xref: /linux/mm/memcontrol.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	/*
466 	 * Necessary to update all ancestors when hierarchy is used.
467 	 * because their event counter is not touched.
468 	 */
469 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 		mz = mem_cgroup_page_nodeinfo(memcg, page);
471 		excess = soft_limit_excess(memcg);
472 		/*
473 		 * We have to update the tree if mz is on RB-tree or
474 		 * mem is over its softlimit.
475 		 */
476 		if (excess || mz->on_tree) {
477 			unsigned long flags;
478 
479 			spin_lock_irqsave(&mctz->lock, flags);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488 			spin_unlock_irqrestore(&mctz->lock, flags);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 	struct mem_cgroup_tree_per_node *mctz;
496 	struct mem_cgroup_per_node *mz;
497 	int nid;
498 
499 	for_each_node(nid) {
500 		mz = mem_cgroup_nodeinfo(memcg, nid);
501 		mctz = soft_limit_tree_node(nid);
502 		mem_cgroup_remove_exceeded(mz, mctz);
503 	}
504 }
505 
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 	struct rb_node *rightmost = NULL;
510 	struct mem_cgroup_per_node *mz;
511 
512 retry:
513 	mz = NULL;
514 	rightmost = rb_last(&mctz->rb_root);
515 	if (!rightmost)
516 		goto done;		/* Nothing to reclaim from */
517 
518 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 	/*
520 	 * Remove the node now but someone else can add it back,
521 	 * we will to add it back at the end of reclaim to its correct
522 	 * position in the tree.
523 	 */
524 	__mem_cgroup_remove_exceeded(mz, mctz);
525 	if (!soft_limit_excess(mz->memcg) ||
526 	    !css_tryget_online(&mz->memcg->css))
527 		goto retry;
528 done:
529 	return mz;
530 }
531 
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 	spin_lock_irq(&mctz->lock);
538 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 	spin_unlock_irq(&mctz->lock);
540 	return mz;
541 }
542 
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 	long val = 0;
568 	int cpu;
569 
570 	/* Per-cpu values can be negative, use a signed accumulator */
571 	for_each_possible_cpu(cpu)
572 		val += per_cpu(memcg->stat->count[idx], cpu);
573 	/*
574 	 * Summing races with updates, so val may be negative.  Avoid exposing
575 	 * transient negative values.
576 	 */
577 	if (val < 0)
578 		val = 0;
579 	return val;
580 }
581 
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 					    enum mem_cgroup_events_index idx)
584 {
585 	unsigned long val = 0;
586 	int cpu;
587 
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->events[idx], cpu);
590 	return val;
591 }
592 
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 					 struct page *page,
595 					 bool compound, int nr_pages)
596 {
597 	/*
598 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 	 * counted as CACHE even if it's on ANON LRU.
600 	 */
601 	if (PageAnon(page))
602 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 				nr_pages);
604 	else
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 				nr_pages);
607 
608 	if (compound) {
609 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 				nr_pages);
612 	}
613 
614 	/* pagein of a big page is an event. So, ignore page size */
615 	if (nr_pages > 0)
616 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 	else {
618 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 		nr_pages = -nr_pages; /* for event */
620 	}
621 
622 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624 
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 					   int nid, unsigned int lru_mask)
627 {
628 	unsigned long nr = 0;
629 	struct mem_cgroup_per_node *mz;
630 	enum lru_list lru;
631 
632 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633 
634 	for_each_lru(lru) {
635 		if (!(BIT(lru) & lru_mask))
636 			continue;
637 		mz = mem_cgroup_nodeinfo(memcg, nid);
638 		nr += mz->lru_size[lru];
639 	}
640 	return nr;
641 }
642 
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 			unsigned int lru_mask)
645 {
646 	unsigned long nr = 0;
647 	int nid;
648 
649 	for_each_node_state(nid, N_MEMORY)
650 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 	return nr;
652 }
653 
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 				       enum mem_cgroup_events_target target)
656 {
657 	unsigned long val, next;
658 
659 	val = __this_cpu_read(memcg->stat->nr_page_events);
660 	next = __this_cpu_read(memcg->stat->targets[target]);
661 	/* from time_after() in jiffies.h */
662 	if ((long)next - (long)val < 0) {
663 		switch (target) {
664 		case MEM_CGROUP_TARGET_THRESH:
665 			next = val + THRESHOLDS_EVENTS_TARGET;
666 			break;
667 		case MEM_CGROUP_TARGET_SOFTLIMIT:
668 			next = val + SOFTLIMIT_EVENTS_TARGET;
669 			break;
670 		case MEM_CGROUP_TARGET_NUMAINFO:
671 			next = val + NUMAINFO_EVENTS_TARGET;
672 			break;
673 		default:
674 			break;
675 		}
676 		__this_cpu_write(memcg->stat->targets[target], next);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 	/* threshold event is triggered in finer grain than soft limit */
689 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 						MEM_CGROUP_TARGET_THRESH))) {
691 		bool do_softlimit;
692 		bool do_numainfo __maybe_unused;
693 
694 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 						MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 						MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 		mem_cgroup_threshold(memcg);
701 		if (unlikely(do_softlimit))
702 			mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 		if (unlikely(do_numainfo))
705 			atomic_inc(&memcg->numainfo_events);
706 #endif
707 	}
708 }
709 
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 	/*
713 	 * mm_update_next_owner() may clear mm->owner to NULL
714 	 * if it races with swapoff, page migration, etc.
715 	 * So this can be called with p == NULL.
716 	 */
717 	if (unlikely(!p))
718 		return NULL;
719 
720 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723 
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 	struct mem_cgroup *memcg = NULL;
727 
728 	rcu_read_lock();
729 	do {
730 		/*
731 		 * Page cache insertions can happen withou an
732 		 * actual mm context, e.g. during disk probing
733 		 * on boot, loopback IO, acct() writes etc.
734 		 */
735 		if (unlikely(!mm))
736 			memcg = root_mem_cgroup;
737 		else {
738 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 			if (unlikely(!memcg))
740 				memcg = root_mem_cgroup;
741 		}
742 	} while (!css_tryget_online(&memcg->css));
743 	rcu_read_unlock();
744 	return memcg;
745 }
746 
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 				   struct mem_cgroup *prev,
766 				   struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 	struct cgroup_subsys_state *css = NULL;
770 	struct mem_cgroup *memcg = NULL;
771 	struct mem_cgroup *pos = NULL;
772 
773 	if (mem_cgroup_disabled())
774 		return NULL;
775 
776 	if (!root)
777 		root = root_mem_cgroup;
778 
779 	if (prev && !reclaim)
780 		pos = prev;
781 
782 	if (!root->use_hierarchy && root != root_mem_cgroup) {
783 		if (prev)
784 			goto out;
785 		return root;
786 	}
787 
788 	rcu_read_lock();
789 
790 	if (reclaim) {
791 		struct mem_cgroup_per_node *mz;
792 
793 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 		iter = &mz->iter[reclaim->priority];
795 
796 		if (prev && reclaim->generation != iter->generation)
797 			goto out_unlock;
798 
799 		while (1) {
800 			pos = READ_ONCE(iter->position);
801 			if (!pos || css_tryget(&pos->css))
802 				break;
803 			/*
804 			 * css reference reached zero, so iter->position will
805 			 * be cleared by ->css_released. However, we should not
806 			 * rely on this happening soon, because ->css_released
807 			 * is called from a work queue, and by busy-waiting we
808 			 * might block it. So we clear iter->position right
809 			 * away.
810 			 */
811 			(void)cmpxchg(&iter->position, pos, NULL);
812 		}
813 	}
814 
815 	if (pos)
816 		css = &pos->css;
817 
818 	for (;;) {
819 		css = css_next_descendant_pre(css, &root->css);
820 		if (!css) {
821 			/*
822 			 * Reclaimers share the hierarchy walk, and a
823 			 * new one might jump in right at the end of
824 			 * the hierarchy - make sure they see at least
825 			 * one group and restart from the beginning.
826 			 */
827 			if (!prev)
828 				continue;
829 			break;
830 		}
831 
832 		/*
833 		 * Verify the css and acquire a reference.  The root
834 		 * is provided by the caller, so we know it's alive
835 		 * and kicking, and don't take an extra reference.
836 		 */
837 		memcg = mem_cgroup_from_css(css);
838 
839 		if (css == &root->css)
840 			break;
841 
842 		if (css_tryget(css))
843 			break;
844 
845 		memcg = NULL;
846 	}
847 
848 	if (reclaim) {
849 		/*
850 		 * The position could have already been updated by a competing
851 		 * thread, so check that the value hasn't changed since we read
852 		 * it to avoid reclaiming from the same cgroup twice.
853 		 */
854 		(void)cmpxchg(&iter->position, pos, memcg);
855 
856 		if (pos)
857 			css_put(&pos->css);
858 
859 		if (!memcg)
860 			iter->generation++;
861 		else if (!prev)
862 			reclaim->generation = iter->generation;
863 	}
864 
865 out_unlock:
866 	rcu_read_unlock();
867 out:
868 	if (prev && prev != root)
869 		css_put(&prev->css);
870 
871 	return memcg;
872 }
873 
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 			   struct mem_cgroup *prev)
881 {
882 	if (!root)
883 		root = root_mem_cgroup;
884 	if (prev && prev != root)
885 		css_put(&prev->css);
886 }
887 
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 	struct mem_cgroup *memcg = dead_memcg;
891 	struct mem_cgroup_reclaim_iter *iter;
892 	struct mem_cgroup_per_node *mz;
893 	int nid;
894 	int i;
895 
896 	while ((memcg = parent_mem_cgroup(memcg))) {
897 		for_each_node(nid) {
898 			mz = mem_cgroup_nodeinfo(memcg, nid);
899 			for (i = 0; i <= DEF_PRIORITY; i++) {
900 				iter = &mz->iter[i];
901 				cmpxchg(&iter->position,
902 					dead_memcg, NULL);
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)		\
914 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915 	     iter != NULL;				\
916 	     iter = mem_cgroup_iter(root, iter, NULL))
917 
918 #define for_each_mem_cgroup(iter)			\
919 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920 	     iter != NULL;				\
921 	     iter = mem_cgroup_iter(NULL, iter, NULL))
922 
923 /**
924  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925  * @page: the page
926  * @zone: zone of the page
927  *
928  * This function is only safe when following the LRU page isolation
929  * and putback protocol: the LRU lock must be held, and the page must
930  * either be PageLRU() or the caller must have isolated/allocated it.
931  */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 	struct mem_cgroup_per_node *mz;
935 	struct mem_cgroup *memcg;
936 	struct lruvec *lruvec;
937 
938 	if (mem_cgroup_disabled()) {
939 		lruvec = &pgdat->lruvec;
940 		goto out;
941 	}
942 
943 	memcg = page->mem_cgroup;
944 	/*
945 	 * Swapcache readahead pages are added to the LRU - and
946 	 * possibly migrated - before they are charged.
947 	 */
948 	if (!memcg)
949 		memcg = root_mem_cgroup;
950 
951 	mz = mem_cgroup_page_nodeinfo(memcg, page);
952 	lruvec = &mz->lruvec;
953 out:
954 	/*
955 	 * Since a node can be onlined after the mem_cgroup was created,
956 	 * we have to be prepared to initialize lruvec->zone here;
957 	 * and if offlined then reonlined, we need to reinitialize it.
958 	 */
959 	if (unlikely(lruvec->pgdat != pgdat))
960 		lruvec->pgdat = pgdat;
961 	return lruvec;
962 }
963 
964 /**
965  * mem_cgroup_update_lru_size - account for adding or removing an lru page
966  * @lruvec: mem_cgroup per zone lru vector
967  * @lru: index of lru list the page is sitting on
968  * @nr_pages: positive when adding or negative when removing
969  *
970  * This function must be called under lru_lock, just before a page is added
971  * to or just after a page is removed from an lru list (that ordering being
972  * so as to allow it to check that lru_size 0 is consistent with list_empty).
973  */
974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975 				int nr_pages)
976 {
977 	struct mem_cgroup_per_node *mz;
978 	unsigned long *lru_size;
979 	long size;
980 	bool empty;
981 
982 	if (mem_cgroup_disabled())
983 		return;
984 
985 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986 	lru_size = mz->lru_size + lru;
987 	empty = list_empty(lruvec->lists + lru);
988 
989 	if (nr_pages < 0)
990 		*lru_size += nr_pages;
991 
992 	size = *lru_size;
993 	if (WARN_ONCE(size < 0 || empty != !size,
994 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 		VM_BUG_ON(1);
997 		*lru_size = 0;
998 	}
999 
1000 	if (nr_pages > 0)
1001 		*lru_size += nr_pages;
1002 }
1003 
1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005 {
1006 	struct mem_cgroup *task_memcg;
1007 	struct task_struct *p;
1008 	bool ret;
1009 
1010 	p = find_lock_task_mm(task);
1011 	if (p) {
1012 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 		task_unlock(p);
1014 	} else {
1015 		/*
1016 		 * All threads may have already detached their mm's, but the oom
1017 		 * killer still needs to detect if they have already been oom
1018 		 * killed to prevent needlessly killing additional tasks.
1019 		 */
1020 		rcu_read_lock();
1021 		task_memcg = mem_cgroup_from_task(task);
1022 		css_get(&task_memcg->css);
1023 		rcu_read_unlock();
1024 	}
1025 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 	css_put(&task_memcg->css);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1032  * @memcg: the memory cgroup
1033  *
1034  * Returns the maximum amount of memory @mem can be charged with, in
1035  * pages.
1036  */
1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038 {
1039 	unsigned long margin = 0;
1040 	unsigned long count;
1041 	unsigned long limit;
1042 
1043 	count = page_counter_read(&memcg->memory);
1044 	limit = READ_ONCE(memcg->memory.limit);
1045 	if (count < limit)
1046 		margin = limit - count;
1047 
1048 	if (do_memsw_account()) {
1049 		count = page_counter_read(&memcg->memsw);
1050 		limit = READ_ONCE(memcg->memsw.limit);
1051 		if (count <= limit)
1052 			margin = min(margin, limit - count);
1053 		else
1054 			margin = 0;
1055 	}
1056 
1057 	return margin;
1058 }
1059 
1060 /*
1061  * A routine for checking "mem" is under move_account() or not.
1062  *
1063  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064  * moving cgroups. This is for waiting at high-memory pressure
1065  * caused by "move".
1066  */
1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068 {
1069 	struct mem_cgroup *from;
1070 	struct mem_cgroup *to;
1071 	bool ret = false;
1072 	/*
1073 	 * Unlike task_move routines, we access mc.to, mc.from not under
1074 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 	 */
1076 	spin_lock(&mc.lock);
1077 	from = mc.from;
1078 	to = mc.to;
1079 	if (!from)
1080 		goto unlock;
1081 
1082 	ret = mem_cgroup_is_descendant(from, memcg) ||
1083 		mem_cgroup_is_descendant(to, memcg);
1084 unlock:
1085 	spin_unlock(&mc.lock);
1086 	return ret;
1087 }
1088 
1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 {
1091 	if (mc.moving_task && current != mc.moving_task) {
1092 		if (mem_cgroup_under_move(memcg)) {
1093 			DEFINE_WAIT(wait);
1094 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 			/* moving charge context might have finished. */
1096 			if (mc.moving_task)
1097 				schedule();
1098 			finish_wait(&mc.waitq, &wait);
1099 			return true;
1100 		}
1101 	}
1102 	return false;
1103 }
1104 
1105 #define K(x) ((x) << (PAGE_SHIFT-10))
1106 /**
1107  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108  * @memcg: The memory cgroup that went over limit
1109  * @p: Task that is going to be killed
1110  *
1111  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112  * enabled
1113  */
1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115 {
1116 	struct mem_cgroup *iter;
1117 	unsigned int i;
1118 
1119 	rcu_read_lock();
1120 
1121 	if (p) {
1122 		pr_info("Task in ");
1123 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 		pr_cont(" killed as a result of limit of ");
1125 	} else {
1126 		pr_info("Memory limit reached of cgroup ");
1127 	}
1128 
1129 	pr_cont_cgroup_path(memcg->css.cgroup);
1130 	pr_cont("\n");
1131 
1132 	rcu_read_unlock();
1133 
1134 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 		K((u64)page_counter_read(&memcg->memory)),
1136 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 		K((u64)page_counter_read(&memcg->memsw)),
1139 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 		K((u64)page_counter_read(&memcg->kmem)),
1142 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143 
1144 	for_each_mem_cgroup_tree(iter, memcg) {
1145 		pr_info("Memory cgroup stats for ");
1146 		pr_cont_cgroup_path(iter->css.cgroup);
1147 		pr_cont(":");
1148 
1149 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151 				continue;
1152 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 				K(mem_cgroup_read_stat(iter, i)));
1154 		}
1155 
1156 		for (i = 0; i < NR_LRU_LISTS; i++)
1157 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159 
1160 		pr_cont("\n");
1161 	}
1162 }
1163 
1164 /*
1165  * This function returns the number of memcg under hierarchy tree. Returns
1166  * 1(self count) if no children.
1167  */
1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 {
1170 	int num = 0;
1171 	struct mem_cgroup *iter;
1172 
1173 	for_each_mem_cgroup_tree(iter, memcg)
1174 		num++;
1175 	return num;
1176 }
1177 
1178 /*
1179  * Return the memory (and swap, if configured) limit for a memcg.
1180  */
1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1182 {
1183 	unsigned long limit;
1184 
1185 	limit = memcg->memory.limit;
1186 	if (mem_cgroup_swappiness(memcg)) {
1187 		unsigned long memsw_limit;
1188 		unsigned long swap_limit;
1189 
1190 		memsw_limit = memcg->memsw.limit;
1191 		swap_limit = memcg->swap.limit;
1192 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 		limit = min(limit + swap_limit, memsw_limit);
1194 	}
1195 	return limit;
1196 }
1197 
1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199 				     int order)
1200 {
1201 	struct oom_control oc = {
1202 		.zonelist = NULL,
1203 		.nodemask = NULL,
1204 		.memcg = memcg,
1205 		.gfp_mask = gfp_mask,
1206 		.order = order,
1207 	};
1208 	struct mem_cgroup *iter;
1209 	unsigned long chosen_points = 0;
1210 	unsigned long totalpages;
1211 	unsigned int points = 0;
1212 	struct task_struct *chosen = NULL;
1213 
1214 	mutex_lock(&oom_lock);
1215 
1216 	/*
1217 	 * If current has a pending SIGKILL or is exiting, then automatically
1218 	 * select it.  The goal is to allow it to allocate so that it may
1219 	 * quickly exit and free its memory.
1220 	 */
1221 	if (task_will_free_mem(current)) {
1222 		mark_oom_victim(current);
1223 		wake_oom_reaper(current);
1224 		goto unlock;
1225 	}
1226 
1227 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229 	for_each_mem_cgroup_tree(iter, memcg) {
1230 		struct css_task_iter it;
1231 		struct task_struct *task;
1232 
1233 		css_task_iter_start(&iter->css, &it);
1234 		while ((task = css_task_iter_next(&it))) {
1235 			switch (oom_scan_process_thread(&oc, task)) {
1236 			case OOM_SCAN_SELECT:
1237 				if (chosen)
1238 					put_task_struct(chosen);
1239 				chosen = task;
1240 				chosen_points = ULONG_MAX;
1241 				get_task_struct(chosen);
1242 				/* fall through */
1243 			case OOM_SCAN_CONTINUE:
1244 				continue;
1245 			case OOM_SCAN_ABORT:
1246 				css_task_iter_end(&it);
1247 				mem_cgroup_iter_break(memcg, iter);
1248 				if (chosen)
1249 					put_task_struct(chosen);
1250 				/* Set a dummy value to return "true". */
1251 				chosen = (void *) 1;
1252 				goto unlock;
1253 			case OOM_SCAN_OK:
1254 				break;
1255 			};
1256 			points = oom_badness(task, memcg, NULL, totalpages);
1257 			if (!points || points < chosen_points)
1258 				continue;
1259 			/* Prefer thread group leaders for display purposes */
1260 			if (points == chosen_points &&
1261 			    thread_group_leader(chosen))
1262 				continue;
1263 
1264 			if (chosen)
1265 				put_task_struct(chosen);
1266 			chosen = task;
1267 			chosen_points = points;
1268 			get_task_struct(chosen);
1269 		}
1270 		css_task_iter_end(&it);
1271 	}
1272 
1273 	if (chosen) {
1274 		points = chosen_points * 1000 / totalpages;
1275 		oom_kill_process(&oc, chosen, points, totalpages,
1276 				 "Memory cgroup out of memory");
1277 	}
1278 unlock:
1279 	mutex_unlock(&oom_lock);
1280 	return chosen;
1281 }
1282 
1283 #if MAX_NUMNODES > 1
1284 
1285 /**
1286  * test_mem_cgroup_node_reclaimable
1287  * @memcg: the target memcg
1288  * @nid: the node ID to be checked.
1289  * @noswap : specify true here if the user wants flle only information.
1290  *
1291  * This function returns whether the specified memcg contains any
1292  * reclaimable pages on a node. Returns true if there are any reclaimable
1293  * pages in the node.
1294  */
1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 		int nid, bool noswap)
1297 {
1298 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 		return true;
1300 	if (noswap || !total_swap_pages)
1301 		return false;
1302 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 		return true;
1304 	return false;
1305 
1306 }
1307 
1308 /*
1309  * Always updating the nodemask is not very good - even if we have an empty
1310  * list or the wrong list here, we can start from some node and traverse all
1311  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312  *
1313  */
1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 {
1316 	int nid;
1317 	/*
1318 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 	 * pagein/pageout changes since the last update.
1320 	 */
1321 	if (!atomic_read(&memcg->numainfo_events))
1322 		return;
1323 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 		return;
1325 
1326 	/* make a nodemask where this memcg uses memory from */
1327 	memcg->scan_nodes = node_states[N_MEMORY];
1328 
1329 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1330 
1331 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 			node_clear(nid, memcg->scan_nodes);
1333 	}
1334 
1335 	atomic_set(&memcg->numainfo_events, 0);
1336 	atomic_set(&memcg->numainfo_updating, 0);
1337 }
1338 
1339 /*
1340  * Selecting a node where we start reclaim from. Because what we need is just
1341  * reducing usage counter, start from anywhere is O,K. Considering
1342  * memory reclaim from current node, there are pros. and cons.
1343  *
1344  * Freeing memory from current node means freeing memory from a node which
1345  * we'll use or we've used. So, it may make LRU bad. And if several threads
1346  * hit limits, it will see a contention on a node. But freeing from remote
1347  * node means more costs for memory reclaim because of memory latency.
1348  *
1349  * Now, we use round-robin. Better algorithm is welcomed.
1350  */
1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 {
1353 	int node;
1354 
1355 	mem_cgroup_may_update_nodemask(memcg);
1356 	node = memcg->last_scanned_node;
1357 
1358 	node = next_node_in(node, memcg->scan_nodes);
1359 	/*
1360 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 	 * last time it really checked all the LRUs due to rate limiting.
1362 	 * Fallback to the current node in that case for simplicity.
1363 	 */
1364 	if (unlikely(node == MAX_NUMNODES))
1365 		node = numa_node_id();
1366 
1367 	memcg->last_scanned_node = node;
1368 	return node;
1369 }
1370 #else
1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 {
1373 	return 0;
1374 }
1375 #endif
1376 
1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378 				   pg_data_t *pgdat,
1379 				   gfp_t gfp_mask,
1380 				   unsigned long *total_scanned)
1381 {
1382 	struct mem_cgroup *victim = NULL;
1383 	int total = 0;
1384 	int loop = 0;
1385 	unsigned long excess;
1386 	unsigned long nr_scanned;
1387 	struct mem_cgroup_reclaim_cookie reclaim = {
1388 		.pgdat = pgdat,
1389 		.priority = 0,
1390 	};
1391 
1392 	excess = soft_limit_excess(root_memcg);
1393 
1394 	while (1) {
1395 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 		if (!victim) {
1397 			loop++;
1398 			if (loop >= 2) {
1399 				/*
1400 				 * If we have not been able to reclaim
1401 				 * anything, it might because there are
1402 				 * no reclaimable pages under this hierarchy
1403 				 */
1404 				if (!total)
1405 					break;
1406 				/*
1407 				 * We want to do more targeted reclaim.
1408 				 * excess >> 2 is not to excessive so as to
1409 				 * reclaim too much, nor too less that we keep
1410 				 * coming back to reclaim from this cgroup
1411 				 */
1412 				if (total >= (excess >> 2) ||
1413 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 					break;
1415 			}
1416 			continue;
1417 		}
1418 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419 					pgdat, &nr_scanned);
1420 		*total_scanned += nr_scanned;
1421 		if (!soft_limit_excess(root_memcg))
1422 			break;
1423 	}
1424 	mem_cgroup_iter_break(root_memcg, victim);
1425 	return total;
1426 }
1427 
1428 #ifdef CONFIG_LOCKDEP
1429 static struct lockdep_map memcg_oom_lock_dep_map = {
1430 	.name = "memcg_oom_lock",
1431 };
1432 #endif
1433 
1434 static DEFINE_SPINLOCK(memcg_oom_lock);
1435 
1436 /*
1437  * Check OOM-Killer is already running under our hierarchy.
1438  * If someone is running, return false.
1439  */
1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1441 {
1442 	struct mem_cgroup *iter, *failed = NULL;
1443 
1444 	spin_lock(&memcg_oom_lock);
1445 
1446 	for_each_mem_cgroup_tree(iter, memcg) {
1447 		if (iter->oom_lock) {
1448 			/*
1449 			 * this subtree of our hierarchy is already locked
1450 			 * so we cannot give a lock.
1451 			 */
1452 			failed = iter;
1453 			mem_cgroup_iter_break(memcg, iter);
1454 			break;
1455 		} else
1456 			iter->oom_lock = true;
1457 	}
1458 
1459 	if (failed) {
1460 		/*
1461 		 * OK, we failed to lock the whole subtree so we have
1462 		 * to clean up what we set up to the failing subtree
1463 		 */
1464 		for_each_mem_cgroup_tree(iter, memcg) {
1465 			if (iter == failed) {
1466 				mem_cgroup_iter_break(memcg, iter);
1467 				break;
1468 			}
1469 			iter->oom_lock = false;
1470 		}
1471 	} else
1472 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473 
1474 	spin_unlock(&memcg_oom_lock);
1475 
1476 	return !failed;
1477 }
1478 
1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480 {
1481 	struct mem_cgroup *iter;
1482 
1483 	spin_lock(&memcg_oom_lock);
1484 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485 	for_each_mem_cgroup_tree(iter, memcg)
1486 		iter->oom_lock = false;
1487 	spin_unlock(&memcg_oom_lock);
1488 }
1489 
1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 {
1492 	struct mem_cgroup *iter;
1493 
1494 	spin_lock(&memcg_oom_lock);
1495 	for_each_mem_cgroup_tree(iter, memcg)
1496 		iter->under_oom++;
1497 	spin_unlock(&memcg_oom_lock);
1498 }
1499 
1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 {
1502 	struct mem_cgroup *iter;
1503 
1504 	/*
1505 	 * When a new child is created while the hierarchy is under oom,
1506 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1507 	 */
1508 	spin_lock(&memcg_oom_lock);
1509 	for_each_mem_cgroup_tree(iter, memcg)
1510 		if (iter->under_oom > 0)
1511 			iter->under_oom--;
1512 	spin_unlock(&memcg_oom_lock);
1513 }
1514 
1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516 
1517 struct oom_wait_info {
1518 	struct mem_cgroup *memcg;
1519 	wait_queue_t	wait;
1520 };
1521 
1522 static int memcg_oom_wake_function(wait_queue_t *wait,
1523 	unsigned mode, int sync, void *arg)
1524 {
1525 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 	struct mem_cgroup *oom_wait_memcg;
1527 	struct oom_wait_info *oom_wait_info;
1528 
1529 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530 	oom_wait_memcg = oom_wait_info->memcg;
1531 
1532 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1534 		return 0;
1535 	return autoremove_wake_function(wait, mode, sync, arg);
1536 }
1537 
1538 static void memcg_oom_recover(struct mem_cgroup *memcg)
1539 {
1540 	/*
1541 	 * For the following lockless ->under_oom test, the only required
1542 	 * guarantee is that it must see the state asserted by an OOM when
1543 	 * this function is called as a result of userland actions
1544 	 * triggered by the notification of the OOM.  This is trivially
1545 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 	 * triggering notification.
1547 	 */
1548 	if (memcg && memcg->under_oom)
1549 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 }
1551 
1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553 {
1554 	if (!current->memcg_may_oom)
1555 		return;
1556 	/*
1557 	 * We are in the middle of the charge context here, so we
1558 	 * don't want to block when potentially sitting on a callstack
1559 	 * that holds all kinds of filesystem and mm locks.
1560 	 *
1561 	 * Also, the caller may handle a failed allocation gracefully
1562 	 * (like optional page cache readahead) and so an OOM killer
1563 	 * invocation might not even be necessary.
1564 	 *
1565 	 * That's why we don't do anything here except remember the
1566 	 * OOM context and then deal with it at the end of the page
1567 	 * fault when the stack is unwound, the locks are released,
1568 	 * and when we know whether the fault was overall successful.
1569 	 */
1570 	css_get(&memcg->css);
1571 	current->memcg_in_oom = memcg;
1572 	current->memcg_oom_gfp_mask = mask;
1573 	current->memcg_oom_order = order;
1574 }
1575 
1576 /**
1577  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578  * @handle: actually kill/wait or just clean up the OOM state
1579  *
1580  * This has to be called at the end of a page fault if the memcg OOM
1581  * handler was enabled.
1582  *
1583  * Memcg supports userspace OOM handling where failed allocations must
1584  * sleep on a waitqueue until the userspace task resolves the
1585  * situation.  Sleeping directly in the charge context with all kinds
1586  * of locks held is not a good idea, instead we remember an OOM state
1587  * in the task and mem_cgroup_oom_synchronize() has to be called at
1588  * the end of the page fault to complete the OOM handling.
1589  *
1590  * Returns %true if an ongoing memcg OOM situation was detected and
1591  * completed, %false otherwise.
1592  */
1593 bool mem_cgroup_oom_synchronize(bool handle)
1594 {
1595 	struct mem_cgroup *memcg = current->memcg_in_oom;
1596 	struct oom_wait_info owait;
1597 	bool locked;
1598 
1599 	/* OOM is global, do not handle */
1600 	if (!memcg)
1601 		return false;
1602 
1603 	if (!handle || oom_killer_disabled)
1604 		goto cleanup;
1605 
1606 	owait.memcg = memcg;
1607 	owait.wait.flags = 0;
1608 	owait.wait.func = memcg_oom_wake_function;
1609 	owait.wait.private = current;
1610 	INIT_LIST_HEAD(&owait.wait.task_list);
1611 
1612 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 	mem_cgroup_mark_under_oom(memcg);
1614 
1615 	locked = mem_cgroup_oom_trylock(memcg);
1616 
1617 	if (locked)
1618 		mem_cgroup_oom_notify(memcg);
1619 
1620 	if (locked && !memcg->oom_kill_disable) {
1621 		mem_cgroup_unmark_under_oom(memcg);
1622 		finish_wait(&memcg_oom_waitq, &owait.wait);
1623 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 					 current->memcg_oom_order);
1625 	} else {
1626 		schedule();
1627 		mem_cgroup_unmark_under_oom(memcg);
1628 		finish_wait(&memcg_oom_waitq, &owait.wait);
1629 	}
1630 
1631 	if (locked) {
1632 		mem_cgroup_oom_unlock(memcg);
1633 		/*
1634 		 * There is no guarantee that an OOM-lock contender
1635 		 * sees the wakeups triggered by the OOM kill
1636 		 * uncharges.  Wake any sleepers explicitely.
1637 		 */
1638 		memcg_oom_recover(memcg);
1639 	}
1640 cleanup:
1641 	current->memcg_in_oom = NULL;
1642 	css_put(&memcg->css);
1643 	return true;
1644 }
1645 
1646 /**
1647  * lock_page_memcg - lock a page->mem_cgroup binding
1648  * @page: the page
1649  *
1650  * This function protects unlocked LRU pages from being moved to
1651  * another cgroup and stabilizes their page->mem_cgroup binding.
1652  */
1653 void lock_page_memcg(struct page *page)
1654 {
1655 	struct mem_cgroup *memcg;
1656 	unsigned long flags;
1657 
1658 	/*
1659 	 * The RCU lock is held throughout the transaction.  The fast
1660 	 * path can get away without acquiring the memcg->move_lock
1661 	 * because page moving starts with an RCU grace period.
1662 	 */
1663 	rcu_read_lock();
1664 
1665 	if (mem_cgroup_disabled())
1666 		return;
1667 again:
1668 	memcg = page->mem_cgroup;
1669 	if (unlikely(!memcg))
1670 		return;
1671 
1672 	if (atomic_read(&memcg->moving_account) <= 0)
1673 		return;
1674 
1675 	spin_lock_irqsave(&memcg->move_lock, flags);
1676 	if (memcg != page->mem_cgroup) {
1677 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 		goto again;
1679 	}
1680 
1681 	/*
1682 	 * When charge migration first begins, we can have locked and
1683 	 * unlocked page stat updates happening concurrently.  Track
1684 	 * the task who has the lock for unlock_page_memcg().
1685 	 */
1686 	memcg->move_lock_task = current;
1687 	memcg->move_lock_flags = flags;
1688 
1689 	return;
1690 }
1691 EXPORT_SYMBOL(lock_page_memcg);
1692 
1693 /**
1694  * unlock_page_memcg - unlock a page->mem_cgroup binding
1695  * @page: the page
1696  */
1697 void unlock_page_memcg(struct page *page)
1698 {
1699 	struct mem_cgroup *memcg = page->mem_cgroup;
1700 
1701 	if (memcg && memcg->move_lock_task == current) {
1702 		unsigned long flags = memcg->move_lock_flags;
1703 
1704 		memcg->move_lock_task = NULL;
1705 		memcg->move_lock_flags = 0;
1706 
1707 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 	}
1709 
1710 	rcu_read_unlock();
1711 }
1712 EXPORT_SYMBOL(unlock_page_memcg);
1713 
1714 /*
1715  * size of first charge trial. "32" comes from vmscan.c's magic value.
1716  * TODO: maybe necessary to use big numbers in big irons.
1717  */
1718 #define CHARGE_BATCH	32U
1719 struct memcg_stock_pcp {
1720 	struct mem_cgroup *cached; /* this never be root cgroup */
1721 	unsigned int nr_pages;
1722 	struct work_struct work;
1723 	unsigned long flags;
1724 #define FLUSHING_CACHED_CHARGE	0
1725 };
1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727 static DEFINE_MUTEX(percpu_charge_mutex);
1728 
1729 /**
1730  * consume_stock: Try to consume stocked charge on this cpu.
1731  * @memcg: memcg to consume from.
1732  * @nr_pages: how many pages to charge.
1733  *
1734  * The charges will only happen if @memcg matches the current cpu's memcg
1735  * stock, and at least @nr_pages are available in that stock.  Failure to
1736  * service an allocation will refill the stock.
1737  *
1738  * returns true if successful, false otherwise.
1739  */
1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 {
1742 	struct memcg_stock_pcp *stock;
1743 	unsigned long flags;
1744 	bool ret = false;
1745 
1746 	if (nr_pages > CHARGE_BATCH)
1747 		return ret;
1748 
1749 	local_irq_save(flags);
1750 
1751 	stock = this_cpu_ptr(&memcg_stock);
1752 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1753 		stock->nr_pages -= nr_pages;
1754 		ret = true;
1755 	}
1756 
1757 	local_irq_restore(flags);
1758 
1759 	return ret;
1760 }
1761 
1762 /*
1763  * Returns stocks cached in percpu and reset cached information.
1764  */
1765 static void drain_stock(struct memcg_stock_pcp *stock)
1766 {
1767 	struct mem_cgroup *old = stock->cached;
1768 
1769 	if (stock->nr_pages) {
1770 		page_counter_uncharge(&old->memory, stock->nr_pages);
1771 		if (do_memsw_account())
1772 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1773 		css_put_many(&old->css, stock->nr_pages);
1774 		stock->nr_pages = 0;
1775 	}
1776 	stock->cached = NULL;
1777 }
1778 
1779 static void drain_local_stock(struct work_struct *dummy)
1780 {
1781 	struct memcg_stock_pcp *stock;
1782 	unsigned long flags;
1783 
1784 	local_irq_save(flags);
1785 
1786 	stock = this_cpu_ptr(&memcg_stock);
1787 	drain_stock(stock);
1788 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1789 
1790 	local_irq_restore(flags);
1791 }
1792 
1793 /*
1794  * Cache charges(val) to local per_cpu area.
1795  * This will be consumed by consume_stock() function, later.
1796  */
1797 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799 	struct memcg_stock_pcp *stock;
1800 	unsigned long flags;
1801 
1802 	local_irq_save(flags);
1803 
1804 	stock = this_cpu_ptr(&memcg_stock);
1805 	if (stock->cached != memcg) { /* reset if necessary */
1806 		drain_stock(stock);
1807 		stock->cached = memcg;
1808 	}
1809 	stock->nr_pages += nr_pages;
1810 
1811 	local_irq_restore(flags);
1812 }
1813 
1814 /*
1815  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1816  * of the hierarchy under it.
1817  */
1818 static void drain_all_stock(struct mem_cgroup *root_memcg)
1819 {
1820 	int cpu, curcpu;
1821 
1822 	/* If someone's already draining, avoid adding running more workers. */
1823 	if (!mutex_trylock(&percpu_charge_mutex))
1824 		return;
1825 	/* Notify other cpus that system-wide "drain" is running */
1826 	get_online_cpus();
1827 	curcpu = get_cpu();
1828 	for_each_online_cpu(cpu) {
1829 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1830 		struct mem_cgroup *memcg;
1831 
1832 		memcg = stock->cached;
1833 		if (!memcg || !stock->nr_pages)
1834 			continue;
1835 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1836 			continue;
1837 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1838 			if (cpu == curcpu)
1839 				drain_local_stock(&stock->work);
1840 			else
1841 				schedule_work_on(cpu, &stock->work);
1842 		}
1843 	}
1844 	put_cpu();
1845 	put_online_cpus();
1846 	mutex_unlock(&percpu_charge_mutex);
1847 }
1848 
1849 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1850 					unsigned long action,
1851 					void *hcpu)
1852 {
1853 	int cpu = (unsigned long)hcpu;
1854 	struct memcg_stock_pcp *stock;
1855 
1856 	if (action == CPU_ONLINE)
1857 		return NOTIFY_OK;
1858 
1859 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1860 		return NOTIFY_OK;
1861 
1862 	stock = &per_cpu(memcg_stock, cpu);
1863 	drain_stock(stock);
1864 	return NOTIFY_OK;
1865 }
1866 
1867 static void reclaim_high(struct mem_cgroup *memcg,
1868 			 unsigned int nr_pages,
1869 			 gfp_t gfp_mask)
1870 {
1871 	do {
1872 		if (page_counter_read(&memcg->memory) <= memcg->high)
1873 			continue;
1874 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1875 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1876 	} while ((memcg = parent_mem_cgroup(memcg)));
1877 }
1878 
1879 static void high_work_func(struct work_struct *work)
1880 {
1881 	struct mem_cgroup *memcg;
1882 
1883 	memcg = container_of(work, struct mem_cgroup, high_work);
1884 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1885 }
1886 
1887 /*
1888  * Scheduled by try_charge() to be executed from the userland return path
1889  * and reclaims memory over the high limit.
1890  */
1891 void mem_cgroup_handle_over_high(void)
1892 {
1893 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1894 	struct mem_cgroup *memcg;
1895 
1896 	if (likely(!nr_pages))
1897 		return;
1898 
1899 	memcg = get_mem_cgroup_from_mm(current->mm);
1900 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1901 	css_put(&memcg->css);
1902 	current->memcg_nr_pages_over_high = 0;
1903 }
1904 
1905 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1906 		      unsigned int nr_pages)
1907 {
1908 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1909 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1910 	struct mem_cgroup *mem_over_limit;
1911 	struct page_counter *counter;
1912 	unsigned long nr_reclaimed;
1913 	bool may_swap = true;
1914 	bool drained = false;
1915 
1916 	if (mem_cgroup_is_root(memcg))
1917 		return 0;
1918 retry:
1919 	if (consume_stock(memcg, nr_pages))
1920 		return 0;
1921 
1922 	if (!do_memsw_account() ||
1923 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1924 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1925 			goto done_restock;
1926 		if (do_memsw_account())
1927 			page_counter_uncharge(&memcg->memsw, batch);
1928 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1929 	} else {
1930 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1931 		may_swap = false;
1932 	}
1933 
1934 	if (batch > nr_pages) {
1935 		batch = nr_pages;
1936 		goto retry;
1937 	}
1938 
1939 	/*
1940 	 * Unlike in global OOM situations, memcg is not in a physical
1941 	 * memory shortage.  Allow dying and OOM-killed tasks to
1942 	 * bypass the last charges so that they can exit quickly and
1943 	 * free their memory.
1944 	 */
1945 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1946 		     fatal_signal_pending(current) ||
1947 		     current->flags & PF_EXITING))
1948 		goto force;
1949 
1950 	if (unlikely(task_in_memcg_oom(current)))
1951 		goto nomem;
1952 
1953 	if (!gfpflags_allow_blocking(gfp_mask))
1954 		goto nomem;
1955 
1956 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1957 
1958 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1959 						    gfp_mask, may_swap);
1960 
1961 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1962 		goto retry;
1963 
1964 	if (!drained) {
1965 		drain_all_stock(mem_over_limit);
1966 		drained = true;
1967 		goto retry;
1968 	}
1969 
1970 	if (gfp_mask & __GFP_NORETRY)
1971 		goto nomem;
1972 	/*
1973 	 * Even though the limit is exceeded at this point, reclaim
1974 	 * may have been able to free some pages.  Retry the charge
1975 	 * before killing the task.
1976 	 *
1977 	 * Only for regular pages, though: huge pages are rather
1978 	 * unlikely to succeed so close to the limit, and we fall back
1979 	 * to regular pages anyway in case of failure.
1980 	 */
1981 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1982 		goto retry;
1983 	/*
1984 	 * At task move, charge accounts can be doubly counted. So, it's
1985 	 * better to wait until the end of task_move if something is going on.
1986 	 */
1987 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1988 		goto retry;
1989 
1990 	if (nr_retries--)
1991 		goto retry;
1992 
1993 	if (gfp_mask & __GFP_NOFAIL)
1994 		goto force;
1995 
1996 	if (fatal_signal_pending(current))
1997 		goto force;
1998 
1999 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2000 
2001 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2002 		       get_order(nr_pages * PAGE_SIZE));
2003 nomem:
2004 	if (!(gfp_mask & __GFP_NOFAIL))
2005 		return -ENOMEM;
2006 force:
2007 	/*
2008 	 * The allocation either can't fail or will lead to more memory
2009 	 * being freed very soon.  Allow memory usage go over the limit
2010 	 * temporarily by force charging it.
2011 	 */
2012 	page_counter_charge(&memcg->memory, nr_pages);
2013 	if (do_memsw_account())
2014 		page_counter_charge(&memcg->memsw, nr_pages);
2015 	css_get_many(&memcg->css, nr_pages);
2016 
2017 	return 0;
2018 
2019 done_restock:
2020 	css_get_many(&memcg->css, batch);
2021 	if (batch > nr_pages)
2022 		refill_stock(memcg, batch - nr_pages);
2023 
2024 	/*
2025 	 * If the hierarchy is above the normal consumption range, schedule
2026 	 * reclaim on returning to userland.  We can perform reclaim here
2027 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2028 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2029 	 * not recorded as it most likely matches current's and won't
2030 	 * change in the meantime.  As high limit is checked again before
2031 	 * reclaim, the cost of mismatch is negligible.
2032 	 */
2033 	do {
2034 		if (page_counter_read(&memcg->memory) > memcg->high) {
2035 			/* Don't bother a random interrupted task */
2036 			if (in_interrupt()) {
2037 				schedule_work(&memcg->high_work);
2038 				break;
2039 			}
2040 			current->memcg_nr_pages_over_high += batch;
2041 			set_notify_resume(current);
2042 			break;
2043 		}
2044 	} while ((memcg = parent_mem_cgroup(memcg)));
2045 
2046 	return 0;
2047 }
2048 
2049 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 {
2051 	if (mem_cgroup_is_root(memcg))
2052 		return;
2053 
2054 	page_counter_uncharge(&memcg->memory, nr_pages);
2055 	if (do_memsw_account())
2056 		page_counter_uncharge(&memcg->memsw, nr_pages);
2057 
2058 	css_put_many(&memcg->css, nr_pages);
2059 }
2060 
2061 static void lock_page_lru(struct page *page, int *isolated)
2062 {
2063 	struct zone *zone = page_zone(page);
2064 
2065 	spin_lock_irq(zone_lru_lock(zone));
2066 	if (PageLRU(page)) {
2067 		struct lruvec *lruvec;
2068 
2069 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2070 		ClearPageLRU(page);
2071 		del_page_from_lru_list(page, lruvec, page_lru(page));
2072 		*isolated = 1;
2073 	} else
2074 		*isolated = 0;
2075 }
2076 
2077 static void unlock_page_lru(struct page *page, int isolated)
2078 {
2079 	struct zone *zone = page_zone(page);
2080 
2081 	if (isolated) {
2082 		struct lruvec *lruvec;
2083 
2084 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2085 		VM_BUG_ON_PAGE(PageLRU(page), page);
2086 		SetPageLRU(page);
2087 		add_page_to_lru_list(page, lruvec, page_lru(page));
2088 	}
2089 	spin_unlock_irq(zone_lru_lock(zone));
2090 }
2091 
2092 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2093 			  bool lrucare)
2094 {
2095 	int isolated;
2096 
2097 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2098 
2099 	/*
2100 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2101 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2102 	 */
2103 	if (lrucare)
2104 		lock_page_lru(page, &isolated);
2105 
2106 	/*
2107 	 * Nobody should be changing or seriously looking at
2108 	 * page->mem_cgroup at this point:
2109 	 *
2110 	 * - the page is uncharged
2111 	 *
2112 	 * - the page is off-LRU
2113 	 *
2114 	 * - an anonymous fault has exclusive page access, except for
2115 	 *   a locked page table
2116 	 *
2117 	 * - a page cache insertion, a swapin fault, or a migration
2118 	 *   have the page locked
2119 	 */
2120 	page->mem_cgroup = memcg;
2121 
2122 	if (lrucare)
2123 		unlock_page_lru(page, isolated);
2124 }
2125 
2126 #ifndef CONFIG_SLOB
2127 static int memcg_alloc_cache_id(void)
2128 {
2129 	int id, size;
2130 	int err;
2131 
2132 	id = ida_simple_get(&memcg_cache_ida,
2133 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2134 	if (id < 0)
2135 		return id;
2136 
2137 	if (id < memcg_nr_cache_ids)
2138 		return id;
2139 
2140 	/*
2141 	 * There's no space for the new id in memcg_caches arrays,
2142 	 * so we have to grow them.
2143 	 */
2144 	down_write(&memcg_cache_ids_sem);
2145 
2146 	size = 2 * (id + 1);
2147 	if (size < MEMCG_CACHES_MIN_SIZE)
2148 		size = MEMCG_CACHES_MIN_SIZE;
2149 	else if (size > MEMCG_CACHES_MAX_SIZE)
2150 		size = MEMCG_CACHES_MAX_SIZE;
2151 
2152 	err = memcg_update_all_caches(size);
2153 	if (!err)
2154 		err = memcg_update_all_list_lrus(size);
2155 	if (!err)
2156 		memcg_nr_cache_ids = size;
2157 
2158 	up_write(&memcg_cache_ids_sem);
2159 
2160 	if (err) {
2161 		ida_simple_remove(&memcg_cache_ida, id);
2162 		return err;
2163 	}
2164 	return id;
2165 }
2166 
2167 static void memcg_free_cache_id(int id)
2168 {
2169 	ida_simple_remove(&memcg_cache_ida, id);
2170 }
2171 
2172 struct memcg_kmem_cache_create_work {
2173 	struct mem_cgroup *memcg;
2174 	struct kmem_cache *cachep;
2175 	struct work_struct work;
2176 };
2177 
2178 static void memcg_kmem_cache_create_func(struct work_struct *w)
2179 {
2180 	struct memcg_kmem_cache_create_work *cw =
2181 		container_of(w, struct memcg_kmem_cache_create_work, work);
2182 	struct mem_cgroup *memcg = cw->memcg;
2183 	struct kmem_cache *cachep = cw->cachep;
2184 
2185 	memcg_create_kmem_cache(memcg, cachep);
2186 
2187 	css_put(&memcg->css);
2188 	kfree(cw);
2189 }
2190 
2191 /*
2192  * Enqueue the creation of a per-memcg kmem_cache.
2193  */
2194 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 					       struct kmem_cache *cachep)
2196 {
2197 	struct memcg_kmem_cache_create_work *cw;
2198 
2199 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2200 	if (!cw)
2201 		return;
2202 
2203 	css_get(&memcg->css);
2204 
2205 	cw->memcg = memcg;
2206 	cw->cachep = cachep;
2207 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2208 
2209 	schedule_work(&cw->work);
2210 }
2211 
2212 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2213 					     struct kmem_cache *cachep)
2214 {
2215 	/*
2216 	 * We need to stop accounting when we kmalloc, because if the
2217 	 * corresponding kmalloc cache is not yet created, the first allocation
2218 	 * in __memcg_schedule_kmem_cache_create will recurse.
2219 	 *
2220 	 * However, it is better to enclose the whole function. Depending on
2221 	 * the debugging options enabled, INIT_WORK(), for instance, can
2222 	 * trigger an allocation. This too, will make us recurse. Because at
2223 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2224 	 * the safest choice is to do it like this, wrapping the whole function.
2225 	 */
2226 	current->memcg_kmem_skip_account = 1;
2227 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2228 	current->memcg_kmem_skip_account = 0;
2229 }
2230 
2231 static inline bool memcg_kmem_bypass(void)
2232 {
2233 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2234 		return true;
2235 	return false;
2236 }
2237 
2238 /**
2239  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2240  * @cachep: the original global kmem cache
2241  *
2242  * Return the kmem_cache we're supposed to use for a slab allocation.
2243  * We try to use the current memcg's version of the cache.
2244  *
2245  * If the cache does not exist yet, if we are the first user of it, we
2246  * create it asynchronously in a workqueue and let the current allocation
2247  * go through with the original cache.
2248  *
2249  * This function takes a reference to the cache it returns to assure it
2250  * won't get destroyed while we are working with it. Once the caller is
2251  * done with it, memcg_kmem_put_cache() must be called to release the
2252  * reference.
2253  */
2254 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2255 {
2256 	struct mem_cgroup *memcg;
2257 	struct kmem_cache *memcg_cachep;
2258 	int kmemcg_id;
2259 
2260 	VM_BUG_ON(!is_root_cache(cachep));
2261 
2262 	if (memcg_kmem_bypass())
2263 		return cachep;
2264 
2265 	if (current->memcg_kmem_skip_account)
2266 		return cachep;
2267 
2268 	memcg = get_mem_cgroup_from_mm(current->mm);
2269 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2270 	if (kmemcg_id < 0)
2271 		goto out;
2272 
2273 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2274 	if (likely(memcg_cachep))
2275 		return memcg_cachep;
2276 
2277 	/*
2278 	 * If we are in a safe context (can wait, and not in interrupt
2279 	 * context), we could be be predictable and return right away.
2280 	 * This would guarantee that the allocation being performed
2281 	 * already belongs in the new cache.
2282 	 *
2283 	 * However, there are some clashes that can arrive from locking.
2284 	 * For instance, because we acquire the slab_mutex while doing
2285 	 * memcg_create_kmem_cache, this means no further allocation
2286 	 * could happen with the slab_mutex held. So it's better to
2287 	 * defer everything.
2288 	 */
2289 	memcg_schedule_kmem_cache_create(memcg, cachep);
2290 out:
2291 	css_put(&memcg->css);
2292 	return cachep;
2293 }
2294 
2295 /**
2296  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2297  * @cachep: the cache returned by memcg_kmem_get_cache
2298  */
2299 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2300 {
2301 	if (!is_root_cache(cachep))
2302 		css_put(&cachep->memcg_params.memcg->css);
2303 }
2304 
2305 /**
2306  * memcg_kmem_charge: charge a kmem page
2307  * @page: page to charge
2308  * @gfp: reclaim mode
2309  * @order: allocation order
2310  * @memcg: memory cgroup to charge
2311  *
2312  * Returns 0 on success, an error code on failure.
2313  */
2314 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2315 			    struct mem_cgroup *memcg)
2316 {
2317 	unsigned int nr_pages = 1 << order;
2318 	struct page_counter *counter;
2319 	int ret;
2320 
2321 	ret = try_charge(memcg, gfp, nr_pages);
2322 	if (ret)
2323 		return ret;
2324 
2325 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2326 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2327 		cancel_charge(memcg, nr_pages);
2328 		return -ENOMEM;
2329 	}
2330 
2331 	page->mem_cgroup = memcg;
2332 
2333 	return 0;
2334 }
2335 
2336 /**
2337  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2338  * @page: page to charge
2339  * @gfp: reclaim mode
2340  * @order: allocation order
2341  *
2342  * Returns 0 on success, an error code on failure.
2343  */
2344 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2345 {
2346 	struct mem_cgroup *memcg;
2347 	int ret = 0;
2348 
2349 	if (memcg_kmem_bypass())
2350 		return 0;
2351 
2352 	memcg = get_mem_cgroup_from_mm(current->mm);
2353 	if (!mem_cgroup_is_root(memcg)) {
2354 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2355 		if (!ret)
2356 			__SetPageKmemcg(page);
2357 	}
2358 	css_put(&memcg->css);
2359 	return ret;
2360 }
2361 /**
2362  * memcg_kmem_uncharge: uncharge a kmem page
2363  * @page: page to uncharge
2364  * @order: allocation order
2365  */
2366 void memcg_kmem_uncharge(struct page *page, int order)
2367 {
2368 	struct mem_cgroup *memcg = page->mem_cgroup;
2369 	unsigned int nr_pages = 1 << order;
2370 
2371 	if (!memcg)
2372 		return;
2373 
2374 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2375 
2376 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2377 		page_counter_uncharge(&memcg->kmem, nr_pages);
2378 
2379 	page_counter_uncharge(&memcg->memory, nr_pages);
2380 	if (do_memsw_account())
2381 		page_counter_uncharge(&memcg->memsw, nr_pages);
2382 
2383 	page->mem_cgroup = NULL;
2384 
2385 	/* slab pages do not have PageKmemcg flag set */
2386 	if (PageKmemcg(page))
2387 		__ClearPageKmemcg(page);
2388 
2389 	css_put_many(&memcg->css, nr_pages);
2390 }
2391 #endif /* !CONFIG_SLOB */
2392 
2393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2394 
2395 /*
2396  * Because tail pages are not marked as "used", set it. We're under
2397  * zone_lru_lock and migration entries setup in all page mappings.
2398  */
2399 void mem_cgroup_split_huge_fixup(struct page *head)
2400 {
2401 	int i;
2402 
2403 	if (mem_cgroup_disabled())
2404 		return;
2405 
2406 	for (i = 1; i < HPAGE_PMD_NR; i++)
2407 		head[i].mem_cgroup = head->mem_cgroup;
2408 
2409 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2410 		       HPAGE_PMD_NR);
2411 }
2412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2413 
2414 #ifdef CONFIG_MEMCG_SWAP
2415 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2416 					 bool charge)
2417 {
2418 	int val = (charge) ? 1 : -1;
2419 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2420 }
2421 
2422 /**
2423  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2424  * @entry: swap entry to be moved
2425  * @from:  mem_cgroup which the entry is moved from
2426  * @to:  mem_cgroup which the entry is moved to
2427  *
2428  * It succeeds only when the swap_cgroup's record for this entry is the same
2429  * as the mem_cgroup's id of @from.
2430  *
2431  * Returns 0 on success, -EINVAL on failure.
2432  *
2433  * The caller must have charged to @to, IOW, called page_counter_charge() about
2434  * both res and memsw, and called css_get().
2435  */
2436 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437 				struct mem_cgroup *from, struct mem_cgroup *to)
2438 {
2439 	unsigned short old_id, new_id;
2440 
2441 	old_id = mem_cgroup_id(from);
2442 	new_id = mem_cgroup_id(to);
2443 
2444 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2445 		mem_cgroup_swap_statistics(from, false);
2446 		mem_cgroup_swap_statistics(to, true);
2447 		return 0;
2448 	}
2449 	return -EINVAL;
2450 }
2451 #else
2452 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2453 				struct mem_cgroup *from, struct mem_cgroup *to)
2454 {
2455 	return -EINVAL;
2456 }
2457 #endif
2458 
2459 static DEFINE_MUTEX(memcg_limit_mutex);
2460 
2461 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2462 				   unsigned long limit)
2463 {
2464 	unsigned long curusage;
2465 	unsigned long oldusage;
2466 	bool enlarge = false;
2467 	int retry_count;
2468 	int ret;
2469 
2470 	/*
2471 	 * For keeping hierarchical_reclaim simple, how long we should retry
2472 	 * is depends on callers. We set our retry-count to be function
2473 	 * of # of children which we should visit in this loop.
2474 	 */
2475 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2476 		      mem_cgroup_count_children(memcg);
2477 
2478 	oldusage = page_counter_read(&memcg->memory);
2479 
2480 	do {
2481 		if (signal_pending(current)) {
2482 			ret = -EINTR;
2483 			break;
2484 		}
2485 
2486 		mutex_lock(&memcg_limit_mutex);
2487 		if (limit > memcg->memsw.limit) {
2488 			mutex_unlock(&memcg_limit_mutex);
2489 			ret = -EINVAL;
2490 			break;
2491 		}
2492 		if (limit > memcg->memory.limit)
2493 			enlarge = true;
2494 		ret = page_counter_limit(&memcg->memory, limit);
2495 		mutex_unlock(&memcg_limit_mutex);
2496 
2497 		if (!ret)
2498 			break;
2499 
2500 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2501 
2502 		curusage = page_counter_read(&memcg->memory);
2503 		/* Usage is reduced ? */
2504 		if (curusage >= oldusage)
2505 			retry_count--;
2506 		else
2507 			oldusage = curusage;
2508 	} while (retry_count);
2509 
2510 	if (!ret && enlarge)
2511 		memcg_oom_recover(memcg);
2512 
2513 	return ret;
2514 }
2515 
2516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2517 					 unsigned long limit)
2518 {
2519 	unsigned long curusage;
2520 	unsigned long oldusage;
2521 	bool enlarge = false;
2522 	int retry_count;
2523 	int ret;
2524 
2525 	/* see mem_cgroup_resize_res_limit */
2526 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2527 		      mem_cgroup_count_children(memcg);
2528 
2529 	oldusage = page_counter_read(&memcg->memsw);
2530 
2531 	do {
2532 		if (signal_pending(current)) {
2533 			ret = -EINTR;
2534 			break;
2535 		}
2536 
2537 		mutex_lock(&memcg_limit_mutex);
2538 		if (limit < memcg->memory.limit) {
2539 			mutex_unlock(&memcg_limit_mutex);
2540 			ret = -EINVAL;
2541 			break;
2542 		}
2543 		if (limit > memcg->memsw.limit)
2544 			enlarge = true;
2545 		ret = page_counter_limit(&memcg->memsw, limit);
2546 		mutex_unlock(&memcg_limit_mutex);
2547 
2548 		if (!ret)
2549 			break;
2550 
2551 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2552 
2553 		curusage = page_counter_read(&memcg->memsw);
2554 		/* Usage is reduced ? */
2555 		if (curusage >= oldusage)
2556 			retry_count--;
2557 		else
2558 			oldusage = curusage;
2559 	} while (retry_count);
2560 
2561 	if (!ret && enlarge)
2562 		memcg_oom_recover(memcg);
2563 
2564 	return ret;
2565 }
2566 
2567 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2568 					    gfp_t gfp_mask,
2569 					    unsigned long *total_scanned)
2570 {
2571 	unsigned long nr_reclaimed = 0;
2572 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2573 	unsigned long reclaimed;
2574 	int loop = 0;
2575 	struct mem_cgroup_tree_per_node *mctz;
2576 	unsigned long excess;
2577 	unsigned long nr_scanned;
2578 
2579 	if (order > 0)
2580 		return 0;
2581 
2582 	mctz = soft_limit_tree_node(pgdat->node_id);
2583 
2584 	/*
2585 	 * Do not even bother to check the largest node if the root
2586 	 * is empty. Do it lockless to prevent lock bouncing. Races
2587 	 * are acceptable as soft limit is best effort anyway.
2588 	 */
2589 	if (RB_EMPTY_ROOT(&mctz->rb_root))
2590 		return 0;
2591 
2592 	/*
2593 	 * This loop can run a while, specially if mem_cgroup's continuously
2594 	 * keep exceeding their soft limit and putting the system under
2595 	 * pressure
2596 	 */
2597 	do {
2598 		if (next_mz)
2599 			mz = next_mz;
2600 		else
2601 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2602 		if (!mz)
2603 			break;
2604 
2605 		nr_scanned = 0;
2606 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2607 						    gfp_mask, &nr_scanned);
2608 		nr_reclaimed += reclaimed;
2609 		*total_scanned += nr_scanned;
2610 		spin_lock_irq(&mctz->lock);
2611 		__mem_cgroup_remove_exceeded(mz, mctz);
2612 
2613 		/*
2614 		 * If we failed to reclaim anything from this memory cgroup
2615 		 * it is time to move on to the next cgroup
2616 		 */
2617 		next_mz = NULL;
2618 		if (!reclaimed)
2619 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2620 
2621 		excess = soft_limit_excess(mz->memcg);
2622 		/*
2623 		 * One school of thought says that we should not add
2624 		 * back the node to the tree if reclaim returns 0.
2625 		 * But our reclaim could return 0, simply because due
2626 		 * to priority we are exposing a smaller subset of
2627 		 * memory to reclaim from. Consider this as a longer
2628 		 * term TODO.
2629 		 */
2630 		/* If excess == 0, no tree ops */
2631 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2632 		spin_unlock_irq(&mctz->lock);
2633 		css_put(&mz->memcg->css);
2634 		loop++;
2635 		/*
2636 		 * Could not reclaim anything and there are no more
2637 		 * mem cgroups to try or we seem to be looping without
2638 		 * reclaiming anything.
2639 		 */
2640 		if (!nr_reclaimed &&
2641 			(next_mz == NULL ||
2642 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2643 			break;
2644 	} while (!nr_reclaimed);
2645 	if (next_mz)
2646 		css_put(&next_mz->memcg->css);
2647 	return nr_reclaimed;
2648 }
2649 
2650 /*
2651  * Test whether @memcg has children, dead or alive.  Note that this
2652  * function doesn't care whether @memcg has use_hierarchy enabled and
2653  * returns %true if there are child csses according to the cgroup
2654  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2655  */
2656 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2657 {
2658 	bool ret;
2659 
2660 	rcu_read_lock();
2661 	ret = css_next_child(NULL, &memcg->css);
2662 	rcu_read_unlock();
2663 	return ret;
2664 }
2665 
2666 /*
2667  * Reclaims as many pages from the given memcg as possible.
2668  *
2669  * Caller is responsible for holding css reference for memcg.
2670  */
2671 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2672 {
2673 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2674 
2675 	/* we call try-to-free pages for make this cgroup empty */
2676 	lru_add_drain_all();
2677 	/* try to free all pages in this cgroup */
2678 	while (nr_retries && page_counter_read(&memcg->memory)) {
2679 		int progress;
2680 
2681 		if (signal_pending(current))
2682 			return -EINTR;
2683 
2684 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2685 							GFP_KERNEL, true);
2686 		if (!progress) {
2687 			nr_retries--;
2688 			/* maybe some writeback is necessary */
2689 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2690 		}
2691 
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2698 					    char *buf, size_t nbytes,
2699 					    loff_t off)
2700 {
2701 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2702 
2703 	if (mem_cgroup_is_root(memcg))
2704 		return -EINVAL;
2705 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2706 }
2707 
2708 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2709 				     struct cftype *cft)
2710 {
2711 	return mem_cgroup_from_css(css)->use_hierarchy;
2712 }
2713 
2714 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2715 				      struct cftype *cft, u64 val)
2716 {
2717 	int retval = 0;
2718 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2719 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2720 
2721 	if (memcg->use_hierarchy == val)
2722 		return 0;
2723 
2724 	/*
2725 	 * If parent's use_hierarchy is set, we can't make any modifications
2726 	 * in the child subtrees. If it is unset, then the change can
2727 	 * occur, provided the current cgroup has no children.
2728 	 *
2729 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2730 	 * set if there are no children.
2731 	 */
2732 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2733 				(val == 1 || val == 0)) {
2734 		if (!memcg_has_children(memcg))
2735 			memcg->use_hierarchy = val;
2736 		else
2737 			retval = -EBUSY;
2738 	} else
2739 		retval = -EINVAL;
2740 
2741 	return retval;
2742 }
2743 
2744 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2745 {
2746 	struct mem_cgroup *iter;
2747 	int i;
2748 
2749 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2750 
2751 	for_each_mem_cgroup_tree(iter, memcg) {
2752 		for (i = 0; i < MEMCG_NR_STAT; i++)
2753 			stat[i] += mem_cgroup_read_stat(iter, i);
2754 	}
2755 }
2756 
2757 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2758 {
2759 	struct mem_cgroup *iter;
2760 	int i;
2761 
2762 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2763 
2764 	for_each_mem_cgroup_tree(iter, memcg) {
2765 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2766 			events[i] += mem_cgroup_read_events(iter, i);
2767 	}
2768 }
2769 
2770 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2771 {
2772 	unsigned long val = 0;
2773 
2774 	if (mem_cgroup_is_root(memcg)) {
2775 		struct mem_cgroup *iter;
2776 
2777 		for_each_mem_cgroup_tree(iter, memcg) {
2778 			val += mem_cgroup_read_stat(iter,
2779 					MEM_CGROUP_STAT_CACHE);
2780 			val += mem_cgroup_read_stat(iter,
2781 					MEM_CGROUP_STAT_RSS);
2782 			if (swap)
2783 				val += mem_cgroup_read_stat(iter,
2784 						MEM_CGROUP_STAT_SWAP);
2785 		}
2786 	} else {
2787 		if (!swap)
2788 			val = page_counter_read(&memcg->memory);
2789 		else
2790 			val = page_counter_read(&memcg->memsw);
2791 	}
2792 	return val;
2793 }
2794 
2795 enum {
2796 	RES_USAGE,
2797 	RES_LIMIT,
2798 	RES_MAX_USAGE,
2799 	RES_FAILCNT,
2800 	RES_SOFT_LIMIT,
2801 };
2802 
2803 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2804 			       struct cftype *cft)
2805 {
2806 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2807 	struct page_counter *counter;
2808 
2809 	switch (MEMFILE_TYPE(cft->private)) {
2810 	case _MEM:
2811 		counter = &memcg->memory;
2812 		break;
2813 	case _MEMSWAP:
2814 		counter = &memcg->memsw;
2815 		break;
2816 	case _KMEM:
2817 		counter = &memcg->kmem;
2818 		break;
2819 	case _TCP:
2820 		counter = &memcg->tcpmem;
2821 		break;
2822 	default:
2823 		BUG();
2824 	}
2825 
2826 	switch (MEMFILE_ATTR(cft->private)) {
2827 	case RES_USAGE:
2828 		if (counter == &memcg->memory)
2829 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2830 		if (counter == &memcg->memsw)
2831 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2832 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2833 	case RES_LIMIT:
2834 		return (u64)counter->limit * PAGE_SIZE;
2835 	case RES_MAX_USAGE:
2836 		return (u64)counter->watermark * PAGE_SIZE;
2837 	case RES_FAILCNT:
2838 		return counter->failcnt;
2839 	case RES_SOFT_LIMIT:
2840 		return (u64)memcg->soft_limit * PAGE_SIZE;
2841 	default:
2842 		BUG();
2843 	}
2844 }
2845 
2846 #ifndef CONFIG_SLOB
2847 static int memcg_online_kmem(struct mem_cgroup *memcg)
2848 {
2849 	int memcg_id;
2850 
2851 	if (cgroup_memory_nokmem)
2852 		return 0;
2853 
2854 	BUG_ON(memcg->kmemcg_id >= 0);
2855 	BUG_ON(memcg->kmem_state);
2856 
2857 	memcg_id = memcg_alloc_cache_id();
2858 	if (memcg_id < 0)
2859 		return memcg_id;
2860 
2861 	static_branch_inc(&memcg_kmem_enabled_key);
2862 	/*
2863 	 * A memory cgroup is considered kmem-online as soon as it gets
2864 	 * kmemcg_id. Setting the id after enabling static branching will
2865 	 * guarantee no one starts accounting before all call sites are
2866 	 * patched.
2867 	 */
2868 	memcg->kmemcg_id = memcg_id;
2869 	memcg->kmem_state = KMEM_ONLINE;
2870 
2871 	return 0;
2872 }
2873 
2874 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2875 {
2876 	struct cgroup_subsys_state *css;
2877 	struct mem_cgroup *parent, *child;
2878 	int kmemcg_id;
2879 
2880 	if (memcg->kmem_state != KMEM_ONLINE)
2881 		return;
2882 	/*
2883 	 * Clear the online state before clearing memcg_caches array
2884 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2885 	 * guarantees that no cache will be created for this cgroup
2886 	 * after we are done (see memcg_create_kmem_cache()).
2887 	 */
2888 	memcg->kmem_state = KMEM_ALLOCATED;
2889 
2890 	memcg_deactivate_kmem_caches(memcg);
2891 
2892 	kmemcg_id = memcg->kmemcg_id;
2893 	BUG_ON(kmemcg_id < 0);
2894 
2895 	parent = parent_mem_cgroup(memcg);
2896 	if (!parent)
2897 		parent = root_mem_cgroup;
2898 
2899 	/*
2900 	 * Change kmemcg_id of this cgroup and all its descendants to the
2901 	 * parent's id, and then move all entries from this cgroup's list_lrus
2902 	 * to ones of the parent. After we have finished, all list_lrus
2903 	 * corresponding to this cgroup are guaranteed to remain empty. The
2904 	 * ordering is imposed by list_lru_node->lock taken by
2905 	 * memcg_drain_all_list_lrus().
2906 	 */
2907 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2908 	css_for_each_descendant_pre(css, &memcg->css) {
2909 		child = mem_cgroup_from_css(css);
2910 		BUG_ON(child->kmemcg_id != kmemcg_id);
2911 		child->kmemcg_id = parent->kmemcg_id;
2912 		if (!memcg->use_hierarchy)
2913 			break;
2914 	}
2915 	rcu_read_unlock();
2916 
2917 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2918 
2919 	memcg_free_cache_id(kmemcg_id);
2920 }
2921 
2922 static void memcg_free_kmem(struct mem_cgroup *memcg)
2923 {
2924 	/* css_alloc() failed, offlining didn't happen */
2925 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2926 		memcg_offline_kmem(memcg);
2927 
2928 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2929 		memcg_destroy_kmem_caches(memcg);
2930 		static_branch_dec(&memcg_kmem_enabled_key);
2931 		WARN_ON(page_counter_read(&memcg->kmem));
2932 	}
2933 }
2934 #else
2935 static int memcg_online_kmem(struct mem_cgroup *memcg)
2936 {
2937 	return 0;
2938 }
2939 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2940 {
2941 }
2942 static void memcg_free_kmem(struct mem_cgroup *memcg)
2943 {
2944 }
2945 #endif /* !CONFIG_SLOB */
2946 
2947 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2948 				   unsigned long limit)
2949 {
2950 	int ret;
2951 
2952 	mutex_lock(&memcg_limit_mutex);
2953 	ret = page_counter_limit(&memcg->kmem, limit);
2954 	mutex_unlock(&memcg_limit_mutex);
2955 	return ret;
2956 }
2957 
2958 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2959 {
2960 	int ret;
2961 
2962 	mutex_lock(&memcg_limit_mutex);
2963 
2964 	ret = page_counter_limit(&memcg->tcpmem, limit);
2965 	if (ret)
2966 		goto out;
2967 
2968 	if (!memcg->tcpmem_active) {
2969 		/*
2970 		 * The active flag needs to be written after the static_key
2971 		 * update. This is what guarantees that the socket activation
2972 		 * function is the last one to run. See sock_update_memcg() for
2973 		 * details, and note that we don't mark any socket as belonging
2974 		 * to this memcg until that flag is up.
2975 		 *
2976 		 * We need to do this, because static_keys will span multiple
2977 		 * sites, but we can't control their order. If we mark a socket
2978 		 * as accounted, but the accounting functions are not patched in
2979 		 * yet, we'll lose accounting.
2980 		 *
2981 		 * We never race with the readers in sock_update_memcg(),
2982 		 * because when this value change, the code to process it is not
2983 		 * patched in yet.
2984 		 */
2985 		static_branch_inc(&memcg_sockets_enabled_key);
2986 		memcg->tcpmem_active = true;
2987 	}
2988 out:
2989 	mutex_unlock(&memcg_limit_mutex);
2990 	return ret;
2991 }
2992 
2993 /*
2994  * The user of this function is...
2995  * RES_LIMIT.
2996  */
2997 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2998 				char *buf, size_t nbytes, loff_t off)
2999 {
3000 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3001 	unsigned long nr_pages;
3002 	int ret;
3003 
3004 	buf = strstrip(buf);
3005 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3006 	if (ret)
3007 		return ret;
3008 
3009 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3010 	case RES_LIMIT:
3011 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3012 			ret = -EINVAL;
3013 			break;
3014 		}
3015 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3016 		case _MEM:
3017 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3018 			break;
3019 		case _MEMSWAP:
3020 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3021 			break;
3022 		case _KMEM:
3023 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3024 			break;
3025 		case _TCP:
3026 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3027 			break;
3028 		}
3029 		break;
3030 	case RES_SOFT_LIMIT:
3031 		memcg->soft_limit = nr_pages;
3032 		ret = 0;
3033 		break;
3034 	}
3035 	return ret ?: nbytes;
3036 }
3037 
3038 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3039 				size_t nbytes, loff_t off)
3040 {
3041 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3042 	struct page_counter *counter;
3043 
3044 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3045 	case _MEM:
3046 		counter = &memcg->memory;
3047 		break;
3048 	case _MEMSWAP:
3049 		counter = &memcg->memsw;
3050 		break;
3051 	case _KMEM:
3052 		counter = &memcg->kmem;
3053 		break;
3054 	case _TCP:
3055 		counter = &memcg->tcpmem;
3056 		break;
3057 	default:
3058 		BUG();
3059 	}
3060 
3061 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3062 	case RES_MAX_USAGE:
3063 		page_counter_reset_watermark(counter);
3064 		break;
3065 	case RES_FAILCNT:
3066 		counter->failcnt = 0;
3067 		break;
3068 	default:
3069 		BUG();
3070 	}
3071 
3072 	return nbytes;
3073 }
3074 
3075 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3076 					struct cftype *cft)
3077 {
3078 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3079 }
3080 
3081 #ifdef CONFIG_MMU
3082 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3083 					struct cftype *cft, u64 val)
3084 {
3085 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3086 
3087 	if (val & ~MOVE_MASK)
3088 		return -EINVAL;
3089 
3090 	/*
3091 	 * No kind of locking is needed in here, because ->can_attach() will
3092 	 * check this value once in the beginning of the process, and then carry
3093 	 * on with stale data. This means that changes to this value will only
3094 	 * affect task migrations starting after the change.
3095 	 */
3096 	memcg->move_charge_at_immigrate = val;
3097 	return 0;
3098 }
3099 #else
3100 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3101 					struct cftype *cft, u64 val)
3102 {
3103 	return -ENOSYS;
3104 }
3105 #endif
3106 
3107 #ifdef CONFIG_NUMA
3108 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3109 {
3110 	struct numa_stat {
3111 		const char *name;
3112 		unsigned int lru_mask;
3113 	};
3114 
3115 	static const struct numa_stat stats[] = {
3116 		{ "total", LRU_ALL },
3117 		{ "file", LRU_ALL_FILE },
3118 		{ "anon", LRU_ALL_ANON },
3119 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3120 	};
3121 	const struct numa_stat *stat;
3122 	int nid;
3123 	unsigned long nr;
3124 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3125 
3126 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3128 		seq_printf(m, "%s=%lu", stat->name, nr);
3129 		for_each_node_state(nid, N_MEMORY) {
3130 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3131 							  stat->lru_mask);
3132 			seq_printf(m, " N%d=%lu", nid, nr);
3133 		}
3134 		seq_putc(m, '\n');
3135 	}
3136 
3137 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3138 		struct mem_cgroup *iter;
3139 
3140 		nr = 0;
3141 		for_each_mem_cgroup_tree(iter, memcg)
3142 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3143 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3144 		for_each_node_state(nid, N_MEMORY) {
3145 			nr = 0;
3146 			for_each_mem_cgroup_tree(iter, memcg)
3147 				nr += mem_cgroup_node_nr_lru_pages(
3148 					iter, nid, stat->lru_mask);
3149 			seq_printf(m, " N%d=%lu", nid, nr);
3150 		}
3151 		seq_putc(m, '\n');
3152 	}
3153 
3154 	return 0;
3155 }
3156 #endif /* CONFIG_NUMA */
3157 
3158 static int memcg_stat_show(struct seq_file *m, void *v)
3159 {
3160 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3161 	unsigned long memory, memsw;
3162 	struct mem_cgroup *mi;
3163 	unsigned int i;
3164 
3165 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3166 		     MEM_CGROUP_STAT_NSTATS);
3167 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3168 		     MEM_CGROUP_EVENTS_NSTATS);
3169 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3170 
3171 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3173 			continue;
3174 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3175 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3176 	}
3177 
3178 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3179 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3180 			   mem_cgroup_read_events(memcg, i));
3181 
3182 	for (i = 0; i < NR_LRU_LISTS; i++)
3183 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3184 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3185 
3186 	/* Hierarchical information */
3187 	memory = memsw = PAGE_COUNTER_MAX;
3188 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3189 		memory = min(memory, mi->memory.limit);
3190 		memsw = min(memsw, mi->memsw.limit);
3191 	}
3192 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3193 		   (u64)memory * PAGE_SIZE);
3194 	if (do_memsw_account())
3195 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3196 			   (u64)memsw * PAGE_SIZE);
3197 
3198 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3199 		unsigned long long val = 0;
3200 
3201 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3202 			continue;
3203 		for_each_mem_cgroup_tree(mi, memcg)
3204 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3205 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3206 	}
3207 
3208 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3209 		unsigned long long val = 0;
3210 
3211 		for_each_mem_cgroup_tree(mi, memcg)
3212 			val += mem_cgroup_read_events(mi, i);
3213 		seq_printf(m, "total_%s %llu\n",
3214 			   mem_cgroup_events_names[i], val);
3215 	}
3216 
3217 	for (i = 0; i < NR_LRU_LISTS; i++) {
3218 		unsigned long long val = 0;
3219 
3220 		for_each_mem_cgroup_tree(mi, memcg)
3221 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3222 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3223 	}
3224 
3225 #ifdef CONFIG_DEBUG_VM
3226 	{
3227 		pg_data_t *pgdat;
3228 		struct mem_cgroup_per_node *mz;
3229 		struct zone_reclaim_stat *rstat;
3230 		unsigned long recent_rotated[2] = {0, 0};
3231 		unsigned long recent_scanned[2] = {0, 0};
3232 
3233 		for_each_online_pgdat(pgdat) {
3234 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3235 			rstat = &mz->lruvec.reclaim_stat;
3236 
3237 			recent_rotated[0] += rstat->recent_rotated[0];
3238 			recent_rotated[1] += rstat->recent_rotated[1];
3239 			recent_scanned[0] += rstat->recent_scanned[0];
3240 			recent_scanned[1] += rstat->recent_scanned[1];
3241 		}
3242 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3243 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3244 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3245 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3246 	}
3247 #endif
3248 
3249 	return 0;
3250 }
3251 
3252 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3253 				      struct cftype *cft)
3254 {
3255 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3256 
3257 	return mem_cgroup_swappiness(memcg);
3258 }
3259 
3260 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3261 				       struct cftype *cft, u64 val)
3262 {
3263 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3264 
3265 	if (val > 100)
3266 		return -EINVAL;
3267 
3268 	if (css->parent)
3269 		memcg->swappiness = val;
3270 	else
3271 		vm_swappiness = val;
3272 
3273 	return 0;
3274 }
3275 
3276 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3277 {
3278 	struct mem_cgroup_threshold_ary *t;
3279 	unsigned long usage;
3280 	int i;
3281 
3282 	rcu_read_lock();
3283 	if (!swap)
3284 		t = rcu_dereference(memcg->thresholds.primary);
3285 	else
3286 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3287 
3288 	if (!t)
3289 		goto unlock;
3290 
3291 	usage = mem_cgroup_usage(memcg, swap);
3292 
3293 	/*
3294 	 * current_threshold points to threshold just below or equal to usage.
3295 	 * If it's not true, a threshold was crossed after last
3296 	 * call of __mem_cgroup_threshold().
3297 	 */
3298 	i = t->current_threshold;
3299 
3300 	/*
3301 	 * Iterate backward over array of thresholds starting from
3302 	 * current_threshold and check if a threshold is crossed.
3303 	 * If none of thresholds below usage is crossed, we read
3304 	 * only one element of the array here.
3305 	 */
3306 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3307 		eventfd_signal(t->entries[i].eventfd, 1);
3308 
3309 	/* i = current_threshold + 1 */
3310 	i++;
3311 
3312 	/*
3313 	 * Iterate forward over array of thresholds starting from
3314 	 * current_threshold+1 and check if a threshold is crossed.
3315 	 * If none of thresholds above usage is crossed, we read
3316 	 * only one element of the array here.
3317 	 */
3318 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3319 		eventfd_signal(t->entries[i].eventfd, 1);
3320 
3321 	/* Update current_threshold */
3322 	t->current_threshold = i - 1;
3323 unlock:
3324 	rcu_read_unlock();
3325 }
3326 
3327 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3328 {
3329 	while (memcg) {
3330 		__mem_cgroup_threshold(memcg, false);
3331 		if (do_memsw_account())
3332 			__mem_cgroup_threshold(memcg, true);
3333 
3334 		memcg = parent_mem_cgroup(memcg);
3335 	}
3336 }
3337 
3338 static int compare_thresholds(const void *a, const void *b)
3339 {
3340 	const struct mem_cgroup_threshold *_a = a;
3341 	const struct mem_cgroup_threshold *_b = b;
3342 
3343 	if (_a->threshold > _b->threshold)
3344 		return 1;
3345 
3346 	if (_a->threshold < _b->threshold)
3347 		return -1;
3348 
3349 	return 0;
3350 }
3351 
3352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3353 {
3354 	struct mem_cgroup_eventfd_list *ev;
3355 
3356 	spin_lock(&memcg_oom_lock);
3357 
3358 	list_for_each_entry(ev, &memcg->oom_notify, list)
3359 		eventfd_signal(ev->eventfd, 1);
3360 
3361 	spin_unlock(&memcg_oom_lock);
3362 	return 0;
3363 }
3364 
3365 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3366 {
3367 	struct mem_cgroup *iter;
3368 
3369 	for_each_mem_cgroup_tree(iter, memcg)
3370 		mem_cgroup_oom_notify_cb(iter);
3371 }
3372 
3373 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3374 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3375 {
3376 	struct mem_cgroup_thresholds *thresholds;
3377 	struct mem_cgroup_threshold_ary *new;
3378 	unsigned long threshold;
3379 	unsigned long usage;
3380 	int i, size, ret;
3381 
3382 	ret = page_counter_memparse(args, "-1", &threshold);
3383 	if (ret)
3384 		return ret;
3385 
3386 	mutex_lock(&memcg->thresholds_lock);
3387 
3388 	if (type == _MEM) {
3389 		thresholds = &memcg->thresholds;
3390 		usage = mem_cgroup_usage(memcg, false);
3391 	} else if (type == _MEMSWAP) {
3392 		thresholds = &memcg->memsw_thresholds;
3393 		usage = mem_cgroup_usage(memcg, true);
3394 	} else
3395 		BUG();
3396 
3397 	/* Check if a threshold crossed before adding a new one */
3398 	if (thresholds->primary)
3399 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3400 
3401 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3402 
3403 	/* Allocate memory for new array of thresholds */
3404 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3405 			GFP_KERNEL);
3406 	if (!new) {
3407 		ret = -ENOMEM;
3408 		goto unlock;
3409 	}
3410 	new->size = size;
3411 
3412 	/* Copy thresholds (if any) to new array */
3413 	if (thresholds->primary) {
3414 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3415 				sizeof(struct mem_cgroup_threshold));
3416 	}
3417 
3418 	/* Add new threshold */
3419 	new->entries[size - 1].eventfd = eventfd;
3420 	new->entries[size - 1].threshold = threshold;
3421 
3422 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3423 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3424 			compare_thresholds, NULL);
3425 
3426 	/* Find current threshold */
3427 	new->current_threshold = -1;
3428 	for (i = 0; i < size; i++) {
3429 		if (new->entries[i].threshold <= usage) {
3430 			/*
3431 			 * new->current_threshold will not be used until
3432 			 * rcu_assign_pointer(), so it's safe to increment
3433 			 * it here.
3434 			 */
3435 			++new->current_threshold;
3436 		} else
3437 			break;
3438 	}
3439 
3440 	/* Free old spare buffer and save old primary buffer as spare */
3441 	kfree(thresholds->spare);
3442 	thresholds->spare = thresholds->primary;
3443 
3444 	rcu_assign_pointer(thresholds->primary, new);
3445 
3446 	/* To be sure that nobody uses thresholds */
3447 	synchronize_rcu();
3448 
3449 unlock:
3450 	mutex_unlock(&memcg->thresholds_lock);
3451 
3452 	return ret;
3453 }
3454 
3455 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 	struct eventfd_ctx *eventfd, const char *args)
3457 {
3458 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3459 }
3460 
3461 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 	struct eventfd_ctx *eventfd, const char *args)
3463 {
3464 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3465 }
3466 
3467 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3468 	struct eventfd_ctx *eventfd, enum res_type type)
3469 {
3470 	struct mem_cgroup_thresholds *thresholds;
3471 	struct mem_cgroup_threshold_ary *new;
3472 	unsigned long usage;
3473 	int i, j, size;
3474 
3475 	mutex_lock(&memcg->thresholds_lock);
3476 
3477 	if (type == _MEM) {
3478 		thresholds = &memcg->thresholds;
3479 		usage = mem_cgroup_usage(memcg, false);
3480 	} else if (type == _MEMSWAP) {
3481 		thresholds = &memcg->memsw_thresholds;
3482 		usage = mem_cgroup_usage(memcg, true);
3483 	} else
3484 		BUG();
3485 
3486 	if (!thresholds->primary)
3487 		goto unlock;
3488 
3489 	/* Check if a threshold crossed before removing */
3490 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3491 
3492 	/* Calculate new number of threshold */
3493 	size = 0;
3494 	for (i = 0; i < thresholds->primary->size; i++) {
3495 		if (thresholds->primary->entries[i].eventfd != eventfd)
3496 			size++;
3497 	}
3498 
3499 	new = thresholds->spare;
3500 
3501 	/* Set thresholds array to NULL if we don't have thresholds */
3502 	if (!size) {
3503 		kfree(new);
3504 		new = NULL;
3505 		goto swap_buffers;
3506 	}
3507 
3508 	new->size = size;
3509 
3510 	/* Copy thresholds and find current threshold */
3511 	new->current_threshold = -1;
3512 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3513 		if (thresholds->primary->entries[i].eventfd == eventfd)
3514 			continue;
3515 
3516 		new->entries[j] = thresholds->primary->entries[i];
3517 		if (new->entries[j].threshold <= usage) {
3518 			/*
3519 			 * new->current_threshold will not be used
3520 			 * until rcu_assign_pointer(), so it's safe to increment
3521 			 * it here.
3522 			 */
3523 			++new->current_threshold;
3524 		}
3525 		j++;
3526 	}
3527 
3528 swap_buffers:
3529 	/* Swap primary and spare array */
3530 	thresholds->spare = thresholds->primary;
3531 
3532 	rcu_assign_pointer(thresholds->primary, new);
3533 
3534 	/* To be sure that nobody uses thresholds */
3535 	synchronize_rcu();
3536 
3537 	/* If all events are unregistered, free the spare array */
3538 	if (!new) {
3539 		kfree(thresholds->spare);
3540 		thresholds->spare = NULL;
3541 	}
3542 unlock:
3543 	mutex_unlock(&memcg->thresholds_lock);
3544 }
3545 
3546 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3547 	struct eventfd_ctx *eventfd)
3548 {
3549 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3550 }
3551 
3552 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3553 	struct eventfd_ctx *eventfd)
3554 {
3555 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3556 }
3557 
3558 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3559 	struct eventfd_ctx *eventfd, const char *args)
3560 {
3561 	struct mem_cgroup_eventfd_list *event;
3562 
3563 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3564 	if (!event)
3565 		return -ENOMEM;
3566 
3567 	spin_lock(&memcg_oom_lock);
3568 
3569 	event->eventfd = eventfd;
3570 	list_add(&event->list, &memcg->oom_notify);
3571 
3572 	/* already in OOM ? */
3573 	if (memcg->under_oom)
3574 		eventfd_signal(eventfd, 1);
3575 	spin_unlock(&memcg_oom_lock);
3576 
3577 	return 0;
3578 }
3579 
3580 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3581 	struct eventfd_ctx *eventfd)
3582 {
3583 	struct mem_cgroup_eventfd_list *ev, *tmp;
3584 
3585 	spin_lock(&memcg_oom_lock);
3586 
3587 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3588 		if (ev->eventfd == eventfd) {
3589 			list_del(&ev->list);
3590 			kfree(ev);
3591 		}
3592 	}
3593 
3594 	spin_unlock(&memcg_oom_lock);
3595 }
3596 
3597 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3598 {
3599 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3600 
3601 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3602 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3603 	return 0;
3604 }
3605 
3606 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3607 	struct cftype *cft, u64 val)
3608 {
3609 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3610 
3611 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3612 	if (!css->parent || !((val == 0) || (val == 1)))
3613 		return -EINVAL;
3614 
3615 	memcg->oom_kill_disable = val;
3616 	if (!val)
3617 		memcg_oom_recover(memcg);
3618 
3619 	return 0;
3620 }
3621 
3622 #ifdef CONFIG_CGROUP_WRITEBACK
3623 
3624 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3625 {
3626 	return &memcg->cgwb_list;
3627 }
3628 
3629 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3630 {
3631 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3632 }
3633 
3634 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3635 {
3636 	wb_domain_exit(&memcg->cgwb_domain);
3637 }
3638 
3639 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3640 {
3641 	wb_domain_size_changed(&memcg->cgwb_domain);
3642 }
3643 
3644 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3645 {
3646 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 
3648 	if (!memcg->css.parent)
3649 		return NULL;
3650 
3651 	return &memcg->cgwb_domain;
3652 }
3653 
3654 /**
3655  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3656  * @wb: bdi_writeback in question
3657  * @pfilepages: out parameter for number of file pages
3658  * @pheadroom: out parameter for number of allocatable pages according to memcg
3659  * @pdirty: out parameter for number of dirty pages
3660  * @pwriteback: out parameter for number of pages under writeback
3661  *
3662  * Determine the numbers of file, headroom, dirty, and writeback pages in
3663  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3664  * is a bit more involved.
3665  *
3666  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3667  * headroom is calculated as the lowest headroom of itself and the
3668  * ancestors.  Note that this doesn't consider the actual amount of
3669  * available memory in the system.  The caller should further cap
3670  * *@pheadroom accordingly.
3671  */
3672 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3673 			 unsigned long *pheadroom, unsigned long *pdirty,
3674 			 unsigned long *pwriteback)
3675 {
3676 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3677 	struct mem_cgroup *parent;
3678 
3679 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3680 
3681 	/* this should eventually include NR_UNSTABLE_NFS */
3682 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3683 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3684 						     (1 << LRU_ACTIVE_FILE));
3685 	*pheadroom = PAGE_COUNTER_MAX;
3686 
3687 	while ((parent = parent_mem_cgroup(memcg))) {
3688 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3689 		unsigned long used = page_counter_read(&memcg->memory);
3690 
3691 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3692 		memcg = parent;
3693 	}
3694 }
3695 
3696 #else	/* CONFIG_CGROUP_WRITEBACK */
3697 
3698 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3699 {
3700 	return 0;
3701 }
3702 
3703 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3704 {
3705 }
3706 
3707 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3708 {
3709 }
3710 
3711 #endif	/* CONFIG_CGROUP_WRITEBACK */
3712 
3713 /*
3714  * DO NOT USE IN NEW FILES.
3715  *
3716  * "cgroup.event_control" implementation.
3717  *
3718  * This is way over-engineered.  It tries to support fully configurable
3719  * events for each user.  Such level of flexibility is completely
3720  * unnecessary especially in the light of the planned unified hierarchy.
3721  *
3722  * Please deprecate this and replace with something simpler if at all
3723  * possible.
3724  */
3725 
3726 /*
3727  * Unregister event and free resources.
3728  *
3729  * Gets called from workqueue.
3730  */
3731 static void memcg_event_remove(struct work_struct *work)
3732 {
3733 	struct mem_cgroup_event *event =
3734 		container_of(work, struct mem_cgroup_event, remove);
3735 	struct mem_cgroup *memcg = event->memcg;
3736 
3737 	remove_wait_queue(event->wqh, &event->wait);
3738 
3739 	event->unregister_event(memcg, event->eventfd);
3740 
3741 	/* Notify userspace the event is going away. */
3742 	eventfd_signal(event->eventfd, 1);
3743 
3744 	eventfd_ctx_put(event->eventfd);
3745 	kfree(event);
3746 	css_put(&memcg->css);
3747 }
3748 
3749 /*
3750  * Gets called on POLLHUP on eventfd when user closes it.
3751  *
3752  * Called with wqh->lock held and interrupts disabled.
3753  */
3754 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3755 			    int sync, void *key)
3756 {
3757 	struct mem_cgroup_event *event =
3758 		container_of(wait, struct mem_cgroup_event, wait);
3759 	struct mem_cgroup *memcg = event->memcg;
3760 	unsigned long flags = (unsigned long)key;
3761 
3762 	if (flags & POLLHUP) {
3763 		/*
3764 		 * If the event has been detached at cgroup removal, we
3765 		 * can simply return knowing the other side will cleanup
3766 		 * for us.
3767 		 *
3768 		 * We can't race against event freeing since the other
3769 		 * side will require wqh->lock via remove_wait_queue(),
3770 		 * which we hold.
3771 		 */
3772 		spin_lock(&memcg->event_list_lock);
3773 		if (!list_empty(&event->list)) {
3774 			list_del_init(&event->list);
3775 			/*
3776 			 * We are in atomic context, but cgroup_event_remove()
3777 			 * may sleep, so we have to call it in workqueue.
3778 			 */
3779 			schedule_work(&event->remove);
3780 		}
3781 		spin_unlock(&memcg->event_list_lock);
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 static void memcg_event_ptable_queue_proc(struct file *file,
3788 		wait_queue_head_t *wqh, poll_table *pt)
3789 {
3790 	struct mem_cgroup_event *event =
3791 		container_of(pt, struct mem_cgroup_event, pt);
3792 
3793 	event->wqh = wqh;
3794 	add_wait_queue(wqh, &event->wait);
3795 }
3796 
3797 /*
3798  * DO NOT USE IN NEW FILES.
3799  *
3800  * Parse input and register new cgroup event handler.
3801  *
3802  * Input must be in format '<event_fd> <control_fd> <args>'.
3803  * Interpretation of args is defined by control file implementation.
3804  */
3805 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3806 					 char *buf, size_t nbytes, loff_t off)
3807 {
3808 	struct cgroup_subsys_state *css = of_css(of);
3809 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3810 	struct mem_cgroup_event *event;
3811 	struct cgroup_subsys_state *cfile_css;
3812 	unsigned int efd, cfd;
3813 	struct fd efile;
3814 	struct fd cfile;
3815 	const char *name;
3816 	char *endp;
3817 	int ret;
3818 
3819 	buf = strstrip(buf);
3820 
3821 	efd = simple_strtoul(buf, &endp, 10);
3822 	if (*endp != ' ')
3823 		return -EINVAL;
3824 	buf = endp + 1;
3825 
3826 	cfd = simple_strtoul(buf, &endp, 10);
3827 	if ((*endp != ' ') && (*endp != '\0'))
3828 		return -EINVAL;
3829 	buf = endp + 1;
3830 
3831 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3832 	if (!event)
3833 		return -ENOMEM;
3834 
3835 	event->memcg = memcg;
3836 	INIT_LIST_HEAD(&event->list);
3837 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3838 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3839 	INIT_WORK(&event->remove, memcg_event_remove);
3840 
3841 	efile = fdget(efd);
3842 	if (!efile.file) {
3843 		ret = -EBADF;
3844 		goto out_kfree;
3845 	}
3846 
3847 	event->eventfd = eventfd_ctx_fileget(efile.file);
3848 	if (IS_ERR(event->eventfd)) {
3849 		ret = PTR_ERR(event->eventfd);
3850 		goto out_put_efile;
3851 	}
3852 
3853 	cfile = fdget(cfd);
3854 	if (!cfile.file) {
3855 		ret = -EBADF;
3856 		goto out_put_eventfd;
3857 	}
3858 
3859 	/* the process need read permission on control file */
3860 	/* AV: shouldn't we check that it's been opened for read instead? */
3861 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3862 	if (ret < 0)
3863 		goto out_put_cfile;
3864 
3865 	/*
3866 	 * Determine the event callbacks and set them in @event.  This used
3867 	 * to be done via struct cftype but cgroup core no longer knows
3868 	 * about these events.  The following is crude but the whole thing
3869 	 * is for compatibility anyway.
3870 	 *
3871 	 * DO NOT ADD NEW FILES.
3872 	 */
3873 	name = cfile.file->f_path.dentry->d_name.name;
3874 
3875 	if (!strcmp(name, "memory.usage_in_bytes")) {
3876 		event->register_event = mem_cgroup_usage_register_event;
3877 		event->unregister_event = mem_cgroup_usage_unregister_event;
3878 	} else if (!strcmp(name, "memory.oom_control")) {
3879 		event->register_event = mem_cgroup_oom_register_event;
3880 		event->unregister_event = mem_cgroup_oom_unregister_event;
3881 	} else if (!strcmp(name, "memory.pressure_level")) {
3882 		event->register_event = vmpressure_register_event;
3883 		event->unregister_event = vmpressure_unregister_event;
3884 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3885 		event->register_event = memsw_cgroup_usage_register_event;
3886 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3887 	} else {
3888 		ret = -EINVAL;
3889 		goto out_put_cfile;
3890 	}
3891 
3892 	/*
3893 	 * Verify @cfile should belong to @css.  Also, remaining events are
3894 	 * automatically removed on cgroup destruction but the removal is
3895 	 * asynchronous, so take an extra ref on @css.
3896 	 */
3897 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3898 					       &memory_cgrp_subsys);
3899 	ret = -EINVAL;
3900 	if (IS_ERR(cfile_css))
3901 		goto out_put_cfile;
3902 	if (cfile_css != css) {
3903 		css_put(cfile_css);
3904 		goto out_put_cfile;
3905 	}
3906 
3907 	ret = event->register_event(memcg, event->eventfd, buf);
3908 	if (ret)
3909 		goto out_put_css;
3910 
3911 	efile.file->f_op->poll(efile.file, &event->pt);
3912 
3913 	spin_lock(&memcg->event_list_lock);
3914 	list_add(&event->list, &memcg->event_list);
3915 	spin_unlock(&memcg->event_list_lock);
3916 
3917 	fdput(cfile);
3918 	fdput(efile);
3919 
3920 	return nbytes;
3921 
3922 out_put_css:
3923 	css_put(css);
3924 out_put_cfile:
3925 	fdput(cfile);
3926 out_put_eventfd:
3927 	eventfd_ctx_put(event->eventfd);
3928 out_put_efile:
3929 	fdput(efile);
3930 out_kfree:
3931 	kfree(event);
3932 
3933 	return ret;
3934 }
3935 
3936 static struct cftype mem_cgroup_legacy_files[] = {
3937 	{
3938 		.name = "usage_in_bytes",
3939 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3940 		.read_u64 = mem_cgroup_read_u64,
3941 	},
3942 	{
3943 		.name = "max_usage_in_bytes",
3944 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3945 		.write = mem_cgroup_reset,
3946 		.read_u64 = mem_cgroup_read_u64,
3947 	},
3948 	{
3949 		.name = "limit_in_bytes",
3950 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3951 		.write = mem_cgroup_write,
3952 		.read_u64 = mem_cgroup_read_u64,
3953 	},
3954 	{
3955 		.name = "soft_limit_in_bytes",
3956 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3957 		.write = mem_cgroup_write,
3958 		.read_u64 = mem_cgroup_read_u64,
3959 	},
3960 	{
3961 		.name = "failcnt",
3962 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3963 		.write = mem_cgroup_reset,
3964 		.read_u64 = mem_cgroup_read_u64,
3965 	},
3966 	{
3967 		.name = "stat",
3968 		.seq_show = memcg_stat_show,
3969 	},
3970 	{
3971 		.name = "force_empty",
3972 		.write = mem_cgroup_force_empty_write,
3973 	},
3974 	{
3975 		.name = "use_hierarchy",
3976 		.write_u64 = mem_cgroup_hierarchy_write,
3977 		.read_u64 = mem_cgroup_hierarchy_read,
3978 	},
3979 	{
3980 		.name = "cgroup.event_control",		/* XXX: for compat */
3981 		.write = memcg_write_event_control,
3982 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3983 	},
3984 	{
3985 		.name = "swappiness",
3986 		.read_u64 = mem_cgroup_swappiness_read,
3987 		.write_u64 = mem_cgroup_swappiness_write,
3988 	},
3989 	{
3990 		.name = "move_charge_at_immigrate",
3991 		.read_u64 = mem_cgroup_move_charge_read,
3992 		.write_u64 = mem_cgroup_move_charge_write,
3993 	},
3994 	{
3995 		.name = "oom_control",
3996 		.seq_show = mem_cgroup_oom_control_read,
3997 		.write_u64 = mem_cgroup_oom_control_write,
3998 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3999 	},
4000 	{
4001 		.name = "pressure_level",
4002 	},
4003 #ifdef CONFIG_NUMA
4004 	{
4005 		.name = "numa_stat",
4006 		.seq_show = memcg_numa_stat_show,
4007 	},
4008 #endif
4009 	{
4010 		.name = "kmem.limit_in_bytes",
4011 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4012 		.write = mem_cgroup_write,
4013 		.read_u64 = mem_cgroup_read_u64,
4014 	},
4015 	{
4016 		.name = "kmem.usage_in_bytes",
4017 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4018 		.read_u64 = mem_cgroup_read_u64,
4019 	},
4020 	{
4021 		.name = "kmem.failcnt",
4022 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4023 		.write = mem_cgroup_reset,
4024 		.read_u64 = mem_cgroup_read_u64,
4025 	},
4026 	{
4027 		.name = "kmem.max_usage_in_bytes",
4028 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4029 		.write = mem_cgroup_reset,
4030 		.read_u64 = mem_cgroup_read_u64,
4031 	},
4032 #ifdef CONFIG_SLABINFO
4033 	{
4034 		.name = "kmem.slabinfo",
4035 		.seq_start = slab_start,
4036 		.seq_next = slab_next,
4037 		.seq_stop = slab_stop,
4038 		.seq_show = memcg_slab_show,
4039 	},
4040 #endif
4041 	{
4042 		.name = "kmem.tcp.limit_in_bytes",
4043 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4044 		.write = mem_cgroup_write,
4045 		.read_u64 = mem_cgroup_read_u64,
4046 	},
4047 	{
4048 		.name = "kmem.tcp.usage_in_bytes",
4049 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4050 		.read_u64 = mem_cgroup_read_u64,
4051 	},
4052 	{
4053 		.name = "kmem.tcp.failcnt",
4054 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4055 		.write = mem_cgroup_reset,
4056 		.read_u64 = mem_cgroup_read_u64,
4057 	},
4058 	{
4059 		.name = "kmem.tcp.max_usage_in_bytes",
4060 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4061 		.write = mem_cgroup_reset,
4062 		.read_u64 = mem_cgroup_read_u64,
4063 	},
4064 	{ },	/* terminate */
4065 };
4066 
4067 /*
4068  * Private memory cgroup IDR
4069  *
4070  * Swap-out records and page cache shadow entries need to store memcg
4071  * references in constrained space, so we maintain an ID space that is
4072  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4073  * memory-controlled cgroups to 64k.
4074  *
4075  * However, there usually are many references to the oflline CSS after
4076  * the cgroup has been destroyed, such as page cache or reclaimable
4077  * slab objects, that don't need to hang on to the ID. We want to keep
4078  * those dead CSS from occupying IDs, or we might quickly exhaust the
4079  * relatively small ID space and prevent the creation of new cgroups
4080  * even when there are much fewer than 64k cgroups - possibly none.
4081  *
4082  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4083  * be freed and recycled when it's no longer needed, which is usually
4084  * when the CSS is offlined.
4085  *
4086  * The only exception to that are records of swapped out tmpfs/shmem
4087  * pages that need to be attributed to live ancestors on swapin. But
4088  * those references are manageable from userspace.
4089  */
4090 
4091 static DEFINE_IDR(mem_cgroup_idr);
4092 
4093 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4094 {
4095 	atomic_add(n, &memcg->id.ref);
4096 }
4097 
4098 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4099 {
4100 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4101 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4102 		memcg->id.id = 0;
4103 
4104 		/* Memcg ID pins CSS */
4105 		css_put(&memcg->css);
4106 	}
4107 }
4108 
4109 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4110 {
4111 	mem_cgroup_id_get_many(memcg, 1);
4112 }
4113 
4114 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4115 {
4116 	mem_cgroup_id_put_many(memcg, 1);
4117 }
4118 
4119 /**
4120  * mem_cgroup_from_id - look up a memcg from a memcg id
4121  * @id: the memcg id to look up
4122  *
4123  * Caller must hold rcu_read_lock().
4124  */
4125 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4126 {
4127 	WARN_ON_ONCE(!rcu_read_lock_held());
4128 	return idr_find(&mem_cgroup_idr, id);
4129 }
4130 
4131 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4132 {
4133 	struct mem_cgroup_per_node *pn;
4134 	int tmp = node;
4135 	/*
4136 	 * This routine is called against possible nodes.
4137 	 * But it's BUG to call kmalloc() against offline node.
4138 	 *
4139 	 * TODO: this routine can waste much memory for nodes which will
4140 	 *       never be onlined. It's better to use memory hotplug callback
4141 	 *       function.
4142 	 */
4143 	if (!node_state(node, N_NORMAL_MEMORY))
4144 		tmp = -1;
4145 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4146 	if (!pn)
4147 		return 1;
4148 
4149 	lruvec_init(&pn->lruvec);
4150 	pn->usage_in_excess = 0;
4151 	pn->on_tree = false;
4152 	pn->memcg = memcg;
4153 
4154 	memcg->nodeinfo[node] = pn;
4155 	return 0;
4156 }
4157 
4158 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4159 {
4160 	kfree(memcg->nodeinfo[node]);
4161 }
4162 
4163 static void mem_cgroup_free(struct mem_cgroup *memcg)
4164 {
4165 	int node;
4166 
4167 	memcg_wb_domain_exit(memcg);
4168 	for_each_node(node)
4169 		free_mem_cgroup_per_node_info(memcg, node);
4170 	free_percpu(memcg->stat);
4171 	kfree(memcg);
4172 }
4173 
4174 static struct mem_cgroup *mem_cgroup_alloc(void)
4175 {
4176 	struct mem_cgroup *memcg;
4177 	size_t size;
4178 	int node;
4179 
4180 	size = sizeof(struct mem_cgroup);
4181 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4182 
4183 	memcg = kzalloc(size, GFP_KERNEL);
4184 	if (!memcg)
4185 		return NULL;
4186 
4187 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4188 				 1, MEM_CGROUP_ID_MAX,
4189 				 GFP_KERNEL);
4190 	if (memcg->id.id < 0)
4191 		goto fail;
4192 
4193 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4194 	if (!memcg->stat)
4195 		goto fail;
4196 
4197 	for_each_node(node)
4198 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4199 			goto fail;
4200 
4201 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4202 		goto fail;
4203 
4204 	INIT_WORK(&memcg->high_work, high_work_func);
4205 	memcg->last_scanned_node = MAX_NUMNODES;
4206 	INIT_LIST_HEAD(&memcg->oom_notify);
4207 	mutex_init(&memcg->thresholds_lock);
4208 	spin_lock_init(&memcg->move_lock);
4209 	vmpressure_init(&memcg->vmpressure);
4210 	INIT_LIST_HEAD(&memcg->event_list);
4211 	spin_lock_init(&memcg->event_list_lock);
4212 	memcg->socket_pressure = jiffies;
4213 #ifndef CONFIG_SLOB
4214 	memcg->kmemcg_id = -1;
4215 #endif
4216 #ifdef CONFIG_CGROUP_WRITEBACK
4217 	INIT_LIST_HEAD(&memcg->cgwb_list);
4218 #endif
4219 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4220 	return memcg;
4221 fail:
4222 	if (memcg->id.id > 0)
4223 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4224 	mem_cgroup_free(memcg);
4225 	return NULL;
4226 }
4227 
4228 static struct cgroup_subsys_state * __ref
4229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4230 {
4231 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4232 	struct mem_cgroup *memcg;
4233 	long error = -ENOMEM;
4234 
4235 	memcg = mem_cgroup_alloc();
4236 	if (!memcg)
4237 		return ERR_PTR(error);
4238 
4239 	memcg->high = PAGE_COUNTER_MAX;
4240 	memcg->soft_limit = PAGE_COUNTER_MAX;
4241 	if (parent) {
4242 		memcg->swappiness = mem_cgroup_swappiness(parent);
4243 		memcg->oom_kill_disable = parent->oom_kill_disable;
4244 	}
4245 	if (parent && parent->use_hierarchy) {
4246 		memcg->use_hierarchy = true;
4247 		page_counter_init(&memcg->memory, &parent->memory);
4248 		page_counter_init(&memcg->swap, &parent->swap);
4249 		page_counter_init(&memcg->memsw, &parent->memsw);
4250 		page_counter_init(&memcg->kmem, &parent->kmem);
4251 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4252 	} else {
4253 		page_counter_init(&memcg->memory, NULL);
4254 		page_counter_init(&memcg->swap, NULL);
4255 		page_counter_init(&memcg->memsw, NULL);
4256 		page_counter_init(&memcg->kmem, NULL);
4257 		page_counter_init(&memcg->tcpmem, NULL);
4258 		/*
4259 		 * Deeper hierachy with use_hierarchy == false doesn't make
4260 		 * much sense so let cgroup subsystem know about this
4261 		 * unfortunate state in our controller.
4262 		 */
4263 		if (parent != root_mem_cgroup)
4264 			memory_cgrp_subsys.broken_hierarchy = true;
4265 	}
4266 
4267 	/* The following stuff does not apply to the root */
4268 	if (!parent) {
4269 		root_mem_cgroup = memcg;
4270 		return &memcg->css;
4271 	}
4272 
4273 	error = memcg_online_kmem(memcg);
4274 	if (error)
4275 		goto fail;
4276 
4277 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4278 		static_branch_inc(&memcg_sockets_enabled_key);
4279 
4280 	return &memcg->css;
4281 fail:
4282 	mem_cgroup_free(memcg);
4283 	return ERR_PTR(-ENOMEM);
4284 }
4285 
4286 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4287 {
4288 	/* Online state pins memcg ID, memcg ID pins CSS */
4289 	mem_cgroup_id_get(mem_cgroup_from_css(css));
4290 	css_get(css);
4291 	return 0;
4292 }
4293 
4294 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4295 {
4296 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4297 	struct mem_cgroup_event *event, *tmp;
4298 
4299 	/*
4300 	 * Unregister events and notify userspace.
4301 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4302 	 * directory to avoid race between userspace and kernelspace.
4303 	 */
4304 	spin_lock(&memcg->event_list_lock);
4305 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4306 		list_del_init(&event->list);
4307 		schedule_work(&event->remove);
4308 	}
4309 	spin_unlock(&memcg->event_list_lock);
4310 
4311 	memcg_offline_kmem(memcg);
4312 	wb_memcg_offline(memcg);
4313 
4314 	mem_cgroup_id_put(memcg);
4315 }
4316 
4317 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4318 {
4319 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320 
4321 	invalidate_reclaim_iterators(memcg);
4322 }
4323 
4324 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4325 {
4326 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327 
4328 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4329 		static_branch_dec(&memcg_sockets_enabled_key);
4330 
4331 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4332 		static_branch_dec(&memcg_sockets_enabled_key);
4333 
4334 	vmpressure_cleanup(&memcg->vmpressure);
4335 	cancel_work_sync(&memcg->high_work);
4336 	mem_cgroup_remove_from_trees(memcg);
4337 	memcg_free_kmem(memcg);
4338 	mem_cgroup_free(memcg);
4339 }
4340 
4341 /**
4342  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4343  * @css: the target css
4344  *
4345  * Reset the states of the mem_cgroup associated with @css.  This is
4346  * invoked when the userland requests disabling on the default hierarchy
4347  * but the memcg is pinned through dependency.  The memcg should stop
4348  * applying policies and should revert to the vanilla state as it may be
4349  * made visible again.
4350  *
4351  * The current implementation only resets the essential configurations.
4352  * This needs to be expanded to cover all the visible parts.
4353  */
4354 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4355 {
4356 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357 
4358 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4359 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4360 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4361 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4362 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4363 	memcg->low = 0;
4364 	memcg->high = PAGE_COUNTER_MAX;
4365 	memcg->soft_limit = PAGE_COUNTER_MAX;
4366 	memcg_wb_domain_size_changed(memcg);
4367 }
4368 
4369 #ifdef CONFIG_MMU
4370 /* Handlers for move charge at task migration. */
4371 static int mem_cgroup_do_precharge(unsigned long count)
4372 {
4373 	int ret;
4374 
4375 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4376 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4377 	if (!ret) {
4378 		mc.precharge += count;
4379 		return ret;
4380 	}
4381 
4382 	/* Try charges one by one with reclaim */
4383 	while (count--) {
4384 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4385 		if (ret)
4386 			return ret;
4387 		mc.precharge++;
4388 		cond_resched();
4389 	}
4390 	return 0;
4391 }
4392 
4393 union mc_target {
4394 	struct page	*page;
4395 	swp_entry_t	ent;
4396 };
4397 
4398 enum mc_target_type {
4399 	MC_TARGET_NONE = 0,
4400 	MC_TARGET_PAGE,
4401 	MC_TARGET_SWAP,
4402 };
4403 
4404 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4405 						unsigned long addr, pte_t ptent)
4406 {
4407 	struct page *page = vm_normal_page(vma, addr, ptent);
4408 
4409 	if (!page || !page_mapped(page))
4410 		return NULL;
4411 	if (PageAnon(page)) {
4412 		if (!(mc.flags & MOVE_ANON))
4413 			return NULL;
4414 	} else {
4415 		if (!(mc.flags & MOVE_FILE))
4416 			return NULL;
4417 	}
4418 	if (!get_page_unless_zero(page))
4419 		return NULL;
4420 
4421 	return page;
4422 }
4423 
4424 #ifdef CONFIG_SWAP
4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426 			pte_t ptent, swp_entry_t *entry)
4427 {
4428 	struct page *page = NULL;
4429 	swp_entry_t ent = pte_to_swp_entry(ptent);
4430 
4431 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4432 		return NULL;
4433 	/*
4434 	 * Because lookup_swap_cache() updates some statistics counter,
4435 	 * we call find_get_page() with swapper_space directly.
4436 	 */
4437 	page = find_get_page(swap_address_space(ent), ent.val);
4438 	if (do_memsw_account())
4439 		entry->val = ent.val;
4440 
4441 	return page;
4442 }
4443 #else
4444 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4445 			pte_t ptent, swp_entry_t *entry)
4446 {
4447 	return NULL;
4448 }
4449 #endif
4450 
4451 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4452 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4453 {
4454 	struct page *page = NULL;
4455 	struct address_space *mapping;
4456 	pgoff_t pgoff;
4457 
4458 	if (!vma->vm_file) /* anonymous vma */
4459 		return NULL;
4460 	if (!(mc.flags & MOVE_FILE))
4461 		return NULL;
4462 
4463 	mapping = vma->vm_file->f_mapping;
4464 	pgoff = linear_page_index(vma, addr);
4465 
4466 	/* page is moved even if it's not RSS of this task(page-faulted). */
4467 #ifdef CONFIG_SWAP
4468 	/* shmem/tmpfs may report page out on swap: account for that too. */
4469 	if (shmem_mapping(mapping)) {
4470 		page = find_get_entry(mapping, pgoff);
4471 		if (radix_tree_exceptional_entry(page)) {
4472 			swp_entry_t swp = radix_to_swp_entry(page);
4473 			if (do_memsw_account())
4474 				*entry = swp;
4475 			page = find_get_page(swap_address_space(swp), swp.val);
4476 		}
4477 	} else
4478 		page = find_get_page(mapping, pgoff);
4479 #else
4480 	page = find_get_page(mapping, pgoff);
4481 #endif
4482 	return page;
4483 }
4484 
4485 /**
4486  * mem_cgroup_move_account - move account of the page
4487  * @page: the page
4488  * @compound: charge the page as compound or small page
4489  * @from: mem_cgroup which the page is moved from.
4490  * @to:	mem_cgroup which the page is moved to. @from != @to.
4491  *
4492  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4493  *
4494  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4495  * from old cgroup.
4496  */
4497 static int mem_cgroup_move_account(struct page *page,
4498 				   bool compound,
4499 				   struct mem_cgroup *from,
4500 				   struct mem_cgroup *to)
4501 {
4502 	unsigned long flags;
4503 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4504 	int ret;
4505 	bool anon;
4506 
4507 	VM_BUG_ON(from == to);
4508 	VM_BUG_ON_PAGE(PageLRU(page), page);
4509 	VM_BUG_ON(compound && !PageTransHuge(page));
4510 
4511 	/*
4512 	 * Prevent mem_cgroup_migrate() from looking at
4513 	 * page->mem_cgroup of its source page while we change it.
4514 	 */
4515 	ret = -EBUSY;
4516 	if (!trylock_page(page))
4517 		goto out;
4518 
4519 	ret = -EINVAL;
4520 	if (page->mem_cgroup != from)
4521 		goto out_unlock;
4522 
4523 	anon = PageAnon(page);
4524 
4525 	spin_lock_irqsave(&from->move_lock, flags);
4526 
4527 	if (!anon && page_mapped(page)) {
4528 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4529 			       nr_pages);
4530 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4531 			       nr_pages);
4532 	}
4533 
4534 	/*
4535 	 * move_lock grabbed above and caller set from->moving_account, so
4536 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4537 	 * So mapping should be stable for dirty pages.
4538 	 */
4539 	if (!anon && PageDirty(page)) {
4540 		struct address_space *mapping = page_mapping(page);
4541 
4542 		if (mapping_cap_account_dirty(mapping)) {
4543 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4544 				       nr_pages);
4545 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4546 				       nr_pages);
4547 		}
4548 	}
4549 
4550 	if (PageWriteback(page)) {
4551 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4552 			       nr_pages);
4553 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4554 			       nr_pages);
4555 	}
4556 
4557 	/*
4558 	 * It is safe to change page->mem_cgroup here because the page
4559 	 * is referenced, charged, and isolated - we can't race with
4560 	 * uncharging, charging, migration, or LRU putback.
4561 	 */
4562 
4563 	/* caller should have done css_get */
4564 	page->mem_cgroup = to;
4565 	spin_unlock_irqrestore(&from->move_lock, flags);
4566 
4567 	ret = 0;
4568 
4569 	local_irq_disable();
4570 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4571 	memcg_check_events(to, page);
4572 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4573 	memcg_check_events(from, page);
4574 	local_irq_enable();
4575 out_unlock:
4576 	unlock_page(page);
4577 out:
4578 	return ret;
4579 }
4580 
4581 /**
4582  * get_mctgt_type - get target type of moving charge
4583  * @vma: the vma the pte to be checked belongs
4584  * @addr: the address corresponding to the pte to be checked
4585  * @ptent: the pte to be checked
4586  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4587  *
4588  * Returns
4589  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4590  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4591  *     move charge. if @target is not NULL, the page is stored in target->page
4592  *     with extra refcnt got(Callers should handle it).
4593  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4594  *     target for charge migration. if @target is not NULL, the entry is stored
4595  *     in target->ent.
4596  *
4597  * Called with pte lock held.
4598  */
4599 
4600 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4601 		unsigned long addr, pte_t ptent, union mc_target *target)
4602 {
4603 	struct page *page = NULL;
4604 	enum mc_target_type ret = MC_TARGET_NONE;
4605 	swp_entry_t ent = { .val = 0 };
4606 
4607 	if (pte_present(ptent))
4608 		page = mc_handle_present_pte(vma, addr, ptent);
4609 	else if (is_swap_pte(ptent))
4610 		page = mc_handle_swap_pte(vma, ptent, &ent);
4611 	else if (pte_none(ptent))
4612 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4613 
4614 	if (!page && !ent.val)
4615 		return ret;
4616 	if (page) {
4617 		/*
4618 		 * Do only loose check w/o serialization.
4619 		 * mem_cgroup_move_account() checks the page is valid or
4620 		 * not under LRU exclusion.
4621 		 */
4622 		if (page->mem_cgroup == mc.from) {
4623 			ret = MC_TARGET_PAGE;
4624 			if (target)
4625 				target->page = page;
4626 		}
4627 		if (!ret || !target)
4628 			put_page(page);
4629 	}
4630 	/* There is a swap entry and a page doesn't exist or isn't charged */
4631 	if (ent.val && !ret &&
4632 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4633 		ret = MC_TARGET_SWAP;
4634 		if (target)
4635 			target->ent = ent;
4636 	}
4637 	return ret;
4638 }
4639 
4640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4641 /*
4642  * We don't consider swapping or file mapped pages because THP does not
4643  * support them for now.
4644  * Caller should make sure that pmd_trans_huge(pmd) is true.
4645  */
4646 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647 		unsigned long addr, pmd_t pmd, union mc_target *target)
4648 {
4649 	struct page *page = NULL;
4650 	enum mc_target_type ret = MC_TARGET_NONE;
4651 
4652 	page = pmd_page(pmd);
4653 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4654 	if (!(mc.flags & MOVE_ANON))
4655 		return ret;
4656 	if (page->mem_cgroup == mc.from) {
4657 		ret = MC_TARGET_PAGE;
4658 		if (target) {
4659 			get_page(page);
4660 			target->page = page;
4661 		}
4662 	}
4663 	return ret;
4664 }
4665 #else
4666 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4667 		unsigned long addr, pmd_t pmd, union mc_target *target)
4668 {
4669 	return MC_TARGET_NONE;
4670 }
4671 #endif
4672 
4673 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4674 					unsigned long addr, unsigned long end,
4675 					struct mm_walk *walk)
4676 {
4677 	struct vm_area_struct *vma = walk->vma;
4678 	pte_t *pte;
4679 	spinlock_t *ptl;
4680 
4681 	ptl = pmd_trans_huge_lock(pmd, vma);
4682 	if (ptl) {
4683 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 			mc.precharge += HPAGE_PMD_NR;
4685 		spin_unlock(ptl);
4686 		return 0;
4687 	}
4688 
4689 	if (pmd_trans_unstable(pmd))
4690 		return 0;
4691 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 	for (; addr != end; pte++, addr += PAGE_SIZE)
4693 		if (get_mctgt_type(vma, addr, *pte, NULL))
4694 			mc.precharge++;	/* increment precharge temporarily */
4695 	pte_unmap_unlock(pte - 1, ptl);
4696 	cond_resched();
4697 
4698 	return 0;
4699 }
4700 
4701 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702 {
4703 	unsigned long precharge;
4704 
4705 	struct mm_walk mem_cgroup_count_precharge_walk = {
4706 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 		.mm = mm,
4708 	};
4709 	down_read(&mm->mmap_sem);
4710 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4711 	up_read(&mm->mmap_sem);
4712 
4713 	precharge = mc.precharge;
4714 	mc.precharge = 0;
4715 
4716 	return precharge;
4717 }
4718 
4719 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4720 {
4721 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4722 
4723 	VM_BUG_ON(mc.moving_task);
4724 	mc.moving_task = current;
4725 	return mem_cgroup_do_precharge(precharge);
4726 }
4727 
4728 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4729 static void __mem_cgroup_clear_mc(void)
4730 {
4731 	struct mem_cgroup *from = mc.from;
4732 	struct mem_cgroup *to = mc.to;
4733 
4734 	/* we must uncharge all the leftover precharges from mc.to */
4735 	if (mc.precharge) {
4736 		cancel_charge(mc.to, mc.precharge);
4737 		mc.precharge = 0;
4738 	}
4739 	/*
4740 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4741 	 * we must uncharge here.
4742 	 */
4743 	if (mc.moved_charge) {
4744 		cancel_charge(mc.from, mc.moved_charge);
4745 		mc.moved_charge = 0;
4746 	}
4747 	/* we must fixup refcnts and charges */
4748 	if (mc.moved_swap) {
4749 		/* uncharge swap account from the old cgroup */
4750 		if (!mem_cgroup_is_root(mc.from))
4751 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4752 
4753 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4754 
4755 		/*
4756 		 * we charged both to->memory and to->memsw, so we
4757 		 * should uncharge to->memory.
4758 		 */
4759 		if (!mem_cgroup_is_root(mc.to))
4760 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4761 
4762 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4763 		css_put_many(&mc.to->css, mc.moved_swap);
4764 
4765 		mc.moved_swap = 0;
4766 	}
4767 	memcg_oom_recover(from);
4768 	memcg_oom_recover(to);
4769 	wake_up_all(&mc.waitq);
4770 }
4771 
4772 static void mem_cgroup_clear_mc(void)
4773 {
4774 	struct mm_struct *mm = mc.mm;
4775 
4776 	/*
4777 	 * we must clear moving_task before waking up waiters at the end of
4778 	 * task migration.
4779 	 */
4780 	mc.moving_task = NULL;
4781 	__mem_cgroup_clear_mc();
4782 	spin_lock(&mc.lock);
4783 	mc.from = NULL;
4784 	mc.to = NULL;
4785 	mc.mm = NULL;
4786 	spin_unlock(&mc.lock);
4787 
4788 	mmput(mm);
4789 }
4790 
4791 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4792 {
4793 	struct cgroup_subsys_state *css;
4794 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4795 	struct mem_cgroup *from;
4796 	struct task_struct *leader, *p;
4797 	struct mm_struct *mm;
4798 	unsigned long move_flags;
4799 	int ret = 0;
4800 
4801 	/* charge immigration isn't supported on the default hierarchy */
4802 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4803 		return 0;
4804 
4805 	/*
4806 	 * Multi-process migrations only happen on the default hierarchy
4807 	 * where charge immigration is not used.  Perform charge
4808 	 * immigration if @tset contains a leader and whine if there are
4809 	 * multiple.
4810 	 */
4811 	p = NULL;
4812 	cgroup_taskset_for_each_leader(leader, css, tset) {
4813 		WARN_ON_ONCE(p);
4814 		p = leader;
4815 		memcg = mem_cgroup_from_css(css);
4816 	}
4817 	if (!p)
4818 		return 0;
4819 
4820 	/*
4821 	 * We are now commited to this value whatever it is. Changes in this
4822 	 * tunable will only affect upcoming migrations, not the current one.
4823 	 * So we need to save it, and keep it going.
4824 	 */
4825 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4826 	if (!move_flags)
4827 		return 0;
4828 
4829 	from = mem_cgroup_from_task(p);
4830 
4831 	VM_BUG_ON(from == memcg);
4832 
4833 	mm = get_task_mm(p);
4834 	if (!mm)
4835 		return 0;
4836 	/* We move charges only when we move a owner of the mm */
4837 	if (mm->owner == p) {
4838 		VM_BUG_ON(mc.from);
4839 		VM_BUG_ON(mc.to);
4840 		VM_BUG_ON(mc.precharge);
4841 		VM_BUG_ON(mc.moved_charge);
4842 		VM_BUG_ON(mc.moved_swap);
4843 
4844 		spin_lock(&mc.lock);
4845 		mc.mm = mm;
4846 		mc.from = from;
4847 		mc.to = memcg;
4848 		mc.flags = move_flags;
4849 		spin_unlock(&mc.lock);
4850 		/* We set mc.moving_task later */
4851 
4852 		ret = mem_cgroup_precharge_mc(mm);
4853 		if (ret)
4854 			mem_cgroup_clear_mc();
4855 	} else {
4856 		mmput(mm);
4857 	}
4858 	return ret;
4859 }
4860 
4861 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4862 {
4863 	if (mc.to)
4864 		mem_cgroup_clear_mc();
4865 }
4866 
4867 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4868 				unsigned long addr, unsigned long end,
4869 				struct mm_walk *walk)
4870 {
4871 	int ret = 0;
4872 	struct vm_area_struct *vma = walk->vma;
4873 	pte_t *pte;
4874 	spinlock_t *ptl;
4875 	enum mc_target_type target_type;
4876 	union mc_target target;
4877 	struct page *page;
4878 
4879 	ptl = pmd_trans_huge_lock(pmd, vma);
4880 	if (ptl) {
4881 		if (mc.precharge < HPAGE_PMD_NR) {
4882 			spin_unlock(ptl);
4883 			return 0;
4884 		}
4885 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4886 		if (target_type == MC_TARGET_PAGE) {
4887 			page = target.page;
4888 			if (!isolate_lru_page(page)) {
4889 				if (!mem_cgroup_move_account(page, true,
4890 							     mc.from, mc.to)) {
4891 					mc.precharge -= HPAGE_PMD_NR;
4892 					mc.moved_charge += HPAGE_PMD_NR;
4893 				}
4894 				putback_lru_page(page);
4895 			}
4896 			put_page(page);
4897 		}
4898 		spin_unlock(ptl);
4899 		return 0;
4900 	}
4901 
4902 	if (pmd_trans_unstable(pmd))
4903 		return 0;
4904 retry:
4905 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4906 	for (; addr != end; addr += PAGE_SIZE) {
4907 		pte_t ptent = *(pte++);
4908 		swp_entry_t ent;
4909 
4910 		if (!mc.precharge)
4911 			break;
4912 
4913 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4914 		case MC_TARGET_PAGE:
4915 			page = target.page;
4916 			/*
4917 			 * We can have a part of the split pmd here. Moving it
4918 			 * can be done but it would be too convoluted so simply
4919 			 * ignore such a partial THP and keep it in original
4920 			 * memcg. There should be somebody mapping the head.
4921 			 */
4922 			if (PageTransCompound(page))
4923 				goto put;
4924 			if (isolate_lru_page(page))
4925 				goto put;
4926 			if (!mem_cgroup_move_account(page, false,
4927 						mc.from, mc.to)) {
4928 				mc.precharge--;
4929 				/* we uncharge from mc.from later. */
4930 				mc.moved_charge++;
4931 			}
4932 			putback_lru_page(page);
4933 put:			/* get_mctgt_type() gets the page */
4934 			put_page(page);
4935 			break;
4936 		case MC_TARGET_SWAP:
4937 			ent = target.ent;
4938 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4939 				mc.precharge--;
4940 				/* we fixup refcnts and charges later. */
4941 				mc.moved_swap++;
4942 			}
4943 			break;
4944 		default:
4945 			break;
4946 		}
4947 	}
4948 	pte_unmap_unlock(pte - 1, ptl);
4949 	cond_resched();
4950 
4951 	if (addr != end) {
4952 		/*
4953 		 * We have consumed all precharges we got in can_attach().
4954 		 * We try charge one by one, but don't do any additional
4955 		 * charges to mc.to if we have failed in charge once in attach()
4956 		 * phase.
4957 		 */
4958 		ret = mem_cgroup_do_precharge(1);
4959 		if (!ret)
4960 			goto retry;
4961 	}
4962 
4963 	return ret;
4964 }
4965 
4966 static void mem_cgroup_move_charge(void)
4967 {
4968 	struct mm_walk mem_cgroup_move_charge_walk = {
4969 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4970 		.mm = mc.mm,
4971 	};
4972 
4973 	lru_add_drain_all();
4974 	/*
4975 	 * Signal lock_page_memcg() to take the memcg's move_lock
4976 	 * while we're moving its pages to another memcg. Then wait
4977 	 * for already started RCU-only updates to finish.
4978 	 */
4979 	atomic_inc(&mc.from->moving_account);
4980 	synchronize_rcu();
4981 retry:
4982 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4983 		/*
4984 		 * Someone who are holding the mmap_sem might be waiting in
4985 		 * waitq. So we cancel all extra charges, wake up all waiters,
4986 		 * and retry. Because we cancel precharges, we might not be able
4987 		 * to move enough charges, but moving charge is a best-effort
4988 		 * feature anyway, so it wouldn't be a big problem.
4989 		 */
4990 		__mem_cgroup_clear_mc();
4991 		cond_resched();
4992 		goto retry;
4993 	}
4994 	/*
4995 	 * When we have consumed all precharges and failed in doing
4996 	 * additional charge, the page walk just aborts.
4997 	 */
4998 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4999 	up_read(&mc.mm->mmap_sem);
5000 	atomic_dec(&mc.from->moving_account);
5001 }
5002 
5003 static void mem_cgroup_move_task(void)
5004 {
5005 	if (mc.to) {
5006 		mem_cgroup_move_charge();
5007 		mem_cgroup_clear_mc();
5008 	}
5009 }
5010 #else	/* !CONFIG_MMU */
5011 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5012 {
5013 	return 0;
5014 }
5015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5016 {
5017 }
5018 static void mem_cgroup_move_task(void)
5019 {
5020 }
5021 #endif
5022 
5023 /*
5024  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5025  * to verify whether we're attached to the default hierarchy on each mount
5026  * attempt.
5027  */
5028 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5029 {
5030 	/*
5031 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5032 	 * guarantees that @root doesn't have any children, so turning it
5033 	 * on for the root memcg is enough.
5034 	 */
5035 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5036 		root_mem_cgroup->use_hierarchy = true;
5037 	else
5038 		root_mem_cgroup->use_hierarchy = false;
5039 }
5040 
5041 static u64 memory_current_read(struct cgroup_subsys_state *css,
5042 			       struct cftype *cft)
5043 {
5044 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045 
5046 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5047 }
5048 
5049 static int memory_low_show(struct seq_file *m, void *v)
5050 {
5051 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5052 	unsigned long low = READ_ONCE(memcg->low);
5053 
5054 	if (low == PAGE_COUNTER_MAX)
5055 		seq_puts(m, "max\n");
5056 	else
5057 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5058 
5059 	return 0;
5060 }
5061 
5062 static ssize_t memory_low_write(struct kernfs_open_file *of,
5063 				char *buf, size_t nbytes, loff_t off)
5064 {
5065 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5066 	unsigned long low;
5067 	int err;
5068 
5069 	buf = strstrip(buf);
5070 	err = page_counter_memparse(buf, "max", &low);
5071 	if (err)
5072 		return err;
5073 
5074 	memcg->low = low;
5075 
5076 	return nbytes;
5077 }
5078 
5079 static int memory_high_show(struct seq_file *m, void *v)
5080 {
5081 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5082 	unsigned long high = READ_ONCE(memcg->high);
5083 
5084 	if (high == PAGE_COUNTER_MAX)
5085 		seq_puts(m, "max\n");
5086 	else
5087 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5088 
5089 	return 0;
5090 }
5091 
5092 static ssize_t memory_high_write(struct kernfs_open_file *of,
5093 				 char *buf, size_t nbytes, loff_t off)
5094 {
5095 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5096 	unsigned long nr_pages;
5097 	unsigned long high;
5098 	int err;
5099 
5100 	buf = strstrip(buf);
5101 	err = page_counter_memparse(buf, "max", &high);
5102 	if (err)
5103 		return err;
5104 
5105 	memcg->high = high;
5106 
5107 	nr_pages = page_counter_read(&memcg->memory);
5108 	if (nr_pages > high)
5109 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5110 					     GFP_KERNEL, true);
5111 
5112 	memcg_wb_domain_size_changed(memcg);
5113 	return nbytes;
5114 }
5115 
5116 static int memory_max_show(struct seq_file *m, void *v)
5117 {
5118 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5119 	unsigned long max = READ_ONCE(memcg->memory.limit);
5120 
5121 	if (max == PAGE_COUNTER_MAX)
5122 		seq_puts(m, "max\n");
5123 	else
5124 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5125 
5126 	return 0;
5127 }
5128 
5129 static ssize_t memory_max_write(struct kernfs_open_file *of,
5130 				char *buf, size_t nbytes, loff_t off)
5131 {
5132 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5133 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5134 	bool drained = false;
5135 	unsigned long max;
5136 	int err;
5137 
5138 	buf = strstrip(buf);
5139 	err = page_counter_memparse(buf, "max", &max);
5140 	if (err)
5141 		return err;
5142 
5143 	xchg(&memcg->memory.limit, max);
5144 
5145 	for (;;) {
5146 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5147 
5148 		if (nr_pages <= max)
5149 			break;
5150 
5151 		if (signal_pending(current)) {
5152 			err = -EINTR;
5153 			break;
5154 		}
5155 
5156 		if (!drained) {
5157 			drain_all_stock(memcg);
5158 			drained = true;
5159 			continue;
5160 		}
5161 
5162 		if (nr_reclaims) {
5163 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5164 							  GFP_KERNEL, true))
5165 				nr_reclaims--;
5166 			continue;
5167 		}
5168 
5169 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5170 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5171 			break;
5172 	}
5173 
5174 	memcg_wb_domain_size_changed(memcg);
5175 	return nbytes;
5176 }
5177 
5178 static int memory_events_show(struct seq_file *m, void *v)
5179 {
5180 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181 
5182 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5183 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5184 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5185 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5186 
5187 	return 0;
5188 }
5189 
5190 static int memory_stat_show(struct seq_file *m, void *v)
5191 {
5192 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5193 	unsigned long stat[MEMCG_NR_STAT];
5194 	unsigned long events[MEMCG_NR_EVENTS];
5195 	int i;
5196 
5197 	/*
5198 	 * Provide statistics on the state of the memory subsystem as
5199 	 * well as cumulative event counters that show past behavior.
5200 	 *
5201 	 * This list is ordered following a combination of these gradients:
5202 	 * 1) generic big picture -> specifics and details
5203 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5204 	 *
5205 	 * Current memory state:
5206 	 */
5207 
5208 	tree_stat(memcg, stat);
5209 	tree_events(memcg, events);
5210 
5211 	seq_printf(m, "anon %llu\n",
5212 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5213 	seq_printf(m, "file %llu\n",
5214 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5215 	seq_printf(m, "kernel_stack %llu\n",
5216 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5217 	seq_printf(m, "slab %llu\n",
5218 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5219 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5220 	seq_printf(m, "sock %llu\n",
5221 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5222 
5223 	seq_printf(m, "file_mapped %llu\n",
5224 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5225 	seq_printf(m, "file_dirty %llu\n",
5226 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5227 	seq_printf(m, "file_writeback %llu\n",
5228 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5229 
5230 	for (i = 0; i < NR_LRU_LISTS; i++) {
5231 		struct mem_cgroup *mi;
5232 		unsigned long val = 0;
5233 
5234 		for_each_mem_cgroup_tree(mi, memcg)
5235 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5236 		seq_printf(m, "%s %llu\n",
5237 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5238 	}
5239 
5240 	seq_printf(m, "slab_reclaimable %llu\n",
5241 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5242 	seq_printf(m, "slab_unreclaimable %llu\n",
5243 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5244 
5245 	/* Accumulated memory events */
5246 
5247 	seq_printf(m, "pgfault %lu\n",
5248 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5249 	seq_printf(m, "pgmajfault %lu\n",
5250 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5251 
5252 	return 0;
5253 }
5254 
5255 static struct cftype memory_files[] = {
5256 	{
5257 		.name = "current",
5258 		.flags = CFTYPE_NOT_ON_ROOT,
5259 		.read_u64 = memory_current_read,
5260 	},
5261 	{
5262 		.name = "low",
5263 		.flags = CFTYPE_NOT_ON_ROOT,
5264 		.seq_show = memory_low_show,
5265 		.write = memory_low_write,
5266 	},
5267 	{
5268 		.name = "high",
5269 		.flags = CFTYPE_NOT_ON_ROOT,
5270 		.seq_show = memory_high_show,
5271 		.write = memory_high_write,
5272 	},
5273 	{
5274 		.name = "max",
5275 		.flags = CFTYPE_NOT_ON_ROOT,
5276 		.seq_show = memory_max_show,
5277 		.write = memory_max_write,
5278 	},
5279 	{
5280 		.name = "events",
5281 		.flags = CFTYPE_NOT_ON_ROOT,
5282 		.file_offset = offsetof(struct mem_cgroup, events_file),
5283 		.seq_show = memory_events_show,
5284 	},
5285 	{
5286 		.name = "stat",
5287 		.flags = CFTYPE_NOT_ON_ROOT,
5288 		.seq_show = memory_stat_show,
5289 	},
5290 	{ }	/* terminate */
5291 };
5292 
5293 struct cgroup_subsys memory_cgrp_subsys = {
5294 	.css_alloc = mem_cgroup_css_alloc,
5295 	.css_online = mem_cgroup_css_online,
5296 	.css_offline = mem_cgroup_css_offline,
5297 	.css_released = mem_cgroup_css_released,
5298 	.css_free = mem_cgroup_css_free,
5299 	.css_reset = mem_cgroup_css_reset,
5300 	.can_attach = mem_cgroup_can_attach,
5301 	.cancel_attach = mem_cgroup_cancel_attach,
5302 	.post_attach = mem_cgroup_move_task,
5303 	.bind = mem_cgroup_bind,
5304 	.dfl_cftypes = memory_files,
5305 	.legacy_cftypes = mem_cgroup_legacy_files,
5306 	.early_init = 0,
5307 };
5308 
5309 /**
5310  * mem_cgroup_low - check if memory consumption is below the normal range
5311  * @root: the highest ancestor to consider
5312  * @memcg: the memory cgroup to check
5313  *
5314  * Returns %true if memory consumption of @memcg, and that of all
5315  * configurable ancestors up to @root, is below the normal range.
5316  */
5317 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5318 {
5319 	if (mem_cgroup_disabled())
5320 		return false;
5321 
5322 	/*
5323 	 * The toplevel group doesn't have a configurable range, so
5324 	 * it's never low when looked at directly, and it is not
5325 	 * considered an ancestor when assessing the hierarchy.
5326 	 */
5327 
5328 	if (memcg == root_mem_cgroup)
5329 		return false;
5330 
5331 	if (page_counter_read(&memcg->memory) >= memcg->low)
5332 		return false;
5333 
5334 	while (memcg != root) {
5335 		memcg = parent_mem_cgroup(memcg);
5336 
5337 		if (memcg == root_mem_cgroup)
5338 			break;
5339 
5340 		if (page_counter_read(&memcg->memory) >= memcg->low)
5341 			return false;
5342 	}
5343 	return true;
5344 }
5345 
5346 /**
5347  * mem_cgroup_try_charge - try charging a page
5348  * @page: page to charge
5349  * @mm: mm context of the victim
5350  * @gfp_mask: reclaim mode
5351  * @memcgp: charged memcg return
5352  * @compound: charge the page as compound or small page
5353  *
5354  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5355  * pages according to @gfp_mask if necessary.
5356  *
5357  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5358  * Otherwise, an error code is returned.
5359  *
5360  * After page->mapping has been set up, the caller must finalize the
5361  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5362  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5363  */
5364 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5365 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5366 			  bool compound)
5367 {
5368 	struct mem_cgroup *memcg = NULL;
5369 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5370 	int ret = 0;
5371 
5372 	if (mem_cgroup_disabled())
5373 		goto out;
5374 
5375 	if (PageSwapCache(page)) {
5376 		/*
5377 		 * Every swap fault against a single page tries to charge the
5378 		 * page, bail as early as possible.  shmem_unuse() encounters
5379 		 * already charged pages, too.  The USED bit is protected by
5380 		 * the page lock, which serializes swap cache removal, which
5381 		 * in turn serializes uncharging.
5382 		 */
5383 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5384 		if (page->mem_cgroup)
5385 			goto out;
5386 
5387 		if (do_swap_account) {
5388 			swp_entry_t ent = { .val = page_private(page), };
5389 			unsigned short id = lookup_swap_cgroup_id(ent);
5390 
5391 			rcu_read_lock();
5392 			memcg = mem_cgroup_from_id(id);
5393 			if (memcg && !css_tryget_online(&memcg->css))
5394 				memcg = NULL;
5395 			rcu_read_unlock();
5396 		}
5397 	}
5398 
5399 	if (!memcg)
5400 		memcg = get_mem_cgroup_from_mm(mm);
5401 
5402 	ret = try_charge(memcg, gfp_mask, nr_pages);
5403 
5404 	css_put(&memcg->css);
5405 out:
5406 	*memcgp = memcg;
5407 	return ret;
5408 }
5409 
5410 /**
5411  * mem_cgroup_commit_charge - commit a page charge
5412  * @page: page to charge
5413  * @memcg: memcg to charge the page to
5414  * @lrucare: page might be on LRU already
5415  * @compound: charge the page as compound or small page
5416  *
5417  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5418  * after page->mapping has been set up.  This must happen atomically
5419  * as part of the page instantiation, i.e. under the page table lock
5420  * for anonymous pages, under the page lock for page and swap cache.
5421  *
5422  * In addition, the page must not be on the LRU during the commit, to
5423  * prevent racing with task migration.  If it might be, use @lrucare.
5424  *
5425  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5426  */
5427 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5428 			      bool lrucare, bool compound)
5429 {
5430 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5431 
5432 	VM_BUG_ON_PAGE(!page->mapping, page);
5433 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5434 
5435 	if (mem_cgroup_disabled())
5436 		return;
5437 	/*
5438 	 * Swap faults will attempt to charge the same page multiple
5439 	 * times.  But reuse_swap_page() might have removed the page
5440 	 * from swapcache already, so we can't check PageSwapCache().
5441 	 */
5442 	if (!memcg)
5443 		return;
5444 
5445 	commit_charge(page, memcg, lrucare);
5446 
5447 	local_irq_disable();
5448 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5449 	memcg_check_events(memcg, page);
5450 	local_irq_enable();
5451 
5452 	if (do_memsw_account() && PageSwapCache(page)) {
5453 		swp_entry_t entry = { .val = page_private(page) };
5454 		/*
5455 		 * The swap entry might not get freed for a long time,
5456 		 * let's not wait for it.  The page already received a
5457 		 * memory+swap charge, drop the swap entry duplicate.
5458 		 */
5459 		mem_cgroup_uncharge_swap(entry);
5460 	}
5461 }
5462 
5463 /**
5464  * mem_cgroup_cancel_charge - cancel a page charge
5465  * @page: page to charge
5466  * @memcg: memcg to charge the page to
5467  * @compound: charge the page as compound or small page
5468  *
5469  * Cancel a charge transaction started by mem_cgroup_try_charge().
5470  */
5471 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5472 		bool compound)
5473 {
5474 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5475 
5476 	if (mem_cgroup_disabled())
5477 		return;
5478 	/*
5479 	 * Swap faults will attempt to charge the same page multiple
5480 	 * times.  But reuse_swap_page() might have removed the page
5481 	 * from swapcache already, so we can't check PageSwapCache().
5482 	 */
5483 	if (!memcg)
5484 		return;
5485 
5486 	cancel_charge(memcg, nr_pages);
5487 }
5488 
5489 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5490 			   unsigned long nr_anon, unsigned long nr_file,
5491 			   unsigned long nr_huge, unsigned long nr_kmem,
5492 			   struct page *dummy_page)
5493 {
5494 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5495 	unsigned long flags;
5496 
5497 	if (!mem_cgroup_is_root(memcg)) {
5498 		page_counter_uncharge(&memcg->memory, nr_pages);
5499 		if (do_memsw_account())
5500 			page_counter_uncharge(&memcg->memsw, nr_pages);
5501 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5502 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5503 		memcg_oom_recover(memcg);
5504 	}
5505 
5506 	local_irq_save(flags);
5507 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5508 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5509 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5510 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5511 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5512 	memcg_check_events(memcg, dummy_page);
5513 	local_irq_restore(flags);
5514 
5515 	if (!mem_cgroup_is_root(memcg))
5516 		css_put_many(&memcg->css, nr_pages);
5517 }
5518 
5519 static void uncharge_list(struct list_head *page_list)
5520 {
5521 	struct mem_cgroup *memcg = NULL;
5522 	unsigned long nr_anon = 0;
5523 	unsigned long nr_file = 0;
5524 	unsigned long nr_huge = 0;
5525 	unsigned long nr_kmem = 0;
5526 	unsigned long pgpgout = 0;
5527 	struct list_head *next;
5528 	struct page *page;
5529 
5530 	/*
5531 	 * Note that the list can be a single page->lru; hence the
5532 	 * do-while loop instead of a simple list_for_each_entry().
5533 	 */
5534 	next = page_list->next;
5535 	do {
5536 		page = list_entry(next, struct page, lru);
5537 		next = page->lru.next;
5538 
5539 		VM_BUG_ON_PAGE(PageLRU(page), page);
5540 		VM_BUG_ON_PAGE(page_count(page), page);
5541 
5542 		if (!page->mem_cgroup)
5543 			continue;
5544 
5545 		/*
5546 		 * Nobody should be changing or seriously looking at
5547 		 * page->mem_cgroup at this point, we have fully
5548 		 * exclusive access to the page.
5549 		 */
5550 
5551 		if (memcg != page->mem_cgroup) {
5552 			if (memcg) {
5553 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5554 					       nr_huge, nr_kmem, page);
5555 				pgpgout = nr_anon = nr_file =
5556 					nr_huge = nr_kmem = 0;
5557 			}
5558 			memcg = page->mem_cgroup;
5559 		}
5560 
5561 		if (!PageKmemcg(page)) {
5562 			unsigned int nr_pages = 1;
5563 
5564 			if (PageTransHuge(page)) {
5565 				nr_pages <<= compound_order(page);
5566 				nr_huge += nr_pages;
5567 			}
5568 			if (PageAnon(page))
5569 				nr_anon += nr_pages;
5570 			else
5571 				nr_file += nr_pages;
5572 			pgpgout++;
5573 		} else {
5574 			nr_kmem += 1 << compound_order(page);
5575 			__ClearPageKmemcg(page);
5576 		}
5577 
5578 		page->mem_cgroup = NULL;
5579 	} while (next != page_list);
5580 
5581 	if (memcg)
5582 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5583 			       nr_huge, nr_kmem, page);
5584 }
5585 
5586 /**
5587  * mem_cgroup_uncharge - uncharge a page
5588  * @page: page to uncharge
5589  *
5590  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5591  * mem_cgroup_commit_charge().
5592  */
5593 void mem_cgroup_uncharge(struct page *page)
5594 {
5595 	if (mem_cgroup_disabled())
5596 		return;
5597 
5598 	/* Don't touch page->lru of any random page, pre-check: */
5599 	if (!page->mem_cgroup)
5600 		return;
5601 
5602 	INIT_LIST_HEAD(&page->lru);
5603 	uncharge_list(&page->lru);
5604 }
5605 
5606 /**
5607  * mem_cgroup_uncharge_list - uncharge a list of page
5608  * @page_list: list of pages to uncharge
5609  *
5610  * Uncharge a list of pages previously charged with
5611  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5612  */
5613 void mem_cgroup_uncharge_list(struct list_head *page_list)
5614 {
5615 	if (mem_cgroup_disabled())
5616 		return;
5617 
5618 	if (!list_empty(page_list))
5619 		uncharge_list(page_list);
5620 }
5621 
5622 /**
5623  * mem_cgroup_migrate - charge a page's replacement
5624  * @oldpage: currently circulating page
5625  * @newpage: replacement page
5626  *
5627  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5628  * be uncharged upon free.
5629  *
5630  * Both pages must be locked, @newpage->mapping must be set up.
5631  */
5632 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5633 {
5634 	struct mem_cgroup *memcg;
5635 	unsigned int nr_pages;
5636 	bool compound;
5637 	unsigned long flags;
5638 
5639 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5640 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5641 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5642 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5643 		       newpage);
5644 
5645 	if (mem_cgroup_disabled())
5646 		return;
5647 
5648 	/* Page cache replacement: new page already charged? */
5649 	if (newpage->mem_cgroup)
5650 		return;
5651 
5652 	/* Swapcache readahead pages can get replaced before being charged */
5653 	memcg = oldpage->mem_cgroup;
5654 	if (!memcg)
5655 		return;
5656 
5657 	/* Force-charge the new page. The old one will be freed soon */
5658 	compound = PageTransHuge(newpage);
5659 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5660 
5661 	page_counter_charge(&memcg->memory, nr_pages);
5662 	if (do_memsw_account())
5663 		page_counter_charge(&memcg->memsw, nr_pages);
5664 	css_get_many(&memcg->css, nr_pages);
5665 
5666 	commit_charge(newpage, memcg, false);
5667 
5668 	local_irq_save(flags);
5669 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5670 	memcg_check_events(memcg, newpage);
5671 	local_irq_restore(flags);
5672 }
5673 
5674 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5675 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5676 
5677 void sock_update_memcg(struct sock *sk)
5678 {
5679 	struct mem_cgroup *memcg;
5680 
5681 	/* Socket cloning can throw us here with sk_cgrp already
5682 	 * filled. It won't however, necessarily happen from
5683 	 * process context. So the test for root memcg given
5684 	 * the current task's memcg won't help us in this case.
5685 	 *
5686 	 * Respecting the original socket's memcg is a better
5687 	 * decision in this case.
5688 	 */
5689 	if (sk->sk_memcg) {
5690 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5691 		css_get(&sk->sk_memcg->css);
5692 		return;
5693 	}
5694 
5695 	rcu_read_lock();
5696 	memcg = mem_cgroup_from_task(current);
5697 	if (memcg == root_mem_cgroup)
5698 		goto out;
5699 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5700 		goto out;
5701 	if (css_tryget_online(&memcg->css))
5702 		sk->sk_memcg = memcg;
5703 out:
5704 	rcu_read_unlock();
5705 }
5706 EXPORT_SYMBOL(sock_update_memcg);
5707 
5708 void sock_release_memcg(struct sock *sk)
5709 {
5710 	WARN_ON(!sk->sk_memcg);
5711 	css_put(&sk->sk_memcg->css);
5712 }
5713 
5714 /**
5715  * mem_cgroup_charge_skmem - charge socket memory
5716  * @memcg: memcg to charge
5717  * @nr_pages: number of pages to charge
5718  *
5719  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5720  * @memcg's configured limit, %false if the charge had to be forced.
5721  */
5722 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5723 {
5724 	gfp_t gfp_mask = GFP_KERNEL;
5725 
5726 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5727 		struct page_counter *fail;
5728 
5729 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5730 			memcg->tcpmem_pressure = 0;
5731 			return true;
5732 		}
5733 		page_counter_charge(&memcg->tcpmem, nr_pages);
5734 		memcg->tcpmem_pressure = 1;
5735 		return false;
5736 	}
5737 
5738 	/* Don't block in the packet receive path */
5739 	if (in_softirq())
5740 		gfp_mask = GFP_NOWAIT;
5741 
5742 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5743 
5744 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5745 		return true;
5746 
5747 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5748 	return false;
5749 }
5750 
5751 /**
5752  * mem_cgroup_uncharge_skmem - uncharge socket memory
5753  * @memcg - memcg to uncharge
5754  * @nr_pages - number of pages to uncharge
5755  */
5756 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5757 {
5758 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5759 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5760 		return;
5761 	}
5762 
5763 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5764 
5765 	page_counter_uncharge(&memcg->memory, nr_pages);
5766 	css_put_many(&memcg->css, nr_pages);
5767 }
5768 
5769 static int __init cgroup_memory(char *s)
5770 {
5771 	char *token;
5772 
5773 	while ((token = strsep(&s, ",")) != NULL) {
5774 		if (!*token)
5775 			continue;
5776 		if (!strcmp(token, "nosocket"))
5777 			cgroup_memory_nosocket = true;
5778 		if (!strcmp(token, "nokmem"))
5779 			cgroup_memory_nokmem = true;
5780 	}
5781 	return 0;
5782 }
5783 __setup("cgroup.memory=", cgroup_memory);
5784 
5785 /*
5786  * subsys_initcall() for memory controller.
5787  *
5788  * Some parts like hotcpu_notifier() have to be initialized from this context
5789  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5790  * everything that doesn't depend on a specific mem_cgroup structure should
5791  * be initialized from here.
5792  */
5793 static int __init mem_cgroup_init(void)
5794 {
5795 	int cpu, node;
5796 
5797 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5798 
5799 	for_each_possible_cpu(cpu)
5800 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5801 			  drain_local_stock);
5802 
5803 	for_each_node(node) {
5804 		struct mem_cgroup_tree_per_node *rtpn;
5805 
5806 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5807 				    node_online(node) ? node : NUMA_NO_NODE);
5808 
5809 		rtpn->rb_root = RB_ROOT;
5810 		spin_lock_init(&rtpn->lock);
5811 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5812 	}
5813 
5814 	return 0;
5815 }
5816 subsys_initcall(mem_cgroup_init);
5817 
5818 #ifdef CONFIG_MEMCG_SWAP
5819 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5820 {
5821 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5822 		/*
5823 		 * The root cgroup cannot be destroyed, so it's refcount must
5824 		 * always be >= 1.
5825 		 */
5826 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5827 			VM_BUG_ON(1);
5828 			break;
5829 		}
5830 		memcg = parent_mem_cgroup(memcg);
5831 		if (!memcg)
5832 			memcg = root_mem_cgroup;
5833 	}
5834 	return memcg;
5835 }
5836 
5837 /**
5838  * mem_cgroup_swapout - transfer a memsw charge to swap
5839  * @page: page whose memsw charge to transfer
5840  * @entry: swap entry to move the charge to
5841  *
5842  * Transfer the memsw charge of @page to @entry.
5843  */
5844 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5845 {
5846 	struct mem_cgroup *memcg, *swap_memcg;
5847 	unsigned short oldid;
5848 
5849 	VM_BUG_ON_PAGE(PageLRU(page), page);
5850 	VM_BUG_ON_PAGE(page_count(page), page);
5851 
5852 	if (!do_memsw_account())
5853 		return;
5854 
5855 	memcg = page->mem_cgroup;
5856 
5857 	/* Readahead page, never charged */
5858 	if (!memcg)
5859 		return;
5860 
5861 	/*
5862 	 * In case the memcg owning these pages has been offlined and doesn't
5863 	 * have an ID allocated to it anymore, charge the closest online
5864 	 * ancestor for the swap instead and transfer the memory+swap charge.
5865 	 */
5866 	swap_memcg = mem_cgroup_id_get_online(memcg);
5867 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5868 	VM_BUG_ON_PAGE(oldid, page);
5869 	mem_cgroup_swap_statistics(swap_memcg, true);
5870 
5871 	page->mem_cgroup = NULL;
5872 
5873 	if (!mem_cgroup_is_root(memcg))
5874 		page_counter_uncharge(&memcg->memory, 1);
5875 
5876 	if (memcg != swap_memcg) {
5877 		if (!mem_cgroup_is_root(swap_memcg))
5878 			page_counter_charge(&swap_memcg->memsw, 1);
5879 		page_counter_uncharge(&memcg->memsw, 1);
5880 	}
5881 
5882 	/*
5883 	 * Interrupts should be disabled here because the caller holds the
5884 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5885 	 * important here to have the interrupts disabled because it is the
5886 	 * only synchronisation we have for udpating the per-CPU variables.
5887 	 */
5888 	VM_BUG_ON(!irqs_disabled());
5889 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5890 	memcg_check_events(memcg, page);
5891 
5892 	if (!mem_cgroup_is_root(memcg))
5893 		css_put(&memcg->css);
5894 }
5895 
5896 /*
5897  * mem_cgroup_try_charge_swap - try charging a swap entry
5898  * @page: page being added to swap
5899  * @entry: swap entry to charge
5900  *
5901  * Try to charge @entry to the memcg that @page belongs to.
5902  *
5903  * Returns 0 on success, -ENOMEM on failure.
5904  */
5905 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5906 {
5907 	struct mem_cgroup *memcg;
5908 	struct page_counter *counter;
5909 	unsigned short oldid;
5910 
5911 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5912 		return 0;
5913 
5914 	memcg = page->mem_cgroup;
5915 
5916 	/* Readahead page, never charged */
5917 	if (!memcg)
5918 		return 0;
5919 
5920 	memcg = mem_cgroup_id_get_online(memcg);
5921 
5922 	if (!mem_cgroup_is_root(memcg) &&
5923 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5924 		mem_cgroup_id_put(memcg);
5925 		return -ENOMEM;
5926 	}
5927 
5928 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5929 	VM_BUG_ON_PAGE(oldid, page);
5930 	mem_cgroup_swap_statistics(memcg, true);
5931 
5932 	return 0;
5933 }
5934 
5935 /**
5936  * mem_cgroup_uncharge_swap - uncharge a swap entry
5937  * @entry: swap entry to uncharge
5938  *
5939  * Drop the swap charge associated with @entry.
5940  */
5941 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5942 {
5943 	struct mem_cgroup *memcg;
5944 	unsigned short id;
5945 
5946 	if (!do_swap_account)
5947 		return;
5948 
5949 	id = swap_cgroup_record(entry, 0);
5950 	rcu_read_lock();
5951 	memcg = mem_cgroup_from_id(id);
5952 	if (memcg) {
5953 		if (!mem_cgroup_is_root(memcg)) {
5954 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 				page_counter_uncharge(&memcg->swap, 1);
5956 			else
5957 				page_counter_uncharge(&memcg->memsw, 1);
5958 		}
5959 		mem_cgroup_swap_statistics(memcg, false);
5960 		mem_cgroup_id_put(memcg);
5961 	}
5962 	rcu_read_unlock();
5963 }
5964 
5965 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5966 {
5967 	long nr_swap_pages = get_nr_swap_pages();
5968 
5969 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 		return nr_swap_pages;
5971 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5972 		nr_swap_pages = min_t(long, nr_swap_pages,
5973 				      READ_ONCE(memcg->swap.limit) -
5974 				      page_counter_read(&memcg->swap));
5975 	return nr_swap_pages;
5976 }
5977 
5978 bool mem_cgroup_swap_full(struct page *page)
5979 {
5980 	struct mem_cgroup *memcg;
5981 
5982 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5983 
5984 	if (vm_swap_full())
5985 		return true;
5986 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5987 		return false;
5988 
5989 	memcg = page->mem_cgroup;
5990 	if (!memcg)
5991 		return false;
5992 
5993 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5994 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5995 			return true;
5996 
5997 	return false;
5998 }
5999 
6000 /* for remember boot option*/
6001 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6002 static int really_do_swap_account __initdata = 1;
6003 #else
6004 static int really_do_swap_account __initdata;
6005 #endif
6006 
6007 static int __init enable_swap_account(char *s)
6008 {
6009 	if (!strcmp(s, "1"))
6010 		really_do_swap_account = 1;
6011 	else if (!strcmp(s, "0"))
6012 		really_do_swap_account = 0;
6013 	return 1;
6014 }
6015 __setup("swapaccount=", enable_swap_account);
6016 
6017 static u64 swap_current_read(struct cgroup_subsys_state *css,
6018 			     struct cftype *cft)
6019 {
6020 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6021 
6022 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6023 }
6024 
6025 static int swap_max_show(struct seq_file *m, void *v)
6026 {
6027 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6028 	unsigned long max = READ_ONCE(memcg->swap.limit);
6029 
6030 	if (max == PAGE_COUNTER_MAX)
6031 		seq_puts(m, "max\n");
6032 	else
6033 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6034 
6035 	return 0;
6036 }
6037 
6038 static ssize_t swap_max_write(struct kernfs_open_file *of,
6039 			      char *buf, size_t nbytes, loff_t off)
6040 {
6041 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6042 	unsigned long max;
6043 	int err;
6044 
6045 	buf = strstrip(buf);
6046 	err = page_counter_memparse(buf, "max", &max);
6047 	if (err)
6048 		return err;
6049 
6050 	mutex_lock(&memcg_limit_mutex);
6051 	err = page_counter_limit(&memcg->swap, max);
6052 	mutex_unlock(&memcg_limit_mutex);
6053 	if (err)
6054 		return err;
6055 
6056 	return nbytes;
6057 }
6058 
6059 static struct cftype swap_files[] = {
6060 	{
6061 		.name = "swap.current",
6062 		.flags = CFTYPE_NOT_ON_ROOT,
6063 		.read_u64 = swap_current_read,
6064 	},
6065 	{
6066 		.name = "swap.max",
6067 		.flags = CFTYPE_NOT_ON_ROOT,
6068 		.seq_show = swap_max_show,
6069 		.write = swap_max_write,
6070 	},
6071 	{ }	/* terminate */
6072 };
6073 
6074 static struct cftype memsw_cgroup_files[] = {
6075 	{
6076 		.name = "memsw.usage_in_bytes",
6077 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 		.read_u64 = mem_cgroup_read_u64,
6079 	},
6080 	{
6081 		.name = "memsw.max_usage_in_bytes",
6082 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 		.write = mem_cgroup_reset,
6084 		.read_u64 = mem_cgroup_read_u64,
6085 	},
6086 	{
6087 		.name = "memsw.limit_in_bytes",
6088 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 		.write = mem_cgroup_write,
6090 		.read_u64 = mem_cgroup_read_u64,
6091 	},
6092 	{
6093 		.name = "memsw.failcnt",
6094 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 		.write = mem_cgroup_reset,
6096 		.read_u64 = mem_cgroup_read_u64,
6097 	},
6098 	{ },	/* terminate */
6099 };
6100 
6101 static int __init mem_cgroup_swap_init(void)
6102 {
6103 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6104 		do_swap_account = 1;
6105 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6106 					       swap_files));
6107 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6108 						  memsw_cgroup_files));
6109 	}
6110 	return 0;
6111 }
6112 subsys_initcall(mem_cgroup_swap_init);
6113 
6114 #endif /* CONFIG_MEMCG_SWAP */
6115