xref: /linux/mm/memcontrol.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85 
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90 	/*
91 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 	 */
93 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 	/* incremented at every  pagein/pageout */
101 	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 
104 	MEM_CGROUP_STAT_NSTATS,
105 };
106 
107 struct mem_cgroup_stat_cpu {
108 	s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110 
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115 	/*
116 	 * spin_lock to protect the per cgroup LRU
117 	 */
118 	struct list_head	lists[NR_LRU_LISTS];
119 	unsigned long		count[NR_LRU_LISTS];
120 
121 	struct zone_reclaim_stat reclaim_stat;
122 	struct rb_node		tree_node;	/* RB tree node */
123 	unsigned long long	usage_in_excess;/* Set to the value by which */
124 						/* the soft limit is exceeded*/
125 	bool			on_tree;
126 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127 						/* use container_of	   */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131 
132 struct mem_cgroup_per_node {
133 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135 
136 struct mem_cgroup_lru_info {
137 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139 
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144 
145 struct mem_cgroup_tree_per_zone {
146 	struct rb_root rb_root;
147 	spinlock_t lock;
148 };
149 
150 struct mem_cgroup_tree_per_node {
151 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_tree {
155 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157 
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159 
160 struct mem_cgroup_threshold {
161 	struct eventfd_ctx *eventfd;
162 	u64 threshold;
163 };
164 
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 	/* An array index points to threshold just below usage. */
168 	int current_threshold;
169 	/* Size of entries[] */
170 	unsigned int size;
171 	/* Array of thresholds */
172 	struct mem_cgroup_threshold entries[0];
173 };
174 
175 struct mem_cgroup_thresholds {
176 	/* Primary thresholds array */
177 	struct mem_cgroup_threshold_ary *primary;
178 	/*
179 	 * Spare threshold array.
180 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 	 * It must be able to store at least primary->size - 1 entries.
182 	 */
183 	struct mem_cgroup_threshold_ary *spare;
184 };
185 
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 	struct list_head list;
189 	struct eventfd_ctx *eventfd;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194 
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 	/*
209 	 * the counter to account for memory usage
210 	 */
211 	struct res_counter res;
212 	/*
213 	 * the counter to account for mem+swap usage.
214 	 */
215 	struct res_counter memsw;
216 	/*
217 	 * Per cgroup active and inactive list, similar to the
218 	 * per zone LRU lists.
219 	 */
220 	struct mem_cgroup_lru_info info;
221 
222 	/*
223 	  protect against reclaim related member.
224 	*/
225 	spinlock_t reclaim_param_lock;
226 
227 	/*
228 	 * While reclaiming in a hierarchy, we cache the last child we
229 	 * reclaimed from.
230 	 */
231 	int last_scanned_child;
232 	/*
233 	 * Should the accounting and control be hierarchical, per subtree?
234 	 */
235 	bool use_hierarchy;
236 	atomic_t	oom_lock;
237 	atomic_t	refcnt;
238 
239 	unsigned int	swappiness;
240 	/* OOM-Killer disable */
241 	int		oom_kill_disable;
242 
243 	/* set when res.limit == memsw.limit */
244 	bool		memsw_is_minimum;
245 
246 	/* protect arrays of thresholds */
247 	struct mutex thresholds_lock;
248 
249 	/* thresholds for memory usage. RCU-protected */
250 	struct mem_cgroup_thresholds thresholds;
251 
252 	/* thresholds for mem+swap usage. RCU-protected */
253 	struct mem_cgroup_thresholds memsw_thresholds;
254 
255 	/* For oom notifier event fd */
256 	struct list_head oom_notify;
257 
258 	/*
259 	 * Should we move charges of a task when a task is moved into this
260 	 * mem_cgroup ? And what type of charges should we move ?
261 	 */
262 	unsigned long 	move_charge_at_immigrate;
263 	/*
264 	 * percpu counter.
265 	 */
266 	struct mem_cgroup_stat_cpu *stat;
267 	/*
268 	 * used when a cpu is offlined or other synchronizations
269 	 * See mem_cgroup_read_stat().
270 	 */
271 	struct mem_cgroup_stat_cpu nocpu_base;
272 	spinlock_t pcp_counter_lock;
273 };
274 
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 	NR_MOVE_TYPE,
284 };
285 
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 	spinlock_t	  lock; /* for from, to */
289 	struct mem_cgroup *from;
290 	struct mem_cgroup *to;
291 	unsigned long precharge;
292 	unsigned long moved_charge;
293 	unsigned long moved_swap;
294 	struct task_struct *moving_task;	/* a task moving charges */
295 	wait_queue_head_t waitq;		/* a waitq for other context */
296 } mc = {
297 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300 
301 static bool move_anon(void)
302 {
303 	return test_bit(MOVE_CHARGE_TYPE_ANON,
304 					&mc.to->move_charge_at_immigrate);
305 }
306 
307 static bool move_file(void)
308 {
309 	return test_bit(MOVE_CHARGE_TYPE_FILE,
310 					&mc.to->move_charge_at_immigrate);
311 }
312 
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319 
320 enum charge_type {
321 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 	NR_CHARGE_TYPE,
328 };
329 
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE	(1UL << PCG_CACHE)
332 #define PCGF_USED	(1UL << PCG_USED)
333 #define PCGF_LOCK	(1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT	(1UL << PCG_ACCT)
336 
337 /* for encoding cft->private value on file */
338 #define _MEM			(0)
339 #define _MEMSWAP		(1)
340 #define _OOM_TYPE		(2)
341 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)	((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL		(0)
346 
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
355 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356 
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361 
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367 
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 	return &mem->css;
371 }
372 
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 	struct mem_cgroup *mem = pc->mem_cgroup;
377 	int nid = page_cgroup_nid(pc);
378 	int zid = page_cgroup_zid(pc);
379 
380 	if (!mem)
381 		return NULL;
382 
383 	return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385 
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391 
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 	int nid = page_to_nid(page);
396 	int zid = page_zonenum(page);
397 
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 				struct mem_cgroup_per_zone *mz,
404 				struct mem_cgroup_tree_per_zone *mctz,
405 				unsigned long long new_usage_in_excess)
406 {
407 	struct rb_node **p = &mctz->rb_root.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct mem_cgroup_per_zone *mz_node;
410 
411 	if (mz->on_tree)
412 		return;
413 
414 	mz->usage_in_excess = new_usage_in_excess;
415 	if (!mz->usage_in_excess)
416 		return;
417 	while (*p) {
418 		parent = *p;
419 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 					tree_node);
421 		if (mz->usage_in_excess < mz_node->usage_in_excess)
422 			p = &(*p)->rb_left;
423 		/*
424 		 * We can't avoid mem cgroups that are over their soft
425 		 * limit by the same amount
426 		 */
427 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 			p = &(*p)->rb_right;
429 	}
430 	rb_link_node(&mz->tree_node, parent, p);
431 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 	mz->on_tree = true;
433 }
434 
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 				struct mem_cgroup_per_zone *mz,
438 				struct mem_cgroup_tree_per_zone *mctz)
439 {
440 	if (!mz->on_tree)
441 		return;
442 	rb_erase(&mz->tree_node, &mctz->rb_root);
443 	mz->on_tree = false;
444 }
445 
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 				struct mem_cgroup_per_zone *mz,
449 				struct mem_cgroup_tree_per_zone *mctz)
450 {
451 	spin_lock(&mctz->lock);
452 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 	spin_unlock(&mctz->lock);
454 }
455 
456 
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 	unsigned long long excess;
460 	struct mem_cgroup_per_zone *mz;
461 	struct mem_cgroup_tree_per_zone *mctz;
462 	int nid = page_to_nid(page);
463 	int zid = page_zonenum(page);
464 	mctz = soft_limit_tree_from_page(page);
465 
466 	/*
467 	 * Necessary to update all ancestors when hierarchy is used.
468 	 * because their event counter is not touched.
469 	 */
470 	for (; mem; mem = parent_mem_cgroup(mem)) {
471 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 		excess = res_counter_soft_limit_excess(&mem->res);
473 		/*
474 		 * We have to update the tree if mz is on RB-tree or
475 		 * mem is over its softlimit.
476 		 */
477 		if (excess || mz->on_tree) {
478 			spin_lock(&mctz->lock);
479 			/* if on-tree, remove it */
480 			if (mz->on_tree)
481 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
482 			/*
483 			 * Insert again. mz->usage_in_excess will be updated.
484 			 * If excess is 0, no tree ops.
485 			 */
486 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 			spin_unlock(&mctz->lock);
488 		}
489 	}
490 }
491 
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 	int node, zone;
495 	struct mem_cgroup_per_zone *mz;
496 	struct mem_cgroup_tree_per_zone *mctz;
497 
498 	for_each_node_state(node, N_POSSIBLE) {
499 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 			mz = mem_cgroup_zoneinfo(mem, node, zone);
501 			mctz = soft_limit_tree_node_zone(node, zone);
502 			mem_cgroup_remove_exceeded(mem, mz, mctz);
503 		}
504 	}
505 }
506 
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511 
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 	struct rb_node *rightmost = NULL;
516 	struct mem_cgroup_per_zone *mz;
517 
518 retry:
519 	mz = NULL;
520 	rightmost = rb_last(&mctz->rb_root);
521 	if (!rightmost)
522 		goto done;		/* Nothing to reclaim from */
523 
524 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 	/*
526 	 * Remove the node now but someone else can add it back,
527 	 * we will to add it back at the end of reclaim to its correct
528 	 * position in the tree.
529 	 */
530 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 		!css_tryget(&mz->mem->css))
533 		goto retry;
534 done:
535 	return mz;
536 }
537 
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	struct mem_cgroup_per_zone *mz;
542 
543 	spin_lock(&mctz->lock);
544 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 	spin_unlock(&mctz->lock);
546 	return mz;
547 }
548 
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 		enum mem_cgroup_stat_index idx)
570 {
571 	int cpu;
572 	s64 val = 0;
573 
574 	get_online_cpus();
575 	for_each_online_cpu(cpu)
576 		val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 	spin_lock(&mem->pcp_counter_lock);
579 	val += mem->nocpu_base.count[idx];
580 	spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 	put_online_cpus();
583 	return val;
584 }
585 
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 	s64 ret;
589 
590 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 	return ret;
593 }
594 
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 					 bool charge)
597 {
598 	int val = (charge) ? 1 : -1;
599 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601 
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 					 bool file, int nr_pages)
604 {
605 	preempt_disable();
606 
607 	if (file)
608 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 	else
610 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611 
612 	/* pagein of a big page is an event. So, ignore page size */
613 	if (nr_pages > 0)
614 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 	else {
616 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 		nr_pages = -nr_pages; /* for event */
618 	}
619 
620 	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
621 
622 	preempt_enable();
623 }
624 
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 					enum lru_list idx)
627 {
628 	int nid, zid;
629 	struct mem_cgroup_per_zone *mz;
630 	u64 total = 0;
631 
632 	for_each_online_node(nid)
633 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 			total += MEM_CGROUP_ZSTAT(mz, idx);
636 		}
637 	return total;
638 }
639 
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641 {
642 	s64 val;
643 
644 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645 
646 	return !(val & ((1 << event_mask_shift) - 1));
647 }
648 
649 /*
650  * Check events in order.
651  *
652  */
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654 {
655 	/* threshold event is triggered in finer grain than soft limit */
656 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 		mem_cgroup_threshold(mem);
658 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 			mem_cgroup_update_tree(mem, page);
660 	}
661 }
662 
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664 {
665 	return container_of(cgroup_subsys_state(cont,
666 				mem_cgroup_subsys_id), struct mem_cgroup,
667 				css);
668 }
669 
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 {
672 	/*
673 	 * mm_update_next_owner() may clear mm->owner to NULL
674 	 * if it races with swapoff, page migration, etc.
675 	 * So this can be called with p == NULL.
676 	 */
677 	if (unlikely(!p))
678 		return NULL;
679 
680 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 				struct mem_cgroup, css);
682 }
683 
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685 {
686 	struct mem_cgroup *mem = NULL;
687 
688 	if (!mm)
689 		return NULL;
690 	/*
691 	 * Because we have no locks, mm->owner's may be being moved to other
692 	 * cgroup. We use css_tryget() here even if this looks
693 	 * pessimistic (rather than adding locks here).
694 	 */
695 	rcu_read_lock();
696 	do {
697 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 		if (unlikely(!mem))
699 			break;
700 	} while (!css_tryget(&mem->css));
701 	rcu_read_unlock();
702 	return mem;
703 }
704 
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707 {
708 	struct cgroup_subsys_state *css;
709 	int found;
710 
711 	if (!mem) /* ROOT cgroup has the smallest ID */
712 		return root_mem_cgroup; /*css_put/get against root is ignored*/
713 	if (!mem->use_hierarchy) {
714 		if (css_tryget(&mem->css))
715 			return mem;
716 		return NULL;
717 	}
718 	rcu_read_lock();
719 	/*
720 	 * searching a memory cgroup which has the smallest ID under given
721 	 * ROOT cgroup. (ID >= 1)
722 	 */
723 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 	if (css && css_tryget(css))
725 		mem = container_of(css, struct mem_cgroup, css);
726 	else
727 		mem = NULL;
728 	rcu_read_unlock();
729 	return mem;
730 }
731 
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 					struct mem_cgroup *root,
734 					bool cond)
735 {
736 	int nextid = css_id(&iter->css) + 1;
737 	int found;
738 	int hierarchy_used;
739 	struct cgroup_subsys_state *css;
740 
741 	hierarchy_used = iter->use_hierarchy;
742 
743 	css_put(&iter->css);
744 	/* If no ROOT, walk all, ignore hierarchy */
745 	if (!cond || (root && !hierarchy_used))
746 		return NULL;
747 
748 	if (!root)
749 		root = root_mem_cgroup;
750 
751 	do {
752 		iter = NULL;
753 		rcu_read_lock();
754 
755 		css = css_get_next(&mem_cgroup_subsys, nextid,
756 				&root->css, &found);
757 		if (css && css_tryget(css))
758 			iter = container_of(css, struct mem_cgroup, css);
759 		rcu_read_unlock();
760 		/* If css is NULL, no more cgroups will be found */
761 		nextid = found + 1;
762 	} while (css && !iter);
763 
764 	return iter;
765 }
766 /*
767  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768  * be careful that "break" loop is not allowed. We have reference count.
769  * Instead of that modify "cond" to be false and "continue" to exit the loop.
770  */
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
772 	for (iter = mem_cgroup_start_loop(root);\
773 	     iter != NULL;\
774 	     iter = mem_cgroup_get_next(iter, root, cond))
775 
776 #define for_each_mem_cgroup_tree(iter, root) \
777 	for_each_mem_cgroup_tree_cond(iter, root, true)
778 
779 #define for_each_mem_cgroup_all(iter) \
780 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
781 
782 
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784 {
785 	return (mem == root_mem_cgroup);
786 }
787 
788 /*
789  * Following LRU functions are allowed to be used without PCG_LOCK.
790  * Operations are called by routine of global LRU independently from memcg.
791  * What we have to take care of here is validness of pc->mem_cgroup.
792  *
793  * Changes to pc->mem_cgroup happens when
794  * 1. charge
795  * 2. moving account
796  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797  * It is added to LRU before charge.
798  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799  * When moving account, the page is not on LRU. It's isolated.
800  */
801 
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803 {
804 	struct page_cgroup *pc;
805 	struct mem_cgroup_per_zone *mz;
806 
807 	if (mem_cgroup_disabled())
808 		return;
809 	pc = lookup_page_cgroup(page);
810 	/* can happen while we handle swapcache. */
811 	if (!TestClearPageCgroupAcctLRU(pc))
812 		return;
813 	VM_BUG_ON(!pc->mem_cgroup);
814 	/*
815 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 	 * removed from global LRU.
817 	 */
818 	mz = page_cgroup_zoneinfo(pc);
819 	/* huge page split is done under lru_lock. so, we have no races. */
820 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
821 	if (mem_cgroup_is_root(pc->mem_cgroup))
822 		return;
823 	VM_BUG_ON(list_empty(&pc->lru));
824 	list_del_init(&pc->lru);
825 }
826 
827 void mem_cgroup_del_lru(struct page *page)
828 {
829 	mem_cgroup_del_lru_list(page, page_lru(page));
830 }
831 
832 /*
833  * Writeback is about to end against a page which has been marked for immediate
834  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
835  * inactive list.
836  */
837 void mem_cgroup_rotate_reclaimable_page(struct page *page)
838 {
839 	struct mem_cgroup_per_zone *mz;
840 	struct page_cgroup *pc;
841 	enum lru_list lru = page_lru(page);
842 
843 	if (mem_cgroup_disabled())
844 		return;
845 
846 	pc = lookup_page_cgroup(page);
847 	/* unused or root page is not rotated. */
848 	if (!PageCgroupUsed(pc))
849 		return;
850 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
851 	smp_rmb();
852 	if (mem_cgroup_is_root(pc->mem_cgroup))
853 		return;
854 	mz = page_cgroup_zoneinfo(pc);
855 	list_move_tail(&pc->lru, &mz->lists[lru]);
856 }
857 
858 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
859 {
860 	struct mem_cgroup_per_zone *mz;
861 	struct page_cgroup *pc;
862 
863 	if (mem_cgroup_disabled())
864 		return;
865 
866 	pc = lookup_page_cgroup(page);
867 	/* unused or root page is not rotated. */
868 	if (!PageCgroupUsed(pc))
869 		return;
870 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
871 	smp_rmb();
872 	if (mem_cgroup_is_root(pc->mem_cgroup))
873 		return;
874 	mz = page_cgroup_zoneinfo(pc);
875 	list_move(&pc->lru, &mz->lists[lru]);
876 }
877 
878 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
879 {
880 	struct page_cgroup *pc;
881 	struct mem_cgroup_per_zone *mz;
882 
883 	if (mem_cgroup_disabled())
884 		return;
885 	pc = lookup_page_cgroup(page);
886 	VM_BUG_ON(PageCgroupAcctLRU(pc));
887 	if (!PageCgroupUsed(pc))
888 		return;
889 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
890 	smp_rmb();
891 	mz = page_cgroup_zoneinfo(pc);
892 	/* huge page split is done under lru_lock. so, we have no races. */
893 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
894 	SetPageCgroupAcctLRU(pc);
895 	if (mem_cgroup_is_root(pc->mem_cgroup))
896 		return;
897 	list_add(&pc->lru, &mz->lists[lru]);
898 }
899 
900 /*
901  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
902  * lru because the page may.be reused after it's fully uncharged (because of
903  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
904  * it again. This function is only used to charge SwapCache. It's done under
905  * lock_page and expected that zone->lru_lock is never held.
906  */
907 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
908 {
909 	unsigned long flags;
910 	struct zone *zone = page_zone(page);
911 	struct page_cgroup *pc = lookup_page_cgroup(page);
912 
913 	spin_lock_irqsave(&zone->lru_lock, flags);
914 	/*
915 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
916 	 * is guarded by lock_page() because the page is SwapCache.
917 	 */
918 	if (!PageCgroupUsed(pc))
919 		mem_cgroup_del_lru_list(page, page_lru(page));
920 	spin_unlock_irqrestore(&zone->lru_lock, flags);
921 }
922 
923 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
924 {
925 	unsigned long flags;
926 	struct zone *zone = page_zone(page);
927 	struct page_cgroup *pc = lookup_page_cgroup(page);
928 
929 	spin_lock_irqsave(&zone->lru_lock, flags);
930 	/* link when the page is linked to LRU but page_cgroup isn't */
931 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
932 		mem_cgroup_add_lru_list(page, page_lru(page));
933 	spin_unlock_irqrestore(&zone->lru_lock, flags);
934 }
935 
936 
937 void mem_cgroup_move_lists(struct page *page,
938 			   enum lru_list from, enum lru_list to)
939 {
940 	if (mem_cgroup_disabled())
941 		return;
942 	mem_cgroup_del_lru_list(page, from);
943 	mem_cgroup_add_lru_list(page, to);
944 }
945 
946 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
947 {
948 	int ret;
949 	struct mem_cgroup *curr = NULL;
950 	struct task_struct *p;
951 
952 	p = find_lock_task_mm(task);
953 	if (!p)
954 		return 0;
955 	curr = try_get_mem_cgroup_from_mm(p->mm);
956 	task_unlock(p);
957 	if (!curr)
958 		return 0;
959 	/*
960 	 * We should check use_hierarchy of "mem" not "curr". Because checking
961 	 * use_hierarchy of "curr" here make this function true if hierarchy is
962 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
963 	 * hierarchy(even if use_hierarchy is disabled in "mem").
964 	 */
965 	if (mem->use_hierarchy)
966 		ret = css_is_ancestor(&curr->css, &mem->css);
967 	else
968 		ret = (curr == mem);
969 	css_put(&curr->css);
970 	return ret;
971 }
972 
973 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
974 {
975 	unsigned long active;
976 	unsigned long inactive;
977 	unsigned long gb;
978 	unsigned long inactive_ratio;
979 
980 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
981 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
982 
983 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
984 	if (gb)
985 		inactive_ratio = int_sqrt(10 * gb);
986 	else
987 		inactive_ratio = 1;
988 
989 	if (present_pages) {
990 		present_pages[0] = inactive;
991 		present_pages[1] = active;
992 	}
993 
994 	return inactive_ratio;
995 }
996 
997 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
998 {
999 	unsigned long active;
1000 	unsigned long inactive;
1001 	unsigned long present_pages[2];
1002 	unsigned long inactive_ratio;
1003 
1004 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1005 
1006 	inactive = present_pages[0];
1007 	active = present_pages[1];
1008 
1009 	if (inactive * inactive_ratio < active)
1010 		return 1;
1011 
1012 	return 0;
1013 }
1014 
1015 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1016 {
1017 	unsigned long active;
1018 	unsigned long inactive;
1019 
1020 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1021 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1022 
1023 	return (active > inactive);
1024 }
1025 
1026 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1027 				       struct zone *zone,
1028 				       enum lru_list lru)
1029 {
1030 	int nid = zone_to_nid(zone);
1031 	int zid = zone_idx(zone);
1032 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1033 
1034 	return MEM_CGROUP_ZSTAT(mz, lru);
1035 }
1036 
1037 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1038 						      struct zone *zone)
1039 {
1040 	int nid = zone_to_nid(zone);
1041 	int zid = zone_idx(zone);
1042 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1043 
1044 	return &mz->reclaim_stat;
1045 }
1046 
1047 struct zone_reclaim_stat *
1048 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1049 {
1050 	struct page_cgroup *pc;
1051 	struct mem_cgroup_per_zone *mz;
1052 
1053 	if (mem_cgroup_disabled())
1054 		return NULL;
1055 
1056 	pc = lookup_page_cgroup(page);
1057 	if (!PageCgroupUsed(pc))
1058 		return NULL;
1059 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1060 	smp_rmb();
1061 	mz = page_cgroup_zoneinfo(pc);
1062 	if (!mz)
1063 		return NULL;
1064 
1065 	return &mz->reclaim_stat;
1066 }
1067 
1068 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1069 					struct list_head *dst,
1070 					unsigned long *scanned, int order,
1071 					int mode, struct zone *z,
1072 					struct mem_cgroup *mem_cont,
1073 					int active, int file)
1074 {
1075 	unsigned long nr_taken = 0;
1076 	struct page *page;
1077 	unsigned long scan;
1078 	LIST_HEAD(pc_list);
1079 	struct list_head *src;
1080 	struct page_cgroup *pc, *tmp;
1081 	int nid = zone_to_nid(z);
1082 	int zid = zone_idx(z);
1083 	struct mem_cgroup_per_zone *mz;
1084 	int lru = LRU_FILE * file + active;
1085 	int ret;
1086 
1087 	BUG_ON(!mem_cont);
1088 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1089 	src = &mz->lists[lru];
1090 
1091 	scan = 0;
1092 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1093 		if (scan >= nr_to_scan)
1094 			break;
1095 
1096 		page = pc->page;
1097 		if (unlikely(!PageCgroupUsed(pc)))
1098 			continue;
1099 		if (unlikely(!PageLRU(page)))
1100 			continue;
1101 
1102 		scan++;
1103 		ret = __isolate_lru_page(page, mode, file);
1104 		switch (ret) {
1105 		case 0:
1106 			list_move(&page->lru, dst);
1107 			mem_cgroup_del_lru(page);
1108 			nr_taken += hpage_nr_pages(page);
1109 			break;
1110 		case -EBUSY:
1111 			/* we don't affect global LRU but rotate in our LRU */
1112 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1113 			break;
1114 		default:
1115 			break;
1116 		}
1117 	}
1118 
1119 	*scanned = scan;
1120 
1121 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1122 				      0, 0, 0, mode);
1123 
1124 	return nr_taken;
1125 }
1126 
1127 #define mem_cgroup_from_res_counter(counter, member)	\
1128 	container_of(counter, struct mem_cgroup, member)
1129 
1130 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1131 {
1132 	if (do_swap_account) {
1133 		if (res_counter_check_under_limit(&mem->res) &&
1134 			res_counter_check_under_limit(&mem->memsw))
1135 			return true;
1136 	} else
1137 		if (res_counter_check_under_limit(&mem->res))
1138 			return true;
1139 	return false;
1140 }
1141 
1142 /**
1143  * mem_cgroup_check_margin - check if the memory cgroup allows charging
1144  * @mem: memory cgroup to check
1145  * @bytes: the number of bytes the caller intends to charge
1146  *
1147  * Returns a boolean value on whether @mem can be charged @bytes or
1148  * whether this would exceed the limit.
1149  */
1150 static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1151 {
1152 	if (!res_counter_check_margin(&mem->res, bytes))
1153 		return false;
1154 	if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1155 		return false;
1156 	return true;
1157 }
1158 
1159 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1160 {
1161 	struct cgroup *cgrp = memcg->css.cgroup;
1162 	unsigned int swappiness;
1163 
1164 	/* root ? */
1165 	if (cgrp->parent == NULL)
1166 		return vm_swappiness;
1167 
1168 	spin_lock(&memcg->reclaim_param_lock);
1169 	swappiness = memcg->swappiness;
1170 	spin_unlock(&memcg->reclaim_param_lock);
1171 
1172 	return swappiness;
1173 }
1174 
1175 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1176 {
1177 	int cpu;
1178 
1179 	get_online_cpus();
1180 	spin_lock(&mem->pcp_counter_lock);
1181 	for_each_online_cpu(cpu)
1182 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1183 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1184 	spin_unlock(&mem->pcp_counter_lock);
1185 	put_online_cpus();
1186 
1187 	synchronize_rcu();
1188 }
1189 
1190 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1191 {
1192 	int cpu;
1193 
1194 	if (!mem)
1195 		return;
1196 	get_online_cpus();
1197 	spin_lock(&mem->pcp_counter_lock);
1198 	for_each_online_cpu(cpu)
1199 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1200 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1201 	spin_unlock(&mem->pcp_counter_lock);
1202 	put_online_cpus();
1203 }
1204 /*
1205  * 2 routines for checking "mem" is under move_account() or not.
1206  *
1207  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1208  *			  for avoiding race in accounting. If true,
1209  *			  pc->mem_cgroup may be overwritten.
1210  *
1211  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1212  *			  under hierarchy of moving cgroups. This is for
1213  *			  waiting at hith-memory prressure caused by "move".
1214  */
1215 
1216 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1217 {
1218 	VM_BUG_ON(!rcu_read_lock_held());
1219 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1220 }
1221 
1222 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1223 {
1224 	struct mem_cgroup *from;
1225 	struct mem_cgroup *to;
1226 	bool ret = false;
1227 	/*
1228 	 * Unlike task_move routines, we access mc.to, mc.from not under
1229 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1230 	 */
1231 	spin_lock(&mc.lock);
1232 	from = mc.from;
1233 	to = mc.to;
1234 	if (!from)
1235 		goto unlock;
1236 	if (from == mem || to == mem
1237 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1238 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1239 		ret = true;
1240 unlock:
1241 	spin_unlock(&mc.lock);
1242 	return ret;
1243 }
1244 
1245 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1246 {
1247 	if (mc.moving_task && current != mc.moving_task) {
1248 		if (mem_cgroup_under_move(mem)) {
1249 			DEFINE_WAIT(wait);
1250 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1251 			/* moving charge context might have finished. */
1252 			if (mc.moving_task)
1253 				schedule();
1254 			finish_wait(&mc.waitq, &wait);
1255 			return true;
1256 		}
1257 	}
1258 	return false;
1259 }
1260 
1261 /**
1262  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1263  * @memcg: The memory cgroup that went over limit
1264  * @p: Task that is going to be killed
1265  *
1266  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1267  * enabled
1268  */
1269 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1270 {
1271 	struct cgroup *task_cgrp;
1272 	struct cgroup *mem_cgrp;
1273 	/*
1274 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1275 	 * on the assumption that OOM is serialized for memory controller.
1276 	 * If this assumption is broken, revisit this code.
1277 	 */
1278 	static char memcg_name[PATH_MAX];
1279 	int ret;
1280 
1281 	if (!memcg || !p)
1282 		return;
1283 
1284 
1285 	rcu_read_lock();
1286 
1287 	mem_cgrp = memcg->css.cgroup;
1288 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1289 
1290 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1291 	if (ret < 0) {
1292 		/*
1293 		 * Unfortunately, we are unable to convert to a useful name
1294 		 * But we'll still print out the usage information
1295 		 */
1296 		rcu_read_unlock();
1297 		goto done;
1298 	}
1299 	rcu_read_unlock();
1300 
1301 	printk(KERN_INFO "Task in %s killed", memcg_name);
1302 
1303 	rcu_read_lock();
1304 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1305 	if (ret < 0) {
1306 		rcu_read_unlock();
1307 		goto done;
1308 	}
1309 	rcu_read_unlock();
1310 
1311 	/*
1312 	 * Continues from above, so we don't need an KERN_ level
1313 	 */
1314 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1315 done:
1316 
1317 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1318 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1319 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1320 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1321 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1322 		"failcnt %llu\n",
1323 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1324 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1325 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1326 }
1327 
1328 /*
1329  * This function returns the number of memcg under hierarchy tree. Returns
1330  * 1(self count) if no children.
1331  */
1332 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1333 {
1334 	int num = 0;
1335 	struct mem_cgroup *iter;
1336 
1337 	for_each_mem_cgroup_tree(iter, mem)
1338 		num++;
1339 	return num;
1340 }
1341 
1342 /*
1343  * Return the memory (and swap, if configured) limit for a memcg.
1344  */
1345 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1346 {
1347 	u64 limit;
1348 	u64 memsw;
1349 
1350 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1351 	limit += total_swap_pages << PAGE_SHIFT;
1352 
1353 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1354 	/*
1355 	 * If memsw is finite and limits the amount of swap space available
1356 	 * to this memcg, return that limit.
1357 	 */
1358 	return min(limit, memsw);
1359 }
1360 
1361 /*
1362  * Visit the first child (need not be the first child as per the ordering
1363  * of the cgroup list, since we track last_scanned_child) of @mem and use
1364  * that to reclaim free pages from.
1365  */
1366 static struct mem_cgroup *
1367 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1368 {
1369 	struct mem_cgroup *ret = NULL;
1370 	struct cgroup_subsys_state *css;
1371 	int nextid, found;
1372 
1373 	if (!root_mem->use_hierarchy) {
1374 		css_get(&root_mem->css);
1375 		ret = root_mem;
1376 	}
1377 
1378 	while (!ret) {
1379 		rcu_read_lock();
1380 		nextid = root_mem->last_scanned_child + 1;
1381 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1382 				   &found);
1383 		if (css && css_tryget(css))
1384 			ret = container_of(css, struct mem_cgroup, css);
1385 
1386 		rcu_read_unlock();
1387 		/* Updates scanning parameter */
1388 		spin_lock(&root_mem->reclaim_param_lock);
1389 		if (!css) {
1390 			/* this means start scan from ID:1 */
1391 			root_mem->last_scanned_child = 0;
1392 		} else
1393 			root_mem->last_scanned_child = found;
1394 		spin_unlock(&root_mem->reclaim_param_lock);
1395 	}
1396 
1397 	return ret;
1398 }
1399 
1400 /*
1401  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1402  * we reclaimed from, so that we don't end up penalizing one child extensively
1403  * based on its position in the children list.
1404  *
1405  * root_mem is the original ancestor that we've been reclaim from.
1406  *
1407  * We give up and return to the caller when we visit root_mem twice.
1408  * (other groups can be removed while we're walking....)
1409  *
1410  * If shrink==true, for avoiding to free too much, this returns immedieately.
1411  */
1412 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1413 						struct zone *zone,
1414 						gfp_t gfp_mask,
1415 						unsigned long reclaim_options)
1416 {
1417 	struct mem_cgroup *victim;
1418 	int ret, total = 0;
1419 	int loop = 0;
1420 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1421 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1422 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1423 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1424 
1425 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1426 	if (root_mem->memsw_is_minimum)
1427 		noswap = true;
1428 
1429 	while (1) {
1430 		victim = mem_cgroup_select_victim(root_mem);
1431 		if (victim == root_mem) {
1432 			loop++;
1433 			if (loop >= 1)
1434 				drain_all_stock_async();
1435 			if (loop >= 2) {
1436 				/*
1437 				 * If we have not been able to reclaim
1438 				 * anything, it might because there are
1439 				 * no reclaimable pages under this hierarchy
1440 				 */
1441 				if (!check_soft || !total) {
1442 					css_put(&victim->css);
1443 					break;
1444 				}
1445 				/*
1446 				 * We want to do more targetted reclaim.
1447 				 * excess >> 2 is not to excessive so as to
1448 				 * reclaim too much, nor too less that we keep
1449 				 * coming back to reclaim from this cgroup
1450 				 */
1451 				if (total >= (excess >> 2) ||
1452 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1453 					css_put(&victim->css);
1454 					break;
1455 				}
1456 			}
1457 		}
1458 		if (!mem_cgroup_local_usage(victim)) {
1459 			/* this cgroup's local usage == 0 */
1460 			css_put(&victim->css);
1461 			continue;
1462 		}
1463 		/* we use swappiness of local cgroup */
1464 		if (check_soft)
1465 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1466 				noswap, get_swappiness(victim), zone);
1467 		else
1468 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1469 						noswap, get_swappiness(victim));
1470 		css_put(&victim->css);
1471 		/*
1472 		 * At shrinking usage, we can't check we should stop here or
1473 		 * reclaim more. It's depends on callers. last_scanned_child
1474 		 * will work enough for keeping fairness under tree.
1475 		 */
1476 		if (shrink)
1477 			return ret;
1478 		total += ret;
1479 		if (check_soft) {
1480 			if (res_counter_check_under_soft_limit(&root_mem->res))
1481 				return total;
1482 		} else if (mem_cgroup_check_under_limit(root_mem))
1483 			return 1 + total;
1484 	}
1485 	return total;
1486 }
1487 
1488 /*
1489  * Check OOM-Killer is already running under our hierarchy.
1490  * If someone is running, return false.
1491  */
1492 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1493 {
1494 	int x, lock_count = 0;
1495 	struct mem_cgroup *iter;
1496 
1497 	for_each_mem_cgroup_tree(iter, mem) {
1498 		x = atomic_inc_return(&iter->oom_lock);
1499 		lock_count = max(x, lock_count);
1500 	}
1501 
1502 	if (lock_count == 1)
1503 		return true;
1504 	return false;
1505 }
1506 
1507 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1508 {
1509 	struct mem_cgroup *iter;
1510 
1511 	/*
1512 	 * When a new child is created while the hierarchy is under oom,
1513 	 * mem_cgroup_oom_lock() may not be called. We have to use
1514 	 * atomic_add_unless() here.
1515 	 */
1516 	for_each_mem_cgroup_tree(iter, mem)
1517 		atomic_add_unless(&iter->oom_lock, -1, 0);
1518 	return 0;
1519 }
1520 
1521 
1522 static DEFINE_MUTEX(memcg_oom_mutex);
1523 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1524 
1525 struct oom_wait_info {
1526 	struct mem_cgroup *mem;
1527 	wait_queue_t	wait;
1528 };
1529 
1530 static int memcg_oom_wake_function(wait_queue_t *wait,
1531 	unsigned mode, int sync, void *arg)
1532 {
1533 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1534 	struct oom_wait_info *oom_wait_info;
1535 
1536 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1537 
1538 	if (oom_wait_info->mem == wake_mem)
1539 		goto wakeup;
1540 	/* if no hierarchy, no match */
1541 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1542 		return 0;
1543 	/*
1544 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1545 	 * Then we can use css_is_ancestor without taking care of RCU.
1546 	 */
1547 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1548 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1549 		return 0;
1550 
1551 wakeup:
1552 	return autoremove_wake_function(wait, mode, sync, arg);
1553 }
1554 
1555 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1556 {
1557 	/* for filtering, pass "mem" as argument. */
1558 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1559 }
1560 
1561 static void memcg_oom_recover(struct mem_cgroup *mem)
1562 {
1563 	if (mem && atomic_read(&mem->oom_lock))
1564 		memcg_wakeup_oom(mem);
1565 }
1566 
1567 /*
1568  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1569  */
1570 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1571 {
1572 	struct oom_wait_info owait;
1573 	bool locked, need_to_kill;
1574 
1575 	owait.mem = mem;
1576 	owait.wait.flags = 0;
1577 	owait.wait.func = memcg_oom_wake_function;
1578 	owait.wait.private = current;
1579 	INIT_LIST_HEAD(&owait.wait.task_list);
1580 	need_to_kill = true;
1581 	/* At first, try to OOM lock hierarchy under mem.*/
1582 	mutex_lock(&memcg_oom_mutex);
1583 	locked = mem_cgroup_oom_lock(mem);
1584 	/*
1585 	 * Even if signal_pending(), we can't quit charge() loop without
1586 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1587 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1588 	 */
1589 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 	if (!locked || mem->oom_kill_disable)
1591 		need_to_kill = false;
1592 	if (locked)
1593 		mem_cgroup_oom_notify(mem);
1594 	mutex_unlock(&memcg_oom_mutex);
1595 
1596 	if (need_to_kill) {
1597 		finish_wait(&memcg_oom_waitq, &owait.wait);
1598 		mem_cgroup_out_of_memory(mem, mask);
1599 	} else {
1600 		schedule();
1601 		finish_wait(&memcg_oom_waitq, &owait.wait);
1602 	}
1603 	mutex_lock(&memcg_oom_mutex);
1604 	mem_cgroup_oom_unlock(mem);
1605 	memcg_wakeup_oom(mem);
1606 	mutex_unlock(&memcg_oom_mutex);
1607 
1608 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1609 		return false;
1610 	/* Give chance to dying process */
1611 	schedule_timeout(1);
1612 	return true;
1613 }
1614 
1615 /*
1616  * Currently used to update mapped file statistics, but the routine can be
1617  * generalized to update other statistics as well.
1618  *
1619  * Notes: Race condition
1620  *
1621  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1622  * it tends to be costly. But considering some conditions, we doesn't need
1623  * to do so _always_.
1624  *
1625  * Considering "charge", lock_page_cgroup() is not required because all
1626  * file-stat operations happen after a page is attached to radix-tree. There
1627  * are no race with "charge".
1628  *
1629  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1630  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1631  * if there are race with "uncharge". Statistics itself is properly handled
1632  * by flags.
1633  *
1634  * Considering "move", this is an only case we see a race. To make the race
1635  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1636  * possibility of race condition. If there is, we take a lock.
1637  */
1638 
1639 void mem_cgroup_update_page_stat(struct page *page,
1640 				 enum mem_cgroup_page_stat_item idx, int val)
1641 {
1642 	struct mem_cgroup *mem;
1643 	struct page_cgroup *pc = lookup_page_cgroup(page);
1644 	bool need_unlock = false;
1645 	unsigned long uninitialized_var(flags);
1646 
1647 	if (unlikely(!pc))
1648 		return;
1649 
1650 	rcu_read_lock();
1651 	mem = pc->mem_cgroup;
1652 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1653 		goto out;
1654 	/* pc->mem_cgroup is unstable ? */
1655 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1656 		/* take a lock against to access pc->mem_cgroup */
1657 		move_lock_page_cgroup(pc, &flags);
1658 		need_unlock = true;
1659 		mem = pc->mem_cgroup;
1660 		if (!mem || !PageCgroupUsed(pc))
1661 			goto out;
1662 	}
1663 
1664 	switch (idx) {
1665 	case MEMCG_NR_FILE_MAPPED:
1666 		if (val > 0)
1667 			SetPageCgroupFileMapped(pc);
1668 		else if (!page_mapped(page))
1669 			ClearPageCgroupFileMapped(pc);
1670 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1671 		break;
1672 	default:
1673 		BUG();
1674 	}
1675 
1676 	this_cpu_add(mem->stat->count[idx], val);
1677 
1678 out:
1679 	if (unlikely(need_unlock))
1680 		move_unlock_page_cgroup(pc, &flags);
1681 	rcu_read_unlock();
1682 	return;
1683 }
1684 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1685 
1686 /*
1687  * size of first charge trial. "32" comes from vmscan.c's magic value.
1688  * TODO: maybe necessary to use big numbers in big irons.
1689  */
1690 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1691 struct memcg_stock_pcp {
1692 	struct mem_cgroup *cached; /* this never be root cgroup */
1693 	int charge;
1694 	struct work_struct work;
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static atomic_t memcg_drain_count;
1698 
1699 /*
1700  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1701  * from local stock and true is returned. If the stock is 0 or charges from a
1702  * cgroup which is not current target, returns false. This stock will be
1703  * refilled.
1704  */
1705 static bool consume_stock(struct mem_cgroup *mem)
1706 {
1707 	struct memcg_stock_pcp *stock;
1708 	bool ret = true;
1709 
1710 	stock = &get_cpu_var(memcg_stock);
1711 	if (mem == stock->cached && stock->charge)
1712 		stock->charge -= PAGE_SIZE;
1713 	else /* need to call res_counter_charge */
1714 		ret = false;
1715 	put_cpu_var(memcg_stock);
1716 	return ret;
1717 }
1718 
1719 /*
1720  * Returns stocks cached in percpu to res_counter and reset cached information.
1721  */
1722 static void drain_stock(struct memcg_stock_pcp *stock)
1723 {
1724 	struct mem_cgroup *old = stock->cached;
1725 
1726 	if (stock->charge) {
1727 		res_counter_uncharge(&old->res, stock->charge);
1728 		if (do_swap_account)
1729 			res_counter_uncharge(&old->memsw, stock->charge);
1730 	}
1731 	stock->cached = NULL;
1732 	stock->charge = 0;
1733 }
1734 
1735 /*
1736  * This must be called under preempt disabled or must be called by
1737  * a thread which is pinned to local cpu.
1738  */
1739 static void drain_local_stock(struct work_struct *dummy)
1740 {
1741 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1742 	drain_stock(stock);
1743 }
1744 
1745 /*
1746  * Cache charges(val) which is from res_counter, to local per_cpu area.
1747  * This will be consumed by consume_stock() function, later.
1748  */
1749 static void refill_stock(struct mem_cgroup *mem, int val)
1750 {
1751 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1752 
1753 	if (stock->cached != mem) { /* reset if necessary */
1754 		drain_stock(stock);
1755 		stock->cached = mem;
1756 	}
1757 	stock->charge += val;
1758 	put_cpu_var(memcg_stock);
1759 }
1760 
1761 /*
1762  * Tries to drain stocked charges in other cpus. This function is asynchronous
1763  * and just put a work per cpu for draining localy on each cpu. Caller can
1764  * expects some charges will be back to res_counter later but cannot wait for
1765  * it.
1766  */
1767 static void drain_all_stock_async(void)
1768 {
1769 	int cpu;
1770 	/* This function is for scheduling "drain" in asynchronous way.
1771 	 * The result of "drain" is not directly handled by callers. Then,
1772 	 * if someone is calling drain, we don't have to call drain more.
1773 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1774 	 * there is a race. We just do loose check here.
1775 	 */
1776 	if (atomic_read(&memcg_drain_count))
1777 		return;
1778 	/* Notify other cpus that system-wide "drain" is running */
1779 	atomic_inc(&memcg_drain_count);
1780 	get_online_cpus();
1781 	for_each_online_cpu(cpu) {
1782 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1783 		schedule_work_on(cpu, &stock->work);
1784 	}
1785  	put_online_cpus();
1786 	atomic_dec(&memcg_drain_count);
1787 	/* We don't wait for flush_work */
1788 }
1789 
1790 /* This is a synchronous drain interface. */
1791 static void drain_all_stock_sync(void)
1792 {
1793 	/* called when force_empty is called */
1794 	atomic_inc(&memcg_drain_count);
1795 	schedule_on_each_cpu(drain_local_stock);
1796 	atomic_dec(&memcg_drain_count);
1797 }
1798 
1799 /*
1800  * This function drains percpu counter value from DEAD cpu and
1801  * move it to local cpu. Note that this function can be preempted.
1802  */
1803 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1804 {
1805 	int i;
1806 
1807 	spin_lock(&mem->pcp_counter_lock);
1808 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1809 		s64 x = per_cpu(mem->stat->count[i], cpu);
1810 
1811 		per_cpu(mem->stat->count[i], cpu) = 0;
1812 		mem->nocpu_base.count[i] += x;
1813 	}
1814 	/* need to clear ON_MOVE value, works as a kind of lock. */
1815 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1816 	spin_unlock(&mem->pcp_counter_lock);
1817 }
1818 
1819 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1820 {
1821 	int idx = MEM_CGROUP_ON_MOVE;
1822 
1823 	spin_lock(&mem->pcp_counter_lock);
1824 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1825 	spin_unlock(&mem->pcp_counter_lock);
1826 }
1827 
1828 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1829 					unsigned long action,
1830 					void *hcpu)
1831 {
1832 	int cpu = (unsigned long)hcpu;
1833 	struct memcg_stock_pcp *stock;
1834 	struct mem_cgroup *iter;
1835 
1836 	if ((action == CPU_ONLINE)) {
1837 		for_each_mem_cgroup_all(iter)
1838 			synchronize_mem_cgroup_on_move(iter, cpu);
1839 		return NOTIFY_OK;
1840 	}
1841 
1842 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1843 		return NOTIFY_OK;
1844 
1845 	for_each_mem_cgroup_all(iter)
1846 		mem_cgroup_drain_pcp_counter(iter, cpu);
1847 
1848 	stock = &per_cpu(memcg_stock, cpu);
1849 	drain_stock(stock);
1850 	return NOTIFY_OK;
1851 }
1852 
1853 
1854 /* See __mem_cgroup_try_charge() for details */
1855 enum {
1856 	CHARGE_OK,		/* success */
1857 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1858 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1859 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1860 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1861 };
1862 
1863 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1864 				int csize, bool oom_check)
1865 {
1866 	struct mem_cgroup *mem_over_limit;
1867 	struct res_counter *fail_res;
1868 	unsigned long flags = 0;
1869 	int ret;
1870 
1871 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1872 
1873 	if (likely(!ret)) {
1874 		if (!do_swap_account)
1875 			return CHARGE_OK;
1876 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1877 		if (likely(!ret))
1878 			return CHARGE_OK;
1879 
1880 		res_counter_uncharge(&mem->res, csize);
1881 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1882 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1883 	} else
1884 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1885 	/*
1886 	 * csize can be either a huge page (HPAGE_SIZE), a batch of
1887 	 * regular pages (CHARGE_SIZE), or a single regular page
1888 	 * (PAGE_SIZE).
1889 	 *
1890 	 * Never reclaim on behalf of optional batching, retry with a
1891 	 * single page instead.
1892 	 */
1893 	if (csize == CHARGE_SIZE)
1894 		return CHARGE_RETRY;
1895 
1896 	if (!(gfp_mask & __GFP_WAIT))
1897 		return CHARGE_WOULDBLOCK;
1898 
1899 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1900 					      gfp_mask, flags);
1901 	if (mem_cgroup_check_margin(mem_over_limit, csize))
1902 		return CHARGE_RETRY;
1903 	/*
1904 	 * Even though the limit is exceeded at this point, reclaim
1905 	 * may have been able to free some pages.  Retry the charge
1906 	 * before killing the task.
1907 	 *
1908 	 * Only for regular pages, though: huge pages are rather
1909 	 * unlikely to succeed so close to the limit, and we fall back
1910 	 * to regular pages anyway in case of failure.
1911 	 */
1912 	if (csize == PAGE_SIZE && ret)
1913 		return CHARGE_RETRY;
1914 
1915 	/*
1916 	 * At task move, charge accounts can be doubly counted. So, it's
1917 	 * better to wait until the end of task_move if something is going on.
1918 	 */
1919 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1920 		return CHARGE_RETRY;
1921 
1922 	/* If we don't need to call oom-killer at el, return immediately */
1923 	if (!oom_check)
1924 		return CHARGE_NOMEM;
1925 	/* check OOM */
1926 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1927 		return CHARGE_OOM_DIE;
1928 
1929 	return CHARGE_RETRY;
1930 }
1931 
1932 /*
1933  * Unlike exported interface, "oom" parameter is added. if oom==true,
1934  * oom-killer can be invoked.
1935  */
1936 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1937 				   gfp_t gfp_mask,
1938 				   struct mem_cgroup **memcg, bool oom,
1939 				   int page_size)
1940 {
1941 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1942 	struct mem_cgroup *mem = NULL;
1943 	int ret;
1944 	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1945 
1946 	/*
1947 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1948 	 * in system level. So, allow to go ahead dying process in addition to
1949 	 * MEMDIE process.
1950 	 */
1951 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1952 		     || fatal_signal_pending(current)))
1953 		goto bypass;
1954 
1955 	/*
1956 	 * We always charge the cgroup the mm_struct belongs to.
1957 	 * The mm_struct's mem_cgroup changes on task migration if the
1958 	 * thread group leader migrates. It's possible that mm is not
1959 	 * set, if so charge the init_mm (happens for pagecache usage).
1960 	 */
1961 	if (!*memcg && !mm)
1962 		goto bypass;
1963 again:
1964 	if (*memcg) { /* css should be a valid one */
1965 		mem = *memcg;
1966 		VM_BUG_ON(css_is_removed(&mem->css));
1967 		if (mem_cgroup_is_root(mem))
1968 			goto done;
1969 		if (page_size == PAGE_SIZE && consume_stock(mem))
1970 			goto done;
1971 		css_get(&mem->css);
1972 	} else {
1973 		struct task_struct *p;
1974 
1975 		rcu_read_lock();
1976 		p = rcu_dereference(mm->owner);
1977 		/*
1978 		 * Because we don't have task_lock(), "p" can exit.
1979 		 * In that case, "mem" can point to root or p can be NULL with
1980 		 * race with swapoff. Then, we have small risk of mis-accouning.
1981 		 * But such kind of mis-account by race always happens because
1982 		 * we don't have cgroup_mutex(). It's overkill and we allo that
1983 		 * small race, here.
1984 		 * (*) swapoff at el will charge against mm-struct not against
1985 		 * task-struct. So, mm->owner can be NULL.
1986 		 */
1987 		mem = mem_cgroup_from_task(p);
1988 		if (!mem || mem_cgroup_is_root(mem)) {
1989 			rcu_read_unlock();
1990 			goto done;
1991 		}
1992 		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1993 			/*
1994 			 * It seems dagerous to access memcg without css_get().
1995 			 * But considering how consume_stok works, it's not
1996 			 * necessary. If consume_stock success, some charges
1997 			 * from this memcg are cached on this cpu. So, we
1998 			 * don't need to call css_get()/css_tryget() before
1999 			 * calling consume_stock().
2000 			 */
2001 			rcu_read_unlock();
2002 			goto done;
2003 		}
2004 		/* after here, we may be blocked. we need to get refcnt */
2005 		if (!css_tryget(&mem->css)) {
2006 			rcu_read_unlock();
2007 			goto again;
2008 		}
2009 		rcu_read_unlock();
2010 	}
2011 
2012 	do {
2013 		bool oom_check;
2014 
2015 		/* If killed, bypass charge */
2016 		if (fatal_signal_pending(current)) {
2017 			css_put(&mem->css);
2018 			goto bypass;
2019 		}
2020 
2021 		oom_check = false;
2022 		if (oom && !nr_oom_retries) {
2023 			oom_check = true;
2024 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2025 		}
2026 
2027 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2028 
2029 		switch (ret) {
2030 		case CHARGE_OK:
2031 			break;
2032 		case CHARGE_RETRY: /* not in OOM situation but retry */
2033 			csize = page_size;
2034 			css_put(&mem->css);
2035 			mem = NULL;
2036 			goto again;
2037 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2038 			css_put(&mem->css);
2039 			goto nomem;
2040 		case CHARGE_NOMEM: /* OOM routine works */
2041 			if (!oom) {
2042 				css_put(&mem->css);
2043 				goto nomem;
2044 			}
2045 			/* If oom, we never return -ENOMEM */
2046 			nr_oom_retries--;
2047 			break;
2048 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2049 			css_put(&mem->css);
2050 			goto bypass;
2051 		}
2052 	} while (ret != CHARGE_OK);
2053 
2054 	if (csize > page_size)
2055 		refill_stock(mem, csize - page_size);
2056 	css_put(&mem->css);
2057 done:
2058 	*memcg = mem;
2059 	return 0;
2060 nomem:
2061 	*memcg = NULL;
2062 	return -ENOMEM;
2063 bypass:
2064 	*memcg = NULL;
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Somemtimes we have to undo a charge we got by try_charge().
2070  * This function is for that and do uncharge, put css's refcnt.
2071  * gotten by try_charge().
2072  */
2073 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2074 							unsigned long count)
2075 {
2076 	if (!mem_cgroup_is_root(mem)) {
2077 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2078 		if (do_swap_account)
2079 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2080 	}
2081 }
2082 
2083 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2084 				     int page_size)
2085 {
2086 	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2087 }
2088 
2089 /*
2090  * A helper function to get mem_cgroup from ID. must be called under
2091  * rcu_read_lock(). The caller must check css_is_removed() or some if
2092  * it's concern. (dropping refcnt from swap can be called against removed
2093  * memcg.)
2094  */
2095 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2096 {
2097 	struct cgroup_subsys_state *css;
2098 
2099 	/* ID 0 is unused ID */
2100 	if (!id)
2101 		return NULL;
2102 	css = css_lookup(&mem_cgroup_subsys, id);
2103 	if (!css)
2104 		return NULL;
2105 	return container_of(css, struct mem_cgroup, css);
2106 }
2107 
2108 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2109 {
2110 	struct mem_cgroup *mem = NULL;
2111 	struct page_cgroup *pc;
2112 	unsigned short id;
2113 	swp_entry_t ent;
2114 
2115 	VM_BUG_ON(!PageLocked(page));
2116 
2117 	pc = lookup_page_cgroup(page);
2118 	lock_page_cgroup(pc);
2119 	if (PageCgroupUsed(pc)) {
2120 		mem = pc->mem_cgroup;
2121 		if (mem && !css_tryget(&mem->css))
2122 			mem = NULL;
2123 	} else if (PageSwapCache(page)) {
2124 		ent.val = page_private(page);
2125 		id = lookup_swap_cgroup(ent);
2126 		rcu_read_lock();
2127 		mem = mem_cgroup_lookup(id);
2128 		if (mem && !css_tryget(&mem->css))
2129 			mem = NULL;
2130 		rcu_read_unlock();
2131 	}
2132 	unlock_page_cgroup(pc);
2133 	return mem;
2134 }
2135 
2136 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2137 				       struct page_cgroup *pc,
2138 				       enum charge_type ctype,
2139 				       int page_size)
2140 {
2141 	int nr_pages = page_size >> PAGE_SHIFT;
2142 
2143 	/* try_charge() can return NULL to *memcg, taking care of it. */
2144 	if (!mem)
2145 		return;
2146 
2147 	lock_page_cgroup(pc);
2148 	if (unlikely(PageCgroupUsed(pc))) {
2149 		unlock_page_cgroup(pc);
2150 		mem_cgroup_cancel_charge(mem, page_size);
2151 		return;
2152 	}
2153 	/*
2154 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2155 	 * accessed by any other context at this point.
2156 	 */
2157 	pc->mem_cgroup = mem;
2158 	/*
2159 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2160 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2161 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2162 	 * before USED bit, we need memory barrier here.
2163 	 * See mem_cgroup_add_lru_list(), etc.
2164  	 */
2165 	smp_wmb();
2166 	switch (ctype) {
2167 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2168 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2169 		SetPageCgroupCache(pc);
2170 		SetPageCgroupUsed(pc);
2171 		break;
2172 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2173 		ClearPageCgroupCache(pc);
2174 		SetPageCgroupUsed(pc);
2175 		break;
2176 	default:
2177 		break;
2178 	}
2179 
2180 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2181 	unlock_page_cgroup(pc);
2182 	/*
2183 	 * "charge_statistics" updated event counter. Then, check it.
2184 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2185 	 * if they exceeds softlimit.
2186 	 */
2187 	memcg_check_events(mem, pc->page);
2188 }
2189 
2190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2191 
2192 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2193 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2194 /*
2195  * Because tail pages are not marked as "used", set it. We're under
2196  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2197  */
2198 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2199 {
2200 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2201 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2202 	unsigned long flags;
2203 
2204 	if (mem_cgroup_disabled())
2205 		return;
2206 	/*
2207 	 * We have no races with charge/uncharge but will have races with
2208 	 * page state accounting.
2209 	 */
2210 	move_lock_page_cgroup(head_pc, &flags);
2211 
2212 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2213 	smp_wmb(); /* see __commit_charge() */
2214 	if (PageCgroupAcctLRU(head_pc)) {
2215 		enum lru_list lru;
2216 		struct mem_cgroup_per_zone *mz;
2217 
2218 		/*
2219 		 * LRU flags cannot be copied because we need to add tail
2220 		 *.page to LRU by generic call and our hook will be called.
2221 		 * We hold lru_lock, then, reduce counter directly.
2222 		 */
2223 		lru = page_lru(head);
2224 		mz = page_cgroup_zoneinfo(head_pc);
2225 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2226 	}
2227 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2228 	move_unlock_page_cgroup(head_pc, &flags);
2229 }
2230 #endif
2231 
2232 /**
2233  * __mem_cgroup_move_account - move account of the page
2234  * @pc:	page_cgroup of the page.
2235  * @from: mem_cgroup which the page is moved from.
2236  * @to:	mem_cgroup which the page is moved to. @from != @to.
2237  * @uncharge: whether we should call uncharge and css_put against @from.
2238  *
2239  * The caller must confirm following.
2240  * - page is not on LRU (isolate_page() is useful.)
2241  * - the pc is locked, used, and ->mem_cgroup points to @from.
2242  *
2243  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2244  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2245  * true, this function does "uncharge" from old cgroup, but it doesn't if
2246  * @uncharge is false, so a caller should do "uncharge".
2247  */
2248 
2249 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2250 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2251 	int charge_size)
2252 {
2253 	int nr_pages = charge_size >> PAGE_SHIFT;
2254 
2255 	VM_BUG_ON(from == to);
2256 	VM_BUG_ON(PageLRU(pc->page));
2257 	VM_BUG_ON(!page_is_cgroup_locked(pc));
2258 	VM_BUG_ON(!PageCgroupUsed(pc));
2259 	VM_BUG_ON(pc->mem_cgroup != from);
2260 
2261 	if (PageCgroupFileMapped(pc)) {
2262 		/* Update mapped_file data for mem_cgroup */
2263 		preempt_disable();
2264 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2265 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2266 		preempt_enable();
2267 	}
2268 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2269 	if (uncharge)
2270 		/* This is not "cancel", but cancel_charge does all we need. */
2271 		mem_cgroup_cancel_charge(from, charge_size);
2272 
2273 	/* caller should have done css_get */
2274 	pc->mem_cgroup = to;
2275 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2276 	/*
2277 	 * We charges against "to" which may not have any tasks. Then, "to"
2278 	 * can be under rmdir(). But in current implementation, caller of
2279 	 * this function is just force_empty() and move charge, so it's
2280 	 * garanteed that "to" is never removed. So, we don't check rmdir
2281 	 * status here.
2282 	 */
2283 }
2284 
2285 /*
2286  * check whether the @pc is valid for moving account and call
2287  * __mem_cgroup_move_account()
2288  */
2289 static int mem_cgroup_move_account(struct page_cgroup *pc,
2290 		struct mem_cgroup *from, struct mem_cgroup *to,
2291 		bool uncharge, int charge_size)
2292 {
2293 	int ret = -EINVAL;
2294 	unsigned long flags;
2295 	/*
2296 	 * The page is isolated from LRU. So, collapse function
2297 	 * will not handle this page. But page splitting can happen.
2298 	 * Do this check under compound_page_lock(). The caller should
2299 	 * hold it.
2300 	 */
2301 	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2302 		return -EBUSY;
2303 
2304 	lock_page_cgroup(pc);
2305 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2306 		move_lock_page_cgroup(pc, &flags);
2307 		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2308 		move_unlock_page_cgroup(pc, &flags);
2309 		ret = 0;
2310 	}
2311 	unlock_page_cgroup(pc);
2312 	/*
2313 	 * check events
2314 	 */
2315 	memcg_check_events(to, pc->page);
2316 	memcg_check_events(from, pc->page);
2317 	return ret;
2318 }
2319 
2320 /*
2321  * move charges to its parent.
2322  */
2323 
2324 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2325 				  struct mem_cgroup *child,
2326 				  gfp_t gfp_mask)
2327 {
2328 	struct page *page = pc->page;
2329 	struct cgroup *cg = child->css.cgroup;
2330 	struct cgroup *pcg = cg->parent;
2331 	struct mem_cgroup *parent;
2332 	int page_size = PAGE_SIZE;
2333 	unsigned long flags;
2334 	int ret;
2335 
2336 	/* Is ROOT ? */
2337 	if (!pcg)
2338 		return -EINVAL;
2339 
2340 	ret = -EBUSY;
2341 	if (!get_page_unless_zero(page))
2342 		goto out;
2343 	if (isolate_lru_page(page))
2344 		goto put;
2345 
2346 	if (PageTransHuge(page))
2347 		page_size = HPAGE_SIZE;
2348 
2349 	parent = mem_cgroup_from_cont(pcg);
2350 	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2351 				&parent, false, page_size);
2352 	if (ret || !parent)
2353 		goto put_back;
2354 
2355 	if (page_size > PAGE_SIZE)
2356 		flags = compound_lock_irqsave(page);
2357 
2358 	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2359 	if (ret)
2360 		mem_cgroup_cancel_charge(parent, page_size);
2361 
2362 	if (page_size > PAGE_SIZE)
2363 		compound_unlock_irqrestore(page, flags);
2364 put_back:
2365 	putback_lru_page(page);
2366 put:
2367 	put_page(page);
2368 out:
2369 	return ret;
2370 }
2371 
2372 /*
2373  * Charge the memory controller for page usage.
2374  * Return
2375  * 0 if the charge was successful
2376  * < 0 if the cgroup is over its limit
2377  */
2378 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2379 				gfp_t gfp_mask, enum charge_type ctype)
2380 {
2381 	struct mem_cgroup *mem = NULL;
2382 	int page_size = PAGE_SIZE;
2383 	struct page_cgroup *pc;
2384 	bool oom = true;
2385 	int ret;
2386 
2387 	if (PageTransHuge(page)) {
2388 		page_size <<= compound_order(page);
2389 		VM_BUG_ON(!PageTransHuge(page));
2390 		/*
2391 		 * Never OOM-kill a process for a huge page.  The
2392 		 * fault handler will fall back to regular pages.
2393 		 */
2394 		oom = false;
2395 	}
2396 
2397 	pc = lookup_page_cgroup(page);
2398 	/* can happen at boot */
2399 	if (unlikely(!pc))
2400 		return 0;
2401 	prefetchw(pc);
2402 
2403 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2404 	if (ret || !mem)
2405 		return ret;
2406 
2407 	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2408 	return 0;
2409 }
2410 
2411 int mem_cgroup_newpage_charge(struct page *page,
2412 			      struct mm_struct *mm, gfp_t gfp_mask)
2413 {
2414 	if (mem_cgroup_disabled())
2415 		return 0;
2416 	/*
2417 	 * If already mapped, we don't have to account.
2418 	 * If page cache, page->mapping has address_space.
2419 	 * But page->mapping may have out-of-use anon_vma pointer,
2420 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2421 	 * is NULL.
2422   	 */
2423 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2424 		return 0;
2425 	if (unlikely(!mm))
2426 		mm = &init_mm;
2427 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2428 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2429 }
2430 
2431 static void
2432 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2433 					enum charge_type ctype);
2434 
2435 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2436 				gfp_t gfp_mask)
2437 {
2438 	int ret;
2439 
2440 	if (mem_cgroup_disabled())
2441 		return 0;
2442 	if (PageCompound(page))
2443 		return 0;
2444 	/*
2445 	 * Corner case handling. This is called from add_to_page_cache()
2446 	 * in usual. But some FS (shmem) precharges this page before calling it
2447 	 * and call add_to_page_cache() with GFP_NOWAIT.
2448 	 *
2449 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2450 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2451 	 * charge twice. (It works but has to pay a bit larger cost.)
2452 	 * And when the page is SwapCache, it should take swap information
2453 	 * into account. This is under lock_page() now.
2454 	 */
2455 	if (!(gfp_mask & __GFP_WAIT)) {
2456 		struct page_cgroup *pc;
2457 
2458 		pc = lookup_page_cgroup(page);
2459 		if (!pc)
2460 			return 0;
2461 		lock_page_cgroup(pc);
2462 		if (PageCgroupUsed(pc)) {
2463 			unlock_page_cgroup(pc);
2464 			return 0;
2465 		}
2466 		unlock_page_cgroup(pc);
2467 	}
2468 
2469 	if (unlikely(!mm))
2470 		mm = &init_mm;
2471 
2472 	if (page_is_file_cache(page))
2473 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2474 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2475 
2476 	/* shmem */
2477 	if (PageSwapCache(page)) {
2478 		struct mem_cgroup *mem = NULL;
2479 
2480 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2481 		if (!ret)
2482 			__mem_cgroup_commit_charge_swapin(page, mem,
2483 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2484 	} else
2485 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2486 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2487 
2488 	return ret;
2489 }
2490 
2491 /*
2492  * While swap-in, try_charge -> commit or cancel, the page is locked.
2493  * And when try_charge() successfully returns, one refcnt to memcg without
2494  * struct page_cgroup is acquired. This refcnt will be consumed by
2495  * "commit()" or removed by "cancel()"
2496  */
2497 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2498 				 struct page *page,
2499 				 gfp_t mask, struct mem_cgroup **ptr)
2500 {
2501 	struct mem_cgroup *mem;
2502 	int ret;
2503 
2504 	if (mem_cgroup_disabled())
2505 		return 0;
2506 
2507 	if (!do_swap_account)
2508 		goto charge_cur_mm;
2509 	/*
2510 	 * A racing thread's fault, or swapoff, may have already updated
2511 	 * the pte, and even removed page from swap cache: in those cases
2512 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2513 	 * KSM case which does need to charge the page.
2514 	 */
2515 	if (!PageSwapCache(page))
2516 		goto charge_cur_mm;
2517 	mem = try_get_mem_cgroup_from_page(page);
2518 	if (!mem)
2519 		goto charge_cur_mm;
2520 	*ptr = mem;
2521 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2522 	css_put(&mem->css);
2523 	return ret;
2524 charge_cur_mm:
2525 	if (unlikely(!mm))
2526 		mm = &init_mm;
2527 	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2528 }
2529 
2530 static void
2531 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2532 					enum charge_type ctype)
2533 {
2534 	struct page_cgroup *pc;
2535 
2536 	if (mem_cgroup_disabled())
2537 		return;
2538 	if (!ptr)
2539 		return;
2540 	cgroup_exclude_rmdir(&ptr->css);
2541 	pc = lookup_page_cgroup(page);
2542 	mem_cgroup_lru_del_before_commit_swapcache(page);
2543 	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2544 	mem_cgroup_lru_add_after_commit_swapcache(page);
2545 	/*
2546 	 * Now swap is on-memory. This means this page may be
2547 	 * counted both as mem and swap....double count.
2548 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2549 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2550 	 * may call delete_from_swap_cache() before reach here.
2551 	 */
2552 	if (do_swap_account && PageSwapCache(page)) {
2553 		swp_entry_t ent = {.val = page_private(page)};
2554 		unsigned short id;
2555 		struct mem_cgroup *memcg;
2556 
2557 		id = swap_cgroup_record(ent, 0);
2558 		rcu_read_lock();
2559 		memcg = mem_cgroup_lookup(id);
2560 		if (memcg) {
2561 			/*
2562 			 * This recorded memcg can be obsolete one. So, avoid
2563 			 * calling css_tryget
2564 			 */
2565 			if (!mem_cgroup_is_root(memcg))
2566 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2567 			mem_cgroup_swap_statistics(memcg, false);
2568 			mem_cgroup_put(memcg);
2569 		}
2570 		rcu_read_unlock();
2571 	}
2572 	/*
2573 	 * At swapin, we may charge account against cgroup which has no tasks.
2574 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2575 	 * In that case, we need to call pre_destroy() again. check it here.
2576 	 */
2577 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2578 }
2579 
2580 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2581 {
2582 	__mem_cgroup_commit_charge_swapin(page, ptr,
2583 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2584 }
2585 
2586 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2587 {
2588 	if (mem_cgroup_disabled())
2589 		return;
2590 	if (!mem)
2591 		return;
2592 	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2593 }
2594 
2595 static void
2596 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2597 	      int page_size)
2598 {
2599 	struct memcg_batch_info *batch = NULL;
2600 	bool uncharge_memsw = true;
2601 	/* If swapout, usage of swap doesn't decrease */
2602 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2603 		uncharge_memsw = false;
2604 
2605 	batch = &current->memcg_batch;
2606 	/*
2607 	 * In usual, we do css_get() when we remember memcg pointer.
2608 	 * But in this case, we keep res->usage until end of a series of
2609 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2610 	 */
2611 	if (!batch->memcg)
2612 		batch->memcg = mem;
2613 	/*
2614 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2615 	 * In those cases, all pages freed continously can be expected to be in
2616 	 * the same cgroup and we have chance to coalesce uncharges.
2617 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2618 	 * because we want to do uncharge as soon as possible.
2619 	 */
2620 
2621 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2622 		goto direct_uncharge;
2623 
2624 	if (page_size != PAGE_SIZE)
2625 		goto direct_uncharge;
2626 
2627 	/*
2628 	 * In typical case, batch->memcg == mem. This means we can
2629 	 * merge a series of uncharges to an uncharge of res_counter.
2630 	 * If not, we uncharge res_counter ony by one.
2631 	 */
2632 	if (batch->memcg != mem)
2633 		goto direct_uncharge;
2634 	/* remember freed charge and uncharge it later */
2635 	batch->bytes += PAGE_SIZE;
2636 	if (uncharge_memsw)
2637 		batch->memsw_bytes += PAGE_SIZE;
2638 	return;
2639 direct_uncharge:
2640 	res_counter_uncharge(&mem->res, page_size);
2641 	if (uncharge_memsw)
2642 		res_counter_uncharge(&mem->memsw, page_size);
2643 	if (unlikely(batch->memcg != mem))
2644 		memcg_oom_recover(mem);
2645 	return;
2646 }
2647 
2648 /*
2649  * uncharge if !page_mapped(page)
2650  */
2651 static struct mem_cgroup *
2652 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2653 {
2654 	int count;
2655 	struct page_cgroup *pc;
2656 	struct mem_cgroup *mem = NULL;
2657 	int page_size = PAGE_SIZE;
2658 
2659 	if (mem_cgroup_disabled())
2660 		return NULL;
2661 
2662 	if (PageSwapCache(page))
2663 		return NULL;
2664 
2665 	if (PageTransHuge(page)) {
2666 		page_size <<= compound_order(page);
2667 		VM_BUG_ON(!PageTransHuge(page));
2668 	}
2669 
2670 	count = page_size >> PAGE_SHIFT;
2671 	/*
2672 	 * Check if our page_cgroup is valid
2673 	 */
2674 	pc = lookup_page_cgroup(page);
2675 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2676 		return NULL;
2677 
2678 	lock_page_cgroup(pc);
2679 
2680 	mem = pc->mem_cgroup;
2681 
2682 	if (!PageCgroupUsed(pc))
2683 		goto unlock_out;
2684 
2685 	switch (ctype) {
2686 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2687 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2688 		/* See mem_cgroup_prepare_migration() */
2689 		if (page_mapped(page) || PageCgroupMigration(pc))
2690 			goto unlock_out;
2691 		break;
2692 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2693 		if (!PageAnon(page)) {	/* Shared memory */
2694 			if (page->mapping && !page_is_file_cache(page))
2695 				goto unlock_out;
2696 		} else if (page_mapped(page)) /* Anon */
2697 				goto unlock_out;
2698 		break;
2699 	default:
2700 		break;
2701 	}
2702 
2703 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2704 
2705 	ClearPageCgroupUsed(pc);
2706 	/*
2707 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2708 	 * freed from LRU. This is safe because uncharged page is expected not
2709 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2710 	 * special functions.
2711 	 */
2712 
2713 	unlock_page_cgroup(pc);
2714 	/*
2715 	 * even after unlock, we have mem->res.usage here and this memcg
2716 	 * will never be freed.
2717 	 */
2718 	memcg_check_events(mem, page);
2719 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2720 		mem_cgroup_swap_statistics(mem, true);
2721 		mem_cgroup_get(mem);
2722 	}
2723 	if (!mem_cgroup_is_root(mem))
2724 		__do_uncharge(mem, ctype, page_size);
2725 
2726 	return mem;
2727 
2728 unlock_out:
2729 	unlock_page_cgroup(pc);
2730 	return NULL;
2731 }
2732 
2733 void mem_cgroup_uncharge_page(struct page *page)
2734 {
2735 	/* early check. */
2736 	if (page_mapped(page))
2737 		return;
2738 	if (page->mapping && !PageAnon(page))
2739 		return;
2740 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2741 }
2742 
2743 void mem_cgroup_uncharge_cache_page(struct page *page)
2744 {
2745 	VM_BUG_ON(page_mapped(page));
2746 	VM_BUG_ON(page->mapping);
2747 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2748 }
2749 
2750 /*
2751  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2752  * In that cases, pages are freed continuously and we can expect pages
2753  * are in the same memcg. All these calls itself limits the number of
2754  * pages freed at once, then uncharge_start/end() is called properly.
2755  * This may be called prural(2) times in a context,
2756  */
2757 
2758 void mem_cgroup_uncharge_start(void)
2759 {
2760 	current->memcg_batch.do_batch++;
2761 	/* We can do nest. */
2762 	if (current->memcg_batch.do_batch == 1) {
2763 		current->memcg_batch.memcg = NULL;
2764 		current->memcg_batch.bytes = 0;
2765 		current->memcg_batch.memsw_bytes = 0;
2766 	}
2767 }
2768 
2769 void mem_cgroup_uncharge_end(void)
2770 {
2771 	struct memcg_batch_info *batch = &current->memcg_batch;
2772 
2773 	if (!batch->do_batch)
2774 		return;
2775 
2776 	batch->do_batch--;
2777 	if (batch->do_batch) /* If stacked, do nothing. */
2778 		return;
2779 
2780 	if (!batch->memcg)
2781 		return;
2782 	/*
2783 	 * This "batch->memcg" is valid without any css_get/put etc...
2784 	 * bacause we hide charges behind us.
2785 	 */
2786 	if (batch->bytes)
2787 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2788 	if (batch->memsw_bytes)
2789 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2790 	memcg_oom_recover(batch->memcg);
2791 	/* forget this pointer (for sanity check) */
2792 	batch->memcg = NULL;
2793 }
2794 
2795 #ifdef CONFIG_SWAP
2796 /*
2797  * called after __delete_from_swap_cache() and drop "page" account.
2798  * memcg information is recorded to swap_cgroup of "ent"
2799  */
2800 void
2801 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2802 {
2803 	struct mem_cgroup *memcg;
2804 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2805 
2806 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2807 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2808 
2809 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2810 
2811 	/*
2812 	 * record memcg information,  if swapout && memcg != NULL,
2813 	 * mem_cgroup_get() was called in uncharge().
2814 	 */
2815 	if (do_swap_account && swapout && memcg)
2816 		swap_cgroup_record(ent, css_id(&memcg->css));
2817 }
2818 #endif
2819 
2820 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2821 /*
2822  * called from swap_entry_free(). remove record in swap_cgroup and
2823  * uncharge "memsw" account.
2824  */
2825 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2826 {
2827 	struct mem_cgroup *memcg;
2828 	unsigned short id;
2829 
2830 	if (!do_swap_account)
2831 		return;
2832 
2833 	id = swap_cgroup_record(ent, 0);
2834 	rcu_read_lock();
2835 	memcg = mem_cgroup_lookup(id);
2836 	if (memcg) {
2837 		/*
2838 		 * We uncharge this because swap is freed.
2839 		 * This memcg can be obsolete one. We avoid calling css_tryget
2840 		 */
2841 		if (!mem_cgroup_is_root(memcg))
2842 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2843 		mem_cgroup_swap_statistics(memcg, false);
2844 		mem_cgroup_put(memcg);
2845 	}
2846 	rcu_read_unlock();
2847 }
2848 
2849 /**
2850  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2851  * @entry: swap entry to be moved
2852  * @from:  mem_cgroup which the entry is moved from
2853  * @to:  mem_cgroup which the entry is moved to
2854  * @need_fixup: whether we should fixup res_counters and refcounts.
2855  *
2856  * It succeeds only when the swap_cgroup's record for this entry is the same
2857  * as the mem_cgroup's id of @from.
2858  *
2859  * Returns 0 on success, -EINVAL on failure.
2860  *
2861  * The caller must have charged to @to, IOW, called res_counter_charge() about
2862  * both res and memsw, and called css_get().
2863  */
2864 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2865 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2866 {
2867 	unsigned short old_id, new_id;
2868 
2869 	old_id = css_id(&from->css);
2870 	new_id = css_id(&to->css);
2871 
2872 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2873 		mem_cgroup_swap_statistics(from, false);
2874 		mem_cgroup_swap_statistics(to, true);
2875 		/*
2876 		 * This function is only called from task migration context now.
2877 		 * It postpones res_counter and refcount handling till the end
2878 		 * of task migration(mem_cgroup_clear_mc()) for performance
2879 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2880 		 * because if the process that has been moved to @to does
2881 		 * swap-in, the refcount of @to might be decreased to 0.
2882 		 */
2883 		mem_cgroup_get(to);
2884 		if (need_fixup) {
2885 			if (!mem_cgroup_is_root(from))
2886 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2887 			mem_cgroup_put(from);
2888 			/*
2889 			 * we charged both to->res and to->memsw, so we should
2890 			 * uncharge to->res.
2891 			 */
2892 			if (!mem_cgroup_is_root(to))
2893 				res_counter_uncharge(&to->res, PAGE_SIZE);
2894 		}
2895 		return 0;
2896 	}
2897 	return -EINVAL;
2898 }
2899 #else
2900 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2901 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2902 {
2903 	return -EINVAL;
2904 }
2905 #endif
2906 
2907 /*
2908  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2909  * page belongs to.
2910  */
2911 int mem_cgroup_prepare_migration(struct page *page,
2912 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2913 {
2914 	struct page_cgroup *pc;
2915 	struct mem_cgroup *mem = NULL;
2916 	enum charge_type ctype;
2917 	int ret = 0;
2918 
2919 	VM_BUG_ON(PageTransHuge(page));
2920 	if (mem_cgroup_disabled())
2921 		return 0;
2922 
2923 	pc = lookup_page_cgroup(page);
2924 	lock_page_cgroup(pc);
2925 	if (PageCgroupUsed(pc)) {
2926 		mem = pc->mem_cgroup;
2927 		css_get(&mem->css);
2928 		/*
2929 		 * At migrating an anonymous page, its mapcount goes down
2930 		 * to 0 and uncharge() will be called. But, even if it's fully
2931 		 * unmapped, migration may fail and this page has to be
2932 		 * charged again. We set MIGRATION flag here and delay uncharge
2933 		 * until end_migration() is called
2934 		 *
2935 		 * Corner Case Thinking
2936 		 * A)
2937 		 * When the old page was mapped as Anon and it's unmap-and-freed
2938 		 * while migration was ongoing.
2939 		 * If unmap finds the old page, uncharge() of it will be delayed
2940 		 * until end_migration(). If unmap finds a new page, it's
2941 		 * uncharged when it make mapcount to be 1->0. If unmap code
2942 		 * finds swap_migration_entry, the new page will not be mapped
2943 		 * and end_migration() will find it(mapcount==0).
2944 		 *
2945 		 * B)
2946 		 * When the old page was mapped but migraion fails, the kernel
2947 		 * remaps it. A charge for it is kept by MIGRATION flag even
2948 		 * if mapcount goes down to 0. We can do remap successfully
2949 		 * without charging it again.
2950 		 *
2951 		 * C)
2952 		 * The "old" page is under lock_page() until the end of
2953 		 * migration, so, the old page itself will not be swapped-out.
2954 		 * If the new page is swapped out before end_migraton, our
2955 		 * hook to usual swap-out path will catch the event.
2956 		 */
2957 		if (PageAnon(page))
2958 			SetPageCgroupMigration(pc);
2959 	}
2960 	unlock_page_cgroup(pc);
2961 	/*
2962 	 * If the page is not charged at this point,
2963 	 * we return here.
2964 	 */
2965 	if (!mem)
2966 		return 0;
2967 
2968 	*ptr = mem;
2969 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2970 	css_put(&mem->css);/* drop extra refcnt */
2971 	if (ret || *ptr == NULL) {
2972 		if (PageAnon(page)) {
2973 			lock_page_cgroup(pc);
2974 			ClearPageCgroupMigration(pc);
2975 			unlock_page_cgroup(pc);
2976 			/*
2977 			 * The old page may be fully unmapped while we kept it.
2978 			 */
2979 			mem_cgroup_uncharge_page(page);
2980 		}
2981 		return -ENOMEM;
2982 	}
2983 	/*
2984 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2985 	 * is called before end_migration, we can catch all events on this new
2986 	 * page. In the case new page is migrated but not remapped, new page's
2987 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2988 	 */
2989 	pc = lookup_page_cgroup(newpage);
2990 	if (PageAnon(page))
2991 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2992 	else if (page_is_file_cache(page))
2993 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2994 	else
2995 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2996 	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2997 	return ret;
2998 }
2999 
3000 /* remove redundant charge if migration failed*/
3001 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3002 	struct page *oldpage, struct page *newpage, bool migration_ok)
3003 {
3004 	struct page *used, *unused;
3005 	struct page_cgroup *pc;
3006 
3007 	if (!mem)
3008 		return;
3009 	/* blocks rmdir() */
3010 	cgroup_exclude_rmdir(&mem->css);
3011 	if (!migration_ok) {
3012 		used = oldpage;
3013 		unused = newpage;
3014 	} else {
3015 		used = newpage;
3016 		unused = oldpage;
3017 	}
3018 	/*
3019 	 * We disallowed uncharge of pages under migration because mapcount
3020 	 * of the page goes down to zero, temporarly.
3021 	 * Clear the flag and check the page should be charged.
3022 	 */
3023 	pc = lookup_page_cgroup(oldpage);
3024 	lock_page_cgroup(pc);
3025 	ClearPageCgroupMigration(pc);
3026 	unlock_page_cgroup(pc);
3027 
3028 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3029 
3030 	/*
3031 	 * If a page is a file cache, radix-tree replacement is very atomic
3032 	 * and we can skip this check. When it was an Anon page, its mapcount
3033 	 * goes down to 0. But because we added MIGRATION flage, it's not
3034 	 * uncharged yet. There are several case but page->mapcount check
3035 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3036 	 * check. (see prepare_charge() also)
3037 	 */
3038 	if (PageAnon(used))
3039 		mem_cgroup_uncharge_page(used);
3040 	/*
3041 	 * At migration, we may charge account against cgroup which has no
3042 	 * tasks.
3043 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3044 	 * In that case, we need to call pre_destroy() again. check it here.
3045 	 */
3046 	cgroup_release_and_wakeup_rmdir(&mem->css);
3047 }
3048 
3049 /*
3050  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3051  * Calling hierarchical_reclaim is not enough because we should update
3052  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3053  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3054  * not from the memcg which this page would be charged to.
3055  * try_charge_swapin does all of these works properly.
3056  */
3057 int mem_cgroup_shmem_charge_fallback(struct page *page,
3058 			    struct mm_struct *mm,
3059 			    gfp_t gfp_mask)
3060 {
3061 	struct mem_cgroup *mem = NULL;
3062 	int ret;
3063 
3064 	if (mem_cgroup_disabled())
3065 		return 0;
3066 
3067 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3068 	if (!ret)
3069 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3070 
3071 	return ret;
3072 }
3073 
3074 static DEFINE_MUTEX(set_limit_mutex);
3075 
3076 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3077 				unsigned long long val)
3078 {
3079 	int retry_count;
3080 	u64 memswlimit, memlimit;
3081 	int ret = 0;
3082 	int children = mem_cgroup_count_children(memcg);
3083 	u64 curusage, oldusage;
3084 	int enlarge;
3085 
3086 	/*
3087 	 * For keeping hierarchical_reclaim simple, how long we should retry
3088 	 * is depends on callers. We set our retry-count to be function
3089 	 * of # of children which we should visit in this loop.
3090 	 */
3091 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3092 
3093 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3094 
3095 	enlarge = 0;
3096 	while (retry_count) {
3097 		if (signal_pending(current)) {
3098 			ret = -EINTR;
3099 			break;
3100 		}
3101 		/*
3102 		 * Rather than hide all in some function, I do this in
3103 		 * open coded manner. You see what this really does.
3104 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3105 		 */
3106 		mutex_lock(&set_limit_mutex);
3107 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3108 		if (memswlimit < val) {
3109 			ret = -EINVAL;
3110 			mutex_unlock(&set_limit_mutex);
3111 			break;
3112 		}
3113 
3114 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3115 		if (memlimit < val)
3116 			enlarge = 1;
3117 
3118 		ret = res_counter_set_limit(&memcg->res, val);
3119 		if (!ret) {
3120 			if (memswlimit == val)
3121 				memcg->memsw_is_minimum = true;
3122 			else
3123 				memcg->memsw_is_minimum = false;
3124 		}
3125 		mutex_unlock(&set_limit_mutex);
3126 
3127 		if (!ret)
3128 			break;
3129 
3130 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3131 						MEM_CGROUP_RECLAIM_SHRINK);
3132 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3133 		/* Usage is reduced ? */
3134   		if (curusage >= oldusage)
3135 			retry_count--;
3136 		else
3137 			oldusage = curusage;
3138 	}
3139 	if (!ret && enlarge)
3140 		memcg_oom_recover(memcg);
3141 
3142 	return ret;
3143 }
3144 
3145 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3146 					unsigned long long val)
3147 {
3148 	int retry_count;
3149 	u64 memlimit, memswlimit, oldusage, curusage;
3150 	int children = mem_cgroup_count_children(memcg);
3151 	int ret = -EBUSY;
3152 	int enlarge = 0;
3153 
3154 	/* see mem_cgroup_resize_res_limit */
3155  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3156 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3157 	while (retry_count) {
3158 		if (signal_pending(current)) {
3159 			ret = -EINTR;
3160 			break;
3161 		}
3162 		/*
3163 		 * Rather than hide all in some function, I do this in
3164 		 * open coded manner. You see what this really does.
3165 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3166 		 */
3167 		mutex_lock(&set_limit_mutex);
3168 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3169 		if (memlimit > val) {
3170 			ret = -EINVAL;
3171 			mutex_unlock(&set_limit_mutex);
3172 			break;
3173 		}
3174 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3175 		if (memswlimit < val)
3176 			enlarge = 1;
3177 		ret = res_counter_set_limit(&memcg->memsw, val);
3178 		if (!ret) {
3179 			if (memlimit == val)
3180 				memcg->memsw_is_minimum = true;
3181 			else
3182 				memcg->memsw_is_minimum = false;
3183 		}
3184 		mutex_unlock(&set_limit_mutex);
3185 
3186 		if (!ret)
3187 			break;
3188 
3189 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3190 						MEM_CGROUP_RECLAIM_NOSWAP |
3191 						MEM_CGROUP_RECLAIM_SHRINK);
3192 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3193 		/* Usage is reduced ? */
3194 		if (curusage >= oldusage)
3195 			retry_count--;
3196 		else
3197 			oldusage = curusage;
3198 	}
3199 	if (!ret && enlarge)
3200 		memcg_oom_recover(memcg);
3201 	return ret;
3202 }
3203 
3204 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3205 					    gfp_t gfp_mask)
3206 {
3207 	unsigned long nr_reclaimed = 0;
3208 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3209 	unsigned long reclaimed;
3210 	int loop = 0;
3211 	struct mem_cgroup_tree_per_zone *mctz;
3212 	unsigned long long excess;
3213 
3214 	if (order > 0)
3215 		return 0;
3216 
3217 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3218 	/*
3219 	 * This loop can run a while, specially if mem_cgroup's continuously
3220 	 * keep exceeding their soft limit and putting the system under
3221 	 * pressure
3222 	 */
3223 	do {
3224 		if (next_mz)
3225 			mz = next_mz;
3226 		else
3227 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3228 		if (!mz)
3229 			break;
3230 
3231 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3232 						gfp_mask,
3233 						MEM_CGROUP_RECLAIM_SOFT);
3234 		nr_reclaimed += reclaimed;
3235 		spin_lock(&mctz->lock);
3236 
3237 		/*
3238 		 * If we failed to reclaim anything from this memory cgroup
3239 		 * it is time to move on to the next cgroup
3240 		 */
3241 		next_mz = NULL;
3242 		if (!reclaimed) {
3243 			do {
3244 				/*
3245 				 * Loop until we find yet another one.
3246 				 *
3247 				 * By the time we get the soft_limit lock
3248 				 * again, someone might have aded the
3249 				 * group back on the RB tree. Iterate to
3250 				 * make sure we get a different mem.
3251 				 * mem_cgroup_largest_soft_limit_node returns
3252 				 * NULL if no other cgroup is present on
3253 				 * the tree
3254 				 */
3255 				next_mz =
3256 				__mem_cgroup_largest_soft_limit_node(mctz);
3257 				if (next_mz == mz) {
3258 					css_put(&next_mz->mem->css);
3259 					next_mz = NULL;
3260 				} else /* next_mz == NULL or other memcg */
3261 					break;
3262 			} while (1);
3263 		}
3264 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3265 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3266 		/*
3267 		 * One school of thought says that we should not add
3268 		 * back the node to the tree if reclaim returns 0.
3269 		 * But our reclaim could return 0, simply because due
3270 		 * to priority we are exposing a smaller subset of
3271 		 * memory to reclaim from. Consider this as a longer
3272 		 * term TODO.
3273 		 */
3274 		/* If excess == 0, no tree ops */
3275 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3276 		spin_unlock(&mctz->lock);
3277 		css_put(&mz->mem->css);
3278 		loop++;
3279 		/*
3280 		 * Could not reclaim anything and there are no more
3281 		 * mem cgroups to try or we seem to be looping without
3282 		 * reclaiming anything.
3283 		 */
3284 		if (!nr_reclaimed &&
3285 			(next_mz == NULL ||
3286 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3287 			break;
3288 	} while (!nr_reclaimed);
3289 	if (next_mz)
3290 		css_put(&next_mz->mem->css);
3291 	return nr_reclaimed;
3292 }
3293 
3294 /*
3295  * This routine traverse page_cgroup in given list and drop them all.
3296  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3297  */
3298 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3299 				int node, int zid, enum lru_list lru)
3300 {
3301 	struct zone *zone;
3302 	struct mem_cgroup_per_zone *mz;
3303 	struct page_cgroup *pc, *busy;
3304 	unsigned long flags, loop;
3305 	struct list_head *list;
3306 	int ret = 0;
3307 
3308 	zone = &NODE_DATA(node)->node_zones[zid];
3309 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3310 	list = &mz->lists[lru];
3311 
3312 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3313 	/* give some margin against EBUSY etc...*/
3314 	loop += 256;
3315 	busy = NULL;
3316 	while (loop--) {
3317 		ret = 0;
3318 		spin_lock_irqsave(&zone->lru_lock, flags);
3319 		if (list_empty(list)) {
3320 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3321 			break;
3322 		}
3323 		pc = list_entry(list->prev, struct page_cgroup, lru);
3324 		if (busy == pc) {
3325 			list_move(&pc->lru, list);
3326 			busy = NULL;
3327 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3328 			continue;
3329 		}
3330 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3331 
3332 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3333 		if (ret == -ENOMEM)
3334 			break;
3335 
3336 		if (ret == -EBUSY || ret == -EINVAL) {
3337 			/* found lock contention or "pc" is obsolete. */
3338 			busy = pc;
3339 			cond_resched();
3340 		} else
3341 			busy = NULL;
3342 	}
3343 
3344 	if (!ret && !list_empty(list))
3345 		return -EBUSY;
3346 	return ret;
3347 }
3348 
3349 /*
3350  * make mem_cgroup's charge to be 0 if there is no task.
3351  * This enables deleting this mem_cgroup.
3352  */
3353 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3354 {
3355 	int ret;
3356 	int node, zid, shrink;
3357 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3358 	struct cgroup *cgrp = mem->css.cgroup;
3359 
3360 	css_get(&mem->css);
3361 
3362 	shrink = 0;
3363 	/* should free all ? */
3364 	if (free_all)
3365 		goto try_to_free;
3366 move_account:
3367 	do {
3368 		ret = -EBUSY;
3369 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3370 			goto out;
3371 		ret = -EINTR;
3372 		if (signal_pending(current))
3373 			goto out;
3374 		/* This is for making all *used* pages to be on LRU. */
3375 		lru_add_drain_all();
3376 		drain_all_stock_sync();
3377 		ret = 0;
3378 		mem_cgroup_start_move(mem);
3379 		for_each_node_state(node, N_HIGH_MEMORY) {
3380 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3381 				enum lru_list l;
3382 				for_each_lru(l) {
3383 					ret = mem_cgroup_force_empty_list(mem,
3384 							node, zid, l);
3385 					if (ret)
3386 						break;
3387 				}
3388 			}
3389 			if (ret)
3390 				break;
3391 		}
3392 		mem_cgroup_end_move(mem);
3393 		memcg_oom_recover(mem);
3394 		/* it seems parent cgroup doesn't have enough mem */
3395 		if (ret == -ENOMEM)
3396 			goto try_to_free;
3397 		cond_resched();
3398 	/* "ret" should also be checked to ensure all lists are empty. */
3399 	} while (mem->res.usage > 0 || ret);
3400 out:
3401 	css_put(&mem->css);
3402 	return ret;
3403 
3404 try_to_free:
3405 	/* returns EBUSY if there is a task or if we come here twice. */
3406 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3407 		ret = -EBUSY;
3408 		goto out;
3409 	}
3410 	/* we call try-to-free pages for make this cgroup empty */
3411 	lru_add_drain_all();
3412 	/* try to free all pages in this cgroup */
3413 	shrink = 1;
3414 	while (nr_retries && mem->res.usage > 0) {
3415 		int progress;
3416 
3417 		if (signal_pending(current)) {
3418 			ret = -EINTR;
3419 			goto out;
3420 		}
3421 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3422 						false, get_swappiness(mem));
3423 		if (!progress) {
3424 			nr_retries--;
3425 			/* maybe some writeback is necessary */
3426 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3427 		}
3428 
3429 	}
3430 	lru_add_drain();
3431 	/* try move_account...there may be some *locked* pages. */
3432 	goto move_account;
3433 }
3434 
3435 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3436 {
3437 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3438 }
3439 
3440 
3441 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3442 {
3443 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3444 }
3445 
3446 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3447 					u64 val)
3448 {
3449 	int retval = 0;
3450 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3451 	struct cgroup *parent = cont->parent;
3452 	struct mem_cgroup *parent_mem = NULL;
3453 
3454 	if (parent)
3455 		parent_mem = mem_cgroup_from_cont(parent);
3456 
3457 	cgroup_lock();
3458 	/*
3459 	 * If parent's use_hierarchy is set, we can't make any modifications
3460 	 * in the child subtrees. If it is unset, then the change can
3461 	 * occur, provided the current cgroup has no children.
3462 	 *
3463 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3464 	 * set if there are no children.
3465 	 */
3466 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3467 				(val == 1 || val == 0)) {
3468 		if (list_empty(&cont->children))
3469 			mem->use_hierarchy = val;
3470 		else
3471 			retval = -EBUSY;
3472 	} else
3473 		retval = -EINVAL;
3474 	cgroup_unlock();
3475 
3476 	return retval;
3477 }
3478 
3479 
3480 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3481 				enum mem_cgroup_stat_index idx)
3482 {
3483 	struct mem_cgroup *iter;
3484 	s64 val = 0;
3485 
3486 	/* each per cpu's value can be minus.Then, use s64 */
3487 	for_each_mem_cgroup_tree(iter, mem)
3488 		val += mem_cgroup_read_stat(iter, idx);
3489 
3490 	if (val < 0) /* race ? */
3491 		val = 0;
3492 	return val;
3493 }
3494 
3495 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3496 {
3497 	u64 val;
3498 
3499 	if (!mem_cgroup_is_root(mem)) {
3500 		if (!swap)
3501 			return res_counter_read_u64(&mem->res, RES_USAGE);
3502 		else
3503 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3504 	}
3505 
3506 	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3507 	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3508 
3509 	if (swap)
3510 		val += mem_cgroup_get_recursive_idx_stat(mem,
3511 				MEM_CGROUP_STAT_SWAPOUT);
3512 
3513 	return val << PAGE_SHIFT;
3514 }
3515 
3516 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3517 {
3518 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3519 	u64 val;
3520 	int type, name;
3521 
3522 	type = MEMFILE_TYPE(cft->private);
3523 	name = MEMFILE_ATTR(cft->private);
3524 	switch (type) {
3525 	case _MEM:
3526 		if (name == RES_USAGE)
3527 			val = mem_cgroup_usage(mem, false);
3528 		else
3529 			val = res_counter_read_u64(&mem->res, name);
3530 		break;
3531 	case _MEMSWAP:
3532 		if (name == RES_USAGE)
3533 			val = mem_cgroup_usage(mem, true);
3534 		else
3535 			val = res_counter_read_u64(&mem->memsw, name);
3536 		break;
3537 	default:
3538 		BUG();
3539 		break;
3540 	}
3541 	return val;
3542 }
3543 /*
3544  * The user of this function is...
3545  * RES_LIMIT.
3546  */
3547 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3548 			    const char *buffer)
3549 {
3550 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3551 	int type, name;
3552 	unsigned long long val;
3553 	int ret;
3554 
3555 	type = MEMFILE_TYPE(cft->private);
3556 	name = MEMFILE_ATTR(cft->private);
3557 	switch (name) {
3558 	case RES_LIMIT:
3559 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3560 			ret = -EINVAL;
3561 			break;
3562 		}
3563 		/* This function does all necessary parse...reuse it */
3564 		ret = res_counter_memparse_write_strategy(buffer, &val);
3565 		if (ret)
3566 			break;
3567 		if (type == _MEM)
3568 			ret = mem_cgroup_resize_limit(memcg, val);
3569 		else
3570 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3571 		break;
3572 	case RES_SOFT_LIMIT:
3573 		ret = res_counter_memparse_write_strategy(buffer, &val);
3574 		if (ret)
3575 			break;
3576 		/*
3577 		 * For memsw, soft limits are hard to implement in terms
3578 		 * of semantics, for now, we support soft limits for
3579 		 * control without swap
3580 		 */
3581 		if (type == _MEM)
3582 			ret = res_counter_set_soft_limit(&memcg->res, val);
3583 		else
3584 			ret = -EINVAL;
3585 		break;
3586 	default:
3587 		ret = -EINVAL; /* should be BUG() ? */
3588 		break;
3589 	}
3590 	return ret;
3591 }
3592 
3593 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3594 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3595 {
3596 	struct cgroup *cgroup;
3597 	unsigned long long min_limit, min_memsw_limit, tmp;
3598 
3599 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3600 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3601 	cgroup = memcg->css.cgroup;
3602 	if (!memcg->use_hierarchy)
3603 		goto out;
3604 
3605 	while (cgroup->parent) {
3606 		cgroup = cgroup->parent;
3607 		memcg = mem_cgroup_from_cont(cgroup);
3608 		if (!memcg->use_hierarchy)
3609 			break;
3610 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3611 		min_limit = min(min_limit, tmp);
3612 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3613 		min_memsw_limit = min(min_memsw_limit, tmp);
3614 	}
3615 out:
3616 	*mem_limit = min_limit;
3617 	*memsw_limit = min_memsw_limit;
3618 	return;
3619 }
3620 
3621 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3622 {
3623 	struct mem_cgroup *mem;
3624 	int type, name;
3625 
3626 	mem = mem_cgroup_from_cont(cont);
3627 	type = MEMFILE_TYPE(event);
3628 	name = MEMFILE_ATTR(event);
3629 	switch (name) {
3630 	case RES_MAX_USAGE:
3631 		if (type == _MEM)
3632 			res_counter_reset_max(&mem->res);
3633 		else
3634 			res_counter_reset_max(&mem->memsw);
3635 		break;
3636 	case RES_FAILCNT:
3637 		if (type == _MEM)
3638 			res_counter_reset_failcnt(&mem->res);
3639 		else
3640 			res_counter_reset_failcnt(&mem->memsw);
3641 		break;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3648 					struct cftype *cft)
3649 {
3650 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3651 }
3652 
3653 #ifdef CONFIG_MMU
3654 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3655 					struct cftype *cft, u64 val)
3656 {
3657 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3658 
3659 	if (val >= (1 << NR_MOVE_TYPE))
3660 		return -EINVAL;
3661 	/*
3662 	 * We check this value several times in both in can_attach() and
3663 	 * attach(), so we need cgroup lock to prevent this value from being
3664 	 * inconsistent.
3665 	 */
3666 	cgroup_lock();
3667 	mem->move_charge_at_immigrate = val;
3668 	cgroup_unlock();
3669 
3670 	return 0;
3671 }
3672 #else
3673 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3674 					struct cftype *cft, u64 val)
3675 {
3676 	return -ENOSYS;
3677 }
3678 #endif
3679 
3680 
3681 /* For read statistics */
3682 enum {
3683 	MCS_CACHE,
3684 	MCS_RSS,
3685 	MCS_FILE_MAPPED,
3686 	MCS_PGPGIN,
3687 	MCS_PGPGOUT,
3688 	MCS_SWAP,
3689 	MCS_INACTIVE_ANON,
3690 	MCS_ACTIVE_ANON,
3691 	MCS_INACTIVE_FILE,
3692 	MCS_ACTIVE_FILE,
3693 	MCS_UNEVICTABLE,
3694 	NR_MCS_STAT,
3695 };
3696 
3697 struct mcs_total_stat {
3698 	s64 stat[NR_MCS_STAT];
3699 };
3700 
3701 struct {
3702 	char *local_name;
3703 	char *total_name;
3704 } memcg_stat_strings[NR_MCS_STAT] = {
3705 	{"cache", "total_cache"},
3706 	{"rss", "total_rss"},
3707 	{"mapped_file", "total_mapped_file"},
3708 	{"pgpgin", "total_pgpgin"},
3709 	{"pgpgout", "total_pgpgout"},
3710 	{"swap", "total_swap"},
3711 	{"inactive_anon", "total_inactive_anon"},
3712 	{"active_anon", "total_active_anon"},
3713 	{"inactive_file", "total_inactive_file"},
3714 	{"active_file", "total_active_file"},
3715 	{"unevictable", "total_unevictable"}
3716 };
3717 
3718 
3719 static void
3720 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3721 {
3722 	s64 val;
3723 
3724 	/* per cpu stat */
3725 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3726 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3727 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3728 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3729 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3730 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3731 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3732 	s->stat[MCS_PGPGIN] += val;
3733 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3734 	s->stat[MCS_PGPGOUT] += val;
3735 	if (do_swap_account) {
3736 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3737 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3738 	}
3739 
3740 	/* per zone stat */
3741 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3742 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3743 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3744 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3745 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3746 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3747 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3748 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3749 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3750 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3751 }
3752 
3753 static void
3754 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3755 {
3756 	struct mem_cgroup *iter;
3757 
3758 	for_each_mem_cgroup_tree(iter, mem)
3759 		mem_cgroup_get_local_stat(iter, s);
3760 }
3761 
3762 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3763 				 struct cgroup_map_cb *cb)
3764 {
3765 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3766 	struct mcs_total_stat mystat;
3767 	int i;
3768 
3769 	memset(&mystat, 0, sizeof(mystat));
3770 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3771 
3772 	for (i = 0; i < NR_MCS_STAT; i++) {
3773 		if (i == MCS_SWAP && !do_swap_account)
3774 			continue;
3775 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3776 	}
3777 
3778 	/* Hierarchical information */
3779 	{
3780 		unsigned long long limit, memsw_limit;
3781 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3782 		cb->fill(cb, "hierarchical_memory_limit", limit);
3783 		if (do_swap_account)
3784 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3785 	}
3786 
3787 	memset(&mystat, 0, sizeof(mystat));
3788 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3789 	for (i = 0; i < NR_MCS_STAT; i++) {
3790 		if (i == MCS_SWAP && !do_swap_account)
3791 			continue;
3792 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3793 	}
3794 
3795 #ifdef CONFIG_DEBUG_VM
3796 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3797 
3798 	{
3799 		int nid, zid;
3800 		struct mem_cgroup_per_zone *mz;
3801 		unsigned long recent_rotated[2] = {0, 0};
3802 		unsigned long recent_scanned[2] = {0, 0};
3803 
3804 		for_each_online_node(nid)
3805 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3806 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3807 
3808 				recent_rotated[0] +=
3809 					mz->reclaim_stat.recent_rotated[0];
3810 				recent_rotated[1] +=
3811 					mz->reclaim_stat.recent_rotated[1];
3812 				recent_scanned[0] +=
3813 					mz->reclaim_stat.recent_scanned[0];
3814 				recent_scanned[1] +=
3815 					mz->reclaim_stat.recent_scanned[1];
3816 			}
3817 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3818 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3819 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3820 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3821 	}
3822 #endif
3823 
3824 	return 0;
3825 }
3826 
3827 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3828 {
3829 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3830 
3831 	return get_swappiness(memcg);
3832 }
3833 
3834 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3835 				       u64 val)
3836 {
3837 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3838 	struct mem_cgroup *parent;
3839 
3840 	if (val > 100)
3841 		return -EINVAL;
3842 
3843 	if (cgrp->parent == NULL)
3844 		return -EINVAL;
3845 
3846 	parent = mem_cgroup_from_cont(cgrp->parent);
3847 
3848 	cgroup_lock();
3849 
3850 	/* If under hierarchy, only empty-root can set this value */
3851 	if ((parent->use_hierarchy) ||
3852 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3853 		cgroup_unlock();
3854 		return -EINVAL;
3855 	}
3856 
3857 	spin_lock(&memcg->reclaim_param_lock);
3858 	memcg->swappiness = val;
3859 	spin_unlock(&memcg->reclaim_param_lock);
3860 
3861 	cgroup_unlock();
3862 
3863 	return 0;
3864 }
3865 
3866 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3867 {
3868 	struct mem_cgroup_threshold_ary *t;
3869 	u64 usage;
3870 	int i;
3871 
3872 	rcu_read_lock();
3873 	if (!swap)
3874 		t = rcu_dereference(memcg->thresholds.primary);
3875 	else
3876 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3877 
3878 	if (!t)
3879 		goto unlock;
3880 
3881 	usage = mem_cgroup_usage(memcg, swap);
3882 
3883 	/*
3884 	 * current_threshold points to threshold just below usage.
3885 	 * If it's not true, a threshold was crossed after last
3886 	 * call of __mem_cgroup_threshold().
3887 	 */
3888 	i = t->current_threshold;
3889 
3890 	/*
3891 	 * Iterate backward over array of thresholds starting from
3892 	 * current_threshold and check if a threshold is crossed.
3893 	 * If none of thresholds below usage is crossed, we read
3894 	 * only one element of the array here.
3895 	 */
3896 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3897 		eventfd_signal(t->entries[i].eventfd, 1);
3898 
3899 	/* i = current_threshold + 1 */
3900 	i++;
3901 
3902 	/*
3903 	 * Iterate forward over array of thresholds starting from
3904 	 * current_threshold+1 and check if a threshold is crossed.
3905 	 * If none of thresholds above usage is crossed, we read
3906 	 * only one element of the array here.
3907 	 */
3908 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3909 		eventfd_signal(t->entries[i].eventfd, 1);
3910 
3911 	/* Update current_threshold */
3912 	t->current_threshold = i - 1;
3913 unlock:
3914 	rcu_read_unlock();
3915 }
3916 
3917 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3918 {
3919 	while (memcg) {
3920 		__mem_cgroup_threshold(memcg, false);
3921 		if (do_swap_account)
3922 			__mem_cgroup_threshold(memcg, true);
3923 
3924 		memcg = parent_mem_cgroup(memcg);
3925 	}
3926 }
3927 
3928 static int compare_thresholds(const void *a, const void *b)
3929 {
3930 	const struct mem_cgroup_threshold *_a = a;
3931 	const struct mem_cgroup_threshold *_b = b;
3932 
3933 	return _a->threshold - _b->threshold;
3934 }
3935 
3936 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3937 {
3938 	struct mem_cgroup_eventfd_list *ev;
3939 
3940 	list_for_each_entry(ev, &mem->oom_notify, list)
3941 		eventfd_signal(ev->eventfd, 1);
3942 	return 0;
3943 }
3944 
3945 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3946 {
3947 	struct mem_cgroup *iter;
3948 
3949 	for_each_mem_cgroup_tree(iter, mem)
3950 		mem_cgroup_oom_notify_cb(iter);
3951 }
3952 
3953 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3954 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3955 {
3956 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3957 	struct mem_cgroup_thresholds *thresholds;
3958 	struct mem_cgroup_threshold_ary *new;
3959 	int type = MEMFILE_TYPE(cft->private);
3960 	u64 threshold, usage;
3961 	int i, size, ret;
3962 
3963 	ret = res_counter_memparse_write_strategy(args, &threshold);
3964 	if (ret)
3965 		return ret;
3966 
3967 	mutex_lock(&memcg->thresholds_lock);
3968 
3969 	if (type == _MEM)
3970 		thresholds = &memcg->thresholds;
3971 	else if (type == _MEMSWAP)
3972 		thresholds = &memcg->memsw_thresholds;
3973 	else
3974 		BUG();
3975 
3976 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3977 
3978 	/* Check if a threshold crossed before adding a new one */
3979 	if (thresholds->primary)
3980 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3981 
3982 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3983 
3984 	/* Allocate memory for new array of thresholds */
3985 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3986 			GFP_KERNEL);
3987 	if (!new) {
3988 		ret = -ENOMEM;
3989 		goto unlock;
3990 	}
3991 	new->size = size;
3992 
3993 	/* Copy thresholds (if any) to new array */
3994 	if (thresholds->primary) {
3995 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3996 				sizeof(struct mem_cgroup_threshold));
3997 	}
3998 
3999 	/* Add new threshold */
4000 	new->entries[size - 1].eventfd = eventfd;
4001 	new->entries[size - 1].threshold = threshold;
4002 
4003 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4004 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4005 			compare_thresholds, NULL);
4006 
4007 	/* Find current threshold */
4008 	new->current_threshold = -1;
4009 	for (i = 0; i < size; i++) {
4010 		if (new->entries[i].threshold < usage) {
4011 			/*
4012 			 * new->current_threshold will not be used until
4013 			 * rcu_assign_pointer(), so it's safe to increment
4014 			 * it here.
4015 			 */
4016 			++new->current_threshold;
4017 		}
4018 	}
4019 
4020 	/* Free old spare buffer and save old primary buffer as spare */
4021 	kfree(thresholds->spare);
4022 	thresholds->spare = thresholds->primary;
4023 
4024 	rcu_assign_pointer(thresholds->primary, new);
4025 
4026 	/* To be sure that nobody uses thresholds */
4027 	synchronize_rcu();
4028 
4029 unlock:
4030 	mutex_unlock(&memcg->thresholds_lock);
4031 
4032 	return ret;
4033 }
4034 
4035 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4036 	struct cftype *cft, struct eventfd_ctx *eventfd)
4037 {
4038 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4039 	struct mem_cgroup_thresholds *thresholds;
4040 	struct mem_cgroup_threshold_ary *new;
4041 	int type = MEMFILE_TYPE(cft->private);
4042 	u64 usage;
4043 	int i, j, size;
4044 
4045 	mutex_lock(&memcg->thresholds_lock);
4046 	if (type == _MEM)
4047 		thresholds = &memcg->thresholds;
4048 	else if (type == _MEMSWAP)
4049 		thresholds = &memcg->memsw_thresholds;
4050 	else
4051 		BUG();
4052 
4053 	/*
4054 	 * Something went wrong if we trying to unregister a threshold
4055 	 * if we don't have thresholds
4056 	 */
4057 	BUG_ON(!thresholds);
4058 
4059 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4060 
4061 	/* Check if a threshold crossed before removing */
4062 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4063 
4064 	/* Calculate new number of threshold */
4065 	size = 0;
4066 	for (i = 0; i < thresholds->primary->size; i++) {
4067 		if (thresholds->primary->entries[i].eventfd != eventfd)
4068 			size++;
4069 	}
4070 
4071 	new = thresholds->spare;
4072 
4073 	/* Set thresholds array to NULL if we don't have thresholds */
4074 	if (!size) {
4075 		kfree(new);
4076 		new = NULL;
4077 		goto swap_buffers;
4078 	}
4079 
4080 	new->size = size;
4081 
4082 	/* Copy thresholds and find current threshold */
4083 	new->current_threshold = -1;
4084 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4085 		if (thresholds->primary->entries[i].eventfd == eventfd)
4086 			continue;
4087 
4088 		new->entries[j] = thresholds->primary->entries[i];
4089 		if (new->entries[j].threshold < usage) {
4090 			/*
4091 			 * new->current_threshold will not be used
4092 			 * until rcu_assign_pointer(), so it's safe to increment
4093 			 * it here.
4094 			 */
4095 			++new->current_threshold;
4096 		}
4097 		j++;
4098 	}
4099 
4100 swap_buffers:
4101 	/* Swap primary and spare array */
4102 	thresholds->spare = thresholds->primary;
4103 	rcu_assign_pointer(thresholds->primary, new);
4104 
4105 	/* To be sure that nobody uses thresholds */
4106 	synchronize_rcu();
4107 
4108 	mutex_unlock(&memcg->thresholds_lock);
4109 }
4110 
4111 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4112 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4113 {
4114 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4115 	struct mem_cgroup_eventfd_list *event;
4116 	int type = MEMFILE_TYPE(cft->private);
4117 
4118 	BUG_ON(type != _OOM_TYPE);
4119 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4120 	if (!event)
4121 		return -ENOMEM;
4122 
4123 	mutex_lock(&memcg_oom_mutex);
4124 
4125 	event->eventfd = eventfd;
4126 	list_add(&event->list, &memcg->oom_notify);
4127 
4128 	/* already in OOM ? */
4129 	if (atomic_read(&memcg->oom_lock))
4130 		eventfd_signal(eventfd, 1);
4131 	mutex_unlock(&memcg_oom_mutex);
4132 
4133 	return 0;
4134 }
4135 
4136 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4137 	struct cftype *cft, struct eventfd_ctx *eventfd)
4138 {
4139 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4140 	struct mem_cgroup_eventfd_list *ev, *tmp;
4141 	int type = MEMFILE_TYPE(cft->private);
4142 
4143 	BUG_ON(type != _OOM_TYPE);
4144 
4145 	mutex_lock(&memcg_oom_mutex);
4146 
4147 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4148 		if (ev->eventfd == eventfd) {
4149 			list_del(&ev->list);
4150 			kfree(ev);
4151 		}
4152 	}
4153 
4154 	mutex_unlock(&memcg_oom_mutex);
4155 }
4156 
4157 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4158 	struct cftype *cft,  struct cgroup_map_cb *cb)
4159 {
4160 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4161 
4162 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4163 
4164 	if (atomic_read(&mem->oom_lock))
4165 		cb->fill(cb, "under_oom", 1);
4166 	else
4167 		cb->fill(cb, "under_oom", 0);
4168 	return 0;
4169 }
4170 
4171 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4172 	struct cftype *cft, u64 val)
4173 {
4174 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4175 	struct mem_cgroup *parent;
4176 
4177 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4178 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4179 		return -EINVAL;
4180 
4181 	parent = mem_cgroup_from_cont(cgrp->parent);
4182 
4183 	cgroup_lock();
4184 	/* oom-kill-disable is a flag for subhierarchy. */
4185 	if ((parent->use_hierarchy) ||
4186 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4187 		cgroup_unlock();
4188 		return -EINVAL;
4189 	}
4190 	mem->oom_kill_disable = val;
4191 	if (!val)
4192 		memcg_oom_recover(mem);
4193 	cgroup_unlock();
4194 	return 0;
4195 }
4196 
4197 static struct cftype mem_cgroup_files[] = {
4198 	{
4199 		.name = "usage_in_bytes",
4200 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4201 		.read_u64 = mem_cgroup_read,
4202 		.register_event = mem_cgroup_usage_register_event,
4203 		.unregister_event = mem_cgroup_usage_unregister_event,
4204 	},
4205 	{
4206 		.name = "max_usage_in_bytes",
4207 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4208 		.trigger = mem_cgroup_reset,
4209 		.read_u64 = mem_cgroup_read,
4210 	},
4211 	{
4212 		.name = "limit_in_bytes",
4213 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4214 		.write_string = mem_cgroup_write,
4215 		.read_u64 = mem_cgroup_read,
4216 	},
4217 	{
4218 		.name = "soft_limit_in_bytes",
4219 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4220 		.write_string = mem_cgroup_write,
4221 		.read_u64 = mem_cgroup_read,
4222 	},
4223 	{
4224 		.name = "failcnt",
4225 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4226 		.trigger = mem_cgroup_reset,
4227 		.read_u64 = mem_cgroup_read,
4228 	},
4229 	{
4230 		.name = "stat",
4231 		.read_map = mem_control_stat_show,
4232 	},
4233 	{
4234 		.name = "force_empty",
4235 		.trigger = mem_cgroup_force_empty_write,
4236 	},
4237 	{
4238 		.name = "use_hierarchy",
4239 		.write_u64 = mem_cgroup_hierarchy_write,
4240 		.read_u64 = mem_cgroup_hierarchy_read,
4241 	},
4242 	{
4243 		.name = "swappiness",
4244 		.read_u64 = mem_cgroup_swappiness_read,
4245 		.write_u64 = mem_cgroup_swappiness_write,
4246 	},
4247 	{
4248 		.name = "move_charge_at_immigrate",
4249 		.read_u64 = mem_cgroup_move_charge_read,
4250 		.write_u64 = mem_cgroup_move_charge_write,
4251 	},
4252 	{
4253 		.name = "oom_control",
4254 		.read_map = mem_cgroup_oom_control_read,
4255 		.write_u64 = mem_cgroup_oom_control_write,
4256 		.register_event = mem_cgroup_oom_register_event,
4257 		.unregister_event = mem_cgroup_oom_unregister_event,
4258 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4259 	},
4260 };
4261 
4262 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4263 static struct cftype memsw_cgroup_files[] = {
4264 	{
4265 		.name = "memsw.usage_in_bytes",
4266 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4267 		.read_u64 = mem_cgroup_read,
4268 		.register_event = mem_cgroup_usage_register_event,
4269 		.unregister_event = mem_cgroup_usage_unregister_event,
4270 	},
4271 	{
4272 		.name = "memsw.max_usage_in_bytes",
4273 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4274 		.trigger = mem_cgroup_reset,
4275 		.read_u64 = mem_cgroup_read,
4276 	},
4277 	{
4278 		.name = "memsw.limit_in_bytes",
4279 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4280 		.write_string = mem_cgroup_write,
4281 		.read_u64 = mem_cgroup_read,
4282 	},
4283 	{
4284 		.name = "memsw.failcnt",
4285 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4286 		.trigger = mem_cgroup_reset,
4287 		.read_u64 = mem_cgroup_read,
4288 	},
4289 };
4290 
4291 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4292 {
4293 	if (!do_swap_account)
4294 		return 0;
4295 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4296 				ARRAY_SIZE(memsw_cgroup_files));
4297 };
4298 #else
4299 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4300 {
4301 	return 0;
4302 }
4303 #endif
4304 
4305 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4306 {
4307 	struct mem_cgroup_per_node *pn;
4308 	struct mem_cgroup_per_zone *mz;
4309 	enum lru_list l;
4310 	int zone, tmp = node;
4311 	/*
4312 	 * This routine is called against possible nodes.
4313 	 * But it's BUG to call kmalloc() against offline node.
4314 	 *
4315 	 * TODO: this routine can waste much memory for nodes which will
4316 	 *       never be onlined. It's better to use memory hotplug callback
4317 	 *       function.
4318 	 */
4319 	if (!node_state(node, N_NORMAL_MEMORY))
4320 		tmp = -1;
4321 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4322 	if (!pn)
4323 		return 1;
4324 
4325 	mem->info.nodeinfo[node] = pn;
4326 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4327 		mz = &pn->zoneinfo[zone];
4328 		for_each_lru(l)
4329 			INIT_LIST_HEAD(&mz->lists[l]);
4330 		mz->usage_in_excess = 0;
4331 		mz->on_tree = false;
4332 		mz->mem = mem;
4333 	}
4334 	return 0;
4335 }
4336 
4337 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4338 {
4339 	kfree(mem->info.nodeinfo[node]);
4340 }
4341 
4342 static struct mem_cgroup *mem_cgroup_alloc(void)
4343 {
4344 	struct mem_cgroup *mem;
4345 	int size = sizeof(struct mem_cgroup);
4346 
4347 	/* Can be very big if MAX_NUMNODES is very big */
4348 	if (size < PAGE_SIZE)
4349 		mem = kzalloc(size, GFP_KERNEL);
4350 	else
4351 		mem = vzalloc(size);
4352 
4353 	if (!mem)
4354 		return NULL;
4355 
4356 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4357 	if (!mem->stat)
4358 		goto out_free;
4359 	spin_lock_init(&mem->pcp_counter_lock);
4360 	return mem;
4361 
4362 out_free:
4363 	if (size < PAGE_SIZE)
4364 		kfree(mem);
4365 	else
4366 		vfree(mem);
4367 	return NULL;
4368 }
4369 
4370 /*
4371  * At destroying mem_cgroup, references from swap_cgroup can remain.
4372  * (scanning all at force_empty is too costly...)
4373  *
4374  * Instead of clearing all references at force_empty, we remember
4375  * the number of reference from swap_cgroup and free mem_cgroup when
4376  * it goes down to 0.
4377  *
4378  * Removal of cgroup itself succeeds regardless of refs from swap.
4379  */
4380 
4381 static void __mem_cgroup_free(struct mem_cgroup *mem)
4382 {
4383 	int node;
4384 
4385 	mem_cgroup_remove_from_trees(mem);
4386 	free_css_id(&mem_cgroup_subsys, &mem->css);
4387 
4388 	for_each_node_state(node, N_POSSIBLE)
4389 		free_mem_cgroup_per_zone_info(mem, node);
4390 
4391 	free_percpu(mem->stat);
4392 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4393 		kfree(mem);
4394 	else
4395 		vfree(mem);
4396 }
4397 
4398 static void mem_cgroup_get(struct mem_cgroup *mem)
4399 {
4400 	atomic_inc(&mem->refcnt);
4401 }
4402 
4403 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4404 {
4405 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4406 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4407 		__mem_cgroup_free(mem);
4408 		if (parent)
4409 			mem_cgroup_put(parent);
4410 	}
4411 }
4412 
4413 static void mem_cgroup_put(struct mem_cgroup *mem)
4414 {
4415 	__mem_cgroup_put(mem, 1);
4416 }
4417 
4418 /*
4419  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4420  */
4421 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4422 {
4423 	if (!mem->res.parent)
4424 		return NULL;
4425 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4426 }
4427 
4428 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4429 static void __init enable_swap_cgroup(void)
4430 {
4431 	if (!mem_cgroup_disabled() && really_do_swap_account)
4432 		do_swap_account = 1;
4433 }
4434 #else
4435 static void __init enable_swap_cgroup(void)
4436 {
4437 }
4438 #endif
4439 
4440 static int mem_cgroup_soft_limit_tree_init(void)
4441 {
4442 	struct mem_cgroup_tree_per_node *rtpn;
4443 	struct mem_cgroup_tree_per_zone *rtpz;
4444 	int tmp, node, zone;
4445 
4446 	for_each_node_state(node, N_POSSIBLE) {
4447 		tmp = node;
4448 		if (!node_state(node, N_NORMAL_MEMORY))
4449 			tmp = -1;
4450 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4451 		if (!rtpn)
4452 			return 1;
4453 
4454 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4455 
4456 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4457 			rtpz = &rtpn->rb_tree_per_zone[zone];
4458 			rtpz->rb_root = RB_ROOT;
4459 			spin_lock_init(&rtpz->lock);
4460 		}
4461 	}
4462 	return 0;
4463 }
4464 
4465 static struct cgroup_subsys_state * __ref
4466 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4467 {
4468 	struct mem_cgroup *mem, *parent;
4469 	long error = -ENOMEM;
4470 	int node;
4471 
4472 	mem = mem_cgroup_alloc();
4473 	if (!mem)
4474 		return ERR_PTR(error);
4475 
4476 	for_each_node_state(node, N_POSSIBLE)
4477 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4478 			goto free_out;
4479 
4480 	/* root ? */
4481 	if (cont->parent == NULL) {
4482 		int cpu;
4483 		enable_swap_cgroup();
4484 		parent = NULL;
4485 		root_mem_cgroup = mem;
4486 		if (mem_cgroup_soft_limit_tree_init())
4487 			goto free_out;
4488 		for_each_possible_cpu(cpu) {
4489 			struct memcg_stock_pcp *stock =
4490 						&per_cpu(memcg_stock, cpu);
4491 			INIT_WORK(&stock->work, drain_local_stock);
4492 		}
4493 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4494 	} else {
4495 		parent = mem_cgroup_from_cont(cont->parent);
4496 		mem->use_hierarchy = parent->use_hierarchy;
4497 		mem->oom_kill_disable = parent->oom_kill_disable;
4498 	}
4499 
4500 	if (parent && parent->use_hierarchy) {
4501 		res_counter_init(&mem->res, &parent->res);
4502 		res_counter_init(&mem->memsw, &parent->memsw);
4503 		/*
4504 		 * We increment refcnt of the parent to ensure that we can
4505 		 * safely access it on res_counter_charge/uncharge.
4506 		 * This refcnt will be decremented when freeing this
4507 		 * mem_cgroup(see mem_cgroup_put).
4508 		 */
4509 		mem_cgroup_get(parent);
4510 	} else {
4511 		res_counter_init(&mem->res, NULL);
4512 		res_counter_init(&mem->memsw, NULL);
4513 	}
4514 	mem->last_scanned_child = 0;
4515 	spin_lock_init(&mem->reclaim_param_lock);
4516 	INIT_LIST_HEAD(&mem->oom_notify);
4517 
4518 	if (parent)
4519 		mem->swappiness = get_swappiness(parent);
4520 	atomic_set(&mem->refcnt, 1);
4521 	mem->move_charge_at_immigrate = 0;
4522 	mutex_init(&mem->thresholds_lock);
4523 	return &mem->css;
4524 free_out:
4525 	__mem_cgroup_free(mem);
4526 	root_mem_cgroup = NULL;
4527 	return ERR_PTR(error);
4528 }
4529 
4530 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4531 					struct cgroup *cont)
4532 {
4533 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4534 
4535 	return mem_cgroup_force_empty(mem, false);
4536 }
4537 
4538 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4539 				struct cgroup *cont)
4540 {
4541 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4542 
4543 	mem_cgroup_put(mem);
4544 }
4545 
4546 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4547 				struct cgroup *cont)
4548 {
4549 	int ret;
4550 
4551 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4552 				ARRAY_SIZE(mem_cgroup_files));
4553 
4554 	if (!ret)
4555 		ret = register_memsw_files(cont, ss);
4556 	return ret;
4557 }
4558 
4559 #ifdef CONFIG_MMU
4560 /* Handlers for move charge at task migration. */
4561 #define PRECHARGE_COUNT_AT_ONCE	256
4562 static int mem_cgroup_do_precharge(unsigned long count)
4563 {
4564 	int ret = 0;
4565 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4566 	struct mem_cgroup *mem = mc.to;
4567 
4568 	if (mem_cgroup_is_root(mem)) {
4569 		mc.precharge += count;
4570 		/* we don't need css_get for root */
4571 		return ret;
4572 	}
4573 	/* try to charge at once */
4574 	if (count > 1) {
4575 		struct res_counter *dummy;
4576 		/*
4577 		 * "mem" cannot be under rmdir() because we've already checked
4578 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4579 		 * are still under the same cgroup_mutex. So we can postpone
4580 		 * css_get().
4581 		 */
4582 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4583 			goto one_by_one;
4584 		if (do_swap_account && res_counter_charge(&mem->memsw,
4585 						PAGE_SIZE * count, &dummy)) {
4586 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4587 			goto one_by_one;
4588 		}
4589 		mc.precharge += count;
4590 		return ret;
4591 	}
4592 one_by_one:
4593 	/* fall back to one by one charge */
4594 	while (count--) {
4595 		if (signal_pending(current)) {
4596 			ret = -EINTR;
4597 			break;
4598 		}
4599 		if (!batch_count--) {
4600 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4601 			cond_resched();
4602 		}
4603 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4604 					      PAGE_SIZE);
4605 		if (ret || !mem)
4606 			/* mem_cgroup_clear_mc() will do uncharge later */
4607 			return -ENOMEM;
4608 		mc.precharge++;
4609 	}
4610 	return ret;
4611 }
4612 
4613 /**
4614  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4615  * @vma: the vma the pte to be checked belongs
4616  * @addr: the address corresponding to the pte to be checked
4617  * @ptent: the pte to be checked
4618  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4619  *
4620  * Returns
4621  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4622  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4623  *     move charge. if @target is not NULL, the page is stored in target->page
4624  *     with extra refcnt got(Callers should handle it).
4625  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4626  *     target for charge migration. if @target is not NULL, the entry is stored
4627  *     in target->ent.
4628  *
4629  * Called with pte lock held.
4630  */
4631 union mc_target {
4632 	struct page	*page;
4633 	swp_entry_t	ent;
4634 };
4635 
4636 enum mc_target_type {
4637 	MC_TARGET_NONE,	/* not used */
4638 	MC_TARGET_PAGE,
4639 	MC_TARGET_SWAP,
4640 };
4641 
4642 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4643 						unsigned long addr, pte_t ptent)
4644 {
4645 	struct page *page = vm_normal_page(vma, addr, ptent);
4646 
4647 	if (!page || !page_mapped(page))
4648 		return NULL;
4649 	if (PageAnon(page)) {
4650 		/* we don't move shared anon */
4651 		if (!move_anon() || page_mapcount(page) > 2)
4652 			return NULL;
4653 	} else if (!move_file())
4654 		/* we ignore mapcount for file pages */
4655 		return NULL;
4656 	if (!get_page_unless_zero(page))
4657 		return NULL;
4658 
4659 	return page;
4660 }
4661 
4662 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4663 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4664 {
4665 	int usage_count;
4666 	struct page *page = NULL;
4667 	swp_entry_t ent = pte_to_swp_entry(ptent);
4668 
4669 	if (!move_anon() || non_swap_entry(ent))
4670 		return NULL;
4671 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4672 	if (usage_count > 1) { /* we don't move shared anon */
4673 		if (page)
4674 			put_page(page);
4675 		return NULL;
4676 	}
4677 	if (do_swap_account)
4678 		entry->val = ent.val;
4679 
4680 	return page;
4681 }
4682 
4683 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4684 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4685 {
4686 	struct page *page = NULL;
4687 	struct inode *inode;
4688 	struct address_space *mapping;
4689 	pgoff_t pgoff;
4690 
4691 	if (!vma->vm_file) /* anonymous vma */
4692 		return NULL;
4693 	if (!move_file())
4694 		return NULL;
4695 
4696 	inode = vma->vm_file->f_path.dentry->d_inode;
4697 	mapping = vma->vm_file->f_mapping;
4698 	if (pte_none(ptent))
4699 		pgoff = linear_page_index(vma, addr);
4700 	else /* pte_file(ptent) is true */
4701 		pgoff = pte_to_pgoff(ptent);
4702 
4703 	/* page is moved even if it's not RSS of this task(page-faulted). */
4704 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4705 		page = find_get_page(mapping, pgoff);
4706 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4707 		swp_entry_t ent;
4708 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4709 		if (do_swap_account)
4710 			entry->val = ent.val;
4711 	}
4712 
4713 	return page;
4714 }
4715 
4716 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4717 		unsigned long addr, pte_t ptent, union mc_target *target)
4718 {
4719 	struct page *page = NULL;
4720 	struct page_cgroup *pc;
4721 	int ret = 0;
4722 	swp_entry_t ent = { .val = 0 };
4723 
4724 	if (pte_present(ptent))
4725 		page = mc_handle_present_pte(vma, addr, ptent);
4726 	else if (is_swap_pte(ptent))
4727 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4728 	else if (pte_none(ptent) || pte_file(ptent))
4729 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4730 
4731 	if (!page && !ent.val)
4732 		return 0;
4733 	if (page) {
4734 		pc = lookup_page_cgroup(page);
4735 		/*
4736 		 * Do only loose check w/o page_cgroup lock.
4737 		 * mem_cgroup_move_account() checks the pc is valid or not under
4738 		 * the lock.
4739 		 */
4740 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4741 			ret = MC_TARGET_PAGE;
4742 			if (target)
4743 				target->page = page;
4744 		}
4745 		if (!ret || !target)
4746 			put_page(page);
4747 	}
4748 	/* There is a swap entry and a page doesn't exist or isn't charged */
4749 	if (ent.val && !ret &&
4750 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4751 		ret = MC_TARGET_SWAP;
4752 		if (target)
4753 			target->ent = ent;
4754 	}
4755 	return ret;
4756 }
4757 
4758 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4759 					unsigned long addr, unsigned long end,
4760 					struct mm_walk *walk)
4761 {
4762 	struct vm_area_struct *vma = walk->private;
4763 	pte_t *pte;
4764 	spinlock_t *ptl;
4765 
4766 	split_huge_page_pmd(walk->mm, pmd);
4767 
4768 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4769 	for (; addr != end; pte++, addr += PAGE_SIZE)
4770 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4771 			mc.precharge++;	/* increment precharge temporarily */
4772 	pte_unmap_unlock(pte - 1, ptl);
4773 	cond_resched();
4774 
4775 	return 0;
4776 }
4777 
4778 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4779 {
4780 	unsigned long precharge;
4781 	struct vm_area_struct *vma;
4782 
4783 	down_read(&mm->mmap_sem);
4784 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4785 		struct mm_walk mem_cgroup_count_precharge_walk = {
4786 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4787 			.mm = mm,
4788 			.private = vma,
4789 		};
4790 		if (is_vm_hugetlb_page(vma))
4791 			continue;
4792 		walk_page_range(vma->vm_start, vma->vm_end,
4793 					&mem_cgroup_count_precharge_walk);
4794 	}
4795 	up_read(&mm->mmap_sem);
4796 
4797 	precharge = mc.precharge;
4798 	mc.precharge = 0;
4799 
4800 	return precharge;
4801 }
4802 
4803 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4804 {
4805 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4806 
4807 	VM_BUG_ON(mc.moving_task);
4808 	mc.moving_task = current;
4809 	return mem_cgroup_do_precharge(precharge);
4810 }
4811 
4812 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4813 static void __mem_cgroup_clear_mc(void)
4814 {
4815 	struct mem_cgroup *from = mc.from;
4816 	struct mem_cgroup *to = mc.to;
4817 
4818 	/* we must uncharge all the leftover precharges from mc.to */
4819 	if (mc.precharge) {
4820 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4821 		mc.precharge = 0;
4822 	}
4823 	/*
4824 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4825 	 * we must uncharge here.
4826 	 */
4827 	if (mc.moved_charge) {
4828 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4829 		mc.moved_charge = 0;
4830 	}
4831 	/* we must fixup refcnts and charges */
4832 	if (mc.moved_swap) {
4833 		/* uncharge swap account from the old cgroup */
4834 		if (!mem_cgroup_is_root(mc.from))
4835 			res_counter_uncharge(&mc.from->memsw,
4836 						PAGE_SIZE * mc.moved_swap);
4837 		__mem_cgroup_put(mc.from, mc.moved_swap);
4838 
4839 		if (!mem_cgroup_is_root(mc.to)) {
4840 			/*
4841 			 * we charged both to->res and to->memsw, so we should
4842 			 * uncharge to->res.
4843 			 */
4844 			res_counter_uncharge(&mc.to->res,
4845 						PAGE_SIZE * mc.moved_swap);
4846 		}
4847 		/* we've already done mem_cgroup_get(mc.to) */
4848 		mc.moved_swap = 0;
4849 	}
4850 	memcg_oom_recover(from);
4851 	memcg_oom_recover(to);
4852 	wake_up_all(&mc.waitq);
4853 }
4854 
4855 static void mem_cgroup_clear_mc(void)
4856 {
4857 	struct mem_cgroup *from = mc.from;
4858 
4859 	/*
4860 	 * we must clear moving_task before waking up waiters at the end of
4861 	 * task migration.
4862 	 */
4863 	mc.moving_task = NULL;
4864 	__mem_cgroup_clear_mc();
4865 	spin_lock(&mc.lock);
4866 	mc.from = NULL;
4867 	mc.to = NULL;
4868 	spin_unlock(&mc.lock);
4869 	mem_cgroup_end_move(from);
4870 }
4871 
4872 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4873 				struct cgroup *cgroup,
4874 				struct task_struct *p,
4875 				bool threadgroup)
4876 {
4877 	int ret = 0;
4878 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4879 
4880 	if (mem->move_charge_at_immigrate) {
4881 		struct mm_struct *mm;
4882 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4883 
4884 		VM_BUG_ON(from == mem);
4885 
4886 		mm = get_task_mm(p);
4887 		if (!mm)
4888 			return 0;
4889 		/* We move charges only when we move a owner of the mm */
4890 		if (mm->owner == p) {
4891 			VM_BUG_ON(mc.from);
4892 			VM_BUG_ON(mc.to);
4893 			VM_BUG_ON(mc.precharge);
4894 			VM_BUG_ON(mc.moved_charge);
4895 			VM_BUG_ON(mc.moved_swap);
4896 			mem_cgroup_start_move(from);
4897 			spin_lock(&mc.lock);
4898 			mc.from = from;
4899 			mc.to = mem;
4900 			spin_unlock(&mc.lock);
4901 			/* We set mc.moving_task later */
4902 
4903 			ret = mem_cgroup_precharge_mc(mm);
4904 			if (ret)
4905 				mem_cgroup_clear_mc();
4906 		}
4907 		mmput(mm);
4908 	}
4909 	return ret;
4910 }
4911 
4912 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4913 				struct cgroup *cgroup,
4914 				struct task_struct *p,
4915 				bool threadgroup)
4916 {
4917 	mem_cgroup_clear_mc();
4918 }
4919 
4920 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4921 				unsigned long addr, unsigned long end,
4922 				struct mm_walk *walk)
4923 {
4924 	int ret = 0;
4925 	struct vm_area_struct *vma = walk->private;
4926 	pte_t *pte;
4927 	spinlock_t *ptl;
4928 
4929 	split_huge_page_pmd(walk->mm, pmd);
4930 retry:
4931 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4932 	for (; addr != end; addr += PAGE_SIZE) {
4933 		pte_t ptent = *(pte++);
4934 		union mc_target target;
4935 		int type;
4936 		struct page *page;
4937 		struct page_cgroup *pc;
4938 		swp_entry_t ent;
4939 
4940 		if (!mc.precharge)
4941 			break;
4942 
4943 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4944 		switch (type) {
4945 		case MC_TARGET_PAGE:
4946 			page = target.page;
4947 			if (isolate_lru_page(page))
4948 				goto put;
4949 			pc = lookup_page_cgroup(page);
4950 			if (!mem_cgroup_move_account(pc,
4951 					mc.from, mc.to, false, PAGE_SIZE)) {
4952 				mc.precharge--;
4953 				/* we uncharge from mc.from later. */
4954 				mc.moved_charge++;
4955 			}
4956 			putback_lru_page(page);
4957 put:			/* is_target_pte_for_mc() gets the page */
4958 			put_page(page);
4959 			break;
4960 		case MC_TARGET_SWAP:
4961 			ent = target.ent;
4962 			if (!mem_cgroup_move_swap_account(ent,
4963 						mc.from, mc.to, false)) {
4964 				mc.precharge--;
4965 				/* we fixup refcnts and charges later. */
4966 				mc.moved_swap++;
4967 			}
4968 			break;
4969 		default:
4970 			break;
4971 		}
4972 	}
4973 	pte_unmap_unlock(pte - 1, ptl);
4974 	cond_resched();
4975 
4976 	if (addr != end) {
4977 		/*
4978 		 * We have consumed all precharges we got in can_attach().
4979 		 * We try charge one by one, but don't do any additional
4980 		 * charges to mc.to if we have failed in charge once in attach()
4981 		 * phase.
4982 		 */
4983 		ret = mem_cgroup_do_precharge(1);
4984 		if (!ret)
4985 			goto retry;
4986 	}
4987 
4988 	return ret;
4989 }
4990 
4991 static void mem_cgroup_move_charge(struct mm_struct *mm)
4992 {
4993 	struct vm_area_struct *vma;
4994 
4995 	lru_add_drain_all();
4996 retry:
4997 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4998 		/*
4999 		 * Someone who are holding the mmap_sem might be waiting in
5000 		 * waitq. So we cancel all extra charges, wake up all waiters,
5001 		 * and retry. Because we cancel precharges, we might not be able
5002 		 * to move enough charges, but moving charge is a best-effort
5003 		 * feature anyway, so it wouldn't be a big problem.
5004 		 */
5005 		__mem_cgroup_clear_mc();
5006 		cond_resched();
5007 		goto retry;
5008 	}
5009 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5010 		int ret;
5011 		struct mm_walk mem_cgroup_move_charge_walk = {
5012 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5013 			.mm = mm,
5014 			.private = vma,
5015 		};
5016 		if (is_vm_hugetlb_page(vma))
5017 			continue;
5018 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5019 						&mem_cgroup_move_charge_walk);
5020 		if (ret)
5021 			/*
5022 			 * means we have consumed all precharges and failed in
5023 			 * doing additional charge. Just abandon here.
5024 			 */
5025 			break;
5026 	}
5027 	up_read(&mm->mmap_sem);
5028 }
5029 
5030 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5031 				struct cgroup *cont,
5032 				struct cgroup *old_cont,
5033 				struct task_struct *p,
5034 				bool threadgroup)
5035 {
5036 	struct mm_struct *mm;
5037 
5038 	if (!mc.to)
5039 		/* no need to move charge */
5040 		return;
5041 
5042 	mm = get_task_mm(p);
5043 	if (mm) {
5044 		mem_cgroup_move_charge(mm);
5045 		mmput(mm);
5046 	}
5047 	mem_cgroup_clear_mc();
5048 }
5049 #else	/* !CONFIG_MMU */
5050 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5051 				struct cgroup *cgroup,
5052 				struct task_struct *p,
5053 				bool threadgroup)
5054 {
5055 	return 0;
5056 }
5057 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5058 				struct cgroup *cgroup,
5059 				struct task_struct *p,
5060 				bool threadgroup)
5061 {
5062 }
5063 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5064 				struct cgroup *cont,
5065 				struct cgroup *old_cont,
5066 				struct task_struct *p,
5067 				bool threadgroup)
5068 {
5069 }
5070 #endif
5071 
5072 struct cgroup_subsys mem_cgroup_subsys = {
5073 	.name = "memory",
5074 	.subsys_id = mem_cgroup_subsys_id,
5075 	.create = mem_cgroup_create,
5076 	.pre_destroy = mem_cgroup_pre_destroy,
5077 	.destroy = mem_cgroup_destroy,
5078 	.populate = mem_cgroup_populate,
5079 	.can_attach = mem_cgroup_can_attach,
5080 	.cancel_attach = mem_cgroup_cancel_attach,
5081 	.attach = mem_cgroup_move_task,
5082 	.early_init = 0,
5083 	.use_id = 1,
5084 };
5085 
5086 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5087 static int __init enable_swap_account(char *s)
5088 {
5089 	/* consider enabled if no parameter or 1 is given */
5090 	if (!(*s) || !strcmp(s, "=1"))
5091 		really_do_swap_account = 1;
5092 	else if (!strcmp(s, "=0"))
5093 		really_do_swap_account = 0;
5094 	return 1;
5095 }
5096 __setup("swapaccount", enable_swap_account);
5097 
5098 static int __init disable_swap_account(char *s)
5099 {
5100 	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5101 	enable_swap_account("=0");
5102 	return 1;
5103 }
5104 __setup("noswapaccount", disable_swap_account);
5105 #endif
5106