xref: /linux/mm/memcontrol.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		(0)
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 	MEM_CGROUP_STAT_NSTATS,
94 };
95 
96 enum mem_cgroup_events_index {
97 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 	MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111 	MEM_CGROUP_TARGET_THRESH,
112 	MEM_CGROUP_TARGET_SOFTLIMIT,
113 	MEM_CGROUP_TARGET_NUMAINFO,
114 	MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET	(1024)
119 
120 struct mem_cgroup_stat_cpu {
121 	long count[MEM_CGROUP_STAT_NSTATS];
122 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 	unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125 
126 /*
127  * per-zone information in memory controller.
128  */
129 struct mem_cgroup_per_zone {
130 	/*
131 	 * spin_lock to protect the per cgroup LRU
132 	 */
133 	struct list_head	lists[NR_LRU_LISTS];
134 	unsigned long		count[NR_LRU_LISTS];
135 
136 	struct zone_reclaim_stat reclaim_stat;
137 	struct rb_node		tree_node;	/* RB tree node */
138 	unsigned long long	usage_in_excess;/* Set to the value by which */
139 						/* the soft limit is exceeded*/
140 	bool			on_tree;
141 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
142 						/* use container_of	   */
143 };
144 /* Macro for accessing counter */
145 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
146 
147 struct mem_cgroup_per_node {
148 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150 
151 struct mem_cgroup_lru_info {
152 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
153 };
154 
155 /*
156  * Cgroups above their limits are maintained in a RB-Tree, independent of
157  * their hierarchy representation
158  */
159 
160 struct mem_cgroup_tree_per_zone {
161 	struct rb_root rb_root;
162 	spinlock_t lock;
163 };
164 
165 struct mem_cgroup_tree_per_node {
166 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167 };
168 
169 struct mem_cgroup_tree {
170 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171 };
172 
173 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
174 
175 struct mem_cgroup_threshold {
176 	struct eventfd_ctx *eventfd;
177 	u64 threshold;
178 };
179 
180 /* For threshold */
181 struct mem_cgroup_threshold_ary {
182 	/* An array index points to threshold just below usage. */
183 	int current_threshold;
184 	/* Size of entries[] */
185 	unsigned int size;
186 	/* Array of thresholds */
187 	struct mem_cgroup_threshold entries[0];
188 };
189 
190 struct mem_cgroup_thresholds {
191 	/* Primary thresholds array */
192 	struct mem_cgroup_threshold_ary *primary;
193 	/*
194 	 * Spare threshold array.
195 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
196 	 * It must be able to store at least primary->size - 1 entries.
197 	 */
198 	struct mem_cgroup_threshold_ary *spare;
199 };
200 
201 /* for OOM */
202 struct mem_cgroup_eventfd_list {
203 	struct list_head list;
204 	struct eventfd_ctx *eventfd;
205 };
206 
207 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
208 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
209 
210 /*
211  * The memory controller data structure. The memory controller controls both
212  * page cache and RSS per cgroup. We would eventually like to provide
213  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214  * to help the administrator determine what knobs to tune.
215  *
216  * TODO: Add a water mark for the memory controller. Reclaim will begin when
217  * we hit the water mark. May be even add a low water mark, such that
218  * no reclaim occurs from a cgroup at it's low water mark, this is
219  * a feature that will be implemented much later in the future.
220  */
221 struct mem_cgroup {
222 	struct cgroup_subsys_state css;
223 	/*
224 	 * the counter to account for memory usage
225 	 */
226 	struct res_counter res;
227 	/*
228 	 * the counter to account for mem+swap usage.
229 	 */
230 	struct res_counter memsw;
231 	/*
232 	 * Per cgroup active and inactive list, similar to the
233 	 * per zone LRU lists.
234 	 */
235 	struct mem_cgroup_lru_info info;
236 	/*
237 	 * While reclaiming in a hierarchy, we cache the last child we
238 	 * reclaimed from.
239 	 */
240 	int last_scanned_child;
241 	int last_scanned_node;
242 #if MAX_NUMNODES > 1
243 	nodemask_t	scan_nodes;
244 	atomic_t	numainfo_events;
245 	atomic_t	numainfo_updating;
246 #endif
247 	/*
248 	 * Should the accounting and control be hierarchical, per subtree?
249 	 */
250 	bool use_hierarchy;
251 
252 	bool		oom_lock;
253 	atomic_t	under_oom;
254 
255 	atomic_t	refcnt;
256 
257 	int	swappiness;
258 	/* OOM-Killer disable */
259 	int		oom_kill_disable;
260 
261 	/* set when res.limit == memsw.limit */
262 	bool		memsw_is_minimum;
263 
264 	/* protect arrays of thresholds */
265 	struct mutex thresholds_lock;
266 
267 	/* thresholds for memory usage. RCU-protected */
268 	struct mem_cgroup_thresholds thresholds;
269 
270 	/* thresholds for mem+swap usage. RCU-protected */
271 	struct mem_cgroup_thresholds memsw_thresholds;
272 
273 	/* For oom notifier event fd */
274 	struct list_head oom_notify;
275 
276 	/*
277 	 * Should we move charges of a task when a task is moved into this
278 	 * mem_cgroup ? And what type of charges should we move ?
279 	 */
280 	unsigned long 	move_charge_at_immigrate;
281 	/*
282 	 * percpu counter.
283 	 */
284 	struct mem_cgroup_stat_cpu *stat;
285 	/*
286 	 * used when a cpu is offlined or other synchronizations
287 	 * See mem_cgroup_read_stat().
288 	 */
289 	struct mem_cgroup_stat_cpu nocpu_base;
290 	spinlock_t pcp_counter_lock;
291 
292 #ifdef CONFIG_INET
293 	struct tcp_memcontrol tcp_mem;
294 #endif
295 };
296 
297 /* Stuffs for move charges at task migration. */
298 /*
299  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
300  * left-shifted bitmap of these types.
301  */
302 enum move_type {
303 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
304 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
305 	NR_MOVE_TYPE,
306 };
307 
308 /* "mc" and its members are protected by cgroup_mutex */
309 static struct move_charge_struct {
310 	spinlock_t	  lock; /* for from, to */
311 	struct mem_cgroup *from;
312 	struct mem_cgroup *to;
313 	unsigned long precharge;
314 	unsigned long moved_charge;
315 	unsigned long moved_swap;
316 	struct task_struct *moving_task;	/* a task moving charges */
317 	wait_queue_head_t waitq;		/* a waitq for other context */
318 } mc = {
319 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
320 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
321 };
322 
323 static bool move_anon(void)
324 {
325 	return test_bit(MOVE_CHARGE_TYPE_ANON,
326 					&mc.to->move_charge_at_immigrate);
327 }
328 
329 static bool move_file(void)
330 {
331 	return test_bit(MOVE_CHARGE_TYPE_FILE,
332 					&mc.to->move_charge_at_immigrate);
333 }
334 
335 /*
336  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
337  * limit reclaim to prevent infinite loops, if they ever occur.
338  */
339 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
340 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
341 
342 enum charge_type {
343 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
344 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
345 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
346 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
347 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
348 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
349 	NR_CHARGE_TYPE,
350 };
351 
352 /* for encoding cft->private value on file */
353 #define _MEM			(0)
354 #define _MEMSWAP		(1)
355 #define _OOM_TYPE		(2)
356 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
357 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
358 #define MEMFILE_ATTR(val)	((val) & 0xffff)
359 /* Used for OOM nofiier */
360 #define OOM_CONTROL		(0)
361 
362 /*
363  * Reclaim flags for mem_cgroup_hierarchical_reclaim
364  */
365 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
366 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
367 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
368 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
370 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
371 
372 static void mem_cgroup_get(struct mem_cgroup *memcg);
373 static void mem_cgroup_put(struct mem_cgroup *memcg);
374 
375 /* Writing them here to avoid exposing memcg's inner layout */
376 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
377 #ifdef CONFIG_INET
378 #include <net/sock.h>
379 #include <net/ip.h>
380 
381 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
382 void sock_update_memcg(struct sock *sk)
383 {
384 	if (static_branch(&memcg_socket_limit_enabled)) {
385 		struct mem_cgroup *memcg;
386 
387 		BUG_ON(!sk->sk_prot->proto_cgroup);
388 
389 		/* Socket cloning can throw us here with sk_cgrp already
390 		 * filled. It won't however, necessarily happen from
391 		 * process context. So the test for root memcg given
392 		 * the current task's memcg won't help us in this case.
393 		 *
394 		 * Respecting the original socket's memcg is a better
395 		 * decision in this case.
396 		 */
397 		if (sk->sk_cgrp) {
398 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
399 			mem_cgroup_get(sk->sk_cgrp->memcg);
400 			return;
401 		}
402 
403 		rcu_read_lock();
404 		memcg = mem_cgroup_from_task(current);
405 		if (!mem_cgroup_is_root(memcg)) {
406 			mem_cgroup_get(memcg);
407 			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
408 		}
409 		rcu_read_unlock();
410 	}
411 }
412 EXPORT_SYMBOL(sock_update_memcg);
413 
414 void sock_release_memcg(struct sock *sk)
415 {
416 	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
417 		struct mem_cgroup *memcg;
418 		WARN_ON(!sk->sk_cgrp->memcg);
419 		memcg = sk->sk_cgrp->memcg;
420 		mem_cgroup_put(memcg);
421 	}
422 }
423 
424 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
425 {
426 	if (!memcg || mem_cgroup_is_root(memcg))
427 		return NULL;
428 
429 	return &memcg->tcp_mem.cg_proto;
430 }
431 EXPORT_SYMBOL(tcp_proto_cgroup);
432 #endif /* CONFIG_INET */
433 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434 
435 static void drain_all_stock_async(struct mem_cgroup *memcg);
436 
437 static struct mem_cgroup_per_zone *
438 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439 {
440 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
441 }
442 
443 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
444 {
445 	return &memcg->css;
446 }
447 
448 static struct mem_cgroup_per_zone *
449 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450 {
451 	int nid = page_to_nid(page);
452 	int zid = page_zonenum(page);
453 
454 	return mem_cgroup_zoneinfo(memcg, nid, zid);
455 }
456 
457 static struct mem_cgroup_tree_per_zone *
458 soft_limit_tree_node_zone(int nid, int zid)
459 {
460 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
461 }
462 
463 static struct mem_cgroup_tree_per_zone *
464 soft_limit_tree_from_page(struct page *page)
465 {
466 	int nid = page_to_nid(page);
467 	int zid = page_zonenum(page);
468 
469 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
470 }
471 
472 static void
473 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
474 				struct mem_cgroup_per_zone *mz,
475 				struct mem_cgroup_tree_per_zone *mctz,
476 				unsigned long long new_usage_in_excess)
477 {
478 	struct rb_node **p = &mctz->rb_root.rb_node;
479 	struct rb_node *parent = NULL;
480 	struct mem_cgroup_per_zone *mz_node;
481 
482 	if (mz->on_tree)
483 		return;
484 
485 	mz->usage_in_excess = new_usage_in_excess;
486 	if (!mz->usage_in_excess)
487 		return;
488 	while (*p) {
489 		parent = *p;
490 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
491 					tree_node);
492 		if (mz->usage_in_excess < mz_node->usage_in_excess)
493 			p = &(*p)->rb_left;
494 		/*
495 		 * We can't avoid mem cgroups that are over their soft
496 		 * limit by the same amount
497 		 */
498 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
499 			p = &(*p)->rb_right;
500 	}
501 	rb_link_node(&mz->tree_node, parent, p);
502 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
503 	mz->on_tree = true;
504 }
505 
506 static void
507 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
508 				struct mem_cgroup_per_zone *mz,
509 				struct mem_cgroup_tree_per_zone *mctz)
510 {
511 	if (!mz->on_tree)
512 		return;
513 	rb_erase(&mz->tree_node, &mctz->rb_root);
514 	mz->on_tree = false;
515 }
516 
517 static void
518 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
519 				struct mem_cgroup_per_zone *mz,
520 				struct mem_cgroup_tree_per_zone *mctz)
521 {
522 	spin_lock(&mctz->lock);
523 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
524 	spin_unlock(&mctz->lock);
525 }
526 
527 
528 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529 {
530 	unsigned long long excess;
531 	struct mem_cgroup_per_zone *mz;
532 	struct mem_cgroup_tree_per_zone *mctz;
533 	int nid = page_to_nid(page);
534 	int zid = page_zonenum(page);
535 	mctz = soft_limit_tree_from_page(page);
536 
537 	/*
538 	 * Necessary to update all ancestors when hierarchy is used.
539 	 * because their event counter is not touched.
540 	 */
541 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
542 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
543 		excess = res_counter_soft_limit_excess(&memcg->res);
544 		/*
545 		 * We have to update the tree if mz is on RB-tree or
546 		 * mem is over its softlimit.
547 		 */
548 		if (excess || mz->on_tree) {
549 			spin_lock(&mctz->lock);
550 			/* if on-tree, remove it */
551 			if (mz->on_tree)
552 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
553 			/*
554 			 * Insert again. mz->usage_in_excess will be updated.
555 			 * If excess is 0, no tree ops.
556 			 */
557 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
558 			spin_unlock(&mctz->lock);
559 		}
560 	}
561 }
562 
563 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
564 {
565 	int node, zone;
566 	struct mem_cgroup_per_zone *mz;
567 	struct mem_cgroup_tree_per_zone *mctz;
568 
569 	for_each_node_state(node, N_POSSIBLE) {
570 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
571 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
572 			mctz = soft_limit_tree_node_zone(node, zone);
573 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 		}
575 	}
576 }
577 
578 static struct mem_cgroup_per_zone *
579 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
580 {
581 	struct rb_node *rightmost = NULL;
582 	struct mem_cgroup_per_zone *mz;
583 
584 retry:
585 	mz = NULL;
586 	rightmost = rb_last(&mctz->rb_root);
587 	if (!rightmost)
588 		goto done;		/* Nothing to reclaim from */
589 
590 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
591 	/*
592 	 * Remove the node now but someone else can add it back,
593 	 * we will to add it back at the end of reclaim to its correct
594 	 * position in the tree.
595 	 */
596 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
597 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
598 		!css_tryget(&mz->mem->css))
599 		goto retry;
600 done:
601 	return mz;
602 }
603 
604 static struct mem_cgroup_per_zone *
605 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
606 {
607 	struct mem_cgroup_per_zone *mz;
608 
609 	spin_lock(&mctz->lock);
610 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
611 	spin_unlock(&mctz->lock);
612 	return mz;
613 }
614 
615 /*
616  * Implementation Note: reading percpu statistics for memcg.
617  *
618  * Both of vmstat[] and percpu_counter has threshold and do periodic
619  * synchronization to implement "quick" read. There are trade-off between
620  * reading cost and precision of value. Then, we may have a chance to implement
621  * a periodic synchronizion of counter in memcg's counter.
622  *
623  * But this _read() function is used for user interface now. The user accounts
624  * memory usage by memory cgroup and he _always_ requires exact value because
625  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
626  * have to visit all online cpus and make sum. So, for now, unnecessary
627  * synchronization is not implemented. (just implemented for cpu hotplug)
628  *
629  * If there are kernel internal actions which can make use of some not-exact
630  * value, and reading all cpu value can be performance bottleneck in some
631  * common workload, threashold and synchonization as vmstat[] should be
632  * implemented.
633  */
634 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
635 				 enum mem_cgroup_stat_index idx)
636 {
637 	long val = 0;
638 	int cpu;
639 
640 	get_online_cpus();
641 	for_each_online_cpu(cpu)
642 		val += per_cpu(memcg->stat->count[idx], cpu);
643 #ifdef CONFIG_HOTPLUG_CPU
644 	spin_lock(&memcg->pcp_counter_lock);
645 	val += memcg->nocpu_base.count[idx];
646 	spin_unlock(&memcg->pcp_counter_lock);
647 #endif
648 	put_online_cpus();
649 	return val;
650 }
651 
652 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
653 					 bool charge)
654 {
655 	int val = (charge) ? 1 : -1;
656 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
657 }
658 
659 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
660 {
661 	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
662 }
663 
664 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
665 {
666 	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
667 }
668 
669 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
670 					    enum mem_cgroup_events_index idx)
671 {
672 	unsigned long val = 0;
673 	int cpu;
674 
675 	for_each_online_cpu(cpu)
676 		val += per_cpu(memcg->stat->events[idx], cpu);
677 #ifdef CONFIG_HOTPLUG_CPU
678 	spin_lock(&memcg->pcp_counter_lock);
679 	val += memcg->nocpu_base.events[idx];
680 	spin_unlock(&memcg->pcp_counter_lock);
681 #endif
682 	return val;
683 }
684 
685 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
686 					 bool file, int nr_pages)
687 {
688 	preempt_disable();
689 
690 	if (file)
691 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
692 				nr_pages);
693 	else
694 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
695 				nr_pages);
696 
697 	/* pagein of a big page is an event. So, ignore page size */
698 	if (nr_pages > 0)
699 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
700 	else {
701 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
702 		nr_pages = -nr_pages; /* for event */
703 	}
704 
705 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
706 
707 	preempt_enable();
708 }
709 
710 unsigned long
711 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
712 			unsigned int lru_mask)
713 {
714 	struct mem_cgroup_per_zone *mz;
715 	enum lru_list l;
716 	unsigned long ret = 0;
717 
718 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
719 
720 	for_each_lru(l) {
721 		if (BIT(l) & lru_mask)
722 			ret += MEM_CGROUP_ZSTAT(mz, l);
723 	}
724 	return ret;
725 }
726 
727 static unsigned long
728 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 			int nid, unsigned int lru_mask)
730 {
731 	u64 total = 0;
732 	int zid;
733 
734 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
735 		total += mem_cgroup_zone_nr_lru_pages(memcg,
736 						nid, zid, lru_mask);
737 
738 	return total;
739 }
740 
741 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
742 			unsigned int lru_mask)
743 {
744 	int nid;
745 	u64 total = 0;
746 
747 	for_each_node_state(nid, N_HIGH_MEMORY)
748 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
749 	return total;
750 }
751 
752 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
753 {
754 	unsigned long val, next;
755 
756 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
757 	next = __this_cpu_read(memcg->stat->targets[target]);
758 	/* from time_after() in jiffies.h */
759 	return ((long)next - (long)val < 0);
760 }
761 
762 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
763 {
764 	unsigned long val, next;
765 
766 	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
767 
768 	switch (target) {
769 	case MEM_CGROUP_TARGET_THRESH:
770 		next = val + THRESHOLDS_EVENTS_TARGET;
771 		break;
772 	case MEM_CGROUP_TARGET_SOFTLIMIT:
773 		next = val + SOFTLIMIT_EVENTS_TARGET;
774 		break;
775 	case MEM_CGROUP_TARGET_NUMAINFO:
776 		next = val + NUMAINFO_EVENTS_TARGET;
777 		break;
778 	default:
779 		return;
780 	}
781 
782 	__this_cpu_write(memcg->stat->targets[target], next);
783 }
784 
785 /*
786  * Check events in order.
787  *
788  */
789 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
790 {
791 	preempt_disable();
792 	/* threshold event is triggered in finer grain than soft limit */
793 	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
794 		mem_cgroup_threshold(memcg);
795 		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
796 		if (unlikely(__memcg_event_check(memcg,
797 			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
798 			mem_cgroup_update_tree(memcg, page);
799 			__mem_cgroup_target_update(memcg,
800 						   MEM_CGROUP_TARGET_SOFTLIMIT);
801 		}
802 #if MAX_NUMNODES > 1
803 		if (unlikely(__memcg_event_check(memcg,
804 			MEM_CGROUP_TARGET_NUMAINFO))) {
805 			atomic_inc(&memcg->numainfo_events);
806 			__mem_cgroup_target_update(memcg,
807 				MEM_CGROUP_TARGET_NUMAINFO);
808 		}
809 #endif
810 	}
811 	preempt_enable();
812 }
813 
814 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
815 {
816 	return container_of(cgroup_subsys_state(cont,
817 				mem_cgroup_subsys_id), struct mem_cgroup,
818 				css);
819 }
820 
821 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
822 {
823 	/*
824 	 * mm_update_next_owner() may clear mm->owner to NULL
825 	 * if it races with swapoff, page migration, etc.
826 	 * So this can be called with p == NULL.
827 	 */
828 	if (unlikely(!p))
829 		return NULL;
830 
831 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
832 				struct mem_cgroup, css);
833 }
834 
835 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
836 {
837 	struct mem_cgroup *memcg = NULL;
838 
839 	if (!mm)
840 		return NULL;
841 	/*
842 	 * Because we have no locks, mm->owner's may be being moved to other
843 	 * cgroup. We use css_tryget() here even if this looks
844 	 * pessimistic (rather than adding locks here).
845 	 */
846 	rcu_read_lock();
847 	do {
848 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
849 		if (unlikely(!memcg))
850 			break;
851 	} while (!css_tryget(&memcg->css));
852 	rcu_read_unlock();
853 	return memcg;
854 }
855 
856 /* The caller has to guarantee "mem" exists before calling this */
857 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
858 {
859 	struct cgroup_subsys_state *css;
860 	int found;
861 
862 	if (!memcg) /* ROOT cgroup has the smallest ID */
863 		return root_mem_cgroup; /*css_put/get against root is ignored*/
864 	if (!memcg->use_hierarchy) {
865 		if (css_tryget(&memcg->css))
866 			return memcg;
867 		return NULL;
868 	}
869 	rcu_read_lock();
870 	/*
871 	 * searching a memory cgroup which has the smallest ID under given
872 	 * ROOT cgroup. (ID >= 1)
873 	 */
874 	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
875 	if (css && css_tryget(css))
876 		memcg = container_of(css, struct mem_cgroup, css);
877 	else
878 		memcg = NULL;
879 	rcu_read_unlock();
880 	return memcg;
881 }
882 
883 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
884 					struct mem_cgroup *root,
885 					bool cond)
886 {
887 	int nextid = css_id(&iter->css) + 1;
888 	int found;
889 	int hierarchy_used;
890 	struct cgroup_subsys_state *css;
891 
892 	hierarchy_used = iter->use_hierarchy;
893 
894 	css_put(&iter->css);
895 	/* If no ROOT, walk all, ignore hierarchy */
896 	if (!cond || (root && !hierarchy_used))
897 		return NULL;
898 
899 	if (!root)
900 		root = root_mem_cgroup;
901 
902 	do {
903 		iter = NULL;
904 		rcu_read_lock();
905 
906 		css = css_get_next(&mem_cgroup_subsys, nextid,
907 				&root->css, &found);
908 		if (css && css_tryget(css))
909 			iter = container_of(css, struct mem_cgroup, css);
910 		rcu_read_unlock();
911 		/* If css is NULL, no more cgroups will be found */
912 		nextid = found + 1;
913 	} while (css && !iter);
914 
915 	return iter;
916 }
917 /*
918  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
919  * be careful that "break" loop is not allowed. We have reference count.
920  * Instead of that modify "cond" to be false and "continue" to exit the loop.
921  */
922 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
923 	for (iter = mem_cgroup_start_loop(root);\
924 	     iter != NULL;\
925 	     iter = mem_cgroup_get_next(iter, root, cond))
926 
927 #define for_each_mem_cgroup_tree(iter, root) \
928 	for_each_mem_cgroup_tree_cond(iter, root, true)
929 
930 #define for_each_mem_cgroup_all(iter) \
931 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
932 
933 
934 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
935 {
936 	return (memcg == root_mem_cgroup);
937 }
938 
939 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
940 {
941 	struct mem_cgroup *memcg;
942 
943 	if (!mm)
944 		return;
945 
946 	rcu_read_lock();
947 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
948 	if (unlikely(!memcg))
949 		goto out;
950 
951 	switch (idx) {
952 	case PGMAJFAULT:
953 		mem_cgroup_pgmajfault(memcg, 1);
954 		break;
955 	case PGFAULT:
956 		mem_cgroup_pgfault(memcg, 1);
957 		break;
958 	default:
959 		BUG();
960 	}
961 out:
962 	rcu_read_unlock();
963 }
964 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
965 
966 /*
967  * Following LRU functions are allowed to be used without PCG_LOCK.
968  * Operations are called by routine of global LRU independently from memcg.
969  * What we have to take care of here is validness of pc->mem_cgroup.
970  *
971  * Changes to pc->mem_cgroup happens when
972  * 1. charge
973  * 2. moving account
974  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
975  * It is added to LRU before charge.
976  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
977  * When moving account, the page is not on LRU. It's isolated.
978  */
979 
980 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
981 {
982 	struct page_cgroup *pc;
983 	struct mem_cgroup_per_zone *mz;
984 
985 	if (mem_cgroup_disabled())
986 		return;
987 	pc = lookup_page_cgroup(page);
988 	/* can happen while we handle swapcache. */
989 	if (!TestClearPageCgroupAcctLRU(pc))
990 		return;
991 	VM_BUG_ON(!pc->mem_cgroup);
992 	/*
993 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
994 	 * removed from global LRU.
995 	 */
996 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
997 	/* huge page split is done under lru_lock. so, we have no races. */
998 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
999 	if (mem_cgroup_is_root(pc->mem_cgroup))
1000 		return;
1001 	VM_BUG_ON(list_empty(&pc->lru));
1002 	list_del_init(&pc->lru);
1003 }
1004 
1005 void mem_cgroup_del_lru(struct page *page)
1006 {
1007 	mem_cgroup_del_lru_list(page, page_lru(page));
1008 }
1009 
1010 /*
1011  * Writeback is about to end against a page which has been marked for immediate
1012  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
1013  * inactive list.
1014  */
1015 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1016 {
1017 	struct mem_cgroup_per_zone *mz;
1018 	struct page_cgroup *pc;
1019 	enum lru_list lru = page_lru(page);
1020 
1021 	if (mem_cgroup_disabled())
1022 		return;
1023 
1024 	pc = lookup_page_cgroup(page);
1025 	/* unused or root page is not rotated. */
1026 	if (!PageCgroupUsed(pc))
1027 		return;
1028 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1029 	smp_rmb();
1030 	if (mem_cgroup_is_root(pc->mem_cgroup))
1031 		return;
1032 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1033 	list_move_tail(&pc->lru, &mz->lists[lru]);
1034 }
1035 
1036 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1037 {
1038 	struct mem_cgroup_per_zone *mz;
1039 	struct page_cgroup *pc;
1040 
1041 	if (mem_cgroup_disabled())
1042 		return;
1043 
1044 	pc = lookup_page_cgroup(page);
1045 	/* unused or root page is not rotated. */
1046 	if (!PageCgroupUsed(pc))
1047 		return;
1048 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1049 	smp_rmb();
1050 	if (mem_cgroup_is_root(pc->mem_cgroup))
1051 		return;
1052 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1053 	list_move(&pc->lru, &mz->lists[lru]);
1054 }
1055 
1056 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1057 {
1058 	struct page_cgroup *pc;
1059 	struct mem_cgroup_per_zone *mz;
1060 
1061 	if (mem_cgroup_disabled())
1062 		return;
1063 	pc = lookup_page_cgroup(page);
1064 	VM_BUG_ON(PageCgroupAcctLRU(pc));
1065 	/*
1066 	 * putback:				charge:
1067 	 * SetPageLRU				SetPageCgroupUsed
1068 	 * smp_mb				smp_mb
1069 	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1070 	 *
1071 	 * Ensure that one of the two sides adds the page to the memcg
1072 	 * LRU during a race.
1073 	 */
1074 	smp_mb();
1075 	if (!PageCgroupUsed(pc))
1076 		return;
1077 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1078 	smp_rmb();
1079 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1080 	/* huge page split is done under lru_lock. so, we have no races. */
1081 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1082 	SetPageCgroupAcctLRU(pc);
1083 	if (mem_cgroup_is_root(pc->mem_cgroup))
1084 		return;
1085 	list_add(&pc->lru, &mz->lists[lru]);
1086 }
1087 
1088 /*
1089  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1090  * while it's linked to lru because the page may be reused after it's fully
1091  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1092  * It's done under lock_page and expected that zone->lru_lock isnever held.
1093  */
1094 static void mem_cgroup_lru_del_before_commit(struct page *page)
1095 {
1096 	unsigned long flags;
1097 	struct zone *zone = page_zone(page);
1098 	struct page_cgroup *pc = lookup_page_cgroup(page);
1099 
1100 	/*
1101 	 * Doing this check without taking ->lru_lock seems wrong but this
1102 	 * is safe. Because if page_cgroup's USED bit is unset, the page
1103 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1104 	 * set, the commit after this will fail, anyway.
1105 	 * This all charge/uncharge is done under some mutual execustion.
1106 	 * So, we don't need to taking care of changes in USED bit.
1107 	 */
1108 	if (likely(!PageLRU(page)))
1109 		return;
1110 
1111 	spin_lock_irqsave(&zone->lru_lock, flags);
1112 	/*
1113 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1114 	 * is guarded by lock_page() because the page is SwapCache.
1115 	 */
1116 	if (!PageCgroupUsed(pc))
1117 		mem_cgroup_del_lru_list(page, page_lru(page));
1118 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1119 }
1120 
1121 static void mem_cgroup_lru_add_after_commit(struct page *page)
1122 {
1123 	unsigned long flags;
1124 	struct zone *zone = page_zone(page);
1125 	struct page_cgroup *pc = lookup_page_cgroup(page);
1126 	/*
1127 	 * putback:				charge:
1128 	 * SetPageLRU				SetPageCgroupUsed
1129 	 * smp_mb				smp_mb
1130 	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1131 	 *
1132 	 * Ensure that one of the two sides adds the page to the memcg
1133 	 * LRU during a race.
1134 	 */
1135 	smp_mb();
1136 	/* taking care of that the page is added to LRU while we commit it */
1137 	if (likely(!PageLRU(page)))
1138 		return;
1139 	spin_lock_irqsave(&zone->lru_lock, flags);
1140 	/* link when the page is linked to LRU but page_cgroup isn't */
1141 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1142 		mem_cgroup_add_lru_list(page, page_lru(page));
1143 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1144 }
1145 
1146 
1147 void mem_cgroup_move_lists(struct page *page,
1148 			   enum lru_list from, enum lru_list to)
1149 {
1150 	if (mem_cgroup_disabled())
1151 		return;
1152 	mem_cgroup_del_lru_list(page, from);
1153 	mem_cgroup_add_lru_list(page, to);
1154 }
1155 
1156 /*
1157  * Checks whether given mem is same or in the root_mem_cgroup's
1158  * hierarchy subtree
1159  */
1160 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1161 		struct mem_cgroup *memcg)
1162 {
1163 	if (root_memcg != memcg) {
1164 		return (root_memcg->use_hierarchy &&
1165 			css_is_ancestor(&memcg->css, &root_memcg->css));
1166 	}
1167 
1168 	return true;
1169 }
1170 
1171 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1172 {
1173 	int ret;
1174 	struct mem_cgroup *curr = NULL;
1175 	struct task_struct *p;
1176 
1177 	p = find_lock_task_mm(task);
1178 	if (!p)
1179 		return 0;
1180 	curr = try_get_mem_cgroup_from_mm(p->mm);
1181 	task_unlock(p);
1182 	if (!curr)
1183 		return 0;
1184 	/*
1185 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1186 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1187 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1188 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1189 	 */
1190 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1191 	css_put(&curr->css);
1192 	return ret;
1193 }
1194 
1195 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1196 {
1197 	unsigned long inactive_ratio;
1198 	int nid = zone_to_nid(zone);
1199 	int zid = zone_idx(zone);
1200 	unsigned long inactive;
1201 	unsigned long active;
1202 	unsigned long gb;
1203 
1204 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1205 						BIT(LRU_INACTIVE_ANON));
1206 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1207 					      BIT(LRU_ACTIVE_ANON));
1208 
1209 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1210 	if (gb)
1211 		inactive_ratio = int_sqrt(10 * gb);
1212 	else
1213 		inactive_ratio = 1;
1214 
1215 	return inactive * inactive_ratio < active;
1216 }
1217 
1218 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1219 {
1220 	unsigned long active;
1221 	unsigned long inactive;
1222 	int zid = zone_idx(zone);
1223 	int nid = zone_to_nid(zone);
1224 
1225 	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1226 						BIT(LRU_INACTIVE_FILE));
1227 	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1228 					      BIT(LRU_ACTIVE_FILE));
1229 
1230 	return (active > inactive);
1231 }
1232 
1233 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1234 						      struct zone *zone)
1235 {
1236 	int nid = zone_to_nid(zone);
1237 	int zid = zone_idx(zone);
1238 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1239 
1240 	return &mz->reclaim_stat;
1241 }
1242 
1243 struct zone_reclaim_stat *
1244 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1245 {
1246 	struct page_cgroup *pc;
1247 	struct mem_cgroup_per_zone *mz;
1248 
1249 	if (mem_cgroup_disabled())
1250 		return NULL;
1251 
1252 	pc = lookup_page_cgroup(page);
1253 	if (!PageCgroupUsed(pc))
1254 		return NULL;
1255 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1256 	smp_rmb();
1257 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1258 	return &mz->reclaim_stat;
1259 }
1260 
1261 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1262 					struct list_head *dst,
1263 					unsigned long *scanned, int order,
1264 					isolate_mode_t mode,
1265 					struct zone *z,
1266 					struct mem_cgroup *mem_cont,
1267 					int active, int file)
1268 {
1269 	unsigned long nr_taken = 0;
1270 	struct page *page;
1271 	unsigned long scan;
1272 	LIST_HEAD(pc_list);
1273 	struct list_head *src;
1274 	struct page_cgroup *pc, *tmp;
1275 	int nid = zone_to_nid(z);
1276 	int zid = zone_idx(z);
1277 	struct mem_cgroup_per_zone *mz;
1278 	int lru = LRU_FILE * file + active;
1279 	int ret;
1280 
1281 	BUG_ON(!mem_cont);
1282 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1283 	src = &mz->lists[lru];
1284 
1285 	scan = 0;
1286 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1287 		if (scan >= nr_to_scan)
1288 			break;
1289 
1290 		if (unlikely(!PageCgroupUsed(pc)))
1291 			continue;
1292 
1293 		page = lookup_cgroup_page(pc);
1294 
1295 		if (unlikely(!PageLRU(page)))
1296 			continue;
1297 
1298 		scan++;
1299 		ret = __isolate_lru_page(page, mode, file);
1300 		switch (ret) {
1301 		case 0:
1302 			list_move(&page->lru, dst);
1303 			mem_cgroup_del_lru(page);
1304 			nr_taken += hpage_nr_pages(page);
1305 			break;
1306 		case -EBUSY:
1307 			/* we don't affect global LRU but rotate in our LRU */
1308 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1309 			break;
1310 		default:
1311 			break;
1312 		}
1313 	}
1314 
1315 	*scanned = scan;
1316 
1317 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1318 				      0, 0, 0, mode);
1319 
1320 	return nr_taken;
1321 }
1322 
1323 #define mem_cgroup_from_res_counter(counter, member)	\
1324 	container_of(counter, struct mem_cgroup, member)
1325 
1326 /**
1327  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1328  * @mem: the memory cgroup
1329  *
1330  * Returns the maximum amount of memory @mem can be charged with, in
1331  * pages.
1332  */
1333 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1334 {
1335 	unsigned long long margin;
1336 
1337 	margin = res_counter_margin(&memcg->res);
1338 	if (do_swap_account)
1339 		margin = min(margin, res_counter_margin(&memcg->memsw));
1340 	return margin >> PAGE_SHIFT;
1341 }
1342 
1343 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1344 {
1345 	struct cgroup *cgrp = memcg->css.cgroup;
1346 
1347 	/* root ? */
1348 	if (cgrp->parent == NULL)
1349 		return vm_swappiness;
1350 
1351 	return memcg->swappiness;
1352 }
1353 
1354 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1355 {
1356 	int cpu;
1357 
1358 	get_online_cpus();
1359 	spin_lock(&memcg->pcp_counter_lock);
1360 	for_each_online_cpu(cpu)
1361 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1362 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1363 	spin_unlock(&memcg->pcp_counter_lock);
1364 	put_online_cpus();
1365 
1366 	synchronize_rcu();
1367 }
1368 
1369 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1370 {
1371 	int cpu;
1372 
1373 	if (!memcg)
1374 		return;
1375 	get_online_cpus();
1376 	spin_lock(&memcg->pcp_counter_lock);
1377 	for_each_online_cpu(cpu)
1378 		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1379 	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1380 	spin_unlock(&memcg->pcp_counter_lock);
1381 	put_online_cpus();
1382 }
1383 /*
1384  * 2 routines for checking "mem" is under move_account() or not.
1385  *
1386  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1387  *			  for avoiding race in accounting. If true,
1388  *			  pc->mem_cgroup may be overwritten.
1389  *
1390  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1391  *			  under hierarchy of moving cgroups. This is for
1392  *			  waiting at hith-memory prressure caused by "move".
1393  */
1394 
1395 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1396 {
1397 	VM_BUG_ON(!rcu_read_lock_held());
1398 	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1399 }
1400 
1401 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1402 {
1403 	struct mem_cgroup *from;
1404 	struct mem_cgroup *to;
1405 	bool ret = false;
1406 	/*
1407 	 * Unlike task_move routines, we access mc.to, mc.from not under
1408 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1409 	 */
1410 	spin_lock(&mc.lock);
1411 	from = mc.from;
1412 	to = mc.to;
1413 	if (!from)
1414 		goto unlock;
1415 
1416 	ret = mem_cgroup_same_or_subtree(memcg, from)
1417 		|| mem_cgroup_same_or_subtree(memcg, to);
1418 unlock:
1419 	spin_unlock(&mc.lock);
1420 	return ret;
1421 }
1422 
1423 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1424 {
1425 	if (mc.moving_task && current != mc.moving_task) {
1426 		if (mem_cgroup_under_move(memcg)) {
1427 			DEFINE_WAIT(wait);
1428 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1429 			/* moving charge context might have finished. */
1430 			if (mc.moving_task)
1431 				schedule();
1432 			finish_wait(&mc.waitq, &wait);
1433 			return true;
1434 		}
1435 	}
1436 	return false;
1437 }
1438 
1439 /**
1440  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1441  * @memcg: The memory cgroup that went over limit
1442  * @p: Task that is going to be killed
1443  *
1444  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1445  * enabled
1446  */
1447 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1448 {
1449 	struct cgroup *task_cgrp;
1450 	struct cgroup *mem_cgrp;
1451 	/*
1452 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1453 	 * on the assumption that OOM is serialized for memory controller.
1454 	 * If this assumption is broken, revisit this code.
1455 	 */
1456 	static char memcg_name[PATH_MAX];
1457 	int ret;
1458 
1459 	if (!memcg || !p)
1460 		return;
1461 
1462 
1463 	rcu_read_lock();
1464 
1465 	mem_cgrp = memcg->css.cgroup;
1466 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1467 
1468 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1469 	if (ret < 0) {
1470 		/*
1471 		 * Unfortunately, we are unable to convert to a useful name
1472 		 * But we'll still print out the usage information
1473 		 */
1474 		rcu_read_unlock();
1475 		goto done;
1476 	}
1477 	rcu_read_unlock();
1478 
1479 	printk(KERN_INFO "Task in %s killed", memcg_name);
1480 
1481 	rcu_read_lock();
1482 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1483 	if (ret < 0) {
1484 		rcu_read_unlock();
1485 		goto done;
1486 	}
1487 	rcu_read_unlock();
1488 
1489 	/*
1490 	 * Continues from above, so we don't need an KERN_ level
1491 	 */
1492 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1493 done:
1494 
1495 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1496 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1497 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1498 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1499 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1500 		"failcnt %llu\n",
1501 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1502 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1503 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1504 }
1505 
1506 /*
1507  * This function returns the number of memcg under hierarchy tree. Returns
1508  * 1(self count) if no children.
1509  */
1510 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1511 {
1512 	int num = 0;
1513 	struct mem_cgroup *iter;
1514 
1515 	for_each_mem_cgroup_tree(iter, memcg)
1516 		num++;
1517 	return num;
1518 }
1519 
1520 /*
1521  * Return the memory (and swap, if configured) limit for a memcg.
1522  */
1523 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1524 {
1525 	u64 limit;
1526 	u64 memsw;
1527 
1528 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1529 	limit += total_swap_pages << PAGE_SHIFT;
1530 
1531 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1532 	/*
1533 	 * If memsw is finite and limits the amount of swap space available
1534 	 * to this memcg, return that limit.
1535 	 */
1536 	return min(limit, memsw);
1537 }
1538 
1539 /*
1540  * Visit the first child (need not be the first child as per the ordering
1541  * of the cgroup list, since we track last_scanned_child) of @mem and use
1542  * that to reclaim free pages from.
1543  */
1544 static struct mem_cgroup *
1545 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1546 {
1547 	struct mem_cgroup *ret = NULL;
1548 	struct cgroup_subsys_state *css;
1549 	int nextid, found;
1550 
1551 	if (!root_memcg->use_hierarchy) {
1552 		css_get(&root_memcg->css);
1553 		ret = root_memcg;
1554 	}
1555 
1556 	while (!ret) {
1557 		rcu_read_lock();
1558 		nextid = root_memcg->last_scanned_child + 1;
1559 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1560 				   &found);
1561 		if (css && css_tryget(css))
1562 			ret = container_of(css, struct mem_cgroup, css);
1563 
1564 		rcu_read_unlock();
1565 		/* Updates scanning parameter */
1566 		if (!css) {
1567 			/* this means start scan from ID:1 */
1568 			root_memcg->last_scanned_child = 0;
1569 		} else
1570 			root_memcg->last_scanned_child = found;
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 /**
1577  * test_mem_cgroup_node_reclaimable
1578  * @mem: the target memcg
1579  * @nid: the node ID to be checked.
1580  * @noswap : specify true here if the user wants flle only information.
1581  *
1582  * This function returns whether the specified memcg contains any
1583  * reclaimable pages on a node. Returns true if there are any reclaimable
1584  * pages in the node.
1585  */
1586 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587 		int nid, bool noswap)
1588 {
1589 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590 		return true;
1591 	if (noswap || !total_swap_pages)
1592 		return false;
1593 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594 		return true;
1595 	return false;
1596 
1597 }
1598 #if MAX_NUMNODES > 1
1599 
1600 /*
1601  * Always updating the nodemask is not very good - even if we have an empty
1602  * list or the wrong list here, we can start from some node and traverse all
1603  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1604  *
1605  */
1606 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607 {
1608 	int nid;
1609 	/*
1610 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611 	 * pagein/pageout changes since the last update.
1612 	 */
1613 	if (!atomic_read(&memcg->numainfo_events))
1614 		return;
1615 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616 		return;
1617 
1618 	/* make a nodemask where this memcg uses memory from */
1619 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620 
1621 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1622 
1623 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1624 			node_clear(nid, memcg->scan_nodes);
1625 	}
1626 
1627 	atomic_set(&memcg->numainfo_events, 0);
1628 	atomic_set(&memcg->numainfo_updating, 0);
1629 }
1630 
1631 /*
1632  * Selecting a node where we start reclaim from. Because what we need is just
1633  * reducing usage counter, start from anywhere is O,K. Considering
1634  * memory reclaim from current node, there are pros. and cons.
1635  *
1636  * Freeing memory from current node means freeing memory from a node which
1637  * we'll use or we've used. So, it may make LRU bad. And if several threads
1638  * hit limits, it will see a contention on a node. But freeing from remote
1639  * node means more costs for memory reclaim because of memory latency.
1640  *
1641  * Now, we use round-robin. Better algorithm is welcomed.
1642  */
1643 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644 {
1645 	int node;
1646 
1647 	mem_cgroup_may_update_nodemask(memcg);
1648 	node = memcg->last_scanned_node;
1649 
1650 	node = next_node(node, memcg->scan_nodes);
1651 	if (node == MAX_NUMNODES)
1652 		node = first_node(memcg->scan_nodes);
1653 	/*
1654 	 * We call this when we hit limit, not when pages are added to LRU.
1655 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1656 	 * memcg is too small and all pages are not on LRU. In that case,
1657 	 * we use curret node.
1658 	 */
1659 	if (unlikely(node == MAX_NUMNODES))
1660 		node = numa_node_id();
1661 
1662 	memcg->last_scanned_node = node;
1663 	return node;
1664 }
1665 
1666 /*
1667  * Check all nodes whether it contains reclaimable pages or not.
1668  * For quick scan, we make use of scan_nodes. This will allow us to skip
1669  * unused nodes. But scan_nodes is lazily updated and may not cotain
1670  * enough new information. We need to do double check.
1671  */
1672 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 {
1674 	int nid;
1675 
1676 	/*
1677 	 * quick check...making use of scan_node.
1678 	 * We can skip unused nodes.
1679 	 */
1680 	if (!nodes_empty(memcg->scan_nodes)) {
1681 		for (nid = first_node(memcg->scan_nodes);
1682 		     nid < MAX_NUMNODES;
1683 		     nid = next_node(nid, memcg->scan_nodes)) {
1684 
1685 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686 				return true;
1687 		}
1688 	}
1689 	/*
1690 	 * Check rest of nodes.
1691 	 */
1692 	for_each_node_state(nid, N_HIGH_MEMORY) {
1693 		if (node_isset(nid, memcg->scan_nodes))
1694 			continue;
1695 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 			return true;
1697 	}
1698 	return false;
1699 }
1700 
1701 #else
1702 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703 {
1704 	return 0;
1705 }
1706 
1707 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708 {
1709 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710 }
1711 #endif
1712 
1713 /*
1714  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1715  * we reclaimed from, so that we don't end up penalizing one child extensively
1716  * based on its position in the children list.
1717  *
1718  * root_memcg is the original ancestor that we've been reclaim from.
1719  *
1720  * We give up and return to the caller when we visit root_memcg twice.
1721  * (other groups can be removed while we're walking....)
1722  *
1723  * If shrink==true, for avoiding to free too much, this returns immedieately.
1724  */
1725 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1726 						struct zone *zone,
1727 						gfp_t gfp_mask,
1728 						unsigned long reclaim_options,
1729 						unsigned long *total_scanned)
1730 {
1731 	struct mem_cgroup *victim;
1732 	int ret, total = 0;
1733 	int loop = 0;
1734 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1735 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1736 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1737 	unsigned long excess;
1738 	unsigned long nr_scanned;
1739 
1740 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1741 
1742 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1743 	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1744 		noswap = true;
1745 
1746 	while (1) {
1747 		victim = mem_cgroup_select_victim(root_memcg);
1748 		if (victim == root_memcg) {
1749 			loop++;
1750 			/*
1751 			 * We are not draining per cpu cached charges during
1752 			 * soft limit reclaim  because global reclaim doesn't
1753 			 * care about charges. It tries to free some memory and
1754 			 * charges will not give any.
1755 			 */
1756 			if (!check_soft && loop >= 1)
1757 				drain_all_stock_async(root_memcg);
1758 			if (loop >= 2) {
1759 				/*
1760 				 * If we have not been able to reclaim
1761 				 * anything, it might because there are
1762 				 * no reclaimable pages under this hierarchy
1763 				 */
1764 				if (!check_soft || !total) {
1765 					css_put(&victim->css);
1766 					break;
1767 				}
1768 				/*
1769 				 * We want to do more targeted reclaim.
1770 				 * excess >> 2 is not to excessive so as to
1771 				 * reclaim too much, nor too less that we keep
1772 				 * coming back to reclaim from this cgroup
1773 				 */
1774 				if (total >= (excess >> 2) ||
1775 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1776 					css_put(&victim->css);
1777 					break;
1778 				}
1779 			}
1780 		}
1781 		if (!mem_cgroup_reclaimable(victim, noswap)) {
1782 			/* this cgroup's local usage == 0 */
1783 			css_put(&victim->css);
1784 			continue;
1785 		}
1786 		/* we use swappiness of local cgroup */
1787 		if (check_soft) {
1788 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1789 				noswap, zone, &nr_scanned);
1790 			*total_scanned += nr_scanned;
1791 		} else
1792 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1793 						noswap);
1794 		css_put(&victim->css);
1795 		/*
1796 		 * At shrinking usage, we can't check we should stop here or
1797 		 * reclaim more. It's depends on callers. last_scanned_child
1798 		 * will work enough for keeping fairness under tree.
1799 		 */
1800 		if (shrink)
1801 			return ret;
1802 		total += ret;
1803 		if (check_soft) {
1804 			if (!res_counter_soft_limit_excess(&root_memcg->res))
1805 				return total;
1806 		} else if (mem_cgroup_margin(root_memcg))
1807 			return total;
1808 	}
1809 	return total;
1810 }
1811 
1812 /*
1813  * Check OOM-Killer is already running under our hierarchy.
1814  * If someone is running, return false.
1815  * Has to be called with memcg_oom_lock
1816  */
1817 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1818 {
1819 	struct mem_cgroup *iter, *failed = NULL;
1820 	bool cond = true;
1821 
1822 	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1823 		if (iter->oom_lock) {
1824 			/*
1825 			 * this subtree of our hierarchy is already locked
1826 			 * so we cannot give a lock.
1827 			 */
1828 			failed = iter;
1829 			cond = false;
1830 		} else
1831 			iter->oom_lock = true;
1832 	}
1833 
1834 	if (!failed)
1835 		return true;
1836 
1837 	/*
1838 	 * OK, we failed to lock the whole subtree so we have to clean up
1839 	 * what we set up to the failing subtree
1840 	 */
1841 	cond = true;
1842 	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1843 		if (iter == failed) {
1844 			cond = false;
1845 			continue;
1846 		}
1847 		iter->oom_lock = false;
1848 	}
1849 	return false;
1850 }
1851 
1852 /*
1853  * Has to be called with memcg_oom_lock
1854  */
1855 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1856 {
1857 	struct mem_cgroup *iter;
1858 
1859 	for_each_mem_cgroup_tree(iter, memcg)
1860 		iter->oom_lock = false;
1861 	return 0;
1862 }
1863 
1864 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1865 {
1866 	struct mem_cgroup *iter;
1867 
1868 	for_each_mem_cgroup_tree(iter, memcg)
1869 		atomic_inc(&iter->under_oom);
1870 }
1871 
1872 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1873 {
1874 	struct mem_cgroup *iter;
1875 
1876 	/*
1877 	 * When a new child is created while the hierarchy is under oom,
1878 	 * mem_cgroup_oom_lock() may not be called. We have to use
1879 	 * atomic_add_unless() here.
1880 	 */
1881 	for_each_mem_cgroup_tree(iter, memcg)
1882 		atomic_add_unless(&iter->under_oom, -1, 0);
1883 }
1884 
1885 static DEFINE_SPINLOCK(memcg_oom_lock);
1886 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1887 
1888 struct oom_wait_info {
1889 	struct mem_cgroup *mem;
1890 	wait_queue_t	wait;
1891 };
1892 
1893 static int memcg_oom_wake_function(wait_queue_t *wait,
1894 	unsigned mode, int sync, void *arg)
1895 {
1896 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1897 			  *oom_wait_memcg;
1898 	struct oom_wait_info *oom_wait_info;
1899 
1900 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1901 	oom_wait_memcg = oom_wait_info->mem;
1902 
1903 	/*
1904 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1905 	 * Then we can use css_is_ancestor without taking care of RCU.
1906 	 */
1907 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1908 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1909 		return 0;
1910 	return autoremove_wake_function(wait, mode, sync, arg);
1911 }
1912 
1913 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1914 {
1915 	/* for filtering, pass "memcg" as argument. */
1916 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1917 }
1918 
1919 static void memcg_oom_recover(struct mem_cgroup *memcg)
1920 {
1921 	if (memcg && atomic_read(&memcg->under_oom))
1922 		memcg_wakeup_oom(memcg);
1923 }
1924 
1925 /*
1926  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1927  */
1928 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1929 {
1930 	struct oom_wait_info owait;
1931 	bool locked, need_to_kill;
1932 
1933 	owait.mem = memcg;
1934 	owait.wait.flags = 0;
1935 	owait.wait.func = memcg_oom_wake_function;
1936 	owait.wait.private = current;
1937 	INIT_LIST_HEAD(&owait.wait.task_list);
1938 	need_to_kill = true;
1939 	mem_cgroup_mark_under_oom(memcg);
1940 
1941 	/* At first, try to OOM lock hierarchy under memcg.*/
1942 	spin_lock(&memcg_oom_lock);
1943 	locked = mem_cgroup_oom_lock(memcg);
1944 	/*
1945 	 * Even if signal_pending(), we can't quit charge() loop without
1946 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1947 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1948 	 */
1949 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1950 	if (!locked || memcg->oom_kill_disable)
1951 		need_to_kill = false;
1952 	if (locked)
1953 		mem_cgroup_oom_notify(memcg);
1954 	spin_unlock(&memcg_oom_lock);
1955 
1956 	if (need_to_kill) {
1957 		finish_wait(&memcg_oom_waitq, &owait.wait);
1958 		mem_cgroup_out_of_memory(memcg, mask);
1959 	} else {
1960 		schedule();
1961 		finish_wait(&memcg_oom_waitq, &owait.wait);
1962 	}
1963 	spin_lock(&memcg_oom_lock);
1964 	if (locked)
1965 		mem_cgroup_oom_unlock(memcg);
1966 	memcg_wakeup_oom(memcg);
1967 	spin_unlock(&memcg_oom_lock);
1968 
1969 	mem_cgroup_unmark_under_oom(memcg);
1970 
1971 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1972 		return false;
1973 	/* Give chance to dying process */
1974 	schedule_timeout_uninterruptible(1);
1975 	return true;
1976 }
1977 
1978 /*
1979  * Currently used to update mapped file statistics, but the routine can be
1980  * generalized to update other statistics as well.
1981  *
1982  * Notes: Race condition
1983  *
1984  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1985  * it tends to be costly. But considering some conditions, we doesn't need
1986  * to do so _always_.
1987  *
1988  * Considering "charge", lock_page_cgroup() is not required because all
1989  * file-stat operations happen after a page is attached to radix-tree. There
1990  * are no race with "charge".
1991  *
1992  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1993  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1994  * if there are race with "uncharge". Statistics itself is properly handled
1995  * by flags.
1996  *
1997  * Considering "move", this is an only case we see a race. To make the race
1998  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1999  * possibility of race condition. If there is, we take a lock.
2000  */
2001 
2002 void mem_cgroup_update_page_stat(struct page *page,
2003 				 enum mem_cgroup_page_stat_item idx, int val)
2004 {
2005 	struct mem_cgroup *memcg;
2006 	struct page_cgroup *pc = lookup_page_cgroup(page);
2007 	bool need_unlock = false;
2008 	unsigned long uninitialized_var(flags);
2009 
2010 	if (unlikely(!pc))
2011 		return;
2012 
2013 	rcu_read_lock();
2014 	memcg = pc->mem_cgroup;
2015 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2016 		goto out;
2017 	/* pc->mem_cgroup is unstable ? */
2018 	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2019 		/* take a lock against to access pc->mem_cgroup */
2020 		move_lock_page_cgroup(pc, &flags);
2021 		need_unlock = true;
2022 		memcg = pc->mem_cgroup;
2023 		if (!memcg || !PageCgroupUsed(pc))
2024 			goto out;
2025 	}
2026 
2027 	switch (idx) {
2028 	case MEMCG_NR_FILE_MAPPED:
2029 		if (val > 0)
2030 			SetPageCgroupFileMapped(pc);
2031 		else if (!page_mapped(page))
2032 			ClearPageCgroupFileMapped(pc);
2033 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2034 		break;
2035 	default:
2036 		BUG();
2037 	}
2038 
2039 	this_cpu_add(memcg->stat->count[idx], val);
2040 
2041 out:
2042 	if (unlikely(need_unlock))
2043 		move_unlock_page_cgroup(pc, &flags);
2044 	rcu_read_unlock();
2045 	return;
2046 }
2047 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2048 
2049 /*
2050  * size of first charge trial. "32" comes from vmscan.c's magic value.
2051  * TODO: maybe necessary to use big numbers in big irons.
2052  */
2053 #define CHARGE_BATCH	32U
2054 struct memcg_stock_pcp {
2055 	struct mem_cgroup *cached; /* this never be root cgroup */
2056 	unsigned int nr_pages;
2057 	struct work_struct work;
2058 	unsigned long flags;
2059 #define FLUSHING_CACHED_CHARGE	(0)
2060 };
2061 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062 static DEFINE_MUTEX(percpu_charge_mutex);
2063 
2064 /*
2065  * Try to consume stocked charge on this cpu. If success, one page is consumed
2066  * from local stock and true is returned. If the stock is 0 or charges from a
2067  * cgroup which is not current target, returns false. This stock will be
2068  * refilled.
2069  */
2070 static bool consume_stock(struct mem_cgroup *memcg)
2071 {
2072 	struct memcg_stock_pcp *stock;
2073 	bool ret = true;
2074 
2075 	stock = &get_cpu_var(memcg_stock);
2076 	if (memcg == stock->cached && stock->nr_pages)
2077 		stock->nr_pages--;
2078 	else /* need to call res_counter_charge */
2079 		ret = false;
2080 	put_cpu_var(memcg_stock);
2081 	return ret;
2082 }
2083 
2084 /*
2085  * Returns stocks cached in percpu to res_counter and reset cached information.
2086  */
2087 static void drain_stock(struct memcg_stock_pcp *stock)
2088 {
2089 	struct mem_cgroup *old = stock->cached;
2090 
2091 	if (stock->nr_pages) {
2092 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2093 
2094 		res_counter_uncharge(&old->res, bytes);
2095 		if (do_swap_account)
2096 			res_counter_uncharge(&old->memsw, bytes);
2097 		stock->nr_pages = 0;
2098 	}
2099 	stock->cached = NULL;
2100 }
2101 
2102 /*
2103  * This must be called under preempt disabled or must be called by
2104  * a thread which is pinned to local cpu.
2105  */
2106 static void drain_local_stock(struct work_struct *dummy)
2107 {
2108 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2109 	drain_stock(stock);
2110 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2111 }
2112 
2113 /*
2114  * Cache charges(val) which is from res_counter, to local per_cpu area.
2115  * This will be consumed by consume_stock() function, later.
2116  */
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2120 
2121 	if (stock->cached != memcg) { /* reset if necessary */
2122 		drain_stock(stock);
2123 		stock->cached = memcg;
2124 	}
2125 	stock->nr_pages += nr_pages;
2126 	put_cpu_var(memcg_stock);
2127 }
2128 
2129 /*
2130  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131  * of the hierarchy under it. sync flag says whether we should block
2132  * until the work is done.
2133  */
2134 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2135 {
2136 	int cpu, curcpu;
2137 
2138 	/* Notify other cpus that system-wide "drain" is running */
2139 	get_online_cpus();
2140 	curcpu = get_cpu();
2141 	for_each_online_cpu(cpu) {
2142 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143 		struct mem_cgroup *memcg;
2144 
2145 		memcg = stock->cached;
2146 		if (!memcg || !stock->nr_pages)
2147 			continue;
2148 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2149 			continue;
2150 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2151 			if (cpu == curcpu)
2152 				drain_local_stock(&stock->work);
2153 			else
2154 				schedule_work_on(cpu, &stock->work);
2155 		}
2156 	}
2157 	put_cpu();
2158 
2159 	if (!sync)
2160 		goto out;
2161 
2162 	for_each_online_cpu(cpu) {
2163 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2165 			flush_work(&stock->work);
2166 	}
2167 out:
2168  	put_online_cpus();
2169 }
2170 
2171 /*
2172  * Tries to drain stocked charges in other cpus. This function is asynchronous
2173  * and just put a work per cpu for draining localy on each cpu. Caller can
2174  * expects some charges will be back to res_counter later but cannot wait for
2175  * it.
2176  */
2177 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2178 {
2179 	/*
2180 	 * If someone calls draining, avoid adding more kworker runs.
2181 	 */
2182 	if (!mutex_trylock(&percpu_charge_mutex))
2183 		return;
2184 	drain_all_stock(root_memcg, false);
2185 	mutex_unlock(&percpu_charge_mutex);
2186 }
2187 
2188 /* This is a synchronous drain interface. */
2189 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2190 {
2191 	/* called when force_empty is called */
2192 	mutex_lock(&percpu_charge_mutex);
2193 	drain_all_stock(root_memcg, true);
2194 	mutex_unlock(&percpu_charge_mutex);
2195 }
2196 
2197 /*
2198  * This function drains percpu counter value from DEAD cpu and
2199  * move it to local cpu. Note that this function can be preempted.
2200  */
2201 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2202 {
2203 	int i;
2204 
2205 	spin_lock(&memcg->pcp_counter_lock);
2206 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2207 		long x = per_cpu(memcg->stat->count[i], cpu);
2208 
2209 		per_cpu(memcg->stat->count[i], cpu) = 0;
2210 		memcg->nocpu_base.count[i] += x;
2211 	}
2212 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2213 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2214 
2215 		per_cpu(memcg->stat->events[i], cpu) = 0;
2216 		memcg->nocpu_base.events[i] += x;
2217 	}
2218 	/* need to clear ON_MOVE value, works as a kind of lock. */
2219 	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2220 	spin_unlock(&memcg->pcp_counter_lock);
2221 }
2222 
2223 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2224 {
2225 	int idx = MEM_CGROUP_ON_MOVE;
2226 
2227 	spin_lock(&memcg->pcp_counter_lock);
2228 	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2229 	spin_unlock(&memcg->pcp_counter_lock);
2230 }
2231 
2232 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2233 					unsigned long action,
2234 					void *hcpu)
2235 {
2236 	int cpu = (unsigned long)hcpu;
2237 	struct memcg_stock_pcp *stock;
2238 	struct mem_cgroup *iter;
2239 
2240 	if ((action == CPU_ONLINE)) {
2241 		for_each_mem_cgroup_all(iter)
2242 			synchronize_mem_cgroup_on_move(iter, cpu);
2243 		return NOTIFY_OK;
2244 	}
2245 
2246 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2247 		return NOTIFY_OK;
2248 
2249 	for_each_mem_cgroup_all(iter)
2250 		mem_cgroup_drain_pcp_counter(iter, cpu);
2251 
2252 	stock = &per_cpu(memcg_stock, cpu);
2253 	drain_stock(stock);
2254 	return NOTIFY_OK;
2255 }
2256 
2257 
2258 /* See __mem_cgroup_try_charge() for details */
2259 enum {
2260 	CHARGE_OK,		/* success */
2261 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2262 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2263 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2264 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2265 };
2266 
2267 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2268 				unsigned int nr_pages, bool oom_check)
2269 {
2270 	unsigned long csize = nr_pages * PAGE_SIZE;
2271 	struct mem_cgroup *mem_over_limit;
2272 	struct res_counter *fail_res;
2273 	unsigned long flags = 0;
2274 	int ret;
2275 
2276 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2277 
2278 	if (likely(!ret)) {
2279 		if (!do_swap_account)
2280 			return CHARGE_OK;
2281 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2282 		if (likely(!ret))
2283 			return CHARGE_OK;
2284 
2285 		res_counter_uncharge(&memcg->res, csize);
2286 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2287 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2288 	} else
2289 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2290 	/*
2291 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2292 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2293 	 *
2294 	 * Never reclaim on behalf of optional batching, retry with a
2295 	 * single page instead.
2296 	 */
2297 	if (nr_pages == CHARGE_BATCH)
2298 		return CHARGE_RETRY;
2299 
2300 	if (!(gfp_mask & __GFP_WAIT))
2301 		return CHARGE_WOULDBLOCK;
2302 
2303 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2304 					      gfp_mask, flags, NULL);
2305 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2306 		return CHARGE_RETRY;
2307 	/*
2308 	 * Even though the limit is exceeded at this point, reclaim
2309 	 * may have been able to free some pages.  Retry the charge
2310 	 * before killing the task.
2311 	 *
2312 	 * Only for regular pages, though: huge pages are rather
2313 	 * unlikely to succeed so close to the limit, and we fall back
2314 	 * to regular pages anyway in case of failure.
2315 	 */
2316 	if (nr_pages == 1 && ret)
2317 		return CHARGE_RETRY;
2318 
2319 	/*
2320 	 * At task move, charge accounts can be doubly counted. So, it's
2321 	 * better to wait until the end of task_move if something is going on.
2322 	 */
2323 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2324 		return CHARGE_RETRY;
2325 
2326 	/* If we don't need to call oom-killer at el, return immediately */
2327 	if (!oom_check)
2328 		return CHARGE_NOMEM;
2329 	/* check OOM */
2330 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2331 		return CHARGE_OOM_DIE;
2332 
2333 	return CHARGE_RETRY;
2334 }
2335 
2336 /*
2337  * Unlike exported interface, "oom" parameter is added. if oom==true,
2338  * oom-killer can be invoked.
2339  */
2340 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2341 				   gfp_t gfp_mask,
2342 				   unsigned int nr_pages,
2343 				   struct mem_cgroup **ptr,
2344 				   bool oom)
2345 {
2346 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2347 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2348 	struct mem_cgroup *memcg = NULL;
2349 	int ret;
2350 
2351 	/*
2352 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2353 	 * in system level. So, allow to go ahead dying process in addition to
2354 	 * MEMDIE process.
2355 	 */
2356 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2357 		     || fatal_signal_pending(current)))
2358 		goto bypass;
2359 
2360 	/*
2361 	 * We always charge the cgroup the mm_struct belongs to.
2362 	 * The mm_struct's mem_cgroup changes on task migration if the
2363 	 * thread group leader migrates. It's possible that mm is not
2364 	 * set, if so charge the init_mm (happens for pagecache usage).
2365 	 */
2366 	if (!*ptr && !mm)
2367 		goto bypass;
2368 again:
2369 	if (*ptr) { /* css should be a valid one */
2370 		memcg = *ptr;
2371 		VM_BUG_ON(css_is_removed(&memcg->css));
2372 		if (mem_cgroup_is_root(memcg))
2373 			goto done;
2374 		if (nr_pages == 1 && consume_stock(memcg))
2375 			goto done;
2376 		css_get(&memcg->css);
2377 	} else {
2378 		struct task_struct *p;
2379 
2380 		rcu_read_lock();
2381 		p = rcu_dereference(mm->owner);
2382 		/*
2383 		 * Because we don't have task_lock(), "p" can exit.
2384 		 * In that case, "memcg" can point to root or p can be NULL with
2385 		 * race with swapoff. Then, we have small risk of mis-accouning.
2386 		 * But such kind of mis-account by race always happens because
2387 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2388 		 * small race, here.
2389 		 * (*) swapoff at el will charge against mm-struct not against
2390 		 * task-struct. So, mm->owner can be NULL.
2391 		 */
2392 		memcg = mem_cgroup_from_task(p);
2393 		if (!memcg || mem_cgroup_is_root(memcg)) {
2394 			rcu_read_unlock();
2395 			goto done;
2396 		}
2397 		if (nr_pages == 1 && consume_stock(memcg)) {
2398 			/*
2399 			 * It seems dagerous to access memcg without css_get().
2400 			 * But considering how consume_stok works, it's not
2401 			 * necessary. If consume_stock success, some charges
2402 			 * from this memcg are cached on this cpu. So, we
2403 			 * don't need to call css_get()/css_tryget() before
2404 			 * calling consume_stock().
2405 			 */
2406 			rcu_read_unlock();
2407 			goto done;
2408 		}
2409 		/* after here, we may be blocked. we need to get refcnt */
2410 		if (!css_tryget(&memcg->css)) {
2411 			rcu_read_unlock();
2412 			goto again;
2413 		}
2414 		rcu_read_unlock();
2415 	}
2416 
2417 	do {
2418 		bool oom_check;
2419 
2420 		/* If killed, bypass charge */
2421 		if (fatal_signal_pending(current)) {
2422 			css_put(&memcg->css);
2423 			goto bypass;
2424 		}
2425 
2426 		oom_check = false;
2427 		if (oom && !nr_oom_retries) {
2428 			oom_check = true;
2429 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2430 		}
2431 
2432 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2433 		switch (ret) {
2434 		case CHARGE_OK:
2435 			break;
2436 		case CHARGE_RETRY: /* not in OOM situation but retry */
2437 			batch = nr_pages;
2438 			css_put(&memcg->css);
2439 			memcg = NULL;
2440 			goto again;
2441 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2442 			css_put(&memcg->css);
2443 			goto nomem;
2444 		case CHARGE_NOMEM: /* OOM routine works */
2445 			if (!oom) {
2446 				css_put(&memcg->css);
2447 				goto nomem;
2448 			}
2449 			/* If oom, we never return -ENOMEM */
2450 			nr_oom_retries--;
2451 			break;
2452 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2453 			css_put(&memcg->css);
2454 			goto bypass;
2455 		}
2456 	} while (ret != CHARGE_OK);
2457 
2458 	if (batch > nr_pages)
2459 		refill_stock(memcg, batch - nr_pages);
2460 	css_put(&memcg->css);
2461 done:
2462 	*ptr = memcg;
2463 	return 0;
2464 nomem:
2465 	*ptr = NULL;
2466 	return -ENOMEM;
2467 bypass:
2468 	*ptr = NULL;
2469 	return 0;
2470 }
2471 
2472 /*
2473  * Somemtimes we have to undo a charge we got by try_charge().
2474  * This function is for that and do uncharge, put css's refcnt.
2475  * gotten by try_charge().
2476  */
2477 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2478 				       unsigned int nr_pages)
2479 {
2480 	if (!mem_cgroup_is_root(memcg)) {
2481 		unsigned long bytes = nr_pages * PAGE_SIZE;
2482 
2483 		res_counter_uncharge(&memcg->res, bytes);
2484 		if (do_swap_account)
2485 			res_counter_uncharge(&memcg->memsw, bytes);
2486 	}
2487 }
2488 
2489 /*
2490  * A helper function to get mem_cgroup from ID. must be called under
2491  * rcu_read_lock(). The caller must check css_is_removed() or some if
2492  * it's concern. (dropping refcnt from swap can be called against removed
2493  * memcg.)
2494  */
2495 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2496 {
2497 	struct cgroup_subsys_state *css;
2498 
2499 	/* ID 0 is unused ID */
2500 	if (!id)
2501 		return NULL;
2502 	css = css_lookup(&mem_cgroup_subsys, id);
2503 	if (!css)
2504 		return NULL;
2505 	return container_of(css, struct mem_cgroup, css);
2506 }
2507 
2508 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2509 {
2510 	struct mem_cgroup *memcg = NULL;
2511 	struct page_cgroup *pc;
2512 	unsigned short id;
2513 	swp_entry_t ent;
2514 
2515 	VM_BUG_ON(!PageLocked(page));
2516 
2517 	pc = lookup_page_cgroup(page);
2518 	lock_page_cgroup(pc);
2519 	if (PageCgroupUsed(pc)) {
2520 		memcg = pc->mem_cgroup;
2521 		if (memcg && !css_tryget(&memcg->css))
2522 			memcg = NULL;
2523 	} else if (PageSwapCache(page)) {
2524 		ent.val = page_private(page);
2525 		id = lookup_swap_cgroup(ent);
2526 		rcu_read_lock();
2527 		memcg = mem_cgroup_lookup(id);
2528 		if (memcg && !css_tryget(&memcg->css))
2529 			memcg = NULL;
2530 		rcu_read_unlock();
2531 	}
2532 	unlock_page_cgroup(pc);
2533 	return memcg;
2534 }
2535 
2536 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2537 				       struct page *page,
2538 				       unsigned int nr_pages,
2539 				       struct page_cgroup *pc,
2540 				       enum charge_type ctype)
2541 {
2542 	lock_page_cgroup(pc);
2543 	if (unlikely(PageCgroupUsed(pc))) {
2544 		unlock_page_cgroup(pc);
2545 		__mem_cgroup_cancel_charge(memcg, nr_pages);
2546 		return;
2547 	}
2548 	/*
2549 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2550 	 * accessed by any other context at this point.
2551 	 */
2552 	pc->mem_cgroup = memcg;
2553 	/*
2554 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2555 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2556 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2557 	 * before USED bit, we need memory barrier here.
2558 	 * See mem_cgroup_add_lru_list(), etc.
2559  	 */
2560 	smp_wmb();
2561 	switch (ctype) {
2562 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2563 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2564 		SetPageCgroupCache(pc);
2565 		SetPageCgroupUsed(pc);
2566 		break;
2567 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2568 		ClearPageCgroupCache(pc);
2569 		SetPageCgroupUsed(pc);
2570 		break;
2571 	default:
2572 		break;
2573 	}
2574 
2575 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2576 	unlock_page_cgroup(pc);
2577 	/*
2578 	 * "charge_statistics" updated event counter. Then, check it.
2579 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2580 	 * if they exceeds softlimit.
2581 	 */
2582 	memcg_check_events(memcg, page);
2583 }
2584 
2585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2586 
2587 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2588 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2589 /*
2590  * Because tail pages are not marked as "used", set it. We're under
2591  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2592  */
2593 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2594 {
2595 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2596 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2597 	unsigned long flags;
2598 
2599 	if (mem_cgroup_disabled())
2600 		return;
2601 	/*
2602 	 * We have no races with charge/uncharge but will have races with
2603 	 * page state accounting.
2604 	 */
2605 	move_lock_page_cgroup(head_pc, &flags);
2606 
2607 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2608 	smp_wmb(); /* see __commit_charge() */
2609 	if (PageCgroupAcctLRU(head_pc)) {
2610 		enum lru_list lru;
2611 		struct mem_cgroup_per_zone *mz;
2612 
2613 		/*
2614 		 * LRU flags cannot be copied because we need to add tail
2615 		 *.page to LRU by generic call and our hook will be called.
2616 		 * We hold lru_lock, then, reduce counter directly.
2617 		 */
2618 		lru = page_lru(head);
2619 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2620 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2621 	}
2622 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2623 	move_unlock_page_cgroup(head_pc, &flags);
2624 }
2625 #endif
2626 
2627 /**
2628  * mem_cgroup_move_account - move account of the page
2629  * @page: the page
2630  * @nr_pages: number of regular pages (>1 for huge pages)
2631  * @pc:	page_cgroup of the page.
2632  * @from: mem_cgroup which the page is moved from.
2633  * @to:	mem_cgroup which the page is moved to. @from != @to.
2634  * @uncharge: whether we should call uncharge and css_put against @from.
2635  *
2636  * The caller must confirm following.
2637  * - page is not on LRU (isolate_page() is useful.)
2638  * - compound_lock is held when nr_pages > 1
2639  *
2640  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2641  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2642  * true, this function does "uncharge" from old cgroup, but it doesn't if
2643  * @uncharge is false, so a caller should do "uncharge".
2644  */
2645 static int mem_cgroup_move_account(struct page *page,
2646 				   unsigned int nr_pages,
2647 				   struct page_cgroup *pc,
2648 				   struct mem_cgroup *from,
2649 				   struct mem_cgroup *to,
2650 				   bool uncharge)
2651 {
2652 	unsigned long flags;
2653 	int ret;
2654 
2655 	VM_BUG_ON(from == to);
2656 	VM_BUG_ON(PageLRU(page));
2657 	/*
2658 	 * The page is isolated from LRU. So, collapse function
2659 	 * will not handle this page. But page splitting can happen.
2660 	 * Do this check under compound_page_lock(). The caller should
2661 	 * hold it.
2662 	 */
2663 	ret = -EBUSY;
2664 	if (nr_pages > 1 && !PageTransHuge(page))
2665 		goto out;
2666 
2667 	lock_page_cgroup(pc);
2668 
2669 	ret = -EINVAL;
2670 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2671 		goto unlock;
2672 
2673 	move_lock_page_cgroup(pc, &flags);
2674 
2675 	if (PageCgroupFileMapped(pc)) {
2676 		/* Update mapped_file data for mem_cgroup */
2677 		preempt_disable();
2678 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2680 		preempt_enable();
2681 	}
2682 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2683 	if (uncharge)
2684 		/* This is not "cancel", but cancel_charge does all we need. */
2685 		__mem_cgroup_cancel_charge(from, nr_pages);
2686 
2687 	/* caller should have done css_get */
2688 	pc->mem_cgroup = to;
2689 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2690 	/*
2691 	 * We charges against "to" which may not have any tasks. Then, "to"
2692 	 * can be under rmdir(). But in current implementation, caller of
2693 	 * this function is just force_empty() and move charge, so it's
2694 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2695 	 * status here.
2696 	 */
2697 	move_unlock_page_cgroup(pc, &flags);
2698 	ret = 0;
2699 unlock:
2700 	unlock_page_cgroup(pc);
2701 	/*
2702 	 * check events
2703 	 */
2704 	memcg_check_events(to, page);
2705 	memcg_check_events(from, page);
2706 out:
2707 	return ret;
2708 }
2709 
2710 /*
2711  * move charges to its parent.
2712  */
2713 
2714 static int mem_cgroup_move_parent(struct page *page,
2715 				  struct page_cgroup *pc,
2716 				  struct mem_cgroup *child,
2717 				  gfp_t gfp_mask)
2718 {
2719 	struct cgroup *cg = child->css.cgroup;
2720 	struct cgroup *pcg = cg->parent;
2721 	struct mem_cgroup *parent;
2722 	unsigned int nr_pages;
2723 	unsigned long uninitialized_var(flags);
2724 	int ret;
2725 
2726 	/* Is ROOT ? */
2727 	if (!pcg)
2728 		return -EINVAL;
2729 
2730 	ret = -EBUSY;
2731 	if (!get_page_unless_zero(page))
2732 		goto out;
2733 	if (isolate_lru_page(page))
2734 		goto put;
2735 
2736 	nr_pages = hpage_nr_pages(page);
2737 
2738 	parent = mem_cgroup_from_cont(pcg);
2739 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2740 	if (ret || !parent)
2741 		goto put_back;
2742 
2743 	if (nr_pages > 1)
2744 		flags = compound_lock_irqsave(page);
2745 
2746 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2747 	if (ret)
2748 		__mem_cgroup_cancel_charge(parent, nr_pages);
2749 
2750 	if (nr_pages > 1)
2751 		compound_unlock_irqrestore(page, flags);
2752 put_back:
2753 	putback_lru_page(page);
2754 put:
2755 	put_page(page);
2756 out:
2757 	return ret;
2758 }
2759 
2760 /*
2761  * Charge the memory controller for page usage.
2762  * Return
2763  * 0 if the charge was successful
2764  * < 0 if the cgroup is over its limit
2765  */
2766 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2767 				gfp_t gfp_mask, enum charge_type ctype)
2768 {
2769 	struct mem_cgroup *memcg = NULL;
2770 	unsigned int nr_pages = 1;
2771 	struct page_cgroup *pc;
2772 	bool oom = true;
2773 	int ret;
2774 
2775 	if (PageTransHuge(page)) {
2776 		nr_pages <<= compound_order(page);
2777 		VM_BUG_ON(!PageTransHuge(page));
2778 		/*
2779 		 * Never OOM-kill a process for a huge page.  The
2780 		 * fault handler will fall back to regular pages.
2781 		 */
2782 		oom = false;
2783 	}
2784 
2785 	pc = lookup_page_cgroup(page);
2786 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2787 
2788 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2789 	if (ret || !memcg)
2790 		return ret;
2791 
2792 	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2793 	return 0;
2794 }
2795 
2796 int mem_cgroup_newpage_charge(struct page *page,
2797 			      struct mm_struct *mm, gfp_t gfp_mask)
2798 {
2799 	if (mem_cgroup_disabled())
2800 		return 0;
2801 	/*
2802 	 * If already mapped, we don't have to account.
2803 	 * If page cache, page->mapping has address_space.
2804 	 * But page->mapping may have out-of-use anon_vma pointer,
2805 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2806 	 * is NULL.
2807   	 */
2808 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2809 		return 0;
2810 	if (unlikely(!mm))
2811 		mm = &init_mm;
2812 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2813 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2814 }
2815 
2816 static void
2817 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2818 					enum charge_type ctype);
2819 
2820 static void
2821 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2822 					enum charge_type ctype)
2823 {
2824 	struct page_cgroup *pc = lookup_page_cgroup(page);
2825 	/*
2826 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2827 	 * is already on LRU. It means the page may on some other page_cgroup's
2828 	 * LRU. Take care of it.
2829 	 */
2830 	mem_cgroup_lru_del_before_commit(page);
2831 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2832 	mem_cgroup_lru_add_after_commit(page);
2833 	return;
2834 }
2835 
2836 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2837 				gfp_t gfp_mask)
2838 {
2839 	struct mem_cgroup *memcg = NULL;
2840 	int ret;
2841 
2842 	if (mem_cgroup_disabled())
2843 		return 0;
2844 	if (PageCompound(page))
2845 		return 0;
2846 
2847 	if (unlikely(!mm))
2848 		mm = &init_mm;
2849 
2850 	if (page_is_file_cache(page)) {
2851 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2852 		if (ret || !memcg)
2853 			return ret;
2854 
2855 		/*
2856 		 * FUSE reuses pages without going through the final
2857 		 * put that would remove them from the LRU list, make
2858 		 * sure that they get relinked properly.
2859 		 */
2860 		__mem_cgroup_commit_charge_lrucare(page, memcg,
2861 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2862 		return ret;
2863 	}
2864 	/* shmem */
2865 	if (PageSwapCache(page)) {
2866 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2867 		if (!ret)
2868 			__mem_cgroup_commit_charge_swapin(page, memcg,
2869 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2870 	} else
2871 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2872 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2873 
2874 	return ret;
2875 }
2876 
2877 /*
2878  * While swap-in, try_charge -> commit or cancel, the page is locked.
2879  * And when try_charge() successfully returns, one refcnt to memcg without
2880  * struct page_cgroup is acquired. This refcnt will be consumed by
2881  * "commit()" or removed by "cancel()"
2882  */
2883 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2884 				 struct page *page,
2885 				 gfp_t mask, struct mem_cgroup **ptr)
2886 {
2887 	struct mem_cgroup *memcg;
2888 	int ret;
2889 
2890 	*ptr = NULL;
2891 
2892 	if (mem_cgroup_disabled())
2893 		return 0;
2894 
2895 	if (!do_swap_account)
2896 		goto charge_cur_mm;
2897 	/*
2898 	 * A racing thread's fault, or swapoff, may have already updated
2899 	 * the pte, and even removed page from swap cache: in those cases
2900 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2901 	 * KSM case which does need to charge the page.
2902 	 */
2903 	if (!PageSwapCache(page))
2904 		goto charge_cur_mm;
2905 	memcg = try_get_mem_cgroup_from_page(page);
2906 	if (!memcg)
2907 		goto charge_cur_mm;
2908 	*ptr = memcg;
2909 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2910 	css_put(&memcg->css);
2911 	return ret;
2912 charge_cur_mm:
2913 	if (unlikely(!mm))
2914 		mm = &init_mm;
2915 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2916 }
2917 
2918 static void
2919 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2920 					enum charge_type ctype)
2921 {
2922 	if (mem_cgroup_disabled())
2923 		return;
2924 	if (!ptr)
2925 		return;
2926 	cgroup_exclude_rmdir(&ptr->css);
2927 
2928 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2929 	/*
2930 	 * Now swap is on-memory. This means this page may be
2931 	 * counted both as mem and swap....double count.
2932 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2933 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2934 	 * may call delete_from_swap_cache() before reach here.
2935 	 */
2936 	if (do_swap_account && PageSwapCache(page)) {
2937 		swp_entry_t ent = {.val = page_private(page)};
2938 		unsigned short id;
2939 		struct mem_cgroup *memcg;
2940 
2941 		id = swap_cgroup_record(ent, 0);
2942 		rcu_read_lock();
2943 		memcg = mem_cgroup_lookup(id);
2944 		if (memcg) {
2945 			/*
2946 			 * This recorded memcg can be obsolete one. So, avoid
2947 			 * calling css_tryget
2948 			 */
2949 			if (!mem_cgroup_is_root(memcg))
2950 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2951 			mem_cgroup_swap_statistics(memcg, false);
2952 			mem_cgroup_put(memcg);
2953 		}
2954 		rcu_read_unlock();
2955 	}
2956 	/*
2957 	 * At swapin, we may charge account against cgroup which has no tasks.
2958 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2959 	 * In that case, we need to call pre_destroy() again. check it here.
2960 	 */
2961 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2962 }
2963 
2964 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2965 {
2966 	__mem_cgroup_commit_charge_swapin(page, ptr,
2967 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2968 }
2969 
2970 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2971 {
2972 	if (mem_cgroup_disabled())
2973 		return;
2974 	if (!memcg)
2975 		return;
2976 	__mem_cgroup_cancel_charge(memcg, 1);
2977 }
2978 
2979 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2980 				   unsigned int nr_pages,
2981 				   const enum charge_type ctype)
2982 {
2983 	struct memcg_batch_info *batch = NULL;
2984 	bool uncharge_memsw = true;
2985 
2986 	/* If swapout, usage of swap doesn't decrease */
2987 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2988 		uncharge_memsw = false;
2989 
2990 	batch = &current->memcg_batch;
2991 	/*
2992 	 * In usual, we do css_get() when we remember memcg pointer.
2993 	 * But in this case, we keep res->usage until end of a series of
2994 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2995 	 */
2996 	if (!batch->memcg)
2997 		batch->memcg = memcg;
2998 	/*
2999 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3000 	 * In those cases, all pages freed continuously can be expected to be in
3001 	 * the same cgroup and we have chance to coalesce uncharges.
3002 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3003 	 * because we want to do uncharge as soon as possible.
3004 	 */
3005 
3006 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3007 		goto direct_uncharge;
3008 
3009 	if (nr_pages > 1)
3010 		goto direct_uncharge;
3011 
3012 	/*
3013 	 * In typical case, batch->memcg == mem. This means we can
3014 	 * merge a series of uncharges to an uncharge of res_counter.
3015 	 * If not, we uncharge res_counter ony by one.
3016 	 */
3017 	if (batch->memcg != memcg)
3018 		goto direct_uncharge;
3019 	/* remember freed charge and uncharge it later */
3020 	batch->nr_pages++;
3021 	if (uncharge_memsw)
3022 		batch->memsw_nr_pages++;
3023 	return;
3024 direct_uncharge:
3025 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3026 	if (uncharge_memsw)
3027 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3028 	if (unlikely(batch->memcg != memcg))
3029 		memcg_oom_recover(memcg);
3030 	return;
3031 }
3032 
3033 /*
3034  * uncharge if !page_mapped(page)
3035  */
3036 static struct mem_cgroup *
3037 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3038 {
3039 	struct mem_cgroup *memcg = NULL;
3040 	unsigned int nr_pages = 1;
3041 	struct page_cgroup *pc;
3042 
3043 	if (mem_cgroup_disabled())
3044 		return NULL;
3045 
3046 	if (PageSwapCache(page))
3047 		return NULL;
3048 
3049 	if (PageTransHuge(page)) {
3050 		nr_pages <<= compound_order(page);
3051 		VM_BUG_ON(!PageTransHuge(page));
3052 	}
3053 	/*
3054 	 * Check if our page_cgroup is valid
3055 	 */
3056 	pc = lookup_page_cgroup(page);
3057 	if (unlikely(!pc || !PageCgroupUsed(pc)))
3058 		return NULL;
3059 
3060 	lock_page_cgroup(pc);
3061 
3062 	memcg = pc->mem_cgroup;
3063 
3064 	if (!PageCgroupUsed(pc))
3065 		goto unlock_out;
3066 
3067 	switch (ctype) {
3068 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3069 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3070 		/* See mem_cgroup_prepare_migration() */
3071 		if (page_mapped(page) || PageCgroupMigration(pc))
3072 			goto unlock_out;
3073 		break;
3074 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3075 		if (!PageAnon(page)) {	/* Shared memory */
3076 			if (page->mapping && !page_is_file_cache(page))
3077 				goto unlock_out;
3078 		} else if (page_mapped(page)) /* Anon */
3079 				goto unlock_out;
3080 		break;
3081 	default:
3082 		break;
3083 	}
3084 
3085 	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3086 
3087 	ClearPageCgroupUsed(pc);
3088 	/*
3089 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3090 	 * freed from LRU. This is safe because uncharged page is expected not
3091 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3092 	 * special functions.
3093 	 */
3094 
3095 	unlock_page_cgroup(pc);
3096 	/*
3097 	 * even after unlock, we have memcg->res.usage here and this memcg
3098 	 * will never be freed.
3099 	 */
3100 	memcg_check_events(memcg, page);
3101 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3102 		mem_cgroup_swap_statistics(memcg, true);
3103 		mem_cgroup_get(memcg);
3104 	}
3105 	if (!mem_cgroup_is_root(memcg))
3106 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3107 
3108 	return memcg;
3109 
3110 unlock_out:
3111 	unlock_page_cgroup(pc);
3112 	return NULL;
3113 }
3114 
3115 void mem_cgroup_uncharge_page(struct page *page)
3116 {
3117 	/* early check. */
3118 	if (page_mapped(page))
3119 		return;
3120 	if (page->mapping && !PageAnon(page))
3121 		return;
3122 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3123 }
3124 
3125 void mem_cgroup_uncharge_cache_page(struct page *page)
3126 {
3127 	VM_BUG_ON(page_mapped(page));
3128 	VM_BUG_ON(page->mapping);
3129 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3130 }
3131 
3132 /*
3133  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3134  * In that cases, pages are freed continuously and we can expect pages
3135  * are in the same memcg. All these calls itself limits the number of
3136  * pages freed at once, then uncharge_start/end() is called properly.
3137  * This may be called prural(2) times in a context,
3138  */
3139 
3140 void mem_cgroup_uncharge_start(void)
3141 {
3142 	current->memcg_batch.do_batch++;
3143 	/* We can do nest. */
3144 	if (current->memcg_batch.do_batch == 1) {
3145 		current->memcg_batch.memcg = NULL;
3146 		current->memcg_batch.nr_pages = 0;
3147 		current->memcg_batch.memsw_nr_pages = 0;
3148 	}
3149 }
3150 
3151 void mem_cgroup_uncharge_end(void)
3152 {
3153 	struct memcg_batch_info *batch = &current->memcg_batch;
3154 
3155 	if (!batch->do_batch)
3156 		return;
3157 
3158 	batch->do_batch--;
3159 	if (batch->do_batch) /* If stacked, do nothing. */
3160 		return;
3161 
3162 	if (!batch->memcg)
3163 		return;
3164 	/*
3165 	 * This "batch->memcg" is valid without any css_get/put etc...
3166 	 * bacause we hide charges behind us.
3167 	 */
3168 	if (batch->nr_pages)
3169 		res_counter_uncharge(&batch->memcg->res,
3170 				     batch->nr_pages * PAGE_SIZE);
3171 	if (batch->memsw_nr_pages)
3172 		res_counter_uncharge(&batch->memcg->memsw,
3173 				     batch->memsw_nr_pages * PAGE_SIZE);
3174 	memcg_oom_recover(batch->memcg);
3175 	/* forget this pointer (for sanity check) */
3176 	batch->memcg = NULL;
3177 }
3178 
3179 #ifdef CONFIG_SWAP
3180 /*
3181  * called after __delete_from_swap_cache() and drop "page" account.
3182  * memcg information is recorded to swap_cgroup of "ent"
3183  */
3184 void
3185 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3186 {
3187 	struct mem_cgroup *memcg;
3188 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3189 
3190 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3191 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3192 
3193 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3194 
3195 	/*
3196 	 * record memcg information,  if swapout && memcg != NULL,
3197 	 * mem_cgroup_get() was called in uncharge().
3198 	 */
3199 	if (do_swap_account && swapout && memcg)
3200 		swap_cgroup_record(ent, css_id(&memcg->css));
3201 }
3202 #endif
3203 
3204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3205 /*
3206  * called from swap_entry_free(). remove record in swap_cgroup and
3207  * uncharge "memsw" account.
3208  */
3209 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3210 {
3211 	struct mem_cgroup *memcg;
3212 	unsigned short id;
3213 
3214 	if (!do_swap_account)
3215 		return;
3216 
3217 	id = swap_cgroup_record(ent, 0);
3218 	rcu_read_lock();
3219 	memcg = mem_cgroup_lookup(id);
3220 	if (memcg) {
3221 		/*
3222 		 * We uncharge this because swap is freed.
3223 		 * This memcg can be obsolete one. We avoid calling css_tryget
3224 		 */
3225 		if (!mem_cgroup_is_root(memcg))
3226 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3227 		mem_cgroup_swap_statistics(memcg, false);
3228 		mem_cgroup_put(memcg);
3229 	}
3230 	rcu_read_unlock();
3231 }
3232 
3233 /**
3234  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3235  * @entry: swap entry to be moved
3236  * @from:  mem_cgroup which the entry is moved from
3237  * @to:  mem_cgroup which the entry is moved to
3238  * @need_fixup: whether we should fixup res_counters and refcounts.
3239  *
3240  * It succeeds only when the swap_cgroup's record for this entry is the same
3241  * as the mem_cgroup's id of @from.
3242  *
3243  * Returns 0 on success, -EINVAL on failure.
3244  *
3245  * The caller must have charged to @to, IOW, called res_counter_charge() about
3246  * both res and memsw, and called css_get().
3247  */
3248 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3249 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3250 {
3251 	unsigned short old_id, new_id;
3252 
3253 	old_id = css_id(&from->css);
3254 	new_id = css_id(&to->css);
3255 
3256 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3257 		mem_cgroup_swap_statistics(from, false);
3258 		mem_cgroup_swap_statistics(to, true);
3259 		/*
3260 		 * This function is only called from task migration context now.
3261 		 * It postpones res_counter and refcount handling till the end
3262 		 * of task migration(mem_cgroup_clear_mc()) for performance
3263 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3264 		 * because if the process that has been moved to @to does
3265 		 * swap-in, the refcount of @to might be decreased to 0.
3266 		 */
3267 		mem_cgroup_get(to);
3268 		if (need_fixup) {
3269 			if (!mem_cgroup_is_root(from))
3270 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3271 			mem_cgroup_put(from);
3272 			/*
3273 			 * we charged both to->res and to->memsw, so we should
3274 			 * uncharge to->res.
3275 			 */
3276 			if (!mem_cgroup_is_root(to))
3277 				res_counter_uncharge(&to->res, PAGE_SIZE);
3278 		}
3279 		return 0;
3280 	}
3281 	return -EINVAL;
3282 }
3283 #else
3284 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3285 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3286 {
3287 	return -EINVAL;
3288 }
3289 #endif
3290 
3291 /*
3292  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3293  * page belongs to.
3294  */
3295 int mem_cgroup_prepare_migration(struct page *page,
3296 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3297 {
3298 	struct mem_cgroup *memcg = NULL;
3299 	struct page_cgroup *pc;
3300 	enum charge_type ctype;
3301 	int ret = 0;
3302 
3303 	*ptr = NULL;
3304 
3305 	VM_BUG_ON(PageTransHuge(page));
3306 	if (mem_cgroup_disabled())
3307 		return 0;
3308 
3309 	pc = lookup_page_cgroup(page);
3310 	lock_page_cgroup(pc);
3311 	if (PageCgroupUsed(pc)) {
3312 		memcg = pc->mem_cgroup;
3313 		css_get(&memcg->css);
3314 		/*
3315 		 * At migrating an anonymous page, its mapcount goes down
3316 		 * to 0 and uncharge() will be called. But, even if it's fully
3317 		 * unmapped, migration may fail and this page has to be
3318 		 * charged again. We set MIGRATION flag here and delay uncharge
3319 		 * until end_migration() is called
3320 		 *
3321 		 * Corner Case Thinking
3322 		 * A)
3323 		 * When the old page was mapped as Anon and it's unmap-and-freed
3324 		 * while migration was ongoing.
3325 		 * If unmap finds the old page, uncharge() of it will be delayed
3326 		 * until end_migration(). If unmap finds a new page, it's
3327 		 * uncharged when it make mapcount to be 1->0. If unmap code
3328 		 * finds swap_migration_entry, the new page will not be mapped
3329 		 * and end_migration() will find it(mapcount==0).
3330 		 *
3331 		 * B)
3332 		 * When the old page was mapped but migraion fails, the kernel
3333 		 * remaps it. A charge for it is kept by MIGRATION flag even
3334 		 * if mapcount goes down to 0. We can do remap successfully
3335 		 * without charging it again.
3336 		 *
3337 		 * C)
3338 		 * The "old" page is under lock_page() until the end of
3339 		 * migration, so, the old page itself will not be swapped-out.
3340 		 * If the new page is swapped out before end_migraton, our
3341 		 * hook to usual swap-out path will catch the event.
3342 		 */
3343 		if (PageAnon(page))
3344 			SetPageCgroupMigration(pc);
3345 	}
3346 	unlock_page_cgroup(pc);
3347 	/*
3348 	 * If the page is not charged at this point,
3349 	 * we return here.
3350 	 */
3351 	if (!memcg)
3352 		return 0;
3353 
3354 	*ptr = memcg;
3355 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3356 	css_put(&memcg->css);/* drop extra refcnt */
3357 	if (ret || *ptr == NULL) {
3358 		if (PageAnon(page)) {
3359 			lock_page_cgroup(pc);
3360 			ClearPageCgroupMigration(pc);
3361 			unlock_page_cgroup(pc);
3362 			/*
3363 			 * The old page may be fully unmapped while we kept it.
3364 			 */
3365 			mem_cgroup_uncharge_page(page);
3366 		}
3367 		return -ENOMEM;
3368 	}
3369 	/*
3370 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3371 	 * is called before end_migration, we can catch all events on this new
3372 	 * page. In the case new page is migrated but not remapped, new page's
3373 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3374 	 */
3375 	pc = lookup_page_cgroup(newpage);
3376 	if (PageAnon(page))
3377 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3378 	else if (page_is_file_cache(page))
3379 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3380 	else
3381 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3382 	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3383 	return ret;
3384 }
3385 
3386 /* remove redundant charge if migration failed*/
3387 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3388 	struct page *oldpage, struct page *newpage, bool migration_ok)
3389 {
3390 	struct page *used, *unused;
3391 	struct page_cgroup *pc;
3392 
3393 	if (!memcg)
3394 		return;
3395 	/* blocks rmdir() */
3396 	cgroup_exclude_rmdir(&memcg->css);
3397 	if (!migration_ok) {
3398 		used = oldpage;
3399 		unused = newpage;
3400 	} else {
3401 		used = newpage;
3402 		unused = oldpage;
3403 	}
3404 	/*
3405 	 * We disallowed uncharge of pages under migration because mapcount
3406 	 * of the page goes down to zero, temporarly.
3407 	 * Clear the flag and check the page should be charged.
3408 	 */
3409 	pc = lookup_page_cgroup(oldpage);
3410 	lock_page_cgroup(pc);
3411 	ClearPageCgroupMigration(pc);
3412 	unlock_page_cgroup(pc);
3413 
3414 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3415 
3416 	/*
3417 	 * If a page is a file cache, radix-tree replacement is very atomic
3418 	 * and we can skip this check. When it was an Anon page, its mapcount
3419 	 * goes down to 0. But because we added MIGRATION flage, it's not
3420 	 * uncharged yet. There are several case but page->mapcount check
3421 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3422 	 * check. (see prepare_charge() also)
3423 	 */
3424 	if (PageAnon(used))
3425 		mem_cgroup_uncharge_page(used);
3426 	/*
3427 	 * At migration, we may charge account against cgroup which has no
3428 	 * tasks.
3429 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3430 	 * In that case, we need to call pre_destroy() again. check it here.
3431 	 */
3432 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3433 }
3434 
3435 #ifdef CONFIG_DEBUG_VM
3436 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3437 {
3438 	struct page_cgroup *pc;
3439 
3440 	pc = lookup_page_cgroup(page);
3441 	if (likely(pc) && PageCgroupUsed(pc))
3442 		return pc;
3443 	return NULL;
3444 }
3445 
3446 bool mem_cgroup_bad_page_check(struct page *page)
3447 {
3448 	if (mem_cgroup_disabled())
3449 		return false;
3450 
3451 	return lookup_page_cgroup_used(page) != NULL;
3452 }
3453 
3454 void mem_cgroup_print_bad_page(struct page *page)
3455 {
3456 	struct page_cgroup *pc;
3457 
3458 	pc = lookup_page_cgroup_used(page);
3459 	if (pc) {
3460 		int ret = -1;
3461 		char *path;
3462 
3463 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3464 		       pc, pc->flags, pc->mem_cgroup);
3465 
3466 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3467 		if (path) {
3468 			rcu_read_lock();
3469 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3470 							path, PATH_MAX);
3471 			rcu_read_unlock();
3472 		}
3473 
3474 		printk(KERN_CONT "(%s)\n",
3475 				(ret < 0) ? "cannot get the path" : path);
3476 		kfree(path);
3477 	}
3478 }
3479 #endif
3480 
3481 static DEFINE_MUTEX(set_limit_mutex);
3482 
3483 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3484 				unsigned long long val)
3485 {
3486 	int retry_count;
3487 	u64 memswlimit, memlimit;
3488 	int ret = 0;
3489 	int children = mem_cgroup_count_children(memcg);
3490 	u64 curusage, oldusage;
3491 	int enlarge;
3492 
3493 	/*
3494 	 * For keeping hierarchical_reclaim simple, how long we should retry
3495 	 * is depends on callers. We set our retry-count to be function
3496 	 * of # of children which we should visit in this loop.
3497 	 */
3498 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3499 
3500 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3501 
3502 	enlarge = 0;
3503 	while (retry_count) {
3504 		if (signal_pending(current)) {
3505 			ret = -EINTR;
3506 			break;
3507 		}
3508 		/*
3509 		 * Rather than hide all in some function, I do this in
3510 		 * open coded manner. You see what this really does.
3511 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3512 		 */
3513 		mutex_lock(&set_limit_mutex);
3514 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3515 		if (memswlimit < val) {
3516 			ret = -EINVAL;
3517 			mutex_unlock(&set_limit_mutex);
3518 			break;
3519 		}
3520 
3521 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3522 		if (memlimit < val)
3523 			enlarge = 1;
3524 
3525 		ret = res_counter_set_limit(&memcg->res, val);
3526 		if (!ret) {
3527 			if (memswlimit == val)
3528 				memcg->memsw_is_minimum = true;
3529 			else
3530 				memcg->memsw_is_minimum = false;
3531 		}
3532 		mutex_unlock(&set_limit_mutex);
3533 
3534 		if (!ret)
3535 			break;
3536 
3537 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3538 						MEM_CGROUP_RECLAIM_SHRINK,
3539 						NULL);
3540 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3541 		/* Usage is reduced ? */
3542   		if (curusage >= oldusage)
3543 			retry_count--;
3544 		else
3545 			oldusage = curusage;
3546 	}
3547 	if (!ret && enlarge)
3548 		memcg_oom_recover(memcg);
3549 
3550 	return ret;
3551 }
3552 
3553 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3554 					unsigned long long val)
3555 {
3556 	int retry_count;
3557 	u64 memlimit, memswlimit, oldusage, curusage;
3558 	int children = mem_cgroup_count_children(memcg);
3559 	int ret = -EBUSY;
3560 	int enlarge = 0;
3561 
3562 	/* see mem_cgroup_resize_res_limit */
3563  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3564 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3565 	while (retry_count) {
3566 		if (signal_pending(current)) {
3567 			ret = -EINTR;
3568 			break;
3569 		}
3570 		/*
3571 		 * Rather than hide all in some function, I do this in
3572 		 * open coded manner. You see what this really does.
3573 		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3574 		 */
3575 		mutex_lock(&set_limit_mutex);
3576 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3577 		if (memlimit > val) {
3578 			ret = -EINVAL;
3579 			mutex_unlock(&set_limit_mutex);
3580 			break;
3581 		}
3582 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3583 		if (memswlimit < val)
3584 			enlarge = 1;
3585 		ret = res_counter_set_limit(&memcg->memsw, val);
3586 		if (!ret) {
3587 			if (memlimit == val)
3588 				memcg->memsw_is_minimum = true;
3589 			else
3590 				memcg->memsw_is_minimum = false;
3591 		}
3592 		mutex_unlock(&set_limit_mutex);
3593 
3594 		if (!ret)
3595 			break;
3596 
3597 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3598 						MEM_CGROUP_RECLAIM_NOSWAP |
3599 						MEM_CGROUP_RECLAIM_SHRINK,
3600 						NULL);
3601 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3602 		/* Usage is reduced ? */
3603 		if (curusage >= oldusage)
3604 			retry_count--;
3605 		else
3606 			oldusage = curusage;
3607 	}
3608 	if (!ret && enlarge)
3609 		memcg_oom_recover(memcg);
3610 	return ret;
3611 }
3612 
3613 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3614 					    gfp_t gfp_mask,
3615 					    unsigned long *total_scanned)
3616 {
3617 	unsigned long nr_reclaimed = 0;
3618 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3619 	unsigned long reclaimed;
3620 	int loop = 0;
3621 	struct mem_cgroup_tree_per_zone *mctz;
3622 	unsigned long long excess;
3623 	unsigned long nr_scanned;
3624 
3625 	if (order > 0)
3626 		return 0;
3627 
3628 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3629 	/*
3630 	 * This loop can run a while, specially if mem_cgroup's continuously
3631 	 * keep exceeding their soft limit and putting the system under
3632 	 * pressure
3633 	 */
3634 	do {
3635 		if (next_mz)
3636 			mz = next_mz;
3637 		else
3638 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3639 		if (!mz)
3640 			break;
3641 
3642 		nr_scanned = 0;
3643 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3644 						gfp_mask,
3645 						MEM_CGROUP_RECLAIM_SOFT,
3646 						&nr_scanned);
3647 		nr_reclaimed += reclaimed;
3648 		*total_scanned += nr_scanned;
3649 		spin_lock(&mctz->lock);
3650 
3651 		/*
3652 		 * If we failed to reclaim anything from this memory cgroup
3653 		 * it is time to move on to the next cgroup
3654 		 */
3655 		next_mz = NULL;
3656 		if (!reclaimed) {
3657 			do {
3658 				/*
3659 				 * Loop until we find yet another one.
3660 				 *
3661 				 * By the time we get the soft_limit lock
3662 				 * again, someone might have aded the
3663 				 * group back on the RB tree. Iterate to
3664 				 * make sure we get a different mem.
3665 				 * mem_cgroup_largest_soft_limit_node returns
3666 				 * NULL if no other cgroup is present on
3667 				 * the tree
3668 				 */
3669 				next_mz =
3670 				__mem_cgroup_largest_soft_limit_node(mctz);
3671 				if (next_mz == mz)
3672 					css_put(&next_mz->mem->css);
3673 				else /* next_mz == NULL or other memcg */
3674 					break;
3675 			} while (1);
3676 		}
3677 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3678 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3679 		/*
3680 		 * One school of thought says that we should not add
3681 		 * back the node to the tree if reclaim returns 0.
3682 		 * But our reclaim could return 0, simply because due
3683 		 * to priority we are exposing a smaller subset of
3684 		 * memory to reclaim from. Consider this as a longer
3685 		 * term TODO.
3686 		 */
3687 		/* If excess == 0, no tree ops */
3688 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3689 		spin_unlock(&mctz->lock);
3690 		css_put(&mz->mem->css);
3691 		loop++;
3692 		/*
3693 		 * Could not reclaim anything and there are no more
3694 		 * mem cgroups to try or we seem to be looping without
3695 		 * reclaiming anything.
3696 		 */
3697 		if (!nr_reclaimed &&
3698 			(next_mz == NULL ||
3699 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3700 			break;
3701 	} while (!nr_reclaimed);
3702 	if (next_mz)
3703 		css_put(&next_mz->mem->css);
3704 	return nr_reclaimed;
3705 }
3706 
3707 /*
3708  * This routine traverse page_cgroup in given list and drop them all.
3709  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3710  */
3711 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3712 				int node, int zid, enum lru_list lru)
3713 {
3714 	struct zone *zone;
3715 	struct mem_cgroup_per_zone *mz;
3716 	struct page_cgroup *pc, *busy;
3717 	unsigned long flags, loop;
3718 	struct list_head *list;
3719 	int ret = 0;
3720 
3721 	zone = &NODE_DATA(node)->node_zones[zid];
3722 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3723 	list = &mz->lists[lru];
3724 
3725 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3726 	/* give some margin against EBUSY etc...*/
3727 	loop += 256;
3728 	busy = NULL;
3729 	while (loop--) {
3730 		struct page *page;
3731 
3732 		ret = 0;
3733 		spin_lock_irqsave(&zone->lru_lock, flags);
3734 		if (list_empty(list)) {
3735 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3736 			break;
3737 		}
3738 		pc = list_entry(list->prev, struct page_cgroup, lru);
3739 		if (busy == pc) {
3740 			list_move(&pc->lru, list);
3741 			busy = NULL;
3742 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3743 			continue;
3744 		}
3745 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3746 
3747 		page = lookup_cgroup_page(pc);
3748 
3749 		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3750 		if (ret == -ENOMEM)
3751 			break;
3752 
3753 		if (ret == -EBUSY || ret == -EINVAL) {
3754 			/* found lock contention or "pc" is obsolete. */
3755 			busy = pc;
3756 			cond_resched();
3757 		} else
3758 			busy = NULL;
3759 	}
3760 
3761 	if (!ret && !list_empty(list))
3762 		return -EBUSY;
3763 	return ret;
3764 }
3765 
3766 /*
3767  * make mem_cgroup's charge to be 0 if there is no task.
3768  * This enables deleting this mem_cgroup.
3769  */
3770 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3771 {
3772 	int ret;
3773 	int node, zid, shrink;
3774 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3775 	struct cgroup *cgrp = memcg->css.cgroup;
3776 
3777 	css_get(&memcg->css);
3778 
3779 	shrink = 0;
3780 	/* should free all ? */
3781 	if (free_all)
3782 		goto try_to_free;
3783 move_account:
3784 	do {
3785 		ret = -EBUSY;
3786 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3787 			goto out;
3788 		ret = -EINTR;
3789 		if (signal_pending(current))
3790 			goto out;
3791 		/* This is for making all *used* pages to be on LRU. */
3792 		lru_add_drain_all();
3793 		drain_all_stock_sync(memcg);
3794 		ret = 0;
3795 		mem_cgroup_start_move(memcg);
3796 		for_each_node_state(node, N_HIGH_MEMORY) {
3797 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3798 				enum lru_list l;
3799 				for_each_lru(l) {
3800 					ret = mem_cgroup_force_empty_list(memcg,
3801 							node, zid, l);
3802 					if (ret)
3803 						break;
3804 				}
3805 			}
3806 			if (ret)
3807 				break;
3808 		}
3809 		mem_cgroup_end_move(memcg);
3810 		memcg_oom_recover(memcg);
3811 		/* it seems parent cgroup doesn't have enough mem */
3812 		if (ret == -ENOMEM)
3813 			goto try_to_free;
3814 		cond_resched();
3815 	/* "ret" should also be checked to ensure all lists are empty. */
3816 	} while (memcg->res.usage > 0 || ret);
3817 out:
3818 	css_put(&memcg->css);
3819 	return ret;
3820 
3821 try_to_free:
3822 	/* returns EBUSY if there is a task or if we come here twice. */
3823 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3824 		ret = -EBUSY;
3825 		goto out;
3826 	}
3827 	/* we call try-to-free pages for make this cgroup empty */
3828 	lru_add_drain_all();
3829 	/* try to free all pages in this cgroup */
3830 	shrink = 1;
3831 	while (nr_retries && memcg->res.usage > 0) {
3832 		int progress;
3833 
3834 		if (signal_pending(current)) {
3835 			ret = -EINTR;
3836 			goto out;
3837 		}
3838 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3839 						false);
3840 		if (!progress) {
3841 			nr_retries--;
3842 			/* maybe some writeback is necessary */
3843 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3844 		}
3845 
3846 	}
3847 	lru_add_drain();
3848 	/* try move_account...there may be some *locked* pages. */
3849 	goto move_account;
3850 }
3851 
3852 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3853 {
3854 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3855 }
3856 
3857 
3858 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3859 {
3860 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3861 }
3862 
3863 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3864 					u64 val)
3865 {
3866 	int retval = 0;
3867 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868 	struct cgroup *parent = cont->parent;
3869 	struct mem_cgroup *parent_memcg = NULL;
3870 
3871 	if (parent)
3872 		parent_memcg = mem_cgroup_from_cont(parent);
3873 
3874 	cgroup_lock();
3875 	/*
3876 	 * If parent's use_hierarchy is set, we can't make any modifications
3877 	 * in the child subtrees. If it is unset, then the change can
3878 	 * occur, provided the current cgroup has no children.
3879 	 *
3880 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3881 	 * set if there are no children.
3882 	 */
3883 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3884 				(val == 1 || val == 0)) {
3885 		if (list_empty(&cont->children))
3886 			memcg->use_hierarchy = val;
3887 		else
3888 			retval = -EBUSY;
3889 	} else
3890 		retval = -EINVAL;
3891 	cgroup_unlock();
3892 
3893 	return retval;
3894 }
3895 
3896 
3897 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3898 					       enum mem_cgroup_stat_index idx)
3899 {
3900 	struct mem_cgroup *iter;
3901 	long val = 0;
3902 
3903 	/* Per-cpu values can be negative, use a signed accumulator */
3904 	for_each_mem_cgroup_tree(iter, memcg)
3905 		val += mem_cgroup_read_stat(iter, idx);
3906 
3907 	if (val < 0) /* race ? */
3908 		val = 0;
3909 	return val;
3910 }
3911 
3912 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3913 {
3914 	u64 val;
3915 
3916 	if (!mem_cgroup_is_root(memcg)) {
3917 		if (!swap)
3918 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3919 		else
3920 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3921 	}
3922 
3923 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3924 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3925 
3926 	if (swap)
3927 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3928 
3929 	return val << PAGE_SHIFT;
3930 }
3931 
3932 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3933 {
3934 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3935 	u64 val;
3936 	int type, name;
3937 
3938 	type = MEMFILE_TYPE(cft->private);
3939 	name = MEMFILE_ATTR(cft->private);
3940 	switch (type) {
3941 	case _MEM:
3942 		if (name == RES_USAGE)
3943 			val = mem_cgroup_usage(memcg, false);
3944 		else
3945 			val = res_counter_read_u64(&memcg->res, name);
3946 		break;
3947 	case _MEMSWAP:
3948 		if (name == RES_USAGE)
3949 			val = mem_cgroup_usage(memcg, true);
3950 		else
3951 			val = res_counter_read_u64(&memcg->memsw, name);
3952 		break;
3953 	default:
3954 		BUG();
3955 		break;
3956 	}
3957 	return val;
3958 }
3959 /*
3960  * The user of this function is...
3961  * RES_LIMIT.
3962  */
3963 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3964 			    const char *buffer)
3965 {
3966 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3967 	int type, name;
3968 	unsigned long long val;
3969 	int ret;
3970 
3971 	type = MEMFILE_TYPE(cft->private);
3972 	name = MEMFILE_ATTR(cft->private);
3973 	switch (name) {
3974 	case RES_LIMIT:
3975 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3976 			ret = -EINVAL;
3977 			break;
3978 		}
3979 		/* This function does all necessary parse...reuse it */
3980 		ret = res_counter_memparse_write_strategy(buffer, &val);
3981 		if (ret)
3982 			break;
3983 		if (type == _MEM)
3984 			ret = mem_cgroup_resize_limit(memcg, val);
3985 		else
3986 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3987 		break;
3988 	case RES_SOFT_LIMIT:
3989 		ret = res_counter_memparse_write_strategy(buffer, &val);
3990 		if (ret)
3991 			break;
3992 		/*
3993 		 * For memsw, soft limits are hard to implement in terms
3994 		 * of semantics, for now, we support soft limits for
3995 		 * control without swap
3996 		 */
3997 		if (type == _MEM)
3998 			ret = res_counter_set_soft_limit(&memcg->res, val);
3999 		else
4000 			ret = -EINVAL;
4001 		break;
4002 	default:
4003 		ret = -EINVAL; /* should be BUG() ? */
4004 		break;
4005 	}
4006 	return ret;
4007 }
4008 
4009 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4010 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4011 {
4012 	struct cgroup *cgroup;
4013 	unsigned long long min_limit, min_memsw_limit, tmp;
4014 
4015 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4016 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4017 	cgroup = memcg->css.cgroup;
4018 	if (!memcg->use_hierarchy)
4019 		goto out;
4020 
4021 	while (cgroup->parent) {
4022 		cgroup = cgroup->parent;
4023 		memcg = mem_cgroup_from_cont(cgroup);
4024 		if (!memcg->use_hierarchy)
4025 			break;
4026 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4027 		min_limit = min(min_limit, tmp);
4028 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4029 		min_memsw_limit = min(min_memsw_limit, tmp);
4030 	}
4031 out:
4032 	*mem_limit = min_limit;
4033 	*memsw_limit = min_memsw_limit;
4034 	return;
4035 }
4036 
4037 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4038 {
4039 	struct mem_cgroup *memcg;
4040 	int type, name;
4041 
4042 	memcg = mem_cgroup_from_cont(cont);
4043 	type = MEMFILE_TYPE(event);
4044 	name = MEMFILE_ATTR(event);
4045 	switch (name) {
4046 	case RES_MAX_USAGE:
4047 		if (type == _MEM)
4048 			res_counter_reset_max(&memcg->res);
4049 		else
4050 			res_counter_reset_max(&memcg->memsw);
4051 		break;
4052 	case RES_FAILCNT:
4053 		if (type == _MEM)
4054 			res_counter_reset_failcnt(&memcg->res);
4055 		else
4056 			res_counter_reset_failcnt(&memcg->memsw);
4057 		break;
4058 	}
4059 
4060 	return 0;
4061 }
4062 
4063 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4064 					struct cftype *cft)
4065 {
4066 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4067 }
4068 
4069 #ifdef CONFIG_MMU
4070 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4071 					struct cftype *cft, u64 val)
4072 {
4073 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4074 
4075 	if (val >= (1 << NR_MOVE_TYPE))
4076 		return -EINVAL;
4077 	/*
4078 	 * We check this value several times in both in can_attach() and
4079 	 * attach(), so we need cgroup lock to prevent this value from being
4080 	 * inconsistent.
4081 	 */
4082 	cgroup_lock();
4083 	memcg->move_charge_at_immigrate = val;
4084 	cgroup_unlock();
4085 
4086 	return 0;
4087 }
4088 #else
4089 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4090 					struct cftype *cft, u64 val)
4091 {
4092 	return -ENOSYS;
4093 }
4094 #endif
4095 
4096 
4097 /* For read statistics */
4098 enum {
4099 	MCS_CACHE,
4100 	MCS_RSS,
4101 	MCS_FILE_MAPPED,
4102 	MCS_PGPGIN,
4103 	MCS_PGPGOUT,
4104 	MCS_SWAP,
4105 	MCS_PGFAULT,
4106 	MCS_PGMAJFAULT,
4107 	MCS_INACTIVE_ANON,
4108 	MCS_ACTIVE_ANON,
4109 	MCS_INACTIVE_FILE,
4110 	MCS_ACTIVE_FILE,
4111 	MCS_UNEVICTABLE,
4112 	NR_MCS_STAT,
4113 };
4114 
4115 struct mcs_total_stat {
4116 	s64 stat[NR_MCS_STAT];
4117 };
4118 
4119 struct {
4120 	char *local_name;
4121 	char *total_name;
4122 } memcg_stat_strings[NR_MCS_STAT] = {
4123 	{"cache", "total_cache"},
4124 	{"rss", "total_rss"},
4125 	{"mapped_file", "total_mapped_file"},
4126 	{"pgpgin", "total_pgpgin"},
4127 	{"pgpgout", "total_pgpgout"},
4128 	{"swap", "total_swap"},
4129 	{"pgfault", "total_pgfault"},
4130 	{"pgmajfault", "total_pgmajfault"},
4131 	{"inactive_anon", "total_inactive_anon"},
4132 	{"active_anon", "total_active_anon"},
4133 	{"inactive_file", "total_inactive_file"},
4134 	{"active_file", "total_active_file"},
4135 	{"unevictable", "total_unevictable"}
4136 };
4137 
4138 
4139 static void
4140 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4141 {
4142 	s64 val;
4143 
4144 	/* per cpu stat */
4145 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4146 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4147 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4148 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4149 	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4150 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4151 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4152 	s->stat[MCS_PGPGIN] += val;
4153 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4154 	s->stat[MCS_PGPGOUT] += val;
4155 	if (do_swap_account) {
4156 		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4157 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4158 	}
4159 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4160 	s->stat[MCS_PGFAULT] += val;
4161 	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4162 	s->stat[MCS_PGMAJFAULT] += val;
4163 
4164 	/* per zone stat */
4165 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4166 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4167 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4168 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4169 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4170 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4171 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4172 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4173 	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4174 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4175 }
4176 
4177 static void
4178 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4179 {
4180 	struct mem_cgroup *iter;
4181 
4182 	for_each_mem_cgroup_tree(iter, memcg)
4183 		mem_cgroup_get_local_stat(iter, s);
4184 }
4185 
4186 #ifdef CONFIG_NUMA
4187 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4188 {
4189 	int nid;
4190 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4191 	unsigned long node_nr;
4192 	struct cgroup *cont = m->private;
4193 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4194 
4195 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4196 	seq_printf(m, "total=%lu", total_nr);
4197 	for_each_node_state(nid, N_HIGH_MEMORY) {
4198 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4199 		seq_printf(m, " N%d=%lu", nid, node_nr);
4200 	}
4201 	seq_putc(m, '\n');
4202 
4203 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4204 	seq_printf(m, "file=%lu", file_nr);
4205 	for_each_node_state(nid, N_HIGH_MEMORY) {
4206 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4207 				LRU_ALL_FILE);
4208 		seq_printf(m, " N%d=%lu", nid, node_nr);
4209 	}
4210 	seq_putc(m, '\n');
4211 
4212 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4213 	seq_printf(m, "anon=%lu", anon_nr);
4214 	for_each_node_state(nid, N_HIGH_MEMORY) {
4215 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4216 				LRU_ALL_ANON);
4217 		seq_printf(m, " N%d=%lu", nid, node_nr);
4218 	}
4219 	seq_putc(m, '\n');
4220 
4221 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4222 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4223 	for_each_node_state(nid, N_HIGH_MEMORY) {
4224 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4225 				BIT(LRU_UNEVICTABLE));
4226 		seq_printf(m, " N%d=%lu", nid, node_nr);
4227 	}
4228 	seq_putc(m, '\n');
4229 	return 0;
4230 }
4231 #endif /* CONFIG_NUMA */
4232 
4233 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4234 				 struct cgroup_map_cb *cb)
4235 {
4236 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4237 	struct mcs_total_stat mystat;
4238 	int i;
4239 
4240 	memset(&mystat, 0, sizeof(mystat));
4241 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4242 
4243 
4244 	for (i = 0; i < NR_MCS_STAT; i++) {
4245 		if (i == MCS_SWAP && !do_swap_account)
4246 			continue;
4247 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4248 	}
4249 
4250 	/* Hierarchical information */
4251 	{
4252 		unsigned long long limit, memsw_limit;
4253 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4254 		cb->fill(cb, "hierarchical_memory_limit", limit);
4255 		if (do_swap_account)
4256 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4257 	}
4258 
4259 	memset(&mystat, 0, sizeof(mystat));
4260 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4261 	for (i = 0; i < NR_MCS_STAT; i++) {
4262 		if (i == MCS_SWAP && !do_swap_account)
4263 			continue;
4264 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4265 	}
4266 
4267 #ifdef CONFIG_DEBUG_VM
4268 	{
4269 		int nid, zid;
4270 		struct mem_cgroup_per_zone *mz;
4271 		unsigned long recent_rotated[2] = {0, 0};
4272 		unsigned long recent_scanned[2] = {0, 0};
4273 
4274 		for_each_online_node(nid)
4275 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4276 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4277 
4278 				recent_rotated[0] +=
4279 					mz->reclaim_stat.recent_rotated[0];
4280 				recent_rotated[1] +=
4281 					mz->reclaim_stat.recent_rotated[1];
4282 				recent_scanned[0] +=
4283 					mz->reclaim_stat.recent_scanned[0];
4284 				recent_scanned[1] +=
4285 					mz->reclaim_stat.recent_scanned[1];
4286 			}
4287 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4288 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4289 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4290 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4291 	}
4292 #endif
4293 
4294 	return 0;
4295 }
4296 
4297 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4298 {
4299 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4300 
4301 	return mem_cgroup_swappiness(memcg);
4302 }
4303 
4304 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4305 				       u64 val)
4306 {
4307 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4308 	struct mem_cgroup *parent;
4309 
4310 	if (val > 100)
4311 		return -EINVAL;
4312 
4313 	if (cgrp->parent == NULL)
4314 		return -EINVAL;
4315 
4316 	parent = mem_cgroup_from_cont(cgrp->parent);
4317 
4318 	cgroup_lock();
4319 
4320 	/* If under hierarchy, only empty-root can set this value */
4321 	if ((parent->use_hierarchy) ||
4322 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4323 		cgroup_unlock();
4324 		return -EINVAL;
4325 	}
4326 
4327 	memcg->swappiness = val;
4328 
4329 	cgroup_unlock();
4330 
4331 	return 0;
4332 }
4333 
4334 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4335 {
4336 	struct mem_cgroup_threshold_ary *t;
4337 	u64 usage;
4338 	int i;
4339 
4340 	rcu_read_lock();
4341 	if (!swap)
4342 		t = rcu_dereference(memcg->thresholds.primary);
4343 	else
4344 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4345 
4346 	if (!t)
4347 		goto unlock;
4348 
4349 	usage = mem_cgroup_usage(memcg, swap);
4350 
4351 	/*
4352 	 * current_threshold points to threshold just below usage.
4353 	 * If it's not true, a threshold was crossed after last
4354 	 * call of __mem_cgroup_threshold().
4355 	 */
4356 	i = t->current_threshold;
4357 
4358 	/*
4359 	 * Iterate backward over array of thresholds starting from
4360 	 * current_threshold and check if a threshold is crossed.
4361 	 * If none of thresholds below usage is crossed, we read
4362 	 * only one element of the array here.
4363 	 */
4364 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4365 		eventfd_signal(t->entries[i].eventfd, 1);
4366 
4367 	/* i = current_threshold + 1 */
4368 	i++;
4369 
4370 	/*
4371 	 * Iterate forward over array of thresholds starting from
4372 	 * current_threshold+1 and check if a threshold is crossed.
4373 	 * If none of thresholds above usage is crossed, we read
4374 	 * only one element of the array here.
4375 	 */
4376 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4377 		eventfd_signal(t->entries[i].eventfd, 1);
4378 
4379 	/* Update current_threshold */
4380 	t->current_threshold = i - 1;
4381 unlock:
4382 	rcu_read_unlock();
4383 }
4384 
4385 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4386 {
4387 	while (memcg) {
4388 		__mem_cgroup_threshold(memcg, false);
4389 		if (do_swap_account)
4390 			__mem_cgroup_threshold(memcg, true);
4391 
4392 		memcg = parent_mem_cgroup(memcg);
4393 	}
4394 }
4395 
4396 static int compare_thresholds(const void *a, const void *b)
4397 {
4398 	const struct mem_cgroup_threshold *_a = a;
4399 	const struct mem_cgroup_threshold *_b = b;
4400 
4401 	return _a->threshold - _b->threshold;
4402 }
4403 
4404 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4405 {
4406 	struct mem_cgroup_eventfd_list *ev;
4407 
4408 	list_for_each_entry(ev, &memcg->oom_notify, list)
4409 		eventfd_signal(ev->eventfd, 1);
4410 	return 0;
4411 }
4412 
4413 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4414 {
4415 	struct mem_cgroup *iter;
4416 
4417 	for_each_mem_cgroup_tree(iter, memcg)
4418 		mem_cgroup_oom_notify_cb(iter);
4419 }
4420 
4421 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4422 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4423 {
4424 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4425 	struct mem_cgroup_thresholds *thresholds;
4426 	struct mem_cgroup_threshold_ary *new;
4427 	int type = MEMFILE_TYPE(cft->private);
4428 	u64 threshold, usage;
4429 	int i, size, ret;
4430 
4431 	ret = res_counter_memparse_write_strategy(args, &threshold);
4432 	if (ret)
4433 		return ret;
4434 
4435 	mutex_lock(&memcg->thresholds_lock);
4436 
4437 	if (type == _MEM)
4438 		thresholds = &memcg->thresholds;
4439 	else if (type == _MEMSWAP)
4440 		thresholds = &memcg->memsw_thresholds;
4441 	else
4442 		BUG();
4443 
4444 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4445 
4446 	/* Check if a threshold crossed before adding a new one */
4447 	if (thresholds->primary)
4448 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4449 
4450 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4451 
4452 	/* Allocate memory for new array of thresholds */
4453 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4454 			GFP_KERNEL);
4455 	if (!new) {
4456 		ret = -ENOMEM;
4457 		goto unlock;
4458 	}
4459 	new->size = size;
4460 
4461 	/* Copy thresholds (if any) to new array */
4462 	if (thresholds->primary) {
4463 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4464 				sizeof(struct mem_cgroup_threshold));
4465 	}
4466 
4467 	/* Add new threshold */
4468 	new->entries[size - 1].eventfd = eventfd;
4469 	new->entries[size - 1].threshold = threshold;
4470 
4471 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4472 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4473 			compare_thresholds, NULL);
4474 
4475 	/* Find current threshold */
4476 	new->current_threshold = -1;
4477 	for (i = 0; i < size; i++) {
4478 		if (new->entries[i].threshold < usage) {
4479 			/*
4480 			 * new->current_threshold will not be used until
4481 			 * rcu_assign_pointer(), so it's safe to increment
4482 			 * it here.
4483 			 */
4484 			++new->current_threshold;
4485 		}
4486 	}
4487 
4488 	/* Free old spare buffer and save old primary buffer as spare */
4489 	kfree(thresholds->spare);
4490 	thresholds->spare = thresholds->primary;
4491 
4492 	rcu_assign_pointer(thresholds->primary, new);
4493 
4494 	/* To be sure that nobody uses thresholds */
4495 	synchronize_rcu();
4496 
4497 unlock:
4498 	mutex_unlock(&memcg->thresholds_lock);
4499 
4500 	return ret;
4501 }
4502 
4503 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4504 	struct cftype *cft, struct eventfd_ctx *eventfd)
4505 {
4506 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4507 	struct mem_cgroup_thresholds *thresholds;
4508 	struct mem_cgroup_threshold_ary *new;
4509 	int type = MEMFILE_TYPE(cft->private);
4510 	u64 usage;
4511 	int i, j, size;
4512 
4513 	mutex_lock(&memcg->thresholds_lock);
4514 	if (type == _MEM)
4515 		thresholds = &memcg->thresholds;
4516 	else if (type == _MEMSWAP)
4517 		thresholds = &memcg->memsw_thresholds;
4518 	else
4519 		BUG();
4520 
4521 	/*
4522 	 * Something went wrong if we trying to unregister a threshold
4523 	 * if we don't have thresholds
4524 	 */
4525 	BUG_ON(!thresholds);
4526 
4527 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4528 
4529 	/* Check if a threshold crossed before removing */
4530 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4531 
4532 	/* Calculate new number of threshold */
4533 	size = 0;
4534 	for (i = 0; i < thresholds->primary->size; i++) {
4535 		if (thresholds->primary->entries[i].eventfd != eventfd)
4536 			size++;
4537 	}
4538 
4539 	new = thresholds->spare;
4540 
4541 	/* Set thresholds array to NULL if we don't have thresholds */
4542 	if (!size) {
4543 		kfree(new);
4544 		new = NULL;
4545 		goto swap_buffers;
4546 	}
4547 
4548 	new->size = size;
4549 
4550 	/* Copy thresholds and find current threshold */
4551 	new->current_threshold = -1;
4552 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4553 		if (thresholds->primary->entries[i].eventfd == eventfd)
4554 			continue;
4555 
4556 		new->entries[j] = thresholds->primary->entries[i];
4557 		if (new->entries[j].threshold < usage) {
4558 			/*
4559 			 * new->current_threshold will not be used
4560 			 * until rcu_assign_pointer(), so it's safe to increment
4561 			 * it here.
4562 			 */
4563 			++new->current_threshold;
4564 		}
4565 		j++;
4566 	}
4567 
4568 swap_buffers:
4569 	/* Swap primary and spare array */
4570 	thresholds->spare = thresholds->primary;
4571 	rcu_assign_pointer(thresholds->primary, new);
4572 
4573 	/* To be sure that nobody uses thresholds */
4574 	synchronize_rcu();
4575 
4576 	mutex_unlock(&memcg->thresholds_lock);
4577 }
4578 
4579 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4580 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4581 {
4582 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4583 	struct mem_cgroup_eventfd_list *event;
4584 	int type = MEMFILE_TYPE(cft->private);
4585 
4586 	BUG_ON(type != _OOM_TYPE);
4587 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4588 	if (!event)
4589 		return -ENOMEM;
4590 
4591 	spin_lock(&memcg_oom_lock);
4592 
4593 	event->eventfd = eventfd;
4594 	list_add(&event->list, &memcg->oom_notify);
4595 
4596 	/* already in OOM ? */
4597 	if (atomic_read(&memcg->under_oom))
4598 		eventfd_signal(eventfd, 1);
4599 	spin_unlock(&memcg_oom_lock);
4600 
4601 	return 0;
4602 }
4603 
4604 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4605 	struct cftype *cft, struct eventfd_ctx *eventfd)
4606 {
4607 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4608 	struct mem_cgroup_eventfd_list *ev, *tmp;
4609 	int type = MEMFILE_TYPE(cft->private);
4610 
4611 	BUG_ON(type != _OOM_TYPE);
4612 
4613 	spin_lock(&memcg_oom_lock);
4614 
4615 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4616 		if (ev->eventfd == eventfd) {
4617 			list_del(&ev->list);
4618 			kfree(ev);
4619 		}
4620 	}
4621 
4622 	spin_unlock(&memcg_oom_lock);
4623 }
4624 
4625 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4626 	struct cftype *cft,  struct cgroup_map_cb *cb)
4627 {
4628 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4629 
4630 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4631 
4632 	if (atomic_read(&memcg->under_oom))
4633 		cb->fill(cb, "under_oom", 1);
4634 	else
4635 		cb->fill(cb, "under_oom", 0);
4636 	return 0;
4637 }
4638 
4639 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4640 	struct cftype *cft, u64 val)
4641 {
4642 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4643 	struct mem_cgroup *parent;
4644 
4645 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4646 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4647 		return -EINVAL;
4648 
4649 	parent = mem_cgroup_from_cont(cgrp->parent);
4650 
4651 	cgroup_lock();
4652 	/* oom-kill-disable is a flag for subhierarchy. */
4653 	if ((parent->use_hierarchy) ||
4654 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4655 		cgroup_unlock();
4656 		return -EINVAL;
4657 	}
4658 	memcg->oom_kill_disable = val;
4659 	if (!val)
4660 		memcg_oom_recover(memcg);
4661 	cgroup_unlock();
4662 	return 0;
4663 }
4664 
4665 #ifdef CONFIG_NUMA
4666 static const struct file_operations mem_control_numa_stat_file_operations = {
4667 	.read = seq_read,
4668 	.llseek = seq_lseek,
4669 	.release = single_release,
4670 };
4671 
4672 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4673 {
4674 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4675 
4676 	file->f_op = &mem_control_numa_stat_file_operations;
4677 	return single_open(file, mem_control_numa_stat_show, cont);
4678 }
4679 #endif /* CONFIG_NUMA */
4680 
4681 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4682 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4683 {
4684 	/*
4685 	 * Part of this would be better living in a separate allocation
4686 	 * function, leaving us with just the cgroup tree population work.
4687 	 * We, however, depend on state such as network's proto_list that
4688 	 * is only initialized after cgroup creation. I found the less
4689 	 * cumbersome way to deal with it to defer it all to populate time
4690 	 */
4691 	return mem_cgroup_sockets_init(cont, ss);
4692 };
4693 
4694 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4695 				struct cgroup *cont)
4696 {
4697 	mem_cgroup_sockets_destroy(cont, ss);
4698 }
4699 #else
4700 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4701 {
4702 	return 0;
4703 }
4704 
4705 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4706 				struct cgroup *cont)
4707 {
4708 }
4709 #endif
4710 
4711 static struct cftype mem_cgroup_files[] = {
4712 	{
4713 		.name = "usage_in_bytes",
4714 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4715 		.read_u64 = mem_cgroup_read,
4716 		.register_event = mem_cgroup_usage_register_event,
4717 		.unregister_event = mem_cgroup_usage_unregister_event,
4718 	},
4719 	{
4720 		.name = "max_usage_in_bytes",
4721 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4722 		.trigger = mem_cgroup_reset,
4723 		.read_u64 = mem_cgroup_read,
4724 	},
4725 	{
4726 		.name = "limit_in_bytes",
4727 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4728 		.write_string = mem_cgroup_write,
4729 		.read_u64 = mem_cgroup_read,
4730 	},
4731 	{
4732 		.name = "soft_limit_in_bytes",
4733 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4734 		.write_string = mem_cgroup_write,
4735 		.read_u64 = mem_cgroup_read,
4736 	},
4737 	{
4738 		.name = "failcnt",
4739 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4740 		.trigger = mem_cgroup_reset,
4741 		.read_u64 = mem_cgroup_read,
4742 	},
4743 	{
4744 		.name = "stat",
4745 		.read_map = mem_control_stat_show,
4746 	},
4747 	{
4748 		.name = "force_empty",
4749 		.trigger = mem_cgroup_force_empty_write,
4750 	},
4751 	{
4752 		.name = "use_hierarchy",
4753 		.write_u64 = mem_cgroup_hierarchy_write,
4754 		.read_u64 = mem_cgroup_hierarchy_read,
4755 	},
4756 	{
4757 		.name = "swappiness",
4758 		.read_u64 = mem_cgroup_swappiness_read,
4759 		.write_u64 = mem_cgroup_swappiness_write,
4760 	},
4761 	{
4762 		.name = "move_charge_at_immigrate",
4763 		.read_u64 = mem_cgroup_move_charge_read,
4764 		.write_u64 = mem_cgroup_move_charge_write,
4765 	},
4766 	{
4767 		.name = "oom_control",
4768 		.read_map = mem_cgroup_oom_control_read,
4769 		.write_u64 = mem_cgroup_oom_control_write,
4770 		.register_event = mem_cgroup_oom_register_event,
4771 		.unregister_event = mem_cgroup_oom_unregister_event,
4772 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4773 	},
4774 #ifdef CONFIG_NUMA
4775 	{
4776 		.name = "numa_stat",
4777 		.open = mem_control_numa_stat_open,
4778 		.mode = S_IRUGO,
4779 	},
4780 #endif
4781 };
4782 
4783 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4784 static struct cftype memsw_cgroup_files[] = {
4785 	{
4786 		.name = "memsw.usage_in_bytes",
4787 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4788 		.read_u64 = mem_cgroup_read,
4789 		.register_event = mem_cgroup_usage_register_event,
4790 		.unregister_event = mem_cgroup_usage_unregister_event,
4791 	},
4792 	{
4793 		.name = "memsw.max_usage_in_bytes",
4794 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4795 		.trigger = mem_cgroup_reset,
4796 		.read_u64 = mem_cgroup_read,
4797 	},
4798 	{
4799 		.name = "memsw.limit_in_bytes",
4800 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4801 		.write_string = mem_cgroup_write,
4802 		.read_u64 = mem_cgroup_read,
4803 	},
4804 	{
4805 		.name = "memsw.failcnt",
4806 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4807 		.trigger = mem_cgroup_reset,
4808 		.read_u64 = mem_cgroup_read,
4809 	},
4810 };
4811 
4812 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4813 {
4814 	if (!do_swap_account)
4815 		return 0;
4816 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4817 				ARRAY_SIZE(memsw_cgroup_files));
4818 };
4819 #else
4820 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4821 {
4822 	return 0;
4823 }
4824 #endif
4825 
4826 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4827 {
4828 	struct mem_cgroup_per_node *pn;
4829 	struct mem_cgroup_per_zone *mz;
4830 	enum lru_list l;
4831 	int zone, tmp = node;
4832 	/*
4833 	 * This routine is called against possible nodes.
4834 	 * But it's BUG to call kmalloc() against offline node.
4835 	 *
4836 	 * TODO: this routine can waste much memory for nodes which will
4837 	 *       never be onlined. It's better to use memory hotplug callback
4838 	 *       function.
4839 	 */
4840 	if (!node_state(node, N_NORMAL_MEMORY))
4841 		tmp = -1;
4842 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4843 	if (!pn)
4844 		return 1;
4845 
4846 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4847 		mz = &pn->zoneinfo[zone];
4848 		for_each_lru(l)
4849 			INIT_LIST_HEAD(&mz->lists[l]);
4850 		mz->usage_in_excess = 0;
4851 		mz->on_tree = false;
4852 		mz->mem = memcg;
4853 	}
4854 	memcg->info.nodeinfo[node] = pn;
4855 	return 0;
4856 }
4857 
4858 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4859 {
4860 	kfree(memcg->info.nodeinfo[node]);
4861 }
4862 
4863 static struct mem_cgroup *mem_cgroup_alloc(void)
4864 {
4865 	struct mem_cgroup *mem;
4866 	int size = sizeof(struct mem_cgroup);
4867 
4868 	/* Can be very big if MAX_NUMNODES is very big */
4869 	if (size < PAGE_SIZE)
4870 		mem = kzalloc(size, GFP_KERNEL);
4871 	else
4872 		mem = vzalloc(size);
4873 
4874 	if (!mem)
4875 		return NULL;
4876 
4877 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4878 	if (!mem->stat)
4879 		goto out_free;
4880 	spin_lock_init(&mem->pcp_counter_lock);
4881 	return mem;
4882 
4883 out_free:
4884 	if (size < PAGE_SIZE)
4885 		kfree(mem);
4886 	else
4887 		vfree(mem);
4888 	return NULL;
4889 }
4890 
4891 /*
4892  * At destroying mem_cgroup, references from swap_cgroup can remain.
4893  * (scanning all at force_empty is too costly...)
4894  *
4895  * Instead of clearing all references at force_empty, we remember
4896  * the number of reference from swap_cgroup and free mem_cgroup when
4897  * it goes down to 0.
4898  *
4899  * Removal of cgroup itself succeeds regardless of refs from swap.
4900  */
4901 
4902 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4903 {
4904 	int node;
4905 
4906 	mem_cgroup_remove_from_trees(memcg);
4907 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4908 
4909 	for_each_node_state(node, N_POSSIBLE)
4910 		free_mem_cgroup_per_zone_info(memcg, node);
4911 
4912 	free_percpu(memcg->stat);
4913 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4914 		kfree(memcg);
4915 	else
4916 		vfree(memcg);
4917 }
4918 
4919 static void mem_cgroup_get(struct mem_cgroup *memcg)
4920 {
4921 	atomic_inc(&memcg->refcnt);
4922 }
4923 
4924 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4925 {
4926 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4927 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4928 		__mem_cgroup_free(memcg);
4929 		if (parent)
4930 			mem_cgroup_put(parent);
4931 	}
4932 }
4933 
4934 static void mem_cgroup_put(struct mem_cgroup *memcg)
4935 {
4936 	__mem_cgroup_put(memcg, 1);
4937 }
4938 
4939 /*
4940  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4941  */
4942 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4943 {
4944 	if (!memcg->res.parent)
4945 		return NULL;
4946 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4947 }
4948 EXPORT_SYMBOL(parent_mem_cgroup);
4949 
4950 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4951 static void __init enable_swap_cgroup(void)
4952 {
4953 	if (!mem_cgroup_disabled() && really_do_swap_account)
4954 		do_swap_account = 1;
4955 }
4956 #else
4957 static void __init enable_swap_cgroup(void)
4958 {
4959 }
4960 #endif
4961 
4962 static int mem_cgroup_soft_limit_tree_init(void)
4963 {
4964 	struct mem_cgroup_tree_per_node *rtpn;
4965 	struct mem_cgroup_tree_per_zone *rtpz;
4966 	int tmp, node, zone;
4967 
4968 	for_each_node_state(node, N_POSSIBLE) {
4969 		tmp = node;
4970 		if (!node_state(node, N_NORMAL_MEMORY))
4971 			tmp = -1;
4972 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4973 		if (!rtpn)
4974 			return 1;
4975 
4976 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4977 
4978 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4979 			rtpz = &rtpn->rb_tree_per_zone[zone];
4980 			rtpz->rb_root = RB_ROOT;
4981 			spin_lock_init(&rtpz->lock);
4982 		}
4983 	}
4984 	return 0;
4985 }
4986 
4987 static struct cgroup_subsys_state * __ref
4988 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4989 {
4990 	struct mem_cgroup *memcg, *parent;
4991 	long error = -ENOMEM;
4992 	int node;
4993 
4994 	memcg = mem_cgroup_alloc();
4995 	if (!memcg)
4996 		return ERR_PTR(error);
4997 
4998 	for_each_node_state(node, N_POSSIBLE)
4999 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5000 			goto free_out;
5001 
5002 	/* root ? */
5003 	if (cont->parent == NULL) {
5004 		int cpu;
5005 		enable_swap_cgroup();
5006 		parent = NULL;
5007 		if (mem_cgroup_soft_limit_tree_init())
5008 			goto free_out;
5009 		root_mem_cgroup = memcg;
5010 		for_each_possible_cpu(cpu) {
5011 			struct memcg_stock_pcp *stock =
5012 						&per_cpu(memcg_stock, cpu);
5013 			INIT_WORK(&stock->work, drain_local_stock);
5014 		}
5015 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5016 	} else {
5017 		parent = mem_cgroup_from_cont(cont->parent);
5018 		memcg->use_hierarchy = parent->use_hierarchy;
5019 		memcg->oom_kill_disable = parent->oom_kill_disable;
5020 	}
5021 
5022 	if (parent && parent->use_hierarchy) {
5023 		res_counter_init(&memcg->res, &parent->res);
5024 		res_counter_init(&memcg->memsw, &parent->memsw);
5025 		/*
5026 		 * We increment refcnt of the parent to ensure that we can
5027 		 * safely access it on res_counter_charge/uncharge.
5028 		 * This refcnt will be decremented when freeing this
5029 		 * mem_cgroup(see mem_cgroup_put).
5030 		 */
5031 		mem_cgroup_get(parent);
5032 	} else {
5033 		res_counter_init(&memcg->res, NULL);
5034 		res_counter_init(&memcg->memsw, NULL);
5035 	}
5036 	memcg->last_scanned_child = 0;
5037 	memcg->last_scanned_node = MAX_NUMNODES;
5038 	INIT_LIST_HEAD(&memcg->oom_notify);
5039 
5040 	if (parent)
5041 		memcg->swappiness = mem_cgroup_swappiness(parent);
5042 	atomic_set(&memcg->refcnt, 1);
5043 	memcg->move_charge_at_immigrate = 0;
5044 	mutex_init(&memcg->thresholds_lock);
5045 	return &memcg->css;
5046 free_out:
5047 	__mem_cgroup_free(memcg);
5048 	return ERR_PTR(error);
5049 }
5050 
5051 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5052 					struct cgroup *cont)
5053 {
5054 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5055 
5056 	return mem_cgroup_force_empty(memcg, false);
5057 }
5058 
5059 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5060 				struct cgroup *cont)
5061 {
5062 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5063 
5064 	kmem_cgroup_destroy(ss, cont);
5065 
5066 	mem_cgroup_put(memcg);
5067 }
5068 
5069 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5070 				struct cgroup *cont)
5071 {
5072 	int ret;
5073 
5074 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5075 				ARRAY_SIZE(mem_cgroup_files));
5076 
5077 	if (!ret)
5078 		ret = register_memsw_files(cont, ss);
5079 
5080 	if (!ret)
5081 		ret = register_kmem_files(cont, ss);
5082 
5083 	return ret;
5084 }
5085 
5086 #ifdef CONFIG_MMU
5087 /* Handlers for move charge at task migration. */
5088 #define PRECHARGE_COUNT_AT_ONCE	256
5089 static int mem_cgroup_do_precharge(unsigned long count)
5090 {
5091 	int ret = 0;
5092 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5093 	struct mem_cgroup *memcg = mc.to;
5094 
5095 	if (mem_cgroup_is_root(memcg)) {
5096 		mc.precharge += count;
5097 		/* we don't need css_get for root */
5098 		return ret;
5099 	}
5100 	/* try to charge at once */
5101 	if (count > 1) {
5102 		struct res_counter *dummy;
5103 		/*
5104 		 * "memcg" cannot be under rmdir() because we've already checked
5105 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5106 		 * are still under the same cgroup_mutex. So we can postpone
5107 		 * css_get().
5108 		 */
5109 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5110 			goto one_by_one;
5111 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5112 						PAGE_SIZE * count, &dummy)) {
5113 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5114 			goto one_by_one;
5115 		}
5116 		mc.precharge += count;
5117 		return ret;
5118 	}
5119 one_by_one:
5120 	/* fall back to one by one charge */
5121 	while (count--) {
5122 		if (signal_pending(current)) {
5123 			ret = -EINTR;
5124 			break;
5125 		}
5126 		if (!batch_count--) {
5127 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5128 			cond_resched();
5129 		}
5130 		ret = __mem_cgroup_try_charge(NULL,
5131 					GFP_KERNEL, 1, &memcg, false);
5132 		if (ret || !memcg)
5133 			/* mem_cgroup_clear_mc() will do uncharge later */
5134 			return -ENOMEM;
5135 		mc.precharge++;
5136 	}
5137 	return ret;
5138 }
5139 
5140 /**
5141  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5142  * @vma: the vma the pte to be checked belongs
5143  * @addr: the address corresponding to the pte to be checked
5144  * @ptent: the pte to be checked
5145  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5146  *
5147  * Returns
5148  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5149  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5150  *     move charge. if @target is not NULL, the page is stored in target->page
5151  *     with extra refcnt got(Callers should handle it).
5152  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5153  *     target for charge migration. if @target is not NULL, the entry is stored
5154  *     in target->ent.
5155  *
5156  * Called with pte lock held.
5157  */
5158 union mc_target {
5159 	struct page	*page;
5160 	swp_entry_t	ent;
5161 };
5162 
5163 enum mc_target_type {
5164 	MC_TARGET_NONE,	/* not used */
5165 	MC_TARGET_PAGE,
5166 	MC_TARGET_SWAP,
5167 };
5168 
5169 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5170 						unsigned long addr, pte_t ptent)
5171 {
5172 	struct page *page = vm_normal_page(vma, addr, ptent);
5173 
5174 	if (!page || !page_mapped(page))
5175 		return NULL;
5176 	if (PageAnon(page)) {
5177 		/* we don't move shared anon */
5178 		if (!move_anon() || page_mapcount(page) > 2)
5179 			return NULL;
5180 	} else if (!move_file())
5181 		/* we ignore mapcount for file pages */
5182 		return NULL;
5183 	if (!get_page_unless_zero(page))
5184 		return NULL;
5185 
5186 	return page;
5187 }
5188 
5189 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5190 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5191 {
5192 	int usage_count;
5193 	struct page *page = NULL;
5194 	swp_entry_t ent = pte_to_swp_entry(ptent);
5195 
5196 	if (!move_anon() || non_swap_entry(ent))
5197 		return NULL;
5198 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5199 	if (usage_count > 1) { /* we don't move shared anon */
5200 		if (page)
5201 			put_page(page);
5202 		return NULL;
5203 	}
5204 	if (do_swap_account)
5205 		entry->val = ent.val;
5206 
5207 	return page;
5208 }
5209 
5210 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5211 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5212 {
5213 	struct page *page = NULL;
5214 	struct inode *inode;
5215 	struct address_space *mapping;
5216 	pgoff_t pgoff;
5217 
5218 	if (!vma->vm_file) /* anonymous vma */
5219 		return NULL;
5220 	if (!move_file())
5221 		return NULL;
5222 
5223 	inode = vma->vm_file->f_path.dentry->d_inode;
5224 	mapping = vma->vm_file->f_mapping;
5225 	if (pte_none(ptent))
5226 		pgoff = linear_page_index(vma, addr);
5227 	else /* pte_file(ptent) is true */
5228 		pgoff = pte_to_pgoff(ptent);
5229 
5230 	/* page is moved even if it's not RSS of this task(page-faulted). */
5231 	page = find_get_page(mapping, pgoff);
5232 
5233 #ifdef CONFIG_SWAP
5234 	/* shmem/tmpfs may report page out on swap: account for that too. */
5235 	if (radix_tree_exceptional_entry(page)) {
5236 		swp_entry_t swap = radix_to_swp_entry(page);
5237 		if (do_swap_account)
5238 			*entry = swap;
5239 		page = find_get_page(&swapper_space, swap.val);
5240 	}
5241 #endif
5242 	return page;
5243 }
5244 
5245 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5246 		unsigned long addr, pte_t ptent, union mc_target *target)
5247 {
5248 	struct page *page = NULL;
5249 	struct page_cgroup *pc;
5250 	int ret = 0;
5251 	swp_entry_t ent = { .val = 0 };
5252 
5253 	if (pte_present(ptent))
5254 		page = mc_handle_present_pte(vma, addr, ptent);
5255 	else if (is_swap_pte(ptent))
5256 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5257 	else if (pte_none(ptent) || pte_file(ptent))
5258 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5259 
5260 	if (!page && !ent.val)
5261 		return 0;
5262 	if (page) {
5263 		pc = lookup_page_cgroup(page);
5264 		/*
5265 		 * Do only loose check w/o page_cgroup lock.
5266 		 * mem_cgroup_move_account() checks the pc is valid or not under
5267 		 * the lock.
5268 		 */
5269 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5270 			ret = MC_TARGET_PAGE;
5271 			if (target)
5272 				target->page = page;
5273 		}
5274 		if (!ret || !target)
5275 			put_page(page);
5276 	}
5277 	/* There is a swap entry and a page doesn't exist or isn't charged */
5278 	if (ent.val && !ret &&
5279 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5280 		ret = MC_TARGET_SWAP;
5281 		if (target)
5282 			target->ent = ent;
5283 	}
5284 	return ret;
5285 }
5286 
5287 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5288 					unsigned long addr, unsigned long end,
5289 					struct mm_walk *walk)
5290 {
5291 	struct vm_area_struct *vma = walk->private;
5292 	pte_t *pte;
5293 	spinlock_t *ptl;
5294 
5295 	split_huge_page_pmd(walk->mm, pmd);
5296 
5297 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5298 	for (; addr != end; pte++, addr += PAGE_SIZE)
5299 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5300 			mc.precharge++;	/* increment precharge temporarily */
5301 	pte_unmap_unlock(pte - 1, ptl);
5302 	cond_resched();
5303 
5304 	return 0;
5305 }
5306 
5307 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5308 {
5309 	unsigned long precharge;
5310 	struct vm_area_struct *vma;
5311 
5312 	down_read(&mm->mmap_sem);
5313 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5314 		struct mm_walk mem_cgroup_count_precharge_walk = {
5315 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5316 			.mm = mm,
5317 			.private = vma,
5318 		};
5319 		if (is_vm_hugetlb_page(vma))
5320 			continue;
5321 		walk_page_range(vma->vm_start, vma->vm_end,
5322 					&mem_cgroup_count_precharge_walk);
5323 	}
5324 	up_read(&mm->mmap_sem);
5325 
5326 	precharge = mc.precharge;
5327 	mc.precharge = 0;
5328 
5329 	return precharge;
5330 }
5331 
5332 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5333 {
5334 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5335 
5336 	VM_BUG_ON(mc.moving_task);
5337 	mc.moving_task = current;
5338 	return mem_cgroup_do_precharge(precharge);
5339 }
5340 
5341 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5342 static void __mem_cgroup_clear_mc(void)
5343 {
5344 	struct mem_cgroup *from = mc.from;
5345 	struct mem_cgroup *to = mc.to;
5346 
5347 	/* we must uncharge all the leftover precharges from mc.to */
5348 	if (mc.precharge) {
5349 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5350 		mc.precharge = 0;
5351 	}
5352 	/*
5353 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5354 	 * we must uncharge here.
5355 	 */
5356 	if (mc.moved_charge) {
5357 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5358 		mc.moved_charge = 0;
5359 	}
5360 	/* we must fixup refcnts and charges */
5361 	if (mc.moved_swap) {
5362 		/* uncharge swap account from the old cgroup */
5363 		if (!mem_cgroup_is_root(mc.from))
5364 			res_counter_uncharge(&mc.from->memsw,
5365 						PAGE_SIZE * mc.moved_swap);
5366 		__mem_cgroup_put(mc.from, mc.moved_swap);
5367 
5368 		if (!mem_cgroup_is_root(mc.to)) {
5369 			/*
5370 			 * we charged both to->res and to->memsw, so we should
5371 			 * uncharge to->res.
5372 			 */
5373 			res_counter_uncharge(&mc.to->res,
5374 						PAGE_SIZE * mc.moved_swap);
5375 		}
5376 		/* we've already done mem_cgroup_get(mc.to) */
5377 		mc.moved_swap = 0;
5378 	}
5379 	memcg_oom_recover(from);
5380 	memcg_oom_recover(to);
5381 	wake_up_all(&mc.waitq);
5382 }
5383 
5384 static void mem_cgroup_clear_mc(void)
5385 {
5386 	struct mem_cgroup *from = mc.from;
5387 
5388 	/*
5389 	 * we must clear moving_task before waking up waiters at the end of
5390 	 * task migration.
5391 	 */
5392 	mc.moving_task = NULL;
5393 	__mem_cgroup_clear_mc();
5394 	spin_lock(&mc.lock);
5395 	mc.from = NULL;
5396 	mc.to = NULL;
5397 	spin_unlock(&mc.lock);
5398 	mem_cgroup_end_move(from);
5399 }
5400 
5401 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5402 				struct cgroup *cgroup,
5403 				struct cgroup_taskset *tset)
5404 {
5405 	struct task_struct *p = cgroup_taskset_first(tset);
5406 	int ret = 0;
5407 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5408 
5409 	if (memcg->move_charge_at_immigrate) {
5410 		struct mm_struct *mm;
5411 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5412 
5413 		VM_BUG_ON(from == memcg);
5414 
5415 		mm = get_task_mm(p);
5416 		if (!mm)
5417 			return 0;
5418 		/* We move charges only when we move a owner of the mm */
5419 		if (mm->owner == p) {
5420 			VM_BUG_ON(mc.from);
5421 			VM_BUG_ON(mc.to);
5422 			VM_BUG_ON(mc.precharge);
5423 			VM_BUG_ON(mc.moved_charge);
5424 			VM_BUG_ON(mc.moved_swap);
5425 			mem_cgroup_start_move(from);
5426 			spin_lock(&mc.lock);
5427 			mc.from = from;
5428 			mc.to = memcg;
5429 			spin_unlock(&mc.lock);
5430 			/* We set mc.moving_task later */
5431 
5432 			ret = mem_cgroup_precharge_mc(mm);
5433 			if (ret)
5434 				mem_cgroup_clear_mc();
5435 		}
5436 		mmput(mm);
5437 	}
5438 	return ret;
5439 }
5440 
5441 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5442 				struct cgroup *cgroup,
5443 				struct cgroup_taskset *tset)
5444 {
5445 	mem_cgroup_clear_mc();
5446 }
5447 
5448 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5449 				unsigned long addr, unsigned long end,
5450 				struct mm_walk *walk)
5451 {
5452 	int ret = 0;
5453 	struct vm_area_struct *vma = walk->private;
5454 	pte_t *pte;
5455 	spinlock_t *ptl;
5456 
5457 	split_huge_page_pmd(walk->mm, pmd);
5458 retry:
5459 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5460 	for (; addr != end; addr += PAGE_SIZE) {
5461 		pte_t ptent = *(pte++);
5462 		union mc_target target;
5463 		int type;
5464 		struct page *page;
5465 		struct page_cgroup *pc;
5466 		swp_entry_t ent;
5467 
5468 		if (!mc.precharge)
5469 			break;
5470 
5471 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5472 		switch (type) {
5473 		case MC_TARGET_PAGE:
5474 			page = target.page;
5475 			if (isolate_lru_page(page))
5476 				goto put;
5477 			pc = lookup_page_cgroup(page);
5478 			if (!mem_cgroup_move_account(page, 1, pc,
5479 						     mc.from, mc.to, false)) {
5480 				mc.precharge--;
5481 				/* we uncharge from mc.from later. */
5482 				mc.moved_charge++;
5483 			}
5484 			putback_lru_page(page);
5485 put:			/* is_target_pte_for_mc() gets the page */
5486 			put_page(page);
5487 			break;
5488 		case MC_TARGET_SWAP:
5489 			ent = target.ent;
5490 			if (!mem_cgroup_move_swap_account(ent,
5491 						mc.from, mc.to, false)) {
5492 				mc.precharge--;
5493 				/* we fixup refcnts and charges later. */
5494 				mc.moved_swap++;
5495 			}
5496 			break;
5497 		default:
5498 			break;
5499 		}
5500 	}
5501 	pte_unmap_unlock(pte - 1, ptl);
5502 	cond_resched();
5503 
5504 	if (addr != end) {
5505 		/*
5506 		 * We have consumed all precharges we got in can_attach().
5507 		 * We try charge one by one, but don't do any additional
5508 		 * charges to mc.to if we have failed in charge once in attach()
5509 		 * phase.
5510 		 */
5511 		ret = mem_cgroup_do_precharge(1);
5512 		if (!ret)
5513 			goto retry;
5514 	}
5515 
5516 	return ret;
5517 }
5518 
5519 static void mem_cgroup_move_charge(struct mm_struct *mm)
5520 {
5521 	struct vm_area_struct *vma;
5522 
5523 	lru_add_drain_all();
5524 retry:
5525 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5526 		/*
5527 		 * Someone who are holding the mmap_sem might be waiting in
5528 		 * waitq. So we cancel all extra charges, wake up all waiters,
5529 		 * and retry. Because we cancel precharges, we might not be able
5530 		 * to move enough charges, but moving charge is a best-effort
5531 		 * feature anyway, so it wouldn't be a big problem.
5532 		 */
5533 		__mem_cgroup_clear_mc();
5534 		cond_resched();
5535 		goto retry;
5536 	}
5537 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5538 		int ret;
5539 		struct mm_walk mem_cgroup_move_charge_walk = {
5540 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5541 			.mm = mm,
5542 			.private = vma,
5543 		};
5544 		if (is_vm_hugetlb_page(vma))
5545 			continue;
5546 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5547 						&mem_cgroup_move_charge_walk);
5548 		if (ret)
5549 			/*
5550 			 * means we have consumed all precharges and failed in
5551 			 * doing additional charge. Just abandon here.
5552 			 */
5553 			break;
5554 	}
5555 	up_read(&mm->mmap_sem);
5556 }
5557 
5558 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5559 				struct cgroup *cont,
5560 				struct cgroup_taskset *tset)
5561 {
5562 	struct task_struct *p = cgroup_taskset_first(tset);
5563 	struct mm_struct *mm = get_task_mm(p);
5564 
5565 	if (mm) {
5566 		if (mc.to)
5567 			mem_cgroup_move_charge(mm);
5568 		put_swap_token(mm);
5569 		mmput(mm);
5570 	}
5571 	if (mc.to)
5572 		mem_cgroup_clear_mc();
5573 }
5574 #else	/* !CONFIG_MMU */
5575 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5576 				struct cgroup *cgroup,
5577 				struct cgroup_taskset *tset)
5578 {
5579 	return 0;
5580 }
5581 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5582 				struct cgroup *cgroup,
5583 				struct cgroup_taskset *tset)
5584 {
5585 }
5586 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5587 				struct cgroup *cont,
5588 				struct cgroup_taskset *tset)
5589 {
5590 }
5591 #endif
5592 
5593 struct cgroup_subsys mem_cgroup_subsys = {
5594 	.name = "memory",
5595 	.subsys_id = mem_cgroup_subsys_id,
5596 	.create = mem_cgroup_create,
5597 	.pre_destroy = mem_cgroup_pre_destroy,
5598 	.destroy = mem_cgroup_destroy,
5599 	.populate = mem_cgroup_populate,
5600 	.can_attach = mem_cgroup_can_attach,
5601 	.cancel_attach = mem_cgroup_cancel_attach,
5602 	.attach = mem_cgroup_move_task,
5603 	.early_init = 0,
5604 	.use_id = 1,
5605 };
5606 
5607 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5608 static int __init enable_swap_account(char *s)
5609 {
5610 	/* consider enabled if no parameter or 1 is given */
5611 	if (!strcmp(s, "1"))
5612 		really_do_swap_account = 1;
5613 	else if (!strcmp(s, "0"))
5614 		really_do_swap_account = 0;
5615 	return 1;
5616 }
5617 __setup("swapaccount=", enable_swap_account);
5618 
5619 #endif
5620