xref: /linux/mm/memcontrol.c (revision 9907e1df31c0f4bdcebe16de809121baa754e5b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77 
78 #include <trace/events/vmscan.h>
79 
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82 
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88 
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91 
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94 
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97 
98 static struct kmem_cache *memcg_cachep;
99 static struct kmem_cache *memcg_pn_cachep;
100 
101 #ifdef CONFIG_CGROUP_WRITEBACK
102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
103 #endif
104 
105 static inline bool task_is_dying(void)
106 {
107 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
108 		(current->flags & PF_EXITING);
109 }
110 
111 /* Some nice accessors for the vmpressure. */
112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
113 {
114 	if (!memcg)
115 		memcg = root_mem_cgroup;
116 	return &memcg->vmpressure;
117 }
118 
119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
120 {
121 	return container_of(vmpr, struct mem_cgroup, vmpressure);
122 }
123 
124 #define SEQ_BUF_SIZE SZ_4K
125 #define CURRENT_OBJCG_UPDATE_BIT 0
126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
127 
128 static DEFINE_SPINLOCK(objcg_lock);
129 
130 bool mem_cgroup_kmem_disabled(void)
131 {
132 	return cgroup_memory_nokmem;
133 }
134 
135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
136 
137 static void obj_cgroup_release(struct percpu_ref *ref)
138 {
139 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
140 	unsigned int nr_bytes;
141 	unsigned int nr_pages;
142 	unsigned long flags;
143 
144 	/*
145 	 * At this point all allocated objects are freed, and
146 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
147 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
148 	 *
149 	 * The following sequence can lead to it:
150 	 * 1) CPU0: objcg == stock->cached_objcg
151 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
152 	 *          PAGE_SIZE bytes are charged
153 	 * 3) CPU1: a process from another memcg is allocating something,
154 	 *          the stock if flushed,
155 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
156 	 * 5) CPU0: we do release this object,
157 	 *          92 bytes are added to stock->nr_bytes
158 	 * 6) CPU0: stock is flushed,
159 	 *          92 bytes are added to objcg->nr_charged_bytes
160 	 *
161 	 * In the result, nr_charged_bytes == PAGE_SIZE.
162 	 * This page will be uncharged in obj_cgroup_release().
163 	 */
164 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
165 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
166 	nr_pages = nr_bytes >> PAGE_SHIFT;
167 
168 	if (nr_pages) {
169 		struct mem_cgroup *memcg;
170 
171 		memcg = get_mem_cgroup_from_objcg(objcg);
172 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
173 		memcg1_account_kmem(memcg, -nr_pages);
174 		if (!mem_cgroup_is_root(memcg))
175 			memcg_uncharge(memcg, nr_pages);
176 		mem_cgroup_put(memcg);
177 	}
178 
179 	spin_lock_irqsave(&objcg_lock, flags);
180 	list_del(&objcg->list);
181 	spin_unlock_irqrestore(&objcg_lock, flags);
182 
183 	percpu_ref_exit(ref);
184 	kfree_rcu(objcg, rcu);
185 }
186 
187 static struct obj_cgroup *obj_cgroup_alloc(void)
188 {
189 	struct obj_cgroup *objcg;
190 	int ret;
191 
192 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
193 	if (!objcg)
194 		return NULL;
195 
196 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
197 			      GFP_KERNEL);
198 	if (ret) {
199 		kfree(objcg);
200 		return NULL;
201 	}
202 	INIT_LIST_HEAD(&objcg->list);
203 	return objcg;
204 }
205 
206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
207 				  struct mem_cgroup *parent)
208 {
209 	struct obj_cgroup *objcg, *iter;
210 
211 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
212 
213 	spin_lock_irq(&objcg_lock);
214 
215 	/* 1) Ready to reparent active objcg. */
216 	list_add(&objcg->list, &memcg->objcg_list);
217 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
218 	list_for_each_entry(iter, &memcg->objcg_list, list)
219 		WRITE_ONCE(iter->memcg, parent);
220 	/* 3) Move already reparented objcgs to the parent's list */
221 	list_splice(&memcg->objcg_list, &parent->objcg_list);
222 
223 	spin_unlock_irq(&objcg_lock);
224 
225 	percpu_ref_kill(&objcg->refcnt);
226 }
227 
228 /*
229  * A lot of the calls to the cache allocation functions are expected to be
230  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
231  * conditional to this static branch, we'll have to allow modules that does
232  * kmem_cache_alloc and the such to see this symbol as well
233  */
234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
235 EXPORT_SYMBOL(memcg_kmem_online_key);
236 
237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
238 EXPORT_SYMBOL(memcg_bpf_enabled_key);
239 
240 /**
241  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
242  * @folio: folio of interest
243  *
244  * If memcg is bound to the default hierarchy, css of the memcg associated
245  * with @folio is returned.  The returned css remains associated with @folio
246  * until it is released.
247  *
248  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
249  * is returned.
250  */
251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
252 {
253 	struct mem_cgroup *memcg = folio_memcg(folio);
254 
255 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
256 		memcg = root_mem_cgroup;
257 
258 	return &memcg->css;
259 }
260 
261 /**
262  * page_cgroup_ino - return inode number of the memcg a page is charged to
263  * @page: the page
264  *
265  * Look up the closest online ancestor of the memory cgroup @page is charged to
266  * and return its inode number or 0 if @page is not charged to any cgroup. It
267  * is safe to call this function without holding a reference to @page.
268  *
269  * Note, this function is inherently racy, because there is nothing to prevent
270  * the cgroup inode from getting torn down and potentially reallocated a moment
271  * after page_cgroup_ino() returns, so it only should be used by callers that
272  * do not care (such as procfs interfaces).
273  */
274 ino_t page_cgroup_ino(struct page *page)
275 {
276 	struct mem_cgroup *memcg;
277 	unsigned long ino = 0;
278 
279 	rcu_read_lock();
280 	/* page_folio() is racy here, but the entire function is racy anyway */
281 	memcg = folio_memcg_check(page_folio(page));
282 
283 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
284 		memcg = parent_mem_cgroup(memcg);
285 	if (memcg)
286 		ino = cgroup_ino(memcg->css.cgroup);
287 	rcu_read_unlock();
288 	return ino;
289 }
290 
291 /* Subset of node_stat_item for memcg stats */
292 static const unsigned int memcg_node_stat_items[] = {
293 	NR_INACTIVE_ANON,
294 	NR_ACTIVE_ANON,
295 	NR_INACTIVE_FILE,
296 	NR_ACTIVE_FILE,
297 	NR_UNEVICTABLE,
298 	NR_SLAB_RECLAIMABLE_B,
299 	NR_SLAB_UNRECLAIMABLE_B,
300 	WORKINGSET_REFAULT_ANON,
301 	WORKINGSET_REFAULT_FILE,
302 	WORKINGSET_ACTIVATE_ANON,
303 	WORKINGSET_ACTIVATE_FILE,
304 	WORKINGSET_RESTORE_ANON,
305 	WORKINGSET_RESTORE_FILE,
306 	WORKINGSET_NODERECLAIM,
307 	NR_ANON_MAPPED,
308 	NR_FILE_MAPPED,
309 	NR_FILE_PAGES,
310 	NR_FILE_DIRTY,
311 	NR_WRITEBACK,
312 	NR_SHMEM,
313 	NR_SHMEM_THPS,
314 	NR_FILE_THPS,
315 	NR_ANON_THPS,
316 	NR_KERNEL_STACK_KB,
317 	NR_PAGETABLE,
318 	NR_SECONDARY_PAGETABLE,
319 #ifdef CONFIG_SWAP
320 	NR_SWAPCACHE,
321 #endif
322 #ifdef CONFIG_NUMA_BALANCING
323 	PGPROMOTE_SUCCESS,
324 #endif
325 	PGDEMOTE_KSWAPD,
326 	PGDEMOTE_DIRECT,
327 	PGDEMOTE_KHUGEPAGED,
328 	PGDEMOTE_PROACTIVE,
329 #ifdef CONFIG_HUGETLB_PAGE
330 	NR_HUGETLB,
331 #endif
332 };
333 
334 static const unsigned int memcg_stat_items[] = {
335 	MEMCG_SWAP,
336 	MEMCG_SOCK,
337 	MEMCG_PERCPU_B,
338 	MEMCG_VMALLOC,
339 	MEMCG_KMEM,
340 	MEMCG_ZSWAP_B,
341 	MEMCG_ZSWAPPED,
342 };
343 
344 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
345 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
346 			   ARRAY_SIZE(memcg_stat_items))
347 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
348 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
349 
350 static void init_memcg_stats(void)
351 {
352 	u8 i, j = 0;
353 
354 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
355 
356 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
357 
358 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
359 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
360 
361 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
362 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
363 }
364 
365 static inline int memcg_stats_index(int idx)
366 {
367 	return mem_cgroup_stats_index[idx];
368 }
369 
370 struct lruvec_stats_percpu {
371 	/* Local (CPU and cgroup) state */
372 	long state[NR_MEMCG_NODE_STAT_ITEMS];
373 
374 	/* Delta calculation for lockless upward propagation */
375 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
376 };
377 
378 struct lruvec_stats {
379 	/* Aggregated (CPU and subtree) state */
380 	long state[NR_MEMCG_NODE_STAT_ITEMS];
381 
382 	/* Non-hierarchical (CPU aggregated) state */
383 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
384 
385 	/* Pending child counts during tree propagation */
386 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
387 };
388 
389 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
390 {
391 	struct mem_cgroup_per_node *pn;
392 	long x;
393 	int i;
394 
395 	if (mem_cgroup_disabled())
396 		return node_page_state(lruvec_pgdat(lruvec), idx);
397 
398 	i = memcg_stats_index(idx);
399 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
400 		return 0;
401 
402 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
403 	x = READ_ONCE(pn->lruvec_stats->state[i]);
404 #ifdef CONFIG_SMP
405 	if (x < 0)
406 		x = 0;
407 #endif
408 	return x;
409 }
410 
411 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
412 				      enum node_stat_item idx)
413 {
414 	struct mem_cgroup_per_node *pn;
415 	long x;
416 	int i;
417 
418 	if (mem_cgroup_disabled())
419 		return node_page_state(lruvec_pgdat(lruvec), idx);
420 
421 	i = memcg_stats_index(idx);
422 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
423 		return 0;
424 
425 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
426 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
427 #ifdef CONFIG_SMP
428 	if (x < 0)
429 		x = 0;
430 #endif
431 	return x;
432 }
433 
434 /* Subset of vm_event_item to report for memcg event stats */
435 static const unsigned int memcg_vm_event_stat[] = {
436 #ifdef CONFIG_MEMCG_V1
437 	PGPGIN,
438 	PGPGOUT,
439 #endif
440 	PSWPIN,
441 	PSWPOUT,
442 	PGSCAN_KSWAPD,
443 	PGSCAN_DIRECT,
444 	PGSCAN_KHUGEPAGED,
445 	PGSCAN_PROACTIVE,
446 	PGSTEAL_KSWAPD,
447 	PGSTEAL_DIRECT,
448 	PGSTEAL_KHUGEPAGED,
449 	PGSTEAL_PROACTIVE,
450 	PGFAULT,
451 	PGMAJFAULT,
452 	PGREFILL,
453 	PGACTIVATE,
454 	PGDEACTIVATE,
455 	PGLAZYFREE,
456 	PGLAZYFREED,
457 #ifdef CONFIG_SWAP
458 	SWPIN_ZERO,
459 	SWPOUT_ZERO,
460 #endif
461 #ifdef CONFIG_ZSWAP
462 	ZSWPIN,
463 	ZSWPOUT,
464 	ZSWPWB,
465 #endif
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 	THP_FAULT_ALLOC,
468 	THP_COLLAPSE_ALLOC,
469 	THP_SWPOUT,
470 	THP_SWPOUT_FALLBACK,
471 #endif
472 #ifdef CONFIG_NUMA_BALANCING
473 	NUMA_PAGE_MIGRATE,
474 	NUMA_PTE_UPDATES,
475 	NUMA_HINT_FAULTS,
476 #endif
477 };
478 
479 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
480 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
481 
482 static void init_memcg_events(void)
483 {
484 	u8 i;
485 
486 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
487 
488 	memset(mem_cgroup_events_index, U8_MAX,
489 	       sizeof(mem_cgroup_events_index));
490 
491 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
492 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
493 }
494 
495 static inline int memcg_events_index(enum vm_event_item idx)
496 {
497 	return mem_cgroup_events_index[idx];
498 }
499 
500 struct memcg_vmstats_percpu {
501 	/* Stats updates since the last flush */
502 	unsigned int			stats_updates;
503 
504 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
505 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
506 	struct memcg_vmstats			*vmstats;
507 
508 	/* The above should fit a single cacheline for memcg_rstat_updated() */
509 
510 	/* Local (CPU and cgroup) page state & events */
511 	long			state[MEMCG_VMSTAT_SIZE];
512 	unsigned long		events[NR_MEMCG_EVENTS];
513 
514 	/* Delta calculation for lockless upward propagation */
515 	long			state_prev[MEMCG_VMSTAT_SIZE];
516 	unsigned long		events_prev[NR_MEMCG_EVENTS];
517 } ____cacheline_aligned;
518 
519 struct memcg_vmstats {
520 	/* Aggregated (CPU and subtree) page state & events */
521 	long			state[MEMCG_VMSTAT_SIZE];
522 	unsigned long		events[NR_MEMCG_EVENTS];
523 
524 	/* Non-hierarchical (CPU aggregated) page state & events */
525 	long			state_local[MEMCG_VMSTAT_SIZE];
526 	unsigned long		events_local[NR_MEMCG_EVENTS];
527 
528 	/* Pending child counts during tree propagation */
529 	long			state_pending[MEMCG_VMSTAT_SIZE];
530 	unsigned long		events_pending[NR_MEMCG_EVENTS];
531 
532 	/* Stats updates since the last flush */
533 	atomic_t		stats_updates;
534 };
535 
536 /*
537  * memcg and lruvec stats flushing
538  *
539  * Many codepaths leading to stats update or read are performance sensitive and
540  * adding stats flushing in such codepaths is not desirable. So, to optimize the
541  * flushing the kernel does:
542  *
543  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
544  *    rstat update tree grow unbounded.
545  *
546  * 2) Flush the stats synchronously on reader side only when there are more than
547  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
548  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
549  *    only for 2 seconds due to (1).
550  */
551 static void flush_memcg_stats_dwork(struct work_struct *w);
552 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
553 static u64 flush_last_time;
554 
555 #define FLUSH_TIME (2UL*HZ)
556 
557 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
558 {
559 	return atomic_read(&vmstats->stats_updates) >
560 		MEMCG_CHARGE_BATCH * num_online_cpus();
561 }
562 
563 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
564 				       int cpu)
565 {
566 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
567 	struct memcg_vmstats_percpu *statc;
568 	unsigned int stats_updates;
569 
570 	if (!val)
571 		return;
572 
573 	css_rstat_updated(&memcg->css, cpu);
574 	statc_pcpu = memcg->vmstats_percpu;
575 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
576 		statc = this_cpu_ptr(statc_pcpu);
577 		/*
578 		 * If @memcg is already flushable then all its ancestors are
579 		 * flushable as well and also there is no need to increase
580 		 * stats_updates.
581 		 */
582 		if (memcg_vmstats_needs_flush(statc->vmstats))
583 			break;
584 
585 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
586 						    abs(val));
587 		if (stats_updates < MEMCG_CHARGE_BATCH)
588 			continue;
589 
590 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
591 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
592 	}
593 }
594 
595 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
596 {
597 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
598 
599 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
600 		force, needs_flush);
601 
602 	if (!force && !needs_flush)
603 		return;
604 
605 	if (mem_cgroup_is_root(memcg))
606 		WRITE_ONCE(flush_last_time, jiffies_64);
607 
608 	css_rstat_flush(&memcg->css);
609 }
610 
611 /*
612  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
613  * @memcg: root of the subtree to flush
614  *
615  * Flushing is serialized by the underlying global rstat lock. There is also a
616  * minimum amount of work to be done even if there are no stat updates to flush.
617  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
618  * avoids unnecessary work and contention on the underlying lock.
619  */
620 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
621 {
622 	if (mem_cgroup_disabled())
623 		return;
624 
625 	if (!memcg)
626 		memcg = root_mem_cgroup;
627 
628 	__mem_cgroup_flush_stats(memcg, false);
629 }
630 
631 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
632 {
633 	/* Only flush if the periodic flusher is one full cycle late */
634 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
635 		mem_cgroup_flush_stats(memcg);
636 }
637 
638 static void flush_memcg_stats_dwork(struct work_struct *w)
639 {
640 	/*
641 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
642 	 * in latency-sensitive paths is as cheap as possible.
643 	 */
644 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
645 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
646 }
647 
648 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
649 {
650 	long x;
651 	int i = memcg_stats_index(idx);
652 
653 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
654 		return 0;
655 
656 	x = READ_ONCE(memcg->vmstats->state[i]);
657 #ifdef CONFIG_SMP
658 	if (x < 0)
659 		x = 0;
660 #endif
661 	return x;
662 }
663 
664 static int memcg_page_state_unit(int item);
665 
666 /*
667  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
668  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
669  */
670 static int memcg_state_val_in_pages(int idx, int val)
671 {
672 	int unit = memcg_page_state_unit(idx);
673 
674 	if (!val || unit == PAGE_SIZE)
675 		return val;
676 	else
677 		return max(val * unit / PAGE_SIZE, 1UL);
678 }
679 
680 /**
681  * mod_memcg_state - update cgroup memory statistics
682  * @memcg: the memory cgroup
683  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
684  * @val: delta to add to the counter, can be negative
685  */
686 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
687 		       int val)
688 {
689 	int i = memcg_stats_index(idx);
690 	int cpu;
691 
692 	if (mem_cgroup_disabled())
693 		return;
694 
695 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
696 		return;
697 
698 	cpu = get_cpu();
699 
700 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
701 	val = memcg_state_val_in_pages(idx, val);
702 	memcg_rstat_updated(memcg, val, cpu);
703 	trace_mod_memcg_state(memcg, idx, val);
704 
705 	put_cpu();
706 }
707 
708 #ifdef CONFIG_MEMCG_V1
709 /* idx can be of type enum memcg_stat_item or node_stat_item. */
710 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711 {
712 	long x;
713 	int i = memcg_stats_index(idx);
714 
715 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 		return 0;
717 
718 	x = READ_ONCE(memcg->vmstats->state_local[i]);
719 #ifdef CONFIG_SMP
720 	if (x < 0)
721 		x = 0;
722 #endif
723 	return x;
724 }
725 #endif
726 
727 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
728 				     enum node_stat_item idx,
729 				     int val)
730 {
731 	struct mem_cgroup_per_node *pn;
732 	struct mem_cgroup *memcg;
733 	int i = memcg_stats_index(idx);
734 	int cpu;
735 
736 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
737 		return;
738 
739 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
740 	memcg = pn->memcg;
741 
742 	cpu = get_cpu();
743 
744 	/* Update memcg */
745 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
746 
747 	/* Update lruvec */
748 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
749 
750 	val = memcg_state_val_in_pages(idx, val);
751 	memcg_rstat_updated(memcg, val, cpu);
752 	trace_mod_memcg_lruvec_state(memcg, idx, val);
753 
754 	put_cpu();
755 }
756 
757 /**
758  * __mod_lruvec_state - update lruvec memory statistics
759  * @lruvec: the lruvec
760  * @idx: the stat item
761  * @val: delta to add to the counter, can be negative
762  *
763  * The lruvec is the intersection of the NUMA node and a cgroup. This
764  * function updates the all three counters that are affected by a
765  * change of state at this level: per-node, per-cgroup, per-lruvec.
766  */
767 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
768 			int val)
769 {
770 	/* Update node */
771 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
772 
773 	/* Update memcg and lruvec */
774 	if (!mem_cgroup_disabled())
775 		mod_memcg_lruvec_state(lruvec, idx, val);
776 }
777 
778 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
779 			     int val)
780 {
781 	struct mem_cgroup *memcg;
782 	pg_data_t *pgdat = folio_pgdat(folio);
783 	struct lruvec *lruvec;
784 
785 	rcu_read_lock();
786 	memcg = folio_memcg(folio);
787 	/* Untracked pages have no memcg, no lruvec. Update only the node */
788 	if (!memcg) {
789 		rcu_read_unlock();
790 		__mod_node_page_state(pgdat, idx, val);
791 		return;
792 	}
793 
794 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
795 	__mod_lruvec_state(lruvec, idx, val);
796 	rcu_read_unlock();
797 }
798 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
799 
800 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
801 {
802 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
803 	struct mem_cgroup *memcg;
804 	struct lruvec *lruvec;
805 
806 	rcu_read_lock();
807 	memcg = mem_cgroup_from_slab_obj(p);
808 
809 	/*
810 	 * Untracked pages have no memcg, no lruvec. Update only the
811 	 * node. If we reparent the slab objects to the root memcg,
812 	 * when we free the slab object, we need to update the per-memcg
813 	 * vmstats to keep it correct for the root memcg.
814 	 */
815 	if (!memcg) {
816 		__mod_node_page_state(pgdat, idx, val);
817 	} else {
818 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
819 		__mod_lruvec_state(lruvec, idx, val);
820 	}
821 	rcu_read_unlock();
822 }
823 
824 /**
825  * count_memcg_events - account VM events in a cgroup
826  * @memcg: the memory cgroup
827  * @idx: the event item
828  * @count: the number of events that occurred
829  */
830 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
831 			  unsigned long count)
832 {
833 	int i = memcg_events_index(idx);
834 	int cpu;
835 
836 	if (mem_cgroup_disabled())
837 		return;
838 
839 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
840 		return;
841 
842 	cpu = get_cpu();
843 
844 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
845 	memcg_rstat_updated(memcg, count, cpu);
846 	trace_count_memcg_events(memcg, idx, count);
847 
848 	put_cpu();
849 }
850 
851 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
852 {
853 	int i = memcg_events_index(event);
854 
855 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
856 		return 0;
857 
858 	return READ_ONCE(memcg->vmstats->events[i]);
859 }
860 
861 #ifdef CONFIG_MEMCG_V1
862 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
863 {
864 	int i = memcg_events_index(event);
865 
866 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 		return 0;
868 
869 	return READ_ONCE(memcg->vmstats->events_local[i]);
870 }
871 #endif
872 
873 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
874 {
875 	/*
876 	 * mm_update_next_owner() may clear mm->owner to NULL
877 	 * if it races with swapoff, page migration, etc.
878 	 * So this can be called with p == NULL.
879 	 */
880 	if (unlikely(!p))
881 		return NULL;
882 
883 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
884 }
885 EXPORT_SYMBOL(mem_cgroup_from_task);
886 
887 static __always_inline struct mem_cgroup *active_memcg(void)
888 {
889 	if (!in_task())
890 		return this_cpu_read(int_active_memcg);
891 	else
892 		return current->active_memcg;
893 }
894 
895 /**
896  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
897  * @mm: mm from which memcg should be extracted. It can be NULL.
898  *
899  * Obtain a reference on mm->memcg and returns it if successful. If mm
900  * is NULL, then the memcg is chosen as follows:
901  * 1) The active memcg, if set.
902  * 2) current->mm->memcg, if available
903  * 3) root memcg
904  * If mem_cgroup is disabled, NULL is returned.
905  */
906 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
907 {
908 	struct mem_cgroup *memcg;
909 
910 	if (mem_cgroup_disabled())
911 		return NULL;
912 
913 	/*
914 	 * Page cache insertions can happen without an
915 	 * actual mm context, e.g. during disk probing
916 	 * on boot, loopback IO, acct() writes etc.
917 	 *
918 	 * No need to css_get on root memcg as the reference
919 	 * counting is disabled on the root level in the
920 	 * cgroup core. See CSS_NO_REF.
921 	 */
922 	if (unlikely(!mm)) {
923 		memcg = active_memcg();
924 		if (unlikely(memcg)) {
925 			/* remote memcg must hold a ref */
926 			css_get(&memcg->css);
927 			return memcg;
928 		}
929 		mm = current->mm;
930 		if (unlikely(!mm))
931 			return root_mem_cgroup;
932 	}
933 
934 	rcu_read_lock();
935 	do {
936 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
937 		if (unlikely(!memcg))
938 			memcg = root_mem_cgroup;
939 	} while (!css_tryget(&memcg->css));
940 	rcu_read_unlock();
941 	return memcg;
942 }
943 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
944 
945 /**
946  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
947  */
948 struct mem_cgroup *get_mem_cgroup_from_current(void)
949 {
950 	struct mem_cgroup *memcg;
951 
952 	if (mem_cgroup_disabled())
953 		return NULL;
954 
955 again:
956 	rcu_read_lock();
957 	memcg = mem_cgroup_from_task(current);
958 	if (!css_tryget(&memcg->css)) {
959 		rcu_read_unlock();
960 		goto again;
961 	}
962 	rcu_read_unlock();
963 	return memcg;
964 }
965 
966 /**
967  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
968  * @folio: folio from which memcg should be extracted.
969  */
970 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
971 {
972 	struct mem_cgroup *memcg = folio_memcg(folio);
973 
974 	if (mem_cgroup_disabled())
975 		return NULL;
976 
977 	rcu_read_lock();
978 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
979 		memcg = root_mem_cgroup;
980 	rcu_read_unlock();
981 	return memcg;
982 }
983 
984 /**
985  * mem_cgroup_iter - iterate over memory cgroup hierarchy
986  * @root: hierarchy root
987  * @prev: previously returned memcg, NULL on first invocation
988  * @reclaim: cookie for shared reclaim walks, NULL for full walks
989  *
990  * Returns references to children of the hierarchy below @root, or
991  * @root itself, or %NULL after a full round-trip.
992  *
993  * Caller must pass the return value in @prev on subsequent
994  * invocations for reference counting, or use mem_cgroup_iter_break()
995  * to cancel a hierarchy walk before the round-trip is complete.
996  *
997  * Reclaimers can specify a node in @reclaim to divide up the memcgs
998  * in the hierarchy among all concurrent reclaimers operating on the
999  * same node.
1000  */
1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1002 				   struct mem_cgroup *prev,
1003 				   struct mem_cgroup_reclaim_cookie *reclaim)
1004 {
1005 	struct mem_cgroup_reclaim_iter *iter;
1006 	struct cgroup_subsys_state *css;
1007 	struct mem_cgroup *pos;
1008 	struct mem_cgroup *next;
1009 
1010 	if (mem_cgroup_disabled())
1011 		return NULL;
1012 
1013 	if (!root)
1014 		root = root_mem_cgroup;
1015 
1016 	rcu_read_lock();
1017 restart:
1018 	next = NULL;
1019 
1020 	if (reclaim) {
1021 		int gen;
1022 		int nid = reclaim->pgdat->node_id;
1023 
1024 		iter = &root->nodeinfo[nid]->iter;
1025 		gen = atomic_read(&iter->generation);
1026 
1027 		/*
1028 		 * On start, join the current reclaim iteration cycle.
1029 		 * Exit when a concurrent walker completes it.
1030 		 */
1031 		if (!prev)
1032 			reclaim->generation = gen;
1033 		else if (reclaim->generation != gen)
1034 			goto out_unlock;
1035 
1036 		pos = READ_ONCE(iter->position);
1037 	} else
1038 		pos = prev;
1039 
1040 	css = pos ? &pos->css : NULL;
1041 
1042 	while ((css = css_next_descendant_pre(css, &root->css))) {
1043 		/*
1044 		 * Verify the css and acquire a reference.  The root
1045 		 * is provided by the caller, so we know it's alive
1046 		 * and kicking, and don't take an extra reference.
1047 		 */
1048 		if (css == &root->css || css_tryget(css))
1049 			break;
1050 	}
1051 
1052 	next = mem_cgroup_from_css(css);
1053 
1054 	if (reclaim) {
1055 		/*
1056 		 * The position could have already been updated by a competing
1057 		 * thread, so check that the value hasn't changed since we read
1058 		 * it to avoid reclaiming from the same cgroup twice.
1059 		 */
1060 		if (cmpxchg(&iter->position, pos, next) != pos) {
1061 			if (css && css != &root->css)
1062 				css_put(css);
1063 			goto restart;
1064 		}
1065 
1066 		if (!next) {
1067 			atomic_inc(&iter->generation);
1068 
1069 			/*
1070 			 * Reclaimers share the hierarchy walk, and a
1071 			 * new one might jump in right at the end of
1072 			 * the hierarchy - make sure they see at least
1073 			 * one group and restart from the beginning.
1074 			 */
1075 			if (!prev)
1076 				goto restart;
1077 		}
1078 	}
1079 
1080 out_unlock:
1081 	rcu_read_unlock();
1082 	if (prev && prev != root)
1083 		css_put(&prev->css);
1084 
1085 	return next;
1086 }
1087 
1088 /**
1089  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1090  * @root: hierarchy root
1091  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1092  */
1093 void mem_cgroup_iter_break(struct mem_cgroup *root,
1094 			   struct mem_cgroup *prev)
1095 {
1096 	if (!root)
1097 		root = root_mem_cgroup;
1098 	if (prev && prev != root)
1099 		css_put(&prev->css);
1100 }
1101 
1102 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1103 					struct mem_cgroup *dead_memcg)
1104 {
1105 	struct mem_cgroup_reclaim_iter *iter;
1106 	struct mem_cgroup_per_node *mz;
1107 	int nid;
1108 
1109 	for_each_node(nid) {
1110 		mz = from->nodeinfo[nid];
1111 		iter = &mz->iter;
1112 		cmpxchg(&iter->position, dead_memcg, NULL);
1113 	}
1114 }
1115 
1116 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1117 {
1118 	struct mem_cgroup *memcg = dead_memcg;
1119 	struct mem_cgroup *last;
1120 
1121 	do {
1122 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1123 		last = memcg;
1124 	} while ((memcg = parent_mem_cgroup(memcg)));
1125 
1126 	/*
1127 	 * When cgroup1 non-hierarchy mode is used,
1128 	 * parent_mem_cgroup() does not walk all the way up to the
1129 	 * cgroup root (root_mem_cgroup). So we have to handle
1130 	 * dead_memcg from cgroup root separately.
1131 	 */
1132 	if (!mem_cgroup_is_root(last))
1133 		__invalidate_reclaim_iterators(root_mem_cgroup,
1134 						dead_memcg);
1135 }
1136 
1137 /**
1138  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1139  * @memcg: hierarchy root
1140  * @fn: function to call for each task
1141  * @arg: argument passed to @fn
1142  *
1143  * This function iterates over tasks attached to @memcg or to any of its
1144  * descendants and calls @fn for each task. If @fn returns a non-zero
1145  * value, the function breaks the iteration loop. Otherwise, it will iterate
1146  * over all tasks and return 0.
1147  *
1148  * This function must not be called for the root memory cgroup.
1149  */
1150 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1151 			   int (*fn)(struct task_struct *, void *), void *arg)
1152 {
1153 	struct mem_cgroup *iter;
1154 	int ret = 0;
1155 
1156 	BUG_ON(mem_cgroup_is_root(memcg));
1157 
1158 	for_each_mem_cgroup_tree(iter, memcg) {
1159 		struct css_task_iter it;
1160 		struct task_struct *task;
1161 
1162 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1163 		while (!ret && (task = css_task_iter_next(&it))) {
1164 			ret = fn(task, arg);
1165 			/* Avoid potential softlockup warning */
1166 			cond_resched();
1167 		}
1168 		css_task_iter_end(&it);
1169 		if (ret) {
1170 			mem_cgroup_iter_break(memcg, iter);
1171 			break;
1172 		}
1173 	}
1174 }
1175 
1176 #ifdef CONFIG_DEBUG_VM
1177 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1178 {
1179 	struct mem_cgroup *memcg;
1180 
1181 	if (mem_cgroup_disabled())
1182 		return;
1183 
1184 	memcg = folio_memcg(folio);
1185 
1186 	if (!memcg)
1187 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1188 	else
1189 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1190 }
1191 #endif
1192 
1193 /**
1194  * folio_lruvec_lock - Lock the lruvec for a folio.
1195  * @folio: Pointer to the folio.
1196  *
1197  * These functions are safe to use under any of the following conditions:
1198  * - folio locked
1199  * - folio_test_lru false
1200  * - folio frozen (refcount of 0)
1201  *
1202  * Return: The lruvec this folio is on with its lock held.
1203  */
1204 struct lruvec *folio_lruvec_lock(struct folio *folio)
1205 {
1206 	struct lruvec *lruvec = folio_lruvec(folio);
1207 
1208 	spin_lock(&lruvec->lru_lock);
1209 	lruvec_memcg_debug(lruvec, folio);
1210 
1211 	return lruvec;
1212 }
1213 
1214 /**
1215  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1216  * @folio: Pointer to the folio.
1217  *
1218  * These functions are safe to use under any of the following conditions:
1219  * - folio locked
1220  * - folio_test_lru false
1221  * - folio frozen (refcount of 0)
1222  *
1223  * Return: The lruvec this folio is on with its lock held and interrupts
1224  * disabled.
1225  */
1226 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1227 {
1228 	struct lruvec *lruvec = folio_lruvec(folio);
1229 
1230 	spin_lock_irq(&lruvec->lru_lock);
1231 	lruvec_memcg_debug(lruvec, folio);
1232 
1233 	return lruvec;
1234 }
1235 
1236 /**
1237  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1238  * @folio: Pointer to the folio.
1239  * @flags: Pointer to irqsave flags.
1240  *
1241  * These functions are safe to use under any of the following conditions:
1242  * - folio locked
1243  * - folio_test_lru false
1244  * - folio frozen (refcount of 0)
1245  *
1246  * Return: The lruvec this folio is on with its lock held and interrupts
1247  * disabled.
1248  */
1249 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1250 		unsigned long *flags)
1251 {
1252 	struct lruvec *lruvec = folio_lruvec(folio);
1253 
1254 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1255 	lruvec_memcg_debug(lruvec, folio);
1256 
1257 	return lruvec;
1258 }
1259 
1260 /**
1261  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1262  * @lruvec: mem_cgroup per zone lru vector
1263  * @lru: index of lru list the page is sitting on
1264  * @zid: zone id of the accounted pages
1265  * @nr_pages: positive when adding or negative when removing
1266  *
1267  * This function must be called under lru_lock, just before a page is added
1268  * to or just after a page is removed from an lru list.
1269  */
1270 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1271 				int zid, int nr_pages)
1272 {
1273 	struct mem_cgroup_per_node *mz;
1274 	unsigned long *lru_size;
1275 	long size;
1276 
1277 	if (mem_cgroup_disabled())
1278 		return;
1279 
1280 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1281 	lru_size = &mz->lru_zone_size[zid][lru];
1282 
1283 	if (nr_pages < 0)
1284 		*lru_size += nr_pages;
1285 
1286 	size = *lru_size;
1287 	if (WARN_ONCE(size < 0,
1288 		"%s(%p, %d, %d): lru_size %ld\n",
1289 		__func__, lruvec, lru, nr_pages, size)) {
1290 		VM_BUG_ON(1);
1291 		*lru_size = 0;
1292 	}
1293 
1294 	if (nr_pages > 0)
1295 		*lru_size += nr_pages;
1296 }
1297 
1298 /**
1299  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1300  * @memcg: the memory cgroup
1301  *
1302  * Returns the maximum amount of memory @mem can be charged with, in
1303  * pages.
1304  */
1305 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1306 {
1307 	unsigned long margin = 0;
1308 	unsigned long count;
1309 	unsigned long limit;
1310 
1311 	count = page_counter_read(&memcg->memory);
1312 	limit = READ_ONCE(memcg->memory.max);
1313 	if (count < limit)
1314 		margin = limit - count;
1315 
1316 	if (do_memsw_account()) {
1317 		count = page_counter_read(&memcg->memsw);
1318 		limit = READ_ONCE(memcg->memsw.max);
1319 		if (count < limit)
1320 			margin = min(margin, limit - count);
1321 		else
1322 			margin = 0;
1323 	}
1324 
1325 	return margin;
1326 }
1327 
1328 struct memory_stat {
1329 	const char *name;
1330 	unsigned int idx;
1331 };
1332 
1333 static const struct memory_stat memory_stats[] = {
1334 	{ "anon",			NR_ANON_MAPPED			},
1335 	{ "file",			NR_FILE_PAGES			},
1336 	{ "kernel",			MEMCG_KMEM			},
1337 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1338 	{ "pagetables",			NR_PAGETABLE			},
1339 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1340 	{ "percpu",			MEMCG_PERCPU_B			},
1341 	{ "sock",			MEMCG_SOCK			},
1342 	{ "vmalloc",			MEMCG_VMALLOC			},
1343 	{ "shmem",			NR_SHMEM			},
1344 #ifdef CONFIG_ZSWAP
1345 	{ "zswap",			MEMCG_ZSWAP_B			},
1346 	{ "zswapped",			MEMCG_ZSWAPPED			},
1347 #endif
1348 	{ "file_mapped",		NR_FILE_MAPPED			},
1349 	{ "file_dirty",			NR_FILE_DIRTY			},
1350 	{ "file_writeback",		NR_WRITEBACK			},
1351 #ifdef CONFIG_SWAP
1352 	{ "swapcached",			NR_SWAPCACHE			},
1353 #endif
1354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1355 	{ "anon_thp",			NR_ANON_THPS			},
1356 	{ "file_thp",			NR_FILE_THPS			},
1357 	{ "shmem_thp",			NR_SHMEM_THPS			},
1358 #endif
1359 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1360 	{ "active_anon",		NR_ACTIVE_ANON			},
1361 	{ "inactive_file",		NR_INACTIVE_FILE		},
1362 	{ "active_file",		NR_ACTIVE_FILE			},
1363 	{ "unevictable",		NR_UNEVICTABLE			},
1364 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1365 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1366 #ifdef CONFIG_HUGETLB_PAGE
1367 	{ "hugetlb",			NR_HUGETLB			},
1368 #endif
1369 
1370 	/* The memory events */
1371 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1372 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1373 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1374 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1375 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1376 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1377 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1378 
1379 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1380 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1381 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1382 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
1383 #ifdef CONFIG_NUMA_BALANCING
1384 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1385 #endif
1386 };
1387 
1388 /* The actual unit of the state item, not the same as the output unit */
1389 static int memcg_page_state_unit(int item)
1390 {
1391 	switch (item) {
1392 	case MEMCG_PERCPU_B:
1393 	case MEMCG_ZSWAP_B:
1394 	case NR_SLAB_RECLAIMABLE_B:
1395 	case NR_SLAB_UNRECLAIMABLE_B:
1396 		return 1;
1397 	case NR_KERNEL_STACK_KB:
1398 		return SZ_1K;
1399 	default:
1400 		return PAGE_SIZE;
1401 	}
1402 }
1403 
1404 /* Translate stat items to the correct unit for memory.stat output */
1405 static int memcg_page_state_output_unit(int item)
1406 {
1407 	/*
1408 	 * Workingset state is actually in pages, but we export it to userspace
1409 	 * as a scalar count of events, so special case it here.
1410 	 *
1411 	 * Demotion and promotion activities are exported in pages, consistent
1412 	 * with their global counterparts.
1413 	 */
1414 	switch (item) {
1415 	case WORKINGSET_REFAULT_ANON:
1416 	case WORKINGSET_REFAULT_FILE:
1417 	case WORKINGSET_ACTIVATE_ANON:
1418 	case WORKINGSET_ACTIVATE_FILE:
1419 	case WORKINGSET_RESTORE_ANON:
1420 	case WORKINGSET_RESTORE_FILE:
1421 	case WORKINGSET_NODERECLAIM:
1422 	case PGDEMOTE_KSWAPD:
1423 	case PGDEMOTE_DIRECT:
1424 	case PGDEMOTE_KHUGEPAGED:
1425 	case PGDEMOTE_PROACTIVE:
1426 #ifdef CONFIG_NUMA_BALANCING
1427 	case PGPROMOTE_SUCCESS:
1428 #endif
1429 		return 1;
1430 	default:
1431 		return memcg_page_state_unit(item);
1432 	}
1433 }
1434 
1435 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1436 {
1437 	return memcg_page_state(memcg, item) *
1438 		memcg_page_state_output_unit(item);
1439 }
1440 
1441 #ifdef CONFIG_MEMCG_V1
1442 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1443 {
1444 	return memcg_page_state_local(memcg, item) *
1445 		memcg_page_state_output_unit(item);
1446 }
1447 #endif
1448 
1449 #ifdef CONFIG_HUGETLB_PAGE
1450 static bool memcg_accounts_hugetlb(void)
1451 {
1452 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1453 }
1454 #else /* CONFIG_HUGETLB_PAGE */
1455 static bool memcg_accounts_hugetlb(void)
1456 {
1457 	return false;
1458 }
1459 #endif /* CONFIG_HUGETLB_PAGE */
1460 
1461 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1462 {
1463 	int i;
1464 
1465 	/*
1466 	 * Provide statistics on the state of the memory subsystem as
1467 	 * well as cumulative event counters that show past behavior.
1468 	 *
1469 	 * This list is ordered following a combination of these gradients:
1470 	 * 1) generic big picture -> specifics and details
1471 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1472 	 *
1473 	 * Current memory state:
1474 	 */
1475 	mem_cgroup_flush_stats(memcg);
1476 
1477 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1478 		u64 size;
1479 
1480 #ifdef CONFIG_HUGETLB_PAGE
1481 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1482 			!memcg_accounts_hugetlb())
1483 			continue;
1484 #endif
1485 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1486 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1487 
1488 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1489 			size += memcg_page_state_output(memcg,
1490 							NR_SLAB_RECLAIMABLE_B);
1491 			seq_buf_printf(s, "slab %llu\n", size);
1492 		}
1493 	}
1494 
1495 	/* Accumulated memory events */
1496 	seq_buf_printf(s, "pgscan %lu\n",
1497 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1498 		       memcg_events(memcg, PGSCAN_DIRECT) +
1499 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
1500 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1501 	seq_buf_printf(s, "pgsteal %lu\n",
1502 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1503 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1504 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
1505 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1506 
1507 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1508 #ifdef CONFIG_MEMCG_V1
1509 		if (memcg_vm_event_stat[i] == PGPGIN ||
1510 		    memcg_vm_event_stat[i] == PGPGOUT)
1511 			continue;
1512 #endif
1513 		seq_buf_printf(s, "%s %lu\n",
1514 			       vm_event_name(memcg_vm_event_stat[i]),
1515 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1516 	}
1517 }
1518 
1519 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1520 {
1521 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1522 		memcg_stat_format(memcg, s);
1523 	else
1524 		memcg1_stat_format(memcg, s);
1525 	if (seq_buf_has_overflowed(s))
1526 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1527 }
1528 
1529 /**
1530  * mem_cgroup_print_oom_context: Print OOM information relevant to
1531  * memory controller.
1532  * @memcg: The memory cgroup that went over limit
1533  * @p: Task that is going to be killed
1534  *
1535  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1536  * enabled
1537  */
1538 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1539 {
1540 	rcu_read_lock();
1541 
1542 	if (memcg) {
1543 		pr_cont(",oom_memcg=");
1544 		pr_cont_cgroup_path(memcg->css.cgroup);
1545 	} else
1546 		pr_cont(",global_oom");
1547 	if (p) {
1548 		pr_cont(",task_memcg=");
1549 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1550 	}
1551 	rcu_read_unlock();
1552 }
1553 
1554 /**
1555  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1556  * memory controller.
1557  * @memcg: The memory cgroup that went over limit
1558  */
1559 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1560 {
1561 	/* Use static buffer, for the caller is holding oom_lock. */
1562 	static char buf[SEQ_BUF_SIZE];
1563 	struct seq_buf s;
1564 	unsigned long memory_failcnt;
1565 
1566 	lockdep_assert_held(&oom_lock);
1567 
1568 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1569 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1570 	else
1571 		memory_failcnt = memcg->memory.failcnt;
1572 
1573 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1574 		K((u64)page_counter_read(&memcg->memory)),
1575 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1576 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1577 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1578 			K((u64)page_counter_read(&memcg->swap)),
1579 			K((u64)READ_ONCE(memcg->swap.max)),
1580 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1581 #ifdef CONFIG_MEMCG_V1
1582 	else {
1583 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1584 			K((u64)page_counter_read(&memcg->memsw)),
1585 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1586 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1587 			K((u64)page_counter_read(&memcg->kmem)),
1588 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1589 	}
1590 #endif
1591 
1592 	pr_info("Memory cgroup stats for ");
1593 	pr_cont_cgroup_path(memcg->css.cgroup);
1594 	pr_cont(":");
1595 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1596 	memory_stat_format(memcg, &s);
1597 	seq_buf_do_printk(&s, KERN_INFO);
1598 }
1599 
1600 /*
1601  * Return the memory (and swap, if configured) limit for a memcg.
1602  */
1603 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1604 {
1605 	unsigned long max = READ_ONCE(memcg->memory.max);
1606 
1607 	if (do_memsw_account()) {
1608 		if (mem_cgroup_swappiness(memcg)) {
1609 			/* Calculate swap excess capacity from memsw limit */
1610 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1611 
1612 			max += min(swap, (unsigned long)total_swap_pages);
1613 		}
1614 	} else {
1615 		if (mem_cgroup_swappiness(memcg))
1616 			max += min(READ_ONCE(memcg->swap.max),
1617 				   (unsigned long)total_swap_pages);
1618 	}
1619 	return max;
1620 }
1621 
1622 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1623 {
1624 	return page_counter_read(&memcg->memory);
1625 }
1626 
1627 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1628 				     int order)
1629 {
1630 	struct oom_control oc = {
1631 		.zonelist = NULL,
1632 		.nodemask = NULL,
1633 		.memcg = memcg,
1634 		.gfp_mask = gfp_mask,
1635 		.order = order,
1636 	};
1637 	bool ret = true;
1638 
1639 	if (mutex_lock_killable(&oom_lock))
1640 		return true;
1641 
1642 	if (mem_cgroup_margin(memcg) >= (1 << order))
1643 		goto unlock;
1644 
1645 	/*
1646 	 * A few threads which were not waiting at mutex_lock_killable() can
1647 	 * fail to bail out. Therefore, check again after holding oom_lock.
1648 	 */
1649 	ret = out_of_memory(&oc);
1650 
1651 unlock:
1652 	mutex_unlock(&oom_lock);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * Returns true if successfully killed one or more processes. Though in some
1658  * corner cases it can return true even without killing any process.
1659  */
1660 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1661 {
1662 	bool locked, ret;
1663 
1664 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1665 		return false;
1666 
1667 	memcg_memory_event(memcg, MEMCG_OOM);
1668 
1669 	if (!memcg1_oom_prepare(memcg, &locked))
1670 		return false;
1671 
1672 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1673 
1674 	memcg1_oom_finish(memcg, locked);
1675 
1676 	return ret;
1677 }
1678 
1679 /**
1680  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1681  * @victim: task to be killed by the OOM killer
1682  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1683  *
1684  * Returns a pointer to a memory cgroup, which has to be cleaned up
1685  * by killing all belonging OOM-killable tasks.
1686  *
1687  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1688  */
1689 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1690 					    struct mem_cgroup *oom_domain)
1691 {
1692 	struct mem_cgroup *oom_group = NULL;
1693 	struct mem_cgroup *memcg;
1694 
1695 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1696 		return NULL;
1697 
1698 	if (!oom_domain)
1699 		oom_domain = root_mem_cgroup;
1700 
1701 	rcu_read_lock();
1702 
1703 	memcg = mem_cgroup_from_task(victim);
1704 	if (mem_cgroup_is_root(memcg))
1705 		goto out;
1706 
1707 	/*
1708 	 * If the victim task has been asynchronously moved to a different
1709 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1710 	 * In this case it's better to ignore memory.group.oom.
1711 	 */
1712 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1713 		goto out;
1714 
1715 	/*
1716 	 * Traverse the memory cgroup hierarchy from the victim task's
1717 	 * cgroup up to the OOMing cgroup (or root) to find the
1718 	 * highest-level memory cgroup with oom.group set.
1719 	 */
1720 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1721 		if (READ_ONCE(memcg->oom_group))
1722 			oom_group = memcg;
1723 
1724 		if (memcg == oom_domain)
1725 			break;
1726 	}
1727 
1728 	if (oom_group)
1729 		css_get(&oom_group->css);
1730 out:
1731 	rcu_read_unlock();
1732 
1733 	return oom_group;
1734 }
1735 
1736 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1737 {
1738 	pr_info("Tasks in ");
1739 	pr_cont_cgroup_path(memcg->css.cgroup);
1740 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1741 }
1742 
1743 /*
1744  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1745  * nr_pages in a single cacheline. This may change in future.
1746  */
1747 #define NR_MEMCG_STOCK 7
1748 #define FLUSHING_CACHED_CHARGE	0
1749 struct memcg_stock_pcp {
1750 	local_trylock_t lock;
1751 	uint8_t nr_pages[NR_MEMCG_STOCK];
1752 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
1753 
1754 	struct work_struct work;
1755 	unsigned long flags;
1756 };
1757 
1758 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1759 	.lock = INIT_LOCAL_TRYLOCK(lock),
1760 };
1761 
1762 struct obj_stock_pcp {
1763 	local_trylock_t lock;
1764 	unsigned int nr_bytes;
1765 	struct obj_cgroup *cached_objcg;
1766 	struct pglist_data *cached_pgdat;
1767 	int nr_slab_reclaimable_b;
1768 	int nr_slab_unreclaimable_b;
1769 
1770 	struct work_struct work;
1771 	unsigned long flags;
1772 };
1773 
1774 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1775 	.lock = INIT_LOCAL_TRYLOCK(lock),
1776 };
1777 
1778 static DEFINE_MUTEX(percpu_charge_mutex);
1779 
1780 static void drain_obj_stock(struct obj_stock_pcp *stock);
1781 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1782 				     struct mem_cgroup *root_memcg);
1783 
1784 /**
1785  * consume_stock: Try to consume stocked charge on this cpu.
1786  * @memcg: memcg to consume from.
1787  * @nr_pages: how many pages to charge.
1788  *
1789  * Consume the cached charge if enough nr_pages are present otherwise return
1790  * failure. Also return failure for charge request larger than
1791  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1792  *
1793  * returns true if successful, false otherwise.
1794  */
1795 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1796 {
1797 	struct memcg_stock_pcp *stock;
1798 	uint8_t stock_pages;
1799 	bool ret = false;
1800 	int i;
1801 
1802 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1803 	    !local_trylock(&memcg_stock.lock))
1804 		return ret;
1805 
1806 	stock = this_cpu_ptr(&memcg_stock);
1807 
1808 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1809 		if (memcg != READ_ONCE(stock->cached[i]))
1810 			continue;
1811 
1812 		stock_pages = READ_ONCE(stock->nr_pages[i]);
1813 		if (stock_pages >= nr_pages) {
1814 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1815 			ret = true;
1816 		}
1817 		break;
1818 	}
1819 
1820 	local_unlock(&memcg_stock.lock);
1821 
1822 	return ret;
1823 }
1824 
1825 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 {
1827 	page_counter_uncharge(&memcg->memory, nr_pages);
1828 	if (do_memsw_account())
1829 		page_counter_uncharge(&memcg->memsw, nr_pages);
1830 }
1831 
1832 /*
1833  * Returns stocks cached in percpu and reset cached information.
1834  */
1835 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1836 {
1837 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1838 	uint8_t stock_pages;
1839 
1840 	if (!old)
1841 		return;
1842 
1843 	stock_pages = READ_ONCE(stock->nr_pages[i]);
1844 	if (stock_pages) {
1845 		memcg_uncharge(old, stock_pages);
1846 		WRITE_ONCE(stock->nr_pages[i], 0);
1847 	}
1848 
1849 	css_put(&old->css);
1850 	WRITE_ONCE(stock->cached[i], NULL);
1851 }
1852 
1853 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1854 {
1855 	int i;
1856 
1857 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
1858 		drain_stock(stock, i);
1859 }
1860 
1861 static void drain_local_memcg_stock(struct work_struct *dummy)
1862 {
1863 	struct memcg_stock_pcp *stock;
1864 
1865 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1866 		return;
1867 
1868 	local_lock(&memcg_stock.lock);
1869 
1870 	stock = this_cpu_ptr(&memcg_stock);
1871 	drain_stock_fully(stock);
1872 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1873 
1874 	local_unlock(&memcg_stock.lock);
1875 }
1876 
1877 static void drain_local_obj_stock(struct work_struct *dummy)
1878 {
1879 	struct obj_stock_pcp *stock;
1880 
1881 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1882 		return;
1883 
1884 	local_lock(&obj_stock.lock);
1885 
1886 	stock = this_cpu_ptr(&obj_stock);
1887 	drain_obj_stock(stock);
1888 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1889 
1890 	local_unlock(&obj_stock.lock);
1891 }
1892 
1893 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1894 {
1895 	struct memcg_stock_pcp *stock;
1896 	struct mem_cgroup *cached;
1897 	uint8_t stock_pages;
1898 	bool success = false;
1899 	int empty_slot = -1;
1900 	int i;
1901 
1902 	/*
1903 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1904 	 * decide to increase it more than 127 then we will need more careful
1905 	 * handling of nr_pages[] in struct memcg_stock_pcp.
1906 	 */
1907 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1908 
1909 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1910 
1911 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1912 	    !local_trylock(&memcg_stock.lock)) {
1913 		/*
1914 		 * In case of larger than batch refill or unlikely failure to
1915 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1916 		 */
1917 		memcg_uncharge(memcg, nr_pages);
1918 		return;
1919 	}
1920 
1921 	stock = this_cpu_ptr(&memcg_stock);
1922 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1923 		cached = READ_ONCE(stock->cached[i]);
1924 		if (!cached && empty_slot == -1)
1925 			empty_slot = i;
1926 		if (memcg == READ_ONCE(stock->cached[i])) {
1927 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1928 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
1929 			if (stock_pages > MEMCG_CHARGE_BATCH)
1930 				drain_stock(stock, i);
1931 			success = true;
1932 			break;
1933 		}
1934 	}
1935 
1936 	if (!success) {
1937 		i = empty_slot;
1938 		if (i == -1) {
1939 			i = get_random_u32_below(NR_MEMCG_STOCK);
1940 			drain_stock(stock, i);
1941 		}
1942 		css_get(&memcg->css);
1943 		WRITE_ONCE(stock->cached[i], memcg);
1944 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
1945 	}
1946 
1947 	local_unlock(&memcg_stock.lock);
1948 }
1949 
1950 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1951 				  struct mem_cgroup *root_memcg)
1952 {
1953 	struct mem_cgroup *memcg;
1954 	bool flush = false;
1955 	int i;
1956 
1957 	rcu_read_lock();
1958 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1959 		memcg = READ_ONCE(stock->cached[i]);
1960 		if (!memcg)
1961 			continue;
1962 
1963 		if (READ_ONCE(stock->nr_pages[i]) &&
1964 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
1965 			flush = true;
1966 			break;
1967 		}
1968 	}
1969 	rcu_read_unlock();
1970 	return flush;
1971 }
1972 
1973 /*
1974  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1975  * of the hierarchy under it.
1976  */
1977 void drain_all_stock(struct mem_cgroup *root_memcg)
1978 {
1979 	int cpu, curcpu;
1980 
1981 	/* If someone's already draining, avoid adding running more workers. */
1982 	if (!mutex_trylock(&percpu_charge_mutex))
1983 		return;
1984 	/*
1985 	 * Notify other cpus that system-wide "drain" is running
1986 	 * We do not care about races with the cpu hotplug because cpu down
1987 	 * as well as workers from this path always operate on the local
1988 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1989 	 */
1990 	migrate_disable();
1991 	curcpu = smp_processor_id();
1992 	for_each_online_cpu(cpu) {
1993 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1994 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1995 
1996 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
1997 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
1998 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
1999 				      &memcg_st->flags)) {
2000 			if (cpu == curcpu)
2001 				drain_local_memcg_stock(&memcg_st->work);
2002 			else if (!cpu_is_isolated(cpu))
2003 				schedule_work_on(cpu, &memcg_st->work);
2004 		}
2005 
2006 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2007 		    obj_stock_flush_required(obj_st, root_memcg) &&
2008 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2009 				      &obj_st->flags)) {
2010 			if (cpu == curcpu)
2011 				drain_local_obj_stock(&obj_st->work);
2012 			else if (!cpu_is_isolated(cpu))
2013 				schedule_work_on(cpu, &obj_st->work);
2014 		}
2015 	}
2016 	migrate_enable();
2017 	mutex_unlock(&percpu_charge_mutex);
2018 }
2019 
2020 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2021 {
2022 	/* no need for the local lock */
2023 	drain_obj_stock(&per_cpu(obj_stock, cpu));
2024 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
2025 
2026 	return 0;
2027 }
2028 
2029 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2030 				  unsigned int nr_pages,
2031 				  gfp_t gfp_mask)
2032 {
2033 	unsigned long nr_reclaimed = 0;
2034 
2035 	do {
2036 		unsigned long pflags;
2037 
2038 		if (page_counter_read(&memcg->memory) <=
2039 		    READ_ONCE(memcg->memory.high))
2040 			continue;
2041 
2042 		memcg_memory_event(memcg, MEMCG_HIGH);
2043 
2044 		psi_memstall_enter(&pflags);
2045 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2046 							gfp_mask,
2047 							MEMCG_RECLAIM_MAY_SWAP,
2048 							NULL);
2049 		psi_memstall_leave(&pflags);
2050 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2051 		 !mem_cgroup_is_root(memcg));
2052 
2053 	return nr_reclaimed;
2054 }
2055 
2056 static void high_work_func(struct work_struct *work)
2057 {
2058 	struct mem_cgroup *memcg;
2059 
2060 	memcg = container_of(work, struct mem_cgroup, high_work);
2061 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2062 }
2063 
2064 /*
2065  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2066  * enough to still cause a significant slowdown in most cases, while still
2067  * allowing diagnostics and tracing to proceed without becoming stuck.
2068  */
2069 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2070 
2071 /*
2072  * When calculating the delay, we use these either side of the exponentiation to
2073  * maintain precision and scale to a reasonable number of jiffies (see the table
2074  * below.
2075  *
2076  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2077  *   overage ratio to a delay.
2078  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2079  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2080  *   to produce a reasonable delay curve.
2081  *
2082  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2083  * reasonable delay curve compared to precision-adjusted overage, not
2084  * penalising heavily at first, but still making sure that growth beyond the
2085  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2086  * example, with a high of 100 megabytes:
2087  *
2088  *  +-------+------------------------+
2089  *  | usage | time to allocate in ms |
2090  *  +-------+------------------------+
2091  *  | 100M  |                      0 |
2092  *  | 101M  |                      6 |
2093  *  | 102M  |                     25 |
2094  *  | 103M  |                     57 |
2095  *  | 104M  |                    102 |
2096  *  | 105M  |                    159 |
2097  *  | 106M  |                    230 |
2098  *  | 107M  |                    313 |
2099  *  | 108M  |                    409 |
2100  *  | 109M  |                    518 |
2101  *  | 110M  |                    639 |
2102  *  | 111M  |                    774 |
2103  *  | 112M  |                    921 |
2104  *  | 113M  |                   1081 |
2105  *  | 114M  |                   1254 |
2106  *  | 115M  |                   1439 |
2107  *  | 116M  |                   1638 |
2108  *  | 117M  |                   1849 |
2109  *  | 118M  |                   2000 |
2110  *  | 119M  |                   2000 |
2111  *  | 120M  |                   2000 |
2112  *  +-------+------------------------+
2113  */
2114  #define MEMCG_DELAY_PRECISION_SHIFT 20
2115  #define MEMCG_DELAY_SCALING_SHIFT 14
2116 
2117 static u64 calculate_overage(unsigned long usage, unsigned long high)
2118 {
2119 	u64 overage;
2120 
2121 	if (usage <= high)
2122 		return 0;
2123 
2124 	/*
2125 	 * Prevent division by 0 in overage calculation by acting as if
2126 	 * it was a threshold of 1 page
2127 	 */
2128 	high = max(high, 1UL);
2129 
2130 	overage = usage - high;
2131 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2132 	return div64_u64(overage, high);
2133 }
2134 
2135 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2136 {
2137 	u64 overage, max_overage = 0;
2138 
2139 	do {
2140 		overage = calculate_overage(page_counter_read(&memcg->memory),
2141 					    READ_ONCE(memcg->memory.high));
2142 		max_overage = max(overage, max_overage);
2143 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2144 		 !mem_cgroup_is_root(memcg));
2145 
2146 	return max_overage;
2147 }
2148 
2149 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2150 {
2151 	u64 overage, max_overage = 0;
2152 
2153 	do {
2154 		overage = calculate_overage(page_counter_read(&memcg->swap),
2155 					    READ_ONCE(memcg->swap.high));
2156 		if (overage)
2157 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2158 		max_overage = max(overage, max_overage);
2159 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2160 		 !mem_cgroup_is_root(memcg));
2161 
2162 	return max_overage;
2163 }
2164 
2165 /*
2166  * Get the number of jiffies that we should penalise a mischievous cgroup which
2167  * is exceeding its memory.high by checking both it and its ancestors.
2168  */
2169 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2170 					  unsigned int nr_pages,
2171 					  u64 max_overage)
2172 {
2173 	unsigned long penalty_jiffies;
2174 
2175 	if (!max_overage)
2176 		return 0;
2177 
2178 	/*
2179 	 * We use overage compared to memory.high to calculate the number of
2180 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2181 	 * fairly lenient on small overages, and increasingly harsh when the
2182 	 * memcg in question makes it clear that it has no intention of stopping
2183 	 * its crazy behaviour, so we exponentially increase the delay based on
2184 	 * overage amount.
2185 	 */
2186 	penalty_jiffies = max_overage * max_overage * HZ;
2187 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2188 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2189 
2190 	/*
2191 	 * Factor in the task's own contribution to the overage, such that four
2192 	 * N-sized allocations are throttled approximately the same as one
2193 	 * 4N-sized allocation.
2194 	 *
2195 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2196 	 * larger the current charge patch is than that.
2197 	 */
2198 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2199 }
2200 
2201 /*
2202  * Reclaims memory over the high limit. Called directly from
2203  * try_charge() (context permitting), as well as from the userland
2204  * return path where reclaim is always able to block.
2205  */
2206 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2207 {
2208 	unsigned long penalty_jiffies;
2209 	unsigned long pflags;
2210 	unsigned long nr_reclaimed;
2211 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2212 	int nr_retries = MAX_RECLAIM_RETRIES;
2213 	struct mem_cgroup *memcg;
2214 	bool in_retry = false;
2215 
2216 	memcg = get_mem_cgroup_from_mm(current->mm);
2217 	current->memcg_nr_pages_over_high = 0;
2218 
2219 retry_reclaim:
2220 	/*
2221 	 * Bail if the task is already exiting. Unlike memory.max,
2222 	 * memory.high enforcement isn't as strict, and there is no
2223 	 * OOM killer involved, which means the excess could already
2224 	 * be much bigger (and still growing) than it could for
2225 	 * memory.max; the dying task could get stuck in fruitless
2226 	 * reclaim for a long time, which isn't desirable.
2227 	 */
2228 	if (task_is_dying())
2229 		goto out;
2230 
2231 	/*
2232 	 * The allocating task should reclaim at least the batch size, but for
2233 	 * subsequent retries we only want to do what's necessary to prevent oom
2234 	 * or breaching resource isolation.
2235 	 *
2236 	 * This is distinct from memory.max or page allocator behaviour because
2237 	 * memory.high is currently batched, whereas memory.max and the page
2238 	 * allocator run every time an allocation is made.
2239 	 */
2240 	nr_reclaimed = reclaim_high(memcg,
2241 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2242 				    gfp_mask);
2243 
2244 	/*
2245 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2246 	 * allocators proactively to slow down excessive growth.
2247 	 */
2248 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2249 					       mem_find_max_overage(memcg));
2250 
2251 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2252 						swap_find_max_overage(memcg));
2253 
2254 	/*
2255 	 * Clamp the max delay per usermode return so as to still keep the
2256 	 * application moving forwards and also permit diagnostics, albeit
2257 	 * extremely slowly.
2258 	 */
2259 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2260 
2261 	/*
2262 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2263 	 * that it's not even worth doing, in an attempt to be nice to those who
2264 	 * go only a small amount over their memory.high value and maybe haven't
2265 	 * been aggressively reclaimed enough yet.
2266 	 */
2267 	if (penalty_jiffies <= HZ / 100)
2268 		goto out;
2269 
2270 	/*
2271 	 * If reclaim is making forward progress but we're still over
2272 	 * memory.high, we want to encourage that rather than doing allocator
2273 	 * throttling.
2274 	 */
2275 	if (nr_reclaimed || nr_retries--) {
2276 		in_retry = true;
2277 		goto retry_reclaim;
2278 	}
2279 
2280 	/*
2281 	 * Reclaim didn't manage to push usage below the limit, slow
2282 	 * this allocating task down.
2283 	 *
2284 	 * If we exit early, we're guaranteed to die (since
2285 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2286 	 * need to account for any ill-begotten jiffies to pay them off later.
2287 	 */
2288 	psi_memstall_enter(&pflags);
2289 	schedule_timeout_killable(penalty_jiffies);
2290 	psi_memstall_leave(&pflags);
2291 
2292 out:
2293 	css_put(&memcg->css);
2294 }
2295 
2296 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2297 			    unsigned int nr_pages)
2298 {
2299 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2300 	int nr_retries = MAX_RECLAIM_RETRIES;
2301 	struct mem_cgroup *mem_over_limit;
2302 	struct page_counter *counter;
2303 	unsigned long nr_reclaimed;
2304 	bool passed_oom = false;
2305 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2306 	bool drained = false;
2307 	bool raised_max_event = false;
2308 	unsigned long pflags;
2309 
2310 retry:
2311 	if (consume_stock(memcg, nr_pages))
2312 		return 0;
2313 
2314 	if (!gfpflags_allow_spinning(gfp_mask))
2315 		/* Avoid the refill and flush of the older stock */
2316 		batch = nr_pages;
2317 
2318 	if (!do_memsw_account() ||
2319 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2320 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2321 			goto done_restock;
2322 		if (do_memsw_account())
2323 			page_counter_uncharge(&memcg->memsw, batch);
2324 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2325 	} else {
2326 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2327 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2328 	}
2329 
2330 	if (batch > nr_pages) {
2331 		batch = nr_pages;
2332 		goto retry;
2333 	}
2334 
2335 	/*
2336 	 * Prevent unbounded recursion when reclaim operations need to
2337 	 * allocate memory. This might exceed the limits temporarily,
2338 	 * but we prefer facilitating memory reclaim and getting back
2339 	 * under the limit over triggering OOM kills in these cases.
2340 	 */
2341 	if (unlikely(current->flags & PF_MEMALLOC))
2342 		goto force;
2343 
2344 	if (unlikely(task_in_memcg_oom(current)))
2345 		goto nomem;
2346 
2347 	if (!gfpflags_allow_blocking(gfp_mask))
2348 		goto nomem;
2349 
2350 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2351 	raised_max_event = true;
2352 
2353 	psi_memstall_enter(&pflags);
2354 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2355 						    gfp_mask, reclaim_options, NULL);
2356 	psi_memstall_leave(&pflags);
2357 
2358 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2359 		goto retry;
2360 
2361 	if (!drained) {
2362 		drain_all_stock(mem_over_limit);
2363 		drained = true;
2364 		goto retry;
2365 	}
2366 
2367 	if (gfp_mask & __GFP_NORETRY)
2368 		goto nomem;
2369 	/*
2370 	 * Even though the limit is exceeded at this point, reclaim
2371 	 * may have been able to free some pages.  Retry the charge
2372 	 * before killing the task.
2373 	 *
2374 	 * Only for regular pages, though: huge pages are rather
2375 	 * unlikely to succeed so close to the limit, and we fall back
2376 	 * to regular pages anyway in case of failure.
2377 	 */
2378 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2379 		goto retry;
2380 
2381 	if (nr_retries--)
2382 		goto retry;
2383 
2384 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2385 		goto nomem;
2386 
2387 	/* Avoid endless loop for tasks bypassed by the oom killer */
2388 	if (passed_oom && task_is_dying())
2389 		goto nomem;
2390 
2391 	/*
2392 	 * keep retrying as long as the memcg oom killer is able to make
2393 	 * a forward progress or bypass the charge if the oom killer
2394 	 * couldn't make any progress.
2395 	 */
2396 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2397 			   get_order(nr_pages * PAGE_SIZE))) {
2398 		passed_oom = true;
2399 		nr_retries = MAX_RECLAIM_RETRIES;
2400 		goto retry;
2401 	}
2402 nomem:
2403 	/*
2404 	 * Memcg doesn't have a dedicated reserve for atomic
2405 	 * allocations. But like the global atomic pool, we need to
2406 	 * put the burden of reclaim on regular allocation requests
2407 	 * and let these go through as privileged allocations.
2408 	 */
2409 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2410 		return -ENOMEM;
2411 force:
2412 	/*
2413 	 * If the allocation has to be enforced, don't forget to raise
2414 	 * a MEMCG_MAX event.
2415 	 */
2416 	if (!raised_max_event)
2417 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2418 
2419 	/*
2420 	 * The allocation either can't fail or will lead to more memory
2421 	 * being freed very soon.  Allow memory usage go over the limit
2422 	 * temporarily by force charging it.
2423 	 */
2424 	page_counter_charge(&memcg->memory, nr_pages);
2425 	if (do_memsw_account())
2426 		page_counter_charge(&memcg->memsw, nr_pages);
2427 
2428 	return 0;
2429 
2430 done_restock:
2431 	if (batch > nr_pages)
2432 		refill_stock(memcg, batch - nr_pages);
2433 
2434 	/*
2435 	 * If the hierarchy is above the normal consumption range, schedule
2436 	 * reclaim on returning to userland.  We can perform reclaim here
2437 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2438 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2439 	 * not recorded as it most likely matches current's and won't
2440 	 * change in the meantime.  As high limit is checked again before
2441 	 * reclaim, the cost of mismatch is negligible.
2442 	 */
2443 	do {
2444 		bool mem_high, swap_high;
2445 
2446 		mem_high = page_counter_read(&memcg->memory) >
2447 			READ_ONCE(memcg->memory.high);
2448 		swap_high = page_counter_read(&memcg->swap) >
2449 			READ_ONCE(memcg->swap.high);
2450 
2451 		/* Don't bother a random interrupted task */
2452 		if (!in_task()) {
2453 			if (mem_high) {
2454 				schedule_work(&memcg->high_work);
2455 				break;
2456 			}
2457 			continue;
2458 		}
2459 
2460 		if (mem_high || swap_high) {
2461 			/*
2462 			 * The allocating tasks in this cgroup will need to do
2463 			 * reclaim or be throttled to prevent further growth
2464 			 * of the memory or swap footprints.
2465 			 *
2466 			 * Target some best-effort fairness between the tasks,
2467 			 * and distribute reclaim work and delay penalties
2468 			 * based on how much each task is actually allocating.
2469 			 */
2470 			current->memcg_nr_pages_over_high += batch;
2471 			set_notify_resume(current);
2472 			break;
2473 		}
2474 	} while ((memcg = parent_mem_cgroup(memcg)));
2475 
2476 	/*
2477 	 * Reclaim is set up above to be called from the userland
2478 	 * return path. But also attempt synchronous reclaim to avoid
2479 	 * excessive overrun while the task is still inside the
2480 	 * kernel. If this is successful, the return path will see it
2481 	 * when it rechecks the overage and simply bail out.
2482 	 */
2483 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2484 	    !(current->flags & PF_MEMALLOC) &&
2485 	    gfpflags_allow_blocking(gfp_mask))
2486 		__mem_cgroup_handle_over_high(gfp_mask);
2487 	return 0;
2488 }
2489 
2490 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2491 			     unsigned int nr_pages)
2492 {
2493 	if (mem_cgroup_is_root(memcg))
2494 		return 0;
2495 
2496 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2497 }
2498 
2499 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2500 {
2501 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2502 	/*
2503 	 * Any of the following ensures page's memcg stability:
2504 	 *
2505 	 * - the page lock
2506 	 * - LRU isolation
2507 	 * - exclusive reference
2508 	 */
2509 	folio->memcg_data = (unsigned long)memcg;
2510 }
2511 
2512 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
2513 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2514 					 struct pglist_data *pgdat,
2515 					 enum node_stat_item idx, int nr)
2516 {
2517 	struct lruvec *lruvec;
2518 
2519 	if (likely(!in_nmi())) {
2520 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
2521 		mod_memcg_lruvec_state(lruvec, idx, nr);
2522 	} else {
2523 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2524 
2525 		/* preemption is disabled in_nmi(). */
2526 		css_rstat_updated(&memcg->css, smp_processor_id());
2527 		if (idx == NR_SLAB_RECLAIMABLE_B)
2528 			atomic_add(nr, &pn->slab_reclaimable);
2529 		else
2530 			atomic_add(nr, &pn->slab_unreclaimable);
2531 	}
2532 }
2533 #else
2534 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2535 					 struct pglist_data *pgdat,
2536 					 enum node_stat_item idx, int nr)
2537 {
2538 	struct lruvec *lruvec;
2539 
2540 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2541 	mod_memcg_lruvec_state(lruvec, idx, nr);
2542 }
2543 #endif
2544 
2545 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2546 				       struct pglist_data *pgdat,
2547 				       enum node_stat_item idx, int nr)
2548 {
2549 	struct mem_cgroup *memcg;
2550 
2551 	rcu_read_lock();
2552 	memcg = obj_cgroup_memcg(objcg);
2553 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
2554 	rcu_read_unlock();
2555 }
2556 
2557 static __always_inline
2558 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2559 {
2560 	/*
2561 	 * Slab objects are accounted individually, not per-page.
2562 	 * Memcg membership data for each individual object is saved in
2563 	 * slab->obj_exts.
2564 	 */
2565 	if (folio_test_slab(folio)) {
2566 		struct slabobj_ext *obj_exts;
2567 		struct slab *slab;
2568 		unsigned int off;
2569 
2570 		slab = folio_slab(folio);
2571 		obj_exts = slab_obj_exts(slab);
2572 		if (!obj_exts)
2573 			return NULL;
2574 
2575 		off = obj_to_index(slab->slab_cache, slab, p);
2576 		if (obj_exts[off].objcg)
2577 			return obj_cgroup_memcg(obj_exts[off].objcg);
2578 
2579 		return NULL;
2580 	}
2581 
2582 	/*
2583 	 * folio_memcg_check() is used here, because in theory we can encounter
2584 	 * a folio where the slab flag has been cleared already, but
2585 	 * slab->obj_exts has not been freed yet
2586 	 * folio_memcg_check() will guarantee that a proper memory
2587 	 * cgroup pointer or NULL will be returned.
2588 	 */
2589 	return folio_memcg_check(folio);
2590 }
2591 
2592 /*
2593  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2594  * It is not suitable for objects allocated using vmalloc().
2595  *
2596  * A passed kernel object must be a slab object or a generic kernel page.
2597  *
2598  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2599  * cgroup_mutex, etc.
2600  */
2601 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2602 {
2603 	if (mem_cgroup_disabled())
2604 		return NULL;
2605 
2606 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2607 }
2608 
2609 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2610 {
2611 	struct obj_cgroup *objcg = NULL;
2612 
2613 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2614 		objcg = rcu_dereference(memcg->objcg);
2615 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2616 			break;
2617 		objcg = NULL;
2618 	}
2619 	return objcg;
2620 }
2621 
2622 static struct obj_cgroup *current_objcg_update(void)
2623 {
2624 	struct mem_cgroup *memcg;
2625 	struct obj_cgroup *old, *objcg = NULL;
2626 
2627 	do {
2628 		/* Atomically drop the update bit. */
2629 		old = xchg(&current->objcg, NULL);
2630 		if (old) {
2631 			old = (struct obj_cgroup *)
2632 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2633 			obj_cgroup_put(old);
2634 
2635 			old = NULL;
2636 		}
2637 
2638 		/* If new objcg is NULL, no reason for the second atomic update. */
2639 		if (!current->mm || (current->flags & PF_KTHREAD))
2640 			return NULL;
2641 
2642 		/*
2643 		 * Release the objcg pointer from the previous iteration,
2644 		 * if try_cmpxcg() below fails.
2645 		 */
2646 		if (unlikely(objcg)) {
2647 			obj_cgroup_put(objcg);
2648 			objcg = NULL;
2649 		}
2650 
2651 		/*
2652 		 * Obtain the new objcg pointer. The current task can be
2653 		 * asynchronously moved to another memcg and the previous
2654 		 * memcg can be offlined. So let's get the memcg pointer
2655 		 * and try get a reference to objcg under a rcu read lock.
2656 		 */
2657 
2658 		rcu_read_lock();
2659 		memcg = mem_cgroup_from_task(current);
2660 		objcg = __get_obj_cgroup_from_memcg(memcg);
2661 		rcu_read_unlock();
2662 
2663 		/*
2664 		 * Try set up a new objcg pointer atomically. If it
2665 		 * fails, it means the update flag was set concurrently, so
2666 		 * the whole procedure should be repeated.
2667 		 */
2668 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2669 
2670 	return objcg;
2671 }
2672 
2673 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2674 {
2675 	struct mem_cgroup *memcg;
2676 	struct obj_cgroup *objcg;
2677 
2678 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2679 		return NULL;
2680 
2681 	if (in_task()) {
2682 		memcg = current->active_memcg;
2683 		if (unlikely(memcg))
2684 			goto from_memcg;
2685 
2686 		objcg = READ_ONCE(current->objcg);
2687 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2688 			objcg = current_objcg_update();
2689 		/*
2690 		 * Objcg reference is kept by the task, so it's safe
2691 		 * to use the objcg by the current task.
2692 		 */
2693 		return objcg;
2694 	}
2695 
2696 	memcg = this_cpu_read(int_active_memcg);
2697 	if (unlikely(memcg))
2698 		goto from_memcg;
2699 
2700 	return NULL;
2701 
2702 from_memcg:
2703 	objcg = NULL;
2704 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2705 		/*
2706 		 * Memcg pointer is protected by scope (see set_active_memcg())
2707 		 * and is pinning the corresponding objcg, so objcg can't go
2708 		 * away and can be used within the scope without any additional
2709 		 * protection.
2710 		 */
2711 		objcg = rcu_dereference_check(memcg->objcg, 1);
2712 		if (likely(objcg))
2713 			break;
2714 	}
2715 
2716 	return objcg;
2717 }
2718 
2719 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2720 {
2721 	struct obj_cgroup *objcg;
2722 
2723 	if (!memcg_kmem_online())
2724 		return NULL;
2725 
2726 	if (folio_memcg_kmem(folio)) {
2727 		objcg = __folio_objcg(folio);
2728 		obj_cgroup_get(objcg);
2729 	} else {
2730 		struct mem_cgroup *memcg;
2731 
2732 		rcu_read_lock();
2733 		memcg = __folio_memcg(folio);
2734 		if (memcg)
2735 			objcg = __get_obj_cgroup_from_memcg(memcg);
2736 		else
2737 			objcg = NULL;
2738 		rcu_read_unlock();
2739 	}
2740 	return objcg;
2741 }
2742 
2743 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
2744 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2745 {
2746 	if (likely(!in_nmi())) {
2747 		mod_memcg_state(memcg, MEMCG_KMEM, val);
2748 	} else {
2749 		/* preemption is disabled in_nmi(). */
2750 		css_rstat_updated(&memcg->css, smp_processor_id());
2751 		atomic_add(val, &memcg->kmem_stat);
2752 	}
2753 }
2754 #else
2755 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2756 {
2757 	mod_memcg_state(memcg, MEMCG_KMEM, val);
2758 }
2759 #endif
2760 
2761 /*
2762  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2763  * @objcg: object cgroup to uncharge
2764  * @nr_pages: number of pages to uncharge
2765  */
2766 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2767 				      unsigned int nr_pages)
2768 {
2769 	struct mem_cgroup *memcg;
2770 
2771 	memcg = get_mem_cgroup_from_objcg(objcg);
2772 
2773 	account_kmem_nmi_safe(memcg, -nr_pages);
2774 	memcg1_account_kmem(memcg, -nr_pages);
2775 	if (!mem_cgroup_is_root(memcg))
2776 		refill_stock(memcg, nr_pages);
2777 
2778 	css_put(&memcg->css);
2779 }
2780 
2781 /*
2782  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2783  * @objcg: object cgroup to charge
2784  * @gfp: reclaim mode
2785  * @nr_pages: number of pages to charge
2786  *
2787  * Returns 0 on success, an error code on failure.
2788  */
2789 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2790 				   unsigned int nr_pages)
2791 {
2792 	struct mem_cgroup *memcg;
2793 	int ret;
2794 
2795 	memcg = get_mem_cgroup_from_objcg(objcg);
2796 
2797 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2798 	if (ret)
2799 		goto out;
2800 
2801 	account_kmem_nmi_safe(memcg, nr_pages);
2802 	memcg1_account_kmem(memcg, nr_pages);
2803 out:
2804 	css_put(&memcg->css);
2805 
2806 	return ret;
2807 }
2808 
2809 static struct obj_cgroup *page_objcg(const struct page *page)
2810 {
2811 	unsigned long memcg_data = page->memcg_data;
2812 
2813 	if (mem_cgroup_disabled() || !memcg_data)
2814 		return NULL;
2815 
2816 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2817 			page);
2818 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2819 }
2820 
2821 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2822 {
2823 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2824 }
2825 
2826 /**
2827  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2828  * @page: page to charge
2829  * @gfp: reclaim mode
2830  * @order: allocation order
2831  *
2832  * Returns 0 on success, an error code on failure.
2833  */
2834 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2835 {
2836 	struct obj_cgroup *objcg;
2837 	int ret = 0;
2838 
2839 	objcg = current_obj_cgroup();
2840 	if (objcg) {
2841 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2842 		if (!ret) {
2843 			obj_cgroup_get(objcg);
2844 			page_set_objcg(page, objcg);
2845 			return 0;
2846 		}
2847 	}
2848 	return ret;
2849 }
2850 
2851 /**
2852  * __memcg_kmem_uncharge_page: uncharge a kmem page
2853  * @page: page to uncharge
2854  * @order: allocation order
2855  */
2856 void __memcg_kmem_uncharge_page(struct page *page, int order)
2857 {
2858 	struct obj_cgroup *objcg = page_objcg(page);
2859 	unsigned int nr_pages = 1 << order;
2860 
2861 	if (!objcg)
2862 		return;
2863 
2864 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2865 	page->memcg_data = 0;
2866 	obj_cgroup_put(objcg);
2867 }
2868 
2869 static void __account_obj_stock(struct obj_cgroup *objcg,
2870 				struct obj_stock_pcp *stock, int nr,
2871 				struct pglist_data *pgdat, enum node_stat_item idx)
2872 {
2873 	int *bytes;
2874 
2875 	/*
2876 	 * Save vmstat data in stock and skip vmstat array update unless
2877 	 * accumulating over a page of vmstat data or when pgdat changes.
2878 	 */
2879 	if (stock->cached_pgdat != pgdat) {
2880 		/* Flush the existing cached vmstat data */
2881 		struct pglist_data *oldpg = stock->cached_pgdat;
2882 
2883 		if (stock->nr_slab_reclaimable_b) {
2884 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2885 					  stock->nr_slab_reclaimable_b);
2886 			stock->nr_slab_reclaimable_b = 0;
2887 		}
2888 		if (stock->nr_slab_unreclaimable_b) {
2889 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2890 					  stock->nr_slab_unreclaimable_b);
2891 			stock->nr_slab_unreclaimable_b = 0;
2892 		}
2893 		stock->cached_pgdat = pgdat;
2894 	}
2895 
2896 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2897 					       : &stock->nr_slab_unreclaimable_b;
2898 	/*
2899 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2900 	 * cached locally at least once before pushing it out.
2901 	 */
2902 	if (!*bytes) {
2903 		*bytes = nr;
2904 		nr = 0;
2905 	} else {
2906 		*bytes += nr;
2907 		if (abs(*bytes) > PAGE_SIZE) {
2908 			nr = *bytes;
2909 			*bytes = 0;
2910 		} else {
2911 			nr = 0;
2912 		}
2913 	}
2914 	if (nr)
2915 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
2916 }
2917 
2918 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2919 			      struct pglist_data *pgdat, enum node_stat_item idx)
2920 {
2921 	struct obj_stock_pcp *stock;
2922 	bool ret = false;
2923 
2924 	if (!local_trylock(&obj_stock.lock))
2925 		return ret;
2926 
2927 	stock = this_cpu_ptr(&obj_stock);
2928 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2929 		stock->nr_bytes -= nr_bytes;
2930 		ret = true;
2931 
2932 		if (pgdat)
2933 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2934 	}
2935 
2936 	local_unlock(&obj_stock.lock);
2937 
2938 	return ret;
2939 }
2940 
2941 static void drain_obj_stock(struct obj_stock_pcp *stock)
2942 {
2943 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2944 
2945 	if (!old)
2946 		return;
2947 
2948 	if (stock->nr_bytes) {
2949 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2950 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2951 
2952 		if (nr_pages) {
2953 			struct mem_cgroup *memcg;
2954 
2955 			memcg = get_mem_cgroup_from_objcg(old);
2956 
2957 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2958 			memcg1_account_kmem(memcg, -nr_pages);
2959 			if (!mem_cgroup_is_root(memcg))
2960 				memcg_uncharge(memcg, nr_pages);
2961 
2962 			css_put(&memcg->css);
2963 		}
2964 
2965 		/*
2966 		 * The leftover is flushed to the centralized per-memcg value.
2967 		 * On the next attempt to refill obj stock it will be moved
2968 		 * to a per-cpu stock (probably, on an other CPU), see
2969 		 * refill_obj_stock().
2970 		 *
2971 		 * How often it's flushed is a trade-off between the memory
2972 		 * limit enforcement accuracy and potential CPU contention,
2973 		 * so it might be changed in the future.
2974 		 */
2975 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2976 		stock->nr_bytes = 0;
2977 	}
2978 
2979 	/*
2980 	 * Flush the vmstat data in current stock
2981 	 */
2982 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2983 		if (stock->nr_slab_reclaimable_b) {
2984 			mod_objcg_mlstate(old, stock->cached_pgdat,
2985 					  NR_SLAB_RECLAIMABLE_B,
2986 					  stock->nr_slab_reclaimable_b);
2987 			stock->nr_slab_reclaimable_b = 0;
2988 		}
2989 		if (stock->nr_slab_unreclaimable_b) {
2990 			mod_objcg_mlstate(old, stock->cached_pgdat,
2991 					  NR_SLAB_UNRECLAIMABLE_B,
2992 					  stock->nr_slab_unreclaimable_b);
2993 			stock->nr_slab_unreclaimable_b = 0;
2994 		}
2995 		stock->cached_pgdat = NULL;
2996 	}
2997 
2998 	WRITE_ONCE(stock->cached_objcg, NULL);
2999 	obj_cgroup_put(old);
3000 }
3001 
3002 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3003 				     struct mem_cgroup *root_memcg)
3004 {
3005 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3006 	struct mem_cgroup *memcg;
3007 	bool flush = false;
3008 
3009 	rcu_read_lock();
3010 	if (objcg) {
3011 		memcg = obj_cgroup_memcg(objcg);
3012 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3013 			flush = true;
3014 	}
3015 	rcu_read_unlock();
3016 
3017 	return flush;
3018 }
3019 
3020 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3021 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3022 		enum node_stat_item idx)
3023 {
3024 	struct obj_stock_pcp *stock;
3025 	unsigned int nr_pages = 0;
3026 
3027 	if (!local_trylock(&obj_stock.lock)) {
3028 		if (pgdat)
3029 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3030 		nr_pages = nr_bytes >> PAGE_SHIFT;
3031 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3032 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3033 		goto out;
3034 	}
3035 
3036 	stock = this_cpu_ptr(&obj_stock);
3037 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3038 		drain_obj_stock(stock);
3039 		obj_cgroup_get(objcg);
3040 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3041 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3042 		WRITE_ONCE(stock->cached_objcg, objcg);
3043 
3044 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3045 	}
3046 	stock->nr_bytes += nr_bytes;
3047 
3048 	if (pgdat)
3049 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3050 
3051 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3052 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3053 		stock->nr_bytes &= (PAGE_SIZE - 1);
3054 	}
3055 
3056 	local_unlock(&obj_stock.lock);
3057 out:
3058 	if (nr_pages)
3059 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3060 }
3061 
3062 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3063 				     struct pglist_data *pgdat, enum node_stat_item idx)
3064 {
3065 	unsigned int nr_pages, nr_bytes;
3066 	int ret;
3067 
3068 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3069 		return 0;
3070 
3071 	/*
3072 	 * In theory, objcg->nr_charged_bytes can have enough
3073 	 * pre-charged bytes to satisfy the allocation. However,
3074 	 * flushing objcg->nr_charged_bytes requires two atomic
3075 	 * operations, and objcg->nr_charged_bytes can't be big.
3076 	 * The shared objcg->nr_charged_bytes can also become a
3077 	 * performance bottleneck if all tasks of the same memcg are
3078 	 * trying to update it. So it's better to ignore it and try
3079 	 * grab some new pages. The stock's nr_bytes will be flushed to
3080 	 * objcg->nr_charged_bytes later on when objcg changes.
3081 	 *
3082 	 * The stock's nr_bytes may contain enough pre-charged bytes
3083 	 * to allow one less page from being charged, but we can't rely
3084 	 * on the pre-charged bytes not being changed outside of
3085 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3086 	 * pre-charged bytes as well when charging pages. To avoid a
3087 	 * page uncharge right after a page charge, we set the
3088 	 * allow_uncharge flag to false when calling refill_obj_stock()
3089 	 * to temporarily allow the pre-charged bytes to exceed the page
3090 	 * size limit. The maximum reachable value of the pre-charged
3091 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3092 	 * race.
3093 	 */
3094 	nr_pages = size >> PAGE_SHIFT;
3095 	nr_bytes = size & (PAGE_SIZE - 1);
3096 
3097 	if (nr_bytes)
3098 		nr_pages += 1;
3099 
3100 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3101 	if (!ret && (nr_bytes || pgdat))
3102 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3103 					 false, size, pgdat, idx);
3104 
3105 	return ret;
3106 }
3107 
3108 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3109 {
3110 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3111 }
3112 
3113 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3114 {
3115 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
3116 }
3117 
3118 static inline size_t obj_full_size(struct kmem_cache *s)
3119 {
3120 	/*
3121 	 * For each accounted object there is an extra space which is used
3122 	 * to store obj_cgroup membership. Charge it too.
3123 	 */
3124 	return s->size + sizeof(struct obj_cgroup *);
3125 }
3126 
3127 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3128 				  gfp_t flags, size_t size, void **p)
3129 {
3130 	struct obj_cgroup *objcg;
3131 	struct slab *slab;
3132 	unsigned long off;
3133 	size_t i;
3134 
3135 	/*
3136 	 * The obtained objcg pointer is safe to use within the current scope,
3137 	 * defined by current task or set_active_memcg() pair.
3138 	 * obj_cgroup_get() is used to get a permanent reference.
3139 	 */
3140 	objcg = current_obj_cgroup();
3141 	if (!objcg)
3142 		return true;
3143 
3144 	/*
3145 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3146 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3147 	 * the whole requested size.
3148 	 * return success as there's nothing to free back
3149 	 */
3150 	if (unlikely(*p == NULL))
3151 		return true;
3152 
3153 	flags &= gfp_allowed_mask;
3154 
3155 	if (lru) {
3156 		int ret;
3157 		struct mem_cgroup *memcg;
3158 
3159 		memcg = get_mem_cgroup_from_objcg(objcg);
3160 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3161 		css_put(&memcg->css);
3162 
3163 		if (ret)
3164 			return false;
3165 	}
3166 
3167 	for (i = 0; i < size; i++) {
3168 		slab = virt_to_slab(p[i]);
3169 
3170 		if (!slab_obj_exts(slab) &&
3171 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3172 			continue;
3173 		}
3174 
3175 		/*
3176 		 * if we fail and size is 1, memcg_alloc_abort_single() will
3177 		 * just free the object, which is ok as we have not assigned
3178 		 * objcg to its obj_ext yet
3179 		 *
3180 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
3181 		 * any objects that were already charged and obj_ext assigned
3182 		 *
3183 		 * TODO: we could batch this until slab_pgdat(slab) changes
3184 		 * between iterations, with a more complicated undo
3185 		 */
3186 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3187 					slab_pgdat(slab), cache_vmstat_idx(s)))
3188 			return false;
3189 
3190 		off = obj_to_index(s, slab, p[i]);
3191 		obj_cgroup_get(objcg);
3192 		slab_obj_exts(slab)[off].objcg = objcg;
3193 	}
3194 
3195 	return true;
3196 }
3197 
3198 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3199 			    void **p, int objects, struct slabobj_ext *obj_exts)
3200 {
3201 	size_t obj_size = obj_full_size(s);
3202 
3203 	for (int i = 0; i < objects; i++) {
3204 		struct obj_cgroup *objcg;
3205 		unsigned int off;
3206 
3207 		off = obj_to_index(s, slab, p[i]);
3208 		objcg = obj_exts[off].objcg;
3209 		if (!objcg)
3210 			continue;
3211 
3212 		obj_exts[off].objcg = NULL;
3213 		refill_obj_stock(objcg, obj_size, true, -obj_size,
3214 				 slab_pgdat(slab), cache_vmstat_idx(s));
3215 		obj_cgroup_put(objcg);
3216 	}
3217 }
3218 
3219 /*
3220  * The objcg is only set on the first page, so transfer it to all the
3221  * other pages.
3222  */
3223 void split_page_memcg(struct page *page, unsigned order)
3224 {
3225 	struct obj_cgroup *objcg = page_objcg(page);
3226 	unsigned int i, nr = 1 << order;
3227 
3228 	if (!objcg)
3229 		return;
3230 
3231 	for (i = 1; i < nr; i++)
3232 		page_set_objcg(&page[i], objcg);
3233 
3234 	obj_cgroup_get_many(objcg, nr - 1);
3235 }
3236 
3237 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3238 		unsigned new_order)
3239 {
3240 	unsigned new_refs;
3241 
3242 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3243 		return;
3244 
3245 	new_refs = (1 << (old_order - new_order)) - 1;
3246 	css_get_many(&__folio_memcg(folio)->css, new_refs);
3247 }
3248 
3249 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3250 {
3251 	unsigned long val;
3252 
3253 	if (mem_cgroup_is_root(memcg)) {
3254 		/*
3255 		 * Approximate root's usage from global state. This isn't
3256 		 * perfect, but the root usage was always an approximation.
3257 		 */
3258 		val = global_node_page_state(NR_FILE_PAGES) +
3259 			global_node_page_state(NR_ANON_MAPPED);
3260 		if (swap)
3261 			val += total_swap_pages - get_nr_swap_pages();
3262 	} else {
3263 		if (!swap)
3264 			val = page_counter_read(&memcg->memory);
3265 		else
3266 			val = page_counter_read(&memcg->memsw);
3267 	}
3268 	return val;
3269 }
3270 
3271 static int memcg_online_kmem(struct mem_cgroup *memcg)
3272 {
3273 	struct obj_cgroup *objcg;
3274 
3275 	if (mem_cgroup_kmem_disabled())
3276 		return 0;
3277 
3278 	if (unlikely(mem_cgroup_is_root(memcg)))
3279 		return 0;
3280 
3281 	objcg = obj_cgroup_alloc();
3282 	if (!objcg)
3283 		return -ENOMEM;
3284 
3285 	objcg->memcg = memcg;
3286 	rcu_assign_pointer(memcg->objcg, objcg);
3287 	obj_cgroup_get(objcg);
3288 	memcg->orig_objcg = objcg;
3289 
3290 	static_branch_enable(&memcg_kmem_online_key);
3291 
3292 	memcg->kmemcg_id = memcg->id.id;
3293 
3294 	return 0;
3295 }
3296 
3297 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3298 {
3299 	struct mem_cgroup *parent;
3300 
3301 	if (mem_cgroup_kmem_disabled())
3302 		return;
3303 
3304 	if (unlikely(mem_cgroup_is_root(memcg)))
3305 		return;
3306 
3307 	parent = parent_mem_cgroup(memcg);
3308 	if (!parent)
3309 		parent = root_mem_cgroup;
3310 
3311 	memcg_reparent_list_lrus(memcg, parent);
3312 
3313 	/*
3314 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3315 	 * helpers won't use parent's list_lru until child is drained.
3316 	 */
3317 	memcg_reparent_objcgs(memcg, parent);
3318 }
3319 
3320 #ifdef CONFIG_CGROUP_WRITEBACK
3321 
3322 #include <trace/events/writeback.h>
3323 
3324 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3325 {
3326 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3327 }
3328 
3329 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3330 {
3331 	wb_domain_exit(&memcg->cgwb_domain);
3332 }
3333 
3334 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3335 {
3336 	wb_domain_size_changed(&memcg->cgwb_domain);
3337 }
3338 
3339 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3340 {
3341 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3342 
3343 	if (!memcg->css.parent)
3344 		return NULL;
3345 
3346 	return &memcg->cgwb_domain;
3347 }
3348 
3349 /**
3350  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3351  * @wb: bdi_writeback in question
3352  * @pfilepages: out parameter for number of file pages
3353  * @pheadroom: out parameter for number of allocatable pages according to memcg
3354  * @pdirty: out parameter for number of dirty pages
3355  * @pwriteback: out parameter for number of pages under writeback
3356  *
3357  * Determine the numbers of file, headroom, dirty, and writeback pages in
3358  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3359  * is a bit more involved.
3360  *
3361  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3362  * headroom is calculated as the lowest headroom of itself and the
3363  * ancestors.  Note that this doesn't consider the actual amount of
3364  * available memory in the system.  The caller should further cap
3365  * *@pheadroom accordingly.
3366  */
3367 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3368 			 unsigned long *pheadroom, unsigned long *pdirty,
3369 			 unsigned long *pwriteback)
3370 {
3371 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3372 	struct mem_cgroup *parent;
3373 
3374 	mem_cgroup_flush_stats_ratelimited(memcg);
3375 
3376 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3377 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3378 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3379 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3380 
3381 	*pheadroom = PAGE_COUNTER_MAX;
3382 	while ((parent = parent_mem_cgroup(memcg))) {
3383 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3384 					    READ_ONCE(memcg->memory.high));
3385 		unsigned long used = page_counter_read(&memcg->memory);
3386 
3387 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3388 		memcg = parent;
3389 	}
3390 }
3391 
3392 /*
3393  * Foreign dirty flushing
3394  *
3395  * There's an inherent mismatch between memcg and writeback.  The former
3396  * tracks ownership per-page while the latter per-inode.  This was a
3397  * deliberate design decision because honoring per-page ownership in the
3398  * writeback path is complicated, may lead to higher CPU and IO overheads
3399  * and deemed unnecessary given that write-sharing an inode across
3400  * different cgroups isn't a common use-case.
3401  *
3402  * Combined with inode majority-writer ownership switching, this works well
3403  * enough in most cases but there are some pathological cases.  For
3404  * example, let's say there are two cgroups A and B which keep writing to
3405  * different but confined parts of the same inode.  B owns the inode and
3406  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3407  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3408  * triggering background writeback.  A will be slowed down without a way to
3409  * make writeback of the dirty pages happen.
3410  *
3411  * Conditions like the above can lead to a cgroup getting repeatedly and
3412  * severely throttled after making some progress after each
3413  * dirty_expire_interval while the underlying IO device is almost
3414  * completely idle.
3415  *
3416  * Solving this problem completely requires matching the ownership tracking
3417  * granularities between memcg and writeback in either direction.  However,
3418  * the more egregious behaviors can be avoided by simply remembering the
3419  * most recent foreign dirtying events and initiating remote flushes on
3420  * them when local writeback isn't enough to keep the memory clean enough.
3421  *
3422  * The following two functions implement such mechanism.  When a foreign
3423  * page - a page whose memcg and writeback ownerships don't match - is
3424  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3425  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3426  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3427  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3428  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3429  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3430  * limited to MEMCG_CGWB_FRN_CNT.
3431  *
3432  * The mechanism only remembers IDs and doesn't hold any object references.
3433  * As being wrong occasionally doesn't matter, updates and accesses to the
3434  * records are lockless and racy.
3435  */
3436 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3437 					     struct bdi_writeback *wb)
3438 {
3439 	struct mem_cgroup *memcg = folio_memcg(folio);
3440 	struct memcg_cgwb_frn *frn;
3441 	u64 now = get_jiffies_64();
3442 	u64 oldest_at = now;
3443 	int oldest = -1;
3444 	int i;
3445 
3446 	trace_track_foreign_dirty(folio, wb);
3447 
3448 	/*
3449 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3450 	 * using it.  If not replace the oldest one which isn't being
3451 	 * written out.
3452 	 */
3453 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3454 		frn = &memcg->cgwb_frn[i];
3455 		if (frn->bdi_id == wb->bdi->id &&
3456 		    frn->memcg_id == wb->memcg_css->id)
3457 			break;
3458 		if (time_before64(frn->at, oldest_at) &&
3459 		    atomic_read(&frn->done.cnt) == 1) {
3460 			oldest = i;
3461 			oldest_at = frn->at;
3462 		}
3463 	}
3464 
3465 	if (i < MEMCG_CGWB_FRN_CNT) {
3466 		/*
3467 		 * Re-using an existing one.  Update timestamp lazily to
3468 		 * avoid making the cacheline hot.  We want them to be
3469 		 * reasonably up-to-date and significantly shorter than
3470 		 * dirty_expire_interval as that's what expires the record.
3471 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3472 		 */
3473 		unsigned long update_intv =
3474 			min_t(unsigned long, HZ,
3475 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3476 
3477 		if (time_before64(frn->at, now - update_intv))
3478 			frn->at = now;
3479 	} else if (oldest >= 0) {
3480 		/* replace the oldest free one */
3481 		frn = &memcg->cgwb_frn[oldest];
3482 		frn->bdi_id = wb->bdi->id;
3483 		frn->memcg_id = wb->memcg_css->id;
3484 		frn->at = now;
3485 	}
3486 }
3487 
3488 /* issue foreign writeback flushes for recorded foreign dirtying events */
3489 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3490 {
3491 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3492 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3493 	u64 now = jiffies_64;
3494 	int i;
3495 
3496 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3497 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3498 
3499 		/*
3500 		 * If the record is older than dirty_expire_interval,
3501 		 * writeback on it has already started.  No need to kick it
3502 		 * off again.  Also, don't start a new one if there's
3503 		 * already one in flight.
3504 		 */
3505 		if (time_after64(frn->at, now - intv) &&
3506 		    atomic_read(&frn->done.cnt) == 1) {
3507 			frn->at = 0;
3508 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3509 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3510 					       WB_REASON_FOREIGN_FLUSH,
3511 					       &frn->done);
3512 		}
3513 	}
3514 }
3515 
3516 #else	/* CONFIG_CGROUP_WRITEBACK */
3517 
3518 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3519 {
3520 	return 0;
3521 }
3522 
3523 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3524 {
3525 }
3526 
3527 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3528 {
3529 }
3530 
3531 #endif	/* CONFIG_CGROUP_WRITEBACK */
3532 
3533 /*
3534  * Private memory cgroup IDR
3535  *
3536  * Swap-out records and page cache shadow entries need to store memcg
3537  * references in constrained space, so we maintain an ID space that is
3538  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3539  * memory-controlled cgroups to 64k.
3540  *
3541  * However, there usually are many references to the offline CSS after
3542  * the cgroup has been destroyed, such as page cache or reclaimable
3543  * slab objects, that don't need to hang on to the ID. We want to keep
3544  * those dead CSS from occupying IDs, or we might quickly exhaust the
3545  * relatively small ID space and prevent the creation of new cgroups
3546  * even when there are much fewer than 64k cgroups - possibly none.
3547  *
3548  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3549  * be freed and recycled when it's no longer needed, which is usually
3550  * when the CSS is offlined.
3551  *
3552  * The only exception to that are records of swapped out tmpfs/shmem
3553  * pages that need to be attributed to live ancestors on swapin. But
3554  * those references are manageable from userspace.
3555  */
3556 
3557 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3558 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3559 
3560 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3561 {
3562 	if (memcg->id.id > 0) {
3563 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3564 		memcg->id.id = 0;
3565 	}
3566 }
3567 
3568 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3569 					   unsigned int n)
3570 {
3571 	refcount_add(n, &memcg->id.ref);
3572 }
3573 
3574 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3575 {
3576 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3577 		mem_cgroup_id_remove(memcg);
3578 
3579 		/* Memcg ID pins CSS */
3580 		css_put(&memcg->css);
3581 	}
3582 }
3583 
3584 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3585 {
3586 	mem_cgroup_id_put_many(memcg, 1);
3587 }
3588 
3589 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3590 {
3591 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
3592 		/*
3593 		 * The root cgroup cannot be destroyed, so it's refcount must
3594 		 * always be >= 1.
3595 		 */
3596 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3597 			VM_BUG_ON(1);
3598 			break;
3599 		}
3600 		memcg = parent_mem_cgroup(memcg);
3601 		if (!memcg)
3602 			memcg = root_mem_cgroup;
3603 	}
3604 	return memcg;
3605 }
3606 
3607 /**
3608  * mem_cgroup_from_id - look up a memcg from a memcg id
3609  * @id: the memcg id to look up
3610  *
3611  * Caller must hold rcu_read_lock().
3612  */
3613 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3614 {
3615 	WARN_ON_ONCE(!rcu_read_lock_held());
3616 	return xa_load(&mem_cgroup_ids, id);
3617 }
3618 
3619 #ifdef CONFIG_SHRINKER_DEBUG
3620 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3621 {
3622 	struct cgroup *cgrp;
3623 	struct cgroup_subsys_state *css;
3624 	struct mem_cgroup *memcg;
3625 
3626 	cgrp = cgroup_get_from_id(ino);
3627 	if (IS_ERR(cgrp))
3628 		return ERR_CAST(cgrp);
3629 
3630 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3631 	if (css)
3632 		memcg = container_of(css, struct mem_cgroup, css);
3633 	else
3634 		memcg = ERR_PTR(-ENOENT);
3635 
3636 	cgroup_put(cgrp);
3637 
3638 	return memcg;
3639 }
3640 #endif
3641 
3642 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3643 {
3644 	if (!pn)
3645 		return;
3646 
3647 	free_percpu(pn->lruvec_stats_percpu);
3648 	kfree(pn->lruvec_stats);
3649 	kfree(pn);
3650 }
3651 
3652 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3653 {
3654 	struct mem_cgroup_per_node *pn;
3655 
3656 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3657 				   node);
3658 	if (!pn)
3659 		return false;
3660 
3661 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3662 					GFP_KERNEL_ACCOUNT, node);
3663 	if (!pn->lruvec_stats)
3664 		goto fail;
3665 
3666 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3667 						   GFP_KERNEL_ACCOUNT);
3668 	if (!pn->lruvec_stats_percpu)
3669 		goto fail;
3670 
3671 	lruvec_init(&pn->lruvec);
3672 	pn->memcg = memcg;
3673 
3674 	memcg->nodeinfo[node] = pn;
3675 	return true;
3676 fail:
3677 	free_mem_cgroup_per_node_info(pn);
3678 	return false;
3679 }
3680 
3681 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3682 {
3683 	int node;
3684 
3685 	obj_cgroup_put(memcg->orig_objcg);
3686 
3687 	for_each_node(node)
3688 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3689 	memcg1_free_events(memcg);
3690 	kfree(memcg->vmstats);
3691 	free_percpu(memcg->vmstats_percpu);
3692 	kfree(memcg);
3693 }
3694 
3695 static void mem_cgroup_free(struct mem_cgroup *memcg)
3696 {
3697 	lru_gen_exit_memcg(memcg);
3698 	memcg_wb_domain_exit(memcg);
3699 	__mem_cgroup_free(memcg);
3700 }
3701 
3702 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3703 {
3704 	struct memcg_vmstats_percpu *statc;
3705 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3706 	struct mem_cgroup *memcg;
3707 	int node, cpu;
3708 	int __maybe_unused i;
3709 	long error;
3710 
3711 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3712 	if (!memcg)
3713 		return ERR_PTR(-ENOMEM);
3714 
3715 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3716 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3717 	if (error)
3718 		goto fail;
3719 	error = -ENOMEM;
3720 
3721 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3722 				 GFP_KERNEL_ACCOUNT);
3723 	if (!memcg->vmstats)
3724 		goto fail;
3725 
3726 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3727 						 GFP_KERNEL_ACCOUNT);
3728 	if (!memcg->vmstats_percpu)
3729 		goto fail;
3730 
3731 	if (!memcg1_alloc_events(memcg))
3732 		goto fail;
3733 
3734 	for_each_possible_cpu(cpu) {
3735 		if (parent)
3736 			pstatc_pcpu = parent->vmstats_percpu;
3737 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3738 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3739 		statc->vmstats = memcg->vmstats;
3740 	}
3741 
3742 	for_each_node(node)
3743 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3744 			goto fail;
3745 
3746 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3747 		goto fail;
3748 
3749 	INIT_WORK(&memcg->high_work, high_work_func);
3750 	vmpressure_init(&memcg->vmpressure);
3751 	INIT_LIST_HEAD(&memcg->memory_peaks);
3752 	INIT_LIST_HEAD(&memcg->swap_peaks);
3753 	spin_lock_init(&memcg->peaks_lock);
3754 	memcg->socket_pressure = get_jiffies_64();
3755 #if BITS_PER_LONG < 64
3756 	seqlock_init(&memcg->socket_pressure_seqlock);
3757 #endif
3758 	memcg1_memcg_init(memcg);
3759 	memcg->kmemcg_id = -1;
3760 	INIT_LIST_HEAD(&memcg->objcg_list);
3761 #ifdef CONFIG_CGROUP_WRITEBACK
3762 	INIT_LIST_HEAD(&memcg->cgwb_list);
3763 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3764 		memcg->cgwb_frn[i].done =
3765 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3766 #endif
3767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3768 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3769 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3770 	memcg->deferred_split_queue.split_queue_len = 0;
3771 #endif
3772 	lru_gen_init_memcg(memcg);
3773 	return memcg;
3774 fail:
3775 	mem_cgroup_id_remove(memcg);
3776 	__mem_cgroup_free(memcg);
3777 	return ERR_PTR(error);
3778 }
3779 
3780 static struct cgroup_subsys_state * __ref
3781 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3782 {
3783 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3784 	struct mem_cgroup *memcg, *old_memcg;
3785 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3786 
3787 	old_memcg = set_active_memcg(parent);
3788 	memcg = mem_cgroup_alloc(parent);
3789 	set_active_memcg(old_memcg);
3790 	if (IS_ERR(memcg))
3791 		return ERR_CAST(memcg);
3792 
3793 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3794 	memcg1_soft_limit_reset(memcg);
3795 #ifdef CONFIG_ZSWAP
3796 	memcg->zswap_max = PAGE_COUNTER_MAX;
3797 	WRITE_ONCE(memcg->zswap_writeback, true);
3798 #endif
3799 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3800 	if (parent) {
3801 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3802 
3803 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3804 		page_counter_init(&memcg->swap, &parent->swap, false);
3805 #ifdef CONFIG_MEMCG_V1
3806 		memcg->memory.track_failcnt = !memcg_on_dfl;
3807 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3808 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3809 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3810 #endif
3811 	} else {
3812 		init_memcg_stats();
3813 		init_memcg_events();
3814 		page_counter_init(&memcg->memory, NULL, true);
3815 		page_counter_init(&memcg->swap, NULL, false);
3816 #ifdef CONFIG_MEMCG_V1
3817 		page_counter_init(&memcg->kmem, NULL, false);
3818 		page_counter_init(&memcg->tcpmem, NULL, false);
3819 #endif
3820 		root_mem_cgroup = memcg;
3821 		return &memcg->css;
3822 	}
3823 
3824 	if (memcg_on_dfl && !cgroup_memory_nosocket)
3825 		static_branch_inc(&memcg_sockets_enabled_key);
3826 
3827 	if (!cgroup_memory_nobpf)
3828 		static_branch_inc(&memcg_bpf_enabled_key);
3829 
3830 	return &memcg->css;
3831 }
3832 
3833 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3834 {
3835 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3836 
3837 	if (memcg_online_kmem(memcg))
3838 		goto remove_id;
3839 
3840 	/*
3841 	 * A memcg must be visible for expand_shrinker_info()
3842 	 * by the time the maps are allocated. So, we allocate maps
3843 	 * here, when for_each_mem_cgroup() can't skip it.
3844 	 */
3845 	if (alloc_shrinker_info(memcg))
3846 		goto offline_kmem;
3847 
3848 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3849 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3850 				   FLUSH_TIME);
3851 	lru_gen_online_memcg(memcg);
3852 
3853 	/* Online state pins memcg ID, memcg ID pins CSS */
3854 	refcount_set(&memcg->id.ref, 1);
3855 	css_get(css);
3856 
3857 	/*
3858 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3859 	 *
3860 	 * We could do this earlier and require callers to filter with
3861 	 * css_tryget_online(). But right now there are no users that
3862 	 * need earlier access, and the workingset code relies on the
3863 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3864 	 * publish it here at the end of onlining. This matches the
3865 	 * regular ID destruction during offlining.
3866 	 */
3867 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3868 
3869 	return 0;
3870 offline_kmem:
3871 	memcg_offline_kmem(memcg);
3872 remove_id:
3873 	mem_cgroup_id_remove(memcg);
3874 	return -ENOMEM;
3875 }
3876 
3877 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3878 {
3879 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3880 
3881 	memcg1_css_offline(memcg);
3882 
3883 	page_counter_set_min(&memcg->memory, 0);
3884 	page_counter_set_low(&memcg->memory, 0);
3885 
3886 	zswap_memcg_offline_cleanup(memcg);
3887 
3888 	memcg_offline_kmem(memcg);
3889 	reparent_shrinker_deferred(memcg);
3890 	wb_memcg_offline(memcg);
3891 	lru_gen_offline_memcg(memcg);
3892 
3893 	drain_all_stock(memcg);
3894 
3895 	mem_cgroup_id_put(memcg);
3896 }
3897 
3898 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3899 {
3900 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3901 
3902 	invalidate_reclaim_iterators(memcg);
3903 	lru_gen_release_memcg(memcg);
3904 }
3905 
3906 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3907 {
3908 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3909 	int __maybe_unused i;
3910 
3911 #ifdef CONFIG_CGROUP_WRITEBACK
3912 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3913 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3914 #endif
3915 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3916 		static_branch_dec(&memcg_sockets_enabled_key);
3917 
3918 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3919 		static_branch_dec(&memcg_sockets_enabled_key);
3920 
3921 	if (!cgroup_memory_nobpf)
3922 		static_branch_dec(&memcg_bpf_enabled_key);
3923 
3924 	vmpressure_cleanup(&memcg->vmpressure);
3925 	cancel_work_sync(&memcg->high_work);
3926 	memcg1_remove_from_trees(memcg);
3927 	free_shrinker_info(memcg);
3928 	mem_cgroup_free(memcg);
3929 }
3930 
3931 /**
3932  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3933  * @css: the target css
3934  *
3935  * Reset the states of the mem_cgroup associated with @css.  This is
3936  * invoked when the userland requests disabling on the default hierarchy
3937  * but the memcg is pinned through dependency.  The memcg should stop
3938  * applying policies and should revert to the vanilla state as it may be
3939  * made visible again.
3940  *
3941  * The current implementation only resets the essential configurations.
3942  * This needs to be expanded to cover all the visible parts.
3943  */
3944 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3945 {
3946 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3947 
3948 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3949 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3950 #ifdef CONFIG_MEMCG_V1
3951 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3952 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3953 #endif
3954 	page_counter_set_min(&memcg->memory, 0);
3955 	page_counter_set_low(&memcg->memory, 0);
3956 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3957 	memcg1_soft_limit_reset(memcg);
3958 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3959 	memcg_wb_domain_size_changed(memcg);
3960 }
3961 
3962 struct aggregate_control {
3963 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3964 	long *aggregate;
3965 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3966 	long *local;
3967 	/* pointer to the pending child counters during tree propagation */
3968 	long *pending;
3969 	/* pointer to the parent's pending counters, could be NULL */
3970 	long *ppending;
3971 	/* pointer to the percpu counters to be aggregated */
3972 	long *cstat;
3973 	/* pointer to the percpu counters of the last aggregation*/
3974 	long *cstat_prev;
3975 	/* size of the above counters */
3976 	int size;
3977 };
3978 
3979 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3980 {
3981 	int i;
3982 	long delta, delta_cpu, v;
3983 
3984 	for (i = 0; i < ac->size; i++) {
3985 		/*
3986 		 * Collect the aggregated propagation counts of groups
3987 		 * below us. We're in a per-cpu loop here and this is
3988 		 * a global counter, so the first cycle will get them.
3989 		 */
3990 		delta = ac->pending[i];
3991 		if (delta)
3992 			ac->pending[i] = 0;
3993 
3994 		/* Add CPU changes on this level since the last flush */
3995 		delta_cpu = 0;
3996 		v = READ_ONCE(ac->cstat[i]);
3997 		if (v != ac->cstat_prev[i]) {
3998 			delta_cpu = v - ac->cstat_prev[i];
3999 			delta += delta_cpu;
4000 			ac->cstat_prev[i] = v;
4001 		}
4002 
4003 		/* Aggregate counts on this level and propagate upwards */
4004 		if (delta_cpu)
4005 			ac->local[i] += delta_cpu;
4006 
4007 		if (delta) {
4008 			ac->aggregate[i] += delta;
4009 			if (ac->ppending)
4010 				ac->ppending[i] += delta;
4011 		}
4012 	}
4013 }
4014 
4015 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
4016 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4017 			    int cpu)
4018 {
4019 	int nid;
4020 
4021 	if (atomic_read(&memcg->kmem_stat)) {
4022 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4023 		int index = memcg_stats_index(MEMCG_KMEM);
4024 
4025 		memcg->vmstats->state[index] += kmem;
4026 		if (parent)
4027 			parent->vmstats->state_pending[index] += kmem;
4028 	}
4029 
4030 	for_each_node_state(nid, N_MEMORY) {
4031 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4032 		struct lruvec_stats *lstats = pn->lruvec_stats;
4033 		struct lruvec_stats *plstats = NULL;
4034 
4035 		if (parent)
4036 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4037 
4038 		if (atomic_read(&pn->slab_reclaimable)) {
4039 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4040 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4041 
4042 			lstats->state[index] += slab;
4043 			if (plstats)
4044 				plstats->state_pending[index] += slab;
4045 		}
4046 		if (atomic_read(&pn->slab_unreclaimable)) {
4047 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4048 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4049 
4050 			lstats->state[index] += slab;
4051 			if (plstats)
4052 				plstats->state_pending[index] += slab;
4053 		}
4054 	}
4055 }
4056 #else
4057 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4058 			    int cpu)
4059 {}
4060 #endif
4061 
4062 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4063 {
4064 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4065 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4066 	struct memcg_vmstats_percpu *statc;
4067 	struct aggregate_control ac;
4068 	int nid;
4069 
4070 	flush_nmi_stats(memcg, parent, cpu);
4071 
4072 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4073 
4074 	ac = (struct aggregate_control) {
4075 		.aggregate = memcg->vmstats->state,
4076 		.local = memcg->vmstats->state_local,
4077 		.pending = memcg->vmstats->state_pending,
4078 		.ppending = parent ? parent->vmstats->state_pending : NULL,
4079 		.cstat = statc->state,
4080 		.cstat_prev = statc->state_prev,
4081 		.size = MEMCG_VMSTAT_SIZE,
4082 	};
4083 	mem_cgroup_stat_aggregate(&ac);
4084 
4085 	ac = (struct aggregate_control) {
4086 		.aggregate = memcg->vmstats->events,
4087 		.local = memcg->vmstats->events_local,
4088 		.pending = memcg->vmstats->events_pending,
4089 		.ppending = parent ? parent->vmstats->events_pending : NULL,
4090 		.cstat = statc->events,
4091 		.cstat_prev = statc->events_prev,
4092 		.size = NR_MEMCG_EVENTS,
4093 	};
4094 	mem_cgroup_stat_aggregate(&ac);
4095 
4096 	for_each_node_state(nid, N_MEMORY) {
4097 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4098 		struct lruvec_stats *lstats = pn->lruvec_stats;
4099 		struct lruvec_stats *plstats = NULL;
4100 		struct lruvec_stats_percpu *lstatc;
4101 
4102 		if (parent)
4103 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4104 
4105 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4106 
4107 		ac = (struct aggregate_control) {
4108 			.aggregate = lstats->state,
4109 			.local = lstats->state_local,
4110 			.pending = lstats->state_pending,
4111 			.ppending = plstats ? plstats->state_pending : NULL,
4112 			.cstat = lstatc->state,
4113 			.cstat_prev = lstatc->state_prev,
4114 			.size = NR_MEMCG_NODE_STAT_ITEMS,
4115 		};
4116 		mem_cgroup_stat_aggregate(&ac);
4117 
4118 	}
4119 	WRITE_ONCE(statc->stats_updates, 0);
4120 	/* We are in a per-cpu loop here, only do the atomic write once */
4121 	if (atomic_read(&memcg->vmstats->stats_updates))
4122 		atomic_set(&memcg->vmstats->stats_updates, 0);
4123 }
4124 
4125 static void mem_cgroup_fork(struct task_struct *task)
4126 {
4127 	/*
4128 	 * Set the update flag to cause task->objcg to be initialized lazily
4129 	 * on the first allocation. It can be done without any synchronization
4130 	 * because it's always performed on the current task, so does
4131 	 * current_objcg_update().
4132 	 */
4133 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4134 }
4135 
4136 static void mem_cgroup_exit(struct task_struct *task)
4137 {
4138 	struct obj_cgroup *objcg = task->objcg;
4139 
4140 	objcg = (struct obj_cgroup *)
4141 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4142 	obj_cgroup_put(objcg);
4143 
4144 	/*
4145 	 * Some kernel allocations can happen after this point,
4146 	 * but let's ignore them. It can be done without any synchronization
4147 	 * because it's always performed on the current task, so does
4148 	 * current_objcg_update().
4149 	 */
4150 	task->objcg = NULL;
4151 }
4152 
4153 #ifdef CONFIG_LRU_GEN
4154 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4155 {
4156 	struct task_struct *task;
4157 	struct cgroup_subsys_state *css;
4158 
4159 	/* find the first leader if there is any */
4160 	cgroup_taskset_for_each_leader(task, css, tset)
4161 		break;
4162 
4163 	if (!task)
4164 		return;
4165 
4166 	task_lock(task);
4167 	if (task->mm && READ_ONCE(task->mm->owner) == task)
4168 		lru_gen_migrate_mm(task->mm);
4169 	task_unlock(task);
4170 }
4171 #else
4172 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4173 #endif /* CONFIG_LRU_GEN */
4174 
4175 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4176 {
4177 	struct task_struct *task;
4178 	struct cgroup_subsys_state *css;
4179 
4180 	cgroup_taskset_for_each(task, css, tset) {
4181 		/* atomically set the update bit */
4182 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4183 	}
4184 }
4185 
4186 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4187 {
4188 	mem_cgroup_lru_gen_attach(tset);
4189 	mem_cgroup_kmem_attach(tset);
4190 }
4191 
4192 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4193 {
4194 	if (value == PAGE_COUNTER_MAX)
4195 		seq_puts(m, "max\n");
4196 	else
4197 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4198 
4199 	return 0;
4200 }
4201 
4202 static u64 memory_current_read(struct cgroup_subsys_state *css,
4203 			       struct cftype *cft)
4204 {
4205 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4206 
4207 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4208 }
4209 
4210 #define OFP_PEAK_UNSET (((-1UL)))
4211 
4212 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4213 {
4214 	struct cgroup_of_peak *ofp = of_peak(sf->private);
4215 	u64 fd_peak = READ_ONCE(ofp->value), peak;
4216 
4217 	/* User wants global or local peak? */
4218 	if (fd_peak == OFP_PEAK_UNSET)
4219 		peak = pc->watermark;
4220 	else
4221 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4222 
4223 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4224 	return 0;
4225 }
4226 
4227 static int memory_peak_show(struct seq_file *sf, void *v)
4228 {
4229 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4230 
4231 	return peak_show(sf, v, &memcg->memory);
4232 }
4233 
4234 static int peak_open(struct kernfs_open_file *of)
4235 {
4236 	struct cgroup_of_peak *ofp = of_peak(of);
4237 
4238 	ofp->value = OFP_PEAK_UNSET;
4239 	return 0;
4240 }
4241 
4242 static void peak_release(struct kernfs_open_file *of)
4243 {
4244 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4245 	struct cgroup_of_peak *ofp = of_peak(of);
4246 
4247 	if (ofp->value == OFP_PEAK_UNSET) {
4248 		/* fast path (no writes on this fd) */
4249 		return;
4250 	}
4251 	spin_lock(&memcg->peaks_lock);
4252 	list_del(&ofp->list);
4253 	spin_unlock(&memcg->peaks_lock);
4254 }
4255 
4256 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4257 			  loff_t off, struct page_counter *pc,
4258 			  struct list_head *watchers)
4259 {
4260 	unsigned long usage;
4261 	struct cgroup_of_peak *peer_ctx;
4262 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4263 	struct cgroup_of_peak *ofp = of_peak(of);
4264 
4265 	spin_lock(&memcg->peaks_lock);
4266 
4267 	usage = page_counter_read(pc);
4268 	WRITE_ONCE(pc->local_watermark, usage);
4269 
4270 	list_for_each_entry(peer_ctx, watchers, list)
4271 		if (usage > peer_ctx->value)
4272 			WRITE_ONCE(peer_ctx->value, usage);
4273 
4274 	/* initial write, register watcher */
4275 	if (ofp->value == OFP_PEAK_UNSET)
4276 		list_add(&ofp->list, watchers);
4277 
4278 	WRITE_ONCE(ofp->value, usage);
4279 	spin_unlock(&memcg->peaks_lock);
4280 
4281 	return nbytes;
4282 }
4283 
4284 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4285 				 size_t nbytes, loff_t off)
4286 {
4287 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4288 
4289 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4290 			  &memcg->memory_peaks);
4291 }
4292 
4293 #undef OFP_PEAK_UNSET
4294 
4295 static int memory_min_show(struct seq_file *m, void *v)
4296 {
4297 	return seq_puts_memcg_tunable(m,
4298 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4299 }
4300 
4301 static ssize_t memory_min_write(struct kernfs_open_file *of,
4302 				char *buf, size_t nbytes, loff_t off)
4303 {
4304 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4305 	unsigned long min;
4306 	int err;
4307 
4308 	buf = strstrip(buf);
4309 	err = page_counter_memparse(buf, "max", &min);
4310 	if (err)
4311 		return err;
4312 
4313 	page_counter_set_min(&memcg->memory, min);
4314 
4315 	return nbytes;
4316 }
4317 
4318 static int memory_low_show(struct seq_file *m, void *v)
4319 {
4320 	return seq_puts_memcg_tunable(m,
4321 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4322 }
4323 
4324 static ssize_t memory_low_write(struct kernfs_open_file *of,
4325 				char *buf, size_t nbytes, loff_t off)
4326 {
4327 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4328 	unsigned long low;
4329 	int err;
4330 
4331 	buf = strstrip(buf);
4332 	err = page_counter_memparse(buf, "max", &low);
4333 	if (err)
4334 		return err;
4335 
4336 	page_counter_set_low(&memcg->memory, low);
4337 
4338 	return nbytes;
4339 }
4340 
4341 static int memory_high_show(struct seq_file *m, void *v)
4342 {
4343 	return seq_puts_memcg_tunable(m,
4344 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4345 }
4346 
4347 static ssize_t memory_high_write(struct kernfs_open_file *of,
4348 				 char *buf, size_t nbytes, loff_t off)
4349 {
4350 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4351 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4352 	bool drained = false;
4353 	unsigned long high;
4354 	int err;
4355 
4356 	buf = strstrip(buf);
4357 	err = page_counter_memparse(buf, "max", &high);
4358 	if (err)
4359 		return err;
4360 
4361 	page_counter_set_high(&memcg->memory, high);
4362 
4363 	if (of->file->f_flags & O_NONBLOCK)
4364 		goto out;
4365 
4366 	for (;;) {
4367 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4368 		unsigned long reclaimed;
4369 
4370 		if (nr_pages <= high)
4371 			break;
4372 
4373 		if (signal_pending(current))
4374 			break;
4375 
4376 		if (!drained) {
4377 			drain_all_stock(memcg);
4378 			drained = true;
4379 			continue;
4380 		}
4381 
4382 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4383 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4384 
4385 		if (!reclaimed && !nr_retries--)
4386 			break;
4387 	}
4388 out:
4389 	memcg_wb_domain_size_changed(memcg);
4390 	return nbytes;
4391 }
4392 
4393 static int memory_max_show(struct seq_file *m, void *v)
4394 {
4395 	return seq_puts_memcg_tunable(m,
4396 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4397 }
4398 
4399 static ssize_t memory_max_write(struct kernfs_open_file *of,
4400 				char *buf, size_t nbytes, loff_t off)
4401 {
4402 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4403 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4404 	bool drained = false;
4405 	unsigned long max;
4406 	int err;
4407 
4408 	buf = strstrip(buf);
4409 	err = page_counter_memparse(buf, "max", &max);
4410 	if (err)
4411 		return err;
4412 
4413 	xchg(&memcg->memory.max, max);
4414 
4415 	if (of->file->f_flags & O_NONBLOCK)
4416 		goto out;
4417 
4418 	for (;;) {
4419 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4420 
4421 		if (nr_pages <= max)
4422 			break;
4423 
4424 		if (signal_pending(current))
4425 			break;
4426 
4427 		if (!drained) {
4428 			drain_all_stock(memcg);
4429 			drained = true;
4430 			continue;
4431 		}
4432 
4433 		if (nr_reclaims) {
4434 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4435 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4436 				nr_reclaims--;
4437 			continue;
4438 		}
4439 
4440 		memcg_memory_event(memcg, MEMCG_OOM);
4441 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4442 			break;
4443 		cond_resched();
4444 	}
4445 out:
4446 	memcg_wb_domain_size_changed(memcg);
4447 	return nbytes;
4448 }
4449 
4450 /*
4451  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4452  * if any new events become available.
4453  */
4454 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4455 {
4456 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4457 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4458 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4459 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4460 	seq_printf(m, "oom_kill %lu\n",
4461 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4462 	seq_printf(m, "oom_group_kill %lu\n",
4463 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4464 }
4465 
4466 static int memory_events_show(struct seq_file *m, void *v)
4467 {
4468 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4469 
4470 	__memory_events_show(m, memcg->memory_events);
4471 	return 0;
4472 }
4473 
4474 static int memory_events_local_show(struct seq_file *m, void *v)
4475 {
4476 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4477 
4478 	__memory_events_show(m, memcg->memory_events_local);
4479 	return 0;
4480 }
4481 
4482 int memory_stat_show(struct seq_file *m, void *v)
4483 {
4484 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4485 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4486 	struct seq_buf s;
4487 
4488 	if (!buf)
4489 		return -ENOMEM;
4490 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4491 	memory_stat_format(memcg, &s);
4492 	seq_puts(m, buf);
4493 	kfree(buf);
4494 	return 0;
4495 }
4496 
4497 #ifdef CONFIG_NUMA
4498 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4499 						     int item)
4500 {
4501 	return lruvec_page_state(lruvec, item) *
4502 		memcg_page_state_output_unit(item);
4503 }
4504 
4505 static int memory_numa_stat_show(struct seq_file *m, void *v)
4506 {
4507 	int i;
4508 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4509 
4510 	mem_cgroup_flush_stats(memcg);
4511 
4512 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4513 		int nid;
4514 
4515 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4516 			continue;
4517 
4518 		seq_printf(m, "%s", memory_stats[i].name);
4519 		for_each_node_state(nid, N_MEMORY) {
4520 			u64 size;
4521 			struct lruvec *lruvec;
4522 
4523 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4524 			size = lruvec_page_state_output(lruvec,
4525 							memory_stats[i].idx);
4526 			seq_printf(m, " N%d=%llu", nid, size);
4527 		}
4528 		seq_putc(m, '\n');
4529 	}
4530 
4531 	return 0;
4532 }
4533 #endif
4534 
4535 static int memory_oom_group_show(struct seq_file *m, void *v)
4536 {
4537 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4538 
4539 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4540 
4541 	return 0;
4542 }
4543 
4544 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4545 				      char *buf, size_t nbytes, loff_t off)
4546 {
4547 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4548 	int ret, oom_group;
4549 
4550 	buf = strstrip(buf);
4551 	if (!buf)
4552 		return -EINVAL;
4553 
4554 	ret = kstrtoint(buf, 0, &oom_group);
4555 	if (ret)
4556 		return ret;
4557 
4558 	if (oom_group != 0 && oom_group != 1)
4559 		return -EINVAL;
4560 
4561 	WRITE_ONCE(memcg->oom_group, oom_group);
4562 
4563 	return nbytes;
4564 }
4565 
4566 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4567 			      size_t nbytes, loff_t off)
4568 {
4569 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4570 	int ret;
4571 
4572 	ret = user_proactive_reclaim(buf, memcg, NULL);
4573 	if (ret)
4574 		return ret;
4575 
4576 	return nbytes;
4577 }
4578 
4579 static struct cftype memory_files[] = {
4580 	{
4581 		.name = "current",
4582 		.flags = CFTYPE_NOT_ON_ROOT,
4583 		.read_u64 = memory_current_read,
4584 	},
4585 	{
4586 		.name = "peak",
4587 		.flags = CFTYPE_NOT_ON_ROOT,
4588 		.open = peak_open,
4589 		.release = peak_release,
4590 		.seq_show = memory_peak_show,
4591 		.write = memory_peak_write,
4592 	},
4593 	{
4594 		.name = "min",
4595 		.flags = CFTYPE_NOT_ON_ROOT,
4596 		.seq_show = memory_min_show,
4597 		.write = memory_min_write,
4598 	},
4599 	{
4600 		.name = "low",
4601 		.flags = CFTYPE_NOT_ON_ROOT,
4602 		.seq_show = memory_low_show,
4603 		.write = memory_low_write,
4604 	},
4605 	{
4606 		.name = "high",
4607 		.flags = CFTYPE_NOT_ON_ROOT,
4608 		.seq_show = memory_high_show,
4609 		.write = memory_high_write,
4610 	},
4611 	{
4612 		.name = "max",
4613 		.flags = CFTYPE_NOT_ON_ROOT,
4614 		.seq_show = memory_max_show,
4615 		.write = memory_max_write,
4616 	},
4617 	{
4618 		.name = "events",
4619 		.flags = CFTYPE_NOT_ON_ROOT,
4620 		.file_offset = offsetof(struct mem_cgroup, events_file),
4621 		.seq_show = memory_events_show,
4622 	},
4623 	{
4624 		.name = "events.local",
4625 		.flags = CFTYPE_NOT_ON_ROOT,
4626 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4627 		.seq_show = memory_events_local_show,
4628 	},
4629 	{
4630 		.name = "stat",
4631 		.seq_show = memory_stat_show,
4632 	},
4633 #ifdef CONFIG_NUMA
4634 	{
4635 		.name = "numa_stat",
4636 		.seq_show = memory_numa_stat_show,
4637 	},
4638 #endif
4639 	{
4640 		.name = "oom.group",
4641 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4642 		.seq_show = memory_oom_group_show,
4643 		.write = memory_oom_group_write,
4644 	},
4645 	{
4646 		.name = "reclaim",
4647 		.flags = CFTYPE_NS_DELEGATABLE,
4648 		.write = memory_reclaim,
4649 	},
4650 	{ }	/* terminate */
4651 };
4652 
4653 struct cgroup_subsys memory_cgrp_subsys = {
4654 	.css_alloc = mem_cgroup_css_alloc,
4655 	.css_online = mem_cgroup_css_online,
4656 	.css_offline = mem_cgroup_css_offline,
4657 	.css_released = mem_cgroup_css_released,
4658 	.css_free = mem_cgroup_css_free,
4659 	.css_reset = mem_cgroup_css_reset,
4660 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4661 	.attach = mem_cgroup_attach,
4662 	.fork = mem_cgroup_fork,
4663 	.exit = mem_cgroup_exit,
4664 	.dfl_cftypes = memory_files,
4665 #ifdef CONFIG_MEMCG_V1
4666 	.legacy_cftypes = mem_cgroup_legacy_files,
4667 #endif
4668 	.early_init = 0,
4669 };
4670 
4671 /**
4672  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4673  * @root: the top ancestor of the sub-tree being checked
4674  * @memcg: the memory cgroup to check
4675  *
4676  * WARNING: This function is not stateless! It can only be used as part
4677  *          of a top-down tree iteration, not for isolated queries.
4678  */
4679 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4680 				     struct mem_cgroup *memcg)
4681 {
4682 	bool recursive_protection =
4683 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4684 
4685 	if (mem_cgroup_disabled())
4686 		return;
4687 
4688 	if (!root)
4689 		root = root_mem_cgroup;
4690 
4691 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4692 }
4693 
4694 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4695 			gfp_t gfp)
4696 {
4697 	int ret;
4698 
4699 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4700 	if (ret)
4701 		goto out;
4702 
4703 	css_get(&memcg->css);
4704 	commit_charge(folio, memcg);
4705 	memcg1_commit_charge(folio, memcg);
4706 out:
4707 	return ret;
4708 }
4709 
4710 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4711 {
4712 	struct mem_cgroup *memcg;
4713 	int ret;
4714 
4715 	memcg = get_mem_cgroup_from_mm(mm);
4716 	ret = charge_memcg(folio, memcg, gfp);
4717 	css_put(&memcg->css);
4718 
4719 	return ret;
4720 }
4721 
4722 /**
4723  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4724  * @folio: folio being charged
4725  * @gfp: reclaim mode
4726  *
4727  * This function is called when allocating a huge page folio, after the page has
4728  * already been obtained and charged to the appropriate hugetlb cgroup
4729  * controller (if it is enabled).
4730  *
4731  * Returns ENOMEM if the memcg is already full.
4732  * Returns 0 if either the charge was successful, or if we skip the charging.
4733  */
4734 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4735 {
4736 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4737 	int ret = 0;
4738 
4739 	/*
4740 	 * Even memcg does not account for hugetlb, we still want to update
4741 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4742 	 * charging the memcg.
4743 	 */
4744 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4745 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4746 		goto out;
4747 
4748 	if (charge_memcg(folio, memcg, gfp))
4749 		ret = -ENOMEM;
4750 
4751 out:
4752 	mem_cgroup_put(memcg);
4753 	return ret;
4754 }
4755 
4756 /**
4757  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4758  * @folio: folio to charge.
4759  * @mm: mm context of the victim
4760  * @gfp: reclaim mode
4761  * @entry: swap entry for which the folio is allocated
4762  *
4763  * This function charges a folio allocated for swapin. Please call this before
4764  * adding the folio to the swapcache.
4765  *
4766  * Returns 0 on success. Otherwise, an error code is returned.
4767  */
4768 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4769 				  gfp_t gfp, swp_entry_t entry)
4770 {
4771 	struct mem_cgroup *memcg;
4772 	unsigned short id;
4773 	int ret;
4774 
4775 	if (mem_cgroup_disabled())
4776 		return 0;
4777 
4778 	id = lookup_swap_cgroup_id(entry);
4779 	rcu_read_lock();
4780 	memcg = mem_cgroup_from_id(id);
4781 	if (!memcg || !css_tryget_online(&memcg->css))
4782 		memcg = get_mem_cgroup_from_mm(mm);
4783 	rcu_read_unlock();
4784 
4785 	ret = charge_memcg(folio, memcg, gfp);
4786 
4787 	css_put(&memcg->css);
4788 	return ret;
4789 }
4790 
4791 struct uncharge_gather {
4792 	struct mem_cgroup *memcg;
4793 	unsigned long nr_memory;
4794 	unsigned long pgpgout;
4795 	unsigned long nr_kmem;
4796 	int nid;
4797 };
4798 
4799 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4800 {
4801 	memset(ug, 0, sizeof(*ug));
4802 }
4803 
4804 static void uncharge_batch(const struct uncharge_gather *ug)
4805 {
4806 	if (ug->nr_memory) {
4807 		memcg_uncharge(ug->memcg, ug->nr_memory);
4808 		if (ug->nr_kmem) {
4809 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4810 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4811 		}
4812 		memcg1_oom_recover(ug->memcg);
4813 	}
4814 
4815 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4816 
4817 	/* drop reference from uncharge_folio */
4818 	css_put(&ug->memcg->css);
4819 }
4820 
4821 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4822 {
4823 	long nr_pages;
4824 	struct mem_cgroup *memcg;
4825 	struct obj_cgroup *objcg;
4826 
4827 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4828 
4829 	/*
4830 	 * Nobody should be changing or seriously looking at
4831 	 * folio memcg or objcg at this point, we have fully
4832 	 * exclusive access to the folio.
4833 	 */
4834 	if (folio_memcg_kmem(folio)) {
4835 		objcg = __folio_objcg(folio);
4836 		/*
4837 		 * This get matches the put at the end of the function and
4838 		 * kmem pages do not hold memcg references anymore.
4839 		 */
4840 		memcg = get_mem_cgroup_from_objcg(objcg);
4841 	} else {
4842 		memcg = __folio_memcg(folio);
4843 	}
4844 
4845 	if (!memcg)
4846 		return;
4847 
4848 	if (ug->memcg != memcg) {
4849 		if (ug->memcg) {
4850 			uncharge_batch(ug);
4851 			uncharge_gather_clear(ug);
4852 		}
4853 		ug->memcg = memcg;
4854 		ug->nid = folio_nid(folio);
4855 
4856 		/* pairs with css_put in uncharge_batch */
4857 		css_get(&memcg->css);
4858 	}
4859 
4860 	nr_pages = folio_nr_pages(folio);
4861 
4862 	if (folio_memcg_kmem(folio)) {
4863 		ug->nr_memory += nr_pages;
4864 		ug->nr_kmem += nr_pages;
4865 
4866 		folio->memcg_data = 0;
4867 		obj_cgroup_put(objcg);
4868 	} else {
4869 		/* LRU pages aren't accounted at the root level */
4870 		if (!mem_cgroup_is_root(memcg))
4871 			ug->nr_memory += nr_pages;
4872 		ug->pgpgout++;
4873 
4874 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4875 		folio->memcg_data = 0;
4876 	}
4877 
4878 	css_put(&memcg->css);
4879 }
4880 
4881 void __mem_cgroup_uncharge(struct folio *folio)
4882 {
4883 	struct uncharge_gather ug;
4884 
4885 	/* Don't touch folio->lru of any random page, pre-check: */
4886 	if (!folio_memcg_charged(folio))
4887 		return;
4888 
4889 	uncharge_gather_clear(&ug);
4890 	uncharge_folio(folio, &ug);
4891 	uncharge_batch(&ug);
4892 }
4893 
4894 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4895 {
4896 	struct uncharge_gather ug;
4897 	unsigned int i;
4898 
4899 	uncharge_gather_clear(&ug);
4900 	for (i = 0; i < folios->nr; i++)
4901 		uncharge_folio(folios->folios[i], &ug);
4902 	if (ug.memcg)
4903 		uncharge_batch(&ug);
4904 }
4905 
4906 /**
4907  * mem_cgroup_replace_folio - Charge a folio's replacement.
4908  * @old: Currently circulating folio.
4909  * @new: Replacement folio.
4910  *
4911  * Charge @new as a replacement folio for @old. @old will
4912  * be uncharged upon free.
4913  *
4914  * Both folios must be locked, @new->mapping must be set up.
4915  */
4916 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4917 {
4918 	struct mem_cgroup *memcg;
4919 	long nr_pages = folio_nr_pages(new);
4920 
4921 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4922 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4923 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4924 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4925 
4926 	if (mem_cgroup_disabled())
4927 		return;
4928 
4929 	/* Page cache replacement: new folio already charged? */
4930 	if (folio_memcg_charged(new))
4931 		return;
4932 
4933 	memcg = folio_memcg(old);
4934 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4935 	if (!memcg)
4936 		return;
4937 
4938 	/* Force-charge the new page. The old one will be freed soon */
4939 	if (!mem_cgroup_is_root(memcg)) {
4940 		page_counter_charge(&memcg->memory, nr_pages);
4941 		if (do_memsw_account())
4942 			page_counter_charge(&memcg->memsw, nr_pages);
4943 	}
4944 
4945 	css_get(&memcg->css);
4946 	commit_charge(new, memcg);
4947 	memcg1_commit_charge(new, memcg);
4948 }
4949 
4950 /**
4951  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4952  * @old: Currently circulating folio.
4953  * @new: Replacement folio.
4954  *
4955  * Transfer the memcg data from the old folio to the new folio for migration.
4956  * The old folio's data info will be cleared. Note that the memory counters
4957  * will remain unchanged throughout the process.
4958  *
4959  * Both folios must be locked, @new->mapping must be set up.
4960  */
4961 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4962 {
4963 	struct mem_cgroup *memcg;
4964 
4965 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4966 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4967 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4968 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4969 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4970 
4971 	if (mem_cgroup_disabled())
4972 		return;
4973 
4974 	memcg = folio_memcg(old);
4975 	/*
4976 	 * Note that it is normal to see !memcg for a hugetlb folio.
4977 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4978 	 * was not selected.
4979 	 */
4980 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4981 	if (!memcg)
4982 		return;
4983 
4984 	/* Transfer the charge and the css ref */
4985 	commit_charge(new, memcg);
4986 
4987 	/* Warning should never happen, so don't worry about refcount non-0 */
4988 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4989 	old->memcg_data = 0;
4990 }
4991 
4992 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4993 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4994 
4995 void mem_cgroup_sk_alloc(struct sock *sk)
4996 {
4997 	struct mem_cgroup *memcg;
4998 
4999 	if (!mem_cgroup_sockets_enabled)
5000 		return;
5001 
5002 	/* Do not associate the sock with unrelated interrupted task's memcg. */
5003 	if (!in_task())
5004 		return;
5005 
5006 	rcu_read_lock();
5007 	memcg = mem_cgroup_from_task(current);
5008 	if (mem_cgroup_is_root(memcg))
5009 		goto out;
5010 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5011 		goto out;
5012 	if (css_tryget(&memcg->css))
5013 		sk->sk_memcg = memcg;
5014 out:
5015 	rcu_read_unlock();
5016 }
5017 
5018 void mem_cgroup_sk_free(struct sock *sk)
5019 {
5020 	if (sk->sk_memcg)
5021 		css_put(&sk->sk_memcg->css);
5022 }
5023 
5024 /**
5025  * mem_cgroup_charge_skmem - charge socket memory
5026  * @memcg: memcg to charge
5027  * @nr_pages: number of pages to charge
5028  * @gfp_mask: reclaim mode
5029  *
5030  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5031  * @memcg's configured limit, %false if it doesn't.
5032  */
5033 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
5034 			     gfp_t gfp_mask)
5035 {
5036 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5037 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5038 
5039 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5040 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5041 		return true;
5042 	}
5043 
5044 	return false;
5045 }
5046 
5047 /**
5048  * mem_cgroup_uncharge_skmem - uncharge socket memory
5049  * @memcg: memcg to uncharge
5050  * @nr_pages: number of pages to uncharge
5051  */
5052 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5053 {
5054 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5055 		memcg1_uncharge_skmem(memcg, nr_pages);
5056 		return;
5057 	}
5058 
5059 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5060 
5061 	refill_stock(memcg, nr_pages);
5062 }
5063 
5064 static int __init cgroup_memory(char *s)
5065 {
5066 	char *token;
5067 
5068 	while ((token = strsep(&s, ",")) != NULL) {
5069 		if (!*token)
5070 			continue;
5071 		if (!strcmp(token, "nosocket"))
5072 			cgroup_memory_nosocket = true;
5073 		if (!strcmp(token, "nokmem"))
5074 			cgroup_memory_nokmem = true;
5075 		if (!strcmp(token, "nobpf"))
5076 			cgroup_memory_nobpf = true;
5077 	}
5078 	return 1;
5079 }
5080 __setup("cgroup.memory=", cgroup_memory);
5081 
5082 /*
5083  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5084  *
5085  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5086  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5087  * basically everything that doesn't depend on a specific mem_cgroup structure
5088  * should be initialized from here.
5089  */
5090 int __init mem_cgroup_init(void)
5091 {
5092 	unsigned int memcg_size;
5093 	int cpu;
5094 
5095 	/*
5096 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5097 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
5098 	 * to work fine, we should make sure that the overfill threshold can't
5099 	 * exceed S32_MAX / PAGE_SIZE.
5100 	 */
5101 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5102 
5103 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5104 				  memcg_hotplug_cpu_dead);
5105 
5106 	for_each_possible_cpu(cpu) {
5107 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5108 			  drain_local_memcg_stock);
5109 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5110 			  drain_local_obj_stock);
5111 	}
5112 
5113 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5114 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5115 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5116 
5117 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5118 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5119 
5120 	return 0;
5121 }
5122 
5123 #ifdef CONFIG_SWAP
5124 /**
5125  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5126  * @folio: folio being added to swap
5127  * @entry: swap entry to charge
5128  *
5129  * Try to charge @folio's memcg for the swap space at @entry.
5130  *
5131  * Returns 0 on success, -ENOMEM on failure.
5132  */
5133 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5134 {
5135 	unsigned int nr_pages = folio_nr_pages(folio);
5136 	struct page_counter *counter;
5137 	struct mem_cgroup *memcg;
5138 
5139 	if (do_memsw_account())
5140 		return 0;
5141 
5142 	memcg = folio_memcg(folio);
5143 
5144 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5145 	if (!memcg)
5146 		return 0;
5147 
5148 	if (!entry.val) {
5149 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5150 		return 0;
5151 	}
5152 
5153 	memcg = mem_cgroup_id_get_online(memcg);
5154 
5155 	if (!mem_cgroup_is_root(memcg) &&
5156 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5157 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5158 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5159 		mem_cgroup_id_put(memcg);
5160 		return -ENOMEM;
5161 	}
5162 
5163 	/* Get references for the tail pages, too */
5164 	if (nr_pages > 1)
5165 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5166 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5167 
5168 	swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5169 
5170 	return 0;
5171 }
5172 
5173 /**
5174  * __mem_cgroup_uncharge_swap - uncharge swap space
5175  * @entry: swap entry to uncharge
5176  * @nr_pages: the amount of swap space to uncharge
5177  */
5178 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5179 {
5180 	struct mem_cgroup *memcg;
5181 	unsigned short id;
5182 
5183 	id = swap_cgroup_clear(entry, nr_pages);
5184 	rcu_read_lock();
5185 	memcg = mem_cgroup_from_id(id);
5186 	if (memcg) {
5187 		if (!mem_cgroup_is_root(memcg)) {
5188 			if (do_memsw_account())
5189 				page_counter_uncharge(&memcg->memsw, nr_pages);
5190 			else
5191 				page_counter_uncharge(&memcg->swap, nr_pages);
5192 		}
5193 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5194 		mem_cgroup_id_put_many(memcg, nr_pages);
5195 	}
5196 	rcu_read_unlock();
5197 }
5198 
5199 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5200 {
5201 	long nr_swap_pages = get_nr_swap_pages();
5202 
5203 	if (mem_cgroup_disabled() || do_memsw_account())
5204 		return nr_swap_pages;
5205 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5206 		nr_swap_pages = min_t(long, nr_swap_pages,
5207 				      READ_ONCE(memcg->swap.max) -
5208 				      page_counter_read(&memcg->swap));
5209 	return nr_swap_pages;
5210 }
5211 
5212 bool mem_cgroup_swap_full(struct folio *folio)
5213 {
5214 	struct mem_cgroup *memcg;
5215 
5216 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5217 
5218 	if (vm_swap_full())
5219 		return true;
5220 	if (do_memsw_account())
5221 		return false;
5222 
5223 	memcg = folio_memcg(folio);
5224 	if (!memcg)
5225 		return false;
5226 
5227 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5228 		unsigned long usage = page_counter_read(&memcg->swap);
5229 
5230 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5231 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5232 			return true;
5233 	}
5234 
5235 	return false;
5236 }
5237 
5238 static int __init setup_swap_account(char *s)
5239 {
5240 	bool res;
5241 
5242 	if (!kstrtobool(s, &res) && !res)
5243 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5244 			     "in favor of configuring swap control via cgroupfs. "
5245 			     "Please report your usecase to linux-mm@kvack.org if you "
5246 			     "depend on this functionality.\n");
5247 	return 1;
5248 }
5249 __setup("swapaccount=", setup_swap_account);
5250 
5251 static u64 swap_current_read(struct cgroup_subsys_state *css,
5252 			     struct cftype *cft)
5253 {
5254 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5255 
5256 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5257 }
5258 
5259 static int swap_peak_show(struct seq_file *sf, void *v)
5260 {
5261 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5262 
5263 	return peak_show(sf, v, &memcg->swap);
5264 }
5265 
5266 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5267 			       size_t nbytes, loff_t off)
5268 {
5269 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5270 
5271 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5272 			  &memcg->swap_peaks);
5273 }
5274 
5275 static int swap_high_show(struct seq_file *m, void *v)
5276 {
5277 	return seq_puts_memcg_tunable(m,
5278 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5279 }
5280 
5281 static ssize_t swap_high_write(struct kernfs_open_file *of,
5282 			       char *buf, size_t nbytes, loff_t off)
5283 {
5284 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5285 	unsigned long high;
5286 	int err;
5287 
5288 	buf = strstrip(buf);
5289 	err = page_counter_memparse(buf, "max", &high);
5290 	if (err)
5291 		return err;
5292 
5293 	page_counter_set_high(&memcg->swap, high);
5294 
5295 	return nbytes;
5296 }
5297 
5298 static int swap_max_show(struct seq_file *m, void *v)
5299 {
5300 	return seq_puts_memcg_tunable(m,
5301 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5302 }
5303 
5304 static ssize_t swap_max_write(struct kernfs_open_file *of,
5305 			      char *buf, size_t nbytes, loff_t off)
5306 {
5307 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5308 	unsigned long max;
5309 	int err;
5310 
5311 	buf = strstrip(buf);
5312 	err = page_counter_memparse(buf, "max", &max);
5313 	if (err)
5314 		return err;
5315 
5316 	xchg(&memcg->swap.max, max);
5317 
5318 	return nbytes;
5319 }
5320 
5321 static int swap_events_show(struct seq_file *m, void *v)
5322 {
5323 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5324 
5325 	seq_printf(m, "high %lu\n",
5326 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5327 	seq_printf(m, "max %lu\n",
5328 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5329 	seq_printf(m, "fail %lu\n",
5330 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5331 
5332 	return 0;
5333 }
5334 
5335 static struct cftype swap_files[] = {
5336 	{
5337 		.name = "swap.current",
5338 		.flags = CFTYPE_NOT_ON_ROOT,
5339 		.read_u64 = swap_current_read,
5340 	},
5341 	{
5342 		.name = "swap.high",
5343 		.flags = CFTYPE_NOT_ON_ROOT,
5344 		.seq_show = swap_high_show,
5345 		.write = swap_high_write,
5346 	},
5347 	{
5348 		.name = "swap.max",
5349 		.flags = CFTYPE_NOT_ON_ROOT,
5350 		.seq_show = swap_max_show,
5351 		.write = swap_max_write,
5352 	},
5353 	{
5354 		.name = "swap.peak",
5355 		.flags = CFTYPE_NOT_ON_ROOT,
5356 		.open = peak_open,
5357 		.release = peak_release,
5358 		.seq_show = swap_peak_show,
5359 		.write = swap_peak_write,
5360 	},
5361 	{
5362 		.name = "swap.events",
5363 		.flags = CFTYPE_NOT_ON_ROOT,
5364 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5365 		.seq_show = swap_events_show,
5366 	},
5367 	{ }	/* terminate */
5368 };
5369 
5370 #ifdef CONFIG_ZSWAP
5371 /**
5372  * obj_cgroup_may_zswap - check if this cgroup can zswap
5373  * @objcg: the object cgroup
5374  *
5375  * Check if the hierarchical zswap limit has been reached.
5376  *
5377  * This doesn't check for specific headroom, and it is not atomic
5378  * either. But with zswap, the size of the allocation is only known
5379  * once compression has occurred, and this optimistic pre-check avoids
5380  * spending cycles on compression when there is already no room left
5381  * or zswap is disabled altogether somewhere in the hierarchy.
5382  */
5383 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5384 {
5385 	struct mem_cgroup *memcg, *original_memcg;
5386 	bool ret = true;
5387 
5388 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5389 		return true;
5390 
5391 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5392 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5393 	     memcg = parent_mem_cgroup(memcg)) {
5394 		unsigned long max = READ_ONCE(memcg->zswap_max);
5395 		unsigned long pages;
5396 
5397 		if (max == PAGE_COUNTER_MAX)
5398 			continue;
5399 		if (max == 0) {
5400 			ret = false;
5401 			break;
5402 		}
5403 
5404 		/* Force flush to get accurate stats for charging */
5405 		__mem_cgroup_flush_stats(memcg, true);
5406 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5407 		if (pages < max)
5408 			continue;
5409 		ret = false;
5410 		break;
5411 	}
5412 	mem_cgroup_put(original_memcg);
5413 	return ret;
5414 }
5415 
5416 /**
5417  * obj_cgroup_charge_zswap - charge compression backend memory
5418  * @objcg: the object cgroup
5419  * @size: size of compressed object
5420  *
5421  * This forces the charge after obj_cgroup_may_zswap() allowed
5422  * compression and storage in zwap for this cgroup to go ahead.
5423  */
5424 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5425 {
5426 	struct mem_cgroup *memcg;
5427 
5428 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5429 		return;
5430 
5431 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5432 
5433 	/* PF_MEMALLOC context, charging must succeed */
5434 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5435 		VM_WARN_ON_ONCE(1);
5436 
5437 	rcu_read_lock();
5438 	memcg = obj_cgroup_memcg(objcg);
5439 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5440 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5441 	rcu_read_unlock();
5442 }
5443 
5444 /**
5445  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5446  * @objcg: the object cgroup
5447  * @size: size of compressed object
5448  *
5449  * Uncharges zswap memory on page in.
5450  */
5451 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5452 {
5453 	struct mem_cgroup *memcg;
5454 
5455 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5456 		return;
5457 
5458 	obj_cgroup_uncharge(objcg, size);
5459 
5460 	rcu_read_lock();
5461 	memcg = obj_cgroup_memcg(objcg);
5462 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5463 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5464 	rcu_read_unlock();
5465 }
5466 
5467 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5468 {
5469 	/* if zswap is disabled, do not block pages going to the swapping device */
5470 	if (!zswap_is_enabled())
5471 		return true;
5472 
5473 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5474 		if (!READ_ONCE(memcg->zswap_writeback))
5475 			return false;
5476 
5477 	return true;
5478 }
5479 
5480 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5481 			      struct cftype *cft)
5482 {
5483 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5484 
5485 	mem_cgroup_flush_stats(memcg);
5486 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5487 }
5488 
5489 static int zswap_max_show(struct seq_file *m, void *v)
5490 {
5491 	return seq_puts_memcg_tunable(m,
5492 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5493 }
5494 
5495 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5496 			       char *buf, size_t nbytes, loff_t off)
5497 {
5498 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5499 	unsigned long max;
5500 	int err;
5501 
5502 	buf = strstrip(buf);
5503 	err = page_counter_memparse(buf, "max", &max);
5504 	if (err)
5505 		return err;
5506 
5507 	xchg(&memcg->zswap_max, max);
5508 
5509 	return nbytes;
5510 }
5511 
5512 static int zswap_writeback_show(struct seq_file *m, void *v)
5513 {
5514 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5515 
5516 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5517 	return 0;
5518 }
5519 
5520 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5521 				char *buf, size_t nbytes, loff_t off)
5522 {
5523 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5524 	int zswap_writeback;
5525 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5526 
5527 	if (parse_ret)
5528 		return parse_ret;
5529 
5530 	if (zswap_writeback != 0 && zswap_writeback != 1)
5531 		return -EINVAL;
5532 
5533 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5534 	return nbytes;
5535 }
5536 
5537 static struct cftype zswap_files[] = {
5538 	{
5539 		.name = "zswap.current",
5540 		.flags = CFTYPE_NOT_ON_ROOT,
5541 		.read_u64 = zswap_current_read,
5542 	},
5543 	{
5544 		.name = "zswap.max",
5545 		.flags = CFTYPE_NOT_ON_ROOT,
5546 		.seq_show = zswap_max_show,
5547 		.write = zswap_max_write,
5548 	},
5549 	{
5550 		.name = "zswap.writeback",
5551 		.seq_show = zswap_writeback_show,
5552 		.write = zswap_writeback_write,
5553 	},
5554 	{ }	/* terminate */
5555 };
5556 #endif /* CONFIG_ZSWAP */
5557 
5558 static int __init mem_cgroup_swap_init(void)
5559 {
5560 	if (mem_cgroup_disabled())
5561 		return 0;
5562 
5563 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5564 #ifdef CONFIG_MEMCG_V1
5565 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5566 #endif
5567 #ifdef CONFIG_ZSWAP
5568 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5569 #endif
5570 	return 0;
5571 }
5572 subsys_initcall(mem_cgroup_swap_init);
5573 
5574 #endif /* CONFIG_SWAP */
5575 
5576 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5577 {
5578 	return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5579 }
5580