491 		 * If memsw is finite and limits the amount of swap space
1492 		 * available to this memcg, return that limit.
1493 		 */
1494 		limit = min(limit, memsw);
1495 	}
1496 
1497 	return limit;
1498 }
1499 
1500 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1501 				     int order)
1502 {
1503 	struct mem_cgroup *iter;
1504 	unsigned long chosen_points = 0;
1505 	unsigned long totalpages;
1506 	unsigned int points = 0;
1507 	struct task_struct *chosen = NULL;
1508 
1509 	/*
1510 	 * If current has a pending SIGKILL, then automatically select it.  The
1511 	 * goal is to allow it to allocate so that it may quickly exit and free
1512 	 * its memory.
1513 	 */
1514 	if (fatal_signal_pending(current)) {
1515 		set_thread_flag(TIF_MEMDIE);
1516 		return;
1517 	}
1518 
1519 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1520 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1521 	for_each_mem_cgroup_tree(iter, memcg) {
1522 		struct cgroup *cgroup = iter->css.cgroup;
1523 		struct cgroup_iter it;
1524 		struct task_struct *task;
1525 
1526 		cgroup_iter_start(cgroup, &it);
1527 		while ((task = cgroup_iter_next(cgroup, &it))) {
1528 			switch (oom_scan_process_thread(task, totalpages, NULL,
1529 							false)) {
1530 			case OOM_SCAN_SELECT:
1531 				if (chosen)
1532 					put_task_struct(chosen);
1533 				chosen = task;
1534 				chosen_points = ULONG_MAX;
1535 				get_task_struct(chosen);
1536 				/* fall through */
1537 			case OOM_SCAN_CONTINUE:
1538 				continue;
1539 			case OOM_SCAN_ABORT:
1540 				cgroup_iter_end(cgroup, &it);
1541 				mem_cgroup_iter_break(memcg, iter);
1542 				if (chosen)
1543 					put_task_struct(chosen);
1544 				return;
1545 			case OOM_SCAN_OK:
1546 				break;
1547 			};
1548 			points = oom_badness(task, memcg, NULL, totalpages);
1549 			if (points > chosen_points) {
1550 				if (chosen)
1551 					put_task_struct(chosen);
1552 				chosen = task;
1553 				chosen_points = points;
1554 				get_task_struct(chosen);
1555 			}
1556 		}
1557 		cgroup_iter_end(cgroup, &it);
1558 	}
1559 
1560 	if (!chosen)
1561 		return;
1562 	points = chosen_points * 1000 / totalpages;
1563 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1564 			 NULL, "Memory cgroup out of memory");
1565 }
1566 
1567 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1568 					gfp_t gfp_mask,
1569 					unsigned long flags)
1570 {
1571 	unsigned long total = 0;
1572 	bool noswap = false;
1573 	int loop;
1574 
1575 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1576 		noswap = true;
1577 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1578 		noswap = true;
1579 
1580 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1581 		if (loop)
1582 			drain_all_stock_async(memcg);
1583 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1584 		/*
1585 		 * Allow limit shrinkers, which are triggered directly
1586 		 * by userspace, to catch signals and stop reclaim
1587 		 * after minimal progress, regardless of the margin.
1588 		 */
1589 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1590 			break;
1591 		if (mem_cgroup_margin(memcg))
1592 			break;
1593 		/*
1594 		 * If nothing was reclaimed after two attempts, there
1595 		 * may be no reclaimable pages in this hierarchy.
1596 		 */
1597 		if (loop && !total)
1598 			break;
1599 	}
1600 	return total;
1601 }
1602 
1603 /**
1604  * test_mem_cgroup_node_reclaimable
1605  * @memcg: the target memcg
1606  * @nid: the node ID to be checked.
1607  * @noswap : specify true here if the user wants flle only information.
1608  *
1609  * This function returns whether the specified memcg contains any
1610  * reclaimable pages on a node. Returns true if there are any reclaimable
1611  * pages in the node.
1612  */
1613 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1614 		int nid, bool noswap)
1615 {
1616 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1617 		return true;
1618 	if (noswap || !total_swap_pages)
1619 		return false;
1620 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1621 		return true;
1622 	return false;
1623 
1624 }
1625 #if MAX_NUMNODES > 1
1626 
1627 /*
1628  * Always updating the nodemask is not very good - even if we have an empty
1629  * list or the wrong list here, we can start from some node and traverse all
1630  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631  *
1632  */
1633 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634 {
1635 	int nid;
1636 	/*
1637 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 	 * pagein/pageout changes since the last update.
1639 	 */
1640 	if (!atomic_read(&memcg->numainfo_events))
1641 		return;
1642 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643 		return;
1644 
1645 	/* make a nodemask where this memcg uses memory from */
1646 	memcg->scan_nodes = node_states[N_MEMORY];
1647 
1648 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1649 
1650 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 			node_clear(nid, memcg->scan_nodes);
1652 	}
1653 
1654 	atomic_set(&memcg->numainfo_events, 0);
1655 	atomic_set(&memcg->numainfo_updating, 0);
1656 }
1657 
1658 /*
1659  * Selecting a node where we start reclaim from. Because what we need is just
1660  * reducing usage counter, start from anywhere is O,K. Considering
1661  * memory reclaim from current node, there are pros. and cons.
1662  *
1663  * Freeing memory from current node means freeing memory from a node which
1664  * we'll use or we've used. So, it may make LRU bad. And if several threads
1665  * hit limits, it will see a contention on a node. But freeing from remote
1666  * node means more costs for memory reclaim because of memory latency.
1667  *
1668  * Now, we use round-robin. Better algorithm is welcomed.
1669  */
1670 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671 {
1672 	int node;
1673 
1674 	mem_cgroup_may_update_nodemask(memcg);
1675 	node = memcg->last_scanned_node;
1676 
1677 	node = next_node(node, memcg->scan_nodes);
1678 	if (node == MAX_NUMNODES)
1679 		node = first_node(memcg->scan_nodes);
1680 	/*
1681 	 * We call this when we hit limit, not when pages are added to LRU.
1682 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1683 	 * memcg is too small and all pages are not on LRU. In that case,
1684 	 * we use curret node.
1685 	 */
1686 	if (unlikely(node == MAX_NUMNODES))
1687 		node = numa_node_id();
1688 
1689 	memcg->last_scanned_node = node;
1690 	return node;
1691 }
1692 
1693 /*
1694  * Check all nodes whether it contains reclaimable pages or not.
1695  * For quick scan, we make use of scan_nodes. This will allow us to skip
1696  * unused nodes. But scan_nodes is lazily updated and may not cotain
1697  * enough new information. We need to do double check.
1698  */
1699 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1700 {
1701 	int nid;
1702 
1703 	/*
1704 	 * quick check...making use of scan_node.
1705 	 * We can skip unused nodes.
1706 	 */
1707 	if (!nodes_empty(memcg->scan_nodes)) {
1708 		for (nid = first_node(memcg->scan_nodes);
1709 		     nid < MAX_NUMNODES;
1710 		     nid = next_node(nid, memcg->scan_nodes)) {
1711 
1712 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1713 				return true;
1714 		}
1715 	}
1716 	/*
1717 	 * Check rest of nodes.
1718 	 */
1719 	for_each_node_state(nid, N_MEMORY) {
1720 		if (node_isset(nid, memcg->scan_nodes))
1721 			continue;
1722 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1723 			return true;
1724 	}
1725 	return false;
1726 }
1727 
1728 #else
1729 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1730 {
1731 	return 0;
1732 }
1733 
1734 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1735 {
1736 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1737 }
1738 #endif
1739 
1740 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1741 				   struct zone *zone,
1742 				   gfp_t gfp_mask,
1743 				   unsigned long *total_scanned)
1744 {
1745 	struct mem_cgroup *victim = NULL;
1746 	int total = 0;
1747 	int loop = 0;
1748 	unsigned long excess;
1749 	unsigned long nr_scanned;
1750 	struct mem_cgroup_reclaim_cookie reclaim = {
1751 		.zone = zone,
1752 		.priority = 0,
1753 	};
1754 
1755 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1756 
1757 	while (1) {
1758 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759 		if (!victim) {
1760 			loop++;
1761 			if (loop >= 2) {
1762 				/*
1763 				 * If we have not been able to reclaim
1764 				 * anything, it might because there are
1765 				 * no reclaimable pages under this hierarchy
1766 				 */
1767 				if (!total)
1768 					break;
1769 				/*
1770 				 * We want to do more targeted reclaim.
1771 				 * excess >> 2 is not to excessive so as to
1772 				 * reclaim too much, nor too less that we keep
1773 				 * coming back to reclaim from this cgroup
1774 				 */
1775 				if (total >= (excess >> 2) ||
1776 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 					break;
1778 			}
1779 			continue;
1780 		}
1781 		if (!mem_cgroup_reclaimable(victim, false))
1782 			continue;
1783 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1784 						     zone, &nr_scanned);
1785 		*total_scanned += nr_scanned;
1786 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1787 			break;
1788 	}
1789 	mem_cgroup_iter_break(root_memcg, victim);
1790 	return total;
1791 }
1792 
1793 /*
1794  * Check OOM-Killer is already running under our hierarchy.
1795  * If someone is running, return false.
1796  * Has to be called with memcg_oom_lock
1797  */
1798 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1799 {
1800 	struct mem_cgroup *iter, *failed = NULL;
1801 
1802 	for_each_mem_cgroup_tree(iter, memcg) {
1803 		if (iter->oom_lock) {
1804 			/*
1805 			 * this subtree of our hierarchy is already locked
1806 			 * so we cannot give a lock.
1807 			 */
1808 			failed = iter;
1809 			mem_cgroup_iter_break(memcg, iter);
1810 			break;
1811 		} else
1812 			iter->oom_lock = true;
1813 	}
1814 
1815 	if (!failed)
1816 		return true;
1817 
1818 	/*
1819 	 * OK, we failed to lock the whole subtree so we have to clean up
1820 	 * what we set up to the failing subtree
1821 	 */
1822 	for_each_mem_cgroup_tree(iter, memcg) {
1823 		if (iter == failed) {
1824 			mem_cgroup_iter_break(memcg, iter);
1825 			break;
1826 		}
1827 		iter->oom_lock = false;
1828 	}
1829 	return false;
1830 }
1831 
1832 /*
1833  * Has to be called with memcg_oom_lock
1834  */
1835 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1836 {
1837 	struct mem_cgroup *iter;
1838 
1839 	for_each_mem_cgroup_tree(iter, memcg)
1840 		iter->oom_lock = false;
1841 	return 0;
1842 }
1843 
1844 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1845 {
1846 	struct mem_cgroup *iter;
1847 
1848 	for_each_mem_cgroup_tree(iter, memcg)
1849 		atomic_inc(&iter->under_oom);
1850 }
1851 
1852 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1853 {
1854 	struct mem_cgroup *iter;
1855 
1856 	/*
1857 	 * When a new child is created while the hierarchy is under oom,
1858 	 * mem_cgroup_oom_lock() may not be called. We have to use
1859 	 * atomic_add_unless() here.
1860 	 */
1861 	for_each_mem_cgroup_tree(iter, memcg)
1862 		atomic_add_unless(&iter->under_oom, -1, 0);
1863 }
1864 
1865 static DEFINE_SPINLOCK(memcg_oom_lock);
1866 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1867 
1868 struct oom_wait_info {
1869 	struct mem_cgroup *memcg;
1870 	wait_queue_t	wait;
1871 };
1872 
1873 static int memcg_oom_wake_function(wait_queue_t *wait,
1874 	unsigned mode, int sync, void *arg)
1875 {
1876 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1877 	struct mem_cgroup *oom_wait_memcg;
1878 	struct oom_wait_info *oom_wait_info;
1879 
1880 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1881 	oom_wait_memcg = oom_wait_info->memcg;
1882 
1883 	/*
1884 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1885 	 * Then we can use css_is_ancestor without taking care of RCU.
1886 	 */
1887 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1888 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1889 		return 0;
1890 	return autoremove_wake_function(wait, mode, sync, arg);
1891 }
1892 
1893 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1894 {
1895 	/* for filtering, pass "memcg" as argument. */
1896 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1897 }
1898 
1899 static void memcg_oom_recover(struct mem_cgroup *memcg)
1900 {
1901 	if (memcg && atomic_read(&memcg->under_oom))
1902 		memcg_wakeup_oom(memcg);
1903 }
1904 
1905 /*
1906  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1907  */
1908 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1909 				  int order)
1910 {
1911 	struct oom_wait_info owait;
1912 	bool locked, need_to_kill;
1913 
1914 	owait.memcg = memcg;
1915 	owait.wait.flags = 0;
1916 	owait.wait.func = memcg_oom_wake_function;
1917 	owait.wait.private = current;
1918 	INIT_LIST_HEAD(&owait.wait.task_list);
1919 	need_to_kill = true;
1920 	mem_cgroup_mark_under_oom(memcg);
1921 
1922 	/* At first, try to OOM lock hierarchy under memcg.*/
1923 	spin_lock(&memcg_oom_lock);
1924 	locked = mem_cgroup_oom_lock(memcg);
1925 	/*
1926 	 * Even if signal_pending(), we can't quit charge() loop without
1927 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1928 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1929 	 */
1930 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1931 	if (!locked || memcg->oom_kill_disable)
1932 		need_to_kill = false;
1933 	if (locked)
1934 		mem_cgroup_oom_notify(memcg);
1935 	spin_unlock(&memcg_oom_lock);
1936 
1937 	if (need_to_kill) {
1938 		finish_wait(&memcg_oom_waitq, &owait.wait);
1939 		mem_cgroup_out_of_memory(memcg, mask, order);
1940 	} else {
1941 		schedule();
1942 		finish_wait(&memcg_oom_waitq, &owait.wait);
1943 	}
1944 	spin_lock(&memcg_oom_lock);
1945 	if (locked)
1946 		mem_cgroup_oom_unlock(memcg);
1947 	memcg_wakeup_oom(memcg);
1948 	spin_unlock(&memcg_oom_lock);
1949 
1950 	mem_cgroup_unmark_under_oom(memcg);
1951 
1952 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1953 		return false;
1954 	/* Give chance to dying process */
1955 	schedule_timeout_uninterruptible(1);
1956 	return true;
1957 }
1958 
1959 /*
1960  * Currently used to update mapped file statistics, but the routine can be
1961  * generalized to update other statistics as well.
1962  *
1963  * Notes: Race condition
1964  *
1965  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1966  * it tends to be costly. But considering some conditions, we doesn't need
1967  * to do so _always_.
1968  *
1969  * Considering "charge", lock_page_cgroup() is not required because all
1970  * file-stat operations happen after a page is attached to radix-tree. There
1971  * are no race with "charge".
1972  *
1973  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1974  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1975  * if there are race with "uncharge". Statistics itself is properly handled
1976  * by flags.
1977  *
1978  * Considering "move", this is an only case we see a race. To make the race
1979  * small, we check mm->moving_account and detect there are possibility of race
1980  * If there is, we take a lock.
1981  */
1982 
1983 void __mem_cgroup_begin_update_page_stat(struct page *page,
1984 				bool *locked, unsigned long *flags)
1985 {
1986 	struct mem_cgroup *memcg;
1987 	struct page_cgroup *pc;
1988 
1989 	pc = lookup_page_cgroup(page);
1990 again:
1991 	memcg = pc->mem_cgroup;
1992 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1993 		return;
1994 	/*
1995 	 * If this memory cgroup is not under account moving, we don't
1996 	 * need to take move_lock_mem_cgroup(). Because we already hold
1997 	 * rcu_read_lock(), any calls to move_account will be delayed until
1998 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1999 	 */
2000 	if (!mem_cgroup_stolen(memcg))
2001 		return;
2002 
2003 	move_lock_mem_cgroup(memcg, flags);
2004 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2005 		move_unlock_mem_cgroup(memcg, flags);
2006 		goto again;
2007 	}
2008 	*locked = true;
2009 }
2010 
2011 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2012 {
2013 	struct page_cgroup *pc = lookup_page_cgroup(page);
2014 
2015 	/*
2016 	 * It's guaranteed that pc->mem_cgroup never changes while
2017 	 * lock is held because a routine modifies pc->mem_cgroup
2018 	 * should take move_lock_mem_cgroup().
2019 	 */
2020 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2021 }
2022 
2023 void mem_cgroup_update_page_stat(struct page *page,
2024 				 enum mem_cgroup_page_stat_item idx, int val)
2025 {
2026 	struct mem_cgroup *memcg;
2027 	struct page_cgroup *pc = lookup_page_cgroup(page);
2028 	unsigned long uninitialized_var(flags);
2029 
2030 	if (mem_cgroup_disabled())
2031 		return;
2032 
2033 	memcg = pc->mem_cgroup;
2034 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2035 		return;
2036 
2037 	switch (idx) {
2038 	case MEMCG_NR_FILE_MAPPED:
2039 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2040 		break;
2041 	default:
2042 		BUG();
2043 	}
2044 
2045 	this_cpu_add(memcg->stat->count[idx], val);
2046 }
2047 
2048 /*
2049  * size of first charge trial. "32" comes from vmscan.c's magic value.
2050  * TODO: maybe necessary to use big numbers in big irons.
2051  */
2052 #define CHARGE_BATCH	32U
2053 struct memcg_stock_pcp {
2054 	struct mem_cgroup *cached; /* this never be root cgroup */
2055 	unsigned int nr_pages;
2056 	struct work_struct work;
2057 	unsigned long flags;
2058 #define FLUSHING_CACHED_CHARGE	0
2059 };
2060 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2061 static DEFINE_MUTEX(percpu_charge_mutex);
2062 
2063 /*
2064  * Try to consume stocked charge on this cpu. If success, one page is consumed
2065  * from local stock and true is returned. If the stock is 0 or charges from a
2066  * cgroup which is not current target, returns false. This stock will be
2067  * refilled.
2068  */
2069 static bool consume_stock(struct mem_cgroup *memcg)
2070 {
2071 	struct memcg_stock_pcp *stock;
2072 	bool ret = true;
2073 
2074 	stock = &get_cpu_var(memcg_stock);
2075 	if (memcg == stock->cached && stock->nr_pages)
2076 		stock->nr_pages--;
2077 	else /* need to call res_counter_charge */
2078 		ret = false;
2079 	put_cpu_var(memcg_stock);
2080 	return ret;
2081 }
2082 
2083 /*
2084  * Returns stocks cached in percpu to res_counter and reset cached information.
2085  */
2086 static void drain_stock(struct memcg_stock_pcp *stock)
2087 {
2088 	struct mem_cgroup *old = stock->cached;
2089 
2090 	if (stock->nr_pages) {
2091 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2092 
2093 		res_counter_uncharge(&old->res, bytes);
2094 		if (do_swap_account)
2095 			res_counter_uncharge(&old->memsw, bytes);
2096 		stock->nr_pages = 0;
2097 	}
2098 	stock->cached = NULL;
2099 }
2100 
2101 /*
2102  * This must be called under preempt disabled or must be called by
2103  * a thread which is pinned to local cpu.
2104  */
2105 static void drain_local_stock(struct work_struct *dummy)
2106 {
2107 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2108 	drain_stock(stock);
2109 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2110 }
2111 
2112 /*
2113  * Cache charges(val) which is from res_counter, to local per_cpu area.
2114  * This will be consumed by consume_stock() function, later.
2115  */
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 {
2118 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2119 
2120 	if (stock->cached != memcg) { /* reset if necessary */
2121 		drain_stock(stock);
2122 		stock->cached = memcg;
2123 	}
2124 	stock->nr_pages += nr_pages;
2125 	put_cpu_var(memcg_stock);
2126 }
2127 
2128 /*
2129  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2130  * of the hierarchy under it. sync flag says whether we should block
2131  * until the work is done.
2132  */
2133 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2134 {
2135 	int cpu, curcpu;
2136 
2137 	/* Notify other cpus that system-wide "drain" is running */
2138 	get_online_cpus();
2139 	curcpu = get_cpu();
2140 	for_each_online_cpu(cpu) {
2141 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2142 		struct mem_cgroup *memcg;
2143 
2144 		memcg = stock->cached;
2145 		if (!memcg || !stock->nr_pages)
2146 			continue;
2147 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2148 			continue;
2149 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2150 			if (cpu == curcpu)
2151 				drain_local_stock(&stock->work);
2152 			else
2153 				schedule_work_on(cpu, &stock->work);
2154 		}
2155 	}
2156 	put_cpu();
2157 
2158 	if (!sync)
2159 		goto out;
2160 
2161 	for_each_online_cpu(cpu) {
2162 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2163 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2164 			flush_work(&stock->work);
2165 	}
2166 out:
2167  	put_online_cpus();
2168 }
2169 
2170 /*
2171  * Tries to drain stocked charges in other cpus. This function is asynchronous
2172  * and just put a work per cpu for draining localy on each cpu. Caller can
2173  * expects some charges will be back to res_counter later but cannot wait for
2174  * it.
2175  */
2176 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2177 {
2178 	/*
2179 	 * If someone calls draining, avoid adding more kworker runs.
2180 	 */
2181 	if (!mutex_trylock(&percpu_charge_mutex))
2182 		return;
2183 	drain_all_stock(root_memcg, false);
2184 	mutex_unlock(&percpu_charge_mutex);
2185 }
2186 
2187 /* This is a synchronous drain interface. */
2188 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2189 {
2190 	/* called when force_empty is called */
2191 	mutex_lock(&percpu_charge_mutex);
2192 	drain_all_stock(root_memcg, true);
2193 	mutex_unlock(&percpu_charge_mutex);
2194 }
2195 
2196 /*
2197  * This function drains percpu counter value from DEAD cpu and
2198  * move it to local cpu. Note that this function can be preempted.
2199  */
2200 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2201 {
2202 	int i;
2203 
2204 	spin_lock(&memcg->pcp_counter_lock);
2205 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2206 		long x = per_cpu(memcg->stat->count[i], cpu);
2207 
2208 		per_cpu(memcg->stat->count[i], cpu) = 0;
2209 		memcg->nocpu_base.count[i] += x;
2210 	}
2211 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2212 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2213 
2214 		per_cpu(memcg->stat->events[i], cpu) = 0;
2215 		memcg->nocpu_base.events[i] += x;
2216 	}
2217 	spin_unlock(&memcg->pcp_counter_lock);
2218 }
2219 
2220 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2221 					unsigned long action,
2222 					void *hcpu)
2223 {
2224 	int cpu = (unsigned long)hcpu;
2225 	struct memcg_stock_pcp *stock;
2226 	struct mem_cgroup *iter;
2227 
2228 	if (action == CPU_ONLINE)
2229 		return NOTIFY_OK;
2230 
2231 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2232 		return NOTIFY_OK;
2233 
2234 	for_each_mem_cgroup(iter)
2235 		mem_cgroup_drain_pcp_counter(iter, cpu);
2236 
2237 	stock = &per_cpu(memcg_stock, cpu);
2238 	drain_stock(stock);
2239 	return NOTIFY_OK;
2240 }
2241 
2242 
2243 /* See __mem_cgroup_try_charge() for details */
2244 enum {
2245 	CHARGE_OK,		/* success */
2246 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2247 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2248 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2249 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2250 };
2251 
2252 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2253 				unsigned int nr_pages, bool oom_check)
2254 {
2255 	unsigned long csize = nr_pages * PAGE_SIZE;
2256 	struct mem_cgroup *mem_over_limit;
2257 	struct res_counter *fail_res;
2258 	unsigned long flags = 0;
2259 	int ret;
2260 
2261 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2262 
2263 	if (likely(!ret)) {
2264 		if (!do_swap_account)
2265 			return CHARGE_OK;
2266 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2267 		if (likely(!ret))
2268 			return CHARGE_OK;
2269 
2270 		res_counter_uncharge(&memcg->res, csize);
2271 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2272 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2273 	} else
2274 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2275 	/*
2276 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2277 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2278 	 *
2279 	 * Never reclaim on behalf of optional batching, retry with a
2280 	 * single page instead.
2281 	 */
2282 	if (nr_pages == CHARGE_BATCH)
2283 		return CHARGE_RETRY;
2284 
2285 	if (!(gfp_mask & __GFP_WAIT))
2286 		return CHARGE_WOULDBLOCK;
2287 
2288 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2289 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2290 		return CHARGE_RETRY;
2291 	/*
2292 	 * Even though the limit is exceeded at this point, reclaim
2293 	 * may have been able to free some pages.  Retry the charge
2294 	 * before killing the task.
2295 	 *
2296 	 * Only for regular pages, though: huge pages are rather
2297 	 * unlikely to succeed so close to the limit, and we fall back
2298 	 * to regular pages anyway in case of failure.
2299 	 */
2300 	if (nr_pages == 1 && ret)
2301 		return CHARGE_RETRY;
2302 
2303 	/*
2304 	 * At task move, charge accounts can be doubly counted. So, it's
2305 	 * better to wait until the end of task_move if something is going on.
2306 	 */
2307 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2308 		return CHARGE_RETRY;
2309 
2310 	/* If we don't need to call oom-killer at el, return immediately */
2311 	if (!oom_check)
2312 		return CHARGE_NOMEM;
2313 	/* check OOM */
2314 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2315 		return CHARGE_OOM_DIE;
2316 
2317 	return CHARGE_RETRY;
2318 }
2319 
2320 /*
2321  * __mem_cgroup_try_charge() does
2322  * 1. detect memcg to be charged against from passed *mm and *ptr,
2323  * 2. update res_counter
2324  * 3. call memory reclaim if necessary.
2325  *
2326  * In some special case, if the task is fatal, fatal_signal_pending() or
2327  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2328  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2329  * as possible without any hazards. 2: all pages should have a valid
2330  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2331  * pointer, that is treated as a charge to root_mem_cgroup.
2332  *
2333  * So __mem_cgroup_try_charge() will return
2334  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2335  *  -ENOMEM ...  charge failure because of resource limits.
2336  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2337  *
2338  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2339  * the oom-killer can be invoked.
2340  */
2341 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2342 				   gfp_t gfp_mask,
2343 				   unsigned int nr_pages,
2344 				   struct mem_cgroup **ptr,
2345 				   bool oom)
2346 {
2347 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2348 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2349 	struct mem_cgroup *memcg = NULL;
2350 	int ret;
2351 
2352 	/*
2353 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2354 	 * in system level. So, allow to go ahead dying process in addition to
2355 	 * MEMDIE process.
2356 	 */
2357 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2358 		     || fatal_signal_pending(current)))
2359 		goto bypass;
2360 
2361 	/*
2362 	 * We always charge the cgroup the mm_struct belongs to.
2363 	 * The mm_struct's mem_cgroup changes on task migration if the
2364 	 * thread group leader migrates. It's possible that mm is not
2365 	 * set, if so charge the root memcg (happens for pagecache usage).
2366 	 */
2367 	if (!*ptr && !mm)
2368 		*ptr = root_mem_cgroup;
2369 again:
2370 	if (*ptr) { /* css should be a valid one */
2371 		memcg = *ptr;
2372 		if (mem_cgroup_is_root(memcg))
2373 			goto done;
2374 		if (nr_pages == 1 && consume_stock(memcg))
2375 			goto done;
2376 		css_get(&memcg->css);
2377 	} else {
2378 		struct task_struct *p;
2379 
2380 		rcu_read_lock();
2381 		p = rcu_dereference(mm->owner);
2382 		/*
2383 		 * Because we don't have task_lock(), "p" can exit.
2384 		 * In that case, "memcg" can point to root or p can be NULL with
2385 		 * race with swapoff. Then, we have small risk of mis-accouning.
2386 		 * But such kind of mis-account by race always happens because
2387 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2388 		 * small race, here.
2389 		 * (*) swapoff at el will charge against mm-struct not against
2390 		 * task-struct. So, mm->owner can be NULL.
2391 		 */
2392 		memcg = mem_cgroup_from_task(p);
2393 		if (!memcg)
2394 			memcg = root_mem_cgroup;
2395 		if (mem_cgroup_is_root(memcg)) {
2396 			rcu_read_unlock();
2397 			goto done;
2398 		}
2399 		if (nr_pages == 1 && consume_stock(memcg)) {
2400 			/*
2401 			 * It seems dagerous to access memcg without css_get().
2402 			 * But considering how consume_stok works, it's not
2403 			 * necessary. If consume_stock success, some charges
2404 			 * from this memcg are cached on this cpu. So, we
2405 			 * don't need to call css_get()/css_tryget() before
2406 			 * calling consume_stock().
2407 			 */
2408 			rcu_read_unlock();
2409 			goto done;
2410 		}
2411 		/* after here, we may be blocked. we need to get refcnt */
2412 		if (!css_tryget(&memcg->css)) {
2413 			rcu_read_unlock();
2414 			goto again;
2415 		}
2416 		rcu_read_unlock();
2417 	}
2418 
2419 	do {
2420 		bool oom_check;
2421 
2422 		/* If killed, bypass charge */
2423 		if (fatal_signal_pending(current)) {
2424 			css_put(&memcg->css);
2425 			goto bypass;
2426 		}
2427 
2428 		oom_check = false;
2429 		if (oom && !nr_oom_retries) {
2430 			oom_check = true;
2431 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2432 		}
2433 
2434 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2435 		switch (ret) {
2436 		case CHARGE_OK:
2437 			break;
2438 		case CHARGE_RETRY: /* not in OOM situation but retry */
2439 			batch = nr_pages;
2440 			css_put(&memcg->css);
2441 			memcg = NULL;
2442 			goto again;
2443 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2444 			css_put(&memcg->css);
2445 			goto nomem;
2446 		case CHARGE_NOMEM: /* OOM routine works */
2447 			if (!oom) {
2448 				css_put(&memcg->css);
2449 				goto nomem;
2450 			}
2451 			/* If oom, we never return -ENOMEM */
2452 			nr_oom_retries--;
2453 			break;
2454 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2455 			css_put(&memcg->css);
2456 			goto bypass;
2457 		}
2458 	} while (ret != CHARGE_OK);
2459 
2460 	if (batch > nr_pages)
2461 		refill_stock(memcg, batch - nr_pages);
2462 	css_put(&memcg->css);
2463 done:
2464 	*ptr = memcg;
2465 	return 0;
2466 nomem:
2467 	*ptr = NULL;
2468 	return -ENOMEM;
2469 bypass:
2470 	*ptr = root_mem_cgroup;
2471 	return -EINTR;
2472 }
2473 
2474 /*
2475  * Somemtimes we have to undo a charge we got by try_charge().
2476  * This function is for that and do uncharge, put css's refcnt.
2477  * gotten by try_charge().
2478  */
2479 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2480 				       unsigned int nr_pages)
2481 {
2482 	if (!mem_cgroup_is_root(memcg)) {
2483 		unsigned long bytes = nr_pages * PAGE_SIZE;
2484 
2485 		res_counter_uncharge(&memcg->res, bytes);
2486 		if (do_swap_account)
2487 			res_counter_uncharge(&memcg->memsw, bytes);
2488 	}
2489 }
2490 
2491 /*
2492  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2493  * This is useful when moving usage to parent cgroup.
2494  */
2495 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2496 					unsigned int nr_pages)
2497 {
2498 	unsigned long bytes = nr_pages * PAGE_SIZE;
2499 
2500 	if (mem_cgroup_is_root(memcg))
2501 		return;
2502 
2503 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2504 	if (do_swap_account)
2505 		res_counter_uncharge_until(&memcg->memsw,
2506 						memcg->memsw.parent, bytes);
2507 }
2508 
2509 /*
2510  * A helper function to get mem_cgroup from ID. must be called under
2511  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2512  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2513  * called against removed memcg.)
2514  */
2515 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2516 {
2517 	struct cgroup_subsys_state *css;
2518 
2519 	/* ID 0 is unused ID */
2520 	if (!id)
2521 		return NULL;
2522 	css = css_lookup(&mem_cgroup_subsys, id);
2523 	if (!css)
2524 		return NULL;
2525 	return mem_cgroup_from_css(css);
2526 }
2527 
2528 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2529 {
2530 	struct mem_cgroup *memcg = NULL;
2531 	struct page_cgroup *pc;
2532 	unsigned short id;
2533 	swp_entry_t ent;
2534 
2535 	VM_BUG_ON(!PageLocked(page));
2536 
2537 	pc = lookup_page_cgroup(page);
2538 	lock_page_cgroup(pc);
2539 	if (PageCgroupUsed(pc)) {
2540 		memcg = pc->mem_cgroup;
2541 		if (memcg && !css_tryget(&memcg->css))
2542 			memcg = NULL;
2543 	} else if (PageSwapCache(page)) {
2544 		ent.val = page_private(page);
2545 		id = lookup_swap_cgroup_id(ent);
2546 		rcu_read_lock();
2547 		memcg = mem_cgroup_lookup(id);
2548 		if (memcg && !css_tryget(&memcg->css))
2549 			memcg = NULL;
2550 		rcu_read_unlock();
2551 	}
2552 	unlock_page_cgroup(pc);
2553 	return memcg;
2554 }
2555 
2556 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2557 				       struct page *page,
2558 				       unsigned int nr_pages,
2559 				       enum charge_type ctype,
2560 				       bool lrucare)
2561 {
2562 	struct page_cgroup *pc = lookup_page_cgroup(page);
2563 	struct zone *uninitialized_var(zone);
2564 	struct lruvec *lruvec;
2565 	bool was_on_lru = false;
2566 	bool anon;
2567 
2568 	lock_page_cgroup(pc);
2569 	VM_BUG_ON(PageCgroupUsed(pc));
2570 	/*
2571 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2572 	 * accessed by any other context at this point.
2573 	 */
2574 
2575 	/*
2576 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2577 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2578 	 */
2579 	if (lrucare) {
2580 		zone = page_zone(page);
2581 		spin_lock_irq(&zone->lru_lock);
2582 		if (PageLRU(page)) {
2583 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2584 			ClearPageLRU(page);
2585 			del_page_from_lru_list(page, lruvec, page_lru(page));
2586 			was_on_lru = true;
2587 		}
2588 	}
2589 
2590 	pc->mem_cgroup = memcg;
2591 	/*
2592 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2593 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2594 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2595 	 * before USED bit, we need memory barrier here.
2596 	 * See mem_cgroup_add_lru_list(), etc.
2597  	 */
2598 	smp_wmb();
2599 	SetPageCgroupUsed(pc);
2600 
2601 	if (lrucare) {
2602 		if (was_on_lru) {
2603 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2604 			VM_BUG_ON(PageLRU(page));
2605 			SetPageLRU(page);
2606 			add_page_to_lru_list(page, lruvec, page_lru(page));
2607 		}
2608 		spin_unlock_irq(&zone->lru_lock);
2609 	}
2610 
2611 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2612 		anon = true;
2613 	else
2614 		anon = false;
2615 
2616 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2617 	unlock_page_cgroup(pc);
2618 
2619 	/*
2620 	 * "charge_statistics" updated event counter. Then, check it.
2621 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2622 	 * if they exceeds softlimit.
2623 	 */
2624 	memcg_check_events(memcg, page);
2625 }
2626 
2627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2628 
2629 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2630 /*
2631  * Because tail pages are not marked as "used", set it. We're under
2632  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2633  * charge/uncharge will be never happen and move_account() is done under
2634  * compound_lock(), so we don't have to take care of races.
2635  */
2636 void mem_cgroup_split_huge_fixup(struct page *head)
2637 {
2638 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2639 	struct page_cgroup *pc;
2640 	int i;
2641 
2642 	if (mem_cgroup_disabled())
2643 		return;
2644 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2645 		pc = head_pc + i;
2646 		pc->mem_cgroup = head_pc->mem_cgroup;
2647 		smp_wmb();/* see __commit_charge() */
2648 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2649 	}
2650 }
2651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2652 
2653 /**
2654  * mem_cgroup_move_account - move account of the page
2655  * @page: the page
2656  * @nr_pages: number of regular pages (>1 for huge pages)
2657  * @pc:	page_cgroup of the page.
2658  * @from: mem_cgroup which the page is moved from.
2659  * @to:	mem_cgroup which the page is moved to. @from != @to.
2660  *
2661  * The caller must confirm following.
2662  * - page is not on LRU (isolate_page() is useful.)
2663  * - compound_lock is held when nr_pages > 1
2664  *
2665  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2666  * from old cgroup.
2667  */
2668 static int mem_cgroup_move_account(struct page *page,
2669 				   unsigned int nr_pages,
2670 				   struct page_cgroup *pc,
2671 				   struct mem_cgroup *from,
2672 				   struct mem_cgroup *to)
2673 {
2674 	unsigned long flags;
2675 	int ret;
2676 	bool anon = PageAnon(page);
2677 
2678 	VM_BUG_ON(from == to);
2679 	VM_BUG_ON(PageLRU(page));
2680 	/*
2681 	 * The page is isolated from LRU. So, collapse function
2682 	 * will not handle this page. But page splitting can happen.
2683 	 * Do this check under compound_page_lock(). The caller should
2684 	 * hold it.
2685 	 */
2686 	ret = -EBUSY;
2687 	if (nr_pages > 1 && !PageTransHuge(page))
2688 		goto out;
2689 
2690 	lock_page_cgroup(pc);
2691 
2692 	ret = -EINVAL;
2693 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2694 		goto unlock;
2695 
2696 	move_lock_mem_cgroup(from, &flags);
2697 
2698 	if (!anon && page_mapped(page)) {
2699 		/* Update mapped_file data for mem_cgroup */
2700 		preempt_disable();
2701 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2702 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2703 		preempt_enable();
2704 	}
2705 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2706 
2707 	/* caller should have done css_get */
2708 	pc->mem_cgroup = to;
2709 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2710 	move_unlock_mem_cgroup(from, &flags);
2711 	ret = 0;
2712 unlock:
2713 	unlock_page_cgroup(pc);
2714 	/*
2715 	 * check events
2716 	 */
2717 	memcg_check_events(to, page);
2718 	memcg_check_events(from, page);
2719 out:
2720 	return ret;
2721 }
2722 
2723 /**
2724  * mem_cgroup_move_parent - moves page to the parent group
2725  * @page: the page to move
2726  * @pc: page_cgroup of the page
2727  * @child: page's cgroup
2728  *
2729  * move charges to its parent or the root cgroup if the group has no
2730  * parent (aka use_hierarchy==0).
2731  * Although this might fail (get_page_unless_zero, isolate_lru_page or
2732  * mem_cgroup_move_account fails) the failure is always temporary and
2733  * it signals a race with a page removal/uncharge or migration. In the
2734  * first case the page is on the way out and it will vanish from the LRU
2735  * on the next attempt and the call should be retried later.
2736  * Isolation from the LRU fails only if page has been isolated from
2737  * the LRU since we looked at it and that usually means either global
2738  * reclaim or migration going on. The page will either get back to the
2739  * LRU or vanish.
2740  * Finaly mem_cgroup_move_account fails only if the page got uncharged
2741  * (!PageCgroupUsed) or moved to a different group. The page will
2742  * disappear in the next attempt.
2743  */
2744 static int mem_cgroup_move_parent(struct page *page,
2745 				  struct page_cgroup *pc,
2746 				  struct mem_cgroup *child)
2747 {
2748 	struct mem_cgroup *parent;
2749 	unsigned int nr_pages;
2750 	unsigned long uninitialized_var(flags);
2751 	int ret;
2752 
2753 	VM_BUG_ON(mem_cgroup_is_root(child));
2754 
2755 	ret = -EBUSY;
2756 	if (!get_page_unless_zero(page))
2757 		goto out;
2758 	if (isolate_lru_page(page))
2759 		goto put;
2760 
2761 	nr_pages = hpage_nr_pages(page);
2762 
2763 	parent = parent_mem_cgroup(child);
2764 	/*
2765 	 * If no parent, move charges to root cgroup.
2766 	 */
2767 	if (!parent)
2768 		parent = root_mem_cgroup;
2769 
2770 	if (nr_pages > 1) {
2771 		VM_BUG_ON(!PageTransHuge(page));
2772 		flags = compound_lock_irqsave(page);
2773 	}
2774 
2775 	ret = mem_cgroup_move_account(page, nr_pages,
2776 				pc, child, parent);
2777 	if (!ret)
2778 		__mem_cgroup_cancel_local_charge(child, nr_pages);
2779 
2780 	if (nr_pages > 1)
2781 		compound_unlock_irqrestore(page, flags);
2782 	putback_lru_page(page);
2783 put:
2784 	put_page(page);
2785 out:
2786 	return ret;
2787 }
2788 
2789 /*
2790  * Charge the memory controller for page usage.
2791  * Return
2792  * 0 if the charge was successful
2793  * < 0 if the cgroup is over its limit
2794  */
2795 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2796 				gfp_t gfp_mask, enum charge_type ctype)
2797 {
2798 	struct mem_cgroup *memcg = NULL;
2799 	unsigned int nr_pages = 1;
2800 	bool oom = true;
2801 	int ret;
2802 
2803 	if (PageTransHuge(page)) {
2804 		nr_pages <<= compound_order(page);
2805 		VM_BUG_ON(!PageTransHuge(page));
2806 		/*
2807 		 * Never OOM-kill a process for a huge page.  The
2808 		 * fault handler will fall back to regular pages.
2809 		 */
2810 		oom = false;
2811 	}
2812 
2813 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2814 	if (ret == -ENOMEM)
2815 		return ret;
2816 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2817 	return 0;
2818 }
2819 
2820 int mem_cgroup_newpage_charge(struct page *page,
2821 			      struct mm_struct *mm, gfp_t gfp_mask)
2822 {
2823 	if (mem_cgroup_disabled())
2824 		return 0;
2825 	VM_BUG_ON(page_mapped(page));
2826 	VM_BUG_ON(page->mapping && !PageAnon(page));
2827 	VM_BUG_ON(!mm);
2828 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2829 					MEM_CGROUP_CHARGE_TYPE_ANON);
2830 }
2831 
2832 /*
2833  * While swap-in, try_charge -> commit or cancel, the page is locked.
2834  * And when try_charge() successfully returns, one refcnt to memcg without
2835  * struct page_cgroup is acquired. This refcnt will be consumed by
2836  * "commit()" or removed by "cancel()"
2837  */
2838 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2839 					  struct page *page,
2840 					  gfp_t mask,
2841 					  struct mem_cgroup **memcgp)
2842 {
2843 	struct mem_cgroup *memcg;
2844 	struct page_cgroup *pc;
2845 	int ret;
2846 
2847 	pc = lookup_page_cgroup(page);
2848 	/*
2849 	 * Every swap fault against a single page tries to charge the
2850 	 * page, bail as early as possible.  shmem_unuse() encounters
2851 	 * already charged pages, too.  The USED bit is protected by
2852 	 * the page lock, which serializes swap cache removal, which
2853 	 * in turn serializes uncharging.
2854 	 */
2855 	if (PageCgroupUsed(pc))
2856 		return 0;
2857 	if (!do_swap_account)
2858 		goto charge_cur_mm;
2859 	memcg = try_get_mem_cgroup_from_page(page);
2860 	if (!memcg)
2861 		goto charge_cur_mm;
2862 	*memcgp = memcg;
2863 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2864 	css_put(&memcg->css);
2865 	if (ret == -EINTR)
2866 		ret = 0;
2867 	return ret;
2868 charge_cur_mm:
2869 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2870 	if (ret == -EINTR)
2871 		ret = 0;
2872 	return ret;
2873 }
2874 
2875 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2876 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2877 {
2878 	*memcgp = NULL;
2879 	if (mem_cgroup_disabled())
2880 		return 0;
2881 	/*
2882 	 * A racing thread's fault, or swapoff, may have already
2883 	 * updated the pte, and even removed page from swap cache: in
2884 	 * those cases unuse_pte()'s pte_same() test will fail; but
2885 	 * there's also a KSM case which does need to charge the page.
2886 	 */
2887 	if (!PageSwapCache(page)) {
2888 		int ret;
2889 
2890 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2891 		if (ret == -EINTR)
2892 			ret = 0;
2893 		return ret;
2894 	}
2895 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2896 }
2897 
2898 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2899 {
2900 	if (mem_cgroup_disabled())
2901 		return;
2902 	if (!memcg)
2903 		return;
2904 	__mem_cgroup_cancel_charge(memcg, 1);
2905 }
2906 
2907 static void
2908 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2909 					enum charge_type ctype)
2910 {
2911 	if (mem_cgroup_disabled())
2912 		return;
2913 	if (!memcg)
2914 		return;
2915 
2916 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2917 	/*
2918 	 * Now swap is on-memory. This means this page may be
2919 	 * counted both as mem and swap....double count.
2920 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2921 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2922 	 * may call delete_from_swap_cache() before reach here.
2923 	 */
2924 	if (do_swap_account && PageSwapCache(page)) {
2925 		swp_entry_t ent = {.val = page_private(page)};
2926 		mem_cgroup_uncharge_swap(ent);
2927 	}
2928 }
2929 
2930 void mem_cgroup_commit_charge_swapin(struct page *page,
2931 				     struct mem_cgroup *memcg)
2932 {
2933 	__mem_cgroup_commit_charge_swapin(page, memcg,
2934 					  MEM_CGROUP_CHARGE_TYPE_ANON);
2935 }
2936 
2937 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2938 				gfp_t gfp_mask)
2939 {
2940 	struct mem_cgroup *memcg = NULL;
2941 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2942 	int ret;
2943 
2944 	if (mem_cgroup_disabled())
2945 		return 0;
2946 	if (PageCompound(page))
2947 		return 0;
2948 
2949 	if (!PageSwapCache(page))
2950 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2951 	else { /* page is swapcache/shmem */
2952 		ret = __mem_cgroup_try_charge_swapin(mm, page,
2953 						     gfp_mask, &memcg);
2954 		if (!ret)
2955 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2956 	}
2957 	return ret;
2958 }
2959 
2960 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2961 				   unsigned int nr_pages,
2962 				   const enum charge_type ctype)
2963 {
2964 	struct memcg_batch_info *batch = NULL;
2965 	bool uncharge_memsw = true;
2966 
2967 	/* If swapout, usage of swap doesn't decrease */
2968 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2969 		uncharge_memsw = false;
2970 
2971 	batch = &current->memcg_batch;
2972 	/*
2973 	 * In usual, we do css_get() when we remember memcg pointer.
2974 	 * But in this case, we keep res->usage until end of a series of
2975 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2976 	 */
2977 	if (!batch->memcg)
2978 		batch->memcg = memcg;
2979 	/*
2980 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2981 	 * In those cases, all pages freed continuously can be expected to be in
2982 	 * the same cgroup and we have chance to coalesce uncharges.
2983 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2984 	 * because we want to do uncharge as soon as possible.
2985 	 */
2986 
2987 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2988 		goto direct_uncharge;
2989 
2990 	if (nr_pages > 1)
2991 		goto direct_uncharge;
2992 
2993 	/*
2994 	 * In typical case, batch->memcg == mem. This means we can
2995 	 * merge a series of uncharges to an uncharge of res_counter.
2996 	 * If not, we uncharge res_counter ony by one.
2997 	 */
2998 	if (batch->memcg != memcg)
2999 		goto direct_uncharge;
3000 	/* remember freed charge and uncharge it later */
3001 	batch->nr_pages++;
3002 	if (uncharge_memsw)
3003 		batch->memsw_nr_pages++;
3004 	return;
3005 direct_uncharge:
3006 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3007 	if (uncharge_memsw)
3008 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3009 	if (unlikely(batch->memcg != memcg))
3010 		memcg_oom_recover(memcg);
3011 }
3012 
3013 /*
3014  * uncharge if !page_mapped(page)
3015  */
3016 static struct mem_cgroup *
3017 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3018 			     bool end_migration)
3019 {
3020 	struct mem_cgroup *memcg = NULL;
3021 	unsigned int nr_pages = 1;
3022 	struct page_cgroup *pc;
3023 	bool anon;
3024 
3025 	if (mem_cgroup_disabled())
3026 		return NULL;
3027 
3028 	VM_BUG_ON(PageSwapCache(page));
3029 
3030 	if (PageTransHuge(page)) {
3031 		nr_pages <<= compound_order(page);
3032 		VM_BUG_ON(!PageTransHuge(page));
3033 	}
3034 	/*
3035 	 * Check if our page_cgroup is valid
3036 	 */
3037 	pc = lookup_page_cgroup(page);
3038 	if (unlikely(!PageCgroupUsed(pc)))
3039 		return NULL;
3040 
3041 	lock_page_cgroup(pc);
3042 
3043 	memcg = pc->mem_cgroup;
3044 
3045 	if (!PageCgroupUsed(pc))
3046 		goto unlock_out;
3047 
3048 	anon = PageAnon(page);
3049 
3050 	switch (ctype) {
3051 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3052 		/*
3053 		 * Generally PageAnon tells if it's the anon statistics to be
3054 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3055 		 * used before page reached the stage of being marked PageAnon.
3056 		 */
3057 		anon = true;
3058 		/* fallthrough */
3059 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3060 		/* See mem_cgroup_prepare_migration() */
3061 		if (page_mapped(page))
3062 			goto unlock_out;
3063 		/*
3064 		 * Pages under migration may not be uncharged.  But
3065 		 * end_migration() /must/ be the one uncharging the
3066 		 * unused post-migration page and so it has to call
3067 		 * here with the migration bit still set.  See the
3068 		 * res_counter handling below.
3069 		 */
3070 		if (!end_migration && PageCgroupMigration(pc))
3071 			goto unlock_out;
3072 		break;
3073 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3074 		if (!PageAnon(page)) {	/* Shared memory */
3075 			if (page->mapping && !page_is_file_cache(page))
3076 				goto unlock_out;
3077 		} else if (page_mapped(page)) /* Anon */
3078 				goto unlock_out;
3079 		break;
3080 	default:
3081 		break;
3082 	}
3083 
3084 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3085 
3086 	ClearPageCgroupUsed(pc);
3087 	/*
3088 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3089 	 * freed from LRU. This is safe because uncharged page is expected not
3090 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3091 	 * special functions.
3092 	 */
3093 
3094 	unlock_page_cgroup(pc);
3095 	/*
3096 	 * even after unlock, we have memcg->res.usage here and this memcg
3097 	 * will never be freed.
3098 	 */
3099 	memcg_check_events(memcg, page);
3100 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3101 		mem_cgroup_swap_statistics(memcg, true);
3102 		mem_cgroup_get(memcg);
3103 	}
3104 	/*
3105 	 * Migration does not charge the res_counter for the
3106 	 * replacement page, so leave it alone when phasing out the
3107 	 * page that is unused after the migration.
3108 	 */
3109 	if (!end_migration && !mem_cgroup_is_root(memcg))
3110 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3111 
3112 	return memcg;
3113 
3114 unlock_out:
3115 	unlock_page_cgroup(pc);
3116 	return NULL;
3117 }
3118 
3119 void mem_cgroup_uncharge_page(struct page *page)
3120 {
3121 	/* early check. */
3122 	if (page_mapped(page))
3123 		return;
3124 	VM_BUG_ON(page->mapping && !PageAnon(page));
3125 	if (PageSwapCache(page))
3126 		return;
3127 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3128 }
3129 
3130 void mem_cgroup_uncharge_cache_page(struct page *page)
3131 {
3132 	VM_BUG_ON(page_mapped(page));
3133 	VM_BUG_ON(page->mapping);
3134 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3135 }
3136 
3137 /*
3138  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3139  * In that cases, pages are freed continuously and we can expect pages
3140  * are in the same memcg. All these calls itself limits the number of
3141  * pages freed at once, then uncharge_start/end() is called properly.
3142  * This may be called prural(2) times in a context,
3143  */
3144 
3145 void mem_cgroup_uncharge_start(void)
3146 {
3147 	current->memcg_batch.do_batch++;
3148 	/* We can do nest. */
3149 	if (current->memcg_batch.do_batch == 1) {
3150 		current->memcg_batch.memcg = NULL;
3151 		current->memcg_batch.nr_pages = 0;
3152 		current->memcg_batch.memsw_nr_pages = 0;
3153 	}
3154 }
3155 
3156 void mem_cgroup_uncharge_end(void)
3157 {
3158 	struct memcg_batch_info *batch = &current->memcg_batch;
3159 
3160 	if (!batch->do_batch)
3161 		return;
3162 
3163 	batch->do_batch--;
3164 	if (batch->do_batch) /* If stacked, do nothing. */
3165 		return;
3166 
3167 	if (!batch->memcg)
3168 		return;
3169 	/*
3170 	 * This "batch->memcg" is valid without any css_get/put etc...
3171 	 * bacause we hide charges behind us.
3172 	 */
3173 	if (batch->nr_pages)
3174 		res_counter_uncharge(&batch->memcg->res,
3175 				     batch->nr_pages * PAGE_SIZE);
3176 	if (batch->memsw_nr_pages)
3177 		res_counter_uncharge(&batch->memcg->memsw,
3178 				     batch->memsw_nr_pages * PAGE_SIZE);
3179 	memcg_oom_recover(batch->memcg);
3180 	/* forget this pointer (for sanity check) */
3181 	batch->memcg = NULL;
3182 }
3183 
3184 #ifdef CONFIG_SWAP
3185 /*
3186  * called after __delete_from_swap_cache() and drop "page" account.
3187  * memcg information is recorded to swap_cgroup of "ent"
3188  */
3189 void
3190 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3191 {
3192 	struct mem_cgroup *memcg;
3193 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3194 
3195 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3196 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3197 
3198 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3199 
3200 	/*
3201 	 * record memcg information,  if swapout && memcg != NULL,
3202 	 * mem_cgroup_get() was called in uncharge().
3203 	 */
3204 	if (do_swap_account && swapout && memcg)
3205 		swap_cgroup_record(ent, css_id(&memcg->css));
3206 }
3207 #endif
3208 
3209 #ifdef CONFIG_MEMCG_SWAP
3210 /*
3211  * called from swap_entry_free(). remove record in swap_cgroup and
3212  * uncharge "memsw" account.
3213  */
3214 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3215 {
3216 	struct mem_cgroup *memcg;
3217 	unsigned short id;
3218 
3219 	if (!do_swap_account)
3220 		return;
3221 
3222 	id = swap_cgroup_record(ent, 0);
3223 	rcu_read_lock();
3224 	memcg = mem_cgroup_lookup(id);
3225 	if (memcg) {
3226 		/*
3227 		 * We uncharge this because swap is freed.
3228 		 * This memcg can be obsolete one. We avoid calling css_tryget
3229 		 */
3230 		if (!mem_cgroup_is_root(memcg))
3231 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3232 		mem_cgroup_swap_statistics(memcg, false);
3233 		mem_cgroup_put(memcg);
3234 	}
3235 	rcu_read_unlock();
3236 }
3237 
3238 /**
3239  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3240  * @entry: swap entry to be moved
3241  * @from:  mem_cgroup which the entry is moved from
3242  * @to:  mem_cgroup which the entry is moved to
3243  *
3244  * It succeeds only when the swap_cgroup's record for this entry is the same
3245  * as the mem_cgroup's id of @from.
3246  *
3247  * Returns 0 on success, -EINVAL on failure.
3248  *
3249  * The caller must have charged to @to, IOW, called res_counter_charge() about
3250  * both res and memsw, and called css_get().
3251  */
3252 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253 				struct mem_cgroup *from, struct mem_cgroup *to)
3254 {
3255 	unsigned short old_id, new_id;
3256 
3257 	old_id = css_id(&from->css);
3258 	new_id = css_id(&to->css);
3259 
3260 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261 		mem_cgroup_swap_statistics(from, false);
3262 		mem_cgroup_swap_statistics(to, true);
3263 		/*
3264 		 * This function is only called from task migration context now.
3265 		 * It postpones res_counter and refcount handling till the end
3266 		 * of task migration(mem_cgroup_clear_mc()) for performance
3267 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3268 		 * because if the process that has been moved to @to does
3269 		 * swap-in, the refcount of @to might be decreased to 0.
3270 		 */
3271 		mem_cgroup_get(to);
3272 		return 0;
3273 	}
3274 	return -EINVAL;
3275 }
3276 #else
3277 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3278 				struct mem_cgroup *from, struct mem_cgroup *to)
3279 {
3280 	return -EINVAL;
3281 }
3282 #endif
3283 
3284 /*
3285  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3286  * page belongs to.
3287  */
3288 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3289 				  struct mem_cgroup **memcgp)
3290 {
3291 	struct mem_cgroup *memcg = NULL;
3292 	unsigned int nr_pages = 1;
3293 	struct page_cgroup *pc;
3294 	enum charge_type ctype;
3295 
3296 	*memcgp = NULL;
3297 
3298 	if (mem_cgroup_disabled())
3299 		return;
3300 
3301 	if (PageTransHuge(page))
3302 		nr_pages <<= compound_order(page);
3303 
3304 	pc = lookup_page_cgroup(page);
3305 	lock_page_cgroup(pc);
3306 	if (PageCgroupUsed(pc)) {
3307 		memcg = pc->mem_cgroup;
3308 		css_get(&memcg->css);
3309 		/*
3310 		 * At migrating an anonymous page, its mapcount goes down
3311 		 * to 0 and uncharge() will be called. But, even if it's fully
3312 		 * unmapped, migration may fail and this page has to be
3313 		 * charged again. We set MIGRATION flag here and delay uncharge
3314 		 * until end_migration() is called
3315 		 *
3316 		 * Corner Case Thinking
3317 		 * A)
3318 		 * When the old page was mapped as Anon and it's unmap-and-freed
3319 		 * while migration was ongoing.
3320 		 * If unmap finds the old page, uncharge() of it will be delayed
3321 		 * until end_migration(). If unmap finds a new page, it's
3322 		 * uncharged when it make mapcount to be 1->0. If unmap code
3323 		 * finds swap_migration_entry, the new page will not be mapped
3324 		 * and end_migration() will find it(mapcount==0).
3325 		 *
3326 		 * B)
3327 		 * When the old page was mapped but migraion fails, the kernel
3328 		 * remaps it. A charge for it is kept by MIGRATION flag even
3329 		 * if mapcount goes down to 0. We can do remap successfully
3330 		 * without charging it again.
3331 		 *
3332 		 * C)
3333 		 * The "old" page is under lock_page() until the end of
3334 		 * migration, so, the old page itself will not be swapped-out.
3335 		 * If the new page is swapped out before end_migraton, our
3336 		 * hook to usual swap-out path will catch the event.
3337 		 */
3338 		if (PageAnon(page))
3339 			SetPageCgroupMigration(pc);
3340 	}
3341 	unlock_page_cgroup(pc);
3342 	/*
3343 	 * If the page is not charged at this point,
3344 	 * we return here.
3345 	 */
3346 	if (!memcg)
3347 		return;
3348 
3349 	*memcgp = memcg;
3350 	/*
3351 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3352 	 * is called before end_migration, we can catch all events on this new
3353 	 * page. In the case new page is migrated but not remapped, new page's
3354 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3355 	 */
3356 	if (PageAnon(page))
3357 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3358 	else
3359 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3360 	/*
3361 	 * The page is committed to the memcg, but it's not actually
3362 	 * charged to the res_counter since we plan on replacing the
3363 	 * old one and only one page is going to be left afterwards.
3364 	 */
3365 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3366 }
3367 
3368 /* remove redundant charge if migration failed*/
3369 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3370 	struct page *oldpage, struct page *newpage, bool migration_ok)
3371 {
3372 	struct page *used, *unused;
3373 	struct page_cgroup *pc;
3374 	bool anon;
3375 
3376 	if (!memcg)
3377 		return;
3378 
3379 	if (!migration_ok) {
3380 		used = oldpage;
3381 		unused = newpage;
3382 	} else {
3383 		used = newpage;
3384 		unused = oldpage;
3385 	}
3386 	anon = PageAnon(used);
3387 	__mem_cgroup_uncharge_common(unused,
3388 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3389 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
3390 				     true);
3391 	css_put(&memcg->css);
3392 	/*
3393 	 * We disallowed uncharge of pages under migration because mapcount
3394 	 * of the page goes down to zero, temporarly.
3395 	 * Clear the flag and check the page should be charged.
3396 	 */
3397 	pc = lookup_page_cgroup(oldpage);
3398 	lock_page_cgroup(pc);
3399 	ClearPageCgroupMigration(pc);
3400 	unlock_page_cgroup(pc);
3401 
3402 	/*
3403 	 * If a page is a file cache, radix-tree replacement is very atomic
3404 	 * and we can skip this check. When it was an Anon page, its mapcount
3405 	 * goes down to 0. But because we added MIGRATION flage, it's not
3406 	 * uncharged yet. There are several case but page->mapcount check
3407 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3408 	 * check. (see prepare_charge() also)
3409 	 */
3410 	if (anon)
3411 		mem_cgroup_uncharge_page(used);
3412 }
3413 
3414 /*
3415  * At replace page cache, newpage is not under any memcg but it's on
3416  * LRU. So, this function doesn't touch res_counter but handles LRU
3417  * in correct way. Both pages are locked so we cannot race with uncharge.
3418  */
3419 void mem_cgroup_replace_page_cache(struct page *oldpage,
3420 				  struct page *newpage)
3421 {
3422 	struct mem_cgroup *memcg = NULL;
3423 	struct page_cgroup *pc;
3424 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3425 
3426 	if (mem_cgroup_disabled())
3427 		return;
3428 
3429 	pc = lookup_page_cgroup(oldpage);
3430 	/* fix accounting on old pages */
3431 	lock_page_cgroup(pc);
3432 	if (PageCgroupUsed(pc)) {
3433 		memcg = pc->mem_cgroup;
3434 		mem_cgroup_charge_statistics(memcg, false, -1);
3435 		ClearPageCgroupUsed(pc);
3436 	}
3437 	unlock_page_cgroup(pc);
3438 
3439 	/*
3440 	 * When called from shmem_replace_page(), in some cases the
3441 	 * oldpage has already been charged, and in some cases not.
3442 	 */
3443 	if (!memcg)
3444 		return;
3445 	/*
3446 	 * Even if newpage->mapping was NULL before starting replacement,
3447 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3448 	 * LRU while we overwrite pc->mem_cgroup.
3449 	 */
3450 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3451 }
3452 
3453 #ifdef CONFIG_DEBUG_VM
3454 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3455 {
3456 	struct page_cgroup *pc;
3457 
3458 	pc = lookup_page_cgroup(page);
3459 	/*
3460 	 * Can be NULL while feeding pages into the page allocator for
3461 	 * the first time, i.e. during boot or memory hotplug;
3462 	 * or when mem_cgroup_disabled().
3463 	 */
3464 	if (likely(pc) && PageCgroupUsed(pc))
3465 		return pc;
3466 	return NULL;
3467 }
3468 
3469 bool mem_cgroup_bad_page_check(struct page *page)
3470 {
3471 	if (mem_cgroup_disabled())
3472 		return false;
3473 
3474 	return lookup_page_cgroup_used(page) != NULL;
3475 }
3476 
3477 void mem_cgroup_print_bad_page(struct page *page)
3478 {
3479 	struct page_cgroup *pc;
3480 
3481 	pc = lookup_page_cgroup_used(page);
3482 	if (pc) {
3483 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3484 		       pc, pc->flags, pc->mem_cgroup);
3485 	}
3486 }
3487 #endif
3488 
3489 static DEFINE_MUTEX(set_limit_mutex);
3490 
3491 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3492 				unsigned long long val)
3493 {
3494 	int retry_count;
3495 	u64 memswlimit, memlimit;
3496 	int ret = 0;
3497 	int children = mem_cgroup_count_children(memcg);
3498 	u64 curusage, oldusage;
3499 	int enlarge;
3500 
3501 	/*
3502 	 * For keeping hierarchical_reclaim simple, how long we should retry
3503 	 * is depends on callers. We set our retry-count to be function
3504 	 * of # of children which we should visit in this loop.
3505 	 */
3506 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3507 
3508 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3509 
3510 	enlarge = 0;
3511 	while (retry_count) {
3512 		if (signal_pending(current)) {
3513 			ret = -EINTR;
3514 			break;
3515 		}
3516 		/*
3517 		 * Rather than hide all in some function, I do this in
3518 		 * open coded manner. You see what this really does.
3519 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3520 		 */
3521 		mutex_lock(&set_limit_mutex);
3522 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3523 		if (memswlimit < val) {
3524 			ret = -EINVAL;
3525 			mutex_unlock(&set_limit_mutex);
3526 			break;
3527 		}
3528 
3529 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3530 		if (memlimit < val)
3531 			enlarge = 1;
3532 
3533 		ret = res_counter_set_limit(&memcg->res, val);
3534 		if (!ret) {
3535 			if (memswlimit == val)
3536 				memcg->memsw_is_minimum = true;
3537 			else
3538 				memcg->memsw_is_minimum = false;
3539 		}
3540 		mutex_unlock(&set_limit_mutex);
3541 
3542 		if (!ret)
3543 			break;
3544 
3545 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3546 				   MEM_CGROUP_RECLAIM_SHRINK);
3547 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3548 		/* Usage is reduced ? */
3549   		if (curusage >= oldusage)
3550 			retry_count--;
3551 		else
3552 			oldusage = curusage;
3553 	}
3554 	if (!ret && enlarge)
3555 		memcg_oom_recover(memcg);
3556 
3557 	return ret;
3558 }
3559 
3560 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3561 					unsigned long long val)
3562 {
3563 	int retry_count;
3564 	u64 memlimit, memswlimit, oldusage, curusage;
3565 	int children = mem_cgroup_count_children(memcg);
3566 	int ret = -EBUSY;
3567 	int enlarge = 0;
3568 
3569 	/* see mem_cgroup_resize_res_limit */
3570  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3571 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3572 	while (retry_count) {
3573 		if (signal_pending(current)) {
3574 			ret = -EINTR;
3575 			break;
3576 		}
3577 		/*
3578 		 * Rather than hide all in some function, I do this in
3579 		 * open coded manner. You see what this really does.
3580 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3581 		 */
3582 		mutex_lock(&set_limit_mutex);
3583 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3584 		if (memlimit > val) {
3585 			ret = -EINVAL;
3586 			mutex_unlock(&set_limit_mutex);
3587 			break;
3588 		}
3589 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3590 		if (memswlimit < val)
3591 			enlarge = 1;
3592 		ret = res_counter_set_limit(&memcg->memsw, val);
3593 		if (!ret) {
3594 			if (memlimit == val)
3595 				memcg->memsw_is_minimum = true;
3596 			else
3597 				memcg->memsw_is_minimum = false;
3598 		}
3599 		mutex_unlock(&set_limit_mutex);
3600 
3601 		if (!ret)
3602 			break;
3603 
3604 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3605 				   MEM_CGROUP_RECLAIM_NOSWAP |
3606 				   MEM_CGROUP_RECLAIM_SHRINK);
3607 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3608 		/* Usage is reduced ? */
3609 		if (curusage >= oldusage)
3610 			retry_count--;
3611 		else
3612 			oldusage = curusage;
3613 	}
3614 	if (!ret && enlarge)
3615 		memcg_oom_recover(memcg);
3616 	return ret;
3617 }
3618 
3619 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3620 					    gfp_t gfp_mask,
3621 					    unsigned long *total_scanned)
3622 {
3623 	unsigned long nr_reclaimed = 0;
3624 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3625 	unsigned long reclaimed;
3626 	int loop = 0;
3627 	struct mem_cgroup_tree_per_zone *mctz;
3628 	unsigned long long excess;
3629 	unsigned long nr_scanned;
3630 
3631 	if (order > 0)
3632 		return 0;
3633 
3634 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3635 	/*
3636 	 * This loop can run a while, specially if mem_cgroup's continuously
3637 	 * keep exceeding their soft limit and putting the system under
3638 	 * pressure
3639 	 */
3640 	do {
3641 		if (next_mz)
3642 			mz = next_mz;
3643 		else
3644 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3645 		if (!mz)
3646 			break;
3647 
3648 		nr_scanned = 0;
3649 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3650 						    gfp_mask, &nr_scanned);
3651 		nr_reclaimed += reclaimed;
3652 		*total_scanned += nr_scanned;
3653 		spin_lock(&mctz->lock);
3654 
3655 		/*
3656 		 * If we failed to reclaim anything from this memory cgroup
3657 		 * it is time to move on to the next cgroup
3658 		 */
3659 		next_mz = NULL;
3660 		if (!reclaimed) {
3661 			do {
3662 				/*
3663 				 * Loop until we find yet another one.
3664 				 *
3665 				 * By the time we get the soft_limit lock
3666 				 * again, someone might have aded the
3667 				 * group back on the RB tree. Iterate to
3668 				 * make sure we get a different mem.
3669 				 * mem_cgroup_largest_soft_limit_node returns
3670 				 * NULL if no other cgroup is present on
3671 				 * the tree
3672 				 */
3673 				next_mz =
3674 				__mem_cgroup_largest_soft_limit_node(mctz);
3675 				if (next_mz == mz)
3676 					css_put(&next_mz->memcg->css);
3677 				else /* next_mz == NULL or other memcg */
3678 					break;
3679 			} while (1);
3680 		}
3681 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3682 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3683 		/*
3684 		 * One school of thought says that we should not add
3685 		 * back the node to the tree if reclaim returns 0.
3686 		 * But our reclaim could return 0, simply because due
3687 		 * to priority we are exposing a smaller subset of
3688 		 * memory to reclaim from. Consider this as a longer
3689 		 * term TODO.
3690 		 */
3691 		/* If excess == 0, no tree ops */
3692 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3693 		spin_unlock(&mctz->lock);
3694 		css_put(&mz->memcg->css);
3695 		loop++;
3696 		/*
3697 		 * Could not reclaim anything and there are no more
3698 		 * mem cgroups to try or we seem to be looping without
3699 		 * reclaiming anything.
3700 		 */
3701 		if (!nr_reclaimed &&
3702 			(next_mz == NULL ||
3703 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3704 			break;
3705 	} while (!nr_reclaimed);
3706 	if (next_mz)
3707 		css_put(&next_mz->memcg->css);
3708 	return nr_reclaimed;
3709 }
3710 
3711 /**
3712  * mem_cgroup_force_empty_list - clears LRU of a group
3713  * @memcg: group to clear
3714  * @node: NUMA node
3715  * @zid: zone id
3716  * @lru: lru to to clear
3717  *
3718  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3719  * reclaim the pages page themselves - pages are moved to the parent (or root)
3720  * group.
3721  */
3722 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3723 				int node, int zid, enum lru_list lru)
3724 {
3725 	struct lruvec *lruvec;
3726 	unsigned long flags;
3727 	struct list_head *list;
3728 	struct page *busy;
3729 	struct zone *zone;
3730 
3731 	zone = &NODE_DATA(node)->node_zones[zid];
3732 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3733 	list = &lruvec->lists[lru];
3734 
3735 	busy = NULL;
3736 	do {
3737 		struct page_cgroup *pc;
3738 		struct page *page;
3739 
3740 		spin_lock_irqsave(&zone->lru_lock, flags);
3741 		if (list_empty(list)) {
3742 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3743 			break;
3744 		}
3745 		page = list_entry(list->prev, struct page, lru);
3746 		if (busy == page) {
3747 			list_move(&page->lru, list);
3748 			busy = NULL;
3749 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3750 			continue;
3751 		}
3752 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3753 
3754 		pc = lookup_page_cgroup(page);
3755 
3756 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3757 			/* found lock contention or "pc" is obsolete. */
3758 			busy = page;
3759 			cond_resched();
3760 		} else
3761 			busy = NULL;
3762 	} while (!list_empty(list));
3763 }
3764 
3765 /*
3766  * make mem_cgroup's charge to be 0 if there is no task by moving
3767  * all the charges and pages to the parent.
3768  * This enables deleting this mem_cgroup.
3769  *
3770  * Caller is responsible for holding css reference on the memcg.
3771  */
3772 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3773 {
3774 	int node, zid;
3775 
3776 	do {
3777 		/* This is for making all *used* pages to be on LRU. */
3778 		lru_add_drain_all();
3779 		drain_all_stock_sync(memcg);
3780 		mem_cgroup_start_move(memcg);
3781 		for_each_node_state(node, N_MEMORY) {
3782 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3783 				enum lru_list lru;
3784 				for_each_lru(lru) {
3785 					mem_cgroup_force_empty_list(memcg,
3786 							node, zid, lru);
3787 				}
3788 			}
3789 		}
3790 		mem_cgroup_end_move(memcg);
3791 		memcg_oom_recover(memcg);
3792 		cond_resched();
3793 
3794 		/*
3795 		 * This is a safety check because mem_cgroup_force_empty_list
3796 		 * could have raced with mem_cgroup_replace_page_cache callers
3797 		 * so the lru seemed empty but the page could have been added
3798 		 * right after the check. RES_USAGE should be safe as we always
3799 		 * charge before adding to the LRU.
3800 		 */
3801 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3802 }
3803 
3804 /*
3805  * Reclaims as many pages from the given memcg as possible and moves
3806  * the rest to the parent.
3807  *
3808  * Caller is responsible for holding css reference for memcg.
3809  */
3810 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3811 {
3812 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3813 	struct cgroup *cgrp = memcg->css.cgroup;
3814 
3815 	/* returns EBUSY if there is a task or if we come here twice. */
3816 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3817 		return -EBUSY;
3818 
3819 	/* we call try-to-free pages for make this cgroup empty */
3820 	lru_add_drain_all();
3821 	/* try to free all pages in this cgroup */
3822 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3823 		int progress;
3824 
3825 		if (signal_pending(current))
3826 			return -EINTR;
3827 
3828 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3829 						false);
3830 		if (!progress) {
3831 			nr_retries--;
3832 			/* maybe some writeback is necessary */
3833 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3834 		}
3835 
3836 	}
3837 	lru_add_drain();
3838 	mem_cgroup_reparent_charges(memcg);
3839 
3840 	return 0;
3841 }
3842 
3843 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3844 {
3845 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3846 	int ret;
3847 
3848 	if (mem_cgroup_is_root(memcg))
3849 		return -EINVAL;
3850 	css_get(&memcg->css);
3851 	ret = mem_cgroup_force_empty(memcg);
3852 	css_put(&memcg->css);
3853 
3854 	return ret;
3855 }
3856 
3857 
3858 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3859 {
3860 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3861 }
3862 
3863 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3864 					u64 val)
3865 {
3866 	int retval = 0;
3867 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868 	struct cgroup *parent = cont->parent;
3869 	struct mem_cgroup *parent_memcg = NULL;
3870 
3871 	if (parent)
3872 		parent_memcg = mem_cgroup_from_cont(parent);
3873 
3874 	cgroup_lock();
3875 
3876 	if (memcg->use_hierarchy == val)
3877 		goto out;
3878 
3879 	/*
3880 	 * If parent's use_hierarchy is set, we can't make any modifications
3881 	 * in the child subtrees. If it is unset, then the change can
3882 	 * occur, provided the current cgroup has no children.
3883 	 *
3884 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3885 	 * set if there are no children.
3886 	 */
3887 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3888 				(val == 1 || val == 0)) {
3889 		if (list_empty(&cont->children))
3890 			memcg->use_hierarchy = val;
3891 		else
3892 			retval = -EBUSY;
3893 	} else
3894 		retval = -EINVAL;
3895 
3896 out:
3897 	cgroup_unlock();
3898 
3899 	return retval;
3900 }
3901 
3902 
3903 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3904 					       enum mem_cgroup_stat_index idx)
3905 {
3906 	struct mem_cgroup *iter;
3907 	long val = 0;
3908 
3909 	/* Per-cpu values can be negative, use a signed accumulator */
3910 	for_each_mem_cgroup_tree(iter, memcg)
3911 		val += mem_cgroup_read_stat(iter, idx);
3912 
3913 	if (val < 0) /* race ? */
3914 		val = 0;
3915 	return val;
3916 }
3917 
3918 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3919 {
3920 	u64 val;
3921 
3922 	if (!mem_cgroup_is_root(memcg)) {
3923 		if (!swap)
3924 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3925 		else
3926 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3927 	}
3928 
3929 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3930 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3931 
3932 	if (swap)
3933 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3934 
3935 	return val << PAGE_SHIFT;
3936 }
3937 
3938 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3939 			       struct file *file, char __user *buf,
3940 			       size_t nbytes, loff_t *ppos)
3941 {
3942 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3943 	char str[64];
3944 	u64 val;
3945 	int type, name, len;
3946 
3947 	type = MEMFILE_TYPE(cft->private);
3948 	name = MEMFILE_ATTR(cft->private);
3949 
3950 	if (!do_swap_account && type == _MEMSWAP)
3951 		return -EOPNOTSUPP;
3952 
3953 	switch (type) {
3954 	case _MEM:
3955 		if (name == RES_USAGE)
3956 			val = mem_cgroup_usage(memcg, false);
3957 		else
3958 			val = res_counter_read_u64(&memcg->res, name);
3959 		break;
3960 	case _MEMSWAP:
3961 		if (name == RES_USAGE)
3962 			val = mem_cgroup_usage(memcg, true);
3963 		else
3964 			val = res_counter_read_u64(&memcg->memsw, name);
3965 		break;
3966 	default:
3967 		BUG();
3968 	}
3969 
3970 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3971 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3972 }
3973 /*
3974  * The user of this function is...
3975  * RES_LIMIT.
3976  */
3977 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3978 			    const char *buffer)
3979 {
3980 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3981 	int type, name;
3982 	unsigned long long val;
3983 	int ret;
3984 
3985 	type = MEMFILE_TYPE(cft->private);
3986 	name = MEMFILE_ATTR(cft->private);
3987 
3988 	if (!do_swap_account && type == _MEMSWAP)
3989 		return -EOPNOTSUPP;
3990 
3991 	switch (name) {
3992 	case RES_LIMIT:
3993 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3994 			ret = -EINVAL;
3995 			break;
3996 		}
3997 		/* This function does all necessary parse...reuse it */
3998 		ret = res_counter_memparse_write_strategy(buffer, &val);
3999 		if (ret)
4000 			break;
4001 		if (type == _MEM)
4002 			ret = mem_cgroup_resize_limit(memcg, val);
4003 		else
4004 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4005 		break;
4006 	case RES_SOFT_LIMIT:
4007 		ret = res_counter_memparse_write_strategy(buffer, &val);
4008 		if (ret)
4009 			break;
4010 		/*
4011 		 * For memsw, soft limits are hard to implement in terms
4012 		 * of semantics, for now, we support soft limits for
4013 		 * control without swap
4014 		 */
4015 		if (type == _MEM)
4016 			ret = res_counter_set_soft_limit(&memcg->res, val);
4017 		else
4018 			ret = -EINVAL;
4019 		break;
4020 	default:
4021 		ret = -EINVAL; /* should be BUG() ? */
4022 		break;
4023 	}
4024 	return ret;
4025 }
4026 
4027 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4028 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4029 {
4030 	struct cgroup *cgroup;
4031 	unsigned long long min_limit, min_memsw_limit, tmp;
4032 
4033 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4034 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4035 	cgroup = memcg->css.cgroup;
4036 	if (!memcg->use_hierarchy)
4037 		goto out;
4038 
4039 	while (cgroup->parent) {
4040 		cgroup = cgroup->parent;
4041 		memcg = mem_cgroup_from_cont(cgroup);
4042 		if (!memcg->use_hierarchy)
4043 			break;
4044 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4045 		min_limit = min(min_limit, tmp);
4046 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4047 		min_memsw_limit = min(min_memsw_limit, tmp);
4048 	}
4049 out:
4050 	*mem_limit = min_limit;
4051 	*memsw_limit = min_memsw_limit;
4052 }
4053 
4054 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4055 {
4056 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4057 	int type, name;
4058 
4059 	type = MEMFILE_TYPE(event);
4060 	name = MEMFILE_ATTR(event);
4061 
4062 	if (!do_swap_account && type == _MEMSWAP)
4063 		return -EOPNOTSUPP;
4064 
4065 	switch (name) {
4066 	case RES_MAX_USAGE:
4067 		if (type == _MEM)
4068 			res_counter_reset_max(&memcg->res);
4069 		else
4070 			res_counter_reset_max(&memcg->memsw);
4071 		break;
4072 	case RES_FAILCNT:
4073 		if (type == _MEM)
4074 			res_counter_reset_failcnt(&memcg->res);
4075 		else
4076 			res_counter_reset_failcnt(&memcg->memsw);
4077 		break;
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4084 					struct cftype *cft)
4085 {
4086 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4087 }
4088 
4089 #ifdef CONFIG_MMU
4090 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4091 					struct cftype *cft, u64 val)
4092 {
4093 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4094 
4095 	if (val >= (1 << NR_MOVE_TYPE))
4096 		return -EINVAL;
4097 	/*
4098 	 * We check this value several times in both in can_attach() and
4099 	 * attach(), so we need cgroup lock to prevent this value from being
4100 	 * inconsistent.
4101 	 */
4102 	cgroup_lock();
4103 	memcg->move_charge_at_immigrate = val;
4104 	cgroup_unlock();
4105 
4106 	return 0;
4107 }
4108 #else
4109 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4110 					struct cftype *cft, u64 val)
4111 {
4112 	return -ENOSYS;
4113 }
4114 #endif
4115 
4116 #ifdef CONFIG_NUMA
4117 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4118 				      struct seq_file *m)
4119 {
4120 	int nid;
4121 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4122 	unsigned long node_nr;
4123 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4124 
4125 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4126 	seq_printf(m, "total=%lu", total_nr);
4127 	for_each_node_state(nid, N_MEMORY) {
4128 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4129 		seq_printf(m, " N%d=%lu", nid, node_nr);
4130 	}
4131 	seq_putc(m, '\n');
4132 
4133 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4134 	seq_printf(m, "file=%lu", file_nr);
4135 	for_each_node_state(nid, N_MEMORY) {
4136 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4137 				LRU_ALL_FILE);
4138 		seq_printf(m, " N%d=%lu", nid, node_nr);
4139 	}
4140 	seq_putc(m, '\n');
4141 
4142 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4143 	seq_printf(m, "anon=%lu", anon_nr);
4144 	for_each_node_state(nid, N_MEMORY) {
4145 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4146 				LRU_ALL_ANON);
4147 		seq_printf(m, " N%d=%lu", nid, node_nr);
4148 	}
4149 	seq_putc(m, '\n');
4150 
4151 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4152 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4153 	for_each_node_state(nid, N_MEMORY) {
4154 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4155 				BIT(LRU_UNEVICTABLE));
4156 		seq_printf(m, " N%d=%lu", nid, node_nr);
4157 	}
4158 	seq_putc(m, '\n');
4159 	return 0;
4160 }
4161 #endif /* CONFIG_NUMA */
4162 
4163 static const char * const mem_cgroup_lru_names[] = {
4164 	"inactive_anon",
4165 	"active_anon",
4166 	"inactive_file",
4167 	"active_file",
4168 	"unevictable",
4169 };
4170 
4171 static inline void mem_cgroup_lru_names_not_uptodate(void)
4172 {
4173 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4174 }
4175 
4176 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4177 				 struct seq_file *m)
4178 {
4179 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4180 	struct mem_cgroup *mi;
4181 	unsigned int i;
4182 
4183 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4184 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4185 			continue;
4186 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4187 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4188 	}
4189 
4190 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4191 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4192 			   mem_cgroup_read_events(memcg, i));
4193 
4194 	for (i = 0; i < NR_LRU_LISTS; i++)
4195 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4196 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4197 
4198 	/* Hierarchical information */
4199 	{
4200 		unsigned long long limit, memsw_limit;
4201 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4202 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4203 		if (do_swap_account)
4204 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4205 				   memsw_limit);
4206 	}
4207 
4208 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4209 		long long val = 0;
4210 
4211 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4212 			continue;
4213 		for_each_mem_cgroup_tree(mi, memcg)
4214 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4215 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4216 	}
4217 
4218 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4219 		unsigned long long val = 0;
4220 
4221 		for_each_mem_cgroup_tree(mi, memcg)
4222 			val += mem_cgroup_read_events(mi, i);
4223 		seq_printf(m, "total_%s %llu\n",
4224 			   mem_cgroup_events_names[i], val);
4225 	}
4226 
4227 	for (i = 0; i < NR_LRU_LISTS; i++) {
4228 		unsigned long long val = 0;
4229 
4230 		for_each_mem_cgroup_tree(mi, memcg)
4231 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4232 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4233 	}
4234 
4235 #ifdef CONFIG_DEBUG_VM
4236 	{
4237 		int nid, zid;
4238 		struct mem_cgroup_per_zone *mz;
4239 		struct zone_reclaim_stat *rstat;
4240 		unsigned long recent_rotated[2] = {0, 0};
4241 		unsigned long recent_scanned[2] = {0, 0};
4242 
4243 		for_each_online_node(nid)
4244 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4245 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4246 				rstat = &mz->lruvec.reclaim_stat;
4247 
4248 				recent_rotated[0] += rstat->recent_rotated[0];
4249 				recent_rotated[1] += rstat->recent_rotated[1];
4250 				recent_scanned[0] += rstat->recent_scanned[0];
4251 				recent_scanned[1] += rstat->recent_scanned[1];
4252 			}
4253 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4254 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4255 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4256 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4257 	}
4258 #endif
4259 
4260 	return 0;
4261 }
4262 
4263 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4264 {
4265 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4266 
4267 	return mem_cgroup_swappiness(memcg);
4268 }
4269 
4270 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4271 				       u64 val)
4272 {
4273 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4274 	struct mem_cgroup *parent;
4275 
4276 	if (val > 100)
4277 		return -EINVAL;
4278 
4279 	if (cgrp->parent == NULL)
4280 		return -EINVAL;
4281 
4282 	parent = mem_cgroup_from_cont(cgrp->parent);
4283 
4284 	cgroup_lock();
4285 
4286 	/* If under hierarchy, only empty-root can set this value */
4287 	if ((parent->use_hierarchy) ||
4288 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4289 		cgroup_unlock();
4290 		return -EINVAL;
4291 	}
4292 
4293 	memcg->swappiness = val;
4294 
4295 	cgroup_unlock();
4296 
4297 	return 0;
4298 }
4299 
4300 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4301 {
4302 	struct mem_cgroup_threshold_ary *t;
4303 	u64 usage;
4304 	int i;
4305 
4306 	rcu_read_lock();
4307 	if (!swap)
4308 		t = rcu_dereference(memcg->thresholds.primary);
4309 	else
4310 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4311 
4312 	if (!t)
4313 		goto unlock;
4314 
4315 	usage = mem_cgroup_usage(memcg, swap);
4316 
4317 	/*
4318 	 * current_threshold points to threshold just below or equal to usage.
4319 	 * If it's not true, a threshold was crossed after last
4320 	 * call of __mem_cgroup_threshold().
4321 	 */
4322 	i = t->current_threshold;
4323 
4324 	/*
4325 	 * Iterate backward over array of thresholds starting from
4326 	 * current_threshold and check if a threshold is crossed.
4327 	 * If none of thresholds below usage is crossed, we read
4328 	 * only one element of the array here.
4329 	 */
4330 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4331 		eventfd_signal(t->entries[i].eventfd, 1);
4332 
4333 	/* i = current_threshold + 1 */
4334 	i++;
4335 
4336 	/*
4337 	 * Iterate forward over array of thresholds starting from
4338 	 * current_threshold+1 and check if a threshold is crossed.
4339 	 * If none of thresholds above usage is crossed, we read
4340 	 * only one element of the array here.
4341 	 */
4342 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4343 		eventfd_signal(t->entries[i].eventfd, 1);
4344 
4345 	/* Update current_threshold */
4346 	t->current_threshold = i - 1;
4347 unlock:
4348 	rcu_read_unlock();
4349 }
4350 
4351 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4352 {
4353 	while (memcg) {
4354 		__mem_cgroup_threshold(memcg, false);
4355 		if (do_swap_account)
4356 			__mem_cgroup_threshold(memcg, true);
4357 
4358 		memcg = parent_mem_cgroup(memcg);
4359 	}
4360 }
4361 
4362 static int compare_thresholds(const void *a, const void *b)
4363 {
4364 	const struct mem_cgroup_threshold *_a = a;
4365 	const struct mem_cgroup_threshold *_b = b;
4366 
4367 	return _a->threshold - _b->threshold;
4368 }
4369 
4370 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4371 {
4372 	struct mem_cgroup_eventfd_list *ev;
4373 
4374 	list_for_each_entry(ev, &memcg->oom_notify, list)
4375 		eventfd_signal(ev->eventfd, 1);
4376 	return 0;
4377 }
4378 
4379 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4380 {
4381 	struct mem_cgroup *iter;
4382 
4383 	for_each_mem_cgroup_tree(iter, memcg)
4384 		mem_cgroup_oom_notify_cb(iter);
4385 }
4386 
4387 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4388 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4389 {
4390 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4391 	struct mem_cgroup_thresholds *thresholds;
4392 	struct mem_cgroup_threshold_ary *new;
4393 	int type = MEMFILE_TYPE(cft->private);
4394 	u64 threshold, usage;
4395 	int i, size, ret;
4396 
4397 	ret = res_counter_memparse_write_strategy(args, &threshold);
4398 	if (ret)
4399 		return ret;
4400 
4401 	mutex_lock(&memcg->thresholds_lock);
4402 
4403 	if (type == _MEM)
4404 		thresholds = &memcg->thresholds;
4405 	else if (type == _MEMSWAP)
4406 		thresholds = &memcg->memsw_thresholds;
4407 	else
4408 		BUG();
4409 
4410 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4411 
4412 	/* Check if a threshold crossed before adding a new one */
4413 	if (thresholds->primary)
4414 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4415 
4416 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4417 
4418 	/* Allocate memory for new array of thresholds */
4419 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4420 			GFP_KERNEL);
4421 	if (!new) {
4422 		ret = -ENOMEM;
4423 		goto unlock;
4424 	}
4425 	new->size = size;
4426 
4427 	/* Copy thresholds (if any) to new array */
4428 	if (thresholds->primary) {
4429 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4430 				sizeof(struct mem_cgroup_threshold));
4431 	}
4432 
4433 	/* Add new threshold */
4434 	new->entries[size - 1].eventfd = eventfd;
4435 	new->entries[size - 1].threshold = threshold;
4436 
4437 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4438 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4439 			compare_thresholds, NULL);
4440 
4441 	/* Find current threshold */
4442 	new->current_threshold = -1;
4443 	for (i = 0; i < size; i++) {
4444 		if (new->entries[i].threshold <= usage) {
4445 			/*
4446 			 * new->current_threshold will not be used until
4447 			 * rcu_assign_pointer(), so it's safe to increment
4448 			 * it here.
4449 			 */
4450 			++new->current_threshold;
4451 		} else
4452 			break;
4453 	}
4454 
4455 	/* Free old spare buffer and save old primary buffer as spare */
4456 	kfree(thresholds->spare);
4457 	thresholds->spare = thresholds->primary;
4458 
4459 	rcu_assign_pointer(thresholds->primary, new);
4460 
4461 	/* To be sure that nobody uses thresholds */
4462 	synchronize_rcu();
4463 
4464 unlock:
4465 	mutex_unlock(&memcg->thresholds_lock);
4466 
4467 	return ret;
4468 }
4469 
4470 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4471 	struct cftype *cft, struct eventfd_ctx *eventfd)
4472 {
4473 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4474 	struct mem_cgroup_thresholds *thresholds;
4475 	struct mem_cgroup_threshold_ary *new;
4476 	int type = MEMFILE_TYPE(cft->private);
4477 	u64 usage;
4478 	int i, j, size;
4479 
4480 	mutex_lock(&memcg->thresholds_lock);
4481 	if (type == _MEM)
4482 		thresholds = &memcg->thresholds;
4483 	else if (type == _MEMSWAP)
4484 		thresholds = &memcg->memsw_thresholds;
4485 	else
4486 		BUG();
4487 
4488 	if (!thresholds->primary)
4489 		goto unlock;
4490 
4491 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4492 
4493 	/* Check if a threshold crossed before removing */
4494 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4495 
4496 	/* Calculate new number of threshold */
4497 	size = 0;
4498 	for (i = 0; i < thresholds->primary->size; i++) {
4499 		if (thresholds->primary->entries[i].eventfd != eventfd)
4500 			size++;
4501 	}
4502 
4503 	new = thresholds->spare;
4504 
4505 	/* Set thresholds array to NULL if we don't have thresholds */
4506 	if (!size) {
4507 		kfree(new);
4508 		new = NULL;
4509 		goto swap_buffers;
4510 	}
4511 
4512 	new->size = size;
4513 
4514 	/* Copy thresholds and find current threshold */
4515 	new->current_threshold = -1;
4516 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4517 		if (thresholds->primary->entries[i].eventfd == eventfd)
4518 			continue;
4519 
4520 		new->entries[j] = thresholds->primary->entries[i];
4521 		if (new->entries[j].threshold <= usage) {
4522 			/*
4523 			 * new->current_threshold will not be used
4524 			 * until rcu_assign_pointer(), so it's safe to increment
4525 			 * it here.
4526 			 */
4527 			++new->current_threshold;
4528 		}
4529 		j++;
4530 	}
4531 
4532 swap_buffers:
4533 	/* Swap primary and spare array */
4534 	thresholds->spare = thresholds->primary;
4535 	/* If all events are unregistered, free the spare array */
4536 	if (!new) {
4537 		kfree(thresholds->spare);
4538 		thresholds->spare = NULL;
4539 	}
4540 
4541 	rcu_assign_pointer(thresholds->primary, new);
4542 
4543 	/* To be sure that nobody uses thresholds */
4544 	synchronize_rcu();
4545 unlock:
4546 	mutex_unlock(&memcg->thresholds_lock);
4547 }
4548 
4549 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4550 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4551 {
4552 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4553 	struct mem_cgroup_eventfd_list *event;
4554 	int type = MEMFILE_TYPE(cft->private);
4555 
4556 	BUG_ON(type != _OOM_TYPE);
4557 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4558 	if (!event)
4559 		return -ENOMEM;
4560 
4561 	spin_lock(&memcg_oom_lock);
4562 
4563 	event->eventfd = eventfd;
4564 	list_add(&event->list, &memcg->oom_notify);
4565 
4566 	/* already in OOM ? */
4567 	if (atomic_read(&memcg->under_oom))
4568 		eventfd_signal(eventfd, 1);
4569 	spin_unlock(&memcg_oom_lock);
4570 
4571 	return 0;
4572 }
4573 
4574 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4575 	struct cftype *cft, struct eventfd_ctx *eventfd)
4576 {
4577 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4578 	struct mem_cgroup_eventfd_list *ev, *tmp;
4579 	int type = MEMFILE_TYPE(cft->private);
4580 
4581 	BUG_ON(type != _OOM_TYPE);
4582 
4583 	spin_lock(&memcg_oom_lock);
4584 
4585 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4586 		if (ev->eventfd == eventfd) {
4587 			list_del(&ev->list);
4588 			kfree(ev);
4589 		}
4590 	}
4591 
4592 	spin_unlock(&memcg_oom_lock);
4593 }
4594 
4595 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4596 	struct cftype *cft,  struct cgroup_map_cb *cb)
4597 {
4598 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4599 
4600 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4601 
4602 	if (atomic_read(&memcg->under_oom))
4603 		cb->fill(cb, "under_oom", 1);
4604 	else
4605 		cb->fill(cb, "under_oom", 0);
4606 	return 0;
4607 }
4608 
4609 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4610 	struct cftype *cft, u64 val)
4611 {
4612 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4613 	struct mem_cgroup *parent;
4614 
4615 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4616 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4617 		return -EINVAL;
4618 
4619 	parent = mem_cgroup_from_cont(cgrp->parent);
4620 
4621 	cgroup_lock();
4622 	/* oom-kill-disable is a flag for subhierarchy. */
4623 	if ((parent->use_hierarchy) ||
4624 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4625 		cgroup_unlock();
4626 		return -EINVAL;
4627 	}
4628 	memcg->oom_kill_disable = val;
4629 	if (!val)
4630 		memcg_oom_recover(memcg);
4631 	cgroup_unlock();
4632 	return 0;
4633 }
4634 
4635 #ifdef CONFIG_MEMCG_KMEM
4636 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4637 {
4638 	return mem_cgroup_sockets_init(memcg, ss);
4639 };
4640 
4641 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4642 {
4643 	mem_cgroup_sockets_destroy(memcg);
4644 }
4645 #else
4646 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4647 {
4648 	return 0;
4649 }
4650 
4651 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4652 {
4653 }
4654 #endif
4655 
4656 static struct cftype mem_cgroup_files[] = {
4657 	{
4658 		.name = "usage_in_bytes",
4659 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4660 		.read = mem_cgroup_read,
4661 		.register_event = mem_cgroup_usage_register_event,
4662 		.unregister_event = mem_cgroup_usage_unregister_event,
4663 	},
4664 	{
4665 		.name = "max_usage_in_bytes",
4666 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4667 		.trigger = mem_cgroup_reset,
4668 		.read = mem_cgroup_read,
4669 	},
4670 	{
4671 		.name = "limit_in_bytes",
4672 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4673 		.write_string = mem_cgroup_write,
4674 		.read = mem_cgroup_read,
4675 	},
4676 	{
4677 		.name = "soft_limit_in_bytes",
4678 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4679 		.write_string = mem_cgroup_write,
4680 		.read = mem_cgroup_read,
4681 	},
4682 	{
4683 		.name = "failcnt",
4684 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4685 		.trigger = mem_cgroup_reset,
4686 		.read = mem_cgroup_read,
4687 	},
4688 	{
4689 		.name = "stat",
4690 		.read_seq_string = memcg_stat_show,
4691 	},
4692 	{
4693 		.name = "force_empty",
4694 		.trigger = mem_cgroup_force_empty_write,
4695 	},
4696 	{
4697 		.name = "use_hierarchy",
4698 		.write_u64 = mem_cgroup_hierarchy_write,
4699 		.read_u64 = mem_cgroup_hierarchy_read,
4700 	},
4701 	{
4702 		.name = "swappiness",
4703 		.read_u64 = mem_cgroup_swappiness_read,
4704 		.write_u64 = mem_cgroup_swappiness_write,
4705 	},
4706 	{
4707 		.name = "move_charge_at_immigrate",
4708 		.read_u64 = mem_cgroup_move_charge_read,
4709 		.write_u64 = mem_cgroup_move_charge_write,
4710 	},
4711 	{
4712 		.name = "oom_control",
4713 		.read_map = mem_cgroup_oom_control_read,
4714 		.write_u64 = mem_cgroup_oom_control_write,
4715 		.register_event = mem_cgroup_oom_register_event,
4716 		.unregister_event = mem_cgroup_oom_unregister_event,
4717 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4718 	},
4719 #ifdef CONFIG_NUMA
4720 	{
4721 		.name = "numa_stat",
4722 		.read_seq_string = memcg_numa_stat_show,
4723 	},
4724 #endif
4725 #ifdef CONFIG_MEMCG_SWAP
4726 	{
4727 		.name = "memsw.usage_in_bytes",
4728 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4729 		.read = mem_cgroup_read,
4730 		.register_event = mem_cgroup_usage_register_event,
4731 		.unregister_event = mem_cgroup_usage_unregister_event,
4732 	},
4733 	{
4734 		.name = "memsw.max_usage_in_bytes",
4735 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4736 		.trigger = mem_cgroup_reset,
4737 		.read = mem_cgroup_read,
4738 	},
4739 	{
4740 		.name = "memsw.limit_in_bytes",
4741 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4742 		.write_string = mem_cgroup_write,
4743 		.read = mem_cgroup_read,
4744 	},
4745 	{
4746 		.name = "memsw.failcnt",
4747 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4748 		.trigger = mem_cgroup_reset,
4749 		.read = mem_cgroup_read,
4750 	},
4751 #endif
4752 	{ },	/* terminate */
4753 };
4754 
4755 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4756 {
4757 	struct mem_cgroup_per_node *pn;
4758 	struct mem_cgroup_per_zone *mz;
4759 	int zone, tmp = node;
4760 	/*
4761 	 * This routine is called against possible nodes.
4762 	 * But it's BUG to call kmalloc() against offline node.
4763 	 *
4764 	 * TODO: this routine can waste much memory for nodes which will
4765 	 *       never be onlined. It's better to use memory hotplug callback
4766 	 *       function.
4767 	 */
4768 	if (!node_state(node, N_NORMAL_MEMORY))
4769 		tmp = -1;
4770 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4771 	if (!pn)
4772 		return 1;
4773 
4774 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4775 		mz = &pn->zoneinfo[zone];
4776 		lruvec_init(&mz->lruvec);
4777 		mz->usage_in_excess = 0;
4778 		mz->on_tree = false;
4779 		mz->memcg = memcg;
4780 	}
4781 	memcg->info.nodeinfo[node] = pn;
4782 	return 0;
4783 }
4784 
4785 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4786 {
4787 	kfree(memcg->info.nodeinfo[node]);
4788 }
4789 
4790 static struct mem_cgroup *mem_cgroup_alloc(void)
4791 {
4792 	struct mem_cgroup *memcg;
4793 	int size = sizeof(struct mem_cgroup);
4794 
4795 	/* Can be very big if MAX_NUMNODES is very big */
4796 	if (size < PAGE_SIZE)
4797 		memcg = kzalloc(size, GFP_KERNEL);
4798 	else
4799 		memcg = vzalloc(size);
4800 
4801 	if (!memcg)
4802 		return NULL;
4803 
4804 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4805 	if (!memcg->stat)
4806 		goto out_free;
4807 	spin_lock_init(&memcg->pcp_counter_lock);
4808 	return memcg;
4809 
4810 out_free:
4811 	if (size < PAGE_SIZE)
4812 		kfree(memcg);
4813 	else
4814 		vfree(memcg);
4815 	return NULL;
4816 }
4817 
4818 /*
4819  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4820  * but in process context.  The work_freeing structure is overlaid
4821  * on the rcu_freeing structure, which itself is overlaid on memsw.
4822  */
4823 static void free_work(struct work_struct *work)
4824 {
4825 	struct mem_cgroup *memcg;
4826 	int size = sizeof(struct mem_cgroup);
4827 
4828 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4829 	/*
4830 	 * We need to make sure that (at least for now), the jump label
4831 	 * destruction code runs outside of the cgroup lock. This is because
4832 	 * get_online_cpus(), which is called from the static_branch update,
4833 	 * can't be called inside the cgroup_lock. cpusets are the ones
4834 	 * enforcing this dependency, so if they ever change, we might as well.
4835 	 *
4836 	 * schedule_work() will guarantee this happens. Be careful if you need
4837 	 * to move this code around, and make sure it is outside
4838 	 * the cgroup_lock.
4839 	 */
4840 	disarm_sock_keys(memcg);
4841 	if (size < PAGE_SIZE)
4842 		kfree(memcg);
4843 	else
4844 		vfree(memcg);
4845 }
4846 
4847 static void free_rcu(struct rcu_head *rcu_head)
4848 {
4849 	struct mem_cgroup *memcg;
4850 
4851 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4852 	INIT_WORK(&memcg->work_freeing, free_work);
4853 	schedule_work(&memcg->work_freeing);
4854 }
4855 
4856 /*
4857  * At destroying mem_cgroup, references from swap_cgroup can remain.
4858  * (scanning all at force_empty is too costly...)
4859  *
4860  * Instead of clearing all references at force_empty, we remember
4861  * the number of reference from swap_cgroup and free mem_cgroup when
4862  * it goes down to 0.
4863  *
4864  * Removal of cgroup itself succeeds regardless of refs from swap.
4865  */
4866 
4867 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4868 {
4869 	int node;
4870 
4871 	mem_cgroup_remove_from_trees(memcg);
4872 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4873 
4874 	for_each_node(node)
4875 		free_mem_cgroup_per_zone_info(memcg, node);
4876 
4877 	free_percpu(memcg->stat);
4878 	call_rcu(&memcg->rcu_freeing, free_rcu);
4879 }
4880 
4881 static void mem_cgroup_get(struct mem_cgroup *memcg)
4882 {
4883 	atomic_inc(&memcg->refcnt);
4884 }
4885 
4886 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4887 {
4888 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4889 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4890 		__mem_cgroup_free(memcg);
4891 		if (parent)
4892 			mem_cgroup_put(parent);
4893 	}
4894 }
4895 
4896 static void mem_cgroup_put(struct mem_cgroup *memcg)
4897 {
4898 	__mem_cgroup_put(memcg, 1);
4899 }
4900 
4901 /*
4902  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4903  */
4904 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4905 {
4906 	if (!memcg->res.parent)
4907 		return NULL;
4908 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4909 }
4910 EXPORT_SYMBOL(parent_mem_cgroup);
4911 
4912 #ifdef CONFIG_MEMCG_SWAP
4913 static void __init enable_swap_cgroup(void)
4914 {
4915 	if (!mem_cgroup_disabled() && really_do_swap_account)
4916 		do_swap_account = 1;
4917 }
4918 #else
4919 static void __init enable_swap_cgroup(void)
4920 {
4921 }
4922 #endif
4923 
4924 static int mem_cgroup_soft_limit_tree_init(void)
4925 {
4926 	struct mem_cgroup_tree_per_node *rtpn;
4927 	struct mem_cgroup_tree_per_zone *rtpz;
4928 	int tmp, node, zone;
4929 
4930 	for_each_node(node) {
4931 		tmp = node;
4932 		if (!node_state(node, N_NORMAL_MEMORY))
4933 			tmp = -1;
4934 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4935 		if (!rtpn)
4936 			goto err_cleanup;
4937 
4938 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4939 
4940 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4941 			rtpz = &rtpn->rb_tree_per_zone[zone];
4942 			rtpz->rb_root = RB_ROOT;
4943 			spin_lock_init(&rtpz->lock);
4944 		}
4945 	}
4946 	return 0;
4947 
4948 err_cleanup:
4949 	for_each_node(node) {
4950 		if (!soft_limit_tree.rb_tree_per_node[node])
4951 			break;
4952 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4953 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4954 	}
4955 	return 1;
4956 
4957 }
4958 
4959 static struct cgroup_subsys_state * __ref
4960 mem_cgroup_css_alloc(struct cgroup *cont)
4961 {
4962 	struct mem_cgroup *memcg, *parent;
4963 	long error = -ENOMEM;
4964 	int node;
4965 
4966 	memcg = mem_cgroup_alloc();
4967 	if (!memcg)
4968 		return ERR_PTR(error);
4969 
4970 	for_each_node(node)
4971 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4972 			goto free_out;
4973 
4974 	/* root ? */
4975 	if (cont->parent == NULL) {
4976 		int cpu;
4977 		enable_swap_cgroup();
4978 		parent = NULL;
4979 		if (mem_cgroup_soft_limit_tree_init())
4980 			goto free_out;
4981 		root_mem_cgroup = memcg;
4982 		for_each_possible_cpu(cpu) {
4983 			struct memcg_stock_pcp *stock =
4984 						&per_cpu(memcg_stock, cpu);
4985 			INIT_WORK(&stock->work, drain_local_stock);
4986 		}
4987 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4988 	} else {
4989 		parent = mem_cgroup_from_cont(cont->parent);
4990 		memcg->use_hierarchy = parent->use_hierarchy;
4991 		memcg->oom_kill_disable = parent->oom_kill_disable;
4992 	}
4993 
4994 	if (parent && parent->use_hierarchy) {
4995 		res_counter_init(&memcg->res, &parent->res);
4996 		res_counter_init(&memcg->memsw, &parent->memsw);
4997 		/*
4998 		 * We increment refcnt of the parent to ensure that we can
4999 		 * safely access it on res_counter_charge/uncharge.
5000 		 * This refcnt will be decremented when freeing this
5001 		 * mem_cgroup(see mem_cgroup_put).
5002 		 */
5003 		mem_cgroup_get(parent);
5004 	} else {
5005 		res_counter_init(&memcg->res, NULL);
5006 		res_counter_init(&memcg->memsw, NULL);
5007 		/*
5008 		 * Deeper hierachy with use_hierarchy == false doesn't make
5009 		 * much sense so let cgroup subsystem know about this
5010 		 * unfortunate state in our controller.
5011 		 */
5012 		if (parent && parent != root_mem_cgroup)
5013 			mem_cgroup_subsys.broken_hierarchy = true;
5014 	}
5015 	memcg->last_scanned_node = MAX_NUMNODES;
5016 	INIT_LIST_HEAD(&memcg->oom_notify);
5017 
5018 	if (parent)
5019 		memcg->swappiness = mem_cgroup_swappiness(parent);
5020 	atomic_set(&memcg->refcnt, 1);
5021 	memcg->move_charge_at_immigrate = 0;
5022 	mutex_init(&memcg->thresholds_lock);
5023 	spin_lock_init(&memcg->move_lock);
5024 
5025 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5026 	if (error) {
5027 		/*
5028 		 * We call put now because our (and parent's) refcnts
5029 		 * are already in place. mem_cgroup_put() will internally
5030 		 * call __mem_cgroup_free, so return directly
5031 		 */
5032 		mem_cgroup_put(memcg);
5033 		return ERR_PTR(error);
5034 	}
5035 	return &memcg->css;
5036 free_out:
5037 	__mem_cgroup_free(memcg);
5038 	return ERR_PTR(error);
5039 }
5040 
5041 static void mem_cgroup_css_offline(struct cgroup *cont)
5042 {
5043 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5044 
5045 	mem_cgroup_reparent_charges(memcg);
5046 }
5047 
5048 static void mem_cgroup_css_free(struct cgroup *cont)
5049 {
5050 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5051 
5052 	kmem_cgroup_destroy(memcg);
5053 
5054 	mem_cgroup_put(memcg);
5055 }
5056 
5057 #ifdef CONFIG_MMU
5058 /* Handlers for move charge at task migration. */
5059 #define PRECHARGE_COUNT_AT_ONCE	256
5060 static int mem_cgroup_do_precharge(unsigned long count)
5061 {
5062 	int ret = 0;
5063 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5064 	struct mem_cgroup *memcg = mc.to;
5065 
5066 	if (mem_cgroup_is_root(memcg)) {
5067 		mc.precharge += count;
5068 		/* we don't need css_get for root */
5069 		return ret;
5070 	}
5071 	/* try to charge at once */
5072 	if (count > 1) {
5073 		struct res_counter *dummy;
5074 		/*
5075 		 * "memcg" cannot be under rmdir() because we've already checked
5076 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5077 		 * are still under the same cgroup_mutex. So we can postpone
5078 		 * css_get().
5079 		 */
5080 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5081 			goto one_by_one;
5082 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5083 						PAGE_SIZE * count, &dummy)) {
5084 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5085 			goto one_by_one;
5086 		}
5087 		mc.precharge += count;
5088 		return ret;
5089 	}
5090 one_by_one:
5091 	/* fall back to one by one charge */
5092 	while (count--) {
5093 		if (signal_pending(current)) {
5094 			ret = -EINTR;
5095 			break;
5096 		}
5097 		if (!batch_count--) {
5098 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5099 			cond_resched();
5100 		}
5101 		ret = __mem_cgroup_try_charge(NULL,
5102 					GFP_KERNEL, 1, &memcg, false);
5103 		if (ret)
5104 			/* mem_cgroup_clear_mc() will do uncharge later */
5105 			return ret;
5106 		mc.precharge++;
5107 	}
5108 	return ret;
5109 }
5110 
5111 /**
5112  * get_mctgt_type - get target type of moving charge
5113  * @vma: the vma the pte to be checked belongs
5114  * @addr: the address corresponding to the pte to be checked
5115  * @ptent: the pte to be checked
5116  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5117  *
5118  * Returns
5119  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5120  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5121  *     move charge. if @target is not NULL, the page is stored in target->page
5122  *     with extra refcnt got(Callers should handle it).
5123  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5124  *     target for charge migration. if @target is not NULL, the entry is stored
5125  *     in target->ent.
5126  *
5127  * Called with pte lock held.
5128  */
5129 union mc_target {
5130 	struct page	*page;
5131 	swp_entry_t	ent;
5132 };
5133 
5134 enum mc_target_type {
5135 	MC_TARGET_NONE = 0,
5136 	MC_TARGET_PAGE,
5137 	MC_TARGET_SWAP,
5138 };
5139 
5140 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5141 						unsigned long addr, pte_t ptent)
5142 {
5143 	struct page *page = vm_normal_page(vma, addr, ptent);
5144 
5145 	if (!page || !page_mapped(page))
5146 		return NULL;
5147 	if (PageAnon(page)) {
5148 		/* we don't move shared anon */
5149 		if (!move_anon())
5150 			return NULL;
5151 	} else if (!move_file())
5152 		/* we ignore mapcount for file pages */
5153 		return NULL;
5154 	if (!get_page_unless_zero(page))
5155 		return NULL;
5156 
5157 	return page;
5158 }
5159 
5160 #ifdef CONFIG_SWAP
5161 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5162 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5163 {
5164 	struct page *page = NULL;
5165 	swp_entry_t ent = pte_to_swp_entry(ptent);
5166 
5167 	if (!move_anon() || non_swap_entry(ent))
5168 		return NULL;
5169 	/*
5170 	 * Because lookup_swap_cache() updates some statistics counter,
5171 	 * we call find_get_page() with swapper_space directly.
5172 	 */
5173 	page = find_get_page(&swapper_space, ent.val);
5174 	if (do_swap_account)
5175 		entry->val = ent.val;
5176 
5177 	return page;
5178 }
5179 #else
5180 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5181 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5182 {
5183 	return NULL;
5184 }
5185 #endif
5186 
5187 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5188 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5189 {
5190 	struct page *page = NULL;
5191 	struct address_space *mapping;
5192 	pgoff_t pgoff;
5193 
5194 	if (!vma->vm_file) /* anonymous vma */
5195 		return NULL;
5196 	if (!move_file())
5197 		return NULL;
5198 
5199 	mapping = vma->vm_file->f_mapping;
5200 	if (pte_none(ptent))
5201 		pgoff = linear_page_index(vma, addr);
5202 	else /* pte_file(ptent) is true */
5203 		pgoff = pte_to_pgoff(ptent);
5204 
5205 	/* page is moved even if it's not RSS of this task(page-faulted). */
5206 	page = find_get_page(mapping, pgoff);
5207 
5208 #ifdef CONFIG_SWAP
5209 	/* shmem/tmpfs may report page out on swap: account for that too. */
5210 	if (radix_tree_exceptional_entry(page)) {
5211 		swp_entry_t swap = radix_to_swp_entry(page);
5212 		if (do_swap_account)
5213 			*entry = swap;
5214 		page = find_get_page(&swapper_space, swap.val);
5215 	}
5216 #endif
5217 	return page;
5218 }
5219 
5220 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5221 		unsigned long addr, pte_t ptent, union mc_target *target)
5222 {
5223 	struct page *page = NULL;
5224 	struct page_cgroup *pc;
5225 	enum mc_target_type ret = MC_TARGET_NONE;
5226 	swp_entry_t ent = { .val = 0 };
5227 
5228 	if (pte_present(ptent))
5229 		page = mc_handle_present_pte(vma, addr, ptent);
5230 	else if (is_swap_pte(ptent))
5231 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5232 	else if (pte_none(ptent) || pte_file(ptent))
5233 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5234 
5235 	if (!page && !ent.val)
5236 		return ret;
5237 	if (page) {
5238 		pc = lookup_page_cgroup(page);
5239 		/*
5240 		 * Do only loose check w/o page_cgroup lock.
5241 		 * mem_cgroup_move_account() checks the pc is valid or not under
5242 		 * the lock.
5243 		 */
5244 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5245 			ret = MC_TARGET_PAGE;
5246 			if (target)
5247 				target->page = page;
5248 		}
5249 		if (!ret || !target)
5250 			put_page(page);
5251 	}
5252 	/* There is a swap entry and a page doesn't exist or isn't charged */
5253 	if (ent.val && !ret &&
5254 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5255 		ret = MC_TARGET_SWAP;
5256 		if (target)
5257 			target->ent = ent;
5258 	}
5259 	return ret;
5260 }
5261 
5262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5263 /*
5264  * We don't consider swapping or file mapped pages because THP does not
5265  * support them for now.
5266  * Caller should make sure that pmd_trans_huge(pmd) is true.
5267  */
5268 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5269 		unsigned long addr, pmd_t pmd, union mc_target *target)
5270 {
5271 	struct page *page = NULL;
5272 	struct page_cgroup *pc;
5273 	enum mc_target_type ret = MC_TARGET_NONE;
5274 
5275 	page = pmd_page(pmd);
5276 	VM_BUG_ON(!page || !PageHead(page));
5277 	if (!move_anon())
5278 		return ret;
5279 	pc = lookup_page_cgroup(page);
5280 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5281 		ret = MC_TARGET_PAGE;
5282 		if (target) {
5283 			get_page(page);
5284 			target->page = page;
5285 		}
5286 	}
5287 	return ret;
5288 }
5289 #else
5290 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5291 		unsigned long addr, pmd_t pmd, union mc_target *target)
5292 {
5293 	return MC_TARGET_NONE;
5294 }
5295 #endif
5296 
5297 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5298 					unsigned long addr, unsigned long end,
5299 					struct mm_walk *walk)
5300 {
5301 	struct vm_area_struct *vma = walk->private;
5302 	pte_t *pte;
5303 	spinlock_t *ptl;
5304 
5305 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5306 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5307 			mc.precharge += HPAGE_PMD_NR;
5308 		spin_unlock(&vma->vm_mm->page_table_lock);
5309 		return 0;
5310 	}
5311 
5312 	if (pmd_trans_unstable(pmd))
5313 		return 0;
5314 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5315 	for (; addr != end; pte++, addr += PAGE_SIZE)
5316 		if (get_mctgt_type(vma, addr, *pte, NULL))
5317 			mc.precharge++;	/* increment precharge temporarily */
5318 	pte_unmap_unlock(pte - 1, ptl);
5319 	cond_resched();
5320 
5321 	return 0;
5322 }
5323 
5324 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5325 {
5326 	unsigned long precharge;
5327 	struct vm_area_struct *vma;
5328 
5329 	down_read(&mm->mmap_sem);
5330 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5331 		struct mm_walk mem_cgroup_count_precharge_walk = {
5332 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5333 			.mm = mm,
5334 			.private = vma,
5335 		};
5336 		if (is_vm_hugetlb_page(vma))
5337 			continue;
5338 		walk_page_range(vma->vm_start, vma->vm_end,
5339 					&mem_cgroup_count_precharge_walk);
5340 	}
5341 	up_read(&mm->mmap_sem);
5342 
5343 	precharge = mc.precharge;
5344 	mc.precharge = 0;
5345 
5346 	return precharge;
5347 }
5348 
5349 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5350 {
5351 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5352 
5353 	VM_BUG_ON(mc.moving_task);
5354 	mc.moving_task = current;
5355 	return mem_cgroup_do_precharge(precharge);
5356 }
5357 
5358 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5359 static void __mem_cgroup_clear_mc(void)
5360 {
5361 	struct mem_cgroup *from = mc.from;
5362 	struct mem_cgroup *to = mc.to;
5363 
5364 	/* we must uncharge all the leftover precharges from mc.to */
5365 	if (mc.precharge) {
5366 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5367 		mc.precharge = 0;
5368 	}
5369 	/*
5370 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5371 	 * we must uncharge here.
5372 	 */
5373 	if (mc.moved_charge) {
5374 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5375 		mc.moved_charge = 0;
5376 	}
5377 	/* we must fixup refcnts and charges */
5378 	if (mc.moved_swap) {
5379 		/* uncharge swap account from the old cgroup */
5380 		if (!mem_cgroup_is_root(mc.from))
5381 			res_counter_uncharge(&mc.from->memsw,
5382 						PAGE_SIZE * mc.moved_swap);
5383 		__mem_cgroup_put(mc.from, mc.moved_swap);
5384 
5385 		if (!mem_cgroup_is_root(mc.to)) {
5386 			/*
5387 			 * we charged both to->res and to->memsw, so we should
5388 			 * uncharge to->res.
5389 			 */
5390 			res_counter_uncharge(&mc.to->res,
5391 						PAGE_SIZE * mc.moved_swap);
5392 		}
5393 		/* we've already done mem_cgroup_get(mc.to) */
5394 		mc.moved_swap = 0;
5395 	}
5396 	memcg_oom_recover(from);
5397 	memcg_oom_recover(to);
5398 	wake_up_all(&mc.waitq);
5399 }
5400 
5401 static void mem_cgroup_clear_mc(void)
5402 {
5403 	struct mem_cgroup *from = mc.from;
5404 
5405 	/*
5406 	 * we must clear moving_task before waking up waiters at the end of
5407 	 * task migration.
5408 	 */
5409 	mc.moving_task = NULL;
5410 	__mem_cgroup_clear_mc();
5411 	spin_lock(&mc.lock);
5412 	mc.from = NULL;
5413 	mc.to = NULL;
5414 	spin_unlock(&mc.lock);
5415 	mem_cgroup_end_move(from);
5416 }
5417 
5418 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5419 				 struct cgroup_taskset *tset)
5420 {
5421 	struct task_struct *p = cgroup_taskset_first(tset);
5422 	int ret = 0;
5423 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5424 
5425 	if (memcg->move_charge_at_immigrate) {
5426 		struct mm_struct *mm;
5427 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5428 
5429 		VM_BUG_ON(from == memcg);
5430 
5431 		mm = get_task_mm(p);
5432 		if (!mm)
5433 			return 0;
5434 		/* We move charges only when we move a owner of the mm */
5435 		if (mm->owner == p) {
5436 			VM_BUG_ON(mc.from);
5437 			VM_BUG_ON(mc.to);
5438 			VM_BUG_ON(mc.precharge);
5439 			VM_BUG_ON(mc.moved_charge);
5440 			VM_BUG_ON(mc.moved_swap);
5441 			mem_cgroup_start_move(from);
5442 			spin_lock(&mc.lock);
5443 			mc.from = from;
5444 			mc.to = memcg;
5445 			spin_unlock(&mc.lock);
5446 			/* We set mc.moving_task later */
5447 
5448 			ret = mem_cgroup_precharge_mc(mm);
5449 			if (ret)
5450 				mem_cgroup_clear_mc();
5451 		}
5452 		mmput(mm);
5453 	}
5454 	return ret;
5455 }
5456 
5457 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5458 				     struct cgroup_taskset *tset)
5459 {
5460 	mem_cgroup_clear_mc();
5461 }
5462 
5463 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5464 				unsigned long addr, unsigned long end,
5465 				struct mm_walk *walk)
5466 {
5467 	int ret = 0;
5468 	struct vm_area_struct *vma = walk->private;
5469 	pte_t *pte;
5470 	spinlock_t *ptl;
5471 	enum mc_target_type target_type;
5472 	union mc_target target;
5473 	struct page *page;
5474 	struct page_cgroup *pc;
5475 
5476 	/*
5477 	 * We don't take compound_lock() here but no race with splitting thp
5478 	 * happens because:
5479 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5480 	 *    under splitting, which means there's no concurrent thp split,
5481 	 *  - if another thread runs into split_huge_page() just after we
5482 	 *    entered this if-block, the thread must wait for page table lock
5483 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5484 	 *    part of thp split is not executed yet.
5485 	 */
5486 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5487 		if (mc.precharge < HPAGE_PMD_NR) {
5488 			spin_unlock(&vma->vm_mm->page_table_lock);
5489 			return 0;
5490 		}
5491 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5492 		if (target_type == MC_TARGET_PAGE) {
5493 			page = target.page;
5494 			if (!isolate_lru_page(page)) {
5495 				pc = lookup_page_cgroup(page);
5496 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5497 							pc, mc.from, mc.to)) {
5498 					mc.precharge -= HPAGE_PMD_NR;
5499 					mc.moved_charge += HPAGE_PMD_NR;
5500 				}
5501 				putback_lru_page(page);
5502 			}
5503 			put_page(page);
5504 		}
5505 		spin_unlock(&vma->vm_mm->page_table_lock);
5506 		return 0;
5507 	}
5508 
5509 	if (pmd_trans_unstable(pmd))
5510 		return 0;
5511 retry:
5512 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5513 	for (; addr != end; addr += PAGE_SIZE) {
5514 		pte_t ptent = *(pte++);
5515 		swp_entry_t ent;
5516 
5517 		if (!mc.precharge)
5518 			break;
5519 
5520 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5521 		case MC_TARGET_PAGE:
5522 			page = target.page;
5523 			if (isolate_lru_page(page))
5524 				goto put;
5525 			pc = lookup_page_cgroup(page);
5526 			if (!mem_cgroup_move_account(page, 1, pc,
5527 						     mc.from, mc.to)) {
5528 				mc.precharge--;
5529 				/* we uncharge from mc.from later. */
5530 				mc.moved_charge++;
5531 			}
5532 			putback_lru_page(page);
5533 put:			/* get_mctgt_type() gets the page */
5534 			put_page(page);
5535 			break;
5536 		case MC_TARGET_SWAP:
5537 			ent = target.ent;
5538 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5539 				mc.precharge--;
5540 				/* we fixup refcnts and charges later. */
5541 				mc.moved_swap++;
5542 			}
5543 			break;
5544 		default:
5545 			break;
5546 		}
5547 	}
5548 	pte_unmap_unlock(pte - 1, ptl);
5549 	cond_resched();
5550 
5551 	if (addr != end) {
5552 		/*
5553 		 * We have consumed all precharges we got in can_attach().
5554 		 * We try charge one by one, but don't do any additional
5555 		 * charges to mc.to if we have failed in charge once in attach()
5556 		 * phase.
5557 		 */
5558 		ret = mem_cgroup_do_precharge(1);
5559 		if (!ret)
5560 			goto retry;
5561 	}
5562 
5563 	return ret;
5564 }
5565 
5566 static void mem_cgroup_move_charge(struct mm_struct *mm)
5567 {
5568 	struct vm_area_struct *vma;
5569 
5570 	lru_add_drain_all();
5571 retry:
5572 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5573 		/*
5574 		 * Someone who are holding the mmap_sem might be waiting in
5575 		 * waitq. So we cancel all extra charges, wake up all waiters,
5576 		 * and retry. Because we cancel precharges, we might not be able
5577 		 * to move enough charges, but moving charge is a best-effort
5578 		 * feature anyway, so it wouldn't be a big problem.
5579 		 */
5580 		__mem_cgroup_clear_mc();
5581 		cond_resched();
5582 		goto retry;
5583 	}
5584 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5585 		int ret;
5586 		struct mm_walk mem_cgroup_move_charge_walk = {
5587 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5588 			.mm = mm,
5589 			.private = vma,
5590 		};
5591 		if (is_vm_hugetlb_page(vma))
5592 			continue;
5593 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5594 						&mem_cgroup_move_charge_walk);
5595 		if (ret)
5596 			/*
5597 			 * means we have consumed all precharges and failed in
5598 			 * doing additional charge. Just abandon here.
5599 			 */
5600 			break;
5601 	}
5602 	up_read(&mm->mmap_sem);
5603 }
5604 
5605 static void mem_cgroup_move_task(struct cgroup *cont,
5606 				 struct cgroup_taskset *tset)
5607 {
5608 	struct task_struct *p = cgroup_taskset_first(tset);
5609 	struct mm_struct *mm = get_task_mm(p);
5610 
5611 	if (mm) {
5612 		if (mc.to)
5613 			mem_cgroup_move_charge(mm);
5614 		mmput(mm);
5615 	}
5616 	if (mc.to)
5617 		mem_cgroup_clear_mc();
5618 }
5619 #else	/* !CONFIG_MMU */
5620 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5621 				 struct cgroup_taskset *tset)
5622 {
5623 	return 0;
5624 }
5625 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5626 				     struct cgroup_taskset *tset)
5627 {
5628 }
5629 static void mem_cgroup_move_task(struct cgroup *cont,
5630 				 struct cgroup_taskset *tset)
5631 {
5632 }
5633 #endif
5634 
5635 struct cgroup_subsys mem_cgroup_subsys = {
5636 	.name = "memory",
5637 	.subsys_id = mem_cgroup_subsys_id,
5638 	.css_alloc = mem_cgroup_css_alloc,
5639 	.css_offline = mem_cgroup_css_offline,
5640 	.css_free = mem_cgroup_css_free,
5641 	.can_attach = mem_cgroup_can_attach,
5642 	.cancel_attach = mem_cgroup_cancel_attach,
5643 	.attach = mem_cgroup_move_task,
5644 	.base_cftypes = mem_cgroup_files,
5645 	.early_init = 0,
5646 	.use_id = 1,
5647 };
5648 
5649 #ifdef CONFIG_MEMCG_SWAP
5650 static int __init enable_swap_account(char *s)
5651 {
5652 	/* consider enabled if no parameter or 1 is given */
5653 	if (!strcmp(s, "1"))
5654 		really_do_swap_account = 1;
5655 	else if (!strcmp(s, "0"))
5656 		really_do_swap_account = 0;
5657 	return 1;
5658 }
5659 __setup("swapaccount=", enable_swap_account);
5660 
5661 #endif
5662