1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_node { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree { 141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 142 }; 143 144 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 145 146 /* for OOM */ 147 struct mem_cgroup_eventfd_list { 148 struct list_head list; 149 struct eventfd_ctx *eventfd; 150 }; 151 152 /* 153 * cgroup_event represents events which userspace want to receive. 154 */ 155 struct mem_cgroup_event { 156 /* 157 * memcg which the event belongs to. 158 */ 159 struct mem_cgroup *memcg; 160 /* 161 * eventfd to signal userspace about the event. 162 */ 163 struct eventfd_ctx *eventfd; 164 /* 165 * Each of these stored in a list by the cgroup. 166 */ 167 struct list_head list; 168 /* 169 * register_event() callback will be used to add new userspace 170 * waiter for changes related to this event. Use eventfd_signal() 171 * on eventfd to send notification to userspace. 172 */ 173 int (*register_event)(struct mem_cgroup *memcg, 174 struct eventfd_ctx *eventfd, const char *args); 175 /* 176 * unregister_event() callback will be called when userspace closes 177 * the eventfd or on cgroup removing. This callback must be set, 178 * if you want provide notification functionality. 179 */ 180 void (*unregister_event)(struct mem_cgroup *memcg, 181 struct eventfd_ctx *eventfd); 182 /* 183 * All fields below needed to unregister event when 184 * userspace closes eventfd. 185 */ 186 poll_table pt; 187 wait_queue_head_t *wqh; 188 wait_queue_t wait; 189 struct work_struct remove; 190 }; 191 192 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 194 195 /* Stuffs for move charges at task migration. */ 196 /* 197 * Types of charges to be moved. 198 */ 199 #define MOVE_ANON 0x1U 200 #define MOVE_FILE 0x2U 201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 202 203 /* "mc" and its members are protected by cgroup_mutex */ 204 static struct move_charge_struct { 205 spinlock_t lock; /* for from, to */ 206 struct mm_struct *mm; 207 struct mem_cgroup *from; 208 struct mem_cgroup *to; 209 unsigned long flags; 210 unsigned long precharge; 211 unsigned long moved_charge; 212 unsigned long moved_swap; 213 struct task_struct *moving_task; /* a task moving charges */ 214 wait_queue_head_t waitq; /* a waitq for other context */ 215 } mc = { 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 218 }; 219 220 /* 221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 222 * limit reclaim to prevent infinite loops, if they ever occur. 223 */ 224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 226 227 enum charge_type { 228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 229 MEM_CGROUP_CHARGE_TYPE_ANON, 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 232 NR_CHARGE_TYPE, 233 }; 234 235 /* for encoding cft->private value on file */ 236 enum res_type { 237 _MEM, 238 _MEMSWAP, 239 _OOM_TYPE, 240 _KMEM, 241 _TCP, 242 }; 243 244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 246 #define MEMFILE_ATTR(val) ((val) & 0xffff) 247 /* Used for OOM nofiier */ 248 #define OOM_CONTROL (0) 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 264 { 265 return (memcg == root_mem_cgroup); 266 } 267 268 #ifndef CONFIG_SLOB 269 /* 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 271 * The main reason for not using cgroup id for this: 272 * this works better in sparse environments, where we have a lot of memcgs, 273 * but only a few kmem-limited. Or also, if we have, for instance, 200 274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 275 * 200 entry array for that. 276 * 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It 278 * will double each time we have to increase it. 279 */ 280 static DEFINE_IDA(memcg_cache_ida); 281 int memcg_nr_cache_ids; 282 283 /* Protects memcg_nr_cache_ids */ 284 static DECLARE_RWSEM(memcg_cache_ids_sem); 285 286 void memcg_get_cache_ids(void) 287 { 288 down_read(&memcg_cache_ids_sem); 289 } 290 291 void memcg_put_cache_ids(void) 292 { 293 up_read(&memcg_cache_ids_sem); 294 } 295 296 /* 297 * MIN_SIZE is different than 1, because we would like to avoid going through 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited 299 * cgroups is a reasonable guess. In the future, it could be a parameter or 300 * tunable, but that is strictly not necessary. 301 * 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 303 * this constant directly from cgroup, but it is understandable that this is 304 * better kept as an internal representation in cgroup.c. In any case, the 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily 306 * increase ours as well if it increases. 307 */ 308 #define MEMCG_CACHES_MIN_SIZE 4 309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 310 311 /* 312 * A lot of the calls to the cache allocation functions are expected to be 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 314 * conditional to this static branch, we'll have to allow modules that does 315 * kmem_cache_alloc and the such to see this symbol as well 316 */ 317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 318 EXPORT_SYMBOL(memcg_kmem_enabled_key); 319 320 #endif /* !CONFIG_SLOB */ 321 322 /** 323 * mem_cgroup_css_from_page - css of the memcg associated with a page 324 * @page: page of interest 325 * 326 * If memcg is bound to the default hierarchy, css of the memcg associated 327 * with @page is returned. The returned css remains associated with @page 328 * until it is released. 329 * 330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 331 * is returned. 332 */ 333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 334 { 335 struct mem_cgroup *memcg; 336 337 memcg = page->mem_cgroup; 338 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 340 memcg = root_mem_cgroup; 341 342 return &memcg->css; 343 } 344 345 /** 346 * page_cgroup_ino - return inode number of the memcg a page is charged to 347 * @page: the page 348 * 349 * Look up the closest online ancestor of the memory cgroup @page is charged to 350 * and return its inode number or 0 if @page is not charged to any cgroup. It 351 * is safe to call this function without holding a reference to @page. 352 * 353 * Note, this function is inherently racy, because there is nothing to prevent 354 * the cgroup inode from getting torn down and potentially reallocated a moment 355 * after page_cgroup_ino() returns, so it only should be used by callers that 356 * do not care (such as procfs interfaces). 357 */ 358 ino_t page_cgroup_ino(struct page *page) 359 { 360 struct mem_cgroup *memcg; 361 unsigned long ino = 0; 362 363 rcu_read_lock(); 364 memcg = READ_ONCE(page->mem_cgroup); 365 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 366 memcg = parent_mem_cgroup(memcg); 367 if (memcg) 368 ino = cgroup_ino(memcg->css.cgroup); 369 rcu_read_unlock(); 370 return ino; 371 } 372 373 static struct mem_cgroup_per_node * 374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 375 { 376 int nid = page_to_nid(page); 377 378 return memcg->nodeinfo[nid]; 379 } 380 381 static struct mem_cgroup_tree_per_node * 382 soft_limit_tree_node(int nid) 383 { 384 return soft_limit_tree.rb_tree_per_node[nid]; 385 } 386 387 static struct mem_cgroup_tree_per_node * 388 soft_limit_tree_from_page(struct page *page) 389 { 390 int nid = page_to_nid(page); 391 392 return soft_limit_tree.rb_tree_per_node[nid]; 393 } 394 395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 396 struct mem_cgroup_tree_per_node *mctz, 397 unsigned long new_usage_in_excess) 398 { 399 struct rb_node **p = &mctz->rb_root.rb_node; 400 struct rb_node *parent = NULL; 401 struct mem_cgroup_per_node *mz_node; 402 403 if (mz->on_tree) 404 return; 405 406 mz->usage_in_excess = new_usage_in_excess; 407 if (!mz->usage_in_excess) 408 return; 409 while (*p) { 410 parent = *p; 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 412 tree_node); 413 if (mz->usage_in_excess < mz_node->usage_in_excess) 414 p = &(*p)->rb_left; 415 /* 416 * We can't avoid mem cgroups that are over their soft 417 * limit by the same amount 418 */ 419 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 420 p = &(*p)->rb_right; 421 } 422 rb_link_node(&mz->tree_node, parent, p); 423 rb_insert_color(&mz->tree_node, &mctz->rb_root); 424 mz->on_tree = true; 425 } 426 427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 428 struct mem_cgroup_tree_per_node *mctz) 429 { 430 if (!mz->on_tree) 431 return; 432 rb_erase(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = false; 434 } 435 436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 437 struct mem_cgroup_tree_per_node *mctz) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&mctz->lock, flags); 442 __mem_cgroup_remove_exceeded(mz, mctz); 443 spin_unlock_irqrestore(&mctz->lock, flags); 444 } 445 446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 447 { 448 unsigned long nr_pages = page_counter_read(&memcg->memory); 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 450 unsigned long excess = 0; 451 452 if (nr_pages > soft_limit) 453 excess = nr_pages - soft_limit; 454 455 return excess; 456 } 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 459 { 460 unsigned long excess; 461 struct mem_cgroup_per_node *mz; 462 struct mem_cgroup_tree_per_node *mctz; 463 464 mctz = soft_limit_tree_from_page(page); 465 /* 466 * Necessary to update all ancestors when hierarchy is used. 467 * because their event counter is not touched. 468 */ 469 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 470 mz = mem_cgroup_page_nodeinfo(memcg, page); 471 excess = soft_limit_excess(memcg); 472 /* 473 * We have to update the tree if mz is on RB-tree or 474 * mem is over its softlimit. 475 */ 476 if (excess || mz->on_tree) { 477 unsigned long flags; 478 479 spin_lock_irqsave(&mctz->lock, flags); 480 /* if on-tree, remove it */ 481 if (mz->on_tree) 482 __mem_cgroup_remove_exceeded(mz, mctz); 483 /* 484 * Insert again. mz->usage_in_excess will be updated. 485 * If excess is 0, no tree ops. 486 */ 487 __mem_cgroup_insert_exceeded(mz, mctz, excess); 488 spin_unlock_irqrestore(&mctz->lock, flags); 489 } 490 } 491 } 492 493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 494 { 495 struct mem_cgroup_tree_per_node *mctz; 496 struct mem_cgroup_per_node *mz; 497 int nid; 498 499 for_each_node(nid) { 500 mz = mem_cgroup_nodeinfo(memcg, nid); 501 mctz = soft_limit_tree_node(nid); 502 mem_cgroup_remove_exceeded(mz, mctz); 503 } 504 } 505 506 static struct mem_cgroup_per_node * 507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 508 { 509 struct rb_node *rightmost = NULL; 510 struct mem_cgroup_per_node *mz; 511 512 retry: 513 mz = NULL; 514 rightmost = rb_last(&mctz->rb_root); 515 if (!rightmost) 516 goto done; /* Nothing to reclaim from */ 517 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); 519 /* 520 * Remove the node now but someone else can add it back, 521 * we will to add it back at the end of reclaim to its correct 522 * position in the tree. 523 */ 524 __mem_cgroup_remove_exceeded(mz, mctz); 525 if (!soft_limit_excess(mz->memcg) || 526 !css_tryget_online(&mz->memcg->css)) 527 goto retry; 528 done: 529 return mz; 530 } 531 532 static struct mem_cgroup_per_node * 533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 spin_lock_irq(&mctz->lock); 538 mz = __mem_cgroup_largest_soft_limit_node(mctz); 539 spin_unlock_irq(&mctz->lock); 540 return mz; 541 } 542 543 /* 544 * Return page count for single (non recursive) @memcg. 545 * 546 * Implementation Note: reading percpu statistics for memcg. 547 * 548 * Both of vmstat[] and percpu_counter has threshold and do periodic 549 * synchronization to implement "quick" read. There are trade-off between 550 * reading cost and precision of value. Then, we may have a chance to implement 551 * a periodic synchronization of counter in memcg's counter. 552 * 553 * But this _read() function is used for user interface now. The user accounts 554 * memory usage by memory cgroup and he _always_ requires exact value because 555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 556 * have to visit all online cpus and make sum. So, for now, unnecessary 557 * synchronization is not implemented. (just implemented for cpu hotplug) 558 * 559 * If there are kernel internal actions which can make use of some not-exact 560 * value, and reading all cpu value can be performance bottleneck in some 561 * common workload, threshold and synchronization as vmstat[] should be 562 * implemented. 563 */ 564 static unsigned long 565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 566 { 567 long val = 0; 568 int cpu; 569 570 /* Per-cpu values can be negative, use a signed accumulator */ 571 for_each_possible_cpu(cpu) 572 val += per_cpu(memcg->stat->count[idx], cpu); 573 /* 574 * Summing races with updates, so val may be negative. Avoid exposing 575 * transient negative values. 576 */ 577 if (val < 0) 578 val = 0; 579 return val; 580 } 581 582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 583 enum mem_cgroup_events_index idx) 584 { 585 unsigned long val = 0; 586 int cpu; 587 588 for_each_possible_cpu(cpu) 589 val += per_cpu(memcg->stat->events[idx], cpu); 590 return val; 591 } 592 593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 594 struct page *page, 595 bool compound, int nr_pages) 596 { 597 /* 598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 599 * counted as CACHE even if it's on ANON LRU. 600 */ 601 if (PageAnon(page)) 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 603 nr_pages); 604 else 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 606 nr_pages); 607 608 if (compound) { 609 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 611 nr_pages); 612 } 613 614 /* pagein of a big page is an event. So, ignore page size */ 615 if (nr_pages > 0) 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 617 else { 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 619 nr_pages = -nr_pages; /* for event */ 620 } 621 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 623 } 624 625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 626 int nid, unsigned int lru_mask) 627 { 628 unsigned long nr = 0; 629 struct mem_cgroup_per_node *mz; 630 enum lru_list lru; 631 632 VM_BUG_ON((unsigned)nid >= nr_node_ids); 633 634 for_each_lru(lru) { 635 if (!(BIT(lru) & lru_mask)) 636 continue; 637 mz = mem_cgroup_nodeinfo(memcg, nid); 638 nr += mz->lru_size[lru]; 639 } 640 return nr; 641 } 642 643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 644 unsigned int lru_mask) 645 { 646 unsigned long nr = 0; 647 int nid; 648 649 for_each_node_state(nid, N_MEMORY) 650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 651 return nr; 652 } 653 654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 655 enum mem_cgroup_events_target target) 656 { 657 unsigned long val, next; 658 659 val = __this_cpu_read(memcg->stat->nr_page_events); 660 next = __this_cpu_read(memcg->stat->targets[target]); 661 /* from time_after() in jiffies.h */ 662 if ((long)next - (long)val < 0) { 663 switch (target) { 664 case MEM_CGROUP_TARGET_THRESH: 665 next = val + THRESHOLDS_EVENTS_TARGET; 666 break; 667 case MEM_CGROUP_TARGET_SOFTLIMIT: 668 next = val + SOFTLIMIT_EVENTS_TARGET; 669 break; 670 case MEM_CGROUP_TARGET_NUMAINFO: 671 next = val + NUMAINFO_EVENTS_TARGET; 672 break; 673 default: 674 break; 675 } 676 __this_cpu_write(memcg->stat->targets[target], next); 677 return true; 678 } 679 return false; 680 } 681 682 /* 683 * Check events in order. 684 * 685 */ 686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 687 { 688 /* threshold event is triggered in finer grain than soft limit */ 689 if (unlikely(mem_cgroup_event_ratelimit(memcg, 690 MEM_CGROUP_TARGET_THRESH))) { 691 bool do_softlimit; 692 bool do_numainfo __maybe_unused; 693 694 do_softlimit = mem_cgroup_event_ratelimit(memcg, 695 MEM_CGROUP_TARGET_SOFTLIMIT); 696 #if MAX_NUMNODES > 1 697 do_numainfo = mem_cgroup_event_ratelimit(memcg, 698 MEM_CGROUP_TARGET_NUMAINFO); 699 #endif 700 mem_cgroup_threshold(memcg); 701 if (unlikely(do_softlimit)) 702 mem_cgroup_update_tree(memcg, page); 703 #if MAX_NUMNODES > 1 704 if (unlikely(do_numainfo)) 705 atomic_inc(&memcg->numainfo_events); 706 #endif 707 } 708 } 709 710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 711 { 712 /* 713 * mm_update_next_owner() may clear mm->owner to NULL 714 * if it races with swapoff, page migration, etc. 715 * So this can be called with p == NULL. 716 */ 717 if (unlikely(!p)) 718 return NULL; 719 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 721 } 722 EXPORT_SYMBOL(mem_cgroup_from_task); 723 724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 725 { 726 struct mem_cgroup *memcg = NULL; 727 728 rcu_read_lock(); 729 do { 730 /* 731 * Page cache insertions can happen withou an 732 * actual mm context, e.g. during disk probing 733 * on boot, loopback IO, acct() writes etc. 734 */ 735 if (unlikely(!mm)) 736 memcg = root_mem_cgroup; 737 else { 738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 739 if (unlikely(!memcg)) 740 memcg = root_mem_cgroup; 741 } 742 } while (!css_tryget_online(&memcg->css)); 743 rcu_read_unlock(); 744 return memcg; 745 } 746 747 /** 748 * mem_cgroup_iter - iterate over memory cgroup hierarchy 749 * @root: hierarchy root 750 * @prev: previously returned memcg, NULL on first invocation 751 * @reclaim: cookie for shared reclaim walks, NULL for full walks 752 * 753 * Returns references to children of the hierarchy below @root, or 754 * @root itself, or %NULL after a full round-trip. 755 * 756 * Caller must pass the return value in @prev on subsequent 757 * invocations for reference counting, or use mem_cgroup_iter_break() 758 * to cancel a hierarchy walk before the round-trip is complete. 759 * 760 * Reclaimers can specify a zone and a priority level in @reclaim to 761 * divide up the memcgs in the hierarchy among all concurrent 762 * reclaimers operating on the same zone and priority. 763 */ 764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 765 struct mem_cgroup *prev, 766 struct mem_cgroup_reclaim_cookie *reclaim) 767 { 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 769 struct cgroup_subsys_state *css = NULL; 770 struct mem_cgroup *memcg = NULL; 771 struct mem_cgroup *pos = NULL; 772 773 if (mem_cgroup_disabled()) 774 return NULL; 775 776 if (!root) 777 root = root_mem_cgroup; 778 779 if (prev && !reclaim) 780 pos = prev; 781 782 if (!root->use_hierarchy && root != root_mem_cgroup) { 783 if (prev) 784 goto out; 785 return root; 786 } 787 788 rcu_read_lock(); 789 790 if (reclaim) { 791 struct mem_cgroup_per_node *mz; 792 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 794 iter = &mz->iter[reclaim->priority]; 795 796 if (prev && reclaim->generation != iter->generation) 797 goto out_unlock; 798 799 while (1) { 800 pos = READ_ONCE(iter->position); 801 if (!pos || css_tryget(&pos->css)) 802 break; 803 /* 804 * css reference reached zero, so iter->position will 805 * be cleared by ->css_released. However, we should not 806 * rely on this happening soon, because ->css_released 807 * is called from a work queue, and by busy-waiting we 808 * might block it. So we clear iter->position right 809 * away. 810 */ 811 (void)cmpxchg(&iter->position, pos, NULL); 812 } 813 } 814 815 if (pos) 816 css = &pos->css; 817 818 for (;;) { 819 css = css_next_descendant_pre(css, &root->css); 820 if (!css) { 821 /* 822 * Reclaimers share the hierarchy walk, and a 823 * new one might jump in right at the end of 824 * the hierarchy - make sure they see at least 825 * one group and restart from the beginning. 826 */ 827 if (!prev) 828 continue; 829 break; 830 } 831 832 /* 833 * Verify the css and acquire a reference. The root 834 * is provided by the caller, so we know it's alive 835 * and kicking, and don't take an extra reference. 836 */ 837 memcg = mem_cgroup_from_css(css); 838 839 if (css == &root->css) 840 break; 841 842 if (css_tryget(css)) 843 break; 844 845 memcg = NULL; 846 } 847 848 if (reclaim) { 849 /* 850 * The position could have already been updated by a competing 851 * thread, so check that the value hasn't changed since we read 852 * it to avoid reclaiming from the same cgroup twice. 853 */ 854 (void)cmpxchg(&iter->position, pos, memcg); 855 856 if (pos) 857 css_put(&pos->css); 858 859 if (!memcg) 860 iter->generation++; 861 else if (!prev) 862 reclaim->generation = iter->generation; 863 } 864 865 out_unlock: 866 rcu_read_unlock(); 867 out: 868 if (prev && prev != root) 869 css_put(&prev->css); 870 871 return memcg; 872 } 873 874 /** 875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 876 * @root: hierarchy root 877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 878 */ 879 void mem_cgroup_iter_break(struct mem_cgroup *root, 880 struct mem_cgroup *prev) 881 { 882 if (!root) 883 root = root_mem_cgroup; 884 if (prev && prev != root) 885 css_put(&prev->css); 886 } 887 888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 889 { 890 struct mem_cgroup *memcg = dead_memcg; 891 struct mem_cgroup_reclaim_iter *iter; 892 struct mem_cgroup_per_node *mz; 893 int nid; 894 int i; 895 896 while ((memcg = parent_mem_cgroup(memcg))) { 897 for_each_node(nid) { 898 mz = mem_cgroup_nodeinfo(memcg, nid); 899 for (i = 0; i <= DEF_PRIORITY; i++) { 900 iter = &mz->iter[i]; 901 cmpxchg(&iter->position, 902 dead_memcg, NULL); 903 } 904 } 905 } 906 } 907 908 /* 909 * Iteration constructs for visiting all cgroups (under a tree). If 910 * loops are exited prematurely (break), mem_cgroup_iter_break() must 911 * be used for reference counting. 912 */ 913 #define for_each_mem_cgroup_tree(iter, root) \ 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 915 iter != NULL; \ 916 iter = mem_cgroup_iter(root, iter, NULL)) 917 918 #define for_each_mem_cgroup(iter) \ 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 920 iter != NULL; \ 921 iter = mem_cgroup_iter(NULL, iter, NULL)) 922 923 /** 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 925 * @page: the page 926 * @zone: zone of the page 927 * 928 * This function is only safe when following the LRU page isolation 929 * and putback protocol: the LRU lock must be held, and the page must 930 * either be PageLRU() or the caller must have isolated/allocated it. 931 */ 932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 933 { 934 struct mem_cgroup_per_node *mz; 935 struct mem_cgroup *memcg; 936 struct lruvec *lruvec; 937 938 if (mem_cgroup_disabled()) { 939 lruvec = &pgdat->lruvec; 940 goto out; 941 } 942 943 memcg = page->mem_cgroup; 944 /* 945 * Swapcache readahead pages are added to the LRU - and 946 * possibly migrated - before they are charged. 947 */ 948 if (!memcg) 949 memcg = root_mem_cgroup; 950 951 mz = mem_cgroup_page_nodeinfo(memcg, page); 952 lruvec = &mz->lruvec; 953 out: 954 /* 955 * Since a node can be onlined after the mem_cgroup was created, 956 * we have to be prepared to initialize lruvec->zone here; 957 * and if offlined then reonlined, we need to reinitialize it. 958 */ 959 if (unlikely(lruvec->pgdat != pgdat)) 960 lruvec->pgdat = pgdat; 961 return lruvec; 962 } 963 964 /** 965 * mem_cgroup_update_lru_size - account for adding or removing an lru page 966 * @lruvec: mem_cgroup per zone lru vector 967 * @lru: index of lru list the page is sitting on 968 * @nr_pages: positive when adding or negative when removing 969 * 970 * This function must be called under lru_lock, just before a page is added 971 * to or just after a page is removed from an lru list (that ordering being 972 * so as to allow it to check that lru_size 0 is consistent with list_empty). 973 */ 974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 975 int nr_pages) 976 { 977 struct mem_cgroup_per_node *mz; 978 unsigned long *lru_size; 979 long size; 980 bool empty; 981 982 if (mem_cgroup_disabled()) 983 return; 984 985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 986 lru_size = mz->lru_size + lru; 987 empty = list_empty(lruvec->lists + lru); 988 989 if (nr_pages < 0) 990 *lru_size += nr_pages; 991 992 size = *lru_size; 993 if (WARN_ONCE(size < 0 || empty != !size, 994 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 996 VM_BUG_ON(1); 997 *lru_size = 0; 998 } 999 1000 if (nr_pages > 0) 1001 *lru_size += nr_pages; 1002 } 1003 1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1005 { 1006 struct mem_cgroup *task_memcg; 1007 struct task_struct *p; 1008 bool ret; 1009 1010 p = find_lock_task_mm(task); 1011 if (p) { 1012 task_memcg = get_mem_cgroup_from_mm(p->mm); 1013 task_unlock(p); 1014 } else { 1015 /* 1016 * All threads may have already detached their mm's, but the oom 1017 * killer still needs to detect if they have already been oom 1018 * killed to prevent needlessly killing additional tasks. 1019 */ 1020 rcu_read_lock(); 1021 task_memcg = mem_cgroup_from_task(task); 1022 css_get(&task_memcg->css); 1023 rcu_read_unlock(); 1024 } 1025 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1026 css_put(&task_memcg->css); 1027 return ret; 1028 } 1029 1030 /** 1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1032 * @memcg: the memory cgroup 1033 * 1034 * Returns the maximum amount of memory @mem can be charged with, in 1035 * pages. 1036 */ 1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1038 { 1039 unsigned long margin = 0; 1040 unsigned long count; 1041 unsigned long limit; 1042 1043 count = page_counter_read(&memcg->memory); 1044 limit = READ_ONCE(memcg->memory.limit); 1045 if (count < limit) 1046 margin = limit - count; 1047 1048 if (do_memsw_account()) { 1049 count = page_counter_read(&memcg->memsw); 1050 limit = READ_ONCE(memcg->memsw.limit); 1051 if (count <= limit) 1052 margin = min(margin, limit - count); 1053 else 1054 margin = 0; 1055 } 1056 1057 return margin; 1058 } 1059 1060 /* 1061 * A routine for checking "mem" is under move_account() or not. 1062 * 1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1064 * moving cgroups. This is for waiting at high-memory pressure 1065 * caused by "move". 1066 */ 1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1068 { 1069 struct mem_cgroup *from; 1070 struct mem_cgroup *to; 1071 bool ret = false; 1072 /* 1073 * Unlike task_move routines, we access mc.to, mc.from not under 1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1075 */ 1076 spin_lock(&mc.lock); 1077 from = mc.from; 1078 to = mc.to; 1079 if (!from) 1080 goto unlock; 1081 1082 ret = mem_cgroup_is_descendant(from, memcg) || 1083 mem_cgroup_is_descendant(to, memcg); 1084 unlock: 1085 spin_unlock(&mc.lock); 1086 return ret; 1087 } 1088 1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1090 { 1091 if (mc.moving_task && current != mc.moving_task) { 1092 if (mem_cgroup_under_move(memcg)) { 1093 DEFINE_WAIT(wait); 1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1095 /* moving charge context might have finished. */ 1096 if (mc.moving_task) 1097 schedule(); 1098 finish_wait(&mc.waitq, &wait); 1099 return true; 1100 } 1101 } 1102 return false; 1103 } 1104 1105 #define K(x) ((x) << (PAGE_SHIFT-10)) 1106 /** 1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1108 * @memcg: The memory cgroup that went over limit 1109 * @p: Task that is going to be killed 1110 * 1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1112 * enabled 1113 */ 1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1115 { 1116 struct mem_cgroup *iter; 1117 unsigned int i; 1118 1119 rcu_read_lock(); 1120 1121 if (p) { 1122 pr_info("Task in "); 1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1124 pr_cont(" killed as a result of limit of "); 1125 } else { 1126 pr_info("Memory limit reached of cgroup "); 1127 } 1128 1129 pr_cont_cgroup_path(memcg->css.cgroup); 1130 pr_cont("\n"); 1131 1132 rcu_read_unlock(); 1133 1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1135 K((u64)page_counter_read(&memcg->memory)), 1136 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1138 K((u64)page_counter_read(&memcg->memsw)), 1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1141 K((u64)page_counter_read(&memcg->kmem)), 1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1143 1144 for_each_mem_cgroup_tree(iter, memcg) { 1145 pr_info("Memory cgroup stats for "); 1146 pr_cont_cgroup_path(iter->css.cgroup); 1147 pr_cont(":"); 1148 1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1151 continue; 1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1153 K(mem_cgroup_read_stat(iter, i))); 1154 } 1155 1156 for (i = 0; i < NR_LRU_LISTS; i++) 1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1159 1160 pr_cont("\n"); 1161 } 1162 } 1163 1164 /* 1165 * This function returns the number of memcg under hierarchy tree. Returns 1166 * 1(self count) if no children. 1167 */ 1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1169 { 1170 int num = 0; 1171 struct mem_cgroup *iter; 1172 1173 for_each_mem_cgroup_tree(iter, memcg) 1174 num++; 1175 return num; 1176 } 1177 1178 /* 1179 * Return the memory (and swap, if configured) limit for a memcg. 1180 */ 1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1182 { 1183 unsigned long limit; 1184 1185 limit = memcg->memory.limit; 1186 if (mem_cgroup_swappiness(memcg)) { 1187 unsigned long memsw_limit; 1188 unsigned long swap_limit; 1189 1190 memsw_limit = memcg->memsw.limit; 1191 swap_limit = memcg->swap.limit; 1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1193 limit = min(limit + swap_limit, memsw_limit); 1194 } 1195 return limit; 1196 } 1197 1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1199 int order) 1200 { 1201 struct oom_control oc = { 1202 .zonelist = NULL, 1203 .nodemask = NULL, 1204 .memcg = memcg, 1205 .gfp_mask = gfp_mask, 1206 .order = order, 1207 }; 1208 struct mem_cgroup *iter; 1209 unsigned long chosen_points = 0; 1210 unsigned long totalpages; 1211 unsigned int points = 0; 1212 struct task_struct *chosen = NULL; 1213 1214 mutex_lock(&oom_lock); 1215 1216 /* 1217 * If current has a pending SIGKILL or is exiting, then automatically 1218 * select it. The goal is to allow it to allocate so that it may 1219 * quickly exit and free its memory. 1220 */ 1221 if (task_will_free_mem(current)) { 1222 mark_oom_victim(current); 1223 wake_oom_reaper(current); 1224 goto unlock; 1225 } 1226 1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG); 1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1229 for_each_mem_cgroup_tree(iter, memcg) { 1230 struct css_task_iter it; 1231 struct task_struct *task; 1232 1233 css_task_iter_start(&iter->css, &it); 1234 while ((task = css_task_iter_next(&it))) { 1235 switch (oom_scan_process_thread(&oc, task)) { 1236 case OOM_SCAN_SELECT: 1237 if (chosen) 1238 put_task_struct(chosen); 1239 chosen = task; 1240 chosen_points = ULONG_MAX; 1241 get_task_struct(chosen); 1242 /* fall through */ 1243 case OOM_SCAN_CONTINUE: 1244 continue; 1245 case OOM_SCAN_ABORT: 1246 css_task_iter_end(&it); 1247 mem_cgroup_iter_break(memcg, iter); 1248 if (chosen) 1249 put_task_struct(chosen); 1250 /* Set a dummy value to return "true". */ 1251 chosen = (void *) 1; 1252 goto unlock; 1253 case OOM_SCAN_OK: 1254 break; 1255 }; 1256 points = oom_badness(task, memcg, NULL, totalpages); 1257 if (!points || points < chosen_points) 1258 continue; 1259 /* Prefer thread group leaders for display purposes */ 1260 if (points == chosen_points && 1261 thread_group_leader(chosen)) 1262 continue; 1263 1264 if (chosen) 1265 put_task_struct(chosen); 1266 chosen = task; 1267 chosen_points = points; 1268 get_task_struct(chosen); 1269 } 1270 css_task_iter_end(&it); 1271 } 1272 1273 if (chosen) { 1274 points = chosen_points * 1000 / totalpages; 1275 oom_kill_process(&oc, chosen, points, totalpages, 1276 "Memory cgroup out of memory"); 1277 } 1278 unlock: 1279 mutex_unlock(&oom_lock); 1280 return chosen; 1281 } 1282 1283 #if MAX_NUMNODES > 1 1284 1285 /** 1286 * test_mem_cgroup_node_reclaimable 1287 * @memcg: the target memcg 1288 * @nid: the node ID to be checked. 1289 * @noswap : specify true here if the user wants flle only information. 1290 * 1291 * This function returns whether the specified memcg contains any 1292 * reclaimable pages on a node. Returns true if there are any reclaimable 1293 * pages in the node. 1294 */ 1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1296 int nid, bool noswap) 1297 { 1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1299 return true; 1300 if (noswap || !total_swap_pages) 1301 return false; 1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1303 return true; 1304 return false; 1305 1306 } 1307 1308 /* 1309 * Always updating the nodemask is not very good - even if we have an empty 1310 * list or the wrong list here, we can start from some node and traverse all 1311 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1312 * 1313 */ 1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1315 { 1316 int nid; 1317 /* 1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1319 * pagein/pageout changes since the last update. 1320 */ 1321 if (!atomic_read(&memcg->numainfo_events)) 1322 return; 1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1324 return; 1325 1326 /* make a nodemask where this memcg uses memory from */ 1327 memcg->scan_nodes = node_states[N_MEMORY]; 1328 1329 for_each_node_mask(nid, node_states[N_MEMORY]) { 1330 1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1332 node_clear(nid, memcg->scan_nodes); 1333 } 1334 1335 atomic_set(&memcg->numainfo_events, 0); 1336 atomic_set(&memcg->numainfo_updating, 0); 1337 } 1338 1339 /* 1340 * Selecting a node where we start reclaim from. Because what we need is just 1341 * reducing usage counter, start from anywhere is O,K. Considering 1342 * memory reclaim from current node, there are pros. and cons. 1343 * 1344 * Freeing memory from current node means freeing memory from a node which 1345 * we'll use or we've used. So, it may make LRU bad. And if several threads 1346 * hit limits, it will see a contention on a node. But freeing from remote 1347 * node means more costs for memory reclaim because of memory latency. 1348 * 1349 * Now, we use round-robin. Better algorithm is welcomed. 1350 */ 1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1352 { 1353 int node; 1354 1355 mem_cgroup_may_update_nodemask(memcg); 1356 node = memcg->last_scanned_node; 1357 1358 node = next_node_in(node, memcg->scan_nodes); 1359 /* 1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1361 * last time it really checked all the LRUs due to rate limiting. 1362 * Fallback to the current node in that case for simplicity. 1363 */ 1364 if (unlikely(node == MAX_NUMNODES)) 1365 node = numa_node_id(); 1366 1367 memcg->last_scanned_node = node; 1368 return node; 1369 } 1370 #else 1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1372 { 1373 return 0; 1374 } 1375 #endif 1376 1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1378 pg_data_t *pgdat, 1379 gfp_t gfp_mask, 1380 unsigned long *total_scanned) 1381 { 1382 struct mem_cgroup *victim = NULL; 1383 int total = 0; 1384 int loop = 0; 1385 unsigned long excess; 1386 unsigned long nr_scanned; 1387 struct mem_cgroup_reclaim_cookie reclaim = { 1388 .pgdat = pgdat, 1389 .priority = 0, 1390 }; 1391 1392 excess = soft_limit_excess(root_memcg); 1393 1394 while (1) { 1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1396 if (!victim) { 1397 loop++; 1398 if (loop >= 2) { 1399 /* 1400 * If we have not been able to reclaim 1401 * anything, it might because there are 1402 * no reclaimable pages under this hierarchy 1403 */ 1404 if (!total) 1405 break; 1406 /* 1407 * We want to do more targeted reclaim. 1408 * excess >> 2 is not to excessive so as to 1409 * reclaim too much, nor too less that we keep 1410 * coming back to reclaim from this cgroup 1411 */ 1412 if (total >= (excess >> 2) || 1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1414 break; 1415 } 1416 continue; 1417 } 1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1419 pgdat, &nr_scanned); 1420 *total_scanned += nr_scanned; 1421 if (!soft_limit_excess(root_memcg)) 1422 break; 1423 } 1424 mem_cgroup_iter_break(root_memcg, victim); 1425 return total; 1426 } 1427 1428 #ifdef CONFIG_LOCKDEP 1429 static struct lockdep_map memcg_oom_lock_dep_map = { 1430 .name = "memcg_oom_lock", 1431 }; 1432 #endif 1433 1434 static DEFINE_SPINLOCK(memcg_oom_lock); 1435 1436 /* 1437 * Check OOM-Killer is already running under our hierarchy. 1438 * If someone is running, return false. 1439 */ 1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1441 { 1442 struct mem_cgroup *iter, *failed = NULL; 1443 1444 spin_lock(&memcg_oom_lock); 1445 1446 for_each_mem_cgroup_tree(iter, memcg) { 1447 if (iter->oom_lock) { 1448 /* 1449 * this subtree of our hierarchy is already locked 1450 * so we cannot give a lock. 1451 */ 1452 failed = iter; 1453 mem_cgroup_iter_break(memcg, iter); 1454 break; 1455 } else 1456 iter->oom_lock = true; 1457 } 1458 1459 if (failed) { 1460 /* 1461 * OK, we failed to lock the whole subtree so we have 1462 * to clean up what we set up to the failing subtree 1463 */ 1464 for_each_mem_cgroup_tree(iter, memcg) { 1465 if (iter == failed) { 1466 mem_cgroup_iter_break(memcg, iter); 1467 break; 1468 } 1469 iter->oom_lock = false; 1470 } 1471 } else 1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1473 1474 spin_unlock(&memcg_oom_lock); 1475 1476 return !failed; 1477 } 1478 1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1480 { 1481 struct mem_cgroup *iter; 1482 1483 spin_lock(&memcg_oom_lock); 1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1485 for_each_mem_cgroup_tree(iter, memcg) 1486 iter->oom_lock = false; 1487 spin_unlock(&memcg_oom_lock); 1488 } 1489 1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1491 { 1492 struct mem_cgroup *iter; 1493 1494 spin_lock(&memcg_oom_lock); 1495 for_each_mem_cgroup_tree(iter, memcg) 1496 iter->under_oom++; 1497 spin_unlock(&memcg_oom_lock); 1498 } 1499 1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1501 { 1502 struct mem_cgroup *iter; 1503 1504 /* 1505 * When a new child is created while the hierarchy is under oom, 1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1507 */ 1508 spin_lock(&memcg_oom_lock); 1509 for_each_mem_cgroup_tree(iter, memcg) 1510 if (iter->under_oom > 0) 1511 iter->under_oom--; 1512 spin_unlock(&memcg_oom_lock); 1513 } 1514 1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1516 1517 struct oom_wait_info { 1518 struct mem_cgroup *memcg; 1519 wait_queue_t wait; 1520 }; 1521 1522 static int memcg_oom_wake_function(wait_queue_t *wait, 1523 unsigned mode, int sync, void *arg) 1524 { 1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1526 struct mem_cgroup *oom_wait_memcg; 1527 struct oom_wait_info *oom_wait_info; 1528 1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1530 oom_wait_memcg = oom_wait_info->memcg; 1531 1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1534 return 0; 1535 return autoremove_wake_function(wait, mode, sync, arg); 1536 } 1537 1538 static void memcg_oom_recover(struct mem_cgroup *memcg) 1539 { 1540 /* 1541 * For the following lockless ->under_oom test, the only required 1542 * guarantee is that it must see the state asserted by an OOM when 1543 * this function is called as a result of userland actions 1544 * triggered by the notification of the OOM. This is trivially 1545 * achieved by invoking mem_cgroup_mark_under_oom() before 1546 * triggering notification. 1547 */ 1548 if (memcg && memcg->under_oom) 1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1550 } 1551 1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1553 { 1554 if (!current->memcg_may_oom) 1555 return; 1556 /* 1557 * We are in the middle of the charge context here, so we 1558 * don't want to block when potentially sitting on a callstack 1559 * that holds all kinds of filesystem and mm locks. 1560 * 1561 * Also, the caller may handle a failed allocation gracefully 1562 * (like optional page cache readahead) and so an OOM killer 1563 * invocation might not even be necessary. 1564 * 1565 * That's why we don't do anything here except remember the 1566 * OOM context and then deal with it at the end of the page 1567 * fault when the stack is unwound, the locks are released, 1568 * and when we know whether the fault was overall successful. 1569 */ 1570 css_get(&memcg->css); 1571 current->memcg_in_oom = memcg; 1572 current->memcg_oom_gfp_mask = mask; 1573 current->memcg_oom_order = order; 1574 } 1575 1576 /** 1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1578 * @handle: actually kill/wait or just clean up the OOM state 1579 * 1580 * This has to be called at the end of a page fault if the memcg OOM 1581 * handler was enabled. 1582 * 1583 * Memcg supports userspace OOM handling where failed allocations must 1584 * sleep on a waitqueue until the userspace task resolves the 1585 * situation. Sleeping directly in the charge context with all kinds 1586 * of locks held is not a good idea, instead we remember an OOM state 1587 * in the task and mem_cgroup_oom_synchronize() has to be called at 1588 * the end of the page fault to complete the OOM handling. 1589 * 1590 * Returns %true if an ongoing memcg OOM situation was detected and 1591 * completed, %false otherwise. 1592 */ 1593 bool mem_cgroup_oom_synchronize(bool handle) 1594 { 1595 struct mem_cgroup *memcg = current->memcg_in_oom; 1596 struct oom_wait_info owait; 1597 bool locked; 1598 1599 /* OOM is global, do not handle */ 1600 if (!memcg) 1601 return false; 1602 1603 if (!handle || oom_killer_disabled) 1604 goto cleanup; 1605 1606 owait.memcg = memcg; 1607 owait.wait.flags = 0; 1608 owait.wait.func = memcg_oom_wake_function; 1609 owait.wait.private = current; 1610 INIT_LIST_HEAD(&owait.wait.task_list); 1611 1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1613 mem_cgroup_mark_under_oom(memcg); 1614 1615 locked = mem_cgroup_oom_trylock(memcg); 1616 1617 if (locked) 1618 mem_cgroup_oom_notify(memcg); 1619 1620 if (locked && !memcg->oom_kill_disable) { 1621 mem_cgroup_unmark_under_oom(memcg); 1622 finish_wait(&memcg_oom_waitq, &owait.wait); 1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1624 current->memcg_oom_order); 1625 } else { 1626 schedule(); 1627 mem_cgroup_unmark_under_oom(memcg); 1628 finish_wait(&memcg_oom_waitq, &owait.wait); 1629 } 1630 1631 if (locked) { 1632 mem_cgroup_oom_unlock(memcg); 1633 /* 1634 * There is no guarantee that an OOM-lock contender 1635 * sees the wakeups triggered by the OOM kill 1636 * uncharges. Wake any sleepers explicitely. 1637 */ 1638 memcg_oom_recover(memcg); 1639 } 1640 cleanup: 1641 current->memcg_in_oom = NULL; 1642 css_put(&memcg->css); 1643 return true; 1644 } 1645 1646 /** 1647 * lock_page_memcg - lock a page->mem_cgroup binding 1648 * @page: the page 1649 * 1650 * This function protects unlocked LRU pages from being moved to 1651 * another cgroup and stabilizes their page->mem_cgroup binding. 1652 */ 1653 void lock_page_memcg(struct page *page) 1654 { 1655 struct mem_cgroup *memcg; 1656 unsigned long flags; 1657 1658 /* 1659 * The RCU lock is held throughout the transaction. The fast 1660 * path can get away without acquiring the memcg->move_lock 1661 * because page moving starts with an RCU grace period. 1662 */ 1663 rcu_read_lock(); 1664 1665 if (mem_cgroup_disabled()) 1666 return; 1667 again: 1668 memcg = page->mem_cgroup; 1669 if (unlikely(!memcg)) 1670 return; 1671 1672 if (atomic_read(&memcg->moving_account) <= 0) 1673 return; 1674 1675 spin_lock_irqsave(&memcg->move_lock, flags); 1676 if (memcg != page->mem_cgroup) { 1677 spin_unlock_irqrestore(&memcg->move_lock, flags); 1678 goto again; 1679 } 1680 1681 /* 1682 * When charge migration first begins, we can have locked and 1683 * unlocked page stat updates happening concurrently. Track 1684 * the task who has the lock for unlock_page_memcg(). 1685 */ 1686 memcg->move_lock_task = current; 1687 memcg->move_lock_flags = flags; 1688 1689 return; 1690 } 1691 EXPORT_SYMBOL(lock_page_memcg); 1692 1693 /** 1694 * unlock_page_memcg - unlock a page->mem_cgroup binding 1695 * @page: the page 1696 */ 1697 void unlock_page_memcg(struct page *page) 1698 { 1699 struct mem_cgroup *memcg = page->mem_cgroup; 1700 1701 if (memcg && memcg->move_lock_task == current) { 1702 unsigned long flags = memcg->move_lock_flags; 1703 1704 memcg->move_lock_task = NULL; 1705 memcg->move_lock_flags = 0; 1706 1707 spin_unlock_irqrestore(&memcg->move_lock, flags); 1708 } 1709 1710 rcu_read_unlock(); 1711 } 1712 EXPORT_SYMBOL(unlock_page_memcg); 1713 1714 /* 1715 * size of first charge trial. "32" comes from vmscan.c's magic value. 1716 * TODO: maybe necessary to use big numbers in big irons. 1717 */ 1718 #define CHARGE_BATCH 32U 1719 struct memcg_stock_pcp { 1720 struct mem_cgroup *cached; /* this never be root cgroup */ 1721 unsigned int nr_pages; 1722 struct work_struct work; 1723 unsigned long flags; 1724 #define FLUSHING_CACHED_CHARGE 0 1725 }; 1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1727 static DEFINE_MUTEX(percpu_charge_mutex); 1728 1729 /** 1730 * consume_stock: Try to consume stocked charge on this cpu. 1731 * @memcg: memcg to consume from. 1732 * @nr_pages: how many pages to charge. 1733 * 1734 * The charges will only happen if @memcg matches the current cpu's memcg 1735 * stock, and at least @nr_pages are available in that stock. Failure to 1736 * service an allocation will refill the stock. 1737 * 1738 * returns true if successful, false otherwise. 1739 */ 1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1741 { 1742 struct memcg_stock_pcp *stock; 1743 unsigned long flags; 1744 bool ret = false; 1745 1746 if (nr_pages > CHARGE_BATCH) 1747 return ret; 1748 1749 local_irq_save(flags); 1750 1751 stock = this_cpu_ptr(&memcg_stock); 1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1753 stock->nr_pages -= nr_pages; 1754 ret = true; 1755 } 1756 1757 local_irq_restore(flags); 1758 1759 return ret; 1760 } 1761 1762 /* 1763 * Returns stocks cached in percpu and reset cached information. 1764 */ 1765 static void drain_stock(struct memcg_stock_pcp *stock) 1766 { 1767 struct mem_cgroup *old = stock->cached; 1768 1769 if (stock->nr_pages) { 1770 page_counter_uncharge(&old->memory, stock->nr_pages); 1771 if (do_memsw_account()) 1772 page_counter_uncharge(&old->memsw, stock->nr_pages); 1773 css_put_many(&old->css, stock->nr_pages); 1774 stock->nr_pages = 0; 1775 } 1776 stock->cached = NULL; 1777 } 1778 1779 static void drain_local_stock(struct work_struct *dummy) 1780 { 1781 struct memcg_stock_pcp *stock; 1782 unsigned long flags; 1783 1784 local_irq_save(flags); 1785 1786 stock = this_cpu_ptr(&memcg_stock); 1787 drain_stock(stock); 1788 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1789 1790 local_irq_restore(flags); 1791 } 1792 1793 /* 1794 * Cache charges(val) to local per_cpu area. 1795 * This will be consumed by consume_stock() function, later. 1796 */ 1797 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1798 { 1799 struct memcg_stock_pcp *stock; 1800 unsigned long flags; 1801 1802 local_irq_save(flags); 1803 1804 stock = this_cpu_ptr(&memcg_stock); 1805 if (stock->cached != memcg) { /* reset if necessary */ 1806 drain_stock(stock); 1807 stock->cached = memcg; 1808 } 1809 stock->nr_pages += nr_pages; 1810 1811 local_irq_restore(flags); 1812 } 1813 1814 /* 1815 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1816 * of the hierarchy under it. 1817 */ 1818 static void drain_all_stock(struct mem_cgroup *root_memcg) 1819 { 1820 int cpu, curcpu; 1821 1822 /* If someone's already draining, avoid adding running more workers. */ 1823 if (!mutex_trylock(&percpu_charge_mutex)) 1824 return; 1825 /* Notify other cpus that system-wide "drain" is running */ 1826 get_online_cpus(); 1827 curcpu = get_cpu(); 1828 for_each_online_cpu(cpu) { 1829 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1830 struct mem_cgroup *memcg; 1831 1832 memcg = stock->cached; 1833 if (!memcg || !stock->nr_pages) 1834 continue; 1835 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1836 continue; 1837 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1838 if (cpu == curcpu) 1839 drain_local_stock(&stock->work); 1840 else 1841 schedule_work_on(cpu, &stock->work); 1842 } 1843 } 1844 put_cpu(); 1845 put_online_cpus(); 1846 mutex_unlock(&percpu_charge_mutex); 1847 } 1848 1849 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1850 unsigned long action, 1851 void *hcpu) 1852 { 1853 int cpu = (unsigned long)hcpu; 1854 struct memcg_stock_pcp *stock; 1855 1856 if (action == CPU_ONLINE) 1857 return NOTIFY_OK; 1858 1859 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1860 return NOTIFY_OK; 1861 1862 stock = &per_cpu(memcg_stock, cpu); 1863 drain_stock(stock); 1864 return NOTIFY_OK; 1865 } 1866 1867 static void reclaim_high(struct mem_cgroup *memcg, 1868 unsigned int nr_pages, 1869 gfp_t gfp_mask) 1870 { 1871 do { 1872 if (page_counter_read(&memcg->memory) <= memcg->high) 1873 continue; 1874 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1875 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1876 } while ((memcg = parent_mem_cgroup(memcg))); 1877 } 1878 1879 static void high_work_func(struct work_struct *work) 1880 { 1881 struct mem_cgroup *memcg; 1882 1883 memcg = container_of(work, struct mem_cgroup, high_work); 1884 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1885 } 1886 1887 /* 1888 * Scheduled by try_charge() to be executed from the userland return path 1889 * and reclaims memory over the high limit. 1890 */ 1891 void mem_cgroup_handle_over_high(void) 1892 { 1893 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1894 struct mem_cgroup *memcg; 1895 1896 if (likely(!nr_pages)) 1897 return; 1898 1899 memcg = get_mem_cgroup_from_mm(current->mm); 1900 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1901 css_put(&memcg->css); 1902 current->memcg_nr_pages_over_high = 0; 1903 } 1904 1905 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1906 unsigned int nr_pages) 1907 { 1908 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1909 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1910 struct mem_cgroup *mem_over_limit; 1911 struct page_counter *counter; 1912 unsigned long nr_reclaimed; 1913 bool may_swap = true; 1914 bool drained = false; 1915 1916 if (mem_cgroup_is_root(memcg)) 1917 return 0; 1918 retry: 1919 if (consume_stock(memcg, nr_pages)) 1920 return 0; 1921 1922 if (!do_memsw_account() || 1923 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1924 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1925 goto done_restock; 1926 if (do_memsw_account()) 1927 page_counter_uncharge(&memcg->memsw, batch); 1928 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1929 } else { 1930 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1931 may_swap = false; 1932 } 1933 1934 if (batch > nr_pages) { 1935 batch = nr_pages; 1936 goto retry; 1937 } 1938 1939 /* 1940 * Unlike in global OOM situations, memcg is not in a physical 1941 * memory shortage. Allow dying and OOM-killed tasks to 1942 * bypass the last charges so that they can exit quickly and 1943 * free their memory. 1944 */ 1945 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1946 fatal_signal_pending(current) || 1947 current->flags & PF_EXITING)) 1948 goto force; 1949 1950 if (unlikely(task_in_memcg_oom(current))) 1951 goto nomem; 1952 1953 if (!gfpflags_allow_blocking(gfp_mask)) 1954 goto nomem; 1955 1956 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1957 1958 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1959 gfp_mask, may_swap); 1960 1961 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1962 goto retry; 1963 1964 if (!drained) { 1965 drain_all_stock(mem_over_limit); 1966 drained = true; 1967 goto retry; 1968 } 1969 1970 if (gfp_mask & __GFP_NORETRY) 1971 goto nomem; 1972 /* 1973 * Even though the limit is exceeded at this point, reclaim 1974 * may have been able to free some pages. Retry the charge 1975 * before killing the task. 1976 * 1977 * Only for regular pages, though: huge pages are rather 1978 * unlikely to succeed so close to the limit, and we fall back 1979 * to regular pages anyway in case of failure. 1980 */ 1981 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1982 goto retry; 1983 /* 1984 * At task move, charge accounts can be doubly counted. So, it's 1985 * better to wait until the end of task_move if something is going on. 1986 */ 1987 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1988 goto retry; 1989 1990 if (nr_retries--) 1991 goto retry; 1992 1993 if (gfp_mask & __GFP_NOFAIL) 1994 goto force; 1995 1996 if (fatal_signal_pending(current)) 1997 goto force; 1998 1999 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2000 2001 mem_cgroup_oom(mem_over_limit, gfp_mask, 2002 get_order(nr_pages * PAGE_SIZE)); 2003 nomem: 2004 if (!(gfp_mask & __GFP_NOFAIL)) 2005 return -ENOMEM; 2006 force: 2007 /* 2008 * The allocation either can't fail or will lead to more memory 2009 * being freed very soon. Allow memory usage go over the limit 2010 * temporarily by force charging it. 2011 */ 2012 page_counter_charge(&memcg->memory, nr_pages); 2013 if (do_memsw_account()) 2014 page_counter_charge(&memcg->memsw, nr_pages); 2015 css_get_many(&memcg->css, nr_pages); 2016 2017 return 0; 2018 2019 done_restock: 2020 css_get_many(&memcg->css, batch); 2021 if (batch > nr_pages) 2022 refill_stock(memcg, batch - nr_pages); 2023 2024 /* 2025 * If the hierarchy is above the normal consumption range, schedule 2026 * reclaim on returning to userland. We can perform reclaim here 2027 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2028 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2029 * not recorded as it most likely matches current's and won't 2030 * change in the meantime. As high limit is checked again before 2031 * reclaim, the cost of mismatch is negligible. 2032 */ 2033 do { 2034 if (page_counter_read(&memcg->memory) > memcg->high) { 2035 /* Don't bother a random interrupted task */ 2036 if (in_interrupt()) { 2037 schedule_work(&memcg->high_work); 2038 break; 2039 } 2040 current->memcg_nr_pages_over_high += batch; 2041 set_notify_resume(current); 2042 break; 2043 } 2044 } while ((memcg = parent_mem_cgroup(memcg))); 2045 2046 return 0; 2047 } 2048 2049 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2050 { 2051 if (mem_cgroup_is_root(memcg)) 2052 return; 2053 2054 page_counter_uncharge(&memcg->memory, nr_pages); 2055 if (do_memsw_account()) 2056 page_counter_uncharge(&memcg->memsw, nr_pages); 2057 2058 css_put_many(&memcg->css, nr_pages); 2059 } 2060 2061 static void lock_page_lru(struct page *page, int *isolated) 2062 { 2063 struct zone *zone = page_zone(page); 2064 2065 spin_lock_irq(zone_lru_lock(zone)); 2066 if (PageLRU(page)) { 2067 struct lruvec *lruvec; 2068 2069 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2070 ClearPageLRU(page); 2071 del_page_from_lru_list(page, lruvec, page_lru(page)); 2072 *isolated = 1; 2073 } else 2074 *isolated = 0; 2075 } 2076 2077 static void unlock_page_lru(struct page *page, int isolated) 2078 { 2079 struct zone *zone = page_zone(page); 2080 2081 if (isolated) { 2082 struct lruvec *lruvec; 2083 2084 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2085 VM_BUG_ON_PAGE(PageLRU(page), page); 2086 SetPageLRU(page); 2087 add_page_to_lru_list(page, lruvec, page_lru(page)); 2088 } 2089 spin_unlock_irq(zone_lru_lock(zone)); 2090 } 2091 2092 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2093 bool lrucare) 2094 { 2095 int isolated; 2096 2097 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2098 2099 /* 2100 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2101 * may already be on some other mem_cgroup's LRU. Take care of it. 2102 */ 2103 if (lrucare) 2104 lock_page_lru(page, &isolated); 2105 2106 /* 2107 * Nobody should be changing or seriously looking at 2108 * page->mem_cgroup at this point: 2109 * 2110 * - the page is uncharged 2111 * 2112 * - the page is off-LRU 2113 * 2114 * - an anonymous fault has exclusive page access, except for 2115 * a locked page table 2116 * 2117 * - a page cache insertion, a swapin fault, or a migration 2118 * have the page locked 2119 */ 2120 page->mem_cgroup = memcg; 2121 2122 if (lrucare) 2123 unlock_page_lru(page, isolated); 2124 } 2125 2126 #ifndef CONFIG_SLOB 2127 static int memcg_alloc_cache_id(void) 2128 { 2129 int id, size; 2130 int err; 2131 2132 id = ida_simple_get(&memcg_cache_ida, 2133 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2134 if (id < 0) 2135 return id; 2136 2137 if (id < memcg_nr_cache_ids) 2138 return id; 2139 2140 /* 2141 * There's no space for the new id in memcg_caches arrays, 2142 * so we have to grow them. 2143 */ 2144 down_write(&memcg_cache_ids_sem); 2145 2146 size = 2 * (id + 1); 2147 if (size < MEMCG_CACHES_MIN_SIZE) 2148 size = MEMCG_CACHES_MIN_SIZE; 2149 else if (size > MEMCG_CACHES_MAX_SIZE) 2150 size = MEMCG_CACHES_MAX_SIZE; 2151 2152 err = memcg_update_all_caches(size); 2153 if (!err) 2154 err = memcg_update_all_list_lrus(size); 2155 if (!err) 2156 memcg_nr_cache_ids = size; 2157 2158 up_write(&memcg_cache_ids_sem); 2159 2160 if (err) { 2161 ida_simple_remove(&memcg_cache_ida, id); 2162 return err; 2163 } 2164 return id; 2165 } 2166 2167 static void memcg_free_cache_id(int id) 2168 { 2169 ida_simple_remove(&memcg_cache_ida, id); 2170 } 2171 2172 struct memcg_kmem_cache_create_work { 2173 struct mem_cgroup *memcg; 2174 struct kmem_cache *cachep; 2175 struct work_struct work; 2176 }; 2177 2178 static void memcg_kmem_cache_create_func(struct work_struct *w) 2179 { 2180 struct memcg_kmem_cache_create_work *cw = 2181 container_of(w, struct memcg_kmem_cache_create_work, work); 2182 struct mem_cgroup *memcg = cw->memcg; 2183 struct kmem_cache *cachep = cw->cachep; 2184 2185 memcg_create_kmem_cache(memcg, cachep); 2186 2187 css_put(&memcg->css); 2188 kfree(cw); 2189 } 2190 2191 /* 2192 * Enqueue the creation of a per-memcg kmem_cache. 2193 */ 2194 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2195 struct kmem_cache *cachep) 2196 { 2197 struct memcg_kmem_cache_create_work *cw; 2198 2199 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2200 if (!cw) 2201 return; 2202 2203 css_get(&memcg->css); 2204 2205 cw->memcg = memcg; 2206 cw->cachep = cachep; 2207 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2208 2209 schedule_work(&cw->work); 2210 } 2211 2212 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2213 struct kmem_cache *cachep) 2214 { 2215 /* 2216 * We need to stop accounting when we kmalloc, because if the 2217 * corresponding kmalloc cache is not yet created, the first allocation 2218 * in __memcg_schedule_kmem_cache_create will recurse. 2219 * 2220 * However, it is better to enclose the whole function. Depending on 2221 * the debugging options enabled, INIT_WORK(), for instance, can 2222 * trigger an allocation. This too, will make us recurse. Because at 2223 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2224 * the safest choice is to do it like this, wrapping the whole function. 2225 */ 2226 current->memcg_kmem_skip_account = 1; 2227 __memcg_schedule_kmem_cache_create(memcg, cachep); 2228 current->memcg_kmem_skip_account = 0; 2229 } 2230 2231 static inline bool memcg_kmem_bypass(void) 2232 { 2233 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2234 return true; 2235 return false; 2236 } 2237 2238 /** 2239 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2240 * @cachep: the original global kmem cache 2241 * 2242 * Return the kmem_cache we're supposed to use for a slab allocation. 2243 * We try to use the current memcg's version of the cache. 2244 * 2245 * If the cache does not exist yet, if we are the first user of it, we 2246 * create it asynchronously in a workqueue and let the current allocation 2247 * go through with the original cache. 2248 * 2249 * This function takes a reference to the cache it returns to assure it 2250 * won't get destroyed while we are working with it. Once the caller is 2251 * done with it, memcg_kmem_put_cache() must be called to release the 2252 * reference. 2253 */ 2254 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2255 { 2256 struct mem_cgroup *memcg; 2257 struct kmem_cache *memcg_cachep; 2258 int kmemcg_id; 2259 2260 VM_BUG_ON(!is_root_cache(cachep)); 2261 2262 if (memcg_kmem_bypass()) 2263 return cachep; 2264 2265 if (current->memcg_kmem_skip_account) 2266 return cachep; 2267 2268 memcg = get_mem_cgroup_from_mm(current->mm); 2269 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2270 if (kmemcg_id < 0) 2271 goto out; 2272 2273 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2274 if (likely(memcg_cachep)) 2275 return memcg_cachep; 2276 2277 /* 2278 * If we are in a safe context (can wait, and not in interrupt 2279 * context), we could be be predictable and return right away. 2280 * This would guarantee that the allocation being performed 2281 * already belongs in the new cache. 2282 * 2283 * However, there are some clashes that can arrive from locking. 2284 * For instance, because we acquire the slab_mutex while doing 2285 * memcg_create_kmem_cache, this means no further allocation 2286 * could happen with the slab_mutex held. So it's better to 2287 * defer everything. 2288 */ 2289 memcg_schedule_kmem_cache_create(memcg, cachep); 2290 out: 2291 css_put(&memcg->css); 2292 return cachep; 2293 } 2294 2295 /** 2296 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2297 * @cachep: the cache returned by memcg_kmem_get_cache 2298 */ 2299 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2300 { 2301 if (!is_root_cache(cachep)) 2302 css_put(&cachep->memcg_params.memcg->css); 2303 } 2304 2305 /** 2306 * memcg_kmem_charge: charge a kmem page 2307 * @page: page to charge 2308 * @gfp: reclaim mode 2309 * @order: allocation order 2310 * @memcg: memory cgroup to charge 2311 * 2312 * Returns 0 on success, an error code on failure. 2313 */ 2314 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2315 struct mem_cgroup *memcg) 2316 { 2317 unsigned int nr_pages = 1 << order; 2318 struct page_counter *counter; 2319 int ret; 2320 2321 ret = try_charge(memcg, gfp, nr_pages); 2322 if (ret) 2323 return ret; 2324 2325 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2326 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2327 cancel_charge(memcg, nr_pages); 2328 return -ENOMEM; 2329 } 2330 2331 page->mem_cgroup = memcg; 2332 2333 return 0; 2334 } 2335 2336 /** 2337 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2338 * @page: page to charge 2339 * @gfp: reclaim mode 2340 * @order: allocation order 2341 * 2342 * Returns 0 on success, an error code on failure. 2343 */ 2344 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2345 { 2346 struct mem_cgroup *memcg; 2347 int ret = 0; 2348 2349 if (memcg_kmem_bypass()) 2350 return 0; 2351 2352 memcg = get_mem_cgroup_from_mm(current->mm); 2353 if (!mem_cgroup_is_root(memcg)) { 2354 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2355 if (!ret) 2356 __SetPageKmemcg(page); 2357 } 2358 css_put(&memcg->css); 2359 return ret; 2360 } 2361 /** 2362 * memcg_kmem_uncharge: uncharge a kmem page 2363 * @page: page to uncharge 2364 * @order: allocation order 2365 */ 2366 void memcg_kmem_uncharge(struct page *page, int order) 2367 { 2368 struct mem_cgroup *memcg = page->mem_cgroup; 2369 unsigned int nr_pages = 1 << order; 2370 2371 if (!memcg) 2372 return; 2373 2374 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2375 2376 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2377 page_counter_uncharge(&memcg->kmem, nr_pages); 2378 2379 page_counter_uncharge(&memcg->memory, nr_pages); 2380 if (do_memsw_account()) 2381 page_counter_uncharge(&memcg->memsw, nr_pages); 2382 2383 page->mem_cgroup = NULL; 2384 2385 /* slab pages do not have PageKmemcg flag set */ 2386 if (PageKmemcg(page)) 2387 __ClearPageKmemcg(page); 2388 2389 css_put_many(&memcg->css, nr_pages); 2390 } 2391 #endif /* !CONFIG_SLOB */ 2392 2393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2394 2395 /* 2396 * Because tail pages are not marked as "used", set it. We're under 2397 * zone_lru_lock and migration entries setup in all page mappings. 2398 */ 2399 void mem_cgroup_split_huge_fixup(struct page *head) 2400 { 2401 int i; 2402 2403 if (mem_cgroup_disabled()) 2404 return; 2405 2406 for (i = 1; i < HPAGE_PMD_NR; i++) 2407 head[i].mem_cgroup = head->mem_cgroup; 2408 2409 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2410 HPAGE_PMD_NR); 2411 } 2412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2413 2414 #ifdef CONFIG_MEMCG_SWAP 2415 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2416 bool charge) 2417 { 2418 int val = (charge) ? 1 : -1; 2419 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2420 } 2421 2422 /** 2423 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2424 * @entry: swap entry to be moved 2425 * @from: mem_cgroup which the entry is moved from 2426 * @to: mem_cgroup which the entry is moved to 2427 * 2428 * It succeeds only when the swap_cgroup's record for this entry is the same 2429 * as the mem_cgroup's id of @from. 2430 * 2431 * Returns 0 on success, -EINVAL on failure. 2432 * 2433 * The caller must have charged to @to, IOW, called page_counter_charge() about 2434 * both res and memsw, and called css_get(). 2435 */ 2436 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2437 struct mem_cgroup *from, struct mem_cgroup *to) 2438 { 2439 unsigned short old_id, new_id; 2440 2441 old_id = mem_cgroup_id(from); 2442 new_id = mem_cgroup_id(to); 2443 2444 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2445 mem_cgroup_swap_statistics(from, false); 2446 mem_cgroup_swap_statistics(to, true); 2447 return 0; 2448 } 2449 return -EINVAL; 2450 } 2451 #else 2452 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2453 struct mem_cgroup *from, struct mem_cgroup *to) 2454 { 2455 return -EINVAL; 2456 } 2457 #endif 2458 2459 static DEFINE_MUTEX(memcg_limit_mutex); 2460 2461 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2462 unsigned long limit) 2463 { 2464 unsigned long curusage; 2465 unsigned long oldusage; 2466 bool enlarge = false; 2467 int retry_count; 2468 int ret; 2469 2470 /* 2471 * For keeping hierarchical_reclaim simple, how long we should retry 2472 * is depends on callers. We set our retry-count to be function 2473 * of # of children which we should visit in this loop. 2474 */ 2475 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2476 mem_cgroup_count_children(memcg); 2477 2478 oldusage = page_counter_read(&memcg->memory); 2479 2480 do { 2481 if (signal_pending(current)) { 2482 ret = -EINTR; 2483 break; 2484 } 2485 2486 mutex_lock(&memcg_limit_mutex); 2487 if (limit > memcg->memsw.limit) { 2488 mutex_unlock(&memcg_limit_mutex); 2489 ret = -EINVAL; 2490 break; 2491 } 2492 if (limit > memcg->memory.limit) 2493 enlarge = true; 2494 ret = page_counter_limit(&memcg->memory, limit); 2495 mutex_unlock(&memcg_limit_mutex); 2496 2497 if (!ret) 2498 break; 2499 2500 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2501 2502 curusage = page_counter_read(&memcg->memory); 2503 /* Usage is reduced ? */ 2504 if (curusage >= oldusage) 2505 retry_count--; 2506 else 2507 oldusage = curusage; 2508 } while (retry_count); 2509 2510 if (!ret && enlarge) 2511 memcg_oom_recover(memcg); 2512 2513 return ret; 2514 } 2515 2516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2517 unsigned long limit) 2518 { 2519 unsigned long curusage; 2520 unsigned long oldusage; 2521 bool enlarge = false; 2522 int retry_count; 2523 int ret; 2524 2525 /* see mem_cgroup_resize_res_limit */ 2526 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2527 mem_cgroup_count_children(memcg); 2528 2529 oldusage = page_counter_read(&memcg->memsw); 2530 2531 do { 2532 if (signal_pending(current)) { 2533 ret = -EINTR; 2534 break; 2535 } 2536 2537 mutex_lock(&memcg_limit_mutex); 2538 if (limit < memcg->memory.limit) { 2539 mutex_unlock(&memcg_limit_mutex); 2540 ret = -EINVAL; 2541 break; 2542 } 2543 if (limit > memcg->memsw.limit) 2544 enlarge = true; 2545 ret = page_counter_limit(&memcg->memsw, limit); 2546 mutex_unlock(&memcg_limit_mutex); 2547 2548 if (!ret) 2549 break; 2550 2551 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2552 2553 curusage = page_counter_read(&memcg->memsw); 2554 /* Usage is reduced ? */ 2555 if (curusage >= oldusage) 2556 retry_count--; 2557 else 2558 oldusage = curusage; 2559 } while (retry_count); 2560 2561 if (!ret && enlarge) 2562 memcg_oom_recover(memcg); 2563 2564 return ret; 2565 } 2566 2567 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2568 gfp_t gfp_mask, 2569 unsigned long *total_scanned) 2570 { 2571 unsigned long nr_reclaimed = 0; 2572 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2573 unsigned long reclaimed; 2574 int loop = 0; 2575 struct mem_cgroup_tree_per_node *mctz; 2576 unsigned long excess; 2577 unsigned long nr_scanned; 2578 2579 if (order > 0) 2580 return 0; 2581 2582 mctz = soft_limit_tree_node(pgdat->node_id); 2583 2584 /* 2585 * Do not even bother to check the largest node if the root 2586 * is empty. Do it lockless to prevent lock bouncing. Races 2587 * are acceptable as soft limit is best effort anyway. 2588 */ 2589 if (RB_EMPTY_ROOT(&mctz->rb_root)) 2590 return 0; 2591 2592 /* 2593 * This loop can run a while, specially if mem_cgroup's continuously 2594 * keep exceeding their soft limit and putting the system under 2595 * pressure 2596 */ 2597 do { 2598 if (next_mz) 2599 mz = next_mz; 2600 else 2601 mz = mem_cgroup_largest_soft_limit_node(mctz); 2602 if (!mz) 2603 break; 2604 2605 nr_scanned = 0; 2606 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2607 gfp_mask, &nr_scanned); 2608 nr_reclaimed += reclaimed; 2609 *total_scanned += nr_scanned; 2610 spin_lock_irq(&mctz->lock); 2611 __mem_cgroup_remove_exceeded(mz, mctz); 2612 2613 /* 2614 * If we failed to reclaim anything from this memory cgroup 2615 * it is time to move on to the next cgroup 2616 */ 2617 next_mz = NULL; 2618 if (!reclaimed) 2619 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2620 2621 excess = soft_limit_excess(mz->memcg); 2622 /* 2623 * One school of thought says that we should not add 2624 * back the node to the tree if reclaim returns 0. 2625 * But our reclaim could return 0, simply because due 2626 * to priority we are exposing a smaller subset of 2627 * memory to reclaim from. Consider this as a longer 2628 * term TODO. 2629 */ 2630 /* If excess == 0, no tree ops */ 2631 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2632 spin_unlock_irq(&mctz->lock); 2633 css_put(&mz->memcg->css); 2634 loop++; 2635 /* 2636 * Could not reclaim anything and there are no more 2637 * mem cgroups to try or we seem to be looping without 2638 * reclaiming anything. 2639 */ 2640 if (!nr_reclaimed && 2641 (next_mz == NULL || 2642 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2643 break; 2644 } while (!nr_reclaimed); 2645 if (next_mz) 2646 css_put(&next_mz->memcg->css); 2647 return nr_reclaimed; 2648 } 2649 2650 /* 2651 * Test whether @memcg has children, dead or alive. Note that this 2652 * function doesn't care whether @memcg has use_hierarchy enabled and 2653 * returns %true if there are child csses according to the cgroup 2654 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2655 */ 2656 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2657 { 2658 bool ret; 2659 2660 rcu_read_lock(); 2661 ret = css_next_child(NULL, &memcg->css); 2662 rcu_read_unlock(); 2663 return ret; 2664 } 2665 2666 /* 2667 * Reclaims as many pages from the given memcg as possible. 2668 * 2669 * Caller is responsible for holding css reference for memcg. 2670 */ 2671 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2672 { 2673 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2674 2675 /* we call try-to-free pages for make this cgroup empty */ 2676 lru_add_drain_all(); 2677 /* try to free all pages in this cgroup */ 2678 while (nr_retries && page_counter_read(&memcg->memory)) { 2679 int progress; 2680 2681 if (signal_pending(current)) 2682 return -EINTR; 2683 2684 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2685 GFP_KERNEL, true); 2686 if (!progress) { 2687 nr_retries--; 2688 /* maybe some writeback is necessary */ 2689 congestion_wait(BLK_RW_ASYNC, HZ/10); 2690 } 2691 2692 } 2693 2694 return 0; 2695 } 2696 2697 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2698 char *buf, size_t nbytes, 2699 loff_t off) 2700 { 2701 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2702 2703 if (mem_cgroup_is_root(memcg)) 2704 return -EINVAL; 2705 return mem_cgroup_force_empty(memcg) ?: nbytes; 2706 } 2707 2708 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2709 struct cftype *cft) 2710 { 2711 return mem_cgroup_from_css(css)->use_hierarchy; 2712 } 2713 2714 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2715 struct cftype *cft, u64 val) 2716 { 2717 int retval = 0; 2718 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2719 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2720 2721 if (memcg->use_hierarchy == val) 2722 return 0; 2723 2724 /* 2725 * If parent's use_hierarchy is set, we can't make any modifications 2726 * in the child subtrees. If it is unset, then the change can 2727 * occur, provided the current cgroup has no children. 2728 * 2729 * For the root cgroup, parent_mem is NULL, we allow value to be 2730 * set if there are no children. 2731 */ 2732 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2733 (val == 1 || val == 0)) { 2734 if (!memcg_has_children(memcg)) 2735 memcg->use_hierarchy = val; 2736 else 2737 retval = -EBUSY; 2738 } else 2739 retval = -EINVAL; 2740 2741 return retval; 2742 } 2743 2744 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2745 { 2746 struct mem_cgroup *iter; 2747 int i; 2748 2749 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2750 2751 for_each_mem_cgroup_tree(iter, memcg) { 2752 for (i = 0; i < MEMCG_NR_STAT; i++) 2753 stat[i] += mem_cgroup_read_stat(iter, i); 2754 } 2755 } 2756 2757 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2758 { 2759 struct mem_cgroup *iter; 2760 int i; 2761 2762 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2763 2764 for_each_mem_cgroup_tree(iter, memcg) { 2765 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2766 events[i] += mem_cgroup_read_events(iter, i); 2767 } 2768 } 2769 2770 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2771 { 2772 unsigned long val = 0; 2773 2774 if (mem_cgroup_is_root(memcg)) { 2775 struct mem_cgroup *iter; 2776 2777 for_each_mem_cgroup_tree(iter, memcg) { 2778 val += mem_cgroup_read_stat(iter, 2779 MEM_CGROUP_STAT_CACHE); 2780 val += mem_cgroup_read_stat(iter, 2781 MEM_CGROUP_STAT_RSS); 2782 if (swap) 2783 val += mem_cgroup_read_stat(iter, 2784 MEM_CGROUP_STAT_SWAP); 2785 } 2786 } else { 2787 if (!swap) 2788 val = page_counter_read(&memcg->memory); 2789 else 2790 val = page_counter_read(&memcg->memsw); 2791 } 2792 return val; 2793 } 2794 2795 enum { 2796 RES_USAGE, 2797 RES_LIMIT, 2798 RES_MAX_USAGE, 2799 RES_FAILCNT, 2800 RES_SOFT_LIMIT, 2801 }; 2802 2803 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2804 struct cftype *cft) 2805 { 2806 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2807 struct page_counter *counter; 2808 2809 switch (MEMFILE_TYPE(cft->private)) { 2810 case _MEM: 2811 counter = &memcg->memory; 2812 break; 2813 case _MEMSWAP: 2814 counter = &memcg->memsw; 2815 break; 2816 case _KMEM: 2817 counter = &memcg->kmem; 2818 break; 2819 case _TCP: 2820 counter = &memcg->tcpmem; 2821 break; 2822 default: 2823 BUG(); 2824 } 2825 2826 switch (MEMFILE_ATTR(cft->private)) { 2827 case RES_USAGE: 2828 if (counter == &memcg->memory) 2829 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2830 if (counter == &memcg->memsw) 2831 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2832 return (u64)page_counter_read(counter) * PAGE_SIZE; 2833 case RES_LIMIT: 2834 return (u64)counter->limit * PAGE_SIZE; 2835 case RES_MAX_USAGE: 2836 return (u64)counter->watermark * PAGE_SIZE; 2837 case RES_FAILCNT: 2838 return counter->failcnt; 2839 case RES_SOFT_LIMIT: 2840 return (u64)memcg->soft_limit * PAGE_SIZE; 2841 default: 2842 BUG(); 2843 } 2844 } 2845 2846 #ifndef CONFIG_SLOB 2847 static int memcg_online_kmem(struct mem_cgroup *memcg) 2848 { 2849 int memcg_id; 2850 2851 if (cgroup_memory_nokmem) 2852 return 0; 2853 2854 BUG_ON(memcg->kmemcg_id >= 0); 2855 BUG_ON(memcg->kmem_state); 2856 2857 memcg_id = memcg_alloc_cache_id(); 2858 if (memcg_id < 0) 2859 return memcg_id; 2860 2861 static_branch_inc(&memcg_kmem_enabled_key); 2862 /* 2863 * A memory cgroup is considered kmem-online as soon as it gets 2864 * kmemcg_id. Setting the id after enabling static branching will 2865 * guarantee no one starts accounting before all call sites are 2866 * patched. 2867 */ 2868 memcg->kmemcg_id = memcg_id; 2869 memcg->kmem_state = KMEM_ONLINE; 2870 2871 return 0; 2872 } 2873 2874 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2875 { 2876 struct cgroup_subsys_state *css; 2877 struct mem_cgroup *parent, *child; 2878 int kmemcg_id; 2879 2880 if (memcg->kmem_state != KMEM_ONLINE) 2881 return; 2882 /* 2883 * Clear the online state before clearing memcg_caches array 2884 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2885 * guarantees that no cache will be created for this cgroup 2886 * after we are done (see memcg_create_kmem_cache()). 2887 */ 2888 memcg->kmem_state = KMEM_ALLOCATED; 2889 2890 memcg_deactivate_kmem_caches(memcg); 2891 2892 kmemcg_id = memcg->kmemcg_id; 2893 BUG_ON(kmemcg_id < 0); 2894 2895 parent = parent_mem_cgroup(memcg); 2896 if (!parent) 2897 parent = root_mem_cgroup; 2898 2899 /* 2900 * Change kmemcg_id of this cgroup and all its descendants to the 2901 * parent's id, and then move all entries from this cgroup's list_lrus 2902 * to ones of the parent. After we have finished, all list_lrus 2903 * corresponding to this cgroup are guaranteed to remain empty. The 2904 * ordering is imposed by list_lru_node->lock taken by 2905 * memcg_drain_all_list_lrus(). 2906 */ 2907 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2908 css_for_each_descendant_pre(css, &memcg->css) { 2909 child = mem_cgroup_from_css(css); 2910 BUG_ON(child->kmemcg_id != kmemcg_id); 2911 child->kmemcg_id = parent->kmemcg_id; 2912 if (!memcg->use_hierarchy) 2913 break; 2914 } 2915 rcu_read_unlock(); 2916 2917 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2918 2919 memcg_free_cache_id(kmemcg_id); 2920 } 2921 2922 static void memcg_free_kmem(struct mem_cgroup *memcg) 2923 { 2924 /* css_alloc() failed, offlining didn't happen */ 2925 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2926 memcg_offline_kmem(memcg); 2927 2928 if (memcg->kmem_state == KMEM_ALLOCATED) { 2929 memcg_destroy_kmem_caches(memcg); 2930 static_branch_dec(&memcg_kmem_enabled_key); 2931 WARN_ON(page_counter_read(&memcg->kmem)); 2932 } 2933 } 2934 #else 2935 static int memcg_online_kmem(struct mem_cgroup *memcg) 2936 { 2937 return 0; 2938 } 2939 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2940 { 2941 } 2942 static void memcg_free_kmem(struct mem_cgroup *memcg) 2943 { 2944 } 2945 #endif /* !CONFIG_SLOB */ 2946 2947 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2948 unsigned long limit) 2949 { 2950 int ret; 2951 2952 mutex_lock(&memcg_limit_mutex); 2953 ret = page_counter_limit(&memcg->kmem, limit); 2954 mutex_unlock(&memcg_limit_mutex); 2955 return ret; 2956 } 2957 2958 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2959 { 2960 int ret; 2961 2962 mutex_lock(&memcg_limit_mutex); 2963 2964 ret = page_counter_limit(&memcg->tcpmem, limit); 2965 if (ret) 2966 goto out; 2967 2968 if (!memcg->tcpmem_active) { 2969 /* 2970 * The active flag needs to be written after the static_key 2971 * update. This is what guarantees that the socket activation 2972 * function is the last one to run. See sock_update_memcg() for 2973 * details, and note that we don't mark any socket as belonging 2974 * to this memcg until that flag is up. 2975 * 2976 * We need to do this, because static_keys will span multiple 2977 * sites, but we can't control their order. If we mark a socket 2978 * as accounted, but the accounting functions are not patched in 2979 * yet, we'll lose accounting. 2980 * 2981 * We never race with the readers in sock_update_memcg(), 2982 * because when this value change, the code to process it is not 2983 * patched in yet. 2984 */ 2985 static_branch_inc(&memcg_sockets_enabled_key); 2986 memcg->tcpmem_active = true; 2987 } 2988 out: 2989 mutex_unlock(&memcg_limit_mutex); 2990 return ret; 2991 } 2992 2993 /* 2994 * The user of this function is... 2995 * RES_LIMIT. 2996 */ 2997 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2998 char *buf, size_t nbytes, loff_t off) 2999 { 3000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3001 unsigned long nr_pages; 3002 int ret; 3003 3004 buf = strstrip(buf); 3005 ret = page_counter_memparse(buf, "-1", &nr_pages); 3006 if (ret) 3007 return ret; 3008 3009 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3010 case RES_LIMIT: 3011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3012 ret = -EINVAL; 3013 break; 3014 } 3015 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3016 case _MEM: 3017 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3018 break; 3019 case _MEMSWAP: 3020 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3021 break; 3022 case _KMEM: 3023 ret = memcg_update_kmem_limit(memcg, nr_pages); 3024 break; 3025 case _TCP: 3026 ret = memcg_update_tcp_limit(memcg, nr_pages); 3027 break; 3028 } 3029 break; 3030 case RES_SOFT_LIMIT: 3031 memcg->soft_limit = nr_pages; 3032 ret = 0; 3033 break; 3034 } 3035 return ret ?: nbytes; 3036 } 3037 3038 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3039 size_t nbytes, loff_t off) 3040 { 3041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3042 struct page_counter *counter; 3043 3044 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3045 case _MEM: 3046 counter = &memcg->memory; 3047 break; 3048 case _MEMSWAP: 3049 counter = &memcg->memsw; 3050 break; 3051 case _KMEM: 3052 counter = &memcg->kmem; 3053 break; 3054 case _TCP: 3055 counter = &memcg->tcpmem; 3056 break; 3057 default: 3058 BUG(); 3059 } 3060 3061 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3062 case RES_MAX_USAGE: 3063 page_counter_reset_watermark(counter); 3064 break; 3065 case RES_FAILCNT: 3066 counter->failcnt = 0; 3067 break; 3068 default: 3069 BUG(); 3070 } 3071 3072 return nbytes; 3073 } 3074 3075 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3076 struct cftype *cft) 3077 { 3078 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3079 } 3080 3081 #ifdef CONFIG_MMU 3082 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3083 struct cftype *cft, u64 val) 3084 { 3085 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3086 3087 if (val & ~MOVE_MASK) 3088 return -EINVAL; 3089 3090 /* 3091 * No kind of locking is needed in here, because ->can_attach() will 3092 * check this value once in the beginning of the process, and then carry 3093 * on with stale data. This means that changes to this value will only 3094 * affect task migrations starting after the change. 3095 */ 3096 memcg->move_charge_at_immigrate = val; 3097 return 0; 3098 } 3099 #else 3100 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3101 struct cftype *cft, u64 val) 3102 { 3103 return -ENOSYS; 3104 } 3105 #endif 3106 3107 #ifdef CONFIG_NUMA 3108 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3109 { 3110 struct numa_stat { 3111 const char *name; 3112 unsigned int lru_mask; 3113 }; 3114 3115 static const struct numa_stat stats[] = { 3116 { "total", LRU_ALL }, 3117 { "file", LRU_ALL_FILE }, 3118 { "anon", LRU_ALL_ANON }, 3119 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3120 }; 3121 const struct numa_stat *stat; 3122 int nid; 3123 unsigned long nr; 3124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3125 3126 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3127 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3128 seq_printf(m, "%s=%lu", stat->name, nr); 3129 for_each_node_state(nid, N_MEMORY) { 3130 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3131 stat->lru_mask); 3132 seq_printf(m, " N%d=%lu", nid, nr); 3133 } 3134 seq_putc(m, '\n'); 3135 } 3136 3137 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3138 struct mem_cgroup *iter; 3139 3140 nr = 0; 3141 for_each_mem_cgroup_tree(iter, memcg) 3142 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3143 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3144 for_each_node_state(nid, N_MEMORY) { 3145 nr = 0; 3146 for_each_mem_cgroup_tree(iter, memcg) 3147 nr += mem_cgroup_node_nr_lru_pages( 3148 iter, nid, stat->lru_mask); 3149 seq_printf(m, " N%d=%lu", nid, nr); 3150 } 3151 seq_putc(m, '\n'); 3152 } 3153 3154 return 0; 3155 } 3156 #endif /* CONFIG_NUMA */ 3157 3158 static int memcg_stat_show(struct seq_file *m, void *v) 3159 { 3160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3161 unsigned long memory, memsw; 3162 struct mem_cgroup *mi; 3163 unsigned int i; 3164 3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3166 MEM_CGROUP_STAT_NSTATS); 3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3168 MEM_CGROUP_EVENTS_NSTATS); 3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3170 3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3172 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3173 continue; 3174 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3175 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3176 } 3177 3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3179 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3180 mem_cgroup_read_events(memcg, i)); 3181 3182 for (i = 0; i < NR_LRU_LISTS; i++) 3183 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3184 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3185 3186 /* Hierarchical information */ 3187 memory = memsw = PAGE_COUNTER_MAX; 3188 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3189 memory = min(memory, mi->memory.limit); 3190 memsw = min(memsw, mi->memsw.limit); 3191 } 3192 seq_printf(m, "hierarchical_memory_limit %llu\n", 3193 (u64)memory * PAGE_SIZE); 3194 if (do_memsw_account()) 3195 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3196 (u64)memsw * PAGE_SIZE); 3197 3198 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3199 unsigned long long val = 0; 3200 3201 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3202 continue; 3203 for_each_mem_cgroup_tree(mi, memcg) 3204 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3205 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3206 } 3207 3208 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3209 unsigned long long val = 0; 3210 3211 for_each_mem_cgroup_tree(mi, memcg) 3212 val += mem_cgroup_read_events(mi, i); 3213 seq_printf(m, "total_%s %llu\n", 3214 mem_cgroup_events_names[i], val); 3215 } 3216 3217 for (i = 0; i < NR_LRU_LISTS; i++) { 3218 unsigned long long val = 0; 3219 3220 for_each_mem_cgroup_tree(mi, memcg) 3221 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3222 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3223 } 3224 3225 #ifdef CONFIG_DEBUG_VM 3226 { 3227 pg_data_t *pgdat; 3228 struct mem_cgroup_per_node *mz; 3229 struct zone_reclaim_stat *rstat; 3230 unsigned long recent_rotated[2] = {0, 0}; 3231 unsigned long recent_scanned[2] = {0, 0}; 3232 3233 for_each_online_pgdat(pgdat) { 3234 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3235 rstat = &mz->lruvec.reclaim_stat; 3236 3237 recent_rotated[0] += rstat->recent_rotated[0]; 3238 recent_rotated[1] += rstat->recent_rotated[1]; 3239 recent_scanned[0] += rstat->recent_scanned[0]; 3240 recent_scanned[1] += rstat->recent_scanned[1]; 3241 } 3242 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3243 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3244 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3245 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3246 } 3247 #endif 3248 3249 return 0; 3250 } 3251 3252 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3253 struct cftype *cft) 3254 { 3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3256 3257 return mem_cgroup_swappiness(memcg); 3258 } 3259 3260 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3261 struct cftype *cft, u64 val) 3262 { 3263 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3264 3265 if (val > 100) 3266 return -EINVAL; 3267 3268 if (css->parent) 3269 memcg->swappiness = val; 3270 else 3271 vm_swappiness = val; 3272 3273 return 0; 3274 } 3275 3276 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3277 { 3278 struct mem_cgroup_threshold_ary *t; 3279 unsigned long usage; 3280 int i; 3281 3282 rcu_read_lock(); 3283 if (!swap) 3284 t = rcu_dereference(memcg->thresholds.primary); 3285 else 3286 t = rcu_dereference(memcg->memsw_thresholds.primary); 3287 3288 if (!t) 3289 goto unlock; 3290 3291 usage = mem_cgroup_usage(memcg, swap); 3292 3293 /* 3294 * current_threshold points to threshold just below or equal to usage. 3295 * If it's not true, a threshold was crossed after last 3296 * call of __mem_cgroup_threshold(). 3297 */ 3298 i = t->current_threshold; 3299 3300 /* 3301 * Iterate backward over array of thresholds starting from 3302 * current_threshold and check if a threshold is crossed. 3303 * If none of thresholds below usage is crossed, we read 3304 * only one element of the array here. 3305 */ 3306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3307 eventfd_signal(t->entries[i].eventfd, 1); 3308 3309 /* i = current_threshold + 1 */ 3310 i++; 3311 3312 /* 3313 * Iterate forward over array of thresholds starting from 3314 * current_threshold+1 and check if a threshold is crossed. 3315 * If none of thresholds above usage is crossed, we read 3316 * only one element of the array here. 3317 */ 3318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3319 eventfd_signal(t->entries[i].eventfd, 1); 3320 3321 /* Update current_threshold */ 3322 t->current_threshold = i - 1; 3323 unlock: 3324 rcu_read_unlock(); 3325 } 3326 3327 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3328 { 3329 while (memcg) { 3330 __mem_cgroup_threshold(memcg, false); 3331 if (do_memsw_account()) 3332 __mem_cgroup_threshold(memcg, true); 3333 3334 memcg = parent_mem_cgroup(memcg); 3335 } 3336 } 3337 3338 static int compare_thresholds(const void *a, const void *b) 3339 { 3340 const struct mem_cgroup_threshold *_a = a; 3341 const struct mem_cgroup_threshold *_b = b; 3342 3343 if (_a->threshold > _b->threshold) 3344 return 1; 3345 3346 if (_a->threshold < _b->threshold) 3347 return -1; 3348 3349 return 0; 3350 } 3351 3352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3353 { 3354 struct mem_cgroup_eventfd_list *ev; 3355 3356 spin_lock(&memcg_oom_lock); 3357 3358 list_for_each_entry(ev, &memcg->oom_notify, list) 3359 eventfd_signal(ev->eventfd, 1); 3360 3361 spin_unlock(&memcg_oom_lock); 3362 return 0; 3363 } 3364 3365 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3366 { 3367 struct mem_cgroup *iter; 3368 3369 for_each_mem_cgroup_tree(iter, memcg) 3370 mem_cgroup_oom_notify_cb(iter); 3371 } 3372 3373 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3374 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3375 { 3376 struct mem_cgroup_thresholds *thresholds; 3377 struct mem_cgroup_threshold_ary *new; 3378 unsigned long threshold; 3379 unsigned long usage; 3380 int i, size, ret; 3381 3382 ret = page_counter_memparse(args, "-1", &threshold); 3383 if (ret) 3384 return ret; 3385 3386 mutex_lock(&memcg->thresholds_lock); 3387 3388 if (type == _MEM) { 3389 thresholds = &memcg->thresholds; 3390 usage = mem_cgroup_usage(memcg, false); 3391 } else if (type == _MEMSWAP) { 3392 thresholds = &memcg->memsw_thresholds; 3393 usage = mem_cgroup_usage(memcg, true); 3394 } else 3395 BUG(); 3396 3397 /* Check if a threshold crossed before adding a new one */ 3398 if (thresholds->primary) 3399 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3400 3401 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3402 3403 /* Allocate memory for new array of thresholds */ 3404 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3405 GFP_KERNEL); 3406 if (!new) { 3407 ret = -ENOMEM; 3408 goto unlock; 3409 } 3410 new->size = size; 3411 3412 /* Copy thresholds (if any) to new array */ 3413 if (thresholds->primary) { 3414 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3415 sizeof(struct mem_cgroup_threshold)); 3416 } 3417 3418 /* Add new threshold */ 3419 new->entries[size - 1].eventfd = eventfd; 3420 new->entries[size - 1].threshold = threshold; 3421 3422 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3423 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3424 compare_thresholds, NULL); 3425 3426 /* Find current threshold */ 3427 new->current_threshold = -1; 3428 for (i = 0; i < size; i++) { 3429 if (new->entries[i].threshold <= usage) { 3430 /* 3431 * new->current_threshold will not be used until 3432 * rcu_assign_pointer(), so it's safe to increment 3433 * it here. 3434 */ 3435 ++new->current_threshold; 3436 } else 3437 break; 3438 } 3439 3440 /* Free old spare buffer and save old primary buffer as spare */ 3441 kfree(thresholds->spare); 3442 thresholds->spare = thresholds->primary; 3443 3444 rcu_assign_pointer(thresholds->primary, new); 3445 3446 /* To be sure that nobody uses thresholds */ 3447 synchronize_rcu(); 3448 3449 unlock: 3450 mutex_unlock(&memcg->thresholds_lock); 3451 3452 return ret; 3453 } 3454 3455 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3456 struct eventfd_ctx *eventfd, const char *args) 3457 { 3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3459 } 3460 3461 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3462 struct eventfd_ctx *eventfd, const char *args) 3463 { 3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3465 } 3466 3467 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3468 struct eventfd_ctx *eventfd, enum res_type type) 3469 { 3470 struct mem_cgroup_thresholds *thresholds; 3471 struct mem_cgroup_threshold_ary *new; 3472 unsigned long usage; 3473 int i, j, size; 3474 3475 mutex_lock(&memcg->thresholds_lock); 3476 3477 if (type == _MEM) { 3478 thresholds = &memcg->thresholds; 3479 usage = mem_cgroup_usage(memcg, false); 3480 } else if (type == _MEMSWAP) { 3481 thresholds = &memcg->memsw_thresholds; 3482 usage = mem_cgroup_usage(memcg, true); 3483 } else 3484 BUG(); 3485 3486 if (!thresholds->primary) 3487 goto unlock; 3488 3489 /* Check if a threshold crossed before removing */ 3490 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3491 3492 /* Calculate new number of threshold */ 3493 size = 0; 3494 for (i = 0; i < thresholds->primary->size; i++) { 3495 if (thresholds->primary->entries[i].eventfd != eventfd) 3496 size++; 3497 } 3498 3499 new = thresholds->spare; 3500 3501 /* Set thresholds array to NULL if we don't have thresholds */ 3502 if (!size) { 3503 kfree(new); 3504 new = NULL; 3505 goto swap_buffers; 3506 } 3507 3508 new->size = size; 3509 3510 /* Copy thresholds and find current threshold */ 3511 new->current_threshold = -1; 3512 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3513 if (thresholds->primary->entries[i].eventfd == eventfd) 3514 continue; 3515 3516 new->entries[j] = thresholds->primary->entries[i]; 3517 if (new->entries[j].threshold <= usage) { 3518 /* 3519 * new->current_threshold will not be used 3520 * until rcu_assign_pointer(), so it's safe to increment 3521 * it here. 3522 */ 3523 ++new->current_threshold; 3524 } 3525 j++; 3526 } 3527 3528 swap_buffers: 3529 /* Swap primary and spare array */ 3530 thresholds->spare = thresholds->primary; 3531 3532 rcu_assign_pointer(thresholds->primary, new); 3533 3534 /* To be sure that nobody uses thresholds */ 3535 synchronize_rcu(); 3536 3537 /* If all events are unregistered, free the spare array */ 3538 if (!new) { 3539 kfree(thresholds->spare); 3540 thresholds->spare = NULL; 3541 } 3542 unlock: 3543 mutex_unlock(&memcg->thresholds_lock); 3544 } 3545 3546 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3547 struct eventfd_ctx *eventfd) 3548 { 3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3550 } 3551 3552 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3553 struct eventfd_ctx *eventfd) 3554 { 3555 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3556 } 3557 3558 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3559 struct eventfd_ctx *eventfd, const char *args) 3560 { 3561 struct mem_cgroup_eventfd_list *event; 3562 3563 event = kmalloc(sizeof(*event), GFP_KERNEL); 3564 if (!event) 3565 return -ENOMEM; 3566 3567 spin_lock(&memcg_oom_lock); 3568 3569 event->eventfd = eventfd; 3570 list_add(&event->list, &memcg->oom_notify); 3571 3572 /* already in OOM ? */ 3573 if (memcg->under_oom) 3574 eventfd_signal(eventfd, 1); 3575 spin_unlock(&memcg_oom_lock); 3576 3577 return 0; 3578 } 3579 3580 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3581 struct eventfd_ctx *eventfd) 3582 { 3583 struct mem_cgroup_eventfd_list *ev, *tmp; 3584 3585 spin_lock(&memcg_oom_lock); 3586 3587 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3588 if (ev->eventfd == eventfd) { 3589 list_del(&ev->list); 3590 kfree(ev); 3591 } 3592 } 3593 3594 spin_unlock(&memcg_oom_lock); 3595 } 3596 3597 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3598 { 3599 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3600 3601 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3602 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3603 return 0; 3604 } 3605 3606 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3607 struct cftype *cft, u64 val) 3608 { 3609 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3610 3611 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3612 if (!css->parent || !((val == 0) || (val == 1))) 3613 return -EINVAL; 3614 3615 memcg->oom_kill_disable = val; 3616 if (!val) 3617 memcg_oom_recover(memcg); 3618 3619 return 0; 3620 } 3621 3622 #ifdef CONFIG_CGROUP_WRITEBACK 3623 3624 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3625 { 3626 return &memcg->cgwb_list; 3627 } 3628 3629 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3630 { 3631 return wb_domain_init(&memcg->cgwb_domain, gfp); 3632 } 3633 3634 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3635 { 3636 wb_domain_exit(&memcg->cgwb_domain); 3637 } 3638 3639 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3640 { 3641 wb_domain_size_changed(&memcg->cgwb_domain); 3642 } 3643 3644 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3645 { 3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3647 3648 if (!memcg->css.parent) 3649 return NULL; 3650 3651 return &memcg->cgwb_domain; 3652 } 3653 3654 /** 3655 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3656 * @wb: bdi_writeback in question 3657 * @pfilepages: out parameter for number of file pages 3658 * @pheadroom: out parameter for number of allocatable pages according to memcg 3659 * @pdirty: out parameter for number of dirty pages 3660 * @pwriteback: out parameter for number of pages under writeback 3661 * 3662 * Determine the numbers of file, headroom, dirty, and writeback pages in 3663 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3664 * is a bit more involved. 3665 * 3666 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3667 * headroom is calculated as the lowest headroom of itself and the 3668 * ancestors. Note that this doesn't consider the actual amount of 3669 * available memory in the system. The caller should further cap 3670 * *@pheadroom accordingly. 3671 */ 3672 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3673 unsigned long *pheadroom, unsigned long *pdirty, 3674 unsigned long *pwriteback) 3675 { 3676 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3677 struct mem_cgroup *parent; 3678 3679 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3680 3681 /* this should eventually include NR_UNSTABLE_NFS */ 3682 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3683 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3684 (1 << LRU_ACTIVE_FILE)); 3685 *pheadroom = PAGE_COUNTER_MAX; 3686 3687 while ((parent = parent_mem_cgroup(memcg))) { 3688 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3689 unsigned long used = page_counter_read(&memcg->memory); 3690 3691 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3692 memcg = parent; 3693 } 3694 } 3695 3696 #else /* CONFIG_CGROUP_WRITEBACK */ 3697 3698 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3699 { 3700 return 0; 3701 } 3702 3703 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3704 { 3705 } 3706 3707 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3708 { 3709 } 3710 3711 #endif /* CONFIG_CGROUP_WRITEBACK */ 3712 3713 /* 3714 * DO NOT USE IN NEW FILES. 3715 * 3716 * "cgroup.event_control" implementation. 3717 * 3718 * This is way over-engineered. It tries to support fully configurable 3719 * events for each user. Such level of flexibility is completely 3720 * unnecessary especially in the light of the planned unified hierarchy. 3721 * 3722 * Please deprecate this and replace with something simpler if at all 3723 * possible. 3724 */ 3725 3726 /* 3727 * Unregister event and free resources. 3728 * 3729 * Gets called from workqueue. 3730 */ 3731 static void memcg_event_remove(struct work_struct *work) 3732 { 3733 struct mem_cgroup_event *event = 3734 container_of(work, struct mem_cgroup_event, remove); 3735 struct mem_cgroup *memcg = event->memcg; 3736 3737 remove_wait_queue(event->wqh, &event->wait); 3738 3739 event->unregister_event(memcg, event->eventfd); 3740 3741 /* Notify userspace the event is going away. */ 3742 eventfd_signal(event->eventfd, 1); 3743 3744 eventfd_ctx_put(event->eventfd); 3745 kfree(event); 3746 css_put(&memcg->css); 3747 } 3748 3749 /* 3750 * Gets called on POLLHUP on eventfd when user closes it. 3751 * 3752 * Called with wqh->lock held and interrupts disabled. 3753 */ 3754 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3755 int sync, void *key) 3756 { 3757 struct mem_cgroup_event *event = 3758 container_of(wait, struct mem_cgroup_event, wait); 3759 struct mem_cgroup *memcg = event->memcg; 3760 unsigned long flags = (unsigned long)key; 3761 3762 if (flags & POLLHUP) { 3763 /* 3764 * If the event has been detached at cgroup removal, we 3765 * can simply return knowing the other side will cleanup 3766 * for us. 3767 * 3768 * We can't race against event freeing since the other 3769 * side will require wqh->lock via remove_wait_queue(), 3770 * which we hold. 3771 */ 3772 spin_lock(&memcg->event_list_lock); 3773 if (!list_empty(&event->list)) { 3774 list_del_init(&event->list); 3775 /* 3776 * We are in atomic context, but cgroup_event_remove() 3777 * may sleep, so we have to call it in workqueue. 3778 */ 3779 schedule_work(&event->remove); 3780 } 3781 spin_unlock(&memcg->event_list_lock); 3782 } 3783 3784 return 0; 3785 } 3786 3787 static void memcg_event_ptable_queue_proc(struct file *file, 3788 wait_queue_head_t *wqh, poll_table *pt) 3789 { 3790 struct mem_cgroup_event *event = 3791 container_of(pt, struct mem_cgroup_event, pt); 3792 3793 event->wqh = wqh; 3794 add_wait_queue(wqh, &event->wait); 3795 } 3796 3797 /* 3798 * DO NOT USE IN NEW FILES. 3799 * 3800 * Parse input and register new cgroup event handler. 3801 * 3802 * Input must be in format '<event_fd> <control_fd> <args>'. 3803 * Interpretation of args is defined by control file implementation. 3804 */ 3805 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3806 char *buf, size_t nbytes, loff_t off) 3807 { 3808 struct cgroup_subsys_state *css = of_css(of); 3809 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3810 struct mem_cgroup_event *event; 3811 struct cgroup_subsys_state *cfile_css; 3812 unsigned int efd, cfd; 3813 struct fd efile; 3814 struct fd cfile; 3815 const char *name; 3816 char *endp; 3817 int ret; 3818 3819 buf = strstrip(buf); 3820 3821 efd = simple_strtoul(buf, &endp, 10); 3822 if (*endp != ' ') 3823 return -EINVAL; 3824 buf = endp + 1; 3825 3826 cfd = simple_strtoul(buf, &endp, 10); 3827 if ((*endp != ' ') && (*endp != '\0')) 3828 return -EINVAL; 3829 buf = endp + 1; 3830 3831 event = kzalloc(sizeof(*event), GFP_KERNEL); 3832 if (!event) 3833 return -ENOMEM; 3834 3835 event->memcg = memcg; 3836 INIT_LIST_HEAD(&event->list); 3837 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3838 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3839 INIT_WORK(&event->remove, memcg_event_remove); 3840 3841 efile = fdget(efd); 3842 if (!efile.file) { 3843 ret = -EBADF; 3844 goto out_kfree; 3845 } 3846 3847 event->eventfd = eventfd_ctx_fileget(efile.file); 3848 if (IS_ERR(event->eventfd)) { 3849 ret = PTR_ERR(event->eventfd); 3850 goto out_put_efile; 3851 } 3852 3853 cfile = fdget(cfd); 3854 if (!cfile.file) { 3855 ret = -EBADF; 3856 goto out_put_eventfd; 3857 } 3858 3859 /* the process need read permission on control file */ 3860 /* AV: shouldn't we check that it's been opened for read instead? */ 3861 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3862 if (ret < 0) 3863 goto out_put_cfile; 3864 3865 /* 3866 * Determine the event callbacks and set them in @event. This used 3867 * to be done via struct cftype but cgroup core no longer knows 3868 * about these events. The following is crude but the whole thing 3869 * is for compatibility anyway. 3870 * 3871 * DO NOT ADD NEW FILES. 3872 */ 3873 name = cfile.file->f_path.dentry->d_name.name; 3874 3875 if (!strcmp(name, "memory.usage_in_bytes")) { 3876 event->register_event = mem_cgroup_usage_register_event; 3877 event->unregister_event = mem_cgroup_usage_unregister_event; 3878 } else if (!strcmp(name, "memory.oom_control")) { 3879 event->register_event = mem_cgroup_oom_register_event; 3880 event->unregister_event = mem_cgroup_oom_unregister_event; 3881 } else if (!strcmp(name, "memory.pressure_level")) { 3882 event->register_event = vmpressure_register_event; 3883 event->unregister_event = vmpressure_unregister_event; 3884 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3885 event->register_event = memsw_cgroup_usage_register_event; 3886 event->unregister_event = memsw_cgroup_usage_unregister_event; 3887 } else { 3888 ret = -EINVAL; 3889 goto out_put_cfile; 3890 } 3891 3892 /* 3893 * Verify @cfile should belong to @css. Also, remaining events are 3894 * automatically removed on cgroup destruction but the removal is 3895 * asynchronous, so take an extra ref on @css. 3896 */ 3897 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3898 &memory_cgrp_subsys); 3899 ret = -EINVAL; 3900 if (IS_ERR(cfile_css)) 3901 goto out_put_cfile; 3902 if (cfile_css != css) { 3903 css_put(cfile_css); 3904 goto out_put_cfile; 3905 } 3906 3907 ret = event->register_event(memcg, event->eventfd, buf); 3908 if (ret) 3909 goto out_put_css; 3910 3911 efile.file->f_op->poll(efile.file, &event->pt); 3912 3913 spin_lock(&memcg->event_list_lock); 3914 list_add(&event->list, &memcg->event_list); 3915 spin_unlock(&memcg->event_list_lock); 3916 3917 fdput(cfile); 3918 fdput(efile); 3919 3920 return nbytes; 3921 3922 out_put_css: 3923 css_put(css); 3924 out_put_cfile: 3925 fdput(cfile); 3926 out_put_eventfd: 3927 eventfd_ctx_put(event->eventfd); 3928 out_put_efile: 3929 fdput(efile); 3930 out_kfree: 3931 kfree(event); 3932 3933 return ret; 3934 } 3935 3936 static struct cftype mem_cgroup_legacy_files[] = { 3937 { 3938 .name = "usage_in_bytes", 3939 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3940 .read_u64 = mem_cgroup_read_u64, 3941 }, 3942 { 3943 .name = "max_usage_in_bytes", 3944 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3945 .write = mem_cgroup_reset, 3946 .read_u64 = mem_cgroup_read_u64, 3947 }, 3948 { 3949 .name = "limit_in_bytes", 3950 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3951 .write = mem_cgroup_write, 3952 .read_u64 = mem_cgroup_read_u64, 3953 }, 3954 { 3955 .name = "soft_limit_in_bytes", 3956 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3957 .write = mem_cgroup_write, 3958 .read_u64 = mem_cgroup_read_u64, 3959 }, 3960 { 3961 .name = "failcnt", 3962 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3963 .write = mem_cgroup_reset, 3964 .read_u64 = mem_cgroup_read_u64, 3965 }, 3966 { 3967 .name = "stat", 3968 .seq_show = memcg_stat_show, 3969 }, 3970 { 3971 .name = "force_empty", 3972 .write = mem_cgroup_force_empty_write, 3973 }, 3974 { 3975 .name = "use_hierarchy", 3976 .write_u64 = mem_cgroup_hierarchy_write, 3977 .read_u64 = mem_cgroup_hierarchy_read, 3978 }, 3979 { 3980 .name = "cgroup.event_control", /* XXX: for compat */ 3981 .write = memcg_write_event_control, 3982 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3983 }, 3984 { 3985 .name = "swappiness", 3986 .read_u64 = mem_cgroup_swappiness_read, 3987 .write_u64 = mem_cgroup_swappiness_write, 3988 }, 3989 { 3990 .name = "move_charge_at_immigrate", 3991 .read_u64 = mem_cgroup_move_charge_read, 3992 .write_u64 = mem_cgroup_move_charge_write, 3993 }, 3994 { 3995 .name = "oom_control", 3996 .seq_show = mem_cgroup_oom_control_read, 3997 .write_u64 = mem_cgroup_oom_control_write, 3998 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3999 }, 4000 { 4001 .name = "pressure_level", 4002 }, 4003 #ifdef CONFIG_NUMA 4004 { 4005 .name = "numa_stat", 4006 .seq_show = memcg_numa_stat_show, 4007 }, 4008 #endif 4009 { 4010 .name = "kmem.limit_in_bytes", 4011 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4012 .write = mem_cgroup_write, 4013 .read_u64 = mem_cgroup_read_u64, 4014 }, 4015 { 4016 .name = "kmem.usage_in_bytes", 4017 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4018 .read_u64 = mem_cgroup_read_u64, 4019 }, 4020 { 4021 .name = "kmem.failcnt", 4022 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4023 .write = mem_cgroup_reset, 4024 .read_u64 = mem_cgroup_read_u64, 4025 }, 4026 { 4027 .name = "kmem.max_usage_in_bytes", 4028 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4029 .write = mem_cgroup_reset, 4030 .read_u64 = mem_cgroup_read_u64, 4031 }, 4032 #ifdef CONFIG_SLABINFO 4033 { 4034 .name = "kmem.slabinfo", 4035 .seq_start = slab_start, 4036 .seq_next = slab_next, 4037 .seq_stop = slab_stop, 4038 .seq_show = memcg_slab_show, 4039 }, 4040 #endif 4041 { 4042 .name = "kmem.tcp.limit_in_bytes", 4043 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4044 .write = mem_cgroup_write, 4045 .read_u64 = mem_cgroup_read_u64, 4046 }, 4047 { 4048 .name = "kmem.tcp.usage_in_bytes", 4049 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4050 .read_u64 = mem_cgroup_read_u64, 4051 }, 4052 { 4053 .name = "kmem.tcp.failcnt", 4054 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4055 .write = mem_cgroup_reset, 4056 .read_u64 = mem_cgroup_read_u64, 4057 }, 4058 { 4059 .name = "kmem.tcp.max_usage_in_bytes", 4060 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4061 .write = mem_cgroup_reset, 4062 .read_u64 = mem_cgroup_read_u64, 4063 }, 4064 { }, /* terminate */ 4065 }; 4066 4067 /* 4068 * Private memory cgroup IDR 4069 * 4070 * Swap-out records and page cache shadow entries need to store memcg 4071 * references in constrained space, so we maintain an ID space that is 4072 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4073 * memory-controlled cgroups to 64k. 4074 * 4075 * However, there usually are many references to the oflline CSS after 4076 * the cgroup has been destroyed, such as page cache or reclaimable 4077 * slab objects, that don't need to hang on to the ID. We want to keep 4078 * those dead CSS from occupying IDs, or we might quickly exhaust the 4079 * relatively small ID space and prevent the creation of new cgroups 4080 * even when there are much fewer than 64k cgroups - possibly none. 4081 * 4082 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4083 * be freed and recycled when it's no longer needed, which is usually 4084 * when the CSS is offlined. 4085 * 4086 * The only exception to that are records of swapped out tmpfs/shmem 4087 * pages that need to be attributed to live ancestors on swapin. But 4088 * those references are manageable from userspace. 4089 */ 4090 4091 static DEFINE_IDR(mem_cgroup_idr); 4092 4093 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4094 { 4095 atomic_add(n, &memcg->id.ref); 4096 } 4097 4098 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4099 { 4100 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4101 idr_remove(&mem_cgroup_idr, memcg->id.id); 4102 memcg->id.id = 0; 4103 4104 /* Memcg ID pins CSS */ 4105 css_put(&memcg->css); 4106 } 4107 } 4108 4109 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4110 { 4111 mem_cgroup_id_get_many(memcg, 1); 4112 } 4113 4114 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4115 { 4116 mem_cgroup_id_put_many(memcg, 1); 4117 } 4118 4119 /** 4120 * mem_cgroup_from_id - look up a memcg from a memcg id 4121 * @id: the memcg id to look up 4122 * 4123 * Caller must hold rcu_read_lock(). 4124 */ 4125 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4126 { 4127 WARN_ON_ONCE(!rcu_read_lock_held()); 4128 return idr_find(&mem_cgroup_idr, id); 4129 } 4130 4131 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4132 { 4133 struct mem_cgroup_per_node *pn; 4134 int tmp = node; 4135 /* 4136 * This routine is called against possible nodes. 4137 * But it's BUG to call kmalloc() against offline node. 4138 * 4139 * TODO: this routine can waste much memory for nodes which will 4140 * never be onlined. It's better to use memory hotplug callback 4141 * function. 4142 */ 4143 if (!node_state(node, N_NORMAL_MEMORY)) 4144 tmp = -1; 4145 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4146 if (!pn) 4147 return 1; 4148 4149 lruvec_init(&pn->lruvec); 4150 pn->usage_in_excess = 0; 4151 pn->on_tree = false; 4152 pn->memcg = memcg; 4153 4154 memcg->nodeinfo[node] = pn; 4155 return 0; 4156 } 4157 4158 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4159 { 4160 kfree(memcg->nodeinfo[node]); 4161 } 4162 4163 static void mem_cgroup_free(struct mem_cgroup *memcg) 4164 { 4165 int node; 4166 4167 memcg_wb_domain_exit(memcg); 4168 for_each_node(node) 4169 free_mem_cgroup_per_node_info(memcg, node); 4170 free_percpu(memcg->stat); 4171 kfree(memcg); 4172 } 4173 4174 static struct mem_cgroup *mem_cgroup_alloc(void) 4175 { 4176 struct mem_cgroup *memcg; 4177 size_t size; 4178 int node; 4179 4180 size = sizeof(struct mem_cgroup); 4181 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4182 4183 memcg = kzalloc(size, GFP_KERNEL); 4184 if (!memcg) 4185 return NULL; 4186 4187 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4188 1, MEM_CGROUP_ID_MAX, 4189 GFP_KERNEL); 4190 if (memcg->id.id < 0) 4191 goto fail; 4192 4193 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4194 if (!memcg->stat) 4195 goto fail; 4196 4197 for_each_node(node) 4198 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4199 goto fail; 4200 4201 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4202 goto fail; 4203 4204 INIT_WORK(&memcg->high_work, high_work_func); 4205 memcg->last_scanned_node = MAX_NUMNODES; 4206 INIT_LIST_HEAD(&memcg->oom_notify); 4207 mutex_init(&memcg->thresholds_lock); 4208 spin_lock_init(&memcg->move_lock); 4209 vmpressure_init(&memcg->vmpressure); 4210 INIT_LIST_HEAD(&memcg->event_list); 4211 spin_lock_init(&memcg->event_list_lock); 4212 memcg->socket_pressure = jiffies; 4213 #ifndef CONFIG_SLOB 4214 memcg->kmemcg_id = -1; 4215 #endif 4216 #ifdef CONFIG_CGROUP_WRITEBACK 4217 INIT_LIST_HEAD(&memcg->cgwb_list); 4218 #endif 4219 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4220 return memcg; 4221 fail: 4222 if (memcg->id.id > 0) 4223 idr_remove(&mem_cgroup_idr, memcg->id.id); 4224 mem_cgroup_free(memcg); 4225 return NULL; 4226 } 4227 4228 static struct cgroup_subsys_state * __ref 4229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4230 { 4231 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4232 struct mem_cgroup *memcg; 4233 long error = -ENOMEM; 4234 4235 memcg = mem_cgroup_alloc(); 4236 if (!memcg) 4237 return ERR_PTR(error); 4238 4239 memcg->high = PAGE_COUNTER_MAX; 4240 memcg->soft_limit = PAGE_COUNTER_MAX; 4241 if (parent) { 4242 memcg->swappiness = mem_cgroup_swappiness(parent); 4243 memcg->oom_kill_disable = parent->oom_kill_disable; 4244 } 4245 if (parent && parent->use_hierarchy) { 4246 memcg->use_hierarchy = true; 4247 page_counter_init(&memcg->memory, &parent->memory); 4248 page_counter_init(&memcg->swap, &parent->swap); 4249 page_counter_init(&memcg->memsw, &parent->memsw); 4250 page_counter_init(&memcg->kmem, &parent->kmem); 4251 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4252 } else { 4253 page_counter_init(&memcg->memory, NULL); 4254 page_counter_init(&memcg->swap, NULL); 4255 page_counter_init(&memcg->memsw, NULL); 4256 page_counter_init(&memcg->kmem, NULL); 4257 page_counter_init(&memcg->tcpmem, NULL); 4258 /* 4259 * Deeper hierachy with use_hierarchy == false doesn't make 4260 * much sense so let cgroup subsystem know about this 4261 * unfortunate state in our controller. 4262 */ 4263 if (parent != root_mem_cgroup) 4264 memory_cgrp_subsys.broken_hierarchy = true; 4265 } 4266 4267 /* The following stuff does not apply to the root */ 4268 if (!parent) { 4269 root_mem_cgroup = memcg; 4270 return &memcg->css; 4271 } 4272 4273 error = memcg_online_kmem(memcg); 4274 if (error) 4275 goto fail; 4276 4277 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4278 static_branch_inc(&memcg_sockets_enabled_key); 4279 4280 return &memcg->css; 4281 fail: 4282 mem_cgroup_free(memcg); 4283 return ERR_PTR(-ENOMEM); 4284 } 4285 4286 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4287 { 4288 /* Online state pins memcg ID, memcg ID pins CSS */ 4289 mem_cgroup_id_get(mem_cgroup_from_css(css)); 4290 css_get(css); 4291 return 0; 4292 } 4293 4294 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4295 { 4296 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4297 struct mem_cgroup_event *event, *tmp; 4298 4299 /* 4300 * Unregister events and notify userspace. 4301 * Notify userspace about cgroup removing only after rmdir of cgroup 4302 * directory to avoid race between userspace and kernelspace. 4303 */ 4304 spin_lock(&memcg->event_list_lock); 4305 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4306 list_del_init(&event->list); 4307 schedule_work(&event->remove); 4308 } 4309 spin_unlock(&memcg->event_list_lock); 4310 4311 memcg_offline_kmem(memcg); 4312 wb_memcg_offline(memcg); 4313 4314 mem_cgroup_id_put(memcg); 4315 } 4316 4317 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4318 { 4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4320 4321 invalidate_reclaim_iterators(memcg); 4322 } 4323 4324 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4325 { 4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4327 4328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4329 static_branch_dec(&memcg_sockets_enabled_key); 4330 4331 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4332 static_branch_dec(&memcg_sockets_enabled_key); 4333 4334 vmpressure_cleanup(&memcg->vmpressure); 4335 cancel_work_sync(&memcg->high_work); 4336 mem_cgroup_remove_from_trees(memcg); 4337 memcg_free_kmem(memcg); 4338 mem_cgroup_free(memcg); 4339 } 4340 4341 /** 4342 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4343 * @css: the target css 4344 * 4345 * Reset the states of the mem_cgroup associated with @css. This is 4346 * invoked when the userland requests disabling on the default hierarchy 4347 * but the memcg is pinned through dependency. The memcg should stop 4348 * applying policies and should revert to the vanilla state as it may be 4349 * made visible again. 4350 * 4351 * The current implementation only resets the essential configurations. 4352 * This needs to be expanded to cover all the visible parts. 4353 */ 4354 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4355 { 4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4357 4358 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4359 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4360 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4361 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4362 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4363 memcg->low = 0; 4364 memcg->high = PAGE_COUNTER_MAX; 4365 memcg->soft_limit = PAGE_COUNTER_MAX; 4366 memcg_wb_domain_size_changed(memcg); 4367 } 4368 4369 #ifdef CONFIG_MMU 4370 /* Handlers for move charge at task migration. */ 4371 static int mem_cgroup_do_precharge(unsigned long count) 4372 { 4373 int ret; 4374 4375 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4377 if (!ret) { 4378 mc.precharge += count; 4379 return ret; 4380 } 4381 4382 /* Try charges one by one with reclaim */ 4383 while (count--) { 4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4385 if (ret) 4386 return ret; 4387 mc.precharge++; 4388 cond_resched(); 4389 } 4390 return 0; 4391 } 4392 4393 union mc_target { 4394 struct page *page; 4395 swp_entry_t ent; 4396 }; 4397 4398 enum mc_target_type { 4399 MC_TARGET_NONE = 0, 4400 MC_TARGET_PAGE, 4401 MC_TARGET_SWAP, 4402 }; 4403 4404 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4405 unsigned long addr, pte_t ptent) 4406 { 4407 struct page *page = vm_normal_page(vma, addr, ptent); 4408 4409 if (!page || !page_mapped(page)) 4410 return NULL; 4411 if (PageAnon(page)) { 4412 if (!(mc.flags & MOVE_ANON)) 4413 return NULL; 4414 } else { 4415 if (!(mc.flags & MOVE_FILE)) 4416 return NULL; 4417 } 4418 if (!get_page_unless_zero(page)) 4419 return NULL; 4420 4421 return page; 4422 } 4423 4424 #ifdef CONFIG_SWAP 4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4426 pte_t ptent, swp_entry_t *entry) 4427 { 4428 struct page *page = NULL; 4429 swp_entry_t ent = pte_to_swp_entry(ptent); 4430 4431 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4432 return NULL; 4433 /* 4434 * Because lookup_swap_cache() updates some statistics counter, 4435 * we call find_get_page() with swapper_space directly. 4436 */ 4437 page = find_get_page(swap_address_space(ent), ent.val); 4438 if (do_memsw_account()) 4439 entry->val = ent.val; 4440 4441 return page; 4442 } 4443 #else 4444 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4445 pte_t ptent, swp_entry_t *entry) 4446 { 4447 return NULL; 4448 } 4449 #endif 4450 4451 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4452 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4453 { 4454 struct page *page = NULL; 4455 struct address_space *mapping; 4456 pgoff_t pgoff; 4457 4458 if (!vma->vm_file) /* anonymous vma */ 4459 return NULL; 4460 if (!(mc.flags & MOVE_FILE)) 4461 return NULL; 4462 4463 mapping = vma->vm_file->f_mapping; 4464 pgoff = linear_page_index(vma, addr); 4465 4466 /* page is moved even if it's not RSS of this task(page-faulted). */ 4467 #ifdef CONFIG_SWAP 4468 /* shmem/tmpfs may report page out on swap: account for that too. */ 4469 if (shmem_mapping(mapping)) { 4470 page = find_get_entry(mapping, pgoff); 4471 if (radix_tree_exceptional_entry(page)) { 4472 swp_entry_t swp = radix_to_swp_entry(page); 4473 if (do_memsw_account()) 4474 *entry = swp; 4475 page = find_get_page(swap_address_space(swp), swp.val); 4476 } 4477 } else 4478 page = find_get_page(mapping, pgoff); 4479 #else 4480 page = find_get_page(mapping, pgoff); 4481 #endif 4482 return page; 4483 } 4484 4485 /** 4486 * mem_cgroup_move_account - move account of the page 4487 * @page: the page 4488 * @compound: charge the page as compound or small page 4489 * @from: mem_cgroup which the page is moved from. 4490 * @to: mem_cgroup which the page is moved to. @from != @to. 4491 * 4492 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4493 * 4494 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4495 * from old cgroup. 4496 */ 4497 static int mem_cgroup_move_account(struct page *page, 4498 bool compound, 4499 struct mem_cgroup *from, 4500 struct mem_cgroup *to) 4501 { 4502 unsigned long flags; 4503 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4504 int ret; 4505 bool anon; 4506 4507 VM_BUG_ON(from == to); 4508 VM_BUG_ON_PAGE(PageLRU(page), page); 4509 VM_BUG_ON(compound && !PageTransHuge(page)); 4510 4511 /* 4512 * Prevent mem_cgroup_migrate() from looking at 4513 * page->mem_cgroup of its source page while we change it. 4514 */ 4515 ret = -EBUSY; 4516 if (!trylock_page(page)) 4517 goto out; 4518 4519 ret = -EINVAL; 4520 if (page->mem_cgroup != from) 4521 goto out_unlock; 4522 4523 anon = PageAnon(page); 4524 4525 spin_lock_irqsave(&from->move_lock, flags); 4526 4527 if (!anon && page_mapped(page)) { 4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4529 nr_pages); 4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4531 nr_pages); 4532 } 4533 4534 /* 4535 * move_lock grabbed above and caller set from->moving_account, so 4536 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4537 * So mapping should be stable for dirty pages. 4538 */ 4539 if (!anon && PageDirty(page)) { 4540 struct address_space *mapping = page_mapping(page); 4541 4542 if (mapping_cap_account_dirty(mapping)) { 4543 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4544 nr_pages); 4545 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4546 nr_pages); 4547 } 4548 } 4549 4550 if (PageWriteback(page)) { 4551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4552 nr_pages); 4553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4554 nr_pages); 4555 } 4556 4557 /* 4558 * It is safe to change page->mem_cgroup here because the page 4559 * is referenced, charged, and isolated - we can't race with 4560 * uncharging, charging, migration, or LRU putback. 4561 */ 4562 4563 /* caller should have done css_get */ 4564 page->mem_cgroup = to; 4565 spin_unlock_irqrestore(&from->move_lock, flags); 4566 4567 ret = 0; 4568 4569 local_irq_disable(); 4570 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4571 memcg_check_events(to, page); 4572 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4573 memcg_check_events(from, page); 4574 local_irq_enable(); 4575 out_unlock: 4576 unlock_page(page); 4577 out: 4578 return ret; 4579 } 4580 4581 /** 4582 * get_mctgt_type - get target type of moving charge 4583 * @vma: the vma the pte to be checked belongs 4584 * @addr: the address corresponding to the pte to be checked 4585 * @ptent: the pte to be checked 4586 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4587 * 4588 * Returns 4589 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4590 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4591 * move charge. if @target is not NULL, the page is stored in target->page 4592 * with extra refcnt got(Callers should handle it). 4593 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4594 * target for charge migration. if @target is not NULL, the entry is stored 4595 * in target->ent. 4596 * 4597 * Called with pte lock held. 4598 */ 4599 4600 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4601 unsigned long addr, pte_t ptent, union mc_target *target) 4602 { 4603 struct page *page = NULL; 4604 enum mc_target_type ret = MC_TARGET_NONE; 4605 swp_entry_t ent = { .val = 0 }; 4606 4607 if (pte_present(ptent)) 4608 page = mc_handle_present_pte(vma, addr, ptent); 4609 else if (is_swap_pte(ptent)) 4610 page = mc_handle_swap_pte(vma, ptent, &ent); 4611 else if (pte_none(ptent)) 4612 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4613 4614 if (!page && !ent.val) 4615 return ret; 4616 if (page) { 4617 /* 4618 * Do only loose check w/o serialization. 4619 * mem_cgroup_move_account() checks the page is valid or 4620 * not under LRU exclusion. 4621 */ 4622 if (page->mem_cgroup == mc.from) { 4623 ret = MC_TARGET_PAGE; 4624 if (target) 4625 target->page = page; 4626 } 4627 if (!ret || !target) 4628 put_page(page); 4629 } 4630 /* There is a swap entry and a page doesn't exist or isn't charged */ 4631 if (ent.val && !ret && 4632 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4633 ret = MC_TARGET_SWAP; 4634 if (target) 4635 target->ent = ent; 4636 } 4637 return ret; 4638 } 4639 4640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4641 /* 4642 * We don't consider swapping or file mapped pages because THP does not 4643 * support them for now. 4644 * Caller should make sure that pmd_trans_huge(pmd) is true. 4645 */ 4646 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4647 unsigned long addr, pmd_t pmd, union mc_target *target) 4648 { 4649 struct page *page = NULL; 4650 enum mc_target_type ret = MC_TARGET_NONE; 4651 4652 page = pmd_page(pmd); 4653 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4654 if (!(mc.flags & MOVE_ANON)) 4655 return ret; 4656 if (page->mem_cgroup == mc.from) { 4657 ret = MC_TARGET_PAGE; 4658 if (target) { 4659 get_page(page); 4660 target->page = page; 4661 } 4662 } 4663 return ret; 4664 } 4665 #else 4666 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4667 unsigned long addr, pmd_t pmd, union mc_target *target) 4668 { 4669 return MC_TARGET_NONE; 4670 } 4671 #endif 4672 4673 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4674 unsigned long addr, unsigned long end, 4675 struct mm_walk *walk) 4676 { 4677 struct vm_area_struct *vma = walk->vma; 4678 pte_t *pte; 4679 spinlock_t *ptl; 4680 4681 ptl = pmd_trans_huge_lock(pmd, vma); 4682 if (ptl) { 4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4684 mc.precharge += HPAGE_PMD_NR; 4685 spin_unlock(ptl); 4686 return 0; 4687 } 4688 4689 if (pmd_trans_unstable(pmd)) 4690 return 0; 4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4692 for (; addr != end; pte++, addr += PAGE_SIZE) 4693 if (get_mctgt_type(vma, addr, *pte, NULL)) 4694 mc.precharge++; /* increment precharge temporarily */ 4695 pte_unmap_unlock(pte - 1, ptl); 4696 cond_resched(); 4697 4698 return 0; 4699 } 4700 4701 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4702 { 4703 unsigned long precharge; 4704 4705 struct mm_walk mem_cgroup_count_precharge_walk = { 4706 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4707 .mm = mm, 4708 }; 4709 down_read(&mm->mmap_sem); 4710 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4711 up_read(&mm->mmap_sem); 4712 4713 precharge = mc.precharge; 4714 mc.precharge = 0; 4715 4716 return precharge; 4717 } 4718 4719 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4720 { 4721 unsigned long precharge = mem_cgroup_count_precharge(mm); 4722 4723 VM_BUG_ON(mc.moving_task); 4724 mc.moving_task = current; 4725 return mem_cgroup_do_precharge(precharge); 4726 } 4727 4728 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4729 static void __mem_cgroup_clear_mc(void) 4730 { 4731 struct mem_cgroup *from = mc.from; 4732 struct mem_cgroup *to = mc.to; 4733 4734 /* we must uncharge all the leftover precharges from mc.to */ 4735 if (mc.precharge) { 4736 cancel_charge(mc.to, mc.precharge); 4737 mc.precharge = 0; 4738 } 4739 /* 4740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4741 * we must uncharge here. 4742 */ 4743 if (mc.moved_charge) { 4744 cancel_charge(mc.from, mc.moved_charge); 4745 mc.moved_charge = 0; 4746 } 4747 /* we must fixup refcnts and charges */ 4748 if (mc.moved_swap) { 4749 /* uncharge swap account from the old cgroup */ 4750 if (!mem_cgroup_is_root(mc.from)) 4751 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4752 4753 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4754 4755 /* 4756 * we charged both to->memory and to->memsw, so we 4757 * should uncharge to->memory. 4758 */ 4759 if (!mem_cgroup_is_root(mc.to)) 4760 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4761 4762 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4763 css_put_many(&mc.to->css, mc.moved_swap); 4764 4765 mc.moved_swap = 0; 4766 } 4767 memcg_oom_recover(from); 4768 memcg_oom_recover(to); 4769 wake_up_all(&mc.waitq); 4770 } 4771 4772 static void mem_cgroup_clear_mc(void) 4773 { 4774 struct mm_struct *mm = mc.mm; 4775 4776 /* 4777 * we must clear moving_task before waking up waiters at the end of 4778 * task migration. 4779 */ 4780 mc.moving_task = NULL; 4781 __mem_cgroup_clear_mc(); 4782 spin_lock(&mc.lock); 4783 mc.from = NULL; 4784 mc.to = NULL; 4785 mc.mm = NULL; 4786 spin_unlock(&mc.lock); 4787 4788 mmput(mm); 4789 } 4790 4791 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4792 { 4793 struct cgroup_subsys_state *css; 4794 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4795 struct mem_cgroup *from; 4796 struct task_struct *leader, *p; 4797 struct mm_struct *mm; 4798 unsigned long move_flags; 4799 int ret = 0; 4800 4801 /* charge immigration isn't supported on the default hierarchy */ 4802 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4803 return 0; 4804 4805 /* 4806 * Multi-process migrations only happen on the default hierarchy 4807 * where charge immigration is not used. Perform charge 4808 * immigration if @tset contains a leader and whine if there are 4809 * multiple. 4810 */ 4811 p = NULL; 4812 cgroup_taskset_for_each_leader(leader, css, tset) { 4813 WARN_ON_ONCE(p); 4814 p = leader; 4815 memcg = mem_cgroup_from_css(css); 4816 } 4817 if (!p) 4818 return 0; 4819 4820 /* 4821 * We are now commited to this value whatever it is. Changes in this 4822 * tunable will only affect upcoming migrations, not the current one. 4823 * So we need to save it, and keep it going. 4824 */ 4825 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4826 if (!move_flags) 4827 return 0; 4828 4829 from = mem_cgroup_from_task(p); 4830 4831 VM_BUG_ON(from == memcg); 4832 4833 mm = get_task_mm(p); 4834 if (!mm) 4835 return 0; 4836 /* We move charges only when we move a owner of the mm */ 4837 if (mm->owner == p) { 4838 VM_BUG_ON(mc.from); 4839 VM_BUG_ON(mc.to); 4840 VM_BUG_ON(mc.precharge); 4841 VM_BUG_ON(mc.moved_charge); 4842 VM_BUG_ON(mc.moved_swap); 4843 4844 spin_lock(&mc.lock); 4845 mc.mm = mm; 4846 mc.from = from; 4847 mc.to = memcg; 4848 mc.flags = move_flags; 4849 spin_unlock(&mc.lock); 4850 /* We set mc.moving_task later */ 4851 4852 ret = mem_cgroup_precharge_mc(mm); 4853 if (ret) 4854 mem_cgroup_clear_mc(); 4855 } else { 4856 mmput(mm); 4857 } 4858 return ret; 4859 } 4860 4861 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4862 { 4863 if (mc.to) 4864 mem_cgroup_clear_mc(); 4865 } 4866 4867 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4868 unsigned long addr, unsigned long end, 4869 struct mm_walk *walk) 4870 { 4871 int ret = 0; 4872 struct vm_area_struct *vma = walk->vma; 4873 pte_t *pte; 4874 spinlock_t *ptl; 4875 enum mc_target_type target_type; 4876 union mc_target target; 4877 struct page *page; 4878 4879 ptl = pmd_trans_huge_lock(pmd, vma); 4880 if (ptl) { 4881 if (mc.precharge < HPAGE_PMD_NR) { 4882 spin_unlock(ptl); 4883 return 0; 4884 } 4885 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4886 if (target_type == MC_TARGET_PAGE) { 4887 page = target.page; 4888 if (!isolate_lru_page(page)) { 4889 if (!mem_cgroup_move_account(page, true, 4890 mc.from, mc.to)) { 4891 mc.precharge -= HPAGE_PMD_NR; 4892 mc.moved_charge += HPAGE_PMD_NR; 4893 } 4894 putback_lru_page(page); 4895 } 4896 put_page(page); 4897 } 4898 spin_unlock(ptl); 4899 return 0; 4900 } 4901 4902 if (pmd_trans_unstable(pmd)) 4903 return 0; 4904 retry: 4905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4906 for (; addr != end; addr += PAGE_SIZE) { 4907 pte_t ptent = *(pte++); 4908 swp_entry_t ent; 4909 4910 if (!mc.precharge) 4911 break; 4912 4913 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4914 case MC_TARGET_PAGE: 4915 page = target.page; 4916 /* 4917 * We can have a part of the split pmd here. Moving it 4918 * can be done but it would be too convoluted so simply 4919 * ignore such a partial THP and keep it in original 4920 * memcg. There should be somebody mapping the head. 4921 */ 4922 if (PageTransCompound(page)) 4923 goto put; 4924 if (isolate_lru_page(page)) 4925 goto put; 4926 if (!mem_cgroup_move_account(page, false, 4927 mc.from, mc.to)) { 4928 mc.precharge--; 4929 /* we uncharge from mc.from later. */ 4930 mc.moved_charge++; 4931 } 4932 putback_lru_page(page); 4933 put: /* get_mctgt_type() gets the page */ 4934 put_page(page); 4935 break; 4936 case MC_TARGET_SWAP: 4937 ent = target.ent; 4938 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4939 mc.precharge--; 4940 /* we fixup refcnts and charges later. */ 4941 mc.moved_swap++; 4942 } 4943 break; 4944 default: 4945 break; 4946 } 4947 } 4948 pte_unmap_unlock(pte - 1, ptl); 4949 cond_resched(); 4950 4951 if (addr != end) { 4952 /* 4953 * We have consumed all precharges we got in can_attach(). 4954 * We try charge one by one, but don't do any additional 4955 * charges to mc.to if we have failed in charge once in attach() 4956 * phase. 4957 */ 4958 ret = mem_cgroup_do_precharge(1); 4959 if (!ret) 4960 goto retry; 4961 } 4962 4963 return ret; 4964 } 4965 4966 static void mem_cgroup_move_charge(void) 4967 { 4968 struct mm_walk mem_cgroup_move_charge_walk = { 4969 .pmd_entry = mem_cgroup_move_charge_pte_range, 4970 .mm = mc.mm, 4971 }; 4972 4973 lru_add_drain_all(); 4974 /* 4975 * Signal lock_page_memcg() to take the memcg's move_lock 4976 * while we're moving its pages to another memcg. Then wait 4977 * for already started RCU-only updates to finish. 4978 */ 4979 atomic_inc(&mc.from->moving_account); 4980 synchronize_rcu(); 4981 retry: 4982 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4983 /* 4984 * Someone who are holding the mmap_sem might be waiting in 4985 * waitq. So we cancel all extra charges, wake up all waiters, 4986 * and retry. Because we cancel precharges, we might not be able 4987 * to move enough charges, but moving charge is a best-effort 4988 * feature anyway, so it wouldn't be a big problem. 4989 */ 4990 __mem_cgroup_clear_mc(); 4991 cond_resched(); 4992 goto retry; 4993 } 4994 /* 4995 * When we have consumed all precharges and failed in doing 4996 * additional charge, the page walk just aborts. 4997 */ 4998 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4999 up_read(&mc.mm->mmap_sem); 5000 atomic_dec(&mc.from->moving_account); 5001 } 5002 5003 static void mem_cgroup_move_task(void) 5004 { 5005 if (mc.to) { 5006 mem_cgroup_move_charge(); 5007 mem_cgroup_clear_mc(); 5008 } 5009 } 5010 #else /* !CONFIG_MMU */ 5011 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5012 { 5013 return 0; 5014 } 5015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5016 { 5017 } 5018 static void mem_cgroup_move_task(void) 5019 { 5020 } 5021 #endif 5022 5023 /* 5024 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5025 * to verify whether we're attached to the default hierarchy on each mount 5026 * attempt. 5027 */ 5028 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5029 { 5030 /* 5031 * use_hierarchy is forced on the default hierarchy. cgroup core 5032 * guarantees that @root doesn't have any children, so turning it 5033 * on for the root memcg is enough. 5034 */ 5035 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5036 root_mem_cgroup->use_hierarchy = true; 5037 else 5038 root_mem_cgroup->use_hierarchy = false; 5039 } 5040 5041 static u64 memory_current_read(struct cgroup_subsys_state *css, 5042 struct cftype *cft) 5043 { 5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5045 5046 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5047 } 5048 5049 static int memory_low_show(struct seq_file *m, void *v) 5050 { 5051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5052 unsigned long low = READ_ONCE(memcg->low); 5053 5054 if (low == PAGE_COUNTER_MAX) 5055 seq_puts(m, "max\n"); 5056 else 5057 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5058 5059 return 0; 5060 } 5061 5062 static ssize_t memory_low_write(struct kernfs_open_file *of, 5063 char *buf, size_t nbytes, loff_t off) 5064 { 5065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5066 unsigned long low; 5067 int err; 5068 5069 buf = strstrip(buf); 5070 err = page_counter_memparse(buf, "max", &low); 5071 if (err) 5072 return err; 5073 5074 memcg->low = low; 5075 5076 return nbytes; 5077 } 5078 5079 static int memory_high_show(struct seq_file *m, void *v) 5080 { 5081 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5082 unsigned long high = READ_ONCE(memcg->high); 5083 5084 if (high == PAGE_COUNTER_MAX) 5085 seq_puts(m, "max\n"); 5086 else 5087 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5088 5089 return 0; 5090 } 5091 5092 static ssize_t memory_high_write(struct kernfs_open_file *of, 5093 char *buf, size_t nbytes, loff_t off) 5094 { 5095 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5096 unsigned long nr_pages; 5097 unsigned long high; 5098 int err; 5099 5100 buf = strstrip(buf); 5101 err = page_counter_memparse(buf, "max", &high); 5102 if (err) 5103 return err; 5104 5105 memcg->high = high; 5106 5107 nr_pages = page_counter_read(&memcg->memory); 5108 if (nr_pages > high) 5109 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5110 GFP_KERNEL, true); 5111 5112 memcg_wb_domain_size_changed(memcg); 5113 return nbytes; 5114 } 5115 5116 static int memory_max_show(struct seq_file *m, void *v) 5117 { 5118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5119 unsigned long max = READ_ONCE(memcg->memory.limit); 5120 5121 if (max == PAGE_COUNTER_MAX) 5122 seq_puts(m, "max\n"); 5123 else 5124 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5125 5126 return 0; 5127 } 5128 5129 static ssize_t memory_max_write(struct kernfs_open_file *of, 5130 char *buf, size_t nbytes, loff_t off) 5131 { 5132 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5133 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5134 bool drained = false; 5135 unsigned long max; 5136 int err; 5137 5138 buf = strstrip(buf); 5139 err = page_counter_memparse(buf, "max", &max); 5140 if (err) 5141 return err; 5142 5143 xchg(&memcg->memory.limit, max); 5144 5145 for (;;) { 5146 unsigned long nr_pages = page_counter_read(&memcg->memory); 5147 5148 if (nr_pages <= max) 5149 break; 5150 5151 if (signal_pending(current)) { 5152 err = -EINTR; 5153 break; 5154 } 5155 5156 if (!drained) { 5157 drain_all_stock(memcg); 5158 drained = true; 5159 continue; 5160 } 5161 5162 if (nr_reclaims) { 5163 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5164 GFP_KERNEL, true)) 5165 nr_reclaims--; 5166 continue; 5167 } 5168 5169 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5170 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5171 break; 5172 } 5173 5174 memcg_wb_domain_size_changed(memcg); 5175 return nbytes; 5176 } 5177 5178 static int memory_events_show(struct seq_file *m, void *v) 5179 { 5180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5181 5182 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5183 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5184 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5185 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5186 5187 return 0; 5188 } 5189 5190 static int memory_stat_show(struct seq_file *m, void *v) 5191 { 5192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5193 unsigned long stat[MEMCG_NR_STAT]; 5194 unsigned long events[MEMCG_NR_EVENTS]; 5195 int i; 5196 5197 /* 5198 * Provide statistics on the state of the memory subsystem as 5199 * well as cumulative event counters that show past behavior. 5200 * 5201 * This list is ordered following a combination of these gradients: 5202 * 1) generic big picture -> specifics and details 5203 * 2) reflecting userspace activity -> reflecting kernel heuristics 5204 * 5205 * Current memory state: 5206 */ 5207 5208 tree_stat(memcg, stat); 5209 tree_events(memcg, events); 5210 5211 seq_printf(m, "anon %llu\n", 5212 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5213 seq_printf(m, "file %llu\n", 5214 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5215 seq_printf(m, "kernel_stack %llu\n", 5216 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5217 seq_printf(m, "slab %llu\n", 5218 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5219 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5220 seq_printf(m, "sock %llu\n", 5221 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5222 5223 seq_printf(m, "file_mapped %llu\n", 5224 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5225 seq_printf(m, "file_dirty %llu\n", 5226 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5227 seq_printf(m, "file_writeback %llu\n", 5228 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5229 5230 for (i = 0; i < NR_LRU_LISTS; i++) { 5231 struct mem_cgroup *mi; 5232 unsigned long val = 0; 5233 5234 for_each_mem_cgroup_tree(mi, memcg) 5235 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5236 seq_printf(m, "%s %llu\n", 5237 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5238 } 5239 5240 seq_printf(m, "slab_reclaimable %llu\n", 5241 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5242 seq_printf(m, "slab_unreclaimable %llu\n", 5243 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5244 5245 /* Accumulated memory events */ 5246 5247 seq_printf(m, "pgfault %lu\n", 5248 events[MEM_CGROUP_EVENTS_PGFAULT]); 5249 seq_printf(m, "pgmajfault %lu\n", 5250 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5251 5252 return 0; 5253 } 5254 5255 static struct cftype memory_files[] = { 5256 { 5257 .name = "current", 5258 .flags = CFTYPE_NOT_ON_ROOT, 5259 .read_u64 = memory_current_read, 5260 }, 5261 { 5262 .name = "low", 5263 .flags = CFTYPE_NOT_ON_ROOT, 5264 .seq_show = memory_low_show, 5265 .write = memory_low_write, 5266 }, 5267 { 5268 .name = "high", 5269 .flags = CFTYPE_NOT_ON_ROOT, 5270 .seq_show = memory_high_show, 5271 .write = memory_high_write, 5272 }, 5273 { 5274 .name = "max", 5275 .flags = CFTYPE_NOT_ON_ROOT, 5276 .seq_show = memory_max_show, 5277 .write = memory_max_write, 5278 }, 5279 { 5280 .name = "events", 5281 .flags = CFTYPE_NOT_ON_ROOT, 5282 .file_offset = offsetof(struct mem_cgroup, events_file), 5283 .seq_show = memory_events_show, 5284 }, 5285 { 5286 .name = "stat", 5287 .flags = CFTYPE_NOT_ON_ROOT, 5288 .seq_show = memory_stat_show, 5289 }, 5290 { } /* terminate */ 5291 }; 5292 5293 struct cgroup_subsys memory_cgrp_subsys = { 5294 .css_alloc = mem_cgroup_css_alloc, 5295 .css_online = mem_cgroup_css_online, 5296 .css_offline = mem_cgroup_css_offline, 5297 .css_released = mem_cgroup_css_released, 5298 .css_free = mem_cgroup_css_free, 5299 .css_reset = mem_cgroup_css_reset, 5300 .can_attach = mem_cgroup_can_attach, 5301 .cancel_attach = mem_cgroup_cancel_attach, 5302 .post_attach = mem_cgroup_move_task, 5303 .bind = mem_cgroup_bind, 5304 .dfl_cftypes = memory_files, 5305 .legacy_cftypes = mem_cgroup_legacy_files, 5306 .early_init = 0, 5307 }; 5308 5309 /** 5310 * mem_cgroup_low - check if memory consumption is below the normal range 5311 * @root: the highest ancestor to consider 5312 * @memcg: the memory cgroup to check 5313 * 5314 * Returns %true if memory consumption of @memcg, and that of all 5315 * configurable ancestors up to @root, is below the normal range. 5316 */ 5317 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5318 { 5319 if (mem_cgroup_disabled()) 5320 return false; 5321 5322 /* 5323 * The toplevel group doesn't have a configurable range, so 5324 * it's never low when looked at directly, and it is not 5325 * considered an ancestor when assessing the hierarchy. 5326 */ 5327 5328 if (memcg == root_mem_cgroup) 5329 return false; 5330 5331 if (page_counter_read(&memcg->memory) >= memcg->low) 5332 return false; 5333 5334 while (memcg != root) { 5335 memcg = parent_mem_cgroup(memcg); 5336 5337 if (memcg == root_mem_cgroup) 5338 break; 5339 5340 if (page_counter_read(&memcg->memory) >= memcg->low) 5341 return false; 5342 } 5343 return true; 5344 } 5345 5346 /** 5347 * mem_cgroup_try_charge - try charging a page 5348 * @page: page to charge 5349 * @mm: mm context of the victim 5350 * @gfp_mask: reclaim mode 5351 * @memcgp: charged memcg return 5352 * @compound: charge the page as compound or small page 5353 * 5354 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5355 * pages according to @gfp_mask if necessary. 5356 * 5357 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5358 * Otherwise, an error code is returned. 5359 * 5360 * After page->mapping has been set up, the caller must finalize the 5361 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5362 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5363 */ 5364 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5365 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5366 bool compound) 5367 { 5368 struct mem_cgroup *memcg = NULL; 5369 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5370 int ret = 0; 5371 5372 if (mem_cgroup_disabled()) 5373 goto out; 5374 5375 if (PageSwapCache(page)) { 5376 /* 5377 * Every swap fault against a single page tries to charge the 5378 * page, bail as early as possible. shmem_unuse() encounters 5379 * already charged pages, too. The USED bit is protected by 5380 * the page lock, which serializes swap cache removal, which 5381 * in turn serializes uncharging. 5382 */ 5383 VM_BUG_ON_PAGE(!PageLocked(page), page); 5384 if (page->mem_cgroup) 5385 goto out; 5386 5387 if (do_swap_account) { 5388 swp_entry_t ent = { .val = page_private(page), }; 5389 unsigned short id = lookup_swap_cgroup_id(ent); 5390 5391 rcu_read_lock(); 5392 memcg = mem_cgroup_from_id(id); 5393 if (memcg && !css_tryget_online(&memcg->css)) 5394 memcg = NULL; 5395 rcu_read_unlock(); 5396 } 5397 } 5398 5399 if (!memcg) 5400 memcg = get_mem_cgroup_from_mm(mm); 5401 5402 ret = try_charge(memcg, gfp_mask, nr_pages); 5403 5404 css_put(&memcg->css); 5405 out: 5406 *memcgp = memcg; 5407 return ret; 5408 } 5409 5410 /** 5411 * mem_cgroup_commit_charge - commit a page charge 5412 * @page: page to charge 5413 * @memcg: memcg to charge the page to 5414 * @lrucare: page might be on LRU already 5415 * @compound: charge the page as compound or small page 5416 * 5417 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5418 * after page->mapping has been set up. This must happen atomically 5419 * as part of the page instantiation, i.e. under the page table lock 5420 * for anonymous pages, under the page lock for page and swap cache. 5421 * 5422 * In addition, the page must not be on the LRU during the commit, to 5423 * prevent racing with task migration. If it might be, use @lrucare. 5424 * 5425 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5426 */ 5427 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5428 bool lrucare, bool compound) 5429 { 5430 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5431 5432 VM_BUG_ON_PAGE(!page->mapping, page); 5433 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5434 5435 if (mem_cgroup_disabled()) 5436 return; 5437 /* 5438 * Swap faults will attempt to charge the same page multiple 5439 * times. But reuse_swap_page() might have removed the page 5440 * from swapcache already, so we can't check PageSwapCache(). 5441 */ 5442 if (!memcg) 5443 return; 5444 5445 commit_charge(page, memcg, lrucare); 5446 5447 local_irq_disable(); 5448 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5449 memcg_check_events(memcg, page); 5450 local_irq_enable(); 5451 5452 if (do_memsw_account() && PageSwapCache(page)) { 5453 swp_entry_t entry = { .val = page_private(page) }; 5454 /* 5455 * The swap entry might not get freed for a long time, 5456 * let's not wait for it. The page already received a 5457 * memory+swap charge, drop the swap entry duplicate. 5458 */ 5459 mem_cgroup_uncharge_swap(entry); 5460 } 5461 } 5462 5463 /** 5464 * mem_cgroup_cancel_charge - cancel a page charge 5465 * @page: page to charge 5466 * @memcg: memcg to charge the page to 5467 * @compound: charge the page as compound or small page 5468 * 5469 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5470 */ 5471 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5472 bool compound) 5473 { 5474 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5475 5476 if (mem_cgroup_disabled()) 5477 return; 5478 /* 5479 * Swap faults will attempt to charge the same page multiple 5480 * times. But reuse_swap_page() might have removed the page 5481 * from swapcache already, so we can't check PageSwapCache(). 5482 */ 5483 if (!memcg) 5484 return; 5485 5486 cancel_charge(memcg, nr_pages); 5487 } 5488 5489 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5490 unsigned long nr_anon, unsigned long nr_file, 5491 unsigned long nr_huge, unsigned long nr_kmem, 5492 struct page *dummy_page) 5493 { 5494 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5495 unsigned long flags; 5496 5497 if (!mem_cgroup_is_root(memcg)) { 5498 page_counter_uncharge(&memcg->memory, nr_pages); 5499 if (do_memsw_account()) 5500 page_counter_uncharge(&memcg->memsw, nr_pages); 5501 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5502 page_counter_uncharge(&memcg->kmem, nr_kmem); 5503 memcg_oom_recover(memcg); 5504 } 5505 5506 local_irq_save(flags); 5507 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5508 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5509 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5510 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5511 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5512 memcg_check_events(memcg, dummy_page); 5513 local_irq_restore(flags); 5514 5515 if (!mem_cgroup_is_root(memcg)) 5516 css_put_many(&memcg->css, nr_pages); 5517 } 5518 5519 static void uncharge_list(struct list_head *page_list) 5520 { 5521 struct mem_cgroup *memcg = NULL; 5522 unsigned long nr_anon = 0; 5523 unsigned long nr_file = 0; 5524 unsigned long nr_huge = 0; 5525 unsigned long nr_kmem = 0; 5526 unsigned long pgpgout = 0; 5527 struct list_head *next; 5528 struct page *page; 5529 5530 /* 5531 * Note that the list can be a single page->lru; hence the 5532 * do-while loop instead of a simple list_for_each_entry(). 5533 */ 5534 next = page_list->next; 5535 do { 5536 page = list_entry(next, struct page, lru); 5537 next = page->lru.next; 5538 5539 VM_BUG_ON_PAGE(PageLRU(page), page); 5540 VM_BUG_ON_PAGE(page_count(page), page); 5541 5542 if (!page->mem_cgroup) 5543 continue; 5544 5545 /* 5546 * Nobody should be changing or seriously looking at 5547 * page->mem_cgroup at this point, we have fully 5548 * exclusive access to the page. 5549 */ 5550 5551 if (memcg != page->mem_cgroup) { 5552 if (memcg) { 5553 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5554 nr_huge, nr_kmem, page); 5555 pgpgout = nr_anon = nr_file = 5556 nr_huge = nr_kmem = 0; 5557 } 5558 memcg = page->mem_cgroup; 5559 } 5560 5561 if (!PageKmemcg(page)) { 5562 unsigned int nr_pages = 1; 5563 5564 if (PageTransHuge(page)) { 5565 nr_pages <<= compound_order(page); 5566 nr_huge += nr_pages; 5567 } 5568 if (PageAnon(page)) 5569 nr_anon += nr_pages; 5570 else 5571 nr_file += nr_pages; 5572 pgpgout++; 5573 } else { 5574 nr_kmem += 1 << compound_order(page); 5575 __ClearPageKmemcg(page); 5576 } 5577 5578 page->mem_cgroup = NULL; 5579 } while (next != page_list); 5580 5581 if (memcg) 5582 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5583 nr_huge, nr_kmem, page); 5584 } 5585 5586 /** 5587 * mem_cgroup_uncharge - uncharge a page 5588 * @page: page to uncharge 5589 * 5590 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5591 * mem_cgroup_commit_charge(). 5592 */ 5593 void mem_cgroup_uncharge(struct page *page) 5594 { 5595 if (mem_cgroup_disabled()) 5596 return; 5597 5598 /* Don't touch page->lru of any random page, pre-check: */ 5599 if (!page->mem_cgroup) 5600 return; 5601 5602 INIT_LIST_HEAD(&page->lru); 5603 uncharge_list(&page->lru); 5604 } 5605 5606 /** 5607 * mem_cgroup_uncharge_list - uncharge a list of page 5608 * @page_list: list of pages to uncharge 5609 * 5610 * Uncharge a list of pages previously charged with 5611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5612 */ 5613 void mem_cgroup_uncharge_list(struct list_head *page_list) 5614 { 5615 if (mem_cgroup_disabled()) 5616 return; 5617 5618 if (!list_empty(page_list)) 5619 uncharge_list(page_list); 5620 } 5621 5622 /** 5623 * mem_cgroup_migrate - charge a page's replacement 5624 * @oldpage: currently circulating page 5625 * @newpage: replacement page 5626 * 5627 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5628 * be uncharged upon free. 5629 * 5630 * Both pages must be locked, @newpage->mapping must be set up. 5631 */ 5632 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5633 { 5634 struct mem_cgroup *memcg; 5635 unsigned int nr_pages; 5636 bool compound; 5637 unsigned long flags; 5638 5639 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5640 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5641 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5642 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5643 newpage); 5644 5645 if (mem_cgroup_disabled()) 5646 return; 5647 5648 /* Page cache replacement: new page already charged? */ 5649 if (newpage->mem_cgroup) 5650 return; 5651 5652 /* Swapcache readahead pages can get replaced before being charged */ 5653 memcg = oldpage->mem_cgroup; 5654 if (!memcg) 5655 return; 5656 5657 /* Force-charge the new page. The old one will be freed soon */ 5658 compound = PageTransHuge(newpage); 5659 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5660 5661 page_counter_charge(&memcg->memory, nr_pages); 5662 if (do_memsw_account()) 5663 page_counter_charge(&memcg->memsw, nr_pages); 5664 css_get_many(&memcg->css, nr_pages); 5665 5666 commit_charge(newpage, memcg, false); 5667 5668 local_irq_save(flags); 5669 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5670 memcg_check_events(memcg, newpage); 5671 local_irq_restore(flags); 5672 } 5673 5674 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5675 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5676 5677 void sock_update_memcg(struct sock *sk) 5678 { 5679 struct mem_cgroup *memcg; 5680 5681 /* Socket cloning can throw us here with sk_cgrp already 5682 * filled. It won't however, necessarily happen from 5683 * process context. So the test for root memcg given 5684 * the current task's memcg won't help us in this case. 5685 * 5686 * Respecting the original socket's memcg is a better 5687 * decision in this case. 5688 */ 5689 if (sk->sk_memcg) { 5690 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5691 css_get(&sk->sk_memcg->css); 5692 return; 5693 } 5694 5695 rcu_read_lock(); 5696 memcg = mem_cgroup_from_task(current); 5697 if (memcg == root_mem_cgroup) 5698 goto out; 5699 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5700 goto out; 5701 if (css_tryget_online(&memcg->css)) 5702 sk->sk_memcg = memcg; 5703 out: 5704 rcu_read_unlock(); 5705 } 5706 EXPORT_SYMBOL(sock_update_memcg); 5707 5708 void sock_release_memcg(struct sock *sk) 5709 { 5710 WARN_ON(!sk->sk_memcg); 5711 css_put(&sk->sk_memcg->css); 5712 } 5713 5714 /** 5715 * mem_cgroup_charge_skmem - charge socket memory 5716 * @memcg: memcg to charge 5717 * @nr_pages: number of pages to charge 5718 * 5719 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5720 * @memcg's configured limit, %false if the charge had to be forced. 5721 */ 5722 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5723 { 5724 gfp_t gfp_mask = GFP_KERNEL; 5725 5726 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5727 struct page_counter *fail; 5728 5729 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5730 memcg->tcpmem_pressure = 0; 5731 return true; 5732 } 5733 page_counter_charge(&memcg->tcpmem, nr_pages); 5734 memcg->tcpmem_pressure = 1; 5735 return false; 5736 } 5737 5738 /* Don't block in the packet receive path */ 5739 if (in_softirq()) 5740 gfp_mask = GFP_NOWAIT; 5741 5742 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5743 5744 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5745 return true; 5746 5747 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5748 return false; 5749 } 5750 5751 /** 5752 * mem_cgroup_uncharge_skmem - uncharge socket memory 5753 * @memcg - memcg to uncharge 5754 * @nr_pages - number of pages to uncharge 5755 */ 5756 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5757 { 5758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5759 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5760 return; 5761 } 5762 5763 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5764 5765 page_counter_uncharge(&memcg->memory, nr_pages); 5766 css_put_many(&memcg->css, nr_pages); 5767 } 5768 5769 static int __init cgroup_memory(char *s) 5770 { 5771 char *token; 5772 5773 while ((token = strsep(&s, ",")) != NULL) { 5774 if (!*token) 5775 continue; 5776 if (!strcmp(token, "nosocket")) 5777 cgroup_memory_nosocket = true; 5778 if (!strcmp(token, "nokmem")) 5779 cgroup_memory_nokmem = true; 5780 } 5781 return 0; 5782 } 5783 __setup("cgroup.memory=", cgroup_memory); 5784 5785 /* 5786 * subsys_initcall() for memory controller. 5787 * 5788 * Some parts like hotcpu_notifier() have to be initialized from this context 5789 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5790 * everything that doesn't depend on a specific mem_cgroup structure should 5791 * be initialized from here. 5792 */ 5793 static int __init mem_cgroup_init(void) 5794 { 5795 int cpu, node; 5796 5797 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5798 5799 for_each_possible_cpu(cpu) 5800 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5801 drain_local_stock); 5802 5803 for_each_node(node) { 5804 struct mem_cgroup_tree_per_node *rtpn; 5805 5806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5807 node_online(node) ? node : NUMA_NO_NODE); 5808 5809 rtpn->rb_root = RB_ROOT; 5810 spin_lock_init(&rtpn->lock); 5811 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5812 } 5813 5814 return 0; 5815 } 5816 subsys_initcall(mem_cgroup_init); 5817 5818 #ifdef CONFIG_MEMCG_SWAP 5819 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 5820 { 5821 while (!atomic_inc_not_zero(&memcg->id.ref)) { 5822 /* 5823 * The root cgroup cannot be destroyed, so it's refcount must 5824 * always be >= 1. 5825 */ 5826 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 5827 VM_BUG_ON(1); 5828 break; 5829 } 5830 memcg = parent_mem_cgroup(memcg); 5831 if (!memcg) 5832 memcg = root_mem_cgroup; 5833 } 5834 return memcg; 5835 } 5836 5837 /** 5838 * mem_cgroup_swapout - transfer a memsw charge to swap 5839 * @page: page whose memsw charge to transfer 5840 * @entry: swap entry to move the charge to 5841 * 5842 * Transfer the memsw charge of @page to @entry. 5843 */ 5844 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5845 { 5846 struct mem_cgroup *memcg, *swap_memcg; 5847 unsigned short oldid; 5848 5849 VM_BUG_ON_PAGE(PageLRU(page), page); 5850 VM_BUG_ON_PAGE(page_count(page), page); 5851 5852 if (!do_memsw_account()) 5853 return; 5854 5855 memcg = page->mem_cgroup; 5856 5857 /* Readahead page, never charged */ 5858 if (!memcg) 5859 return; 5860 5861 /* 5862 * In case the memcg owning these pages has been offlined and doesn't 5863 * have an ID allocated to it anymore, charge the closest online 5864 * ancestor for the swap instead and transfer the memory+swap charge. 5865 */ 5866 swap_memcg = mem_cgroup_id_get_online(memcg); 5867 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg)); 5868 VM_BUG_ON_PAGE(oldid, page); 5869 mem_cgroup_swap_statistics(swap_memcg, true); 5870 5871 page->mem_cgroup = NULL; 5872 5873 if (!mem_cgroup_is_root(memcg)) 5874 page_counter_uncharge(&memcg->memory, 1); 5875 5876 if (memcg != swap_memcg) { 5877 if (!mem_cgroup_is_root(swap_memcg)) 5878 page_counter_charge(&swap_memcg->memsw, 1); 5879 page_counter_uncharge(&memcg->memsw, 1); 5880 } 5881 5882 /* 5883 * Interrupts should be disabled here because the caller holds the 5884 * mapping->tree_lock lock which is taken with interrupts-off. It is 5885 * important here to have the interrupts disabled because it is the 5886 * only synchronisation we have for udpating the per-CPU variables. 5887 */ 5888 VM_BUG_ON(!irqs_disabled()); 5889 mem_cgroup_charge_statistics(memcg, page, false, -1); 5890 memcg_check_events(memcg, page); 5891 5892 if (!mem_cgroup_is_root(memcg)) 5893 css_put(&memcg->css); 5894 } 5895 5896 /* 5897 * mem_cgroup_try_charge_swap - try charging a swap entry 5898 * @page: page being added to swap 5899 * @entry: swap entry to charge 5900 * 5901 * Try to charge @entry to the memcg that @page belongs to. 5902 * 5903 * Returns 0 on success, -ENOMEM on failure. 5904 */ 5905 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5906 { 5907 struct mem_cgroup *memcg; 5908 struct page_counter *counter; 5909 unsigned short oldid; 5910 5911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5912 return 0; 5913 5914 memcg = page->mem_cgroup; 5915 5916 /* Readahead page, never charged */ 5917 if (!memcg) 5918 return 0; 5919 5920 memcg = mem_cgroup_id_get_online(memcg); 5921 5922 if (!mem_cgroup_is_root(memcg) && 5923 !page_counter_try_charge(&memcg->swap, 1, &counter)) { 5924 mem_cgroup_id_put(memcg); 5925 return -ENOMEM; 5926 } 5927 5928 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5929 VM_BUG_ON_PAGE(oldid, page); 5930 mem_cgroup_swap_statistics(memcg, true); 5931 5932 return 0; 5933 } 5934 5935 /** 5936 * mem_cgroup_uncharge_swap - uncharge a swap entry 5937 * @entry: swap entry to uncharge 5938 * 5939 * Drop the swap charge associated with @entry. 5940 */ 5941 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5942 { 5943 struct mem_cgroup *memcg; 5944 unsigned short id; 5945 5946 if (!do_swap_account) 5947 return; 5948 5949 id = swap_cgroup_record(entry, 0); 5950 rcu_read_lock(); 5951 memcg = mem_cgroup_from_id(id); 5952 if (memcg) { 5953 if (!mem_cgroup_is_root(memcg)) { 5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5955 page_counter_uncharge(&memcg->swap, 1); 5956 else 5957 page_counter_uncharge(&memcg->memsw, 1); 5958 } 5959 mem_cgroup_swap_statistics(memcg, false); 5960 mem_cgroup_id_put(memcg); 5961 } 5962 rcu_read_unlock(); 5963 } 5964 5965 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5966 { 5967 long nr_swap_pages = get_nr_swap_pages(); 5968 5969 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5970 return nr_swap_pages; 5971 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5972 nr_swap_pages = min_t(long, nr_swap_pages, 5973 READ_ONCE(memcg->swap.limit) - 5974 page_counter_read(&memcg->swap)); 5975 return nr_swap_pages; 5976 } 5977 5978 bool mem_cgroup_swap_full(struct page *page) 5979 { 5980 struct mem_cgroup *memcg; 5981 5982 VM_BUG_ON_PAGE(!PageLocked(page), page); 5983 5984 if (vm_swap_full()) 5985 return true; 5986 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5987 return false; 5988 5989 memcg = page->mem_cgroup; 5990 if (!memcg) 5991 return false; 5992 5993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5994 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5995 return true; 5996 5997 return false; 5998 } 5999 6000 /* for remember boot option*/ 6001 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6002 static int really_do_swap_account __initdata = 1; 6003 #else 6004 static int really_do_swap_account __initdata; 6005 #endif 6006 6007 static int __init enable_swap_account(char *s) 6008 { 6009 if (!strcmp(s, "1")) 6010 really_do_swap_account = 1; 6011 else if (!strcmp(s, "0")) 6012 really_do_swap_account = 0; 6013 return 1; 6014 } 6015 __setup("swapaccount=", enable_swap_account); 6016 6017 static u64 swap_current_read(struct cgroup_subsys_state *css, 6018 struct cftype *cft) 6019 { 6020 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6021 6022 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6023 } 6024 6025 static int swap_max_show(struct seq_file *m, void *v) 6026 { 6027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6028 unsigned long max = READ_ONCE(memcg->swap.limit); 6029 6030 if (max == PAGE_COUNTER_MAX) 6031 seq_puts(m, "max\n"); 6032 else 6033 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6034 6035 return 0; 6036 } 6037 6038 static ssize_t swap_max_write(struct kernfs_open_file *of, 6039 char *buf, size_t nbytes, loff_t off) 6040 { 6041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6042 unsigned long max; 6043 int err; 6044 6045 buf = strstrip(buf); 6046 err = page_counter_memparse(buf, "max", &max); 6047 if (err) 6048 return err; 6049 6050 mutex_lock(&memcg_limit_mutex); 6051 err = page_counter_limit(&memcg->swap, max); 6052 mutex_unlock(&memcg_limit_mutex); 6053 if (err) 6054 return err; 6055 6056 return nbytes; 6057 } 6058 6059 static struct cftype swap_files[] = { 6060 { 6061 .name = "swap.current", 6062 .flags = CFTYPE_NOT_ON_ROOT, 6063 .read_u64 = swap_current_read, 6064 }, 6065 { 6066 .name = "swap.max", 6067 .flags = CFTYPE_NOT_ON_ROOT, 6068 .seq_show = swap_max_show, 6069 .write = swap_max_write, 6070 }, 6071 { } /* terminate */ 6072 }; 6073 6074 static struct cftype memsw_cgroup_files[] = { 6075 { 6076 .name = "memsw.usage_in_bytes", 6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6078 .read_u64 = mem_cgroup_read_u64, 6079 }, 6080 { 6081 .name = "memsw.max_usage_in_bytes", 6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6083 .write = mem_cgroup_reset, 6084 .read_u64 = mem_cgroup_read_u64, 6085 }, 6086 { 6087 .name = "memsw.limit_in_bytes", 6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6089 .write = mem_cgroup_write, 6090 .read_u64 = mem_cgroup_read_u64, 6091 }, 6092 { 6093 .name = "memsw.failcnt", 6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6095 .write = mem_cgroup_reset, 6096 .read_u64 = mem_cgroup_read_u64, 6097 }, 6098 { }, /* terminate */ 6099 }; 6100 6101 static int __init mem_cgroup_swap_init(void) 6102 { 6103 if (!mem_cgroup_disabled() && really_do_swap_account) { 6104 do_swap_account = 1; 6105 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6106 swap_files)); 6107 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6108 memsw_cgroup_files)); 6109 } 6110 return 0; 6111 } 6112 subsys_initcall(mem_cgroup_swap_init); 6113 6114 #endif /* CONFIG_MEMCG_SWAP */ 6115