xref: /linux/mm/memcontrol.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
36 #include <linux/fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include "internal.h"
42 
43 #include <asm/uaccess.h>
44 
45 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
46 #define MEM_CGROUP_RECLAIM_RETRIES	5
47 struct mem_cgroup *root_mem_cgroup __read_mostly;
48 
49 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
50 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 int do_swap_account __read_mostly;
52 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53 #else
54 #define do_swap_account		(0)
55 #endif
56 
57 static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
59 
60 /*
61  * Statistics for memory cgroup.
62  */
63 enum mem_cgroup_stat_index {
64 	/*
65 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66 	 */
67 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
69 	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
71 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72 	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 
75 	MEM_CGROUP_STAT_NSTATS,
76 };
77 
78 struct mem_cgroup_stat_cpu {
79 	s64 count[MEM_CGROUP_STAT_NSTATS];
80 } ____cacheline_aligned_in_smp;
81 
82 struct mem_cgroup_stat {
83 	struct mem_cgroup_stat_cpu cpustat[0];
84 };
85 
86 static inline void
87 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88 				enum mem_cgroup_stat_index idx)
89 {
90 	stat->count[idx] = 0;
91 }
92 
93 static inline s64
94 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95 				enum mem_cgroup_stat_index idx)
96 {
97 	return stat->count[idx];
98 }
99 
100 /*
101  * For accounting under irq disable, no need for increment preempt count.
102  */
103 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 		enum mem_cgroup_stat_index idx, int val)
105 {
106 	stat->count[idx] += val;
107 }
108 
109 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110 		enum mem_cgroup_stat_index idx)
111 {
112 	int cpu;
113 	s64 ret = 0;
114 	for_each_possible_cpu(cpu)
115 		ret += stat->cpustat[cpu].count[idx];
116 	return ret;
117 }
118 
119 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120 {
121 	s64 ret;
122 
123 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125 	return ret;
126 }
127 
128 /*
129  * per-zone information in memory controller.
130  */
131 struct mem_cgroup_per_zone {
132 	/*
133 	 * spin_lock to protect the per cgroup LRU
134 	 */
135 	struct list_head	lists[NR_LRU_LISTS];
136 	unsigned long		count[NR_LRU_LISTS];
137 
138 	struct zone_reclaim_stat reclaim_stat;
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long long	usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
144 						/* use container_of	   */
145 };
146 /* Macro for accessing counter */
147 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
148 
149 struct mem_cgroup_per_node {
150 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152 
153 struct mem_cgroup_lru_info {
154 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156 
157 /*
158  * Cgroups above their limits are maintained in a RB-Tree, independent of
159  * their hierarchy representation
160  */
161 
162 struct mem_cgroup_tree_per_zone {
163 	struct rb_root rb_root;
164 	spinlock_t lock;
165 };
166 
167 struct mem_cgroup_tree_per_node {
168 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170 
171 struct mem_cgroup_tree {
172 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174 
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  *
183  * TODO: Add a water mark for the memory controller. Reclaim will begin when
184  * we hit the water mark. May be even add a low water mark, such that
185  * no reclaim occurs from a cgroup at it's low water mark, this is
186  * a feature that will be implemented much later in the future.
187  */
188 struct mem_cgroup {
189 	struct cgroup_subsys_state css;
190 	/*
191 	 * the counter to account for memory usage
192 	 */
193 	struct res_counter res;
194 	/*
195 	 * the counter to account for mem+swap usage.
196 	 */
197 	struct res_counter memsw;
198 	/*
199 	 * Per cgroup active and inactive list, similar to the
200 	 * per zone LRU lists.
201 	 */
202 	struct mem_cgroup_lru_info info;
203 
204 	/*
205 	  protect against reclaim related member.
206 	*/
207 	spinlock_t reclaim_param_lock;
208 
209 	int	prev_priority;	/* for recording reclaim priority */
210 
211 	/*
212 	 * While reclaiming in a hiearchy, we cache the last child we
213 	 * reclaimed from.
214 	 */
215 	int last_scanned_child;
216 	/*
217 	 * Should the accounting and control be hierarchical, per subtree?
218 	 */
219 	bool use_hierarchy;
220 	unsigned long	last_oom_jiffies;
221 	atomic_t	refcnt;
222 
223 	unsigned int	swappiness;
224 
225 	/* set when res.limit == memsw.limit */
226 	bool		memsw_is_minimum;
227 
228 	/*
229 	 * statistics. This must be placed at the end of memcg.
230 	 */
231 	struct mem_cgroup_stat stat;
232 };
233 
234 /*
235  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236  * limit reclaim to prevent infinite loops, if they ever occur.
237  */
238 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
239 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
240 
241 enum charge_type {
242 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
246 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
247 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248 	NR_CHARGE_TYPE,
249 };
250 
251 /* only for here (for easy reading.) */
252 #define PCGF_CACHE	(1UL << PCG_CACHE)
253 #define PCGF_USED	(1UL << PCG_USED)
254 #define PCGF_LOCK	(1UL << PCG_LOCK)
255 /* Not used, but added here for completeness */
256 #define PCGF_ACCT	(1UL << PCG_ACCT)
257 
258 /* for encoding cft->private value on file */
259 #define _MEM			(0)
260 #define _MEMSWAP		(1)
261 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
262 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
263 #define MEMFILE_ATTR(val)	((val) & 0xffff)
264 
265 /*
266  * Reclaim flags for mem_cgroup_hierarchical_reclaim
267  */
268 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
269 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
271 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
273 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274 
275 static void mem_cgroup_get(struct mem_cgroup *mem);
276 static void mem_cgroup_put(struct mem_cgroup *mem);
277 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278 
279 static struct mem_cgroup_per_zone *
280 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
281 {
282 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
283 }
284 
285 static struct mem_cgroup_per_zone *
286 page_cgroup_zoneinfo(struct page_cgroup *pc)
287 {
288 	struct mem_cgroup *mem = pc->mem_cgroup;
289 	int nid = page_cgroup_nid(pc);
290 	int zid = page_cgroup_zid(pc);
291 
292 	if (!mem)
293 		return NULL;
294 
295 	return mem_cgroup_zoneinfo(mem, nid, zid);
296 }
297 
298 static struct mem_cgroup_tree_per_zone *
299 soft_limit_tree_node_zone(int nid, int zid)
300 {
301 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
302 }
303 
304 static struct mem_cgroup_tree_per_zone *
305 soft_limit_tree_from_page(struct page *page)
306 {
307 	int nid = page_to_nid(page);
308 	int zid = page_zonenum(page);
309 
310 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
311 }
312 
313 static void
314 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315 				struct mem_cgroup_per_zone *mz,
316 				struct mem_cgroup_tree_per_zone *mctz,
317 				unsigned long long new_usage_in_excess)
318 {
319 	struct rb_node **p = &mctz->rb_root.rb_node;
320 	struct rb_node *parent = NULL;
321 	struct mem_cgroup_per_zone *mz_node;
322 
323 	if (mz->on_tree)
324 		return;
325 
326 	mz->usage_in_excess = new_usage_in_excess;
327 	if (!mz->usage_in_excess)
328 		return;
329 	while (*p) {
330 		parent = *p;
331 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
332 					tree_node);
333 		if (mz->usage_in_excess < mz_node->usage_in_excess)
334 			p = &(*p)->rb_left;
335 		/*
336 		 * We can't avoid mem cgroups that are over their soft
337 		 * limit by the same amount
338 		 */
339 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
340 			p = &(*p)->rb_right;
341 	}
342 	rb_link_node(&mz->tree_node, parent, p);
343 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
344 	mz->on_tree = true;
345 }
346 
347 static void
348 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
349 				struct mem_cgroup_per_zone *mz,
350 				struct mem_cgroup_tree_per_zone *mctz)
351 {
352 	if (!mz->on_tree)
353 		return;
354 	rb_erase(&mz->tree_node, &mctz->rb_root);
355 	mz->on_tree = false;
356 }
357 
358 static void
359 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
360 				struct mem_cgroup_per_zone *mz,
361 				struct mem_cgroup_tree_per_zone *mctz)
362 {
363 	spin_lock(&mctz->lock);
364 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
365 	spin_unlock(&mctz->lock);
366 }
367 
368 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
369 {
370 	bool ret = false;
371 	int cpu;
372 	s64 val;
373 	struct mem_cgroup_stat_cpu *cpustat;
374 
375 	cpu = get_cpu();
376 	cpustat = &mem->stat.cpustat[cpu];
377 	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
378 	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
379 		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
380 		ret = true;
381 	}
382 	put_cpu();
383 	return ret;
384 }
385 
386 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
387 {
388 	unsigned long long excess;
389 	struct mem_cgroup_per_zone *mz;
390 	struct mem_cgroup_tree_per_zone *mctz;
391 	int nid = page_to_nid(page);
392 	int zid = page_zonenum(page);
393 	mctz = soft_limit_tree_from_page(page);
394 
395 	/*
396 	 * Necessary to update all ancestors when hierarchy is used.
397 	 * because their event counter is not touched.
398 	 */
399 	for (; mem; mem = parent_mem_cgroup(mem)) {
400 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
401 		excess = res_counter_soft_limit_excess(&mem->res);
402 		/*
403 		 * We have to update the tree if mz is on RB-tree or
404 		 * mem is over its softlimit.
405 		 */
406 		if (excess || mz->on_tree) {
407 			spin_lock(&mctz->lock);
408 			/* if on-tree, remove it */
409 			if (mz->on_tree)
410 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
411 			/*
412 			 * Insert again. mz->usage_in_excess will be updated.
413 			 * If excess is 0, no tree ops.
414 			 */
415 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
416 			spin_unlock(&mctz->lock);
417 		}
418 	}
419 }
420 
421 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
422 {
423 	int node, zone;
424 	struct mem_cgroup_per_zone *mz;
425 	struct mem_cgroup_tree_per_zone *mctz;
426 
427 	for_each_node_state(node, N_POSSIBLE) {
428 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
429 			mz = mem_cgroup_zoneinfo(mem, node, zone);
430 			mctz = soft_limit_tree_node_zone(node, zone);
431 			mem_cgroup_remove_exceeded(mem, mz, mctz);
432 		}
433 	}
434 }
435 
436 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
437 {
438 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
439 }
440 
441 static struct mem_cgroup_per_zone *
442 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
443 {
444 	struct rb_node *rightmost = NULL;
445 	struct mem_cgroup_per_zone *mz;
446 
447 retry:
448 	mz = NULL;
449 	rightmost = rb_last(&mctz->rb_root);
450 	if (!rightmost)
451 		goto done;		/* Nothing to reclaim from */
452 
453 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
454 	/*
455 	 * Remove the node now but someone else can add it back,
456 	 * we will to add it back at the end of reclaim to its correct
457 	 * position in the tree.
458 	 */
459 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
460 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
461 		!css_tryget(&mz->mem->css))
462 		goto retry;
463 done:
464 	return mz;
465 }
466 
467 static struct mem_cgroup_per_zone *
468 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
469 {
470 	struct mem_cgroup_per_zone *mz;
471 
472 	spin_lock(&mctz->lock);
473 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
474 	spin_unlock(&mctz->lock);
475 	return mz;
476 }
477 
478 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
479 					 bool charge)
480 {
481 	int val = (charge) ? 1 : -1;
482 	struct mem_cgroup_stat *stat = &mem->stat;
483 	struct mem_cgroup_stat_cpu *cpustat;
484 	int cpu = get_cpu();
485 
486 	cpustat = &stat->cpustat[cpu];
487 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
488 	put_cpu();
489 }
490 
491 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
492 					 struct page_cgroup *pc,
493 					 bool charge)
494 {
495 	int val = (charge) ? 1 : -1;
496 	struct mem_cgroup_stat *stat = &mem->stat;
497 	struct mem_cgroup_stat_cpu *cpustat;
498 	int cpu = get_cpu();
499 
500 	cpustat = &stat->cpustat[cpu];
501 	if (PageCgroupCache(pc))
502 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
503 	else
504 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
505 
506 	if (charge)
507 		__mem_cgroup_stat_add_safe(cpustat,
508 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
509 	else
510 		__mem_cgroup_stat_add_safe(cpustat,
511 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
512 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
513 	put_cpu();
514 }
515 
516 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
517 					enum lru_list idx)
518 {
519 	int nid, zid;
520 	struct mem_cgroup_per_zone *mz;
521 	u64 total = 0;
522 
523 	for_each_online_node(nid)
524 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
525 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
526 			total += MEM_CGROUP_ZSTAT(mz, idx);
527 		}
528 	return total;
529 }
530 
531 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
532 {
533 	return container_of(cgroup_subsys_state(cont,
534 				mem_cgroup_subsys_id), struct mem_cgroup,
535 				css);
536 }
537 
538 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
539 {
540 	/*
541 	 * mm_update_next_owner() may clear mm->owner to NULL
542 	 * if it races with swapoff, page migration, etc.
543 	 * So this can be called with p == NULL.
544 	 */
545 	if (unlikely(!p))
546 		return NULL;
547 
548 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
549 				struct mem_cgroup, css);
550 }
551 
552 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
553 {
554 	struct mem_cgroup *mem = NULL;
555 
556 	if (!mm)
557 		return NULL;
558 	/*
559 	 * Because we have no locks, mm->owner's may be being moved to other
560 	 * cgroup. We use css_tryget() here even if this looks
561 	 * pessimistic (rather than adding locks here).
562 	 */
563 	rcu_read_lock();
564 	do {
565 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
566 		if (unlikely(!mem))
567 			break;
568 	} while (!css_tryget(&mem->css));
569 	rcu_read_unlock();
570 	return mem;
571 }
572 
573 /*
574  * Call callback function against all cgroup under hierarchy tree.
575  */
576 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
577 			  int (*func)(struct mem_cgroup *, void *))
578 {
579 	int found, ret, nextid;
580 	struct cgroup_subsys_state *css;
581 	struct mem_cgroup *mem;
582 
583 	if (!root->use_hierarchy)
584 		return (*func)(root, data);
585 
586 	nextid = 1;
587 	do {
588 		ret = 0;
589 		mem = NULL;
590 
591 		rcu_read_lock();
592 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
593 				   &found);
594 		if (css && css_tryget(css))
595 			mem = container_of(css, struct mem_cgroup, css);
596 		rcu_read_unlock();
597 
598 		if (mem) {
599 			ret = (*func)(mem, data);
600 			css_put(&mem->css);
601 		}
602 		nextid = found + 1;
603 	} while (!ret && css);
604 
605 	return ret;
606 }
607 
608 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
609 {
610 	return (mem == root_mem_cgroup);
611 }
612 
613 /*
614  * Following LRU functions are allowed to be used without PCG_LOCK.
615  * Operations are called by routine of global LRU independently from memcg.
616  * What we have to take care of here is validness of pc->mem_cgroup.
617  *
618  * Changes to pc->mem_cgroup happens when
619  * 1. charge
620  * 2. moving account
621  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
622  * It is added to LRU before charge.
623  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
624  * When moving account, the page is not on LRU. It's isolated.
625  */
626 
627 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
628 {
629 	struct page_cgroup *pc;
630 	struct mem_cgroup_per_zone *mz;
631 
632 	if (mem_cgroup_disabled())
633 		return;
634 	pc = lookup_page_cgroup(page);
635 	/* can happen while we handle swapcache. */
636 	if (!TestClearPageCgroupAcctLRU(pc))
637 		return;
638 	VM_BUG_ON(!pc->mem_cgroup);
639 	/*
640 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
641 	 * removed from global LRU.
642 	 */
643 	mz = page_cgroup_zoneinfo(pc);
644 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
645 	if (mem_cgroup_is_root(pc->mem_cgroup))
646 		return;
647 	VM_BUG_ON(list_empty(&pc->lru));
648 	list_del_init(&pc->lru);
649 	return;
650 }
651 
652 void mem_cgroup_del_lru(struct page *page)
653 {
654 	mem_cgroup_del_lru_list(page, page_lru(page));
655 }
656 
657 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
658 {
659 	struct mem_cgroup_per_zone *mz;
660 	struct page_cgroup *pc;
661 
662 	if (mem_cgroup_disabled())
663 		return;
664 
665 	pc = lookup_page_cgroup(page);
666 	/*
667 	 * Used bit is set without atomic ops but after smp_wmb().
668 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
669 	 */
670 	smp_rmb();
671 	/* unused or root page is not rotated. */
672 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
673 		return;
674 	mz = page_cgroup_zoneinfo(pc);
675 	list_move(&pc->lru, &mz->lists[lru]);
676 }
677 
678 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
679 {
680 	struct page_cgroup *pc;
681 	struct mem_cgroup_per_zone *mz;
682 
683 	if (mem_cgroup_disabled())
684 		return;
685 	pc = lookup_page_cgroup(page);
686 	VM_BUG_ON(PageCgroupAcctLRU(pc));
687 	/*
688 	 * Used bit is set without atomic ops but after smp_wmb().
689 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
690 	 */
691 	smp_rmb();
692 	if (!PageCgroupUsed(pc))
693 		return;
694 
695 	mz = page_cgroup_zoneinfo(pc);
696 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
697 	SetPageCgroupAcctLRU(pc);
698 	if (mem_cgroup_is_root(pc->mem_cgroup))
699 		return;
700 	list_add(&pc->lru, &mz->lists[lru]);
701 }
702 
703 /*
704  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
705  * lru because the page may.be reused after it's fully uncharged (because of
706  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
707  * it again. This function is only used to charge SwapCache. It's done under
708  * lock_page and expected that zone->lru_lock is never held.
709  */
710 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
711 {
712 	unsigned long flags;
713 	struct zone *zone = page_zone(page);
714 	struct page_cgroup *pc = lookup_page_cgroup(page);
715 
716 	spin_lock_irqsave(&zone->lru_lock, flags);
717 	/*
718 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
719 	 * is guarded by lock_page() because the page is SwapCache.
720 	 */
721 	if (!PageCgroupUsed(pc))
722 		mem_cgroup_del_lru_list(page, page_lru(page));
723 	spin_unlock_irqrestore(&zone->lru_lock, flags);
724 }
725 
726 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
727 {
728 	unsigned long flags;
729 	struct zone *zone = page_zone(page);
730 	struct page_cgroup *pc = lookup_page_cgroup(page);
731 
732 	spin_lock_irqsave(&zone->lru_lock, flags);
733 	/* link when the page is linked to LRU but page_cgroup isn't */
734 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
735 		mem_cgroup_add_lru_list(page, page_lru(page));
736 	spin_unlock_irqrestore(&zone->lru_lock, flags);
737 }
738 
739 
740 void mem_cgroup_move_lists(struct page *page,
741 			   enum lru_list from, enum lru_list to)
742 {
743 	if (mem_cgroup_disabled())
744 		return;
745 	mem_cgroup_del_lru_list(page, from);
746 	mem_cgroup_add_lru_list(page, to);
747 }
748 
749 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
750 {
751 	int ret;
752 	struct mem_cgroup *curr = NULL;
753 
754 	task_lock(task);
755 	rcu_read_lock();
756 	curr = try_get_mem_cgroup_from_mm(task->mm);
757 	rcu_read_unlock();
758 	task_unlock(task);
759 	if (!curr)
760 		return 0;
761 	if (curr->use_hierarchy)
762 		ret = css_is_ancestor(&curr->css, &mem->css);
763 	else
764 		ret = (curr == mem);
765 	css_put(&curr->css);
766 	return ret;
767 }
768 
769 /*
770  * prev_priority control...this will be used in memory reclaim path.
771  */
772 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
773 {
774 	int prev_priority;
775 
776 	spin_lock(&mem->reclaim_param_lock);
777 	prev_priority = mem->prev_priority;
778 	spin_unlock(&mem->reclaim_param_lock);
779 
780 	return prev_priority;
781 }
782 
783 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
784 {
785 	spin_lock(&mem->reclaim_param_lock);
786 	if (priority < mem->prev_priority)
787 		mem->prev_priority = priority;
788 	spin_unlock(&mem->reclaim_param_lock);
789 }
790 
791 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
792 {
793 	spin_lock(&mem->reclaim_param_lock);
794 	mem->prev_priority = priority;
795 	spin_unlock(&mem->reclaim_param_lock);
796 }
797 
798 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
799 {
800 	unsigned long active;
801 	unsigned long inactive;
802 	unsigned long gb;
803 	unsigned long inactive_ratio;
804 
805 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
806 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
807 
808 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
809 	if (gb)
810 		inactive_ratio = int_sqrt(10 * gb);
811 	else
812 		inactive_ratio = 1;
813 
814 	if (present_pages) {
815 		present_pages[0] = inactive;
816 		present_pages[1] = active;
817 	}
818 
819 	return inactive_ratio;
820 }
821 
822 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
823 {
824 	unsigned long active;
825 	unsigned long inactive;
826 	unsigned long present_pages[2];
827 	unsigned long inactive_ratio;
828 
829 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
830 
831 	inactive = present_pages[0];
832 	active = present_pages[1];
833 
834 	if (inactive * inactive_ratio < active)
835 		return 1;
836 
837 	return 0;
838 }
839 
840 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
841 {
842 	unsigned long active;
843 	unsigned long inactive;
844 
845 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
846 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
847 
848 	return (active > inactive);
849 }
850 
851 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
852 				       struct zone *zone,
853 				       enum lru_list lru)
854 {
855 	int nid = zone->zone_pgdat->node_id;
856 	int zid = zone_idx(zone);
857 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
858 
859 	return MEM_CGROUP_ZSTAT(mz, lru);
860 }
861 
862 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
863 						      struct zone *zone)
864 {
865 	int nid = zone->zone_pgdat->node_id;
866 	int zid = zone_idx(zone);
867 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
868 
869 	return &mz->reclaim_stat;
870 }
871 
872 struct zone_reclaim_stat *
873 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
874 {
875 	struct page_cgroup *pc;
876 	struct mem_cgroup_per_zone *mz;
877 
878 	if (mem_cgroup_disabled())
879 		return NULL;
880 
881 	pc = lookup_page_cgroup(page);
882 	/*
883 	 * Used bit is set without atomic ops but after smp_wmb().
884 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
885 	 */
886 	smp_rmb();
887 	if (!PageCgroupUsed(pc))
888 		return NULL;
889 
890 	mz = page_cgroup_zoneinfo(pc);
891 	if (!mz)
892 		return NULL;
893 
894 	return &mz->reclaim_stat;
895 }
896 
897 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
898 					struct list_head *dst,
899 					unsigned long *scanned, int order,
900 					int mode, struct zone *z,
901 					struct mem_cgroup *mem_cont,
902 					int active, int file)
903 {
904 	unsigned long nr_taken = 0;
905 	struct page *page;
906 	unsigned long scan;
907 	LIST_HEAD(pc_list);
908 	struct list_head *src;
909 	struct page_cgroup *pc, *tmp;
910 	int nid = z->zone_pgdat->node_id;
911 	int zid = zone_idx(z);
912 	struct mem_cgroup_per_zone *mz;
913 	int lru = LRU_FILE * file + active;
914 	int ret;
915 
916 	BUG_ON(!mem_cont);
917 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
918 	src = &mz->lists[lru];
919 
920 	scan = 0;
921 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
922 		if (scan >= nr_to_scan)
923 			break;
924 
925 		page = pc->page;
926 		if (unlikely(!PageCgroupUsed(pc)))
927 			continue;
928 		if (unlikely(!PageLRU(page)))
929 			continue;
930 
931 		scan++;
932 		ret = __isolate_lru_page(page, mode, file);
933 		switch (ret) {
934 		case 0:
935 			list_move(&page->lru, dst);
936 			mem_cgroup_del_lru(page);
937 			nr_taken++;
938 			break;
939 		case -EBUSY:
940 			/* we don't affect global LRU but rotate in our LRU */
941 			mem_cgroup_rotate_lru_list(page, page_lru(page));
942 			break;
943 		default:
944 			break;
945 		}
946 	}
947 
948 	*scanned = scan;
949 	return nr_taken;
950 }
951 
952 #define mem_cgroup_from_res_counter(counter, member)	\
953 	container_of(counter, struct mem_cgroup, member)
954 
955 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
956 {
957 	if (do_swap_account) {
958 		if (res_counter_check_under_limit(&mem->res) &&
959 			res_counter_check_under_limit(&mem->memsw))
960 			return true;
961 	} else
962 		if (res_counter_check_under_limit(&mem->res))
963 			return true;
964 	return false;
965 }
966 
967 static unsigned int get_swappiness(struct mem_cgroup *memcg)
968 {
969 	struct cgroup *cgrp = memcg->css.cgroup;
970 	unsigned int swappiness;
971 
972 	/* root ? */
973 	if (cgrp->parent == NULL)
974 		return vm_swappiness;
975 
976 	spin_lock(&memcg->reclaim_param_lock);
977 	swappiness = memcg->swappiness;
978 	spin_unlock(&memcg->reclaim_param_lock);
979 
980 	return swappiness;
981 }
982 
983 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
984 {
985 	int *val = data;
986 	(*val)++;
987 	return 0;
988 }
989 
990 /**
991  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
992  * @memcg: The memory cgroup that went over limit
993  * @p: Task that is going to be killed
994  *
995  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
996  * enabled
997  */
998 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
999 {
1000 	struct cgroup *task_cgrp;
1001 	struct cgroup *mem_cgrp;
1002 	/*
1003 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1004 	 * on the assumption that OOM is serialized for memory controller.
1005 	 * If this assumption is broken, revisit this code.
1006 	 */
1007 	static char memcg_name[PATH_MAX];
1008 	int ret;
1009 
1010 	if (!memcg)
1011 		return;
1012 
1013 
1014 	rcu_read_lock();
1015 
1016 	mem_cgrp = memcg->css.cgroup;
1017 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1018 
1019 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1020 	if (ret < 0) {
1021 		/*
1022 		 * Unfortunately, we are unable to convert to a useful name
1023 		 * But we'll still print out the usage information
1024 		 */
1025 		rcu_read_unlock();
1026 		goto done;
1027 	}
1028 	rcu_read_unlock();
1029 
1030 	printk(KERN_INFO "Task in %s killed", memcg_name);
1031 
1032 	rcu_read_lock();
1033 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1034 	if (ret < 0) {
1035 		rcu_read_unlock();
1036 		goto done;
1037 	}
1038 	rcu_read_unlock();
1039 
1040 	/*
1041 	 * Continues from above, so we don't need an KERN_ level
1042 	 */
1043 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1044 done:
1045 
1046 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1047 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1048 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1049 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1050 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1051 		"failcnt %llu\n",
1052 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1053 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1054 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1055 }
1056 
1057 /*
1058  * This function returns the number of memcg under hierarchy tree. Returns
1059  * 1(self count) if no children.
1060  */
1061 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1062 {
1063 	int num = 0;
1064  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1065 	return num;
1066 }
1067 
1068 /*
1069  * Visit the first child (need not be the first child as per the ordering
1070  * of the cgroup list, since we track last_scanned_child) of @mem and use
1071  * that to reclaim free pages from.
1072  */
1073 static struct mem_cgroup *
1074 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1075 {
1076 	struct mem_cgroup *ret = NULL;
1077 	struct cgroup_subsys_state *css;
1078 	int nextid, found;
1079 
1080 	if (!root_mem->use_hierarchy) {
1081 		css_get(&root_mem->css);
1082 		ret = root_mem;
1083 	}
1084 
1085 	while (!ret) {
1086 		rcu_read_lock();
1087 		nextid = root_mem->last_scanned_child + 1;
1088 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1089 				   &found);
1090 		if (css && css_tryget(css))
1091 			ret = container_of(css, struct mem_cgroup, css);
1092 
1093 		rcu_read_unlock();
1094 		/* Updates scanning parameter */
1095 		spin_lock(&root_mem->reclaim_param_lock);
1096 		if (!css) {
1097 			/* this means start scan from ID:1 */
1098 			root_mem->last_scanned_child = 0;
1099 		} else
1100 			root_mem->last_scanned_child = found;
1101 		spin_unlock(&root_mem->reclaim_param_lock);
1102 	}
1103 
1104 	return ret;
1105 }
1106 
1107 /*
1108  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1109  * we reclaimed from, so that we don't end up penalizing one child extensively
1110  * based on its position in the children list.
1111  *
1112  * root_mem is the original ancestor that we've been reclaim from.
1113  *
1114  * We give up and return to the caller when we visit root_mem twice.
1115  * (other groups can be removed while we're walking....)
1116  *
1117  * If shrink==true, for avoiding to free too much, this returns immedieately.
1118  */
1119 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1120 						struct zone *zone,
1121 						gfp_t gfp_mask,
1122 						unsigned long reclaim_options)
1123 {
1124 	struct mem_cgroup *victim;
1125 	int ret, total = 0;
1126 	int loop = 0;
1127 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1128 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1129 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1130 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1131 
1132 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1133 	if (root_mem->memsw_is_minimum)
1134 		noswap = true;
1135 
1136 	while (1) {
1137 		victim = mem_cgroup_select_victim(root_mem);
1138 		if (victim == root_mem) {
1139 			loop++;
1140 			if (loop >= 2) {
1141 				/*
1142 				 * If we have not been able to reclaim
1143 				 * anything, it might because there are
1144 				 * no reclaimable pages under this hierarchy
1145 				 */
1146 				if (!check_soft || !total) {
1147 					css_put(&victim->css);
1148 					break;
1149 				}
1150 				/*
1151 				 * We want to do more targetted reclaim.
1152 				 * excess >> 2 is not to excessive so as to
1153 				 * reclaim too much, nor too less that we keep
1154 				 * coming back to reclaim from this cgroup
1155 				 */
1156 				if (total >= (excess >> 2) ||
1157 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1158 					css_put(&victim->css);
1159 					break;
1160 				}
1161 			}
1162 		}
1163 		if (!mem_cgroup_local_usage(&victim->stat)) {
1164 			/* this cgroup's local usage == 0 */
1165 			css_put(&victim->css);
1166 			continue;
1167 		}
1168 		/* we use swappiness of local cgroup */
1169 		if (check_soft)
1170 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1171 				noswap, get_swappiness(victim), zone,
1172 				zone->zone_pgdat->node_id);
1173 		else
1174 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1175 						noswap, get_swappiness(victim));
1176 		css_put(&victim->css);
1177 		/*
1178 		 * At shrinking usage, we can't check we should stop here or
1179 		 * reclaim more. It's depends on callers. last_scanned_child
1180 		 * will work enough for keeping fairness under tree.
1181 		 */
1182 		if (shrink)
1183 			return ret;
1184 		total += ret;
1185 		if (check_soft) {
1186 			if (res_counter_check_under_soft_limit(&root_mem->res))
1187 				return total;
1188 		} else if (mem_cgroup_check_under_limit(root_mem))
1189 			return 1 + total;
1190 	}
1191 	return total;
1192 }
1193 
1194 bool mem_cgroup_oom_called(struct task_struct *task)
1195 {
1196 	bool ret = false;
1197 	struct mem_cgroup *mem;
1198 	struct mm_struct *mm;
1199 
1200 	rcu_read_lock();
1201 	mm = task->mm;
1202 	if (!mm)
1203 		mm = &init_mm;
1204 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1205 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1206 		ret = true;
1207 	rcu_read_unlock();
1208 	return ret;
1209 }
1210 
1211 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1212 {
1213 	mem->last_oom_jiffies = jiffies;
1214 	return 0;
1215 }
1216 
1217 static void record_last_oom(struct mem_cgroup *mem)
1218 {
1219 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1220 }
1221 
1222 /*
1223  * Currently used to update mapped file statistics, but the routine can be
1224  * generalized to update other statistics as well.
1225  */
1226 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1227 {
1228 	struct mem_cgroup *mem;
1229 	struct mem_cgroup_stat *stat;
1230 	struct mem_cgroup_stat_cpu *cpustat;
1231 	int cpu;
1232 	struct page_cgroup *pc;
1233 
1234 	if (!page_is_file_cache(page))
1235 		return;
1236 
1237 	pc = lookup_page_cgroup(page);
1238 	if (unlikely(!pc))
1239 		return;
1240 
1241 	lock_page_cgroup(pc);
1242 	mem = pc->mem_cgroup;
1243 	if (!mem)
1244 		goto done;
1245 
1246 	if (!PageCgroupUsed(pc))
1247 		goto done;
1248 
1249 	/*
1250 	 * Preemption is already disabled, we don't need get_cpu()
1251 	 */
1252 	cpu = smp_processor_id();
1253 	stat = &mem->stat;
1254 	cpustat = &stat->cpustat[cpu];
1255 
1256 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1257 done:
1258 	unlock_page_cgroup(pc);
1259 }
1260 
1261 /*
1262  * Unlike exported interface, "oom" parameter is added. if oom==true,
1263  * oom-killer can be invoked.
1264  */
1265 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1266 			gfp_t gfp_mask, struct mem_cgroup **memcg,
1267 			bool oom, struct page *page)
1268 {
1269 	struct mem_cgroup *mem, *mem_over_limit;
1270 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1271 	struct res_counter *fail_res;
1272 
1273 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1274 		/* Don't account this! */
1275 		*memcg = NULL;
1276 		return 0;
1277 	}
1278 
1279 	/*
1280 	 * We always charge the cgroup the mm_struct belongs to.
1281 	 * The mm_struct's mem_cgroup changes on task migration if the
1282 	 * thread group leader migrates. It's possible that mm is not
1283 	 * set, if so charge the init_mm (happens for pagecache usage).
1284 	 */
1285 	mem = *memcg;
1286 	if (likely(!mem)) {
1287 		mem = try_get_mem_cgroup_from_mm(mm);
1288 		*memcg = mem;
1289 	} else {
1290 		css_get(&mem->css);
1291 	}
1292 	if (unlikely(!mem))
1293 		return 0;
1294 
1295 	VM_BUG_ON(css_is_removed(&mem->css));
1296 
1297 	while (1) {
1298 		int ret = 0;
1299 		unsigned long flags = 0;
1300 
1301 		if (mem_cgroup_is_root(mem))
1302 			goto done;
1303 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1304 		if (likely(!ret)) {
1305 			if (!do_swap_account)
1306 				break;
1307 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1308 							&fail_res);
1309 			if (likely(!ret))
1310 				break;
1311 			/* mem+swap counter fails */
1312 			res_counter_uncharge(&mem->res, PAGE_SIZE);
1313 			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1314 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1315 									memsw);
1316 		} else
1317 			/* mem counter fails */
1318 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1319 									res);
1320 
1321 		if (!(gfp_mask & __GFP_WAIT))
1322 			goto nomem;
1323 
1324 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1325 						gfp_mask, flags);
1326 		if (ret)
1327 			continue;
1328 
1329 		/*
1330 		 * try_to_free_mem_cgroup_pages() might not give us a full
1331 		 * picture of reclaim. Some pages are reclaimed and might be
1332 		 * moved to swap cache or just unmapped from the cgroup.
1333 		 * Check the limit again to see if the reclaim reduced the
1334 		 * current usage of the cgroup before giving up
1335 		 *
1336 		 */
1337 		if (mem_cgroup_check_under_limit(mem_over_limit))
1338 			continue;
1339 
1340 		if (!nr_retries--) {
1341 			if (oom) {
1342 				mutex_lock(&memcg_tasklist);
1343 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1344 				mutex_unlock(&memcg_tasklist);
1345 				record_last_oom(mem_over_limit);
1346 			}
1347 			goto nomem;
1348 		}
1349 	}
1350 	/*
1351 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1352 	 * if they exceeds softlimit.
1353 	 */
1354 	if (mem_cgroup_soft_limit_check(mem))
1355 		mem_cgroup_update_tree(mem, page);
1356 done:
1357 	return 0;
1358 nomem:
1359 	css_put(&mem->css);
1360 	return -ENOMEM;
1361 }
1362 
1363 /*
1364  * A helper function to get mem_cgroup from ID. must be called under
1365  * rcu_read_lock(). The caller must check css_is_removed() or some if
1366  * it's concern. (dropping refcnt from swap can be called against removed
1367  * memcg.)
1368  */
1369 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1370 {
1371 	struct cgroup_subsys_state *css;
1372 
1373 	/* ID 0 is unused ID */
1374 	if (!id)
1375 		return NULL;
1376 	css = css_lookup(&mem_cgroup_subsys, id);
1377 	if (!css)
1378 		return NULL;
1379 	return container_of(css, struct mem_cgroup, css);
1380 }
1381 
1382 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1383 {
1384 	struct mem_cgroup *mem;
1385 	struct page_cgroup *pc;
1386 	unsigned short id;
1387 	swp_entry_t ent;
1388 
1389 	VM_BUG_ON(!PageLocked(page));
1390 
1391 	if (!PageSwapCache(page))
1392 		return NULL;
1393 
1394 	pc = lookup_page_cgroup(page);
1395 	lock_page_cgroup(pc);
1396 	if (PageCgroupUsed(pc)) {
1397 		mem = pc->mem_cgroup;
1398 		if (mem && !css_tryget(&mem->css))
1399 			mem = NULL;
1400 	} else {
1401 		ent.val = page_private(page);
1402 		id = lookup_swap_cgroup(ent);
1403 		rcu_read_lock();
1404 		mem = mem_cgroup_lookup(id);
1405 		if (mem && !css_tryget(&mem->css))
1406 			mem = NULL;
1407 		rcu_read_unlock();
1408 	}
1409 	unlock_page_cgroup(pc);
1410 	return mem;
1411 }
1412 
1413 /*
1414  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1415  * USED state. If already USED, uncharge and return.
1416  */
1417 
1418 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1419 				     struct page_cgroup *pc,
1420 				     enum charge_type ctype)
1421 {
1422 	/* try_charge() can return NULL to *memcg, taking care of it. */
1423 	if (!mem)
1424 		return;
1425 
1426 	lock_page_cgroup(pc);
1427 	if (unlikely(PageCgroupUsed(pc))) {
1428 		unlock_page_cgroup(pc);
1429 		if (!mem_cgroup_is_root(mem)) {
1430 			res_counter_uncharge(&mem->res, PAGE_SIZE);
1431 			if (do_swap_account)
1432 				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1433 		}
1434 		css_put(&mem->css);
1435 		return;
1436 	}
1437 
1438 	pc->mem_cgroup = mem;
1439 	/*
1440 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1441 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1442 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1443 	 * before USED bit, we need memory barrier here.
1444 	 * See mem_cgroup_add_lru_list(), etc.
1445  	 */
1446 	smp_wmb();
1447 	switch (ctype) {
1448 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1449 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1450 		SetPageCgroupCache(pc);
1451 		SetPageCgroupUsed(pc);
1452 		break;
1453 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1454 		ClearPageCgroupCache(pc);
1455 		SetPageCgroupUsed(pc);
1456 		break;
1457 	default:
1458 		break;
1459 	}
1460 
1461 	mem_cgroup_charge_statistics(mem, pc, true);
1462 
1463 	unlock_page_cgroup(pc);
1464 }
1465 
1466 /**
1467  * mem_cgroup_move_account - move account of the page
1468  * @pc:	page_cgroup of the page.
1469  * @from: mem_cgroup which the page is moved from.
1470  * @to:	mem_cgroup which the page is moved to. @from != @to.
1471  *
1472  * The caller must confirm following.
1473  * - page is not on LRU (isolate_page() is useful.)
1474  *
1475  * returns 0 at success,
1476  * returns -EBUSY when lock is busy or "pc" is unstable.
1477  *
1478  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1479  * new cgroup. It should be done by a caller.
1480  */
1481 
1482 static int mem_cgroup_move_account(struct page_cgroup *pc,
1483 	struct mem_cgroup *from, struct mem_cgroup *to)
1484 {
1485 	struct mem_cgroup_per_zone *from_mz, *to_mz;
1486 	int nid, zid;
1487 	int ret = -EBUSY;
1488 	struct page *page;
1489 	int cpu;
1490 	struct mem_cgroup_stat *stat;
1491 	struct mem_cgroup_stat_cpu *cpustat;
1492 
1493 	VM_BUG_ON(from == to);
1494 	VM_BUG_ON(PageLRU(pc->page));
1495 
1496 	nid = page_cgroup_nid(pc);
1497 	zid = page_cgroup_zid(pc);
1498 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1499 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1500 
1501 	if (!trylock_page_cgroup(pc))
1502 		return ret;
1503 
1504 	if (!PageCgroupUsed(pc))
1505 		goto out;
1506 
1507 	if (pc->mem_cgroup != from)
1508 		goto out;
1509 
1510 	if (!mem_cgroup_is_root(from))
1511 		res_counter_uncharge(&from->res, PAGE_SIZE);
1512 	mem_cgroup_charge_statistics(from, pc, false);
1513 
1514 	page = pc->page;
1515 	if (page_is_file_cache(page) && page_mapped(page)) {
1516 		cpu = smp_processor_id();
1517 		/* Update mapped_file data for mem_cgroup "from" */
1518 		stat = &from->stat;
1519 		cpustat = &stat->cpustat[cpu];
1520 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1521 						-1);
1522 
1523 		/* Update mapped_file data for mem_cgroup "to" */
1524 		stat = &to->stat;
1525 		cpustat = &stat->cpustat[cpu];
1526 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1527 						1);
1528 	}
1529 
1530 	if (do_swap_account && !mem_cgroup_is_root(from))
1531 		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1532 	css_put(&from->css);
1533 
1534 	css_get(&to->css);
1535 	pc->mem_cgroup = to;
1536 	mem_cgroup_charge_statistics(to, pc, true);
1537 	ret = 0;
1538 out:
1539 	unlock_page_cgroup(pc);
1540 	/*
1541 	 * We charges against "to" which may not have any tasks. Then, "to"
1542 	 * can be under rmdir(). But in current implementation, caller of
1543 	 * this function is just force_empty() and it's garanteed that
1544 	 * "to" is never removed. So, we don't check rmdir status here.
1545 	 */
1546 	return ret;
1547 }
1548 
1549 /*
1550  * move charges to its parent.
1551  */
1552 
1553 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1554 				  struct mem_cgroup *child,
1555 				  gfp_t gfp_mask)
1556 {
1557 	struct page *page = pc->page;
1558 	struct cgroup *cg = child->css.cgroup;
1559 	struct cgroup *pcg = cg->parent;
1560 	struct mem_cgroup *parent;
1561 	int ret;
1562 
1563 	/* Is ROOT ? */
1564 	if (!pcg)
1565 		return -EINVAL;
1566 
1567 
1568 	parent = mem_cgroup_from_cont(pcg);
1569 
1570 
1571 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1572 	if (ret || !parent)
1573 		return ret;
1574 
1575 	if (!get_page_unless_zero(page)) {
1576 		ret = -EBUSY;
1577 		goto uncharge;
1578 	}
1579 
1580 	ret = isolate_lru_page(page);
1581 
1582 	if (ret)
1583 		goto cancel;
1584 
1585 	ret = mem_cgroup_move_account(pc, child, parent);
1586 
1587 	putback_lru_page(page);
1588 	if (!ret) {
1589 		put_page(page);
1590 		/* drop extra refcnt by try_charge() */
1591 		css_put(&parent->css);
1592 		return 0;
1593 	}
1594 
1595 cancel:
1596 	put_page(page);
1597 uncharge:
1598 	/* drop extra refcnt by try_charge() */
1599 	css_put(&parent->css);
1600 	/* uncharge if move fails */
1601 	if (!mem_cgroup_is_root(parent)) {
1602 		res_counter_uncharge(&parent->res, PAGE_SIZE);
1603 		if (do_swap_account)
1604 			res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1605 	}
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Charge the memory controller for page usage.
1611  * Return
1612  * 0 if the charge was successful
1613  * < 0 if the cgroup is over its limit
1614  */
1615 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1616 				gfp_t gfp_mask, enum charge_type ctype,
1617 				struct mem_cgroup *memcg)
1618 {
1619 	struct mem_cgroup *mem;
1620 	struct page_cgroup *pc;
1621 	int ret;
1622 
1623 	pc = lookup_page_cgroup(page);
1624 	/* can happen at boot */
1625 	if (unlikely(!pc))
1626 		return 0;
1627 	prefetchw(pc);
1628 
1629 	mem = memcg;
1630 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1631 	if (ret || !mem)
1632 		return ret;
1633 
1634 	__mem_cgroup_commit_charge(mem, pc, ctype);
1635 	return 0;
1636 }
1637 
1638 int mem_cgroup_newpage_charge(struct page *page,
1639 			      struct mm_struct *mm, gfp_t gfp_mask)
1640 {
1641 	if (mem_cgroup_disabled())
1642 		return 0;
1643 	if (PageCompound(page))
1644 		return 0;
1645 	/*
1646 	 * If already mapped, we don't have to account.
1647 	 * If page cache, page->mapping has address_space.
1648 	 * But page->mapping may have out-of-use anon_vma pointer,
1649 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1650 	 * is NULL.
1651   	 */
1652 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1653 		return 0;
1654 	if (unlikely(!mm))
1655 		mm = &init_mm;
1656 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1657 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1658 }
1659 
1660 static void
1661 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1662 					enum charge_type ctype);
1663 
1664 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1665 				gfp_t gfp_mask)
1666 {
1667 	struct mem_cgroup *mem = NULL;
1668 	int ret;
1669 
1670 	if (mem_cgroup_disabled())
1671 		return 0;
1672 	if (PageCompound(page))
1673 		return 0;
1674 	/*
1675 	 * Corner case handling. This is called from add_to_page_cache()
1676 	 * in usual. But some FS (shmem) precharges this page before calling it
1677 	 * and call add_to_page_cache() with GFP_NOWAIT.
1678 	 *
1679 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1680 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1681 	 * charge twice. (It works but has to pay a bit larger cost.)
1682 	 * And when the page is SwapCache, it should take swap information
1683 	 * into account. This is under lock_page() now.
1684 	 */
1685 	if (!(gfp_mask & __GFP_WAIT)) {
1686 		struct page_cgroup *pc;
1687 
1688 
1689 		pc = lookup_page_cgroup(page);
1690 		if (!pc)
1691 			return 0;
1692 		lock_page_cgroup(pc);
1693 		if (PageCgroupUsed(pc)) {
1694 			unlock_page_cgroup(pc);
1695 			return 0;
1696 		}
1697 		unlock_page_cgroup(pc);
1698 	}
1699 
1700 	if (unlikely(!mm && !mem))
1701 		mm = &init_mm;
1702 
1703 	if (page_is_file_cache(page))
1704 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1705 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1706 
1707 	/* shmem */
1708 	if (PageSwapCache(page)) {
1709 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1710 		if (!ret)
1711 			__mem_cgroup_commit_charge_swapin(page, mem,
1712 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1713 	} else
1714 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1715 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1716 
1717 	return ret;
1718 }
1719 
1720 /*
1721  * While swap-in, try_charge -> commit or cancel, the page is locked.
1722  * And when try_charge() successfully returns, one refcnt to memcg without
1723  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1724  * "commit()" or removed by "cancel()"
1725  */
1726 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1727 				 struct page *page,
1728 				 gfp_t mask, struct mem_cgroup **ptr)
1729 {
1730 	struct mem_cgroup *mem;
1731 	int ret;
1732 
1733 	if (mem_cgroup_disabled())
1734 		return 0;
1735 
1736 	if (!do_swap_account)
1737 		goto charge_cur_mm;
1738 	/*
1739 	 * A racing thread's fault, or swapoff, may have already updated
1740 	 * the pte, and even removed page from swap cache: return success
1741 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1742 	 */
1743 	if (!PageSwapCache(page))
1744 		return 0;
1745 	mem = try_get_mem_cgroup_from_swapcache(page);
1746 	if (!mem)
1747 		goto charge_cur_mm;
1748 	*ptr = mem;
1749 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1750 	/* drop extra refcnt from tryget */
1751 	css_put(&mem->css);
1752 	return ret;
1753 charge_cur_mm:
1754 	if (unlikely(!mm))
1755 		mm = &init_mm;
1756 	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1757 }
1758 
1759 static void
1760 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1761 					enum charge_type ctype)
1762 {
1763 	struct page_cgroup *pc;
1764 
1765 	if (mem_cgroup_disabled())
1766 		return;
1767 	if (!ptr)
1768 		return;
1769 	cgroup_exclude_rmdir(&ptr->css);
1770 	pc = lookup_page_cgroup(page);
1771 	mem_cgroup_lru_del_before_commit_swapcache(page);
1772 	__mem_cgroup_commit_charge(ptr, pc, ctype);
1773 	mem_cgroup_lru_add_after_commit_swapcache(page);
1774 	/*
1775 	 * Now swap is on-memory. This means this page may be
1776 	 * counted both as mem and swap....double count.
1777 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1778 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1779 	 * may call delete_from_swap_cache() before reach here.
1780 	 */
1781 	if (do_swap_account && PageSwapCache(page)) {
1782 		swp_entry_t ent = {.val = page_private(page)};
1783 		unsigned short id;
1784 		struct mem_cgroup *memcg;
1785 
1786 		id = swap_cgroup_record(ent, 0);
1787 		rcu_read_lock();
1788 		memcg = mem_cgroup_lookup(id);
1789 		if (memcg) {
1790 			/*
1791 			 * This recorded memcg can be obsolete one. So, avoid
1792 			 * calling css_tryget
1793 			 */
1794 			if (!mem_cgroup_is_root(memcg))
1795 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1796 			mem_cgroup_swap_statistics(memcg, false);
1797 			mem_cgroup_put(memcg);
1798 		}
1799 		rcu_read_unlock();
1800 	}
1801 	/*
1802 	 * At swapin, we may charge account against cgroup which has no tasks.
1803 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1804 	 * In that case, we need to call pre_destroy() again. check it here.
1805 	 */
1806 	cgroup_release_and_wakeup_rmdir(&ptr->css);
1807 }
1808 
1809 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1810 {
1811 	__mem_cgroup_commit_charge_swapin(page, ptr,
1812 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1813 }
1814 
1815 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1816 {
1817 	if (mem_cgroup_disabled())
1818 		return;
1819 	if (!mem)
1820 		return;
1821 	if (!mem_cgroup_is_root(mem)) {
1822 		res_counter_uncharge(&mem->res, PAGE_SIZE);
1823 		if (do_swap_account)
1824 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1825 	}
1826 	css_put(&mem->css);
1827 }
1828 
1829 
1830 /*
1831  * uncharge if !page_mapped(page)
1832  */
1833 static struct mem_cgroup *
1834 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1835 {
1836 	struct page_cgroup *pc;
1837 	struct mem_cgroup *mem = NULL;
1838 	struct mem_cgroup_per_zone *mz;
1839 
1840 	if (mem_cgroup_disabled())
1841 		return NULL;
1842 
1843 	if (PageSwapCache(page))
1844 		return NULL;
1845 
1846 	/*
1847 	 * Check if our page_cgroup is valid
1848 	 */
1849 	pc = lookup_page_cgroup(page);
1850 	if (unlikely(!pc || !PageCgroupUsed(pc)))
1851 		return NULL;
1852 
1853 	lock_page_cgroup(pc);
1854 
1855 	mem = pc->mem_cgroup;
1856 
1857 	if (!PageCgroupUsed(pc))
1858 		goto unlock_out;
1859 
1860 	switch (ctype) {
1861 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1862 	case MEM_CGROUP_CHARGE_TYPE_DROP:
1863 		if (page_mapped(page))
1864 			goto unlock_out;
1865 		break;
1866 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1867 		if (!PageAnon(page)) {	/* Shared memory */
1868 			if (page->mapping && !page_is_file_cache(page))
1869 				goto unlock_out;
1870 		} else if (page_mapped(page)) /* Anon */
1871 				goto unlock_out;
1872 		break;
1873 	default:
1874 		break;
1875 	}
1876 
1877 	if (!mem_cgroup_is_root(mem)) {
1878 		res_counter_uncharge(&mem->res, PAGE_SIZE);
1879 		if (do_swap_account &&
1880 				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1881 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1882 	}
1883 	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1884 		mem_cgroup_swap_statistics(mem, true);
1885 	mem_cgroup_charge_statistics(mem, pc, false);
1886 
1887 	ClearPageCgroupUsed(pc);
1888 	/*
1889 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1890 	 * freed from LRU. This is safe because uncharged page is expected not
1891 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1892 	 * special functions.
1893 	 */
1894 
1895 	mz = page_cgroup_zoneinfo(pc);
1896 	unlock_page_cgroup(pc);
1897 
1898 	if (mem_cgroup_soft_limit_check(mem))
1899 		mem_cgroup_update_tree(mem, page);
1900 	/* at swapout, this memcg will be accessed to record to swap */
1901 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1902 		css_put(&mem->css);
1903 
1904 	return mem;
1905 
1906 unlock_out:
1907 	unlock_page_cgroup(pc);
1908 	return NULL;
1909 }
1910 
1911 void mem_cgroup_uncharge_page(struct page *page)
1912 {
1913 	/* early check. */
1914 	if (page_mapped(page))
1915 		return;
1916 	if (page->mapping && !PageAnon(page))
1917 		return;
1918 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1919 }
1920 
1921 void mem_cgroup_uncharge_cache_page(struct page *page)
1922 {
1923 	VM_BUG_ON(page_mapped(page));
1924 	VM_BUG_ON(page->mapping);
1925 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1926 }
1927 
1928 #ifdef CONFIG_SWAP
1929 /*
1930  * called after __delete_from_swap_cache() and drop "page" account.
1931  * memcg information is recorded to swap_cgroup of "ent"
1932  */
1933 void
1934 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1935 {
1936 	struct mem_cgroup *memcg;
1937 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1938 
1939 	if (!swapout) /* this was a swap cache but the swap is unused ! */
1940 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1941 
1942 	memcg = __mem_cgroup_uncharge_common(page, ctype);
1943 
1944 	/* record memcg information */
1945 	if (do_swap_account && swapout && memcg) {
1946 		swap_cgroup_record(ent, css_id(&memcg->css));
1947 		mem_cgroup_get(memcg);
1948 	}
1949 	if (swapout && memcg)
1950 		css_put(&memcg->css);
1951 }
1952 #endif
1953 
1954 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1955 /*
1956  * called from swap_entry_free(). remove record in swap_cgroup and
1957  * uncharge "memsw" account.
1958  */
1959 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1960 {
1961 	struct mem_cgroup *memcg;
1962 	unsigned short id;
1963 
1964 	if (!do_swap_account)
1965 		return;
1966 
1967 	id = swap_cgroup_record(ent, 0);
1968 	rcu_read_lock();
1969 	memcg = mem_cgroup_lookup(id);
1970 	if (memcg) {
1971 		/*
1972 		 * We uncharge this because swap is freed.
1973 		 * This memcg can be obsolete one. We avoid calling css_tryget
1974 		 */
1975 		if (!mem_cgroup_is_root(memcg))
1976 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1977 		mem_cgroup_swap_statistics(memcg, false);
1978 		mem_cgroup_put(memcg);
1979 	}
1980 	rcu_read_unlock();
1981 }
1982 #endif
1983 
1984 /*
1985  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1986  * page belongs to.
1987  */
1988 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1989 {
1990 	struct page_cgroup *pc;
1991 	struct mem_cgroup *mem = NULL;
1992 	int ret = 0;
1993 
1994 	if (mem_cgroup_disabled())
1995 		return 0;
1996 
1997 	pc = lookup_page_cgroup(page);
1998 	lock_page_cgroup(pc);
1999 	if (PageCgroupUsed(pc)) {
2000 		mem = pc->mem_cgroup;
2001 		css_get(&mem->css);
2002 	}
2003 	unlock_page_cgroup(pc);
2004 
2005 	if (mem) {
2006 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2007 						page);
2008 		css_put(&mem->css);
2009 	}
2010 	*ptr = mem;
2011 	return ret;
2012 }
2013 
2014 /* remove redundant charge if migration failed*/
2015 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2016 		struct page *oldpage, struct page *newpage)
2017 {
2018 	struct page *target, *unused;
2019 	struct page_cgroup *pc;
2020 	enum charge_type ctype;
2021 
2022 	if (!mem)
2023 		return;
2024 	cgroup_exclude_rmdir(&mem->css);
2025 	/* at migration success, oldpage->mapping is NULL. */
2026 	if (oldpage->mapping) {
2027 		target = oldpage;
2028 		unused = NULL;
2029 	} else {
2030 		target = newpage;
2031 		unused = oldpage;
2032 	}
2033 
2034 	if (PageAnon(target))
2035 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2036 	else if (page_is_file_cache(target))
2037 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2038 	else
2039 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2040 
2041 	/* unused page is not on radix-tree now. */
2042 	if (unused)
2043 		__mem_cgroup_uncharge_common(unused, ctype);
2044 
2045 	pc = lookup_page_cgroup(target);
2046 	/*
2047 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2048 	 * So, double-counting is effectively avoided.
2049 	 */
2050 	__mem_cgroup_commit_charge(mem, pc, ctype);
2051 
2052 	/*
2053 	 * Both of oldpage and newpage are still under lock_page().
2054 	 * Then, we don't have to care about race in radix-tree.
2055 	 * But we have to be careful that this page is unmapped or not.
2056 	 *
2057 	 * There is a case for !page_mapped(). At the start of
2058 	 * migration, oldpage was mapped. But now, it's zapped.
2059 	 * But we know *target* page is not freed/reused under us.
2060 	 * mem_cgroup_uncharge_page() does all necessary checks.
2061 	 */
2062 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2063 		mem_cgroup_uncharge_page(target);
2064 	/*
2065 	 * At migration, we may charge account against cgroup which has no tasks
2066 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2067 	 * In that case, we need to call pre_destroy() again. check it here.
2068 	 */
2069 	cgroup_release_and_wakeup_rmdir(&mem->css);
2070 }
2071 
2072 /*
2073  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2074  * Calling hierarchical_reclaim is not enough because we should update
2075  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2076  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2077  * not from the memcg which this page would be charged to.
2078  * try_charge_swapin does all of these works properly.
2079  */
2080 int mem_cgroup_shmem_charge_fallback(struct page *page,
2081 			    struct mm_struct *mm,
2082 			    gfp_t gfp_mask)
2083 {
2084 	struct mem_cgroup *mem = NULL;
2085 	int ret;
2086 
2087 	if (mem_cgroup_disabled())
2088 		return 0;
2089 
2090 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2091 	if (!ret)
2092 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2093 
2094 	return ret;
2095 }
2096 
2097 static DEFINE_MUTEX(set_limit_mutex);
2098 
2099 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2100 				unsigned long long val)
2101 {
2102 	int retry_count;
2103 	int progress;
2104 	u64 memswlimit;
2105 	int ret = 0;
2106 	int children = mem_cgroup_count_children(memcg);
2107 	u64 curusage, oldusage;
2108 
2109 	/*
2110 	 * For keeping hierarchical_reclaim simple, how long we should retry
2111 	 * is depends on callers. We set our retry-count to be function
2112 	 * of # of children which we should visit in this loop.
2113 	 */
2114 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2115 
2116 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2117 
2118 	while (retry_count) {
2119 		if (signal_pending(current)) {
2120 			ret = -EINTR;
2121 			break;
2122 		}
2123 		/*
2124 		 * Rather than hide all in some function, I do this in
2125 		 * open coded manner. You see what this really does.
2126 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2127 		 */
2128 		mutex_lock(&set_limit_mutex);
2129 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2130 		if (memswlimit < val) {
2131 			ret = -EINVAL;
2132 			mutex_unlock(&set_limit_mutex);
2133 			break;
2134 		}
2135 		ret = res_counter_set_limit(&memcg->res, val);
2136 		if (!ret) {
2137 			if (memswlimit == val)
2138 				memcg->memsw_is_minimum = true;
2139 			else
2140 				memcg->memsw_is_minimum = false;
2141 		}
2142 		mutex_unlock(&set_limit_mutex);
2143 
2144 		if (!ret)
2145 			break;
2146 
2147 		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2148 						GFP_KERNEL,
2149 						MEM_CGROUP_RECLAIM_SHRINK);
2150 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2151 		/* Usage is reduced ? */
2152   		if (curusage >= oldusage)
2153 			retry_count--;
2154 		else
2155 			oldusage = curusage;
2156 	}
2157 
2158 	return ret;
2159 }
2160 
2161 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2162 					unsigned long long val)
2163 {
2164 	int retry_count;
2165 	u64 memlimit, oldusage, curusage;
2166 	int children = mem_cgroup_count_children(memcg);
2167 	int ret = -EBUSY;
2168 
2169 	/* see mem_cgroup_resize_res_limit */
2170  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2171 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2172 	while (retry_count) {
2173 		if (signal_pending(current)) {
2174 			ret = -EINTR;
2175 			break;
2176 		}
2177 		/*
2178 		 * Rather than hide all in some function, I do this in
2179 		 * open coded manner. You see what this really does.
2180 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2181 		 */
2182 		mutex_lock(&set_limit_mutex);
2183 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2184 		if (memlimit > val) {
2185 			ret = -EINVAL;
2186 			mutex_unlock(&set_limit_mutex);
2187 			break;
2188 		}
2189 		ret = res_counter_set_limit(&memcg->memsw, val);
2190 		if (!ret) {
2191 			if (memlimit == val)
2192 				memcg->memsw_is_minimum = true;
2193 			else
2194 				memcg->memsw_is_minimum = false;
2195 		}
2196 		mutex_unlock(&set_limit_mutex);
2197 
2198 		if (!ret)
2199 			break;
2200 
2201 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2202 						MEM_CGROUP_RECLAIM_NOSWAP |
2203 						MEM_CGROUP_RECLAIM_SHRINK);
2204 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2205 		/* Usage is reduced ? */
2206 		if (curusage >= oldusage)
2207 			retry_count--;
2208 		else
2209 			oldusage = curusage;
2210 	}
2211 	return ret;
2212 }
2213 
2214 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2215 						gfp_t gfp_mask, int nid,
2216 						int zid)
2217 {
2218 	unsigned long nr_reclaimed = 0;
2219 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2220 	unsigned long reclaimed;
2221 	int loop = 0;
2222 	struct mem_cgroup_tree_per_zone *mctz;
2223 	unsigned long long excess;
2224 
2225 	if (order > 0)
2226 		return 0;
2227 
2228 	mctz = soft_limit_tree_node_zone(nid, zid);
2229 	/*
2230 	 * This loop can run a while, specially if mem_cgroup's continuously
2231 	 * keep exceeding their soft limit and putting the system under
2232 	 * pressure
2233 	 */
2234 	do {
2235 		if (next_mz)
2236 			mz = next_mz;
2237 		else
2238 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2239 		if (!mz)
2240 			break;
2241 
2242 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2243 						gfp_mask,
2244 						MEM_CGROUP_RECLAIM_SOFT);
2245 		nr_reclaimed += reclaimed;
2246 		spin_lock(&mctz->lock);
2247 
2248 		/*
2249 		 * If we failed to reclaim anything from this memory cgroup
2250 		 * it is time to move on to the next cgroup
2251 		 */
2252 		next_mz = NULL;
2253 		if (!reclaimed) {
2254 			do {
2255 				/*
2256 				 * Loop until we find yet another one.
2257 				 *
2258 				 * By the time we get the soft_limit lock
2259 				 * again, someone might have aded the
2260 				 * group back on the RB tree. Iterate to
2261 				 * make sure we get a different mem.
2262 				 * mem_cgroup_largest_soft_limit_node returns
2263 				 * NULL if no other cgroup is present on
2264 				 * the tree
2265 				 */
2266 				next_mz =
2267 				__mem_cgroup_largest_soft_limit_node(mctz);
2268 				if (next_mz == mz) {
2269 					css_put(&next_mz->mem->css);
2270 					next_mz = NULL;
2271 				} else /* next_mz == NULL or other memcg */
2272 					break;
2273 			} while (1);
2274 		}
2275 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2276 		excess = res_counter_soft_limit_excess(&mz->mem->res);
2277 		/*
2278 		 * One school of thought says that we should not add
2279 		 * back the node to the tree if reclaim returns 0.
2280 		 * But our reclaim could return 0, simply because due
2281 		 * to priority we are exposing a smaller subset of
2282 		 * memory to reclaim from. Consider this as a longer
2283 		 * term TODO.
2284 		 */
2285 		/* If excess == 0, no tree ops */
2286 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2287 		spin_unlock(&mctz->lock);
2288 		css_put(&mz->mem->css);
2289 		loop++;
2290 		/*
2291 		 * Could not reclaim anything and there are no more
2292 		 * mem cgroups to try or we seem to be looping without
2293 		 * reclaiming anything.
2294 		 */
2295 		if (!nr_reclaimed &&
2296 			(next_mz == NULL ||
2297 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2298 			break;
2299 	} while (!nr_reclaimed);
2300 	if (next_mz)
2301 		css_put(&next_mz->mem->css);
2302 	return nr_reclaimed;
2303 }
2304 
2305 /*
2306  * This routine traverse page_cgroup in given list and drop them all.
2307  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2308  */
2309 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2310 				int node, int zid, enum lru_list lru)
2311 {
2312 	struct zone *zone;
2313 	struct mem_cgroup_per_zone *mz;
2314 	struct page_cgroup *pc, *busy;
2315 	unsigned long flags, loop;
2316 	struct list_head *list;
2317 	int ret = 0;
2318 
2319 	zone = &NODE_DATA(node)->node_zones[zid];
2320 	mz = mem_cgroup_zoneinfo(mem, node, zid);
2321 	list = &mz->lists[lru];
2322 
2323 	loop = MEM_CGROUP_ZSTAT(mz, lru);
2324 	/* give some margin against EBUSY etc...*/
2325 	loop += 256;
2326 	busy = NULL;
2327 	while (loop--) {
2328 		ret = 0;
2329 		spin_lock_irqsave(&zone->lru_lock, flags);
2330 		if (list_empty(list)) {
2331 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2332 			break;
2333 		}
2334 		pc = list_entry(list->prev, struct page_cgroup, lru);
2335 		if (busy == pc) {
2336 			list_move(&pc->lru, list);
2337 			busy = 0;
2338 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2339 			continue;
2340 		}
2341 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2342 
2343 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2344 		if (ret == -ENOMEM)
2345 			break;
2346 
2347 		if (ret == -EBUSY || ret == -EINVAL) {
2348 			/* found lock contention or "pc" is obsolete. */
2349 			busy = pc;
2350 			cond_resched();
2351 		} else
2352 			busy = NULL;
2353 	}
2354 
2355 	if (!ret && !list_empty(list))
2356 		return -EBUSY;
2357 	return ret;
2358 }
2359 
2360 /*
2361  * make mem_cgroup's charge to be 0 if there is no task.
2362  * This enables deleting this mem_cgroup.
2363  */
2364 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2365 {
2366 	int ret;
2367 	int node, zid, shrink;
2368 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2369 	struct cgroup *cgrp = mem->css.cgroup;
2370 
2371 	css_get(&mem->css);
2372 
2373 	shrink = 0;
2374 	/* should free all ? */
2375 	if (free_all)
2376 		goto try_to_free;
2377 move_account:
2378 	while (mem->res.usage > 0) {
2379 		ret = -EBUSY;
2380 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2381 			goto out;
2382 		ret = -EINTR;
2383 		if (signal_pending(current))
2384 			goto out;
2385 		/* This is for making all *used* pages to be on LRU. */
2386 		lru_add_drain_all();
2387 		ret = 0;
2388 		for_each_node_state(node, N_HIGH_MEMORY) {
2389 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2390 				enum lru_list l;
2391 				for_each_lru(l) {
2392 					ret = mem_cgroup_force_empty_list(mem,
2393 							node, zid, l);
2394 					if (ret)
2395 						break;
2396 				}
2397 			}
2398 			if (ret)
2399 				break;
2400 		}
2401 		/* it seems parent cgroup doesn't have enough mem */
2402 		if (ret == -ENOMEM)
2403 			goto try_to_free;
2404 		cond_resched();
2405 	}
2406 	ret = 0;
2407 out:
2408 	css_put(&mem->css);
2409 	return ret;
2410 
2411 try_to_free:
2412 	/* returns EBUSY if there is a task or if we come here twice. */
2413 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2414 		ret = -EBUSY;
2415 		goto out;
2416 	}
2417 	/* we call try-to-free pages for make this cgroup empty */
2418 	lru_add_drain_all();
2419 	/* try to free all pages in this cgroup */
2420 	shrink = 1;
2421 	while (nr_retries && mem->res.usage > 0) {
2422 		int progress;
2423 
2424 		if (signal_pending(current)) {
2425 			ret = -EINTR;
2426 			goto out;
2427 		}
2428 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2429 						false, get_swappiness(mem));
2430 		if (!progress) {
2431 			nr_retries--;
2432 			/* maybe some writeback is necessary */
2433 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2434 		}
2435 
2436 	}
2437 	lru_add_drain();
2438 	/* try move_account...there may be some *locked* pages. */
2439 	if (mem->res.usage)
2440 		goto move_account;
2441 	ret = 0;
2442 	goto out;
2443 }
2444 
2445 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2446 {
2447 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2448 }
2449 
2450 
2451 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2452 {
2453 	return mem_cgroup_from_cont(cont)->use_hierarchy;
2454 }
2455 
2456 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2457 					u64 val)
2458 {
2459 	int retval = 0;
2460 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2461 	struct cgroup *parent = cont->parent;
2462 	struct mem_cgroup *parent_mem = NULL;
2463 
2464 	if (parent)
2465 		parent_mem = mem_cgroup_from_cont(parent);
2466 
2467 	cgroup_lock();
2468 	/*
2469 	 * If parent's use_hiearchy is set, we can't make any modifications
2470 	 * in the child subtrees. If it is unset, then the change can
2471 	 * occur, provided the current cgroup has no children.
2472 	 *
2473 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2474 	 * set if there are no children.
2475 	 */
2476 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2477 				(val == 1 || val == 0)) {
2478 		if (list_empty(&cont->children))
2479 			mem->use_hierarchy = val;
2480 		else
2481 			retval = -EBUSY;
2482 	} else
2483 		retval = -EINVAL;
2484 	cgroup_unlock();
2485 
2486 	return retval;
2487 }
2488 
2489 struct mem_cgroup_idx_data {
2490 	s64 val;
2491 	enum mem_cgroup_stat_index idx;
2492 };
2493 
2494 static int
2495 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2496 {
2497 	struct mem_cgroup_idx_data *d = data;
2498 	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2499 	return 0;
2500 }
2501 
2502 static void
2503 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2504 				enum mem_cgroup_stat_index idx, s64 *val)
2505 {
2506 	struct mem_cgroup_idx_data d;
2507 	d.idx = idx;
2508 	d.val = 0;
2509 	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2510 	*val = d.val;
2511 }
2512 
2513 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2514 {
2515 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2516 	u64 idx_val, val;
2517 	int type, name;
2518 
2519 	type = MEMFILE_TYPE(cft->private);
2520 	name = MEMFILE_ATTR(cft->private);
2521 	switch (type) {
2522 	case _MEM:
2523 		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2524 			mem_cgroup_get_recursive_idx_stat(mem,
2525 				MEM_CGROUP_STAT_CACHE, &idx_val);
2526 			val = idx_val;
2527 			mem_cgroup_get_recursive_idx_stat(mem,
2528 				MEM_CGROUP_STAT_RSS, &idx_val);
2529 			val += idx_val;
2530 			val <<= PAGE_SHIFT;
2531 		} else
2532 			val = res_counter_read_u64(&mem->res, name);
2533 		break;
2534 	case _MEMSWAP:
2535 		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2536 			mem_cgroup_get_recursive_idx_stat(mem,
2537 				MEM_CGROUP_STAT_CACHE, &idx_val);
2538 			val = idx_val;
2539 			mem_cgroup_get_recursive_idx_stat(mem,
2540 				MEM_CGROUP_STAT_RSS, &idx_val);
2541 			val += idx_val;
2542 			mem_cgroup_get_recursive_idx_stat(mem,
2543 				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2544 			val <<= PAGE_SHIFT;
2545 		} else
2546 			val = res_counter_read_u64(&mem->memsw, name);
2547 		break;
2548 	default:
2549 		BUG();
2550 		break;
2551 	}
2552 	return val;
2553 }
2554 /*
2555  * The user of this function is...
2556  * RES_LIMIT.
2557  */
2558 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2559 			    const char *buffer)
2560 {
2561 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2562 	int type, name;
2563 	unsigned long long val;
2564 	int ret;
2565 
2566 	type = MEMFILE_TYPE(cft->private);
2567 	name = MEMFILE_ATTR(cft->private);
2568 	switch (name) {
2569 	case RES_LIMIT:
2570 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2571 			ret = -EINVAL;
2572 			break;
2573 		}
2574 		/* This function does all necessary parse...reuse it */
2575 		ret = res_counter_memparse_write_strategy(buffer, &val);
2576 		if (ret)
2577 			break;
2578 		if (type == _MEM)
2579 			ret = mem_cgroup_resize_limit(memcg, val);
2580 		else
2581 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2582 		break;
2583 	case RES_SOFT_LIMIT:
2584 		ret = res_counter_memparse_write_strategy(buffer, &val);
2585 		if (ret)
2586 			break;
2587 		/*
2588 		 * For memsw, soft limits are hard to implement in terms
2589 		 * of semantics, for now, we support soft limits for
2590 		 * control without swap
2591 		 */
2592 		if (type == _MEM)
2593 			ret = res_counter_set_soft_limit(&memcg->res, val);
2594 		else
2595 			ret = -EINVAL;
2596 		break;
2597 	default:
2598 		ret = -EINVAL; /* should be BUG() ? */
2599 		break;
2600 	}
2601 	return ret;
2602 }
2603 
2604 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2605 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2606 {
2607 	struct cgroup *cgroup;
2608 	unsigned long long min_limit, min_memsw_limit, tmp;
2609 
2610 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2611 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2612 	cgroup = memcg->css.cgroup;
2613 	if (!memcg->use_hierarchy)
2614 		goto out;
2615 
2616 	while (cgroup->parent) {
2617 		cgroup = cgroup->parent;
2618 		memcg = mem_cgroup_from_cont(cgroup);
2619 		if (!memcg->use_hierarchy)
2620 			break;
2621 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2622 		min_limit = min(min_limit, tmp);
2623 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2624 		min_memsw_limit = min(min_memsw_limit, tmp);
2625 	}
2626 out:
2627 	*mem_limit = min_limit;
2628 	*memsw_limit = min_memsw_limit;
2629 	return;
2630 }
2631 
2632 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2633 {
2634 	struct mem_cgroup *mem;
2635 	int type, name;
2636 
2637 	mem = mem_cgroup_from_cont(cont);
2638 	type = MEMFILE_TYPE(event);
2639 	name = MEMFILE_ATTR(event);
2640 	switch (name) {
2641 	case RES_MAX_USAGE:
2642 		if (type == _MEM)
2643 			res_counter_reset_max(&mem->res);
2644 		else
2645 			res_counter_reset_max(&mem->memsw);
2646 		break;
2647 	case RES_FAILCNT:
2648 		if (type == _MEM)
2649 			res_counter_reset_failcnt(&mem->res);
2650 		else
2651 			res_counter_reset_failcnt(&mem->memsw);
2652 		break;
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 
2659 /* For read statistics */
2660 enum {
2661 	MCS_CACHE,
2662 	MCS_RSS,
2663 	MCS_MAPPED_FILE,
2664 	MCS_PGPGIN,
2665 	MCS_PGPGOUT,
2666 	MCS_SWAP,
2667 	MCS_INACTIVE_ANON,
2668 	MCS_ACTIVE_ANON,
2669 	MCS_INACTIVE_FILE,
2670 	MCS_ACTIVE_FILE,
2671 	MCS_UNEVICTABLE,
2672 	NR_MCS_STAT,
2673 };
2674 
2675 struct mcs_total_stat {
2676 	s64 stat[NR_MCS_STAT];
2677 };
2678 
2679 struct {
2680 	char *local_name;
2681 	char *total_name;
2682 } memcg_stat_strings[NR_MCS_STAT] = {
2683 	{"cache", "total_cache"},
2684 	{"rss", "total_rss"},
2685 	{"mapped_file", "total_mapped_file"},
2686 	{"pgpgin", "total_pgpgin"},
2687 	{"pgpgout", "total_pgpgout"},
2688 	{"swap", "total_swap"},
2689 	{"inactive_anon", "total_inactive_anon"},
2690 	{"active_anon", "total_active_anon"},
2691 	{"inactive_file", "total_inactive_file"},
2692 	{"active_file", "total_active_file"},
2693 	{"unevictable", "total_unevictable"}
2694 };
2695 
2696 
2697 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2698 {
2699 	struct mcs_total_stat *s = data;
2700 	s64 val;
2701 
2702 	/* per cpu stat */
2703 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2704 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2705 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2706 	s->stat[MCS_RSS] += val * PAGE_SIZE;
2707 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2708 	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2709 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2710 	s->stat[MCS_PGPGIN] += val;
2711 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2712 	s->stat[MCS_PGPGOUT] += val;
2713 	if (do_swap_account) {
2714 		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2715 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
2716 	}
2717 
2718 	/* per zone stat */
2719 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2720 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2721 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2722 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2723 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2724 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2725 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2726 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2727 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2728 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2729 	return 0;
2730 }
2731 
2732 static void
2733 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2734 {
2735 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2736 }
2737 
2738 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2739 				 struct cgroup_map_cb *cb)
2740 {
2741 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2742 	struct mcs_total_stat mystat;
2743 	int i;
2744 
2745 	memset(&mystat, 0, sizeof(mystat));
2746 	mem_cgroup_get_local_stat(mem_cont, &mystat);
2747 
2748 	for (i = 0; i < NR_MCS_STAT; i++) {
2749 		if (i == MCS_SWAP && !do_swap_account)
2750 			continue;
2751 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2752 	}
2753 
2754 	/* Hierarchical information */
2755 	{
2756 		unsigned long long limit, memsw_limit;
2757 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2758 		cb->fill(cb, "hierarchical_memory_limit", limit);
2759 		if (do_swap_account)
2760 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2761 	}
2762 
2763 	memset(&mystat, 0, sizeof(mystat));
2764 	mem_cgroup_get_total_stat(mem_cont, &mystat);
2765 	for (i = 0; i < NR_MCS_STAT; i++) {
2766 		if (i == MCS_SWAP && !do_swap_account)
2767 			continue;
2768 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2769 	}
2770 
2771 #ifdef CONFIG_DEBUG_VM
2772 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2773 
2774 	{
2775 		int nid, zid;
2776 		struct mem_cgroup_per_zone *mz;
2777 		unsigned long recent_rotated[2] = {0, 0};
2778 		unsigned long recent_scanned[2] = {0, 0};
2779 
2780 		for_each_online_node(nid)
2781 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2782 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2783 
2784 				recent_rotated[0] +=
2785 					mz->reclaim_stat.recent_rotated[0];
2786 				recent_rotated[1] +=
2787 					mz->reclaim_stat.recent_rotated[1];
2788 				recent_scanned[0] +=
2789 					mz->reclaim_stat.recent_scanned[0];
2790 				recent_scanned[1] +=
2791 					mz->reclaim_stat.recent_scanned[1];
2792 			}
2793 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2794 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2795 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2796 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2797 	}
2798 #endif
2799 
2800 	return 0;
2801 }
2802 
2803 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2804 {
2805 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2806 
2807 	return get_swappiness(memcg);
2808 }
2809 
2810 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2811 				       u64 val)
2812 {
2813 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2814 	struct mem_cgroup *parent;
2815 
2816 	if (val > 100)
2817 		return -EINVAL;
2818 
2819 	if (cgrp->parent == NULL)
2820 		return -EINVAL;
2821 
2822 	parent = mem_cgroup_from_cont(cgrp->parent);
2823 
2824 	cgroup_lock();
2825 
2826 	/* If under hierarchy, only empty-root can set this value */
2827 	if ((parent->use_hierarchy) ||
2828 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2829 		cgroup_unlock();
2830 		return -EINVAL;
2831 	}
2832 
2833 	spin_lock(&memcg->reclaim_param_lock);
2834 	memcg->swappiness = val;
2835 	spin_unlock(&memcg->reclaim_param_lock);
2836 
2837 	cgroup_unlock();
2838 
2839 	return 0;
2840 }
2841 
2842 
2843 static struct cftype mem_cgroup_files[] = {
2844 	{
2845 		.name = "usage_in_bytes",
2846 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2847 		.read_u64 = mem_cgroup_read,
2848 	},
2849 	{
2850 		.name = "max_usage_in_bytes",
2851 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2852 		.trigger = mem_cgroup_reset,
2853 		.read_u64 = mem_cgroup_read,
2854 	},
2855 	{
2856 		.name = "limit_in_bytes",
2857 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2858 		.write_string = mem_cgroup_write,
2859 		.read_u64 = mem_cgroup_read,
2860 	},
2861 	{
2862 		.name = "soft_limit_in_bytes",
2863 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2864 		.write_string = mem_cgroup_write,
2865 		.read_u64 = mem_cgroup_read,
2866 	},
2867 	{
2868 		.name = "failcnt",
2869 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2870 		.trigger = mem_cgroup_reset,
2871 		.read_u64 = mem_cgroup_read,
2872 	},
2873 	{
2874 		.name = "stat",
2875 		.read_map = mem_control_stat_show,
2876 	},
2877 	{
2878 		.name = "force_empty",
2879 		.trigger = mem_cgroup_force_empty_write,
2880 	},
2881 	{
2882 		.name = "use_hierarchy",
2883 		.write_u64 = mem_cgroup_hierarchy_write,
2884 		.read_u64 = mem_cgroup_hierarchy_read,
2885 	},
2886 	{
2887 		.name = "swappiness",
2888 		.read_u64 = mem_cgroup_swappiness_read,
2889 		.write_u64 = mem_cgroup_swappiness_write,
2890 	},
2891 };
2892 
2893 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2894 static struct cftype memsw_cgroup_files[] = {
2895 	{
2896 		.name = "memsw.usage_in_bytes",
2897 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2898 		.read_u64 = mem_cgroup_read,
2899 	},
2900 	{
2901 		.name = "memsw.max_usage_in_bytes",
2902 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2903 		.trigger = mem_cgroup_reset,
2904 		.read_u64 = mem_cgroup_read,
2905 	},
2906 	{
2907 		.name = "memsw.limit_in_bytes",
2908 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2909 		.write_string = mem_cgroup_write,
2910 		.read_u64 = mem_cgroup_read,
2911 	},
2912 	{
2913 		.name = "memsw.failcnt",
2914 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2915 		.trigger = mem_cgroup_reset,
2916 		.read_u64 = mem_cgroup_read,
2917 	},
2918 };
2919 
2920 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2921 {
2922 	if (!do_swap_account)
2923 		return 0;
2924 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2925 				ARRAY_SIZE(memsw_cgroup_files));
2926 };
2927 #else
2928 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2929 {
2930 	return 0;
2931 }
2932 #endif
2933 
2934 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2935 {
2936 	struct mem_cgroup_per_node *pn;
2937 	struct mem_cgroup_per_zone *mz;
2938 	enum lru_list l;
2939 	int zone, tmp = node;
2940 	/*
2941 	 * This routine is called against possible nodes.
2942 	 * But it's BUG to call kmalloc() against offline node.
2943 	 *
2944 	 * TODO: this routine can waste much memory for nodes which will
2945 	 *       never be onlined. It's better to use memory hotplug callback
2946 	 *       function.
2947 	 */
2948 	if (!node_state(node, N_NORMAL_MEMORY))
2949 		tmp = -1;
2950 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2951 	if (!pn)
2952 		return 1;
2953 
2954 	mem->info.nodeinfo[node] = pn;
2955 	memset(pn, 0, sizeof(*pn));
2956 
2957 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2958 		mz = &pn->zoneinfo[zone];
2959 		for_each_lru(l)
2960 			INIT_LIST_HEAD(&mz->lists[l]);
2961 		mz->usage_in_excess = 0;
2962 		mz->on_tree = false;
2963 		mz->mem = mem;
2964 	}
2965 	return 0;
2966 }
2967 
2968 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2969 {
2970 	kfree(mem->info.nodeinfo[node]);
2971 }
2972 
2973 static int mem_cgroup_size(void)
2974 {
2975 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2976 	return sizeof(struct mem_cgroup) + cpustat_size;
2977 }
2978 
2979 static struct mem_cgroup *mem_cgroup_alloc(void)
2980 {
2981 	struct mem_cgroup *mem;
2982 	int size = mem_cgroup_size();
2983 
2984 	if (size < PAGE_SIZE)
2985 		mem = kmalloc(size, GFP_KERNEL);
2986 	else
2987 		mem = vmalloc(size);
2988 
2989 	if (mem)
2990 		memset(mem, 0, size);
2991 	return mem;
2992 }
2993 
2994 /*
2995  * At destroying mem_cgroup, references from swap_cgroup can remain.
2996  * (scanning all at force_empty is too costly...)
2997  *
2998  * Instead of clearing all references at force_empty, we remember
2999  * the number of reference from swap_cgroup and free mem_cgroup when
3000  * it goes down to 0.
3001  *
3002  * Removal of cgroup itself succeeds regardless of refs from swap.
3003  */
3004 
3005 static void __mem_cgroup_free(struct mem_cgroup *mem)
3006 {
3007 	int node;
3008 
3009 	mem_cgroup_remove_from_trees(mem);
3010 	free_css_id(&mem_cgroup_subsys, &mem->css);
3011 
3012 	for_each_node_state(node, N_POSSIBLE)
3013 		free_mem_cgroup_per_zone_info(mem, node);
3014 
3015 	if (mem_cgroup_size() < PAGE_SIZE)
3016 		kfree(mem);
3017 	else
3018 		vfree(mem);
3019 }
3020 
3021 static void mem_cgroup_get(struct mem_cgroup *mem)
3022 {
3023 	atomic_inc(&mem->refcnt);
3024 }
3025 
3026 static void mem_cgroup_put(struct mem_cgroup *mem)
3027 {
3028 	if (atomic_dec_and_test(&mem->refcnt)) {
3029 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3030 		__mem_cgroup_free(mem);
3031 		if (parent)
3032 			mem_cgroup_put(parent);
3033 	}
3034 }
3035 
3036 /*
3037  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3038  */
3039 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3040 {
3041 	if (!mem->res.parent)
3042 		return NULL;
3043 	return mem_cgroup_from_res_counter(mem->res.parent, res);
3044 }
3045 
3046 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3047 static void __init enable_swap_cgroup(void)
3048 {
3049 	if (!mem_cgroup_disabled() && really_do_swap_account)
3050 		do_swap_account = 1;
3051 }
3052 #else
3053 static void __init enable_swap_cgroup(void)
3054 {
3055 }
3056 #endif
3057 
3058 static int mem_cgroup_soft_limit_tree_init(void)
3059 {
3060 	struct mem_cgroup_tree_per_node *rtpn;
3061 	struct mem_cgroup_tree_per_zone *rtpz;
3062 	int tmp, node, zone;
3063 
3064 	for_each_node_state(node, N_POSSIBLE) {
3065 		tmp = node;
3066 		if (!node_state(node, N_NORMAL_MEMORY))
3067 			tmp = -1;
3068 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3069 		if (!rtpn)
3070 			return 1;
3071 
3072 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3073 
3074 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3075 			rtpz = &rtpn->rb_tree_per_zone[zone];
3076 			rtpz->rb_root = RB_ROOT;
3077 			spin_lock_init(&rtpz->lock);
3078 		}
3079 	}
3080 	return 0;
3081 }
3082 
3083 static struct cgroup_subsys_state * __ref
3084 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3085 {
3086 	struct mem_cgroup *mem, *parent;
3087 	long error = -ENOMEM;
3088 	int node;
3089 
3090 	mem = mem_cgroup_alloc();
3091 	if (!mem)
3092 		return ERR_PTR(error);
3093 
3094 	for_each_node_state(node, N_POSSIBLE)
3095 		if (alloc_mem_cgroup_per_zone_info(mem, node))
3096 			goto free_out;
3097 
3098 	/* root ? */
3099 	if (cont->parent == NULL) {
3100 		enable_swap_cgroup();
3101 		parent = NULL;
3102 		root_mem_cgroup = mem;
3103 		if (mem_cgroup_soft_limit_tree_init())
3104 			goto free_out;
3105 
3106 	} else {
3107 		parent = mem_cgroup_from_cont(cont->parent);
3108 		mem->use_hierarchy = parent->use_hierarchy;
3109 	}
3110 
3111 	if (parent && parent->use_hierarchy) {
3112 		res_counter_init(&mem->res, &parent->res);
3113 		res_counter_init(&mem->memsw, &parent->memsw);
3114 		/*
3115 		 * We increment refcnt of the parent to ensure that we can
3116 		 * safely access it on res_counter_charge/uncharge.
3117 		 * This refcnt will be decremented when freeing this
3118 		 * mem_cgroup(see mem_cgroup_put).
3119 		 */
3120 		mem_cgroup_get(parent);
3121 	} else {
3122 		res_counter_init(&mem->res, NULL);
3123 		res_counter_init(&mem->memsw, NULL);
3124 	}
3125 	mem->last_scanned_child = 0;
3126 	spin_lock_init(&mem->reclaim_param_lock);
3127 
3128 	if (parent)
3129 		mem->swappiness = get_swappiness(parent);
3130 	atomic_set(&mem->refcnt, 1);
3131 	return &mem->css;
3132 free_out:
3133 	__mem_cgroup_free(mem);
3134 	root_mem_cgroup = NULL;
3135 	return ERR_PTR(error);
3136 }
3137 
3138 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3139 					struct cgroup *cont)
3140 {
3141 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3142 
3143 	return mem_cgroup_force_empty(mem, false);
3144 }
3145 
3146 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3147 				struct cgroup *cont)
3148 {
3149 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3150 
3151 	mem_cgroup_put(mem);
3152 }
3153 
3154 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3155 				struct cgroup *cont)
3156 {
3157 	int ret;
3158 
3159 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3160 				ARRAY_SIZE(mem_cgroup_files));
3161 
3162 	if (!ret)
3163 		ret = register_memsw_files(cont, ss);
3164 	return ret;
3165 }
3166 
3167 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3168 				struct cgroup *cont,
3169 				struct cgroup *old_cont,
3170 				struct task_struct *p,
3171 				bool threadgroup)
3172 {
3173 	mutex_lock(&memcg_tasklist);
3174 	/*
3175 	 * FIXME: It's better to move charges of this process from old
3176 	 * memcg to new memcg. But it's just on TODO-List now.
3177 	 */
3178 	mutex_unlock(&memcg_tasklist);
3179 }
3180 
3181 struct cgroup_subsys mem_cgroup_subsys = {
3182 	.name = "memory",
3183 	.subsys_id = mem_cgroup_subsys_id,
3184 	.create = mem_cgroup_create,
3185 	.pre_destroy = mem_cgroup_pre_destroy,
3186 	.destroy = mem_cgroup_destroy,
3187 	.populate = mem_cgroup_populate,
3188 	.attach = mem_cgroup_move_task,
3189 	.early_init = 0,
3190 	.use_id = 1,
3191 };
3192 
3193 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3194 
3195 static int __init disable_swap_account(char *s)
3196 {
3197 	really_do_swap_account = 0;
3198 	return 1;
3199 }
3200 __setup("noswapaccount", disable_swap_account);
3201 #endif
3202