1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mem_cgroup *from; 211 struct mem_cgroup *to; 212 unsigned long flags; 213 unsigned long precharge; 214 unsigned long moved_charge; 215 unsigned long moved_swap; 216 struct task_struct *moving_task; /* a task moving charges */ 217 wait_queue_head_t waitq; /* a waitq for other context */ 218 } mc = { 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 221 }; 222 223 /* 224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 225 * limit reclaim to prevent infinite loops, if they ever occur. 226 */ 227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 229 230 enum charge_type { 231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 232 MEM_CGROUP_CHARGE_TYPE_ANON, 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 235 NR_CHARGE_TYPE, 236 }; 237 238 /* for encoding cft->private value on file */ 239 enum res_type { 240 _MEM, 241 _MEMSWAP, 242 _OOM_TYPE, 243 _KMEM, 244 _TCP, 245 }; 246 247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 249 #define MEMFILE_ATTR(val) ((val) & 0xffff) 250 /* Used for OOM nofiier */ 251 #define OOM_CONTROL (0) 252 253 /* Some nice accessors for the vmpressure. */ 254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 255 { 256 if (!memcg) 257 memcg = root_mem_cgroup; 258 return &memcg->vmpressure; 259 } 260 261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 262 { 263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 264 } 265 266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 267 { 268 return (memcg == root_mem_cgroup); 269 } 270 271 /* 272 * We restrict the id in the range of [1, 65535], so it can fit into 273 * an unsigned short. 274 */ 275 #define MEM_CGROUP_ID_MAX USHRT_MAX 276 277 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 278 { 279 return memcg->css.id; 280 } 281 282 /* 283 * A helper function to get mem_cgroup from ID. must be called under 284 * rcu_read_lock(). The caller is responsible for calling 285 * css_tryget_online() if the mem_cgroup is used for charging. (dropping 286 * refcnt from swap can be called against removed memcg.) 287 */ 288 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 289 { 290 struct cgroup_subsys_state *css; 291 292 css = css_from_id(id, &memory_cgrp_subsys); 293 return mem_cgroup_from_css(css); 294 } 295 296 #ifndef CONFIG_SLOB 297 /* 298 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 299 * The main reason for not using cgroup id for this: 300 * this works better in sparse environments, where we have a lot of memcgs, 301 * but only a few kmem-limited. Or also, if we have, for instance, 200 302 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 303 * 200 entry array for that. 304 * 305 * The current size of the caches array is stored in memcg_nr_cache_ids. It 306 * will double each time we have to increase it. 307 */ 308 static DEFINE_IDA(memcg_cache_ida); 309 int memcg_nr_cache_ids; 310 311 /* Protects memcg_nr_cache_ids */ 312 static DECLARE_RWSEM(memcg_cache_ids_sem); 313 314 void memcg_get_cache_ids(void) 315 { 316 down_read(&memcg_cache_ids_sem); 317 } 318 319 void memcg_put_cache_ids(void) 320 { 321 up_read(&memcg_cache_ids_sem); 322 } 323 324 /* 325 * MIN_SIZE is different than 1, because we would like to avoid going through 326 * the alloc/free process all the time. In a small machine, 4 kmem-limited 327 * cgroups is a reasonable guess. In the future, it could be a parameter or 328 * tunable, but that is strictly not necessary. 329 * 330 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 331 * this constant directly from cgroup, but it is understandable that this is 332 * better kept as an internal representation in cgroup.c. In any case, the 333 * cgrp_id space is not getting any smaller, and we don't have to necessarily 334 * increase ours as well if it increases. 335 */ 336 #define MEMCG_CACHES_MIN_SIZE 4 337 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 338 339 /* 340 * A lot of the calls to the cache allocation functions are expected to be 341 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 342 * conditional to this static branch, we'll have to allow modules that does 343 * kmem_cache_alloc and the such to see this symbol as well 344 */ 345 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 346 EXPORT_SYMBOL(memcg_kmem_enabled_key); 347 348 #endif /* !CONFIG_SLOB */ 349 350 static struct mem_cgroup_per_zone * 351 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 352 { 353 int nid = zone_to_nid(zone); 354 int zid = zone_idx(zone); 355 356 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 357 } 358 359 /** 360 * mem_cgroup_css_from_page - css of the memcg associated with a page 361 * @page: page of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @page is returned. The returned css remains associated with @page 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 374 memcg = page->mem_cgroup; 375 376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 377 memcg = root_mem_cgroup; 378 379 return &memcg->css; 380 } 381 382 /** 383 * page_cgroup_ino - return inode number of the memcg a page is charged to 384 * @page: the page 385 * 386 * Look up the closest online ancestor of the memory cgroup @page is charged to 387 * and return its inode number or 0 if @page is not charged to any cgroup. It 388 * is safe to call this function without holding a reference to @page. 389 * 390 * Note, this function is inherently racy, because there is nothing to prevent 391 * the cgroup inode from getting torn down and potentially reallocated a moment 392 * after page_cgroup_ino() returns, so it only should be used by callers that 393 * do not care (such as procfs interfaces). 394 */ 395 ino_t page_cgroup_ino(struct page *page) 396 { 397 struct mem_cgroup *memcg; 398 unsigned long ino = 0; 399 400 rcu_read_lock(); 401 memcg = READ_ONCE(page->mem_cgroup); 402 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 403 memcg = parent_mem_cgroup(memcg); 404 if (memcg) 405 ino = cgroup_ino(memcg->css.cgroup); 406 rcu_read_unlock(); 407 return ino; 408 } 409 410 static struct mem_cgroup_per_zone * 411 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 412 { 413 int nid = page_to_nid(page); 414 int zid = page_zonenum(page); 415 416 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 417 } 418 419 static struct mem_cgroup_tree_per_zone * 420 soft_limit_tree_node_zone(int nid, int zid) 421 { 422 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 423 } 424 425 static struct mem_cgroup_tree_per_zone * 426 soft_limit_tree_from_page(struct page *page) 427 { 428 int nid = page_to_nid(page); 429 int zid = page_zonenum(page); 430 431 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 432 } 433 434 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 435 struct mem_cgroup_tree_per_zone *mctz, 436 unsigned long new_usage_in_excess) 437 { 438 struct rb_node **p = &mctz->rb_root.rb_node; 439 struct rb_node *parent = NULL; 440 struct mem_cgroup_per_zone *mz_node; 441 442 if (mz->on_tree) 443 return; 444 445 mz->usage_in_excess = new_usage_in_excess; 446 if (!mz->usage_in_excess) 447 return; 448 while (*p) { 449 parent = *p; 450 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 451 tree_node); 452 if (mz->usage_in_excess < mz_node->usage_in_excess) 453 p = &(*p)->rb_left; 454 /* 455 * We can't avoid mem cgroups that are over their soft 456 * limit by the same amount 457 */ 458 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 459 p = &(*p)->rb_right; 460 } 461 rb_link_node(&mz->tree_node, parent, p); 462 rb_insert_color(&mz->tree_node, &mctz->rb_root); 463 mz->on_tree = true; 464 } 465 466 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 467 struct mem_cgroup_tree_per_zone *mctz) 468 { 469 if (!mz->on_tree) 470 return; 471 rb_erase(&mz->tree_node, &mctz->rb_root); 472 mz->on_tree = false; 473 } 474 475 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 476 struct mem_cgroup_tree_per_zone *mctz) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&mctz->lock, flags); 481 __mem_cgroup_remove_exceeded(mz, mctz); 482 spin_unlock_irqrestore(&mctz->lock, flags); 483 } 484 485 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 486 { 487 unsigned long nr_pages = page_counter_read(&memcg->memory); 488 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 489 unsigned long excess = 0; 490 491 if (nr_pages > soft_limit) 492 excess = nr_pages - soft_limit; 493 494 return excess; 495 } 496 497 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 498 { 499 unsigned long excess; 500 struct mem_cgroup_per_zone *mz; 501 struct mem_cgroup_tree_per_zone *mctz; 502 503 mctz = soft_limit_tree_from_page(page); 504 /* 505 * Necessary to update all ancestors when hierarchy is used. 506 * because their event counter is not touched. 507 */ 508 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 509 mz = mem_cgroup_page_zoneinfo(memcg, page); 510 excess = soft_limit_excess(memcg); 511 /* 512 * We have to update the tree if mz is on RB-tree or 513 * mem is over its softlimit. 514 */ 515 if (excess || mz->on_tree) { 516 unsigned long flags; 517 518 spin_lock_irqsave(&mctz->lock, flags); 519 /* if on-tree, remove it */ 520 if (mz->on_tree) 521 __mem_cgroup_remove_exceeded(mz, mctz); 522 /* 523 * Insert again. mz->usage_in_excess will be updated. 524 * If excess is 0, no tree ops. 525 */ 526 __mem_cgroup_insert_exceeded(mz, mctz, excess); 527 spin_unlock_irqrestore(&mctz->lock, flags); 528 } 529 } 530 } 531 532 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 533 { 534 struct mem_cgroup_tree_per_zone *mctz; 535 struct mem_cgroup_per_zone *mz; 536 int nid, zid; 537 538 for_each_node(nid) { 539 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 540 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 541 mctz = soft_limit_tree_node_zone(nid, zid); 542 mem_cgroup_remove_exceeded(mz, mctz); 543 } 544 } 545 } 546 547 static struct mem_cgroup_per_zone * 548 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 549 { 550 struct rb_node *rightmost = NULL; 551 struct mem_cgroup_per_zone *mz; 552 553 retry: 554 mz = NULL; 555 rightmost = rb_last(&mctz->rb_root); 556 if (!rightmost) 557 goto done; /* Nothing to reclaim from */ 558 559 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 560 /* 561 * Remove the node now but someone else can add it back, 562 * we will to add it back at the end of reclaim to its correct 563 * position in the tree. 564 */ 565 __mem_cgroup_remove_exceeded(mz, mctz); 566 if (!soft_limit_excess(mz->memcg) || 567 !css_tryget_online(&mz->memcg->css)) 568 goto retry; 569 done: 570 return mz; 571 } 572 573 static struct mem_cgroup_per_zone * 574 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 575 { 576 struct mem_cgroup_per_zone *mz; 577 578 spin_lock_irq(&mctz->lock); 579 mz = __mem_cgroup_largest_soft_limit_node(mctz); 580 spin_unlock_irq(&mctz->lock); 581 return mz; 582 } 583 584 /* 585 * Return page count for single (non recursive) @memcg. 586 * 587 * Implementation Note: reading percpu statistics for memcg. 588 * 589 * Both of vmstat[] and percpu_counter has threshold and do periodic 590 * synchronization to implement "quick" read. There are trade-off between 591 * reading cost and precision of value. Then, we may have a chance to implement 592 * a periodic synchronization of counter in memcg's counter. 593 * 594 * But this _read() function is used for user interface now. The user accounts 595 * memory usage by memory cgroup and he _always_ requires exact value because 596 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 597 * have to visit all online cpus and make sum. So, for now, unnecessary 598 * synchronization is not implemented. (just implemented for cpu hotplug) 599 * 600 * If there are kernel internal actions which can make use of some not-exact 601 * value, and reading all cpu value can be performance bottleneck in some 602 * common workload, threshold and synchronization as vmstat[] should be 603 * implemented. 604 */ 605 static unsigned long 606 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 607 { 608 long val = 0; 609 int cpu; 610 611 /* Per-cpu values can be negative, use a signed accumulator */ 612 for_each_possible_cpu(cpu) 613 val += per_cpu(memcg->stat->count[idx], cpu); 614 /* 615 * Summing races with updates, so val may be negative. Avoid exposing 616 * transient negative values. 617 */ 618 if (val < 0) 619 val = 0; 620 return val; 621 } 622 623 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 624 enum mem_cgroup_events_index idx) 625 { 626 unsigned long val = 0; 627 int cpu; 628 629 for_each_possible_cpu(cpu) 630 val += per_cpu(memcg->stat->events[idx], cpu); 631 return val; 632 } 633 634 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 635 struct page *page, 636 bool compound, int nr_pages) 637 { 638 /* 639 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 640 * counted as CACHE even if it's on ANON LRU. 641 */ 642 if (PageAnon(page)) 643 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 644 nr_pages); 645 else 646 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 647 nr_pages); 648 649 if (compound) { 650 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 651 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 652 nr_pages); 653 } 654 655 /* pagein of a big page is an event. So, ignore page size */ 656 if (nr_pages > 0) 657 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 658 else { 659 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 660 nr_pages = -nr_pages; /* for event */ 661 } 662 663 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 664 } 665 666 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 667 int nid, 668 unsigned int lru_mask) 669 { 670 unsigned long nr = 0; 671 int zid; 672 673 VM_BUG_ON((unsigned)nid >= nr_node_ids); 674 675 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 676 struct mem_cgroup_per_zone *mz; 677 enum lru_list lru; 678 679 for_each_lru(lru) { 680 if (!(BIT(lru) & lru_mask)) 681 continue; 682 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 683 nr += mz->lru_size[lru]; 684 } 685 } 686 return nr; 687 } 688 689 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 690 unsigned int lru_mask) 691 { 692 unsigned long nr = 0; 693 int nid; 694 695 for_each_node_state(nid, N_MEMORY) 696 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 697 return nr; 698 } 699 700 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 701 enum mem_cgroup_events_target target) 702 { 703 unsigned long val, next; 704 705 val = __this_cpu_read(memcg->stat->nr_page_events); 706 next = __this_cpu_read(memcg->stat->targets[target]); 707 /* from time_after() in jiffies.h */ 708 if ((long)next - (long)val < 0) { 709 switch (target) { 710 case MEM_CGROUP_TARGET_THRESH: 711 next = val + THRESHOLDS_EVENTS_TARGET; 712 break; 713 case MEM_CGROUP_TARGET_SOFTLIMIT: 714 next = val + SOFTLIMIT_EVENTS_TARGET; 715 break; 716 case MEM_CGROUP_TARGET_NUMAINFO: 717 next = val + NUMAINFO_EVENTS_TARGET; 718 break; 719 default: 720 break; 721 } 722 __this_cpu_write(memcg->stat->targets[target], next); 723 return true; 724 } 725 return false; 726 } 727 728 /* 729 * Check events in order. 730 * 731 */ 732 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 733 { 734 /* threshold event is triggered in finer grain than soft limit */ 735 if (unlikely(mem_cgroup_event_ratelimit(memcg, 736 MEM_CGROUP_TARGET_THRESH))) { 737 bool do_softlimit; 738 bool do_numainfo __maybe_unused; 739 740 do_softlimit = mem_cgroup_event_ratelimit(memcg, 741 MEM_CGROUP_TARGET_SOFTLIMIT); 742 #if MAX_NUMNODES > 1 743 do_numainfo = mem_cgroup_event_ratelimit(memcg, 744 MEM_CGROUP_TARGET_NUMAINFO); 745 #endif 746 mem_cgroup_threshold(memcg); 747 if (unlikely(do_softlimit)) 748 mem_cgroup_update_tree(memcg, page); 749 #if MAX_NUMNODES > 1 750 if (unlikely(do_numainfo)) 751 atomic_inc(&memcg->numainfo_events); 752 #endif 753 } 754 } 755 756 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 757 { 758 /* 759 * mm_update_next_owner() may clear mm->owner to NULL 760 * if it races with swapoff, page migration, etc. 761 * So this can be called with p == NULL. 762 */ 763 if (unlikely(!p)) 764 return NULL; 765 766 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 767 } 768 EXPORT_SYMBOL(mem_cgroup_from_task); 769 770 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 771 { 772 struct mem_cgroup *memcg = NULL; 773 774 rcu_read_lock(); 775 do { 776 /* 777 * Page cache insertions can happen withou an 778 * actual mm context, e.g. during disk probing 779 * on boot, loopback IO, acct() writes etc. 780 */ 781 if (unlikely(!mm)) 782 memcg = root_mem_cgroup; 783 else { 784 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 785 if (unlikely(!memcg)) 786 memcg = root_mem_cgroup; 787 } 788 } while (!css_tryget_online(&memcg->css)); 789 rcu_read_unlock(); 790 return memcg; 791 } 792 793 /** 794 * mem_cgroup_iter - iterate over memory cgroup hierarchy 795 * @root: hierarchy root 796 * @prev: previously returned memcg, NULL on first invocation 797 * @reclaim: cookie for shared reclaim walks, NULL for full walks 798 * 799 * Returns references to children of the hierarchy below @root, or 800 * @root itself, or %NULL after a full round-trip. 801 * 802 * Caller must pass the return value in @prev on subsequent 803 * invocations for reference counting, or use mem_cgroup_iter_break() 804 * to cancel a hierarchy walk before the round-trip is complete. 805 * 806 * Reclaimers can specify a zone and a priority level in @reclaim to 807 * divide up the memcgs in the hierarchy among all concurrent 808 * reclaimers operating on the same zone and priority. 809 */ 810 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 811 struct mem_cgroup *prev, 812 struct mem_cgroup_reclaim_cookie *reclaim) 813 { 814 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 815 struct cgroup_subsys_state *css = NULL; 816 struct mem_cgroup *memcg = NULL; 817 struct mem_cgroup *pos = NULL; 818 819 if (mem_cgroup_disabled()) 820 return NULL; 821 822 if (!root) 823 root = root_mem_cgroup; 824 825 if (prev && !reclaim) 826 pos = prev; 827 828 if (!root->use_hierarchy && root != root_mem_cgroup) { 829 if (prev) 830 goto out; 831 return root; 832 } 833 834 rcu_read_lock(); 835 836 if (reclaim) { 837 struct mem_cgroup_per_zone *mz; 838 839 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 840 iter = &mz->iter[reclaim->priority]; 841 842 if (prev && reclaim->generation != iter->generation) 843 goto out_unlock; 844 845 while (1) { 846 pos = READ_ONCE(iter->position); 847 if (!pos || css_tryget(&pos->css)) 848 break; 849 /* 850 * css reference reached zero, so iter->position will 851 * be cleared by ->css_released. However, we should not 852 * rely on this happening soon, because ->css_released 853 * is called from a work queue, and by busy-waiting we 854 * might block it. So we clear iter->position right 855 * away. 856 */ 857 (void)cmpxchg(&iter->position, pos, NULL); 858 } 859 } 860 861 if (pos) 862 css = &pos->css; 863 864 for (;;) { 865 css = css_next_descendant_pre(css, &root->css); 866 if (!css) { 867 /* 868 * Reclaimers share the hierarchy walk, and a 869 * new one might jump in right at the end of 870 * the hierarchy - make sure they see at least 871 * one group and restart from the beginning. 872 */ 873 if (!prev) 874 continue; 875 break; 876 } 877 878 /* 879 * Verify the css and acquire a reference. The root 880 * is provided by the caller, so we know it's alive 881 * and kicking, and don't take an extra reference. 882 */ 883 memcg = mem_cgroup_from_css(css); 884 885 if (css == &root->css) 886 break; 887 888 if (css_tryget(css)) 889 break; 890 891 memcg = NULL; 892 } 893 894 if (reclaim) { 895 /* 896 * The position could have already been updated by a competing 897 * thread, so check that the value hasn't changed since we read 898 * it to avoid reclaiming from the same cgroup twice. 899 */ 900 (void)cmpxchg(&iter->position, pos, memcg); 901 902 if (pos) 903 css_put(&pos->css); 904 905 if (!memcg) 906 iter->generation++; 907 else if (!prev) 908 reclaim->generation = iter->generation; 909 } 910 911 out_unlock: 912 rcu_read_unlock(); 913 out: 914 if (prev && prev != root) 915 css_put(&prev->css); 916 917 return memcg; 918 } 919 920 /** 921 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 922 * @root: hierarchy root 923 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 924 */ 925 void mem_cgroup_iter_break(struct mem_cgroup *root, 926 struct mem_cgroup *prev) 927 { 928 if (!root) 929 root = root_mem_cgroup; 930 if (prev && prev != root) 931 css_put(&prev->css); 932 } 933 934 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 935 { 936 struct mem_cgroup *memcg = dead_memcg; 937 struct mem_cgroup_reclaim_iter *iter; 938 struct mem_cgroup_per_zone *mz; 939 int nid, zid; 940 int i; 941 942 while ((memcg = parent_mem_cgroup(memcg))) { 943 for_each_node(nid) { 944 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 945 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 946 for (i = 0; i <= DEF_PRIORITY; i++) { 947 iter = &mz->iter[i]; 948 cmpxchg(&iter->position, 949 dead_memcg, NULL); 950 } 951 } 952 } 953 } 954 } 955 956 /* 957 * Iteration constructs for visiting all cgroups (under a tree). If 958 * loops are exited prematurely (break), mem_cgroup_iter_break() must 959 * be used for reference counting. 960 */ 961 #define for_each_mem_cgroup_tree(iter, root) \ 962 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 963 iter != NULL; \ 964 iter = mem_cgroup_iter(root, iter, NULL)) 965 966 #define for_each_mem_cgroup(iter) \ 967 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 968 iter != NULL; \ 969 iter = mem_cgroup_iter(NULL, iter, NULL)) 970 971 /** 972 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 973 * @zone: zone of the wanted lruvec 974 * @memcg: memcg of the wanted lruvec 975 * 976 * Returns the lru list vector holding pages for the given @zone and 977 * @mem. This can be the global zone lruvec, if the memory controller 978 * is disabled. 979 */ 980 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 981 struct mem_cgroup *memcg) 982 { 983 struct mem_cgroup_per_zone *mz; 984 struct lruvec *lruvec; 985 986 if (mem_cgroup_disabled()) { 987 lruvec = &zone->lruvec; 988 goto out; 989 } 990 991 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 992 lruvec = &mz->lruvec; 993 out: 994 /* 995 * Since a node can be onlined after the mem_cgroup was created, 996 * we have to be prepared to initialize lruvec->zone here; 997 * and if offlined then reonlined, we need to reinitialize it. 998 */ 999 if (unlikely(lruvec->zone != zone)) 1000 lruvec->zone = zone; 1001 return lruvec; 1002 } 1003 1004 /** 1005 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1006 * @page: the page 1007 * @zone: zone of the page 1008 * 1009 * This function is only safe when following the LRU page isolation 1010 * and putback protocol: the LRU lock must be held, and the page must 1011 * either be PageLRU() or the caller must have isolated/allocated it. 1012 */ 1013 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1014 { 1015 struct mem_cgroup_per_zone *mz; 1016 struct mem_cgroup *memcg; 1017 struct lruvec *lruvec; 1018 1019 if (mem_cgroup_disabled()) { 1020 lruvec = &zone->lruvec; 1021 goto out; 1022 } 1023 1024 memcg = page->mem_cgroup; 1025 /* 1026 * Swapcache readahead pages are added to the LRU - and 1027 * possibly migrated - before they are charged. 1028 */ 1029 if (!memcg) 1030 memcg = root_mem_cgroup; 1031 1032 mz = mem_cgroup_page_zoneinfo(memcg, page); 1033 lruvec = &mz->lruvec; 1034 out: 1035 /* 1036 * Since a node can be onlined after the mem_cgroup was created, 1037 * we have to be prepared to initialize lruvec->zone here; 1038 * and if offlined then reonlined, we need to reinitialize it. 1039 */ 1040 if (unlikely(lruvec->zone != zone)) 1041 lruvec->zone = zone; 1042 return lruvec; 1043 } 1044 1045 /** 1046 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1047 * @lruvec: mem_cgroup per zone lru vector 1048 * @lru: index of lru list the page is sitting on 1049 * @nr_pages: positive when adding or negative when removing 1050 * 1051 * This function must be called when a page is added to or removed from an 1052 * lru list. 1053 */ 1054 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1055 int nr_pages) 1056 { 1057 struct mem_cgroup_per_zone *mz; 1058 unsigned long *lru_size; 1059 1060 if (mem_cgroup_disabled()) 1061 return; 1062 1063 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1064 lru_size = mz->lru_size + lru; 1065 *lru_size += nr_pages; 1066 VM_BUG_ON((long)(*lru_size) < 0); 1067 } 1068 1069 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1070 { 1071 struct mem_cgroup *task_memcg; 1072 struct task_struct *p; 1073 bool ret; 1074 1075 p = find_lock_task_mm(task); 1076 if (p) { 1077 task_memcg = get_mem_cgroup_from_mm(p->mm); 1078 task_unlock(p); 1079 } else { 1080 /* 1081 * All threads may have already detached their mm's, but the oom 1082 * killer still needs to detect if they have already been oom 1083 * killed to prevent needlessly killing additional tasks. 1084 */ 1085 rcu_read_lock(); 1086 task_memcg = mem_cgroup_from_task(task); 1087 css_get(&task_memcg->css); 1088 rcu_read_unlock(); 1089 } 1090 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1091 css_put(&task_memcg->css); 1092 return ret; 1093 } 1094 1095 /** 1096 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1097 * @memcg: the memory cgroup 1098 * 1099 * Returns the maximum amount of memory @mem can be charged with, in 1100 * pages. 1101 */ 1102 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1103 { 1104 unsigned long margin = 0; 1105 unsigned long count; 1106 unsigned long limit; 1107 1108 count = page_counter_read(&memcg->memory); 1109 limit = READ_ONCE(memcg->memory.limit); 1110 if (count < limit) 1111 margin = limit - count; 1112 1113 if (do_memsw_account()) { 1114 count = page_counter_read(&memcg->memsw); 1115 limit = READ_ONCE(memcg->memsw.limit); 1116 if (count <= limit) 1117 margin = min(margin, limit - count); 1118 } 1119 1120 return margin; 1121 } 1122 1123 /* 1124 * A routine for checking "mem" is under move_account() or not. 1125 * 1126 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1127 * moving cgroups. This is for waiting at high-memory pressure 1128 * caused by "move". 1129 */ 1130 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1131 { 1132 struct mem_cgroup *from; 1133 struct mem_cgroup *to; 1134 bool ret = false; 1135 /* 1136 * Unlike task_move routines, we access mc.to, mc.from not under 1137 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1138 */ 1139 spin_lock(&mc.lock); 1140 from = mc.from; 1141 to = mc.to; 1142 if (!from) 1143 goto unlock; 1144 1145 ret = mem_cgroup_is_descendant(from, memcg) || 1146 mem_cgroup_is_descendant(to, memcg); 1147 unlock: 1148 spin_unlock(&mc.lock); 1149 return ret; 1150 } 1151 1152 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1153 { 1154 if (mc.moving_task && current != mc.moving_task) { 1155 if (mem_cgroup_under_move(memcg)) { 1156 DEFINE_WAIT(wait); 1157 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1158 /* moving charge context might have finished. */ 1159 if (mc.moving_task) 1160 schedule(); 1161 finish_wait(&mc.waitq, &wait); 1162 return true; 1163 } 1164 } 1165 return false; 1166 } 1167 1168 #define K(x) ((x) << (PAGE_SHIFT-10)) 1169 /** 1170 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1171 * @memcg: The memory cgroup that went over limit 1172 * @p: Task that is going to be killed 1173 * 1174 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1175 * enabled 1176 */ 1177 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1178 { 1179 /* oom_info_lock ensures that parallel ooms do not interleave */ 1180 static DEFINE_MUTEX(oom_info_lock); 1181 struct mem_cgroup *iter; 1182 unsigned int i; 1183 1184 mutex_lock(&oom_info_lock); 1185 rcu_read_lock(); 1186 1187 if (p) { 1188 pr_info("Task in "); 1189 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1190 pr_cont(" killed as a result of limit of "); 1191 } else { 1192 pr_info("Memory limit reached of cgroup "); 1193 } 1194 1195 pr_cont_cgroup_path(memcg->css.cgroup); 1196 pr_cont("\n"); 1197 1198 rcu_read_unlock(); 1199 1200 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1201 K((u64)page_counter_read(&memcg->memory)), 1202 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1203 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1204 K((u64)page_counter_read(&memcg->memsw)), 1205 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1206 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1207 K((u64)page_counter_read(&memcg->kmem)), 1208 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1209 1210 for_each_mem_cgroup_tree(iter, memcg) { 1211 pr_info("Memory cgroup stats for "); 1212 pr_cont_cgroup_path(iter->css.cgroup); 1213 pr_cont(":"); 1214 1215 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1216 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1217 continue; 1218 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1219 K(mem_cgroup_read_stat(iter, i))); 1220 } 1221 1222 for (i = 0; i < NR_LRU_LISTS; i++) 1223 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1224 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1225 1226 pr_cont("\n"); 1227 } 1228 mutex_unlock(&oom_info_lock); 1229 } 1230 1231 /* 1232 * This function returns the number of memcg under hierarchy tree. Returns 1233 * 1(self count) if no children. 1234 */ 1235 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1236 { 1237 int num = 0; 1238 struct mem_cgroup *iter; 1239 1240 for_each_mem_cgroup_tree(iter, memcg) 1241 num++; 1242 return num; 1243 } 1244 1245 /* 1246 * Return the memory (and swap, if configured) limit for a memcg. 1247 */ 1248 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1249 { 1250 unsigned long limit; 1251 1252 limit = memcg->memory.limit; 1253 if (mem_cgroup_swappiness(memcg)) { 1254 unsigned long memsw_limit; 1255 unsigned long swap_limit; 1256 1257 memsw_limit = memcg->memsw.limit; 1258 swap_limit = memcg->swap.limit; 1259 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1260 limit = min(limit + swap_limit, memsw_limit); 1261 } 1262 return limit; 1263 } 1264 1265 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1266 int order) 1267 { 1268 struct oom_control oc = { 1269 .zonelist = NULL, 1270 .nodemask = NULL, 1271 .gfp_mask = gfp_mask, 1272 .order = order, 1273 }; 1274 struct mem_cgroup *iter; 1275 unsigned long chosen_points = 0; 1276 unsigned long totalpages; 1277 unsigned int points = 0; 1278 struct task_struct *chosen = NULL; 1279 1280 mutex_lock(&oom_lock); 1281 1282 /* 1283 * If current has a pending SIGKILL or is exiting, then automatically 1284 * select it. The goal is to allow it to allocate so that it may 1285 * quickly exit and free its memory. 1286 */ 1287 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1288 mark_oom_victim(current); 1289 goto unlock; 1290 } 1291 1292 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); 1293 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1294 for_each_mem_cgroup_tree(iter, memcg) { 1295 struct css_task_iter it; 1296 struct task_struct *task; 1297 1298 css_task_iter_start(&iter->css, &it); 1299 while ((task = css_task_iter_next(&it))) { 1300 switch (oom_scan_process_thread(&oc, task, totalpages)) { 1301 case OOM_SCAN_SELECT: 1302 if (chosen) 1303 put_task_struct(chosen); 1304 chosen = task; 1305 chosen_points = ULONG_MAX; 1306 get_task_struct(chosen); 1307 /* fall through */ 1308 case OOM_SCAN_CONTINUE: 1309 continue; 1310 case OOM_SCAN_ABORT: 1311 css_task_iter_end(&it); 1312 mem_cgroup_iter_break(memcg, iter); 1313 if (chosen) 1314 put_task_struct(chosen); 1315 goto unlock; 1316 case OOM_SCAN_OK: 1317 break; 1318 }; 1319 points = oom_badness(task, memcg, NULL, totalpages); 1320 if (!points || points < chosen_points) 1321 continue; 1322 /* Prefer thread group leaders for display purposes */ 1323 if (points == chosen_points && 1324 thread_group_leader(chosen)) 1325 continue; 1326 1327 if (chosen) 1328 put_task_struct(chosen); 1329 chosen = task; 1330 chosen_points = points; 1331 get_task_struct(chosen); 1332 } 1333 css_task_iter_end(&it); 1334 } 1335 1336 if (chosen) { 1337 points = chosen_points * 1000 / totalpages; 1338 oom_kill_process(&oc, chosen, points, totalpages, memcg, 1339 "Memory cgroup out of memory"); 1340 } 1341 unlock: 1342 mutex_unlock(&oom_lock); 1343 } 1344 1345 #if MAX_NUMNODES > 1 1346 1347 /** 1348 * test_mem_cgroup_node_reclaimable 1349 * @memcg: the target memcg 1350 * @nid: the node ID to be checked. 1351 * @noswap : specify true here if the user wants flle only information. 1352 * 1353 * This function returns whether the specified memcg contains any 1354 * reclaimable pages on a node. Returns true if there are any reclaimable 1355 * pages in the node. 1356 */ 1357 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1358 int nid, bool noswap) 1359 { 1360 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1361 return true; 1362 if (noswap || !total_swap_pages) 1363 return false; 1364 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1365 return true; 1366 return false; 1367 1368 } 1369 1370 /* 1371 * Always updating the nodemask is not very good - even if we have an empty 1372 * list or the wrong list here, we can start from some node and traverse all 1373 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1374 * 1375 */ 1376 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1377 { 1378 int nid; 1379 /* 1380 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1381 * pagein/pageout changes since the last update. 1382 */ 1383 if (!atomic_read(&memcg->numainfo_events)) 1384 return; 1385 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1386 return; 1387 1388 /* make a nodemask where this memcg uses memory from */ 1389 memcg->scan_nodes = node_states[N_MEMORY]; 1390 1391 for_each_node_mask(nid, node_states[N_MEMORY]) { 1392 1393 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1394 node_clear(nid, memcg->scan_nodes); 1395 } 1396 1397 atomic_set(&memcg->numainfo_events, 0); 1398 atomic_set(&memcg->numainfo_updating, 0); 1399 } 1400 1401 /* 1402 * Selecting a node where we start reclaim from. Because what we need is just 1403 * reducing usage counter, start from anywhere is O,K. Considering 1404 * memory reclaim from current node, there are pros. and cons. 1405 * 1406 * Freeing memory from current node means freeing memory from a node which 1407 * we'll use or we've used. So, it may make LRU bad. And if several threads 1408 * hit limits, it will see a contention on a node. But freeing from remote 1409 * node means more costs for memory reclaim because of memory latency. 1410 * 1411 * Now, we use round-robin. Better algorithm is welcomed. 1412 */ 1413 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1414 { 1415 int node; 1416 1417 mem_cgroup_may_update_nodemask(memcg); 1418 node = memcg->last_scanned_node; 1419 1420 node = next_node(node, memcg->scan_nodes); 1421 if (node == MAX_NUMNODES) 1422 node = first_node(memcg->scan_nodes); 1423 /* 1424 * We call this when we hit limit, not when pages are added to LRU. 1425 * No LRU may hold pages because all pages are UNEVICTABLE or 1426 * memcg is too small and all pages are not on LRU. In that case, 1427 * we use curret node. 1428 */ 1429 if (unlikely(node == MAX_NUMNODES)) 1430 node = numa_node_id(); 1431 1432 memcg->last_scanned_node = node; 1433 return node; 1434 } 1435 #else 1436 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1437 { 1438 return 0; 1439 } 1440 #endif 1441 1442 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1443 struct zone *zone, 1444 gfp_t gfp_mask, 1445 unsigned long *total_scanned) 1446 { 1447 struct mem_cgroup *victim = NULL; 1448 int total = 0; 1449 int loop = 0; 1450 unsigned long excess; 1451 unsigned long nr_scanned; 1452 struct mem_cgroup_reclaim_cookie reclaim = { 1453 .zone = zone, 1454 .priority = 0, 1455 }; 1456 1457 excess = soft_limit_excess(root_memcg); 1458 1459 while (1) { 1460 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1461 if (!victim) { 1462 loop++; 1463 if (loop >= 2) { 1464 /* 1465 * If we have not been able to reclaim 1466 * anything, it might because there are 1467 * no reclaimable pages under this hierarchy 1468 */ 1469 if (!total) 1470 break; 1471 /* 1472 * We want to do more targeted reclaim. 1473 * excess >> 2 is not to excessive so as to 1474 * reclaim too much, nor too less that we keep 1475 * coming back to reclaim from this cgroup 1476 */ 1477 if (total >= (excess >> 2) || 1478 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1479 break; 1480 } 1481 continue; 1482 } 1483 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1484 zone, &nr_scanned); 1485 *total_scanned += nr_scanned; 1486 if (!soft_limit_excess(root_memcg)) 1487 break; 1488 } 1489 mem_cgroup_iter_break(root_memcg, victim); 1490 return total; 1491 } 1492 1493 #ifdef CONFIG_LOCKDEP 1494 static struct lockdep_map memcg_oom_lock_dep_map = { 1495 .name = "memcg_oom_lock", 1496 }; 1497 #endif 1498 1499 static DEFINE_SPINLOCK(memcg_oom_lock); 1500 1501 /* 1502 * Check OOM-Killer is already running under our hierarchy. 1503 * If someone is running, return false. 1504 */ 1505 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1506 { 1507 struct mem_cgroup *iter, *failed = NULL; 1508 1509 spin_lock(&memcg_oom_lock); 1510 1511 for_each_mem_cgroup_tree(iter, memcg) { 1512 if (iter->oom_lock) { 1513 /* 1514 * this subtree of our hierarchy is already locked 1515 * so we cannot give a lock. 1516 */ 1517 failed = iter; 1518 mem_cgroup_iter_break(memcg, iter); 1519 break; 1520 } else 1521 iter->oom_lock = true; 1522 } 1523 1524 if (failed) { 1525 /* 1526 * OK, we failed to lock the whole subtree so we have 1527 * to clean up what we set up to the failing subtree 1528 */ 1529 for_each_mem_cgroup_tree(iter, memcg) { 1530 if (iter == failed) { 1531 mem_cgroup_iter_break(memcg, iter); 1532 break; 1533 } 1534 iter->oom_lock = false; 1535 } 1536 } else 1537 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1538 1539 spin_unlock(&memcg_oom_lock); 1540 1541 return !failed; 1542 } 1543 1544 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1545 { 1546 struct mem_cgroup *iter; 1547 1548 spin_lock(&memcg_oom_lock); 1549 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1550 for_each_mem_cgroup_tree(iter, memcg) 1551 iter->oom_lock = false; 1552 spin_unlock(&memcg_oom_lock); 1553 } 1554 1555 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1556 { 1557 struct mem_cgroup *iter; 1558 1559 spin_lock(&memcg_oom_lock); 1560 for_each_mem_cgroup_tree(iter, memcg) 1561 iter->under_oom++; 1562 spin_unlock(&memcg_oom_lock); 1563 } 1564 1565 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1566 { 1567 struct mem_cgroup *iter; 1568 1569 /* 1570 * When a new child is created while the hierarchy is under oom, 1571 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1572 */ 1573 spin_lock(&memcg_oom_lock); 1574 for_each_mem_cgroup_tree(iter, memcg) 1575 if (iter->under_oom > 0) 1576 iter->under_oom--; 1577 spin_unlock(&memcg_oom_lock); 1578 } 1579 1580 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1581 1582 struct oom_wait_info { 1583 struct mem_cgroup *memcg; 1584 wait_queue_t wait; 1585 }; 1586 1587 static int memcg_oom_wake_function(wait_queue_t *wait, 1588 unsigned mode, int sync, void *arg) 1589 { 1590 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1591 struct mem_cgroup *oom_wait_memcg; 1592 struct oom_wait_info *oom_wait_info; 1593 1594 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1595 oom_wait_memcg = oom_wait_info->memcg; 1596 1597 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1598 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1599 return 0; 1600 return autoremove_wake_function(wait, mode, sync, arg); 1601 } 1602 1603 static void memcg_oom_recover(struct mem_cgroup *memcg) 1604 { 1605 /* 1606 * For the following lockless ->under_oom test, the only required 1607 * guarantee is that it must see the state asserted by an OOM when 1608 * this function is called as a result of userland actions 1609 * triggered by the notification of the OOM. This is trivially 1610 * achieved by invoking mem_cgroup_mark_under_oom() before 1611 * triggering notification. 1612 */ 1613 if (memcg && memcg->under_oom) 1614 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1615 } 1616 1617 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1618 { 1619 if (!current->memcg_may_oom) 1620 return; 1621 /* 1622 * We are in the middle of the charge context here, so we 1623 * don't want to block when potentially sitting on a callstack 1624 * that holds all kinds of filesystem and mm locks. 1625 * 1626 * Also, the caller may handle a failed allocation gracefully 1627 * (like optional page cache readahead) and so an OOM killer 1628 * invocation might not even be necessary. 1629 * 1630 * That's why we don't do anything here except remember the 1631 * OOM context and then deal with it at the end of the page 1632 * fault when the stack is unwound, the locks are released, 1633 * and when we know whether the fault was overall successful. 1634 */ 1635 css_get(&memcg->css); 1636 current->memcg_in_oom = memcg; 1637 current->memcg_oom_gfp_mask = mask; 1638 current->memcg_oom_order = order; 1639 } 1640 1641 /** 1642 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1643 * @handle: actually kill/wait or just clean up the OOM state 1644 * 1645 * This has to be called at the end of a page fault if the memcg OOM 1646 * handler was enabled. 1647 * 1648 * Memcg supports userspace OOM handling where failed allocations must 1649 * sleep on a waitqueue until the userspace task resolves the 1650 * situation. Sleeping directly in the charge context with all kinds 1651 * of locks held is not a good idea, instead we remember an OOM state 1652 * in the task and mem_cgroup_oom_synchronize() has to be called at 1653 * the end of the page fault to complete the OOM handling. 1654 * 1655 * Returns %true if an ongoing memcg OOM situation was detected and 1656 * completed, %false otherwise. 1657 */ 1658 bool mem_cgroup_oom_synchronize(bool handle) 1659 { 1660 struct mem_cgroup *memcg = current->memcg_in_oom; 1661 struct oom_wait_info owait; 1662 bool locked; 1663 1664 /* OOM is global, do not handle */ 1665 if (!memcg) 1666 return false; 1667 1668 if (!handle || oom_killer_disabled) 1669 goto cleanup; 1670 1671 owait.memcg = memcg; 1672 owait.wait.flags = 0; 1673 owait.wait.func = memcg_oom_wake_function; 1674 owait.wait.private = current; 1675 INIT_LIST_HEAD(&owait.wait.task_list); 1676 1677 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1678 mem_cgroup_mark_under_oom(memcg); 1679 1680 locked = mem_cgroup_oom_trylock(memcg); 1681 1682 if (locked) 1683 mem_cgroup_oom_notify(memcg); 1684 1685 if (locked && !memcg->oom_kill_disable) { 1686 mem_cgroup_unmark_under_oom(memcg); 1687 finish_wait(&memcg_oom_waitq, &owait.wait); 1688 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1689 current->memcg_oom_order); 1690 } else { 1691 schedule(); 1692 mem_cgroup_unmark_under_oom(memcg); 1693 finish_wait(&memcg_oom_waitq, &owait.wait); 1694 } 1695 1696 if (locked) { 1697 mem_cgroup_oom_unlock(memcg); 1698 /* 1699 * There is no guarantee that an OOM-lock contender 1700 * sees the wakeups triggered by the OOM kill 1701 * uncharges. Wake any sleepers explicitely. 1702 */ 1703 memcg_oom_recover(memcg); 1704 } 1705 cleanup: 1706 current->memcg_in_oom = NULL; 1707 css_put(&memcg->css); 1708 return true; 1709 } 1710 1711 /** 1712 * mem_cgroup_begin_page_stat - begin a page state statistics transaction 1713 * @page: page that is going to change accounted state 1714 * 1715 * This function must mark the beginning of an accounted page state 1716 * change to prevent double accounting when the page is concurrently 1717 * being moved to another memcg: 1718 * 1719 * memcg = mem_cgroup_begin_page_stat(page); 1720 * if (TestClearPageState(page)) 1721 * mem_cgroup_update_page_stat(memcg, state, -1); 1722 * mem_cgroup_end_page_stat(memcg); 1723 */ 1724 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page) 1725 { 1726 struct mem_cgroup *memcg; 1727 unsigned long flags; 1728 1729 /* 1730 * The RCU lock is held throughout the transaction. The fast 1731 * path can get away without acquiring the memcg->move_lock 1732 * because page moving starts with an RCU grace period. 1733 * 1734 * The RCU lock also protects the memcg from being freed when 1735 * the page state that is going to change is the only thing 1736 * preventing the page from being uncharged. 1737 * E.g. end-writeback clearing PageWriteback(), which allows 1738 * migration to go ahead and uncharge the page before the 1739 * account transaction might be complete. 1740 */ 1741 rcu_read_lock(); 1742 1743 if (mem_cgroup_disabled()) 1744 return NULL; 1745 again: 1746 memcg = page->mem_cgroup; 1747 if (unlikely(!memcg)) 1748 return NULL; 1749 1750 if (atomic_read(&memcg->moving_account) <= 0) 1751 return memcg; 1752 1753 spin_lock_irqsave(&memcg->move_lock, flags); 1754 if (memcg != page->mem_cgroup) { 1755 spin_unlock_irqrestore(&memcg->move_lock, flags); 1756 goto again; 1757 } 1758 1759 /* 1760 * When charge migration first begins, we can have locked and 1761 * unlocked page stat updates happening concurrently. Track 1762 * the task who has the lock for mem_cgroup_end_page_stat(). 1763 */ 1764 memcg->move_lock_task = current; 1765 memcg->move_lock_flags = flags; 1766 1767 return memcg; 1768 } 1769 EXPORT_SYMBOL(mem_cgroup_begin_page_stat); 1770 1771 /** 1772 * mem_cgroup_end_page_stat - finish a page state statistics transaction 1773 * @memcg: the memcg that was accounted against 1774 */ 1775 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg) 1776 { 1777 if (memcg && memcg->move_lock_task == current) { 1778 unsigned long flags = memcg->move_lock_flags; 1779 1780 memcg->move_lock_task = NULL; 1781 memcg->move_lock_flags = 0; 1782 1783 spin_unlock_irqrestore(&memcg->move_lock, flags); 1784 } 1785 1786 rcu_read_unlock(); 1787 } 1788 EXPORT_SYMBOL(mem_cgroup_end_page_stat); 1789 1790 /* 1791 * size of first charge trial. "32" comes from vmscan.c's magic value. 1792 * TODO: maybe necessary to use big numbers in big irons. 1793 */ 1794 #define CHARGE_BATCH 32U 1795 struct memcg_stock_pcp { 1796 struct mem_cgroup *cached; /* this never be root cgroup */ 1797 unsigned int nr_pages; 1798 struct work_struct work; 1799 unsigned long flags; 1800 #define FLUSHING_CACHED_CHARGE 0 1801 }; 1802 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1803 static DEFINE_MUTEX(percpu_charge_mutex); 1804 1805 /** 1806 * consume_stock: Try to consume stocked charge on this cpu. 1807 * @memcg: memcg to consume from. 1808 * @nr_pages: how many pages to charge. 1809 * 1810 * The charges will only happen if @memcg matches the current cpu's memcg 1811 * stock, and at least @nr_pages are available in that stock. Failure to 1812 * service an allocation will refill the stock. 1813 * 1814 * returns true if successful, false otherwise. 1815 */ 1816 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1817 { 1818 struct memcg_stock_pcp *stock; 1819 bool ret = false; 1820 1821 if (nr_pages > CHARGE_BATCH) 1822 return ret; 1823 1824 stock = &get_cpu_var(memcg_stock); 1825 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1826 stock->nr_pages -= nr_pages; 1827 ret = true; 1828 } 1829 put_cpu_var(memcg_stock); 1830 return ret; 1831 } 1832 1833 /* 1834 * Returns stocks cached in percpu and reset cached information. 1835 */ 1836 static void drain_stock(struct memcg_stock_pcp *stock) 1837 { 1838 struct mem_cgroup *old = stock->cached; 1839 1840 if (stock->nr_pages) { 1841 page_counter_uncharge(&old->memory, stock->nr_pages); 1842 if (do_memsw_account()) 1843 page_counter_uncharge(&old->memsw, stock->nr_pages); 1844 css_put_many(&old->css, stock->nr_pages); 1845 stock->nr_pages = 0; 1846 } 1847 stock->cached = NULL; 1848 } 1849 1850 /* 1851 * This must be called under preempt disabled or must be called by 1852 * a thread which is pinned to local cpu. 1853 */ 1854 static void drain_local_stock(struct work_struct *dummy) 1855 { 1856 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1857 drain_stock(stock); 1858 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1859 } 1860 1861 /* 1862 * Cache charges(val) to local per_cpu area. 1863 * This will be consumed by consume_stock() function, later. 1864 */ 1865 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1866 { 1867 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1868 1869 if (stock->cached != memcg) { /* reset if necessary */ 1870 drain_stock(stock); 1871 stock->cached = memcg; 1872 } 1873 stock->nr_pages += nr_pages; 1874 put_cpu_var(memcg_stock); 1875 } 1876 1877 /* 1878 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1879 * of the hierarchy under it. 1880 */ 1881 static void drain_all_stock(struct mem_cgroup *root_memcg) 1882 { 1883 int cpu, curcpu; 1884 1885 /* If someone's already draining, avoid adding running more workers. */ 1886 if (!mutex_trylock(&percpu_charge_mutex)) 1887 return; 1888 /* Notify other cpus that system-wide "drain" is running */ 1889 get_online_cpus(); 1890 curcpu = get_cpu(); 1891 for_each_online_cpu(cpu) { 1892 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1893 struct mem_cgroup *memcg; 1894 1895 memcg = stock->cached; 1896 if (!memcg || !stock->nr_pages) 1897 continue; 1898 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1899 continue; 1900 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1901 if (cpu == curcpu) 1902 drain_local_stock(&stock->work); 1903 else 1904 schedule_work_on(cpu, &stock->work); 1905 } 1906 } 1907 put_cpu(); 1908 put_online_cpus(); 1909 mutex_unlock(&percpu_charge_mutex); 1910 } 1911 1912 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1913 unsigned long action, 1914 void *hcpu) 1915 { 1916 int cpu = (unsigned long)hcpu; 1917 struct memcg_stock_pcp *stock; 1918 1919 if (action == CPU_ONLINE) 1920 return NOTIFY_OK; 1921 1922 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1923 return NOTIFY_OK; 1924 1925 stock = &per_cpu(memcg_stock, cpu); 1926 drain_stock(stock); 1927 return NOTIFY_OK; 1928 } 1929 1930 static void reclaim_high(struct mem_cgroup *memcg, 1931 unsigned int nr_pages, 1932 gfp_t gfp_mask) 1933 { 1934 do { 1935 if (page_counter_read(&memcg->memory) <= memcg->high) 1936 continue; 1937 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1938 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1939 } while ((memcg = parent_mem_cgroup(memcg))); 1940 } 1941 1942 static void high_work_func(struct work_struct *work) 1943 { 1944 struct mem_cgroup *memcg; 1945 1946 memcg = container_of(work, struct mem_cgroup, high_work); 1947 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1948 } 1949 1950 /* 1951 * Scheduled by try_charge() to be executed from the userland return path 1952 * and reclaims memory over the high limit. 1953 */ 1954 void mem_cgroup_handle_over_high(void) 1955 { 1956 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1957 struct mem_cgroup *memcg; 1958 1959 if (likely(!nr_pages)) 1960 return; 1961 1962 memcg = get_mem_cgroup_from_mm(current->mm); 1963 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1964 css_put(&memcg->css); 1965 current->memcg_nr_pages_over_high = 0; 1966 } 1967 1968 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1969 unsigned int nr_pages) 1970 { 1971 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1972 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1973 struct mem_cgroup *mem_over_limit; 1974 struct page_counter *counter; 1975 unsigned long nr_reclaimed; 1976 bool may_swap = true; 1977 bool drained = false; 1978 1979 if (mem_cgroup_is_root(memcg)) 1980 return 0; 1981 retry: 1982 if (consume_stock(memcg, nr_pages)) 1983 return 0; 1984 1985 if (!do_memsw_account() || 1986 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1987 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1988 goto done_restock; 1989 if (do_memsw_account()) 1990 page_counter_uncharge(&memcg->memsw, batch); 1991 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1992 } else { 1993 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1994 may_swap = false; 1995 } 1996 1997 if (batch > nr_pages) { 1998 batch = nr_pages; 1999 goto retry; 2000 } 2001 2002 /* 2003 * Unlike in global OOM situations, memcg is not in a physical 2004 * memory shortage. Allow dying and OOM-killed tasks to 2005 * bypass the last charges so that they can exit quickly and 2006 * free their memory. 2007 */ 2008 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2009 fatal_signal_pending(current) || 2010 current->flags & PF_EXITING)) 2011 goto force; 2012 2013 if (unlikely(task_in_memcg_oom(current))) 2014 goto nomem; 2015 2016 if (!gfpflags_allow_blocking(gfp_mask)) 2017 goto nomem; 2018 2019 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 2020 2021 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2022 gfp_mask, may_swap); 2023 2024 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2025 goto retry; 2026 2027 if (!drained) { 2028 drain_all_stock(mem_over_limit); 2029 drained = true; 2030 goto retry; 2031 } 2032 2033 if (gfp_mask & __GFP_NORETRY) 2034 goto nomem; 2035 /* 2036 * Even though the limit is exceeded at this point, reclaim 2037 * may have been able to free some pages. Retry the charge 2038 * before killing the task. 2039 * 2040 * Only for regular pages, though: huge pages are rather 2041 * unlikely to succeed so close to the limit, and we fall back 2042 * to regular pages anyway in case of failure. 2043 */ 2044 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2045 goto retry; 2046 /* 2047 * At task move, charge accounts can be doubly counted. So, it's 2048 * better to wait until the end of task_move if something is going on. 2049 */ 2050 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2051 goto retry; 2052 2053 if (nr_retries--) 2054 goto retry; 2055 2056 if (gfp_mask & __GFP_NOFAIL) 2057 goto force; 2058 2059 if (fatal_signal_pending(current)) 2060 goto force; 2061 2062 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2063 2064 mem_cgroup_oom(mem_over_limit, gfp_mask, 2065 get_order(nr_pages * PAGE_SIZE)); 2066 nomem: 2067 if (!(gfp_mask & __GFP_NOFAIL)) 2068 return -ENOMEM; 2069 force: 2070 /* 2071 * The allocation either can't fail or will lead to more memory 2072 * being freed very soon. Allow memory usage go over the limit 2073 * temporarily by force charging it. 2074 */ 2075 page_counter_charge(&memcg->memory, nr_pages); 2076 if (do_memsw_account()) 2077 page_counter_charge(&memcg->memsw, nr_pages); 2078 css_get_many(&memcg->css, nr_pages); 2079 2080 return 0; 2081 2082 done_restock: 2083 css_get_many(&memcg->css, batch); 2084 if (batch > nr_pages) 2085 refill_stock(memcg, batch - nr_pages); 2086 2087 /* 2088 * If the hierarchy is above the normal consumption range, schedule 2089 * reclaim on returning to userland. We can perform reclaim here 2090 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2091 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2092 * not recorded as it most likely matches current's and won't 2093 * change in the meantime. As high limit is checked again before 2094 * reclaim, the cost of mismatch is negligible. 2095 */ 2096 do { 2097 if (page_counter_read(&memcg->memory) > memcg->high) { 2098 /* Don't bother a random interrupted task */ 2099 if (in_interrupt()) { 2100 schedule_work(&memcg->high_work); 2101 break; 2102 } 2103 current->memcg_nr_pages_over_high += batch; 2104 set_notify_resume(current); 2105 break; 2106 } 2107 } while ((memcg = parent_mem_cgroup(memcg))); 2108 2109 return 0; 2110 } 2111 2112 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2113 { 2114 if (mem_cgroup_is_root(memcg)) 2115 return; 2116 2117 page_counter_uncharge(&memcg->memory, nr_pages); 2118 if (do_memsw_account()) 2119 page_counter_uncharge(&memcg->memsw, nr_pages); 2120 2121 css_put_many(&memcg->css, nr_pages); 2122 } 2123 2124 static void lock_page_lru(struct page *page, int *isolated) 2125 { 2126 struct zone *zone = page_zone(page); 2127 2128 spin_lock_irq(&zone->lru_lock); 2129 if (PageLRU(page)) { 2130 struct lruvec *lruvec; 2131 2132 lruvec = mem_cgroup_page_lruvec(page, zone); 2133 ClearPageLRU(page); 2134 del_page_from_lru_list(page, lruvec, page_lru(page)); 2135 *isolated = 1; 2136 } else 2137 *isolated = 0; 2138 } 2139 2140 static void unlock_page_lru(struct page *page, int isolated) 2141 { 2142 struct zone *zone = page_zone(page); 2143 2144 if (isolated) { 2145 struct lruvec *lruvec; 2146 2147 lruvec = mem_cgroup_page_lruvec(page, zone); 2148 VM_BUG_ON_PAGE(PageLRU(page), page); 2149 SetPageLRU(page); 2150 add_page_to_lru_list(page, lruvec, page_lru(page)); 2151 } 2152 spin_unlock_irq(&zone->lru_lock); 2153 } 2154 2155 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2156 bool lrucare) 2157 { 2158 int isolated; 2159 2160 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2161 2162 /* 2163 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2164 * may already be on some other mem_cgroup's LRU. Take care of it. 2165 */ 2166 if (lrucare) 2167 lock_page_lru(page, &isolated); 2168 2169 /* 2170 * Nobody should be changing or seriously looking at 2171 * page->mem_cgroup at this point: 2172 * 2173 * - the page is uncharged 2174 * 2175 * - the page is off-LRU 2176 * 2177 * - an anonymous fault has exclusive page access, except for 2178 * a locked page table 2179 * 2180 * - a page cache insertion, a swapin fault, or a migration 2181 * have the page locked 2182 */ 2183 page->mem_cgroup = memcg; 2184 2185 if (lrucare) 2186 unlock_page_lru(page, isolated); 2187 } 2188 2189 #ifndef CONFIG_SLOB 2190 static int memcg_alloc_cache_id(void) 2191 { 2192 int id, size; 2193 int err; 2194 2195 id = ida_simple_get(&memcg_cache_ida, 2196 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2197 if (id < 0) 2198 return id; 2199 2200 if (id < memcg_nr_cache_ids) 2201 return id; 2202 2203 /* 2204 * There's no space for the new id in memcg_caches arrays, 2205 * so we have to grow them. 2206 */ 2207 down_write(&memcg_cache_ids_sem); 2208 2209 size = 2 * (id + 1); 2210 if (size < MEMCG_CACHES_MIN_SIZE) 2211 size = MEMCG_CACHES_MIN_SIZE; 2212 else if (size > MEMCG_CACHES_MAX_SIZE) 2213 size = MEMCG_CACHES_MAX_SIZE; 2214 2215 err = memcg_update_all_caches(size); 2216 if (!err) 2217 err = memcg_update_all_list_lrus(size); 2218 if (!err) 2219 memcg_nr_cache_ids = size; 2220 2221 up_write(&memcg_cache_ids_sem); 2222 2223 if (err) { 2224 ida_simple_remove(&memcg_cache_ida, id); 2225 return err; 2226 } 2227 return id; 2228 } 2229 2230 static void memcg_free_cache_id(int id) 2231 { 2232 ida_simple_remove(&memcg_cache_ida, id); 2233 } 2234 2235 struct memcg_kmem_cache_create_work { 2236 struct mem_cgroup *memcg; 2237 struct kmem_cache *cachep; 2238 struct work_struct work; 2239 }; 2240 2241 static void memcg_kmem_cache_create_func(struct work_struct *w) 2242 { 2243 struct memcg_kmem_cache_create_work *cw = 2244 container_of(w, struct memcg_kmem_cache_create_work, work); 2245 struct mem_cgroup *memcg = cw->memcg; 2246 struct kmem_cache *cachep = cw->cachep; 2247 2248 memcg_create_kmem_cache(memcg, cachep); 2249 2250 css_put(&memcg->css); 2251 kfree(cw); 2252 } 2253 2254 /* 2255 * Enqueue the creation of a per-memcg kmem_cache. 2256 */ 2257 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2258 struct kmem_cache *cachep) 2259 { 2260 struct memcg_kmem_cache_create_work *cw; 2261 2262 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2263 if (!cw) 2264 return; 2265 2266 css_get(&memcg->css); 2267 2268 cw->memcg = memcg; 2269 cw->cachep = cachep; 2270 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2271 2272 schedule_work(&cw->work); 2273 } 2274 2275 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2276 struct kmem_cache *cachep) 2277 { 2278 /* 2279 * We need to stop accounting when we kmalloc, because if the 2280 * corresponding kmalloc cache is not yet created, the first allocation 2281 * in __memcg_schedule_kmem_cache_create will recurse. 2282 * 2283 * However, it is better to enclose the whole function. Depending on 2284 * the debugging options enabled, INIT_WORK(), for instance, can 2285 * trigger an allocation. This too, will make us recurse. Because at 2286 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2287 * the safest choice is to do it like this, wrapping the whole function. 2288 */ 2289 current->memcg_kmem_skip_account = 1; 2290 __memcg_schedule_kmem_cache_create(memcg, cachep); 2291 current->memcg_kmem_skip_account = 0; 2292 } 2293 2294 /* 2295 * Return the kmem_cache we're supposed to use for a slab allocation. 2296 * We try to use the current memcg's version of the cache. 2297 * 2298 * If the cache does not exist yet, if we are the first user of it, 2299 * we either create it immediately, if possible, or create it asynchronously 2300 * in a workqueue. 2301 * In the latter case, we will let the current allocation go through with 2302 * the original cache. 2303 * 2304 * Can't be called in interrupt context or from kernel threads. 2305 * This function needs to be called with rcu_read_lock() held. 2306 */ 2307 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 2308 { 2309 struct mem_cgroup *memcg; 2310 struct kmem_cache *memcg_cachep; 2311 int kmemcg_id; 2312 2313 VM_BUG_ON(!is_root_cache(cachep)); 2314 2315 if (cachep->flags & SLAB_ACCOUNT) 2316 gfp |= __GFP_ACCOUNT; 2317 2318 if (!(gfp & __GFP_ACCOUNT)) 2319 return cachep; 2320 2321 if (current->memcg_kmem_skip_account) 2322 return cachep; 2323 2324 memcg = get_mem_cgroup_from_mm(current->mm); 2325 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2326 if (kmemcg_id < 0) 2327 goto out; 2328 2329 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2330 if (likely(memcg_cachep)) 2331 return memcg_cachep; 2332 2333 /* 2334 * If we are in a safe context (can wait, and not in interrupt 2335 * context), we could be be predictable and return right away. 2336 * This would guarantee that the allocation being performed 2337 * already belongs in the new cache. 2338 * 2339 * However, there are some clashes that can arrive from locking. 2340 * For instance, because we acquire the slab_mutex while doing 2341 * memcg_create_kmem_cache, this means no further allocation 2342 * could happen with the slab_mutex held. So it's better to 2343 * defer everything. 2344 */ 2345 memcg_schedule_kmem_cache_create(memcg, cachep); 2346 out: 2347 css_put(&memcg->css); 2348 return cachep; 2349 } 2350 2351 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2352 { 2353 if (!is_root_cache(cachep)) 2354 css_put(&cachep->memcg_params.memcg->css); 2355 } 2356 2357 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2358 struct mem_cgroup *memcg) 2359 { 2360 unsigned int nr_pages = 1 << order; 2361 struct page_counter *counter; 2362 int ret; 2363 2364 if (!memcg_kmem_online(memcg)) 2365 return 0; 2366 2367 ret = try_charge(memcg, gfp, nr_pages); 2368 if (ret) 2369 return ret; 2370 2371 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2372 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2373 cancel_charge(memcg, nr_pages); 2374 return -ENOMEM; 2375 } 2376 2377 page->mem_cgroup = memcg; 2378 2379 return 0; 2380 } 2381 2382 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2383 { 2384 struct mem_cgroup *memcg; 2385 int ret; 2386 2387 memcg = get_mem_cgroup_from_mm(current->mm); 2388 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2389 css_put(&memcg->css); 2390 return ret; 2391 } 2392 2393 void __memcg_kmem_uncharge(struct page *page, int order) 2394 { 2395 struct mem_cgroup *memcg = page->mem_cgroup; 2396 unsigned int nr_pages = 1 << order; 2397 2398 if (!memcg) 2399 return; 2400 2401 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2402 2403 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2404 page_counter_uncharge(&memcg->kmem, nr_pages); 2405 2406 page_counter_uncharge(&memcg->memory, nr_pages); 2407 if (do_memsw_account()) 2408 page_counter_uncharge(&memcg->memsw, nr_pages); 2409 2410 page->mem_cgroup = NULL; 2411 css_put_many(&memcg->css, nr_pages); 2412 } 2413 #endif /* !CONFIG_SLOB */ 2414 2415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2416 2417 /* 2418 * Because tail pages are not marked as "used", set it. We're under 2419 * zone->lru_lock and migration entries setup in all page mappings. 2420 */ 2421 void mem_cgroup_split_huge_fixup(struct page *head) 2422 { 2423 int i; 2424 2425 if (mem_cgroup_disabled()) 2426 return; 2427 2428 for (i = 1; i < HPAGE_PMD_NR; i++) 2429 head[i].mem_cgroup = head->mem_cgroup; 2430 2431 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2432 HPAGE_PMD_NR); 2433 } 2434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2435 2436 #ifdef CONFIG_MEMCG_SWAP 2437 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2438 bool charge) 2439 { 2440 int val = (charge) ? 1 : -1; 2441 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2442 } 2443 2444 /** 2445 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2446 * @entry: swap entry to be moved 2447 * @from: mem_cgroup which the entry is moved from 2448 * @to: mem_cgroup which the entry is moved to 2449 * 2450 * It succeeds only when the swap_cgroup's record for this entry is the same 2451 * as the mem_cgroup's id of @from. 2452 * 2453 * Returns 0 on success, -EINVAL on failure. 2454 * 2455 * The caller must have charged to @to, IOW, called page_counter_charge() about 2456 * both res and memsw, and called css_get(). 2457 */ 2458 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2459 struct mem_cgroup *from, struct mem_cgroup *to) 2460 { 2461 unsigned short old_id, new_id; 2462 2463 old_id = mem_cgroup_id(from); 2464 new_id = mem_cgroup_id(to); 2465 2466 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2467 mem_cgroup_swap_statistics(from, false); 2468 mem_cgroup_swap_statistics(to, true); 2469 return 0; 2470 } 2471 return -EINVAL; 2472 } 2473 #else 2474 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2475 struct mem_cgroup *from, struct mem_cgroup *to) 2476 { 2477 return -EINVAL; 2478 } 2479 #endif 2480 2481 static DEFINE_MUTEX(memcg_limit_mutex); 2482 2483 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2484 unsigned long limit) 2485 { 2486 unsigned long curusage; 2487 unsigned long oldusage; 2488 bool enlarge = false; 2489 int retry_count; 2490 int ret; 2491 2492 /* 2493 * For keeping hierarchical_reclaim simple, how long we should retry 2494 * is depends on callers. We set our retry-count to be function 2495 * of # of children which we should visit in this loop. 2496 */ 2497 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2498 mem_cgroup_count_children(memcg); 2499 2500 oldusage = page_counter_read(&memcg->memory); 2501 2502 do { 2503 if (signal_pending(current)) { 2504 ret = -EINTR; 2505 break; 2506 } 2507 2508 mutex_lock(&memcg_limit_mutex); 2509 if (limit > memcg->memsw.limit) { 2510 mutex_unlock(&memcg_limit_mutex); 2511 ret = -EINVAL; 2512 break; 2513 } 2514 if (limit > memcg->memory.limit) 2515 enlarge = true; 2516 ret = page_counter_limit(&memcg->memory, limit); 2517 mutex_unlock(&memcg_limit_mutex); 2518 2519 if (!ret) 2520 break; 2521 2522 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2523 2524 curusage = page_counter_read(&memcg->memory); 2525 /* Usage is reduced ? */ 2526 if (curusage >= oldusage) 2527 retry_count--; 2528 else 2529 oldusage = curusage; 2530 } while (retry_count); 2531 2532 if (!ret && enlarge) 2533 memcg_oom_recover(memcg); 2534 2535 return ret; 2536 } 2537 2538 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2539 unsigned long limit) 2540 { 2541 unsigned long curusage; 2542 unsigned long oldusage; 2543 bool enlarge = false; 2544 int retry_count; 2545 int ret; 2546 2547 /* see mem_cgroup_resize_res_limit */ 2548 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2549 mem_cgroup_count_children(memcg); 2550 2551 oldusage = page_counter_read(&memcg->memsw); 2552 2553 do { 2554 if (signal_pending(current)) { 2555 ret = -EINTR; 2556 break; 2557 } 2558 2559 mutex_lock(&memcg_limit_mutex); 2560 if (limit < memcg->memory.limit) { 2561 mutex_unlock(&memcg_limit_mutex); 2562 ret = -EINVAL; 2563 break; 2564 } 2565 if (limit > memcg->memsw.limit) 2566 enlarge = true; 2567 ret = page_counter_limit(&memcg->memsw, limit); 2568 mutex_unlock(&memcg_limit_mutex); 2569 2570 if (!ret) 2571 break; 2572 2573 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2574 2575 curusage = page_counter_read(&memcg->memsw); 2576 /* Usage is reduced ? */ 2577 if (curusage >= oldusage) 2578 retry_count--; 2579 else 2580 oldusage = curusage; 2581 } while (retry_count); 2582 2583 if (!ret && enlarge) 2584 memcg_oom_recover(memcg); 2585 2586 return ret; 2587 } 2588 2589 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2590 gfp_t gfp_mask, 2591 unsigned long *total_scanned) 2592 { 2593 unsigned long nr_reclaimed = 0; 2594 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2595 unsigned long reclaimed; 2596 int loop = 0; 2597 struct mem_cgroup_tree_per_zone *mctz; 2598 unsigned long excess; 2599 unsigned long nr_scanned; 2600 2601 if (order > 0) 2602 return 0; 2603 2604 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2605 /* 2606 * This loop can run a while, specially if mem_cgroup's continuously 2607 * keep exceeding their soft limit and putting the system under 2608 * pressure 2609 */ 2610 do { 2611 if (next_mz) 2612 mz = next_mz; 2613 else 2614 mz = mem_cgroup_largest_soft_limit_node(mctz); 2615 if (!mz) 2616 break; 2617 2618 nr_scanned = 0; 2619 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2620 gfp_mask, &nr_scanned); 2621 nr_reclaimed += reclaimed; 2622 *total_scanned += nr_scanned; 2623 spin_lock_irq(&mctz->lock); 2624 __mem_cgroup_remove_exceeded(mz, mctz); 2625 2626 /* 2627 * If we failed to reclaim anything from this memory cgroup 2628 * it is time to move on to the next cgroup 2629 */ 2630 next_mz = NULL; 2631 if (!reclaimed) 2632 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2633 2634 excess = soft_limit_excess(mz->memcg); 2635 /* 2636 * One school of thought says that we should not add 2637 * back the node to the tree if reclaim returns 0. 2638 * But our reclaim could return 0, simply because due 2639 * to priority we are exposing a smaller subset of 2640 * memory to reclaim from. Consider this as a longer 2641 * term TODO. 2642 */ 2643 /* If excess == 0, no tree ops */ 2644 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2645 spin_unlock_irq(&mctz->lock); 2646 css_put(&mz->memcg->css); 2647 loop++; 2648 /* 2649 * Could not reclaim anything and there are no more 2650 * mem cgroups to try or we seem to be looping without 2651 * reclaiming anything. 2652 */ 2653 if (!nr_reclaimed && 2654 (next_mz == NULL || 2655 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2656 break; 2657 } while (!nr_reclaimed); 2658 if (next_mz) 2659 css_put(&next_mz->memcg->css); 2660 return nr_reclaimed; 2661 } 2662 2663 /* 2664 * Test whether @memcg has children, dead or alive. Note that this 2665 * function doesn't care whether @memcg has use_hierarchy enabled and 2666 * returns %true if there are child csses according to the cgroup 2667 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2668 */ 2669 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2670 { 2671 bool ret; 2672 2673 rcu_read_lock(); 2674 ret = css_next_child(NULL, &memcg->css); 2675 rcu_read_unlock(); 2676 return ret; 2677 } 2678 2679 /* 2680 * Reclaims as many pages from the given memcg as possible and moves 2681 * the rest to the parent. 2682 * 2683 * Caller is responsible for holding css reference for memcg. 2684 */ 2685 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2686 { 2687 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2688 2689 /* we call try-to-free pages for make this cgroup empty */ 2690 lru_add_drain_all(); 2691 /* try to free all pages in this cgroup */ 2692 while (nr_retries && page_counter_read(&memcg->memory)) { 2693 int progress; 2694 2695 if (signal_pending(current)) 2696 return -EINTR; 2697 2698 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2699 GFP_KERNEL, true); 2700 if (!progress) { 2701 nr_retries--; 2702 /* maybe some writeback is necessary */ 2703 congestion_wait(BLK_RW_ASYNC, HZ/10); 2704 } 2705 2706 } 2707 2708 return 0; 2709 } 2710 2711 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2712 char *buf, size_t nbytes, 2713 loff_t off) 2714 { 2715 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2716 2717 if (mem_cgroup_is_root(memcg)) 2718 return -EINVAL; 2719 return mem_cgroup_force_empty(memcg) ?: nbytes; 2720 } 2721 2722 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2723 struct cftype *cft) 2724 { 2725 return mem_cgroup_from_css(css)->use_hierarchy; 2726 } 2727 2728 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2729 struct cftype *cft, u64 val) 2730 { 2731 int retval = 0; 2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2733 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2734 2735 if (memcg->use_hierarchy == val) 2736 return 0; 2737 2738 /* 2739 * If parent's use_hierarchy is set, we can't make any modifications 2740 * in the child subtrees. If it is unset, then the change can 2741 * occur, provided the current cgroup has no children. 2742 * 2743 * For the root cgroup, parent_mem is NULL, we allow value to be 2744 * set if there are no children. 2745 */ 2746 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2747 (val == 1 || val == 0)) { 2748 if (!memcg_has_children(memcg)) 2749 memcg->use_hierarchy = val; 2750 else 2751 retval = -EBUSY; 2752 } else 2753 retval = -EINVAL; 2754 2755 return retval; 2756 } 2757 2758 static unsigned long tree_stat(struct mem_cgroup *memcg, 2759 enum mem_cgroup_stat_index idx) 2760 { 2761 struct mem_cgroup *iter; 2762 unsigned long val = 0; 2763 2764 for_each_mem_cgroup_tree(iter, memcg) 2765 val += mem_cgroup_read_stat(iter, idx); 2766 2767 return val; 2768 } 2769 2770 static unsigned long tree_events(struct mem_cgroup *memcg, 2771 enum mem_cgroup_events_index idx) 2772 { 2773 struct mem_cgroup *iter; 2774 unsigned long val = 0; 2775 2776 for_each_mem_cgroup_tree(iter, memcg) 2777 val += mem_cgroup_read_events(iter, idx); 2778 2779 return val; 2780 } 2781 2782 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2783 { 2784 unsigned long val; 2785 2786 if (mem_cgroup_is_root(memcg)) { 2787 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE); 2788 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS); 2789 if (swap) 2790 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP); 2791 } else { 2792 if (!swap) 2793 val = page_counter_read(&memcg->memory); 2794 else 2795 val = page_counter_read(&memcg->memsw); 2796 } 2797 return val; 2798 } 2799 2800 enum { 2801 RES_USAGE, 2802 RES_LIMIT, 2803 RES_MAX_USAGE, 2804 RES_FAILCNT, 2805 RES_SOFT_LIMIT, 2806 }; 2807 2808 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2809 struct cftype *cft) 2810 { 2811 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2812 struct page_counter *counter; 2813 2814 switch (MEMFILE_TYPE(cft->private)) { 2815 case _MEM: 2816 counter = &memcg->memory; 2817 break; 2818 case _MEMSWAP: 2819 counter = &memcg->memsw; 2820 break; 2821 case _KMEM: 2822 counter = &memcg->kmem; 2823 break; 2824 case _TCP: 2825 counter = &memcg->tcpmem; 2826 break; 2827 default: 2828 BUG(); 2829 } 2830 2831 switch (MEMFILE_ATTR(cft->private)) { 2832 case RES_USAGE: 2833 if (counter == &memcg->memory) 2834 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2835 if (counter == &memcg->memsw) 2836 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2837 return (u64)page_counter_read(counter) * PAGE_SIZE; 2838 case RES_LIMIT: 2839 return (u64)counter->limit * PAGE_SIZE; 2840 case RES_MAX_USAGE: 2841 return (u64)counter->watermark * PAGE_SIZE; 2842 case RES_FAILCNT: 2843 return counter->failcnt; 2844 case RES_SOFT_LIMIT: 2845 return (u64)memcg->soft_limit * PAGE_SIZE; 2846 default: 2847 BUG(); 2848 } 2849 } 2850 2851 #ifndef CONFIG_SLOB 2852 static int memcg_online_kmem(struct mem_cgroup *memcg) 2853 { 2854 int memcg_id; 2855 2856 BUG_ON(memcg->kmemcg_id >= 0); 2857 BUG_ON(memcg->kmem_state); 2858 2859 memcg_id = memcg_alloc_cache_id(); 2860 if (memcg_id < 0) 2861 return memcg_id; 2862 2863 static_branch_inc(&memcg_kmem_enabled_key); 2864 /* 2865 * A memory cgroup is considered kmem-online as soon as it gets 2866 * kmemcg_id. Setting the id after enabling static branching will 2867 * guarantee no one starts accounting before all call sites are 2868 * patched. 2869 */ 2870 memcg->kmemcg_id = memcg_id; 2871 memcg->kmem_state = KMEM_ONLINE; 2872 2873 return 0; 2874 } 2875 2876 static int memcg_propagate_kmem(struct mem_cgroup *parent, 2877 struct mem_cgroup *memcg) 2878 { 2879 int ret = 0; 2880 2881 mutex_lock(&memcg_limit_mutex); 2882 /* 2883 * If the parent cgroup is not kmem-online now, it cannot be 2884 * onlined after this point, because it has at least one child 2885 * already. 2886 */ 2887 if (memcg_kmem_online(parent) || 2888 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem)) 2889 ret = memcg_online_kmem(memcg); 2890 mutex_unlock(&memcg_limit_mutex); 2891 return ret; 2892 } 2893 2894 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2895 { 2896 struct cgroup_subsys_state *css; 2897 struct mem_cgroup *parent, *child; 2898 int kmemcg_id; 2899 2900 if (memcg->kmem_state != KMEM_ONLINE) 2901 return; 2902 /* 2903 * Clear the online state before clearing memcg_caches array 2904 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2905 * guarantees that no cache will be created for this cgroup 2906 * after we are done (see memcg_create_kmem_cache()). 2907 */ 2908 memcg->kmem_state = KMEM_ALLOCATED; 2909 2910 memcg_deactivate_kmem_caches(memcg); 2911 2912 kmemcg_id = memcg->kmemcg_id; 2913 BUG_ON(kmemcg_id < 0); 2914 2915 parent = parent_mem_cgroup(memcg); 2916 if (!parent) 2917 parent = root_mem_cgroup; 2918 2919 /* 2920 * Change kmemcg_id of this cgroup and all its descendants to the 2921 * parent's id, and then move all entries from this cgroup's list_lrus 2922 * to ones of the parent. After we have finished, all list_lrus 2923 * corresponding to this cgroup are guaranteed to remain empty. The 2924 * ordering is imposed by list_lru_node->lock taken by 2925 * memcg_drain_all_list_lrus(). 2926 */ 2927 css_for_each_descendant_pre(css, &memcg->css) { 2928 child = mem_cgroup_from_css(css); 2929 BUG_ON(child->kmemcg_id != kmemcg_id); 2930 child->kmemcg_id = parent->kmemcg_id; 2931 if (!memcg->use_hierarchy) 2932 break; 2933 } 2934 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2935 2936 memcg_free_cache_id(kmemcg_id); 2937 } 2938 2939 static void memcg_free_kmem(struct mem_cgroup *memcg) 2940 { 2941 /* css_alloc() failed, offlining didn't happen */ 2942 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2943 memcg_offline_kmem(memcg); 2944 2945 if (memcg->kmem_state == KMEM_ALLOCATED) { 2946 memcg_destroy_kmem_caches(memcg); 2947 static_branch_dec(&memcg_kmem_enabled_key); 2948 WARN_ON(page_counter_read(&memcg->kmem)); 2949 } 2950 } 2951 #else 2952 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg) 2953 { 2954 return 0; 2955 } 2956 static int memcg_online_kmem(struct mem_cgroup *memcg) 2957 { 2958 return 0; 2959 } 2960 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2961 { 2962 } 2963 static void memcg_free_kmem(struct mem_cgroup *memcg) 2964 { 2965 } 2966 #endif /* !CONFIG_SLOB */ 2967 2968 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2969 unsigned long limit) 2970 { 2971 int ret = 0; 2972 2973 mutex_lock(&memcg_limit_mutex); 2974 /* Top-level cgroup doesn't propagate from root */ 2975 if (!memcg_kmem_online(memcg)) { 2976 if (cgroup_is_populated(memcg->css.cgroup) || 2977 (memcg->use_hierarchy && memcg_has_children(memcg))) 2978 ret = -EBUSY; 2979 if (ret) 2980 goto out; 2981 ret = memcg_online_kmem(memcg); 2982 if (ret) 2983 goto out; 2984 } 2985 ret = page_counter_limit(&memcg->kmem, limit); 2986 out: 2987 mutex_unlock(&memcg_limit_mutex); 2988 return ret; 2989 } 2990 2991 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2992 { 2993 int ret; 2994 2995 mutex_lock(&memcg_limit_mutex); 2996 2997 ret = page_counter_limit(&memcg->tcpmem, limit); 2998 if (ret) 2999 goto out; 3000 3001 if (!memcg->tcpmem_active) { 3002 /* 3003 * The active flag needs to be written after the static_key 3004 * update. This is what guarantees that the socket activation 3005 * function is the last one to run. See sock_update_memcg() for 3006 * details, and note that we don't mark any socket as belonging 3007 * to this memcg until that flag is up. 3008 * 3009 * We need to do this, because static_keys will span multiple 3010 * sites, but we can't control their order. If we mark a socket 3011 * as accounted, but the accounting functions are not patched in 3012 * yet, we'll lose accounting. 3013 * 3014 * We never race with the readers in sock_update_memcg(), 3015 * because when this value change, the code to process it is not 3016 * patched in yet. 3017 */ 3018 static_branch_inc(&memcg_sockets_enabled_key); 3019 memcg->tcpmem_active = true; 3020 } 3021 out: 3022 mutex_unlock(&memcg_limit_mutex); 3023 return ret; 3024 } 3025 3026 /* 3027 * The user of this function is... 3028 * RES_LIMIT. 3029 */ 3030 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3031 char *buf, size_t nbytes, loff_t off) 3032 { 3033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3034 unsigned long nr_pages; 3035 int ret; 3036 3037 buf = strstrip(buf); 3038 ret = page_counter_memparse(buf, "-1", &nr_pages); 3039 if (ret) 3040 return ret; 3041 3042 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3043 case RES_LIMIT: 3044 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3045 ret = -EINVAL; 3046 break; 3047 } 3048 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3049 case _MEM: 3050 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3051 break; 3052 case _MEMSWAP: 3053 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3054 break; 3055 case _KMEM: 3056 ret = memcg_update_kmem_limit(memcg, nr_pages); 3057 break; 3058 case _TCP: 3059 ret = memcg_update_tcp_limit(memcg, nr_pages); 3060 break; 3061 } 3062 break; 3063 case RES_SOFT_LIMIT: 3064 memcg->soft_limit = nr_pages; 3065 ret = 0; 3066 break; 3067 } 3068 return ret ?: nbytes; 3069 } 3070 3071 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3072 size_t nbytes, loff_t off) 3073 { 3074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3075 struct page_counter *counter; 3076 3077 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3078 case _MEM: 3079 counter = &memcg->memory; 3080 break; 3081 case _MEMSWAP: 3082 counter = &memcg->memsw; 3083 break; 3084 case _KMEM: 3085 counter = &memcg->kmem; 3086 break; 3087 case _TCP: 3088 counter = &memcg->tcpmem; 3089 break; 3090 default: 3091 BUG(); 3092 } 3093 3094 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3095 case RES_MAX_USAGE: 3096 page_counter_reset_watermark(counter); 3097 break; 3098 case RES_FAILCNT: 3099 counter->failcnt = 0; 3100 break; 3101 default: 3102 BUG(); 3103 } 3104 3105 return nbytes; 3106 } 3107 3108 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3109 struct cftype *cft) 3110 { 3111 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3112 } 3113 3114 #ifdef CONFIG_MMU 3115 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3116 struct cftype *cft, u64 val) 3117 { 3118 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3119 3120 if (val & ~MOVE_MASK) 3121 return -EINVAL; 3122 3123 /* 3124 * No kind of locking is needed in here, because ->can_attach() will 3125 * check this value once in the beginning of the process, and then carry 3126 * on with stale data. This means that changes to this value will only 3127 * affect task migrations starting after the change. 3128 */ 3129 memcg->move_charge_at_immigrate = val; 3130 return 0; 3131 } 3132 #else 3133 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3134 struct cftype *cft, u64 val) 3135 { 3136 return -ENOSYS; 3137 } 3138 #endif 3139 3140 #ifdef CONFIG_NUMA 3141 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3142 { 3143 struct numa_stat { 3144 const char *name; 3145 unsigned int lru_mask; 3146 }; 3147 3148 static const struct numa_stat stats[] = { 3149 { "total", LRU_ALL }, 3150 { "file", LRU_ALL_FILE }, 3151 { "anon", LRU_ALL_ANON }, 3152 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3153 }; 3154 const struct numa_stat *stat; 3155 int nid; 3156 unsigned long nr; 3157 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3158 3159 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3160 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3161 seq_printf(m, "%s=%lu", stat->name, nr); 3162 for_each_node_state(nid, N_MEMORY) { 3163 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3164 stat->lru_mask); 3165 seq_printf(m, " N%d=%lu", nid, nr); 3166 } 3167 seq_putc(m, '\n'); 3168 } 3169 3170 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3171 struct mem_cgroup *iter; 3172 3173 nr = 0; 3174 for_each_mem_cgroup_tree(iter, memcg) 3175 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3176 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3177 for_each_node_state(nid, N_MEMORY) { 3178 nr = 0; 3179 for_each_mem_cgroup_tree(iter, memcg) 3180 nr += mem_cgroup_node_nr_lru_pages( 3181 iter, nid, stat->lru_mask); 3182 seq_printf(m, " N%d=%lu", nid, nr); 3183 } 3184 seq_putc(m, '\n'); 3185 } 3186 3187 return 0; 3188 } 3189 #endif /* CONFIG_NUMA */ 3190 3191 static int memcg_stat_show(struct seq_file *m, void *v) 3192 { 3193 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3194 unsigned long memory, memsw; 3195 struct mem_cgroup *mi; 3196 unsigned int i; 3197 3198 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3199 MEM_CGROUP_STAT_NSTATS); 3200 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3201 MEM_CGROUP_EVENTS_NSTATS); 3202 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3203 3204 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3205 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3206 continue; 3207 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3208 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3209 } 3210 3211 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3212 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3213 mem_cgroup_read_events(memcg, i)); 3214 3215 for (i = 0; i < NR_LRU_LISTS; i++) 3216 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3217 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3218 3219 /* Hierarchical information */ 3220 memory = memsw = PAGE_COUNTER_MAX; 3221 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3222 memory = min(memory, mi->memory.limit); 3223 memsw = min(memsw, mi->memsw.limit); 3224 } 3225 seq_printf(m, "hierarchical_memory_limit %llu\n", 3226 (u64)memory * PAGE_SIZE); 3227 if (do_memsw_account()) 3228 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3229 (u64)memsw * PAGE_SIZE); 3230 3231 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3232 unsigned long long val = 0; 3233 3234 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3235 continue; 3236 for_each_mem_cgroup_tree(mi, memcg) 3237 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3238 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3239 } 3240 3241 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3242 unsigned long long val = 0; 3243 3244 for_each_mem_cgroup_tree(mi, memcg) 3245 val += mem_cgroup_read_events(mi, i); 3246 seq_printf(m, "total_%s %llu\n", 3247 mem_cgroup_events_names[i], val); 3248 } 3249 3250 for (i = 0; i < NR_LRU_LISTS; i++) { 3251 unsigned long long val = 0; 3252 3253 for_each_mem_cgroup_tree(mi, memcg) 3254 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3255 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3256 } 3257 3258 #ifdef CONFIG_DEBUG_VM 3259 { 3260 int nid, zid; 3261 struct mem_cgroup_per_zone *mz; 3262 struct zone_reclaim_stat *rstat; 3263 unsigned long recent_rotated[2] = {0, 0}; 3264 unsigned long recent_scanned[2] = {0, 0}; 3265 3266 for_each_online_node(nid) 3267 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3268 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3269 rstat = &mz->lruvec.reclaim_stat; 3270 3271 recent_rotated[0] += rstat->recent_rotated[0]; 3272 recent_rotated[1] += rstat->recent_rotated[1]; 3273 recent_scanned[0] += rstat->recent_scanned[0]; 3274 recent_scanned[1] += rstat->recent_scanned[1]; 3275 } 3276 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3277 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3278 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3279 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3280 } 3281 #endif 3282 3283 return 0; 3284 } 3285 3286 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3287 struct cftype *cft) 3288 { 3289 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3290 3291 return mem_cgroup_swappiness(memcg); 3292 } 3293 3294 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3295 struct cftype *cft, u64 val) 3296 { 3297 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3298 3299 if (val > 100) 3300 return -EINVAL; 3301 3302 if (css->parent) 3303 memcg->swappiness = val; 3304 else 3305 vm_swappiness = val; 3306 3307 return 0; 3308 } 3309 3310 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3311 { 3312 struct mem_cgroup_threshold_ary *t; 3313 unsigned long usage; 3314 int i; 3315 3316 rcu_read_lock(); 3317 if (!swap) 3318 t = rcu_dereference(memcg->thresholds.primary); 3319 else 3320 t = rcu_dereference(memcg->memsw_thresholds.primary); 3321 3322 if (!t) 3323 goto unlock; 3324 3325 usage = mem_cgroup_usage(memcg, swap); 3326 3327 /* 3328 * current_threshold points to threshold just below or equal to usage. 3329 * If it's not true, a threshold was crossed after last 3330 * call of __mem_cgroup_threshold(). 3331 */ 3332 i = t->current_threshold; 3333 3334 /* 3335 * Iterate backward over array of thresholds starting from 3336 * current_threshold and check if a threshold is crossed. 3337 * If none of thresholds below usage is crossed, we read 3338 * only one element of the array here. 3339 */ 3340 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3341 eventfd_signal(t->entries[i].eventfd, 1); 3342 3343 /* i = current_threshold + 1 */ 3344 i++; 3345 3346 /* 3347 * Iterate forward over array of thresholds starting from 3348 * current_threshold+1 and check if a threshold is crossed. 3349 * If none of thresholds above usage is crossed, we read 3350 * only one element of the array here. 3351 */ 3352 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3353 eventfd_signal(t->entries[i].eventfd, 1); 3354 3355 /* Update current_threshold */ 3356 t->current_threshold = i - 1; 3357 unlock: 3358 rcu_read_unlock(); 3359 } 3360 3361 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3362 { 3363 while (memcg) { 3364 __mem_cgroup_threshold(memcg, false); 3365 if (do_memsw_account()) 3366 __mem_cgroup_threshold(memcg, true); 3367 3368 memcg = parent_mem_cgroup(memcg); 3369 } 3370 } 3371 3372 static int compare_thresholds(const void *a, const void *b) 3373 { 3374 const struct mem_cgroup_threshold *_a = a; 3375 const struct mem_cgroup_threshold *_b = b; 3376 3377 if (_a->threshold > _b->threshold) 3378 return 1; 3379 3380 if (_a->threshold < _b->threshold) 3381 return -1; 3382 3383 return 0; 3384 } 3385 3386 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3387 { 3388 struct mem_cgroup_eventfd_list *ev; 3389 3390 spin_lock(&memcg_oom_lock); 3391 3392 list_for_each_entry(ev, &memcg->oom_notify, list) 3393 eventfd_signal(ev->eventfd, 1); 3394 3395 spin_unlock(&memcg_oom_lock); 3396 return 0; 3397 } 3398 3399 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3400 { 3401 struct mem_cgroup *iter; 3402 3403 for_each_mem_cgroup_tree(iter, memcg) 3404 mem_cgroup_oom_notify_cb(iter); 3405 } 3406 3407 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3408 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3409 { 3410 struct mem_cgroup_thresholds *thresholds; 3411 struct mem_cgroup_threshold_ary *new; 3412 unsigned long threshold; 3413 unsigned long usage; 3414 int i, size, ret; 3415 3416 ret = page_counter_memparse(args, "-1", &threshold); 3417 if (ret) 3418 return ret; 3419 3420 mutex_lock(&memcg->thresholds_lock); 3421 3422 if (type == _MEM) { 3423 thresholds = &memcg->thresholds; 3424 usage = mem_cgroup_usage(memcg, false); 3425 } else if (type == _MEMSWAP) { 3426 thresholds = &memcg->memsw_thresholds; 3427 usage = mem_cgroup_usage(memcg, true); 3428 } else 3429 BUG(); 3430 3431 /* Check if a threshold crossed before adding a new one */ 3432 if (thresholds->primary) 3433 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3434 3435 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3436 3437 /* Allocate memory for new array of thresholds */ 3438 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3439 GFP_KERNEL); 3440 if (!new) { 3441 ret = -ENOMEM; 3442 goto unlock; 3443 } 3444 new->size = size; 3445 3446 /* Copy thresholds (if any) to new array */ 3447 if (thresholds->primary) { 3448 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3449 sizeof(struct mem_cgroup_threshold)); 3450 } 3451 3452 /* Add new threshold */ 3453 new->entries[size - 1].eventfd = eventfd; 3454 new->entries[size - 1].threshold = threshold; 3455 3456 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3457 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3458 compare_thresholds, NULL); 3459 3460 /* Find current threshold */ 3461 new->current_threshold = -1; 3462 for (i = 0; i < size; i++) { 3463 if (new->entries[i].threshold <= usage) { 3464 /* 3465 * new->current_threshold will not be used until 3466 * rcu_assign_pointer(), so it's safe to increment 3467 * it here. 3468 */ 3469 ++new->current_threshold; 3470 } else 3471 break; 3472 } 3473 3474 /* Free old spare buffer and save old primary buffer as spare */ 3475 kfree(thresholds->spare); 3476 thresholds->spare = thresholds->primary; 3477 3478 rcu_assign_pointer(thresholds->primary, new); 3479 3480 /* To be sure that nobody uses thresholds */ 3481 synchronize_rcu(); 3482 3483 unlock: 3484 mutex_unlock(&memcg->thresholds_lock); 3485 3486 return ret; 3487 } 3488 3489 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3490 struct eventfd_ctx *eventfd, const char *args) 3491 { 3492 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3493 } 3494 3495 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3496 struct eventfd_ctx *eventfd, const char *args) 3497 { 3498 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3499 } 3500 3501 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3502 struct eventfd_ctx *eventfd, enum res_type type) 3503 { 3504 struct mem_cgroup_thresholds *thresholds; 3505 struct mem_cgroup_threshold_ary *new; 3506 unsigned long usage; 3507 int i, j, size; 3508 3509 mutex_lock(&memcg->thresholds_lock); 3510 3511 if (type == _MEM) { 3512 thresholds = &memcg->thresholds; 3513 usage = mem_cgroup_usage(memcg, false); 3514 } else if (type == _MEMSWAP) { 3515 thresholds = &memcg->memsw_thresholds; 3516 usage = mem_cgroup_usage(memcg, true); 3517 } else 3518 BUG(); 3519 3520 if (!thresholds->primary) 3521 goto unlock; 3522 3523 /* Check if a threshold crossed before removing */ 3524 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3525 3526 /* Calculate new number of threshold */ 3527 size = 0; 3528 for (i = 0; i < thresholds->primary->size; i++) { 3529 if (thresholds->primary->entries[i].eventfd != eventfd) 3530 size++; 3531 } 3532 3533 new = thresholds->spare; 3534 3535 /* Set thresholds array to NULL if we don't have thresholds */ 3536 if (!size) { 3537 kfree(new); 3538 new = NULL; 3539 goto swap_buffers; 3540 } 3541 3542 new->size = size; 3543 3544 /* Copy thresholds and find current threshold */ 3545 new->current_threshold = -1; 3546 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3547 if (thresholds->primary->entries[i].eventfd == eventfd) 3548 continue; 3549 3550 new->entries[j] = thresholds->primary->entries[i]; 3551 if (new->entries[j].threshold <= usage) { 3552 /* 3553 * new->current_threshold will not be used 3554 * until rcu_assign_pointer(), so it's safe to increment 3555 * it here. 3556 */ 3557 ++new->current_threshold; 3558 } 3559 j++; 3560 } 3561 3562 swap_buffers: 3563 /* Swap primary and spare array */ 3564 thresholds->spare = thresholds->primary; 3565 3566 rcu_assign_pointer(thresholds->primary, new); 3567 3568 /* To be sure that nobody uses thresholds */ 3569 synchronize_rcu(); 3570 3571 /* If all events are unregistered, free the spare array */ 3572 if (!new) { 3573 kfree(thresholds->spare); 3574 thresholds->spare = NULL; 3575 } 3576 unlock: 3577 mutex_unlock(&memcg->thresholds_lock); 3578 } 3579 3580 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3581 struct eventfd_ctx *eventfd) 3582 { 3583 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3584 } 3585 3586 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3587 struct eventfd_ctx *eventfd) 3588 { 3589 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3590 } 3591 3592 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3593 struct eventfd_ctx *eventfd, const char *args) 3594 { 3595 struct mem_cgroup_eventfd_list *event; 3596 3597 event = kmalloc(sizeof(*event), GFP_KERNEL); 3598 if (!event) 3599 return -ENOMEM; 3600 3601 spin_lock(&memcg_oom_lock); 3602 3603 event->eventfd = eventfd; 3604 list_add(&event->list, &memcg->oom_notify); 3605 3606 /* already in OOM ? */ 3607 if (memcg->under_oom) 3608 eventfd_signal(eventfd, 1); 3609 spin_unlock(&memcg_oom_lock); 3610 3611 return 0; 3612 } 3613 3614 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3615 struct eventfd_ctx *eventfd) 3616 { 3617 struct mem_cgroup_eventfd_list *ev, *tmp; 3618 3619 spin_lock(&memcg_oom_lock); 3620 3621 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3622 if (ev->eventfd == eventfd) { 3623 list_del(&ev->list); 3624 kfree(ev); 3625 } 3626 } 3627 3628 spin_unlock(&memcg_oom_lock); 3629 } 3630 3631 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3632 { 3633 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3634 3635 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3636 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3637 return 0; 3638 } 3639 3640 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3641 struct cftype *cft, u64 val) 3642 { 3643 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3644 3645 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3646 if (!css->parent || !((val == 0) || (val == 1))) 3647 return -EINVAL; 3648 3649 memcg->oom_kill_disable = val; 3650 if (!val) 3651 memcg_oom_recover(memcg); 3652 3653 return 0; 3654 } 3655 3656 #ifdef CONFIG_CGROUP_WRITEBACK 3657 3658 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3659 { 3660 return &memcg->cgwb_list; 3661 } 3662 3663 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3664 { 3665 return wb_domain_init(&memcg->cgwb_domain, gfp); 3666 } 3667 3668 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3669 { 3670 wb_domain_exit(&memcg->cgwb_domain); 3671 } 3672 3673 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3674 { 3675 wb_domain_size_changed(&memcg->cgwb_domain); 3676 } 3677 3678 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3679 { 3680 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3681 3682 if (!memcg->css.parent) 3683 return NULL; 3684 3685 return &memcg->cgwb_domain; 3686 } 3687 3688 /** 3689 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3690 * @wb: bdi_writeback in question 3691 * @pfilepages: out parameter for number of file pages 3692 * @pheadroom: out parameter for number of allocatable pages according to memcg 3693 * @pdirty: out parameter for number of dirty pages 3694 * @pwriteback: out parameter for number of pages under writeback 3695 * 3696 * Determine the numbers of file, headroom, dirty, and writeback pages in 3697 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3698 * is a bit more involved. 3699 * 3700 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3701 * headroom is calculated as the lowest headroom of itself and the 3702 * ancestors. Note that this doesn't consider the actual amount of 3703 * available memory in the system. The caller should further cap 3704 * *@pheadroom accordingly. 3705 */ 3706 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3707 unsigned long *pheadroom, unsigned long *pdirty, 3708 unsigned long *pwriteback) 3709 { 3710 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3711 struct mem_cgroup *parent; 3712 3713 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3714 3715 /* this should eventually include NR_UNSTABLE_NFS */ 3716 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3717 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3718 (1 << LRU_ACTIVE_FILE)); 3719 *pheadroom = PAGE_COUNTER_MAX; 3720 3721 while ((parent = parent_mem_cgroup(memcg))) { 3722 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3723 unsigned long used = page_counter_read(&memcg->memory); 3724 3725 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3726 memcg = parent; 3727 } 3728 } 3729 3730 #else /* CONFIG_CGROUP_WRITEBACK */ 3731 3732 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3733 { 3734 return 0; 3735 } 3736 3737 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3738 { 3739 } 3740 3741 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3742 { 3743 } 3744 3745 #endif /* CONFIG_CGROUP_WRITEBACK */ 3746 3747 /* 3748 * DO NOT USE IN NEW FILES. 3749 * 3750 * "cgroup.event_control" implementation. 3751 * 3752 * This is way over-engineered. It tries to support fully configurable 3753 * events for each user. Such level of flexibility is completely 3754 * unnecessary especially in the light of the planned unified hierarchy. 3755 * 3756 * Please deprecate this and replace with something simpler if at all 3757 * possible. 3758 */ 3759 3760 /* 3761 * Unregister event and free resources. 3762 * 3763 * Gets called from workqueue. 3764 */ 3765 static void memcg_event_remove(struct work_struct *work) 3766 { 3767 struct mem_cgroup_event *event = 3768 container_of(work, struct mem_cgroup_event, remove); 3769 struct mem_cgroup *memcg = event->memcg; 3770 3771 remove_wait_queue(event->wqh, &event->wait); 3772 3773 event->unregister_event(memcg, event->eventfd); 3774 3775 /* Notify userspace the event is going away. */ 3776 eventfd_signal(event->eventfd, 1); 3777 3778 eventfd_ctx_put(event->eventfd); 3779 kfree(event); 3780 css_put(&memcg->css); 3781 } 3782 3783 /* 3784 * Gets called on POLLHUP on eventfd when user closes it. 3785 * 3786 * Called with wqh->lock held and interrupts disabled. 3787 */ 3788 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3789 int sync, void *key) 3790 { 3791 struct mem_cgroup_event *event = 3792 container_of(wait, struct mem_cgroup_event, wait); 3793 struct mem_cgroup *memcg = event->memcg; 3794 unsigned long flags = (unsigned long)key; 3795 3796 if (flags & POLLHUP) { 3797 /* 3798 * If the event has been detached at cgroup removal, we 3799 * can simply return knowing the other side will cleanup 3800 * for us. 3801 * 3802 * We can't race against event freeing since the other 3803 * side will require wqh->lock via remove_wait_queue(), 3804 * which we hold. 3805 */ 3806 spin_lock(&memcg->event_list_lock); 3807 if (!list_empty(&event->list)) { 3808 list_del_init(&event->list); 3809 /* 3810 * We are in atomic context, but cgroup_event_remove() 3811 * may sleep, so we have to call it in workqueue. 3812 */ 3813 schedule_work(&event->remove); 3814 } 3815 spin_unlock(&memcg->event_list_lock); 3816 } 3817 3818 return 0; 3819 } 3820 3821 static void memcg_event_ptable_queue_proc(struct file *file, 3822 wait_queue_head_t *wqh, poll_table *pt) 3823 { 3824 struct mem_cgroup_event *event = 3825 container_of(pt, struct mem_cgroup_event, pt); 3826 3827 event->wqh = wqh; 3828 add_wait_queue(wqh, &event->wait); 3829 } 3830 3831 /* 3832 * DO NOT USE IN NEW FILES. 3833 * 3834 * Parse input and register new cgroup event handler. 3835 * 3836 * Input must be in format '<event_fd> <control_fd> <args>'. 3837 * Interpretation of args is defined by control file implementation. 3838 */ 3839 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3840 char *buf, size_t nbytes, loff_t off) 3841 { 3842 struct cgroup_subsys_state *css = of_css(of); 3843 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3844 struct mem_cgroup_event *event; 3845 struct cgroup_subsys_state *cfile_css; 3846 unsigned int efd, cfd; 3847 struct fd efile; 3848 struct fd cfile; 3849 const char *name; 3850 char *endp; 3851 int ret; 3852 3853 buf = strstrip(buf); 3854 3855 efd = simple_strtoul(buf, &endp, 10); 3856 if (*endp != ' ') 3857 return -EINVAL; 3858 buf = endp + 1; 3859 3860 cfd = simple_strtoul(buf, &endp, 10); 3861 if ((*endp != ' ') && (*endp != '\0')) 3862 return -EINVAL; 3863 buf = endp + 1; 3864 3865 event = kzalloc(sizeof(*event), GFP_KERNEL); 3866 if (!event) 3867 return -ENOMEM; 3868 3869 event->memcg = memcg; 3870 INIT_LIST_HEAD(&event->list); 3871 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3872 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3873 INIT_WORK(&event->remove, memcg_event_remove); 3874 3875 efile = fdget(efd); 3876 if (!efile.file) { 3877 ret = -EBADF; 3878 goto out_kfree; 3879 } 3880 3881 event->eventfd = eventfd_ctx_fileget(efile.file); 3882 if (IS_ERR(event->eventfd)) { 3883 ret = PTR_ERR(event->eventfd); 3884 goto out_put_efile; 3885 } 3886 3887 cfile = fdget(cfd); 3888 if (!cfile.file) { 3889 ret = -EBADF; 3890 goto out_put_eventfd; 3891 } 3892 3893 /* the process need read permission on control file */ 3894 /* AV: shouldn't we check that it's been opened for read instead? */ 3895 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3896 if (ret < 0) 3897 goto out_put_cfile; 3898 3899 /* 3900 * Determine the event callbacks and set them in @event. This used 3901 * to be done via struct cftype but cgroup core no longer knows 3902 * about these events. The following is crude but the whole thing 3903 * is for compatibility anyway. 3904 * 3905 * DO NOT ADD NEW FILES. 3906 */ 3907 name = cfile.file->f_path.dentry->d_name.name; 3908 3909 if (!strcmp(name, "memory.usage_in_bytes")) { 3910 event->register_event = mem_cgroup_usage_register_event; 3911 event->unregister_event = mem_cgroup_usage_unregister_event; 3912 } else if (!strcmp(name, "memory.oom_control")) { 3913 event->register_event = mem_cgroup_oom_register_event; 3914 event->unregister_event = mem_cgroup_oom_unregister_event; 3915 } else if (!strcmp(name, "memory.pressure_level")) { 3916 event->register_event = vmpressure_register_event; 3917 event->unregister_event = vmpressure_unregister_event; 3918 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3919 event->register_event = memsw_cgroup_usage_register_event; 3920 event->unregister_event = memsw_cgroup_usage_unregister_event; 3921 } else { 3922 ret = -EINVAL; 3923 goto out_put_cfile; 3924 } 3925 3926 /* 3927 * Verify @cfile should belong to @css. Also, remaining events are 3928 * automatically removed on cgroup destruction but the removal is 3929 * asynchronous, so take an extra ref on @css. 3930 */ 3931 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3932 &memory_cgrp_subsys); 3933 ret = -EINVAL; 3934 if (IS_ERR(cfile_css)) 3935 goto out_put_cfile; 3936 if (cfile_css != css) { 3937 css_put(cfile_css); 3938 goto out_put_cfile; 3939 } 3940 3941 ret = event->register_event(memcg, event->eventfd, buf); 3942 if (ret) 3943 goto out_put_css; 3944 3945 efile.file->f_op->poll(efile.file, &event->pt); 3946 3947 spin_lock(&memcg->event_list_lock); 3948 list_add(&event->list, &memcg->event_list); 3949 spin_unlock(&memcg->event_list_lock); 3950 3951 fdput(cfile); 3952 fdput(efile); 3953 3954 return nbytes; 3955 3956 out_put_css: 3957 css_put(css); 3958 out_put_cfile: 3959 fdput(cfile); 3960 out_put_eventfd: 3961 eventfd_ctx_put(event->eventfd); 3962 out_put_efile: 3963 fdput(efile); 3964 out_kfree: 3965 kfree(event); 3966 3967 return ret; 3968 } 3969 3970 static struct cftype mem_cgroup_legacy_files[] = { 3971 { 3972 .name = "usage_in_bytes", 3973 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3974 .read_u64 = mem_cgroup_read_u64, 3975 }, 3976 { 3977 .name = "max_usage_in_bytes", 3978 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3979 .write = mem_cgroup_reset, 3980 .read_u64 = mem_cgroup_read_u64, 3981 }, 3982 { 3983 .name = "limit_in_bytes", 3984 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3985 .write = mem_cgroup_write, 3986 .read_u64 = mem_cgroup_read_u64, 3987 }, 3988 { 3989 .name = "soft_limit_in_bytes", 3990 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3991 .write = mem_cgroup_write, 3992 .read_u64 = mem_cgroup_read_u64, 3993 }, 3994 { 3995 .name = "failcnt", 3996 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3997 .write = mem_cgroup_reset, 3998 .read_u64 = mem_cgroup_read_u64, 3999 }, 4000 { 4001 .name = "stat", 4002 .seq_show = memcg_stat_show, 4003 }, 4004 { 4005 .name = "force_empty", 4006 .write = mem_cgroup_force_empty_write, 4007 }, 4008 { 4009 .name = "use_hierarchy", 4010 .write_u64 = mem_cgroup_hierarchy_write, 4011 .read_u64 = mem_cgroup_hierarchy_read, 4012 }, 4013 { 4014 .name = "cgroup.event_control", /* XXX: for compat */ 4015 .write = memcg_write_event_control, 4016 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4017 }, 4018 { 4019 .name = "swappiness", 4020 .read_u64 = mem_cgroup_swappiness_read, 4021 .write_u64 = mem_cgroup_swappiness_write, 4022 }, 4023 { 4024 .name = "move_charge_at_immigrate", 4025 .read_u64 = mem_cgroup_move_charge_read, 4026 .write_u64 = mem_cgroup_move_charge_write, 4027 }, 4028 { 4029 .name = "oom_control", 4030 .seq_show = mem_cgroup_oom_control_read, 4031 .write_u64 = mem_cgroup_oom_control_write, 4032 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4033 }, 4034 { 4035 .name = "pressure_level", 4036 }, 4037 #ifdef CONFIG_NUMA 4038 { 4039 .name = "numa_stat", 4040 .seq_show = memcg_numa_stat_show, 4041 }, 4042 #endif 4043 { 4044 .name = "kmem.limit_in_bytes", 4045 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4046 .write = mem_cgroup_write, 4047 .read_u64 = mem_cgroup_read_u64, 4048 }, 4049 { 4050 .name = "kmem.usage_in_bytes", 4051 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4052 .read_u64 = mem_cgroup_read_u64, 4053 }, 4054 { 4055 .name = "kmem.failcnt", 4056 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4057 .write = mem_cgroup_reset, 4058 .read_u64 = mem_cgroup_read_u64, 4059 }, 4060 { 4061 .name = "kmem.max_usage_in_bytes", 4062 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4063 .write = mem_cgroup_reset, 4064 .read_u64 = mem_cgroup_read_u64, 4065 }, 4066 #ifdef CONFIG_SLABINFO 4067 { 4068 .name = "kmem.slabinfo", 4069 .seq_start = slab_start, 4070 .seq_next = slab_next, 4071 .seq_stop = slab_stop, 4072 .seq_show = memcg_slab_show, 4073 }, 4074 #endif 4075 { 4076 .name = "kmem.tcp.limit_in_bytes", 4077 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4078 .write = mem_cgroup_write, 4079 .read_u64 = mem_cgroup_read_u64, 4080 }, 4081 { 4082 .name = "kmem.tcp.usage_in_bytes", 4083 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4084 .read_u64 = mem_cgroup_read_u64, 4085 }, 4086 { 4087 .name = "kmem.tcp.failcnt", 4088 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4089 .write = mem_cgroup_reset, 4090 .read_u64 = mem_cgroup_read_u64, 4091 }, 4092 { 4093 .name = "kmem.tcp.max_usage_in_bytes", 4094 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4095 .write = mem_cgroup_reset, 4096 .read_u64 = mem_cgroup_read_u64, 4097 }, 4098 { }, /* terminate */ 4099 }; 4100 4101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4102 { 4103 struct mem_cgroup_per_node *pn; 4104 struct mem_cgroup_per_zone *mz; 4105 int zone, tmp = node; 4106 /* 4107 * This routine is called against possible nodes. 4108 * But it's BUG to call kmalloc() against offline node. 4109 * 4110 * TODO: this routine can waste much memory for nodes which will 4111 * never be onlined. It's better to use memory hotplug callback 4112 * function. 4113 */ 4114 if (!node_state(node, N_NORMAL_MEMORY)) 4115 tmp = -1; 4116 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4117 if (!pn) 4118 return 1; 4119 4120 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4121 mz = &pn->zoneinfo[zone]; 4122 lruvec_init(&mz->lruvec); 4123 mz->usage_in_excess = 0; 4124 mz->on_tree = false; 4125 mz->memcg = memcg; 4126 } 4127 memcg->nodeinfo[node] = pn; 4128 return 0; 4129 } 4130 4131 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4132 { 4133 kfree(memcg->nodeinfo[node]); 4134 } 4135 4136 static void mem_cgroup_free(struct mem_cgroup *memcg) 4137 { 4138 int node; 4139 4140 memcg_wb_domain_exit(memcg); 4141 for_each_node(node) 4142 free_mem_cgroup_per_zone_info(memcg, node); 4143 free_percpu(memcg->stat); 4144 kfree(memcg); 4145 } 4146 4147 static struct mem_cgroup *mem_cgroup_alloc(void) 4148 { 4149 struct mem_cgroup *memcg; 4150 size_t size; 4151 int node; 4152 4153 size = sizeof(struct mem_cgroup); 4154 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4155 4156 memcg = kzalloc(size, GFP_KERNEL); 4157 if (!memcg) 4158 return NULL; 4159 4160 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4161 if (!memcg->stat) 4162 goto fail; 4163 4164 for_each_node(node) 4165 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4166 goto fail; 4167 4168 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4169 goto fail; 4170 4171 INIT_WORK(&memcg->high_work, high_work_func); 4172 memcg->last_scanned_node = MAX_NUMNODES; 4173 INIT_LIST_HEAD(&memcg->oom_notify); 4174 mutex_init(&memcg->thresholds_lock); 4175 spin_lock_init(&memcg->move_lock); 4176 vmpressure_init(&memcg->vmpressure); 4177 INIT_LIST_HEAD(&memcg->event_list); 4178 spin_lock_init(&memcg->event_list_lock); 4179 memcg->socket_pressure = jiffies; 4180 #ifndef CONFIG_SLOB 4181 memcg->kmemcg_id = -1; 4182 #endif 4183 #ifdef CONFIG_CGROUP_WRITEBACK 4184 INIT_LIST_HEAD(&memcg->cgwb_list); 4185 #endif 4186 return memcg; 4187 fail: 4188 mem_cgroup_free(memcg); 4189 return NULL; 4190 } 4191 4192 static struct cgroup_subsys_state * __ref 4193 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4194 { 4195 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4196 struct mem_cgroup *memcg; 4197 long error = -ENOMEM; 4198 4199 memcg = mem_cgroup_alloc(); 4200 if (!memcg) 4201 return ERR_PTR(error); 4202 4203 memcg->high = PAGE_COUNTER_MAX; 4204 memcg->soft_limit = PAGE_COUNTER_MAX; 4205 if (parent) { 4206 memcg->swappiness = mem_cgroup_swappiness(parent); 4207 memcg->oom_kill_disable = parent->oom_kill_disable; 4208 } 4209 if (parent && parent->use_hierarchy) { 4210 memcg->use_hierarchy = true; 4211 page_counter_init(&memcg->memory, &parent->memory); 4212 page_counter_init(&memcg->swap, &parent->swap); 4213 page_counter_init(&memcg->memsw, &parent->memsw); 4214 page_counter_init(&memcg->kmem, &parent->kmem); 4215 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4216 } else { 4217 page_counter_init(&memcg->memory, NULL); 4218 page_counter_init(&memcg->swap, NULL); 4219 page_counter_init(&memcg->memsw, NULL); 4220 page_counter_init(&memcg->kmem, NULL); 4221 page_counter_init(&memcg->tcpmem, NULL); 4222 /* 4223 * Deeper hierachy with use_hierarchy == false doesn't make 4224 * much sense so let cgroup subsystem know about this 4225 * unfortunate state in our controller. 4226 */ 4227 if (parent != root_mem_cgroup) 4228 memory_cgrp_subsys.broken_hierarchy = true; 4229 } 4230 4231 /* The following stuff does not apply to the root */ 4232 if (!parent) { 4233 root_mem_cgroup = memcg; 4234 return &memcg->css; 4235 } 4236 4237 error = memcg_propagate_kmem(parent, memcg); 4238 if (error) 4239 goto fail; 4240 4241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4242 static_branch_inc(&memcg_sockets_enabled_key); 4243 4244 return &memcg->css; 4245 fail: 4246 mem_cgroup_free(memcg); 4247 return NULL; 4248 } 4249 4250 static int 4251 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4252 { 4253 if (css->id > MEM_CGROUP_ID_MAX) 4254 return -ENOSPC; 4255 4256 return 0; 4257 } 4258 4259 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4260 { 4261 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4262 struct mem_cgroup_event *event, *tmp; 4263 4264 /* 4265 * Unregister events and notify userspace. 4266 * Notify userspace about cgroup removing only after rmdir of cgroup 4267 * directory to avoid race between userspace and kernelspace. 4268 */ 4269 spin_lock(&memcg->event_list_lock); 4270 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4271 list_del_init(&event->list); 4272 schedule_work(&event->remove); 4273 } 4274 spin_unlock(&memcg->event_list_lock); 4275 4276 memcg_offline_kmem(memcg); 4277 wb_memcg_offline(memcg); 4278 } 4279 4280 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4281 { 4282 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4283 4284 invalidate_reclaim_iterators(memcg); 4285 } 4286 4287 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4288 { 4289 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4290 4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4292 static_branch_dec(&memcg_sockets_enabled_key); 4293 4294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4295 static_branch_dec(&memcg_sockets_enabled_key); 4296 4297 vmpressure_cleanup(&memcg->vmpressure); 4298 cancel_work_sync(&memcg->high_work); 4299 mem_cgroup_remove_from_trees(memcg); 4300 memcg_free_kmem(memcg); 4301 mem_cgroup_free(memcg); 4302 } 4303 4304 /** 4305 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4306 * @css: the target css 4307 * 4308 * Reset the states of the mem_cgroup associated with @css. This is 4309 * invoked when the userland requests disabling on the default hierarchy 4310 * but the memcg is pinned through dependency. The memcg should stop 4311 * applying policies and should revert to the vanilla state as it may be 4312 * made visible again. 4313 * 4314 * The current implementation only resets the essential configurations. 4315 * This needs to be expanded to cover all the visible parts. 4316 */ 4317 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4318 { 4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4320 4321 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX); 4322 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX); 4323 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX); 4324 memcg->low = 0; 4325 memcg->high = PAGE_COUNTER_MAX; 4326 memcg->soft_limit = PAGE_COUNTER_MAX; 4327 memcg_wb_domain_size_changed(memcg); 4328 } 4329 4330 #ifdef CONFIG_MMU 4331 /* Handlers for move charge at task migration. */ 4332 static int mem_cgroup_do_precharge(unsigned long count) 4333 { 4334 int ret; 4335 4336 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4337 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4338 if (!ret) { 4339 mc.precharge += count; 4340 return ret; 4341 } 4342 4343 /* Try charges one by one with reclaim */ 4344 while (count--) { 4345 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4346 if (ret) 4347 return ret; 4348 mc.precharge++; 4349 cond_resched(); 4350 } 4351 return 0; 4352 } 4353 4354 /** 4355 * get_mctgt_type - get target type of moving charge 4356 * @vma: the vma the pte to be checked belongs 4357 * @addr: the address corresponding to the pte to be checked 4358 * @ptent: the pte to be checked 4359 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4360 * 4361 * Returns 4362 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4363 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4364 * move charge. if @target is not NULL, the page is stored in target->page 4365 * with extra refcnt got(Callers should handle it). 4366 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4367 * target for charge migration. if @target is not NULL, the entry is stored 4368 * in target->ent. 4369 * 4370 * Called with pte lock held. 4371 */ 4372 union mc_target { 4373 struct page *page; 4374 swp_entry_t ent; 4375 }; 4376 4377 enum mc_target_type { 4378 MC_TARGET_NONE = 0, 4379 MC_TARGET_PAGE, 4380 MC_TARGET_SWAP, 4381 }; 4382 4383 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4384 unsigned long addr, pte_t ptent) 4385 { 4386 struct page *page = vm_normal_page(vma, addr, ptent); 4387 4388 if (!page || !page_mapped(page)) 4389 return NULL; 4390 if (PageAnon(page)) { 4391 if (!(mc.flags & MOVE_ANON)) 4392 return NULL; 4393 } else { 4394 if (!(mc.flags & MOVE_FILE)) 4395 return NULL; 4396 } 4397 if (!get_page_unless_zero(page)) 4398 return NULL; 4399 4400 return page; 4401 } 4402 4403 #ifdef CONFIG_SWAP 4404 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4405 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4406 { 4407 struct page *page = NULL; 4408 swp_entry_t ent = pte_to_swp_entry(ptent); 4409 4410 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4411 return NULL; 4412 /* 4413 * Because lookup_swap_cache() updates some statistics counter, 4414 * we call find_get_page() with swapper_space directly. 4415 */ 4416 page = find_get_page(swap_address_space(ent), ent.val); 4417 if (do_memsw_account()) 4418 entry->val = ent.val; 4419 4420 return page; 4421 } 4422 #else 4423 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4424 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4425 { 4426 return NULL; 4427 } 4428 #endif 4429 4430 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4431 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4432 { 4433 struct page *page = NULL; 4434 struct address_space *mapping; 4435 pgoff_t pgoff; 4436 4437 if (!vma->vm_file) /* anonymous vma */ 4438 return NULL; 4439 if (!(mc.flags & MOVE_FILE)) 4440 return NULL; 4441 4442 mapping = vma->vm_file->f_mapping; 4443 pgoff = linear_page_index(vma, addr); 4444 4445 /* page is moved even if it's not RSS of this task(page-faulted). */ 4446 #ifdef CONFIG_SWAP 4447 /* shmem/tmpfs may report page out on swap: account for that too. */ 4448 if (shmem_mapping(mapping)) { 4449 page = find_get_entry(mapping, pgoff); 4450 if (radix_tree_exceptional_entry(page)) { 4451 swp_entry_t swp = radix_to_swp_entry(page); 4452 if (do_memsw_account()) 4453 *entry = swp; 4454 page = find_get_page(swap_address_space(swp), swp.val); 4455 } 4456 } else 4457 page = find_get_page(mapping, pgoff); 4458 #else 4459 page = find_get_page(mapping, pgoff); 4460 #endif 4461 return page; 4462 } 4463 4464 /** 4465 * mem_cgroup_move_account - move account of the page 4466 * @page: the page 4467 * @nr_pages: number of regular pages (>1 for huge pages) 4468 * @from: mem_cgroup which the page is moved from. 4469 * @to: mem_cgroup which the page is moved to. @from != @to. 4470 * 4471 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4472 * 4473 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4474 * from old cgroup. 4475 */ 4476 static int mem_cgroup_move_account(struct page *page, 4477 bool compound, 4478 struct mem_cgroup *from, 4479 struct mem_cgroup *to) 4480 { 4481 unsigned long flags; 4482 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4483 int ret; 4484 bool anon; 4485 4486 VM_BUG_ON(from == to); 4487 VM_BUG_ON_PAGE(PageLRU(page), page); 4488 VM_BUG_ON(compound && !PageTransHuge(page)); 4489 4490 /* 4491 * Prevent mem_cgroup_replace_page() from looking at 4492 * page->mem_cgroup of its source page while we change it. 4493 */ 4494 ret = -EBUSY; 4495 if (!trylock_page(page)) 4496 goto out; 4497 4498 ret = -EINVAL; 4499 if (page->mem_cgroup != from) 4500 goto out_unlock; 4501 4502 anon = PageAnon(page); 4503 4504 spin_lock_irqsave(&from->move_lock, flags); 4505 4506 if (!anon && page_mapped(page)) { 4507 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4508 nr_pages); 4509 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4510 nr_pages); 4511 } 4512 4513 /* 4514 * move_lock grabbed above and caller set from->moving_account, so 4515 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4516 * So mapping should be stable for dirty pages. 4517 */ 4518 if (!anon && PageDirty(page)) { 4519 struct address_space *mapping = page_mapping(page); 4520 4521 if (mapping_cap_account_dirty(mapping)) { 4522 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4523 nr_pages); 4524 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4525 nr_pages); 4526 } 4527 } 4528 4529 if (PageWriteback(page)) { 4530 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4531 nr_pages); 4532 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4533 nr_pages); 4534 } 4535 4536 /* 4537 * It is safe to change page->mem_cgroup here because the page 4538 * is referenced, charged, and isolated - we can't race with 4539 * uncharging, charging, migration, or LRU putback. 4540 */ 4541 4542 /* caller should have done css_get */ 4543 page->mem_cgroup = to; 4544 spin_unlock_irqrestore(&from->move_lock, flags); 4545 4546 ret = 0; 4547 4548 local_irq_disable(); 4549 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4550 memcg_check_events(to, page); 4551 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4552 memcg_check_events(from, page); 4553 local_irq_enable(); 4554 out_unlock: 4555 unlock_page(page); 4556 out: 4557 return ret; 4558 } 4559 4560 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4561 unsigned long addr, pte_t ptent, union mc_target *target) 4562 { 4563 struct page *page = NULL; 4564 enum mc_target_type ret = MC_TARGET_NONE; 4565 swp_entry_t ent = { .val = 0 }; 4566 4567 if (pte_present(ptent)) 4568 page = mc_handle_present_pte(vma, addr, ptent); 4569 else if (is_swap_pte(ptent)) 4570 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4571 else if (pte_none(ptent)) 4572 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4573 4574 if (!page && !ent.val) 4575 return ret; 4576 if (page) { 4577 /* 4578 * Do only loose check w/o serialization. 4579 * mem_cgroup_move_account() checks the page is valid or 4580 * not under LRU exclusion. 4581 */ 4582 if (page->mem_cgroup == mc.from) { 4583 ret = MC_TARGET_PAGE; 4584 if (target) 4585 target->page = page; 4586 } 4587 if (!ret || !target) 4588 put_page(page); 4589 } 4590 /* There is a swap entry and a page doesn't exist or isn't charged */ 4591 if (ent.val && !ret && 4592 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4593 ret = MC_TARGET_SWAP; 4594 if (target) 4595 target->ent = ent; 4596 } 4597 return ret; 4598 } 4599 4600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4601 /* 4602 * We don't consider swapping or file mapped pages because THP does not 4603 * support them for now. 4604 * Caller should make sure that pmd_trans_huge(pmd) is true. 4605 */ 4606 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4607 unsigned long addr, pmd_t pmd, union mc_target *target) 4608 { 4609 struct page *page = NULL; 4610 enum mc_target_type ret = MC_TARGET_NONE; 4611 4612 page = pmd_page(pmd); 4613 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4614 if (!(mc.flags & MOVE_ANON)) 4615 return ret; 4616 if (page->mem_cgroup == mc.from) { 4617 ret = MC_TARGET_PAGE; 4618 if (target) { 4619 get_page(page); 4620 target->page = page; 4621 } 4622 } 4623 return ret; 4624 } 4625 #else 4626 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4627 unsigned long addr, pmd_t pmd, union mc_target *target) 4628 { 4629 return MC_TARGET_NONE; 4630 } 4631 #endif 4632 4633 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4634 unsigned long addr, unsigned long end, 4635 struct mm_walk *walk) 4636 { 4637 struct vm_area_struct *vma = walk->vma; 4638 pte_t *pte; 4639 spinlock_t *ptl; 4640 4641 ptl = pmd_trans_huge_lock(pmd, vma); 4642 if (ptl) { 4643 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4644 mc.precharge += HPAGE_PMD_NR; 4645 spin_unlock(ptl); 4646 return 0; 4647 } 4648 4649 if (pmd_trans_unstable(pmd)) 4650 return 0; 4651 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4652 for (; addr != end; pte++, addr += PAGE_SIZE) 4653 if (get_mctgt_type(vma, addr, *pte, NULL)) 4654 mc.precharge++; /* increment precharge temporarily */ 4655 pte_unmap_unlock(pte - 1, ptl); 4656 cond_resched(); 4657 4658 return 0; 4659 } 4660 4661 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4662 { 4663 unsigned long precharge; 4664 4665 struct mm_walk mem_cgroup_count_precharge_walk = { 4666 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4667 .mm = mm, 4668 }; 4669 down_read(&mm->mmap_sem); 4670 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4671 up_read(&mm->mmap_sem); 4672 4673 precharge = mc.precharge; 4674 mc.precharge = 0; 4675 4676 return precharge; 4677 } 4678 4679 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4680 { 4681 unsigned long precharge = mem_cgroup_count_precharge(mm); 4682 4683 VM_BUG_ON(mc.moving_task); 4684 mc.moving_task = current; 4685 return mem_cgroup_do_precharge(precharge); 4686 } 4687 4688 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4689 static void __mem_cgroup_clear_mc(void) 4690 { 4691 struct mem_cgroup *from = mc.from; 4692 struct mem_cgroup *to = mc.to; 4693 4694 /* we must uncharge all the leftover precharges from mc.to */ 4695 if (mc.precharge) { 4696 cancel_charge(mc.to, mc.precharge); 4697 mc.precharge = 0; 4698 } 4699 /* 4700 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4701 * we must uncharge here. 4702 */ 4703 if (mc.moved_charge) { 4704 cancel_charge(mc.from, mc.moved_charge); 4705 mc.moved_charge = 0; 4706 } 4707 /* we must fixup refcnts and charges */ 4708 if (mc.moved_swap) { 4709 /* uncharge swap account from the old cgroup */ 4710 if (!mem_cgroup_is_root(mc.from)) 4711 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4712 4713 /* 4714 * we charged both to->memory and to->memsw, so we 4715 * should uncharge to->memory. 4716 */ 4717 if (!mem_cgroup_is_root(mc.to)) 4718 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4719 4720 css_put_many(&mc.from->css, mc.moved_swap); 4721 4722 /* we've already done css_get(mc.to) */ 4723 mc.moved_swap = 0; 4724 } 4725 memcg_oom_recover(from); 4726 memcg_oom_recover(to); 4727 wake_up_all(&mc.waitq); 4728 } 4729 4730 static void mem_cgroup_clear_mc(void) 4731 { 4732 /* 4733 * we must clear moving_task before waking up waiters at the end of 4734 * task migration. 4735 */ 4736 mc.moving_task = NULL; 4737 __mem_cgroup_clear_mc(); 4738 spin_lock(&mc.lock); 4739 mc.from = NULL; 4740 mc.to = NULL; 4741 spin_unlock(&mc.lock); 4742 } 4743 4744 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4745 { 4746 struct cgroup_subsys_state *css; 4747 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4748 struct mem_cgroup *from; 4749 struct task_struct *leader, *p; 4750 struct mm_struct *mm; 4751 unsigned long move_flags; 4752 int ret = 0; 4753 4754 /* charge immigration isn't supported on the default hierarchy */ 4755 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4756 return 0; 4757 4758 /* 4759 * Multi-process migrations only happen on the default hierarchy 4760 * where charge immigration is not used. Perform charge 4761 * immigration if @tset contains a leader and whine if there are 4762 * multiple. 4763 */ 4764 p = NULL; 4765 cgroup_taskset_for_each_leader(leader, css, tset) { 4766 WARN_ON_ONCE(p); 4767 p = leader; 4768 memcg = mem_cgroup_from_css(css); 4769 } 4770 if (!p) 4771 return 0; 4772 4773 /* 4774 * We are now commited to this value whatever it is. Changes in this 4775 * tunable will only affect upcoming migrations, not the current one. 4776 * So we need to save it, and keep it going. 4777 */ 4778 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4779 if (!move_flags) 4780 return 0; 4781 4782 from = mem_cgroup_from_task(p); 4783 4784 VM_BUG_ON(from == memcg); 4785 4786 mm = get_task_mm(p); 4787 if (!mm) 4788 return 0; 4789 /* We move charges only when we move a owner of the mm */ 4790 if (mm->owner == p) { 4791 VM_BUG_ON(mc.from); 4792 VM_BUG_ON(mc.to); 4793 VM_BUG_ON(mc.precharge); 4794 VM_BUG_ON(mc.moved_charge); 4795 VM_BUG_ON(mc.moved_swap); 4796 4797 spin_lock(&mc.lock); 4798 mc.from = from; 4799 mc.to = memcg; 4800 mc.flags = move_flags; 4801 spin_unlock(&mc.lock); 4802 /* We set mc.moving_task later */ 4803 4804 ret = mem_cgroup_precharge_mc(mm); 4805 if (ret) 4806 mem_cgroup_clear_mc(); 4807 } 4808 mmput(mm); 4809 return ret; 4810 } 4811 4812 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4813 { 4814 if (mc.to) 4815 mem_cgroup_clear_mc(); 4816 } 4817 4818 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4819 unsigned long addr, unsigned long end, 4820 struct mm_walk *walk) 4821 { 4822 int ret = 0; 4823 struct vm_area_struct *vma = walk->vma; 4824 pte_t *pte; 4825 spinlock_t *ptl; 4826 enum mc_target_type target_type; 4827 union mc_target target; 4828 struct page *page; 4829 4830 ptl = pmd_trans_huge_lock(pmd, vma); 4831 if (ptl) { 4832 if (mc.precharge < HPAGE_PMD_NR) { 4833 spin_unlock(ptl); 4834 return 0; 4835 } 4836 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4837 if (target_type == MC_TARGET_PAGE) { 4838 page = target.page; 4839 if (!isolate_lru_page(page)) { 4840 if (!mem_cgroup_move_account(page, true, 4841 mc.from, mc.to)) { 4842 mc.precharge -= HPAGE_PMD_NR; 4843 mc.moved_charge += HPAGE_PMD_NR; 4844 } 4845 putback_lru_page(page); 4846 } 4847 put_page(page); 4848 } 4849 spin_unlock(ptl); 4850 return 0; 4851 } 4852 4853 if (pmd_trans_unstable(pmd)) 4854 return 0; 4855 retry: 4856 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4857 for (; addr != end; addr += PAGE_SIZE) { 4858 pte_t ptent = *(pte++); 4859 swp_entry_t ent; 4860 4861 if (!mc.precharge) 4862 break; 4863 4864 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4865 case MC_TARGET_PAGE: 4866 page = target.page; 4867 /* 4868 * We can have a part of the split pmd here. Moving it 4869 * can be done but it would be too convoluted so simply 4870 * ignore such a partial THP and keep it in original 4871 * memcg. There should be somebody mapping the head. 4872 */ 4873 if (PageTransCompound(page)) 4874 goto put; 4875 if (isolate_lru_page(page)) 4876 goto put; 4877 if (!mem_cgroup_move_account(page, false, 4878 mc.from, mc.to)) { 4879 mc.precharge--; 4880 /* we uncharge from mc.from later. */ 4881 mc.moved_charge++; 4882 } 4883 putback_lru_page(page); 4884 put: /* get_mctgt_type() gets the page */ 4885 put_page(page); 4886 break; 4887 case MC_TARGET_SWAP: 4888 ent = target.ent; 4889 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4890 mc.precharge--; 4891 /* we fixup refcnts and charges later. */ 4892 mc.moved_swap++; 4893 } 4894 break; 4895 default: 4896 break; 4897 } 4898 } 4899 pte_unmap_unlock(pte - 1, ptl); 4900 cond_resched(); 4901 4902 if (addr != end) { 4903 /* 4904 * We have consumed all precharges we got in can_attach(). 4905 * We try charge one by one, but don't do any additional 4906 * charges to mc.to if we have failed in charge once in attach() 4907 * phase. 4908 */ 4909 ret = mem_cgroup_do_precharge(1); 4910 if (!ret) 4911 goto retry; 4912 } 4913 4914 return ret; 4915 } 4916 4917 static void mem_cgroup_move_charge(struct mm_struct *mm) 4918 { 4919 struct mm_walk mem_cgroup_move_charge_walk = { 4920 .pmd_entry = mem_cgroup_move_charge_pte_range, 4921 .mm = mm, 4922 }; 4923 4924 lru_add_drain_all(); 4925 /* 4926 * Signal mem_cgroup_begin_page_stat() to take the memcg's 4927 * move_lock while we're moving its pages to another memcg. 4928 * Then wait for already started RCU-only updates to finish. 4929 */ 4930 atomic_inc(&mc.from->moving_account); 4931 synchronize_rcu(); 4932 retry: 4933 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 4934 /* 4935 * Someone who are holding the mmap_sem might be waiting in 4936 * waitq. So we cancel all extra charges, wake up all waiters, 4937 * and retry. Because we cancel precharges, we might not be able 4938 * to move enough charges, but moving charge is a best-effort 4939 * feature anyway, so it wouldn't be a big problem. 4940 */ 4941 __mem_cgroup_clear_mc(); 4942 cond_resched(); 4943 goto retry; 4944 } 4945 /* 4946 * When we have consumed all precharges and failed in doing 4947 * additional charge, the page walk just aborts. 4948 */ 4949 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4950 up_read(&mm->mmap_sem); 4951 atomic_dec(&mc.from->moving_account); 4952 } 4953 4954 static void mem_cgroup_move_task(struct cgroup_taskset *tset) 4955 { 4956 struct cgroup_subsys_state *css; 4957 struct task_struct *p = cgroup_taskset_first(tset, &css); 4958 struct mm_struct *mm = get_task_mm(p); 4959 4960 if (mm) { 4961 if (mc.to) 4962 mem_cgroup_move_charge(mm); 4963 mmput(mm); 4964 } 4965 if (mc.to) 4966 mem_cgroup_clear_mc(); 4967 } 4968 #else /* !CONFIG_MMU */ 4969 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4970 { 4971 return 0; 4972 } 4973 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4974 { 4975 } 4976 static void mem_cgroup_move_task(struct cgroup_taskset *tset) 4977 { 4978 } 4979 #endif 4980 4981 /* 4982 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4983 * to verify whether we're attached to the default hierarchy on each mount 4984 * attempt. 4985 */ 4986 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4987 { 4988 /* 4989 * use_hierarchy is forced on the default hierarchy. cgroup core 4990 * guarantees that @root doesn't have any children, so turning it 4991 * on for the root memcg is enough. 4992 */ 4993 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4994 root_mem_cgroup->use_hierarchy = true; 4995 else 4996 root_mem_cgroup->use_hierarchy = false; 4997 } 4998 4999 static u64 memory_current_read(struct cgroup_subsys_state *css, 5000 struct cftype *cft) 5001 { 5002 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5003 5004 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5005 } 5006 5007 static int memory_low_show(struct seq_file *m, void *v) 5008 { 5009 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5010 unsigned long low = READ_ONCE(memcg->low); 5011 5012 if (low == PAGE_COUNTER_MAX) 5013 seq_puts(m, "max\n"); 5014 else 5015 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5016 5017 return 0; 5018 } 5019 5020 static ssize_t memory_low_write(struct kernfs_open_file *of, 5021 char *buf, size_t nbytes, loff_t off) 5022 { 5023 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5024 unsigned long low; 5025 int err; 5026 5027 buf = strstrip(buf); 5028 err = page_counter_memparse(buf, "max", &low); 5029 if (err) 5030 return err; 5031 5032 memcg->low = low; 5033 5034 return nbytes; 5035 } 5036 5037 static int memory_high_show(struct seq_file *m, void *v) 5038 { 5039 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5040 unsigned long high = READ_ONCE(memcg->high); 5041 5042 if (high == PAGE_COUNTER_MAX) 5043 seq_puts(m, "max\n"); 5044 else 5045 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5046 5047 return 0; 5048 } 5049 5050 static ssize_t memory_high_write(struct kernfs_open_file *of, 5051 char *buf, size_t nbytes, loff_t off) 5052 { 5053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5054 unsigned long high; 5055 int err; 5056 5057 buf = strstrip(buf); 5058 err = page_counter_memparse(buf, "max", &high); 5059 if (err) 5060 return err; 5061 5062 memcg->high = high; 5063 5064 memcg_wb_domain_size_changed(memcg); 5065 return nbytes; 5066 } 5067 5068 static int memory_max_show(struct seq_file *m, void *v) 5069 { 5070 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5071 unsigned long max = READ_ONCE(memcg->memory.limit); 5072 5073 if (max == PAGE_COUNTER_MAX) 5074 seq_puts(m, "max\n"); 5075 else 5076 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5077 5078 return 0; 5079 } 5080 5081 static ssize_t memory_max_write(struct kernfs_open_file *of, 5082 char *buf, size_t nbytes, loff_t off) 5083 { 5084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5085 unsigned long max; 5086 int err; 5087 5088 buf = strstrip(buf); 5089 err = page_counter_memparse(buf, "max", &max); 5090 if (err) 5091 return err; 5092 5093 err = mem_cgroup_resize_limit(memcg, max); 5094 if (err) 5095 return err; 5096 5097 memcg_wb_domain_size_changed(memcg); 5098 return nbytes; 5099 } 5100 5101 static int memory_events_show(struct seq_file *m, void *v) 5102 { 5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5104 5105 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5106 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5107 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5108 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5109 5110 return 0; 5111 } 5112 5113 static int memory_stat_show(struct seq_file *m, void *v) 5114 { 5115 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5116 int i; 5117 5118 /* 5119 * Provide statistics on the state of the memory subsystem as 5120 * well as cumulative event counters that show past behavior. 5121 * 5122 * This list is ordered following a combination of these gradients: 5123 * 1) generic big picture -> specifics and details 5124 * 2) reflecting userspace activity -> reflecting kernel heuristics 5125 * 5126 * Current memory state: 5127 */ 5128 5129 seq_printf(m, "anon %llu\n", 5130 (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE); 5131 seq_printf(m, "file %llu\n", 5132 (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE); 5133 seq_printf(m, "sock %llu\n", 5134 (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE); 5135 5136 seq_printf(m, "file_mapped %llu\n", 5137 (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) * 5138 PAGE_SIZE); 5139 seq_printf(m, "file_dirty %llu\n", 5140 (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) * 5141 PAGE_SIZE); 5142 seq_printf(m, "file_writeback %llu\n", 5143 (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) * 5144 PAGE_SIZE); 5145 5146 for (i = 0; i < NR_LRU_LISTS; i++) { 5147 struct mem_cgroup *mi; 5148 unsigned long val = 0; 5149 5150 for_each_mem_cgroup_tree(mi, memcg) 5151 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5152 seq_printf(m, "%s %llu\n", 5153 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5154 } 5155 5156 /* Accumulated memory events */ 5157 5158 seq_printf(m, "pgfault %lu\n", 5159 tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT)); 5160 seq_printf(m, "pgmajfault %lu\n", 5161 tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT)); 5162 5163 return 0; 5164 } 5165 5166 static struct cftype memory_files[] = { 5167 { 5168 .name = "current", 5169 .flags = CFTYPE_NOT_ON_ROOT, 5170 .read_u64 = memory_current_read, 5171 }, 5172 { 5173 .name = "low", 5174 .flags = CFTYPE_NOT_ON_ROOT, 5175 .seq_show = memory_low_show, 5176 .write = memory_low_write, 5177 }, 5178 { 5179 .name = "high", 5180 .flags = CFTYPE_NOT_ON_ROOT, 5181 .seq_show = memory_high_show, 5182 .write = memory_high_write, 5183 }, 5184 { 5185 .name = "max", 5186 .flags = CFTYPE_NOT_ON_ROOT, 5187 .seq_show = memory_max_show, 5188 .write = memory_max_write, 5189 }, 5190 { 5191 .name = "events", 5192 .flags = CFTYPE_NOT_ON_ROOT, 5193 .file_offset = offsetof(struct mem_cgroup, events_file), 5194 .seq_show = memory_events_show, 5195 }, 5196 { 5197 .name = "stat", 5198 .flags = CFTYPE_NOT_ON_ROOT, 5199 .seq_show = memory_stat_show, 5200 }, 5201 { } /* terminate */ 5202 }; 5203 5204 struct cgroup_subsys memory_cgrp_subsys = { 5205 .css_alloc = mem_cgroup_css_alloc, 5206 .css_online = mem_cgroup_css_online, 5207 .css_offline = mem_cgroup_css_offline, 5208 .css_released = mem_cgroup_css_released, 5209 .css_free = mem_cgroup_css_free, 5210 .css_reset = mem_cgroup_css_reset, 5211 .can_attach = mem_cgroup_can_attach, 5212 .cancel_attach = mem_cgroup_cancel_attach, 5213 .attach = mem_cgroup_move_task, 5214 .bind = mem_cgroup_bind, 5215 .dfl_cftypes = memory_files, 5216 .legacy_cftypes = mem_cgroup_legacy_files, 5217 .early_init = 0, 5218 }; 5219 5220 /** 5221 * mem_cgroup_low - check if memory consumption is below the normal range 5222 * @root: the highest ancestor to consider 5223 * @memcg: the memory cgroup to check 5224 * 5225 * Returns %true if memory consumption of @memcg, and that of all 5226 * configurable ancestors up to @root, is below the normal range. 5227 */ 5228 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5229 { 5230 if (mem_cgroup_disabled()) 5231 return false; 5232 5233 /* 5234 * The toplevel group doesn't have a configurable range, so 5235 * it's never low when looked at directly, and it is not 5236 * considered an ancestor when assessing the hierarchy. 5237 */ 5238 5239 if (memcg == root_mem_cgroup) 5240 return false; 5241 5242 if (page_counter_read(&memcg->memory) >= memcg->low) 5243 return false; 5244 5245 while (memcg != root) { 5246 memcg = parent_mem_cgroup(memcg); 5247 5248 if (memcg == root_mem_cgroup) 5249 break; 5250 5251 if (page_counter_read(&memcg->memory) >= memcg->low) 5252 return false; 5253 } 5254 return true; 5255 } 5256 5257 /** 5258 * mem_cgroup_try_charge - try charging a page 5259 * @page: page to charge 5260 * @mm: mm context of the victim 5261 * @gfp_mask: reclaim mode 5262 * @memcgp: charged memcg return 5263 * 5264 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5265 * pages according to @gfp_mask if necessary. 5266 * 5267 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5268 * Otherwise, an error code is returned. 5269 * 5270 * After page->mapping has been set up, the caller must finalize the 5271 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5272 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5273 */ 5274 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5275 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5276 bool compound) 5277 { 5278 struct mem_cgroup *memcg = NULL; 5279 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5280 int ret = 0; 5281 5282 if (mem_cgroup_disabled()) 5283 goto out; 5284 5285 if (PageSwapCache(page)) { 5286 /* 5287 * Every swap fault against a single page tries to charge the 5288 * page, bail as early as possible. shmem_unuse() encounters 5289 * already charged pages, too. The USED bit is protected by 5290 * the page lock, which serializes swap cache removal, which 5291 * in turn serializes uncharging. 5292 */ 5293 VM_BUG_ON_PAGE(!PageLocked(page), page); 5294 if (page->mem_cgroup) 5295 goto out; 5296 5297 if (do_swap_account) { 5298 swp_entry_t ent = { .val = page_private(page), }; 5299 unsigned short id = lookup_swap_cgroup_id(ent); 5300 5301 rcu_read_lock(); 5302 memcg = mem_cgroup_from_id(id); 5303 if (memcg && !css_tryget_online(&memcg->css)) 5304 memcg = NULL; 5305 rcu_read_unlock(); 5306 } 5307 } 5308 5309 if (!memcg) 5310 memcg = get_mem_cgroup_from_mm(mm); 5311 5312 ret = try_charge(memcg, gfp_mask, nr_pages); 5313 5314 css_put(&memcg->css); 5315 out: 5316 *memcgp = memcg; 5317 return ret; 5318 } 5319 5320 /** 5321 * mem_cgroup_commit_charge - commit a page charge 5322 * @page: page to charge 5323 * @memcg: memcg to charge the page to 5324 * @lrucare: page might be on LRU already 5325 * 5326 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5327 * after page->mapping has been set up. This must happen atomically 5328 * as part of the page instantiation, i.e. under the page table lock 5329 * for anonymous pages, under the page lock for page and swap cache. 5330 * 5331 * In addition, the page must not be on the LRU during the commit, to 5332 * prevent racing with task migration. If it might be, use @lrucare. 5333 * 5334 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5335 */ 5336 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5337 bool lrucare, bool compound) 5338 { 5339 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5340 5341 VM_BUG_ON_PAGE(!page->mapping, page); 5342 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5343 5344 if (mem_cgroup_disabled()) 5345 return; 5346 /* 5347 * Swap faults will attempt to charge the same page multiple 5348 * times. But reuse_swap_page() might have removed the page 5349 * from swapcache already, so we can't check PageSwapCache(). 5350 */ 5351 if (!memcg) 5352 return; 5353 5354 commit_charge(page, memcg, lrucare); 5355 5356 local_irq_disable(); 5357 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5358 memcg_check_events(memcg, page); 5359 local_irq_enable(); 5360 5361 if (do_memsw_account() && PageSwapCache(page)) { 5362 swp_entry_t entry = { .val = page_private(page) }; 5363 /* 5364 * The swap entry might not get freed for a long time, 5365 * let's not wait for it. The page already received a 5366 * memory+swap charge, drop the swap entry duplicate. 5367 */ 5368 mem_cgroup_uncharge_swap(entry); 5369 } 5370 } 5371 5372 /** 5373 * mem_cgroup_cancel_charge - cancel a page charge 5374 * @page: page to charge 5375 * @memcg: memcg to charge the page to 5376 * 5377 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5378 */ 5379 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5380 bool compound) 5381 { 5382 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5383 5384 if (mem_cgroup_disabled()) 5385 return; 5386 /* 5387 * Swap faults will attempt to charge the same page multiple 5388 * times. But reuse_swap_page() might have removed the page 5389 * from swapcache already, so we can't check PageSwapCache(). 5390 */ 5391 if (!memcg) 5392 return; 5393 5394 cancel_charge(memcg, nr_pages); 5395 } 5396 5397 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5398 unsigned long nr_anon, unsigned long nr_file, 5399 unsigned long nr_huge, struct page *dummy_page) 5400 { 5401 unsigned long nr_pages = nr_anon + nr_file; 5402 unsigned long flags; 5403 5404 if (!mem_cgroup_is_root(memcg)) { 5405 page_counter_uncharge(&memcg->memory, nr_pages); 5406 if (do_memsw_account()) 5407 page_counter_uncharge(&memcg->memsw, nr_pages); 5408 memcg_oom_recover(memcg); 5409 } 5410 5411 local_irq_save(flags); 5412 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5415 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5416 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5417 memcg_check_events(memcg, dummy_page); 5418 local_irq_restore(flags); 5419 5420 if (!mem_cgroup_is_root(memcg)) 5421 css_put_many(&memcg->css, nr_pages); 5422 } 5423 5424 static void uncharge_list(struct list_head *page_list) 5425 { 5426 struct mem_cgroup *memcg = NULL; 5427 unsigned long nr_anon = 0; 5428 unsigned long nr_file = 0; 5429 unsigned long nr_huge = 0; 5430 unsigned long pgpgout = 0; 5431 struct list_head *next; 5432 struct page *page; 5433 5434 next = page_list->next; 5435 do { 5436 unsigned int nr_pages = 1; 5437 5438 page = list_entry(next, struct page, lru); 5439 next = page->lru.next; 5440 5441 VM_BUG_ON_PAGE(PageLRU(page), page); 5442 VM_BUG_ON_PAGE(page_count(page), page); 5443 5444 if (!page->mem_cgroup) 5445 continue; 5446 5447 /* 5448 * Nobody should be changing or seriously looking at 5449 * page->mem_cgroup at this point, we have fully 5450 * exclusive access to the page. 5451 */ 5452 5453 if (memcg != page->mem_cgroup) { 5454 if (memcg) { 5455 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5456 nr_huge, page); 5457 pgpgout = nr_anon = nr_file = nr_huge = 0; 5458 } 5459 memcg = page->mem_cgroup; 5460 } 5461 5462 if (PageTransHuge(page)) { 5463 nr_pages <<= compound_order(page); 5464 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5465 nr_huge += nr_pages; 5466 } 5467 5468 if (PageAnon(page)) 5469 nr_anon += nr_pages; 5470 else 5471 nr_file += nr_pages; 5472 5473 page->mem_cgroup = NULL; 5474 5475 pgpgout++; 5476 } while (next != page_list); 5477 5478 if (memcg) 5479 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5480 nr_huge, page); 5481 } 5482 5483 /** 5484 * mem_cgroup_uncharge - uncharge a page 5485 * @page: page to uncharge 5486 * 5487 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5488 * mem_cgroup_commit_charge(). 5489 */ 5490 void mem_cgroup_uncharge(struct page *page) 5491 { 5492 if (mem_cgroup_disabled()) 5493 return; 5494 5495 /* Don't touch page->lru of any random page, pre-check: */ 5496 if (!page->mem_cgroup) 5497 return; 5498 5499 INIT_LIST_HEAD(&page->lru); 5500 uncharge_list(&page->lru); 5501 } 5502 5503 /** 5504 * mem_cgroup_uncharge_list - uncharge a list of page 5505 * @page_list: list of pages to uncharge 5506 * 5507 * Uncharge a list of pages previously charged with 5508 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5509 */ 5510 void mem_cgroup_uncharge_list(struct list_head *page_list) 5511 { 5512 if (mem_cgroup_disabled()) 5513 return; 5514 5515 if (!list_empty(page_list)) 5516 uncharge_list(page_list); 5517 } 5518 5519 /** 5520 * mem_cgroup_replace_page - migrate a charge to another page 5521 * @oldpage: currently charged page 5522 * @newpage: page to transfer the charge to 5523 * 5524 * Migrate the charge from @oldpage to @newpage. 5525 * 5526 * Both pages must be locked, @newpage->mapping must be set up. 5527 * Either or both pages might be on the LRU already. 5528 */ 5529 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage) 5530 { 5531 struct mem_cgroup *memcg; 5532 unsigned int nr_pages; 5533 bool compound; 5534 5535 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5536 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5537 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5538 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5539 newpage); 5540 5541 if (mem_cgroup_disabled()) 5542 return; 5543 5544 /* Page cache replacement: new page already charged? */ 5545 if (newpage->mem_cgroup) 5546 return; 5547 5548 /* Swapcache readahead pages can get replaced before being charged */ 5549 memcg = oldpage->mem_cgroup; 5550 if (!memcg) 5551 return; 5552 5553 /* Force-charge the new page. The old one will be freed soon */ 5554 compound = PageTransHuge(newpage); 5555 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5556 5557 page_counter_charge(&memcg->memory, nr_pages); 5558 if (do_memsw_account()) 5559 page_counter_charge(&memcg->memsw, nr_pages); 5560 css_get_many(&memcg->css, nr_pages); 5561 5562 commit_charge(newpage, memcg, true); 5563 5564 local_irq_disable(); 5565 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5566 memcg_check_events(memcg, newpage); 5567 local_irq_enable(); 5568 } 5569 5570 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5571 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5572 5573 void sock_update_memcg(struct sock *sk) 5574 { 5575 struct mem_cgroup *memcg; 5576 5577 /* Socket cloning can throw us here with sk_cgrp already 5578 * filled. It won't however, necessarily happen from 5579 * process context. So the test for root memcg given 5580 * the current task's memcg won't help us in this case. 5581 * 5582 * Respecting the original socket's memcg is a better 5583 * decision in this case. 5584 */ 5585 if (sk->sk_memcg) { 5586 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5587 css_get(&sk->sk_memcg->css); 5588 return; 5589 } 5590 5591 rcu_read_lock(); 5592 memcg = mem_cgroup_from_task(current); 5593 if (memcg == root_mem_cgroup) 5594 goto out; 5595 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5596 goto out; 5597 if (css_tryget_online(&memcg->css)) 5598 sk->sk_memcg = memcg; 5599 out: 5600 rcu_read_unlock(); 5601 } 5602 EXPORT_SYMBOL(sock_update_memcg); 5603 5604 void sock_release_memcg(struct sock *sk) 5605 { 5606 WARN_ON(!sk->sk_memcg); 5607 css_put(&sk->sk_memcg->css); 5608 } 5609 5610 /** 5611 * mem_cgroup_charge_skmem - charge socket memory 5612 * @memcg: memcg to charge 5613 * @nr_pages: number of pages to charge 5614 * 5615 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5616 * @memcg's configured limit, %false if the charge had to be forced. 5617 */ 5618 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5619 { 5620 gfp_t gfp_mask = GFP_KERNEL; 5621 5622 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5623 struct page_counter *fail; 5624 5625 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5626 memcg->tcpmem_pressure = 0; 5627 return true; 5628 } 5629 page_counter_charge(&memcg->tcpmem, nr_pages); 5630 memcg->tcpmem_pressure = 1; 5631 return false; 5632 } 5633 5634 /* Don't block in the packet receive path */ 5635 if (in_softirq()) 5636 gfp_mask = GFP_NOWAIT; 5637 5638 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5639 5640 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5641 return true; 5642 5643 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5644 return false; 5645 } 5646 5647 /** 5648 * mem_cgroup_uncharge_skmem - uncharge socket memory 5649 * @memcg - memcg to uncharge 5650 * @nr_pages - number of pages to uncharge 5651 */ 5652 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5653 { 5654 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5655 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5656 return; 5657 } 5658 5659 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5660 5661 page_counter_uncharge(&memcg->memory, nr_pages); 5662 css_put_many(&memcg->css, nr_pages); 5663 } 5664 5665 static int __init cgroup_memory(char *s) 5666 { 5667 char *token; 5668 5669 while ((token = strsep(&s, ",")) != NULL) { 5670 if (!*token) 5671 continue; 5672 if (!strcmp(token, "nosocket")) 5673 cgroup_memory_nosocket = true; 5674 if (!strcmp(token, "nokmem")) 5675 cgroup_memory_nokmem = true; 5676 } 5677 return 0; 5678 } 5679 __setup("cgroup.memory=", cgroup_memory); 5680 5681 /* 5682 * subsys_initcall() for memory controller. 5683 * 5684 * Some parts like hotcpu_notifier() have to be initialized from this context 5685 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5686 * everything that doesn't depend on a specific mem_cgroup structure should 5687 * be initialized from here. 5688 */ 5689 static int __init mem_cgroup_init(void) 5690 { 5691 int cpu, node; 5692 5693 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5694 5695 for_each_possible_cpu(cpu) 5696 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5697 drain_local_stock); 5698 5699 for_each_node(node) { 5700 struct mem_cgroup_tree_per_node *rtpn; 5701 int zone; 5702 5703 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5704 node_online(node) ? node : NUMA_NO_NODE); 5705 5706 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5707 struct mem_cgroup_tree_per_zone *rtpz; 5708 5709 rtpz = &rtpn->rb_tree_per_zone[zone]; 5710 rtpz->rb_root = RB_ROOT; 5711 spin_lock_init(&rtpz->lock); 5712 } 5713 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5714 } 5715 5716 return 0; 5717 } 5718 subsys_initcall(mem_cgroup_init); 5719 5720 #ifdef CONFIG_MEMCG_SWAP 5721 /** 5722 * mem_cgroup_swapout - transfer a memsw charge to swap 5723 * @page: page whose memsw charge to transfer 5724 * @entry: swap entry to move the charge to 5725 * 5726 * Transfer the memsw charge of @page to @entry. 5727 */ 5728 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5729 { 5730 struct mem_cgroup *memcg; 5731 unsigned short oldid; 5732 5733 VM_BUG_ON_PAGE(PageLRU(page), page); 5734 VM_BUG_ON_PAGE(page_count(page), page); 5735 5736 if (!do_memsw_account()) 5737 return; 5738 5739 memcg = page->mem_cgroup; 5740 5741 /* Readahead page, never charged */ 5742 if (!memcg) 5743 return; 5744 5745 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5746 VM_BUG_ON_PAGE(oldid, page); 5747 mem_cgroup_swap_statistics(memcg, true); 5748 5749 page->mem_cgroup = NULL; 5750 5751 if (!mem_cgroup_is_root(memcg)) 5752 page_counter_uncharge(&memcg->memory, 1); 5753 5754 /* 5755 * Interrupts should be disabled here because the caller holds the 5756 * mapping->tree_lock lock which is taken with interrupts-off. It is 5757 * important here to have the interrupts disabled because it is the 5758 * only synchronisation we have for udpating the per-CPU variables. 5759 */ 5760 VM_BUG_ON(!irqs_disabled()); 5761 mem_cgroup_charge_statistics(memcg, page, false, -1); 5762 memcg_check_events(memcg, page); 5763 } 5764 5765 /* 5766 * mem_cgroup_try_charge_swap - try charging a swap entry 5767 * @page: page being added to swap 5768 * @entry: swap entry to charge 5769 * 5770 * Try to charge @entry to the memcg that @page belongs to. 5771 * 5772 * Returns 0 on success, -ENOMEM on failure. 5773 */ 5774 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5775 { 5776 struct mem_cgroup *memcg; 5777 struct page_counter *counter; 5778 unsigned short oldid; 5779 5780 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5781 return 0; 5782 5783 memcg = page->mem_cgroup; 5784 5785 /* Readahead page, never charged */ 5786 if (!memcg) 5787 return 0; 5788 5789 if (!mem_cgroup_is_root(memcg) && 5790 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5791 return -ENOMEM; 5792 5793 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5794 VM_BUG_ON_PAGE(oldid, page); 5795 mem_cgroup_swap_statistics(memcg, true); 5796 5797 css_get(&memcg->css); 5798 return 0; 5799 } 5800 5801 /** 5802 * mem_cgroup_uncharge_swap - uncharge a swap entry 5803 * @entry: swap entry to uncharge 5804 * 5805 * Drop the swap charge associated with @entry. 5806 */ 5807 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5808 { 5809 struct mem_cgroup *memcg; 5810 unsigned short id; 5811 5812 if (!do_swap_account) 5813 return; 5814 5815 id = swap_cgroup_record(entry, 0); 5816 rcu_read_lock(); 5817 memcg = mem_cgroup_from_id(id); 5818 if (memcg) { 5819 if (!mem_cgroup_is_root(memcg)) { 5820 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5821 page_counter_uncharge(&memcg->swap, 1); 5822 else 5823 page_counter_uncharge(&memcg->memsw, 1); 5824 } 5825 mem_cgroup_swap_statistics(memcg, false); 5826 css_put(&memcg->css); 5827 } 5828 rcu_read_unlock(); 5829 } 5830 5831 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5832 { 5833 long nr_swap_pages = get_nr_swap_pages(); 5834 5835 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5836 return nr_swap_pages; 5837 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5838 nr_swap_pages = min_t(long, nr_swap_pages, 5839 READ_ONCE(memcg->swap.limit) - 5840 page_counter_read(&memcg->swap)); 5841 return nr_swap_pages; 5842 } 5843 5844 bool mem_cgroup_swap_full(struct page *page) 5845 { 5846 struct mem_cgroup *memcg; 5847 5848 VM_BUG_ON_PAGE(!PageLocked(page), page); 5849 5850 if (vm_swap_full()) 5851 return true; 5852 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5853 return false; 5854 5855 memcg = page->mem_cgroup; 5856 if (!memcg) 5857 return false; 5858 5859 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5860 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5861 return true; 5862 5863 return false; 5864 } 5865 5866 /* for remember boot option*/ 5867 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5868 static int really_do_swap_account __initdata = 1; 5869 #else 5870 static int really_do_swap_account __initdata; 5871 #endif 5872 5873 static int __init enable_swap_account(char *s) 5874 { 5875 if (!strcmp(s, "1")) 5876 really_do_swap_account = 1; 5877 else if (!strcmp(s, "0")) 5878 really_do_swap_account = 0; 5879 return 1; 5880 } 5881 __setup("swapaccount=", enable_swap_account); 5882 5883 static u64 swap_current_read(struct cgroup_subsys_state *css, 5884 struct cftype *cft) 5885 { 5886 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5887 5888 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5889 } 5890 5891 static int swap_max_show(struct seq_file *m, void *v) 5892 { 5893 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5894 unsigned long max = READ_ONCE(memcg->swap.limit); 5895 5896 if (max == PAGE_COUNTER_MAX) 5897 seq_puts(m, "max\n"); 5898 else 5899 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5900 5901 return 0; 5902 } 5903 5904 static ssize_t swap_max_write(struct kernfs_open_file *of, 5905 char *buf, size_t nbytes, loff_t off) 5906 { 5907 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5908 unsigned long max; 5909 int err; 5910 5911 buf = strstrip(buf); 5912 err = page_counter_memparse(buf, "max", &max); 5913 if (err) 5914 return err; 5915 5916 mutex_lock(&memcg_limit_mutex); 5917 err = page_counter_limit(&memcg->swap, max); 5918 mutex_unlock(&memcg_limit_mutex); 5919 if (err) 5920 return err; 5921 5922 return nbytes; 5923 } 5924 5925 static struct cftype swap_files[] = { 5926 { 5927 .name = "swap.current", 5928 .flags = CFTYPE_NOT_ON_ROOT, 5929 .read_u64 = swap_current_read, 5930 }, 5931 { 5932 .name = "swap.max", 5933 .flags = CFTYPE_NOT_ON_ROOT, 5934 .seq_show = swap_max_show, 5935 .write = swap_max_write, 5936 }, 5937 { } /* terminate */ 5938 }; 5939 5940 static struct cftype memsw_cgroup_files[] = { 5941 { 5942 .name = "memsw.usage_in_bytes", 5943 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5944 .read_u64 = mem_cgroup_read_u64, 5945 }, 5946 { 5947 .name = "memsw.max_usage_in_bytes", 5948 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5949 .write = mem_cgroup_reset, 5950 .read_u64 = mem_cgroup_read_u64, 5951 }, 5952 { 5953 .name = "memsw.limit_in_bytes", 5954 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5955 .write = mem_cgroup_write, 5956 .read_u64 = mem_cgroup_read_u64, 5957 }, 5958 { 5959 .name = "memsw.failcnt", 5960 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5961 .write = mem_cgroup_reset, 5962 .read_u64 = mem_cgroup_read_u64, 5963 }, 5964 { }, /* terminate */ 5965 }; 5966 5967 static int __init mem_cgroup_swap_init(void) 5968 { 5969 if (!mem_cgroup_disabled() && really_do_swap_account) { 5970 do_swap_account = 1; 5971 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 5972 swap_files)); 5973 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5974 memsw_cgroup_files)); 5975 } 5976 return 0; 5977 } 5978 subsys_initcall(mem_cgroup_swap_init); 5979 5980 #endif /* CONFIG_MEMCG_SWAP */ 5981