1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 /* Socket memory accounting disabled? */ 77 static bool cgroup_memory_nosocket; 78 79 /* Kernel memory accounting disabled? */ 80 static bool cgroup_memory_nokmem; 81 82 /* Whether the swap controller is active */ 83 #ifdef CONFIG_MEMCG_SWAP 84 bool cgroup_memory_noswap __read_mostly; 85 #else 86 #define cgroup_memory_noswap 1 87 #endif 88 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 91 #endif 92 93 /* Whether legacy memory+swap accounting is active */ 94 static bool do_memsw_account(void) 95 { 96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 97 } 98 99 #define THRESHOLDS_EVENTS_TARGET 128 100 #define SOFTLIMIT_EVENTS_TARGET 1024 101 102 /* 103 * Cgroups above their limits are maintained in a RB-Tree, independent of 104 * their hierarchy representation 105 */ 106 107 struct mem_cgroup_tree_per_node { 108 struct rb_root rb_root; 109 struct rb_node *rb_rightmost; 110 spinlock_t lock; 111 }; 112 113 struct mem_cgroup_tree { 114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 115 }; 116 117 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 118 119 /* for OOM */ 120 struct mem_cgroup_eventfd_list { 121 struct list_head list; 122 struct eventfd_ctx *eventfd; 123 }; 124 125 /* 126 * cgroup_event represents events which userspace want to receive. 127 */ 128 struct mem_cgroup_event { 129 /* 130 * memcg which the event belongs to. 131 */ 132 struct mem_cgroup *memcg; 133 /* 134 * eventfd to signal userspace about the event. 135 */ 136 struct eventfd_ctx *eventfd; 137 /* 138 * Each of these stored in a list by the cgroup. 139 */ 140 struct list_head list; 141 /* 142 * register_event() callback will be used to add new userspace 143 * waiter for changes related to this event. Use eventfd_signal() 144 * on eventfd to send notification to userspace. 145 */ 146 int (*register_event)(struct mem_cgroup *memcg, 147 struct eventfd_ctx *eventfd, const char *args); 148 /* 149 * unregister_event() callback will be called when userspace closes 150 * the eventfd or on cgroup removing. This callback must be set, 151 * if you want provide notification functionality. 152 */ 153 void (*unregister_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd); 155 /* 156 * All fields below needed to unregister event when 157 * userspace closes eventfd. 158 */ 159 poll_table pt; 160 wait_queue_head_t *wqh; 161 wait_queue_entry_t wait; 162 struct work_struct remove; 163 }; 164 165 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 167 168 /* Stuffs for move charges at task migration. */ 169 /* 170 * Types of charges to be moved. 171 */ 172 #define MOVE_ANON 0x1U 173 #define MOVE_FILE 0x2U 174 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 175 176 /* "mc" and its members are protected by cgroup_mutex */ 177 static struct move_charge_struct { 178 spinlock_t lock; /* for from, to */ 179 struct mm_struct *mm; 180 struct mem_cgroup *from; 181 struct mem_cgroup *to; 182 unsigned long flags; 183 unsigned long precharge; 184 unsigned long moved_charge; 185 unsigned long moved_swap; 186 struct task_struct *moving_task; /* a task moving charges */ 187 wait_queue_head_t waitq; /* a waitq for other context */ 188 } mc = { 189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 191 }; 192 193 /* 194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 195 * limit reclaim to prevent infinite loops, if they ever occur. 196 */ 197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 199 200 enum charge_type { 201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 202 MEM_CGROUP_CHARGE_TYPE_ANON, 203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 205 NR_CHARGE_TYPE, 206 }; 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _OOM_TYPE, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 /* Used for OOM nofiier */ 221 #define OOM_CONTROL (0) 222 223 /* 224 * Iteration constructs for visiting all cgroups (under a tree). If 225 * loops are exited prematurely (break), mem_cgroup_iter_break() must 226 * be used for reference counting. 227 */ 228 #define for_each_mem_cgroup_tree(iter, root) \ 229 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(root, iter, NULL)) 232 233 #define for_each_mem_cgroup(iter) \ 234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 235 iter != NULL; \ 236 iter = mem_cgroup_iter(NULL, iter, NULL)) 237 238 static inline bool should_force_charge(void) 239 { 240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 241 (current->flags & PF_EXITING); 242 } 243 244 /* Some nice accessors for the vmpressure. */ 245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 246 { 247 if (!memcg) 248 memcg = root_mem_cgroup; 249 return &memcg->vmpressure; 250 } 251 252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 253 { 254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 255 } 256 257 #ifdef CONFIG_MEMCG_KMEM 258 extern spinlock_t css_set_lock; 259 260 static void obj_cgroup_release(struct percpu_ref *ref) 261 { 262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 263 struct mem_cgroup *memcg; 264 unsigned int nr_bytes; 265 unsigned int nr_pages; 266 unsigned long flags; 267 268 /* 269 * At this point all allocated objects are freed, and 270 * objcg->nr_charged_bytes can't have an arbitrary byte value. 271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 272 * 273 * The following sequence can lead to it: 274 * 1) CPU0: objcg == stock->cached_objcg 275 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 276 * PAGE_SIZE bytes are charged 277 * 3) CPU1: a process from another memcg is allocating something, 278 * the stock if flushed, 279 * objcg->nr_charged_bytes = PAGE_SIZE - 92 280 * 5) CPU0: we do release this object, 281 * 92 bytes are added to stock->nr_bytes 282 * 6) CPU0: stock is flushed, 283 * 92 bytes are added to objcg->nr_charged_bytes 284 * 285 * In the result, nr_charged_bytes == PAGE_SIZE. 286 * This page will be uncharged in obj_cgroup_release(). 287 */ 288 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 290 nr_pages = nr_bytes >> PAGE_SHIFT; 291 292 spin_lock_irqsave(&css_set_lock, flags); 293 memcg = obj_cgroup_memcg(objcg); 294 if (nr_pages) 295 __memcg_kmem_uncharge(memcg, nr_pages); 296 list_del(&objcg->list); 297 mem_cgroup_put(memcg); 298 spin_unlock_irqrestore(&css_set_lock, flags); 299 300 percpu_ref_exit(ref); 301 kfree_rcu(objcg, rcu); 302 } 303 304 static struct obj_cgroup *obj_cgroup_alloc(void) 305 { 306 struct obj_cgroup *objcg; 307 int ret; 308 309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 310 if (!objcg) 311 return NULL; 312 313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 314 GFP_KERNEL); 315 if (ret) { 316 kfree(objcg); 317 return NULL; 318 } 319 INIT_LIST_HEAD(&objcg->list); 320 return objcg; 321 } 322 323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 324 struct mem_cgroup *parent) 325 { 326 struct obj_cgroup *objcg, *iter; 327 328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 329 330 spin_lock_irq(&css_set_lock); 331 332 /* Move active objcg to the parent's list */ 333 xchg(&objcg->memcg, parent); 334 css_get(&parent->css); 335 list_add(&objcg->list, &parent->objcg_list); 336 337 /* Move already reparented objcgs to the parent's list */ 338 list_for_each_entry(iter, &memcg->objcg_list, list) { 339 css_get(&parent->css); 340 xchg(&iter->memcg, parent); 341 css_put(&memcg->css); 342 } 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&css_set_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * This will be used as a shrinker list's index. 352 * The main reason for not using cgroup id for this: 353 * this works better in sparse environments, where we have a lot of memcgs, 354 * but only a few kmem-limited. Or also, if we have, for instance, 200 355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 356 * 200 entry array for that. 357 * 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It 359 * will double each time we have to increase it. 360 */ 361 static DEFINE_IDA(memcg_cache_ida); 362 int memcg_nr_cache_ids; 363 364 /* Protects memcg_nr_cache_ids */ 365 static DECLARE_RWSEM(memcg_cache_ids_sem); 366 367 void memcg_get_cache_ids(void) 368 { 369 down_read(&memcg_cache_ids_sem); 370 } 371 372 void memcg_put_cache_ids(void) 373 { 374 up_read(&memcg_cache_ids_sem); 375 } 376 377 /* 378 * MIN_SIZE is different than 1, because we would like to avoid going through 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited 380 * cgroups is a reasonable guess. In the future, it could be a parameter or 381 * tunable, but that is strictly not necessary. 382 * 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 384 * this constant directly from cgroup, but it is understandable that this is 385 * better kept as an internal representation in cgroup.c. In any case, the 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily 387 * increase ours as well if it increases. 388 */ 389 #define MEMCG_CACHES_MIN_SIZE 4 390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 391 392 /* 393 * A lot of the calls to the cache allocation functions are expected to be 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 395 * conditional to this static branch, we'll have to allow modules that does 396 * kmem_cache_alloc and the such to see this symbol as well 397 */ 398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 399 EXPORT_SYMBOL(memcg_kmem_enabled_key); 400 #endif 401 402 static int memcg_shrinker_map_size; 403 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 404 405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 406 { 407 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 408 } 409 410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 411 int size, int old_size) 412 { 413 struct memcg_shrinker_map *new, *old; 414 int nid; 415 416 lockdep_assert_held(&memcg_shrinker_map_mutex); 417 418 for_each_node(nid) { 419 old = rcu_dereference_protected( 420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 421 /* Not yet online memcg */ 422 if (!old) 423 return 0; 424 425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 426 if (!new) 427 return -ENOMEM; 428 429 /* Set all old bits, clear all new bits */ 430 memset(new->map, (int)0xff, old_size); 431 memset((void *)new->map + old_size, 0, size - old_size); 432 433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 435 } 436 437 return 0; 438 } 439 440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 441 { 442 struct mem_cgroup_per_node *pn; 443 struct memcg_shrinker_map *map; 444 int nid; 445 446 if (mem_cgroup_is_root(memcg)) 447 return; 448 449 for_each_node(nid) { 450 pn = mem_cgroup_nodeinfo(memcg, nid); 451 map = rcu_dereference_protected(pn->shrinker_map, true); 452 if (map) 453 kvfree(map); 454 rcu_assign_pointer(pn->shrinker_map, NULL); 455 } 456 } 457 458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 459 { 460 struct memcg_shrinker_map *map; 461 int nid, size, ret = 0; 462 463 if (mem_cgroup_is_root(memcg)) 464 return 0; 465 466 mutex_lock(&memcg_shrinker_map_mutex); 467 size = memcg_shrinker_map_size; 468 for_each_node(nid) { 469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 470 if (!map) { 471 memcg_free_shrinker_maps(memcg); 472 ret = -ENOMEM; 473 break; 474 } 475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 476 } 477 mutex_unlock(&memcg_shrinker_map_mutex); 478 479 return ret; 480 } 481 482 int memcg_expand_shrinker_maps(int new_id) 483 { 484 int size, old_size, ret = 0; 485 struct mem_cgroup *memcg; 486 487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 488 old_size = memcg_shrinker_map_size; 489 if (size <= old_size) 490 return 0; 491 492 mutex_lock(&memcg_shrinker_map_mutex); 493 if (!root_mem_cgroup) 494 goto unlock; 495 496 for_each_mem_cgroup(memcg) { 497 if (mem_cgroup_is_root(memcg)) 498 continue; 499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 500 if (ret) { 501 mem_cgroup_iter_break(NULL, memcg); 502 goto unlock; 503 } 504 } 505 unlock: 506 if (!ret) 507 memcg_shrinker_map_size = size; 508 mutex_unlock(&memcg_shrinker_map_mutex); 509 return ret; 510 } 511 512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 513 { 514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 515 struct memcg_shrinker_map *map; 516 517 rcu_read_lock(); 518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 519 /* Pairs with smp mb in shrink_slab() */ 520 smp_mb__before_atomic(); 521 set_bit(shrinker_id, map->map); 522 rcu_read_unlock(); 523 } 524 } 525 526 /** 527 * mem_cgroup_css_from_page - css of the memcg associated with a page 528 * @page: page of interest 529 * 530 * If memcg is bound to the default hierarchy, css of the memcg associated 531 * with @page is returned. The returned css remains associated with @page 532 * until it is released. 533 * 534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 535 * is returned. 536 */ 537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 538 { 539 struct mem_cgroup *memcg; 540 541 memcg = page->mem_cgroup; 542 543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 544 memcg = root_mem_cgroup; 545 546 return &memcg->css; 547 } 548 549 /** 550 * page_cgroup_ino - return inode number of the memcg a page is charged to 551 * @page: the page 552 * 553 * Look up the closest online ancestor of the memory cgroup @page is charged to 554 * and return its inode number or 0 if @page is not charged to any cgroup. It 555 * is safe to call this function without holding a reference to @page. 556 * 557 * Note, this function is inherently racy, because there is nothing to prevent 558 * the cgroup inode from getting torn down and potentially reallocated a moment 559 * after page_cgroup_ino() returns, so it only should be used by callers that 560 * do not care (such as procfs interfaces). 561 */ 562 ino_t page_cgroup_ino(struct page *page) 563 { 564 struct mem_cgroup *memcg; 565 unsigned long ino = 0; 566 567 rcu_read_lock(); 568 memcg = page->mem_cgroup; 569 570 /* 571 * The lowest bit set means that memcg isn't a valid 572 * memcg pointer, but a obj_cgroups pointer. 573 * In this case the page is shared and doesn't belong 574 * to any specific memory cgroup. 575 */ 576 if ((unsigned long) memcg & 0x1UL) 577 memcg = NULL; 578 579 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 580 memcg = parent_mem_cgroup(memcg); 581 if (memcg) 582 ino = cgroup_ino(memcg->css.cgroup); 583 rcu_read_unlock(); 584 return ino; 585 } 586 587 static struct mem_cgroup_per_node * 588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 589 { 590 int nid = page_to_nid(page); 591 592 return memcg->nodeinfo[nid]; 593 } 594 595 static struct mem_cgroup_tree_per_node * 596 soft_limit_tree_node(int nid) 597 { 598 return soft_limit_tree.rb_tree_per_node[nid]; 599 } 600 601 static struct mem_cgroup_tree_per_node * 602 soft_limit_tree_from_page(struct page *page) 603 { 604 int nid = page_to_nid(page); 605 606 return soft_limit_tree.rb_tree_per_node[nid]; 607 } 608 609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 610 struct mem_cgroup_tree_per_node *mctz, 611 unsigned long new_usage_in_excess) 612 { 613 struct rb_node **p = &mctz->rb_root.rb_node; 614 struct rb_node *parent = NULL; 615 struct mem_cgroup_per_node *mz_node; 616 bool rightmost = true; 617 618 if (mz->on_tree) 619 return; 620 621 mz->usage_in_excess = new_usage_in_excess; 622 if (!mz->usage_in_excess) 623 return; 624 while (*p) { 625 parent = *p; 626 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 627 tree_node); 628 if (mz->usage_in_excess < mz_node->usage_in_excess) { 629 p = &(*p)->rb_left; 630 rightmost = false; 631 } 632 633 /* 634 * We can't avoid mem cgroups that are over their soft 635 * limit by the same amount 636 */ 637 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 638 p = &(*p)->rb_right; 639 } 640 641 if (rightmost) 642 mctz->rb_rightmost = &mz->tree_node; 643 644 rb_link_node(&mz->tree_node, parent, p); 645 rb_insert_color(&mz->tree_node, &mctz->rb_root); 646 mz->on_tree = true; 647 } 648 649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 650 struct mem_cgroup_tree_per_node *mctz) 651 { 652 if (!mz->on_tree) 653 return; 654 655 if (&mz->tree_node == mctz->rb_rightmost) 656 mctz->rb_rightmost = rb_prev(&mz->tree_node); 657 658 rb_erase(&mz->tree_node, &mctz->rb_root); 659 mz->on_tree = false; 660 } 661 662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 663 struct mem_cgroup_tree_per_node *mctz) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&mctz->lock, flags); 668 __mem_cgroup_remove_exceeded(mz, mctz); 669 spin_unlock_irqrestore(&mctz->lock, flags); 670 } 671 672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 673 { 674 unsigned long nr_pages = page_counter_read(&memcg->memory); 675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 676 unsigned long excess = 0; 677 678 if (nr_pages > soft_limit) 679 excess = nr_pages - soft_limit; 680 681 return excess; 682 } 683 684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 685 { 686 unsigned long excess; 687 struct mem_cgroup_per_node *mz; 688 struct mem_cgroup_tree_per_node *mctz; 689 690 mctz = soft_limit_tree_from_page(page); 691 if (!mctz) 692 return; 693 /* 694 * Necessary to update all ancestors when hierarchy is used. 695 * because their event counter is not touched. 696 */ 697 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 698 mz = mem_cgroup_page_nodeinfo(memcg, page); 699 excess = soft_limit_excess(memcg); 700 /* 701 * We have to update the tree if mz is on RB-tree or 702 * mem is over its softlimit. 703 */ 704 if (excess || mz->on_tree) { 705 unsigned long flags; 706 707 spin_lock_irqsave(&mctz->lock, flags); 708 /* if on-tree, remove it */ 709 if (mz->on_tree) 710 __mem_cgroup_remove_exceeded(mz, mctz); 711 /* 712 * Insert again. mz->usage_in_excess will be updated. 713 * If excess is 0, no tree ops. 714 */ 715 __mem_cgroup_insert_exceeded(mz, mctz, excess); 716 spin_unlock_irqrestore(&mctz->lock, flags); 717 } 718 } 719 } 720 721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 722 { 723 struct mem_cgroup_tree_per_node *mctz; 724 struct mem_cgroup_per_node *mz; 725 int nid; 726 727 for_each_node(nid) { 728 mz = mem_cgroup_nodeinfo(memcg, nid); 729 mctz = soft_limit_tree_node(nid); 730 if (mctz) 731 mem_cgroup_remove_exceeded(mz, mctz); 732 } 733 } 734 735 static struct mem_cgroup_per_node * 736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 737 { 738 struct mem_cgroup_per_node *mz; 739 740 retry: 741 mz = NULL; 742 if (!mctz->rb_rightmost) 743 goto done; /* Nothing to reclaim from */ 744 745 mz = rb_entry(mctz->rb_rightmost, 746 struct mem_cgroup_per_node, tree_node); 747 /* 748 * Remove the node now but someone else can add it back, 749 * we will to add it back at the end of reclaim to its correct 750 * position in the tree. 751 */ 752 __mem_cgroup_remove_exceeded(mz, mctz); 753 if (!soft_limit_excess(mz->memcg) || 754 !css_tryget(&mz->memcg->css)) 755 goto retry; 756 done: 757 return mz; 758 } 759 760 static struct mem_cgroup_per_node * 761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 762 { 763 struct mem_cgroup_per_node *mz; 764 765 spin_lock_irq(&mctz->lock); 766 mz = __mem_cgroup_largest_soft_limit_node(mctz); 767 spin_unlock_irq(&mctz->lock); 768 return mz; 769 } 770 771 /** 772 * __mod_memcg_state - update cgroup memory statistics 773 * @memcg: the memory cgroup 774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 775 * @val: delta to add to the counter, can be negative 776 */ 777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 778 { 779 long x, threshold = MEMCG_CHARGE_BATCH; 780 781 if (mem_cgroup_disabled()) 782 return; 783 784 if (memcg_stat_item_in_bytes(idx)) 785 threshold <<= PAGE_SHIFT; 786 787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 788 if (unlikely(abs(x) > threshold)) { 789 struct mem_cgroup *mi; 790 791 /* 792 * Batch local counters to keep them in sync with 793 * the hierarchical ones. 794 */ 795 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 797 atomic_long_add(x, &mi->vmstats[idx]); 798 x = 0; 799 } 800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 801 } 802 803 static struct mem_cgroup_per_node * 804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 805 { 806 struct mem_cgroup *parent; 807 808 parent = parent_mem_cgroup(pn->memcg); 809 if (!parent) 810 return NULL; 811 return mem_cgroup_nodeinfo(parent, nid); 812 } 813 814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 815 int val) 816 { 817 struct mem_cgroup_per_node *pn; 818 struct mem_cgroup *memcg; 819 long x, threshold = MEMCG_CHARGE_BATCH; 820 821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 822 memcg = pn->memcg; 823 824 /* Update memcg */ 825 __mod_memcg_state(memcg, idx, val); 826 827 /* Update lruvec */ 828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 829 830 if (vmstat_item_in_bytes(idx)) 831 threshold <<= PAGE_SHIFT; 832 833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 834 if (unlikely(abs(x) > threshold)) { 835 pg_data_t *pgdat = lruvec_pgdat(lruvec); 836 struct mem_cgroup_per_node *pi; 837 838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 839 atomic_long_add(x, &pi->lruvec_stat[idx]); 840 x = 0; 841 } 842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 843 } 844 845 /** 846 * __mod_lruvec_state - update lruvec memory statistics 847 * @lruvec: the lruvec 848 * @idx: the stat item 849 * @val: delta to add to the counter, can be negative 850 * 851 * The lruvec is the intersection of the NUMA node and a cgroup. This 852 * function updates the all three counters that are affected by a 853 * change of state at this level: per-node, per-cgroup, per-lruvec. 854 */ 855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 856 int val) 857 { 858 /* Update node */ 859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 860 861 /* Update memcg and lruvec */ 862 if (!mem_cgroup_disabled()) 863 __mod_memcg_lruvec_state(lruvec, idx, val); 864 } 865 866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 867 { 868 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 869 struct mem_cgroup *memcg; 870 struct lruvec *lruvec; 871 872 rcu_read_lock(); 873 memcg = mem_cgroup_from_obj(p); 874 875 /* Untracked pages have no memcg, no lruvec. Update only the node */ 876 if (!memcg || memcg == root_mem_cgroup) { 877 __mod_node_page_state(pgdat, idx, val); 878 } else { 879 lruvec = mem_cgroup_lruvec(memcg, pgdat); 880 __mod_lruvec_state(lruvec, idx, val); 881 } 882 rcu_read_unlock(); 883 } 884 885 void mod_memcg_obj_state(void *p, int idx, int val) 886 { 887 struct mem_cgroup *memcg; 888 889 rcu_read_lock(); 890 memcg = mem_cgroup_from_obj(p); 891 if (memcg) 892 mod_memcg_state(memcg, idx, val); 893 rcu_read_unlock(); 894 } 895 896 /** 897 * __count_memcg_events - account VM events in a cgroup 898 * @memcg: the memory cgroup 899 * @idx: the event item 900 * @count: the number of events that occured 901 */ 902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 903 unsigned long count) 904 { 905 unsigned long x; 906 907 if (mem_cgroup_disabled()) 908 return; 909 910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 911 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 912 struct mem_cgroup *mi; 913 914 /* 915 * Batch local counters to keep them in sync with 916 * the hierarchical ones. 917 */ 918 __this_cpu_add(memcg->vmstats_local->events[idx], x); 919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 920 atomic_long_add(x, &mi->vmevents[idx]); 921 x = 0; 922 } 923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 924 } 925 926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 927 { 928 return atomic_long_read(&memcg->vmevents[event]); 929 } 930 931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 932 { 933 long x = 0; 934 int cpu; 935 936 for_each_possible_cpu(cpu) 937 x += per_cpu(memcg->vmstats_local->events[event], cpu); 938 return x; 939 } 940 941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 942 struct page *page, 943 int nr_pages) 944 { 945 /* pagein of a big page is an event. So, ignore page size */ 946 if (nr_pages > 0) 947 __count_memcg_events(memcg, PGPGIN, 1); 948 else { 949 __count_memcg_events(memcg, PGPGOUT, 1); 950 nr_pages = -nr_pages; /* for event */ 951 } 952 953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 954 } 955 956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 957 enum mem_cgroup_events_target target) 958 { 959 unsigned long val, next; 960 961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 963 /* from time_after() in jiffies.h */ 964 if ((long)(next - val) < 0) { 965 switch (target) { 966 case MEM_CGROUP_TARGET_THRESH: 967 next = val + THRESHOLDS_EVENTS_TARGET; 968 break; 969 case MEM_CGROUP_TARGET_SOFTLIMIT: 970 next = val + SOFTLIMIT_EVENTS_TARGET; 971 break; 972 default: 973 break; 974 } 975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 976 return true; 977 } 978 return false; 979 } 980 981 /* 982 * Check events in order. 983 * 984 */ 985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 986 { 987 /* threshold event is triggered in finer grain than soft limit */ 988 if (unlikely(mem_cgroup_event_ratelimit(memcg, 989 MEM_CGROUP_TARGET_THRESH))) { 990 bool do_softlimit; 991 992 do_softlimit = mem_cgroup_event_ratelimit(memcg, 993 MEM_CGROUP_TARGET_SOFTLIMIT); 994 mem_cgroup_threshold(memcg); 995 if (unlikely(do_softlimit)) 996 mem_cgroup_update_tree(memcg, page); 997 } 998 } 999 1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1001 { 1002 /* 1003 * mm_update_next_owner() may clear mm->owner to NULL 1004 * if it races with swapoff, page migration, etc. 1005 * So this can be called with p == NULL. 1006 */ 1007 if (unlikely(!p)) 1008 return NULL; 1009 1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1011 } 1012 EXPORT_SYMBOL(mem_cgroup_from_task); 1013 1014 /** 1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1016 * @mm: mm from which memcg should be extracted. It can be NULL. 1017 * 1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 1020 * returned. 1021 */ 1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1023 { 1024 struct mem_cgroup *memcg; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 rcu_read_lock(); 1030 do { 1031 /* 1032 * Page cache insertions can happen withou an 1033 * actual mm context, e.g. during disk probing 1034 * on boot, loopback IO, acct() writes etc. 1035 */ 1036 if (unlikely(!mm)) 1037 memcg = root_mem_cgroup; 1038 else { 1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1040 if (unlikely(!memcg)) 1041 memcg = root_mem_cgroup; 1042 } 1043 } while (!css_tryget(&memcg->css)); 1044 rcu_read_unlock(); 1045 return memcg; 1046 } 1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1048 1049 /** 1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 1051 * @page: page from which memcg should be extracted. 1052 * 1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise 1054 * root_mem_cgroup is returned. 1055 */ 1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1057 { 1058 struct mem_cgroup *memcg = page->mem_cgroup; 1059 1060 if (mem_cgroup_disabled()) 1061 return NULL; 1062 1063 rcu_read_lock(); 1064 /* Page should not get uncharged and freed memcg under us. */ 1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1066 memcg = root_mem_cgroup; 1067 rcu_read_unlock(); 1068 return memcg; 1069 } 1070 EXPORT_SYMBOL(get_mem_cgroup_from_page); 1071 1072 /** 1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 1074 */ 1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1076 { 1077 if (unlikely(current->active_memcg)) { 1078 struct mem_cgroup *memcg; 1079 1080 rcu_read_lock(); 1081 /* current->active_memcg must hold a ref. */ 1082 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css))) 1083 memcg = root_mem_cgroup; 1084 else 1085 memcg = current->active_memcg; 1086 rcu_read_unlock(); 1087 return memcg; 1088 } 1089 return get_mem_cgroup_from_mm(current->mm); 1090 } 1091 1092 /** 1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1094 * @root: hierarchy root 1095 * @prev: previously returned memcg, NULL on first invocation 1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1097 * 1098 * Returns references to children of the hierarchy below @root, or 1099 * @root itself, or %NULL after a full round-trip. 1100 * 1101 * Caller must pass the return value in @prev on subsequent 1102 * invocations for reference counting, or use mem_cgroup_iter_break() 1103 * to cancel a hierarchy walk before the round-trip is complete. 1104 * 1105 * Reclaimers can specify a node and a priority level in @reclaim to 1106 * divide up the memcgs in the hierarchy among all concurrent 1107 * reclaimers operating on the same node and priority. 1108 */ 1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1110 struct mem_cgroup *prev, 1111 struct mem_cgroup_reclaim_cookie *reclaim) 1112 { 1113 struct mem_cgroup_reclaim_iter *iter; 1114 struct cgroup_subsys_state *css = NULL; 1115 struct mem_cgroup *memcg = NULL; 1116 struct mem_cgroup *pos = NULL; 1117 1118 if (mem_cgroup_disabled()) 1119 return NULL; 1120 1121 if (!root) 1122 root = root_mem_cgroup; 1123 1124 if (prev && !reclaim) 1125 pos = prev; 1126 1127 if (!root->use_hierarchy && root != root_mem_cgroup) { 1128 if (prev) 1129 goto out; 1130 return root; 1131 } 1132 1133 rcu_read_lock(); 1134 1135 if (reclaim) { 1136 struct mem_cgroup_per_node *mz; 1137 1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1139 iter = &mz->iter; 1140 1141 if (prev && reclaim->generation != iter->generation) 1142 goto out_unlock; 1143 1144 while (1) { 1145 pos = READ_ONCE(iter->position); 1146 if (!pos || css_tryget(&pos->css)) 1147 break; 1148 /* 1149 * css reference reached zero, so iter->position will 1150 * be cleared by ->css_released. However, we should not 1151 * rely on this happening soon, because ->css_released 1152 * is called from a work queue, and by busy-waiting we 1153 * might block it. So we clear iter->position right 1154 * away. 1155 */ 1156 (void)cmpxchg(&iter->position, pos, NULL); 1157 } 1158 } 1159 1160 if (pos) 1161 css = &pos->css; 1162 1163 for (;;) { 1164 css = css_next_descendant_pre(css, &root->css); 1165 if (!css) { 1166 /* 1167 * Reclaimers share the hierarchy walk, and a 1168 * new one might jump in right at the end of 1169 * the hierarchy - make sure they see at least 1170 * one group and restart from the beginning. 1171 */ 1172 if (!prev) 1173 continue; 1174 break; 1175 } 1176 1177 /* 1178 * Verify the css and acquire a reference. The root 1179 * is provided by the caller, so we know it's alive 1180 * and kicking, and don't take an extra reference. 1181 */ 1182 memcg = mem_cgroup_from_css(css); 1183 1184 if (css == &root->css) 1185 break; 1186 1187 if (css_tryget(css)) 1188 break; 1189 1190 memcg = NULL; 1191 } 1192 1193 if (reclaim) { 1194 /* 1195 * The position could have already been updated by a competing 1196 * thread, so check that the value hasn't changed since we read 1197 * it to avoid reclaiming from the same cgroup twice. 1198 */ 1199 (void)cmpxchg(&iter->position, pos, memcg); 1200 1201 if (pos) 1202 css_put(&pos->css); 1203 1204 if (!memcg) 1205 iter->generation++; 1206 else if (!prev) 1207 reclaim->generation = iter->generation; 1208 } 1209 1210 out_unlock: 1211 rcu_read_unlock(); 1212 out: 1213 if (prev && prev != root) 1214 css_put(&prev->css); 1215 1216 return memcg; 1217 } 1218 1219 /** 1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1221 * @root: hierarchy root 1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1223 */ 1224 void mem_cgroup_iter_break(struct mem_cgroup *root, 1225 struct mem_cgroup *prev) 1226 { 1227 if (!root) 1228 root = root_mem_cgroup; 1229 if (prev && prev != root) 1230 css_put(&prev->css); 1231 } 1232 1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1234 struct mem_cgroup *dead_memcg) 1235 { 1236 struct mem_cgroup_reclaim_iter *iter; 1237 struct mem_cgroup_per_node *mz; 1238 int nid; 1239 1240 for_each_node(nid) { 1241 mz = mem_cgroup_nodeinfo(from, nid); 1242 iter = &mz->iter; 1243 cmpxchg(&iter->position, dead_memcg, NULL); 1244 } 1245 } 1246 1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1248 { 1249 struct mem_cgroup *memcg = dead_memcg; 1250 struct mem_cgroup *last; 1251 1252 do { 1253 __invalidate_reclaim_iterators(memcg, dead_memcg); 1254 last = memcg; 1255 } while ((memcg = parent_mem_cgroup(memcg))); 1256 1257 /* 1258 * When cgruop1 non-hierarchy mode is used, 1259 * parent_mem_cgroup() does not walk all the way up to the 1260 * cgroup root (root_mem_cgroup). So we have to handle 1261 * dead_memcg from cgroup root separately. 1262 */ 1263 if (last != root_mem_cgroup) 1264 __invalidate_reclaim_iterators(root_mem_cgroup, 1265 dead_memcg); 1266 } 1267 1268 /** 1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1270 * @memcg: hierarchy root 1271 * @fn: function to call for each task 1272 * @arg: argument passed to @fn 1273 * 1274 * This function iterates over tasks attached to @memcg or to any of its 1275 * descendants and calls @fn for each task. If @fn returns a non-zero 1276 * value, the function breaks the iteration loop and returns the value. 1277 * Otherwise, it will iterate over all tasks and return 0. 1278 * 1279 * This function must not be called for the root memory cgroup. 1280 */ 1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1282 int (*fn)(struct task_struct *, void *), void *arg) 1283 { 1284 struct mem_cgroup *iter; 1285 int ret = 0; 1286 1287 BUG_ON(memcg == root_mem_cgroup); 1288 1289 for_each_mem_cgroup_tree(iter, memcg) { 1290 struct css_task_iter it; 1291 struct task_struct *task; 1292 1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1294 while (!ret && (task = css_task_iter_next(&it))) 1295 ret = fn(task, arg); 1296 css_task_iter_end(&it); 1297 if (ret) { 1298 mem_cgroup_iter_break(memcg, iter); 1299 break; 1300 } 1301 } 1302 return ret; 1303 } 1304 1305 /** 1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1307 * @page: the page 1308 * @pgdat: pgdat of the page 1309 * 1310 * This function relies on page->mem_cgroup being stable - see the 1311 * access rules in commit_charge(). 1312 */ 1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1314 { 1315 struct mem_cgroup_per_node *mz; 1316 struct mem_cgroup *memcg; 1317 struct lruvec *lruvec; 1318 1319 if (mem_cgroup_disabled()) { 1320 lruvec = &pgdat->__lruvec; 1321 goto out; 1322 } 1323 1324 memcg = page->mem_cgroup; 1325 /* 1326 * Swapcache readahead pages are added to the LRU - and 1327 * possibly migrated - before they are charged. 1328 */ 1329 if (!memcg) 1330 memcg = root_mem_cgroup; 1331 1332 mz = mem_cgroup_page_nodeinfo(memcg, page); 1333 lruvec = &mz->lruvec; 1334 out: 1335 /* 1336 * Since a node can be onlined after the mem_cgroup was created, 1337 * we have to be prepared to initialize lruvec->zone here; 1338 * and if offlined then reonlined, we need to reinitialize it. 1339 */ 1340 if (unlikely(lruvec->pgdat != pgdat)) 1341 lruvec->pgdat = pgdat; 1342 return lruvec; 1343 } 1344 1345 /** 1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1347 * @lruvec: mem_cgroup per zone lru vector 1348 * @lru: index of lru list the page is sitting on 1349 * @zid: zone id of the accounted pages 1350 * @nr_pages: positive when adding or negative when removing 1351 * 1352 * This function must be called under lru_lock, just before a page is added 1353 * to or just after a page is removed from an lru list (that ordering being 1354 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1355 */ 1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1357 int zid, int nr_pages) 1358 { 1359 struct mem_cgroup_per_node *mz; 1360 unsigned long *lru_size; 1361 long size; 1362 1363 if (mem_cgroup_disabled()) 1364 return; 1365 1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1367 lru_size = &mz->lru_zone_size[zid][lru]; 1368 1369 if (nr_pages < 0) 1370 *lru_size += nr_pages; 1371 1372 size = *lru_size; 1373 if (WARN_ONCE(size < 0, 1374 "%s(%p, %d, %d): lru_size %ld\n", 1375 __func__, lruvec, lru, nr_pages, size)) { 1376 VM_BUG_ON(1); 1377 *lru_size = 0; 1378 } 1379 1380 if (nr_pages > 0) 1381 *lru_size += nr_pages; 1382 } 1383 1384 /** 1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1386 * @memcg: the memory cgroup 1387 * 1388 * Returns the maximum amount of memory @mem can be charged with, in 1389 * pages. 1390 */ 1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1392 { 1393 unsigned long margin = 0; 1394 unsigned long count; 1395 unsigned long limit; 1396 1397 count = page_counter_read(&memcg->memory); 1398 limit = READ_ONCE(memcg->memory.max); 1399 if (count < limit) 1400 margin = limit - count; 1401 1402 if (do_memsw_account()) { 1403 count = page_counter_read(&memcg->memsw); 1404 limit = READ_ONCE(memcg->memsw.max); 1405 if (count < limit) 1406 margin = min(margin, limit - count); 1407 else 1408 margin = 0; 1409 } 1410 1411 return margin; 1412 } 1413 1414 /* 1415 * A routine for checking "mem" is under move_account() or not. 1416 * 1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1418 * moving cgroups. This is for waiting at high-memory pressure 1419 * caused by "move". 1420 */ 1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1422 { 1423 struct mem_cgroup *from; 1424 struct mem_cgroup *to; 1425 bool ret = false; 1426 /* 1427 * Unlike task_move routines, we access mc.to, mc.from not under 1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1429 */ 1430 spin_lock(&mc.lock); 1431 from = mc.from; 1432 to = mc.to; 1433 if (!from) 1434 goto unlock; 1435 1436 ret = mem_cgroup_is_descendant(from, memcg) || 1437 mem_cgroup_is_descendant(to, memcg); 1438 unlock: 1439 spin_unlock(&mc.lock); 1440 return ret; 1441 } 1442 1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1444 { 1445 if (mc.moving_task && current != mc.moving_task) { 1446 if (mem_cgroup_under_move(memcg)) { 1447 DEFINE_WAIT(wait); 1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1449 /* moving charge context might have finished. */ 1450 if (mc.moving_task) 1451 schedule(); 1452 finish_wait(&mc.waitq, &wait); 1453 return true; 1454 } 1455 } 1456 return false; 1457 } 1458 1459 static char *memory_stat_format(struct mem_cgroup *memcg) 1460 { 1461 struct seq_buf s; 1462 int i; 1463 1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1465 if (!s.buffer) 1466 return NULL; 1467 1468 /* 1469 * Provide statistics on the state of the memory subsystem as 1470 * well as cumulative event counters that show past behavior. 1471 * 1472 * This list is ordered following a combination of these gradients: 1473 * 1) generic big picture -> specifics and details 1474 * 2) reflecting userspace activity -> reflecting kernel heuristics 1475 * 1476 * Current memory state: 1477 */ 1478 1479 seq_buf_printf(&s, "anon %llu\n", 1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) * 1481 PAGE_SIZE); 1482 seq_buf_printf(&s, "file %llu\n", 1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) * 1484 PAGE_SIZE); 1485 seq_buf_printf(&s, "kernel_stack %llu\n", 1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) * 1487 1024); 1488 seq_buf_printf(&s, "slab %llu\n", 1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + 1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B))); 1491 seq_buf_printf(&s, "percpu %llu\n", 1492 (u64)memcg_page_state(memcg, MEMCG_PERCPU_B)); 1493 seq_buf_printf(&s, "sock %llu\n", 1494 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1495 PAGE_SIZE); 1496 1497 seq_buf_printf(&s, "shmem %llu\n", 1498 (u64)memcg_page_state(memcg, NR_SHMEM) * 1499 PAGE_SIZE); 1500 seq_buf_printf(&s, "file_mapped %llu\n", 1501 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1502 PAGE_SIZE); 1503 seq_buf_printf(&s, "file_dirty %llu\n", 1504 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1505 PAGE_SIZE); 1506 seq_buf_printf(&s, "file_writeback %llu\n", 1507 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1508 PAGE_SIZE); 1509 1510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1511 seq_buf_printf(&s, "anon_thp %llu\n", 1512 (u64)memcg_page_state(memcg, NR_ANON_THPS) * 1513 HPAGE_PMD_SIZE); 1514 #endif 1515 1516 for (i = 0; i < NR_LRU_LISTS; i++) 1517 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1518 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1519 PAGE_SIZE); 1520 1521 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1522 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B)); 1523 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1524 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)); 1525 1526 /* Accumulated memory events */ 1527 1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1529 memcg_events(memcg, PGFAULT)); 1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1531 memcg_events(memcg, PGMAJFAULT)); 1532 1533 seq_buf_printf(&s, "workingset_refault_anon %lu\n", 1534 memcg_page_state(memcg, WORKINGSET_REFAULT_ANON)); 1535 seq_buf_printf(&s, "workingset_refault_file %lu\n", 1536 memcg_page_state(memcg, WORKINGSET_REFAULT_FILE)); 1537 seq_buf_printf(&s, "workingset_activate_anon %lu\n", 1538 memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON)); 1539 seq_buf_printf(&s, "workingset_activate_file %lu\n", 1540 memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE)); 1541 seq_buf_printf(&s, "workingset_restore %lu\n", 1542 memcg_page_state(memcg, WORKINGSET_RESTORE_ANON)); 1543 seq_buf_printf(&s, "workingset_restore %lu\n", 1544 memcg_page_state(memcg, WORKINGSET_RESTORE_FILE)); 1545 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1546 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1547 1548 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1549 memcg_events(memcg, PGREFILL)); 1550 seq_buf_printf(&s, "pgscan %lu\n", 1551 memcg_events(memcg, PGSCAN_KSWAPD) + 1552 memcg_events(memcg, PGSCAN_DIRECT)); 1553 seq_buf_printf(&s, "pgsteal %lu\n", 1554 memcg_events(memcg, PGSTEAL_KSWAPD) + 1555 memcg_events(memcg, PGSTEAL_DIRECT)); 1556 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1557 memcg_events(memcg, PGACTIVATE)); 1558 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1559 memcg_events(memcg, PGDEACTIVATE)); 1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1561 memcg_events(memcg, PGLAZYFREE)); 1562 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1563 memcg_events(memcg, PGLAZYFREED)); 1564 1565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1566 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1567 memcg_events(memcg, THP_FAULT_ALLOC)); 1568 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1569 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1571 1572 /* The above should easily fit into one page */ 1573 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1574 1575 return s.buffer; 1576 } 1577 1578 #define K(x) ((x) << (PAGE_SHIFT-10)) 1579 /** 1580 * mem_cgroup_print_oom_context: Print OOM information relevant to 1581 * memory controller. 1582 * @memcg: The memory cgroup that went over limit 1583 * @p: Task that is going to be killed 1584 * 1585 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1586 * enabled 1587 */ 1588 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1589 { 1590 rcu_read_lock(); 1591 1592 if (memcg) { 1593 pr_cont(",oom_memcg="); 1594 pr_cont_cgroup_path(memcg->css.cgroup); 1595 } else 1596 pr_cont(",global_oom"); 1597 if (p) { 1598 pr_cont(",task_memcg="); 1599 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1600 } 1601 rcu_read_unlock(); 1602 } 1603 1604 /** 1605 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1606 * memory controller. 1607 * @memcg: The memory cgroup that went over limit 1608 */ 1609 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1610 { 1611 char *buf; 1612 1613 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1614 K((u64)page_counter_read(&memcg->memory)), 1615 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1616 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1617 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1618 K((u64)page_counter_read(&memcg->swap)), 1619 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1620 else { 1621 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1622 K((u64)page_counter_read(&memcg->memsw)), 1623 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1624 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1625 K((u64)page_counter_read(&memcg->kmem)), 1626 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1627 } 1628 1629 pr_info("Memory cgroup stats for "); 1630 pr_cont_cgroup_path(memcg->css.cgroup); 1631 pr_cont(":"); 1632 buf = memory_stat_format(memcg); 1633 if (!buf) 1634 return; 1635 pr_info("%s", buf); 1636 kfree(buf); 1637 } 1638 1639 /* 1640 * Return the memory (and swap, if configured) limit for a memcg. 1641 */ 1642 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1643 { 1644 unsigned long max; 1645 1646 max = READ_ONCE(memcg->memory.max); 1647 if (mem_cgroup_swappiness(memcg)) { 1648 unsigned long memsw_max; 1649 unsigned long swap_max; 1650 1651 memsw_max = memcg->memsw.max; 1652 swap_max = READ_ONCE(memcg->swap.max); 1653 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1654 max = min(max + swap_max, memsw_max); 1655 } 1656 return max; 1657 } 1658 1659 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1660 { 1661 return page_counter_read(&memcg->memory); 1662 } 1663 1664 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1665 int order) 1666 { 1667 struct oom_control oc = { 1668 .zonelist = NULL, 1669 .nodemask = NULL, 1670 .memcg = memcg, 1671 .gfp_mask = gfp_mask, 1672 .order = order, 1673 }; 1674 bool ret = true; 1675 1676 if (mutex_lock_killable(&oom_lock)) 1677 return true; 1678 1679 if (mem_cgroup_margin(memcg) >= (1 << order)) 1680 goto unlock; 1681 1682 /* 1683 * A few threads which were not waiting at mutex_lock_killable() can 1684 * fail to bail out. Therefore, check again after holding oom_lock. 1685 */ 1686 ret = should_force_charge() || out_of_memory(&oc); 1687 1688 unlock: 1689 mutex_unlock(&oom_lock); 1690 return ret; 1691 } 1692 1693 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1694 pg_data_t *pgdat, 1695 gfp_t gfp_mask, 1696 unsigned long *total_scanned) 1697 { 1698 struct mem_cgroup *victim = NULL; 1699 int total = 0; 1700 int loop = 0; 1701 unsigned long excess; 1702 unsigned long nr_scanned; 1703 struct mem_cgroup_reclaim_cookie reclaim = { 1704 .pgdat = pgdat, 1705 }; 1706 1707 excess = soft_limit_excess(root_memcg); 1708 1709 while (1) { 1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1711 if (!victim) { 1712 loop++; 1713 if (loop >= 2) { 1714 /* 1715 * If we have not been able to reclaim 1716 * anything, it might because there are 1717 * no reclaimable pages under this hierarchy 1718 */ 1719 if (!total) 1720 break; 1721 /* 1722 * We want to do more targeted reclaim. 1723 * excess >> 2 is not to excessive so as to 1724 * reclaim too much, nor too less that we keep 1725 * coming back to reclaim from this cgroup 1726 */ 1727 if (total >= (excess >> 2) || 1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1729 break; 1730 } 1731 continue; 1732 } 1733 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1734 pgdat, &nr_scanned); 1735 *total_scanned += nr_scanned; 1736 if (!soft_limit_excess(root_memcg)) 1737 break; 1738 } 1739 mem_cgroup_iter_break(root_memcg, victim); 1740 return total; 1741 } 1742 1743 #ifdef CONFIG_LOCKDEP 1744 static struct lockdep_map memcg_oom_lock_dep_map = { 1745 .name = "memcg_oom_lock", 1746 }; 1747 #endif 1748 1749 static DEFINE_SPINLOCK(memcg_oom_lock); 1750 1751 /* 1752 * Check OOM-Killer is already running under our hierarchy. 1753 * If someone is running, return false. 1754 */ 1755 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1756 { 1757 struct mem_cgroup *iter, *failed = NULL; 1758 1759 spin_lock(&memcg_oom_lock); 1760 1761 for_each_mem_cgroup_tree(iter, memcg) { 1762 if (iter->oom_lock) { 1763 /* 1764 * this subtree of our hierarchy is already locked 1765 * so we cannot give a lock. 1766 */ 1767 failed = iter; 1768 mem_cgroup_iter_break(memcg, iter); 1769 break; 1770 } else 1771 iter->oom_lock = true; 1772 } 1773 1774 if (failed) { 1775 /* 1776 * OK, we failed to lock the whole subtree so we have 1777 * to clean up what we set up to the failing subtree 1778 */ 1779 for_each_mem_cgroup_tree(iter, memcg) { 1780 if (iter == failed) { 1781 mem_cgroup_iter_break(memcg, iter); 1782 break; 1783 } 1784 iter->oom_lock = false; 1785 } 1786 } else 1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1788 1789 spin_unlock(&memcg_oom_lock); 1790 1791 return !failed; 1792 } 1793 1794 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1795 { 1796 struct mem_cgroup *iter; 1797 1798 spin_lock(&memcg_oom_lock); 1799 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1800 for_each_mem_cgroup_tree(iter, memcg) 1801 iter->oom_lock = false; 1802 spin_unlock(&memcg_oom_lock); 1803 } 1804 1805 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1806 { 1807 struct mem_cgroup *iter; 1808 1809 spin_lock(&memcg_oom_lock); 1810 for_each_mem_cgroup_tree(iter, memcg) 1811 iter->under_oom++; 1812 spin_unlock(&memcg_oom_lock); 1813 } 1814 1815 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1816 { 1817 struct mem_cgroup *iter; 1818 1819 /* 1820 * When a new child is created while the hierarchy is under oom, 1821 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1822 */ 1823 spin_lock(&memcg_oom_lock); 1824 for_each_mem_cgroup_tree(iter, memcg) 1825 if (iter->under_oom > 0) 1826 iter->under_oom--; 1827 spin_unlock(&memcg_oom_lock); 1828 } 1829 1830 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1831 1832 struct oom_wait_info { 1833 struct mem_cgroup *memcg; 1834 wait_queue_entry_t wait; 1835 }; 1836 1837 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1838 unsigned mode, int sync, void *arg) 1839 { 1840 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1841 struct mem_cgroup *oom_wait_memcg; 1842 struct oom_wait_info *oom_wait_info; 1843 1844 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1845 oom_wait_memcg = oom_wait_info->memcg; 1846 1847 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1848 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1849 return 0; 1850 return autoremove_wake_function(wait, mode, sync, arg); 1851 } 1852 1853 static void memcg_oom_recover(struct mem_cgroup *memcg) 1854 { 1855 /* 1856 * For the following lockless ->under_oom test, the only required 1857 * guarantee is that it must see the state asserted by an OOM when 1858 * this function is called as a result of userland actions 1859 * triggered by the notification of the OOM. This is trivially 1860 * achieved by invoking mem_cgroup_mark_under_oom() before 1861 * triggering notification. 1862 */ 1863 if (memcg && memcg->under_oom) 1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1865 } 1866 1867 enum oom_status { 1868 OOM_SUCCESS, 1869 OOM_FAILED, 1870 OOM_ASYNC, 1871 OOM_SKIPPED 1872 }; 1873 1874 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1875 { 1876 enum oom_status ret; 1877 bool locked; 1878 1879 if (order > PAGE_ALLOC_COSTLY_ORDER) 1880 return OOM_SKIPPED; 1881 1882 memcg_memory_event(memcg, MEMCG_OOM); 1883 1884 /* 1885 * We are in the middle of the charge context here, so we 1886 * don't want to block when potentially sitting on a callstack 1887 * that holds all kinds of filesystem and mm locks. 1888 * 1889 * cgroup1 allows disabling the OOM killer and waiting for outside 1890 * handling until the charge can succeed; remember the context and put 1891 * the task to sleep at the end of the page fault when all locks are 1892 * released. 1893 * 1894 * On the other hand, in-kernel OOM killer allows for an async victim 1895 * memory reclaim (oom_reaper) and that means that we are not solely 1896 * relying on the oom victim to make a forward progress and we can 1897 * invoke the oom killer here. 1898 * 1899 * Please note that mem_cgroup_out_of_memory might fail to find a 1900 * victim and then we have to bail out from the charge path. 1901 */ 1902 if (memcg->oom_kill_disable) { 1903 if (!current->in_user_fault) 1904 return OOM_SKIPPED; 1905 css_get(&memcg->css); 1906 current->memcg_in_oom = memcg; 1907 current->memcg_oom_gfp_mask = mask; 1908 current->memcg_oom_order = order; 1909 1910 return OOM_ASYNC; 1911 } 1912 1913 mem_cgroup_mark_under_oom(memcg); 1914 1915 locked = mem_cgroup_oom_trylock(memcg); 1916 1917 if (locked) 1918 mem_cgroup_oom_notify(memcg); 1919 1920 mem_cgroup_unmark_under_oom(memcg); 1921 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1922 ret = OOM_SUCCESS; 1923 else 1924 ret = OOM_FAILED; 1925 1926 if (locked) 1927 mem_cgroup_oom_unlock(memcg); 1928 1929 return ret; 1930 } 1931 1932 /** 1933 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1934 * @handle: actually kill/wait or just clean up the OOM state 1935 * 1936 * This has to be called at the end of a page fault if the memcg OOM 1937 * handler was enabled. 1938 * 1939 * Memcg supports userspace OOM handling where failed allocations must 1940 * sleep on a waitqueue until the userspace task resolves the 1941 * situation. Sleeping directly in the charge context with all kinds 1942 * of locks held is not a good idea, instead we remember an OOM state 1943 * in the task and mem_cgroup_oom_synchronize() has to be called at 1944 * the end of the page fault to complete the OOM handling. 1945 * 1946 * Returns %true if an ongoing memcg OOM situation was detected and 1947 * completed, %false otherwise. 1948 */ 1949 bool mem_cgroup_oom_synchronize(bool handle) 1950 { 1951 struct mem_cgroup *memcg = current->memcg_in_oom; 1952 struct oom_wait_info owait; 1953 bool locked; 1954 1955 /* OOM is global, do not handle */ 1956 if (!memcg) 1957 return false; 1958 1959 if (!handle) 1960 goto cleanup; 1961 1962 owait.memcg = memcg; 1963 owait.wait.flags = 0; 1964 owait.wait.func = memcg_oom_wake_function; 1965 owait.wait.private = current; 1966 INIT_LIST_HEAD(&owait.wait.entry); 1967 1968 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1969 mem_cgroup_mark_under_oom(memcg); 1970 1971 locked = mem_cgroup_oom_trylock(memcg); 1972 1973 if (locked) 1974 mem_cgroup_oom_notify(memcg); 1975 1976 if (locked && !memcg->oom_kill_disable) { 1977 mem_cgroup_unmark_under_oom(memcg); 1978 finish_wait(&memcg_oom_waitq, &owait.wait); 1979 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1980 current->memcg_oom_order); 1981 } else { 1982 schedule(); 1983 mem_cgroup_unmark_under_oom(memcg); 1984 finish_wait(&memcg_oom_waitq, &owait.wait); 1985 } 1986 1987 if (locked) { 1988 mem_cgroup_oom_unlock(memcg); 1989 /* 1990 * There is no guarantee that an OOM-lock contender 1991 * sees the wakeups triggered by the OOM kill 1992 * uncharges. Wake any sleepers explicitely. 1993 */ 1994 memcg_oom_recover(memcg); 1995 } 1996 cleanup: 1997 current->memcg_in_oom = NULL; 1998 css_put(&memcg->css); 1999 return true; 2000 } 2001 2002 /** 2003 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2004 * @victim: task to be killed by the OOM killer 2005 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2006 * 2007 * Returns a pointer to a memory cgroup, which has to be cleaned up 2008 * by killing all belonging OOM-killable tasks. 2009 * 2010 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2011 */ 2012 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2013 struct mem_cgroup *oom_domain) 2014 { 2015 struct mem_cgroup *oom_group = NULL; 2016 struct mem_cgroup *memcg; 2017 2018 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2019 return NULL; 2020 2021 if (!oom_domain) 2022 oom_domain = root_mem_cgroup; 2023 2024 rcu_read_lock(); 2025 2026 memcg = mem_cgroup_from_task(victim); 2027 if (memcg == root_mem_cgroup) 2028 goto out; 2029 2030 /* 2031 * If the victim task has been asynchronously moved to a different 2032 * memory cgroup, we might end up killing tasks outside oom_domain. 2033 * In this case it's better to ignore memory.group.oom. 2034 */ 2035 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2036 goto out; 2037 2038 /* 2039 * Traverse the memory cgroup hierarchy from the victim task's 2040 * cgroup up to the OOMing cgroup (or root) to find the 2041 * highest-level memory cgroup with oom.group set. 2042 */ 2043 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2044 if (memcg->oom_group) 2045 oom_group = memcg; 2046 2047 if (memcg == oom_domain) 2048 break; 2049 } 2050 2051 if (oom_group) 2052 css_get(&oom_group->css); 2053 out: 2054 rcu_read_unlock(); 2055 2056 return oom_group; 2057 } 2058 2059 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2060 { 2061 pr_info("Tasks in "); 2062 pr_cont_cgroup_path(memcg->css.cgroup); 2063 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2064 } 2065 2066 /** 2067 * lock_page_memcg - lock a page->mem_cgroup binding 2068 * @page: the page 2069 * 2070 * This function protects unlocked LRU pages from being moved to 2071 * another cgroup. 2072 * 2073 * It ensures lifetime of the returned memcg. Caller is responsible 2074 * for the lifetime of the page; __unlock_page_memcg() is available 2075 * when @page might get freed inside the locked section. 2076 */ 2077 struct mem_cgroup *lock_page_memcg(struct page *page) 2078 { 2079 struct page *head = compound_head(page); /* rmap on tail pages */ 2080 struct mem_cgroup *memcg; 2081 unsigned long flags; 2082 2083 /* 2084 * The RCU lock is held throughout the transaction. The fast 2085 * path can get away without acquiring the memcg->move_lock 2086 * because page moving starts with an RCU grace period. 2087 * 2088 * The RCU lock also protects the memcg from being freed when 2089 * the page state that is going to change is the only thing 2090 * preventing the page itself from being freed. E.g. writeback 2091 * doesn't hold a page reference and relies on PG_writeback to 2092 * keep off truncation, migration and so forth. 2093 */ 2094 rcu_read_lock(); 2095 2096 if (mem_cgroup_disabled()) 2097 return NULL; 2098 again: 2099 memcg = head->mem_cgroup; 2100 if (unlikely(!memcg)) 2101 return NULL; 2102 2103 if (atomic_read(&memcg->moving_account) <= 0) 2104 return memcg; 2105 2106 spin_lock_irqsave(&memcg->move_lock, flags); 2107 if (memcg != head->mem_cgroup) { 2108 spin_unlock_irqrestore(&memcg->move_lock, flags); 2109 goto again; 2110 } 2111 2112 /* 2113 * When charge migration first begins, we can have locked and 2114 * unlocked page stat updates happening concurrently. Track 2115 * the task who has the lock for unlock_page_memcg(). 2116 */ 2117 memcg->move_lock_task = current; 2118 memcg->move_lock_flags = flags; 2119 2120 return memcg; 2121 } 2122 EXPORT_SYMBOL(lock_page_memcg); 2123 2124 /** 2125 * __unlock_page_memcg - unlock and unpin a memcg 2126 * @memcg: the memcg 2127 * 2128 * Unlock and unpin a memcg returned by lock_page_memcg(). 2129 */ 2130 void __unlock_page_memcg(struct mem_cgroup *memcg) 2131 { 2132 if (memcg && memcg->move_lock_task == current) { 2133 unsigned long flags = memcg->move_lock_flags; 2134 2135 memcg->move_lock_task = NULL; 2136 memcg->move_lock_flags = 0; 2137 2138 spin_unlock_irqrestore(&memcg->move_lock, flags); 2139 } 2140 2141 rcu_read_unlock(); 2142 } 2143 2144 /** 2145 * unlock_page_memcg - unlock a page->mem_cgroup binding 2146 * @page: the page 2147 */ 2148 void unlock_page_memcg(struct page *page) 2149 { 2150 struct page *head = compound_head(page); 2151 2152 __unlock_page_memcg(head->mem_cgroup); 2153 } 2154 EXPORT_SYMBOL(unlock_page_memcg); 2155 2156 struct memcg_stock_pcp { 2157 struct mem_cgroup *cached; /* this never be root cgroup */ 2158 unsigned int nr_pages; 2159 2160 #ifdef CONFIG_MEMCG_KMEM 2161 struct obj_cgroup *cached_objcg; 2162 unsigned int nr_bytes; 2163 #endif 2164 2165 struct work_struct work; 2166 unsigned long flags; 2167 #define FLUSHING_CACHED_CHARGE 0 2168 }; 2169 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2170 static DEFINE_MUTEX(percpu_charge_mutex); 2171 2172 #ifdef CONFIG_MEMCG_KMEM 2173 static void drain_obj_stock(struct memcg_stock_pcp *stock); 2174 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2175 struct mem_cgroup *root_memcg); 2176 2177 #else 2178 static inline void drain_obj_stock(struct memcg_stock_pcp *stock) 2179 { 2180 } 2181 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2182 struct mem_cgroup *root_memcg) 2183 { 2184 return false; 2185 } 2186 #endif 2187 2188 /** 2189 * consume_stock: Try to consume stocked charge on this cpu. 2190 * @memcg: memcg to consume from. 2191 * @nr_pages: how many pages to charge. 2192 * 2193 * The charges will only happen if @memcg matches the current cpu's memcg 2194 * stock, and at least @nr_pages are available in that stock. Failure to 2195 * service an allocation will refill the stock. 2196 * 2197 * returns true if successful, false otherwise. 2198 */ 2199 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2200 { 2201 struct memcg_stock_pcp *stock; 2202 unsigned long flags; 2203 bool ret = false; 2204 2205 if (nr_pages > MEMCG_CHARGE_BATCH) 2206 return ret; 2207 2208 local_irq_save(flags); 2209 2210 stock = this_cpu_ptr(&memcg_stock); 2211 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2212 stock->nr_pages -= nr_pages; 2213 ret = true; 2214 } 2215 2216 local_irq_restore(flags); 2217 2218 return ret; 2219 } 2220 2221 /* 2222 * Returns stocks cached in percpu and reset cached information. 2223 */ 2224 static void drain_stock(struct memcg_stock_pcp *stock) 2225 { 2226 struct mem_cgroup *old = stock->cached; 2227 2228 if (!old) 2229 return; 2230 2231 if (stock->nr_pages) { 2232 page_counter_uncharge(&old->memory, stock->nr_pages); 2233 if (do_memsw_account()) 2234 page_counter_uncharge(&old->memsw, stock->nr_pages); 2235 stock->nr_pages = 0; 2236 } 2237 2238 css_put(&old->css); 2239 stock->cached = NULL; 2240 } 2241 2242 static void drain_local_stock(struct work_struct *dummy) 2243 { 2244 struct memcg_stock_pcp *stock; 2245 unsigned long flags; 2246 2247 /* 2248 * The only protection from memory hotplug vs. drain_stock races is 2249 * that we always operate on local CPU stock here with IRQ disabled 2250 */ 2251 local_irq_save(flags); 2252 2253 stock = this_cpu_ptr(&memcg_stock); 2254 drain_obj_stock(stock); 2255 drain_stock(stock); 2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2257 2258 local_irq_restore(flags); 2259 } 2260 2261 /* 2262 * Cache charges(val) to local per_cpu area. 2263 * This will be consumed by consume_stock() function, later. 2264 */ 2265 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2266 { 2267 struct memcg_stock_pcp *stock; 2268 unsigned long flags; 2269 2270 local_irq_save(flags); 2271 2272 stock = this_cpu_ptr(&memcg_stock); 2273 if (stock->cached != memcg) { /* reset if necessary */ 2274 drain_stock(stock); 2275 css_get(&memcg->css); 2276 stock->cached = memcg; 2277 } 2278 stock->nr_pages += nr_pages; 2279 2280 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2281 drain_stock(stock); 2282 2283 local_irq_restore(flags); 2284 } 2285 2286 /* 2287 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2288 * of the hierarchy under it. 2289 */ 2290 static void drain_all_stock(struct mem_cgroup *root_memcg) 2291 { 2292 int cpu, curcpu; 2293 2294 /* If someone's already draining, avoid adding running more workers. */ 2295 if (!mutex_trylock(&percpu_charge_mutex)) 2296 return; 2297 /* 2298 * Notify other cpus that system-wide "drain" is running 2299 * We do not care about races with the cpu hotplug because cpu down 2300 * as well as workers from this path always operate on the local 2301 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2302 */ 2303 curcpu = get_cpu(); 2304 for_each_online_cpu(cpu) { 2305 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2306 struct mem_cgroup *memcg; 2307 bool flush = false; 2308 2309 rcu_read_lock(); 2310 memcg = stock->cached; 2311 if (memcg && stock->nr_pages && 2312 mem_cgroup_is_descendant(memcg, root_memcg)) 2313 flush = true; 2314 if (obj_stock_flush_required(stock, root_memcg)) 2315 flush = true; 2316 rcu_read_unlock(); 2317 2318 if (flush && 2319 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2320 if (cpu == curcpu) 2321 drain_local_stock(&stock->work); 2322 else 2323 schedule_work_on(cpu, &stock->work); 2324 } 2325 } 2326 put_cpu(); 2327 mutex_unlock(&percpu_charge_mutex); 2328 } 2329 2330 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2331 { 2332 struct memcg_stock_pcp *stock; 2333 struct mem_cgroup *memcg, *mi; 2334 2335 stock = &per_cpu(memcg_stock, cpu); 2336 drain_stock(stock); 2337 2338 for_each_mem_cgroup(memcg) { 2339 int i; 2340 2341 for (i = 0; i < MEMCG_NR_STAT; i++) { 2342 int nid; 2343 long x; 2344 2345 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2346 if (x) 2347 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2348 atomic_long_add(x, &memcg->vmstats[i]); 2349 2350 if (i >= NR_VM_NODE_STAT_ITEMS) 2351 continue; 2352 2353 for_each_node(nid) { 2354 struct mem_cgroup_per_node *pn; 2355 2356 pn = mem_cgroup_nodeinfo(memcg, nid); 2357 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2358 if (x) 2359 do { 2360 atomic_long_add(x, &pn->lruvec_stat[i]); 2361 } while ((pn = parent_nodeinfo(pn, nid))); 2362 } 2363 } 2364 2365 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2366 long x; 2367 2368 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2369 if (x) 2370 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2371 atomic_long_add(x, &memcg->vmevents[i]); 2372 } 2373 } 2374 2375 return 0; 2376 } 2377 2378 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2379 unsigned int nr_pages, 2380 gfp_t gfp_mask) 2381 { 2382 unsigned long nr_reclaimed = 0; 2383 2384 do { 2385 unsigned long pflags; 2386 2387 if (page_counter_read(&memcg->memory) <= 2388 READ_ONCE(memcg->memory.high)) 2389 continue; 2390 2391 memcg_memory_event(memcg, MEMCG_HIGH); 2392 2393 psi_memstall_enter(&pflags); 2394 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2395 gfp_mask, true); 2396 psi_memstall_leave(&pflags); 2397 } while ((memcg = parent_mem_cgroup(memcg)) && 2398 !mem_cgroup_is_root(memcg)); 2399 2400 return nr_reclaimed; 2401 } 2402 2403 static void high_work_func(struct work_struct *work) 2404 { 2405 struct mem_cgroup *memcg; 2406 2407 memcg = container_of(work, struct mem_cgroup, high_work); 2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2409 } 2410 2411 /* 2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2413 * enough to still cause a significant slowdown in most cases, while still 2414 * allowing diagnostics and tracing to proceed without becoming stuck. 2415 */ 2416 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2417 2418 /* 2419 * When calculating the delay, we use these either side of the exponentiation to 2420 * maintain precision and scale to a reasonable number of jiffies (see the table 2421 * below. 2422 * 2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2424 * overage ratio to a delay. 2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2427 * to produce a reasonable delay curve. 2428 * 2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2430 * reasonable delay curve compared to precision-adjusted overage, not 2431 * penalising heavily at first, but still making sure that growth beyond the 2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2433 * example, with a high of 100 megabytes: 2434 * 2435 * +-------+------------------------+ 2436 * | usage | time to allocate in ms | 2437 * +-------+------------------------+ 2438 * | 100M | 0 | 2439 * | 101M | 6 | 2440 * | 102M | 25 | 2441 * | 103M | 57 | 2442 * | 104M | 102 | 2443 * | 105M | 159 | 2444 * | 106M | 230 | 2445 * | 107M | 313 | 2446 * | 108M | 409 | 2447 * | 109M | 518 | 2448 * | 110M | 639 | 2449 * | 111M | 774 | 2450 * | 112M | 921 | 2451 * | 113M | 1081 | 2452 * | 114M | 1254 | 2453 * | 115M | 1439 | 2454 * | 116M | 1638 | 2455 * | 117M | 1849 | 2456 * | 118M | 2000 | 2457 * | 119M | 2000 | 2458 * | 120M | 2000 | 2459 * +-------+------------------------+ 2460 */ 2461 #define MEMCG_DELAY_PRECISION_SHIFT 20 2462 #define MEMCG_DELAY_SCALING_SHIFT 14 2463 2464 static u64 calculate_overage(unsigned long usage, unsigned long high) 2465 { 2466 u64 overage; 2467 2468 if (usage <= high) 2469 return 0; 2470 2471 /* 2472 * Prevent division by 0 in overage calculation by acting as if 2473 * it was a threshold of 1 page 2474 */ 2475 high = max(high, 1UL); 2476 2477 overage = usage - high; 2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2479 return div64_u64(overage, high); 2480 } 2481 2482 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2483 { 2484 u64 overage, max_overage = 0; 2485 2486 do { 2487 overage = calculate_overage(page_counter_read(&memcg->memory), 2488 READ_ONCE(memcg->memory.high)); 2489 max_overage = max(overage, max_overage); 2490 } while ((memcg = parent_mem_cgroup(memcg)) && 2491 !mem_cgroup_is_root(memcg)); 2492 2493 return max_overage; 2494 } 2495 2496 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2497 { 2498 u64 overage, max_overage = 0; 2499 2500 do { 2501 overage = calculate_overage(page_counter_read(&memcg->swap), 2502 READ_ONCE(memcg->swap.high)); 2503 if (overage) 2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2505 max_overage = max(overage, max_overage); 2506 } while ((memcg = parent_mem_cgroup(memcg)) && 2507 !mem_cgroup_is_root(memcg)); 2508 2509 return max_overage; 2510 } 2511 2512 /* 2513 * Get the number of jiffies that we should penalise a mischievous cgroup which 2514 * is exceeding its memory.high by checking both it and its ancestors. 2515 */ 2516 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2517 unsigned int nr_pages, 2518 u64 max_overage) 2519 { 2520 unsigned long penalty_jiffies; 2521 2522 if (!max_overage) 2523 return 0; 2524 2525 /* 2526 * We use overage compared to memory.high to calculate the number of 2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2528 * fairly lenient on small overages, and increasingly harsh when the 2529 * memcg in question makes it clear that it has no intention of stopping 2530 * its crazy behaviour, so we exponentially increase the delay based on 2531 * overage amount. 2532 */ 2533 penalty_jiffies = max_overage * max_overage * HZ; 2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2536 2537 /* 2538 * Factor in the task's own contribution to the overage, such that four 2539 * N-sized allocations are throttled approximately the same as one 2540 * 4N-sized allocation. 2541 * 2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2543 * larger the current charge patch is than that. 2544 */ 2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2546 } 2547 2548 /* 2549 * Scheduled by try_charge() to be executed from the userland return path 2550 * and reclaims memory over the high limit. 2551 */ 2552 void mem_cgroup_handle_over_high(void) 2553 { 2554 unsigned long penalty_jiffies; 2555 unsigned long pflags; 2556 unsigned long nr_reclaimed; 2557 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2558 int nr_retries = MAX_RECLAIM_RETRIES; 2559 struct mem_cgroup *memcg; 2560 bool in_retry = false; 2561 2562 if (likely(!nr_pages)) 2563 return; 2564 2565 memcg = get_mem_cgroup_from_mm(current->mm); 2566 current->memcg_nr_pages_over_high = 0; 2567 2568 retry_reclaim: 2569 /* 2570 * The allocating task should reclaim at least the batch size, but for 2571 * subsequent retries we only want to do what's necessary to prevent oom 2572 * or breaching resource isolation. 2573 * 2574 * This is distinct from memory.max or page allocator behaviour because 2575 * memory.high is currently batched, whereas memory.max and the page 2576 * allocator run every time an allocation is made. 2577 */ 2578 nr_reclaimed = reclaim_high(memcg, 2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2580 GFP_KERNEL); 2581 2582 /* 2583 * memory.high is breached and reclaim is unable to keep up. Throttle 2584 * allocators proactively to slow down excessive growth. 2585 */ 2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2587 mem_find_max_overage(memcg)); 2588 2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2590 swap_find_max_overage(memcg)); 2591 2592 /* 2593 * Clamp the max delay per usermode return so as to still keep the 2594 * application moving forwards and also permit diagnostics, albeit 2595 * extremely slowly. 2596 */ 2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2598 2599 /* 2600 * Don't sleep if the amount of jiffies this memcg owes us is so low 2601 * that it's not even worth doing, in an attempt to be nice to those who 2602 * go only a small amount over their memory.high value and maybe haven't 2603 * been aggressively reclaimed enough yet. 2604 */ 2605 if (penalty_jiffies <= HZ / 100) 2606 goto out; 2607 2608 /* 2609 * If reclaim is making forward progress but we're still over 2610 * memory.high, we want to encourage that rather than doing allocator 2611 * throttling. 2612 */ 2613 if (nr_reclaimed || nr_retries--) { 2614 in_retry = true; 2615 goto retry_reclaim; 2616 } 2617 2618 /* 2619 * If we exit early, we're guaranteed to die (since 2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2621 * need to account for any ill-begotten jiffies to pay them off later. 2622 */ 2623 psi_memstall_enter(&pflags); 2624 schedule_timeout_killable(penalty_jiffies); 2625 psi_memstall_leave(&pflags); 2626 2627 out: 2628 css_put(&memcg->css); 2629 } 2630 2631 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2632 unsigned int nr_pages) 2633 { 2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2635 int nr_retries = MAX_RECLAIM_RETRIES; 2636 struct mem_cgroup *mem_over_limit; 2637 struct page_counter *counter; 2638 enum oom_status oom_status; 2639 unsigned long nr_reclaimed; 2640 bool may_swap = true; 2641 bool drained = false; 2642 unsigned long pflags; 2643 2644 if (mem_cgroup_is_root(memcg)) 2645 return 0; 2646 retry: 2647 if (consume_stock(memcg, nr_pages)) 2648 return 0; 2649 2650 if (!do_memsw_account() || 2651 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2652 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2653 goto done_restock; 2654 if (do_memsw_account()) 2655 page_counter_uncharge(&memcg->memsw, batch); 2656 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2657 } else { 2658 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2659 may_swap = false; 2660 } 2661 2662 if (batch > nr_pages) { 2663 batch = nr_pages; 2664 goto retry; 2665 } 2666 2667 /* 2668 * Memcg doesn't have a dedicated reserve for atomic 2669 * allocations. But like the global atomic pool, we need to 2670 * put the burden of reclaim on regular allocation requests 2671 * and let these go through as privileged allocations. 2672 */ 2673 if (gfp_mask & __GFP_ATOMIC) 2674 goto force; 2675 2676 /* 2677 * Unlike in global OOM situations, memcg is not in a physical 2678 * memory shortage. Allow dying and OOM-killed tasks to 2679 * bypass the last charges so that they can exit quickly and 2680 * free their memory. 2681 */ 2682 if (unlikely(should_force_charge())) 2683 goto force; 2684 2685 /* 2686 * Prevent unbounded recursion when reclaim operations need to 2687 * allocate memory. This might exceed the limits temporarily, 2688 * but we prefer facilitating memory reclaim and getting back 2689 * under the limit over triggering OOM kills in these cases. 2690 */ 2691 if (unlikely(current->flags & PF_MEMALLOC)) 2692 goto force; 2693 2694 if (unlikely(task_in_memcg_oom(current))) 2695 goto nomem; 2696 2697 if (!gfpflags_allow_blocking(gfp_mask)) 2698 goto nomem; 2699 2700 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2701 2702 psi_memstall_enter(&pflags); 2703 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2704 gfp_mask, may_swap); 2705 psi_memstall_leave(&pflags); 2706 2707 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2708 goto retry; 2709 2710 if (!drained) { 2711 drain_all_stock(mem_over_limit); 2712 drained = true; 2713 goto retry; 2714 } 2715 2716 if (gfp_mask & __GFP_NORETRY) 2717 goto nomem; 2718 /* 2719 * Even though the limit is exceeded at this point, reclaim 2720 * may have been able to free some pages. Retry the charge 2721 * before killing the task. 2722 * 2723 * Only for regular pages, though: huge pages are rather 2724 * unlikely to succeed so close to the limit, and we fall back 2725 * to regular pages anyway in case of failure. 2726 */ 2727 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2728 goto retry; 2729 /* 2730 * At task move, charge accounts can be doubly counted. So, it's 2731 * better to wait until the end of task_move if something is going on. 2732 */ 2733 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2734 goto retry; 2735 2736 if (nr_retries--) 2737 goto retry; 2738 2739 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2740 goto nomem; 2741 2742 if (gfp_mask & __GFP_NOFAIL) 2743 goto force; 2744 2745 if (fatal_signal_pending(current)) 2746 goto force; 2747 2748 /* 2749 * keep retrying as long as the memcg oom killer is able to make 2750 * a forward progress or bypass the charge if the oom killer 2751 * couldn't make any progress. 2752 */ 2753 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2754 get_order(nr_pages * PAGE_SIZE)); 2755 switch (oom_status) { 2756 case OOM_SUCCESS: 2757 nr_retries = MAX_RECLAIM_RETRIES; 2758 goto retry; 2759 case OOM_FAILED: 2760 goto force; 2761 default: 2762 goto nomem; 2763 } 2764 nomem: 2765 if (!(gfp_mask & __GFP_NOFAIL)) 2766 return -ENOMEM; 2767 force: 2768 /* 2769 * The allocation either can't fail or will lead to more memory 2770 * being freed very soon. Allow memory usage go over the limit 2771 * temporarily by force charging it. 2772 */ 2773 page_counter_charge(&memcg->memory, nr_pages); 2774 if (do_memsw_account()) 2775 page_counter_charge(&memcg->memsw, nr_pages); 2776 2777 return 0; 2778 2779 done_restock: 2780 if (batch > nr_pages) 2781 refill_stock(memcg, batch - nr_pages); 2782 2783 /* 2784 * If the hierarchy is above the normal consumption range, schedule 2785 * reclaim on returning to userland. We can perform reclaim here 2786 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2787 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2788 * not recorded as it most likely matches current's and won't 2789 * change in the meantime. As high limit is checked again before 2790 * reclaim, the cost of mismatch is negligible. 2791 */ 2792 do { 2793 bool mem_high, swap_high; 2794 2795 mem_high = page_counter_read(&memcg->memory) > 2796 READ_ONCE(memcg->memory.high); 2797 swap_high = page_counter_read(&memcg->swap) > 2798 READ_ONCE(memcg->swap.high); 2799 2800 /* Don't bother a random interrupted task */ 2801 if (in_interrupt()) { 2802 if (mem_high) { 2803 schedule_work(&memcg->high_work); 2804 break; 2805 } 2806 continue; 2807 } 2808 2809 if (mem_high || swap_high) { 2810 /* 2811 * The allocating tasks in this cgroup will need to do 2812 * reclaim or be throttled to prevent further growth 2813 * of the memory or swap footprints. 2814 * 2815 * Target some best-effort fairness between the tasks, 2816 * and distribute reclaim work and delay penalties 2817 * based on how much each task is actually allocating. 2818 */ 2819 current->memcg_nr_pages_over_high += batch; 2820 set_notify_resume(current); 2821 break; 2822 } 2823 } while ((memcg = parent_mem_cgroup(memcg))); 2824 2825 return 0; 2826 } 2827 2828 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2829 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2830 { 2831 if (mem_cgroup_is_root(memcg)) 2832 return; 2833 2834 page_counter_uncharge(&memcg->memory, nr_pages); 2835 if (do_memsw_account()) 2836 page_counter_uncharge(&memcg->memsw, nr_pages); 2837 } 2838 #endif 2839 2840 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2841 { 2842 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2843 /* 2844 * Any of the following ensures page->mem_cgroup stability: 2845 * 2846 * - the page lock 2847 * - LRU isolation 2848 * - lock_page_memcg() 2849 * - exclusive reference 2850 */ 2851 page->mem_cgroup = memcg; 2852 } 2853 2854 #ifdef CONFIG_MEMCG_KMEM 2855 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2856 gfp_t gfp) 2857 { 2858 unsigned int objects = objs_per_slab_page(s, page); 2859 void *vec; 2860 2861 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2862 page_to_nid(page)); 2863 if (!vec) 2864 return -ENOMEM; 2865 2866 if (cmpxchg(&page->obj_cgroups, NULL, 2867 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL))) 2868 kfree(vec); 2869 else 2870 kmemleak_not_leak(vec); 2871 2872 return 0; 2873 } 2874 2875 /* 2876 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2877 * 2878 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2879 * cgroup_mutex, etc. 2880 */ 2881 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2882 { 2883 struct page *page; 2884 2885 if (mem_cgroup_disabled()) 2886 return NULL; 2887 2888 page = virt_to_head_page(p); 2889 2890 /* 2891 * Slab objects are accounted individually, not per-page. 2892 * Memcg membership data for each individual object is saved in 2893 * the page->obj_cgroups. 2894 */ 2895 if (page_has_obj_cgroups(page)) { 2896 struct obj_cgroup *objcg; 2897 unsigned int off; 2898 2899 off = obj_to_index(page->slab_cache, page, p); 2900 objcg = page_obj_cgroups(page)[off]; 2901 if (objcg) 2902 return obj_cgroup_memcg(objcg); 2903 2904 return NULL; 2905 } 2906 2907 /* All other pages use page->mem_cgroup */ 2908 return page->mem_cgroup; 2909 } 2910 2911 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2912 { 2913 struct obj_cgroup *objcg = NULL; 2914 struct mem_cgroup *memcg; 2915 2916 if (unlikely(!current->mm && !current->active_memcg)) 2917 return NULL; 2918 2919 rcu_read_lock(); 2920 if (unlikely(current->active_memcg)) 2921 memcg = rcu_dereference(current->active_memcg); 2922 else 2923 memcg = mem_cgroup_from_task(current); 2924 2925 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2926 objcg = rcu_dereference(memcg->objcg); 2927 if (objcg && obj_cgroup_tryget(objcg)) 2928 break; 2929 } 2930 rcu_read_unlock(); 2931 2932 return objcg; 2933 } 2934 2935 static int memcg_alloc_cache_id(void) 2936 { 2937 int id, size; 2938 int err; 2939 2940 id = ida_simple_get(&memcg_cache_ida, 2941 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2942 if (id < 0) 2943 return id; 2944 2945 if (id < memcg_nr_cache_ids) 2946 return id; 2947 2948 /* 2949 * There's no space for the new id in memcg_caches arrays, 2950 * so we have to grow them. 2951 */ 2952 down_write(&memcg_cache_ids_sem); 2953 2954 size = 2 * (id + 1); 2955 if (size < MEMCG_CACHES_MIN_SIZE) 2956 size = MEMCG_CACHES_MIN_SIZE; 2957 else if (size > MEMCG_CACHES_MAX_SIZE) 2958 size = MEMCG_CACHES_MAX_SIZE; 2959 2960 err = memcg_update_all_list_lrus(size); 2961 if (!err) 2962 memcg_nr_cache_ids = size; 2963 2964 up_write(&memcg_cache_ids_sem); 2965 2966 if (err) { 2967 ida_simple_remove(&memcg_cache_ida, id); 2968 return err; 2969 } 2970 return id; 2971 } 2972 2973 static void memcg_free_cache_id(int id) 2974 { 2975 ida_simple_remove(&memcg_cache_ida, id); 2976 } 2977 2978 /** 2979 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 2980 * @memcg: memory cgroup to charge 2981 * @gfp: reclaim mode 2982 * @nr_pages: number of pages to charge 2983 * 2984 * Returns 0 on success, an error code on failure. 2985 */ 2986 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 2987 unsigned int nr_pages) 2988 { 2989 struct page_counter *counter; 2990 int ret; 2991 2992 ret = try_charge(memcg, gfp, nr_pages); 2993 if (ret) 2994 return ret; 2995 2996 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2997 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2998 2999 /* 3000 * Enforce __GFP_NOFAIL allocation because callers are not 3001 * prepared to see failures and likely do not have any failure 3002 * handling code. 3003 */ 3004 if (gfp & __GFP_NOFAIL) { 3005 page_counter_charge(&memcg->kmem, nr_pages); 3006 return 0; 3007 } 3008 cancel_charge(memcg, nr_pages); 3009 return -ENOMEM; 3010 } 3011 return 0; 3012 } 3013 3014 /** 3015 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 3016 * @memcg: memcg to uncharge 3017 * @nr_pages: number of pages to uncharge 3018 */ 3019 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 3020 { 3021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3022 page_counter_uncharge(&memcg->kmem, nr_pages); 3023 3024 page_counter_uncharge(&memcg->memory, nr_pages); 3025 if (do_memsw_account()) 3026 page_counter_uncharge(&memcg->memsw, nr_pages); 3027 } 3028 3029 /** 3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3031 * @page: page to charge 3032 * @gfp: reclaim mode 3033 * @order: allocation order 3034 * 3035 * Returns 0 on success, an error code on failure. 3036 */ 3037 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3038 { 3039 struct mem_cgroup *memcg; 3040 int ret = 0; 3041 3042 if (memcg_kmem_bypass()) 3043 return 0; 3044 3045 memcg = get_mem_cgroup_from_current(); 3046 if (!mem_cgroup_is_root(memcg)) { 3047 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 3048 if (!ret) { 3049 page->mem_cgroup = memcg; 3050 __SetPageKmemcg(page); 3051 return 0; 3052 } 3053 } 3054 css_put(&memcg->css); 3055 return ret; 3056 } 3057 3058 /** 3059 * __memcg_kmem_uncharge_page: uncharge a kmem page 3060 * @page: page to uncharge 3061 * @order: allocation order 3062 */ 3063 void __memcg_kmem_uncharge_page(struct page *page, int order) 3064 { 3065 struct mem_cgroup *memcg = page->mem_cgroup; 3066 unsigned int nr_pages = 1 << order; 3067 3068 if (!memcg) 3069 return; 3070 3071 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3072 __memcg_kmem_uncharge(memcg, nr_pages); 3073 page->mem_cgroup = NULL; 3074 css_put(&memcg->css); 3075 3076 /* slab pages do not have PageKmemcg flag set */ 3077 if (PageKmemcg(page)) 3078 __ClearPageKmemcg(page); 3079 } 3080 3081 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3082 { 3083 struct memcg_stock_pcp *stock; 3084 unsigned long flags; 3085 bool ret = false; 3086 3087 local_irq_save(flags); 3088 3089 stock = this_cpu_ptr(&memcg_stock); 3090 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3091 stock->nr_bytes -= nr_bytes; 3092 ret = true; 3093 } 3094 3095 local_irq_restore(flags); 3096 3097 return ret; 3098 } 3099 3100 static void drain_obj_stock(struct memcg_stock_pcp *stock) 3101 { 3102 struct obj_cgroup *old = stock->cached_objcg; 3103 3104 if (!old) 3105 return; 3106 3107 if (stock->nr_bytes) { 3108 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3109 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3110 3111 if (nr_pages) { 3112 rcu_read_lock(); 3113 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); 3114 rcu_read_unlock(); 3115 } 3116 3117 /* 3118 * The leftover is flushed to the centralized per-memcg value. 3119 * On the next attempt to refill obj stock it will be moved 3120 * to a per-cpu stock (probably, on an other CPU), see 3121 * refill_obj_stock(). 3122 * 3123 * How often it's flushed is a trade-off between the memory 3124 * limit enforcement accuracy and potential CPU contention, 3125 * so it might be changed in the future. 3126 */ 3127 atomic_add(nr_bytes, &old->nr_charged_bytes); 3128 stock->nr_bytes = 0; 3129 } 3130 3131 obj_cgroup_put(old); 3132 stock->cached_objcg = NULL; 3133 } 3134 3135 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3136 struct mem_cgroup *root_memcg) 3137 { 3138 struct mem_cgroup *memcg; 3139 3140 if (stock->cached_objcg) { 3141 memcg = obj_cgroup_memcg(stock->cached_objcg); 3142 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3143 return true; 3144 } 3145 3146 return false; 3147 } 3148 3149 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3150 { 3151 struct memcg_stock_pcp *stock; 3152 unsigned long flags; 3153 3154 local_irq_save(flags); 3155 3156 stock = this_cpu_ptr(&memcg_stock); 3157 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3158 drain_obj_stock(stock); 3159 obj_cgroup_get(objcg); 3160 stock->cached_objcg = objcg; 3161 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); 3162 } 3163 stock->nr_bytes += nr_bytes; 3164 3165 if (stock->nr_bytes > PAGE_SIZE) 3166 drain_obj_stock(stock); 3167 3168 local_irq_restore(flags); 3169 } 3170 3171 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3172 { 3173 struct mem_cgroup *memcg; 3174 unsigned int nr_pages, nr_bytes; 3175 int ret; 3176 3177 if (consume_obj_stock(objcg, size)) 3178 return 0; 3179 3180 /* 3181 * In theory, memcg->nr_charged_bytes can have enough 3182 * pre-charged bytes to satisfy the allocation. However, 3183 * flushing memcg->nr_charged_bytes requires two atomic 3184 * operations, and memcg->nr_charged_bytes can't be big, 3185 * so it's better to ignore it and try grab some new pages. 3186 * memcg->nr_charged_bytes will be flushed in 3187 * refill_obj_stock(), called from this function or 3188 * independently later. 3189 */ 3190 rcu_read_lock(); 3191 memcg = obj_cgroup_memcg(objcg); 3192 css_get(&memcg->css); 3193 rcu_read_unlock(); 3194 3195 nr_pages = size >> PAGE_SHIFT; 3196 nr_bytes = size & (PAGE_SIZE - 1); 3197 3198 if (nr_bytes) 3199 nr_pages += 1; 3200 3201 ret = __memcg_kmem_charge(memcg, gfp, nr_pages); 3202 if (!ret && nr_bytes) 3203 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); 3204 3205 css_put(&memcg->css); 3206 return ret; 3207 } 3208 3209 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3210 { 3211 refill_obj_stock(objcg, size); 3212 } 3213 3214 #endif /* CONFIG_MEMCG_KMEM */ 3215 3216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3217 3218 /* 3219 * Because tail pages are not marked as "used", set it. We're under 3220 * pgdat->lru_lock and migration entries setup in all page mappings. 3221 */ 3222 void mem_cgroup_split_huge_fixup(struct page *head) 3223 { 3224 struct mem_cgroup *memcg = head->mem_cgroup; 3225 int i; 3226 3227 if (mem_cgroup_disabled()) 3228 return; 3229 3230 for (i = 1; i < HPAGE_PMD_NR; i++) { 3231 css_get(&memcg->css); 3232 head[i].mem_cgroup = memcg; 3233 } 3234 } 3235 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3236 3237 #ifdef CONFIG_MEMCG_SWAP 3238 /** 3239 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3240 * @entry: swap entry to be moved 3241 * @from: mem_cgroup which the entry is moved from 3242 * @to: mem_cgroup which the entry is moved to 3243 * 3244 * It succeeds only when the swap_cgroup's record for this entry is the same 3245 * as the mem_cgroup's id of @from. 3246 * 3247 * Returns 0 on success, -EINVAL on failure. 3248 * 3249 * The caller must have charged to @to, IOW, called page_counter_charge() about 3250 * both res and memsw, and called css_get(). 3251 */ 3252 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3253 struct mem_cgroup *from, struct mem_cgroup *to) 3254 { 3255 unsigned short old_id, new_id; 3256 3257 old_id = mem_cgroup_id(from); 3258 new_id = mem_cgroup_id(to); 3259 3260 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3261 mod_memcg_state(from, MEMCG_SWAP, -1); 3262 mod_memcg_state(to, MEMCG_SWAP, 1); 3263 return 0; 3264 } 3265 return -EINVAL; 3266 } 3267 #else 3268 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3269 struct mem_cgroup *from, struct mem_cgroup *to) 3270 { 3271 return -EINVAL; 3272 } 3273 #endif 3274 3275 static DEFINE_MUTEX(memcg_max_mutex); 3276 3277 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3278 unsigned long max, bool memsw) 3279 { 3280 bool enlarge = false; 3281 bool drained = false; 3282 int ret; 3283 bool limits_invariant; 3284 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3285 3286 do { 3287 if (signal_pending(current)) { 3288 ret = -EINTR; 3289 break; 3290 } 3291 3292 mutex_lock(&memcg_max_mutex); 3293 /* 3294 * Make sure that the new limit (memsw or memory limit) doesn't 3295 * break our basic invariant rule memory.max <= memsw.max. 3296 */ 3297 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3298 max <= memcg->memsw.max; 3299 if (!limits_invariant) { 3300 mutex_unlock(&memcg_max_mutex); 3301 ret = -EINVAL; 3302 break; 3303 } 3304 if (max > counter->max) 3305 enlarge = true; 3306 ret = page_counter_set_max(counter, max); 3307 mutex_unlock(&memcg_max_mutex); 3308 3309 if (!ret) 3310 break; 3311 3312 if (!drained) { 3313 drain_all_stock(memcg); 3314 drained = true; 3315 continue; 3316 } 3317 3318 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3319 GFP_KERNEL, !memsw)) { 3320 ret = -EBUSY; 3321 break; 3322 } 3323 } while (true); 3324 3325 if (!ret && enlarge) 3326 memcg_oom_recover(memcg); 3327 3328 return ret; 3329 } 3330 3331 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3332 gfp_t gfp_mask, 3333 unsigned long *total_scanned) 3334 { 3335 unsigned long nr_reclaimed = 0; 3336 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3337 unsigned long reclaimed; 3338 int loop = 0; 3339 struct mem_cgroup_tree_per_node *mctz; 3340 unsigned long excess; 3341 unsigned long nr_scanned; 3342 3343 if (order > 0) 3344 return 0; 3345 3346 mctz = soft_limit_tree_node(pgdat->node_id); 3347 3348 /* 3349 * Do not even bother to check the largest node if the root 3350 * is empty. Do it lockless to prevent lock bouncing. Races 3351 * are acceptable as soft limit is best effort anyway. 3352 */ 3353 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3354 return 0; 3355 3356 /* 3357 * This loop can run a while, specially if mem_cgroup's continuously 3358 * keep exceeding their soft limit and putting the system under 3359 * pressure 3360 */ 3361 do { 3362 if (next_mz) 3363 mz = next_mz; 3364 else 3365 mz = mem_cgroup_largest_soft_limit_node(mctz); 3366 if (!mz) 3367 break; 3368 3369 nr_scanned = 0; 3370 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3371 gfp_mask, &nr_scanned); 3372 nr_reclaimed += reclaimed; 3373 *total_scanned += nr_scanned; 3374 spin_lock_irq(&mctz->lock); 3375 __mem_cgroup_remove_exceeded(mz, mctz); 3376 3377 /* 3378 * If we failed to reclaim anything from this memory cgroup 3379 * it is time to move on to the next cgroup 3380 */ 3381 next_mz = NULL; 3382 if (!reclaimed) 3383 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3384 3385 excess = soft_limit_excess(mz->memcg); 3386 /* 3387 * One school of thought says that we should not add 3388 * back the node to the tree if reclaim returns 0. 3389 * But our reclaim could return 0, simply because due 3390 * to priority we are exposing a smaller subset of 3391 * memory to reclaim from. Consider this as a longer 3392 * term TODO. 3393 */ 3394 /* If excess == 0, no tree ops */ 3395 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3396 spin_unlock_irq(&mctz->lock); 3397 css_put(&mz->memcg->css); 3398 loop++; 3399 /* 3400 * Could not reclaim anything and there are no more 3401 * mem cgroups to try or we seem to be looping without 3402 * reclaiming anything. 3403 */ 3404 if (!nr_reclaimed && 3405 (next_mz == NULL || 3406 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3407 break; 3408 } while (!nr_reclaimed); 3409 if (next_mz) 3410 css_put(&next_mz->memcg->css); 3411 return nr_reclaimed; 3412 } 3413 3414 /* 3415 * Test whether @memcg has children, dead or alive. Note that this 3416 * function doesn't care whether @memcg has use_hierarchy enabled and 3417 * returns %true if there are child csses according to the cgroup 3418 * hierarchy. Testing use_hierarchy is the caller's responsibility. 3419 */ 3420 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3421 { 3422 bool ret; 3423 3424 rcu_read_lock(); 3425 ret = css_next_child(NULL, &memcg->css); 3426 rcu_read_unlock(); 3427 return ret; 3428 } 3429 3430 /* 3431 * Reclaims as many pages from the given memcg as possible. 3432 * 3433 * Caller is responsible for holding css reference for memcg. 3434 */ 3435 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3436 { 3437 int nr_retries = MAX_RECLAIM_RETRIES; 3438 3439 /* we call try-to-free pages for make this cgroup empty */ 3440 lru_add_drain_all(); 3441 3442 drain_all_stock(memcg); 3443 3444 /* try to free all pages in this cgroup */ 3445 while (nr_retries && page_counter_read(&memcg->memory)) { 3446 int progress; 3447 3448 if (signal_pending(current)) 3449 return -EINTR; 3450 3451 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3452 GFP_KERNEL, true); 3453 if (!progress) { 3454 nr_retries--; 3455 /* maybe some writeback is necessary */ 3456 congestion_wait(BLK_RW_ASYNC, HZ/10); 3457 } 3458 3459 } 3460 3461 return 0; 3462 } 3463 3464 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3465 char *buf, size_t nbytes, 3466 loff_t off) 3467 { 3468 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3469 3470 if (mem_cgroup_is_root(memcg)) 3471 return -EINVAL; 3472 return mem_cgroup_force_empty(memcg) ?: nbytes; 3473 } 3474 3475 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3476 struct cftype *cft) 3477 { 3478 return mem_cgroup_from_css(css)->use_hierarchy; 3479 } 3480 3481 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3482 struct cftype *cft, u64 val) 3483 { 3484 int retval = 0; 3485 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3486 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3487 3488 if (memcg->use_hierarchy == val) 3489 return 0; 3490 3491 /* 3492 * If parent's use_hierarchy is set, we can't make any modifications 3493 * in the child subtrees. If it is unset, then the change can 3494 * occur, provided the current cgroup has no children. 3495 * 3496 * For the root cgroup, parent_mem is NULL, we allow value to be 3497 * set if there are no children. 3498 */ 3499 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3500 (val == 1 || val == 0)) { 3501 if (!memcg_has_children(memcg)) 3502 memcg->use_hierarchy = val; 3503 else 3504 retval = -EBUSY; 3505 } else 3506 retval = -EINVAL; 3507 3508 return retval; 3509 } 3510 3511 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3512 { 3513 unsigned long val; 3514 3515 if (mem_cgroup_is_root(memcg)) { 3516 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3517 memcg_page_state(memcg, NR_ANON_MAPPED); 3518 if (swap) 3519 val += memcg_page_state(memcg, MEMCG_SWAP); 3520 } else { 3521 if (!swap) 3522 val = page_counter_read(&memcg->memory); 3523 else 3524 val = page_counter_read(&memcg->memsw); 3525 } 3526 return val; 3527 } 3528 3529 enum { 3530 RES_USAGE, 3531 RES_LIMIT, 3532 RES_MAX_USAGE, 3533 RES_FAILCNT, 3534 RES_SOFT_LIMIT, 3535 }; 3536 3537 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3538 struct cftype *cft) 3539 { 3540 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3541 struct page_counter *counter; 3542 3543 switch (MEMFILE_TYPE(cft->private)) { 3544 case _MEM: 3545 counter = &memcg->memory; 3546 break; 3547 case _MEMSWAP: 3548 counter = &memcg->memsw; 3549 break; 3550 case _KMEM: 3551 counter = &memcg->kmem; 3552 break; 3553 case _TCP: 3554 counter = &memcg->tcpmem; 3555 break; 3556 default: 3557 BUG(); 3558 } 3559 3560 switch (MEMFILE_ATTR(cft->private)) { 3561 case RES_USAGE: 3562 if (counter == &memcg->memory) 3563 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3564 if (counter == &memcg->memsw) 3565 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3566 return (u64)page_counter_read(counter) * PAGE_SIZE; 3567 case RES_LIMIT: 3568 return (u64)counter->max * PAGE_SIZE; 3569 case RES_MAX_USAGE: 3570 return (u64)counter->watermark * PAGE_SIZE; 3571 case RES_FAILCNT: 3572 return counter->failcnt; 3573 case RES_SOFT_LIMIT: 3574 return (u64)memcg->soft_limit * PAGE_SIZE; 3575 default: 3576 BUG(); 3577 } 3578 } 3579 3580 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3581 { 3582 unsigned long stat[MEMCG_NR_STAT] = {0}; 3583 struct mem_cgroup *mi; 3584 int node, cpu, i; 3585 3586 for_each_online_cpu(cpu) 3587 for (i = 0; i < MEMCG_NR_STAT; i++) 3588 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3589 3590 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3591 for (i = 0; i < MEMCG_NR_STAT; i++) 3592 atomic_long_add(stat[i], &mi->vmstats[i]); 3593 3594 for_each_node(node) { 3595 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3596 struct mem_cgroup_per_node *pi; 3597 3598 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3599 stat[i] = 0; 3600 3601 for_each_online_cpu(cpu) 3602 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3603 stat[i] += per_cpu( 3604 pn->lruvec_stat_cpu->count[i], cpu); 3605 3606 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3607 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3608 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3609 } 3610 } 3611 3612 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3613 { 3614 unsigned long events[NR_VM_EVENT_ITEMS]; 3615 struct mem_cgroup *mi; 3616 int cpu, i; 3617 3618 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3619 events[i] = 0; 3620 3621 for_each_online_cpu(cpu) 3622 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3623 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3624 cpu); 3625 3626 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3627 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3628 atomic_long_add(events[i], &mi->vmevents[i]); 3629 } 3630 3631 #ifdef CONFIG_MEMCG_KMEM 3632 static int memcg_online_kmem(struct mem_cgroup *memcg) 3633 { 3634 struct obj_cgroup *objcg; 3635 int memcg_id; 3636 3637 if (cgroup_memory_nokmem) 3638 return 0; 3639 3640 BUG_ON(memcg->kmemcg_id >= 0); 3641 BUG_ON(memcg->kmem_state); 3642 3643 memcg_id = memcg_alloc_cache_id(); 3644 if (memcg_id < 0) 3645 return memcg_id; 3646 3647 objcg = obj_cgroup_alloc(); 3648 if (!objcg) { 3649 memcg_free_cache_id(memcg_id); 3650 return -ENOMEM; 3651 } 3652 objcg->memcg = memcg; 3653 rcu_assign_pointer(memcg->objcg, objcg); 3654 3655 static_branch_enable(&memcg_kmem_enabled_key); 3656 3657 /* 3658 * A memory cgroup is considered kmem-online as soon as it gets 3659 * kmemcg_id. Setting the id after enabling static branching will 3660 * guarantee no one starts accounting before all call sites are 3661 * patched. 3662 */ 3663 memcg->kmemcg_id = memcg_id; 3664 memcg->kmem_state = KMEM_ONLINE; 3665 3666 return 0; 3667 } 3668 3669 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3670 { 3671 struct cgroup_subsys_state *css; 3672 struct mem_cgroup *parent, *child; 3673 int kmemcg_id; 3674 3675 if (memcg->kmem_state != KMEM_ONLINE) 3676 return; 3677 3678 memcg->kmem_state = KMEM_ALLOCATED; 3679 3680 parent = parent_mem_cgroup(memcg); 3681 if (!parent) 3682 parent = root_mem_cgroup; 3683 3684 memcg_reparent_objcgs(memcg, parent); 3685 3686 kmemcg_id = memcg->kmemcg_id; 3687 BUG_ON(kmemcg_id < 0); 3688 3689 /* 3690 * Change kmemcg_id of this cgroup and all its descendants to the 3691 * parent's id, and then move all entries from this cgroup's list_lrus 3692 * to ones of the parent. After we have finished, all list_lrus 3693 * corresponding to this cgroup are guaranteed to remain empty. The 3694 * ordering is imposed by list_lru_node->lock taken by 3695 * memcg_drain_all_list_lrus(). 3696 */ 3697 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3698 css_for_each_descendant_pre(css, &memcg->css) { 3699 child = mem_cgroup_from_css(css); 3700 BUG_ON(child->kmemcg_id != kmemcg_id); 3701 child->kmemcg_id = parent->kmemcg_id; 3702 if (!memcg->use_hierarchy) 3703 break; 3704 } 3705 rcu_read_unlock(); 3706 3707 memcg_drain_all_list_lrus(kmemcg_id, parent); 3708 3709 memcg_free_cache_id(kmemcg_id); 3710 } 3711 3712 static void memcg_free_kmem(struct mem_cgroup *memcg) 3713 { 3714 /* css_alloc() failed, offlining didn't happen */ 3715 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3716 memcg_offline_kmem(memcg); 3717 } 3718 #else 3719 static int memcg_online_kmem(struct mem_cgroup *memcg) 3720 { 3721 return 0; 3722 } 3723 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3724 { 3725 } 3726 static void memcg_free_kmem(struct mem_cgroup *memcg) 3727 { 3728 } 3729 #endif /* CONFIG_MEMCG_KMEM */ 3730 3731 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3732 unsigned long max) 3733 { 3734 int ret; 3735 3736 mutex_lock(&memcg_max_mutex); 3737 ret = page_counter_set_max(&memcg->kmem, max); 3738 mutex_unlock(&memcg_max_mutex); 3739 return ret; 3740 } 3741 3742 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3743 { 3744 int ret; 3745 3746 mutex_lock(&memcg_max_mutex); 3747 3748 ret = page_counter_set_max(&memcg->tcpmem, max); 3749 if (ret) 3750 goto out; 3751 3752 if (!memcg->tcpmem_active) { 3753 /* 3754 * The active flag needs to be written after the static_key 3755 * update. This is what guarantees that the socket activation 3756 * function is the last one to run. See mem_cgroup_sk_alloc() 3757 * for details, and note that we don't mark any socket as 3758 * belonging to this memcg until that flag is up. 3759 * 3760 * We need to do this, because static_keys will span multiple 3761 * sites, but we can't control their order. If we mark a socket 3762 * as accounted, but the accounting functions are not patched in 3763 * yet, we'll lose accounting. 3764 * 3765 * We never race with the readers in mem_cgroup_sk_alloc(), 3766 * because when this value change, the code to process it is not 3767 * patched in yet. 3768 */ 3769 static_branch_inc(&memcg_sockets_enabled_key); 3770 memcg->tcpmem_active = true; 3771 } 3772 out: 3773 mutex_unlock(&memcg_max_mutex); 3774 return ret; 3775 } 3776 3777 /* 3778 * The user of this function is... 3779 * RES_LIMIT. 3780 */ 3781 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3782 char *buf, size_t nbytes, loff_t off) 3783 { 3784 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3785 unsigned long nr_pages; 3786 int ret; 3787 3788 buf = strstrip(buf); 3789 ret = page_counter_memparse(buf, "-1", &nr_pages); 3790 if (ret) 3791 return ret; 3792 3793 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3794 case RES_LIMIT: 3795 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3796 ret = -EINVAL; 3797 break; 3798 } 3799 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3800 case _MEM: 3801 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3802 break; 3803 case _MEMSWAP: 3804 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3805 break; 3806 case _KMEM: 3807 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3808 "Please report your usecase to linux-mm@kvack.org if you " 3809 "depend on this functionality.\n"); 3810 ret = memcg_update_kmem_max(memcg, nr_pages); 3811 break; 3812 case _TCP: 3813 ret = memcg_update_tcp_max(memcg, nr_pages); 3814 break; 3815 } 3816 break; 3817 case RES_SOFT_LIMIT: 3818 memcg->soft_limit = nr_pages; 3819 ret = 0; 3820 break; 3821 } 3822 return ret ?: nbytes; 3823 } 3824 3825 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3826 size_t nbytes, loff_t off) 3827 { 3828 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3829 struct page_counter *counter; 3830 3831 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3832 case _MEM: 3833 counter = &memcg->memory; 3834 break; 3835 case _MEMSWAP: 3836 counter = &memcg->memsw; 3837 break; 3838 case _KMEM: 3839 counter = &memcg->kmem; 3840 break; 3841 case _TCP: 3842 counter = &memcg->tcpmem; 3843 break; 3844 default: 3845 BUG(); 3846 } 3847 3848 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3849 case RES_MAX_USAGE: 3850 page_counter_reset_watermark(counter); 3851 break; 3852 case RES_FAILCNT: 3853 counter->failcnt = 0; 3854 break; 3855 default: 3856 BUG(); 3857 } 3858 3859 return nbytes; 3860 } 3861 3862 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3863 struct cftype *cft) 3864 { 3865 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3866 } 3867 3868 #ifdef CONFIG_MMU 3869 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3870 struct cftype *cft, u64 val) 3871 { 3872 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3873 3874 if (val & ~MOVE_MASK) 3875 return -EINVAL; 3876 3877 /* 3878 * No kind of locking is needed in here, because ->can_attach() will 3879 * check this value once in the beginning of the process, and then carry 3880 * on with stale data. This means that changes to this value will only 3881 * affect task migrations starting after the change. 3882 */ 3883 memcg->move_charge_at_immigrate = val; 3884 return 0; 3885 } 3886 #else 3887 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3888 struct cftype *cft, u64 val) 3889 { 3890 return -ENOSYS; 3891 } 3892 #endif 3893 3894 #ifdef CONFIG_NUMA 3895 3896 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3897 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3898 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3899 3900 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3901 int nid, unsigned int lru_mask, bool tree) 3902 { 3903 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3904 unsigned long nr = 0; 3905 enum lru_list lru; 3906 3907 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3908 3909 for_each_lru(lru) { 3910 if (!(BIT(lru) & lru_mask)) 3911 continue; 3912 if (tree) 3913 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3914 else 3915 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3916 } 3917 return nr; 3918 } 3919 3920 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3921 unsigned int lru_mask, 3922 bool tree) 3923 { 3924 unsigned long nr = 0; 3925 enum lru_list lru; 3926 3927 for_each_lru(lru) { 3928 if (!(BIT(lru) & lru_mask)) 3929 continue; 3930 if (tree) 3931 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3932 else 3933 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3934 } 3935 return nr; 3936 } 3937 3938 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3939 { 3940 struct numa_stat { 3941 const char *name; 3942 unsigned int lru_mask; 3943 }; 3944 3945 static const struct numa_stat stats[] = { 3946 { "total", LRU_ALL }, 3947 { "file", LRU_ALL_FILE }, 3948 { "anon", LRU_ALL_ANON }, 3949 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3950 }; 3951 const struct numa_stat *stat; 3952 int nid; 3953 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3954 3955 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3956 seq_printf(m, "%s=%lu", stat->name, 3957 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3958 false)); 3959 for_each_node_state(nid, N_MEMORY) 3960 seq_printf(m, " N%d=%lu", nid, 3961 mem_cgroup_node_nr_lru_pages(memcg, nid, 3962 stat->lru_mask, false)); 3963 seq_putc(m, '\n'); 3964 } 3965 3966 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3967 3968 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3969 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3970 true)); 3971 for_each_node_state(nid, N_MEMORY) 3972 seq_printf(m, " N%d=%lu", nid, 3973 mem_cgroup_node_nr_lru_pages(memcg, nid, 3974 stat->lru_mask, true)); 3975 seq_putc(m, '\n'); 3976 } 3977 3978 return 0; 3979 } 3980 #endif /* CONFIG_NUMA */ 3981 3982 static const unsigned int memcg1_stats[] = { 3983 NR_FILE_PAGES, 3984 NR_ANON_MAPPED, 3985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3986 NR_ANON_THPS, 3987 #endif 3988 NR_SHMEM, 3989 NR_FILE_MAPPED, 3990 NR_FILE_DIRTY, 3991 NR_WRITEBACK, 3992 MEMCG_SWAP, 3993 }; 3994 3995 static const char *const memcg1_stat_names[] = { 3996 "cache", 3997 "rss", 3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3999 "rss_huge", 4000 #endif 4001 "shmem", 4002 "mapped_file", 4003 "dirty", 4004 "writeback", 4005 "swap", 4006 }; 4007 4008 /* Universal VM events cgroup1 shows, original sort order */ 4009 static const unsigned int memcg1_events[] = { 4010 PGPGIN, 4011 PGPGOUT, 4012 PGFAULT, 4013 PGMAJFAULT, 4014 }; 4015 4016 static int memcg_stat_show(struct seq_file *m, void *v) 4017 { 4018 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4019 unsigned long memory, memsw; 4020 struct mem_cgroup *mi; 4021 unsigned int i; 4022 4023 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4024 4025 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4026 unsigned long nr; 4027 4028 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4029 continue; 4030 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4032 if (memcg1_stats[i] == NR_ANON_THPS) 4033 nr *= HPAGE_PMD_NR; 4034 #endif 4035 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4036 } 4037 4038 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4039 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4040 memcg_events_local(memcg, memcg1_events[i])); 4041 4042 for (i = 0; i < NR_LRU_LISTS; i++) 4043 seq_printf(m, "%s %lu\n", lru_list_name(i), 4044 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4045 PAGE_SIZE); 4046 4047 /* Hierarchical information */ 4048 memory = memsw = PAGE_COUNTER_MAX; 4049 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4050 memory = min(memory, READ_ONCE(mi->memory.max)); 4051 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4052 } 4053 seq_printf(m, "hierarchical_memory_limit %llu\n", 4054 (u64)memory * PAGE_SIZE); 4055 if (do_memsw_account()) 4056 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4057 (u64)memsw * PAGE_SIZE); 4058 4059 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4060 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4061 continue; 4062 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4063 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 4064 PAGE_SIZE); 4065 } 4066 4067 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4068 seq_printf(m, "total_%s %llu\n", 4069 vm_event_name(memcg1_events[i]), 4070 (u64)memcg_events(memcg, memcg1_events[i])); 4071 4072 for (i = 0; i < NR_LRU_LISTS; i++) 4073 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4074 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4075 PAGE_SIZE); 4076 4077 #ifdef CONFIG_DEBUG_VM 4078 { 4079 pg_data_t *pgdat; 4080 struct mem_cgroup_per_node *mz; 4081 unsigned long anon_cost = 0; 4082 unsigned long file_cost = 0; 4083 4084 for_each_online_pgdat(pgdat) { 4085 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 4086 4087 anon_cost += mz->lruvec.anon_cost; 4088 file_cost += mz->lruvec.file_cost; 4089 } 4090 seq_printf(m, "anon_cost %lu\n", anon_cost); 4091 seq_printf(m, "file_cost %lu\n", file_cost); 4092 } 4093 #endif 4094 4095 return 0; 4096 } 4097 4098 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4099 struct cftype *cft) 4100 { 4101 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4102 4103 return mem_cgroup_swappiness(memcg); 4104 } 4105 4106 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4107 struct cftype *cft, u64 val) 4108 { 4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4110 4111 if (val > 100) 4112 return -EINVAL; 4113 4114 if (css->parent) 4115 memcg->swappiness = val; 4116 else 4117 vm_swappiness = val; 4118 4119 return 0; 4120 } 4121 4122 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4123 { 4124 struct mem_cgroup_threshold_ary *t; 4125 unsigned long usage; 4126 int i; 4127 4128 rcu_read_lock(); 4129 if (!swap) 4130 t = rcu_dereference(memcg->thresholds.primary); 4131 else 4132 t = rcu_dereference(memcg->memsw_thresholds.primary); 4133 4134 if (!t) 4135 goto unlock; 4136 4137 usage = mem_cgroup_usage(memcg, swap); 4138 4139 /* 4140 * current_threshold points to threshold just below or equal to usage. 4141 * If it's not true, a threshold was crossed after last 4142 * call of __mem_cgroup_threshold(). 4143 */ 4144 i = t->current_threshold; 4145 4146 /* 4147 * Iterate backward over array of thresholds starting from 4148 * current_threshold and check if a threshold is crossed. 4149 * If none of thresholds below usage is crossed, we read 4150 * only one element of the array here. 4151 */ 4152 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4153 eventfd_signal(t->entries[i].eventfd, 1); 4154 4155 /* i = current_threshold + 1 */ 4156 i++; 4157 4158 /* 4159 * Iterate forward over array of thresholds starting from 4160 * current_threshold+1 and check if a threshold is crossed. 4161 * If none of thresholds above usage is crossed, we read 4162 * only one element of the array here. 4163 */ 4164 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4165 eventfd_signal(t->entries[i].eventfd, 1); 4166 4167 /* Update current_threshold */ 4168 t->current_threshold = i - 1; 4169 unlock: 4170 rcu_read_unlock(); 4171 } 4172 4173 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4174 { 4175 while (memcg) { 4176 __mem_cgroup_threshold(memcg, false); 4177 if (do_memsw_account()) 4178 __mem_cgroup_threshold(memcg, true); 4179 4180 memcg = parent_mem_cgroup(memcg); 4181 } 4182 } 4183 4184 static int compare_thresholds(const void *a, const void *b) 4185 { 4186 const struct mem_cgroup_threshold *_a = a; 4187 const struct mem_cgroup_threshold *_b = b; 4188 4189 if (_a->threshold > _b->threshold) 4190 return 1; 4191 4192 if (_a->threshold < _b->threshold) 4193 return -1; 4194 4195 return 0; 4196 } 4197 4198 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4199 { 4200 struct mem_cgroup_eventfd_list *ev; 4201 4202 spin_lock(&memcg_oom_lock); 4203 4204 list_for_each_entry(ev, &memcg->oom_notify, list) 4205 eventfd_signal(ev->eventfd, 1); 4206 4207 spin_unlock(&memcg_oom_lock); 4208 return 0; 4209 } 4210 4211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4212 { 4213 struct mem_cgroup *iter; 4214 4215 for_each_mem_cgroup_tree(iter, memcg) 4216 mem_cgroup_oom_notify_cb(iter); 4217 } 4218 4219 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4220 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4221 { 4222 struct mem_cgroup_thresholds *thresholds; 4223 struct mem_cgroup_threshold_ary *new; 4224 unsigned long threshold; 4225 unsigned long usage; 4226 int i, size, ret; 4227 4228 ret = page_counter_memparse(args, "-1", &threshold); 4229 if (ret) 4230 return ret; 4231 4232 mutex_lock(&memcg->thresholds_lock); 4233 4234 if (type == _MEM) { 4235 thresholds = &memcg->thresholds; 4236 usage = mem_cgroup_usage(memcg, false); 4237 } else if (type == _MEMSWAP) { 4238 thresholds = &memcg->memsw_thresholds; 4239 usage = mem_cgroup_usage(memcg, true); 4240 } else 4241 BUG(); 4242 4243 /* Check if a threshold crossed before adding a new one */ 4244 if (thresholds->primary) 4245 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4246 4247 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4248 4249 /* Allocate memory for new array of thresholds */ 4250 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4251 if (!new) { 4252 ret = -ENOMEM; 4253 goto unlock; 4254 } 4255 new->size = size; 4256 4257 /* Copy thresholds (if any) to new array */ 4258 if (thresholds->primary) { 4259 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4260 sizeof(struct mem_cgroup_threshold)); 4261 } 4262 4263 /* Add new threshold */ 4264 new->entries[size - 1].eventfd = eventfd; 4265 new->entries[size - 1].threshold = threshold; 4266 4267 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4268 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4269 compare_thresholds, NULL); 4270 4271 /* Find current threshold */ 4272 new->current_threshold = -1; 4273 for (i = 0; i < size; i++) { 4274 if (new->entries[i].threshold <= usage) { 4275 /* 4276 * new->current_threshold will not be used until 4277 * rcu_assign_pointer(), so it's safe to increment 4278 * it here. 4279 */ 4280 ++new->current_threshold; 4281 } else 4282 break; 4283 } 4284 4285 /* Free old spare buffer and save old primary buffer as spare */ 4286 kfree(thresholds->spare); 4287 thresholds->spare = thresholds->primary; 4288 4289 rcu_assign_pointer(thresholds->primary, new); 4290 4291 /* To be sure that nobody uses thresholds */ 4292 synchronize_rcu(); 4293 4294 unlock: 4295 mutex_unlock(&memcg->thresholds_lock); 4296 4297 return ret; 4298 } 4299 4300 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4301 struct eventfd_ctx *eventfd, const char *args) 4302 { 4303 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4304 } 4305 4306 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4307 struct eventfd_ctx *eventfd, const char *args) 4308 { 4309 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4310 } 4311 4312 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4313 struct eventfd_ctx *eventfd, enum res_type type) 4314 { 4315 struct mem_cgroup_thresholds *thresholds; 4316 struct mem_cgroup_threshold_ary *new; 4317 unsigned long usage; 4318 int i, j, size, entries; 4319 4320 mutex_lock(&memcg->thresholds_lock); 4321 4322 if (type == _MEM) { 4323 thresholds = &memcg->thresholds; 4324 usage = mem_cgroup_usage(memcg, false); 4325 } else if (type == _MEMSWAP) { 4326 thresholds = &memcg->memsw_thresholds; 4327 usage = mem_cgroup_usage(memcg, true); 4328 } else 4329 BUG(); 4330 4331 if (!thresholds->primary) 4332 goto unlock; 4333 4334 /* Check if a threshold crossed before removing */ 4335 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4336 4337 /* Calculate new number of threshold */ 4338 size = entries = 0; 4339 for (i = 0; i < thresholds->primary->size; i++) { 4340 if (thresholds->primary->entries[i].eventfd != eventfd) 4341 size++; 4342 else 4343 entries++; 4344 } 4345 4346 new = thresholds->spare; 4347 4348 /* If no items related to eventfd have been cleared, nothing to do */ 4349 if (!entries) 4350 goto unlock; 4351 4352 /* Set thresholds array to NULL if we don't have thresholds */ 4353 if (!size) { 4354 kfree(new); 4355 new = NULL; 4356 goto swap_buffers; 4357 } 4358 4359 new->size = size; 4360 4361 /* Copy thresholds and find current threshold */ 4362 new->current_threshold = -1; 4363 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4364 if (thresholds->primary->entries[i].eventfd == eventfd) 4365 continue; 4366 4367 new->entries[j] = thresholds->primary->entries[i]; 4368 if (new->entries[j].threshold <= usage) { 4369 /* 4370 * new->current_threshold will not be used 4371 * until rcu_assign_pointer(), so it's safe to increment 4372 * it here. 4373 */ 4374 ++new->current_threshold; 4375 } 4376 j++; 4377 } 4378 4379 swap_buffers: 4380 /* Swap primary and spare array */ 4381 thresholds->spare = thresholds->primary; 4382 4383 rcu_assign_pointer(thresholds->primary, new); 4384 4385 /* To be sure that nobody uses thresholds */ 4386 synchronize_rcu(); 4387 4388 /* If all events are unregistered, free the spare array */ 4389 if (!new) { 4390 kfree(thresholds->spare); 4391 thresholds->spare = NULL; 4392 } 4393 unlock: 4394 mutex_unlock(&memcg->thresholds_lock); 4395 } 4396 4397 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4398 struct eventfd_ctx *eventfd) 4399 { 4400 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4401 } 4402 4403 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4404 struct eventfd_ctx *eventfd) 4405 { 4406 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4407 } 4408 4409 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4410 struct eventfd_ctx *eventfd, const char *args) 4411 { 4412 struct mem_cgroup_eventfd_list *event; 4413 4414 event = kmalloc(sizeof(*event), GFP_KERNEL); 4415 if (!event) 4416 return -ENOMEM; 4417 4418 spin_lock(&memcg_oom_lock); 4419 4420 event->eventfd = eventfd; 4421 list_add(&event->list, &memcg->oom_notify); 4422 4423 /* already in OOM ? */ 4424 if (memcg->under_oom) 4425 eventfd_signal(eventfd, 1); 4426 spin_unlock(&memcg_oom_lock); 4427 4428 return 0; 4429 } 4430 4431 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4432 struct eventfd_ctx *eventfd) 4433 { 4434 struct mem_cgroup_eventfd_list *ev, *tmp; 4435 4436 spin_lock(&memcg_oom_lock); 4437 4438 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4439 if (ev->eventfd == eventfd) { 4440 list_del(&ev->list); 4441 kfree(ev); 4442 } 4443 } 4444 4445 spin_unlock(&memcg_oom_lock); 4446 } 4447 4448 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4449 { 4450 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4451 4452 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4453 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4454 seq_printf(sf, "oom_kill %lu\n", 4455 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4456 return 0; 4457 } 4458 4459 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4460 struct cftype *cft, u64 val) 4461 { 4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4463 4464 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4465 if (!css->parent || !((val == 0) || (val == 1))) 4466 return -EINVAL; 4467 4468 memcg->oom_kill_disable = val; 4469 if (!val) 4470 memcg_oom_recover(memcg); 4471 4472 return 0; 4473 } 4474 4475 #ifdef CONFIG_CGROUP_WRITEBACK 4476 4477 #include <trace/events/writeback.h> 4478 4479 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4480 { 4481 return wb_domain_init(&memcg->cgwb_domain, gfp); 4482 } 4483 4484 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4485 { 4486 wb_domain_exit(&memcg->cgwb_domain); 4487 } 4488 4489 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4490 { 4491 wb_domain_size_changed(&memcg->cgwb_domain); 4492 } 4493 4494 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4495 { 4496 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4497 4498 if (!memcg->css.parent) 4499 return NULL; 4500 4501 return &memcg->cgwb_domain; 4502 } 4503 4504 /* 4505 * idx can be of type enum memcg_stat_item or node_stat_item. 4506 * Keep in sync with memcg_exact_page(). 4507 */ 4508 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4509 { 4510 long x = atomic_long_read(&memcg->vmstats[idx]); 4511 int cpu; 4512 4513 for_each_online_cpu(cpu) 4514 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4515 if (x < 0) 4516 x = 0; 4517 return x; 4518 } 4519 4520 /** 4521 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4522 * @wb: bdi_writeback in question 4523 * @pfilepages: out parameter for number of file pages 4524 * @pheadroom: out parameter for number of allocatable pages according to memcg 4525 * @pdirty: out parameter for number of dirty pages 4526 * @pwriteback: out parameter for number of pages under writeback 4527 * 4528 * Determine the numbers of file, headroom, dirty, and writeback pages in 4529 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4530 * is a bit more involved. 4531 * 4532 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4533 * headroom is calculated as the lowest headroom of itself and the 4534 * ancestors. Note that this doesn't consider the actual amount of 4535 * available memory in the system. The caller should further cap 4536 * *@pheadroom accordingly. 4537 */ 4538 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4539 unsigned long *pheadroom, unsigned long *pdirty, 4540 unsigned long *pwriteback) 4541 { 4542 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4543 struct mem_cgroup *parent; 4544 4545 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4546 4547 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4548 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4549 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4550 *pheadroom = PAGE_COUNTER_MAX; 4551 4552 while ((parent = parent_mem_cgroup(memcg))) { 4553 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4554 READ_ONCE(memcg->memory.high)); 4555 unsigned long used = page_counter_read(&memcg->memory); 4556 4557 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4558 memcg = parent; 4559 } 4560 } 4561 4562 /* 4563 * Foreign dirty flushing 4564 * 4565 * There's an inherent mismatch between memcg and writeback. The former 4566 * trackes ownership per-page while the latter per-inode. This was a 4567 * deliberate design decision because honoring per-page ownership in the 4568 * writeback path is complicated, may lead to higher CPU and IO overheads 4569 * and deemed unnecessary given that write-sharing an inode across 4570 * different cgroups isn't a common use-case. 4571 * 4572 * Combined with inode majority-writer ownership switching, this works well 4573 * enough in most cases but there are some pathological cases. For 4574 * example, let's say there are two cgroups A and B which keep writing to 4575 * different but confined parts of the same inode. B owns the inode and 4576 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4577 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4578 * triggering background writeback. A will be slowed down without a way to 4579 * make writeback of the dirty pages happen. 4580 * 4581 * Conditions like the above can lead to a cgroup getting repatedly and 4582 * severely throttled after making some progress after each 4583 * dirty_expire_interval while the underyling IO device is almost 4584 * completely idle. 4585 * 4586 * Solving this problem completely requires matching the ownership tracking 4587 * granularities between memcg and writeback in either direction. However, 4588 * the more egregious behaviors can be avoided by simply remembering the 4589 * most recent foreign dirtying events and initiating remote flushes on 4590 * them when local writeback isn't enough to keep the memory clean enough. 4591 * 4592 * The following two functions implement such mechanism. When a foreign 4593 * page - a page whose memcg and writeback ownerships don't match - is 4594 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4595 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4596 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4597 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4598 * foreign bdi_writebacks which haven't expired. Both the numbers of 4599 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4600 * limited to MEMCG_CGWB_FRN_CNT. 4601 * 4602 * The mechanism only remembers IDs and doesn't hold any object references. 4603 * As being wrong occasionally doesn't matter, updates and accesses to the 4604 * records are lockless and racy. 4605 */ 4606 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4607 struct bdi_writeback *wb) 4608 { 4609 struct mem_cgroup *memcg = page->mem_cgroup; 4610 struct memcg_cgwb_frn *frn; 4611 u64 now = get_jiffies_64(); 4612 u64 oldest_at = now; 4613 int oldest = -1; 4614 int i; 4615 4616 trace_track_foreign_dirty(page, wb); 4617 4618 /* 4619 * Pick the slot to use. If there is already a slot for @wb, keep 4620 * using it. If not replace the oldest one which isn't being 4621 * written out. 4622 */ 4623 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4624 frn = &memcg->cgwb_frn[i]; 4625 if (frn->bdi_id == wb->bdi->id && 4626 frn->memcg_id == wb->memcg_css->id) 4627 break; 4628 if (time_before64(frn->at, oldest_at) && 4629 atomic_read(&frn->done.cnt) == 1) { 4630 oldest = i; 4631 oldest_at = frn->at; 4632 } 4633 } 4634 4635 if (i < MEMCG_CGWB_FRN_CNT) { 4636 /* 4637 * Re-using an existing one. Update timestamp lazily to 4638 * avoid making the cacheline hot. We want them to be 4639 * reasonably up-to-date and significantly shorter than 4640 * dirty_expire_interval as that's what expires the record. 4641 * Use the shorter of 1s and dirty_expire_interval / 8. 4642 */ 4643 unsigned long update_intv = 4644 min_t(unsigned long, HZ, 4645 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4646 4647 if (time_before64(frn->at, now - update_intv)) 4648 frn->at = now; 4649 } else if (oldest >= 0) { 4650 /* replace the oldest free one */ 4651 frn = &memcg->cgwb_frn[oldest]; 4652 frn->bdi_id = wb->bdi->id; 4653 frn->memcg_id = wb->memcg_css->id; 4654 frn->at = now; 4655 } 4656 } 4657 4658 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4659 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4660 { 4661 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4662 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4663 u64 now = jiffies_64; 4664 int i; 4665 4666 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4667 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4668 4669 /* 4670 * If the record is older than dirty_expire_interval, 4671 * writeback on it has already started. No need to kick it 4672 * off again. Also, don't start a new one if there's 4673 * already one in flight. 4674 */ 4675 if (time_after64(frn->at, now - intv) && 4676 atomic_read(&frn->done.cnt) == 1) { 4677 frn->at = 0; 4678 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4679 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4680 WB_REASON_FOREIGN_FLUSH, 4681 &frn->done); 4682 } 4683 } 4684 } 4685 4686 #else /* CONFIG_CGROUP_WRITEBACK */ 4687 4688 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4689 { 4690 return 0; 4691 } 4692 4693 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4694 { 4695 } 4696 4697 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4698 { 4699 } 4700 4701 #endif /* CONFIG_CGROUP_WRITEBACK */ 4702 4703 /* 4704 * DO NOT USE IN NEW FILES. 4705 * 4706 * "cgroup.event_control" implementation. 4707 * 4708 * This is way over-engineered. It tries to support fully configurable 4709 * events for each user. Such level of flexibility is completely 4710 * unnecessary especially in the light of the planned unified hierarchy. 4711 * 4712 * Please deprecate this and replace with something simpler if at all 4713 * possible. 4714 */ 4715 4716 /* 4717 * Unregister event and free resources. 4718 * 4719 * Gets called from workqueue. 4720 */ 4721 static void memcg_event_remove(struct work_struct *work) 4722 { 4723 struct mem_cgroup_event *event = 4724 container_of(work, struct mem_cgroup_event, remove); 4725 struct mem_cgroup *memcg = event->memcg; 4726 4727 remove_wait_queue(event->wqh, &event->wait); 4728 4729 event->unregister_event(memcg, event->eventfd); 4730 4731 /* Notify userspace the event is going away. */ 4732 eventfd_signal(event->eventfd, 1); 4733 4734 eventfd_ctx_put(event->eventfd); 4735 kfree(event); 4736 css_put(&memcg->css); 4737 } 4738 4739 /* 4740 * Gets called on EPOLLHUP on eventfd when user closes it. 4741 * 4742 * Called with wqh->lock held and interrupts disabled. 4743 */ 4744 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4745 int sync, void *key) 4746 { 4747 struct mem_cgroup_event *event = 4748 container_of(wait, struct mem_cgroup_event, wait); 4749 struct mem_cgroup *memcg = event->memcg; 4750 __poll_t flags = key_to_poll(key); 4751 4752 if (flags & EPOLLHUP) { 4753 /* 4754 * If the event has been detached at cgroup removal, we 4755 * can simply return knowing the other side will cleanup 4756 * for us. 4757 * 4758 * We can't race against event freeing since the other 4759 * side will require wqh->lock via remove_wait_queue(), 4760 * which we hold. 4761 */ 4762 spin_lock(&memcg->event_list_lock); 4763 if (!list_empty(&event->list)) { 4764 list_del_init(&event->list); 4765 /* 4766 * We are in atomic context, but cgroup_event_remove() 4767 * may sleep, so we have to call it in workqueue. 4768 */ 4769 schedule_work(&event->remove); 4770 } 4771 spin_unlock(&memcg->event_list_lock); 4772 } 4773 4774 return 0; 4775 } 4776 4777 static void memcg_event_ptable_queue_proc(struct file *file, 4778 wait_queue_head_t *wqh, poll_table *pt) 4779 { 4780 struct mem_cgroup_event *event = 4781 container_of(pt, struct mem_cgroup_event, pt); 4782 4783 event->wqh = wqh; 4784 add_wait_queue(wqh, &event->wait); 4785 } 4786 4787 /* 4788 * DO NOT USE IN NEW FILES. 4789 * 4790 * Parse input and register new cgroup event handler. 4791 * 4792 * Input must be in format '<event_fd> <control_fd> <args>'. 4793 * Interpretation of args is defined by control file implementation. 4794 */ 4795 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4796 char *buf, size_t nbytes, loff_t off) 4797 { 4798 struct cgroup_subsys_state *css = of_css(of); 4799 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4800 struct mem_cgroup_event *event; 4801 struct cgroup_subsys_state *cfile_css; 4802 unsigned int efd, cfd; 4803 struct fd efile; 4804 struct fd cfile; 4805 const char *name; 4806 char *endp; 4807 int ret; 4808 4809 buf = strstrip(buf); 4810 4811 efd = simple_strtoul(buf, &endp, 10); 4812 if (*endp != ' ') 4813 return -EINVAL; 4814 buf = endp + 1; 4815 4816 cfd = simple_strtoul(buf, &endp, 10); 4817 if ((*endp != ' ') && (*endp != '\0')) 4818 return -EINVAL; 4819 buf = endp + 1; 4820 4821 event = kzalloc(sizeof(*event), GFP_KERNEL); 4822 if (!event) 4823 return -ENOMEM; 4824 4825 event->memcg = memcg; 4826 INIT_LIST_HEAD(&event->list); 4827 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4828 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4829 INIT_WORK(&event->remove, memcg_event_remove); 4830 4831 efile = fdget(efd); 4832 if (!efile.file) { 4833 ret = -EBADF; 4834 goto out_kfree; 4835 } 4836 4837 event->eventfd = eventfd_ctx_fileget(efile.file); 4838 if (IS_ERR(event->eventfd)) { 4839 ret = PTR_ERR(event->eventfd); 4840 goto out_put_efile; 4841 } 4842 4843 cfile = fdget(cfd); 4844 if (!cfile.file) { 4845 ret = -EBADF; 4846 goto out_put_eventfd; 4847 } 4848 4849 /* the process need read permission on control file */ 4850 /* AV: shouldn't we check that it's been opened for read instead? */ 4851 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4852 if (ret < 0) 4853 goto out_put_cfile; 4854 4855 /* 4856 * Determine the event callbacks and set them in @event. This used 4857 * to be done via struct cftype but cgroup core no longer knows 4858 * about these events. The following is crude but the whole thing 4859 * is for compatibility anyway. 4860 * 4861 * DO NOT ADD NEW FILES. 4862 */ 4863 name = cfile.file->f_path.dentry->d_name.name; 4864 4865 if (!strcmp(name, "memory.usage_in_bytes")) { 4866 event->register_event = mem_cgroup_usage_register_event; 4867 event->unregister_event = mem_cgroup_usage_unregister_event; 4868 } else if (!strcmp(name, "memory.oom_control")) { 4869 event->register_event = mem_cgroup_oom_register_event; 4870 event->unregister_event = mem_cgroup_oom_unregister_event; 4871 } else if (!strcmp(name, "memory.pressure_level")) { 4872 event->register_event = vmpressure_register_event; 4873 event->unregister_event = vmpressure_unregister_event; 4874 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4875 event->register_event = memsw_cgroup_usage_register_event; 4876 event->unregister_event = memsw_cgroup_usage_unregister_event; 4877 } else { 4878 ret = -EINVAL; 4879 goto out_put_cfile; 4880 } 4881 4882 /* 4883 * Verify @cfile should belong to @css. Also, remaining events are 4884 * automatically removed on cgroup destruction but the removal is 4885 * asynchronous, so take an extra ref on @css. 4886 */ 4887 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4888 &memory_cgrp_subsys); 4889 ret = -EINVAL; 4890 if (IS_ERR(cfile_css)) 4891 goto out_put_cfile; 4892 if (cfile_css != css) { 4893 css_put(cfile_css); 4894 goto out_put_cfile; 4895 } 4896 4897 ret = event->register_event(memcg, event->eventfd, buf); 4898 if (ret) 4899 goto out_put_css; 4900 4901 vfs_poll(efile.file, &event->pt); 4902 4903 spin_lock(&memcg->event_list_lock); 4904 list_add(&event->list, &memcg->event_list); 4905 spin_unlock(&memcg->event_list_lock); 4906 4907 fdput(cfile); 4908 fdput(efile); 4909 4910 return nbytes; 4911 4912 out_put_css: 4913 css_put(css); 4914 out_put_cfile: 4915 fdput(cfile); 4916 out_put_eventfd: 4917 eventfd_ctx_put(event->eventfd); 4918 out_put_efile: 4919 fdput(efile); 4920 out_kfree: 4921 kfree(event); 4922 4923 return ret; 4924 } 4925 4926 static struct cftype mem_cgroup_legacy_files[] = { 4927 { 4928 .name = "usage_in_bytes", 4929 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4930 .read_u64 = mem_cgroup_read_u64, 4931 }, 4932 { 4933 .name = "max_usage_in_bytes", 4934 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4935 .write = mem_cgroup_reset, 4936 .read_u64 = mem_cgroup_read_u64, 4937 }, 4938 { 4939 .name = "limit_in_bytes", 4940 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4941 .write = mem_cgroup_write, 4942 .read_u64 = mem_cgroup_read_u64, 4943 }, 4944 { 4945 .name = "soft_limit_in_bytes", 4946 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4947 .write = mem_cgroup_write, 4948 .read_u64 = mem_cgroup_read_u64, 4949 }, 4950 { 4951 .name = "failcnt", 4952 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4953 .write = mem_cgroup_reset, 4954 .read_u64 = mem_cgroup_read_u64, 4955 }, 4956 { 4957 .name = "stat", 4958 .seq_show = memcg_stat_show, 4959 }, 4960 { 4961 .name = "force_empty", 4962 .write = mem_cgroup_force_empty_write, 4963 }, 4964 { 4965 .name = "use_hierarchy", 4966 .write_u64 = mem_cgroup_hierarchy_write, 4967 .read_u64 = mem_cgroup_hierarchy_read, 4968 }, 4969 { 4970 .name = "cgroup.event_control", /* XXX: for compat */ 4971 .write = memcg_write_event_control, 4972 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4973 }, 4974 { 4975 .name = "swappiness", 4976 .read_u64 = mem_cgroup_swappiness_read, 4977 .write_u64 = mem_cgroup_swappiness_write, 4978 }, 4979 { 4980 .name = "move_charge_at_immigrate", 4981 .read_u64 = mem_cgroup_move_charge_read, 4982 .write_u64 = mem_cgroup_move_charge_write, 4983 }, 4984 { 4985 .name = "oom_control", 4986 .seq_show = mem_cgroup_oom_control_read, 4987 .write_u64 = mem_cgroup_oom_control_write, 4988 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4989 }, 4990 { 4991 .name = "pressure_level", 4992 }, 4993 #ifdef CONFIG_NUMA 4994 { 4995 .name = "numa_stat", 4996 .seq_show = memcg_numa_stat_show, 4997 }, 4998 #endif 4999 { 5000 .name = "kmem.limit_in_bytes", 5001 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5002 .write = mem_cgroup_write, 5003 .read_u64 = mem_cgroup_read_u64, 5004 }, 5005 { 5006 .name = "kmem.usage_in_bytes", 5007 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5008 .read_u64 = mem_cgroup_read_u64, 5009 }, 5010 { 5011 .name = "kmem.failcnt", 5012 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5013 .write = mem_cgroup_reset, 5014 .read_u64 = mem_cgroup_read_u64, 5015 }, 5016 { 5017 .name = "kmem.max_usage_in_bytes", 5018 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5019 .write = mem_cgroup_reset, 5020 .read_u64 = mem_cgroup_read_u64, 5021 }, 5022 #if defined(CONFIG_MEMCG_KMEM) && \ 5023 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5024 { 5025 .name = "kmem.slabinfo", 5026 .seq_show = memcg_slab_show, 5027 }, 5028 #endif 5029 { 5030 .name = "kmem.tcp.limit_in_bytes", 5031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5032 .write = mem_cgroup_write, 5033 .read_u64 = mem_cgroup_read_u64, 5034 }, 5035 { 5036 .name = "kmem.tcp.usage_in_bytes", 5037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5038 .read_u64 = mem_cgroup_read_u64, 5039 }, 5040 { 5041 .name = "kmem.tcp.failcnt", 5042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5043 .write = mem_cgroup_reset, 5044 .read_u64 = mem_cgroup_read_u64, 5045 }, 5046 { 5047 .name = "kmem.tcp.max_usage_in_bytes", 5048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5049 .write = mem_cgroup_reset, 5050 .read_u64 = mem_cgroup_read_u64, 5051 }, 5052 { }, /* terminate */ 5053 }; 5054 5055 /* 5056 * Private memory cgroup IDR 5057 * 5058 * Swap-out records and page cache shadow entries need to store memcg 5059 * references in constrained space, so we maintain an ID space that is 5060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5061 * memory-controlled cgroups to 64k. 5062 * 5063 * However, there usually are many references to the offline CSS after 5064 * the cgroup has been destroyed, such as page cache or reclaimable 5065 * slab objects, that don't need to hang on to the ID. We want to keep 5066 * those dead CSS from occupying IDs, or we might quickly exhaust the 5067 * relatively small ID space and prevent the creation of new cgroups 5068 * even when there are much fewer than 64k cgroups - possibly none. 5069 * 5070 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5071 * be freed and recycled when it's no longer needed, which is usually 5072 * when the CSS is offlined. 5073 * 5074 * The only exception to that are records of swapped out tmpfs/shmem 5075 * pages that need to be attributed to live ancestors on swapin. But 5076 * those references are manageable from userspace. 5077 */ 5078 5079 static DEFINE_IDR(mem_cgroup_idr); 5080 5081 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5082 { 5083 if (memcg->id.id > 0) { 5084 idr_remove(&mem_cgroup_idr, memcg->id.id); 5085 memcg->id.id = 0; 5086 } 5087 } 5088 5089 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5090 unsigned int n) 5091 { 5092 refcount_add(n, &memcg->id.ref); 5093 } 5094 5095 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5096 { 5097 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5098 mem_cgroup_id_remove(memcg); 5099 5100 /* Memcg ID pins CSS */ 5101 css_put(&memcg->css); 5102 } 5103 } 5104 5105 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5106 { 5107 mem_cgroup_id_put_many(memcg, 1); 5108 } 5109 5110 /** 5111 * mem_cgroup_from_id - look up a memcg from a memcg id 5112 * @id: the memcg id to look up 5113 * 5114 * Caller must hold rcu_read_lock(). 5115 */ 5116 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5117 { 5118 WARN_ON_ONCE(!rcu_read_lock_held()); 5119 return idr_find(&mem_cgroup_idr, id); 5120 } 5121 5122 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5123 { 5124 struct mem_cgroup_per_node *pn; 5125 int tmp = node; 5126 /* 5127 * This routine is called against possible nodes. 5128 * But it's BUG to call kmalloc() against offline node. 5129 * 5130 * TODO: this routine can waste much memory for nodes which will 5131 * never be onlined. It's better to use memory hotplug callback 5132 * function. 5133 */ 5134 if (!node_state(node, N_NORMAL_MEMORY)) 5135 tmp = -1; 5136 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5137 if (!pn) 5138 return 1; 5139 5140 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat, 5141 GFP_KERNEL_ACCOUNT); 5142 if (!pn->lruvec_stat_local) { 5143 kfree(pn); 5144 return 1; 5145 } 5146 5147 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat, 5148 GFP_KERNEL_ACCOUNT); 5149 if (!pn->lruvec_stat_cpu) { 5150 free_percpu(pn->lruvec_stat_local); 5151 kfree(pn); 5152 return 1; 5153 } 5154 5155 lruvec_init(&pn->lruvec); 5156 pn->usage_in_excess = 0; 5157 pn->on_tree = false; 5158 pn->memcg = memcg; 5159 5160 memcg->nodeinfo[node] = pn; 5161 return 0; 5162 } 5163 5164 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5165 { 5166 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5167 5168 if (!pn) 5169 return; 5170 5171 free_percpu(pn->lruvec_stat_cpu); 5172 free_percpu(pn->lruvec_stat_local); 5173 kfree(pn); 5174 } 5175 5176 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5177 { 5178 int node; 5179 5180 for_each_node(node) 5181 free_mem_cgroup_per_node_info(memcg, node); 5182 free_percpu(memcg->vmstats_percpu); 5183 free_percpu(memcg->vmstats_local); 5184 kfree(memcg); 5185 } 5186 5187 static void mem_cgroup_free(struct mem_cgroup *memcg) 5188 { 5189 memcg_wb_domain_exit(memcg); 5190 /* 5191 * Flush percpu vmstats and vmevents to guarantee the value correctness 5192 * on parent's and all ancestor levels. 5193 */ 5194 memcg_flush_percpu_vmstats(memcg); 5195 memcg_flush_percpu_vmevents(memcg); 5196 __mem_cgroup_free(memcg); 5197 } 5198 5199 static struct mem_cgroup *mem_cgroup_alloc(void) 5200 { 5201 struct mem_cgroup *memcg; 5202 unsigned int size; 5203 int node; 5204 int __maybe_unused i; 5205 long error = -ENOMEM; 5206 5207 size = sizeof(struct mem_cgroup); 5208 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5209 5210 memcg = kzalloc(size, GFP_KERNEL); 5211 if (!memcg) 5212 return ERR_PTR(error); 5213 5214 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5215 1, MEM_CGROUP_ID_MAX, 5216 GFP_KERNEL); 5217 if (memcg->id.id < 0) { 5218 error = memcg->id.id; 5219 goto fail; 5220 } 5221 5222 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5223 GFP_KERNEL_ACCOUNT); 5224 if (!memcg->vmstats_local) 5225 goto fail; 5226 5227 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5228 GFP_KERNEL_ACCOUNT); 5229 if (!memcg->vmstats_percpu) 5230 goto fail; 5231 5232 for_each_node(node) 5233 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5234 goto fail; 5235 5236 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5237 goto fail; 5238 5239 INIT_WORK(&memcg->high_work, high_work_func); 5240 INIT_LIST_HEAD(&memcg->oom_notify); 5241 mutex_init(&memcg->thresholds_lock); 5242 spin_lock_init(&memcg->move_lock); 5243 vmpressure_init(&memcg->vmpressure); 5244 INIT_LIST_HEAD(&memcg->event_list); 5245 spin_lock_init(&memcg->event_list_lock); 5246 memcg->socket_pressure = jiffies; 5247 #ifdef CONFIG_MEMCG_KMEM 5248 memcg->kmemcg_id = -1; 5249 INIT_LIST_HEAD(&memcg->objcg_list); 5250 #endif 5251 #ifdef CONFIG_CGROUP_WRITEBACK 5252 INIT_LIST_HEAD(&memcg->cgwb_list); 5253 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5254 memcg->cgwb_frn[i].done = 5255 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5256 #endif 5257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5258 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5259 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5260 memcg->deferred_split_queue.split_queue_len = 0; 5261 #endif 5262 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5263 return memcg; 5264 fail: 5265 mem_cgroup_id_remove(memcg); 5266 __mem_cgroup_free(memcg); 5267 return ERR_PTR(error); 5268 } 5269 5270 static struct cgroup_subsys_state * __ref 5271 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5272 { 5273 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5274 struct mem_cgroup *memcg; 5275 long error = -ENOMEM; 5276 5277 memalloc_use_memcg(parent); 5278 memcg = mem_cgroup_alloc(); 5279 memalloc_unuse_memcg(); 5280 if (IS_ERR(memcg)) 5281 return ERR_CAST(memcg); 5282 5283 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5284 memcg->soft_limit = PAGE_COUNTER_MAX; 5285 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5286 if (parent) { 5287 memcg->swappiness = mem_cgroup_swappiness(parent); 5288 memcg->oom_kill_disable = parent->oom_kill_disable; 5289 } 5290 if (parent && parent->use_hierarchy) { 5291 memcg->use_hierarchy = true; 5292 page_counter_init(&memcg->memory, &parent->memory); 5293 page_counter_init(&memcg->swap, &parent->swap); 5294 page_counter_init(&memcg->memsw, &parent->memsw); 5295 page_counter_init(&memcg->kmem, &parent->kmem); 5296 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5297 } else { 5298 page_counter_init(&memcg->memory, NULL); 5299 page_counter_init(&memcg->swap, NULL); 5300 page_counter_init(&memcg->memsw, NULL); 5301 page_counter_init(&memcg->kmem, NULL); 5302 page_counter_init(&memcg->tcpmem, NULL); 5303 /* 5304 * Deeper hierachy with use_hierarchy == false doesn't make 5305 * much sense so let cgroup subsystem know about this 5306 * unfortunate state in our controller. 5307 */ 5308 if (parent != root_mem_cgroup) 5309 memory_cgrp_subsys.broken_hierarchy = true; 5310 } 5311 5312 /* The following stuff does not apply to the root */ 5313 if (!parent) { 5314 root_mem_cgroup = memcg; 5315 return &memcg->css; 5316 } 5317 5318 error = memcg_online_kmem(memcg); 5319 if (error) 5320 goto fail; 5321 5322 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5323 static_branch_inc(&memcg_sockets_enabled_key); 5324 5325 return &memcg->css; 5326 fail: 5327 mem_cgroup_id_remove(memcg); 5328 mem_cgroup_free(memcg); 5329 return ERR_PTR(error); 5330 } 5331 5332 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5333 { 5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5335 5336 /* 5337 * A memcg must be visible for memcg_expand_shrinker_maps() 5338 * by the time the maps are allocated. So, we allocate maps 5339 * here, when for_each_mem_cgroup() can't skip it. 5340 */ 5341 if (memcg_alloc_shrinker_maps(memcg)) { 5342 mem_cgroup_id_remove(memcg); 5343 return -ENOMEM; 5344 } 5345 5346 /* Online state pins memcg ID, memcg ID pins CSS */ 5347 refcount_set(&memcg->id.ref, 1); 5348 css_get(css); 5349 return 0; 5350 } 5351 5352 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5353 { 5354 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5355 struct mem_cgroup_event *event, *tmp; 5356 5357 /* 5358 * Unregister events and notify userspace. 5359 * Notify userspace about cgroup removing only after rmdir of cgroup 5360 * directory to avoid race between userspace and kernelspace. 5361 */ 5362 spin_lock(&memcg->event_list_lock); 5363 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5364 list_del_init(&event->list); 5365 schedule_work(&event->remove); 5366 } 5367 spin_unlock(&memcg->event_list_lock); 5368 5369 page_counter_set_min(&memcg->memory, 0); 5370 page_counter_set_low(&memcg->memory, 0); 5371 5372 memcg_offline_kmem(memcg); 5373 wb_memcg_offline(memcg); 5374 5375 drain_all_stock(memcg); 5376 5377 mem_cgroup_id_put(memcg); 5378 } 5379 5380 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5381 { 5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5383 5384 invalidate_reclaim_iterators(memcg); 5385 } 5386 5387 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5388 { 5389 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5390 int __maybe_unused i; 5391 5392 #ifdef CONFIG_CGROUP_WRITEBACK 5393 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5394 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5395 #endif 5396 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5397 static_branch_dec(&memcg_sockets_enabled_key); 5398 5399 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5400 static_branch_dec(&memcg_sockets_enabled_key); 5401 5402 vmpressure_cleanup(&memcg->vmpressure); 5403 cancel_work_sync(&memcg->high_work); 5404 mem_cgroup_remove_from_trees(memcg); 5405 memcg_free_shrinker_maps(memcg); 5406 memcg_free_kmem(memcg); 5407 mem_cgroup_free(memcg); 5408 } 5409 5410 /** 5411 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5412 * @css: the target css 5413 * 5414 * Reset the states of the mem_cgroup associated with @css. This is 5415 * invoked when the userland requests disabling on the default hierarchy 5416 * but the memcg is pinned through dependency. The memcg should stop 5417 * applying policies and should revert to the vanilla state as it may be 5418 * made visible again. 5419 * 5420 * The current implementation only resets the essential configurations. 5421 * This needs to be expanded to cover all the visible parts. 5422 */ 5423 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5424 { 5425 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5426 5427 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5428 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5429 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5430 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5431 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5432 page_counter_set_min(&memcg->memory, 0); 5433 page_counter_set_low(&memcg->memory, 0); 5434 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5435 memcg->soft_limit = PAGE_COUNTER_MAX; 5436 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5437 memcg_wb_domain_size_changed(memcg); 5438 } 5439 5440 #ifdef CONFIG_MMU 5441 /* Handlers for move charge at task migration. */ 5442 static int mem_cgroup_do_precharge(unsigned long count) 5443 { 5444 int ret; 5445 5446 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5447 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5448 if (!ret) { 5449 mc.precharge += count; 5450 return ret; 5451 } 5452 5453 /* Try charges one by one with reclaim, but do not retry */ 5454 while (count--) { 5455 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5456 if (ret) 5457 return ret; 5458 mc.precharge++; 5459 cond_resched(); 5460 } 5461 return 0; 5462 } 5463 5464 union mc_target { 5465 struct page *page; 5466 swp_entry_t ent; 5467 }; 5468 5469 enum mc_target_type { 5470 MC_TARGET_NONE = 0, 5471 MC_TARGET_PAGE, 5472 MC_TARGET_SWAP, 5473 MC_TARGET_DEVICE, 5474 }; 5475 5476 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5477 unsigned long addr, pte_t ptent) 5478 { 5479 struct page *page = vm_normal_page(vma, addr, ptent); 5480 5481 if (!page || !page_mapped(page)) 5482 return NULL; 5483 if (PageAnon(page)) { 5484 if (!(mc.flags & MOVE_ANON)) 5485 return NULL; 5486 } else { 5487 if (!(mc.flags & MOVE_FILE)) 5488 return NULL; 5489 } 5490 if (!get_page_unless_zero(page)) 5491 return NULL; 5492 5493 return page; 5494 } 5495 5496 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5497 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5498 pte_t ptent, swp_entry_t *entry) 5499 { 5500 struct page *page = NULL; 5501 swp_entry_t ent = pte_to_swp_entry(ptent); 5502 5503 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5504 return NULL; 5505 5506 /* 5507 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5508 * a device and because they are not accessible by CPU they are store 5509 * as special swap entry in the CPU page table. 5510 */ 5511 if (is_device_private_entry(ent)) { 5512 page = device_private_entry_to_page(ent); 5513 /* 5514 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5515 * a refcount of 1 when free (unlike normal page) 5516 */ 5517 if (!page_ref_add_unless(page, 1, 1)) 5518 return NULL; 5519 return page; 5520 } 5521 5522 /* 5523 * Because lookup_swap_cache() updates some statistics counter, 5524 * we call find_get_page() with swapper_space directly. 5525 */ 5526 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5527 entry->val = ent.val; 5528 5529 return page; 5530 } 5531 #else 5532 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5533 pte_t ptent, swp_entry_t *entry) 5534 { 5535 return NULL; 5536 } 5537 #endif 5538 5539 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5540 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5541 { 5542 struct page *page = NULL; 5543 struct address_space *mapping; 5544 pgoff_t pgoff; 5545 5546 if (!vma->vm_file) /* anonymous vma */ 5547 return NULL; 5548 if (!(mc.flags & MOVE_FILE)) 5549 return NULL; 5550 5551 mapping = vma->vm_file->f_mapping; 5552 pgoff = linear_page_index(vma, addr); 5553 5554 /* page is moved even if it's not RSS of this task(page-faulted). */ 5555 #ifdef CONFIG_SWAP 5556 /* shmem/tmpfs may report page out on swap: account for that too. */ 5557 if (shmem_mapping(mapping)) { 5558 page = find_get_entry(mapping, pgoff); 5559 if (xa_is_value(page)) { 5560 swp_entry_t swp = radix_to_swp_entry(page); 5561 *entry = swp; 5562 page = find_get_page(swap_address_space(swp), 5563 swp_offset(swp)); 5564 } 5565 } else 5566 page = find_get_page(mapping, pgoff); 5567 #else 5568 page = find_get_page(mapping, pgoff); 5569 #endif 5570 return page; 5571 } 5572 5573 /** 5574 * mem_cgroup_move_account - move account of the page 5575 * @page: the page 5576 * @compound: charge the page as compound or small page 5577 * @from: mem_cgroup which the page is moved from. 5578 * @to: mem_cgroup which the page is moved to. @from != @to. 5579 * 5580 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5581 * 5582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5583 * from old cgroup. 5584 */ 5585 static int mem_cgroup_move_account(struct page *page, 5586 bool compound, 5587 struct mem_cgroup *from, 5588 struct mem_cgroup *to) 5589 { 5590 struct lruvec *from_vec, *to_vec; 5591 struct pglist_data *pgdat; 5592 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5593 int ret; 5594 5595 VM_BUG_ON(from == to); 5596 VM_BUG_ON_PAGE(PageLRU(page), page); 5597 VM_BUG_ON(compound && !PageTransHuge(page)); 5598 5599 /* 5600 * Prevent mem_cgroup_migrate() from looking at 5601 * page->mem_cgroup of its source page while we change it. 5602 */ 5603 ret = -EBUSY; 5604 if (!trylock_page(page)) 5605 goto out; 5606 5607 ret = -EINVAL; 5608 if (page->mem_cgroup != from) 5609 goto out_unlock; 5610 5611 pgdat = page_pgdat(page); 5612 from_vec = mem_cgroup_lruvec(from, pgdat); 5613 to_vec = mem_cgroup_lruvec(to, pgdat); 5614 5615 lock_page_memcg(page); 5616 5617 if (PageAnon(page)) { 5618 if (page_mapped(page)) { 5619 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5620 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5621 if (PageTransHuge(page)) { 5622 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5623 -nr_pages); 5624 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5625 nr_pages); 5626 } 5627 5628 } 5629 } else { 5630 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5631 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5632 5633 if (PageSwapBacked(page)) { 5634 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5635 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5636 } 5637 5638 if (page_mapped(page)) { 5639 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5640 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5641 } 5642 5643 if (PageDirty(page)) { 5644 struct address_space *mapping = page_mapping(page); 5645 5646 if (mapping_cap_account_dirty(mapping)) { 5647 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5648 -nr_pages); 5649 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5650 nr_pages); 5651 } 5652 } 5653 } 5654 5655 if (PageWriteback(page)) { 5656 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5657 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5658 } 5659 5660 /* 5661 * All state has been migrated, let's switch to the new memcg. 5662 * 5663 * It is safe to change page->mem_cgroup here because the page 5664 * is referenced, charged, isolated, and locked: we can't race 5665 * with (un)charging, migration, LRU putback, or anything else 5666 * that would rely on a stable page->mem_cgroup. 5667 * 5668 * Note that lock_page_memcg is a memcg lock, not a page lock, 5669 * to save space. As soon as we switch page->mem_cgroup to a 5670 * new memcg that isn't locked, the above state can change 5671 * concurrently again. Make sure we're truly done with it. 5672 */ 5673 smp_mb(); 5674 5675 css_get(&to->css); 5676 css_put(&from->css); 5677 5678 page->mem_cgroup = to; 5679 5680 __unlock_page_memcg(from); 5681 5682 ret = 0; 5683 5684 local_irq_disable(); 5685 mem_cgroup_charge_statistics(to, page, nr_pages); 5686 memcg_check_events(to, page); 5687 mem_cgroup_charge_statistics(from, page, -nr_pages); 5688 memcg_check_events(from, page); 5689 local_irq_enable(); 5690 out_unlock: 5691 unlock_page(page); 5692 out: 5693 return ret; 5694 } 5695 5696 /** 5697 * get_mctgt_type - get target type of moving charge 5698 * @vma: the vma the pte to be checked belongs 5699 * @addr: the address corresponding to the pte to be checked 5700 * @ptent: the pte to be checked 5701 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5702 * 5703 * Returns 5704 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5705 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5706 * move charge. if @target is not NULL, the page is stored in target->page 5707 * with extra refcnt got(Callers should handle it). 5708 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5709 * target for charge migration. if @target is not NULL, the entry is stored 5710 * in target->ent. 5711 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5712 * (so ZONE_DEVICE page and thus not on the lru). 5713 * For now we such page is charge like a regular page would be as for all 5714 * intent and purposes it is just special memory taking the place of a 5715 * regular page. 5716 * 5717 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5718 * 5719 * Called with pte lock held. 5720 */ 5721 5722 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5723 unsigned long addr, pte_t ptent, union mc_target *target) 5724 { 5725 struct page *page = NULL; 5726 enum mc_target_type ret = MC_TARGET_NONE; 5727 swp_entry_t ent = { .val = 0 }; 5728 5729 if (pte_present(ptent)) 5730 page = mc_handle_present_pte(vma, addr, ptent); 5731 else if (is_swap_pte(ptent)) 5732 page = mc_handle_swap_pte(vma, ptent, &ent); 5733 else if (pte_none(ptent)) 5734 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5735 5736 if (!page && !ent.val) 5737 return ret; 5738 if (page) { 5739 /* 5740 * Do only loose check w/o serialization. 5741 * mem_cgroup_move_account() checks the page is valid or 5742 * not under LRU exclusion. 5743 */ 5744 if (page->mem_cgroup == mc.from) { 5745 ret = MC_TARGET_PAGE; 5746 if (is_device_private_page(page)) 5747 ret = MC_TARGET_DEVICE; 5748 if (target) 5749 target->page = page; 5750 } 5751 if (!ret || !target) 5752 put_page(page); 5753 } 5754 /* 5755 * There is a swap entry and a page doesn't exist or isn't charged. 5756 * But we cannot move a tail-page in a THP. 5757 */ 5758 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5759 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5760 ret = MC_TARGET_SWAP; 5761 if (target) 5762 target->ent = ent; 5763 } 5764 return ret; 5765 } 5766 5767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5768 /* 5769 * We don't consider PMD mapped swapping or file mapped pages because THP does 5770 * not support them for now. 5771 * Caller should make sure that pmd_trans_huge(pmd) is true. 5772 */ 5773 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5774 unsigned long addr, pmd_t pmd, union mc_target *target) 5775 { 5776 struct page *page = NULL; 5777 enum mc_target_type ret = MC_TARGET_NONE; 5778 5779 if (unlikely(is_swap_pmd(pmd))) { 5780 VM_BUG_ON(thp_migration_supported() && 5781 !is_pmd_migration_entry(pmd)); 5782 return ret; 5783 } 5784 page = pmd_page(pmd); 5785 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5786 if (!(mc.flags & MOVE_ANON)) 5787 return ret; 5788 if (page->mem_cgroup == mc.from) { 5789 ret = MC_TARGET_PAGE; 5790 if (target) { 5791 get_page(page); 5792 target->page = page; 5793 } 5794 } 5795 return ret; 5796 } 5797 #else 5798 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5799 unsigned long addr, pmd_t pmd, union mc_target *target) 5800 { 5801 return MC_TARGET_NONE; 5802 } 5803 #endif 5804 5805 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5806 unsigned long addr, unsigned long end, 5807 struct mm_walk *walk) 5808 { 5809 struct vm_area_struct *vma = walk->vma; 5810 pte_t *pte; 5811 spinlock_t *ptl; 5812 5813 ptl = pmd_trans_huge_lock(pmd, vma); 5814 if (ptl) { 5815 /* 5816 * Note their can not be MC_TARGET_DEVICE for now as we do not 5817 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5818 * this might change. 5819 */ 5820 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5821 mc.precharge += HPAGE_PMD_NR; 5822 spin_unlock(ptl); 5823 return 0; 5824 } 5825 5826 if (pmd_trans_unstable(pmd)) 5827 return 0; 5828 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5829 for (; addr != end; pte++, addr += PAGE_SIZE) 5830 if (get_mctgt_type(vma, addr, *pte, NULL)) 5831 mc.precharge++; /* increment precharge temporarily */ 5832 pte_unmap_unlock(pte - 1, ptl); 5833 cond_resched(); 5834 5835 return 0; 5836 } 5837 5838 static const struct mm_walk_ops precharge_walk_ops = { 5839 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5840 }; 5841 5842 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5843 { 5844 unsigned long precharge; 5845 5846 mmap_read_lock(mm); 5847 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5848 mmap_read_unlock(mm); 5849 5850 precharge = mc.precharge; 5851 mc.precharge = 0; 5852 5853 return precharge; 5854 } 5855 5856 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5857 { 5858 unsigned long precharge = mem_cgroup_count_precharge(mm); 5859 5860 VM_BUG_ON(mc.moving_task); 5861 mc.moving_task = current; 5862 return mem_cgroup_do_precharge(precharge); 5863 } 5864 5865 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5866 static void __mem_cgroup_clear_mc(void) 5867 { 5868 struct mem_cgroup *from = mc.from; 5869 struct mem_cgroup *to = mc.to; 5870 5871 /* we must uncharge all the leftover precharges from mc.to */ 5872 if (mc.precharge) { 5873 cancel_charge(mc.to, mc.precharge); 5874 mc.precharge = 0; 5875 } 5876 /* 5877 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5878 * we must uncharge here. 5879 */ 5880 if (mc.moved_charge) { 5881 cancel_charge(mc.from, mc.moved_charge); 5882 mc.moved_charge = 0; 5883 } 5884 /* we must fixup refcnts and charges */ 5885 if (mc.moved_swap) { 5886 /* uncharge swap account from the old cgroup */ 5887 if (!mem_cgroup_is_root(mc.from)) 5888 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5889 5890 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5891 5892 /* 5893 * we charged both to->memory and to->memsw, so we 5894 * should uncharge to->memory. 5895 */ 5896 if (!mem_cgroup_is_root(mc.to)) 5897 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5898 5899 mc.moved_swap = 0; 5900 } 5901 memcg_oom_recover(from); 5902 memcg_oom_recover(to); 5903 wake_up_all(&mc.waitq); 5904 } 5905 5906 static void mem_cgroup_clear_mc(void) 5907 { 5908 struct mm_struct *mm = mc.mm; 5909 5910 /* 5911 * we must clear moving_task before waking up waiters at the end of 5912 * task migration. 5913 */ 5914 mc.moving_task = NULL; 5915 __mem_cgroup_clear_mc(); 5916 spin_lock(&mc.lock); 5917 mc.from = NULL; 5918 mc.to = NULL; 5919 mc.mm = NULL; 5920 spin_unlock(&mc.lock); 5921 5922 mmput(mm); 5923 } 5924 5925 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5926 { 5927 struct cgroup_subsys_state *css; 5928 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5929 struct mem_cgroup *from; 5930 struct task_struct *leader, *p; 5931 struct mm_struct *mm; 5932 unsigned long move_flags; 5933 int ret = 0; 5934 5935 /* charge immigration isn't supported on the default hierarchy */ 5936 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5937 return 0; 5938 5939 /* 5940 * Multi-process migrations only happen on the default hierarchy 5941 * where charge immigration is not used. Perform charge 5942 * immigration if @tset contains a leader and whine if there are 5943 * multiple. 5944 */ 5945 p = NULL; 5946 cgroup_taskset_for_each_leader(leader, css, tset) { 5947 WARN_ON_ONCE(p); 5948 p = leader; 5949 memcg = mem_cgroup_from_css(css); 5950 } 5951 if (!p) 5952 return 0; 5953 5954 /* 5955 * We are now commited to this value whatever it is. Changes in this 5956 * tunable will only affect upcoming migrations, not the current one. 5957 * So we need to save it, and keep it going. 5958 */ 5959 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5960 if (!move_flags) 5961 return 0; 5962 5963 from = mem_cgroup_from_task(p); 5964 5965 VM_BUG_ON(from == memcg); 5966 5967 mm = get_task_mm(p); 5968 if (!mm) 5969 return 0; 5970 /* We move charges only when we move a owner of the mm */ 5971 if (mm->owner == p) { 5972 VM_BUG_ON(mc.from); 5973 VM_BUG_ON(mc.to); 5974 VM_BUG_ON(mc.precharge); 5975 VM_BUG_ON(mc.moved_charge); 5976 VM_BUG_ON(mc.moved_swap); 5977 5978 spin_lock(&mc.lock); 5979 mc.mm = mm; 5980 mc.from = from; 5981 mc.to = memcg; 5982 mc.flags = move_flags; 5983 spin_unlock(&mc.lock); 5984 /* We set mc.moving_task later */ 5985 5986 ret = mem_cgroup_precharge_mc(mm); 5987 if (ret) 5988 mem_cgroup_clear_mc(); 5989 } else { 5990 mmput(mm); 5991 } 5992 return ret; 5993 } 5994 5995 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5996 { 5997 if (mc.to) 5998 mem_cgroup_clear_mc(); 5999 } 6000 6001 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6002 unsigned long addr, unsigned long end, 6003 struct mm_walk *walk) 6004 { 6005 int ret = 0; 6006 struct vm_area_struct *vma = walk->vma; 6007 pte_t *pte; 6008 spinlock_t *ptl; 6009 enum mc_target_type target_type; 6010 union mc_target target; 6011 struct page *page; 6012 6013 ptl = pmd_trans_huge_lock(pmd, vma); 6014 if (ptl) { 6015 if (mc.precharge < HPAGE_PMD_NR) { 6016 spin_unlock(ptl); 6017 return 0; 6018 } 6019 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6020 if (target_type == MC_TARGET_PAGE) { 6021 page = target.page; 6022 if (!isolate_lru_page(page)) { 6023 if (!mem_cgroup_move_account(page, true, 6024 mc.from, mc.to)) { 6025 mc.precharge -= HPAGE_PMD_NR; 6026 mc.moved_charge += HPAGE_PMD_NR; 6027 } 6028 putback_lru_page(page); 6029 } 6030 put_page(page); 6031 } else if (target_type == MC_TARGET_DEVICE) { 6032 page = target.page; 6033 if (!mem_cgroup_move_account(page, true, 6034 mc.from, mc.to)) { 6035 mc.precharge -= HPAGE_PMD_NR; 6036 mc.moved_charge += HPAGE_PMD_NR; 6037 } 6038 put_page(page); 6039 } 6040 spin_unlock(ptl); 6041 return 0; 6042 } 6043 6044 if (pmd_trans_unstable(pmd)) 6045 return 0; 6046 retry: 6047 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6048 for (; addr != end; addr += PAGE_SIZE) { 6049 pte_t ptent = *(pte++); 6050 bool device = false; 6051 swp_entry_t ent; 6052 6053 if (!mc.precharge) 6054 break; 6055 6056 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6057 case MC_TARGET_DEVICE: 6058 device = true; 6059 fallthrough; 6060 case MC_TARGET_PAGE: 6061 page = target.page; 6062 /* 6063 * We can have a part of the split pmd here. Moving it 6064 * can be done but it would be too convoluted so simply 6065 * ignore such a partial THP and keep it in original 6066 * memcg. There should be somebody mapping the head. 6067 */ 6068 if (PageTransCompound(page)) 6069 goto put; 6070 if (!device && isolate_lru_page(page)) 6071 goto put; 6072 if (!mem_cgroup_move_account(page, false, 6073 mc.from, mc.to)) { 6074 mc.precharge--; 6075 /* we uncharge from mc.from later. */ 6076 mc.moved_charge++; 6077 } 6078 if (!device) 6079 putback_lru_page(page); 6080 put: /* get_mctgt_type() gets the page */ 6081 put_page(page); 6082 break; 6083 case MC_TARGET_SWAP: 6084 ent = target.ent; 6085 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6086 mc.precharge--; 6087 mem_cgroup_id_get_many(mc.to, 1); 6088 /* we fixup other refcnts and charges later. */ 6089 mc.moved_swap++; 6090 } 6091 break; 6092 default: 6093 break; 6094 } 6095 } 6096 pte_unmap_unlock(pte - 1, ptl); 6097 cond_resched(); 6098 6099 if (addr != end) { 6100 /* 6101 * We have consumed all precharges we got in can_attach(). 6102 * We try charge one by one, but don't do any additional 6103 * charges to mc.to if we have failed in charge once in attach() 6104 * phase. 6105 */ 6106 ret = mem_cgroup_do_precharge(1); 6107 if (!ret) 6108 goto retry; 6109 } 6110 6111 return ret; 6112 } 6113 6114 static const struct mm_walk_ops charge_walk_ops = { 6115 .pmd_entry = mem_cgroup_move_charge_pte_range, 6116 }; 6117 6118 static void mem_cgroup_move_charge(void) 6119 { 6120 lru_add_drain_all(); 6121 /* 6122 * Signal lock_page_memcg() to take the memcg's move_lock 6123 * while we're moving its pages to another memcg. Then wait 6124 * for already started RCU-only updates to finish. 6125 */ 6126 atomic_inc(&mc.from->moving_account); 6127 synchronize_rcu(); 6128 retry: 6129 if (unlikely(!mmap_read_trylock(mc.mm))) { 6130 /* 6131 * Someone who are holding the mmap_lock might be waiting in 6132 * waitq. So we cancel all extra charges, wake up all waiters, 6133 * and retry. Because we cancel precharges, we might not be able 6134 * to move enough charges, but moving charge is a best-effort 6135 * feature anyway, so it wouldn't be a big problem. 6136 */ 6137 __mem_cgroup_clear_mc(); 6138 cond_resched(); 6139 goto retry; 6140 } 6141 /* 6142 * When we have consumed all precharges and failed in doing 6143 * additional charge, the page walk just aborts. 6144 */ 6145 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6146 NULL); 6147 6148 mmap_read_unlock(mc.mm); 6149 atomic_dec(&mc.from->moving_account); 6150 } 6151 6152 static void mem_cgroup_move_task(void) 6153 { 6154 if (mc.to) { 6155 mem_cgroup_move_charge(); 6156 mem_cgroup_clear_mc(); 6157 } 6158 } 6159 #else /* !CONFIG_MMU */ 6160 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6161 { 6162 return 0; 6163 } 6164 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6165 { 6166 } 6167 static void mem_cgroup_move_task(void) 6168 { 6169 } 6170 #endif 6171 6172 /* 6173 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6174 * to verify whether we're attached to the default hierarchy on each mount 6175 * attempt. 6176 */ 6177 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6178 { 6179 /* 6180 * use_hierarchy is forced on the default hierarchy. cgroup core 6181 * guarantees that @root doesn't have any children, so turning it 6182 * on for the root memcg is enough. 6183 */ 6184 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6185 root_mem_cgroup->use_hierarchy = true; 6186 else 6187 root_mem_cgroup->use_hierarchy = false; 6188 } 6189 6190 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6191 { 6192 if (value == PAGE_COUNTER_MAX) 6193 seq_puts(m, "max\n"); 6194 else 6195 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6196 6197 return 0; 6198 } 6199 6200 static u64 memory_current_read(struct cgroup_subsys_state *css, 6201 struct cftype *cft) 6202 { 6203 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6204 6205 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6206 } 6207 6208 static int memory_min_show(struct seq_file *m, void *v) 6209 { 6210 return seq_puts_memcg_tunable(m, 6211 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6212 } 6213 6214 static ssize_t memory_min_write(struct kernfs_open_file *of, 6215 char *buf, size_t nbytes, loff_t off) 6216 { 6217 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6218 unsigned long min; 6219 int err; 6220 6221 buf = strstrip(buf); 6222 err = page_counter_memparse(buf, "max", &min); 6223 if (err) 6224 return err; 6225 6226 page_counter_set_min(&memcg->memory, min); 6227 6228 return nbytes; 6229 } 6230 6231 static int memory_low_show(struct seq_file *m, void *v) 6232 { 6233 return seq_puts_memcg_tunable(m, 6234 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6235 } 6236 6237 static ssize_t memory_low_write(struct kernfs_open_file *of, 6238 char *buf, size_t nbytes, loff_t off) 6239 { 6240 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6241 unsigned long low; 6242 int err; 6243 6244 buf = strstrip(buf); 6245 err = page_counter_memparse(buf, "max", &low); 6246 if (err) 6247 return err; 6248 6249 page_counter_set_low(&memcg->memory, low); 6250 6251 return nbytes; 6252 } 6253 6254 static int memory_high_show(struct seq_file *m, void *v) 6255 { 6256 return seq_puts_memcg_tunable(m, 6257 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6258 } 6259 6260 static ssize_t memory_high_write(struct kernfs_open_file *of, 6261 char *buf, size_t nbytes, loff_t off) 6262 { 6263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6264 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6265 bool drained = false; 6266 unsigned long high; 6267 int err; 6268 6269 buf = strstrip(buf); 6270 err = page_counter_memparse(buf, "max", &high); 6271 if (err) 6272 return err; 6273 6274 for (;;) { 6275 unsigned long nr_pages = page_counter_read(&memcg->memory); 6276 unsigned long reclaimed; 6277 6278 if (nr_pages <= high) 6279 break; 6280 6281 if (signal_pending(current)) 6282 break; 6283 6284 if (!drained) { 6285 drain_all_stock(memcg); 6286 drained = true; 6287 continue; 6288 } 6289 6290 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6291 GFP_KERNEL, true); 6292 6293 if (!reclaimed && !nr_retries--) 6294 break; 6295 } 6296 6297 page_counter_set_high(&memcg->memory, high); 6298 6299 memcg_wb_domain_size_changed(memcg); 6300 6301 return nbytes; 6302 } 6303 6304 static int memory_max_show(struct seq_file *m, void *v) 6305 { 6306 return seq_puts_memcg_tunable(m, 6307 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6308 } 6309 6310 static ssize_t memory_max_write(struct kernfs_open_file *of, 6311 char *buf, size_t nbytes, loff_t off) 6312 { 6313 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6314 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6315 bool drained = false; 6316 unsigned long max; 6317 int err; 6318 6319 buf = strstrip(buf); 6320 err = page_counter_memparse(buf, "max", &max); 6321 if (err) 6322 return err; 6323 6324 xchg(&memcg->memory.max, max); 6325 6326 for (;;) { 6327 unsigned long nr_pages = page_counter_read(&memcg->memory); 6328 6329 if (nr_pages <= max) 6330 break; 6331 6332 if (signal_pending(current)) 6333 break; 6334 6335 if (!drained) { 6336 drain_all_stock(memcg); 6337 drained = true; 6338 continue; 6339 } 6340 6341 if (nr_reclaims) { 6342 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6343 GFP_KERNEL, true)) 6344 nr_reclaims--; 6345 continue; 6346 } 6347 6348 memcg_memory_event(memcg, MEMCG_OOM); 6349 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6350 break; 6351 } 6352 6353 memcg_wb_domain_size_changed(memcg); 6354 return nbytes; 6355 } 6356 6357 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6358 { 6359 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6360 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6361 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6362 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6363 seq_printf(m, "oom_kill %lu\n", 6364 atomic_long_read(&events[MEMCG_OOM_KILL])); 6365 } 6366 6367 static int memory_events_show(struct seq_file *m, void *v) 6368 { 6369 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6370 6371 __memory_events_show(m, memcg->memory_events); 6372 return 0; 6373 } 6374 6375 static int memory_events_local_show(struct seq_file *m, void *v) 6376 { 6377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6378 6379 __memory_events_show(m, memcg->memory_events_local); 6380 return 0; 6381 } 6382 6383 static int memory_stat_show(struct seq_file *m, void *v) 6384 { 6385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6386 char *buf; 6387 6388 buf = memory_stat_format(memcg); 6389 if (!buf) 6390 return -ENOMEM; 6391 seq_puts(m, buf); 6392 kfree(buf); 6393 return 0; 6394 } 6395 6396 static int memory_oom_group_show(struct seq_file *m, void *v) 6397 { 6398 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6399 6400 seq_printf(m, "%d\n", memcg->oom_group); 6401 6402 return 0; 6403 } 6404 6405 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6406 char *buf, size_t nbytes, loff_t off) 6407 { 6408 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6409 int ret, oom_group; 6410 6411 buf = strstrip(buf); 6412 if (!buf) 6413 return -EINVAL; 6414 6415 ret = kstrtoint(buf, 0, &oom_group); 6416 if (ret) 6417 return ret; 6418 6419 if (oom_group != 0 && oom_group != 1) 6420 return -EINVAL; 6421 6422 memcg->oom_group = oom_group; 6423 6424 return nbytes; 6425 } 6426 6427 static struct cftype memory_files[] = { 6428 { 6429 .name = "current", 6430 .flags = CFTYPE_NOT_ON_ROOT, 6431 .read_u64 = memory_current_read, 6432 }, 6433 { 6434 .name = "min", 6435 .flags = CFTYPE_NOT_ON_ROOT, 6436 .seq_show = memory_min_show, 6437 .write = memory_min_write, 6438 }, 6439 { 6440 .name = "low", 6441 .flags = CFTYPE_NOT_ON_ROOT, 6442 .seq_show = memory_low_show, 6443 .write = memory_low_write, 6444 }, 6445 { 6446 .name = "high", 6447 .flags = CFTYPE_NOT_ON_ROOT, 6448 .seq_show = memory_high_show, 6449 .write = memory_high_write, 6450 }, 6451 { 6452 .name = "max", 6453 .flags = CFTYPE_NOT_ON_ROOT, 6454 .seq_show = memory_max_show, 6455 .write = memory_max_write, 6456 }, 6457 { 6458 .name = "events", 6459 .flags = CFTYPE_NOT_ON_ROOT, 6460 .file_offset = offsetof(struct mem_cgroup, events_file), 6461 .seq_show = memory_events_show, 6462 }, 6463 { 6464 .name = "events.local", 6465 .flags = CFTYPE_NOT_ON_ROOT, 6466 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6467 .seq_show = memory_events_local_show, 6468 }, 6469 { 6470 .name = "stat", 6471 .seq_show = memory_stat_show, 6472 }, 6473 { 6474 .name = "oom.group", 6475 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6476 .seq_show = memory_oom_group_show, 6477 .write = memory_oom_group_write, 6478 }, 6479 { } /* terminate */ 6480 }; 6481 6482 struct cgroup_subsys memory_cgrp_subsys = { 6483 .css_alloc = mem_cgroup_css_alloc, 6484 .css_online = mem_cgroup_css_online, 6485 .css_offline = mem_cgroup_css_offline, 6486 .css_released = mem_cgroup_css_released, 6487 .css_free = mem_cgroup_css_free, 6488 .css_reset = mem_cgroup_css_reset, 6489 .can_attach = mem_cgroup_can_attach, 6490 .cancel_attach = mem_cgroup_cancel_attach, 6491 .post_attach = mem_cgroup_move_task, 6492 .bind = mem_cgroup_bind, 6493 .dfl_cftypes = memory_files, 6494 .legacy_cftypes = mem_cgroup_legacy_files, 6495 .early_init = 0, 6496 }; 6497 6498 /* 6499 * This function calculates an individual cgroup's effective 6500 * protection which is derived from its own memory.min/low, its 6501 * parent's and siblings' settings, as well as the actual memory 6502 * distribution in the tree. 6503 * 6504 * The following rules apply to the effective protection values: 6505 * 6506 * 1. At the first level of reclaim, effective protection is equal to 6507 * the declared protection in memory.min and memory.low. 6508 * 6509 * 2. To enable safe delegation of the protection configuration, at 6510 * subsequent levels the effective protection is capped to the 6511 * parent's effective protection. 6512 * 6513 * 3. To make complex and dynamic subtrees easier to configure, the 6514 * user is allowed to overcommit the declared protection at a given 6515 * level. If that is the case, the parent's effective protection is 6516 * distributed to the children in proportion to how much protection 6517 * they have declared and how much of it they are utilizing. 6518 * 6519 * This makes distribution proportional, but also work-conserving: 6520 * if one cgroup claims much more protection than it uses memory, 6521 * the unused remainder is available to its siblings. 6522 * 6523 * 4. Conversely, when the declared protection is undercommitted at a 6524 * given level, the distribution of the larger parental protection 6525 * budget is NOT proportional. A cgroup's protection from a sibling 6526 * is capped to its own memory.min/low setting. 6527 * 6528 * 5. However, to allow protecting recursive subtrees from each other 6529 * without having to declare each individual cgroup's fixed share 6530 * of the ancestor's claim to protection, any unutilized - 6531 * "floating" - protection from up the tree is distributed in 6532 * proportion to each cgroup's *usage*. This makes the protection 6533 * neutral wrt sibling cgroups and lets them compete freely over 6534 * the shared parental protection budget, but it protects the 6535 * subtree as a whole from neighboring subtrees. 6536 * 6537 * Note that 4. and 5. are not in conflict: 4. is about protecting 6538 * against immediate siblings whereas 5. is about protecting against 6539 * neighboring subtrees. 6540 */ 6541 static unsigned long effective_protection(unsigned long usage, 6542 unsigned long parent_usage, 6543 unsigned long setting, 6544 unsigned long parent_effective, 6545 unsigned long siblings_protected) 6546 { 6547 unsigned long protected; 6548 unsigned long ep; 6549 6550 protected = min(usage, setting); 6551 /* 6552 * If all cgroups at this level combined claim and use more 6553 * protection then what the parent affords them, distribute 6554 * shares in proportion to utilization. 6555 * 6556 * We are using actual utilization rather than the statically 6557 * claimed protection in order to be work-conserving: claimed 6558 * but unused protection is available to siblings that would 6559 * otherwise get a smaller chunk than what they claimed. 6560 */ 6561 if (siblings_protected > parent_effective) 6562 return protected * parent_effective / siblings_protected; 6563 6564 /* 6565 * Ok, utilized protection of all children is within what the 6566 * parent affords them, so we know whatever this child claims 6567 * and utilizes is effectively protected. 6568 * 6569 * If there is unprotected usage beyond this value, reclaim 6570 * will apply pressure in proportion to that amount. 6571 * 6572 * If there is unutilized protection, the cgroup will be fully 6573 * shielded from reclaim, but we do return a smaller value for 6574 * protection than what the group could enjoy in theory. This 6575 * is okay. With the overcommit distribution above, effective 6576 * protection is always dependent on how memory is actually 6577 * consumed among the siblings anyway. 6578 */ 6579 ep = protected; 6580 6581 /* 6582 * If the children aren't claiming (all of) the protection 6583 * afforded to them by the parent, distribute the remainder in 6584 * proportion to the (unprotected) memory of each cgroup. That 6585 * way, cgroups that aren't explicitly prioritized wrt each 6586 * other compete freely over the allowance, but they are 6587 * collectively protected from neighboring trees. 6588 * 6589 * We're using unprotected memory for the weight so that if 6590 * some cgroups DO claim explicit protection, we don't protect 6591 * the same bytes twice. 6592 * 6593 * Check both usage and parent_usage against the respective 6594 * protected values. One should imply the other, but they 6595 * aren't read atomically - make sure the division is sane. 6596 */ 6597 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6598 return ep; 6599 if (parent_effective > siblings_protected && 6600 parent_usage > siblings_protected && 6601 usage > protected) { 6602 unsigned long unclaimed; 6603 6604 unclaimed = parent_effective - siblings_protected; 6605 unclaimed *= usage - protected; 6606 unclaimed /= parent_usage - siblings_protected; 6607 6608 ep += unclaimed; 6609 } 6610 6611 return ep; 6612 } 6613 6614 /** 6615 * mem_cgroup_protected - check if memory consumption is in the normal range 6616 * @root: the top ancestor of the sub-tree being checked 6617 * @memcg: the memory cgroup to check 6618 * 6619 * WARNING: This function is not stateless! It can only be used as part 6620 * of a top-down tree iteration, not for isolated queries. 6621 */ 6622 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6623 struct mem_cgroup *memcg) 6624 { 6625 unsigned long usage, parent_usage; 6626 struct mem_cgroup *parent; 6627 6628 if (mem_cgroup_disabled()) 6629 return; 6630 6631 if (!root) 6632 root = root_mem_cgroup; 6633 6634 /* 6635 * Effective values of the reclaim targets are ignored so they 6636 * can be stale. Have a look at mem_cgroup_protection for more 6637 * details. 6638 * TODO: calculation should be more robust so that we do not need 6639 * that special casing. 6640 */ 6641 if (memcg == root) 6642 return; 6643 6644 usage = page_counter_read(&memcg->memory); 6645 if (!usage) 6646 return; 6647 6648 parent = parent_mem_cgroup(memcg); 6649 /* No parent means a non-hierarchical mode on v1 memcg */ 6650 if (!parent) 6651 return; 6652 6653 if (parent == root) { 6654 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6655 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6656 return; 6657 } 6658 6659 parent_usage = page_counter_read(&parent->memory); 6660 6661 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6662 READ_ONCE(memcg->memory.min), 6663 READ_ONCE(parent->memory.emin), 6664 atomic_long_read(&parent->memory.children_min_usage))); 6665 6666 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6667 READ_ONCE(memcg->memory.low), 6668 READ_ONCE(parent->memory.elow), 6669 atomic_long_read(&parent->memory.children_low_usage))); 6670 } 6671 6672 /** 6673 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6674 * @page: page to charge 6675 * @mm: mm context of the victim 6676 * @gfp_mask: reclaim mode 6677 * 6678 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6679 * pages according to @gfp_mask if necessary. 6680 * 6681 * Returns 0 on success. Otherwise, an error code is returned. 6682 */ 6683 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6684 { 6685 unsigned int nr_pages = thp_nr_pages(page); 6686 struct mem_cgroup *memcg = NULL; 6687 int ret = 0; 6688 6689 if (mem_cgroup_disabled()) 6690 goto out; 6691 6692 if (PageSwapCache(page)) { 6693 swp_entry_t ent = { .val = page_private(page), }; 6694 unsigned short id; 6695 6696 /* 6697 * Every swap fault against a single page tries to charge the 6698 * page, bail as early as possible. shmem_unuse() encounters 6699 * already charged pages, too. page->mem_cgroup is protected 6700 * by the page lock, which serializes swap cache removal, which 6701 * in turn serializes uncharging. 6702 */ 6703 VM_BUG_ON_PAGE(!PageLocked(page), page); 6704 if (compound_head(page)->mem_cgroup) 6705 goto out; 6706 6707 id = lookup_swap_cgroup_id(ent); 6708 rcu_read_lock(); 6709 memcg = mem_cgroup_from_id(id); 6710 if (memcg && !css_tryget_online(&memcg->css)) 6711 memcg = NULL; 6712 rcu_read_unlock(); 6713 } 6714 6715 if (!memcg) 6716 memcg = get_mem_cgroup_from_mm(mm); 6717 6718 ret = try_charge(memcg, gfp_mask, nr_pages); 6719 if (ret) 6720 goto out_put; 6721 6722 css_get(&memcg->css); 6723 commit_charge(page, memcg); 6724 6725 local_irq_disable(); 6726 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6727 memcg_check_events(memcg, page); 6728 local_irq_enable(); 6729 6730 if (PageSwapCache(page)) { 6731 swp_entry_t entry = { .val = page_private(page) }; 6732 /* 6733 * The swap entry might not get freed for a long time, 6734 * let's not wait for it. The page already received a 6735 * memory+swap charge, drop the swap entry duplicate. 6736 */ 6737 mem_cgroup_uncharge_swap(entry, nr_pages); 6738 } 6739 6740 out_put: 6741 css_put(&memcg->css); 6742 out: 6743 return ret; 6744 } 6745 6746 struct uncharge_gather { 6747 struct mem_cgroup *memcg; 6748 unsigned long nr_pages; 6749 unsigned long pgpgout; 6750 unsigned long nr_kmem; 6751 struct page *dummy_page; 6752 }; 6753 6754 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6755 { 6756 memset(ug, 0, sizeof(*ug)); 6757 } 6758 6759 static void uncharge_batch(const struct uncharge_gather *ug) 6760 { 6761 unsigned long flags; 6762 6763 if (!mem_cgroup_is_root(ug->memcg)) { 6764 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6765 if (do_memsw_account()) 6766 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6767 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6768 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6769 memcg_oom_recover(ug->memcg); 6770 } 6771 6772 local_irq_save(flags); 6773 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6774 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6775 memcg_check_events(ug->memcg, ug->dummy_page); 6776 local_irq_restore(flags); 6777 } 6778 6779 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6780 { 6781 unsigned long nr_pages; 6782 6783 VM_BUG_ON_PAGE(PageLRU(page), page); 6784 6785 if (!page->mem_cgroup) 6786 return; 6787 6788 /* 6789 * Nobody should be changing or seriously looking at 6790 * page->mem_cgroup at this point, we have fully 6791 * exclusive access to the page. 6792 */ 6793 6794 if (ug->memcg != page->mem_cgroup) { 6795 if (ug->memcg) { 6796 uncharge_batch(ug); 6797 uncharge_gather_clear(ug); 6798 } 6799 ug->memcg = page->mem_cgroup; 6800 } 6801 6802 nr_pages = compound_nr(page); 6803 ug->nr_pages += nr_pages; 6804 6805 if (!PageKmemcg(page)) { 6806 ug->pgpgout++; 6807 } else { 6808 ug->nr_kmem += nr_pages; 6809 __ClearPageKmemcg(page); 6810 } 6811 6812 ug->dummy_page = page; 6813 page->mem_cgroup = NULL; 6814 css_put(&ug->memcg->css); 6815 } 6816 6817 static void uncharge_list(struct list_head *page_list) 6818 { 6819 struct uncharge_gather ug; 6820 struct list_head *next; 6821 6822 uncharge_gather_clear(&ug); 6823 6824 /* 6825 * Note that the list can be a single page->lru; hence the 6826 * do-while loop instead of a simple list_for_each_entry(). 6827 */ 6828 next = page_list->next; 6829 do { 6830 struct page *page; 6831 6832 page = list_entry(next, struct page, lru); 6833 next = page->lru.next; 6834 6835 uncharge_page(page, &ug); 6836 } while (next != page_list); 6837 6838 if (ug.memcg) 6839 uncharge_batch(&ug); 6840 } 6841 6842 /** 6843 * mem_cgroup_uncharge - uncharge a page 6844 * @page: page to uncharge 6845 * 6846 * Uncharge a page previously charged with mem_cgroup_charge(). 6847 */ 6848 void mem_cgroup_uncharge(struct page *page) 6849 { 6850 struct uncharge_gather ug; 6851 6852 if (mem_cgroup_disabled()) 6853 return; 6854 6855 /* Don't touch page->lru of any random page, pre-check: */ 6856 if (!page->mem_cgroup) 6857 return; 6858 6859 uncharge_gather_clear(&ug); 6860 uncharge_page(page, &ug); 6861 uncharge_batch(&ug); 6862 } 6863 6864 /** 6865 * mem_cgroup_uncharge_list - uncharge a list of page 6866 * @page_list: list of pages to uncharge 6867 * 6868 * Uncharge a list of pages previously charged with 6869 * mem_cgroup_charge(). 6870 */ 6871 void mem_cgroup_uncharge_list(struct list_head *page_list) 6872 { 6873 if (mem_cgroup_disabled()) 6874 return; 6875 6876 if (!list_empty(page_list)) 6877 uncharge_list(page_list); 6878 } 6879 6880 /** 6881 * mem_cgroup_migrate - charge a page's replacement 6882 * @oldpage: currently circulating page 6883 * @newpage: replacement page 6884 * 6885 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6886 * be uncharged upon free. 6887 * 6888 * Both pages must be locked, @newpage->mapping must be set up. 6889 */ 6890 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6891 { 6892 struct mem_cgroup *memcg; 6893 unsigned int nr_pages; 6894 unsigned long flags; 6895 6896 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6897 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6898 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6899 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6900 newpage); 6901 6902 if (mem_cgroup_disabled()) 6903 return; 6904 6905 /* Page cache replacement: new page already charged? */ 6906 if (newpage->mem_cgroup) 6907 return; 6908 6909 /* Swapcache readahead pages can get replaced before being charged */ 6910 memcg = oldpage->mem_cgroup; 6911 if (!memcg) 6912 return; 6913 6914 /* Force-charge the new page. The old one will be freed soon */ 6915 nr_pages = thp_nr_pages(newpage); 6916 6917 page_counter_charge(&memcg->memory, nr_pages); 6918 if (do_memsw_account()) 6919 page_counter_charge(&memcg->memsw, nr_pages); 6920 6921 css_get(&memcg->css); 6922 commit_charge(newpage, memcg); 6923 6924 local_irq_save(flags); 6925 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6926 memcg_check_events(memcg, newpage); 6927 local_irq_restore(flags); 6928 } 6929 6930 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6931 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6932 6933 void mem_cgroup_sk_alloc(struct sock *sk) 6934 { 6935 struct mem_cgroup *memcg; 6936 6937 if (!mem_cgroup_sockets_enabled) 6938 return; 6939 6940 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6941 if (in_interrupt()) 6942 return; 6943 6944 rcu_read_lock(); 6945 memcg = mem_cgroup_from_task(current); 6946 if (memcg == root_mem_cgroup) 6947 goto out; 6948 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6949 goto out; 6950 if (css_tryget(&memcg->css)) 6951 sk->sk_memcg = memcg; 6952 out: 6953 rcu_read_unlock(); 6954 } 6955 6956 void mem_cgroup_sk_free(struct sock *sk) 6957 { 6958 if (sk->sk_memcg) 6959 css_put(&sk->sk_memcg->css); 6960 } 6961 6962 /** 6963 * mem_cgroup_charge_skmem - charge socket memory 6964 * @memcg: memcg to charge 6965 * @nr_pages: number of pages to charge 6966 * 6967 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6968 * @memcg's configured limit, %false if the charge had to be forced. 6969 */ 6970 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6971 { 6972 gfp_t gfp_mask = GFP_KERNEL; 6973 6974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6975 struct page_counter *fail; 6976 6977 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6978 memcg->tcpmem_pressure = 0; 6979 return true; 6980 } 6981 page_counter_charge(&memcg->tcpmem, nr_pages); 6982 memcg->tcpmem_pressure = 1; 6983 return false; 6984 } 6985 6986 /* Don't block in the packet receive path */ 6987 if (in_softirq()) 6988 gfp_mask = GFP_NOWAIT; 6989 6990 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6991 6992 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6993 return true; 6994 6995 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6996 return false; 6997 } 6998 6999 /** 7000 * mem_cgroup_uncharge_skmem - uncharge socket memory 7001 * @memcg: memcg to uncharge 7002 * @nr_pages: number of pages to uncharge 7003 */ 7004 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7005 { 7006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7007 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7008 return; 7009 } 7010 7011 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7012 7013 refill_stock(memcg, nr_pages); 7014 } 7015 7016 static int __init cgroup_memory(char *s) 7017 { 7018 char *token; 7019 7020 while ((token = strsep(&s, ",")) != NULL) { 7021 if (!*token) 7022 continue; 7023 if (!strcmp(token, "nosocket")) 7024 cgroup_memory_nosocket = true; 7025 if (!strcmp(token, "nokmem")) 7026 cgroup_memory_nokmem = true; 7027 } 7028 return 0; 7029 } 7030 __setup("cgroup.memory=", cgroup_memory); 7031 7032 /* 7033 * subsys_initcall() for memory controller. 7034 * 7035 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7036 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7037 * basically everything that doesn't depend on a specific mem_cgroup structure 7038 * should be initialized from here. 7039 */ 7040 static int __init mem_cgroup_init(void) 7041 { 7042 int cpu, node; 7043 7044 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7045 memcg_hotplug_cpu_dead); 7046 7047 for_each_possible_cpu(cpu) 7048 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7049 drain_local_stock); 7050 7051 for_each_node(node) { 7052 struct mem_cgroup_tree_per_node *rtpn; 7053 7054 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7055 node_online(node) ? node : NUMA_NO_NODE); 7056 7057 rtpn->rb_root = RB_ROOT; 7058 rtpn->rb_rightmost = NULL; 7059 spin_lock_init(&rtpn->lock); 7060 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7061 } 7062 7063 return 0; 7064 } 7065 subsys_initcall(mem_cgroup_init); 7066 7067 #ifdef CONFIG_MEMCG_SWAP 7068 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7069 { 7070 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7071 /* 7072 * The root cgroup cannot be destroyed, so it's refcount must 7073 * always be >= 1. 7074 */ 7075 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7076 VM_BUG_ON(1); 7077 break; 7078 } 7079 memcg = parent_mem_cgroup(memcg); 7080 if (!memcg) 7081 memcg = root_mem_cgroup; 7082 } 7083 return memcg; 7084 } 7085 7086 /** 7087 * mem_cgroup_swapout - transfer a memsw charge to swap 7088 * @page: page whose memsw charge to transfer 7089 * @entry: swap entry to move the charge to 7090 * 7091 * Transfer the memsw charge of @page to @entry. 7092 */ 7093 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7094 { 7095 struct mem_cgroup *memcg, *swap_memcg; 7096 unsigned int nr_entries; 7097 unsigned short oldid; 7098 7099 VM_BUG_ON_PAGE(PageLRU(page), page); 7100 VM_BUG_ON_PAGE(page_count(page), page); 7101 7102 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7103 return; 7104 7105 memcg = page->mem_cgroup; 7106 7107 /* Readahead page, never charged */ 7108 if (!memcg) 7109 return; 7110 7111 /* 7112 * In case the memcg owning these pages has been offlined and doesn't 7113 * have an ID allocated to it anymore, charge the closest online 7114 * ancestor for the swap instead and transfer the memory+swap charge. 7115 */ 7116 swap_memcg = mem_cgroup_id_get_online(memcg); 7117 nr_entries = thp_nr_pages(page); 7118 /* Get references for the tail pages, too */ 7119 if (nr_entries > 1) 7120 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7121 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7122 nr_entries); 7123 VM_BUG_ON_PAGE(oldid, page); 7124 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7125 7126 page->mem_cgroup = NULL; 7127 7128 if (!mem_cgroup_is_root(memcg)) 7129 page_counter_uncharge(&memcg->memory, nr_entries); 7130 7131 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7132 if (!mem_cgroup_is_root(swap_memcg)) 7133 page_counter_charge(&swap_memcg->memsw, nr_entries); 7134 page_counter_uncharge(&memcg->memsw, nr_entries); 7135 } 7136 7137 /* 7138 * Interrupts should be disabled here because the caller holds the 7139 * i_pages lock which is taken with interrupts-off. It is 7140 * important here to have the interrupts disabled because it is the 7141 * only synchronisation we have for updating the per-CPU variables. 7142 */ 7143 VM_BUG_ON(!irqs_disabled()); 7144 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7145 memcg_check_events(memcg, page); 7146 7147 css_put(&memcg->css); 7148 } 7149 7150 /** 7151 * mem_cgroup_try_charge_swap - try charging swap space for a page 7152 * @page: page being added to swap 7153 * @entry: swap entry to charge 7154 * 7155 * Try to charge @page's memcg for the swap space at @entry. 7156 * 7157 * Returns 0 on success, -ENOMEM on failure. 7158 */ 7159 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7160 { 7161 unsigned int nr_pages = thp_nr_pages(page); 7162 struct page_counter *counter; 7163 struct mem_cgroup *memcg; 7164 unsigned short oldid; 7165 7166 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7167 return 0; 7168 7169 memcg = page->mem_cgroup; 7170 7171 /* Readahead page, never charged */ 7172 if (!memcg) 7173 return 0; 7174 7175 if (!entry.val) { 7176 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7177 return 0; 7178 } 7179 7180 memcg = mem_cgroup_id_get_online(memcg); 7181 7182 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7183 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7184 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7185 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7186 mem_cgroup_id_put(memcg); 7187 return -ENOMEM; 7188 } 7189 7190 /* Get references for the tail pages, too */ 7191 if (nr_pages > 1) 7192 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7193 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7194 VM_BUG_ON_PAGE(oldid, page); 7195 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7196 7197 return 0; 7198 } 7199 7200 /** 7201 * mem_cgroup_uncharge_swap - uncharge swap space 7202 * @entry: swap entry to uncharge 7203 * @nr_pages: the amount of swap space to uncharge 7204 */ 7205 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7206 { 7207 struct mem_cgroup *memcg; 7208 unsigned short id; 7209 7210 id = swap_cgroup_record(entry, 0, nr_pages); 7211 rcu_read_lock(); 7212 memcg = mem_cgroup_from_id(id); 7213 if (memcg) { 7214 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7215 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7216 page_counter_uncharge(&memcg->swap, nr_pages); 7217 else 7218 page_counter_uncharge(&memcg->memsw, nr_pages); 7219 } 7220 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7221 mem_cgroup_id_put_many(memcg, nr_pages); 7222 } 7223 rcu_read_unlock(); 7224 } 7225 7226 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7227 { 7228 long nr_swap_pages = get_nr_swap_pages(); 7229 7230 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7231 return nr_swap_pages; 7232 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7233 nr_swap_pages = min_t(long, nr_swap_pages, 7234 READ_ONCE(memcg->swap.max) - 7235 page_counter_read(&memcg->swap)); 7236 return nr_swap_pages; 7237 } 7238 7239 bool mem_cgroup_swap_full(struct page *page) 7240 { 7241 struct mem_cgroup *memcg; 7242 7243 VM_BUG_ON_PAGE(!PageLocked(page), page); 7244 7245 if (vm_swap_full()) 7246 return true; 7247 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7248 return false; 7249 7250 memcg = page->mem_cgroup; 7251 if (!memcg) 7252 return false; 7253 7254 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7255 unsigned long usage = page_counter_read(&memcg->swap); 7256 7257 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7258 usage * 2 >= READ_ONCE(memcg->swap.max)) 7259 return true; 7260 } 7261 7262 return false; 7263 } 7264 7265 static int __init setup_swap_account(char *s) 7266 { 7267 if (!strcmp(s, "1")) 7268 cgroup_memory_noswap = 0; 7269 else if (!strcmp(s, "0")) 7270 cgroup_memory_noswap = 1; 7271 return 1; 7272 } 7273 __setup("swapaccount=", setup_swap_account); 7274 7275 static u64 swap_current_read(struct cgroup_subsys_state *css, 7276 struct cftype *cft) 7277 { 7278 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7279 7280 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7281 } 7282 7283 static int swap_high_show(struct seq_file *m, void *v) 7284 { 7285 return seq_puts_memcg_tunable(m, 7286 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7287 } 7288 7289 static ssize_t swap_high_write(struct kernfs_open_file *of, 7290 char *buf, size_t nbytes, loff_t off) 7291 { 7292 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7293 unsigned long high; 7294 int err; 7295 7296 buf = strstrip(buf); 7297 err = page_counter_memparse(buf, "max", &high); 7298 if (err) 7299 return err; 7300 7301 page_counter_set_high(&memcg->swap, high); 7302 7303 return nbytes; 7304 } 7305 7306 static int swap_max_show(struct seq_file *m, void *v) 7307 { 7308 return seq_puts_memcg_tunable(m, 7309 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7310 } 7311 7312 static ssize_t swap_max_write(struct kernfs_open_file *of, 7313 char *buf, size_t nbytes, loff_t off) 7314 { 7315 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7316 unsigned long max; 7317 int err; 7318 7319 buf = strstrip(buf); 7320 err = page_counter_memparse(buf, "max", &max); 7321 if (err) 7322 return err; 7323 7324 xchg(&memcg->swap.max, max); 7325 7326 return nbytes; 7327 } 7328 7329 static int swap_events_show(struct seq_file *m, void *v) 7330 { 7331 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7332 7333 seq_printf(m, "high %lu\n", 7334 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7335 seq_printf(m, "max %lu\n", 7336 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7337 seq_printf(m, "fail %lu\n", 7338 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7339 7340 return 0; 7341 } 7342 7343 static struct cftype swap_files[] = { 7344 { 7345 .name = "swap.current", 7346 .flags = CFTYPE_NOT_ON_ROOT, 7347 .read_u64 = swap_current_read, 7348 }, 7349 { 7350 .name = "swap.high", 7351 .flags = CFTYPE_NOT_ON_ROOT, 7352 .seq_show = swap_high_show, 7353 .write = swap_high_write, 7354 }, 7355 { 7356 .name = "swap.max", 7357 .flags = CFTYPE_NOT_ON_ROOT, 7358 .seq_show = swap_max_show, 7359 .write = swap_max_write, 7360 }, 7361 { 7362 .name = "swap.events", 7363 .flags = CFTYPE_NOT_ON_ROOT, 7364 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7365 .seq_show = swap_events_show, 7366 }, 7367 { } /* terminate */ 7368 }; 7369 7370 static struct cftype memsw_files[] = { 7371 { 7372 .name = "memsw.usage_in_bytes", 7373 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7374 .read_u64 = mem_cgroup_read_u64, 7375 }, 7376 { 7377 .name = "memsw.max_usage_in_bytes", 7378 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7379 .write = mem_cgroup_reset, 7380 .read_u64 = mem_cgroup_read_u64, 7381 }, 7382 { 7383 .name = "memsw.limit_in_bytes", 7384 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7385 .write = mem_cgroup_write, 7386 .read_u64 = mem_cgroup_read_u64, 7387 }, 7388 { 7389 .name = "memsw.failcnt", 7390 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7391 .write = mem_cgroup_reset, 7392 .read_u64 = mem_cgroup_read_u64, 7393 }, 7394 { }, /* terminate */ 7395 }; 7396 7397 /* 7398 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7399 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7400 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7401 * boot parameter. This may result in premature OOPS inside 7402 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7403 */ 7404 static int __init mem_cgroup_swap_init(void) 7405 { 7406 /* No memory control -> no swap control */ 7407 if (mem_cgroup_disabled()) 7408 cgroup_memory_noswap = true; 7409 7410 if (cgroup_memory_noswap) 7411 return 0; 7412 7413 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7414 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7415 7416 return 0; 7417 } 7418 core_initcall(mem_cgroup_swap_init); 7419 7420 #endif /* CONFIG_MEMCG_SWAP */ 7421