xref: /linux/mm/memcontrol.c (revision 98654d3fa2e6983378e3510131c5c45be97c4906)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		(0)
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 	MEM_CGROUP_STAT_NSTATS,
94 };
95 
96 enum mem_cgroup_events_index {
97 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 	MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111 	MEM_CGROUP_TARGET_THRESH,
112 	MEM_CGROUP_TARGET_SOFTLIMIT,
113 	MEM_CGROUP_TARGET_NUMAINFO,
114 	MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET	(1024)
119 
120 struct mem_cgroup_stat_cpu {
121 	long count[MEM_CGROUP_STAT_NSTATS];
122 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 	unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125 
126 struct mem_cgroup_reclaim_iter {
127 	/* css_id of the last scanned hierarchy member */
128 	int position;
129 	/* scan generation, increased every round-trip */
130 	unsigned int generation;
131 };
132 
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137 	struct lruvec		lruvec;
138 	unsigned long		count[NR_LRU_LISTS];
139 
140 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141 
142 	struct zone_reclaim_stat reclaim_stat;
143 	struct rb_node		tree_node;	/* RB tree node */
144 	unsigned long long	usage_in_excess;/* Set to the value by which */
145 						/* the soft limit is exceeded*/
146 	bool			on_tree;
147 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148 						/* use container_of	   */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152 
153 struct mem_cgroup_per_node {
154 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156 
157 struct mem_cgroup_lru_info {
158 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160 
161 /*
162  * Cgroups above their limits are maintained in a RB-Tree, independent of
163  * their hierarchy representation
164  */
165 
166 struct mem_cgroup_tree_per_zone {
167 	struct rb_root rb_root;
168 	spinlock_t lock;
169 };
170 
171 struct mem_cgroup_tree_per_node {
172 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174 
175 struct mem_cgroup_tree {
176 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178 
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180 
181 struct mem_cgroup_threshold {
182 	struct eventfd_ctx *eventfd;
183 	u64 threshold;
184 };
185 
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 	/* An array index points to threshold just below usage. */
189 	int current_threshold;
190 	/* Size of entries[] */
191 	unsigned int size;
192 	/* Array of thresholds */
193 	struct mem_cgroup_threshold entries[0];
194 };
195 
196 struct mem_cgroup_thresholds {
197 	/* Primary thresholds array */
198 	struct mem_cgroup_threshold_ary *primary;
199 	/*
200 	 * Spare threshold array.
201 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 	 * It must be able to store at least primary->size - 1 entries.
203 	 */
204 	struct mem_cgroup_threshold_ary *spare;
205 };
206 
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 	struct list_head list;
210 	struct eventfd_ctx *eventfd;
211 };
212 
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215 
216 /*
217  * The memory controller data structure. The memory controller controls both
218  * page cache and RSS per cgroup. We would eventually like to provide
219  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220  * to help the administrator determine what knobs to tune.
221  *
222  * TODO: Add a water mark for the memory controller. Reclaim will begin when
223  * we hit the water mark. May be even add a low water mark, such that
224  * no reclaim occurs from a cgroup at it's low water mark, this is
225  * a feature that will be implemented much later in the future.
226  */
227 struct mem_cgroup {
228 	struct cgroup_subsys_state css;
229 	/*
230 	 * the counter to account for memory usage
231 	 */
232 	struct res_counter res;
233 	/*
234 	 * the counter to account for mem+swap usage.
235 	 */
236 	struct res_counter memsw;
237 	/*
238 	 * Per cgroup active and inactive list, similar to the
239 	 * per zone LRU lists.
240 	 */
241 	struct mem_cgroup_lru_info info;
242 	int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 	nodemask_t	scan_nodes;
245 	atomic_t	numainfo_events;
246 	atomic_t	numainfo_updating;
247 #endif
248 	/*
249 	 * Should the accounting and control be hierarchical, per subtree?
250 	 */
251 	bool use_hierarchy;
252 
253 	bool		oom_lock;
254 	atomic_t	under_oom;
255 
256 	atomic_t	refcnt;
257 
258 	int	swappiness;
259 	/* OOM-Killer disable */
260 	int		oom_kill_disable;
261 
262 	/* set when res.limit == memsw.limit */
263 	bool		memsw_is_minimum;
264 
265 	/* protect arrays of thresholds */
266 	struct mutex thresholds_lock;
267 
268 	/* thresholds for memory usage. RCU-protected */
269 	struct mem_cgroup_thresholds thresholds;
270 
271 	/* thresholds for mem+swap usage. RCU-protected */
272 	struct mem_cgroup_thresholds memsw_thresholds;
273 
274 	/* For oom notifier event fd */
275 	struct list_head oom_notify;
276 
277 	/*
278 	 * Should we move charges of a task when a task is moved into this
279 	 * mem_cgroup ? And what type of charges should we move ?
280 	 */
281 	unsigned long 	move_charge_at_immigrate;
282 	/*
283 	 * percpu counter.
284 	 */
285 	struct mem_cgroup_stat_cpu *stat;
286 	/*
287 	 * used when a cpu is offlined or other synchronizations
288 	 * See mem_cgroup_read_stat().
289 	 */
290 	struct mem_cgroup_stat_cpu nocpu_base;
291 	spinlock_t pcp_counter_lock;
292 
293 #ifdef CONFIG_INET
294 	struct tcp_memcontrol tcp_mem;
295 #endif
296 };
297 
298 /* Stuffs for move charges at task migration. */
299 /*
300  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301  * left-shifted bitmap of these types.
302  */
303 enum move_type {
304 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 	NR_MOVE_TYPE,
307 };
308 
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 	spinlock_t	  lock; /* for from, to */
312 	struct mem_cgroup *from;
313 	struct mem_cgroup *to;
314 	unsigned long precharge;
315 	unsigned long moved_charge;
316 	unsigned long moved_swap;
317 	struct task_struct *moving_task;	/* a task moving charges */
318 	wait_queue_head_t waitq;		/* a waitq for other context */
319 } mc = {
320 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322 };
323 
324 static bool move_anon(void)
325 {
326 	return test_bit(MOVE_CHARGE_TYPE_ANON,
327 					&mc.to->move_charge_at_immigrate);
328 }
329 
330 static bool move_file(void)
331 {
332 	return test_bit(MOVE_CHARGE_TYPE_FILE,
333 					&mc.to->move_charge_at_immigrate);
334 }
335 
336 /*
337  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338  * limit reclaim to prevent infinite loops, if they ever occur.
339  */
340 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342 
343 enum charge_type {
344 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 	NR_CHARGE_TYPE,
351 };
352 
353 /* for encoding cft->private value on file */
354 #define _MEM			(0)
355 #define _MEMSWAP		(1)
356 #define _OOM_TYPE		(2)
357 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val)	((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL		(0)
362 
363 /*
364  * Reclaim flags for mem_cgroup_hierarchical_reclaim
365  */
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370 
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
373 
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
377 #include <net/ip.h>
378 
379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380 void sock_update_memcg(struct sock *sk)
381 {
382 	if (static_branch(&memcg_socket_limit_enabled)) {
383 		struct mem_cgroup *memcg;
384 
385 		BUG_ON(!sk->sk_prot->proto_cgroup);
386 
387 		/* Socket cloning can throw us here with sk_cgrp already
388 		 * filled. It won't however, necessarily happen from
389 		 * process context. So the test for root memcg given
390 		 * the current task's memcg won't help us in this case.
391 		 *
392 		 * Respecting the original socket's memcg is a better
393 		 * decision in this case.
394 		 */
395 		if (sk->sk_cgrp) {
396 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 			mem_cgroup_get(sk->sk_cgrp->memcg);
398 			return;
399 		}
400 
401 		rcu_read_lock();
402 		memcg = mem_cgroup_from_task(current);
403 		if (!mem_cgroup_is_root(memcg)) {
404 			mem_cgroup_get(memcg);
405 			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
406 		}
407 		rcu_read_unlock();
408 	}
409 }
410 EXPORT_SYMBOL(sock_update_memcg);
411 
412 void sock_release_memcg(struct sock *sk)
413 {
414 	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
415 		struct mem_cgroup *memcg;
416 		WARN_ON(!sk->sk_cgrp->memcg);
417 		memcg = sk->sk_cgrp->memcg;
418 		mem_cgroup_put(memcg);
419 	}
420 }
421 
422 #ifdef CONFIG_INET
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424 {
425 	if (!memcg || mem_cgroup_is_root(memcg))
426 		return NULL;
427 
428 	return &memcg->tcp_mem.cg_proto;
429 }
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433 
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
435 
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438 {
439 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 }
441 
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443 {
444 	return &memcg->css;
445 }
446 
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449 {
450 	int nid = page_to_nid(page);
451 	int zid = page_zonenum(page);
452 
453 	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 }
455 
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
458 {
459 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460 }
461 
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
464 {
465 	int nid = page_to_nid(page);
466 	int zid = page_zonenum(page);
467 
468 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469 }
470 
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 				struct mem_cgroup_per_zone *mz,
474 				struct mem_cgroup_tree_per_zone *mctz,
475 				unsigned long long new_usage_in_excess)
476 {
477 	struct rb_node **p = &mctz->rb_root.rb_node;
478 	struct rb_node *parent = NULL;
479 	struct mem_cgroup_per_zone *mz_node;
480 
481 	if (mz->on_tree)
482 		return;
483 
484 	mz->usage_in_excess = new_usage_in_excess;
485 	if (!mz->usage_in_excess)
486 		return;
487 	while (*p) {
488 		parent = *p;
489 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 					tree_node);
491 		if (mz->usage_in_excess < mz_node->usage_in_excess)
492 			p = &(*p)->rb_left;
493 		/*
494 		 * We can't avoid mem cgroups that are over their soft
495 		 * limit by the same amount
496 		 */
497 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 			p = &(*p)->rb_right;
499 	}
500 	rb_link_node(&mz->tree_node, parent, p);
501 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 	mz->on_tree = true;
503 }
504 
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 				struct mem_cgroup_per_zone *mz,
508 				struct mem_cgroup_tree_per_zone *mctz)
509 {
510 	if (!mz->on_tree)
511 		return;
512 	rb_erase(&mz->tree_node, &mctz->rb_root);
513 	mz->on_tree = false;
514 }
515 
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 				struct mem_cgroup_per_zone *mz,
519 				struct mem_cgroup_tree_per_zone *mctz)
520 {
521 	spin_lock(&mctz->lock);
522 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 	spin_unlock(&mctz->lock);
524 }
525 
526 
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528 {
529 	unsigned long long excess;
530 	struct mem_cgroup_per_zone *mz;
531 	struct mem_cgroup_tree_per_zone *mctz;
532 	int nid = page_to_nid(page);
533 	int zid = page_zonenum(page);
534 	mctz = soft_limit_tree_from_page(page);
535 
536 	/*
537 	 * Necessary to update all ancestors when hierarchy is used.
538 	 * because their event counter is not touched.
539 	 */
540 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 		excess = res_counter_soft_limit_excess(&memcg->res);
543 		/*
544 		 * We have to update the tree if mz is on RB-tree or
545 		 * mem is over its softlimit.
546 		 */
547 		if (excess || mz->on_tree) {
548 			spin_lock(&mctz->lock);
549 			/* if on-tree, remove it */
550 			if (mz->on_tree)
551 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552 			/*
553 			 * Insert again. mz->usage_in_excess will be updated.
554 			 * If excess is 0, no tree ops.
555 			 */
556 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 			spin_unlock(&mctz->lock);
558 		}
559 	}
560 }
561 
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 {
564 	int node, zone;
565 	struct mem_cgroup_per_zone *mz;
566 	struct mem_cgroup_tree_per_zone *mctz;
567 
568 	for_each_node(node) {
569 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 			mctz = soft_limit_tree_node_zone(node, zone);
572 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 		}
574 	}
575 }
576 
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579 {
580 	struct rb_node *rightmost = NULL;
581 	struct mem_cgroup_per_zone *mz;
582 
583 retry:
584 	mz = NULL;
585 	rightmost = rb_last(&mctz->rb_root);
586 	if (!rightmost)
587 		goto done;		/* Nothing to reclaim from */
588 
589 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 	/*
591 	 * Remove the node now but someone else can add it back,
592 	 * we will to add it back at the end of reclaim to its correct
593 	 * position in the tree.
594 	 */
595 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 		!css_tryget(&mz->mem->css))
598 		goto retry;
599 done:
600 	return mz;
601 }
602 
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605 {
606 	struct mem_cgroup_per_zone *mz;
607 
608 	spin_lock(&mctz->lock);
609 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 	spin_unlock(&mctz->lock);
611 	return mz;
612 }
613 
614 /*
615  * Implementation Note: reading percpu statistics for memcg.
616  *
617  * Both of vmstat[] and percpu_counter has threshold and do periodic
618  * synchronization to implement "quick" read. There are trade-off between
619  * reading cost and precision of value. Then, we may have a chance to implement
620  * a periodic synchronizion of counter in memcg's counter.
621  *
622  * But this _read() function is used for user interface now. The user accounts
623  * memory usage by memory cgroup and he _always_ requires exact value because
624  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625  * have to visit all online cpus and make sum. So, for now, unnecessary
626  * synchronization is not implemented. (just implemented for cpu hotplug)
627  *
628  * If there are kernel internal actions which can make use of some not-exact
629  * value, and reading all cpu value can be performance bottleneck in some
630  * common workload, threashold and synchonization as vmstat[] should be
631  * implemented.
632  */
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 				 enum mem_cgroup_stat_index idx)
635 {
636 	long val = 0;
637 	int cpu;
638 
639 	get_online_cpus();
640 	for_each_online_cpu(cpu)
641 		val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 	spin_lock(&memcg->pcp_counter_lock);
644 	val += memcg->nocpu_base.count[idx];
645 	spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 	put_online_cpus();
648 	return val;
649 }
650 
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 					 bool charge)
653 {
654 	int val = (charge) ? 1 : -1;
655 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 }
657 
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 					    enum mem_cgroup_events_index idx)
660 {
661 	unsigned long val = 0;
662 	int cpu;
663 
664 	for_each_online_cpu(cpu)
665 		val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 	spin_lock(&memcg->pcp_counter_lock);
668 	val += memcg->nocpu_base.events[idx];
669 	spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671 	return val;
672 }
673 
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 					 bool file, int nr_pages)
676 {
677 	preempt_disable();
678 
679 	if (file)
680 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 				nr_pages);
682 	else
683 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 				nr_pages);
685 
686 	/* pagein of a big page is an event. So, ignore page size */
687 	if (nr_pages > 0)
688 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689 	else {
690 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 		nr_pages = -nr_pages; /* for event */
692 	}
693 
694 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695 
696 	preempt_enable();
697 }
698 
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 			unsigned int lru_mask)
702 {
703 	struct mem_cgroup_per_zone *mz;
704 	enum lru_list l;
705 	unsigned long ret = 0;
706 
707 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 
709 	for_each_lru(l) {
710 		if (BIT(l) & lru_mask)
711 			ret += MEM_CGROUP_ZSTAT(mz, l);
712 	}
713 	return ret;
714 }
715 
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 			int nid, unsigned int lru_mask)
719 {
720 	u64 total = 0;
721 	int zid;
722 
723 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 		total += mem_cgroup_zone_nr_lru_pages(memcg,
725 						nid, zid, lru_mask);
726 
727 	return total;
728 }
729 
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 			unsigned int lru_mask)
732 {
733 	int nid;
734 	u64 total = 0;
735 
736 	for_each_node_state(nid, N_HIGH_MEMORY)
737 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738 	return total;
739 }
740 
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 				       enum mem_cgroup_events_target target)
743 {
744 	unsigned long val, next;
745 
746 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 	next = __this_cpu_read(memcg->stat->targets[target]);
748 	/* from time_after() in jiffies.h */
749 	if ((long)next - (long)val < 0) {
750 		switch (target) {
751 		case MEM_CGROUP_TARGET_THRESH:
752 			next = val + THRESHOLDS_EVENTS_TARGET;
753 			break;
754 		case MEM_CGROUP_TARGET_SOFTLIMIT:
755 			next = val + SOFTLIMIT_EVENTS_TARGET;
756 			break;
757 		case MEM_CGROUP_TARGET_NUMAINFO:
758 			next = val + NUMAINFO_EVENTS_TARGET;
759 			break;
760 		default:
761 			break;
762 		}
763 		__this_cpu_write(memcg->stat->targets[target], next);
764 		return true;
765 	}
766 	return false;
767 }
768 
769 /*
770  * Check events in order.
771  *
772  */
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774 {
775 	preempt_disable();
776 	/* threshold event is triggered in finer grain than soft limit */
777 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 						MEM_CGROUP_TARGET_THRESH))) {
779 		bool do_softlimit, do_numainfo;
780 
781 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 						MEM_CGROUP_TARGET_SOFTLIMIT);
783 #if MAX_NUMNODES > 1
784 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 						MEM_CGROUP_TARGET_NUMAINFO);
786 #endif
787 		preempt_enable();
788 
789 		mem_cgroup_threshold(memcg);
790 		if (unlikely(do_softlimit))
791 			mem_cgroup_update_tree(memcg, page);
792 #if MAX_NUMNODES > 1
793 		if (unlikely(do_numainfo))
794 			atomic_inc(&memcg->numainfo_events);
795 #endif
796 	} else
797 		preempt_enable();
798 }
799 
800 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
801 {
802 	return container_of(cgroup_subsys_state(cont,
803 				mem_cgroup_subsys_id), struct mem_cgroup,
804 				css);
805 }
806 
807 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808 {
809 	/*
810 	 * mm_update_next_owner() may clear mm->owner to NULL
811 	 * if it races with swapoff, page migration, etc.
812 	 * So this can be called with p == NULL.
813 	 */
814 	if (unlikely(!p))
815 		return NULL;
816 
817 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 				struct mem_cgroup, css);
819 }
820 
821 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822 {
823 	struct mem_cgroup *memcg = NULL;
824 
825 	if (!mm)
826 		return NULL;
827 	/*
828 	 * Because we have no locks, mm->owner's may be being moved to other
829 	 * cgroup. We use css_tryget() here even if this looks
830 	 * pessimistic (rather than adding locks here).
831 	 */
832 	rcu_read_lock();
833 	do {
834 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 		if (unlikely(!memcg))
836 			break;
837 	} while (!css_tryget(&memcg->css));
838 	rcu_read_unlock();
839 	return memcg;
840 }
841 
842 /**
843  * mem_cgroup_iter - iterate over memory cgroup hierarchy
844  * @root: hierarchy root
845  * @prev: previously returned memcg, NULL on first invocation
846  * @reclaim: cookie for shared reclaim walks, NULL for full walks
847  *
848  * Returns references to children of the hierarchy below @root, or
849  * @root itself, or %NULL after a full round-trip.
850  *
851  * Caller must pass the return value in @prev on subsequent
852  * invocations for reference counting, or use mem_cgroup_iter_break()
853  * to cancel a hierarchy walk before the round-trip is complete.
854  *
855  * Reclaimers can specify a zone and a priority level in @reclaim to
856  * divide up the memcgs in the hierarchy among all concurrent
857  * reclaimers operating on the same zone and priority.
858  */
859 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 				   struct mem_cgroup *prev,
861 				   struct mem_cgroup_reclaim_cookie *reclaim)
862 {
863 	struct mem_cgroup *memcg = NULL;
864 	int id = 0;
865 
866 	if (mem_cgroup_disabled())
867 		return NULL;
868 
869 	if (!root)
870 		root = root_mem_cgroup;
871 
872 	if (prev && !reclaim)
873 		id = css_id(&prev->css);
874 
875 	if (prev && prev != root)
876 		css_put(&prev->css);
877 
878 	if (!root->use_hierarchy && root != root_mem_cgroup) {
879 		if (prev)
880 			return NULL;
881 		return root;
882 	}
883 
884 	while (!memcg) {
885 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886 		struct cgroup_subsys_state *css;
887 
888 		if (reclaim) {
889 			int nid = zone_to_nid(reclaim->zone);
890 			int zid = zone_idx(reclaim->zone);
891 			struct mem_cgroup_per_zone *mz;
892 
893 			mz = mem_cgroup_zoneinfo(root, nid, zid);
894 			iter = &mz->reclaim_iter[reclaim->priority];
895 			if (prev && reclaim->generation != iter->generation)
896 				return NULL;
897 			id = iter->position;
898 		}
899 
900 		rcu_read_lock();
901 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 		if (css) {
903 			if (css == &root->css || css_tryget(css))
904 				memcg = container_of(css,
905 						     struct mem_cgroup, css);
906 		} else
907 			id = 0;
908 		rcu_read_unlock();
909 
910 		if (reclaim) {
911 			iter->position = id;
912 			if (!css)
913 				iter->generation++;
914 			else if (!prev && memcg)
915 				reclaim->generation = iter->generation;
916 		}
917 
918 		if (prev && !css)
919 			return NULL;
920 	}
921 	return memcg;
922 }
923 
924 /**
925  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926  * @root: hierarchy root
927  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928  */
929 void mem_cgroup_iter_break(struct mem_cgroup *root,
930 			   struct mem_cgroup *prev)
931 {
932 	if (!root)
933 		root = root_mem_cgroup;
934 	if (prev && prev != root)
935 		css_put(&prev->css);
936 }
937 
938 /*
939  * Iteration constructs for visiting all cgroups (under a tree).  If
940  * loops are exited prematurely (break), mem_cgroup_iter_break() must
941  * be used for reference counting.
942  */
943 #define for_each_mem_cgroup_tree(iter, root)		\
944 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945 	     iter != NULL;				\
946 	     iter = mem_cgroup_iter(root, iter, NULL))
947 
948 #define for_each_mem_cgroup(iter)			\
949 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950 	     iter != NULL;				\
951 	     iter = mem_cgroup_iter(NULL, iter, NULL))
952 
953 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954 {
955 	return (memcg == root_mem_cgroup);
956 }
957 
958 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959 {
960 	struct mem_cgroup *memcg;
961 
962 	if (!mm)
963 		return;
964 
965 	rcu_read_lock();
966 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 	if (unlikely(!memcg))
968 		goto out;
969 
970 	switch (idx) {
971 	case PGFAULT:
972 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 		break;
974 	case PGMAJFAULT:
975 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 		break;
977 	default:
978 		BUG();
979 	}
980 out:
981 	rcu_read_unlock();
982 }
983 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984 
985 /**
986  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987  * @zone: zone of the wanted lruvec
988  * @mem: memcg of the wanted lruvec
989  *
990  * Returns the lru list vector holding pages for the given @zone and
991  * @mem.  This can be the global zone lruvec, if the memory controller
992  * is disabled.
993  */
994 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 				      struct mem_cgroup *memcg)
996 {
997 	struct mem_cgroup_per_zone *mz;
998 
999 	if (mem_cgroup_disabled())
1000 		return &zone->lruvec;
1001 
1002 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 	return &mz->lruvec;
1004 }
1005 
1006 /*
1007  * Following LRU functions are allowed to be used without PCG_LOCK.
1008  * Operations are called by routine of global LRU independently from memcg.
1009  * What we have to take care of here is validness of pc->mem_cgroup.
1010  *
1011  * Changes to pc->mem_cgroup happens when
1012  * 1. charge
1013  * 2. moving account
1014  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015  * It is added to LRU before charge.
1016  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017  * When moving account, the page is not on LRU. It's isolated.
1018  */
1019 
1020 /**
1021  * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022  * @zone: zone of the page
1023  * @page: the page
1024  * @lru: current lru
1025  *
1026  * This function accounts for @page being added to @lru, and returns
1027  * the lruvec for the given @zone and the memcg @page is charged to.
1028  *
1029  * The callsite is then responsible for physically linking the page to
1030  * the returned lruvec->lists[@lru].
1031  */
1032 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 				       enum lru_list lru)
1034 {
1035 	struct mem_cgroup_per_zone *mz;
1036 	struct mem_cgroup *memcg;
1037 	struct page_cgroup *pc;
1038 
1039 	if (mem_cgroup_disabled())
1040 		return &zone->lruvec;
1041 
1042 	pc = lookup_page_cgroup(page);
1043 	memcg = pc->mem_cgroup;
1044 	mz = page_cgroup_zoneinfo(memcg, page);
1045 	/* compound_order() is stabilized through lru_lock */
1046 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1047 	return &mz->lruvec;
1048 }
1049 
1050 /**
1051  * mem_cgroup_lru_del_list - account for removing an lru page
1052  * @page: the page
1053  * @lru: target lru
1054  *
1055  * This function accounts for @page being removed from @lru.
1056  *
1057  * The callsite is then responsible for physically unlinking
1058  * @page->lru.
1059  */
1060 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1061 {
1062 	struct mem_cgroup_per_zone *mz;
1063 	struct mem_cgroup *memcg;
1064 	struct page_cgroup *pc;
1065 
1066 	if (mem_cgroup_disabled())
1067 		return;
1068 
1069 	pc = lookup_page_cgroup(page);
1070 	memcg = pc->mem_cgroup;
1071 	VM_BUG_ON(!memcg);
1072 	mz = page_cgroup_zoneinfo(memcg, page);
1073 	/* huge page split is done under lru_lock. so, we have no races. */
1074 	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1075 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1076 }
1077 
1078 void mem_cgroup_lru_del(struct page *page)
1079 {
1080 	mem_cgroup_lru_del_list(page, page_lru(page));
1081 }
1082 
1083 /**
1084  * mem_cgroup_lru_move_lists - account for moving a page between lrus
1085  * @zone: zone of the page
1086  * @page: the page
1087  * @from: current lru
1088  * @to: target lru
1089  *
1090  * This function accounts for @page being moved between the lrus @from
1091  * and @to, and returns the lruvec for the given @zone and the memcg
1092  * @page is charged to.
1093  *
1094  * The callsite is then responsible for physically relinking
1095  * @page->lru to the returned lruvec->lists[@to].
1096  */
1097 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1098 					 struct page *page,
1099 					 enum lru_list from,
1100 					 enum lru_list to)
1101 {
1102 	/* XXX: Optimize this, especially for @from == @to */
1103 	mem_cgroup_lru_del_list(page, from);
1104 	return mem_cgroup_lru_add_list(zone, page, to);
1105 }
1106 
1107 /*
1108  * Checks whether given mem is same or in the root_mem_cgroup's
1109  * hierarchy subtree
1110  */
1111 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1112 		struct mem_cgroup *memcg)
1113 {
1114 	if (root_memcg != memcg) {
1115 		return (root_memcg->use_hierarchy &&
1116 			css_is_ancestor(&memcg->css, &root_memcg->css));
1117 	}
1118 
1119 	return true;
1120 }
1121 
1122 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1123 {
1124 	int ret;
1125 	struct mem_cgroup *curr = NULL;
1126 	struct task_struct *p;
1127 
1128 	p = find_lock_task_mm(task);
1129 	if (p) {
1130 		curr = try_get_mem_cgroup_from_mm(p->mm);
1131 		task_unlock(p);
1132 	} else {
1133 		/*
1134 		 * All threads may have already detached their mm's, but the oom
1135 		 * killer still needs to detect if they have already been oom
1136 		 * killed to prevent needlessly killing additional tasks.
1137 		 */
1138 		task_lock(task);
1139 		curr = mem_cgroup_from_task(task);
1140 		if (curr)
1141 			css_get(&curr->css);
1142 		task_unlock(task);
1143 	}
1144 	if (!curr)
1145 		return 0;
1146 	/*
1147 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1148 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1149 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1150 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1151 	 */
1152 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1153 	css_put(&curr->css);
1154 	return ret;
1155 }
1156 
1157 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1158 {
1159 	unsigned long inactive_ratio;
1160 	int nid = zone_to_nid(zone);
1161 	int zid = zone_idx(zone);
1162 	unsigned long inactive;
1163 	unsigned long active;
1164 	unsigned long gb;
1165 
1166 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1167 						BIT(LRU_INACTIVE_ANON));
1168 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1169 					      BIT(LRU_ACTIVE_ANON));
1170 
1171 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1172 	if (gb)
1173 		inactive_ratio = int_sqrt(10 * gb);
1174 	else
1175 		inactive_ratio = 1;
1176 
1177 	return inactive * inactive_ratio < active;
1178 }
1179 
1180 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1181 {
1182 	unsigned long active;
1183 	unsigned long inactive;
1184 	int zid = zone_idx(zone);
1185 	int nid = zone_to_nid(zone);
1186 
1187 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1188 						BIT(LRU_INACTIVE_FILE));
1189 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1190 					      BIT(LRU_ACTIVE_FILE));
1191 
1192 	return (active > inactive);
1193 }
1194 
1195 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1196 						      struct zone *zone)
1197 {
1198 	int nid = zone_to_nid(zone);
1199 	int zid = zone_idx(zone);
1200 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1201 
1202 	return &mz->reclaim_stat;
1203 }
1204 
1205 struct zone_reclaim_stat *
1206 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1207 {
1208 	struct page_cgroup *pc;
1209 	struct mem_cgroup_per_zone *mz;
1210 
1211 	if (mem_cgroup_disabled())
1212 		return NULL;
1213 
1214 	pc = lookup_page_cgroup(page);
1215 	if (!PageCgroupUsed(pc))
1216 		return NULL;
1217 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1218 	smp_rmb();
1219 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1220 	return &mz->reclaim_stat;
1221 }
1222 
1223 #define mem_cgroup_from_res_counter(counter, member)	\
1224 	container_of(counter, struct mem_cgroup, member)
1225 
1226 /**
1227  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1228  * @mem: the memory cgroup
1229  *
1230  * Returns the maximum amount of memory @mem can be charged with, in
1231  * pages.
1232  */
1233 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1234 {
1235 	unsigned long long margin;
1236 
1237 	margin = res_counter_margin(&memcg->res);
1238 	if (do_swap_account)
1239 		margin = min(margin, res_counter_margin(&memcg->memsw));
1240 	return margin >> PAGE_SHIFT;
1241 }
1242 
1243 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1244 {
1245 	struct cgroup *cgrp = memcg->css.cgroup;
1246 
1247 	/* root ? */
1248 	if (cgrp->parent == NULL)
1249 		return vm_swappiness;
1250 
1251 	return memcg->swappiness;
1252 }
1253 
1254 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1255 {
1256 	int cpu;
1257 
1258 	get_online_cpus();
1259 	spin_lock(&memcg->pcp_counter_lock);
1260 	for_each_online_cpu(cpu)
1261 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1262 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1263 	spin_unlock(&memcg->pcp_counter_lock);
1264 	put_online_cpus();
1265 
1266 	synchronize_rcu();
1267 }
1268 
1269 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1270 {
1271 	int cpu;
1272 
1273 	if (!memcg)
1274 		return;
1275 	get_online_cpus();
1276 	spin_lock(&memcg->pcp_counter_lock);
1277 	for_each_online_cpu(cpu)
1278 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1279 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1280 	spin_unlock(&memcg->pcp_counter_lock);
1281 	put_online_cpus();
1282 }
1283 /*
1284  * 2 routines for checking "mem" is under move_account() or not.
1285  *
1286  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1287  *			  for avoiding race in accounting. If true,
1288  *			  pc->mem_cgroup may be overwritten.
1289  *
1290  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1291  *			  under hierarchy of moving cgroups. This is for
1292  *			  waiting at hith-memory prressure caused by "move".
1293  */
1294 
1295 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1296 {
1297 	VM_BUG_ON(!rcu_read_lock_held());
1298 	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1299 }
1300 
1301 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1302 {
1303 	struct mem_cgroup *from;
1304 	struct mem_cgroup *to;
1305 	bool ret = false;
1306 	/*
1307 	 * Unlike task_move routines, we access mc.to, mc.from not under
1308 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1309 	 */
1310 	spin_lock(&mc.lock);
1311 	from = mc.from;
1312 	to = mc.to;
1313 	if (!from)
1314 		goto unlock;
1315 
1316 	ret = mem_cgroup_same_or_subtree(memcg, from)
1317 		|| mem_cgroup_same_or_subtree(memcg, to);
1318 unlock:
1319 	spin_unlock(&mc.lock);
1320 	return ret;
1321 }
1322 
1323 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1324 {
1325 	if (mc.moving_task && current != mc.moving_task) {
1326 		if (mem_cgroup_under_move(memcg)) {
1327 			DEFINE_WAIT(wait);
1328 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1329 			/* moving charge context might have finished. */
1330 			if (mc.moving_task)
1331 				schedule();
1332 			finish_wait(&mc.waitq, &wait);
1333 			return true;
1334 		}
1335 	}
1336 	return false;
1337 }
1338 
1339 /**
1340  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1341  * @memcg: The memory cgroup that went over limit
1342  * @p: Task that is going to be killed
1343  *
1344  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1345  * enabled
1346  */
1347 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1348 {
1349 	struct cgroup *task_cgrp;
1350 	struct cgroup *mem_cgrp;
1351 	/*
1352 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1353 	 * on the assumption that OOM is serialized for memory controller.
1354 	 * If this assumption is broken, revisit this code.
1355 	 */
1356 	static char memcg_name[PATH_MAX];
1357 	int ret;
1358 
1359 	if (!memcg || !p)
1360 		return;
1361 
1362 
1363 	rcu_read_lock();
1364 
1365 	mem_cgrp = memcg->css.cgroup;
1366 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1367 
1368 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1369 	if (ret < 0) {
1370 		/*
1371 		 * Unfortunately, we are unable to convert to a useful name
1372 		 * But we'll still print out the usage information
1373 		 */
1374 		rcu_read_unlock();
1375 		goto done;
1376 	}
1377 	rcu_read_unlock();
1378 
1379 	printk(KERN_INFO "Task in %s killed", memcg_name);
1380 
1381 	rcu_read_lock();
1382 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1383 	if (ret < 0) {
1384 		rcu_read_unlock();
1385 		goto done;
1386 	}
1387 	rcu_read_unlock();
1388 
1389 	/*
1390 	 * Continues from above, so we don't need an KERN_ level
1391 	 */
1392 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1393 done:
1394 
1395 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1396 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1397 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1398 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1399 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1400 		"failcnt %llu\n",
1401 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1402 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1403 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1404 }
1405 
1406 /*
1407  * This function returns the number of memcg under hierarchy tree. Returns
1408  * 1(self count) if no children.
1409  */
1410 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1411 {
1412 	int num = 0;
1413 	struct mem_cgroup *iter;
1414 
1415 	for_each_mem_cgroup_tree(iter, memcg)
1416 		num++;
1417 	return num;
1418 }
1419 
1420 /*
1421  * Return the memory (and swap, if configured) limit for a memcg.
1422  */
1423 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1424 {
1425 	u64 limit;
1426 	u64 memsw;
1427 
1428 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1429 	limit += total_swap_pages << PAGE_SHIFT;
1430 
1431 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1432 	/*
1433 	 * If memsw is finite and limits the amount of swap space available
1434 	 * to this memcg, return that limit.
1435 	 */
1436 	return min(limit, memsw);
1437 }
1438 
1439 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1440 					gfp_t gfp_mask,
1441 					unsigned long flags)
1442 {
1443 	unsigned long total = 0;
1444 	bool noswap = false;
1445 	int loop;
1446 
1447 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1448 		noswap = true;
1449 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1450 		noswap = true;
1451 
1452 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1453 		if (loop)
1454 			drain_all_stock_async(memcg);
1455 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1456 		/*
1457 		 * Allow limit shrinkers, which are triggered directly
1458 		 * by userspace, to catch signals and stop reclaim
1459 		 * after minimal progress, regardless of the margin.
1460 		 */
1461 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1462 			break;
1463 		if (mem_cgroup_margin(memcg))
1464 			break;
1465 		/*
1466 		 * If nothing was reclaimed after two attempts, there
1467 		 * may be no reclaimable pages in this hierarchy.
1468 		 */
1469 		if (loop && !total)
1470 			break;
1471 	}
1472 	return total;
1473 }
1474 
1475 /**
1476  * test_mem_cgroup_node_reclaimable
1477  * @mem: the target memcg
1478  * @nid: the node ID to be checked.
1479  * @noswap : specify true here if the user wants flle only information.
1480  *
1481  * This function returns whether the specified memcg contains any
1482  * reclaimable pages on a node. Returns true if there are any reclaimable
1483  * pages in the node.
1484  */
1485 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1486 		int nid, bool noswap)
1487 {
1488 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1489 		return true;
1490 	if (noswap || !total_swap_pages)
1491 		return false;
1492 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1493 		return true;
1494 	return false;
1495 
1496 }
1497 #if MAX_NUMNODES > 1
1498 
1499 /*
1500  * Always updating the nodemask is not very good - even if we have an empty
1501  * list or the wrong list here, we can start from some node and traverse all
1502  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1503  *
1504  */
1505 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1506 {
1507 	int nid;
1508 	/*
1509 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1510 	 * pagein/pageout changes since the last update.
1511 	 */
1512 	if (!atomic_read(&memcg->numainfo_events))
1513 		return;
1514 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1515 		return;
1516 
1517 	/* make a nodemask where this memcg uses memory from */
1518 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1519 
1520 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1521 
1522 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1523 			node_clear(nid, memcg->scan_nodes);
1524 	}
1525 
1526 	atomic_set(&memcg->numainfo_events, 0);
1527 	atomic_set(&memcg->numainfo_updating, 0);
1528 }
1529 
1530 /*
1531  * Selecting a node where we start reclaim from. Because what we need is just
1532  * reducing usage counter, start from anywhere is O,K. Considering
1533  * memory reclaim from current node, there are pros. and cons.
1534  *
1535  * Freeing memory from current node means freeing memory from a node which
1536  * we'll use or we've used. So, it may make LRU bad. And if several threads
1537  * hit limits, it will see a contention on a node. But freeing from remote
1538  * node means more costs for memory reclaim because of memory latency.
1539  *
1540  * Now, we use round-robin. Better algorithm is welcomed.
1541  */
1542 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1543 {
1544 	int node;
1545 
1546 	mem_cgroup_may_update_nodemask(memcg);
1547 	node = memcg->last_scanned_node;
1548 
1549 	node = next_node(node, memcg->scan_nodes);
1550 	if (node == MAX_NUMNODES)
1551 		node = first_node(memcg->scan_nodes);
1552 	/*
1553 	 * We call this when we hit limit, not when pages are added to LRU.
1554 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1555 	 * memcg is too small and all pages are not on LRU. In that case,
1556 	 * we use curret node.
1557 	 */
1558 	if (unlikely(node == MAX_NUMNODES))
1559 		node = numa_node_id();
1560 
1561 	memcg->last_scanned_node = node;
1562 	return node;
1563 }
1564 
1565 /*
1566  * Check all nodes whether it contains reclaimable pages or not.
1567  * For quick scan, we make use of scan_nodes. This will allow us to skip
1568  * unused nodes. But scan_nodes is lazily updated and may not cotain
1569  * enough new information. We need to do double check.
1570  */
1571 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1572 {
1573 	int nid;
1574 
1575 	/*
1576 	 * quick check...making use of scan_node.
1577 	 * We can skip unused nodes.
1578 	 */
1579 	if (!nodes_empty(memcg->scan_nodes)) {
1580 		for (nid = first_node(memcg->scan_nodes);
1581 		     nid < MAX_NUMNODES;
1582 		     nid = next_node(nid, memcg->scan_nodes)) {
1583 
1584 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1585 				return true;
1586 		}
1587 	}
1588 	/*
1589 	 * Check rest of nodes.
1590 	 */
1591 	for_each_node_state(nid, N_HIGH_MEMORY) {
1592 		if (node_isset(nid, memcg->scan_nodes))
1593 			continue;
1594 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1595 			return true;
1596 	}
1597 	return false;
1598 }
1599 
1600 #else
1601 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1602 {
1603 	return 0;
1604 }
1605 
1606 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607 {
1608 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1609 }
1610 #endif
1611 
1612 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1613 				   struct zone *zone,
1614 				   gfp_t gfp_mask,
1615 				   unsigned long *total_scanned)
1616 {
1617 	struct mem_cgroup *victim = NULL;
1618 	int total = 0;
1619 	int loop = 0;
1620 	unsigned long excess;
1621 	unsigned long nr_scanned;
1622 	struct mem_cgroup_reclaim_cookie reclaim = {
1623 		.zone = zone,
1624 		.priority = 0,
1625 	};
1626 
1627 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1628 
1629 	while (1) {
1630 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1631 		if (!victim) {
1632 			loop++;
1633 			if (loop >= 2) {
1634 				/*
1635 				 * If we have not been able to reclaim
1636 				 * anything, it might because there are
1637 				 * no reclaimable pages under this hierarchy
1638 				 */
1639 				if (!total)
1640 					break;
1641 				/*
1642 				 * We want to do more targeted reclaim.
1643 				 * excess >> 2 is not to excessive so as to
1644 				 * reclaim too much, nor too less that we keep
1645 				 * coming back to reclaim from this cgroup
1646 				 */
1647 				if (total >= (excess >> 2) ||
1648 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1649 					break;
1650 			}
1651 			continue;
1652 		}
1653 		if (!mem_cgroup_reclaimable(victim, false))
1654 			continue;
1655 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1656 						     zone, &nr_scanned);
1657 		*total_scanned += nr_scanned;
1658 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1659 			break;
1660 	}
1661 	mem_cgroup_iter_break(root_memcg, victim);
1662 	return total;
1663 }
1664 
1665 /*
1666  * Check OOM-Killer is already running under our hierarchy.
1667  * If someone is running, return false.
1668  * Has to be called with memcg_oom_lock
1669  */
1670 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1671 {
1672 	struct mem_cgroup *iter, *failed = NULL;
1673 
1674 	for_each_mem_cgroup_tree(iter, memcg) {
1675 		if (iter->oom_lock) {
1676 			/*
1677 			 * this subtree of our hierarchy is already locked
1678 			 * so we cannot give a lock.
1679 			 */
1680 			failed = iter;
1681 			mem_cgroup_iter_break(memcg, iter);
1682 			break;
1683 		} else
1684 			iter->oom_lock = true;
1685 	}
1686 
1687 	if (!failed)
1688 		return true;
1689 
1690 	/*
1691 	 * OK, we failed to lock the whole subtree so we have to clean up
1692 	 * what we set up to the failing subtree
1693 	 */
1694 	for_each_mem_cgroup_tree(iter, memcg) {
1695 		if (iter == failed) {
1696 			mem_cgroup_iter_break(memcg, iter);
1697 			break;
1698 		}
1699 		iter->oom_lock = false;
1700 	}
1701 	return false;
1702 }
1703 
1704 /*
1705  * Has to be called with memcg_oom_lock
1706  */
1707 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1708 {
1709 	struct mem_cgroup *iter;
1710 
1711 	for_each_mem_cgroup_tree(iter, memcg)
1712 		iter->oom_lock = false;
1713 	return 0;
1714 }
1715 
1716 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1717 {
1718 	struct mem_cgroup *iter;
1719 
1720 	for_each_mem_cgroup_tree(iter, memcg)
1721 		atomic_inc(&iter->under_oom);
1722 }
1723 
1724 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1725 {
1726 	struct mem_cgroup *iter;
1727 
1728 	/*
1729 	 * When a new child is created while the hierarchy is under oom,
1730 	 * mem_cgroup_oom_lock() may not be called. We have to use
1731 	 * atomic_add_unless() here.
1732 	 */
1733 	for_each_mem_cgroup_tree(iter, memcg)
1734 		atomic_add_unless(&iter->under_oom, -1, 0);
1735 }
1736 
1737 static DEFINE_SPINLOCK(memcg_oom_lock);
1738 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1739 
1740 struct oom_wait_info {
1741 	struct mem_cgroup *mem;
1742 	wait_queue_t	wait;
1743 };
1744 
1745 static int memcg_oom_wake_function(wait_queue_t *wait,
1746 	unsigned mode, int sync, void *arg)
1747 {
1748 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1749 			  *oom_wait_memcg;
1750 	struct oom_wait_info *oom_wait_info;
1751 
1752 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1753 	oom_wait_memcg = oom_wait_info->mem;
1754 
1755 	/*
1756 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1757 	 * Then we can use css_is_ancestor without taking care of RCU.
1758 	 */
1759 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1760 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1761 		return 0;
1762 	return autoremove_wake_function(wait, mode, sync, arg);
1763 }
1764 
1765 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1766 {
1767 	/* for filtering, pass "memcg" as argument. */
1768 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1769 }
1770 
1771 static void memcg_oom_recover(struct mem_cgroup *memcg)
1772 {
1773 	if (memcg && atomic_read(&memcg->under_oom))
1774 		memcg_wakeup_oom(memcg);
1775 }
1776 
1777 /*
1778  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1779  */
1780 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1781 {
1782 	struct oom_wait_info owait;
1783 	bool locked, need_to_kill;
1784 
1785 	owait.mem = memcg;
1786 	owait.wait.flags = 0;
1787 	owait.wait.func = memcg_oom_wake_function;
1788 	owait.wait.private = current;
1789 	INIT_LIST_HEAD(&owait.wait.task_list);
1790 	need_to_kill = true;
1791 	mem_cgroup_mark_under_oom(memcg);
1792 
1793 	/* At first, try to OOM lock hierarchy under memcg.*/
1794 	spin_lock(&memcg_oom_lock);
1795 	locked = mem_cgroup_oom_lock(memcg);
1796 	/*
1797 	 * Even if signal_pending(), we can't quit charge() loop without
1798 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1799 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1800 	 */
1801 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1802 	if (!locked || memcg->oom_kill_disable)
1803 		need_to_kill = false;
1804 	if (locked)
1805 		mem_cgroup_oom_notify(memcg);
1806 	spin_unlock(&memcg_oom_lock);
1807 
1808 	if (need_to_kill) {
1809 		finish_wait(&memcg_oom_waitq, &owait.wait);
1810 		mem_cgroup_out_of_memory(memcg, mask);
1811 	} else {
1812 		schedule();
1813 		finish_wait(&memcg_oom_waitq, &owait.wait);
1814 	}
1815 	spin_lock(&memcg_oom_lock);
1816 	if (locked)
1817 		mem_cgroup_oom_unlock(memcg);
1818 	memcg_wakeup_oom(memcg);
1819 	spin_unlock(&memcg_oom_lock);
1820 
1821 	mem_cgroup_unmark_under_oom(memcg);
1822 
1823 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1824 		return false;
1825 	/* Give chance to dying process */
1826 	schedule_timeout_uninterruptible(1);
1827 	return true;
1828 }
1829 
1830 /*
1831  * Currently used to update mapped file statistics, but the routine can be
1832  * generalized to update other statistics as well.
1833  *
1834  * Notes: Race condition
1835  *
1836  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1837  * it tends to be costly. But considering some conditions, we doesn't need
1838  * to do so _always_.
1839  *
1840  * Considering "charge", lock_page_cgroup() is not required because all
1841  * file-stat operations happen after a page is attached to radix-tree. There
1842  * are no race with "charge".
1843  *
1844  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1845  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1846  * if there are race with "uncharge". Statistics itself is properly handled
1847  * by flags.
1848  *
1849  * Considering "move", this is an only case we see a race. To make the race
1850  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1851  * possibility of race condition. If there is, we take a lock.
1852  */
1853 
1854 void mem_cgroup_update_page_stat(struct page *page,
1855 				 enum mem_cgroup_page_stat_item idx, int val)
1856 {
1857 	struct mem_cgroup *memcg;
1858 	struct page_cgroup *pc = lookup_page_cgroup(page);
1859 	bool need_unlock = false;
1860 	unsigned long uninitialized_var(flags);
1861 
1862 	if (mem_cgroup_disabled())
1863 		return;
1864 
1865 	rcu_read_lock();
1866 	memcg = pc->mem_cgroup;
1867 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1868 		goto out;
1869 	/* pc->mem_cgroup is unstable ? */
1870 	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1871 		/* take a lock against to access pc->mem_cgroup */
1872 		move_lock_page_cgroup(pc, &flags);
1873 		need_unlock = true;
1874 		memcg = pc->mem_cgroup;
1875 		if (!memcg || !PageCgroupUsed(pc))
1876 			goto out;
1877 	}
1878 
1879 	switch (idx) {
1880 	case MEMCG_NR_FILE_MAPPED:
1881 		if (val > 0)
1882 			SetPageCgroupFileMapped(pc);
1883 		else if (!page_mapped(page))
1884 			ClearPageCgroupFileMapped(pc);
1885 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1886 		break;
1887 	default:
1888 		BUG();
1889 	}
1890 
1891 	this_cpu_add(memcg->stat->count[idx], val);
1892 
1893 out:
1894 	if (unlikely(need_unlock))
1895 		move_unlock_page_cgroup(pc, &flags);
1896 	rcu_read_unlock();
1897 	return;
1898 }
1899 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1900 
1901 /*
1902  * size of first charge trial. "32" comes from vmscan.c's magic value.
1903  * TODO: maybe necessary to use big numbers in big irons.
1904  */
1905 #define CHARGE_BATCH	32U
1906 struct memcg_stock_pcp {
1907 	struct mem_cgroup *cached; /* this never be root cgroup */
1908 	unsigned int nr_pages;
1909 	struct work_struct work;
1910 	unsigned long flags;
1911 #define FLUSHING_CACHED_CHARGE	(0)
1912 };
1913 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1914 static DEFINE_MUTEX(percpu_charge_mutex);
1915 
1916 /*
1917  * Try to consume stocked charge on this cpu. If success, one page is consumed
1918  * from local stock and true is returned. If the stock is 0 or charges from a
1919  * cgroup which is not current target, returns false. This stock will be
1920  * refilled.
1921  */
1922 static bool consume_stock(struct mem_cgroup *memcg)
1923 {
1924 	struct memcg_stock_pcp *stock;
1925 	bool ret = true;
1926 
1927 	stock = &get_cpu_var(memcg_stock);
1928 	if (memcg == stock->cached && stock->nr_pages)
1929 		stock->nr_pages--;
1930 	else /* need to call res_counter_charge */
1931 		ret = false;
1932 	put_cpu_var(memcg_stock);
1933 	return ret;
1934 }
1935 
1936 /*
1937  * Returns stocks cached in percpu to res_counter and reset cached information.
1938  */
1939 static void drain_stock(struct memcg_stock_pcp *stock)
1940 {
1941 	struct mem_cgroup *old = stock->cached;
1942 
1943 	if (stock->nr_pages) {
1944 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1945 
1946 		res_counter_uncharge(&old->res, bytes);
1947 		if (do_swap_account)
1948 			res_counter_uncharge(&old->memsw, bytes);
1949 		stock->nr_pages = 0;
1950 	}
1951 	stock->cached = NULL;
1952 }
1953 
1954 /*
1955  * This must be called under preempt disabled or must be called by
1956  * a thread which is pinned to local cpu.
1957  */
1958 static void drain_local_stock(struct work_struct *dummy)
1959 {
1960 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1961 	drain_stock(stock);
1962 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1963 }
1964 
1965 /*
1966  * Cache charges(val) which is from res_counter, to local per_cpu area.
1967  * This will be consumed by consume_stock() function, later.
1968  */
1969 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1970 {
1971 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1972 
1973 	if (stock->cached != memcg) { /* reset if necessary */
1974 		drain_stock(stock);
1975 		stock->cached = memcg;
1976 	}
1977 	stock->nr_pages += nr_pages;
1978 	put_cpu_var(memcg_stock);
1979 }
1980 
1981 /*
1982  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1983  * of the hierarchy under it. sync flag says whether we should block
1984  * until the work is done.
1985  */
1986 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1987 {
1988 	int cpu, curcpu;
1989 
1990 	/* Notify other cpus that system-wide "drain" is running */
1991 	get_online_cpus();
1992 	curcpu = get_cpu();
1993 	for_each_online_cpu(cpu) {
1994 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1995 		struct mem_cgroup *memcg;
1996 
1997 		memcg = stock->cached;
1998 		if (!memcg || !stock->nr_pages)
1999 			continue;
2000 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2001 			continue;
2002 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2003 			if (cpu == curcpu)
2004 				drain_local_stock(&stock->work);
2005 			else
2006 				schedule_work_on(cpu, &stock->work);
2007 		}
2008 	}
2009 	put_cpu();
2010 
2011 	if (!sync)
2012 		goto out;
2013 
2014 	for_each_online_cpu(cpu) {
2015 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2016 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2017 			flush_work(&stock->work);
2018 	}
2019 out:
2020  	put_online_cpus();
2021 }
2022 
2023 /*
2024  * Tries to drain stocked charges in other cpus. This function is asynchronous
2025  * and just put a work per cpu for draining localy on each cpu. Caller can
2026  * expects some charges will be back to res_counter later but cannot wait for
2027  * it.
2028  */
2029 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2030 {
2031 	/*
2032 	 * If someone calls draining, avoid adding more kworker runs.
2033 	 */
2034 	if (!mutex_trylock(&percpu_charge_mutex))
2035 		return;
2036 	drain_all_stock(root_memcg, false);
2037 	mutex_unlock(&percpu_charge_mutex);
2038 }
2039 
2040 /* This is a synchronous drain interface. */
2041 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2042 {
2043 	/* called when force_empty is called */
2044 	mutex_lock(&percpu_charge_mutex);
2045 	drain_all_stock(root_memcg, true);
2046 	mutex_unlock(&percpu_charge_mutex);
2047 }
2048 
2049 /*
2050  * This function drains percpu counter value from DEAD cpu and
2051  * move it to local cpu. Note that this function can be preempted.
2052  */
2053 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2054 {
2055 	int i;
2056 
2057 	spin_lock(&memcg->pcp_counter_lock);
2058 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2059 		long x = per_cpu(memcg->stat->count[i], cpu);
2060 
2061 		per_cpu(memcg->stat->count[i], cpu) = 0;
2062 		memcg->nocpu_base.count[i] += x;
2063 	}
2064 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2065 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2066 
2067 		per_cpu(memcg->stat->events[i], cpu) = 0;
2068 		memcg->nocpu_base.events[i] += x;
2069 	}
2070 	/* need to clear ON_MOVE value, works as a kind of lock. */
2071 	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2072 	spin_unlock(&memcg->pcp_counter_lock);
2073 }
2074 
2075 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2076 {
2077 	int idx = MEM_CGROUP_ON_MOVE;
2078 
2079 	spin_lock(&memcg->pcp_counter_lock);
2080 	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2081 	spin_unlock(&memcg->pcp_counter_lock);
2082 }
2083 
2084 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2085 					unsigned long action,
2086 					void *hcpu)
2087 {
2088 	int cpu = (unsigned long)hcpu;
2089 	struct memcg_stock_pcp *stock;
2090 	struct mem_cgroup *iter;
2091 
2092 	if ((action == CPU_ONLINE)) {
2093 		for_each_mem_cgroup(iter)
2094 			synchronize_mem_cgroup_on_move(iter, cpu);
2095 		return NOTIFY_OK;
2096 	}
2097 
2098 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2099 		return NOTIFY_OK;
2100 
2101 	for_each_mem_cgroup(iter)
2102 		mem_cgroup_drain_pcp_counter(iter, cpu);
2103 
2104 	stock = &per_cpu(memcg_stock, cpu);
2105 	drain_stock(stock);
2106 	return NOTIFY_OK;
2107 }
2108 
2109 
2110 /* See __mem_cgroup_try_charge() for details */
2111 enum {
2112 	CHARGE_OK,		/* success */
2113 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2114 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2115 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2116 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2117 };
2118 
2119 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2120 				unsigned int nr_pages, bool oom_check)
2121 {
2122 	unsigned long csize = nr_pages * PAGE_SIZE;
2123 	struct mem_cgroup *mem_over_limit;
2124 	struct res_counter *fail_res;
2125 	unsigned long flags = 0;
2126 	int ret;
2127 
2128 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2129 
2130 	if (likely(!ret)) {
2131 		if (!do_swap_account)
2132 			return CHARGE_OK;
2133 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2134 		if (likely(!ret))
2135 			return CHARGE_OK;
2136 
2137 		res_counter_uncharge(&memcg->res, csize);
2138 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2139 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2140 	} else
2141 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2142 	/*
2143 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2144 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2145 	 *
2146 	 * Never reclaim on behalf of optional batching, retry with a
2147 	 * single page instead.
2148 	 */
2149 	if (nr_pages == CHARGE_BATCH)
2150 		return CHARGE_RETRY;
2151 
2152 	if (!(gfp_mask & __GFP_WAIT))
2153 		return CHARGE_WOULDBLOCK;
2154 
2155 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2156 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2157 		return CHARGE_RETRY;
2158 	/*
2159 	 * Even though the limit is exceeded at this point, reclaim
2160 	 * may have been able to free some pages.  Retry the charge
2161 	 * before killing the task.
2162 	 *
2163 	 * Only for regular pages, though: huge pages are rather
2164 	 * unlikely to succeed so close to the limit, and we fall back
2165 	 * to regular pages anyway in case of failure.
2166 	 */
2167 	if (nr_pages == 1 && ret)
2168 		return CHARGE_RETRY;
2169 
2170 	/*
2171 	 * At task move, charge accounts can be doubly counted. So, it's
2172 	 * better to wait until the end of task_move if something is going on.
2173 	 */
2174 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2175 		return CHARGE_RETRY;
2176 
2177 	/* If we don't need to call oom-killer at el, return immediately */
2178 	if (!oom_check)
2179 		return CHARGE_NOMEM;
2180 	/* check OOM */
2181 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2182 		return CHARGE_OOM_DIE;
2183 
2184 	return CHARGE_RETRY;
2185 }
2186 
2187 /*
2188  * __mem_cgroup_try_charge() does
2189  * 1. detect memcg to be charged against from passed *mm and *ptr,
2190  * 2. update res_counter
2191  * 3. call memory reclaim if necessary.
2192  *
2193  * In some special case, if the task is fatal, fatal_signal_pending() or
2194  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2195  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2196  * as possible without any hazards. 2: all pages should have a valid
2197  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2198  * pointer, that is treated as a charge to root_mem_cgroup.
2199  *
2200  * So __mem_cgroup_try_charge() will return
2201  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2202  *  -ENOMEM ...  charge failure because of resource limits.
2203  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2204  *
2205  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2206  * the oom-killer can be invoked.
2207  */
2208 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2209 				   gfp_t gfp_mask,
2210 				   unsigned int nr_pages,
2211 				   struct mem_cgroup **ptr,
2212 				   bool oom)
2213 {
2214 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2215 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2216 	struct mem_cgroup *memcg = NULL;
2217 	int ret;
2218 
2219 	/*
2220 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2221 	 * in system level. So, allow to go ahead dying process in addition to
2222 	 * MEMDIE process.
2223 	 */
2224 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2225 		     || fatal_signal_pending(current)))
2226 		goto bypass;
2227 
2228 	/*
2229 	 * We always charge the cgroup the mm_struct belongs to.
2230 	 * The mm_struct's mem_cgroup changes on task migration if the
2231 	 * thread group leader migrates. It's possible that mm is not
2232 	 * set, if so charge the init_mm (happens for pagecache usage).
2233 	 */
2234 	if (!*ptr && !mm)
2235 		*ptr = root_mem_cgroup;
2236 again:
2237 	if (*ptr) { /* css should be a valid one */
2238 		memcg = *ptr;
2239 		VM_BUG_ON(css_is_removed(&memcg->css));
2240 		if (mem_cgroup_is_root(memcg))
2241 			goto done;
2242 		if (nr_pages == 1 && consume_stock(memcg))
2243 			goto done;
2244 		css_get(&memcg->css);
2245 	} else {
2246 		struct task_struct *p;
2247 
2248 		rcu_read_lock();
2249 		p = rcu_dereference(mm->owner);
2250 		/*
2251 		 * Because we don't have task_lock(), "p" can exit.
2252 		 * In that case, "memcg" can point to root or p can be NULL with
2253 		 * race with swapoff. Then, we have small risk of mis-accouning.
2254 		 * But such kind of mis-account by race always happens because
2255 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2256 		 * small race, here.
2257 		 * (*) swapoff at el will charge against mm-struct not against
2258 		 * task-struct. So, mm->owner can be NULL.
2259 		 */
2260 		memcg = mem_cgroup_from_task(p);
2261 		if (!memcg)
2262 			memcg = root_mem_cgroup;
2263 		if (mem_cgroup_is_root(memcg)) {
2264 			rcu_read_unlock();
2265 			goto done;
2266 		}
2267 		if (nr_pages == 1 && consume_stock(memcg)) {
2268 			/*
2269 			 * It seems dagerous to access memcg without css_get().
2270 			 * But considering how consume_stok works, it's not
2271 			 * necessary. If consume_stock success, some charges
2272 			 * from this memcg are cached on this cpu. So, we
2273 			 * don't need to call css_get()/css_tryget() before
2274 			 * calling consume_stock().
2275 			 */
2276 			rcu_read_unlock();
2277 			goto done;
2278 		}
2279 		/* after here, we may be blocked. we need to get refcnt */
2280 		if (!css_tryget(&memcg->css)) {
2281 			rcu_read_unlock();
2282 			goto again;
2283 		}
2284 		rcu_read_unlock();
2285 	}
2286 
2287 	do {
2288 		bool oom_check;
2289 
2290 		/* If killed, bypass charge */
2291 		if (fatal_signal_pending(current)) {
2292 			css_put(&memcg->css);
2293 			goto bypass;
2294 		}
2295 
2296 		oom_check = false;
2297 		if (oom && !nr_oom_retries) {
2298 			oom_check = true;
2299 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300 		}
2301 
2302 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2303 		switch (ret) {
2304 		case CHARGE_OK:
2305 			break;
2306 		case CHARGE_RETRY: /* not in OOM situation but retry */
2307 			batch = nr_pages;
2308 			css_put(&memcg->css);
2309 			memcg = NULL;
2310 			goto again;
2311 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2312 			css_put(&memcg->css);
2313 			goto nomem;
2314 		case CHARGE_NOMEM: /* OOM routine works */
2315 			if (!oom) {
2316 				css_put(&memcg->css);
2317 				goto nomem;
2318 			}
2319 			/* If oom, we never return -ENOMEM */
2320 			nr_oom_retries--;
2321 			break;
2322 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2323 			css_put(&memcg->css);
2324 			goto bypass;
2325 		}
2326 	} while (ret != CHARGE_OK);
2327 
2328 	if (batch > nr_pages)
2329 		refill_stock(memcg, batch - nr_pages);
2330 	css_put(&memcg->css);
2331 done:
2332 	*ptr = memcg;
2333 	return 0;
2334 nomem:
2335 	*ptr = NULL;
2336 	return -ENOMEM;
2337 bypass:
2338 	*ptr = root_mem_cgroup;
2339 	return -EINTR;
2340 }
2341 
2342 /*
2343  * Somemtimes we have to undo a charge we got by try_charge().
2344  * This function is for that and do uncharge, put css's refcnt.
2345  * gotten by try_charge().
2346  */
2347 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2348 				       unsigned int nr_pages)
2349 {
2350 	if (!mem_cgroup_is_root(memcg)) {
2351 		unsigned long bytes = nr_pages * PAGE_SIZE;
2352 
2353 		res_counter_uncharge(&memcg->res, bytes);
2354 		if (do_swap_account)
2355 			res_counter_uncharge(&memcg->memsw, bytes);
2356 	}
2357 }
2358 
2359 /*
2360  * A helper function to get mem_cgroup from ID. must be called under
2361  * rcu_read_lock(). The caller must check css_is_removed() or some if
2362  * it's concern. (dropping refcnt from swap can be called against removed
2363  * memcg.)
2364  */
2365 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2366 {
2367 	struct cgroup_subsys_state *css;
2368 
2369 	/* ID 0 is unused ID */
2370 	if (!id)
2371 		return NULL;
2372 	css = css_lookup(&mem_cgroup_subsys, id);
2373 	if (!css)
2374 		return NULL;
2375 	return container_of(css, struct mem_cgroup, css);
2376 }
2377 
2378 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2379 {
2380 	struct mem_cgroup *memcg = NULL;
2381 	struct page_cgroup *pc;
2382 	unsigned short id;
2383 	swp_entry_t ent;
2384 
2385 	VM_BUG_ON(!PageLocked(page));
2386 
2387 	pc = lookup_page_cgroup(page);
2388 	lock_page_cgroup(pc);
2389 	if (PageCgroupUsed(pc)) {
2390 		memcg = pc->mem_cgroup;
2391 		if (memcg && !css_tryget(&memcg->css))
2392 			memcg = NULL;
2393 	} else if (PageSwapCache(page)) {
2394 		ent.val = page_private(page);
2395 		id = lookup_swap_cgroup_id(ent);
2396 		rcu_read_lock();
2397 		memcg = mem_cgroup_lookup(id);
2398 		if (memcg && !css_tryget(&memcg->css))
2399 			memcg = NULL;
2400 		rcu_read_unlock();
2401 	}
2402 	unlock_page_cgroup(pc);
2403 	return memcg;
2404 }
2405 
2406 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2407 				       struct page *page,
2408 				       unsigned int nr_pages,
2409 				       struct page_cgroup *pc,
2410 				       enum charge_type ctype)
2411 {
2412 	lock_page_cgroup(pc);
2413 	if (unlikely(PageCgroupUsed(pc))) {
2414 		unlock_page_cgroup(pc);
2415 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2416 		return;
2417 	}
2418 	/*
2419 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2420 	 * accessed by any other context at this point.
2421 	 */
2422 	pc->mem_cgroup = memcg;
2423 	/*
2424 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2425 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2426 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2427 	 * before USED bit, we need memory barrier here.
2428 	 * See mem_cgroup_add_lru_list(), etc.
2429  	 */
2430 	smp_wmb();
2431 	switch (ctype) {
2432 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2433 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2434 		SetPageCgroupCache(pc);
2435 		SetPageCgroupUsed(pc);
2436 		break;
2437 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2438 		ClearPageCgroupCache(pc);
2439 		SetPageCgroupUsed(pc);
2440 		break;
2441 	default:
2442 		break;
2443 	}
2444 
2445 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2446 	unlock_page_cgroup(pc);
2447 	WARN_ON_ONCE(PageLRU(page));
2448 	/*
2449 	 * "charge_statistics" updated event counter. Then, check it.
2450 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2451 	 * if they exceeds softlimit.
2452 	 */
2453 	memcg_check_events(memcg, page);
2454 }
2455 
2456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2457 
2458 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2459 			(1 << PCG_MIGRATION))
2460 /*
2461  * Because tail pages are not marked as "used", set it. We're under
2462  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463  * charge/uncharge will be never happen and move_account() is done under
2464  * compound_lock(), so we don't have to take care of races.
2465  */
2466 void mem_cgroup_split_huge_fixup(struct page *head)
2467 {
2468 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2469 	struct page_cgroup *pc;
2470 	int i;
2471 
2472 	if (mem_cgroup_disabled())
2473 		return;
2474 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2475 		pc = head_pc + i;
2476 		pc->mem_cgroup = head_pc->mem_cgroup;
2477 		smp_wmb();/* see __commit_charge() */
2478 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2479 	}
2480 }
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482 
2483 /**
2484  * mem_cgroup_move_account - move account of the page
2485  * @page: the page
2486  * @nr_pages: number of regular pages (>1 for huge pages)
2487  * @pc:	page_cgroup of the page.
2488  * @from: mem_cgroup which the page is moved from.
2489  * @to:	mem_cgroup which the page is moved to. @from != @to.
2490  * @uncharge: whether we should call uncharge and css_put against @from.
2491  *
2492  * The caller must confirm following.
2493  * - page is not on LRU (isolate_page() is useful.)
2494  * - compound_lock is held when nr_pages > 1
2495  *
2496  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2497  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2498  * true, this function does "uncharge" from old cgroup, but it doesn't if
2499  * @uncharge is false, so a caller should do "uncharge".
2500  */
2501 static int mem_cgroup_move_account(struct page *page,
2502 				   unsigned int nr_pages,
2503 				   struct page_cgroup *pc,
2504 				   struct mem_cgroup *from,
2505 				   struct mem_cgroup *to,
2506 				   bool uncharge)
2507 {
2508 	unsigned long flags;
2509 	int ret;
2510 
2511 	VM_BUG_ON(from == to);
2512 	VM_BUG_ON(PageLRU(page));
2513 	/*
2514 	 * The page is isolated from LRU. So, collapse function
2515 	 * will not handle this page. But page splitting can happen.
2516 	 * Do this check under compound_page_lock(). The caller should
2517 	 * hold it.
2518 	 */
2519 	ret = -EBUSY;
2520 	if (nr_pages > 1 && !PageTransHuge(page))
2521 		goto out;
2522 
2523 	lock_page_cgroup(pc);
2524 
2525 	ret = -EINVAL;
2526 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2527 		goto unlock;
2528 
2529 	move_lock_page_cgroup(pc, &flags);
2530 
2531 	if (PageCgroupFileMapped(pc)) {
2532 		/* Update mapped_file data for mem_cgroup */
2533 		preempt_disable();
2534 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2535 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536 		preempt_enable();
2537 	}
2538 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2539 	if (uncharge)
2540 		/* This is not "cancel", but cancel_charge does all we need. */
2541 		__mem_cgroup_cancel_charge(from, nr_pages);
2542 
2543 	/* caller should have done css_get */
2544 	pc->mem_cgroup = to;
2545 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2546 	/*
2547 	 * We charges against "to" which may not have any tasks. Then, "to"
2548 	 * can be under rmdir(). But in current implementation, caller of
2549 	 * this function is just force_empty() and move charge, so it's
2550 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2551 	 * status here.
2552 	 */
2553 	move_unlock_page_cgroup(pc, &flags);
2554 	ret = 0;
2555 unlock:
2556 	unlock_page_cgroup(pc);
2557 	/*
2558 	 * check events
2559 	 */
2560 	memcg_check_events(to, page);
2561 	memcg_check_events(from, page);
2562 out:
2563 	return ret;
2564 }
2565 
2566 /*
2567  * move charges to its parent.
2568  */
2569 
2570 static int mem_cgroup_move_parent(struct page *page,
2571 				  struct page_cgroup *pc,
2572 				  struct mem_cgroup *child,
2573 				  gfp_t gfp_mask)
2574 {
2575 	struct cgroup *cg = child->css.cgroup;
2576 	struct cgroup *pcg = cg->parent;
2577 	struct mem_cgroup *parent;
2578 	unsigned int nr_pages;
2579 	unsigned long uninitialized_var(flags);
2580 	int ret;
2581 
2582 	/* Is ROOT ? */
2583 	if (!pcg)
2584 		return -EINVAL;
2585 
2586 	ret = -EBUSY;
2587 	if (!get_page_unless_zero(page))
2588 		goto out;
2589 	if (isolate_lru_page(page))
2590 		goto put;
2591 
2592 	nr_pages = hpage_nr_pages(page);
2593 
2594 	parent = mem_cgroup_from_cont(pcg);
2595 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2596 	if (ret)
2597 		goto put_back;
2598 
2599 	if (nr_pages > 1)
2600 		flags = compound_lock_irqsave(page);
2601 
2602 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2603 	if (ret)
2604 		__mem_cgroup_cancel_charge(parent, nr_pages);
2605 
2606 	if (nr_pages > 1)
2607 		compound_unlock_irqrestore(page, flags);
2608 put_back:
2609 	putback_lru_page(page);
2610 put:
2611 	put_page(page);
2612 out:
2613 	return ret;
2614 }
2615 
2616 /*
2617  * Charge the memory controller for page usage.
2618  * Return
2619  * 0 if the charge was successful
2620  * < 0 if the cgroup is over its limit
2621  */
2622 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2623 				gfp_t gfp_mask, enum charge_type ctype)
2624 {
2625 	struct mem_cgroup *memcg = NULL;
2626 	unsigned int nr_pages = 1;
2627 	struct page_cgroup *pc;
2628 	bool oom = true;
2629 	int ret;
2630 
2631 	if (PageTransHuge(page)) {
2632 		nr_pages <<= compound_order(page);
2633 		VM_BUG_ON(!PageTransHuge(page));
2634 		/*
2635 		 * Never OOM-kill a process for a huge page.  The
2636 		 * fault handler will fall back to regular pages.
2637 		 */
2638 		oom = false;
2639 	}
2640 
2641 	pc = lookup_page_cgroup(page);
2642 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2643 	if (ret == -ENOMEM)
2644 		return ret;
2645 	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2646 	return 0;
2647 }
2648 
2649 int mem_cgroup_newpage_charge(struct page *page,
2650 			      struct mm_struct *mm, gfp_t gfp_mask)
2651 {
2652 	if (mem_cgroup_disabled())
2653 		return 0;
2654 	VM_BUG_ON(page_mapped(page));
2655 	VM_BUG_ON(page->mapping && !PageAnon(page));
2656 	VM_BUG_ON(!mm);
2657 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2658 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2659 }
2660 
2661 static void
2662 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2663 					enum charge_type ctype);
2664 
2665 static void
2666 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2667 					enum charge_type ctype)
2668 {
2669 	struct page_cgroup *pc = lookup_page_cgroup(page);
2670 	struct zone *zone = page_zone(page);
2671 	unsigned long flags;
2672 	bool removed = false;
2673 
2674 	/*
2675 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2676 	 * is already on LRU. It means the page may on some other page_cgroup's
2677 	 * LRU. Take care of it.
2678 	 */
2679 	spin_lock_irqsave(&zone->lru_lock, flags);
2680 	if (PageLRU(page)) {
2681 		del_page_from_lru_list(zone, page, page_lru(page));
2682 		ClearPageLRU(page);
2683 		removed = true;
2684 	}
2685 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2686 	if (removed) {
2687 		add_page_to_lru_list(zone, page, page_lru(page));
2688 		SetPageLRU(page);
2689 	}
2690 	spin_unlock_irqrestore(&zone->lru_lock, flags);
2691 	return;
2692 }
2693 
2694 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2695 				gfp_t gfp_mask)
2696 {
2697 	struct mem_cgroup *memcg = NULL;
2698 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2699 	int ret;
2700 
2701 	if (mem_cgroup_disabled())
2702 		return 0;
2703 	if (PageCompound(page))
2704 		return 0;
2705 
2706 	if (unlikely(!mm))
2707 		mm = &init_mm;
2708 	if (!page_is_file_cache(page))
2709 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2710 
2711 	if (!PageSwapCache(page))
2712 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2713 	else { /* page is swapcache/shmem */
2714 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2715 		if (!ret)
2716 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2717 	}
2718 	return ret;
2719 }
2720 
2721 /*
2722  * While swap-in, try_charge -> commit or cancel, the page is locked.
2723  * And when try_charge() successfully returns, one refcnt to memcg without
2724  * struct page_cgroup is acquired. This refcnt will be consumed by
2725  * "commit()" or removed by "cancel()"
2726  */
2727 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2728 				 struct page *page,
2729 				 gfp_t mask, struct mem_cgroup **memcgp)
2730 {
2731 	struct mem_cgroup *memcg;
2732 	int ret;
2733 
2734 	*memcgp = NULL;
2735 
2736 	if (mem_cgroup_disabled())
2737 		return 0;
2738 
2739 	if (!do_swap_account)
2740 		goto charge_cur_mm;
2741 	/*
2742 	 * A racing thread's fault, or swapoff, may have already updated
2743 	 * the pte, and even removed page from swap cache: in those cases
2744 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2745 	 * KSM case which does need to charge the page.
2746 	 */
2747 	if (!PageSwapCache(page))
2748 		goto charge_cur_mm;
2749 	memcg = try_get_mem_cgroup_from_page(page);
2750 	if (!memcg)
2751 		goto charge_cur_mm;
2752 	*memcgp = memcg;
2753 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2754 	css_put(&memcg->css);
2755 	if (ret == -EINTR)
2756 		ret = 0;
2757 	return ret;
2758 charge_cur_mm:
2759 	if (unlikely(!mm))
2760 		mm = &init_mm;
2761 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2762 	if (ret == -EINTR)
2763 		ret = 0;
2764 	return ret;
2765 }
2766 
2767 static void
2768 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2769 					enum charge_type ctype)
2770 {
2771 	if (mem_cgroup_disabled())
2772 		return;
2773 	if (!memcg)
2774 		return;
2775 	cgroup_exclude_rmdir(&memcg->css);
2776 
2777 	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2778 	/*
2779 	 * Now swap is on-memory. This means this page may be
2780 	 * counted both as mem and swap....double count.
2781 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2782 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2783 	 * may call delete_from_swap_cache() before reach here.
2784 	 */
2785 	if (do_swap_account && PageSwapCache(page)) {
2786 		swp_entry_t ent = {.val = page_private(page)};
2787 		struct mem_cgroup *swap_memcg;
2788 		unsigned short id;
2789 
2790 		id = swap_cgroup_record(ent, 0);
2791 		rcu_read_lock();
2792 		swap_memcg = mem_cgroup_lookup(id);
2793 		if (swap_memcg) {
2794 			/*
2795 			 * This recorded memcg can be obsolete one. So, avoid
2796 			 * calling css_tryget
2797 			 */
2798 			if (!mem_cgroup_is_root(swap_memcg))
2799 				res_counter_uncharge(&swap_memcg->memsw,
2800 						     PAGE_SIZE);
2801 			mem_cgroup_swap_statistics(swap_memcg, false);
2802 			mem_cgroup_put(swap_memcg);
2803 		}
2804 		rcu_read_unlock();
2805 	}
2806 	/*
2807 	 * At swapin, we may charge account against cgroup which has no tasks.
2808 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2809 	 * In that case, we need to call pre_destroy() again. check it here.
2810 	 */
2811 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2812 }
2813 
2814 void mem_cgroup_commit_charge_swapin(struct page *page,
2815 				     struct mem_cgroup *memcg)
2816 {
2817 	__mem_cgroup_commit_charge_swapin(page, memcg,
2818 					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2819 }
2820 
2821 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2822 {
2823 	if (mem_cgroup_disabled())
2824 		return;
2825 	if (!memcg)
2826 		return;
2827 	__mem_cgroup_cancel_charge(memcg, 1);
2828 }
2829 
2830 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2831 				   unsigned int nr_pages,
2832 				   const enum charge_type ctype)
2833 {
2834 	struct memcg_batch_info *batch = NULL;
2835 	bool uncharge_memsw = true;
2836 
2837 	/* If swapout, usage of swap doesn't decrease */
2838 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2839 		uncharge_memsw = false;
2840 
2841 	batch = &current->memcg_batch;
2842 	/*
2843 	 * In usual, we do css_get() when we remember memcg pointer.
2844 	 * But in this case, we keep res->usage until end of a series of
2845 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2846 	 */
2847 	if (!batch->memcg)
2848 		batch->memcg = memcg;
2849 	/*
2850 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2851 	 * In those cases, all pages freed continuously can be expected to be in
2852 	 * the same cgroup and we have chance to coalesce uncharges.
2853 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2854 	 * because we want to do uncharge as soon as possible.
2855 	 */
2856 
2857 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2858 		goto direct_uncharge;
2859 
2860 	if (nr_pages > 1)
2861 		goto direct_uncharge;
2862 
2863 	/*
2864 	 * In typical case, batch->memcg == mem. This means we can
2865 	 * merge a series of uncharges to an uncharge of res_counter.
2866 	 * If not, we uncharge res_counter ony by one.
2867 	 */
2868 	if (batch->memcg != memcg)
2869 		goto direct_uncharge;
2870 	/* remember freed charge and uncharge it later */
2871 	batch->nr_pages++;
2872 	if (uncharge_memsw)
2873 		batch->memsw_nr_pages++;
2874 	return;
2875 direct_uncharge:
2876 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2877 	if (uncharge_memsw)
2878 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2879 	if (unlikely(batch->memcg != memcg))
2880 		memcg_oom_recover(memcg);
2881 	return;
2882 }
2883 
2884 /*
2885  * uncharge if !page_mapped(page)
2886  */
2887 static struct mem_cgroup *
2888 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2889 {
2890 	struct mem_cgroup *memcg = NULL;
2891 	unsigned int nr_pages = 1;
2892 	struct page_cgroup *pc;
2893 
2894 	if (mem_cgroup_disabled())
2895 		return NULL;
2896 
2897 	if (PageSwapCache(page))
2898 		return NULL;
2899 
2900 	if (PageTransHuge(page)) {
2901 		nr_pages <<= compound_order(page);
2902 		VM_BUG_ON(!PageTransHuge(page));
2903 	}
2904 	/*
2905 	 * Check if our page_cgroup is valid
2906 	 */
2907 	pc = lookup_page_cgroup(page);
2908 	if (unlikely(!PageCgroupUsed(pc)))
2909 		return NULL;
2910 
2911 	lock_page_cgroup(pc);
2912 
2913 	memcg = pc->mem_cgroup;
2914 
2915 	if (!PageCgroupUsed(pc))
2916 		goto unlock_out;
2917 
2918 	switch (ctype) {
2919 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2920 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2921 		/* See mem_cgroup_prepare_migration() */
2922 		if (page_mapped(page) || PageCgroupMigration(pc))
2923 			goto unlock_out;
2924 		break;
2925 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2926 		if (!PageAnon(page)) {	/* Shared memory */
2927 			if (page->mapping && !page_is_file_cache(page))
2928 				goto unlock_out;
2929 		} else if (page_mapped(page)) /* Anon */
2930 				goto unlock_out;
2931 		break;
2932 	default:
2933 		break;
2934 	}
2935 
2936 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2937 
2938 	ClearPageCgroupUsed(pc);
2939 	/*
2940 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2941 	 * freed from LRU. This is safe because uncharged page is expected not
2942 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2943 	 * special functions.
2944 	 */
2945 
2946 	unlock_page_cgroup(pc);
2947 	/*
2948 	 * even after unlock, we have memcg->res.usage here and this memcg
2949 	 * will never be freed.
2950 	 */
2951 	memcg_check_events(memcg, page);
2952 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2953 		mem_cgroup_swap_statistics(memcg, true);
2954 		mem_cgroup_get(memcg);
2955 	}
2956 	if (!mem_cgroup_is_root(memcg))
2957 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2958 
2959 	return memcg;
2960 
2961 unlock_out:
2962 	unlock_page_cgroup(pc);
2963 	return NULL;
2964 }
2965 
2966 void mem_cgroup_uncharge_page(struct page *page)
2967 {
2968 	/* early check. */
2969 	if (page_mapped(page))
2970 		return;
2971 	VM_BUG_ON(page->mapping && !PageAnon(page));
2972 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2973 }
2974 
2975 void mem_cgroup_uncharge_cache_page(struct page *page)
2976 {
2977 	VM_BUG_ON(page_mapped(page));
2978 	VM_BUG_ON(page->mapping);
2979 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2980 }
2981 
2982 /*
2983  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2984  * In that cases, pages are freed continuously and we can expect pages
2985  * are in the same memcg. All these calls itself limits the number of
2986  * pages freed at once, then uncharge_start/end() is called properly.
2987  * This may be called prural(2) times in a context,
2988  */
2989 
2990 void mem_cgroup_uncharge_start(void)
2991 {
2992 	current->memcg_batch.do_batch++;
2993 	/* We can do nest. */
2994 	if (current->memcg_batch.do_batch == 1) {
2995 		current->memcg_batch.memcg = NULL;
2996 		current->memcg_batch.nr_pages = 0;
2997 		current->memcg_batch.memsw_nr_pages = 0;
2998 	}
2999 }
3000 
3001 void mem_cgroup_uncharge_end(void)
3002 {
3003 	struct memcg_batch_info *batch = &current->memcg_batch;
3004 
3005 	if (!batch->do_batch)
3006 		return;
3007 
3008 	batch->do_batch--;
3009 	if (batch->do_batch) /* If stacked, do nothing. */
3010 		return;
3011 
3012 	if (!batch->memcg)
3013 		return;
3014 	/*
3015 	 * This "batch->memcg" is valid without any css_get/put etc...
3016 	 * bacause we hide charges behind us.
3017 	 */
3018 	if (batch->nr_pages)
3019 		res_counter_uncharge(&batch->memcg->res,
3020 				     batch->nr_pages * PAGE_SIZE);
3021 	if (batch->memsw_nr_pages)
3022 		res_counter_uncharge(&batch->memcg->memsw,
3023 				     batch->memsw_nr_pages * PAGE_SIZE);
3024 	memcg_oom_recover(batch->memcg);
3025 	/* forget this pointer (for sanity check) */
3026 	batch->memcg = NULL;
3027 }
3028 
3029 /*
3030  * A function for resetting pc->mem_cgroup for newly allocated pages.
3031  * This function should be called if the newpage will be added to LRU
3032  * before start accounting.
3033  */
3034 void mem_cgroup_reset_owner(struct page *newpage)
3035 {
3036 	struct page_cgroup *pc;
3037 
3038 	if (mem_cgroup_disabled())
3039 		return;
3040 
3041 	pc = lookup_page_cgroup(newpage);
3042 	VM_BUG_ON(PageCgroupUsed(pc));
3043 	pc->mem_cgroup = root_mem_cgroup;
3044 }
3045 
3046 #ifdef CONFIG_SWAP
3047 /*
3048  * called after __delete_from_swap_cache() and drop "page" account.
3049  * memcg information is recorded to swap_cgroup of "ent"
3050  */
3051 void
3052 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3053 {
3054 	struct mem_cgroup *memcg;
3055 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3056 
3057 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3058 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3059 
3060 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3061 
3062 	/*
3063 	 * record memcg information,  if swapout && memcg != NULL,
3064 	 * mem_cgroup_get() was called in uncharge().
3065 	 */
3066 	if (do_swap_account && swapout && memcg)
3067 		swap_cgroup_record(ent, css_id(&memcg->css));
3068 }
3069 #endif
3070 
3071 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3072 /*
3073  * called from swap_entry_free(). remove record in swap_cgroup and
3074  * uncharge "memsw" account.
3075  */
3076 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3077 {
3078 	struct mem_cgroup *memcg;
3079 	unsigned short id;
3080 
3081 	if (!do_swap_account)
3082 		return;
3083 
3084 	id = swap_cgroup_record(ent, 0);
3085 	rcu_read_lock();
3086 	memcg = mem_cgroup_lookup(id);
3087 	if (memcg) {
3088 		/*
3089 		 * We uncharge this because swap is freed.
3090 		 * This memcg can be obsolete one. We avoid calling css_tryget
3091 		 */
3092 		if (!mem_cgroup_is_root(memcg))
3093 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3094 		mem_cgroup_swap_statistics(memcg, false);
3095 		mem_cgroup_put(memcg);
3096 	}
3097 	rcu_read_unlock();
3098 }
3099 
3100 /**
3101  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3102  * @entry: swap entry to be moved
3103  * @from:  mem_cgroup which the entry is moved from
3104  * @to:  mem_cgroup which the entry is moved to
3105  * @need_fixup: whether we should fixup res_counters and refcounts.
3106  *
3107  * It succeeds only when the swap_cgroup's record for this entry is the same
3108  * as the mem_cgroup's id of @from.
3109  *
3110  * Returns 0 on success, -EINVAL on failure.
3111  *
3112  * The caller must have charged to @to, IOW, called res_counter_charge() about
3113  * both res and memsw, and called css_get().
3114  */
3115 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3116 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3117 {
3118 	unsigned short old_id, new_id;
3119 
3120 	old_id = css_id(&from->css);
3121 	new_id = css_id(&to->css);
3122 
3123 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3124 		mem_cgroup_swap_statistics(from, false);
3125 		mem_cgroup_swap_statistics(to, true);
3126 		/*
3127 		 * This function is only called from task migration context now.
3128 		 * It postpones res_counter and refcount handling till the end
3129 		 * of task migration(mem_cgroup_clear_mc()) for performance
3130 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3131 		 * because if the process that has been moved to @to does
3132 		 * swap-in, the refcount of @to might be decreased to 0.
3133 		 */
3134 		mem_cgroup_get(to);
3135 		if (need_fixup) {
3136 			if (!mem_cgroup_is_root(from))
3137 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3138 			mem_cgroup_put(from);
3139 			/*
3140 			 * we charged both to->res and to->memsw, so we should
3141 			 * uncharge to->res.
3142 			 */
3143 			if (!mem_cgroup_is_root(to))
3144 				res_counter_uncharge(&to->res, PAGE_SIZE);
3145 		}
3146 		return 0;
3147 	}
3148 	return -EINVAL;
3149 }
3150 #else
3151 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3152 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3153 {
3154 	return -EINVAL;
3155 }
3156 #endif
3157 
3158 /*
3159  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3160  * page belongs to.
3161  */
3162 int mem_cgroup_prepare_migration(struct page *page,
3163 	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3164 {
3165 	struct mem_cgroup *memcg = NULL;
3166 	struct page_cgroup *pc;
3167 	enum charge_type ctype;
3168 	int ret = 0;
3169 
3170 	*memcgp = NULL;
3171 
3172 	VM_BUG_ON(PageTransHuge(page));
3173 	if (mem_cgroup_disabled())
3174 		return 0;
3175 
3176 	pc = lookup_page_cgroup(page);
3177 	lock_page_cgroup(pc);
3178 	if (PageCgroupUsed(pc)) {
3179 		memcg = pc->mem_cgroup;
3180 		css_get(&memcg->css);
3181 		/*
3182 		 * At migrating an anonymous page, its mapcount goes down
3183 		 * to 0 and uncharge() will be called. But, even if it's fully
3184 		 * unmapped, migration may fail and this page has to be
3185 		 * charged again. We set MIGRATION flag here and delay uncharge
3186 		 * until end_migration() is called
3187 		 *
3188 		 * Corner Case Thinking
3189 		 * A)
3190 		 * When the old page was mapped as Anon and it's unmap-and-freed
3191 		 * while migration was ongoing.
3192 		 * If unmap finds the old page, uncharge() of it will be delayed
3193 		 * until end_migration(). If unmap finds a new page, it's
3194 		 * uncharged when it make mapcount to be 1->0. If unmap code
3195 		 * finds swap_migration_entry, the new page will not be mapped
3196 		 * and end_migration() will find it(mapcount==0).
3197 		 *
3198 		 * B)
3199 		 * When the old page was mapped but migraion fails, the kernel
3200 		 * remaps it. A charge for it is kept by MIGRATION flag even
3201 		 * if mapcount goes down to 0. We can do remap successfully
3202 		 * without charging it again.
3203 		 *
3204 		 * C)
3205 		 * The "old" page is under lock_page() until the end of
3206 		 * migration, so, the old page itself will not be swapped-out.
3207 		 * If the new page is swapped out before end_migraton, our
3208 		 * hook to usual swap-out path will catch the event.
3209 		 */
3210 		if (PageAnon(page))
3211 			SetPageCgroupMigration(pc);
3212 	}
3213 	unlock_page_cgroup(pc);
3214 	/*
3215 	 * If the page is not charged at this point,
3216 	 * we return here.
3217 	 */
3218 	if (!memcg)
3219 		return 0;
3220 
3221 	*memcgp = memcg;
3222 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3223 	css_put(&memcg->css);/* drop extra refcnt */
3224 	if (ret) {
3225 		if (PageAnon(page)) {
3226 			lock_page_cgroup(pc);
3227 			ClearPageCgroupMigration(pc);
3228 			unlock_page_cgroup(pc);
3229 			/*
3230 			 * The old page may be fully unmapped while we kept it.
3231 			 */
3232 			mem_cgroup_uncharge_page(page);
3233 		}
3234 		/* we'll need to revisit this error code (we have -EINTR) */
3235 		return -ENOMEM;
3236 	}
3237 	/*
3238 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3239 	 * is called before end_migration, we can catch all events on this new
3240 	 * page. In the case new page is migrated but not remapped, new page's
3241 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3242 	 */
3243 	pc = lookup_page_cgroup(newpage);
3244 	if (PageAnon(page))
3245 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3246 	else if (page_is_file_cache(page))
3247 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3248 	else
3249 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3250 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3251 	return ret;
3252 }
3253 
3254 /* remove redundant charge if migration failed*/
3255 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3256 	struct page *oldpage, struct page *newpage, bool migration_ok)
3257 {
3258 	struct page *used, *unused;
3259 	struct page_cgroup *pc;
3260 
3261 	if (!memcg)
3262 		return;
3263 	/* blocks rmdir() */
3264 	cgroup_exclude_rmdir(&memcg->css);
3265 	if (!migration_ok) {
3266 		used = oldpage;
3267 		unused = newpage;
3268 	} else {
3269 		used = newpage;
3270 		unused = oldpage;
3271 	}
3272 	/*
3273 	 * We disallowed uncharge of pages under migration because mapcount
3274 	 * of the page goes down to zero, temporarly.
3275 	 * Clear the flag and check the page should be charged.
3276 	 */
3277 	pc = lookup_page_cgroup(oldpage);
3278 	lock_page_cgroup(pc);
3279 	ClearPageCgroupMigration(pc);
3280 	unlock_page_cgroup(pc);
3281 
3282 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3283 
3284 	/*
3285 	 * If a page is a file cache, radix-tree replacement is very atomic
3286 	 * and we can skip this check. When it was an Anon page, its mapcount
3287 	 * goes down to 0. But because we added MIGRATION flage, it's not
3288 	 * uncharged yet. There are several case but page->mapcount check
3289 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3290 	 * check. (see prepare_charge() also)
3291 	 */
3292 	if (PageAnon(used))
3293 		mem_cgroup_uncharge_page(used);
3294 	/*
3295 	 * At migration, we may charge account against cgroup which has no
3296 	 * tasks.
3297 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3298 	 * In that case, we need to call pre_destroy() again. check it here.
3299 	 */
3300 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3301 }
3302 
3303 /*
3304  * At replace page cache, newpage is not under any memcg but it's on
3305  * LRU. So, this function doesn't touch res_counter but handles LRU
3306  * in correct way. Both pages are locked so we cannot race with uncharge.
3307  */
3308 void mem_cgroup_replace_page_cache(struct page *oldpage,
3309 				  struct page *newpage)
3310 {
3311 	struct mem_cgroup *memcg;
3312 	struct page_cgroup *pc;
3313 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3314 
3315 	if (mem_cgroup_disabled())
3316 		return;
3317 
3318 	pc = lookup_page_cgroup(oldpage);
3319 	/* fix accounting on old pages */
3320 	lock_page_cgroup(pc);
3321 	memcg = pc->mem_cgroup;
3322 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3323 	ClearPageCgroupUsed(pc);
3324 	unlock_page_cgroup(pc);
3325 
3326 	if (PageSwapBacked(oldpage))
3327 		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3328 
3329 	/*
3330 	 * Even if newpage->mapping was NULL before starting replacement,
3331 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3332 	 * LRU while we overwrite pc->mem_cgroup.
3333 	 */
3334 	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3335 }
3336 
3337 #ifdef CONFIG_DEBUG_VM
3338 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3339 {
3340 	struct page_cgroup *pc;
3341 
3342 	pc = lookup_page_cgroup(page);
3343 	/*
3344 	 * Can be NULL while feeding pages into the page allocator for
3345 	 * the first time, i.e. during boot or memory hotplug;
3346 	 * or when mem_cgroup_disabled().
3347 	 */
3348 	if (likely(pc) && PageCgroupUsed(pc))
3349 		return pc;
3350 	return NULL;
3351 }
3352 
3353 bool mem_cgroup_bad_page_check(struct page *page)
3354 {
3355 	if (mem_cgroup_disabled())
3356 		return false;
3357 
3358 	return lookup_page_cgroup_used(page) != NULL;
3359 }
3360 
3361 void mem_cgroup_print_bad_page(struct page *page)
3362 {
3363 	struct page_cgroup *pc;
3364 
3365 	pc = lookup_page_cgroup_used(page);
3366 	if (pc) {
3367 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3368 		       pc, pc->flags, pc->mem_cgroup);
3369 	}
3370 }
3371 #endif
3372 
3373 static DEFINE_MUTEX(set_limit_mutex);
3374 
3375 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3376 				unsigned long long val)
3377 {
3378 	int retry_count;
3379 	u64 memswlimit, memlimit;
3380 	int ret = 0;
3381 	int children = mem_cgroup_count_children(memcg);
3382 	u64 curusage, oldusage;
3383 	int enlarge;
3384 
3385 	/*
3386 	 * For keeping hierarchical_reclaim simple, how long we should retry
3387 	 * is depends on callers. We set our retry-count to be function
3388 	 * of # of children which we should visit in this loop.
3389 	 */
3390 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3391 
3392 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3393 
3394 	enlarge = 0;
3395 	while (retry_count) {
3396 		if (signal_pending(current)) {
3397 			ret = -EINTR;
3398 			break;
3399 		}
3400 		/*
3401 		 * Rather than hide all in some function, I do this in
3402 		 * open coded manner. You see what this really does.
3403 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3404 		 */
3405 		mutex_lock(&set_limit_mutex);
3406 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3407 		if (memswlimit < val) {
3408 			ret = -EINVAL;
3409 			mutex_unlock(&set_limit_mutex);
3410 			break;
3411 		}
3412 
3413 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3414 		if (memlimit < val)
3415 			enlarge = 1;
3416 
3417 		ret = res_counter_set_limit(&memcg->res, val);
3418 		if (!ret) {
3419 			if (memswlimit == val)
3420 				memcg->memsw_is_minimum = true;
3421 			else
3422 				memcg->memsw_is_minimum = false;
3423 		}
3424 		mutex_unlock(&set_limit_mutex);
3425 
3426 		if (!ret)
3427 			break;
3428 
3429 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3430 				   MEM_CGROUP_RECLAIM_SHRINK);
3431 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3432 		/* Usage is reduced ? */
3433   		if (curusage >= oldusage)
3434 			retry_count--;
3435 		else
3436 			oldusage = curusage;
3437 	}
3438 	if (!ret && enlarge)
3439 		memcg_oom_recover(memcg);
3440 
3441 	return ret;
3442 }
3443 
3444 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3445 					unsigned long long val)
3446 {
3447 	int retry_count;
3448 	u64 memlimit, memswlimit, oldusage, curusage;
3449 	int children = mem_cgroup_count_children(memcg);
3450 	int ret = -EBUSY;
3451 	int enlarge = 0;
3452 
3453 	/* see mem_cgroup_resize_res_limit */
3454  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3455 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3456 	while (retry_count) {
3457 		if (signal_pending(current)) {
3458 			ret = -EINTR;
3459 			break;
3460 		}
3461 		/*
3462 		 * Rather than hide all in some function, I do this in
3463 		 * open coded manner. You see what this really does.
3464 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3465 		 */
3466 		mutex_lock(&set_limit_mutex);
3467 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3468 		if (memlimit > val) {
3469 			ret = -EINVAL;
3470 			mutex_unlock(&set_limit_mutex);
3471 			break;
3472 		}
3473 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3474 		if (memswlimit < val)
3475 			enlarge = 1;
3476 		ret = res_counter_set_limit(&memcg->memsw, val);
3477 		if (!ret) {
3478 			if (memlimit == val)
3479 				memcg->memsw_is_minimum = true;
3480 			else
3481 				memcg->memsw_is_minimum = false;
3482 		}
3483 		mutex_unlock(&set_limit_mutex);
3484 
3485 		if (!ret)
3486 			break;
3487 
3488 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3489 				   MEM_CGROUP_RECLAIM_NOSWAP |
3490 				   MEM_CGROUP_RECLAIM_SHRINK);
3491 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3492 		/* Usage is reduced ? */
3493 		if (curusage >= oldusage)
3494 			retry_count--;
3495 		else
3496 			oldusage = curusage;
3497 	}
3498 	if (!ret && enlarge)
3499 		memcg_oom_recover(memcg);
3500 	return ret;
3501 }
3502 
3503 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3504 					    gfp_t gfp_mask,
3505 					    unsigned long *total_scanned)
3506 {
3507 	unsigned long nr_reclaimed = 0;
3508 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3509 	unsigned long reclaimed;
3510 	int loop = 0;
3511 	struct mem_cgroup_tree_per_zone *mctz;
3512 	unsigned long long excess;
3513 	unsigned long nr_scanned;
3514 
3515 	if (order > 0)
3516 		return 0;
3517 
3518 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3519 	/*
3520 	 * This loop can run a while, specially if mem_cgroup's continuously
3521 	 * keep exceeding their soft limit and putting the system under
3522 	 * pressure
3523 	 */
3524 	do {
3525 		if (next_mz)
3526 			mz = next_mz;
3527 		else
3528 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3529 		if (!mz)
3530 			break;
3531 
3532 		nr_scanned = 0;
3533 		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3534 						    gfp_mask, &nr_scanned);
3535 		nr_reclaimed += reclaimed;
3536 		*total_scanned += nr_scanned;
3537 		spin_lock(&mctz->lock);
3538 
3539 		/*
3540 		 * If we failed to reclaim anything from this memory cgroup
3541 		 * it is time to move on to the next cgroup
3542 		 */
3543 		next_mz = NULL;
3544 		if (!reclaimed) {
3545 			do {
3546 				/*
3547 				 * Loop until we find yet another one.
3548 				 *
3549 				 * By the time we get the soft_limit lock
3550 				 * again, someone might have aded the
3551 				 * group back on the RB tree. Iterate to
3552 				 * make sure we get a different mem.
3553 				 * mem_cgroup_largest_soft_limit_node returns
3554 				 * NULL if no other cgroup is present on
3555 				 * the tree
3556 				 */
3557 				next_mz =
3558 				__mem_cgroup_largest_soft_limit_node(mctz);
3559 				if (next_mz == mz)
3560 					css_put(&next_mz->mem->css);
3561 				else /* next_mz == NULL or other memcg */
3562 					break;
3563 			} while (1);
3564 		}
3565 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3566 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3567 		/*
3568 		 * One school of thought says that we should not add
3569 		 * back the node to the tree if reclaim returns 0.
3570 		 * But our reclaim could return 0, simply because due
3571 		 * to priority we are exposing a smaller subset of
3572 		 * memory to reclaim from. Consider this as a longer
3573 		 * term TODO.
3574 		 */
3575 		/* If excess == 0, no tree ops */
3576 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3577 		spin_unlock(&mctz->lock);
3578 		css_put(&mz->mem->css);
3579 		loop++;
3580 		/*
3581 		 * Could not reclaim anything and there are no more
3582 		 * mem cgroups to try or we seem to be looping without
3583 		 * reclaiming anything.
3584 		 */
3585 		if (!nr_reclaimed &&
3586 			(next_mz == NULL ||
3587 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3588 			break;
3589 	} while (!nr_reclaimed);
3590 	if (next_mz)
3591 		css_put(&next_mz->mem->css);
3592 	return nr_reclaimed;
3593 }
3594 
3595 /*
3596  * This routine traverse page_cgroup in given list and drop them all.
3597  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3598  */
3599 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3600 				int node, int zid, enum lru_list lru)
3601 {
3602 	struct mem_cgroup_per_zone *mz;
3603 	unsigned long flags, loop;
3604 	struct list_head *list;
3605 	struct page *busy;
3606 	struct zone *zone;
3607 	int ret = 0;
3608 
3609 	zone = &NODE_DATA(node)->node_zones[zid];
3610 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3611 	list = &mz->lruvec.lists[lru];
3612 
3613 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3614 	/* give some margin against EBUSY etc...*/
3615 	loop += 256;
3616 	busy = NULL;
3617 	while (loop--) {
3618 		struct page_cgroup *pc;
3619 		struct page *page;
3620 
3621 		ret = 0;
3622 		spin_lock_irqsave(&zone->lru_lock, flags);
3623 		if (list_empty(list)) {
3624 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3625 			break;
3626 		}
3627 		page = list_entry(list->prev, struct page, lru);
3628 		if (busy == page) {
3629 			list_move(&page->lru, list);
3630 			busy = NULL;
3631 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3632 			continue;
3633 		}
3634 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3635 
3636 		pc = lookup_page_cgroup(page);
3637 
3638 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3639 		if (ret == -ENOMEM || ret == -EINTR)
3640 			break;
3641 
3642 		if (ret == -EBUSY || ret == -EINVAL) {
3643 			/* found lock contention or "pc" is obsolete. */
3644 			busy = page;
3645 			cond_resched();
3646 		} else
3647 			busy = NULL;
3648 	}
3649 
3650 	if (!ret && !list_empty(list))
3651 		return -EBUSY;
3652 	return ret;
3653 }
3654 
3655 /*
3656  * make mem_cgroup's charge to be 0 if there is no task.
3657  * This enables deleting this mem_cgroup.
3658  */
3659 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3660 {
3661 	int ret;
3662 	int node, zid, shrink;
3663 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3664 	struct cgroup *cgrp = memcg->css.cgroup;
3665 
3666 	css_get(&memcg->css);
3667 
3668 	shrink = 0;
3669 	/* should free all ? */
3670 	if (free_all)
3671 		goto try_to_free;
3672 move_account:
3673 	do {
3674 		ret = -EBUSY;
3675 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3676 			goto out;
3677 		ret = -EINTR;
3678 		if (signal_pending(current))
3679 			goto out;
3680 		/* This is for making all *used* pages to be on LRU. */
3681 		lru_add_drain_all();
3682 		drain_all_stock_sync(memcg);
3683 		ret = 0;
3684 		mem_cgroup_start_move(memcg);
3685 		for_each_node_state(node, N_HIGH_MEMORY) {
3686 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3687 				enum lru_list l;
3688 				for_each_lru(l) {
3689 					ret = mem_cgroup_force_empty_list(memcg,
3690 							node, zid, l);
3691 					if (ret)
3692 						break;
3693 				}
3694 			}
3695 			if (ret)
3696 				break;
3697 		}
3698 		mem_cgroup_end_move(memcg);
3699 		memcg_oom_recover(memcg);
3700 		/* it seems parent cgroup doesn't have enough mem */
3701 		if (ret == -ENOMEM)
3702 			goto try_to_free;
3703 		cond_resched();
3704 	/* "ret" should also be checked to ensure all lists are empty. */
3705 	} while (memcg->res.usage > 0 || ret);
3706 out:
3707 	css_put(&memcg->css);
3708 	return ret;
3709 
3710 try_to_free:
3711 	/* returns EBUSY if there is a task or if we come here twice. */
3712 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3713 		ret = -EBUSY;
3714 		goto out;
3715 	}
3716 	/* we call try-to-free pages for make this cgroup empty */
3717 	lru_add_drain_all();
3718 	/* try to free all pages in this cgroup */
3719 	shrink = 1;
3720 	while (nr_retries && memcg->res.usage > 0) {
3721 		int progress;
3722 
3723 		if (signal_pending(current)) {
3724 			ret = -EINTR;
3725 			goto out;
3726 		}
3727 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3728 						false);
3729 		if (!progress) {
3730 			nr_retries--;
3731 			/* maybe some writeback is necessary */
3732 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3733 		}
3734 
3735 	}
3736 	lru_add_drain();
3737 	/* try move_account...there may be some *locked* pages. */
3738 	goto move_account;
3739 }
3740 
3741 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3742 {
3743 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3744 }
3745 
3746 
3747 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3748 {
3749 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3750 }
3751 
3752 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3753 					u64 val)
3754 {
3755 	int retval = 0;
3756 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3757 	struct cgroup *parent = cont->parent;
3758 	struct mem_cgroup *parent_memcg = NULL;
3759 
3760 	if (parent)
3761 		parent_memcg = mem_cgroup_from_cont(parent);
3762 
3763 	cgroup_lock();
3764 	/*
3765 	 * If parent's use_hierarchy is set, we can't make any modifications
3766 	 * in the child subtrees. If it is unset, then the change can
3767 	 * occur, provided the current cgroup has no children.
3768 	 *
3769 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3770 	 * set if there are no children.
3771 	 */
3772 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3773 				(val == 1 || val == 0)) {
3774 		if (list_empty(&cont->children))
3775 			memcg->use_hierarchy = val;
3776 		else
3777 			retval = -EBUSY;
3778 	} else
3779 		retval = -EINVAL;
3780 	cgroup_unlock();
3781 
3782 	return retval;
3783 }
3784 
3785 
3786 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3787 					       enum mem_cgroup_stat_index idx)
3788 {
3789 	struct mem_cgroup *iter;
3790 	long val = 0;
3791 
3792 	/* Per-cpu values can be negative, use a signed accumulator */
3793 	for_each_mem_cgroup_tree(iter, memcg)
3794 		val += mem_cgroup_read_stat(iter, idx);
3795 
3796 	if (val < 0) /* race ? */
3797 		val = 0;
3798 	return val;
3799 }
3800 
3801 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3802 {
3803 	u64 val;
3804 
3805 	if (!mem_cgroup_is_root(memcg)) {
3806 		if (!swap)
3807 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3808 		else
3809 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3810 	}
3811 
3812 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3813 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3814 
3815 	if (swap)
3816 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3817 
3818 	return val << PAGE_SHIFT;
3819 }
3820 
3821 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3822 {
3823 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3824 	u64 val;
3825 	int type, name;
3826 
3827 	type = MEMFILE_TYPE(cft->private);
3828 	name = MEMFILE_ATTR(cft->private);
3829 	switch (type) {
3830 	case _MEM:
3831 		if (name == RES_USAGE)
3832 			val = mem_cgroup_usage(memcg, false);
3833 		else
3834 			val = res_counter_read_u64(&memcg->res, name);
3835 		break;
3836 	case _MEMSWAP:
3837 		if (name == RES_USAGE)
3838 			val = mem_cgroup_usage(memcg, true);
3839 		else
3840 			val = res_counter_read_u64(&memcg->memsw, name);
3841 		break;
3842 	default:
3843 		BUG();
3844 		break;
3845 	}
3846 	return val;
3847 }
3848 /*
3849  * The user of this function is...
3850  * RES_LIMIT.
3851  */
3852 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3853 			    const char *buffer)
3854 {
3855 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3856 	int type, name;
3857 	unsigned long long val;
3858 	int ret;
3859 
3860 	type = MEMFILE_TYPE(cft->private);
3861 	name = MEMFILE_ATTR(cft->private);
3862 	switch (name) {
3863 	case RES_LIMIT:
3864 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3865 			ret = -EINVAL;
3866 			break;
3867 		}
3868 		/* This function does all necessary parse...reuse it */
3869 		ret = res_counter_memparse_write_strategy(buffer, &val);
3870 		if (ret)
3871 			break;
3872 		if (type == _MEM)
3873 			ret = mem_cgroup_resize_limit(memcg, val);
3874 		else
3875 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3876 		break;
3877 	case RES_SOFT_LIMIT:
3878 		ret = res_counter_memparse_write_strategy(buffer, &val);
3879 		if (ret)
3880 			break;
3881 		/*
3882 		 * For memsw, soft limits are hard to implement in terms
3883 		 * of semantics, for now, we support soft limits for
3884 		 * control without swap
3885 		 */
3886 		if (type == _MEM)
3887 			ret = res_counter_set_soft_limit(&memcg->res, val);
3888 		else
3889 			ret = -EINVAL;
3890 		break;
3891 	default:
3892 		ret = -EINVAL; /* should be BUG() ? */
3893 		break;
3894 	}
3895 	return ret;
3896 }
3897 
3898 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3899 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3900 {
3901 	struct cgroup *cgroup;
3902 	unsigned long long min_limit, min_memsw_limit, tmp;
3903 
3904 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3905 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3906 	cgroup = memcg->css.cgroup;
3907 	if (!memcg->use_hierarchy)
3908 		goto out;
3909 
3910 	while (cgroup->parent) {
3911 		cgroup = cgroup->parent;
3912 		memcg = mem_cgroup_from_cont(cgroup);
3913 		if (!memcg->use_hierarchy)
3914 			break;
3915 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3916 		min_limit = min(min_limit, tmp);
3917 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3918 		min_memsw_limit = min(min_memsw_limit, tmp);
3919 	}
3920 out:
3921 	*mem_limit = min_limit;
3922 	*memsw_limit = min_memsw_limit;
3923 	return;
3924 }
3925 
3926 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3927 {
3928 	struct mem_cgroup *memcg;
3929 	int type, name;
3930 
3931 	memcg = mem_cgroup_from_cont(cont);
3932 	type = MEMFILE_TYPE(event);
3933 	name = MEMFILE_ATTR(event);
3934 	switch (name) {
3935 	case RES_MAX_USAGE:
3936 		if (type == _MEM)
3937 			res_counter_reset_max(&memcg->res);
3938 		else
3939 			res_counter_reset_max(&memcg->memsw);
3940 		break;
3941 	case RES_FAILCNT:
3942 		if (type == _MEM)
3943 			res_counter_reset_failcnt(&memcg->res);
3944 		else
3945 			res_counter_reset_failcnt(&memcg->memsw);
3946 		break;
3947 	}
3948 
3949 	return 0;
3950 }
3951 
3952 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3953 					struct cftype *cft)
3954 {
3955 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3956 }
3957 
3958 #ifdef CONFIG_MMU
3959 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3960 					struct cftype *cft, u64 val)
3961 {
3962 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3963 
3964 	if (val >= (1 << NR_MOVE_TYPE))
3965 		return -EINVAL;
3966 	/*
3967 	 * We check this value several times in both in can_attach() and
3968 	 * attach(), so we need cgroup lock to prevent this value from being
3969 	 * inconsistent.
3970 	 */
3971 	cgroup_lock();
3972 	memcg->move_charge_at_immigrate = val;
3973 	cgroup_unlock();
3974 
3975 	return 0;
3976 }
3977 #else
3978 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979 					struct cftype *cft, u64 val)
3980 {
3981 	return -ENOSYS;
3982 }
3983 #endif
3984 
3985 
3986 /* For read statistics */
3987 enum {
3988 	MCS_CACHE,
3989 	MCS_RSS,
3990 	MCS_FILE_MAPPED,
3991 	MCS_PGPGIN,
3992 	MCS_PGPGOUT,
3993 	MCS_SWAP,
3994 	MCS_PGFAULT,
3995 	MCS_PGMAJFAULT,
3996 	MCS_INACTIVE_ANON,
3997 	MCS_ACTIVE_ANON,
3998 	MCS_INACTIVE_FILE,
3999 	MCS_ACTIVE_FILE,
4000 	MCS_UNEVICTABLE,
4001 	NR_MCS_STAT,
4002 };
4003 
4004 struct mcs_total_stat {
4005 	s64 stat[NR_MCS_STAT];
4006 };
4007 
4008 struct {
4009 	char *local_name;
4010 	char *total_name;
4011 } memcg_stat_strings[NR_MCS_STAT] = {
4012 	{"cache", "total_cache"},
4013 	{"rss", "total_rss"},
4014 	{"mapped_file", "total_mapped_file"},
4015 	{"pgpgin", "total_pgpgin"},
4016 	{"pgpgout", "total_pgpgout"},
4017 	{"swap", "total_swap"},
4018 	{"pgfault", "total_pgfault"},
4019 	{"pgmajfault", "total_pgmajfault"},
4020 	{"inactive_anon", "total_inactive_anon"},
4021 	{"active_anon", "total_active_anon"},
4022 	{"inactive_file", "total_inactive_file"},
4023 	{"active_file", "total_active_file"},
4024 	{"unevictable", "total_unevictable"}
4025 };
4026 
4027 
4028 static void
4029 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4030 {
4031 	s64 val;
4032 
4033 	/* per cpu stat */
4034 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4035 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4036 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4037 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4038 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4039 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4040 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4041 	s->stat[MCS_PGPGIN] += val;
4042 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4043 	s->stat[MCS_PGPGOUT] += val;
4044 	if (do_swap_account) {
4045 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4046 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4047 	}
4048 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4049 	s->stat[MCS_PGFAULT] += val;
4050 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4051 	s->stat[MCS_PGMAJFAULT] += val;
4052 
4053 	/* per zone stat */
4054 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4055 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4056 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4057 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4058 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4059 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4060 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4061 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4062 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4063 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4064 }
4065 
4066 static void
4067 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4068 {
4069 	struct mem_cgroup *iter;
4070 
4071 	for_each_mem_cgroup_tree(iter, memcg)
4072 		mem_cgroup_get_local_stat(iter, s);
4073 }
4074 
4075 #ifdef CONFIG_NUMA
4076 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4077 {
4078 	int nid;
4079 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4080 	unsigned long node_nr;
4081 	struct cgroup *cont = m->private;
4082 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4083 
4084 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4085 	seq_printf(m, "total=%lu", total_nr);
4086 	for_each_node_state(nid, N_HIGH_MEMORY) {
4087 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4088 		seq_printf(m, " N%d=%lu", nid, node_nr);
4089 	}
4090 	seq_putc(m, '\n');
4091 
4092 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4093 	seq_printf(m, "file=%lu", file_nr);
4094 	for_each_node_state(nid, N_HIGH_MEMORY) {
4095 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4096 				LRU_ALL_FILE);
4097 		seq_printf(m, " N%d=%lu", nid, node_nr);
4098 	}
4099 	seq_putc(m, '\n');
4100 
4101 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4102 	seq_printf(m, "anon=%lu", anon_nr);
4103 	for_each_node_state(nid, N_HIGH_MEMORY) {
4104 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4105 				LRU_ALL_ANON);
4106 		seq_printf(m, " N%d=%lu", nid, node_nr);
4107 	}
4108 	seq_putc(m, '\n');
4109 
4110 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4111 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4112 	for_each_node_state(nid, N_HIGH_MEMORY) {
4113 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4114 				BIT(LRU_UNEVICTABLE));
4115 		seq_printf(m, " N%d=%lu", nid, node_nr);
4116 	}
4117 	seq_putc(m, '\n');
4118 	return 0;
4119 }
4120 #endif /* CONFIG_NUMA */
4121 
4122 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4123 				 struct cgroup_map_cb *cb)
4124 {
4125 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4126 	struct mcs_total_stat mystat;
4127 	int i;
4128 
4129 	memset(&mystat, 0, sizeof(mystat));
4130 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4131 
4132 
4133 	for (i = 0; i < NR_MCS_STAT; i++) {
4134 		if (i == MCS_SWAP && !do_swap_account)
4135 			continue;
4136 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4137 	}
4138 
4139 	/* Hierarchical information */
4140 	{
4141 		unsigned long long limit, memsw_limit;
4142 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4143 		cb->fill(cb, "hierarchical_memory_limit", limit);
4144 		if (do_swap_account)
4145 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4146 	}
4147 
4148 	memset(&mystat, 0, sizeof(mystat));
4149 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4150 	for (i = 0; i < NR_MCS_STAT; i++) {
4151 		if (i == MCS_SWAP && !do_swap_account)
4152 			continue;
4153 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4154 	}
4155 
4156 #ifdef CONFIG_DEBUG_VM
4157 	{
4158 		int nid, zid;
4159 		struct mem_cgroup_per_zone *mz;
4160 		unsigned long recent_rotated[2] = {0, 0};
4161 		unsigned long recent_scanned[2] = {0, 0};
4162 
4163 		for_each_online_node(nid)
4164 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4165 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4166 
4167 				recent_rotated[0] +=
4168 					mz->reclaim_stat.recent_rotated[0];
4169 				recent_rotated[1] +=
4170 					mz->reclaim_stat.recent_rotated[1];
4171 				recent_scanned[0] +=
4172 					mz->reclaim_stat.recent_scanned[0];
4173 				recent_scanned[1] +=
4174 					mz->reclaim_stat.recent_scanned[1];
4175 			}
4176 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4177 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4178 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4179 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4180 	}
4181 #endif
4182 
4183 	return 0;
4184 }
4185 
4186 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4187 {
4188 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4189 
4190 	return mem_cgroup_swappiness(memcg);
4191 }
4192 
4193 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4194 				       u64 val)
4195 {
4196 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4197 	struct mem_cgroup *parent;
4198 
4199 	if (val > 100)
4200 		return -EINVAL;
4201 
4202 	if (cgrp->parent == NULL)
4203 		return -EINVAL;
4204 
4205 	parent = mem_cgroup_from_cont(cgrp->parent);
4206 
4207 	cgroup_lock();
4208 
4209 	/* If under hierarchy, only empty-root can set this value */
4210 	if ((parent->use_hierarchy) ||
4211 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4212 		cgroup_unlock();
4213 		return -EINVAL;
4214 	}
4215 
4216 	memcg->swappiness = val;
4217 
4218 	cgroup_unlock();
4219 
4220 	return 0;
4221 }
4222 
4223 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4224 {
4225 	struct mem_cgroup_threshold_ary *t;
4226 	u64 usage;
4227 	int i;
4228 
4229 	rcu_read_lock();
4230 	if (!swap)
4231 		t = rcu_dereference(memcg->thresholds.primary);
4232 	else
4233 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4234 
4235 	if (!t)
4236 		goto unlock;
4237 
4238 	usage = mem_cgroup_usage(memcg, swap);
4239 
4240 	/*
4241 	 * current_threshold points to threshold just below usage.
4242 	 * If it's not true, a threshold was crossed after last
4243 	 * call of __mem_cgroup_threshold().
4244 	 */
4245 	i = t->current_threshold;
4246 
4247 	/*
4248 	 * Iterate backward over array of thresholds starting from
4249 	 * current_threshold and check if a threshold is crossed.
4250 	 * If none of thresholds below usage is crossed, we read
4251 	 * only one element of the array here.
4252 	 */
4253 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4254 		eventfd_signal(t->entries[i].eventfd, 1);
4255 
4256 	/* i = current_threshold + 1 */
4257 	i++;
4258 
4259 	/*
4260 	 * Iterate forward over array of thresholds starting from
4261 	 * current_threshold+1 and check if a threshold is crossed.
4262 	 * If none of thresholds above usage is crossed, we read
4263 	 * only one element of the array here.
4264 	 */
4265 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4266 		eventfd_signal(t->entries[i].eventfd, 1);
4267 
4268 	/* Update current_threshold */
4269 	t->current_threshold = i - 1;
4270 unlock:
4271 	rcu_read_unlock();
4272 }
4273 
4274 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4275 {
4276 	while (memcg) {
4277 		__mem_cgroup_threshold(memcg, false);
4278 		if (do_swap_account)
4279 			__mem_cgroup_threshold(memcg, true);
4280 
4281 		memcg = parent_mem_cgroup(memcg);
4282 	}
4283 }
4284 
4285 static int compare_thresholds(const void *a, const void *b)
4286 {
4287 	const struct mem_cgroup_threshold *_a = a;
4288 	const struct mem_cgroup_threshold *_b = b;
4289 
4290 	return _a->threshold - _b->threshold;
4291 }
4292 
4293 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4294 {
4295 	struct mem_cgroup_eventfd_list *ev;
4296 
4297 	list_for_each_entry(ev, &memcg->oom_notify, list)
4298 		eventfd_signal(ev->eventfd, 1);
4299 	return 0;
4300 }
4301 
4302 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4303 {
4304 	struct mem_cgroup *iter;
4305 
4306 	for_each_mem_cgroup_tree(iter, memcg)
4307 		mem_cgroup_oom_notify_cb(iter);
4308 }
4309 
4310 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4311 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4312 {
4313 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4314 	struct mem_cgroup_thresholds *thresholds;
4315 	struct mem_cgroup_threshold_ary *new;
4316 	int type = MEMFILE_TYPE(cft->private);
4317 	u64 threshold, usage;
4318 	int i, size, ret;
4319 
4320 	ret = res_counter_memparse_write_strategy(args, &threshold);
4321 	if (ret)
4322 		return ret;
4323 
4324 	mutex_lock(&memcg->thresholds_lock);
4325 
4326 	if (type == _MEM)
4327 		thresholds = &memcg->thresholds;
4328 	else if (type == _MEMSWAP)
4329 		thresholds = &memcg->memsw_thresholds;
4330 	else
4331 		BUG();
4332 
4333 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4334 
4335 	/* Check if a threshold crossed before adding a new one */
4336 	if (thresholds->primary)
4337 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4338 
4339 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4340 
4341 	/* Allocate memory for new array of thresholds */
4342 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4343 			GFP_KERNEL);
4344 	if (!new) {
4345 		ret = -ENOMEM;
4346 		goto unlock;
4347 	}
4348 	new->size = size;
4349 
4350 	/* Copy thresholds (if any) to new array */
4351 	if (thresholds->primary) {
4352 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4353 				sizeof(struct mem_cgroup_threshold));
4354 	}
4355 
4356 	/* Add new threshold */
4357 	new->entries[size - 1].eventfd = eventfd;
4358 	new->entries[size - 1].threshold = threshold;
4359 
4360 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4361 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4362 			compare_thresholds, NULL);
4363 
4364 	/* Find current threshold */
4365 	new->current_threshold = -1;
4366 	for (i = 0; i < size; i++) {
4367 		if (new->entries[i].threshold < usage) {
4368 			/*
4369 			 * new->current_threshold will not be used until
4370 			 * rcu_assign_pointer(), so it's safe to increment
4371 			 * it here.
4372 			 */
4373 			++new->current_threshold;
4374 		}
4375 	}
4376 
4377 	/* Free old spare buffer and save old primary buffer as spare */
4378 	kfree(thresholds->spare);
4379 	thresholds->spare = thresholds->primary;
4380 
4381 	rcu_assign_pointer(thresholds->primary, new);
4382 
4383 	/* To be sure that nobody uses thresholds */
4384 	synchronize_rcu();
4385 
4386 unlock:
4387 	mutex_unlock(&memcg->thresholds_lock);
4388 
4389 	return ret;
4390 }
4391 
4392 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4393 	struct cftype *cft, struct eventfd_ctx *eventfd)
4394 {
4395 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4396 	struct mem_cgroup_thresholds *thresholds;
4397 	struct mem_cgroup_threshold_ary *new;
4398 	int type = MEMFILE_TYPE(cft->private);
4399 	u64 usage;
4400 	int i, j, size;
4401 
4402 	mutex_lock(&memcg->thresholds_lock);
4403 	if (type == _MEM)
4404 		thresholds = &memcg->thresholds;
4405 	else if (type == _MEMSWAP)
4406 		thresholds = &memcg->memsw_thresholds;
4407 	else
4408 		BUG();
4409 
4410 	/*
4411 	 * Something went wrong if we trying to unregister a threshold
4412 	 * if we don't have thresholds
4413 	 */
4414 	BUG_ON(!thresholds);
4415 
4416 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4417 
4418 	/* Check if a threshold crossed before removing */
4419 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4420 
4421 	/* Calculate new number of threshold */
4422 	size = 0;
4423 	for (i = 0; i < thresholds->primary->size; i++) {
4424 		if (thresholds->primary->entries[i].eventfd != eventfd)
4425 			size++;
4426 	}
4427 
4428 	new = thresholds->spare;
4429 
4430 	/* Set thresholds array to NULL if we don't have thresholds */
4431 	if (!size) {
4432 		kfree(new);
4433 		new = NULL;
4434 		goto swap_buffers;
4435 	}
4436 
4437 	new->size = size;
4438 
4439 	/* Copy thresholds and find current threshold */
4440 	new->current_threshold = -1;
4441 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4442 		if (thresholds->primary->entries[i].eventfd == eventfd)
4443 			continue;
4444 
4445 		new->entries[j] = thresholds->primary->entries[i];
4446 		if (new->entries[j].threshold < usage) {
4447 			/*
4448 			 * new->current_threshold will not be used
4449 			 * until rcu_assign_pointer(), so it's safe to increment
4450 			 * it here.
4451 			 */
4452 			++new->current_threshold;
4453 		}
4454 		j++;
4455 	}
4456 
4457 swap_buffers:
4458 	/* Swap primary and spare array */
4459 	thresholds->spare = thresholds->primary;
4460 	rcu_assign_pointer(thresholds->primary, new);
4461 
4462 	/* To be sure that nobody uses thresholds */
4463 	synchronize_rcu();
4464 
4465 	mutex_unlock(&memcg->thresholds_lock);
4466 }
4467 
4468 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4469 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4470 {
4471 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472 	struct mem_cgroup_eventfd_list *event;
4473 	int type = MEMFILE_TYPE(cft->private);
4474 
4475 	BUG_ON(type != _OOM_TYPE);
4476 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4477 	if (!event)
4478 		return -ENOMEM;
4479 
4480 	spin_lock(&memcg_oom_lock);
4481 
4482 	event->eventfd = eventfd;
4483 	list_add(&event->list, &memcg->oom_notify);
4484 
4485 	/* already in OOM ? */
4486 	if (atomic_read(&memcg->under_oom))
4487 		eventfd_signal(eventfd, 1);
4488 	spin_unlock(&memcg_oom_lock);
4489 
4490 	return 0;
4491 }
4492 
4493 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4494 	struct cftype *cft, struct eventfd_ctx *eventfd)
4495 {
4496 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 	struct mem_cgroup_eventfd_list *ev, *tmp;
4498 	int type = MEMFILE_TYPE(cft->private);
4499 
4500 	BUG_ON(type != _OOM_TYPE);
4501 
4502 	spin_lock(&memcg_oom_lock);
4503 
4504 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4505 		if (ev->eventfd == eventfd) {
4506 			list_del(&ev->list);
4507 			kfree(ev);
4508 		}
4509 	}
4510 
4511 	spin_unlock(&memcg_oom_lock);
4512 }
4513 
4514 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4515 	struct cftype *cft,  struct cgroup_map_cb *cb)
4516 {
4517 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4518 
4519 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4520 
4521 	if (atomic_read(&memcg->under_oom))
4522 		cb->fill(cb, "under_oom", 1);
4523 	else
4524 		cb->fill(cb, "under_oom", 0);
4525 	return 0;
4526 }
4527 
4528 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4529 	struct cftype *cft, u64 val)
4530 {
4531 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4532 	struct mem_cgroup *parent;
4533 
4534 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4535 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4536 		return -EINVAL;
4537 
4538 	parent = mem_cgroup_from_cont(cgrp->parent);
4539 
4540 	cgroup_lock();
4541 	/* oom-kill-disable is a flag for subhierarchy. */
4542 	if ((parent->use_hierarchy) ||
4543 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4544 		cgroup_unlock();
4545 		return -EINVAL;
4546 	}
4547 	memcg->oom_kill_disable = val;
4548 	if (!val)
4549 		memcg_oom_recover(memcg);
4550 	cgroup_unlock();
4551 	return 0;
4552 }
4553 
4554 #ifdef CONFIG_NUMA
4555 static const struct file_operations mem_control_numa_stat_file_operations = {
4556 	.read = seq_read,
4557 	.llseek = seq_lseek,
4558 	.release = single_release,
4559 };
4560 
4561 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4562 {
4563 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4564 
4565 	file->f_op = &mem_control_numa_stat_file_operations;
4566 	return single_open(file, mem_control_numa_stat_show, cont);
4567 }
4568 #endif /* CONFIG_NUMA */
4569 
4570 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4571 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4572 {
4573 	/*
4574 	 * Part of this would be better living in a separate allocation
4575 	 * function, leaving us with just the cgroup tree population work.
4576 	 * We, however, depend on state such as network's proto_list that
4577 	 * is only initialized after cgroup creation. I found the less
4578 	 * cumbersome way to deal with it to defer it all to populate time
4579 	 */
4580 	return mem_cgroup_sockets_init(cont, ss);
4581 };
4582 
4583 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4584 				struct cgroup *cont)
4585 {
4586 	mem_cgroup_sockets_destroy(cont, ss);
4587 }
4588 #else
4589 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4590 {
4591 	return 0;
4592 }
4593 
4594 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4595 				struct cgroup *cont)
4596 {
4597 }
4598 #endif
4599 
4600 static struct cftype mem_cgroup_files[] = {
4601 	{
4602 		.name = "usage_in_bytes",
4603 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4604 		.read_u64 = mem_cgroup_read,
4605 		.register_event = mem_cgroup_usage_register_event,
4606 		.unregister_event = mem_cgroup_usage_unregister_event,
4607 	},
4608 	{
4609 		.name = "max_usage_in_bytes",
4610 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4611 		.trigger = mem_cgroup_reset,
4612 		.read_u64 = mem_cgroup_read,
4613 	},
4614 	{
4615 		.name = "limit_in_bytes",
4616 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4617 		.write_string = mem_cgroup_write,
4618 		.read_u64 = mem_cgroup_read,
4619 	},
4620 	{
4621 		.name = "soft_limit_in_bytes",
4622 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4623 		.write_string = mem_cgroup_write,
4624 		.read_u64 = mem_cgroup_read,
4625 	},
4626 	{
4627 		.name = "failcnt",
4628 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4629 		.trigger = mem_cgroup_reset,
4630 		.read_u64 = mem_cgroup_read,
4631 	},
4632 	{
4633 		.name = "stat",
4634 		.read_map = mem_control_stat_show,
4635 	},
4636 	{
4637 		.name = "force_empty",
4638 		.trigger = mem_cgroup_force_empty_write,
4639 	},
4640 	{
4641 		.name = "use_hierarchy",
4642 		.write_u64 = mem_cgroup_hierarchy_write,
4643 		.read_u64 = mem_cgroup_hierarchy_read,
4644 	},
4645 	{
4646 		.name = "swappiness",
4647 		.read_u64 = mem_cgroup_swappiness_read,
4648 		.write_u64 = mem_cgroup_swappiness_write,
4649 	},
4650 	{
4651 		.name = "move_charge_at_immigrate",
4652 		.read_u64 = mem_cgroup_move_charge_read,
4653 		.write_u64 = mem_cgroup_move_charge_write,
4654 	},
4655 	{
4656 		.name = "oom_control",
4657 		.read_map = mem_cgroup_oom_control_read,
4658 		.write_u64 = mem_cgroup_oom_control_write,
4659 		.register_event = mem_cgroup_oom_register_event,
4660 		.unregister_event = mem_cgroup_oom_unregister_event,
4661 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4662 	},
4663 #ifdef CONFIG_NUMA
4664 	{
4665 		.name = "numa_stat",
4666 		.open = mem_control_numa_stat_open,
4667 		.mode = S_IRUGO,
4668 	},
4669 #endif
4670 };
4671 
4672 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4673 static struct cftype memsw_cgroup_files[] = {
4674 	{
4675 		.name = "memsw.usage_in_bytes",
4676 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4677 		.read_u64 = mem_cgroup_read,
4678 		.register_event = mem_cgroup_usage_register_event,
4679 		.unregister_event = mem_cgroup_usage_unregister_event,
4680 	},
4681 	{
4682 		.name = "memsw.max_usage_in_bytes",
4683 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4684 		.trigger = mem_cgroup_reset,
4685 		.read_u64 = mem_cgroup_read,
4686 	},
4687 	{
4688 		.name = "memsw.limit_in_bytes",
4689 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4690 		.write_string = mem_cgroup_write,
4691 		.read_u64 = mem_cgroup_read,
4692 	},
4693 	{
4694 		.name = "memsw.failcnt",
4695 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4696 		.trigger = mem_cgroup_reset,
4697 		.read_u64 = mem_cgroup_read,
4698 	},
4699 };
4700 
4701 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4702 {
4703 	if (!do_swap_account)
4704 		return 0;
4705 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4706 				ARRAY_SIZE(memsw_cgroup_files));
4707 };
4708 #else
4709 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4710 {
4711 	return 0;
4712 }
4713 #endif
4714 
4715 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4716 {
4717 	struct mem_cgroup_per_node *pn;
4718 	struct mem_cgroup_per_zone *mz;
4719 	enum lru_list l;
4720 	int zone, tmp = node;
4721 	/*
4722 	 * This routine is called against possible nodes.
4723 	 * But it's BUG to call kmalloc() against offline node.
4724 	 *
4725 	 * TODO: this routine can waste much memory for nodes which will
4726 	 *       never be onlined. It's better to use memory hotplug callback
4727 	 *       function.
4728 	 */
4729 	if (!node_state(node, N_NORMAL_MEMORY))
4730 		tmp = -1;
4731 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4732 	if (!pn)
4733 		return 1;
4734 
4735 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4736 		mz = &pn->zoneinfo[zone];
4737 		for_each_lru(l)
4738 			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4739 		mz->usage_in_excess = 0;
4740 		mz->on_tree = false;
4741 		mz->mem = memcg;
4742 	}
4743 	memcg->info.nodeinfo[node] = pn;
4744 	return 0;
4745 }
4746 
4747 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4748 {
4749 	kfree(memcg->info.nodeinfo[node]);
4750 }
4751 
4752 static struct mem_cgroup *mem_cgroup_alloc(void)
4753 {
4754 	struct mem_cgroup *mem;
4755 	int size = sizeof(struct mem_cgroup);
4756 
4757 	/* Can be very big if MAX_NUMNODES is very big */
4758 	if (size < PAGE_SIZE)
4759 		mem = kzalloc(size, GFP_KERNEL);
4760 	else
4761 		mem = vzalloc(size);
4762 
4763 	if (!mem)
4764 		return NULL;
4765 
4766 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4767 	if (!mem->stat)
4768 		goto out_free;
4769 	spin_lock_init(&mem->pcp_counter_lock);
4770 	return mem;
4771 
4772 out_free:
4773 	if (size < PAGE_SIZE)
4774 		kfree(mem);
4775 	else
4776 		vfree(mem);
4777 	return NULL;
4778 }
4779 
4780 /*
4781  * At destroying mem_cgroup, references from swap_cgroup can remain.
4782  * (scanning all at force_empty is too costly...)
4783  *
4784  * Instead of clearing all references at force_empty, we remember
4785  * the number of reference from swap_cgroup and free mem_cgroup when
4786  * it goes down to 0.
4787  *
4788  * Removal of cgroup itself succeeds regardless of refs from swap.
4789  */
4790 
4791 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4792 {
4793 	int node;
4794 
4795 	mem_cgroup_remove_from_trees(memcg);
4796 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4797 
4798 	for_each_node(node)
4799 		free_mem_cgroup_per_zone_info(memcg, node);
4800 
4801 	free_percpu(memcg->stat);
4802 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4803 		kfree(memcg);
4804 	else
4805 		vfree(memcg);
4806 }
4807 
4808 static void mem_cgroup_get(struct mem_cgroup *memcg)
4809 {
4810 	atomic_inc(&memcg->refcnt);
4811 }
4812 
4813 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4814 {
4815 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4816 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4817 		__mem_cgroup_free(memcg);
4818 		if (parent)
4819 			mem_cgroup_put(parent);
4820 	}
4821 }
4822 
4823 static void mem_cgroup_put(struct mem_cgroup *memcg)
4824 {
4825 	__mem_cgroup_put(memcg, 1);
4826 }
4827 
4828 /*
4829  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4830  */
4831 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4832 {
4833 	if (!memcg->res.parent)
4834 		return NULL;
4835 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4836 }
4837 EXPORT_SYMBOL(parent_mem_cgroup);
4838 
4839 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4840 static void __init enable_swap_cgroup(void)
4841 {
4842 	if (!mem_cgroup_disabled() && really_do_swap_account)
4843 		do_swap_account = 1;
4844 }
4845 #else
4846 static void __init enable_swap_cgroup(void)
4847 {
4848 }
4849 #endif
4850 
4851 static int mem_cgroup_soft_limit_tree_init(void)
4852 {
4853 	struct mem_cgroup_tree_per_node *rtpn;
4854 	struct mem_cgroup_tree_per_zone *rtpz;
4855 	int tmp, node, zone;
4856 
4857 	for_each_node(node) {
4858 		tmp = node;
4859 		if (!node_state(node, N_NORMAL_MEMORY))
4860 			tmp = -1;
4861 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4862 		if (!rtpn)
4863 			goto err_cleanup;
4864 
4865 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4866 
4867 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4868 			rtpz = &rtpn->rb_tree_per_zone[zone];
4869 			rtpz->rb_root = RB_ROOT;
4870 			spin_lock_init(&rtpz->lock);
4871 		}
4872 	}
4873 	return 0;
4874 
4875 err_cleanup:
4876 	for_each_node(node) {
4877 		if (!soft_limit_tree.rb_tree_per_node[node])
4878 			break;
4879 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4880 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4881 	}
4882 	return 1;
4883 
4884 }
4885 
4886 static struct cgroup_subsys_state * __ref
4887 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4888 {
4889 	struct mem_cgroup *memcg, *parent;
4890 	long error = -ENOMEM;
4891 	int node;
4892 
4893 	memcg = mem_cgroup_alloc();
4894 	if (!memcg)
4895 		return ERR_PTR(error);
4896 
4897 	for_each_node(node)
4898 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4899 			goto free_out;
4900 
4901 	/* root ? */
4902 	if (cont->parent == NULL) {
4903 		int cpu;
4904 		enable_swap_cgroup();
4905 		parent = NULL;
4906 		if (mem_cgroup_soft_limit_tree_init())
4907 			goto free_out;
4908 		root_mem_cgroup = memcg;
4909 		for_each_possible_cpu(cpu) {
4910 			struct memcg_stock_pcp *stock =
4911 						&per_cpu(memcg_stock, cpu);
4912 			INIT_WORK(&stock->work, drain_local_stock);
4913 		}
4914 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4915 	} else {
4916 		parent = mem_cgroup_from_cont(cont->parent);
4917 		memcg->use_hierarchy = parent->use_hierarchy;
4918 		memcg->oom_kill_disable = parent->oom_kill_disable;
4919 	}
4920 
4921 	if (parent && parent->use_hierarchy) {
4922 		res_counter_init(&memcg->res, &parent->res);
4923 		res_counter_init(&memcg->memsw, &parent->memsw);
4924 		/*
4925 		 * We increment refcnt of the parent to ensure that we can
4926 		 * safely access it on res_counter_charge/uncharge.
4927 		 * This refcnt will be decremented when freeing this
4928 		 * mem_cgroup(see mem_cgroup_put).
4929 		 */
4930 		mem_cgroup_get(parent);
4931 	} else {
4932 		res_counter_init(&memcg->res, NULL);
4933 		res_counter_init(&memcg->memsw, NULL);
4934 	}
4935 	memcg->last_scanned_node = MAX_NUMNODES;
4936 	INIT_LIST_HEAD(&memcg->oom_notify);
4937 
4938 	if (parent)
4939 		memcg->swappiness = mem_cgroup_swappiness(parent);
4940 	atomic_set(&memcg->refcnt, 1);
4941 	memcg->move_charge_at_immigrate = 0;
4942 	mutex_init(&memcg->thresholds_lock);
4943 	return &memcg->css;
4944 free_out:
4945 	__mem_cgroup_free(memcg);
4946 	return ERR_PTR(error);
4947 }
4948 
4949 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4950 					struct cgroup *cont)
4951 {
4952 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4953 
4954 	return mem_cgroup_force_empty(memcg, false);
4955 }
4956 
4957 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4958 				struct cgroup *cont)
4959 {
4960 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4961 
4962 	kmem_cgroup_destroy(ss, cont);
4963 
4964 	mem_cgroup_put(memcg);
4965 }
4966 
4967 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4968 				struct cgroup *cont)
4969 {
4970 	int ret;
4971 
4972 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4973 				ARRAY_SIZE(mem_cgroup_files));
4974 
4975 	if (!ret)
4976 		ret = register_memsw_files(cont, ss);
4977 
4978 	if (!ret)
4979 		ret = register_kmem_files(cont, ss);
4980 
4981 	return ret;
4982 }
4983 
4984 #ifdef CONFIG_MMU
4985 /* Handlers for move charge at task migration. */
4986 #define PRECHARGE_COUNT_AT_ONCE	256
4987 static int mem_cgroup_do_precharge(unsigned long count)
4988 {
4989 	int ret = 0;
4990 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4991 	struct mem_cgroup *memcg = mc.to;
4992 
4993 	if (mem_cgroup_is_root(memcg)) {
4994 		mc.precharge += count;
4995 		/* we don't need css_get for root */
4996 		return ret;
4997 	}
4998 	/* try to charge at once */
4999 	if (count > 1) {
5000 		struct res_counter *dummy;
5001 		/*
5002 		 * "memcg" cannot be under rmdir() because we've already checked
5003 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5004 		 * are still under the same cgroup_mutex. So we can postpone
5005 		 * css_get().
5006 		 */
5007 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5008 			goto one_by_one;
5009 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5010 						PAGE_SIZE * count, &dummy)) {
5011 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5012 			goto one_by_one;
5013 		}
5014 		mc.precharge += count;
5015 		return ret;
5016 	}
5017 one_by_one:
5018 	/* fall back to one by one charge */
5019 	while (count--) {
5020 		if (signal_pending(current)) {
5021 			ret = -EINTR;
5022 			break;
5023 		}
5024 		if (!batch_count--) {
5025 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5026 			cond_resched();
5027 		}
5028 		ret = __mem_cgroup_try_charge(NULL,
5029 					GFP_KERNEL, 1, &memcg, false);
5030 		if (ret)
5031 			/* mem_cgroup_clear_mc() will do uncharge later */
5032 			return ret;
5033 		mc.precharge++;
5034 	}
5035 	return ret;
5036 }
5037 
5038 /**
5039  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5040  * @vma: the vma the pte to be checked belongs
5041  * @addr: the address corresponding to the pte to be checked
5042  * @ptent: the pte to be checked
5043  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5044  *
5045  * Returns
5046  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5047  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5048  *     move charge. if @target is not NULL, the page is stored in target->page
5049  *     with extra refcnt got(Callers should handle it).
5050  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5051  *     target for charge migration. if @target is not NULL, the entry is stored
5052  *     in target->ent.
5053  *
5054  * Called with pte lock held.
5055  */
5056 union mc_target {
5057 	struct page	*page;
5058 	swp_entry_t	ent;
5059 };
5060 
5061 enum mc_target_type {
5062 	MC_TARGET_NONE,	/* not used */
5063 	MC_TARGET_PAGE,
5064 	MC_TARGET_SWAP,
5065 };
5066 
5067 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5068 						unsigned long addr, pte_t ptent)
5069 {
5070 	struct page *page = vm_normal_page(vma, addr, ptent);
5071 
5072 	if (!page || !page_mapped(page))
5073 		return NULL;
5074 	if (PageAnon(page)) {
5075 		/* we don't move shared anon */
5076 		if (!move_anon() || page_mapcount(page) > 2)
5077 			return NULL;
5078 	} else if (!move_file())
5079 		/* we ignore mapcount for file pages */
5080 		return NULL;
5081 	if (!get_page_unless_zero(page))
5082 		return NULL;
5083 
5084 	return page;
5085 }
5086 
5087 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5088 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5089 {
5090 	int usage_count;
5091 	struct page *page = NULL;
5092 	swp_entry_t ent = pte_to_swp_entry(ptent);
5093 
5094 	if (!move_anon() || non_swap_entry(ent))
5095 		return NULL;
5096 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5097 	if (usage_count > 1) { /* we don't move shared anon */
5098 		if (page)
5099 			put_page(page);
5100 		return NULL;
5101 	}
5102 	if (do_swap_account)
5103 		entry->val = ent.val;
5104 
5105 	return page;
5106 }
5107 
5108 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5109 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5110 {
5111 	struct page *page = NULL;
5112 	struct inode *inode;
5113 	struct address_space *mapping;
5114 	pgoff_t pgoff;
5115 
5116 	if (!vma->vm_file) /* anonymous vma */
5117 		return NULL;
5118 	if (!move_file())
5119 		return NULL;
5120 
5121 	inode = vma->vm_file->f_path.dentry->d_inode;
5122 	mapping = vma->vm_file->f_mapping;
5123 	if (pte_none(ptent))
5124 		pgoff = linear_page_index(vma, addr);
5125 	else /* pte_file(ptent) is true */
5126 		pgoff = pte_to_pgoff(ptent);
5127 
5128 	/* page is moved even if it's not RSS of this task(page-faulted). */
5129 	page = find_get_page(mapping, pgoff);
5130 
5131 #ifdef CONFIG_SWAP
5132 	/* shmem/tmpfs may report page out on swap: account for that too. */
5133 	if (radix_tree_exceptional_entry(page)) {
5134 		swp_entry_t swap = radix_to_swp_entry(page);
5135 		if (do_swap_account)
5136 			*entry = swap;
5137 		page = find_get_page(&swapper_space, swap.val);
5138 	}
5139 #endif
5140 	return page;
5141 }
5142 
5143 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5144 		unsigned long addr, pte_t ptent, union mc_target *target)
5145 {
5146 	struct page *page = NULL;
5147 	struct page_cgroup *pc;
5148 	int ret = 0;
5149 	swp_entry_t ent = { .val = 0 };
5150 
5151 	if (pte_present(ptent))
5152 		page = mc_handle_present_pte(vma, addr, ptent);
5153 	else if (is_swap_pte(ptent))
5154 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5155 	else if (pte_none(ptent) || pte_file(ptent))
5156 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5157 
5158 	if (!page && !ent.val)
5159 		return 0;
5160 	if (page) {
5161 		pc = lookup_page_cgroup(page);
5162 		/*
5163 		 * Do only loose check w/o page_cgroup lock.
5164 		 * mem_cgroup_move_account() checks the pc is valid or not under
5165 		 * the lock.
5166 		 */
5167 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5168 			ret = MC_TARGET_PAGE;
5169 			if (target)
5170 				target->page = page;
5171 		}
5172 		if (!ret || !target)
5173 			put_page(page);
5174 	}
5175 	/* There is a swap entry and a page doesn't exist or isn't charged */
5176 	if (ent.val && !ret &&
5177 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5178 		ret = MC_TARGET_SWAP;
5179 		if (target)
5180 			target->ent = ent;
5181 	}
5182 	return ret;
5183 }
5184 
5185 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5186 					unsigned long addr, unsigned long end,
5187 					struct mm_walk *walk)
5188 {
5189 	struct vm_area_struct *vma = walk->private;
5190 	pte_t *pte;
5191 	spinlock_t *ptl;
5192 
5193 	split_huge_page_pmd(walk->mm, pmd);
5194 
5195 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5196 	for (; addr != end; pte++, addr += PAGE_SIZE)
5197 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5198 			mc.precharge++;	/* increment precharge temporarily */
5199 	pte_unmap_unlock(pte - 1, ptl);
5200 	cond_resched();
5201 
5202 	return 0;
5203 }
5204 
5205 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5206 {
5207 	unsigned long precharge;
5208 	struct vm_area_struct *vma;
5209 
5210 	down_read(&mm->mmap_sem);
5211 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5212 		struct mm_walk mem_cgroup_count_precharge_walk = {
5213 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5214 			.mm = mm,
5215 			.private = vma,
5216 		};
5217 		if (is_vm_hugetlb_page(vma))
5218 			continue;
5219 		walk_page_range(vma->vm_start, vma->vm_end,
5220 					&mem_cgroup_count_precharge_walk);
5221 	}
5222 	up_read(&mm->mmap_sem);
5223 
5224 	precharge = mc.precharge;
5225 	mc.precharge = 0;
5226 
5227 	return precharge;
5228 }
5229 
5230 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5231 {
5232 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5233 
5234 	VM_BUG_ON(mc.moving_task);
5235 	mc.moving_task = current;
5236 	return mem_cgroup_do_precharge(precharge);
5237 }
5238 
5239 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5240 static void __mem_cgroup_clear_mc(void)
5241 {
5242 	struct mem_cgroup *from = mc.from;
5243 	struct mem_cgroup *to = mc.to;
5244 
5245 	/* we must uncharge all the leftover precharges from mc.to */
5246 	if (mc.precharge) {
5247 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5248 		mc.precharge = 0;
5249 	}
5250 	/*
5251 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5252 	 * we must uncharge here.
5253 	 */
5254 	if (mc.moved_charge) {
5255 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5256 		mc.moved_charge = 0;
5257 	}
5258 	/* we must fixup refcnts and charges */
5259 	if (mc.moved_swap) {
5260 		/* uncharge swap account from the old cgroup */
5261 		if (!mem_cgroup_is_root(mc.from))
5262 			res_counter_uncharge(&mc.from->memsw,
5263 						PAGE_SIZE * mc.moved_swap);
5264 		__mem_cgroup_put(mc.from, mc.moved_swap);
5265 
5266 		if (!mem_cgroup_is_root(mc.to)) {
5267 			/*
5268 			 * we charged both to->res and to->memsw, so we should
5269 			 * uncharge to->res.
5270 			 */
5271 			res_counter_uncharge(&mc.to->res,
5272 						PAGE_SIZE * mc.moved_swap);
5273 		}
5274 		/* we've already done mem_cgroup_get(mc.to) */
5275 		mc.moved_swap = 0;
5276 	}
5277 	memcg_oom_recover(from);
5278 	memcg_oom_recover(to);
5279 	wake_up_all(&mc.waitq);
5280 }
5281 
5282 static void mem_cgroup_clear_mc(void)
5283 {
5284 	struct mem_cgroup *from = mc.from;
5285 
5286 	/*
5287 	 * we must clear moving_task before waking up waiters at the end of
5288 	 * task migration.
5289 	 */
5290 	mc.moving_task = NULL;
5291 	__mem_cgroup_clear_mc();
5292 	spin_lock(&mc.lock);
5293 	mc.from = NULL;
5294 	mc.to = NULL;
5295 	spin_unlock(&mc.lock);
5296 	mem_cgroup_end_move(from);
5297 }
5298 
5299 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5300 				struct cgroup *cgroup,
5301 				struct cgroup_taskset *tset)
5302 {
5303 	struct task_struct *p = cgroup_taskset_first(tset);
5304 	int ret = 0;
5305 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5306 
5307 	if (memcg->move_charge_at_immigrate) {
5308 		struct mm_struct *mm;
5309 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5310 
5311 		VM_BUG_ON(from == memcg);
5312 
5313 		mm = get_task_mm(p);
5314 		if (!mm)
5315 			return 0;
5316 		/* We move charges only when we move a owner of the mm */
5317 		if (mm->owner == p) {
5318 			VM_BUG_ON(mc.from);
5319 			VM_BUG_ON(mc.to);
5320 			VM_BUG_ON(mc.precharge);
5321 			VM_BUG_ON(mc.moved_charge);
5322 			VM_BUG_ON(mc.moved_swap);
5323 			mem_cgroup_start_move(from);
5324 			spin_lock(&mc.lock);
5325 			mc.from = from;
5326 			mc.to = memcg;
5327 			spin_unlock(&mc.lock);
5328 			/* We set mc.moving_task later */
5329 
5330 			ret = mem_cgroup_precharge_mc(mm);
5331 			if (ret)
5332 				mem_cgroup_clear_mc();
5333 		}
5334 		mmput(mm);
5335 	}
5336 	return ret;
5337 }
5338 
5339 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5340 				struct cgroup *cgroup,
5341 				struct cgroup_taskset *tset)
5342 {
5343 	mem_cgroup_clear_mc();
5344 }
5345 
5346 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5347 				unsigned long addr, unsigned long end,
5348 				struct mm_walk *walk)
5349 {
5350 	int ret = 0;
5351 	struct vm_area_struct *vma = walk->private;
5352 	pte_t *pte;
5353 	spinlock_t *ptl;
5354 
5355 	split_huge_page_pmd(walk->mm, pmd);
5356 retry:
5357 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5358 	for (; addr != end; addr += PAGE_SIZE) {
5359 		pte_t ptent = *(pte++);
5360 		union mc_target target;
5361 		int type;
5362 		struct page *page;
5363 		struct page_cgroup *pc;
5364 		swp_entry_t ent;
5365 
5366 		if (!mc.precharge)
5367 			break;
5368 
5369 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5370 		switch (type) {
5371 		case MC_TARGET_PAGE:
5372 			page = target.page;
5373 			if (isolate_lru_page(page))
5374 				goto put;
5375 			pc = lookup_page_cgroup(page);
5376 			if (!mem_cgroup_move_account(page, 1, pc,
5377 						     mc.from, mc.to, false)) {
5378 				mc.precharge--;
5379 				/* we uncharge from mc.from later. */
5380 				mc.moved_charge++;
5381 			}
5382 			putback_lru_page(page);
5383 put:			/* is_target_pte_for_mc() gets the page */
5384 			put_page(page);
5385 			break;
5386 		case MC_TARGET_SWAP:
5387 			ent = target.ent;
5388 			if (!mem_cgroup_move_swap_account(ent,
5389 						mc.from, mc.to, false)) {
5390 				mc.precharge--;
5391 				/* we fixup refcnts and charges later. */
5392 				mc.moved_swap++;
5393 			}
5394 			break;
5395 		default:
5396 			break;
5397 		}
5398 	}
5399 	pte_unmap_unlock(pte - 1, ptl);
5400 	cond_resched();
5401 
5402 	if (addr != end) {
5403 		/*
5404 		 * We have consumed all precharges we got in can_attach().
5405 		 * We try charge one by one, but don't do any additional
5406 		 * charges to mc.to if we have failed in charge once in attach()
5407 		 * phase.
5408 		 */
5409 		ret = mem_cgroup_do_precharge(1);
5410 		if (!ret)
5411 			goto retry;
5412 	}
5413 
5414 	return ret;
5415 }
5416 
5417 static void mem_cgroup_move_charge(struct mm_struct *mm)
5418 {
5419 	struct vm_area_struct *vma;
5420 
5421 	lru_add_drain_all();
5422 retry:
5423 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5424 		/*
5425 		 * Someone who are holding the mmap_sem might be waiting in
5426 		 * waitq. So we cancel all extra charges, wake up all waiters,
5427 		 * and retry. Because we cancel precharges, we might not be able
5428 		 * to move enough charges, but moving charge is a best-effort
5429 		 * feature anyway, so it wouldn't be a big problem.
5430 		 */
5431 		__mem_cgroup_clear_mc();
5432 		cond_resched();
5433 		goto retry;
5434 	}
5435 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5436 		int ret;
5437 		struct mm_walk mem_cgroup_move_charge_walk = {
5438 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5439 			.mm = mm,
5440 			.private = vma,
5441 		};
5442 		if (is_vm_hugetlb_page(vma))
5443 			continue;
5444 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5445 						&mem_cgroup_move_charge_walk);
5446 		if (ret)
5447 			/*
5448 			 * means we have consumed all precharges and failed in
5449 			 * doing additional charge. Just abandon here.
5450 			 */
5451 			break;
5452 	}
5453 	up_read(&mm->mmap_sem);
5454 }
5455 
5456 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5457 				struct cgroup *cont,
5458 				struct cgroup_taskset *tset)
5459 {
5460 	struct task_struct *p = cgroup_taskset_first(tset);
5461 	struct mm_struct *mm = get_task_mm(p);
5462 
5463 	if (mm) {
5464 		if (mc.to)
5465 			mem_cgroup_move_charge(mm);
5466 		put_swap_token(mm);
5467 		mmput(mm);
5468 	}
5469 	if (mc.to)
5470 		mem_cgroup_clear_mc();
5471 }
5472 #else	/* !CONFIG_MMU */
5473 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5474 				struct cgroup *cgroup,
5475 				struct cgroup_taskset *tset)
5476 {
5477 	return 0;
5478 }
5479 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5480 				struct cgroup *cgroup,
5481 				struct cgroup_taskset *tset)
5482 {
5483 }
5484 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5485 				struct cgroup *cont,
5486 				struct cgroup_taskset *tset)
5487 {
5488 }
5489 #endif
5490 
5491 struct cgroup_subsys mem_cgroup_subsys = {
5492 	.name = "memory",
5493 	.subsys_id = mem_cgroup_subsys_id,
5494 	.create = mem_cgroup_create,
5495 	.pre_destroy = mem_cgroup_pre_destroy,
5496 	.destroy = mem_cgroup_destroy,
5497 	.populate = mem_cgroup_populate,
5498 	.can_attach = mem_cgroup_can_attach,
5499 	.cancel_attach = mem_cgroup_cancel_attach,
5500 	.attach = mem_cgroup_move_task,
5501 	.early_init = 0,
5502 	.use_id = 1,
5503 };
5504 
5505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506 static int __init enable_swap_account(char *s)
5507 {
5508 	/* consider enabled if no parameter or 1 is given */
5509 	if (!strcmp(s, "1"))
5510 		really_do_swap_account = 1;
5511 	else if (!strcmp(s, "0"))
5512 		really_do_swap_account = 0;
5513 	return 1;
5514 }
5515 __setup("swapaccount=", enable_swap_account);
5516 
5517 #endif
5518