1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 struct rb_node *rb_rightmost; 123 spinlock_t lock; 124 }; 125 126 struct mem_cgroup_tree { 127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 128 }; 129 130 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 131 132 /* for OOM */ 133 struct mem_cgroup_eventfd_list { 134 struct list_head list; 135 struct eventfd_ctx *eventfd; 136 }; 137 138 /* 139 * cgroup_event represents events which userspace want to receive. 140 */ 141 struct mem_cgroup_event { 142 /* 143 * memcg which the event belongs to. 144 */ 145 struct mem_cgroup *memcg; 146 /* 147 * eventfd to signal userspace about the event. 148 */ 149 struct eventfd_ctx *eventfd; 150 /* 151 * Each of these stored in a list by the cgroup. 152 */ 153 struct list_head list; 154 /* 155 * register_event() callback will be used to add new userspace 156 * waiter for changes related to this event. Use eventfd_signal() 157 * on eventfd to send notification to userspace. 158 */ 159 int (*register_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd, const char *args); 161 /* 162 * unregister_event() callback will be called when userspace closes 163 * the eventfd or on cgroup removing. This callback must be set, 164 * if you want provide notification functionality. 165 */ 166 void (*unregister_event)(struct mem_cgroup *memcg, 167 struct eventfd_ctx *eventfd); 168 /* 169 * All fields below needed to unregister event when 170 * userspace closes eventfd. 171 */ 172 poll_table pt; 173 wait_queue_head_t *wqh; 174 wait_queue_entry_t wait; 175 struct work_struct remove; 176 }; 177 178 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 180 181 /* Stuffs for move charges at task migration. */ 182 /* 183 * Types of charges to be moved. 184 */ 185 #define MOVE_ANON 0x1U 186 #define MOVE_FILE 0x2U 187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 188 189 /* "mc" and its members are protected by cgroup_mutex */ 190 static struct move_charge_struct { 191 spinlock_t lock; /* for from, to */ 192 struct mm_struct *mm; 193 struct mem_cgroup *from; 194 struct mem_cgroup *to; 195 unsigned long flags; 196 unsigned long precharge; 197 unsigned long moved_charge; 198 unsigned long moved_swap; 199 struct task_struct *moving_task; /* a task moving charges */ 200 wait_queue_head_t waitq; /* a waitq for other context */ 201 } mc = { 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 204 }; 205 206 /* 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 208 * limit reclaim to prevent infinite loops, if they ever occur. 209 */ 210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 212 213 enum charge_type { 214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 215 MEM_CGROUP_CHARGE_TYPE_ANON, 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 218 NR_CHARGE_TYPE, 219 }; 220 221 /* for encoding cft->private value on file */ 222 enum res_type { 223 _MEM, 224 _MEMSWAP, 225 _OOM_TYPE, 226 _KMEM, 227 _TCP, 228 }; 229 230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 232 #define MEMFILE_ATTR(val) ((val) & 0xffff) 233 /* Used for OOM nofiier */ 234 #define OOM_CONTROL (0) 235 236 /* 237 * Iteration constructs for visiting all cgroups (under a tree). If 238 * loops are exited prematurely (break), mem_cgroup_iter_break() must 239 * be used for reference counting. 240 */ 241 #define for_each_mem_cgroup_tree(iter, root) \ 242 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 243 iter != NULL; \ 244 iter = mem_cgroup_iter(root, iter, NULL)) 245 246 #define for_each_mem_cgroup(iter) \ 247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 248 iter != NULL; \ 249 iter = mem_cgroup_iter(NULL, iter, NULL)) 250 251 /* Some nice accessors for the vmpressure. */ 252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 253 { 254 if (!memcg) 255 memcg = root_mem_cgroup; 256 return &memcg->vmpressure; 257 } 258 259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 260 { 261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 262 } 263 264 #ifdef CONFIG_MEMCG_KMEM 265 /* 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 267 * The main reason for not using cgroup id for this: 268 * this works better in sparse environments, where we have a lot of memcgs, 269 * but only a few kmem-limited. Or also, if we have, for instance, 200 270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 271 * 200 entry array for that. 272 * 273 * The current size of the caches array is stored in memcg_nr_cache_ids. It 274 * will double each time we have to increase it. 275 */ 276 static DEFINE_IDA(memcg_cache_ida); 277 int memcg_nr_cache_ids; 278 279 /* Protects memcg_nr_cache_ids */ 280 static DECLARE_RWSEM(memcg_cache_ids_sem); 281 282 void memcg_get_cache_ids(void) 283 { 284 down_read(&memcg_cache_ids_sem); 285 } 286 287 void memcg_put_cache_ids(void) 288 { 289 up_read(&memcg_cache_ids_sem); 290 } 291 292 /* 293 * MIN_SIZE is different than 1, because we would like to avoid going through 294 * the alloc/free process all the time. In a small machine, 4 kmem-limited 295 * cgroups is a reasonable guess. In the future, it could be a parameter or 296 * tunable, but that is strictly not necessary. 297 * 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 299 * this constant directly from cgroup, but it is understandable that this is 300 * better kept as an internal representation in cgroup.c. In any case, the 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily 302 * increase ours as well if it increases. 303 */ 304 #define MEMCG_CACHES_MIN_SIZE 4 305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 306 307 /* 308 * A lot of the calls to the cache allocation functions are expected to be 309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 310 * conditional to this static branch, we'll have to allow modules that does 311 * kmem_cache_alloc and the such to see this symbol as well 312 */ 313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 314 EXPORT_SYMBOL(memcg_kmem_enabled_key); 315 316 struct workqueue_struct *memcg_kmem_cache_wq; 317 318 static int memcg_shrinker_map_size; 319 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 320 321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 322 { 323 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 324 } 325 326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 327 int size, int old_size) 328 { 329 struct memcg_shrinker_map *new, *old; 330 int nid; 331 332 lockdep_assert_held(&memcg_shrinker_map_mutex); 333 334 for_each_node(nid) { 335 old = rcu_dereference_protected( 336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 337 /* Not yet online memcg */ 338 if (!old) 339 return 0; 340 341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 342 if (!new) 343 return -ENOMEM; 344 345 /* Set all old bits, clear all new bits */ 346 memset(new->map, (int)0xff, old_size); 347 memset((void *)new->map + old_size, 0, size - old_size); 348 349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 351 } 352 353 return 0; 354 } 355 356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 357 { 358 struct mem_cgroup_per_node *pn; 359 struct memcg_shrinker_map *map; 360 int nid; 361 362 if (mem_cgroup_is_root(memcg)) 363 return; 364 365 for_each_node(nid) { 366 pn = mem_cgroup_nodeinfo(memcg, nid); 367 map = rcu_dereference_protected(pn->shrinker_map, true); 368 if (map) 369 kvfree(map); 370 rcu_assign_pointer(pn->shrinker_map, NULL); 371 } 372 } 373 374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 375 { 376 struct memcg_shrinker_map *map; 377 int nid, size, ret = 0; 378 379 if (mem_cgroup_is_root(memcg)) 380 return 0; 381 382 mutex_lock(&memcg_shrinker_map_mutex); 383 size = memcg_shrinker_map_size; 384 for_each_node(nid) { 385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 386 if (!map) { 387 memcg_free_shrinker_maps(memcg); 388 ret = -ENOMEM; 389 break; 390 } 391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 392 } 393 mutex_unlock(&memcg_shrinker_map_mutex); 394 395 return ret; 396 } 397 398 int memcg_expand_shrinker_maps(int new_id) 399 { 400 int size, old_size, ret = 0; 401 struct mem_cgroup *memcg; 402 403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 404 old_size = memcg_shrinker_map_size; 405 if (size <= old_size) 406 return 0; 407 408 mutex_lock(&memcg_shrinker_map_mutex); 409 if (!root_mem_cgroup) 410 goto unlock; 411 412 for_each_mem_cgroup(memcg) { 413 if (mem_cgroup_is_root(memcg)) 414 continue; 415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 416 if (ret) 417 goto unlock; 418 } 419 unlock: 420 if (!ret) 421 memcg_shrinker_map_size = size; 422 mutex_unlock(&memcg_shrinker_map_mutex); 423 return ret; 424 } 425 426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 427 { 428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 429 struct memcg_shrinker_map *map; 430 431 rcu_read_lock(); 432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 433 /* Pairs with smp mb in shrink_slab() */ 434 smp_mb__before_atomic(); 435 set_bit(shrinker_id, map->map); 436 rcu_read_unlock(); 437 } 438 } 439 440 #else /* CONFIG_MEMCG_KMEM */ 441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 442 { 443 return 0; 444 } 445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 446 #endif /* CONFIG_MEMCG_KMEM */ 447 448 /** 449 * mem_cgroup_css_from_page - css of the memcg associated with a page 450 * @page: page of interest 451 * 452 * If memcg is bound to the default hierarchy, css of the memcg associated 453 * with @page is returned. The returned css remains associated with @page 454 * until it is released. 455 * 456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 457 * is returned. 458 */ 459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 460 { 461 struct mem_cgroup *memcg; 462 463 memcg = page->mem_cgroup; 464 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 466 memcg = root_mem_cgroup; 467 468 return &memcg->css; 469 } 470 471 /** 472 * page_cgroup_ino - return inode number of the memcg a page is charged to 473 * @page: the page 474 * 475 * Look up the closest online ancestor of the memory cgroup @page is charged to 476 * and return its inode number or 0 if @page is not charged to any cgroup. It 477 * is safe to call this function without holding a reference to @page. 478 * 479 * Note, this function is inherently racy, because there is nothing to prevent 480 * the cgroup inode from getting torn down and potentially reallocated a moment 481 * after page_cgroup_ino() returns, so it only should be used by callers that 482 * do not care (such as procfs interfaces). 483 */ 484 ino_t page_cgroup_ino(struct page *page) 485 { 486 struct mem_cgroup *memcg; 487 unsigned long ino = 0; 488 489 rcu_read_lock(); 490 memcg = READ_ONCE(page->mem_cgroup); 491 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 492 memcg = parent_mem_cgroup(memcg); 493 if (memcg) 494 ino = cgroup_ino(memcg->css.cgroup); 495 rcu_read_unlock(); 496 return ino; 497 } 498 499 static struct mem_cgroup_per_node * 500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 501 { 502 int nid = page_to_nid(page); 503 504 return memcg->nodeinfo[nid]; 505 } 506 507 static struct mem_cgroup_tree_per_node * 508 soft_limit_tree_node(int nid) 509 { 510 return soft_limit_tree.rb_tree_per_node[nid]; 511 } 512 513 static struct mem_cgroup_tree_per_node * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 518 return soft_limit_tree.rb_tree_per_node[nid]; 519 } 520 521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 522 struct mem_cgroup_tree_per_node *mctz, 523 unsigned long new_usage_in_excess) 524 { 525 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node *parent = NULL; 527 struct mem_cgroup_per_node *mz_node; 528 bool rightmost = true; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) { 541 p = &(*p)->rb_left; 542 rightmost = false; 543 } 544 545 /* 546 * We can't avoid mem cgroups that are over their soft 547 * limit by the same amount 548 */ 549 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 550 p = &(*p)->rb_right; 551 } 552 553 if (rightmost) 554 mctz->rb_rightmost = &mz->tree_node; 555 556 rb_link_node(&mz->tree_node, parent, p); 557 rb_insert_color(&mz->tree_node, &mctz->rb_root); 558 mz->on_tree = true; 559 } 560 561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 562 struct mem_cgroup_tree_per_node *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 567 if (&mz->tree_node == mctz->rb_rightmost) 568 mctz->rb_rightmost = rb_prev(&mz->tree_node); 569 570 rb_erase(&mz->tree_node, &mctz->rb_root); 571 mz->on_tree = false; 572 } 573 574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 575 struct mem_cgroup_tree_per_node *mctz) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&mctz->lock, flags); 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 spin_unlock_irqrestore(&mctz->lock, flags); 582 } 583 584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 585 { 586 unsigned long nr_pages = page_counter_read(&memcg->memory); 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 588 unsigned long excess = 0; 589 590 if (nr_pages > soft_limit) 591 excess = nr_pages - soft_limit; 592 593 return excess; 594 } 595 596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 597 { 598 unsigned long excess; 599 struct mem_cgroup_per_node *mz; 600 struct mem_cgroup_tree_per_node *mctz; 601 602 mctz = soft_limit_tree_from_page(page); 603 if (!mctz) 604 return; 605 /* 606 * Necessary to update all ancestors when hierarchy is used. 607 * because their event counter is not touched. 608 */ 609 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 610 mz = mem_cgroup_page_nodeinfo(memcg, page); 611 excess = soft_limit_excess(memcg); 612 /* 613 * We have to update the tree if mz is on RB-tree or 614 * mem is over its softlimit. 615 */ 616 if (excess || mz->on_tree) { 617 unsigned long flags; 618 619 spin_lock_irqsave(&mctz->lock, flags); 620 /* if on-tree, remove it */ 621 if (mz->on_tree) 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 /* 624 * Insert again. mz->usage_in_excess will be updated. 625 * If excess is 0, no tree ops. 626 */ 627 __mem_cgroup_insert_exceeded(mz, mctz, excess); 628 spin_unlock_irqrestore(&mctz->lock, flags); 629 } 630 } 631 } 632 633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 634 { 635 struct mem_cgroup_tree_per_node *mctz; 636 struct mem_cgroup_per_node *mz; 637 int nid; 638 639 for_each_node(nid) { 640 mz = mem_cgroup_nodeinfo(memcg, nid); 641 mctz = soft_limit_tree_node(nid); 642 if (mctz) 643 mem_cgroup_remove_exceeded(mz, mctz); 644 } 645 } 646 647 static struct mem_cgroup_per_node * 648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 649 { 650 struct mem_cgroup_per_node *mz; 651 652 retry: 653 mz = NULL; 654 if (!mctz->rb_rightmost) 655 goto done; /* Nothing to reclaim from */ 656 657 mz = rb_entry(mctz->rb_rightmost, 658 struct mem_cgroup_per_node, tree_node); 659 /* 660 * Remove the node now but someone else can add it back, 661 * we will to add it back at the end of reclaim to its correct 662 * position in the tree. 663 */ 664 __mem_cgroup_remove_exceeded(mz, mctz); 665 if (!soft_limit_excess(mz->memcg) || 666 !css_tryget_online(&mz->memcg->css)) 667 goto retry; 668 done: 669 return mz; 670 } 671 672 static struct mem_cgroup_per_node * 673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 674 { 675 struct mem_cgroup_per_node *mz; 676 677 spin_lock_irq(&mctz->lock); 678 mz = __mem_cgroup_largest_soft_limit_node(mctz); 679 spin_unlock_irq(&mctz->lock); 680 return mz; 681 } 682 683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 684 int event) 685 { 686 return atomic_long_read(&memcg->events[event]); 687 } 688 689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 690 struct page *page, 691 bool compound, int nr_pages) 692 { 693 /* 694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 695 * counted as CACHE even if it's on ANON LRU. 696 */ 697 if (PageAnon(page)) 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 699 else { 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 701 if (PageSwapBacked(page)) 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 703 } 704 705 if (compound) { 706 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 708 } 709 710 /* pagein of a big page is an event. So, ignore page size */ 711 if (nr_pages > 0) 712 __count_memcg_events(memcg, PGPGIN, 1); 713 else { 714 __count_memcg_events(memcg, PGPGOUT, 1); 715 nr_pages = -nr_pages; /* for event */ 716 } 717 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 719 } 720 721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 722 int nid, unsigned int lru_mask) 723 { 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 725 unsigned long nr = 0; 726 enum lru_list lru; 727 728 VM_BUG_ON((unsigned)nid >= nr_node_ids); 729 730 for_each_lru(lru) { 731 if (!(BIT(lru) & lru_mask)) 732 continue; 733 nr += mem_cgroup_get_lru_size(lruvec, lru); 734 } 735 return nr; 736 } 737 738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 739 unsigned int lru_mask) 740 { 741 unsigned long nr = 0; 742 int nid; 743 744 for_each_node_state(nid, N_MEMORY) 745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 746 return nr; 747 } 748 749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 750 enum mem_cgroup_events_target target) 751 { 752 unsigned long val, next; 753 754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 755 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 756 /* from time_after() in jiffies.h */ 757 if ((long)(next - val) < 0) { 758 switch (target) { 759 case MEM_CGROUP_TARGET_THRESH: 760 next = val + THRESHOLDS_EVENTS_TARGET; 761 break; 762 case MEM_CGROUP_TARGET_SOFTLIMIT: 763 next = val + SOFTLIMIT_EVENTS_TARGET; 764 break; 765 case MEM_CGROUP_TARGET_NUMAINFO: 766 next = val + NUMAINFO_EVENTS_TARGET; 767 break; 768 default: 769 break; 770 } 771 __this_cpu_write(memcg->stat_cpu->targets[target], next); 772 return true; 773 } 774 return false; 775 } 776 777 /* 778 * Check events in order. 779 * 780 */ 781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 782 { 783 /* threshold event is triggered in finer grain than soft limit */ 784 if (unlikely(mem_cgroup_event_ratelimit(memcg, 785 MEM_CGROUP_TARGET_THRESH))) { 786 bool do_softlimit; 787 bool do_numainfo __maybe_unused; 788 789 do_softlimit = mem_cgroup_event_ratelimit(memcg, 790 MEM_CGROUP_TARGET_SOFTLIMIT); 791 #if MAX_NUMNODES > 1 792 do_numainfo = mem_cgroup_event_ratelimit(memcg, 793 MEM_CGROUP_TARGET_NUMAINFO); 794 #endif 795 mem_cgroup_threshold(memcg); 796 if (unlikely(do_softlimit)) 797 mem_cgroup_update_tree(memcg, page); 798 #if MAX_NUMNODES > 1 799 if (unlikely(do_numainfo)) 800 atomic_inc(&memcg->numainfo_events); 801 #endif 802 } 803 } 804 805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 806 { 807 /* 808 * mm_update_next_owner() may clear mm->owner to NULL 809 * if it races with swapoff, page migration, etc. 810 * So this can be called with p == NULL. 811 */ 812 if (unlikely(!p)) 813 return NULL; 814 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 816 } 817 EXPORT_SYMBOL(mem_cgroup_from_task); 818 819 /** 820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 821 * @mm: mm from which memcg should be extracted. It can be NULL. 822 * 823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 825 * returned. 826 */ 827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 828 { 829 struct mem_cgroup *memcg; 830 831 if (mem_cgroup_disabled()) 832 return NULL; 833 834 rcu_read_lock(); 835 do { 836 /* 837 * Page cache insertions can happen withou an 838 * actual mm context, e.g. during disk probing 839 * on boot, loopback IO, acct() writes etc. 840 */ 841 if (unlikely(!mm)) 842 memcg = root_mem_cgroup; 843 else { 844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 845 if (unlikely(!memcg)) 846 memcg = root_mem_cgroup; 847 } 848 } while (!css_tryget_online(&memcg->css)); 849 rcu_read_unlock(); 850 return memcg; 851 } 852 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 853 854 /** 855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 856 * @page: page from which memcg should be extracted. 857 * 858 * Obtain a reference on page->memcg and returns it if successful. Otherwise 859 * root_mem_cgroup is returned. 860 */ 861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 862 { 863 struct mem_cgroup *memcg = page->mem_cgroup; 864 865 if (mem_cgroup_disabled()) 866 return NULL; 867 868 rcu_read_lock(); 869 if (!memcg || !css_tryget_online(&memcg->css)) 870 memcg = root_mem_cgroup; 871 rcu_read_unlock(); 872 return memcg; 873 } 874 EXPORT_SYMBOL(get_mem_cgroup_from_page); 875 876 /** 877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 878 */ 879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 880 { 881 if (unlikely(current->active_memcg)) { 882 struct mem_cgroup *memcg = root_mem_cgroup; 883 884 rcu_read_lock(); 885 if (css_tryget_online(¤t->active_memcg->css)) 886 memcg = current->active_memcg; 887 rcu_read_unlock(); 888 return memcg; 889 } 890 return get_mem_cgroup_from_mm(current->mm); 891 } 892 893 /** 894 * mem_cgroup_iter - iterate over memory cgroup hierarchy 895 * @root: hierarchy root 896 * @prev: previously returned memcg, NULL on first invocation 897 * @reclaim: cookie for shared reclaim walks, NULL for full walks 898 * 899 * Returns references to children of the hierarchy below @root, or 900 * @root itself, or %NULL after a full round-trip. 901 * 902 * Caller must pass the return value in @prev on subsequent 903 * invocations for reference counting, or use mem_cgroup_iter_break() 904 * to cancel a hierarchy walk before the round-trip is complete. 905 * 906 * Reclaimers can specify a node and a priority level in @reclaim to 907 * divide up the memcgs in the hierarchy among all concurrent 908 * reclaimers operating on the same node and priority. 909 */ 910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 911 struct mem_cgroup *prev, 912 struct mem_cgroup_reclaim_cookie *reclaim) 913 { 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 915 struct cgroup_subsys_state *css = NULL; 916 struct mem_cgroup *memcg = NULL; 917 struct mem_cgroup *pos = NULL; 918 919 if (mem_cgroup_disabled()) 920 return NULL; 921 922 if (!root) 923 root = root_mem_cgroup; 924 925 if (prev && !reclaim) 926 pos = prev; 927 928 if (!root->use_hierarchy && root != root_mem_cgroup) { 929 if (prev) 930 goto out; 931 return root; 932 } 933 934 rcu_read_lock(); 935 936 if (reclaim) { 937 struct mem_cgroup_per_node *mz; 938 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 940 iter = &mz->iter[reclaim->priority]; 941 942 if (prev && reclaim->generation != iter->generation) 943 goto out_unlock; 944 945 while (1) { 946 pos = READ_ONCE(iter->position); 947 if (!pos || css_tryget(&pos->css)) 948 break; 949 /* 950 * css reference reached zero, so iter->position will 951 * be cleared by ->css_released. However, we should not 952 * rely on this happening soon, because ->css_released 953 * is called from a work queue, and by busy-waiting we 954 * might block it. So we clear iter->position right 955 * away. 956 */ 957 (void)cmpxchg(&iter->position, pos, NULL); 958 } 959 } 960 961 if (pos) 962 css = &pos->css; 963 964 for (;;) { 965 css = css_next_descendant_pre(css, &root->css); 966 if (!css) { 967 /* 968 * Reclaimers share the hierarchy walk, and a 969 * new one might jump in right at the end of 970 * the hierarchy - make sure they see at least 971 * one group and restart from the beginning. 972 */ 973 if (!prev) 974 continue; 975 break; 976 } 977 978 /* 979 * Verify the css and acquire a reference. The root 980 * is provided by the caller, so we know it's alive 981 * and kicking, and don't take an extra reference. 982 */ 983 memcg = mem_cgroup_from_css(css); 984 985 if (css == &root->css) 986 break; 987 988 if (css_tryget(css)) 989 break; 990 991 memcg = NULL; 992 } 993 994 if (reclaim) { 995 /* 996 * The position could have already been updated by a competing 997 * thread, so check that the value hasn't changed since we read 998 * it to avoid reclaiming from the same cgroup twice. 999 */ 1000 (void)cmpxchg(&iter->position, pos, memcg); 1001 1002 if (pos) 1003 css_put(&pos->css); 1004 1005 if (!memcg) 1006 iter->generation++; 1007 else if (!prev) 1008 reclaim->generation = iter->generation; 1009 } 1010 1011 out_unlock: 1012 rcu_read_unlock(); 1013 out: 1014 if (prev && prev != root) 1015 css_put(&prev->css); 1016 1017 return memcg; 1018 } 1019 1020 /** 1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1022 * @root: hierarchy root 1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1024 */ 1025 void mem_cgroup_iter_break(struct mem_cgroup *root, 1026 struct mem_cgroup *prev) 1027 { 1028 if (!root) 1029 root = root_mem_cgroup; 1030 if (prev && prev != root) 1031 css_put(&prev->css); 1032 } 1033 1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1035 { 1036 struct mem_cgroup *memcg = dead_memcg; 1037 struct mem_cgroup_reclaim_iter *iter; 1038 struct mem_cgroup_per_node *mz; 1039 int nid; 1040 int i; 1041 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1043 for_each_node(nid) { 1044 mz = mem_cgroup_nodeinfo(memcg, nid); 1045 for (i = 0; i <= DEF_PRIORITY; i++) { 1046 iter = &mz->iter[i]; 1047 cmpxchg(&iter->position, 1048 dead_memcg, NULL); 1049 } 1050 } 1051 } 1052 } 1053 1054 /** 1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1056 * @memcg: hierarchy root 1057 * @fn: function to call for each task 1058 * @arg: argument passed to @fn 1059 * 1060 * This function iterates over tasks attached to @memcg or to any of its 1061 * descendants and calls @fn for each task. If @fn returns a non-zero 1062 * value, the function breaks the iteration loop and returns the value. 1063 * Otherwise, it will iterate over all tasks and return 0. 1064 * 1065 * This function must not be called for the root memory cgroup. 1066 */ 1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1068 int (*fn)(struct task_struct *, void *), void *arg) 1069 { 1070 struct mem_cgroup *iter; 1071 int ret = 0; 1072 1073 BUG_ON(memcg == root_mem_cgroup); 1074 1075 for_each_mem_cgroup_tree(iter, memcg) { 1076 struct css_task_iter it; 1077 struct task_struct *task; 1078 1079 css_task_iter_start(&iter->css, 0, &it); 1080 while (!ret && (task = css_task_iter_next(&it))) 1081 ret = fn(task, arg); 1082 css_task_iter_end(&it); 1083 if (ret) { 1084 mem_cgroup_iter_break(memcg, iter); 1085 break; 1086 } 1087 } 1088 return ret; 1089 } 1090 1091 /** 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1093 * @page: the page 1094 * @pgdat: pgdat of the page 1095 * 1096 * This function is only safe when following the LRU page isolation 1097 * and putback protocol: the LRU lock must be held, and the page must 1098 * either be PageLRU() or the caller must have isolated/allocated it. 1099 */ 1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1101 { 1102 struct mem_cgroup_per_node *mz; 1103 struct mem_cgroup *memcg; 1104 struct lruvec *lruvec; 1105 1106 if (mem_cgroup_disabled()) { 1107 lruvec = &pgdat->lruvec; 1108 goto out; 1109 } 1110 1111 memcg = page->mem_cgroup; 1112 /* 1113 * Swapcache readahead pages are added to the LRU - and 1114 * possibly migrated - before they are charged. 1115 */ 1116 if (!memcg) 1117 memcg = root_mem_cgroup; 1118 1119 mz = mem_cgroup_page_nodeinfo(memcg, page); 1120 lruvec = &mz->lruvec; 1121 out: 1122 /* 1123 * Since a node can be onlined after the mem_cgroup was created, 1124 * we have to be prepared to initialize lruvec->zone here; 1125 * and if offlined then reonlined, we need to reinitialize it. 1126 */ 1127 if (unlikely(lruvec->pgdat != pgdat)) 1128 lruvec->pgdat = pgdat; 1129 return lruvec; 1130 } 1131 1132 /** 1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1134 * @lruvec: mem_cgroup per zone lru vector 1135 * @lru: index of lru list the page is sitting on 1136 * @zid: zone id of the accounted pages 1137 * @nr_pages: positive when adding or negative when removing 1138 * 1139 * This function must be called under lru_lock, just before a page is added 1140 * to or just after a page is removed from an lru list (that ordering being 1141 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1142 */ 1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1144 int zid, int nr_pages) 1145 { 1146 struct mem_cgroup_per_node *mz; 1147 unsigned long *lru_size; 1148 long size; 1149 1150 if (mem_cgroup_disabled()) 1151 return; 1152 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1154 lru_size = &mz->lru_zone_size[zid][lru]; 1155 1156 if (nr_pages < 0) 1157 *lru_size += nr_pages; 1158 1159 size = *lru_size; 1160 if (WARN_ONCE(size < 0, 1161 "%s(%p, %d, %d): lru_size %ld\n", 1162 __func__, lruvec, lru, nr_pages, size)) { 1163 VM_BUG_ON(1); 1164 *lru_size = 0; 1165 } 1166 1167 if (nr_pages > 0) 1168 *lru_size += nr_pages; 1169 } 1170 1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1172 { 1173 struct mem_cgroup *task_memcg; 1174 struct task_struct *p; 1175 bool ret; 1176 1177 p = find_lock_task_mm(task); 1178 if (p) { 1179 task_memcg = get_mem_cgroup_from_mm(p->mm); 1180 task_unlock(p); 1181 } else { 1182 /* 1183 * All threads may have already detached their mm's, but the oom 1184 * killer still needs to detect if they have already been oom 1185 * killed to prevent needlessly killing additional tasks. 1186 */ 1187 rcu_read_lock(); 1188 task_memcg = mem_cgroup_from_task(task); 1189 css_get(&task_memcg->css); 1190 rcu_read_unlock(); 1191 } 1192 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1193 css_put(&task_memcg->css); 1194 return ret; 1195 } 1196 1197 /** 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1199 * @memcg: the memory cgroup 1200 * 1201 * Returns the maximum amount of memory @mem can be charged with, in 1202 * pages. 1203 */ 1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1205 { 1206 unsigned long margin = 0; 1207 unsigned long count; 1208 unsigned long limit; 1209 1210 count = page_counter_read(&memcg->memory); 1211 limit = READ_ONCE(memcg->memory.max); 1212 if (count < limit) 1213 margin = limit - count; 1214 1215 if (do_memsw_account()) { 1216 count = page_counter_read(&memcg->memsw); 1217 limit = READ_ONCE(memcg->memsw.max); 1218 if (count <= limit) 1219 margin = min(margin, limit - count); 1220 else 1221 margin = 0; 1222 } 1223 1224 return margin; 1225 } 1226 1227 /* 1228 * A routine for checking "mem" is under move_account() or not. 1229 * 1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1231 * moving cgroups. This is for waiting at high-memory pressure 1232 * caused by "move". 1233 */ 1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1235 { 1236 struct mem_cgroup *from; 1237 struct mem_cgroup *to; 1238 bool ret = false; 1239 /* 1240 * Unlike task_move routines, we access mc.to, mc.from not under 1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1242 */ 1243 spin_lock(&mc.lock); 1244 from = mc.from; 1245 to = mc.to; 1246 if (!from) 1247 goto unlock; 1248 1249 ret = mem_cgroup_is_descendant(from, memcg) || 1250 mem_cgroup_is_descendant(to, memcg); 1251 unlock: 1252 spin_unlock(&mc.lock); 1253 return ret; 1254 } 1255 1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1257 { 1258 if (mc.moving_task && current != mc.moving_task) { 1259 if (mem_cgroup_under_move(memcg)) { 1260 DEFINE_WAIT(wait); 1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1262 /* moving charge context might have finished. */ 1263 if (mc.moving_task) 1264 schedule(); 1265 finish_wait(&mc.waitq, &wait); 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 static const unsigned int memcg1_stats[] = { 1273 MEMCG_CACHE, 1274 MEMCG_RSS, 1275 MEMCG_RSS_HUGE, 1276 NR_SHMEM, 1277 NR_FILE_MAPPED, 1278 NR_FILE_DIRTY, 1279 NR_WRITEBACK, 1280 MEMCG_SWAP, 1281 }; 1282 1283 static const char *const memcg1_stat_names[] = { 1284 "cache", 1285 "rss", 1286 "rss_huge", 1287 "shmem", 1288 "mapped_file", 1289 "dirty", 1290 "writeback", 1291 "swap", 1292 }; 1293 1294 #define K(x) ((x) << (PAGE_SHIFT-10)) 1295 /** 1296 * mem_cgroup_print_oom_context: Print OOM information relevant to 1297 * memory controller. 1298 * @memcg: The memory cgroup that went over limit 1299 * @p: Task that is going to be killed 1300 * 1301 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1302 * enabled 1303 */ 1304 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1305 { 1306 rcu_read_lock(); 1307 1308 if (memcg) { 1309 pr_cont(",oom_memcg="); 1310 pr_cont_cgroup_path(memcg->css.cgroup); 1311 } else 1312 pr_cont(",global_oom"); 1313 if (p) { 1314 pr_cont(",task_memcg="); 1315 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1316 } 1317 rcu_read_unlock(); 1318 } 1319 1320 /** 1321 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1322 * memory controller. 1323 * @memcg: The memory cgroup that went over limit 1324 */ 1325 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1326 { 1327 struct mem_cgroup *iter; 1328 unsigned int i; 1329 1330 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1331 K((u64)page_counter_read(&memcg->memory)), 1332 K((u64)memcg->memory.max), memcg->memory.failcnt); 1333 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1334 K((u64)page_counter_read(&memcg->memsw)), 1335 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1336 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1337 K((u64)page_counter_read(&memcg->kmem)), 1338 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1339 1340 for_each_mem_cgroup_tree(iter, memcg) { 1341 pr_info("Memory cgroup stats for "); 1342 pr_cont_cgroup_path(iter->css.cgroup); 1343 pr_cont(":"); 1344 1345 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1346 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1347 continue; 1348 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1349 K(memcg_page_state(iter, memcg1_stats[i]))); 1350 } 1351 1352 for (i = 0; i < NR_LRU_LISTS; i++) 1353 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1354 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1355 1356 pr_cont("\n"); 1357 } 1358 } 1359 1360 /* 1361 * Return the memory (and swap, if configured) limit for a memcg. 1362 */ 1363 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1364 { 1365 unsigned long max; 1366 1367 max = memcg->memory.max; 1368 if (mem_cgroup_swappiness(memcg)) { 1369 unsigned long memsw_max; 1370 unsigned long swap_max; 1371 1372 memsw_max = memcg->memsw.max; 1373 swap_max = memcg->swap.max; 1374 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1375 max = min(max + swap_max, memsw_max); 1376 } 1377 return max; 1378 } 1379 1380 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1381 int order) 1382 { 1383 struct oom_control oc = { 1384 .zonelist = NULL, 1385 .nodemask = NULL, 1386 .memcg = memcg, 1387 .gfp_mask = gfp_mask, 1388 .order = order, 1389 }; 1390 bool ret; 1391 1392 mutex_lock(&oom_lock); 1393 ret = out_of_memory(&oc); 1394 mutex_unlock(&oom_lock); 1395 return ret; 1396 } 1397 1398 #if MAX_NUMNODES > 1 1399 1400 /** 1401 * test_mem_cgroup_node_reclaimable 1402 * @memcg: the target memcg 1403 * @nid: the node ID to be checked. 1404 * @noswap : specify true here if the user wants flle only information. 1405 * 1406 * This function returns whether the specified memcg contains any 1407 * reclaimable pages on a node. Returns true if there are any reclaimable 1408 * pages in the node. 1409 */ 1410 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1411 int nid, bool noswap) 1412 { 1413 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1414 return true; 1415 if (noswap || !total_swap_pages) 1416 return false; 1417 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1418 return true; 1419 return false; 1420 1421 } 1422 1423 /* 1424 * Always updating the nodemask is not very good - even if we have an empty 1425 * list or the wrong list here, we can start from some node and traverse all 1426 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1427 * 1428 */ 1429 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1430 { 1431 int nid; 1432 /* 1433 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1434 * pagein/pageout changes since the last update. 1435 */ 1436 if (!atomic_read(&memcg->numainfo_events)) 1437 return; 1438 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1439 return; 1440 1441 /* make a nodemask where this memcg uses memory from */ 1442 memcg->scan_nodes = node_states[N_MEMORY]; 1443 1444 for_each_node_mask(nid, node_states[N_MEMORY]) { 1445 1446 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1447 node_clear(nid, memcg->scan_nodes); 1448 } 1449 1450 atomic_set(&memcg->numainfo_events, 0); 1451 atomic_set(&memcg->numainfo_updating, 0); 1452 } 1453 1454 /* 1455 * Selecting a node where we start reclaim from. Because what we need is just 1456 * reducing usage counter, start from anywhere is O,K. Considering 1457 * memory reclaim from current node, there are pros. and cons. 1458 * 1459 * Freeing memory from current node means freeing memory from a node which 1460 * we'll use or we've used. So, it may make LRU bad. And if several threads 1461 * hit limits, it will see a contention on a node. But freeing from remote 1462 * node means more costs for memory reclaim because of memory latency. 1463 * 1464 * Now, we use round-robin. Better algorithm is welcomed. 1465 */ 1466 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1467 { 1468 int node; 1469 1470 mem_cgroup_may_update_nodemask(memcg); 1471 node = memcg->last_scanned_node; 1472 1473 node = next_node_in(node, memcg->scan_nodes); 1474 /* 1475 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1476 * last time it really checked all the LRUs due to rate limiting. 1477 * Fallback to the current node in that case for simplicity. 1478 */ 1479 if (unlikely(node == MAX_NUMNODES)) 1480 node = numa_node_id(); 1481 1482 memcg->last_scanned_node = node; 1483 return node; 1484 } 1485 #else 1486 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1487 { 1488 return 0; 1489 } 1490 #endif 1491 1492 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1493 pg_data_t *pgdat, 1494 gfp_t gfp_mask, 1495 unsigned long *total_scanned) 1496 { 1497 struct mem_cgroup *victim = NULL; 1498 int total = 0; 1499 int loop = 0; 1500 unsigned long excess; 1501 unsigned long nr_scanned; 1502 struct mem_cgroup_reclaim_cookie reclaim = { 1503 .pgdat = pgdat, 1504 .priority = 0, 1505 }; 1506 1507 excess = soft_limit_excess(root_memcg); 1508 1509 while (1) { 1510 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1511 if (!victim) { 1512 loop++; 1513 if (loop >= 2) { 1514 /* 1515 * If we have not been able to reclaim 1516 * anything, it might because there are 1517 * no reclaimable pages under this hierarchy 1518 */ 1519 if (!total) 1520 break; 1521 /* 1522 * We want to do more targeted reclaim. 1523 * excess >> 2 is not to excessive so as to 1524 * reclaim too much, nor too less that we keep 1525 * coming back to reclaim from this cgroup 1526 */ 1527 if (total >= (excess >> 2) || 1528 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1529 break; 1530 } 1531 continue; 1532 } 1533 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1534 pgdat, &nr_scanned); 1535 *total_scanned += nr_scanned; 1536 if (!soft_limit_excess(root_memcg)) 1537 break; 1538 } 1539 mem_cgroup_iter_break(root_memcg, victim); 1540 return total; 1541 } 1542 1543 #ifdef CONFIG_LOCKDEP 1544 static struct lockdep_map memcg_oom_lock_dep_map = { 1545 .name = "memcg_oom_lock", 1546 }; 1547 #endif 1548 1549 static DEFINE_SPINLOCK(memcg_oom_lock); 1550 1551 /* 1552 * Check OOM-Killer is already running under our hierarchy. 1553 * If someone is running, return false. 1554 */ 1555 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1556 { 1557 struct mem_cgroup *iter, *failed = NULL; 1558 1559 spin_lock(&memcg_oom_lock); 1560 1561 for_each_mem_cgroup_tree(iter, memcg) { 1562 if (iter->oom_lock) { 1563 /* 1564 * this subtree of our hierarchy is already locked 1565 * so we cannot give a lock. 1566 */ 1567 failed = iter; 1568 mem_cgroup_iter_break(memcg, iter); 1569 break; 1570 } else 1571 iter->oom_lock = true; 1572 } 1573 1574 if (failed) { 1575 /* 1576 * OK, we failed to lock the whole subtree so we have 1577 * to clean up what we set up to the failing subtree 1578 */ 1579 for_each_mem_cgroup_tree(iter, memcg) { 1580 if (iter == failed) { 1581 mem_cgroup_iter_break(memcg, iter); 1582 break; 1583 } 1584 iter->oom_lock = false; 1585 } 1586 } else 1587 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1588 1589 spin_unlock(&memcg_oom_lock); 1590 1591 return !failed; 1592 } 1593 1594 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1595 { 1596 struct mem_cgroup *iter; 1597 1598 spin_lock(&memcg_oom_lock); 1599 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1600 for_each_mem_cgroup_tree(iter, memcg) 1601 iter->oom_lock = false; 1602 spin_unlock(&memcg_oom_lock); 1603 } 1604 1605 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1606 { 1607 struct mem_cgroup *iter; 1608 1609 spin_lock(&memcg_oom_lock); 1610 for_each_mem_cgroup_tree(iter, memcg) 1611 iter->under_oom++; 1612 spin_unlock(&memcg_oom_lock); 1613 } 1614 1615 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1616 { 1617 struct mem_cgroup *iter; 1618 1619 /* 1620 * When a new child is created while the hierarchy is under oom, 1621 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1622 */ 1623 spin_lock(&memcg_oom_lock); 1624 for_each_mem_cgroup_tree(iter, memcg) 1625 if (iter->under_oom > 0) 1626 iter->under_oom--; 1627 spin_unlock(&memcg_oom_lock); 1628 } 1629 1630 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1631 1632 struct oom_wait_info { 1633 struct mem_cgroup *memcg; 1634 wait_queue_entry_t wait; 1635 }; 1636 1637 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1638 unsigned mode, int sync, void *arg) 1639 { 1640 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1641 struct mem_cgroup *oom_wait_memcg; 1642 struct oom_wait_info *oom_wait_info; 1643 1644 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1645 oom_wait_memcg = oom_wait_info->memcg; 1646 1647 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1648 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1649 return 0; 1650 return autoremove_wake_function(wait, mode, sync, arg); 1651 } 1652 1653 static void memcg_oom_recover(struct mem_cgroup *memcg) 1654 { 1655 /* 1656 * For the following lockless ->under_oom test, the only required 1657 * guarantee is that it must see the state asserted by an OOM when 1658 * this function is called as a result of userland actions 1659 * triggered by the notification of the OOM. This is trivially 1660 * achieved by invoking mem_cgroup_mark_under_oom() before 1661 * triggering notification. 1662 */ 1663 if (memcg && memcg->under_oom) 1664 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1665 } 1666 1667 enum oom_status { 1668 OOM_SUCCESS, 1669 OOM_FAILED, 1670 OOM_ASYNC, 1671 OOM_SKIPPED 1672 }; 1673 1674 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1675 { 1676 enum oom_status ret; 1677 bool locked; 1678 1679 if (order > PAGE_ALLOC_COSTLY_ORDER) 1680 return OOM_SKIPPED; 1681 1682 memcg_memory_event(memcg, MEMCG_OOM); 1683 1684 /* 1685 * We are in the middle of the charge context here, so we 1686 * don't want to block when potentially sitting on a callstack 1687 * that holds all kinds of filesystem and mm locks. 1688 * 1689 * cgroup1 allows disabling the OOM killer and waiting for outside 1690 * handling until the charge can succeed; remember the context and put 1691 * the task to sleep at the end of the page fault when all locks are 1692 * released. 1693 * 1694 * On the other hand, in-kernel OOM killer allows for an async victim 1695 * memory reclaim (oom_reaper) and that means that we are not solely 1696 * relying on the oom victim to make a forward progress and we can 1697 * invoke the oom killer here. 1698 * 1699 * Please note that mem_cgroup_out_of_memory might fail to find a 1700 * victim and then we have to bail out from the charge path. 1701 */ 1702 if (memcg->oom_kill_disable) { 1703 if (!current->in_user_fault) 1704 return OOM_SKIPPED; 1705 css_get(&memcg->css); 1706 current->memcg_in_oom = memcg; 1707 current->memcg_oom_gfp_mask = mask; 1708 current->memcg_oom_order = order; 1709 1710 return OOM_ASYNC; 1711 } 1712 1713 mem_cgroup_mark_under_oom(memcg); 1714 1715 locked = mem_cgroup_oom_trylock(memcg); 1716 1717 if (locked) 1718 mem_cgroup_oom_notify(memcg); 1719 1720 mem_cgroup_unmark_under_oom(memcg); 1721 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1722 ret = OOM_SUCCESS; 1723 else 1724 ret = OOM_FAILED; 1725 1726 if (locked) 1727 mem_cgroup_oom_unlock(memcg); 1728 1729 return ret; 1730 } 1731 1732 /** 1733 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1734 * @handle: actually kill/wait or just clean up the OOM state 1735 * 1736 * This has to be called at the end of a page fault if the memcg OOM 1737 * handler was enabled. 1738 * 1739 * Memcg supports userspace OOM handling where failed allocations must 1740 * sleep on a waitqueue until the userspace task resolves the 1741 * situation. Sleeping directly in the charge context with all kinds 1742 * of locks held is not a good idea, instead we remember an OOM state 1743 * in the task and mem_cgroup_oom_synchronize() has to be called at 1744 * the end of the page fault to complete the OOM handling. 1745 * 1746 * Returns %true if an ongoing memcg OOM situation was detected and 1747 * completed, %false otherwise. 1748 */ 1749 bool mem_cgroup_oom_synchronize(bool handle) 1750 { 1751 struct mem_cgroup *memcg = current->memcg_in_oom; 1752 struct oom_wait_info owait; 1753 bool locked; 1754 1755 /* OOM is global, do not handle */ 1756 if (!memcg) 1757 return false; 1758 1759 if (!handle) 1760 goto cleanup; 1761 1762 owait.memcg = memcg; 1763 owait.wait.flags = 0; 1764 owait.wait.func = memcg_oom_wake_function; 1765 owait.wait.private = current; 1766 INIT_LIST_HEAD(&owait.wait.entry); 1767 1768 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1769 mem_cgroup_mark_under_oom(memcg); 1770 1771 locked = mem_cgroup_oom_trylock(memcg); 1772 1773 if (locked) 1774 mem_cgroup_oom_notify(memcg); 1775 1776 if (locked && !memcg->oom_kill_disable) { 1777 mem_cgroup_unmark_under_oom(memcg); 1778 finish_wait(&memcg_oom_waitq, &owait.wait); 1779 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1780 current->memcg_oom_order); 1781 } else { 1782 schedule(); 1783 mem_cgroup_unmark_under_oom(memcg); 1784 finish_wait(&memcg_oom_waitq, &owait.wait); 1785 } 1786 1787 if (locked) { 1788 mem_cgroup_oom_unlock(memcg); 1789 /* 1790 * There is no guarantee that an OOM-lock contender 1791 * sees the wakeups triggered by the OOM kill 1792 * uncharges. Wake any sleepers explicitely. 1793 */ 1794 memcg_oom_recover(memcg); 1795 } 1796 cleanup: 1797 current->memcg_in_oom = NULL; 1798 css_put(&memcg->css); 1799 return true; 1800 } 1801 1802 /** 1803 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1804 * @victim: task to be killed by the OOM killer 1805 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1806 * 1807 * Returns a pointer to a memory cgroup, which has to be cleaned up 1808 * by killing all belonging OOM-killable tasks. 1809 * 1810 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1811 */ 1812 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1813 struct mem_cgroup *oom_domain) 1814 { 1815 struct mem_cgroup *oom_group = NULL; 1816 struct mem_cgroup *memcg; 1817 1818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1819 return NULL; 1820 1821 if (!oom_domain) 1822 oom_domain = root_mem_cgroup; 1823 1824 rcu_read_lock(); 1825 1826 memcg = mem_cgroup_from_task(victim); 1827 if (memcg == root_mem_cgroup) 1828 goto out; 1829 1830 /* 1831 * Traverse the memory cgroup hierarchy from the victim task's 1832 * cgroup up to the OOMing cgroup (or root) to find the 1833 * highest-level memory cgroup with oom.group set. 1834 */ 1835 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1836 if (memcg->oom_group) 1837 oom_group = memcg; 1838 1839 if (memcg == oom_domain) 1840 break; 1841 } 1842 1843 if (oom_group) 1844 css_get(&oom_group->css); 1845 out: 1846 rcu_read_unlock(); 1847 1848 return oom_group; 1849 } 1850 1851 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1852 { 1853 pr_info("Tasks in "); 1854 pr_cont_cgroup_path(memcg->css.cgroup); 1855 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1856 } 1857 1858 /** 1859 * lock_page_memcg - lock a page->mem_cgroup binding 1860 * @page: the page 1861 * 1862 * This function protects unlocked LRU pages from being moved to 1863 * another cgroup. 1864 * 1865 * It ensures lifetime of the returned memcg. Caller is responsible 1866 * for the lifetime of the page; __unlock_page_memcg() is available 1867 * when @page might get freed inside the locked section. 1868 */ 1869 struct mem_cgroup *lock_page_memcg(struct page *page) 1870 { 1871 struct mem_cgroup *memcg; 1872 unsigned long flags; 1873 1874 /* 1875 * The RCU lock is held throughout the transaction. The fast 1876 * path can get away without acquiring the memcg->move_lock 1877 * because page moving starts with an RCU grace period. 1878 * 1879 * The RCU lock also protects the memcg from being freed when 1880 * the page state that is going to change is the only thing 1881 * preventing the page itself from being freed. E.g. writeback 1882 * doesn't hold a page reference and relies on PG_writeback to 1883 * keep off truncation, migration and so forth. 1884 */ 1885 rcu_read_lock(); 1886 1887 if (mem_cgroup_disabled()) 1888 return NULL; 1889 again: 1890 memcg = page->mem_cgroup; 1891 if (unlikely(!memcg)) 1892 return NULL; 1893 1894 if (atomic_read(&memcg->moving_account) <= 0) 1895 return memcg; 1896 1897 spin_lock_irqsave(&memcg->move_lock, flags); 1898 if (memcg != page->mem_cgroup) { 1899 spin_unlock_irqrestore(&memcg->move_lock, flags); 1900 goto again; 1901 } 1902 1903 /* 1904 * When charge migration first begins, we can have locked and 1905 * unlocked page stat updates happening concurrently. Track 1906 * the task who has the lock for unlock_page_memcg(). 1907 */ 1908 memcg->move_lock_task = current; 1909 memcg->move_lock_flags = flags; 1910 1911 return memcg; 1912 } 1913 EXPORT_SYMBOL(lock_page_memcg); 1914 1915 /** 1916 * __unlock_page_memcg - unlock and unpin a memcg 1917 * @memcg: the memcg 1918 * 1919 * Unlock and unpin a memcg returned by lock_page_memcg(). 1920 */ 1921 void __unlock_page_memcg(struct mem_cgroup *memcg) 1922 { 1923 if (memcg && memcg->move_lock_task == current) { 1924 unsigned long flags = memcg->move_lock_flags; 1925 1926 memcg->move_lock_task = NULL; 1927 memcg->move_lock_flags = 0; 1928 1929 spin_unlock_irqrestore(&memcg->move_lock, flags); 1930 } 1931 1932 rcu_read_unlock(); 1933 } 1934 1935 /** 1936 * unlock_page_memcg - unlock a page->mem_cgroup binding 1937 * @page: the page 1938 */ 1939 void unlock_page_memcg(struct page *page) 1940 { 1941 __unlock_page_memcg(page->mem_cgroup); 1942 } 1943 EXPORT_SYMBOL(unlock_page_memcg); 1944 1945 struct memcg_stock_pcp { 1946 struct mem_cgroup *cached; /* this never be root cgroup */ 1947 unsigned int nr_pages; 1948 struct work_struct work; 1949 unsigned long flags; 1950 #define FLUSHING_CACHED_CHARGE 0 1951 }; 1952 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1953 static DEFINE_MUTEX(percpu_charge_mutex); 1954 1955 /** 1956 * consume_stock: Try to consume stocked charge on this cpu. 1957 * @memcg: memcg to consume from. 1958 * @nr_pages: how many pages to charge. 1959 * 1960 * The charges will only happen if @memcg matches the current cpu's memcg 1961 * stock, and at least @nr_pages are available in that stock. Failure to 1962 * service an allocation will refill the stock. 1963 * 1964 * returns true if successful, false otherwise. 1965 */ 1966 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1967 { 1968 struct memcg_stock_pcp *stock; 1969 unsigned long flags; 1970 bool ret = false; 1971 1972 if (nr_pages > MEMCG_CHARGE_BATCH) 1973 return ret; 1974 1975 local_irq_save(flags); 1976 1977 stock = this_cpu_ptr(&memcg_stock); 1978 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1979 stock->nr_pages -= nr_pages; 1980 ret = true; 1981 } 1982 1983 local_irq_restore(flags); 1984 1985 return ret; 1986 } 1987 1988 /* 1989 * Returns stocks cached in percpu and reset cached information. 1990 */ 1991 static void drain_stock(struct memcg_stock_pcp *stock) 1992 { 1993 struct mem_cgroup *old = stock->cached; 1994 1995 if (stock->nr_pages) { 1996 page_counter_uncharge(&old->memory, stock->nr_pages); 1997 if (do_memsw_account()) 1998 page_counter_uncharge(&old->memsw, stock->nr_pages); 1999 css_put_many(&old->css, stock->nr_pages); 2000 stock->nr_pages = 0; 2001 } 2002 stock->cached = NULL; 2003 } 2004 2005 static void drain_local_stock(struct work_struct *dummy) 2006 { 2007 struct memcg_stock_pcp *stock; 2008 unsigned long flags; 2009 2010 /* 2011 * The only protection from memory hotplug vs. drain_stock races is 2012 * that we always operate on local CPU stock here with IRQ disabled 2013 */ 2014 local_irq_save(flags); 2015 2016 stock = this_cpu_ptr(&memcg_stock); 2017 drain_stock(stock); 2018 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2019 2020 local_irq_restore(flags); 2021 } 2022 2023 /* 2024 * Cache charges(val) to local per_cpu area. 2025 * This will be consumed by consume_stock() function, later. 2026 */ 2027 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2028 { 2029 struct memcg_stock_pcp *stock; 2030 unsigned long flags; 2031 2032 local_irq_save(flags); 2033 2034 stock = this_cpu_ptr(&memcg_stock); 2035 if (stock->cached != memcg) { /* reset if necessary */ 2036 drain_stock(stock); 2037 stock->cached = memcg; 2038 } 2039 stock->nr_pages += nr_pages; 2040 2041 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2042 drain_stock(stock); 2043 2044 local_irq_restore(flags); 2045 } 2046 2047 /* 2048 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2049 * of the hierarchy under it. 2050 */ 2051 static void drain_all_stock(struct mem_cgroup *root_memcg) 2052 { 2053 int cpu, curcpu; 2054 2055 /* If someone's already draining, avoid adding running more workers. */ 2056 if (!mutex_trylock(&percpu_charge_mutex)) 2057 return; 2058 /* 2059 * Notify other cpus that system-wide "drain" is running 2060 * We do not care about races with the cpu hotplug because cpu down 2061 * as well as workers from this path always operate on the local 2062 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2063 */ 2064 curcpu = get_cpu(); 2065 for_each_online_cpu(cpu) { 2066 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2067 struct mem_cgroup *memcg; 2068 2069 memcg = stock->cached; 2070 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2071 continue; 2072 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2073 css_put(&memcg->css); 2074 continue; 2075 } 2076 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2077 if (cpu == curcpu) 2078 drain_local_stock(&stock->work); 2079 else 2080 schedule_work_on(cpu, &stock->work); 2081 } 2082 css_put(&memcg->css); 2083 } 2084 put_cpu(); 2085 mutex_unlock(&percpu_charge_mutex); 2086 } 2087 2088 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2089 { 2090 struct memcg_stock_pcp *stock; 2091 struct mem_cgroup *memcg; 2092 2093 stock = &per_cpu(memcg_stock, cpu); 2094 drain_stock(stock); 2095 2096 for_each_mem_cgroup(memcg) { 2097 int i; 2098 2099 for (i = 0; i < MEMCG_NR_STAT; i++) { 2100 int nid; 2101 long x; 2102 2103 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 2104 if (x) 2105 atomic_long_add(x, &memcg->stat[i]); 2106 2107 if (i >= NR_VM_NODE_STAT_ITEMS) 2108 continue; 2109 2110 for_each_node(nid) { 2111 struct mem_cgroup_per_node *pn; 2112 2113 pn = mem_cgroup_nodeinfo(memcg, nid); 2114 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2115 if (x) 2116 atomic_long_add(x, &pn->lruvec_stat[i]); 2117 } 2118 } 2119 2120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2121 long x; 2122 2123 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 2124 if (x) 2125 atomic_long_add(x, &memcg->events[i]); 2126 } 2127 } 2128 2129 return 0; 2130 } 2131 2132 static void reclaim_high(struct mem_cgroup *memcg, 2133 unsigned int nr_pages, 2134 gfp_t gfp_mask) 2135 { 2136 do { 2137 if (page_counter_read(&memcg->memory) <= memcg->high) 2138 continue; 2139 memcg_memory_event(memcg, MEMCG_HIGH); 2140 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2141 } while ((memcg = parent_mem_cgroup(memcg))); 2142 } 2143 2144 static void high_work_func(struct work_struct *work) 2145 { 2146 struct mem_cgroup *memcg; 2147 2148 memcg = container_of(work, struct mem_cgroup, high_work); 2149 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2150 } 2151 2152 /* 2153 * Scheduled by try_charge() to be executed from the userland return path 2154 * and reclaims memory over the high limit. 2155 */ 2156 void mem_cgroup_handle_over_high(void) 2157 { 2158 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2159 struct mem_cgroup *memcg; 2160 2161 if (likely(!nr_pages)) 2162 return; 2163 2164 memcg = get_mem_cgroup_from_mm(current->mm); 2165 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2166 css_put(&memcg->css); 2167 current->memcg_nr_pages_over_high = 0; 2168 } 2169 2170 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2171 unsigned int nr_pages) 2172 { 2173 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2174 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2175 struct mem_cgroup *mem_over_limit; 2176 struct page_counter *counter; 2177 unsigned long nr_reclaimed; 2178 bool may_swap = true; 2179 bool drained = false; 2180 bool oomed = false; 2181 enum oom_status oom_status; 2182 2183 if (mem_cgroup_is_root(memcg)) 2184 return 0; 2185 retry: 2186 if (consume_stock(memcg, nr_pages)) 2187 return 0; 2188 2189 if (!do_memsw_account() || 2190 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2191 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2192 goto done_restock; 2193 if (do_memsw_account()) 2194 page_counter_uncharge(&memcg->memsw, batch); 2195 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2196 } else { 2197 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2198 may_swap = false; 2199 } 2200 2201 if (batch > nr_pages) { 2202 batch = nr_pages; 2203 goto retry; 2204 } 2205 2206 /* 2207 * Unlike in global OOM situations, memcg is not in a physical 2208 * memory shortage. Allow dying and OOM-killed tasks to 2209 * bypass the last charges so that they can exit quickly and 2210 * free their memory. 2211 */ 2212 if (unlikely(tsk_is_oom_victim(current) || 2213 fatal_signal_pending(current) || 2214 current->flags & PF_EXITING)) 2215 goto force; 2216 2217 /* 2218 * Prevent unbounded recursion when reclaim operations need to 2219 * allocate memory. This might exceed the limits temporarily, 2220 * but we prefer facilitating memory reclaim and getting back 2221 * under the limit over triggering OOM kills in these cases. 2222 */ 2223 if (unlikely(current->flags & PF_MEMALLOC)) 2224 goto force; 2225 2226 if (unlikely(task_in_memcg_oom(current))) 2227 goto nomem; 2228 2229 if (!gfpflags_allow_blocking(gfp_mask)) 2230 goto nomem; 2231 2232 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2233 2234 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2235 gfp_mask, may_swap); 2236 2237 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2238 goto retry; 2239 2240 if (!drained) { 2241 drain_all_stock(mem_over_limit); 2242 drained = true; 2243 goto retry; 2244 } 2245 2246 if (gfp_mask & __GFP_NORETRY) 2247 goto nomem; 2248 /* 2249 * Even though the limit is exceeded at this point, reclaim 2250 * may have been able to free some pages. Retry the charge 2251 * before killing the task. 2252 * 2253 * Only for regular pages, though: huge pages are rather 2254 * unlikely to succeed so close to the limit, and we fall back 2255 * to regular pages anyway in case of failure. 2256 */ 2257 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2258 goto retry; 2259 /* 2260 * At task move, charge accounts can be doubly counted. So, it's 2261 * better to wait until the end of task_move if something is going on. 2262 */ 2263 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2264 goto retry; 2265 2266 if (nr_retries--) 2267 goto retry; 2268 2269 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) 2270 goto nomem; 2271 2272 if (gfp_mask & __GFP_NOFAIL) 2273 goto force; 2274 2275 if (fatal_signal_pending(current)) 2276 goto force; 2277 2278 /* 2279 * keep retrying as long as the memcg oom killer is able to make 2280 * a forward progress or bypass the charge if the oom killer 2281 * couldn't make any progress. 2282 */ 2283 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2284 get_order(nr_pages * PAGE_SIZE)); 2285 switch (oom_status) { 2286 case OOM_SUCCESS: 2287 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2288 oomed = true; 2289 goto retry; 2290 case OOM_FAILED: 2291 goto force; 2292 default: 2293 goto nomem; 2294 } 2295 nomem: 2296 if (!(gfp_mask & __GFP_NOFAIL)) 2297 return -ENOMEM; 2298 force: 2299 /* 2300 * The allocation either can't fail or will lead to more memory 2301 * being freed very soon. Allow memory usage go over the limit 2302 * temporarily by force charging it. 2303 */ 2304 page_counter_charge(&memcg->memory, nr_pages); 2305 if (do_memsw_account()) 2306 page_counter_charge(&memcg->memsw, nr_pages); 2307 css_get_many(&memcg->css, nr_pages); 2308 2309 return 0; 2310 2311 done_restock: 2312 css_get_many(&memcg->css, batch); 2313 if (batch > nr_pages) 2314 refill_stock(memcg, batch - nr_pages); 2315 2316 /* 2317 * If the hierarchy is above the normal consumption range, schedule 2318 * reclaim on returning to userland. We can perform reclaim here 2319 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2320 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2321 * not recorded as it most likely matches current's and won't 2322 * change in the meantime. As high limit is checked again before 2323 * reclaim, the cost of mismatch is negligible. 2324 */ 2325 do { 2326 if (page_counter_read(&memcg->memory) > memcg->high) { 2327 /* Don't bother a random interrupted task */ 2328 if (in_interrupt()) { 2329 schedule_work(&memcg->high_work); 2330 break; 2331 } 2332 current->memcg_nr_pages_over_high += batch; 2333 set_notify_resume(current); 2334 break; 2335 } 2336 } while ((memcg = parent_mem_cgroup(memcg))); 2337 2338 return 0; 2339 } 2340 2341 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2342 { 2343 if (mem_cgroup_is_root(memcg)) 2344 return; 2345 2346 page_counter_uncharge(&memcg->memory, nr_pages); 2347 if (do_memsw_account()) 2348 page_counter_uncharge(&memcg->memsw, nr_pages); 2349 2350 css_put_many(&memcg->css, nr_pages); 2351 } 2352 2353 static void lock_page_lru(struct page *page, int *isolated) 2354 { 2355 struct zone *zone = page_zone(page); 2356 2357 spin_lock_irq(zone_lru_lock(zone)); 2358 if (PageLRU(page)) { 2359 struct lruvec *lruvec; 2360 2361 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2362 ClearPageLRU(page); 2363 del_page_from_lru_list(page, lruvec, page_lru(page)); 2364 *isolated = 1; 2365 } else 2366 *isolated = 0; 2367 } 2368 2369 static void unlock_page_lru(struct page *page, int isolated) 2370 { 2371 struct zone *zone = page_zone(page); 2372 2373 if (isolated) { 2374 struct lruvec *lruvec; 2375 2376 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2377 VM_BUG_ON_PAGE(PageLRU(page), page); 2378 SetPageLRU(page); 2379 add_page_to_lru_list(page, lruvec, page_lru(page)); 2380 } 2381 spin_unlock_irq(zone_lru_lock(zone)); 2382 } 2383 2384 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2385 bool lrucare) 2386 { 2387 int isolated; 2388 2389 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2390 2391 /* 2392 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2393 * may already be on some other mem_cgroup's LRU. Take care of it. 2394 */ 2395 if (lrucare) 2396 lock_page_lru(page, &isolated); 2397 2398 /* 2399 * Nobody should be changing or seriously looking at 2400 * page->mem_cgroup at this point: 2401 * 2402 * - the page is uncharged 2403 * 2404 * - the page is off-LRU 2405 * 2406 * - an anonymous fault has exclusive page access, except for 2407 * a locked page table 2408 * 2409 * - a page cache insertion, a swapin fault, or a migration 2410 * have the page locked 2411 */ 2412 page->mem_cgroup = memcg; 2413 2414 if (lrucare) 2415 unlock_page_lru(page, isolated); 2416 } 2417 2418 #ifdef CONFIG_MEMCG_KMEM 2419 static int memcg_alloc_cache_id(void) 2420 { 2421 int id, size; 2422 int err; 2423 2424 id = ida_simple_get(&memcg_cache_ida, 2425 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2426 if (id < 0) 2427 return id; 2428 2429 if (id < memcg_nr_cache_ids) 2430 return id; 2431 2432 /* 2433 * There's no space for the new id in memcg_caches arrays, 2434 * so we have to grow them. 2435 */ 2436 down_write(&memcg_cache_ids_sem); 2437 2438 size = 2 * (id + 1); 2439 if (size < MEMCG_CACHES_MIN_SIZE) 2440 size = MEMCG_CACHES_MIN_SIZE; 2441 else if (size > MEMCG_CACHES_MAX_SIZE) 2442 size = MEMCG_CACHES_MAX_SIZE; 2443 2444 err = memcg_update_all_caches(size); 2445 if (!err) 2446 err = memcg_update_all_list_lrus(size); 2447 if (!err) 2448 memcg_nr_cache_ids = size; 2449 2450 up_write(&memcg_cache_ids_sem); 2451 2452 if (err) { 2453 ida_simple_remove(&memcg_cache_ida, id); 2454 return err; 2455 } 2456 return id; 2457 } 2458 2459 static void memcg_free_cache_id(int id) 2460 { 2461 ida_simple_remove(&memcg_cache_ida, id); 2462 } 2463 2464 struct memcg_kmem_cache_create_work { 2465 struct mem_cgroup *memcg; 2466 struct kmem_cache *cachep; 2467 struct work_struct work; 2468 }; 2469 2470 static void memcg_kmem_cache_create_func(struct work_struct *w) 2471 { 2472 struct memcg_kmem_cache_create_work *cw = 2473 container_of(w, struct memcg_kmem_cache_create_work, work); 2474 struct mem_cgroup *memcg = cw->memcg; 2475 struct kmem_cache *cachep = cw->cachep; 2476 2477 memcg_create_kmem_cache(memcg, cachep); 2478 2479 css_put(&memcg->css); 2480 kfree(cw); 2481 } 2482 2483 /* 2484 * Enqueue the creation of a per-memcg kmem_cache. 2485 */ 2486 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2487 struct kmem_cache *cachep) 2488 { 2489 struct memcg_kmem_cache_create_work *cw; 2490 2491 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2492 if (!cw) 2493 return; 2494 2495 css_get(&memcg->css); 2496 2497 cw->memcg = memcg; 2498 cw->cachep = cachep; 2499 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2500 2501 queue_work(memcg_kmem_cache_wq, &cw->work); 2502 } 2503 2504 static inline bool memcg_kmem_bypass(void) 2505 { 2506 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2507 return true; 2508 return false; 2509 } 2510 2511 /** 2512 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2513 * @cachep: the original global kmem cache 2514 * 2515 * Return the kmem_cache we're supposed to use for a slab allocation. 2516 * We try to use the current memcg's version of the cache. 2517 * 2518 * If the cache does not exist yet, if we are the first user of it, we 2519 * create it asynchronously in a workqueue and let the current allocation 2520 * go through with the original cache. 2521 * 2522 * This function takes a reference to the cache it returns to assure it 2523 * won't get destroyed while we are working with it. Once the caller is 2524 * done with it, memcg_kmem_put_cache() must be called to release the 2525 * reference. 2526 */ 2527 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2528 { 2529 struct mem_cgroup *memcg; 2530 struct kmem_cache *memcg_cachep; 2531 int kmemcg_id; 2532 2533 VM_BUG_ON(!is_root_cache(cachep)); 2534 2535 if (memcg_kmem_bypass()) 2536 return cachep; 2537 2538 memcg = get_mem_cgroup_from_current(); 2539 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2540 if (kmemcg_id < 0) 2541 goto out; 2542 2543 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2544 if (likely(memcg_cachep)) 2545 return memcg_cachep; 2546 2547 /* 2548 * If we are in a safe context (can wait, and not in interrupt 2549 * context), we could be be predictable and return right away. 2550 * This would guarantee that the allocation being performed 2551 * already belongs in the new cache. 2552 * 2553 * However, there are some clashes that can arrive from locking. 2554 * For instance, because we acquire the slab_mutex while doing 2555 * memcg_create_kmem_cache, this means no further allocation 2556 * could happen with the slab_mutex held. So it's better to 2557 * defer everything. 2558 */ 2559 memcg_schedule_kmem_cache_create(memcg, cachep); 2560 out: 2561 css_put(&memcg->css); 2562 return cachep; 2563 } 2564 2565 /** 2566 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2567 * @cachep: the cache returned by memcg_kmem_get_cache 2568 */ 2569 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2570 { 2571 if (!is_root_cache(cachep)) 2572 css_put(&cachep->memcg_params.memcg->css); 2573 } 2574 2575 /** 2576 * memcg_kmem_charge_memcg: charge a kmem page 2577 * @page: page to charge 2578 * @gfp: reclaim mode 2579 * @order: allocation order 2580 * @memcg: memory cgroup to charge 2581 * 2582 * Returns 0 on success, an error code on failure. 2583 */ 2584 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2585 struct mem_cgroup *memcg) 2586 { 2587 unsigned int nr_pages = 1 << order; 2588 struct page_counter *counter; 2589 int ret; 2590 2591 ret = try_charge(memcg, gfp, nr_pages); 2592 if (ret) 2593 return ret; 2594 2595 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2596 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2597 cancel_charge(memcg, nr_pages); 2598 return -ENOMEM; 2599 } 2600 2601 page->mem_cgroup = memcg; 2602 2603 return 0; 2604 } 2605 2606 /** 2607 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2608 * @page: page to charge 2609 * @gfp: reclaim mode 2610 * @order: allocation order 2611 * 2612 * Returns 0 on success, an error code on failure. 2613 */ 2614 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2615 { 2616 struct mem_cgroup *memcg; 2617 int ret = 0; 2618 2619 if (mem_cgroup_disabled() || memcg_kmem_bypass()) 2620 return 0; 2621 2622 memcg = get_mem_cgroup_from_current(); 2623 if (!mem_cgroup_is_root(memcg)) { 2624 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2625 if (!ret) 2626 __SetPageKmemcg(page); 2627 } 2628 css_put(&memcg->css); 2629 return ret; 2630 } 2631 /** 2632 * memcg_kmem_uncharge: uncharge a kmem page 2633 * @page: page to uncharge 2634 * @order: allocation order 2635 */ 2636 void memcg_kmem_uncharge(struct page *page, int order) 2637 { 2638 struct mem_cgroup *memcg = page->mem_cgroup; 2639 unsigned int nr_pages = 1 << order; 2640 2641 if (!memcg) 2642 return; 2643 2644 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2645 2646 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2647 page_counter_uncharge(&memcg->kmem, nr_pages); 2648 2649 page_counter_uncharge(&memcg->memory, nr_pages); 2650 if (do_memsw_account()) 2651 page_counter_uncharge(&memcg->memsw, nr_pages); 2652 2653 page->mem_cgroup = NULL; 2654 2655 /* slab pages do not have PageKmemcg flag set */ 2656 if (PageKmemcg(page)) 2657 __ClearPageKmemcg(page); 2658 2659 css_put_many(&memcg->css, nr_pages); 2660 } 2661 #endif /* CONFIG_MEMCG_KMEM */ 2662 2663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2664 2665 /* 2666 * Because tail pages are not marked as "used", set it. We're under 2667 * zone_lru_lock and migration entries setup in all page mappings. 2668 */ 2669 void mem_cgroup_split_huge_fixup(struct page *head) 2670 { 2671 int i; 2672 2673 if (mem_cgroup_disabled()) 2674 return; 2675 2676 for (i = 1; i < HPAGE_PMD_NR; i++) 2677 head[i].mem_cgroup = head->mem_cgroup; 2678 2679 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2680 } 2681 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2682 2683 #ifdef CONFIG_MEMCG_SWAP 2684 /** 2685 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2686 * @entry: swap entry to be moved 2687 * @from: mem_cgroup which the entry is moved from 2688 * @to: mem_cgroup which the entry is moved to 2689 * 2690 * It succeeds only when the swap_cgroup's record for this entry is the same 2691 * as the mem_cgroup's id of @from. 2692 * 2693 * Returns 0 on success, -EINVAL on failure. 2694 * 2695 * The caller must have charged to @to, IOW, called page_counter_charge() about 2696 * both res and memsw, and called css_get(). 2697 */ 2698 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2699 struct mem_cgroup *from, struct mem_cgroup *to) 2700 { 2701 unsigned short old_id, new_id; 2702 2703 old_id = mem_cgroup_id(from); 2704 new_id = mem_cgroup_id(to); 2705 2706 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2707 mod_memcg_state(from, MEMCG_SWAP, -1); 2708 mod_memcg_state(to, MEMCG_SWAP, 1); 2709 return 0; 2710 } 2711 return -EINVAL; 2712 } 2713 #else 2714 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2715 struct mem_cgroup *from, struct mem_cgroup *to) 2716 { 2717 return -EINVAL; 2718 } 2719 #endif 2720 2721 static DEFINE_MUTEX(memcg_max_mutex); 2722 2723 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2724 unsigned long max, bool memsw) 2725 { 2726 bool enlarge = false; 2727 bool drained = false; 2728 int ret; 2729 bool limits_invariant; 2730 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2731 2732 do { 2733 if (signal_pending(current)) { 2734 ret = -EINTR; 2735 break; 2736 } 2737 2738 mutex_lock(&memcg_max_mutex); 2739 /* 2740 * Make sure that the new limit (memsw or memory limit) doesn't 2741 * break our basic invariant rule memory.max <= memsw.max. 2742 */ 2743 limits_invariant = memsw ? max >= memcg->memory.max : 2744 max <= memcg->memsw.max; 2745 if (!limits_invariant) { 2746 mutex_unlock(&memcg_max_mutex); 2747 ret = -EINVAL; 2748 break; 2749 } 2750 if (max > counter->max) 2751 enlarge = true; 2752 ret = page_counter_set_max(counter, max); 2753 mutex_unlock(&memcg_max_mutex); 2754 2755 if (!ret) 2756 break; 2757 2758 if (!drained) { 2759 drain_all_stock(memcg); 2760 drained = true; 2761 continue; 2762 } 2763 2764 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2765 GFP_KERNEL, !memsw)) { 2766 ret = -EBUSY; 2767 break; 2768 } 2769 } while (true); 2770 2771 if (!ret && enlarge) 2772 memcg_oom_recover(memcg); 2773 2774 return ret; 2775 } 2776 2777 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2778 gfp_t gfp_mask, 2779 unsigned long *total_scanned) 2780 { 2781 unsigned long nr_reclaimed = 0; 2782 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2783 unsigned long reclaimed; 2784 int loop = 0; 2785 struct mem_cgroup_tree_per_node *mctz; 2786 unsigned long excess; 2787 unsigned long nr_scanned; 2788 2789 if (order > 0) 2790 return 0; 2791 2792 mctz = soft_limit_tree_node(pgdat->node_id); 2793 2794 /* 2795 * Do not even bother to check the largest node if the root 2796 * is empty. Do it lockless to prevent lock bouncing. Races 2797 * are acceptable as soft limit is best effort anyway. 2798 */ 2799 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2800 return 0; 2801 2802 /* 2803 * This loop can run a while, specially if mem_cgroup's continuously 2804 * keep exceeding their soft limit and putting the system under 2805 * pressure 2806 */ 2807 do { 2808 if (next_mz) 2809 mz = next_mz; 2810 else 2811 mz = mem_cgroup_largest_soft_limit_node(mctz); 2812 if (!mz) 2813 break; 2814 2815 nr_scanned = 0; 2816 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2817 gfp_mask, &nr_scanned); 2818 nr_reclaimed += reclaimed; 2819 *total_scanned += nr_scanned; 2820 spin_lock_irq(&mctz->lock); 2821 __mem_cgroup_remove_exceeded(mz, mctz); 2822 2823 /* 2824 * If we failed to reclaim anything from this memory cgroup 2825 * it is time to move on to the next cgroup 2826 */ 2827 next_mz = NULL; 2828 if (!reclaimed) 2829 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2830 2831 excess = soft_limit_excess(mz->memcg); 2832 /* 2833 * One school of thought says that we should not add 2834 * back the node to the tree if reclaim returns 0. 2835 * But our reclaim could return 0, simply because due 2836 * to priority we are exposing a smaller subset of 2837 * memory to reclaim from. Consider this as a longer 2838 * term TODO. 2839 */ 2840 /* If excess == 0, no tree ops */ 2841 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2842 spin_unlock_irq(&mctz->lock); 2843 css_put(&mz->memcg->css); 2844 loop++; 2845 /* 2846 * Could not reclaim anything and there are no more 2847 * mem cgroups to try or we seem to be looping without 2848 * reclaiming anything. 2849 */ 2850 if (!nr_reclaimed && 2851 (next_mz == NULL || 2852 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2853 break; 2854 } while (!nr_reclaimed); 2855 if (next_mz) 2856 css_put(&next_mz->memcg->css); 2857 return nr_reclaimed; 2858 } 2859 2860 /* 2861 * Test whether @memcg has children, dead or alive. Note that this 2862 * function doesn't care whether @memcg has use_hierarchy enabled and 2863 * returns %true if there are child csses according to the cgroup 2864 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2865 */ 2866 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2867 { 2868 bool ret; 2869 2870 rcu_read_lock(); 2871 ret = css_next_child(NULL, &memcg->css); 2872 rcu_read_unlock(); 2873 return ret; 2874 } 2875 2876 /* 2877 * Reclaims as many pages from the given memcg as possible. 2878 * 2879 * Caller is responsible for holding css reference for memcg. 2880 */ 2881 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2882 { 2883 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2884 2885 /* we call try-to-free pages for make this cgroup empty */ 2886 lru_add_drain_all(); 2887 2888 drain_all_stock(memcg); 2889 2890 /* try to free all pages in this cgroup */ 2891 while (nr_retries && page_counter_read(&memcg->memory)) { 2892 int progress; 2893 2894 if (signal_pending(current)) 2895 return -EINTR; 2896 2897 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2898 GFP_KERNEL, true); 2899 if (!progress) { 2900 nr_retries--; 2901 /* maybe some writeback is necessary */ 2902 congestion_wait(BLK_RW_ASYNC, HZ/10); 2903 } 2904 2905 } 2906 2907 return 0; 2908 } 2909 2910 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2911 char *buf, size_t nbytes, 2912 loff_t off) 2913 { 2914 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2915 2916 if (mem_cgroup_is_root(memcg)) 2917 return -EINVAL; 2918 return mem_cgroup_force_empty(memcg) ?: nbytes; 2919 } 2920 2921 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2922 struct cftype *cft) 2923 { 2924 return mem_cgroup_from_css(css)->use_hierarchy; 2925 } 2926 2927 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2928 struct cftype *cft, u64 val) 2929 { 2930 int retval = 0; 2931 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2932 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2933 2934 if (memcg->use_hierarchy == val) 2935 return 0; 2936 2937 /* 2938 * If parent's use_hierarchy is set, we can't make any modifications 2939 * in the child subtrees. If it is unset, then the change can 2940 * occur, provided the current cgroup has no children. 2941 * 2942 * For the root cgroup, parent_mem is NULL, we allow value to be 2943 * set if there are no children. 2944 */ 2945 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2946 (val == 1 || val == 0)) { 2947 if (!memcg_has_children(memcg)) 2948 memcg->use_hierarchy = val; 2949 else 2950 retval = -EBUSY; 2951 } else 2952 retval = -EINVAL; 2953 2954 return retval; 2955 } 2956 2957 struct accumulated_stats { 2958 unsigned long stat[MEMCG_NR_STAT]; 2959 unsigned long events[NR_VM_EVENT_ITEMS]; 2960 unsigned long lru_pages[NR_LRU_LISTS]; 2961 const unsigned int *stats_array; 2962 const unsigned int *events_array; 2963 int stats_size; 2964 int events_size; 2965 }; 2966 2967 static void accumulate_memcg_tree(struct mem_cgroup *memcg, 2968 struct accumulated_stats *acc) 2969 { 2970 struct mem_cgroup *mi; 2971 int i; 2972 2973 for_each_mem_cgroup_tree(mi, memcg) { 2974 for (i = 0; i < acc->stats_size; i++) 2975 acc->stat[i] += memcg_page_state(mi, 2976 acc->stats_array ? acc->stats_array[i] : i); 2977 2978 for (i = 0; i < acc->events_size; i++) 2979 acc->events[i] += memcg_sum_events(mi, 2980 acc->events_array ? acc->events_array[i] : i); 2981 2982 for (i = 0; i < NR_LRU_LISTS; i++) 2983 acc->lru_pages[i] += 2984 mem_cgroup_nr_lru_pages(mi, BIT(i)); 2985 } 2986 } 2987 2988 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2989 { 2990 unsigned long val = 0; 2991 2992 if (mem_cgroup_is_root(memcg)) { 2993 struct mem_cgroup *iter; 2994 2995 for_each_mem_cgroup_tree(iter, memcg) { 2996 val += memcg_page_state(iter, MEMCG_CACHE); 2997 val += memcg_page_state(iter, MEMCG_RSS); 2998 if (swap) 2999 val += memcg_page_state(iter, MEMCG_SWAP); 3000 } 3001 } else { 3002 if (!swap) 3003 val = page_counter_read(&memcg->memory); 3004 else 3005 val = page_counter_read(&memcg->memsw); 3006 } 3007 return val; 3008 } 3009 3010 enum { 3011 RES_USAGE, 3012 RES_LIMIT, 3013 RES_MAX_USAGE, 3014 RES_FAILCNT, 3015 RES_SOFT_LIMIT, 3016 }; 3017 3018 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3019 struct cftype *cft) 3020 { 3021 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3022 struct page_counter *counter; 3023 3024 switch (MEMFILE_TYPE(cft->private)) { 3025 case _MEM: 3026 counter = &memcg->memory; 3027 break; 3028 case _MEMSWAP: 3029 counter = &memcg->memsw; 3030 break; 3031 case _KMEM: 3032 counter = &memcg->kmem; 3033 break; 3034 case _TCP: 3035 counter = &memcg->tcpmem; 3036 break; 3037 default: 3038 BUG(); 3039 } 3040 3041 switch (MEMFILE_ATTR(cft->private)) { 3042 case RES_USAGE: 3043 if (counter == &memcg->memory) 3044 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3045 if (counter == &memcg->memsw) 3046 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3047 return (u64)page_counter_read(counter) * PAGE_SIZE; 3048 case RES_LIMIT: 3049 return (u64)counter->max * PAGE_SIZE; 3050 case RES_MAX_USAGE: 3051 return (u64)counter->watermark * PAGE_SIZE; 3052 case RES_FAILCNT: 3053 return counter->failcnt; 3054 case RES_SOFT_LIMIT: 3055 return (u64)memcg->soft_limit * PAGE_SIZE; 3056 default: 3057 BUG(); 3058 } 3059 } 3060 3061 #ifdef CONFIG_MEMCG_KMEM 3062 static int memcg_online_kmem(struct mem_cgroup *memcg) 3063 { 3064 int memcg_id; 3065 3066 if (cgroup_memory_nokmem) 3067 return 0; 3068 3069 BUG_ON(memcg->kmemcg_id >= 0); 3070 BUG_ON(memcg->kmem_state); 3071 3072 memcg_id = memcg_alloc_cache_id(); 3073 if (memcg_id < 0) 3074 return memcg_id; 3075 3076 static_branch_inc(&memcg_kmem_enabled_key); 3077 /* 3078 * A memory cgroup is considered kmem-online as soon as it gets 3079 * kmemcg_id. Setting the id after enabling static branching will 3080 * guarantee no one starts accounting before all call sites are 3081 * patched. 3082 */ 3083 memcg->kmemcg_id = memcg_id; 3084 memcg->kmem_state = KMEM_ONLINE; 3085 INIT_LIST_HEAD(&memcg->kmem_caches); 3086 3087 return 0; 3088 } 3089 3090 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3091 { 3092 struct cgroup_subsys_state *css; 3093 struct mem_cgroup *parent, *child; 3094 int kmemcg_id; 3095 3096 if (memcg->kmem_state != KMEM_ONLINE) 3097 return; 3098 /* 3099 * Clear the online state before clearing memcg_caches array 3100 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3101 * guarantees that no cache will be created for this cgroup 3102 * after we are done (see memcg_create_kmem_cache()). 3103 */ 3104 memcg->kmem_state = KMEM_ALLOCATED; 3105 3106 memcg_deactivate_kmem_caches(memcg); 3107 3108 kmemcg_id = memcg->kmemcg_id; 3109 BUG_ON(kmemcg_id < 0); 3110 3111 parent = parent_mem_cgroup(memcg); 3112 if (!parent) 3113 parent = root_mem_cgroup; 3114 3115 /* 3116 * Change kmemcg_id of this cgroup and all its descendants to the 3117 * parent's id, and then move all entries from this cgroup's list_lrus 3118 * to ones of the parent. After we have finished, all list_lrus 3119 * corresponding to this cgroup are guaranteed to remain empty. The 3120 * ordering is imposed by list_lru_node->lock taken by 3121 * memcg_drain_all_list_lrus(). 3122 */ 3123 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3124 css_for_each_descendant_pre(css, &memcg->css) { 3125 child = mem_cgroup_from_css(css); 3126 BUG_ON(child->kmemcg_id != kmemcg_id); 3127 child->kmemcg_id = parent->kmemcg_id; 3128 if (!memcg->use_hierarchy) 3129 break; 3130 } 3131 rcu_read_unlock(); 3132 3133 memcg_drain_all_list_lrus(kmemcg_id, parent); 3134 3135 memcg_free_cache_id(kmemcg_id); 3136 } 3137 3138 static void memcg_free_kmem(struct mem_cgroup *memcg) 3139 { 3140 /* css_alloc() failed, offlining didn't happen */ 3141 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3142 memcg_offline_kmem(memcg); 3143 3144 if (memcg->kmem_state == KMEM_ALLOCATED) { 3145 memcg_destroy_kmem_caches(memcg); 3146 static_branch_dec(&memcg_kmem_enabled_key); 3147 WARN_ON(page_counter_read(&memcg->kmem)); 3148 } 3149 } 3150 #else 3151 static int memcg_online_kmem(struct mem_cgroup *memcg) 3152 { 3153 return 0; 3154 } 3155 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3156 { 3157 } 3158 static void memcg_free_kmem(struct mem_cgroup *memcg) 3159 { 3160 } 3161 #endif /* CONFIG_MEMCG_KMEM */ 3162 3163 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3164 unsigned long max) 3165 { 3166 int ret; 3167 3168 mutex_lock(&memcg_max_mutex); 3169 ret = page_counter_set_max(&memcg->kmem, max); 3170 mutex_unlock(&memcg_max_mutex); 3171 return ret; 3172 } 3173 3174 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3175 { 3176 int ret; 3177 3178 mutex_lock(&memcg_max_mutex); 3179 3180 ret = page_counter_set_max(&memcg->tcpmem, max); 3181 if (ret) 3182 goto out; 3183 3184 if (!memcg->tcpmem_active) { 3185 /* 3186 * The active flag needs to be written after the static_key 3187 * update. This is what guarantees that the socket activation 3188 * function is the last one to run. See mem_cgroup_sk_alloc() 3189 * for details, and note that we don't mark any socket as 3190 * belonging to this memcg until that flag is up. 3191 * 3192 * We need to do this, because static_keys will span multiple 3193 * sites, but we can't control their order. If we mark a socket 3194 * as accounted, but the accounting functions are not patched in 3195 * yet, we'll lose accounting. 3196 * 3197 * We never race with the readers in mem_cgroup_sk_alloc(), 3198 * because when this value change, the code to process it is not 3199 * patched in yet. 3200 */ 3201 static_branch_inc(&memcg_sockets_enabled_key); 3202 memcg->tcpmem_active = true; 3203 } 3204 out: 3205 mutex_unlock(&memcg_max_mutex); 3206 return ret; 3207 } 3208 3209 /* 3210 * The user of this function is... 3211 * RES_LIMIT. 3212 */ 3213 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3214 char *buf, size_t nbytes, loff_t off) 3215 { 3216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3217 unsigned long nr_pages; 3218 int ret; 3219 3220 buf = strstrip(buf); 3221 ret = page_counter_memparse(buf, "-1", &nr_pages); 3222 if (ret) 3223 return ret; 3224 3225 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3226 case RES_LIMIT: 3227 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3228 ret = -EINVAL; 3229 break; 3230 } 3231 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3232 case _MEM: 3233 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3234 break; 3235 case _MEMSWAP: 3236 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3237 break; 3238 case _KMEM: 3239 ret = memcg_update_kmem_max(memcg, nr_pages); 3240 break; 3241 case _TCP: 3242 ret = memcg_update_tcp_max(memcg, nr_pages); 3243 break; 3244 } 3245 break; 3246 case RES_SOFT_LIMIT: 3247 memcg->soft_limit = nr_pages; 3248 ret = 0; 3249 break; 3250 } 3251 return ret ?: nbytes; 3252 } 3253 3254 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3255 size_t nbytes, loff_t off) 3256 { 3257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3258 struct page_counter *counter; 3259 3260 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3261 case _MEM: 3262 counter = &memcg->memory; 3263 break; 3264 case _MEMSWAP: 3265 counter = &memcg->memsw; 3266 break; 3267 case _KMEM: 3268 counter = &memcg->kmem; 3269 break; 3270 case _TCP: 3271 counter = &memcg->tcpmem; 3272 break; 3273 default: 3274 BUG(); 3275 } 3276 3277 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3278 case RES_MAX_USAGE: 3279 page_counter_reset_watermark(counter); 3280 break; 3281 case RES_FAILCNT: 3282 counter->failcnt = 0; 3283 break; 3284 default: 3285 BUG(); 3286 } 3287 3288 return nbytes; 3289 } 3290 3291 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3292 struct cftype *cft) 3293 { 3294 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3295 } 3296 3297 #ifdef CONFIG_MMU 3298 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3299 struct cftype *cft, u64 val) 3300 { 3301 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3302 3303 if (val & ~MOVE_MASK) 3304 return -EINVAL; 3305 3306 /* 3307 * No kind of locking is needed in here, because ->can_attach() will 3308 * check this value once in the beginning of the process, and then carry 3309 * on with stale data. This means that changes to this value will only 3310 * affect task migrations starting after the change. 3311 */ 3312 memcg->move_charge_at_immigrate = val; 3313 return 0; 3314 } 3315 #else 3316 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3317 struct cftype *cft, u64 val) 3318 { 3319 return -ENOSYS; 3320 } 3321 #endif 3322 3323 #ifdef CONFIG_NUMA 3324 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3325 { 3326 struct numa_stat { 3327 const char *name; 3328 unsigned int lru_mask; 3329 }; 3330 3331 static const struct numa_stat stats[] = { 3332 { "total", LRU_ALL }, 3333 { "file", LRU_ALL_FILE }, 3334 { "anon", LRU_ALL_ANON }, 3335 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3336 }; 3337 const struct numa_stat *stat; 3338 int nid; 3339 unsigned long nr; 3340 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3341 3342 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3343 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3344 seq_printf(m, "%s=%lu", stat->name, nr); 3345 for_each_node_state(nid, N_MEMORY) { 3346 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3347 stat->lru_mask); 3348 seq_printf(m, " N%d=%lu", nid, nr); 3349 } 3350 seq_putc(m, '\n'); 3351 } 3352 3353 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3354 struct mem_cgroup *iter; 3355 3356 nr = 0; 3357 for_each_mem_cgroup_tree(iter, memcg) 3358 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3359 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3360 for_each_node_state(nid, N_MEMORY) { 3361 nr = 0; 3362 for_each_mem_cgroup_tree(iter, memcg) 3363 nr += mem_cgroup_node_nr_lru_pages( 3364 iter, nid, stat->lru_mask); 3365 seq_printf(m, " N%d=%lu", nid, nr); 3366 } 3367 seq_putc(m, '\n'); 3368 } 3369 3370 return 0; 3371 } 3372 #endif /* CONFIG_NUMA */ 3373 3374 /* Universal VM events cgroup1 shows, original sort order */ 3375 static const unsigned int memcg1_events[] = { 3376 PGPGIN, 3377 PGPGOUT, 3378 PGFAULT, 3379 PGMAJFAULT, 3380 }; 3381 3382 static const char *const memcg1_event_names[] = { 3383 "pgpgin", 3384 "pgpgout", 3385 "pgfault", 3386 "pgmajfault", 3387 }; 3388 3389 static int memcg_stat_show(struct seq_file *m, void *v) 3390 { 3391 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3392 unsigned long memory, memsw; 3393 struct mem_cgroup *mi; 3394 unsigned int i; 3395 struct accumulated_stats acc; 3396 3397 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3398 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3399 3400 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3401 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3402 continue; 3403 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3404 memcg_page_state(memcg, memcg1_stats[i]) * 3405 PAGE_SIZE); 3406 } 3407 3408 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3409 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3410 memcg_sum_events(memcg, memcg1_events[i])); 3411 3412 for (i = 0; i < NR_LRU_LISTS; i++) 3413 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3414 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3415 3416 /* Hierarchical information */ 3417 memory = memsw = PAGE_COUNTER_MAX; 3418 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3419 memory = min(memory, mi->memory.max); 3420 memsw = min(memsw, mi->memsw.max); 3421 } 3422 seq_printf(m, "hierarchical_memory_limit %llu\n", 3423 (u64)memory * PAGE_SIZE); 3424 if (do_memsw_account()) 3425 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3426 (u64)memsw * PAGE_SIZE); 3427 3428 memset(&acc, 0, sizeof(acc)); 3429 acc.stats_size = ARRAY_SIZE(memcg1_stats); 3430 acc.stats_array = memcg1_stats; 3431 acc.events_size = ARRAY_SIZE(memcg1_events); 3432 acc.events_array = memcg1_events; 3433 accumulate_memcg_tree(memcg, &acc); 3434 3435 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3436 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3437 continue; 3438 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3439 (u64)acc.stat[i] * PAGE_SIZE); 3440 } 3441 3442 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3443 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3444 (u64)acc.events[i]); 3445 3446 for (i = 0; i < NR_LRU_LISTS; i++) 3447 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3448 (u64)acc.lru_pages[i] * PAGE_SIZE); 3449 3450 #ifdef CONFIG_DEBUG_VM 3451 { 3452 pg_data_t *pgdat; 3453 struct mem_cgroup_per_node *mz; 3454 struct zone_reclaim_stat *rstat; 3455 unsigned long recent_rotated[2] = {0, 0}; 3456 unsigned long recent_scanned[2] = {0, 0}; 3457 3458 for_each_online_pgdat(pgdat) { 3459 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3460 rstat = &mz->lruvec.reclaim_stat; 3461 3462 recent_rotated[0] += rstat->recent_rotated[0]; 3463 recent_rotated[1] += rstat->recent_rotated[1]; 3464 recent_scanned[0] += rstat->recent_scanned[0]; 3465 recent_scanned[1] += rstat->recent_scanned[1]; 3466 } 3467 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3468 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3469 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3470 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3471 } 3472 #endif 3473 3474 return 0; 3475 } 3476 3477 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3478 struct cftype *cft) 3479 { 3480 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3481 3482 return mem_cgroup_swappiness(memcg); 3483 } 3484 3485 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3486 struct cftype *cft, u64 val) 3487 { 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3489 3490 if (val > 100) 3491 return -EINVAL; 3492 3493 if (css->parent) 3494 memcg->swappiness = val; 3495 else 3496 vm_swappiness = val; 3497 3498 return 0; 3499 } 3500 3501 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3502 { 3503 struct mem_cgroup_threshold_ary *t; 3504 unsigned long usage; 3505 int i; 3506 3507 rcu_read_lock(); 3508 if (!swap) 3509 t = rcu_dereference(memcg->thresholds.primary); 3510 else 3511 t = rcu_dereference(memcg->memsw_thresholds.primary); 3512 3513 if (!t) 3514 goto unlock; 3515 3516 usage = mem_cgroup_usage(memcg, swap); 3517 3518 /* 3519 * current_threshold points to threshold just below or equal to usage. 3520 * If it's not true, a threshold was crossed after last 3521 * call of __mem_cgroup_threshold(). 3522 */ 3523 i = t->current_threshold; 3524 3525 /* 3526 * Iterate backward over array of thresholds starting from 3527 * current_threshold and check if a threshold is crossed. 3528 * If none of thresholds below usage is crossed, we read 3529 * only one element of the array here. 3530 */ 3531 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3532 eventfd_signal(t->entries[i].eventfd, 1); 3533 3534 /* i = current_threshold + 1 */ 3535 i++; 3536 3537 /* 3538 * Iterate forward over array of thresholds starting from 3539 * current_threshold+1 and check if a threshold is crossed. 3540 * If none of thresholds above usage is crossed, we read 3541 * only one element of the array here. 3542 */ 3543 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3544 eventfd_signal(t->entries[i].eventfd, 1); 3545 3546 /* Update current_threshold */ 3547 t->current_threshold = i - 1; 3548 unlock: 3549 rcu_read_unlock(); 3550 } 3551 3552 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3553 { 3554 while (memcg) { 3555 __mem_cgroup_threshold(memcg, false); 3556 if (do_memsw_account()) 3557 __mem_cgroup_threshold(memcg, true); 3558 3559 memcg = parent_mem_cgroup(memcg); 3560 } 3561 } 3562 3563 static int compare_thresholds(const void *a, const void *b) 3564 { 3565 const struct mem_cgroup_threshold *_a = a; 3566 const struct mem_cgroup_threshold *_b = b; 3567 3568 if (_a->threshold > _b->threshold) 3569 return 1; 3570 3571 if (_a->threshold < _b->threshold) 3572 return -1; 3573 3574 return 0; 3575 } 3576 3577 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3578 { 3579 struct mem_cgroup_eventfd_list *ev; 3580 3581 spin_lock(&memcg_oom_lock); 3582 3583 list_for_each_entry(ev, &memcg->oom_notify, list) 3584 eventfd_signal(ev->eventfd, 1); 3585 3586 spin_unlock(&memcg_oom_lock); 3587 return 0; 3588 } 3589 3590 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3591 { 3592 struct mem_cgroup *iter; 3593 3594 for_each_mem_cgroup_tree(iter, memcg) 3595 mem_cgroup_oom_notify_cb(iter); 3596 } 3597 3598 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3599 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3600 { 3601 struct mem_cgroup_thresholds *thresholds; 3602 struct mem_cgroup_threshold_ary *new; 3603 unsigned long threshold; 3604 unsigned long usage; 3605 int i, size, ret; 3606 3607 ret = page_counter_memparse(args, "-1", &threshold); 3608 if (ret) 3609 return ret; 3610 3611 mutex_lock(&memcg->thresholds_lock); 3612 3613 if (type == _MEM) { 3614 thresholds = &memcg->thresholds; 3615 usage = mem_cgroup_usage(memcg, false); 3616 } else if (type == _MEMSWAP) { 3617 thresholds = &memcg->memsw_thresholds; 3618 usage = mem_cgroup_usage(memcg, true); 3619 } else 3620 BUG(); 3621 3622 /* Check if a threshold crossed before adding a new one */ 3623 if (thresholds->primary) 3624 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3625 3626 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3627 3628 /* Allocate memory for new array of thresholds */ 3629 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3630 GFP_KERNEL); 3631 if (!new) { 3632 ret = -ENOMEM; 3633 goto unlock; 3634 } 3635 new->size = size; 3636 3637 /* Copy thresholds (if any) to new array */ 3638 if (thresholds->primary) { 3639 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3640 sizeof(struct mem_cgroup_threshold)); 3641 } 3642 3643 /* Add new threshold */ 3644 new->entries[size - 1].eventfd = eventfd; 3645 new->entries[size - 1].threshold = threshold; 3646 3647 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3648 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3649 compare_thresholds, NULL); 3650 3651 /* Find current threshold */ 3652 new->current_threshold = -1; 3653 for (i = 0; i < size; i++) { 3654 if (new->entries[i].threshold <= usage) { 3655 /* 3656 * new->current_threshold will not be used until 3657 * rcu_assign_pointer(), so it's safe to increment 3658 * it here. 3659 */ 3660 ++new->current_threshold; 3661 } else 3662 break; 3663 } 3664 3665 /* Free old spare buffer and save old primary buffer as spare */ 3666 kfree(thresholds->spare); 3667 thresholds->spare = thresholds->primary; 3668 3669 rcu_assign_pointer(thresholds->primary, new); 3670 3671 /* To be sure that nobody uses thresholds */ 3672 synchronize_rcu(); 3673 3674 unlock: 3675 mutex_unlock(&memcg->thresholds_lock); 3676 3677 return ret; 3678 } 3679 3680 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3681 struct eventfd_ctx *eventfd, const char *args) 3682 { 3683 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3684 } 3685 3686 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3687 struct eventfd_ctx *eventfd, const char *args) 3688 { 3689 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3690 } 3691 3692 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3693 struct eventfd_ctx *eventfd, enum res_type type) 3694 { 3695 struct mem_cgroup_thresholds *thresholds; 3696 struct mem_cgroup_threshold_ary *new; 3697 unsigned long usage; 3698 int i, j, size; 3699 3700 mutex_lock(&memcg->thresholds_lock); 3701 3702 if (type == _MEM) { 3703 thresholds = &memcg->thresholds; 3704 usage = mem_cgroup_usage(memcg, false); 3705 } else if (type == _MEMSWAP) { 3706 thresholds = &memcg->memsw_thresholds; 3707 usage = mem_cgroup_usage(memcg, true); 3708 } else 3709 BUG(); 3710 3711 if (!thresholds->primary) 3712 goto unlock; 3713 3714 /* Check if a threshold crossed before removing */ 3715 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3716 3717 /* Calculate new number of threshold */ 3718 size = 0; 3719 for (i = 0; i < thresholds->primary->size; i++) { 3720 if (thresholds->primary->entries[i].eventfd != eventfd) 3721 size++; 3722 } 3723 3724 new = thresholds->spare; 3725 3726 /* Set thresholds array to NULL if we don't have thresholds */ 3727 if (!size) { 3728 kfree(new); 3729 new = NULL; 3730 goto swap_buffers; 3731 } 3732 3733 new->size = size; 3734 3735 /* Copy thresholds and find current threshold */ 3736 new->current_threshold = -1; 3737 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3738 if (thresholds->primary->entries[i].eventfd == eventfd) 3739 continue; 3740 3741 new->entries[j] = thresholds->primary->entries[i]; 3742 if (new->entries[j].threshold <= usage) { 3743 /* 3744 * new->current_threshold will not be used 3745 * until rcu_assign_pointer(), so it's safe to increment 3746 * it here. 3747 */ 3748 ++new->current_threshold; 3749 } 3750 j++; 3751 } 3752 3753 swap_buffers: 3754 /* Swap primary and spare array */ 3755 thresholds->spare = thresholds->primary; 3756 3757 rcu_assign_pointer(thresholds->primary, new); 3758 3759 /* To be sure that nobody uses thresholds */ 3760 synchronize_rcu(); 3761 3762 /* If all events are unregistered, free the spare array */ 3763 if (!new) { 3764 kfree(thresholds->spare); 3765 thresholds->spare = NULL; 3766 } 3767 unlock: 3768 mutex_unlock(&memcg->thresholds_lock); 3769 } 3770 3771 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3772 struct eventfd_ctx *eventfd) 3773 { 3774 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3775 } 3776 3777 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3778 struct eventfd_ctx *eventfd) 3779 { 3780 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3781 } 3782 3783 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3784 struct eventfd_ctx *eventfd, const char *args) 3785 { 3786 struct mem_cgroup_eventfd_list *event; 3787 3788 event = kmalloc(sizeof(*event), GFP_KERNEL); 3789 if (!event) 3790 return -ENOMEM; 3791 3792 spin_lock(&memcg_oom_lock); 3793 3794 event->eventfd = eventfd; 3795 list_add(&event->list, &memcg->oom_notify); 3796 3797 /* already in OOM ? */ 3798 if (memcg->under_oom) 3799 eventfd_signal(eventfd, 1); 3800 spin_unlock(&memcg_oom_lock); 3801 3802 return 0; 3803 } 3804 3805 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3806 struct eventfd_ctx *eventfd) 3807 { 3808 struct mem_cgroup_eventfd_list *ev, *tmp; 3809 3810 spin_lock(&memcg_oom_lock); 3811 3812 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3813 if (ev->eventfd == eventfd) { 3814 list_del(&ev->list); 3815 kfree(ev); 3816 } 3817 } 3818 3819 spin_unlock(&memcg_oom_lock); 3820 } 3821 3822 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3823 { 3824 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3825 3826 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3827 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3828 seq_printf(sf, "oom_kill %lu\n", 3829 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3830 return 0; 3831 } 3832 3833 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3834 struct cftype *cft, u64 val) 3835 { 3836 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3837 3838 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3839 if (!css->parent || !((val == 0) || (val == 1))) 3840 return -EINVAL; 3841 3842 memcg->oom_kill_disable = val; 3843 if (!val) 3844 memcg_oom_recover(memcg); 3845 3846 return 0; 3847 } 3848 3849 #ifdef CONFIG_CGROUP_WRITEBACK 3850 3851 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3852 { 3853 return wb_domain_init(&memcg->cgwb_domain, gfp); 3854 } 3855 3856 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3857 { 3858 wb_domain_exit(&memcg->cgwb_domain); 3859 } 3860 3861 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3862 { 3863 wb_domain_size_changed(&memcg->cgwb_domain); 3864 } 3865 3866 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3867 { 3868 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3869 3870 if (!memcg->css.parent) 3871 return NULL; 3872 3873 return &memcg->cgwb_domain; 3874 } 3875 3876 /** 3877 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3878 * @wb: bdi_writeback in question 3879 * @pfilepages: out parameter for number of file pages 3880 * @pheadroom: out parameter for number of allocatable pages according to memcg 3881 * @pdirty: out parameter for number of dirty pages 3882 * @pwriteback: out parameter for number of pages under writeback 3883 * 3884 * Determine the numbers of file, headroom, dirty, and writeback pages in 3885 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3886 * is a bit more involved. 3887 * 3888 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3889 * headroom is calculated as the lowest headroom of itself and the 3890 * ancestors. Note that this doesn't consider the actual amount of 3891 * available memory in the system. The caller should further cap 3892 * *@pheadroom accordingly. 3893 */ 3894 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3895 unsigned long *pheadroom, unsigned long *pdirty, 3896 unsigned long *pwriteback) 3897 { 3898 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3899 struct mem_cgroup *parent; 3900 3901 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3902 3903 /* this should eventually include NR_UNSTABLE_NFS */ 3904 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3905 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3906 (1 << LRU_ACTIVE_FILE)); 3907 *pheadroom = PAGE_COUNTER_MAX; 3908 3909 while ((parent = parent_mem_cgroup(memcg))) { 3910 unsigned long ceiling = min(memcg->memory.max, memcg->high); 3911 unsigned long used = page_counter_read(&memcg->memory); 3912 3913 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3914 memcg = parent; 3915 } 3916 } 3917 3918 #else /* CONFIG_CGROUP_WRITEBACK */ 3919 3920 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3921 { 3922 return 0; 3923 } 3924 3925 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3926 { 3927 } 3928 3929 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3930 { 3931 } 3932 3933 #endif /* CONFIG_CGROUP_WRITEBACK */ 3934 3935 /* 3936 * DO NOT USE IN NEW FILES. 3937 * 3938 * "cgroup.event_control" implementation. 3939 * 3940 * This is way over-engineered. It tries to support fully configurable 3941 * events for each user. Such level of flexibility is completely 3942 * unnecessary especially in the light of the planned unified hierarchy. 3943 * 3944 * Please deprecate this and replace with something simpler if at all 3945 * possible. 3946 */ 3947 3948 /* 3949 * Unregister event and free resources. 3950 * 3951 * Gets called from workqueue. 3952 */ 3953 static void memcg_event_remove(struct work_struct *work) 3954 { 3955 struct mem_cgroup_event *event = 3956 container_of(work, struct mem_cgroup_event, remove); 3957 struct mem_cgroup *memcg = event->memcg; 3958 3959 remove_wait_queue(event->wqh, &event->wait); 3960 3961 event->unregister_event(memcg, event->eventfd); 3962 3963 /* Notify userspace the event is going away. */ 3964 eventfd_signal(event->eventfd, 1); 3965 3966 eventfd_ctx_put(event->eventfd); 3967 kfree(event); 3968 css_put(&memcg->css); 3969 } 3970 3971 /* 3972 * Gets called on EPOLLHUP on eventfd when user closes it. 3973 * 3974 * Called with wqh->lock held and interrupts disabled. 3975 */ 3976 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3977 int sync, void *key) 3978 { 3979 struct mem_cgroup_event *event = 3980 container_of(wait, struct mem_cgroup_event, wait); 3981 struct mem_cgroup *memcg = event->memcg; 3982 __poll_t flags = key_to_poll(key); 3983 3984 if (flags & EPOLLHUP) { 3985 /* 3986 * If the event has been detached at cgroup removal, we 3987 * can simply return knowing the other side will cleanup 3988 * for us. 3989 * 3990 * We can't race against event freeing since the other 3991 * side will require wqh->lock via remove_wait_queue(), 3992 * which we hold. 3993 */ 3994 spin_lock(&memcg->event_list_lock); 3995 if (!list_empty(&event->list)) { 3996 list_del_init(&event->list); 3997 /* 3998 * We are in atomic context, but cgroup_event_remove() 3999 * may sleep, so we have to call it in workqueue. 4000 */ 4001 schedule_work(&event->remove); 4002 } 4003 spin_unlock(&memcg->event_list_lock); 4004 } 4005 4006 return 0; 4007 } 4008 4009 static void memcg_event_ptable_queue_proc(struct file *file, 4010 wait_queue_head_t *wqh, poll_table *pt) 4011 { 4012 struct mem_cgroup_event *event = 4013 container_of(pt, struct mem_cgroup_event, pt); 4014 4015 event->wqh = wqh; 4016 add_wait_queue(wqh, &event->wait); 4017 } 4018 4019 /* 4020 * DO NOT USE IN NEW FILES. 4021 * 4022 * Parse input and register new cgroup event handler. 4023 * 4024 * Input must be in format '<event_fd> <control_fd> <args>'. 4025 * Interpretation of args is defined by control file implementation. 4026 */ 4027 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4028 char *buf, size_t nbytes, loff_t off) 4029 { 4030 struct cgroup_subsys_state *css = of_css(of); 4031 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4032 struct mem_cgroup_event *event; 4033 struct cgroup_subsys_state *cfile_css; 4034 unsigned int efd, cfd; 4035 struct fd efile; 4036 struct fd cfile; 4037 const char *name; 4038 char *endp; 4039 int ret; 4040 4041 buf = strstrip(buf); 4042 4043 efd = simple_strtoul(buf, &endp, 10); 4044 if (*endp != ' ') 4045 return -EINVAL; 4046 buf = endp + 1; 4047 4048 cfd = simple_strtoul(buf, &endp, 10); 4049 if ((*endp != ' ') && (*endp != '\0')) 4050 return -EINVAL; 4051 buf = endp + 1; 4052 4053 event = kzalloc(sizeof(*event), GFP_KERNEL); 4054 if (!event) 4055 return -ENOMEM; 4056 4057 event->memcg = memcg; 4058 INIT_LIST_HEAD(&event->list); 4059 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4060 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4061 INIT_WORK(&event->remove, memcg_event_remove); 4062 4063 efile = fdget(efd); 4064 if (!efile.file) { 4065 ret = -EBADF; 4066 goto out_kfree; 4067 } 4068 4069 event->eventfd = eventfd_ctx_fileget(efile.file); 4070 if (IS_ERR(event->eventfd)) { 4071 ret = PTR_ERR(event->eventfd); 4072 goto out_put_efile; 4073 } 4074 4075 cfile = fdget(cfd); 4076 if (!cfile.file) { 4077 ret = -EBADF; 4078 goto out_put_eventfd; 4079 } 4080 4081 /* the process need read permission on control file */ 4082 /* AV: shouldn't we check that it's been opened for read instead? */ 4083 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4084 if (ret < 0) 4085 goto out_put_cfile; 4086 4087 /* 4088 * Determine the event callbacks and set them in @event. This used 4089 * to be done via struct cftype but cgroup core no longer knows 4090 * about these events. The following is crude but the whole thing 4091 * is for compatibility anyway. 4092 * 4093 * DO NOT ADD NEW FILES. 4094 */ 4095 name = cfile.file->f_path.dentry->d_name.name; 4096 4097 if (!strcmp(name, "memory.usage_in_bytes")) { 4098 event->register_event = mem_cgroup_usage_register_event; 4099 event->unregister_event = mem_cgroup_usage_unregister_event; 4100 } else if (!strcmp(name, "memory.oom_control")) { 4101 event->register_event = mem_cgroup_oom_register_event; 4102 event->unregister_event = mem_cgroup_oom_unregister_event; 4103 } else if (!strcmp(name, "memory.pressure_level")) { 4104 event->register_event = vmpressure_register_event; 4105 event->unregister_event = vmpressure_unregister_event; 4106 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4107 event->register_event = memsw_cgroup_usage_register_event; 4108 event->unregister_event = memsw_cgroup_usage_unregister_event; 4109 } else { 4110 ret = -EINVAL; 4111 goto out_put_cfile; 4112 } 4113 4114 /* 4115 * Verify @cfile should belong to @css. Also, remaining events are 4116 * automatically removed on cgroup destruction but the removal is 4117 * asynchronous, so take an extra ref on @css. 4118 */ 4119 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4120 &memory_cgrp_subsys); 4121 ret = -EINVAL; 4122 if (IS_ERR(cfile_css)) 4123 goto out_put_cfile; 4124 if (cfile_css != css) { 4125 css_put(cfile_css); 4126 goto out_put_cfile; 4127 } 4128 4129 ret = event->register_event(memcg, event->eventfd, buf); 4130 if (ret) 4131 goto out_put_css; 4132 4133 vfs_poll(efile.file, &event->pt); 4134 4135 spin_lock(&memcg->event_list_lock); 4136 list_add(&event->list, &memcg->event_list); 4137 spin_unlock(&memcg->event_list_lock); 4138 4139 fdput(cfile); 4140 fdput(efile); 4141 4142 return nbytes; 4143 4144 out_put_css: 4145 css_put(css); 4146 out_put_cfile: 4147 fdput(cfile); 4148 out_put_eventfd: 4149 eventfd_ctx_put(event->eventfd); 4150 out_put_efile: 4151 fdput(efile); 4152 out_kfree: 4153 kfree(event); 4154 4155 return ret; 4156 } 4157 4158 static struct cftype mem_cgroup_legacy_files[] = { 4159 { 4160 .name = "usage_in_bytes", 4161 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4162 .read_u64 = mem_cgroup_read_u64, 4163 }, 4164 { 4165 .name = "max_usage_in_bytes", 4166 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4167 .write = mem_cgroup_reset, 4168 .read_u64 = mem_cgroup_read_u64, 4169 }, 4170 { 4171 .name = "limit_in_bytes", 4172 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4173 .write = mem_cgroup_write, 4174 .read_u64 = mem_cgroup_read_u64, 4175 }, 4176 { 4177 .name = "soft_limit_in_bytes", 4178 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4179 .write = mem_cgroup_write, 4180 .read_u64 = mem_cgroup_read_u64, 4181 }, 4182 { 4183 .name = "failcnt", 4184 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4185 .write = mem_cgroup_reset, 4186 .read_u64 = mem_cgroup_read_u64, 4187 }, 4188 { 4189 .name = "stat", 4190 .seq_show = memcg_stat_show, 4191 }, 4192 { 4193 .name = "force_empty", 4194 .write = mem_cgroup_force_empty_write, 4195 }, 4196 { 4197 .name = "use_hierarchy", 4198 .write_u64 = mem_cgroup_hierarchy_write, 4199 .read_u64 = mem_cgroup_hierarchy_read, 4200 }, 4201 { 4202 .name = "cgroup.event_control", /* XXX: for compat */ 4203 .write = memcg_write_event_control, 4204 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4205 }, 4206 { 4207 .name = "swappiness", 4208 .read_u64 = mem_cgroup_swappiness_read, 4209 .write_u64 = mem_cgroup_swappiness_write, 4210 }, 4211 { 4212 .name = "move_charge_at_immigrate", 4213 .read_u64 = mem_cgroup_move_charge_read, 4214 .write_u64 = mem_cgroup_move_charge_write, 4215 }, 4216 { 4217 .name = "oom_control", 4218 .seq_show = mem_cgroup_oom_control_read, 4219 .write_u64 = mem_cgroup_oom_control_write, 4220 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4221 }, 4222 { 4223 .name = "pressure_level", 4224 }, 4225 #ifdef CONFIG_NUMA 4226 { 4227 .name = "numa_stat", 4228 .seq_show = memcg_numa_stat_show, 4229 }, 4230 #endif 4231 { 4232 .name = "kmem.limit_in_bytes", 4233 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4234 .write = mem_cgroup_write, 4235 .read_u64 = mem_cgroup_read_u64, 4236 }, 4237 { 4238 .name = "kmem.usage_in_bytes", 4239 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4240 .read_u64 = mem_cgroup_read_u64, 4241 }, 4242 { 4243 .name = "kmem.failcnt", 4244 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4245 .write = mem_cgroup_reset, 4246 .read_u64 = mem_cgroup_read_u64, 4247 }, 4248 { 4249 .name = "kmem.max_usage_in_bytes", 4250 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4251 .write = mem_cgroup_reset, 4252 .read_u64 = mem_cgroup_read_u64, 4253 }, 4254 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4255 { 4256 .name = "kmem.slabinfo", 4257 .seq_start = memcg_slab_start, 4258 .seq_next = memcg_slab_next, 4259 .seq_stop = memcg_slab_stop, 4260 .seq_show = memcg_slab_show, 4261 }, 4262 #endif 4263 { 4264 .name = "kmem.tcp.limit_in_bytes", 4265 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4266 .write = mem_cgroup_write, 4267 .read_u64 = mem_cgroup_read_u64, 4268 }, 4269 { 4270 .name = "kmem.tcp.usage_in_bytes", 4271 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4272 .read_u64 = mem_cgroup_read_u64, 4273 }, 4274 { 4275 .name = "kmem.tcp.failcnt", 4276 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4277 .write = mem_cgroup_reset, 4278 .read_u64 = mem_cgroup_read_u64, 4279 }, 4280 { 4281 .name = "kmem.tcp.max_usage_in_bytes", 4282 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4283 .write = mem_cgroup_reset, 4284 .read_u64 = mem_cgroup_read_u64, 4285 }, 4286 { }, /* terminate */ 4287 }; 4288 4289 /* 4290 * Private memory cgroup IDR 4291 * 4292 * Swap-out records and page cache shadow entries need to store memcg 4293 * references in constrained space, so we maintain an ID space that is 4294 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4295 * memory-controlled cgroups to 64k. 4296 * 4297 * However, there usually are many references to the oflline CSS after 4298 * the cgroup has been destroyed, such as page cache or reclaimable 4299 * slab objects, that don't need to hang on to the ID. We want to keep 4300 * those dead CSS from occupying IDs, or we might quickly exhaust the 4301 * relatively small ID space and prevent the creation of new cgroups 4302 * even when there are much fewer than 64k cgroups - possibly none. 4303 * 4304 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4305 * be freed and recycled when it's no longer needed, which is usually 4306 * when the CSS is offlined. 4307 * 4308 * The only exception to that are records of swapped out tmpfs/shmem 4309 * pages that need to be attributed to live ancestors on swapin. But 4310 * those references are manageable from userspace. 4311 */ 4312 4313 static DEFINE_IDR(mem_cgroup_idr); 4314 4315 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4316 { 4317 if (memcg->id.id > 0) { 4318 idr_remove(&mem_cgroup_idr, memcg->id.id); 4319 memcg->id.id = 0; 4320 } 4321 } 4322 4323 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4324 { 4325 refcount_add(n, &memcg->id.ref); 4326 } 4327 4328 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4329 { 4330 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4331 mem_cgroup_id_remove(memcg); 4332 4333 /* Memcg ID pins CSS */ 4334 css_put(&memcg->css); 4335 } 4336 } 4337 4338 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4339 { 4340 mem_cgroup_id_get_many(memcg, 1); 4341 } 4342 4343 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4344 { 4345 mem_cgroup_id_put_many(memcg, 1); 4346 } 4347 4348 /** 4349 * mem_cgroup_from_id - look up a memcg from a memcg id 4350 * @id: the memcg id to look up 4351 * 4352 * Caller must hold rcu_read_lock(). 4353 */ 4354 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4355 { 4356 WARN_ON_ONCE(!rcu_read_lock_held()); 4357 return idr_find(&mem_cgroup_idr, id); 4358 } 4359 4360 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4361 { 4362 struct mem_cgroup_per_node *pn; 4363 int tmp = node; 4364 /* 4365 * This routine is called against possible nodes. 4366 * But it's BUG to call kmalloc() against offline node. 4367 * 4368 * TODO: this routine can waste much memory for nodes which will 4369 * never be onlined. It's better to use memory hotplug callback 4370 * function. 4371 */ 4372 if (!node_state(node, N_NORMAL_MEMORY)) 4373 tmp = -1; 4374 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4375 if (!pn) 4376 return 1; 4377 4378 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4379 if (!pn->lruvec_stat_cpu) { 4380 kfree(pn); 4381 return 1; 4382 } 4383 4384 lruvec_init(&pn->lruvec); 4385 pn->usage_in_excess = 0; 4386 pn->on_tree = false; 4387 pn->memcg = memcg; 4388 4389 memcg->nodeinfo[node] = pn; 4390 return 0; 4391 } 4392 4393 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4394 { 4395 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4396 4397 if (!pn) 4398 return; 4399 4400 free_percpu(pn->lruvec_stat_cpu); 4401 kfree(pn); 4402 } 4403 4404 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4405 { 4406 int node; 4407 4408 for_each_node(node) 4409 free_mem_cgroup_per_node_info(memcg, node); 4410 free_percpu(memcg->stat_cpu); 4411 kfree(memcg); 4412 } 4413 4414 static void mem_cgroup_free(struct mem_cgroup *memcg) 4415 { 4416 memcg_wb_domain_exit(memcg); 4417 __mem_cgroup_free(memcg); 4418 } 4419 4420 static struct mem_cgroup *mem_cgroup_alloc(void) 4421 { 4422 struct mem_cgroup *memcg; 4423 size_t size; 4424 int node; 4425 4426 size = sizeof(struct mem_cgroup); 4427 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4428 4429 memcg = kzalloc(size, GFP_KERNEL); 4430 if (!memcg) 4431 return NULL; 4432 4433 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4434 1, MEM_CGROUP_ID_MAX, 4435 GFP_KERNEL); 4436 if (memcg->id.id < 0) 4437 goto fail; 4438 4439 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4440 if (!memcg->stat_cpu) 4441 goto fail; 4442 4443 for_each_node(node) 4444 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4445 goto fail; 4446 4447 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4448 goto fail; 4449 4450 INIT_WORK(&memcg->high_work, high_work_func); 4451 memcg->last_scanned_node = MAX_NUMNODES; 4452 INIT_LIST_HEAD(&memcg->oom_notify); 4453 mutex_init(&memcg->thresholds_lock); 4454 spin_lock_init(&memcg->move_lock); 4455 vmpressure_init(&memcg->vmpressure); 4456 INIT_LIST_HEAD(&memcg->event_list); 4457 spin_lock_init(&memcg->event_list_lock); 4458 memcg->socket_pressure = jiffies; 4459 #ifdef CONFIG_MEMCG_KMEM 4460 memcg->kmemcg_id = -1; 4461 #endif 4462 #ifdef CONFIG_CGROUP_WRITEBACK 4463 INIT_LIST_HEAD(&memcg->cgwb_list); 4464 #endif 4465 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4466 return memcg; 4467 fail: 4468 mem_cgroup_id_remove(memcg); 4469 __mem_cgroup_free(memcg); 4470 return NULL; 4471 } 4472 4473 static struct cgroup_subsys_state * __ref 4474 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4475 { 4476 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4477 struct mem_cgroup *memcg; 4478 long error = -ENOMEM; 4479 4480 memcg = mem_cgroup_alloc(); 4481 if (!memcg) 4482 return ERR_PTR(error); 4483 4484 memcg->high = PAGE_COUNTER_MAX; 4485 memcg->soft_limit = PAGE_COUNTER_MAX; 4486 if (parent) { 4487 memcg->swappiness = mem_cgroup_swappiness(parent); 4488 memcg->oom_kill_disable = parent->oom_kill_disable; 4489 } 4490 if (parent && parent->use_hierarchy) { 4491 memcg->use_hierarchy = true; 4492 page_counter_init(&memcg->memory, &parent->memory); 4493 page_counter_init(&memcg->swap, &parent->swap); 4494 page_counter_init(&memcg->memsw, &parent->memsw); 4495 page_counter_init(&memcg->kmem, &parent->kmem); 4496 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4497 } else { 4498 page_counter_init(&memcg->memory, NULL); 4499 page_counter_init(&memcg->swap, NULL); 4500 page_counter_init(&memcg->memsw, NULL); 4501 page_counter_init(&memcg->kmem, NULL); 4502 page_counter_init(&memcg->tcpmem, NULL); 4503 /* 4504 * Deeper hierachy with use_hierarchy == false doesn't make 4505 * much sense so let cgroup subsystem know about this 4506 * unfortunate state in our controller. 4507 */ 4508 if (parent != root_mem_cgroup) 4509 memory_cgrp_subsys.broken_hierarchy = true; 4510 } 4511 4512 /* The following stuff does not apply to the root */ 4513 if (!parent) { 4514 root_mem_cgroup = memcg; 4515 return &memcg->css; 4516 } 4517 4518 error = memcg_online_kmem(memcg); 4519 if (error) 4520 goto fail; 4521 4522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4523 static_branch_inc(&memcg_sockets_enabled_key); 4524 4525 return &memcg->css; 4526 fail: 4527 mem_cgroup_id_remove(memcg); 4528 mem_cgroup_free(memcg); 4529 return ERR_PTR(-ENOMEM); 4530 } 4531 4532 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4533 { 4534 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4535 4536 /* 4537 * A memcg must be visible for memcg_expand_shrinker_maps() 4538 * by the time the maps are allocated. So, we allocate maps 4539 * here, when for_each_mem_cgroup() can't skip it. 4540 */ 4541 if (memcg_alloc_shrinker_maps(memcg)) { 4542 mem_cgroup_id_remove(memcg); 4543 return -ENOMEM; 4544 } 4545 4546 /* Online state pins memcg ID, memcg ID pins CSS */ 4547 refcount_set(&memcg->id.ref, 1); 4548 css_get(css); 4549 return 0; 4550 } 4551 4552 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4553 { 4554 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4555 struct mem_cgroup_event *event, *tmp; 4556 4557 /* 4558 * Unregister events and notify userspace. 4559 * Notify userspace about cgroup removing only after rmdir of cgroup 4560 * directory to avoid race between userspace and kernelspace. 4561 */ 4562 spin_lock(&memcg->event_list_lock); 4563 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4564 list_del_init(&event->list); 4565 schedule_work(&event->remove); 4566 } 4567 spin_unlock(&memcg->event_list_lock); 4568 4569 page_counter_set_min(&memcg->memory, 0); 4570 page_counter_set_low(&memcg->memory, 0); 4571 4572 memcg_offline_kmem(memcg); 4573 wb_memcg_offline(memcg); 4574 4575 drain_all_stock(memcg); 4576 4577 mem_cgroup_id_put(memcg); 4578 } 4579 4580 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4581 { 4582 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4583 4584 invalidate_reclaim_iterators(memcg); 4585 } 4586 4587 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4588 { 4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4590 4591 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4592 static_branch_dec(&memcg_sockets_enabled_key); 4593 4594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4595 static_branch_dec(&memcg_sockets_enabled_key); 4596 4597 vmpressure_cleanup(&memcg->vmpressure); 4598 cancel_work_sync(&memcg->high_work); 4599 mem_cgroup_remove_from_trees(memcg); 4600 memcg_free_shrinker_maps(memcg); 4601 memcg_free_kmem(memcg); 4602 mem_cgroup_free(memcg); 4603 } 4604 4605 /** 4606 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4607 * @css: the target css 4608 * 4609 * Reset the states of the mem_cgroup associated with @css. This is 4610 * invoked when the userland requests disabling on the default hierarchy 4611 * but the memcg is pinned through dependency. The memcg should stop 4612 * applying policies and should revert to the vanilla state as it may be 4613 * made visible again. 4614 * 4615 * The current implementation only resets the essential configurations. 4616 * This needs to be expanded to cover all the visible parts. 4617 */ 4618 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4619 { 4620 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4621 4622 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4623 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4624 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4625 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4626 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4627 page_counter_set_min(&memcg->memory, 0); 4628 page_counter_set_low(&memcg->memory, 0); 4629 memcg->high = PAGE_COUNTER_MAX; 4630 memcg->soft_limit = PAGE_COUNTER_MAX; 4631 memcg_wb_domain_size_changed(memcg); 4632 } 4633 4634 #ifdef CONFIG_MMU 4635 /* Handlers for move charge at task migration. */ 4636 static int mem_cgroup_do_precharge(unsigned long count) 4637 { 4638 int ret; 4639 4640 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4641 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4642 if (!ret) { 4643 mc.precharge += count; 4644 return ret; 4645 } 4646 4647 /* Try charges one by one with reclaim, but do not retry */ 4648 while (count--) { 4649 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4650 if (ret) 4651 return ret; 4652 mc.precharge++; 4653 cond_resched(); 4654 } 4655 return 0; 4656 } 4657 4658 union mc_target { 4659 struct page *page; 4660 swp_entry_t ent; 4661 }; 4662 4663 enum mc_target_type { 4664 MC_TARGET_NONE = 0, 4665 MC_TARGET_PAGE, 4666 MC_TARGET_SWAP, 4667 MC_TARGET_DEVICE, 4668 }; 4669 4670 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4671 unsigned long addr, pte_t ptent) 4672 { 4673 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4674 4675 if (!page || !page_mapped(page)) 4676 return NULL; 4677 if (PageAnon(page)) { 4678 if (!(mc.flags & MOVE_ANON)) 4679 return NULL; 4680 } else { 4681 if (!(mc.flags & MOVE_FILE)) 4682 return NULL; 4683 } 4684 if (!get_page_unless_zero(page)) 4685 return NULL; 4686 4687 return page; 4688 } 4689 4690 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4691 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4692 pte_t ptent, swp_entry_t *entry) 4693 { 4694 struct page *page = NULL; 4695 swp_entry_t ent = pte_to_swp_entry(ptent); 4696 4697 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4698 return NULL; 4699 4700 /* 4701 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4702 * a device and because they are not accessible by CPU they are store 4703 * as special swap entry in the CPU page table. 4704 */ 4705 if (is_device_private_entry(ent)) { 4706 page = device_private_entry_to_page(ent); 4707 /* 4708 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4709 * a refcount of 1 when free (unlike normal page) 4710 */ 4711 if (!page_ref_add_unless(page, 1, 1)) 4712 return NULL; 4713 return page; 4714 } 4715 4716 /* 4717 * Because lookup_swap_cache() updates some statistics counter, 4718 * we call find_get_page() with swapper_space directly. 4719 */ 4720 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4721 if (do_memsw_account()) 4722 entry->val = ent.val; 4723 4724 return page; 4725 } 4726 #else 4727 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4728 pte_t ptent, swp_entry_t *entry) 4729 { 4730 return NULL; 4731 } 4732 #endif 4733 4734 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4735 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4736 { 4737 struct page *page = NULL; 4738 struct address_space *mapping; 4739 pgoff_t pgoff; 4740 4741 if (!vma->vm_file) /* anonymous vma */ 4742 return NULL; 4743 if (!(mc.flags & MOVE_FILE)) 4744 return NULL; 4745 4746 mapping = vma->vm_file->f_mapping; 4747 pgoff = linear_page_index(vma, addr); 4748 4749 /* page is moved even if it's not RSS of this task(page-faulted). */ 4750 #ifdef CONFIG_SWAP 4751 /* shmem/tmpfs may report page out on swap: account for that too. */ 4752 if (shmem_mapping(mapping)) { 4753 page = find_get_entry(mapping, pgoff); 4754 if (xa_is_value(page)) { 4755 swp_entry_t swp = radix_to_swp_entry(page); 4756 if (do_memsw_account()) 4757 *entry = swp; 4758 page = find_get_page(swap_address_space(swp), 4759 swp_offset(swp)); 4760 } 4761 } else 4762 page = find_get_page(mapping, pgoff); 4763 #else 4764 page = find_get_page(mapping, pgoff); 4765 #endif 4766 return page; 4767 } 4768 4769 /** 4770 * mem_cgroup_move_account - move account of the page 4771 * @page: the page 4772 * @compound: charge the page as compound or small page 4773 * @from: mem_cgroup which the page is moved from. 4774 * @to: mem_cgroup which the page is moved to. @from != @to. 4775 * 4776 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4777 * 4778 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4779 * from old cgroup. 4780 */ 4781 static int mem_cgroup_move_account(struct page *page, 4782 bool compound, 4783 struct mem_cgroup *from, 4784 struct mem_cgroup *to) 4785 { 4786 unsigned long flags; 4787 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4788 int ret; 4789 bool anon; 4790 4791 VM_BUG_ON(from == to); 4792 VM_BUG_ON_PAGE(PageLRU(page), page); 4793 VM_BUG_ON(compound && !PageTransHuge(page)); 4794 4795 /* 4796 * Prevent mem_cgroup_migrate() from looking at 4797 * page->mem_cgroup of its source page while we change it. 4798 */ 4799 ret = -EBUSY; 4800 if (!trylock_page(page)) 4801 goto out; 4802 4803 ret = -EINVAL; 4804 if (page->mem_cgroup != from) 4805 goto out_unlock; 4806 4807 anon = PageAnon(page); 4808 4809 spin_lock_irqsave(&from->move_lock, flags); 4810 4811 if (!anon && page_mapped(page)) { 4812 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4813 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4814 } 4815 4816 /* 4817 * move_lock grabbed above and caller set from->moving_account, so 4818 * mod_memcg_page_state will serialize updates to PageDirty. 4819 * So mapping should be stable for dirty pages. 4820 */ 4821 if (!anon && PageDirty(page)) { 4822 struct address_space *mapping = page_mapping(page); 4823 4824 if (mapping_cap_account_dirty(mapping)) { 4825 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4826 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4827 } 4828 } 4829 4830 if (PageWriteback(page)) { 4831 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4832 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4833 } 4834 4835 /* 4836 * It is safe to change page->mem_cgroup here because the page 4837 * is referenced, charged, and isolated - we can't race with 4838 * uncharging, charging, migration, or LRU putback. 4839 */ 4840 4841 /* caller should have done css_get */ 4842 page->mem_cgroup = to; 4843 spin_unlock_irqrestore(&from->move_lock, flags); 4844 4845 ret = 0; 4846 4847 local_irq_disable(); 4848 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4849 memcg_check_events(to, page); 4850 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4851 memcg_check_events(from, page); 4852 local_irq_enable(); 4853 out_unlock: 4854 unlock_page(page); 4855 out: 4856 return ret; 4857 } 4858 4859 /** 4860 * get_mctgt_type - get target type of moving charge 4861 * @vma: the vma the pte to be checked belongs 4862 * @addr: the address corresponding to the pte to be checked 4863 * @ptent: the pte to be checked 4864 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4865 * 4866 * Returns 4867 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4868 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4869 * move charge. if @target is not NULL, the page is stored in target->page 4870 * with extra refcnt got(Callers should handle it). 4871 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4872 * target for charge migration. if @target is not NULL, the entry is stored 4873 * in target->ent. 4874 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4875 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4876 * For now we such page is charge like a regular page would be as for all 4877 * intent and purposes it is just special memory taking the place of a 4878 * regular page. 4879 * 4880 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4881 * 4882 * Called with pte lock held. 4883 */ 4884 4885 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4886 unsigned long addr, pte_t ptent, union mc_target *target) 4887 { 4888 struct page *page = NULL; 4889 enum mc_target_type ret = MC_TARGET_NONE; 4890 swp_entry_t ent = { .val = 0 }; 4891 4892 if (pte_present(ptent)) 4893 page = mc_handle_present_pte(vma, addr, ptent); 4894 else if (is_swap_pte(ptent)) 4895 page = mc_handle_swap_pte(vma, ptent, &ent); 4896 else if (pte_none(ptent)) 4897 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4898 4899 if (!page && !ent.val) 4900 return ret; 4901 if (page) { 4902 /* 4903 * Do only loose check w/o serialization. 4904 * mem_cgroup_move_account() checks the page is valid or 4905 * not under LRU exclusion. 4906 */ 4907 if (page->mem_cgroup == mc.from) { 4908 ret = MC_TARGET_PAGE; 4909 if (is_device_private_page(page) || 4910 is_device_public_page(page)) 4911 ret = MC_TARGET_DEVICE; 4912 if (target) 4913 target->page = page; 4914 } 4915 if (!ret || !target) 4916 put_page(page); 4917 } 4918 /* 4919 * There is a swap entry and a page doesn't exist or isn't charged. 4920 * But we cannot move a tail-page in a THP. 4921 */ 4922 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4923 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4924 ret = MC_TARGET_SWAP; 4925 if (target) 4926 target->ent = ent; 4927 } 4928 return ret; 4929 } 4930 4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4932 /* 4933 * We don't consider PMD mapped swapping or file mapped pages because THP does 4934 * not support them for now. 4935 * Caller should make sure that pmd_trans_huge(pmd) is true. 4936 */ 4937 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4938 unsigned long addr, pmd_t pmd, union mc_target *target) 4939 { 4940 struct page *page = NULL; 4941 enum mc_target_type ret = MC_TARGET_NONE; 4942 4943 if (unlikely(is_swap_pmd(pmd))) { 4944 VM_BUG_ON(thp_migration_supported() && 4945 !is_pmd_migration_entry(pmd)); 4946 return ret; 4947 } 4948 page = pmd_page(pmd); 4949 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4950 if (!(mc.flags & MOVE_ANON)) 4951 return ret; 4952 if (page->mem_cgroup == mc.from) { 4953 ret = MC_TARGET_PAGE; 4954 if (target) { 4955 get_page(page); 4956 target->page = page; 4957 } 4958 } 4959 return ret; 4960 } 4961 #else 4962 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4963 unsigned long addr, pmd_t pmd, union mc_target *target) 4964 { 4965 return MC_TARGET_NONE; 4966 } 4967 #endif 4968 4969 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4970 unsigned long addr, unsigned long end, 4971 struct mm_walk *walk) 4972 { 4973 struct vm_area_struct *vma = walk->vma; 4974 pte_t *pte; 4975 spinlock_t *ptl; 4976 4977 ptl = pmd_trans_huge_lock(pmd, vma); 4978 if (ptl) { 4979 /* 4980 * Note their can not be MC_TARGET_DEVICE for now as we do not 4981 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 4982 * MEMORY_DEVICE_PRIVATE but this might change. 4983 */ 4984 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4985 mc.precharge += HPAGE_PMD_NR; 4986 spin_unlock(ptl); 4987 return 0; 4988 } 4989 4990 if (pmd_trans_unstable(pmd)) 4991 return 0; 4992 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4993 for (; addr != end; pte++, addr += PAGE_SIZE) 4994 if (get_mctgt_type(vma, addr, *pte, NULL)) 4995 mc.precharge++; /* increment precharge temporarily */ 4996 pte_unmap_unlock(pte - 1, ptl); 4997 cond_resched(); 4998 4999 return 0; 5000 } 5001 5002 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5003 { 5004 unsigned long precharge; 5005 5006 struct mm_walk mem_cgroup_count_precharge_walk = { 5007 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5008 .mm = mm, 5009 }; 5010 down_read(&mm->mmap_sem); 5011 walk_page_range(0, mm->highest_vm_end, 5012 &mem_cgroup_count_precharge_walk); 5013 up_read(&mm->mmap_sem); 5014 5015 precharge = mc.precharge; 5016 mc.precharge = 0; 5017 5018 return precharge; 5019 } 5020 5021 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5022 { 5023 unsigned long precharge = mem_cgroup_count_precharge(mm); 5024 5025 VM_BUG_ON(mc.moving_task); 5026 mc.moving_task = current; 5027 return mem_cgroup_do_precharge(precharge); 5028 } 5029 5030 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5031 static void __mem_cgroup_clear_mc(void) 5032 { 5033 struct mem_cgroup *from = mc.from; 5034 struct mem_cgroup *to = mc.to; 5035 5036 /* we must uncharge all the leftover precharges from mc.to */ 5037 if (mc.precharge) { 5038 cancel_charge(mc.to, mc.precharge); 5039 mc.precharge = 0; 5040 } 5041 /* 5042 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5043 * we must uncharge here. 5044 */ 5045 if (mc.moved_charge) { 5046 cancel_charge(mc.from, mc.moved_charge); 5047 mc.moved_charge = 0; 5048 } 5049 /* we must fixup refcnts and charges */ 5050 if (mc.moved_swap) { 5051 /* uncharge swap account from the old cgroup */ 5052 if (!mem_cgroup_is_root(mc.from)) 5053 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5054 5055 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5056 5057 /* 5058 * we charged both to->memory and to->memsw, so we 5059 * should uncharge to->memory. 5060 */ 5061 if (!mem_cgroup_is_root(mc.to)) 5062 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5063 5064 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5065 css_put_many(&mc.to->css, mc.moved_swap); 5066 5067 mc.moved_swap = 0; 5068 } 5069 memcg_oom_recover(from); 5070 memcg_oom_recover(to); 5071 wake_up_all(&mc.waitq); 5072 } 5073 5074 static void mem_cgroup_clear_mc(void) 5075 { 5076 struct mm_struct *mm = mc.mm; 5077 5078 /* 5079 * we must clear moving_task before waking up waiters at the end of 5080 * task migration. 5081 */ 5082 mc.moving_task = NULL; 5083 __mem_cgroup_clear_mc(); 5084 spin_lock(&mc.lock); 5085 mc.from = NULL; 5086 mc.to = NULL; 5087 mc.mm = NULL; 5088 spin_unlock(&mc.lock); 5089 5090 mmput(mm); 5091 } 5092 5093 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5094 { 5095 struct cgroup_subsys_state *css; 5096 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5097 struct mem_cgroup *from; 5098 struct task_struct *leader, *p; 5099 struct mm_struct *mm; 5100 unsigned long move_flags; 5101 int ret = 0; 5102 5103 /* charge immigration isn't supported on the default hierarchy */ 5104 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5105 return 0; 5106 5107 /* 5108 * Multi-process migrations only happen on the default hierarchy 5109 * where charge immigration is not used. Perform charge 5110 * immigration if @tset contains a leader and whine if there are 5111 * multiple. 5112 */ 5113 p = NULL; 5114 cgroup_taskset_for_each_leader(leader, css, tset) { 5115 WARN_ON_ONCE(p); 5116 p = leader; 5117 memcg = mem_cgroup_from_css(css); 5118 } 5119 if (!p) 5120 return 0; 5121 5122 /* 5123 * We are now commited to this value whatever it is. Changes in this 5124 * tunable will only affect upcoming migrations, not the current one. 5125 * So we need to save it, and keep it going. 5126 */ 5127 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5128 if (!move_flags) 5129 return 0; 5130 5131 from = mem_cgroup_from_task(p); 5132 5133 VM_BUG_ON(from == memcg); 5134 5135 mm = get_task_mm(p); 5136 if (!mm) 5137 return 0; 5138 /* We move charges only when we move a owner of the mm */ 5139 if (mm->owner == p) { 5140 VM_BUG_ON(mc.from); 5141 VM_BUG_ON(mc.to); 5142 VM_BUG_ON(mc.precharge); 5143 VM_BUG_ON(mc.moved_charge); 5144 VM_BUG_ON(mc.moved_swap); 5145 5146 spin_lock(&mc.lock); 5147 mc.mm = mm; 5148 mc.from = from; 5149 mc.to = memcg; 5150 mc.flags = move_flags; 5151 spin_unlock(&mc.lock); 5152 /* We set mc.moving_task later */ 5153 5154 ret = mem_cgroup_precharge_mc(mm); 5155 if (ret) 5156 mem_cgroup_clear_mc(); 5157 } else { 5158 mmput(mm); 5159 } 5160 return ret; 5161 } 5162 5163 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5164 { 5165 if (mc.to) 5166 mem_cgroup_clear_mc(); 5167 } 5168 5169 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5170 unsigned long addr, unsigned long end, 5171 struct mm_walk *walk) 5172 { 5173 int ret = 0; 5174 struct vm_area_struct *vma = walk->vma; 5175 pte_t *pte; 5176 spinlock_t *ptl; 5177 enum mc_target_type target_type; 5178 union mc_target target; 5179 struct page *page; 5180 5181 ptl = pmd_trans_huge_lock(pmd, vma); 5182 if (ptl) { 5183 if (mc.precharge < HPAGE_PMD_NR) { 5184 spin_unlock(ptl); 5185 return 0; 5186 } 5187 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5188 if (target_type == MC_TARGET_PAGE) { 5189 page = target.page; 5190 if (!isolate_lru_page(page)) { 5191 if (!mem_cgroup_move_account(page, true, 5192 mc.from, mc.to)) { 5193 mc.precharge -= HPAGE_PMD_NR; 5194 mc.moved_charge += HPAGE_PMD_NR; 5195 } 5196 putback_lru_page(page); 5197 } 5198 put_page(page); 5199 } else if (target_type == MC_TARGET_DEVICE) { 5200 page = target.page; 5201 if (!mem_cgroup_move_account(page, true, 5202 mc.from, mc.to)) { 5203 mc.precharge -= HPAGE_PMD_NR; 5204 mc.moved_charge += HPAGE_PMD_NR; 5205 } 5206 put_page(page); 5207 } 5208 spin_unlock(ptl); 5209 return 0; 5210 } 5211 5212 if (pmd_trans_unstable(pmd)) 5213 return 0; 5214 retry: 5215 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5216 for (; addr != end; addr += PAGE_SIZE) { 5217 pte_t ptent = *(pte++); 5218 bool device = false; 5219 swp_entry_t ent; 5220 5221 if (!mc.precharge) 5222 break; 5223 5224 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5225 case MC_TARGET_DEVICE: 5226 device = true; 5227 /* fall through */ 5228 case MC_TARGET_PAGE: 5229 page = target.page; 5230 /* 5231 * We can have a part of the split pmd here. Moving it 5232 * can be done but it would be too convoluted so simply 5233 * ignore such a partial THP and keep it in original 5234 * memcg. There should be somebody mapping the head. 5235 */ 5236 if (PageTransCompound(page)) 5237 goto put; 5238 if (!device && isolate_lru_page(page)) 5239 goto put; 5240 if (!mem_cgroup_move_account(page, false, 5241 mc.from, mc.to)) { 5242 mc.precharge--; 5243 /* we uncharge from mc.from later. */ 5244 mc.moved_charge++; 5245 } 5246 if (!device) 5247 putback_lru_page(page); 5248 put: /* get_mctgt_type() gets the page */ 5249 put_page(page); 5250 break; 5251 case MC_TARGET_SWAP: 5252 ent = target.ent; 5253 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5254 mc.precharge--; 5255 /* we fixup refcnts and charges later. */ 5256 mc.moved_swap++; 5257 } 5258 break; 5259 default: 5260 break; 5261 } 5262 } 5263 pte_unmap_unlock(pte - 1, ptl); 5264 cond_resched(); 5265 5266 if (addr != end) { 5267 /* 5268 * We have consumed all precharges we got in can_attach(). 5269 * We try charge one by one, but don't do any additional 5270 * charges to mc.to if we have failed in charge once in attach() 5271 * phase. 5272 */ 5273 ret = mem_cgroup_do_precharge(1); 5274 if (!ret) 5275 goto retry; 5276 } 5277 5278 return ret; 5279 } 5280 5281 static void mem_cgroup_move_charge(void) 5282 { 5283 struct mm_walk mem_cgroup_move_charge_walk = { 5284 .pmd_entry = mem_cgroup_move_charge_pte_range, 5285 .mm = mc.mm, 5286 }; 5287 5288 lru_add_drain_all(); 5289 /* 5290 * Signal lock_page_memcg() to take the memcg's move_lock 5291 * while we're moving its pages to another memcg. Then wait 5292 * for already started RCU-only updates to finish. 5293 */ 5294 atomic_inc(&mc.from->moving_account); 5295 synchronize_rcu(); 5296 retry: 5297 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5298 /* 5299 * Someone who are holding the mmap_sem might be waiting in 5300 * waitq. So we cancel all extra charges, wake up all waiters, 5301 * and retry. Because we cancel precharges, we might not be able 5302 * to move enough charges, but moving charge is a best-effort 5303 * feature anyway, so it wouldn't be a big problem. 5304 */ 5305 __mem_cgroup_clear_mc(); 5306 cond_resched(); 5307 goto retry; 5308 } 5309 /* 5310 * When we have consumed all precharges and failed in doing 5311 * additional charge, the page walk just aborts. 5312 */ 5313 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5314 5315 up_read(&mc.mm->mmap_sem); 5316 atomic_dec(&mc.from->moving_account); 5317 } 5318 5319 static void mem_cgroup_move_task(void) 5320 { 5321 if (mc.to) { 5322 mem_cgroup_move_charge(); 5323 mem_cgroup_clear_mc(); 5324 } 5325 } 5326 #else /* !CONFIG_MMU */ 5327 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5328 { 5329 return 0; 5330 } 5331 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5332 { 5333 } 5334 static void mem_cgroup_move_task(void) 5335 { 5336 } 5337 #endif 5338 5339 /* 5340 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5341 * to verify whether we're attached to the default hierarchy on each mount 5342 * attempt. 5343 */ 5344 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5345 { 5346 /* 5347 * use_hierarchy is forced on the default hierarchy. cgroup core 5348 * guarantees that @root doesn't have any children, so turning it 5349 * on for the root memcg is enough. 5350 */ 5351 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5352 root_mem_cgroup->use_hierarchy = true; 5353 else 5354 root_mem_cgroup->use_hierarchy = false; 5355 } 5356 5357 static u64 memory_current_read(struct cgroup_subsys_state *css, 5358 struct cftype *cft) 5359 { 5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5361 5362 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5363 } 5364 5365 static int memory_min_show(struct seq_file *m, void *v) 5366 { 5367 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5368 unsigned long min = READ_ONCE(memcg->memory.min); 5369 5370 if (min == PAGE_COUNTER_MAX) 5371 seq_puts(m, "max\n"); 5372 else 5373 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE); 5374 5375 return 0; 5376 } 5377 5378 static ssize_t memory_min_write(struct kernfs_open_file *of, 5379 char *buf, size_t nbytes, loff_t off) 5380 { 5381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5382 unsigned long min; 5383 int err; 5384 5385 buf = strstrip(buf); 5386 err = page_counter_memparse(buf, "max", &min); 5387 if (err) 5388 return err; 5389 5390 page_counter_set_min(&memcg->memory, min); 5391 5392 return nbytes; 5393 } 5394 5395 static int memory_low_show(struct seq_file *m, void *v) 5396 { 5397 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5398 unsigned long low = READ_ONCE(memcg->memory.low); 5399 5400 if (low == PAGE_COUNTER_MAX) 5401 seq_puts(m, "max\n"); 5402 else 5403 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5404 5405 return 0; 5406 } 5407 5408 static ssize_t memory_low_write(struct kernfs_open_file *of, 5409 char *buf, size_t nbytes, loff_t off) 5410 { 5411 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5412 unsigned long low; 5413 int err; 5414 5415 buf = strstrip(buf); 5416 err = page_counter_memparse(buf, "max", &low); 5417 if (err) 5418 return err; 5419 5420 page_counter_set_low(&memcg->memory, low); 5421 5422 return nbytes; 5423 } 5424 5425 static int memory_high_show(struct seq_file *m, void *v) 5426 { 5427 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5428 unsigned long high = READ_ONCE(memcg->high); 5429 5430 if (high == PAGE_COUNTER_MAX) 5431 seq_puts(m, "max\n"); 5432 else 5433 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5434 5435 return 0; 5436 } 5437 5438 static ssize_t memory_high_write(struct kernfs_open_file *of, 5439 char *buf, size_t nbytes, loff_t off) 5440 { 5441 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5442 unsigned long nr_pages; 5443 unsigned long high; 5444 int err; 5445 5446 buf = strstrip(buf); 5447 err = page_counter_memparse(buf, "max", &high); 5448 if (err) 5449 return err; 5450 5451 memcg->high = high; 5452 5453 nr_pages = page_counter_read(&memcg->memory); 5454 if (nr_pages > high) 5455 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5456 GFP_KERNEL, true); 5457 5458 memcg_wb_domain_size_changed(memcg); 5459 return nbytes; 5460 } 5461 5462 static int memory_max_show(struct seq_file *m, void *v) 5463 { 5464 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5465 unsigned long max = READ_ONCE(memcg->memory.max); 5466 5467 if (max == PAGE_COUNTER_MAX) 5468 seq_puts(m, "max\n"); 5469 else 5470 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5471 5472 return 0; 5473 } 5474 5475 static ssize_t memory_max_write(struct kernfs_open_file *of, 5476 char *buf, size_t nbytes, loff_t off) 5477 { 5478 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5479 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5480 bool drained = false; 5481 unsigned long max; 5482 int err; 5483 5484 buf = strstrip(buf); 5485 err = page_counter_memparse(buf, "max", &max); 5486 if (err) 5487 return err; 5488 5489 xchg(&memcg->memory.max, max); 5490 5491 for (;;) { 5492 unsigned long nr_pages = page_counter_read(&memcg->memory); 5493 5494 if (nr_pages <= max) 5495 break; 5496 5497 if (signal_pending(current)) { 5498 err = -EINTR; 5499 break; 5500 } 5501 5502 if (!drained) { 5503 drain_all_stock(memcg); 5504 drained = true; 5505 continue; 5506 } 5507 5508 if (nr_reclaims) { 5509 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5510 GFP_KERNEL, true)) 5511 nr_reclaims--; 5512 continue; 5513 } 5514 5515 memcg_memory_event(memcg, MEMCG_OOM); 5516 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5517 break; 5518 } 5519 5520 memcg_wb_domain_size_changed(memcg); 5521 return nbytes; 5522 } 5523 5524 static int memory_events_show(struct seq_file *m, void *v) 5525 { 5526 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5527 5528 seq_printf(m, "low %lu\n", 5529 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5530 seq_printf(m, "high %lu\n", 5531 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5532 seq_printf(m, "max %lu\n", 5533 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5534 seq_printf(m, "oom %lu\n", 5535 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5536 seq_printf(m, "oom_kill %lu\n", 5537 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5538 5539 return 0; 5540 } 5541 5542 static int memory_stat_show(struct seq_file *m, void *v) 5543 { 5544 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5545 struct accumulated_stats acc; 5546 int i; 5547 5548 /* 5549 * Provide statistics on the state of the memory subsystem as 5550 * well as cumulative event counters that show past behavior. 5551 * 5552 * This list is ordered following a combination of these gradients: 5553 * 1) generic big picture -> specifics and details 5554 * 2) reflecting userspace activity -> reflecting kernel heuristics 5555 * 5556 * Current memory state: 5557 */ 5558 5559 memset(&acc, 0, sizeof(acc)); 5560 acc.stats_size = MEMCG_NR_STAT; 5561 acc.events_size = NR_VM_EVENT_ITEMS; 5562 accumulate_memcg_tree(memcg, &acc); 5563 5564 seq_printf(m, "anon %llu\n", 5565 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE); 5566 seq_printf(m, "file %llu\n", 5567 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE); 5568 seq_printf(m, "kernel_stack %llu\n", 5569 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024); 5570 seq_printf(m, "slab %llu\n", 5571 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] + 5572 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5573 seq_printf(m, "sock %llu\n", 5574 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE); 5575 5576 seq_printf(m, "shmem %llu\n", 5577 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE); 5578 seq_printf(m, "file_mapped %llu\n", 5579 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE); 5580 seq_printf(m, "file_dirty %llu\n", 5581 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE); 5582 seq_printf(m, "file_writeback %llu\n", 5583 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE); 5584 5585 for (i = 0; i < NR_LRU_LISTS; i++) 5586 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], 5587 (u64)acc.lru_pages[i] * PAGE_SIZE); 5588 5589 seq_printf(m, "slab_reclaimable %llu\n", 5590 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5591 seq_printf(m, "slab_unreclaimable %llu\n", 5592 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5593 5594 /* Accumulated memory events */ 5595 5596 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]); 5597 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]); 5598 5599 seq_printf(m, "workingset_refault %lu\n", 5600 acc.stat[WORKINGSET_REFAULT]); 5601 seq_printf(m, "workingset_activate %lu\n", 5602 acc.stat[WORKINGSET_ACTIVATE]); 5603 seq_printf(m, "workingset_nodereclaim %lu\n", 5604 acc.stat[WORKINGSET_NODERECLAIM]); 5605 5606 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]); 5607 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] + 5608 acc.events[PGSCAN_DIRECT]); 5609 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] + 5610 acc.events[PGSTEAL_DIRECT]); 5611 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]); 5612 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]); 5613 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]); 5614 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]); 5615 5616 return 0; 5617 } 5618 5619 static int memory_oom_group_show(struct seq_file *m, void *v) 5620 { 5621 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5622 5623 seq_printf(m, "%d\n", memcg->oom_group); 5624 5625 return 0; 5626 } 5627 5628 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5629 char *buf, size_t nbytes, loff_t off) 5630 { 5631 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5632 int ret, oom_group; 5633 5634 buf = strstrip(buf); 5635 if (!buf) 5636 return -EINVAL; 5637 5638 ret = kstrtoint(buf, 0, &oom_group); 5639 if (ret) 5640 return ret; 5641 5642 if (oom_group != 0 && oom_group != 1) 5643 return -EINVAL; 5644 5645 memcg->oom_group = oom_group; 5646 5647 return nbytes; 5648 } 5649 5650 static struct cftype memory_files[] = { 5651 { 5652 .name = "current", 5653 .flags = CFTYPE_NOT_ON_ROOT, 5654 .read_u64 = memory_current_read, 5655 }, 5656 { 5657 .name = "min", 5658 .flags = CFTYPE_NOT_ON_ROOT, 5659 .seq_show = memory_min_show, 5660 .write = memory_min_write, 5661 }, 5662 { 5663 .name = "low", 5664 .flags = CFTYPE_NOT_ON_ROOT, 5665 .seq_show = memory_low_show, 5666 .write = memory_low_write, 5667 }, 5668 { 5669 .name = "high", 5670 .flags = CFTYPE_NOT_ON_ROOT, 5671 .seq_show = memory_high_show, 5672 .write = memory_high_write, 5673 }, 5674 { 5675 .name = "max", 5676 .flags = CFTYPE_NOT_ON_ROOT, 5677 .seq_show = memory_max_show, 5678 .write = memory_max_write, 5679 }, 5680 { 5681 .name = "events", 5682 .flags = CFTYPE_NOT_ON_ROOT, 5683 .file_offset = offsetof(struct mem_cgroup, events_file), 5684 .seq_show = memory_events_show, 5685 }, 5686 { 5687 .name = "stat", 5688 .flags = CFTYPE_NOT_ON_ROOT, 5689 .seq_show = memory_stat_show, 5690 }, 5691 { 5692 .name = "oom.group", 5693 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5694 .seq_show = memory_oom_group_show, 5695 .write = memory_oom_group_write, 5696 }, 5697 { } /* terminate */ 5698 }; 5699 5700 struct cgroup_subsys memory_cgrp_subsys = { 5701 .css_alloc = mem_cgroup_css_alloc, 5702 .css_online = mem_cgroup_css_online, 5703 .css_offline = mem_cgroup_css_offline, 5704 .css_released = mem_cgroup_css_released, 5705 .css_free = mem_cgroup_css_free, 5706 .css_reset = mem_cgroup_css_reset, 5707 .can_attach = mem_cgroup_can_attach, 5708 .cancel_attach = mem_cgroup_cancel_attach, 5709 .post_attach = mem_cgroup_move_task, 5710 .bind = mem_cgroup_bind, 5711 .dfl_cftypes = memory_files, 5712 .legacy_cftypes = mem_cgroup_legacy_files, 5713 .early_init = 0, 5714 }; 5715 5716 /** 5717 * mem_cgroup_protected - check if memory consumption is in the normal range 5718 * @root: the top ancestor of the sub-tree being checked 5719 * @memcg: the memory cgroup to check 5720 * 5721 * WARNING: This function is not stateless! It can only be used as part 5722 * of a top-down tree iteration, not for isolated queries. 5723 * 5724 * Returns one of the following: 5725 * MEMCG_PROT_NONE: cgroup memory is not protected 5726 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5727 * an unprotected supply of reclaimable memory from other cgroups. 5728 * MEMCG_PROT_MIN: cgroup memory is protected 5729 * 5730 * @root is exclusive; it is never protected when looked at directly 5731 * 5732 * To provide a proper hierarchical behavior, effective memory.min/low values 5733 * are used. Below is the description of how effective memory.low is calculated. 5734 * Effective memory.min values is calculated in the same way. 5735 * 5736 * Effective memory.low is always equal or less than the original memory.low. 5737 * If there is no memory.low overcommittment (which is always true for 5738 * top-level memory cgroups), these two values are equal. 5739 * Otherwise, it's a part of parent's effective memory.low, 5740 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5741 * memory.low usages, where memory.low usage is the size of actually 5742 * protected memory. 5743 * 5744 * low_usage 5745 * elow = min( memory.low, parent->elow * ------------------ ), 5746 * siblings_low_usage 5747 * 5748 * | memory.current, if memory.current < memory.low 5749 * low_usage = | 5750 | 0, otherwise. 5751 * 5752 * 5753 * Such definition of the effective memory.low provides the expected 5754 * hierarchical behavior: parent's memory.low value is limiting 5755 * children, unprotected memory is reclaimed first and cgroups, 5756 * which are not using their guarantee do not affect actual memory 5757 * distribution. 5758 * 5759 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5760 * 5761 * A A/memory.low = 2G, A/memory.current = 6G 5762 * //\\ 5763 * BC DE B/memory.low = 3G B/memory.current = 2G 5764 * C/memory.low = 1G C/memory.current = 2G 5765 * D/memory.low = 0 D/memory.current = 2G 5766 * E/memory.low = 10G E/memory.current = 0 5767 * 5768 * and the memory pressure is applied, the following memory distribution 5769 * is expected (approximately): 5770 * 5771 * A/memory.current = 2G 5772 * 5773 * B/memory.current = 1.3G 5774 * C/memory.current = 0.6G 5775 * D/memory.current = 0 5776 * E/memory.current = 0 5777 * 5778 * These calculations require constant tracking of the actual low usages 5779 * (see propagate_protected_usage()), as well as recursive calculation of 5780 * effective memory.low values. But as we do call mem_cgroup_protected() 5781 * path for each memory cgroup top-down from the reclaim, 5782 * it's possible to optimize this part, and save calculated elow 5783 * for next usage. This part is intentionally racy, but it's ok, 5784 * as memory.low is a best-effort mechanism. 5785 */ 5786 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5787 struct mem_cgroup *memcg) 5788 { 5789 struct mem_cgroup *parent; 5790 unsigned long emin, parent_emin; 5791 unsigned long elow, parent_elow; 5792 unsigned long usage; 5793 5794 if (mem_cgroup_disabled()) 5795 return MEMCG_PROT_NONE; 5796 5797 if (!root) 5798 root = root_mem_cgroup; 5799 if (memcg == root) 5800 return MEMCG_PROT_NONE; 5801 5802 usage = page_counter_read(&memcg->memory); 5803 if (!usage) 5804 return MEMCG_PROT_NONE; 5805 5806 emin = memcg->memory.min; 5807 elow = memcg->memory.low; 5808 5809 parent = parent_mem_cgroup(memcg); 5810 /* No parent means a non-hierarchical mode on v1 memcg */ 5811 if (!parent) 5812 return MEMCG_PROT_NONE; 5813 5814 if (parent == root) 5815 goto exit; 5816 5817 parent_emin = READ_ONCE(parent->memory.emin); 5818 emin = min(emin, parent_emin); 5819 if (emin && parent_emin) { 5820 unsigned long min_usage, siblings_min_usage; 5821 5822 min_usage = min(usage, memcg->memory.min); 5823 siblings_min_usage = atomic_long_read( 5824 &parent->memory.children_min_usage); 5825 5826 if (min_usage && siblings_min_usage) 5827 emin = min(emin, parent_emin * min_usage / 5828 siblings_min_usage); 5829 } 5830 5831 parent_elow = READ_ONCE(parent->memory.elow); 5832 elow = min(elow, parent_elow); 5833 if (elow && parent_elow) { 5834 unsigned long low_usage, siblings_low_usage; 5835 5836 low_usage = min(usage, memcg->memory.low); 5837 siblings_low_usage = atomic_long_read( 5838 &parent->memory.children_low_usage); 5839 5840 if (low_usage && siblings_low_usage) 5841 elow = min(elow, parent_elow * low_usage / 5842 siblings_low_usage); 5843 } 5844 5845 exit: 5846 memcg->memory.emin = emin; 5847 memcg->memory.elow = elow; 5848 5849 if (usage <= emin) 5850 return MEMCG_PROT_MIN; 5851 else if (usage <= elow) 5852 return MEMCG_PROT_LOW; 5853 else 5854 return MEMCG_PROT_NONE; 5855 } 5856 5857 /** 5858 * mem_cgroup_try_charge - try charging a page 5859 * @page: page to charge 5860 * @mm: mm context of the victim 5861 * @gfp_mask: reclaim mode 5862 * @memcgp: charged memcg return 5863 * @compound: charge the page as compound or small page 5864 * 5865 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5866 * pages according to @gfp_mask if necessary. 5867 * 5868 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5869 * Otherwise, an error code is returned. 5870 * 5871 * After page->mapping has been set up, the caller must finalize the 5872 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5873 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5874 */ 5875 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5876 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5877 bool compound) 5878 { 5879 struct mem_cgroup *memcg = NULL; 5880 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5881 int ret = 0; 5882 5883 if (mem_cgroup_disabled()) 5884 goto out; 5885 5886 if (PageSwapCache(page)) { 5887 /* 5888 * Every swap fault against a single page tries to charge the 5889 * page, bail as early as possible. shmem_unuse() encounters 5890 * already charged pages, too. The USED bit is protected by 5891 * the page lock, which serializes swap cache removal, which 5892 * in turn serializes uncharging. 5893 */ 5894 VM_BUG_ON_PAGE(!PageLocked(page), page); 5895 if (compound_head(page)->mem_cgroup) 5896 goto out; 5897 5898 if (do_swap_account) { 5899 swp_entry_t ent = { .val = page_private(page), }; 5900 unsigned short id = lookup_swap_cgroup_id(ent); 5901 5902 rcu_read_lock(); 5903 memcg = mem_cgroup_from_id(id); 5904 if (memcg && !css_tryget_online(&memcg->css)) 5905 memcg = NULL; 5906 rcu_read_unlock(); 5907 } 5908 } 5909 5910 if (!memcg) 5911 memcg = get_mem_cgroup_from_mm(mm); 5912 5913 ret = try_charge(memcg, gfp_mask, nr_pages); 5914 5915 css_put(&memcg->css); 5916 out: 5917 *memcgp = memcg; 5918 return ret; 5919 } 5920 5921 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 5922 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5923 bool compound) 5924 { 5925 struct mem_cgroup *memcg; 5926 int ret; 5927 5928 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 5929 memcg = *memcgp; 5930 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 5931 return ret; 5932 } 5933 5934 /** 5935 * mem_cgroup_commit_charge - commit a page charge 5936 * @page: page to charge 5937 * @memcg: memcg to charge the page to 5938 * @lrucare: page might be on LRU already 5939 * @compound: charge the page as compound or small page 5940 * 5941 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5942 * after page->mapping has been set up. This must happen atomically 5943 * as part of the page instantiation, i.e. under the page table lock 5944 * for anonymous pages, under the page lock for page and swap cache. 5945 * 5946 * In addition, the page must not be on the LRU during the commit, to 5947 * prevent racing with task migration. If it might be, use @lrucare. 5948 * 5949 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5950 */ 5951 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5952 bool lrucare, bool compound) 5953 { 5954 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5955 5956 VM_BUG_ON_PAGE(!page->mapping, page); 5957 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5958 5959 if (mem_cgroup_disabled()) 5960 return; 5961 /* 5962 * Swap faults will attempt to charge the same page multiple 5963 * times. But reuse_swap_page() might have removed the page 5964 * from swapcache already, so we can't check PageSwapCache(). 5965 */ 5966 if (!memcg) 5967 return; 5968 5969 commit_charge(page, memcg, lrucare); 5970 5971 local_irq_disable(); 5972 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5973 memcg_check_events(memcg, page); 5974 local_irq_enable(); 5975 5976 if (do_memsw_account() && PageSwapCache(page)) { 5977 swp_entry_t entry = { .val = page_private(page) }; 5978 /* 5979 * The swap entry might not get freed for a long time, 5980 * let's not wait for it. The page already received a 5981 * memory+swap charge, drop the swap entry duplicate. 5982 */ 5983 mem_cgroup_uncharge_swap(entry, nr_pages); 5984 } 5985 } 5986 5987 /** 5988 * mem_cgroup_cancel_charge - cancel a page charge 5989 * @page: page to charge 5990 * @memcg: memcg to charge the page to 5991 * @compound: charge the page as compound or small page 5992 * 5993 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5994 */ 5995 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5996 bool compound) 5997 { 5998 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5999 6000 if (mem_cgroup_disabled()) 6001 return; 6002 /* 6003 * Swap faults will attempt to charge the same page multiple 6004 * times. But reuse_swap_page() might have removed the page 6005 * from swapcache already, so we can't check PageSwapCache(). 6006 */ 6007 if (!memcg) 6008 return; 6009 6010 cancel_charge(memcg, nr_pages); 6011 } 6012 6013 struct uncharge_gather { 6014 struct mem_cgroup *memcg; 6015 unsigned long pgpgout; 6016 unsigned long nr_anon; 6017 unsigned long nr_file; 6018 unsigned long nr_kmem; 6019 unsigned long nr_huge; 6020 unsigned long nr_shmem; 6021 struct page *dummy_page; 6022 }; 6023 6024 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6025 { 6026 memset(ug, 0, sizeof(*ug)); 6027 } 6028 6029 static void uncharge_batch(const struct uncharge_gather *ug) 6030 { 6031 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6032 unsigned long flags; 6033 6034 if (!mem_cgroup_is_root(ug->memcg)) { 6035 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6036 if (do_memsw_account()) 6037 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6038 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6039 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6040 memcg_oom_recover(ug->memcg); 6041 } 6042 6043 local_irq_save(flags); 6044 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6045 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6046 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6047 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6048 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6049 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 6050 memcg_check_events(ug->memcg, ug->dummy_page); 6051 local_irq_restore(flags); 6052 6053 if (!mem_cgroup_is_root(ug->memcg)) 6054 css_put_many(&ug->memcg->css, nr_pages); 6055 } 6056 6057 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6058 { 6059 VM_BUG_ON_PAGE(PageLRU(page), page); 6060 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6061 !PageHWPoison(page) , page); 6062 6063 if (!page->mem_cgroup) 6064 return; 6065 6066 /* 6067 * Nobody should be changing or seriously looking at 6068 * page->mem_cgroup at this point, we have fully 6069 * exclusive access to the page. 6070 */ 6071 6072 if (ug->memcg != page->mem_cgroup) { 6073 if (ug->memcg) { 6074 uncharge_batch(ug); 6075 uncharge_gather_clear(ug); 6076 } 6077 ug->memcg = page->mem_cgroup; 6078 } 6079 6080 if (!PageKmemcg(page)) { 6081 unsigned int nr_pages = 1; 6082 6083 if (PageTransHuge(page)) { 6084 nr_pages <<= compound_order(page); 6085 ug->nr_huge += nr_pages; 6086 } 6087 if (PageAnon(page)) 6088 ug->nr_anon += nr_pages; 6089 else { 6090 ug->nr_file += nr_pages; 6091 if (PageSwapBacked(page)) 6092 ug->nr_shmem += nr_pages; 6093 } 6094 ug->pgpgout++; 6095 } else { 6096 ug->nr_kmem += 1 << compound_order(page); 6097 __ClearPageKmemcg(page); 6098 } 6099 6100 ug->dummy_page = page; 6101 page->mem_cgroup = NULL; 6102 } 6103 6104 static void uncharge_list(struct list_head *page_list) 6105 { 6106 struct uncharge_gather ug; 6107 struct list_head *next; 6108 6109 uncharge_gather_clear(&ug); 6110 6111 /* 6112 * Note that the list can be a single page->lru; hence the 6113 * do-while loop instead of a simple list_for_each_entry(). 6114 */ 6115 next = page_list->next; 6116 do { 6117 struct page *page; 6118 6119 page = list_entry(next, struct page, lru); 6120 next = page->lru.next; 6121 6122 uncharge_page(page, &ug); 6123 } while (next != page_list); 6124 6125 if (ug.memcg) 6126 uncharge_batch(&ug); 6127 } 6128 6129 /** 6130 * mem_cgroup_uncharge - uncharge a page 6131 * @page: page to uncharge 6132 * 6133 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6134 * mem_cgroup_commit_charge(). 6135 */ 6136 void mem_cgroup_uncharge(struct page *page) 6137 { 6138 struct uncharge_gather ug; 6139 6140 if (mem_cgroup_disabled()) 6141 return; 6142 6143 /* Don't touch page->lru of any random page, pre-check: */ 6144 if (!page->mem_cgroup) 6145 return; 6146 6147 uncharge_gather_clear(&ug); 6148 uncharge_page(page, &ug); 6149 uncharge_batch(&ug); 6150 } 6151 6152 /** 6153 * mem_cgroup_uncharge_list - uncharge a list of page 6154 * @page_list: list of pages to uncharge 6155 * 6156 * Uncharge a list of pages previously charged with 6157 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6158 */ 6159 void mem_cgroup_uncharge_list(struct list_head *page_list) 6160 { 6161 if (mem_cgroup_disabled()) 6162 return; 6163 6164 if (!list_empty(page_list)) 6165 uncharge_list(page_list); 6166 } 6167 6168 /** 6169 * mem_cgroup_migrate - charge a page's replacement 6170 * @oldpage: currently circulating page 6171 * @newpage: replacement page 6172 * 6173 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6174 * be uncharged upon free. 6175 * 6176 * Both pages must be locked, @newpage->mapping must be set up. 6177 */ 6178 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6179 { 6180 struct mem_cgroup *memcg; 6181 unsigned int nr_pages; 6182 bool compound; 6183 unsigned long flags; 6184 6185 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6186 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6187 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6188 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6189 newpage); 6190 6191 if (mem_cgroup_disabled()) 6192 return; 6193 6194 /* Page cache replacement: new page already charged? */ 6195 if (newpage->mem_cgroup) 6196 return; 6197 6198 /* Swapcache readahead pages can get replaced before being charged */ 6199 memcg = oldpage->mem_cgroup; 6200 if (!memcg) 6201 return; 6202 6203 /* Force-charge the new page. The old one will be freed soon */ 6204 compound = PageTransHuge(newpage); 6205 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6206 6207 page_counter_charge(&memcg->memory, nr_pages); 6208 if (do_memsw_account()) 6209 page_counter_charge(&memcg->memsw, nr_pages); 6210 css_get_many(&memcg->css, nr_pages); 6211 6212 commit_charge(newpage, memcg, false); 6213 6214 local_irq_save(flags); 6215 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6216 memcg_check_events(memcg, newpage); 6217 local_irq_restore(flags); 6218 } 6219 6220 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6221 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6222 6223 void mem_cgroup_sk_alloc(struct sock *sk) 6224 { 6225 struct mem_cgroup *memcg; 6226 6227 if (!mem_cgroup_sockets_enabled) 6228 return; 6229 6230 /* 6231 * Socket cloning can throw us here with sk_memcg already 6232 * filled. It won't however, necessarily happen from 6233 * process context. So the test for root memcg given 6234 * the current task's memcg won't help us in this case. 6235 * 6236 * Respecting the original socket's memcg is a better 6237 * decision in this case. 6238 */ 6239 if (sk->sk_memcg) { 6240 css_get(&sk->sk_memcg->css); 6241 return; 6242 } 6243 6244 rcu_read_lock(); 6245 memcg = mem_cgroup_from_task(current); 6246 if (memcg == root_mem_cgroup) 6247 goto out; 6248 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6249 goto out; 6250 if (css_tryget_online(&memcg->css)) 6251 sk->sk_memcg = memcg; 6252 out: 6253 rcu_read_unlock(); 6254 } 6255 6256 void mem_cgroup_sk_free(struct sock *sk) 6257 { 6258 if (sk->sk_memcg) 6259 css_put(&sk->sk_memcg->css); 6260 } 6261 6262 /** 6263 * mem_cgroup_charge_skmem - charge socket memory 6264 * @memcg: memcg to charge 6265 * @nr_pages: number of pages to charge 6266 * 6267 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6268 * @memcg's configured limit, %false if the charge had to be forced. 6269 */ 6270 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6271 { 6272 gfp_t gfp_mask = GFP_KERNEL; 6273 6274 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6275 struct page_counter *fail; 6276 6277 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6278 memcg->tcpmem_pressure = 0; 6279 return true; 6280 } 6281 page_counter_charge(&memcg->tcpmem, nr_pages); 6282 memcg->tcpmem_pressure = 1; 6283 return false; 6284 } 6285 6286 /* Don't block in the packet receive path */ 6287 if (in_softirq()) 6288 gfp_mask = GFP_NOWAIT; 6289 6290 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6291 6292 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6293 return true; 6294 6295 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6296 return false; 6297 } 6298 6299 /** 6300 * mem_cgroup_uncharge_skmem - uncharge socket memory 6301 * @memcg: memcg to uncharge 6302 * @nr_pages: number of pages to uncharge 6303 */ 6304 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6305 { 6306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6307 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6308 return; 6309 } 6310 6311 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6312 6313 refill_stock(memcg, nr_pages); 6314 } 6315 6316 static int __init cgroup_memory(char *s) 6317 { 6318 char *token; 6319 6320 while ((token = strsep(&s, ",")) != NULL) { 6321 if (!*token) 6322 continue; 6323 if (!strcmp(token, "nosocket")) 6324 cgroup_memory_nosocket = true; 6325 if (!strcmp(token, "nokmem")) 6326 cgroup_memory_nokmem = true; 6327 } 6328 return 0; 6329 } 6330 __setup("cgroup.memory=", cgroup_memory); 6331 6332 /* 6333 * subsys_initcall() for memory controller. 6334 * 6335 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6336 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6337 * basically everything that doesn't depend on a specific mem_cgroup structure 6338 * should be initialized from here. 6339 */ 6340 static int __init mem_cgroup_init(void) 6341 { 6342 int cpu, node; 6343 6344 #ifdef CONFIG_MEMCG_KMEM 6345 /* 6346 * Kmem cache creation is mostly done with the slab_mutex held, 6347 * so use a workqueue with limited concurrency to avoid stalling 6348 * all worker threads in case lots of cgroups are created and 6349 * destroyed simultaneously. 6350 */ 6351 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6352 BUG_ON(!memcg_kmem_cache_wq); 6353 #endif 6354 6355 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6356 memcg_hotplug_cpu_dead); 6357 6358 for_each_possible_cpu(cpu) 6359 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6360 drain_local_stock); 6361 6362 for_each_node(node) { 6363 struct mem_cgroup_tree_per_node *rtpn; 6364 6365 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6366 node_online(node) ? node : NUMA_NO_NODE); 6367 6368 rtpn->rb_root = RB_ROOT; 6369 rtpn->rb_rightmost = NULL; 6370 spin_lock_init(&rtpn->lock); 6371 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6372 } 6373 6374 return 0; 6375 } 6376 subsys_initcall(mem_cgroup_init); 6377 6378 #ifdef CONFIG_MEMCG_SWAP 6379 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6380 { 6381 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6382 /* 6383 * The root cgroup cannot be destroyed, so it's refcount must 6384 * always be >= 1. 6385 */ 6386 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6387 VM_BUG_ON(1); 6388 break; 6389 } 6390 memcg = parent_mem_cgroup(memcg); 6391 if (!memcg) 6392 memcg = root_mem_cgroup; 6393 } 6394 return memcg; 6395 } 6396 6397 /** 6398 * mem_cgroup_swapout - transfer a memsw charge to swap 6399 * @page: page whose memsw charge to transfer 6400 * @entry: swap entry to move the charge to 6401 * 6402 * Transfer the memsw charge of @page to @entry. 6403 */ 6404 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6405 { 6406 struct mem_cgroup *memcg, *swap_memcg; 6407 unsigned int nr_entries; 6408 unsigned short oldid; 6409 6410 VM_BUG_ON_PAGE(PageLRU(page), page); 6411 VM_BUG_ON_PAGE(page_count(page), page); 6412 6413 if (!do_memsw_account()) 6414 return; 6415 6416 memcg = page->mem_cgroup; 6417 6418 /* Readahead page, never charged */ 6419 if (!memcg) 6420 return; 6421 6422 /* 6423 * In case the memcg owning these pages has been offlined and doesn't 6424 * have an ID allocated to it anymore, charge the closest online 6425 * ancestor for the swap instead and transfer the memory+swap charge. 6426 */ 6427 swap_memcg = mem_cgroup_id_get_online(memcg); 6428 nr_entries = hpage_nr_pages(page); 6429 /* Get references for the tail pages, too */ 6430 if (nr_entries > 1) 6431 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6432 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6433 nr_entries); 6434 VM_BUG_ON_PAGE(oldid, page); 6435 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6436 6437 page->mem_cgroup = NULL; 6438 6439 if (!mem_cgroup_is_root(memcg)) 6440 page_counter_uncharge(&memcg->memory, nr_entries); 6441 6442 if (memcg != swap_memcg) { 6443 if (!mem_cgroup_is_root(swap_memcg)) 6444 page_counter_charge(&swap_memcg->memsw, nr_entries); 6445 page_counter_uncharge(&memcg->memsw, nr_entries); 6446 } 6447 6448 /* 6449 * Interrupts should be disabled here because the caller holds the 6450 * i_pages lock which is taken with interrupts-off. It is 6451 * important here to have the interrupts disabled because it is the 6452 * only synchronisation we have for updating the per-CPU variables. 6453 */ 6454 VM_BUG_ON(!irqs_disabled()); 6455 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6456 -nr_entries); 6457 memcg_check_events(memcg, page); 6458 6459 if (!mem_cgroup_is_root(memcg)) 6460 css_put_many(&memcg->css, nr_entries); 6461 } 6462 6463 /** 6464 * mem_cgroup_try_charge_swap - try charging swap space for a page 6465 * @page: page being added to swap 6466 * @entry: swap entry to charge 6467 * 6468 * Try to charge @page's memcg for the swap space at @entry. 6469 * 6470 * Returns 0 on success, -ENOMEM on failure. 6471 */ 6472 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6473 { 6474 unsigned int nr_pages = hpage_nr_pages(page); 6475 struct page_counter *counter; 6476 struct mem_cgroup *memcg; 6477 unsigned short oldid; 6478 6479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6480 return 0; 6481 6482 memcg = page->mem_cgroup; 6483 6484 /* Readahead page, never charged */ 6485 if (!memcg) 6486 return 0; 6487 6488 if (!entry.val) { 6489 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6490 return 0; 6491 } 6492 6493 memcg = mem_cgroup_id_get_online(memcg); 6494 6495 if (!mem_cgroup_is_root(memcg) && 6496 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6497 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6498 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6499 mem_cgroup_id_put(memcg); 6500 return -ENOMEM; 6501 } 6502 6503 /* Get references for the tail pages, too */ 6504 if (nr_pages > 1) 6505 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6506 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6507 VM_BUG_ON_PAGE(oldid, page); 6508 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6509 6510 return 0; 6511 } 6512 6513 /** 6514 * mem_cgroup_uncharge_swap - uncharge swap space 6515 * @entry: swap entry to uncharge 6516 * @nr_pages: the amount of swap space to uncharge 6517 */ 6518 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6519 { 6520 struct mem_cgroup *memcg; 6521 unsigned short id; 6522 6523 if (!do_swap_account) 6524 return; 6525 6526 id = swap_cgroup_record(entry, 0, nr_pages); 6527 rcu_read_lock(); 6528 memcg = mem_cgroup_from_id(id); 6529 if (memcg) { 6530 if (!mem_cgroup_is_root(memcg)) { 6531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6532 page_counter_uncharge(&memcg->swap, nr_pages); 6533 else 6534 page_counter_uncharge(&memcg->memsw, nr_pages); 6535 } 6536 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6537 mem_cgroup_id_put_many(memcg, nr_pages); 6538 } 6539 rcu_read_unlock(); 6540 } 6541 6542 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6543 { 6544 long nr_swap_pages = get_nr_swap_pages(); 6545 6546 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6547 return nr_swap_pages; 6548 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6549 nr_swap_pages = min_t(long, nr_swap_pages, 6550 READ_ONCE(memcg->swap.max) - 6551 page_counter_read(&memcg->swap)); 6552 return nr_swap_pages; 6553 } 6554 6555 bool mem_cgroup_swap_full(struct page *page) 6556 { 6557 struct mem_cgroup *memcg; 6558 6559 VM_BUG_ON_PAGE(!PageLocked(page), page); 6560 6561 if (vm_swap_full()) 6562 return true; 6563 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6564 return false; 6565 6566 memcg = page->mem_cgroup; 6567 if (!memcg) 6568 return false; 6569 6570 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6571 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6572 return true; 6573 6574 return false; 6575 } 6576 6577 /* for remember boot option*/ 6578 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6579 static int really_do_swap_account __initdata = 1; 6580 #else 6581 static int really_do_swap_account __initdata; 6582 #endif 6583 6584 static int __init enable_swap_account(char *s) 6585 { 6586 if (!strcmp(s, "1")) 6587 really_do_swap_account = 1; 6588 else if (!strcmp(s, "0")) 6589 really_do_swap_account = 0; 6590 return 1; 6591 } 6592 __setup("swapaccount=", enable_swap_account); 6593 6594 static u64 swap_current_read(struct cgroup_subsys_state *css, 6595 struct cftype *cft) 6596 { 6597 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6598 6599 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6600 } 6601 6602 static int swap_max_show(struct seq_file *m, void *v) 6603 { 6604 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6605 unsigned long max = READ_ONCE(memcg->swap.max); 6606 6607 if (max == PAGE_COUNTER_MAX) 6608 seq_puts(m, "max\n"); 6609 else 6610 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6611 6612 return 0; 6613 } 6614 6615 static ssize_t swap_max_write(struct kernfs_open_file *of, 6616 char *buf, size_t nbytes, loff_t off) 6617 { 6618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6619 unsigned long max; 6620 int err; 6621 6622 buf = strstrip(buf); 6623 err = page_counter_memparse(buf, "max", &max); 6624 if (err) 6625 return err; 6626 6627 xchg(&memcg->swap.max, max); 6628 6629 return nbytes; 6630 } 6631 6632 static int swap_events_show(struct seq_file *m, void *v) 6633 { 6634 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6635 6636 seq_printf(m, "max %lu\n", 6637 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6638 seq_printf(m, "fail %lu\n", 6639 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6640 6641 return 0; 6642 } 6643 6644 static struct cftype swap_files[] = { 6645 { 6646 .name = "swap.current", 6647 .flags = CFTYPE_NOT_ON_ROOT, 6648 .read_u64 = swap_current_read, 6649 }, 6650 { 6651 .name = "swap.max", 6652 .flags = CFTYPE_NOT_ON_ROOT, 6653 .seq_show = swap_max_show, 6654 .write = swap_max_write, 6655 }, 6656 { 6657 .name = "swap.events", 6658 .flags = CFTYPE_NOT_ON_ROOT, 6659 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6660 .seq_show = swap_events_show, 6661 }, 6662 { } /* terminate */ 6663 }; 6664 6665 static struct cftype memsw_cgroup_files[] = { 6666 { 6667 .name = "memsw.usage_in_bytes", 6668 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6669 .read_u64 = mem_cgroup_read_u64, 6670 }, 6671 { 6672 .name = "memsw.max_usage_in_bytes", 6673 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6674 .write = mem_cgroup_reset, 6675 .read_u64 = mem_cgroup_read_u64, 6676 }, 6677 { 6678 .name = "memsw.limit_in_bytes", 6679 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6680 .write = mem_cgroup_write, 6681 .read_u64 = mem_cgroup_read_u64, 6682 }, 6683 { 6684 .name = "memsw.failcnt", 6685 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6686 .write = mem_cgroup_reset, 6687 .read_u64 = mem_cgroup_read_u64, 6688 }, 6689 { }, /* terminate */ 6690 }; 6691 6692 static int __init mem_cgroup_swap_init(void) 6693 { 6694 if (!mem_cgroup_disabled() && really_do_swap_account) { 6695 do_swap_account = 1; 6696 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6697 swap_files)); 6698 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6699 memsw_cgroup_files)); 6700 } 6701 return 0; 6702 } 6703 subsys_initcall(mem_cgroup_swap_init); 6704 6705 #endif /* CONFIG_MEMCG_SWAP */ 6706