1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 static struct kmem_cache *memcg_cachep; 99 static struct kmem_cache *memcg_pn_cachep; 100 101 #ifdef CONFIG_CGROUP_WRITEBACK 102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 103 #endif 104 105 static inline bool task_is_dying(void) 106 { 107 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 108 (current->flags & PF_EXITING); 109 } 110 111 /* Some nice accessors for the vmpressure. */ 112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 113 { 114 if (!memcg) 115 memcg = root_mem_cgroup; 116 return &memcg->vmpressure; 117 } 118 119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 120 { 121 return container_of(vmpr, struct mem_cgroup, vmpressure); 122 } 123 124 #define SEQ_BUF_SIZE SZ_4K 125 #define CURRENT_OBJCG_UPDATE_BIT 0 126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 127 128 static DEFINE_SPINLOCK(objcg_lock); 129 130 bool mem_cgroup_kmem_disabled(void) 131 { 132 return cgroup_memory_nokmem; 133 } 134 135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 136 137 static void obj_cgroup_release(struct percpu_ref *ref) 138 { 139 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 140 unsigned int nr_bytes; 141 unsigned int nr_pages; 142 unsigned long flags; 143 144 /* 145 * At this point all allocated objects are freed, and 146 * objcg->nr_charged_bytes can't have an arbitrary byte value. 147 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 148 * 149 * The following sequence can lead to it: 150 * 1) CPU0: objcg == stock->cached_objcg 151 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 152 * PAGE_SIZE bytes are charged 153 * 3) CPU1: a process from another memcg is allocating something, 154 * the stock if flushed, 155 * objcg->nr_charged_bytes = PAGE_SIZE - 92 156 * 5) CPU0: we do release this object, 157 * 92 bytes are added to stock->nr_bytes 158 * 6) CPU0: stock is flushed, 159 * 92 bytes are added to objcg->nr_charged_bytes 160 * 161 * In the result, nr_charged_bytes == PAGE_SIZE. 162 * This page will be uncharged in obj_cgroup_release(). 163 */ 164 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 165 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 166 nr_pages = nr_bytes >> PAGE_SHIFT; 167 168 if (nr_pages) { 169 struct mem_cgroup *memcg; 170 171 memcg = get_mem_cgroup_from_objcg(objcg); 172 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 173 memcg1_account_kmem(memcg, -nr_pages); 174 if (!mem_cgroup_is_root(memcg)) 175 memcg_uncharge(memcg, nr_pages); 176 mem_cgroup_put(memcg); 177 } 178 179 spin_lock_irqsave(&objcg_lock, flags); 180 list_del(&objcg->list); 181 spin_unlock_irqrestore(&objcg_lock, flags); 182 183 percpu_ref_exit(ref); 184 kfree_rcu(objcg, rcu); 185 } 186 187 static struct obj_cgroup *obj_cgroup_alloc(void) 188 { 189 struct obj_cgroup *objcg; 190 int ret; 191 192 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 193 if (!objcg) 194 return NULL; 195 196 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 197 GFP_KERNEL); 198 if (ret) { 199 kfree(objcg); 200 return NULL; 201 } 202 INIT_LIST_HEAD(&objcg->list); 203 return objcg; 204 } 205 206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 207 struct mem_cgroup *parent) 208 { 209 struct obj_cgroup *objcg, *iter; 210 211 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 212 213 spin_lock_irq(&objcg_lock); 214 215 /* 1) Ready to reparent active objcg. */ 216 list_add(&objcg->list, &memcg->objcg_list); 217 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 218 list_for_each_entry(iter, &memcg->objcg_list, list) 219 WRITE_ONCE(iter->memcg, parent); 220 /* 3) Move already reparented objcgs to the parent's list */ 221 list_splice(&memcg->objcg_list, &parent->objcg_list); 222 223 spin_unlock_irq(&objcg_lock); 224 225 percpu_ref_kill(&objcg->refcnt); 226 } 227 228 /* 229 * A lot of the calls to the cache allocation functions are expected to be 230 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 231 * conditional to this static branch, we'll have to allow modules that does 232 * kmem_cache_alloc and the such to see this symbol as well 233 */ 234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 235 EXPORT_SYMBOL(memcg_kmem_online_key); 236 237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 238 EXPORT_SYMBOL(memcg_bpf_enabled_key); 239 240 /** 241 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 242 * @folio: folio of interest 243 * 244 * If memcg is bound to the default hierarchy, css of the memcg associated 245 * with @folio is returned. The returned css remains associated with @folio 246 * until it is released. 247 * 248 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 249 * is returned. 250 */ 251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 252 { 253 struct mem_cgroup *memcg = folio_memcg(folio); 254 255 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 256 memcg = root_mem_cgroup; 257 258 return &memcg->css; 259 } 260 261 /** 262 * page_cgroup_ino - return inode number of the memcg a page is charged to 263 * @page: the page 264 * 265 * Look up the closest online ancestor of the memory cgroup @page is charged to 266 * and return its inode number or 0 if @page is not charged to any cgroup. It 267 * is safe to call this function without holding a reference to @page. 268 * 269 * Note, this function is inherently racy, because there is nothing to prevent 270 * the cgroup inode from getting torn down and potentially reallocated a moment 271 * after page_cgroup_ino() returns, so it only should be used by callers that 272 * do not care (such as procfs interfaces). 273 */ 274 ino_t page_cgroup_ino(struct page *page) 275 { 276 struct mem_cgroup *memcg; 277 unsigned long ino = 0; 278 279 rcu_read_lock(); 280 /* page_folio() is racy here, but the entire function is racy anyway */ 281 memcg = folio_memcg_check(page_folio(page)); 282 283 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 284 memcg = parent_mem_cgroup(memcg); 285 if (memcg) 286 ino = cgroup_ino(memcg->css.cgroup); 287 rcu_read_unlock(); 288 return ino; 289 } 290 EXPORT_SYMBOL_GPL(page_cgroup_ino); 291 292 /* Subset of node_stat_item for memcg stats */ 293 static const unsigned int memcg_node_stat_items[] = { 294 NR_INACTIVE_ANON, 295 NR_ACTIVE_ANON, 296 NR_INACTIVE_FILE, 297 NR_ACTIVE_FILE, 298 NR_UNEVICTABLE, 299 NR_SLAB_RECLAIMABLE_B, 300 NR_SLAB_UNRECLAIMABLE_B, 301 WORKINGSET_REFAULT_ANON, 302 WORKINGSET_REFAULT_FILE, 303 WORKINGSET_ACTIVATE_ANON, 304 WORKINGSET_ACTIVATE_FILE, 305 WORKINGSET_RESTORE_ANON, 306 WORKINGSET_RESTORE_FILE, 307 WORKINGSET_NODERECLAIM, 308 NR_ANON_MAPPED, 309 NR_FILE_MAPPED, 310 NR_FILE_PAGES, 311 NR_FILE_DIRTY, 312 NR_WRITEBACK, 313 NR_SHMEM, 314 NR_SHMEM_THPS, 315 NR_FILE_THPS, 316 NR_ANON_THPS, 317 NR_KERNEL_STACK_KB, 318 NR_PAGETABLE, 319 NR_SECONDARY_PAGETABLE, 320 #ifdef CONFIG_SWAP 321 NR_SWAPCACHE, 322 #endif 323 #ifdef CONFIG_NUMA_BALANCING 324 PGPROMOTE_SUCCESS, 325 #endif 326 PGDEMOTE_KSWAPD, 327 PGDEMOTE_DIRECT, 328 PGDEMOTE_KHUGEPAGED, 329 PGDEMOTE_PROACTIVE, 330 #ifdef CONFIG_HUGETLB_PAGE 331 NR_HUGETLB, 332 #endif 333 }; 334 335 static const unsigned int memcg_stat_items[] = { 336 MEMCG_SWAP, 337 MEMCG_SOCK, 338 MEMCG_PERCPU_B, 339 MEMCG_VMALLOC, 340 MEMCG_KMEM, 341 MEMCG_ZSWAP_B, 342 MEMCG_ZSWAPPED, 343 }; 344 345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 347 ARRAY_SIZE(memcg_stat_items)) 348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 350 351 static void init_memcg_stats(void) 352 { 353 u8 i, j = 0; 354 355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 356 357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 358 359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 361 362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 363 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 364 } 365 366 static inline int memcg_stats_index(int idx) 367 { 368 return mem_cgroup_stats_index[idx]; 369 } 370 371 struct lruvec_stats_percpu { 372 /* Local (CPU and cgroup) state */ 373 long state[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Delta calculation for lockless upward propagation */ 376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 struct lruvec_stats { 380 /* Aggregated (CPU and subtree) state */ 381 long state[NR_MEMCG_NODE_STAT_ITEMS]; 382 383 /* Non-hierarchical (CPU aggregated) state */ 384 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Pending child counts during tree propagation */ 387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 388 }; 389 390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 391 { 392 struct mem_cgroup_per_node *pn; 393 long x; 394 int i; 395 396 if (mem_cgroup_disabled()) 397 return node_page_state(lruvec_pgdat(lruvec), idx); 398 399 i = memcg_stats_index(idx); 400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 401 return 0; 402 403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 404 x = READ_ONCE(pn->lruvec_stats->state[i]); 405 #ifdef CONFIG_SMP 406 if (x < 0) 407 x = 0; 408 #endif 409 return x; 410 } 411 412 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 413 enum node_stat_item idx) 414 { 415 struct mem_cgroup_per_node *pn; 416 long x; 417 int i; 418 419 if (mem_cgroup_disabled()) 420 return node_page_state(lruvec_pgdat(lruvec), idx); 421 422 i = memcg_stats_index(idx); 423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 424 return 0; 425 426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 428 #ifdef CONFIG_SMP 429 if (x < 0) 430 x = 0; 431 #endif 432 return x; 433 } 434 435 /* Subset of vm_event_item to report for memcg event stats */ 436 static const unsigned int memcg_vm_event_stat[] = { 437 #ifdef CONFIG_MEMCG_V1 438 PGPGIN, 439 PGPGOUT, 440 #endif 441 PSWPIN, 442 PSWPOUT, 443 PGSCAN_KSWAPD, 444 PGSCAN_DIRECT, 445 PGSCAN_KHUGEPAGED, 446 PGSCAN_PROACTIVE, 447 PGSTEAL_KSWAPD, 448 PGSTEAL_DIRECT, 449 PGSTEAL_KHUGEPAGED, 450 PGSTEAL_PROACTIVE, 451 PGFAULT, 452 PGMAJFAULT, 453 PGREFILL, 454 PGACTIVATE, 455 PGDEACTIVATE, 456 PGLAZYFREE, 457 PGLAZYFREED, 458 #ifdef CONFIG_SWAP 459 SWPIN_ZERO, 460 SWPOUT_ZERO, 461 #endif 462 #ifdef CONFIG_ZSWAP 463 ZSWPIN, 464 ZSWPOUT, 465 ZSWPWB, 466 #endif 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 THP_FAULT_ALLOC, 469 THP_COLLAPSE_ALLOC, 470 THP_SWPOUT, 471 THP_SWPOUT_FALLBACK, 472 #endif 473 #ifdef CONFIG_NUMA_BALANCING 474 NUMA_PAGE_MIGRATE, 475 NUMA_PTE_UPDATES, 476 NUMA_HINT_FAULTS, 477 #endif 478 }; 479 480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 482 483 static void init_memcg_events(void) 484 { 485 u8 i; 486 487 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 488 489 memset(mem_cgroup_events_index, U8_MAX, 490 sizeof(mem_cgroup_events_index)); 491 492 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 493 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 494 } 495 496 static inline int memcg_events_index(enum vm_event_item idx) 497 { 498 return mem_cgroup_events_index[idx]; 499 } 500 501 struct memcg_vmstats_percpu { 502 /* Stats updates since the last flush */ 503 unsigned int stats_updates; 504 505 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 506 struct memcg_vmstats_percpu __percpu *parent_pcpu; 507 struct memcg_vmstats *vmstats; 508 509 /* The above should fit a single cacheline for memcg_rstat_updated() */ 510 511 /* Local (CPU and cgroup) page state & events */ 512 long state[MEMCG_VMSTAT_SIZE]; 513 unsigned long events[NR_MEMCG_EVENTS]; 514 515 /* Delta calculation for lockless upward propagation */ 516 long state_prev[MEMCG_VMSTAT_SIZE]; 517 unsigned long events_prev[NR_MEMCG_EVENTS]; 518 } ____cacheline_aligned; 519 520 struct memcg_vmstats { 521 /* Aggregated (CPU and subtree) page state & events */ 522 long state[MEMCG_VMSTAT_SIZE]; 523 unsigned long events[NR_MEMCG_EVENTS]; 524 525 /* Non-hierarchical (CPU aggregated) page state & events */ 526 long state_local[MEMCG_VMSTAT_SIZE]; 527 unsigned long events_local[NR_MEMCG_EVENTS]; 528 529 /* Pending child counts during tree propagation */ 530 long state_pending[MEMCG_VMSTAT_SIZE]; 531 unsigned long events_pending[NR_MEMCG_EVENTS]; 532 533 /* Stats updates since the last flush */ 534 atomic_t stats_updates; 535 }; 536 537 /* 538 * memcg and lruvec stats flushing 539 * 540 * Many codepaths leading to stats update or read are performance sensitive and 541 * adding stats flushing in such codepaths is not desirable. So, to optimize the 542 * flushing the kernel does: 543 * 544 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 545 * rstat update tree grow unbounded. 546 * 547 * 2) Flush the stats synchronously on reader side only when there are more than 548 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 549 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 550 * only for 2 seconds due to (1). 551 */ 552 static void flush_memcg_stats_dwork(struct work_struct *w); 553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 554 static u64 flush_last_time; 555 556 #define FLUSH_TIME (2UL*HZ) 557 558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 559 { 560 return atomic_read(&vmstats->stats_updates) > 561 MEMCG_CHARGE_BATCH * num_online_cpus(); 562 } 563 564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, 565 int cpu) 566 { 567 struct memcg_vmstats_percpu __percpu *statc_pcpu; 568 struct memcg_vmstats_percpu *statc; 569 unsigned int stats_updates; 570 571 if (!val) 572 return; 573 574 css_rstat_updated(&memcg->css, cpu); 575 statc_pcpu = memcg->vmstats_percpu; 576 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { 577 statc = this_cpu_ptr(statc_pcpu); 578 /* 579 * If @memcg is already flushable then all its ancestors are 580 * flushable as well and also there is no need to increase 581 * stats_updates. 582 */ 583 if (memcg_vmstats_needs_flush(statc->vmstats)) 584 break; 585 586 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, 587 abs(val)); 588 if (stats_updates < MEMCG_CHARGE_BATCH) 589 continue; 590 591 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); 592 atomic_add(stats_updates, &statc->vmstats->stats_updates); 593 } 594 } 595 596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 597 { 598 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 599 600 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), 601 force, needs_flush); 602 603 if (!force && !needs_flush) 604 return; 605 606 if (mem_cgroup_is_root(memcg)) 607 WRITE_ONCE(flush_last_time, jiffies_64); 608 609 css_rstat_flush(&memcg->css); 610 } 611 612 /* 613 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 614 * @memcg: root of the subtree to flush 615 * 616 * Flushing is serialized by the underlying global rstat lock. There is also a 617 * minimum amount of work to be done even if there are no stat updates to flush. 618 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 619 * avoids unnecessary work and contention on the underlying lock. 620 */ 621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 622 { 623 if (mem_cgroup_disabled()) 624 return; 625 626 if (!memcg) 627 memcg = root_mem_cgroup; 628 629 __mem_cgroup_flush_stats(memcg, false); 630 } 631 632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 633 { 634 /* Only flush if the periodic flusher is one full cycle late */ 635 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 636 mem_cgroup_flush_stats(memcg); 637 } 638 639 static void flush_memcg_stats_dwork(struct work_struct *w) 640 { 641 /* 642 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 643 * in latency-sensitive paths is as cheap as possible. 644 */ 645 __mem_cgroup_flush_stats(root_mem_cgroup, true); 646 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 647 } 648 649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 650 { 651 long x; 652 int i = memcg_stats_index(idx); 653 654 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 655 return 0; 656 657 x = READ_ONCE(memcg->vmstats->state[i]); 658 #ifdef CONFIG_SMP 659 if (x < 0) 660 x = 0; 661 #endif 662 return x; 663 } 664 665 static int memcg_page_state_unit(int item); 666 667 /* 668 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 669 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 670 */ 671 static int memcg_state_val_in_pages(int idx, int val) 672 { 673 int unit = memcg_page_state_unit(idx); 674 675 if (!val || unit == PAGE_SIZE) 676 return val; 677 else 678 return max(val * unit / PAGE_SIZE, 1UL); 679 } 680 681 /** 682 * mod_memcg_state - update cgroup memory statistics 683 * @memcg: the memory cgroup 684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 685 * @val: delta to add to the counter, can be negative 686 */ 687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 688 int val) 689 { 690 int i = memcg_stats_index(idx); 691 int cpu; 692 693 if (mem_cgroup_disabled()) 694 return; 695 696 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 697 return; 698 699 cpu = get_cpu(); 700 701 this_cpu_add(memcg->vmstats_percpu->state[i], val); 702 val = memcg_state_val_in_pages(idx, val); 703 memcg_rstat_updated(memcg, val, cpu); 704 trace_mod_memcg_state(memcg, idx, val); 705 706 put_cpu(); 707 } 708 709 #ifdef CONFIG_MEMCG_V1 710 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 712 { 713 long x; 714 int i = memcg_stats_index(idx); 715 716 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 717 return 0; 718 719 x = READ_ONCE(memcg->vmstats->state_local[i]); 720 #ifdef CONFIG_SMP 721 if (x < 0) 722 x = 0; 723 #endif 724 return x; 725 } 726 #endif 727 728 static void mod_memcg_lruvec_state(struct lruvec *lruvec, 729 enum node_stat_item idx, 730 int val) 731 { 732 struct mem_cgroup_per_node *pn; 733 struct mem_cgroup *memcg; 734 int i = memcg_stats_index(idx); 735 int cpu; 736 737 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 cpu = get_cpu(); 744 745 /* Update memcg */ 746 this_cpu_add(memcg->vmstats_percpu->state[i], val); 747 748 /* Update lruvec */ 749 this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 750 751 val = memcg_state_val_in_pages(idx, val); 752 memcg_rstat_updated(memcg, val, cpu); 753 trace_mod_memcg_lruvec_state(memcg, idx, val); 754 755 put_cpu(); 756 } 757 758 /** 759 * __mod_lruvec_state - update lruvec memory statistics 760 * @lruvec: the lruvec 761 * @idx: the stat item 762 * @val: delta to add to the counter, can be negative 763 * 764 * The lruvec is the intersection of the NUMA node and a cgroup. This 765 * function updates the all three counters that are affected by a 766 * change of state at this level: per-node, per-cgroup, per-lruvec. 767 */ 768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 769 int val) 770 { 771 /* Update node */ 772 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 773 774 /* Update memcg and lruvec */ 775 if (!mem_cgroup_disabled()) 776 mod_memcg_lruvec_state(lruvec, idx, val); 777 } 778 779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 780 int val) 781 { 782 struct mem_cgroup *memcg; 783 pg_data_t *pgdat = folio_pgdat(folio); 784 struct lruvec *lruvec; 785 786 rcu_read_lock(); 787 memcg = folio_memcg(folio); 788 /* Untracked pages have no memcg, no lruvec. Update only the node */ 789 if (!memcg) { 790 rcu_read_unlock(); 791 __mod_node_page_state(pgdat, idx, val); 792 return; 793 } 794 795 lruvec = mem_cgroup_lruvec(memcg, pgdat); 796 __mod_lruvec_state(lruvec, idx, val); 797 rcu_read_unlock(); 798 } 799 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 800 801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 802 { 803 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 804 struct mem_cgroup *memcg; 805 struct lruvec *lruvec; 806 807 rcu_read_lock(); 808 memcg = mem_cgroup_from_slab_obj(p); 809 810 /* 811 * Untracked pages have no memcg, no lruvec. Update only the 812 * node. If we reparent the slab objects to the root memcg, 813 * when we free the slab object, we need to update the per-memcg 814 * vmstats to keep it correct for the root memcg. 815 */ 816 if (!memcg) { 817 __mod_node_page_state(pgdat, idx, val); 818 } else { 819 lruvec = mem_cgroup_lruvec(memcg, pgdat); 820 __mod_lruvec_state(lruvec, idx, val); 821 } 822 rcu_read_unlock(); 823 } 824 825 /** 826 * count_memcg_events - account VM events in a cgroup 827 * @memcg: the memory cgroup 828 * @idx: the event item 829 * @count: the number of events that occurred 830 */ 831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 832 unsigned long count) 833 { 834 int i = memcg_events_index(idx); 835 int cpu; 836 837 if (mem_cgroup_disabled()) 838 return; 839 840 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 841 return; 842 843 cpu = get_cpu(); 844 845 this_cpu_add(memcg->vmstats_percpu->events[i], count); 846 memcg_rstat_updated(memcg, count, cpu); 847 trace_count_memcg_events(memcg, idx, count); 848 849 put_cpu(); 850 } 851 852 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 853 { 854 int i = memcg_events_index(event); 855 856 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 857 return 0; 858 859 return READ_ONCE(memcg->vmstats->events[i]); 860 } 861 862 #ifdef CONFIG_MEMCG_V1 863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 864 { 865 int i = memcg_events_index(event); 866 867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 868 return 0; 869 870 return READ_ONCE(memcg->vmstats->events_local[i]); 871 } 872 #endif 873 874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 875 { 876 /* 877 * mm_update_next_owner() may clear mm->owner to NULL 878 * if it races with swapoff, page migration, etc. 879 * So this can be called with p == NULL. 880 */ 881 if (unlikely(!p)) 882 return NULL; 883 884 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 885 } 886 EXPORT_SYMBOL(mem_cgroup_from_task); 887 888 static __always_inline struct mem_cgroup *active_memcg(void) 889 { 890 if (!in_task()) 891 return this_cpu_read(int_active_memcg); 892 else 893 return current->active_memcg; 894 } 895 896 /** 897 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 898 * @mm: mm from which memcg should be extracted. It can be NULL. 899 * 900 * Obtain a reference on mm->memcg and returns it if successful. If mm 901 * is NULL, then the memcg is chosen as follows: 902 * 1) The active memcg, if set. 903 * 2) current->mm->memcg, if available 904 * 3) root memcg 905 * If mem_cgroup is disabled, NULL is returned. 906 */ 907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 908 { 909 struct mem_cgroup *memcg; 910 911 if (mem_cgroup_disabled()) 912 return NULL; 913 914 /* 915 * Page cache insertions can happen without an 916 * actual mm context, e.g. during disk probing 917 * on boot, loopback IO, acct() writes etc. 918 * 919 * No need to css_get on root memcg as the reference 920 * counting is disabled on the root level in the 921 * cgroup core. See CSS_NO_REF. 922 */ 923 if (unlikely(!mm)) { 924 memcg = active_memcg(); 925 if (unlikely(memcg)) { 926 /* remote memcg must hold a ref */ 927 css_get(&memcg->css); 928 return memcg; 929 } 930 mm = current->mm; 931 if (unlikely(!mm)) 932 return root_mem_cgroup; 933 } 934 935 rcu_read_lock(); 936 do { 937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 938 if (unlikely(!memcg)) 939 memcg = root_mem_cgroup; 940 } while (!css_tryget(&memcg->css)); 941 rcu_read_unlock(); 942 return memcg; 943 } 944 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 945 946 /** 947 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 948 */ 949 struct mem_cgroup *get_mem_cgroup_from_current(void) 950 { 951 struct mem_cgroup *memcg; 952 953 if (mem_cgroup_disabled()) 954 return NULL; 955 956 again: 957 rcu_read_lock(); 958 memcg = mem_cgroup_from_task(current); 959 if (!css_tryget(&memcg->css)) { 960 rcu_read_unlock(); 961 goto again; 962 } 963 rcu_read_unlock(); 964 return memcg; 965 } 966 967 /** 968 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 969 * @folio: folio from which memcg should be extracted. 970 */ 971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 972 { 973 struct mem_cgroup *memcg = folio_memcg(folio); 974 975 if (mem_cgroup_disabled()) 976 return NULL; 977 978 rcu_read_lock(); 979 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 980 memcg = root_mem_cgroup; 981 rcu_read_unlock(); 982 return memcg; 983 } 984 985 /** 986 * mem_cgroup_iter - iterate over memory cgroup hierarchy 987 * @root: hierarchy root 988 * @prev: previously returned memcg, NULL on first invocation 989 * @reclaim: cookie for shared reclaim walks, NULL for full walks 990 * 991 * Returns references to children of the hierarchy below @root, or 992 * @root itself, or %NULL after a full round-trip. 993 * 994 * Caller must pass the return value in @prev on subsequent 995 * invocations for reference counting, or use mem_cgroup_iter_break() 996 * to cancel a hierarchy walk before the round-trip is complete. 997 * 998 * Reclaimers can specify a node in @reclaim to divide up the memcgs 999 * in the hierarchy among all concurrent reclaimers operating on the 1000 * same node. 1001 */ 1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1003 struct mem_cgroup *prev, 1004 struct mem_cgroup_reclaim_cookie *reclaim) 1005 { 1006 struct mem_cgroup_reclaim_iter *iter; 1007 struct cgroup_subsys_state *css; 1008 struct mem_cgroup *pos; 1009 struct mem_cgroup *next; 1010 1011 if (mem_cgroup_disabled()) 1012 return NULL; 1013 1014 if (!root) 1015 root = root_mem_cgroup; 1016 1017 rcu_read_lock(); 1018 restart: 1019 next = NULL; 1020 1021 if (reclaim) { 1022 int gen; 1023 int nid = reclaim->pgdat->node_id; 1024 1025 iter = &root->nodeinfo[nid]->iter; 1026 gen = atomic_read(&iter->generation); 1027 1028 /* 1029 * On start, join the current reclaim iteration cycle. 1030 * Exit when a concurrent walker completes it. 1031 */ 1032 if (!prev) 1033 reclaim->generation = gen; 1034 else if (reclaim->generation != gen) 1035 goto out_unlock; 1036 1037 pos = READ_ONCE(iter->position); 1038 } else 1039 pos = prev; 1040 1041 css = pos ? &pos->css : NULL; 1042 1043 while ((css = css_next_descendant_pre(css, &root->css))) { 1044 /* 1045 * Verify the css and acquire a reference. The root 1046 * is provided by the caller, so we know it's alive 1047 * and kicking, and don't take an extra reference. 1048 */ 1049 if (css == &root->css || css_tryget(css)) 1050 break; 1051 } 1052 1053 next = mem_cgroup_from_css(css); 1054 1055 if (reclaim) { 1056 /* 1057 * The position could have already been updated by a competing 1058 * thread, so check that the value hasn't changed since we read 1059 * it to avoid reclaiming from the same cgroup twice. 1060 */ 1061 if (cmpxchg(&iter->position, pos, next) != pos) { 1062 if (css && css != &root->css) 1063 css_put(css); 1064 goto restart; 1065 } 1066 1067 if (!next) { 1068 atomic_inc(&iter->generation); 1069 1070 /* 1071 * Reclaimers share the hierarchy walk, and a 1072 * new one might jump in right at the end of 1073 * the hierarchy - make sure they see at least 1074 * one group and restart from the beginning. 1075 */ 1076 if (!prev) 1077 goto restart; 1078 } 1079 } 1080 1081 out_unlock: 1082 rcu_read_unlock(); 1083 if (prev && prev != root) 1084 css_put(&prev->css); 1085 1086 return next; 1087 } 1088 1089 /** 1090 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1091 * @root: hierarchy root 1092 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1093 */ 1094 void mem_cgroup_iter_break(struct mem_cgroup *root, 1095 struct mem_cgroup *prev) 1096 { 1097 if (!root) 1098 root = root_mem_cgroup; 1099 if (prev && prev != root) 1100 css_put(&prev->css); 1101 } 1102 1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1104 struct mem_cgroup *dead_memcg) 1105 { 1106 struct mem_cgroup_reclaim_iter *iter; 1107 struct mem_cgroup_per_node *mz; 1108 int nid; 1109 1110 for_each_node(nid) { 1111 mz = from->nodeinfo[nid]; 1112 iter = &mz->iter; 1113 cmpxchg(&iter->position, dead_memcg, NULL); 1114 } 1115 } 1116 1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1118 { 1119 struct mem_cgroup *memcg = dead_memcg; 1120 struct mem_cgroup *last; 1121 1122 do { 1123 __invalidate_reclaim_iterators(memcg, dead_memcg); 1124 last = memcg; 1125 } while ((memcg = parent_mem_cgroup(memcg))); 1126 1127 /* 1128 * When cgroup1 non-hierarchy mode is used, 1129 * parent_mem_cgroup() does not walk all the way up to the 1130 * cgroup root (root_mem_cgroup). So we have to handle 1131 * dead_memcg from cgroup root separately. 1132 */ 1133 if (!mem_cgroup_is_root(last)) 1134 __invalidate_reclaim_iterators(root_mem_cgroup, 1135 dead_memcg); 1136 } 1137 1138 /** 1139 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1140 * @memcg: hierarchy root 1141 * @fn: function to call for each task 1142 * @arg: argument passed to @fn 1143 * 1144 * This function iterates over tasks attached to @memcg or to any of its 1145 * descendants and calls @fn for each task. If @fn returns a non-zero 1146 * value, the function breaks the iteration loop. Otherwise, it will iterate 1147 * over all tasks and return 0. 1148 * 1149 * This function must not be called for the root memory cgroup. 1150 */ 1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1152 int (*fn)(struct task_struct *, void *), void *arg) 1153 { 1154 struct mem_cgroup *iter; 1155 int ret = 0; 1156 1157 BUG_ON(mem_cgroup_is_root(memcg)); 1158 1159 for_each_mem_cgroup_tree(iter, memcg) { 1160 struct css_task_iter it; 1161 struct task_struct *task; 1162 1163 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1164 while (!ret && (task = css_task_iter_next(&it))) { 1165 ret = fn(task, arg); 1166 /* Avoid potential softlockup warning */ 1167 cond_resched(); 1168 } 1169 css_task_iter_end(&it); 1170 if (ret) { 1171 mem_cgroup_iter_break(memcg, iter); 1172 break; 1173 } 1174 } 1175 } 1176 1177 #ifdef CONFIG_DEBUG_VM 1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1179 { 1180 struct mem_cgroup *memcg; 1181 1182 if (mem_cgroup_disabled()) 1183 return; 1184 1185 memcg = folio_memcg(folio); 1186 1187 if (!memcg) 1188 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1189 else 1190 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1191 } 1192 #endif 1193 1194 /** 1195 * folio_lruvec_lock - Lock the lruvec for a folio. 1196 * @folio: Pointer to the folio. 1197 * 1198 * These functions are safe to use under any of the following conditions: 1199 * - folio locked 1200 * - folio_test_lru false 1201 * - folio frozen (refcount of 0) 1202 * 1203 * Return: The lruvec this folio is on with its lock held. 1204 */ 1205 struct lruvec *folio_lruvec_lock(struct folio *folio) 1206 { 1207 struct lruvec *lruvec = folio_lruvec(folio); 1208 1209 spin_lock(&lruvec->lru_lock); 1210 lruvec_memcg_debug(lruvec, folio); 1211 1212 return lruvec; 1213 } 1214 1215 /** 1216 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1217 * @folio: Pointer to the folio. 1218 * 1219 * These functions are safe to use under any of the following conditions: 1220 * - folio locked 1221 * - folio_test_lru false 1222 * - folio frozen (refcount of 0) 1223 * 1224 * Return: The lruvec this folio is on with its lock held and interrupts 1225 * disabled. 1226 */ 1227 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1228 { 1229 struct lruvec *lruvec = folio_lruvec(folio); 1230 1231 spin_lock_irq(&lruvec->lru_lock); 1232 lruvec_memcg_debug(lruvec, folio); 1233 1234 return lruvec; 1235 } 1236 1237 /** 1238 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1239 * @folio: Pointer to the folio. 1240 * @flags: Pointer to irqsave flags. 1241 * 1242 * These functions are safe to use under any of the following conditions: 1243 * - folio locked 1244 * - folio_test_lru false 1245 * - folio frozen (refcount of 0) 1246 * 1247 * Return: The lruvec this folio is on with its lock held and interrupts 1248 * disabled. 1249 */ 1250 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1251 unsigned long *flags) 1252 { 1253 struct lruvec *lruvec = folio_lruvec(folio); 1254 1255 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1256 lruvec_memcg_debug(lruvec, folio); 1257 1258 return lruvec; 1259 } 1260 1261 /** 1262 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1263 * @lruvec: mem_cgroup per zone lru vector 1264 * @lru: index of lru list the page is sitting on 1265 * @zid: zone id of the accounted pages 1266 * @nr_pages: positive when adding or negative when removing 1267 * 1268 * This function must be called under lru_lock, just before a page is added 1269 * to or just after a page is removed from an lru list. 1270 */ 1271 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1272 int zid, int nr_pages) 1273 { 1274 struct mem_cgroup_per_node *mz; 1275 unsigned long *lru_size; 1276 long size; 1277 1278 if (mem_cgroup_disabled()) 1279 return; 1280 1281 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1282 lru_size = &mz->lru_zone_size[zid][lru]; 1283 1284 if (nr_pages < 0) 1285 *lru_size += nr_pages; 1286 1287 size = *lru_size; 1288 if (WARN_ONCE(size < 0, 1289 "%s(%p, %d, %d): lru_size %ld\n", 1290 __func__, lruvec, lru, nr_pages, size)) { 1291 VM_BUG_ON(1); 1292 *lru_size = 0; 1293 } 1294 1295 if (nr_pages > 0) 1296 *lru_size += nr_pages; 1297 } 1298 1299 /** 1300 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1301 * @memcg: the memory cgroup 1302 * 1303 * Returns the maximum amount of memory @mem can be charged with, in 1304 * pages. 1305 */ 1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1307 { 1308 unsigned long margin = 0; 1309 unsigned long count; 1310 unsigned long limit; 1311 1312 count = page_counter_read(&memcg->memory); 1313 limit = READ_ONCE(memcg->memory.max); 1314 if (count < limit) 1315 margin = limit - count; 1316 1317 if (do_memsw_account()) { 1318 count = page_counter_read(&memcg->memsw); 1319 limit = READ_ONCE(memcg->memsw.max); 1320 if (count < limit) 1321 margin = min(margin, limit - count); 1322 else 1323 margin = 0; 1324 } 1325 1326 return margin; 1327 } 1328 1329 struct memory_stat { 1330 const char *name; 1331 unsigned int idx; 1332 }; 1333 1334 static const struct memory_stat memory_stats[] = { 1335 { "anon", NR_ANON_MAPPED }, 1336 { "file", NR_FILE_PAGES }, 1337 { "kernel", MEMCG_KMEM }, 1338 { "kernel_stack", NR_KERNEL_STACK_KB }, 1339 { "pagetables", NR_PAGETABLE }, 1340 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1341 { "percpu", MEMCG_PERCPU_B }, 1342 { "sock", MEMCG_SOCK }, 1343 { "vmalloc", MEMCG_VMALLOC }, 1344 { "shmem", NR_SHMEM }, 1345 #ifdef CONFIG_ZSWAP 1346 { "zswap", MEMCG_ZSWAP_B }, 1347 { "zswapped", MEMCG_ZSWAPPED }, 1348 #endif 1349 { "file_mapped", NR_FILE_MAPPED }, 1350 { "file_dirty", NR_FILE_DIRTY }, 1351 { "file_writeback", NR_WRITEBACK }, 1352 #ifdef CONFIG_SWAP 1353 { "swapcached", NR_SWAPCACHE }, 1354 #endif 1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1356 { "anon_thp", NR_ANON_THPS }, 1357 { "file_thp", NR_FILE_THPS }, 1358 { "shmem_thp", NR_SHMEM_THPS }, 1359 #endif 1360 { "inactive_anon", NR_INACTIVE_ANON }, 1361 { "active_anon", NR_ACTIVE_ANON }, 1362 { "inactive_file", NR_INACTIVE_FILE }, 1363 { "active_file", NR_ACTIVE_FILE }, 1364 { "unevictable", NR_UNEVICTABLE }, 1365 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1366 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1367 #ifdef CONFIG_HUGETLB_PAGE 1368 { "hugetlb", NR_HUGETLB }, 1369 #endif 1370 1371 /* The memory events */ 1372 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1373 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1374 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1375 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1376 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1377 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1378 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1379 1380 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1381 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1382 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1383 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1384 #ifdef CONFIG_NUMA_BALANCING 1385 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1386 #endif 1387 }; 1388 1389 /* The actual unit of the state item, not the same as the output unit */ 1390 static int memcg_page_state_unit(int item) 1391 { 1392 switch (item) { 1393 case MEMCG_PERCPU_B: 1394 case MEMCG_ZSWAP_B: 1395 case NR_SLAB_RECLAIMABLE_B: 1396 case NR_SLAB_UNRECLAIMABLE_B: 1397 return 1; 1398 case NR_KERNEL_STACK_KB: 1399 return SZ_1K; 1400 default: 1401 return PAGE_SIZE; 1402 } 1403 } 1404 1405 /* Translate stat items to the correct unit for memory.stat output */ 1406 static int memcg_page_state_output_unit(int item) 1407 { 1408 /* 1409 * Workingset state is actually in pages, but we export it to userspace 1410 * as a scalar count of events, so special case it here. 1411 * 1412 * Demotion and promotion activities are exported in pages, consistent 1413 * with their global counterparts. 1414 */ 1415 switch (item) { 1416 case WORKINGSET_REFAULT_ANON: 1417 case WORKINGSET_REFAULT_FILE: 1418 case WORKINGSET_ACTIVATE_ANON: 1419 case WORKINGSET_ACTIVATE_FILE: 1420 case WORKINGSET_RESTORE_ANON: 1421 case WORKINGSET_RESTORE_FILE: 1422 case WORKINGSET_NODERECLAIM: 1423 case PGDEMOTE_KSWAPD: 1424 case PGDEMOTE_DIRECT: 1425 case PGDEMOTE_KHUGEPAGED: 1426 case PGDEMOTE_PROACTIVE: 1427 #ifdef CONFIG_NUMA_BALANCING 1428 case PGPROMOTE_SUCCESS: 1429 #endif 1430 return 1; 1431 default: 1432 return memcg_page_state_unit(item); 1433 } 1434 } 1435 1436 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1437 { 1438 return memcg_page_state(memcg, item) * 1439 memcg_page_state_output_unit(item); 1440 } 1441 1442 #ifdef CONFIG_MEMCG_V1 1443 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1444 { 1445 return memcg_page_state_local(memcg, item) * 1446 memcg_page_state_output_unit(item); 1447 } 1448 #endif 1449 1450 #ifdef CONFIG_HUGETLB_PAGE 1451 static bool memcg_accounts_hugetlb(void) 1452 { 1453 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1454 } 1455 #else /* CONFIG_HUGETLB_PAGE */ 1456 static bool memcg_accounts_hugetlb(void) 1457 { 1458 return false; 1459 } 1460 #endif /* CONFIG_HUGETLB_PAGE */ 1461 1462 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1463 { 1464 int i; 1465 1466 /* 1467 * Provide statistics on the state of the memory subsystem as 1468 * well as cumulative event counters that show past behavior. 1469 * 1470 * This list is ordered following a combination of these gradients: 1471 * 1) generic big picture -> specifics and details 1472 * 2) reflecting userspace activity -> reflecting kernel heuristics 1473 * 1474 * Current memory state: 1475 */ 1476 mem_cgroup_flush_stats(memcg); 1477 1478 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1479 u64 size; 1480 1481 #ifdef CONFIG_HUGETLB_PAGE 1482 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1483 !memcg_accounts_hugetlb()) 1484 continue; 1485 #endif 1486 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1487 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1488 1489 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1490 size += memcg_page_state_output(memcg, 1491 NR_SLAB_RECLAIMABLE_B); 1492 seq_buf_printf(s, "slab %llu\n", size); 1493 } 1494 } 1495 1496 /* Accumulated memory events */ 1497 seq_buf_printf(s, "pgscan %lu\n", 1498 memcg_events(memcg, PGSCAN_KSWAPD) + 1499 memcg_events(memcg, PGSCAN_DIRECT) + 1500 memcg_events(memcg, PGSCAN_PROACTIVE) + 1501 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1502 seq_buf_printf(s, "pgsteal %lu\n", 1503 memcg_events(memcg, PGSTEAL_KSWAPD) + 1504 memcg_events(memcg, PGSTEAL_DIRECT) + 1505 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1506 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1507 1508 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1509 #ifdef CONFIG_MEMCG_V1 1510 if (memcg_vm_event_stat[i] == PGPGIN || 1511 memcg_vm_event_stat[i] == PGPGOUT) 1512 continue; 1513 #endif 1514 seq_buf_printf(s, "%s %lu\n", 1515 vm_event_name(memcg_vm_event_stat[i]), 1516 memcg_events(memcg, memcg_vm_event_stat[i])); 1517 } 1518 } 1519 1520 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1521 { 1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1523 memcg_stat_format(memcg, s); 1524 else 1525 memcg1_stat_format(memcg, s); 1526 if (seq_buf_has_overflowed(s)) 1527 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1528 } 1529 1530 /** 1531 * mem_cgroup_print_oom_context: Print OOM information relevant to 1532 * memory controller. 1533 * @memcg: The memory cgroup that went over limit 1534 * @p: Task that is going to be killed 1535 * 1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1537 * enabled 1538 */ 1539 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1540 { 1541 rcu_read_lock(); 1542 1543 if (memcg) { 1544 pr_cont(",oom_memcg="); 1545 pr_cont_cgroup_path(memcg->css.cgroup); 1546 } else 1547 pr_cont(",global_oom"); 1548 if (p) { 1549 pr_cont(",task_memcg="); 1550 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1551 } 1552 rcu_read_unlock(); 1553 } 1554 1555 /** 1556 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1557 * memory controller. 1558 * @memcg: The memory cgroup that went over limit 1559 */ 1560 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1561 { 1562 /* Use static buffer, for the caller is holding oom_lock. */ 1563 static char buf[SEQ_BUF_SIZE]; 1564 struct seq_buf s; 1565 unsigned long memory_failcnt; 1566 1567 lockdep_assert_held(&oom_lock); 1568 1569 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1570 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1571 else 1572 memory_failcnt = memcg->memory.failcnt; 1573 1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1575 K((u64)page_counter_read(&memcg->memory)), 1576 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1577 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1578 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1579 K((u64)page_counter_read(&memcg->swap)), 1580 K((u64)READ_ONCE(memcg->swap.max)), 1581 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1582 #ifdef CONFIG_MEMCG_V1 1583 else { 1584 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1585 K((u64)page_counter_read(&memcg->memsw)), 1586 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1587 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1588 K((u64)page_counter_read(&memcg->kmem)), 1589 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1590 } 1591 #endif 1592 1593 pr_info("Memory cgroup stats for "); 1594 pr_cont_cgroup_path(memcg->css.cgroup); 1595 pr_cont(":"); 1596 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1597 memory_stat_format(memcg, &s); 1598 seq_buf_do_printk(&s, KERN_INFO); 1599 } 1600 1601 /* 1602 * Return the memory (and swap, if configured) limit for a memcg. 1603 */ 1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1605 { 1606 unsigned long max = READ_ONCE(memcg->memory.max); 1607 1608 if (do_memsw_account()) { 1609 if (mem_cgroup_swappiness(memcg)) { 1610 /* Calculate swap excess capacity from memsw limit */ 1611 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1612 1613 max += min(swap, (unsigned long)total_swap_pages); 1614 } 1615 } else { 1616 if (mem_cgroup_swappiness(memcg)) 1617 max += min(READ_ONCE(memcg->swap.max), 1618 (unsigned long)total_swap_pages); 1619 } 1620 return max; 1621 } 1622 1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1624 { 1625 return page_counter_read(&memcg->memory); 1626 } 1627 1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1629 int order) 1630 { 1631 struct oom_control oc = { 1632 .zonelist = NULL, 1633 .nodemask = NULL, 1634 .memcg = memcg, 1635 .gfp_mask = gfp_mask, 1636 .order = order, 1637 }; 1638 bool ret = true; 1639 1640 if (mutex_lock_killable(&oom_lock)) 1641 return true; 1642 1643 if (mem_cgroup_margin(memcg) >= (1 << order)) 1644 goto unlock; 1645 1646 /* 1647 * A few threads which were not waiting at mutex_lock_killable() can 1648 * fail to bail out. Therefore, check again after holding oom_lock. 1649 */ 1650 ret = out_of_memory(&oc); 1651 1652 unlock: 1653 mutex_unlock(&oom_lock); 1654 return ret; 1655 } 1656 1657 /* 1658 * Returns true if successfully killed one or more processes. Though in some 1659 * corner cases it can return true even without killing any process. 1660 */ 1661 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1662 { 1663 bool locked, ret; 1664 1665 if (order > PAGE_ALLOC_COSTLY_ORDER) 1666 return false; 1667 1668 memcg_memory_event(memcg, MEMCG_OOM); 1669 1670 if (!memcg1_oom_prepare(memcg, &locked)) 1671 return false; 1672 1673 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1674 1675 memcg1_oom_finish(memcg, locked); 1676 1677 return ret; 1678 } 1679 1680 /** 1681 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1682 * @victim: task to be killed by the OOM killer 1683 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1684 * 1685 * Returns a pointer to a memory cgroup, which has to be cleaned up 1686 * by killing all belonging OOM-killable tasks. 1687 * 1688 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1689 */ 1690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1691 struct mem_cgroup *oom_domain) 1692 { 1693 struct mem_cgroup *oom_group = NULL; 1694 struct mem_cgroup *memcg; 1695 1696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1697 return NULL; 1698 1699 if (!oom_domain) 1700 oom_domain = root_mem_cgroup; 1701 1702 rcu_read_lock(); 1703 1704 memcg = mem_cgroup_from_task(victim); 1705 if (mem_cgroup_is_root(memcg)) 1706 goto out; 1707 1708 /* 1709 * If the victim task has been asynchronously moved to a different 1710 * memory cgroup, we might end up killing tasks outside oom_domain. 1711 * In this case it's better to ignore memory.group.oom. 1712 */ 1713 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1714 goto out; 1715 1716 /* 1717 * Traverse the memory cgroup hierarchy from the victim task's 1718 * cgroup up to the OOMing cgroup (or root) to find the 1719 * highest-level memory cgroup with oom.group set. 1720 */ 1721 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1722 if (READ_ONCE(memcg->oom_group)) 1723 oom_group = memcg; 1724 1725 if (memcg == oom_domain) 1726 break; 1727 } 1728 1729 if (oom_group) 1730 css_get(&oom_group->css); 1731 out: 1732 rcu_read_unlock(); 1733 1734 return oom_group; 1735 } 1736 1737 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1738 { 1739 pr_info("Tasks in "); 1740 pr_cont_cgroup_path(memcg->css.cgroup); 1741 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1742 } 1743 1744 /* 1745 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1746 * nr_pages in a single cacheline. This may change in future. 1747 */ 1748 #define NR_MEMCG_STOCK 7 1749 #define FLUSHING_CACHED_CHARGE 0 1750 struct memcg_stock_pcp { 1751 local_trylock_t lock; 1752 uint8_t nr_pages[NR_MEMCG_STOCK]; 1753 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1754 1755 struct work_struct work; 1756 unsigned long flags; 1757 }; 1758 1759 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1760 .lock = INIT_LOCAL_TRYLOCK(lock), 1761 }; 1762 1763 struct obj_stock_pcp { 1764 local_trylock_t lock; 1765 unsigned int nr_bytes; 1766 struct obj_cgroup *cached_objcg; 1767 struct pglist_data *cached_pgdat; 1768 int nr_slab_reclaimable_b; 1769 int nr_slab_unreclaimable_b; 1770 1771 struct work_struct work; 1772 unsigned long flags; 1773 }; 1774 1775 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { 1776 .lock = INIT_LOCAL_TRYLOCK(lock), 1777 }; 1778 1779 static DEFINE_MUTEX(percpu_charge_mutex); 1780 1781 static void drain_obj_stock(struct obj_stock_pcp *stock); 1782 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 1783 struct mem_cgroup *root_memcg); 1784 1785 /** 1786 * consume_stock: Try to consume stocked charge on this cpu. 1787 * @memcg: memcg to consume from. 1788 * @nr_pages: how many pages to charge. 1789 * 1790 * Consume the cached charge if enough nr_pages are present otherwise return 1791 * failure. Also return failure for charge request larger than 1792 * MEMCG_CHARGE_BATCH or if the local lock is already taken. 1793 * 1794 * returns true if successful, false otherwise. 1795 */ 1796 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1797 { 1798 struct memcg_stock_pcp *stock; 1799 uint8_t stock_pages; 1800 bool ret = false; 1801 int i; 1802 1803 if (nr_pages > MEMCG_CHARGE_BATCH || 1804 !local_trylock(&memcg_stock.lock)) 1805 return ret; 1806 1807 stock = this_cpu_ptr(&memcg_stock); 1808 1809 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1810 if (memcg != READ_ONCE(stock->cached[i])) 1811 continue; 1812 1813 stock_pages = READ_ONCE(stock->nr_pages[i]); 1814 if (stock_pages >= nr_pages) { 1815 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1816 ret = true; 1817 } 1818 break; 1819 } 1820 1821 local_unlock(&memcg_stock.lock); 1822 1823 return ret; 1824 } 1825 1826 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1827 { 1828 page_counter_uncharge(&memcg->memory, nr_pages); 1829 if (do_memsw_account()) 1830 page_counter_uncharge(&memcg->memsw, nr_pages); 1831 } 1832 1833 /* 1834 * Returns stocks cached in percpu and reset cached information. 1835 */ 1836 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1837 { 1838 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1839 uint8_t stock_pages; 1840 1841 if (!old) 1842 return; 1843 1844 stock_pages = READ_ONCE(stock->nr_pages[i]); 1845 if (stock_pages) { 1846 memcg_uncharge(old, stock_pages); 1847 WRITE_ONCE(stock->nr_pages[i], 0); 1848 } 1849 1850 css_put(&old->css); 1851 WRITE_ONCE(stock->cached[i], NULL); 1852 } 1853 1854 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1855 { 1856 int i; 1857 1858 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1859 drain_stock(stock, i); 1860 } 1861 1862 static void drain_local_memcg_stock(struct work_struct *dummy) 1863 { 1864 struct memcg_stock_pcp *stock; 1865 1866 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1867 return; 1868 1869 local_lock(&memcg_stock.lock); 1870 1871 stock = this_cpu_ptr(&memcg_stock); 1872 drain_stock_fully(stock); 1873 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1874 1875 local_unlock(&memcg_stock.lock); 1876 } 1877 1878 static void drain_local_obj_stock(struct work_struct *dummy) 1879 { 1880 struct obj_stock_pcp *stock; 1881 1882 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1883 return; 1884 1885 local_lock(&obj_stock.lock); 1886 1887 stock = this_cpu_ptr(&obj_stock); 1888 drain_obj_stock(stock); 1889 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1890 1891 local_unlock(&obj_stock.lock); 1892 } 1893 1894 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1895 { 1896 struct memcg_stock_pcp *stock; 1897 struct mem_cgroup *cached; 1898 uint8_t stock_pages; 1899 bool success = false; 1900 int empty_slot = -1; 1901 int i; 1902 1903 /* 1904 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1905 * decide to increase it more than 127 then we will need more careful 1906 * handling of nr_pages[] in struct memcg_stock_pcp. 1907 */ 1908 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1909 1910 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1911 1912 if (nr_pages > MEMCG_CHARGE_BATCH || 1913 !local_trylock(&memcg_stock.lock)) { 1914 /* 1915 * In case of larger than batch refill or unlikely failure to 1916 * lock the percpu memcg_stock.lock, uncharge memcg directly. 1917 */ 1918 memcg_uncharge(memcg, nr_pages); 1919 return; 1920 } 1921 1922 stock = this_cpu_ptr(&memcg_stock); 1923 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1924 cached = READ_ONCE(stock->cached[i]); 1925 if (!cached && empty_slot == -1) 1926 empty_slot = i; 1927 if (memcg == READ_ONCE(stock->cached[i])) { 1928 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1929 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1930 if (stock_pages > MEMCG_CHARGE_BATCH) 1931 drain_stock(stock, i); 1932 success = true; 1933 break; 1934 } 1935 } 1936 1937 if (!success) { 1938 i = empty_slot; 1939 if (i == -1) { 1940 i = get_random_u32_below(NR_MEMCG_STOCK); 1941 drain_stock(stock, i); 1942 } 1943 css_get(&memcg->css); 1944 WRITE_ONCE(stock->cached[i], memcg); 1945 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1946 } 1947 1948 local_unlock(&memcg_stock.lock); 1949 } 1950 1951 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, 1952 struct mem_cgroup *root_memcg) 1953 { 1954 struct mem_cgroup *memcg; 1955 bool flush = false; 1956 int i; 1957 1958 rcu_read_lock(); 1959 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1960 memcg = READ_ONCE(stock->cached[i]); 1961 if (!memcg) 1962 continue; 1963 1964 if (READ_ONCE(stock->nr_pages[i]) && 1965 mem_cgroup_is_descendant(memcg, root_memcg)) { 1966 flush = true; 1967 break; 1968 } 1969 } 1970 rcu_read_unlock(); 1971 return flush; 1972 } 1973 1974 /* 1975 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1976 * of the hierarchy under it. 1977 */ 1978 void drain_all_stock(struct mem_cgroup *root_memcg) 1979 { 1980 int cpu, curcpu; 1981 1982 /* If someone's already draining, avoid adding running more workers. */ 1983 if (!mutex_trylock(&percpu_charge_mutex)) 1984 return; 1985 /* 1986 * Notify other cpus that system-wide "drain" is running 1987 * We do not care about races with the cpu hotplug because cpu down 1988 * as well as workers from this path always operate on the local 1989 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1990 */ 1991 migrate_disable(); 1992 curcpu = smp_processor_id(); 1993 for_each_online_cpu(cpu) { 1994 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); 1995 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); 1996 1997 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && 1998 is_memcg_drain_needed(memcg_st, root_memcg) && 1999 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2000 &memcg_st->flags)) { 2001 if (cpu == curcpu) 2002 drain_local_memcg_stock(&memcg_st->work); 2003 else if (!cpu_is_isolated(cpu)) 2004 schedule_work_on(cpu, &memcg_st->work); 2005 } 2006 2007 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && 2008 obj_stock_flush_required(obj_st, root_memcg) && 2009 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2010 &obj_st->flags)) { 2011 if (cpu == curcpu) 2012 drain_local_obj_stock(&obj_st->work); 2013 else if (!cpu_is_isolated(cpu)) 2014 schedule_work_on(cpu, &obj_st->work); 2015 } 2016 } 2017 migrate_enable(); 2018 mutex_unlock(&percpu_charge_mutex); 2019 } 2020 2021 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2022 { 2023 /* no need for the local lock */ 2024 drain_obj_stock(&per_cpu(obj_stock, cpu)); 2025 drain_stock_fully(&per_cpu(memcg_stock, cpu)); 2026 2027 return 0; 2028 } 2029 2030 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2031 unsigned int nr_pages, 2032 gfp_t gfp_mask) 2033 { 2034 unsigned long nr_reclaimed = 0; 2035 2036 do { 2037 unsigned long pflags; 2038 2039 if (page_counter_read(&memcg->memory) <= 2040 READ_ONCE(memcg->memory.high)) 2041 continue; 2042 2043 memcg_memory_event(memcg, MEMCG_HIGH); 2044 2045 psi_memstall_enter(&pflags); 2046 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2047 gfp_mask, 2048 MEMCG_RECLAIM_MAY_SWAP, 2049 NULL); 2050 psi_memstall_leave(&pflags); 2051 } while ((memcg = parent_mem_cgroup(memcg)) && 2052 !mem_cgroup_is_root(memcg)); 2053 2054 return nr_reclaimed; 2055 } 2056 2057 static void high_work_func(struct work_struct *work) 2058 { 2059 struct mem_cgroup *memcg; 2060 2061 memcg = container_of(work, struct mem_cgroup, high_work); 2062 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2063 } 2064 2065 /* 2066 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2067 * enough to still cause a significant slowdown in most cases, while still 2068 * allowing diagnostics and tracing to proceed without becoming stuck. 2069 */ 2070 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2071 2072 /* 2073 * When calculating the delay, we use these either side of the exponentiation to 2074 * maintain precision and scale to a reasonable number of jiffies (see the table 2075 * below. 2076 * 2077 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2078 * overage ratio to a delay. 2079 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2080 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2081 * to produce a reasonable delay curve. 2082 * 2083 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2084 * reasonable delay curve compared to precision-adjusted overage, not 2085 * penalising heavily at first, but still making sure that growth beyond the 2086 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2087 * example, with a high of 100 megabytes: 2088 * 2089 * +-------+------------------------+ 2090 * | usage | time to allocate in ms | 2091 * +-------+------------------------+ 2092 * | 100M | 0 | 2093 * | 101M | 6 | 2094 * | 102M | 25 | 2095 * | 103M | 57 | 2096 * | 104M | 102 | 2097 * | 105M | 159 | 2098 * | 106M | 230 | 2099 * | 107M | 313 | 2100 * | 108M | 409 | 2101 * | 109M | 518 | 2102 * | 110M | 639 | 2103 * | 111M | 774 | 2104 * | 112M | 921 | 2105 * | 113M | 1081 | 2106 * | 114M | 1254 | 2107 * | 115M | 1439 | 2108 * | 116M | 1638 | 2109 * | 117M | 1849 | 2110 * | 118M | 2000 | 2111 * | 119M | 2000 | 2112 * | 120M | 2000 | 2113 * +-------+------------------------+ 2114 */ 2115 #define MEMCG_DELAY_PRECISION_SHIFT 20 2116 #define MEMCG_DELAY_SCALING_SHIFT 14 2117 2118 static u64 calculate_overage(unsigned long usage, unsigned long high) 2119 { 2120 u64 overage; 2121 2122 if (usage <= high) 2123 return 0; 2124 2125 /* 2126 * Prevent division by 0 in overage calculation by acting as if 2127 * it was a threshold of 1 page 2128 */ 2129 high = max(high, 1UL); 2130 2131 overage = usage - high; 2132 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2133 return div64_u64(overage, high); 2134 } 2135 2136 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2137 { 2138 u64 overage, max_overage = 0; 2139 2140 do { 2141 overage = calculate_overage(page_counter_read(&memcg->memory), 2142 READ_ONCE(memcg->memory.high)); 2143 max_overage = max(overage, max_overage); 2144 } while ((memcg = parent_mem_cgroup(memcg)) && 2145 !mem_cgroup_is_root(memcg)); 2146 2147 return max_overage; 2148 } 2149 2150 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2151 { 2152 u64 overage, max_overage = 0; 2153 2154 do { 2155 overage = calculate_overage(page_counter_read(&memcg->swap), 2156 READ_ONCE(memcg->swap.high)); 2157 if (overage) 2158 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2159 max_overage = max(overage, max_overage); 2160 } while ((memcg = parent_mem_cgroup(memcg)) && 2161 !mem_cgroup_is_root(memcg)); 2162 2163 return max_overage; 2164 } 2165 2166 /* 2167 * Get the number of jiffies that we should penalise a mischievous cgroup which 2168 * is exceeding its memory.high by checking both it and its ancestors. 2169 */ 2170 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2171 unsigned int nr_pages, 2172 u64 max_overage) 2173 { 2174 unsigned long penalty_jiffies; 2175 2176 if (!max_overage) 2177 return 0; 2178 2179 /* 2180 * We use overage compared to memory.high to calculate the number of 2181 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2182 * fairly lenient on small overages, and increasingly harsh when the 2183 * memcg in question makes it clear that it has no intention of stopping 2184 * its crazy behaviour, so we exponentially increase the delay based on 2185 * overage amount. 2186 */ 2187 penalty_jiffies = max_overage * max_overage * HZ; 2188 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2189 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2190 2191 /* 2192 * Factor in the task's own contribution to the overage, such that four 2193 * N-sized allocations are throttled approximately the same as one 2194 * 4N-sized allocation. 2195 * 2196 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2197 * larger the current charge patch is than that. 2198 */ 2199 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2200 } 2201 2202 /* 2203 * Reclaims memory over the high limit. Called directly from 2204 * try_charge() (context permitting), as well as from the userland 2205 * return path where reclaim is always able to block. 2206 */ 2207 void __mem_cgroup_handle_over_high(gfp_t gfp_mask) 2208 { 2209 unsigned long penalty_jiffies; 2210 unsigned long pflags; 2211 unsigned long nr_reclaimed; 2212 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2213 int nr_retries = MAX_RECLAIM_RETRIES; 2214 struct mem_cgroup *memcg; 2215 bool in_retry = false; 2216 2217 memcg = get_mem_cgroup_from_mm(current->mm); 2218 current->memcg_nr_pages_over_high = 0; 2219 2220 retry_reclaim: 2221 /* 2222 * Bail if the task is already exiting. Unlike memory.max, 2223 * memory.high enforcement isn't as strict, and there is no 2224 * OOM killer involved, which means the excess could already 2225 * be much bigger (and still growing) than it could for 2226 * memory.max; the dying task could get stuck in fruitless 2227 * reclaim for a long time, which isn't desirable. 2228 */ 2229 if (task_is_dying()) 2230 goto out; 2231 2232 /* 2233 * The allocating task should reclaim at least the batch size, but for 2234 * subsequent retries we only want to do what's necessary to prevent oom 2235 * or breaching resource isolation. 2236 * 2237 * This is distinct from memory.max or page allocator behaviour because 2238 * memory.high is currently batched, whereas memory.max and the page 2239 * allocator run every time an allocation is made. 2240 */ 2241 nr_reclaimed = reclaim_high(memcg, 2242 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2243 gfp_mask); 2244 2245 /* 2246 * memory.high is breached and reclaim is unable to keep up. Throttle 2247 * allocators proactively to slow down excessive growth. 2248 */ 2249 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2250 mem_find_max_overage(memcg)); 2251 2252 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2253 swap_find_max_overage(memcg)); 2254 2255 /* 2256 * Clamp the max delay per usermode return so as to still keep the 2257 * application moving forwards and also permit diagnostics, albeit 2258 * extremely slowly. 2259 */ 2260 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2261 2262 /* 2263 * Don't sleep if the amount of jiffies this memcg owes us is so low 2264 * that it's not even worth doing, in an attempt to be nice to those who 2265 * go only a small amount over their memory.high value and maybe haven't 2266 * been aggressively reclaimed enough yet. 2267 */ 2268 if (penalty_jiffies <= HZ / 100) 2269 goto out; 2270 2271 /* 2272 * If reclaim is making forward progress but we're still over 2273 * memory.high, we want to encourage that rather than doing allocator 2274 * throttling. 2275 */ 2276 if (nr_reclaimed || nr_retries--) { 2277 in_retry = true; 2278 goto retry_reclaim; 2279 } 2280 2281 /* 2282 * Reclaim didn't manage to push usage below the limit, slow 2283 * this allocating task down. 2284 * 2285 * If we exit early, we're guaranteed to die (since 2286 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2287 * need to account for any ill-begotten jiffies to pay them off later. 2288 */ 2289 psi_memstall_enter(&pflags); 2290 schedule_timeout_killable(penalty_jiffies); 2291 psi_memstall_leave(&pflags); 2292 2293 out: 2294 css_put(&memcg->css); 2295 } 2296 2297 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2298 unsigned int nr_pages) 2299 { 2300 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2301 int nr_retries = MAX_RECLAIM_RETRIES; 2302 struct mem_cgroup *mem_over_limit; 2303 struct page_counter *counter; 2304 unsigned long nr_reclaimed; 2305 bool passed_oom = false; 2306 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2307 bool drained = false; 2308 bool raised_max_event = false; 2309 unsigned long pflags; 2310 bool allow_spinning = gfpflags_allow_spinning(gfp_mask); 2311 2312 retry: 2313 if (consume_stock(memcg, nr_pages)) 2314 return 0; 2315 2316 if (!allow_spinning) 2317 /* Avoid the refill and flush of the older stock */ 2318 batch = nr_pages; 2319 2320 if (!do_memsw_account() || 2321 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2322 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2323 goto done_restock; 2324 if (do_memsw_account()) 2325 page_counter_uncharge(&memcg->memsw, batch); 2326 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2327 } else { 2328 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2329 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2330 } 2331 2332 if (batch > nr_pages) { 2333 batch = nr_pages; 2334 goto retry; 2335 } 2336 2337 /* 2338 * Prevent unbounded recursion when reclaim operations need to 2339 * allocate memory. This might exceed the limits temporarily, 2340 * but we prefer facilitating memory reclaim and getting back 2341 * under the limit over triggering OOM kills in these cases. 2342 */ 2343 if (unlikely(current->flags & PF_MEMALLOC)) 2344 goto force; 2345 2346 if (unlikely(task_in_memcg_oom(current))) 2347 goto nomem; 2348 2349 if (!gfpflags_allow_blocking(gfp_mask)) 2350 goto nomem; 2351 2352 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning); 2353 raised_max_event = true; 2354 2355 psi_memstall_enter(&pflags); 2356 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2357 gfp_mask, reclaim_options, NULL); 2358 psi_memstall_leave(&pflags); 2359 2360 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2361 goto retry; 2362 2363 if (!drained) { 2364 drain_all_stock(mem_over_limit); 2365 drained = true; 2366 goto retry; 2367 } 2368 2369 if (gfp_mask & __GFP_NORETRY) 2370 goto nomem; 2371 /* 2372 * Even though the limit is exceeded at this point, reclaim 2373 * may have been able to free some pages. Retry the charge 2374 * before killing the task. 2375 * 2376 * Only for regular pages, though: huge pages are rather 2377 * unlikely to succeed so close to the limit, and we fall back 2378 * to regular pages anyway in case of failure. 2379 */ 2380 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2381 goto retry; 2382 2383 if (nr_retries--) 2384 goto retry; 2385 2386 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2387 goto nomem; 2388 2389 /* Avoid endless loop for tasks bypassed by the oom killer */ 2390 if (passed_oom && task_is_dying()) 2391 goto nomem; 2392 2393 /* 2394 * keep retrying as long as the memcg oom killer is able to make 2395 * a forward progress or bypass the charge if the oom killer 2396 * couldn't make any progress. 2397 */ 2398 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2399 get_order(nr_pages * PAGE_SIZE))) { 2400 passed_oom = true; 2401 nr_retries = MAX_RECLAIM_RETRIES; 2402 goto retry; 2403 } 2404 nomem: 2405 /* 2406 * Memcg doesn't have a dedicated reserve for atomic 2407 * allocations. But like the global atomic pool, we need to 2408 * put the burden of reclaim on regular allocation requests 2409 * and let these go through as privileged allocations. 2410 */ 2411 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2412 return -ENOMEM; 2413 force: 2414 /* 2415 * If the allocation has to be enforced, don't forget to raise 2416 * a MEMCG_MAX event. 2417 */ 2418 if (!raised_max_event) 2419 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning); 2420 2421 /* 2422 * The allocation either can't fail or will lead to more memory 2423 * being freed very soon. Allow memory usage go over the limit 2424 * temporarily by force charging it. 2425 */ 2426 page_counter_charge(&memcg->memory, nr_pages); 2427 if (do_memsw_account()) 2428 page_counter_charge(&memcg->memsw, nr_pages); 2429 2430 return 0; 2431 2432 done_restock: 2433 if (batch > nr_pages) 2434 refill_stock(memcg, batch - nr_pages); 2435 2436 /* 2437 * If the hierarchy is above the normal consumption range, schedule 2438 * reclaim on returning to userland. We can perform reclaim here 2439 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2440 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2441 * not recorded as it most likely matches current's and won't 2442 * change in the meantime. As high limit is checked again before 2443 * reclaim, the cost of mismatch is negligible. 2444 */ 2445 do { 2446 bool mem_high, swap_high; 2447 2448 mem_high = page_counter_read(&memcg->memory) > 2449 READ_ONCE(memcg->memory.high); 2450 swap_high = page_counter_read(&memcg->swap) > 2451 READ_ONCE(memcg->swap.high); 2452 2453 /* Don't bother a random interrupted task */ 2454 if (!in_task()) { 2455 if (mem_high) { 2456 schedule_work(&memcg->high_work); 2457 break; 2458 } 2459 continue; 2460 } 2461 2462 if (mem_high || swap_high) { 2463 /* 2464 * The allocating tasks in this cgroup will need to do 2465 * reclaim or be throttled to prevent further growth 2466 * of the memory or swap footprints. 2467 * 2468 * Target some best-effort fairness between the tasks, 2469 * and distribute reclaim work and delay penalties 2470 * based on how much each task is actually allocating. 2471 */ 2472 current->memcg_nr_pages_over_high += batch; 2473 set_notify_resume(current); 2474 break; 2475 } 2476 } while ((memcg = parent_mem_cgroup(memcg))); 2477 2478 /* 2479 * Reclaim is set up above to be called from the userland 2480 * return path. But also attempt synchronous reclaim to avoid 2481 * excessive overrun while the task is still inside the 2482 * kernel. If this is successful, the return path will see it 2483 * when it rechecks the overage and simply bail out. 2484 */ 2485 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2486 !(current->flags & PF_MEMALLOC) && 2487 gfpflags_allow_blocking(gfp_mask)) 2488 __mem_cgroup_handle_over_high(gfp_mask); 2489 return 0; 2490 } 2491 2492 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2493 unsigned int nr_pages) 2494 { 2495 if (mem_cgroup_is_root(memcg)) 2496 return 0; 2497 2498 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2499 } 2500 2501 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2502 { 2503 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2504 /* 2505 * Any of the following ensures page's memcg stability: 2506 * 2507 * - the page lock 2508 * - LRU isolation 2509 * - exclusive reference 2510 */ 2511 folio->memcg_data = (unsigned long)memcg; 2512 } 2513 2514 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2515 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2516 struct pglist_data *pgdat, 2517 enum node_stat_item idx, int nr) 2518 { 2519 struct lruvec *lruvec; 2520 2521 if (likely(!in_nmi())) { 2522 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2523 mod_memcg_lruvec_state(lruvec, idx, nr); 2524 } else { 2525 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; 2526 2527 /* preemption is disabled in_nmi(). */ 2528 css_rstat_updated(&memcg->css, smp_processor_id()); 2529 if (idx == NR_SLAB_RECLAIMABLE_B) 2530 atomic_add(nr, &pn->slab_reclaimable); 2531 else 2532 atomic_add(nr, &pn->slab_unreclaimable); 2533 } 2534 } 2535 #else 2536 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2537 struct pglist_data *pgdat, 2538 enum node_stat_item idx, int nr) 2539 { 2540 struct lruvec *lruvec; 2541 2542 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2543 mod_memcg_lruvec_state(lruvec, idx, nr); 2544 } 2545 #endif 2546 2547 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2548 struct pglist_data *pgdat, 2549 enum node_stat_item idx, int nr) 2550 { 2551 struct mem_cgroup *memcg; 2552 2553 rcu_read_lock(); 2554 memcg = obj_cgroup_memcg(objcg); 2555 account_slab_nmi_safe(memcg, pgdat, idx, nr); 2556 rcu_read_unlock(); 2557 } 2558 2559 static __always_inline 2560 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2561 { 2562 /* 2563 * Slab objects are accounted individually, not per-page. 2564 * Memcg membership data for each individual object is saved in 2565 * slab->obj_exts. 2566 */ 2567 if (folio_test_slab(folio)) { 2568 struct slabobj_ext *obj_exts; 2569 struct slab *slab; 2570 unsigned int off; 2571 2572 slab = folio_slab(folio); 2573 obj_exts = slab_obj_exts(slab); 2574 if (!obj_exts) 2575 return NULL; 2576 2577 off = obj_to_index(slab->slab_cache, slab, p); 2578 if (obj_exts[off].objcg) 2579 return obj_cgroup_memcg(obj_exts[off].objcg); 2580 2581 return NULL; 2582 } 2583 2584 /* 2585 * folio_memcg_check() is used here, because in theory we can encounter 2586 * a folio where the slab flag has been cleared already, but 2587 * slab->obj_exts has not been freed yet 2588 * folio_memcg_check() will guarantee that a proper memory 2589 * cgroup pointer or NULL will be returned. 2590 */ 2591 return folio_memcg_check(folio); 2592 } 2593 2594 /* 2595 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2596 * It is not suitable for objects allocated using vmalloc(). 2597 * 2598 * A passed kernel object must be a slab object or a generic kernel page. 2599 * 2600 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2601 * cgroup_mutex, etc. 2602 */ 2603 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2604 { 2605 if (mem_cgroup_disabled()) 2606 return NULL; 2607 2608 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2609 } 2610 2611 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2612 { 2613 struct obj_cgroup *objcg = NULL; 2614 2615 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2616 objcg = rcu_dereference(memcg->objcg); 2617 if (likely(objcg && obj_cgroup_tryget(objcg))) 2618 break; 2619 objcg = NULL; 2620 } 2621 return objcg; 2622 } 2623 2624 static struct obj_cgroup *current_objcg_update(void) 2625 { 2626 struct mem_cgroup *memcg; 2627 struct obj_cgroup *old, *objcg = NULL; 2628 2629 do { 2630 /* Atomically drop the update bit. */ 2631 old = xchg(¤t->objcg, NULL); 2632 if (old) { 2633 old = (struct obj_cgroup *) 2634 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2635 obj_cgroup_put(old); 2636 2637 old = NULL; 2638 } 2639 2640 /* If new objcg is NULL, no reason for the second atomic update. */ 2641 if (!current->mm || (current->flags & PF_KTHREAD)) 2642 return NULL; 2643 2644 /* 2645 * Release the objcg pointer from the previous iteration, 2646 * if try_cmpxcg() below fails. 2647 */ 2648 if (unlikely(objcg)) { 2649 obj_cgroup_put(objcg); 2650 objcg = NULL; 2651 } 2652 2653 /* 2654 * Obtain the new objcg pointer. The current task can be 2655 * asynchronously moved to another memcg and the previous 2656 * memcg can be offlined. So let's get the memcg pointer 2657 * and try get a reference to objcg under a rcu read lock. 2658 */ 2659 2660 rcu_read_lock(); 2661 memcg = mem_cgroup_from_task(current); 2662 objcg = __get_obj_cgroup_from_memcg(memcg); 2663 rcu_read_unlock(); 2664 2665 /* 2666 * Try set up a new objcg pointer atomically. If it 2667 * fails, it means the update flag was set concurrently, so 2668 * the whole procedure should be repeated. 2669 */ 2670 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2671 2672 return objcg; 2673 } 2674 2675 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2676 { 2677 struct mem_cgroup *memcg; 2678 struct obj_cgroup *objcg; 2679 2680 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) 2681 return NULL; 2682 2683 if (in_task()) { 2684 memcg = current->active_memcg; 2685 if (unlikely(memcg)) 2686 goto from_memcg; 2687 2688 objcg = READ_ONCE(current->objcg); 2689 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2690 objcg = current_objcg_update(); 2691 /* 2692 * Objcg reference is kept by the task, so it's safe 2693 * to use the objcg by the current task. 2694 */ 2695 return objcg; 2696 } 2697 2698 memcg = this_cpu_read(int_active_memcg); 2699 if (unlikely(memcg)) 2700 goto from_memcg; 2701 2702 return NULL; 2703 2704 from_memcg: 2705 objcg = NULL; 2706 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2707 /* 2708 * Memcg pointer is protected by scope (see set_active_memcg()) 2709 * and is pinning the corresponding objcg, so objcg can't go 2710 * away and can be used within the scope without any additional 2711 * protection. 2712 */ 2713 objcg = rcu_dereference_check(memcg->objcg, 1); 2714 if (likely(objcg)) 2715 break; 2716 } 2717 2718 return objcg; 2719 } 2720 2721 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2722 { 2723 struct obj_cgroup *objcg; 2724 2725 if (!memcg_kmem_online()) 2726 return NULL; 2727 2728 if (folio_memcg_kmem(folio)) { 2729 objcg = __folio_objcg(folio); 2730 obj_cgroup_get(objcg); 2731 } else { 2732 struct mem_cgroup *memcg; 2733 2734 rcu_read_lock(); 2735 memcg = __folio_memcg(folio); 2736 if (memcg) 2737 objcg = __get_obj_cgroup_from_memcg(memcg); 2738 else 2739 objcg = NULL; 2740 rcu_read_unlock(); 2741 } 2742 return objcg; 2743 } 2744 2745 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2746 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2747 { 2748 if (likely(!in_nmi())) { 2749 mod_memcg_state(memcg, MEMCG_KMEM, val); 2750 } else { 2751 /* preemption is disabled in_nmi(). */ 2752 css_rstat_updated(&memcg->css, smp_processor_id()); 2753 atomic_add(val, &memcg->kmem_stat); 2754 } 2755 } 2756 #else 2757 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2758 { 2759 mod_memcg_state(memcg, MEMCG_KMEM, val); 2760 } 2761 #endif 2762 2763 /* 2764 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2765 * @objcg: object cgroup to uncharge 2766 * @nr_pages: number of pages to uncharge 2767 */ 2768 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2769 unsigned int nr_pages) 2770 { 2771 struct mem_cgroup *memcg; 2772 2773 memcg = get_mem_cgroup_from_objcg(objcg); 2774 2775 account_kmem_nmi_safe(memcg, -nr_pages); 2776 memcg1_account_kmem(memcg, -nr_pages); 2777 if (!mem_cgroup_is_root(memcg)) 2778 refill_stock(memcg, nr_pages); 2779 2780 css_put(&memcg->css); 2781 } 2782 2783 /* 2784 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2785 * @objcg: object cgroup to charge 2786 * @gfp: reclaim mode 2787 * @nr_pages: number of pages to charge 2788 * 2789 * Returns 0 on success, an error code on failure. 2790 */ 2791 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2792 unsigned int nr_pages) 2793 { 2794 struct mem_cgroup *memcg; 2795 int ret; 2796 2797 memcg = get_mem_cgroup_from_objcg(objcg); 2798 2799 ret = try_charge_memcg(memcg, gfp, nr_pages); 2800 if (ret) 2801 goto out; 2802 2803 account_kmem_nmi_safe(memcg, nr_pages); 2804 memcg1_account_kmem(memcg, nr_pages); 2805 out: 2806 css_put(&memcg->css); 2807 2808 return ret; 2809 } 2810 2811 static struct obj_cgroup *page_objcg(const struct page *page) 2812 { 2813 unsigned long memcg_data = page->memcg_data; 2814 2815 if (mem_cgroup_disabled() || !memcg_data) 2816 return NULL; 2817 2818 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2819 page); 2820 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2821 } 2822 2823 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2824 { 2825 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2826 } 2827 2828 /** 2829 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2830 * @page: page to charge 2831 * @gfp: reclaim mode 2832 * @order: allocation order 2833 * 2834 * Returns 0 on success, an error code on failure. 2835 */ 2836 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2837 { 2838 struct obj_cgroup *objcg; 2839 int ret = 0; 2840 2841 objcg = current_obj_cgroup(); 2842 if (objcg) { 2843 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2844 if (!ret) { 2845 obj_cgroup_get(objcg); 2846 page_set_objcg(page, objcg); 2847 return 0; 2848 } 2849 } 2850 return ret; 2851 } 2852 2853 /** 2854 * __memcg_kmem_uncharge_page: uncharge a kmem page 2855 * @page: page to uncharge 2856 * @order: allocation order 2857 */ 2858 void __memcg_kmem_uncharge_page(struct page *page, int order) 2859 { 2860 struct obj_cgroup *objcg = page_objcg(page); 2861 unsigned int nr_pages = 1 << order; 2862 2863 if (!objcg) 2864 return; 2865 2866 obj_cgroup_uncharge_pages(objcg, nr_pages); 2867 page->memcg_data = 0; 2868 obj_cgroup_put(objcg); 2869 } 2870 2871 static void __account_obj_stock(struct obj_cgroup *objcg, 2872 struct obj_stock_pcp *stock, int nr, 2873 struct pglist_data *pgdat, enum node_stat_item idx) 2874 { 2875 int *bytes; 2876 2877 /* 2878 * Save vmstat data in stock and skip vmstat array update unless 2879 * accumulating over a page of vmstat data or when pgdat changes. 2880 */ 2881 if (stock->cached_pgdat != pgdat) { 2882 /* Flush the existing cached vmstat data */ 2883 struct pglist_data *oldpg = stock->cached_pgdat; 2884 2885 if (stock->nr_slab_reclaimable_b) { 2886 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2887 stock->nr_slab_reclaimable_b); 2888 stock->nr_slab_reclaimable_b = 0; 2889 } 2890 if (stock->nr_slab_unreclaimable_b) { 2891 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2892 stock->nr_slab_unreclaimable_b); 2893 stock->nr_slab_unreclaimable_b = 0; 2894 } 2895 stock->cached_pgdat = pgdat; 2896 } 2897 2898 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2899 : &stock->nr_slab_unreclaimable_b; 2900 /* 2901 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2902 * cached locally at least once before pushing it out. 2903 */ 2904 if (!*bytes) { 2905 *bytes = nr; 2906 nr = 0; 2907 } else { 2908 *bytes += nr; 2909 if (abs(*bytes) > PAGE_SIZE) { 2910 nr = *bytes; 2911 *bytes = 0; 2912 } else { 2913 nr = 0; 2914 } 2915 } 2916 if (nr) 2917 mod_objcg_mlstate(objcg, pgdat, idx, nr); 2918 } 2919 2920 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2921 struct pglist_data *pgdat, enum node_stat_item idx) 2922 { 2923 struct obj_stock_pcp *stock; 2924 bool ret = false; 2925 2926 if (!local_trylock(&obj_stock.lock)) 2927 return ret; 2928 2929 stock = this_cpu_ptr(&obj_stock); 2930 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2931 stock->nr_bytes -= nr_bytes; 2932 ret = true; 2933 2934 if (pgdat) 2935 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2936 } 2937 2938 local_unlock(&obj_stock.lock); 2939 2940 return ret; 2941 } 2942 2943 static void drain_obj_stock(struct obj_stock_pcp *stock) 2944 { 2945 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2946 2947 if (!old) 2948 return; 2949 2950 if (stock->nr_bytes) { 2951 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2952 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2953 2954 if (nr_pages) { 2955 struct mem_cgroup *memcg; 2956 2957 memcg = get_mem_cgroup_from_objcg(old); 2958 2959 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2960 memcg1_account_kmem(memcg, -nr_pages); 2961 if (!mem_cgroup_is_root(memcg)) 2962 memcg_uncharge(memcg, nr_pages); 2963 2964 css_put(&memcg->css); 2965 } 2966 2967 /* 2968 * The leftover is flushed to the centralized per-memcg value. 2969 * On the next attempt to refill obj stock it will be moved 2970 * to a per-cpu stock (probably, on an other CPU), see 2971 * refill_obj_stock(). 2972 * 2973 * How often it's flushed is a trade-off between the memory 2974 * limit enforcement accuracy and potential CPU contention, 2975 * so it might be changed in the future. 2976 */ 2977 atomic_add(nr_bytes, &old->nr_charged_bytes); 2978 stock->nr_bytes = 0; 2979 } 2980 2981 /* 2982 * Flush the vmstat data in current stock 2983 */ 2984 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2985 if (stock->nr_slab_reclaimable_b) { 2986 mod_objcg_mlstate(old, stock->cached_pgdat, 2987 NR_SLAB_RECLAIMABLE_B, 2988 stock->nr_slab_reclaimable_b); 2989 stock->nr_slab_reclaimable_b = 0; 2990 } 2991 if (stock->nr_slab_unreclaimable_b) { 2992 mod_objcg_mlstate(old, stock->cached_pgdat, 2993 NR_SLAB_UNRECLAIMABLE_B, 2994 stock->nr_slab_unreclaimable_b); 2995 stock->nr_slab_unreclaimable_b = 0; 2996 } 2997 stock->cached_pgdat = NULL; 2998 } 2999 3000 WRITE_ONCE(stock->cached_objcg, NULL); 3001 obj_cgroup_put(old); 3002 } 3003 3004 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 3005 struct mem_cgroup *root_memcg) 3006 { 3007 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3008 struct mem_cgroup *memcg; 3009 bool flush = false; 3010 3011 rcu_read_lock(); 3012 if (objcg) { 3013 memcg = obj_cgroup_memcg(objcg); 3014 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3015 flush = true; 3016 } 3017 rcu_read_unlock(); 3018 3019 return flush; 3020 } 3021 3022 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3023 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 3024 enum node_stat_item idx) 3025 { 3026 struct obj_stock_pcp *stock; 3027 unsigned int nr_pages = 0; 3028 3029 if (!local_trylock(&obj_stock.lock)) { 3030 if (pgdat) 3031 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); 3032 nr_pages = nr_bytes >> PAGE_SHIFT; 3033 nr_bytes = nr_bytes & (PAGE_SIZE - 1); 3034 atomic_add(nr_bytes, &objcg->nr_charged_bytes); 3035 goto out; 3036 } 3037 3038 stock = this_cpu_ptr(&obj_stock); 3039 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3040 drain_obj_stock(stock); 3041 obj_cgroup_get(objcg); 3042 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3043 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3044 WRITE_ONCE(stock->cached_objcg, objcg); 3045 3046 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3047 } 3048 stock->nr_bytes += nr_bytes; 3049 3050 if (pgdat) 3051 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3052 3053 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3054 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3055 stock->nr_bytes &= (PAGE_SIZE - 1); 3056 } 3057 3058 local_unlock(&obj_stock.lock); 3059 out: 3060 if (nr_pages) 3061 obj_cgroup_uncharge_pages(objcg, nr_pages); 3062 } 3063 3064 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3065 struct pglist_data *pgdat, enum node_stat_item idx) 3066 { 3067 unsigned int nr_pages, nr_bytes; 3068 int ret; 3069 3070 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3071 return 0; 3072 3073 /* 3074 * In theory, objcg->nr_charged_bytes can have enough 3075 * pre-charged bytes to satisfy the allocation. However, 3076 * flushing objcg->nr_charged_bytes requires two atomic 3077 * operations, and objcg->nr_charged_bytes can't be big. 3078 * The shared objcg->nr_charged_bytes can also become a 3079 * performance bottleneck if all tasks of the same memcg are 3080 * trying to update it. So it's better to ignore it and try 3081 * grab some new pages. The stock's nr_bytes will be flushed to 3082 * objcg->nr_charged_bytes later on when objcg changes. 3083 * 3084 * The stock's nr_bytes may contain enough pre-charged bytes 3085 * to allow one less page from being charged, but we can't rely 3086 * on the pre-charged bytes not being changed outside of 3087 * consume_obj_stock() or refill_obj_stock(). So ignore those 3088 * pre-charged bytes as well when charging pages. To avoid a 3089 * page uncharge right after a page charge, we set the 3090 * allow_uncharge flag to false when calling refill_obj_stock() 3091 * to temporarily allow the pre-charged bytes to exceed the page 3092 * size limit. The maximum reachable value of the pre-charged 3093 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3094 * race. 3095 */ 3096 nr_pages = size >> PAGE_SHIFT; 3097 nr_bytes = size & (PAGE_SIZE - 1); 3098 3099 if (nr_bytes) 3100 nr_pages += 1; 3101 3102 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3103 if (!ret && (nr_bytes || pgdat)) 3104 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3105 false, size, pgdat, idx); 3106 3107 return ret; 3108 } 3109 3110 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3111 { 3112 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3113 } 3114 3115 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3116 { 3117 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3118 } 3119 3120 static inline size_t obj_full_size(struct kmem_cache *s) 3121 { 3122 /* 3123 * For each accounted object there is an extra space which is used 3124 * to store obj_cgroup membership. Charge it too. 3125 */ 3126 return s->size + sizeof(struct obj_cgroup *); 3127 } 3128 3129 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3130 gfp_t flags, size_t size, void **p) 3131 { 3132 struct obj_cgroup *objcg; 3133 struct slab *slab; 3134 unsigned long off; 3135 size_t i; 3136 3137 /* 3138 * The obtained objcg pointer is safe to use within the current scope, 3139 * defined by current task or set_active_memcg() pair. 3140 * obj_cgroup_get() is used to get a permanent reference. 3141 */ 3142 objcg = current_obj_cgroup(); 3143 if (!objcg) 3144 return true; 3145 3146 /* 3147 * slab_alloc_node() avoids the NULL check, so we might be called with a 3148 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3149 * the whole requested size. 3150 * return success as there's nothing to free back 3151 */ 3152 if (unlikely(*p == NULL)) 3153 return true; 3154 3155 flags &= gfp_allowed_mask; 3156 3157 if (lru) { 3158 int ret; 3159 struct mem_cgroup *memcg; 3160 3161 memcg = get_mem_cgroup_from_objcg(objcg); 3162 ret = memcg_list_lru_alloc(memcg, lru, flags); 3163 css_put(&memcg->css); 3164 3165 if (ret) 3166 return false; 3167 } 3168 3169 for (i = 0; i < size; i++) { 3170 slab = virt_to_slab(p[i]); 3171 3172 if (!slab_obj_exts(slab) && 3173 alloc_slab_obj_exts(slab, s, flags, false)) { 3174 continue; 3175 } 3176 3177 /* 3178 * if we fail and size is 1, memcg_alloc_abort_single() will 3179 * just free the object, which is ok as we have not assigned 3180 * objcg to its obj_ext yet 3181 * 3182 * for larger sizes, kmem_cache_free_bulk() will uncharge 3183 * any objects that were already charged and obj_ext assigned 3184 * 3185 * TODO: we could batch this until slab_pgdat(slab) changes 3186 * between iterations, with a more complicated undo 3187 */ 3188 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3189 slab_pgdat(slab), cache_vmstat_idx(s))) 3190 return false; 3191 3192 off = obj_to_index(s, slab, p[i]); 3193 obj_cgroup_get(objcg); 3194 slab_obj_exts(slab)[off].objcg = objcg; 3195 } 3196 3197 return true; 3198 } 3199 3200 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3201 void **p, int objects, struct slabobj_ext *obj_exts) 3202 { 3203 size_t obj_size = obj_full_size(s); 3204 3205 for (int i = 0; i < objects; i++) { 3206 struct obj_cgroup *objcg; 3207 unsigned int off; 3208 3209 off = obj_to_index(s, slab, p[i]); 3210 objcg = obj_exts[off].objcg; 3211 if (!objcg) 3212 continue; 3213 3214 obj_exts[off].objcg = NULL; 3215 refill_obj_stock(objcg, obj_size, true, -obj_size, 3216 slab_pgdat(slab), cache_vmstat_idx(s)); 3217 obj_cgroup_put(objcg); 3218 } 3219 } 3220 3221 /* 3222 * The objcg is only set on the first page, so transfer it to all the 3223 * other pages. 3224 */ 3225 void split_page_memcg(struct page *page, unsigned order) 3226 { 3227 struct obj_cgroup *objcg = page_objcg(page); 3228 unsigned int i, nr = 1 << order; 3229 3230 if (!objcg) 3231 return; 3232 3233 for (i = 1; i < nr; i++) 3234 page_set_objcg(&page[i], objcg); 3235 3236 obj_cgroup_get_many(objcg, nr - 1); 3237 } 3238 3239 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3240 unsigned new_order) 3241 { 3242 unsigned new_refs; 3243 3244 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3245 return; 3246 3247 new_refs = (1 << (old_order - new_order)) - 1; 3248 css_get_many(&__folio_memcg(folio)->css, new_refs); 3249 } 3250 3251 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3252 { 3253 unsigned long val; 3254 3255 if (mem_cgroup_is_root(memcg)) { 3256 /* 3257 * Approximate root's usage from global state. This isn't 3258 * perfect, but the root usage was always an approximation. 3259 */ 3260 val = global_node_page_state(NR_FILE_PAGES) + 3261 global_node_page_state(NR_ANON_MAPPED); 3262 if (swap) 3263 val += total_swap_pages - get_nr_swap_pages(); 3264 } else { 3265 if (!swap) 3266 val = page_counter_read(&memcg->memory); 3267 else 3268 val = page_counter_read(&memcg->memsw); 3269 } 3270 return val; 3271 } 3272 3273 static int memcg_online_kmem(struct mem_cgroup *memcg) 3274 { 3275 struct obj_cgroup *objcg; 3276 3277 if (mem_cgroup_kmem_disabled()) 3278 return 0; 3279 3280 if (unlikely(mem_cgroup_is_root(memcg))) 3281 return 0; 3282 3283 objcg = obj_cgroup_alloc(); 3284 if (!objcg) 3285 return -ENOMEM; 3286 3287 objcg->memcg = memcg; 3288 rcu_assign_pointer(memcg->objcg, objcg); 3289 obj_cgroup_get(objcg); 3290 memcg->orig_objcg = objcg; 3291 3292 static_branch_enable(&memcg_kmem_online_key); 3293 3294 memcg->kmemcg_id = memcg->id.id; 3295 3296 return 0; 3297 } 3298 3299 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3300 { 3301 struct mem_cgroup *parent; 3302 3303 if (mem_cgroup_kmem_disabled()) 3304 return; 3305 3306 if (unlikely(mem_cgroup_is_root(memcg))) 3307 return; 3308 3309 parent = parent_mem_cgroup(memcg); 3310 if (!parent) 3311 parent = root_mem_cgroup; 3312 3313 memcg_reparent_list_lrus(memcg, parent); 3314 3315 /* 3316 * Objcg's reparenting must be after list_lru's, make sure list_lru 3317 * helpers won't use parent's list_lru until child is drained. 3318 */ 3319 memcg_reparent_objcgs(memcg, parent); 3320 } 3321 3322 #ifdef CONFIG_CGROUP_WRITEBACK 3323 3324 #include <trace/events/writeback.h> 3325 3326 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3327 { 3328 return wb_domain_init(&memcg->cgwb_domain, gfp); 3329 } 3330 3331 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3332 { 3333 wb_domain_exit(&memcg->cgwb_domain); 3334 } 3335 3336 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3337 { 3338 wb_domain_size_changed(&memcg->cgwb_domain); 3339 } 3340 3341 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3342 { 3343 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3344 3345 if (!memcg->css.parent) 3346 return NULL; 3347 3348 return &memcg->cgwb_domain; 3349 } 3350 3351 /** 3352 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3353 * @wb: bdi_writeback in question 3354 * @pfilepages: out parameter for number of file pages 3355 * @pheadroom: out parameter for number of allocatable pages according to memcg 3356 * @pdirty: out parameter for number of dirty pages 3357 * @pwriteback: out parameter for number of pages under writeback 3358 * 3359 * Determine the numbers of file, headroom, dirty, and writeback pages in 3360 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3361 * is a bit more involved. 3362 * 3363 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3364 * headroom is calculated as the lowest headroom of itself and the 3365 * ancestors. Note that this doesn't consider the actual amount of 3366 * available memory in the system. The caller should further cap 3367 * *@pheadroom accordingly. 3368 */ 3369 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3370 unsigned long *pheadroom, unsigned long *pdirty, 3371 unsigned long *pwriteback) 3372 { 3373 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3374 struct mem_cgroup *parent; 3375 3376 mem_cgroup_flush_stats_ratelimited(memcg); 3377 3378 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3379 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3380 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3381 memcg_page_state(memcg, NR_ACTIVE_FILE); 3382 3383 *pheadroom = PAGE_COUNTER_MAX; 3384 while ((parent = parent_mem_cgroup(memcg))) { 3385 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3386 READ_ONCE(memcg->memory.high)); 3387 unsigned long used = page_counter_read(&memcg->memory); 3388 3389 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3390 memcg = parent; 3391 } 3392 } 3393 3394 /* 3395 * Foreign dirty flushing 3396 * 3397 * There's an inherent mismatch between memcg and writeback. The former 3398 * tracks ownership per-page while the latter per-inode. This was a 3399 * deliberate design decision because honoring per-page ownership in the 3400 * writeback path is complicated, may lead to higher CPU and IO overheads 3401 * and deemed unnecessary given that write-sharing an inode across 3402 * different cgroups isn't a common use-case. 3403 * 3404 * Combined with inode majority-writer ownership switching, this works well 3405 * enough in most cases but there are some pathological cases. For 3406 * example, let's say there are two cgroups A and B which keep writing to 3407 * different but confined parts of the same inode. B owns the inode and 3408 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3409 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3410 * triggering background writeback. A will be slowed down without a way to 3411 * make writeback of the dirty pages happen. 3412 * 3413 * Conditions like the above can lead to a cgroup getting repeatedly and 3414 * severely throttled after making some progress after each 3415 * dirty_expire_interval while the underlying IO device is almost 3416 * completely idle. 3417 * 3418 * Solving this problem completely requires matching the ownership tracking 3419 * granularities between memcg and writeback in either direction. However, 3420 * the more egregious behaviors can be avoided by simply remembering the 3421 * most recent foreign dirtying events and initiating remote flushes on 3422 * them when local writeback isn't enough to keep the memory clean enough. 3423 * 3424 * The following two functions implement such mechanism. When a foreign 3425 * page - a page whose memcg and writeback ownerships don't match - is 3426 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3427 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3428 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3429 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3430 * foreign bdi_writebacks which haven't expired. Both the numbers of 3431 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3432 * limited to MEMCG_CGWB_FRN_CNT. 3433 * 3434 * The mechanism only remembers IDs and doesn't hold any object references. 3435 * As being wrong occasionally doesn't matter, updates and accesses to the 3436 * records are lockless and racy. 3437 */ 3438 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3439 struct bdi_writeback *wb) 3440 { 3441 struct mem_cgroup *memcg = folio_memcg(folio); 3442 struct memcg_cgwb_frn *frn; 3443 u64 now = get_jiffies_64(); 3444 u64 oldest_at = now; 3445 int oldest = -1; 3446 int i; 3447 3448 trace_track_foreign_dirty(folio, wb); 3449 3450 /* 3451 * Pick the slot to use. If there is already a slot for @wb, keep 3452 * using it. If not replace the oldest one which isn't being 3453 * written out. 3454 */ 3455 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3456 frn = &memcg->cgwb_frn[i]; 3457 if (frn->bdi_id == wb->bdi->id && 3458 frn->memcg_id == wb->memcg_css->id) 3459 break; 3460 if (time_before64(frn->at, oldest_at) && 3461 atomic_read(&frn->done.cnt) == 1) { 3462 oldest = i; 3463 oldest_at = frn->at; 3464 } 3465 } 3466 3467 if (i < MEMCG_CGWB_FRN_CNT) { 3468 /* 3469 * Re-using an existing one. Update timestamp lazily to 3470 * avoid making the cacheline hot. We want them to be 3471 * reasonably up-to-date and significantly shorter than 3472 * dirty_expire_interval as that's what expires the record. 3473 * Use the shorter of 1s and dirty_expire_interval / 8. 3474 */ 3475 unsigned long update_intv = 3476 min_t(unsigned long, HZ, 3477 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3478 3479 if (time_before64(frn->at, now - update_intv)) 3480 frn->at = now; 3481 } else if (oldest >= 0) { 3482 /* replace the oldest free one */ 3483 frn = &memcg->cgwb_frn[oldest]; 3484 frn->bdi_id = wb->bdi->id; 3485 frn->memcg_id = wb->memcg_css->id; 3486 frn->at = now; 3487 } 3488 } 3489 3490 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3491 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3492 { 3493 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3494 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3495 u64 now = jiffies_64; 3496 int i; 3497 3498 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3499 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3500 3501 /* 3502 * If the record is older than dirty_expire_interval, 3503 * writeback on it has already started. No need to kick it 3504 * off again. Also, don't start a new one if there's 3505 * already one in flight. 3506 */ 3507 if (time_after64(frn->at, now - intv) && 3508 atomic_read(&frn->done.cnt) == 1) { 3509 frn->at = 0; 3510 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3511 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3512 WB_REASON_FOREIGN_FLUSH, 3513 &frn->done); 3514 } 3515 } 3516 } 3517 3518 #else /* CONFIG_CGROUP_WRITEBACK */ 3519 3520 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3521 { 3522 return 0; 3523 } 3524 3525 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3526 { 3527 } 3528 3529 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3530 { 3531 } 3532 3533 #endif /* CONFIG_CGROUP_WRITEBACK */ 3534 3535 /* 3536 * Private memory cgroup IDR 3537 * 3538 * Swap-out records and page cache shadow entries need to store memcg 3539 * references in constrained space, so we maintain an ID space that is 3540 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3541 * memory-controlled cgroups to 64k. 3542 * 3543 * However, there usually are many references to the offline CSS after 3544 * the cgroup has been destroyed, such as page cache or reclaimable 3545 * slab objects, that don't need to hang on to the ID. We want to keep 3546 * those dead CSS from occupying IDs, or we might quickly exhaust the 3547 * relatively small ID space and prevent the creation of new cgroups 3548 * even when there are much fewer than 64k cgroups - possibly none. 3549 * 3550 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3551 * be freed and recycled when it's no longer needed, which is usually 3552 * when the CSS is offlined. 3553 * 3554 * The only exception to that are records of swapped out tmpfs/shmem 3555 * pages that need to be attributed to live ancestors on swapin. But 3556 * those references are manageable from userspace. 3557 */ 3558 3559 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3560 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3561 3562 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3563 { 3564 if (memcg->id.id > 0) { 3565 xa_erase(&mem_cgroup_ids, memcg->id.id); 3566 memcg->id.id = 0; 3567 } 3568 } 3569 3570 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3571 unsigned int n) 3572 { 3573 refcount_add(n, &memcg->id.ref); 3574 } 3575 3576 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3577 { 3578 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3579 mem_cgroup_id_remove(memcg); 3580 3581 /* Memcg ID pins CSS */ 3582 css_put(&memcg->css); 3583 } 3584 } 3585 3586 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3587 { 3588 mem_cgroup_id_put_many(memcg, 1); 3589 } 3590 3591 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3592 { 3593 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3594 /* 3595 * The root cgroup cannot be destroyed, so it's refcount must 3596 * always be >= 1. 3597 */ 3598 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3599 VM_BUG_ON(1); 3600 break; 3601 } 3602 memcg = parent_mem_cgroup(memcg); 3603 if (!memcg) 3604 memcg = root_mem_cgroup; 3605 } 3606 return memcg; 3607 } 3608 3609 /** 3610 * mem_cgroup_from_id - look up a memcg from a memcg id 3611 * @id: the memcg id to look up 3612 * 3613 * Caller must hold rcu_read_lock(). 3614 */ 3615 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3616 { 3617 WARN_ON_ONCE(!rcu_read_lock_held()); 3618 return xa_load(&mem_cgroup_ids, id); 3619 } 3620 3621 #ifdef CONFIG_SHRINKER_DEBUG 3622 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3623 { 3624 struct cgroup *cgrp; 3625 struct cgroup_subsys_state *css; 3626 struct mem_cgroup *memcg; 3627 3628 cgrp = cgroup_get_from_id(ino); 3629 if (IS_ERR(cgrp)) 3630 return ERR_CAST(cgrp); 3631 3632 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3633 if (css) 3634 memcg = container_of(css, struct mem_cgroup, css); 3635 else 3636 memcg = ERR_PTR(-ENOENT); 3637 3638 cgroup_put(cgrp); 3639 3640 return memcg; 3641 } 3642 #endif 3643 3644 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3645 { 3646 if (!pn) 3647 return; 3648 3649 free_percpu(pn->lruvec_stats_percpu); 3650 kfree(pn->lruvec_stats); 3651 kfree(pn); 3652 } 3653 3654 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3655 { 3656 struct mem_cgroup_per_node *pn; 3657 3658 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3659 node); 3660 if (!pn) 3661 return false; 3662 3663 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3664 GFP_KERNEL_ACCOUNT, node); 3665 if (!pn->lruvec_stats) 3666 goto fail; 3667 3668 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3669 GFP_KERNEL_ACCOUNT); 3670 if (!pn->lruvec_stats_percpu) 3671 goto fail; 3672 3673 lruvec_init(&pn->lruvec); 3674 pn->memcg = memcg; 3675 3676 memcg->nodeinfo[node] = pn; 3677 return true; 3678 fail: 3679 free_mem_cgroup_per_node_info(pn); 3680 return false; 3681 } 3682 3683 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3684 { 3685 int node; 3686 3687 obj_cgroup_put(memcg->orig_objcg); 3688 3689 for_each_node(node) 3690 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3691 memcg1_free_events(memcg); 3692 kfree(memcg->vmstats); 3693 free_percpu(memcg->vmstats_percpu); 3694 kfree(memcg); 3695 } 3696 3697 static void mem_cgroup_free(struct mem_cgroup *memcg) 3698 { 3699 lru_gen_exit_memcg(memcg); 3700 memcg_wb_domain_exit(memcg); 3701 __mem_cgroup_free(memcg); 3702 } 3703 3704 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3705 { 3706 struct memcg_vmstats_percpu *statc; 3707 struct memcg_vmstats_percpu __percpu *pstatc_pcpu; 3708 struct mem_cgroup *memcg; 3709 int node, cpu; 3710 int __maybe_unused i; 3711 long error; 3712 3713 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3714 if (!memcg) 3715 return ERR_PTR(-ENOMEM); 3716 3717 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3718 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3719 if (error) 3720 goto fail; 3721 error = -ENOMEM; 3722 3723 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3724 GFP_KERNEL_ACCOUNT); 3725 if (!memcg->vmstats) 3726 goto fail; 3727 3728 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3729 GFP_KERNEL_ACCOUNT); 3730 if (!memcg->vmstats_percpu) 3731 goto fail; 3732 3733 if (!memcg1_alloc_events(memcg)) 3734 goto fail; 3735 3736 for_each_possible_cpu(cpu) { 3737 if (parent) 3738 pstatc_pcpu = parent->vmstats_percpu; 3739 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3740 statc->parent_pcpu = parent ? pstatc_pcpu : NULL; 3741 statc->vmstats = memcg->vmstats; 3742 } 3743 3744 for_each_node(node) 3745 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3746 goto fail; 3747 3748 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3749 goto fail; 3750 3751 INIT_WORK(&memcg->high_work, high_work_func); 3752 vmpressure_init(&memcg->vmpressure); 3753 INIT_LIST_HEAD(&memcg->memory_peaks); 3754 INIT_LIST_HEAD(&memcg->swap_peaks); 3755 spin_lock_init(&memcg->peaks_lock); 3756 memcg->socket_pressure = get_jiffies_64(); 3757 #if BITS_PER_LONG < 64 3758 seqlock_init(&memcg->socket_pressure_seqlock); 3759 #endif 3760 memcg1_memcg_init(memcg); 3761 memcg->kmemcg_id = -1; 3762 INIT_LIST_HEAD(&memcg->objcg_list); 3763 #ifdef CONFIG_CGROUP_WRITEBACK 3764 INIT_LIST_HEAD(&memcg->cgwb_list); 3765 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3766 memcg->cgwb_frn[i].done = 3767 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3768 #endif 3769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3770 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3771 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3772 memcg->deferred_split_queue.split_queue_len = 0; 3773 #endif 3774 lru_gen_init_memcg(memcg); 3775 return memcg; 3776 fail: 3777 mem_cgroup_id_remove(memcg); 3778 __mem_cgroup_free(memcg); 3779 return ERR_PTR(error); 3780 } 3781 3782 static struct cgroup_subsys_state * __ref 3783 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3784 { 3785 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3786 struct mem_cgroup *memcg, *old_memcg; 3787 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3788 3789 old_memcg = set_active_memcg(parent); 3790 memcg = mem_cgroup_alloc(parent); 3791 set_active_memcg(old_memcg); 3792 if (IS_ERR(memcg)) 3793 return ERR_CAST(memcg); 3794 3795 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3796 memcg1_soft_limit_reset(memcg); 3797 #ifdef CONFIG_ZSWAP 3798 memcg->zswap_max = PAGE_COUNTER_MAX; 3799 WRITE_ONCE(memcg->zswap_writeback, true); 3800 #endif 3801 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3802 if (parent) { 3803 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3804 3805 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3806 page_counter_init(&memcg->swap, &parent->swap, false); 3807 #ifdef CONFIG_MEMCG_V1 3808 memcg->memory.track_failcnt = !memcg_on_dfl; 3809 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3810 page_counter_init(&memcg->kmem, &parent->kmem, false); 3811 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3812 #endif 3813 } else { 3814 init_memcg_stats(); 3815 init_memcg_events(); 3816 page_counter_init(&memcg->memory, NULL, true); 3817 page_counter_init(&memcg->swap, NULL, false); 3818 #ifdef CONFIG_MEMCG_V1 3819 page_counter_init(&memcg->kmem, NULL, false); 3820 page_counter_init(&memcg->tcpmem, NULL, false); 3821 #endif 3822 root_mem_cgroup = memcg; 3823 return &memcg->css; 3824 } 3825 3826 if (memcg_on_dfl && !cgroup_memory_nosocket) 3827 static_branch_inc(&memcg_sockets_enabled_key); 3828 3829 if (!cgroup_memory_nobpf) 3830 static_branch_inc(&memcg_bpf_enabled_key); 3831 3832 return &memcg->css; 3833 } 3834 3835 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3836 { 3837 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3838 3839 if (memcg_online_kmem(memcg)) 3840 goto remove_id; 3841 3842 /* 3843 * A memcg must be visible for expand_shrinker_info() 3844 * by the time the maps are allocated. So, we allocate maps 3845 * here, when for_each_mem_cgroup() can't skip it. 3846 */ 3847 if (alloc_shrinker_info(memcg)) 3848 goto offline_kmem; 3849 3850 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3851 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3852 FLUSH_TIME); 3853 lru_gen_online_memcg(memcg); 3854 3855 /* Online state pins memcg ID, memcg ID pins CSS */ 3856 refcount_set(&memcg->id.ref, 1); 3857 css_get(css); 3858 3859 /* 3860 * Ensure mem_cgroup_from_id() works once we're fully online. 3861 * 3862 * We could do this earlier and require callers to filter with 3863 * css_tryget_online(). But right now there are no users that 3864 * need earlier access, and the workingset code relies on the 3865 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3866 * publish it here at the end of onlining. This matches the 3867 * regular ID destruction during offlining. 3868 */ 3869 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3870 3871 return 0; 3872 offline_kmem: 3873 memcg_offline_kmem(memcg); 3874 remove_id: 3875 mem_cgroup_id_remove(memcg); 3876 return -ENOMEM; 3877 } 3878 3879 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3880 { 3881 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3882 3883 memcg1_css_offline(memcg); 3884 3885 page_counter_set_min(&memcg->memory, 0); 3886 page_counter_set_low(&memcg->memory, 0); 3887 3888 zswap_memcg_offline_cleanup(memcg); 3889 3890 memcg_offline_kmem(memcg); 3891 reparent_shrinker_deferred(memcg); 3892 wb_memcg_offline(memcg); 3893 lru_gen_offline_memcg(memcg); 3894 3895 drain_all_stock(memcg); 3896 3897 mem_cgroup_id_put(memcg); 3898 } 3899 3900 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3901 { 3902 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3903 3904 invalidate_reclaim_iterators(memcg); 3905 lru_gen_release_memcg(memcg); 3906 } 3907 3908 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3909 { 3910 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3911 int __maybe_unused i; 3912 3913 #ifdef CONFIG_CGROUP_WRITEBACK 3914 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3915 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3916 #endif 3917 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3918 static_branch_dec(&memcg_sockets_enabled_key); 3919 3920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3921 static_branch_dec(&memcg_sockets_enabled_key); 3922 3923 if (!cgroup_memory_nobpf) 3924 static_branch_dec(&memcg_bpf_enabled_key); 3925 3926 vmpressure_cleanup(&memcg->vmpressure); 3927 cancel_work_sync(&memcg->high_work); 3928 memcg1_remove_from_trees(memcg); 3929 free_shrinker_info(memcg); 3930 mem_cgroup_free(memcg); 3931 } 3932 3933 /** 3934 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3935 * @css: the target css 3936 * 3937 * Reset the states of the mem_cgroup associated with @css. This is 3938 * invoked when the userland requests disabling on the default hierarchy 3939 * but the memcg is pinned through dependency. The memcg should stop 3940 * applying policies and should revert to the vanilla state as it may be 3941 * made visible again. 3942 * 3943 * The current implementation only resets the essential configurations. 3944 * This needs to be expanded to cover all the visible parts. 3945 */ 3946 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3947 { 3948 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3949 3950 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3951 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3952 #ifdef CONFIG_MEMCG_V1 3953 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3954 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3955 #endif 3956 page_counter_set_min(&memcg->memory, 0); 3957 page_counter_set_low(&memcg->memory, 0); 3958 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3959 memcg1_soft_limit_reset(memcg); 3960 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3961 memcg_wb_domain_size_changed(memcg); 3962 } 3963 3964 struct aggregate_control { 3965 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3966 long *aggregate; 3967 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3968 long *local; 3969 /* pointer to the pending child counters during tree propagation */ 3970 long *pending; 3971 /* pointer to the parent's pending counters, could be NULL */ 3972 long *ppending; 3973 /* pointer to the percpu counters to be aggregated */ 3974 long *cstat; 3975 /* pointer to the percpu counters of the last aggregation*/ 3976 long *cstat_prev; 3977 /* size of the above counters */ 3978 int size; 3979 }; 3980 3981 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3982 { 3983 int i; 3984 long delta, delta_cpu, v; 3985 3986 for (i = 0; i < ac->size; i++) { 3987 /* 3988 * Collect the aggregated propagation counts of groups 3989 * below us. We're in a per-cpu loop here and this is 3990 * a global counter, so the first cycle will get them. 3991 */ 3992 delta = ac->pending[i]; 3993 if (delta) 3994 ac->pending[i] = 0; 3995 3996 /* Add CPU changes on this level since the last flush */ 3997 delta_cpu = 0; 3998 v = READ_ONCE(ac->cstat[i]); 3999 if (v != ac->cstat_prev[i]) { 4000 delta_cpu = v - ac->cstat_prev[i]; 4001 delta += delta_cpu; 4002 ac->cstat_prev[i] = v; 4003 } 4004 4005 /* Aggregate counts on this level and propagate upwards */ 4006 if (delta_cpu) 4007 ac->local[i] += delta_cpu; 4008 4009 if (delta) { 4010 ac->aggregate[i] += delta; 4011 if (ac->ppending) 4012 ac->ppending[i] += delta; 4013 } 4014 } 4015 } 4016 4017 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 4018 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4019 int cpu) 4020 { 4021 int nid; 4022 4023 if (atomic_read(&memcg->kmem_stat)) { 4024 int kmem = atomic_xchg(&memcg->kmem_stat, 0); 4025 int index = memcg_stats_index(MEMCG_KMEM); 4026 4027 memcg->vmstats->state[index] += kmem; 4028 if (parent) 4029 parent->vmstats->state_pending[index] += kmem; 4030 } 4031 4032 for_each_node_state(nid, N_MEMORY) { 4033 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4034 struct lruvec_stats *lstats = pn->lruvec_stats; 4035 struct lruvec_stats *plstats = NULL; 4036 4037 if (parent) 4038 plstats = parent->nodeinfo[nid]->lruvec_stats; 4039 4040 if (atomic_read(&pn->slab_reclaimable)) { 4041 int slab = atomic_xchg(&pn->slab_reclaimable, 0); 4042 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); 4043 4044 lstats->state[index] += slab; 4045 if (plstats) 4046 plstats->state_pending[index] += slab; 4047 } 4048 if (atomic_read(&pn->slab_unreclaimable)) { 4049 int slab = atomic_xchg(&pn->slab_unreclaimable, 0); 4050 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); 4051 4052 lstats->state[index] += slab; 4053 if (plstats) 4054 plstats->state_pending[index] += slab; 4055 } 4056 } 4057 } 4058 #else 4059 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4060 int cpu) 4061 {} 4062 #endif 4063 4064 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 4065 { 4066 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4067 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4068 struct memcg_vmstats_percpu *statc; 4069 struct aggregate_control ac; 4070 int nid; 4071 4072 flush_nmi_stats(memcg, parent, cpu); 4073 4074 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 4075 4076 ac = (struct aggregate_control) { 4077 .aggregate = memcg->vmstats->state, 4078 .local = memcg->vmstats->state_local, 4079 .pending = memcg->vmstats->state_pending, 4080 .ppending = parent ? parent->vmstats->state_pending : NULL, 4081 .cstat = statc->state, 4082 .cstat_prev = statc->state_prev, 4083 .size = MEMCG_VMSTAT_SIZE, 4084 }; 4085 mem_cgroup_stat_aggregate(&ac); 4086 4087 ac = (struct aggregate_control) { 4088 .aggregate = memcg->vmstats->events, 4089 .local = memcg->vmstats->events_local, 4090 .pending = memcg->vmstats->events_pending, 4091 .ppending = parent ? parent->vmstats->events_pending : NULL, 4092 .cstat = statc->events, 4093 .cstat_prev = statc->events_prev, 4094 .size = NR_MEMCG_EVENTS, 4095 }; 4096 mem_cgroup_stat_aggregate(&ac); 4097 4098 for_each_node_state(nid, N_MEMORY) { 4099 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4100 struct lruvec_stats *lstats = pn->lruvec_stats; 4101 struct lruvec_stats *plstats = NULL; 4102 struct lruvec_stats_percpu *lstatc; 4103 4104 if (parent) 4105 plstats = parent->nodeinfo[nid]->lruvec_stats; 4106 4107 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4108 4109 ac = (struct aggregate_control) { 4110 .aggregate = lstats->state, 4111 .local = lstats->state_local, 4112 .pending = lstats->state_pending, 4113 .ppending = plstats ? plstats->state_pending : NULL, 4114 .cstat = lstatc->state, 4115 .cstat_prev = lstatc->state_prev, 4116 .size = NR_MEMCG_NODE_STAT_ITEMS, 4117 }; 4118 mem_cgroup_stat_aggregate(&ac); 4119 4120 } 4121 WRITE_ONCE(statc->stats_updates, 0); 4122 /* We are in a per-cpu loop here, only do the atomic write once */ 4123 if (atomic_read(&memcg->vmstats->stats_updates)) 4124 atomic_set(&memcg->vmstats->stats_updates, 0); 4125 } 4126 4127 static void mem_cgroup_fork(struct task_struct *task) 4128 { 4129 /* 4130 * Set the update flag to cause task->objcg to be initialized lazily 4131 * on the first allocation. It can be done without any synchronization 4132 * because it's always performed on the current task, so does 4133 * current_objcg_update(). 4134 */ 4135 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4136 } 4137 4138 static void mem_cgroup_exit(struct task_struct *task) 4139 { 4140 struct obj_cgroup *objcg = task->objcg; 4141 4142 objcg = (struct obj_cgroup *) 4143 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4144 obj_cgroup_put(objcg); 4145 4146 /* 4147 * Some kernel allocations can happen after this point, 4148 * but let's ignore them. It can be done without any synchronization 4149 * because it's always performed on the current task, so does 4150 * current_objcg_update(). 4151 */ 4152 task->objcg = NULL; 4153 } 4154 4155 #ifdef CONFIG_LRU_GEN 4156 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4157 { 4158 struct task_struct *task; 4159 struct cgroup_subsys_state *css; 4160 4161 /* find the first leader if there is any */ 4162 cgroup_taskset_for_each_leader(task, css, tset) 4163 break; 4164 4165 if (!task) 4166 return; 4167 4168 task_lock(task); 4169 if (task->mm && READ_ONCE(task->mm->owner) == task) 4170 lru_gen_migrate_mm(task->mm); 4171 task_unlock(task); 4172 } 4173 #else 4174 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4175 #endif /* CONFIG_LRU_GEN */ 4176 4177 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4178 { 4179 struct task_struct *task; 4180 struct cgroup_subsys_state *css; 4181 4182 cgroup_taskset_for_each(task, css, tset) { 4183 /* atomically set the update bit */ 4184 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4185 } 4186 } 4187 4188 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4189 { 4190 mem_cgroup_lru_gen_attach(tset); 4191 mem_cgroup_kmem_attach(tset); 4192 } 4193 4194 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4195 { 4196 if (value == PAGE_COUNTER_MAX) 4197 seq_puts(m, "max\n"); 4198 else 4199 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4200 4201 return 0; 4202 } 4203 4204 static u64 memory_current_read(struct cgroup_subsys_state *css, 4205 struct cftype *cft) 4206 { 4207 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4208 4209 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4210 } 4211 4212 #define OFP_PEAK_UNSET (((-1UL))) 4213 4214 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4215 { 4216 struct cgroup_of_peak *ofp = of_peak(sf->private); 4217 u64 fd_peak = READ_ONCE(ofp->value), peak; 4218 4219 /* User wants global or local peak? */ 4220 if (fd_peak == OFP_PEAK_UNSET) 4221 peak = pc->watermark; 4222 else 4223 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4224 4225 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4226 return 0; 4227 } 4228 4229 static int memory_peak_show(struct seq_file *sf, void *v) 4230 { 4231 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4232 4233 return peak_show(sf, v, &memcg->memory); 4234 } 4235 4236 static int peak_open(struct kernfs_open_file *of) 4237 { 4238 struct cgroup_of_peak *ofp = of_peak(of); 4239 4240 ofp->value = OFP_PEAK_UNSET; 4241 return 0; 4242 } 4243 4244 static void peak_release(struct kernfs_open_file *of) 4245 { 4246 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4247 struct cgroup_of_peak *ofp = of_peak(of); 4248 4249 if (ofp->value == OFP_PEAK_UNSET) { 4250 /* fast path (no writes on this fd) */ 4251 return; 4252 } 4253 spin_lock(&memcg->peaks_lock); 4254 list_del(&ofp->list); 4255 spin_unlock(&memcg->peaks_lock); 4256 } 4257 4258 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4259 loff_t off, struct page_counter *pc, 4260 struct list_head *watchers) 4261 { 4262 unsigned long usage; 4263 struct cgroup_of_peak *peer_ctx; 4264 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4265 struct cgroup_of_peak *ofp = of_peak(of); 4266 4267 spin_lock(&memcg->peaks_lock); 4268 4269 usage = page_counter_read(pc); 4270 WRITE_ONCE(pc->local_watermark, usage); 4271 4272 list_for_each_entry(peer_ctx, watchers, list) 4273 if (usage > peer_ctx->value) 4274 WRITE_ONCE(peer_ctx->value, usage); 4275 4276 /* initial write, register watcher */ 4277 if (ofp->value == OFP_PEAK_UNSET) 4278 list_add(&ofp->list, watchers); 4279 4280 WRITE_ONCE(ofp->value, usage); 4281 spin_unlock(&memcg->peaks_lock); 4282 4283 return nbytes; 4284 } 4285 4286 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4287 size_t nbytes, loff_t off) 4288 { 4289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4290 4291 return peak_write(of, buf, nbytes, off, &memcg->memory, 4292 &memcg->memory_peaks); 4293 } 4294 4295 #undef OFP_PEAK_UNSET 4296 4297 static int memory_min_show(struct seq_file *m, void *v) 4298 { 4299 return seq_puts_memcg_tunable(m, 4300 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4301 } 4302 4303 static ssize_t memory_min_write(struct kernfs_open_file *of, 4304 char *buf, size_t nbytes, loff_t off) 4305 { 4306 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4307 unsigned long min; 4308 int err; 4309 4310 buf = strstrip(buf); 4311 err = page_counter_memparse(buf, "max", &min); 4312 if (err) 4313 return err; 4314 4315 page_counter_set_min(&memcg->memory, min); 4316 4317 return nbytes; 4318 } 4319 4320 static int memory_low_show(struct seq_file *m, void *v) 4321 { 4322 return seq_puts_memcg_tunable(m, 4323 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4324 } 4325 4326 static ssize_t memory_low_write(struct kernfs_open_file *of, 4327 char *buf, size_t nbytes, loff_t off) 4328 { 4329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4330 unsigned long low; 4331 int err; 4332 4333 buf = strstrip(buf); 4334 err = page_counter_memparse(buf, "max", &low); 4335 if (err) 4336 return err; 4337 4338 page_counter_set_low(&memcg->memory, low); 4339 4340 return nbytes; 4341 } 4342 4343 static int memory_high_show(struct seq_file *m, void *v) 4344 { 4345 return seq_puts_memcg_tunable(m, 4346 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4347 } 4348 4349 static ssize_t memory_high_write(struct kernfs_open_file *of, 4350 char *buf, size_t nbytes, loff_t off) 4351 { 4352 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4353 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4354 bool drained = false; 4355 unsigned long high; 4356 int err; 4357 4358 buf = strstrip(buf); 4359 err = page_counter_memparse(buf, "max", &high); 4360 if (err) 4361 return err; 4362 4363 page_counter_set_high(&memcg->memory, high); 4364 4365 if (of->file->f_flags & O_NONBLOCK) 4366 goto out; 4367 4368 for (;;) { 4369 unsigned long nr_pages = page_counter_read(&memcg->memory); 4370 unsigned long reclaimed; 4371 4372 if (nr_pages <= high) 4373 break; 4374 4375 if (signal_pending(current)) 4376 break; 4377 4378 if (!drained) { 4379 drain_all_stock(memcg); 4380 drained = true; 4381 continue; 4382 } 4383 4384 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4385 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4386 4387 if (!reclaimed && !nr_retries--) 4388 break; 4389 } 4390 out: 4391 memcg_wb_domain_size_changed(memcg); 4392 return nbytes; 4393 } 4394 4395 static int memory_max_show(struct seq_file *m, void *v) 4396 { 4397 return seq_puts_memcg_tunable(m, 4398 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4399 } 4400 4401 static ssize_t memory_max_write(struct kernfs_open_file *of, 4402 char *buf, size_t nbytes, loff_t off) 4403 { 4404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4405 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4406 bool drained = false; 4407 unsigned long max; 4408 int err; 4409 4410 buf = strstrip(buf); 4411 err = page_counter_memparse(buf, "max", &max); 4412 if (err) 4413 return err; 4414 4415 xchg(&memcg->memory.max, max); 4416 4417 if (of->file->f_flags & O_NONBLOCK) 4418 goto out; 4419 4420 for (;;) { 4421 unsigned long nr_pages = page_counter_read(&memcg->memory); 4422 4423 if (nr_pages <= max) 4424 break; 4425 4426 if (signal_pending(current)) 4427 break; 4428 4429 if (!drained) { 4430 drain_all_stock(memcg); 4431 drained = true; 4432 continue; 4433 } 4434 4435 if (nr_reclaims) { 4436 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4437 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4438 nr_reclaims--; 4439 continue; 4440 } 4441 4442 memcg_memory_event(memcg, MEMCG_OOM); 4443 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4444 break; 4445 cond_resched(); 4446 } 4447 out: 4448 memcg_wb_domain_size_changed(memcg); 4449 return nbytes; 4450 } 4451 4452 /* 4453 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4454 * if any new events become available. 4455 */ 4456 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4457 { 4458 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4459 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4460 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4461 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4462 seq_printf(m, "oom_kill %lu\n", 4463 atomic_long_read(&events[MEMCG_OOM_KILL])); 4464 seq_printf(m, "oom_group_kill %lu\n", 4465 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4466 } 4467 4468 static int memory_events_show(struct seq_file *m, void *v) 4469 { 4470 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4471 4472 __memory_events_show(m, memcg->memory_events); 4473 return 0; 4474 } 4475 4476 static int memory_events_local_show(struct seq_file *m, void *v) 4477 { 4478 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4479 4480 __memory_events_show(m, memcg->memory_events_local); 4481 return 0; 4482 } 4483 4484 int memory_stat_show(struct seq_file *m, void *v) 4485 { 4486 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4487 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4488 struct seq_buf s; 4489 4490 if (!buf) 4491 return -ENOMEM; 4492 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4493 memory_stat_format(memcg, &s); 4494 seq_puts(m, buf); 4495 kfree(buf); 4496 return 0; 4497 } 4498 4499 #ifdef CONFIG_NUMA 4500 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4501 int item) 4502 { 4503 return lruvec_page_state(lruvec, item) * 4504 memcg_page_state_output_unit(item); 4505 } 4506 4507 static int memory_numa_stat_show(struct seq_file *m, void *v) 4508 { 4509 int i; 4510 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4511 4512 mem_cgroup_flush_stats(memcg); 4513 4514 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4515 int nid; 4516 4517 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4518 continue; 4519 4520 seq_printf(m, "%s", memory_stats[i].name); 4521 for_each_node_state(nid, N_MEMORY) { 4522 u64 size; 4523 struct lruvec *lruvec; 4524 4525 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4526 size = lruvec_page_state_output(lruvec, 4527 memory_stats[i].idx); 4528 seq_printf(m, " N%d=%llu", nid, size); 4529 } 4530 seq_putc(m, '\n'); 4531 } 4532 4533 return 0; 4534 } 4535 #endif 4536 4537 static int memory_oom_group_show(struct seq_file *m, void *v) 4538 { 4539 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4540 4541 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4542 4543 return 0; 4544 } 4545 4546 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4547 char *buf, size_t nbytes, loff_t off) 4548 { 4549 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4550 int ret, oom_group; 4551 4552 buf = strstrip(buf); 4553 if (!buf) 4554 return -EINVAL; 4555 4556 ret = kstrtoint(buf, 0, &oom_group); 4557 if (ret) 4558 return ret; 4559 4560 if (oom_group != 0 && oom_group != 1) 4561 return -EINVAL; 4562 4563 WRITE_ONCE(memcg->oom_group, oom_group); 4564 4565 return nbytes; 4566 } 4567 4568 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4569 size_t nbytes, loff_t off) 4570 { 4571 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4572 int ret; 4573 4574 ret = user_proactive_reclaim(buf, memcg, NULL); 4575 if (ret) 4576 return ret; 4577 4578 return nbytes; 4579 } 4580 4581 static struct cftype memory_files[] = { 4582 { 4583 .name = "current", 4584 .flags = CFTYPE_NOT_ON_ROOT, 4585 .read_u64 = memory_current_read, 4586 }, 4587 { 4588 .name = "peak", 4589 .flags = CFTYPE_NOT_ON_ROOT, 4590 .open = peak_open, 4591 .release = peak_release, 4592 .seq_show = memory_peak_show, 4593 .write = memory_peak_write, 4594 }, 4595 { 4596 .name = "min", 4597 .flags = CFTYPE_NOT_ON_ROOT, 4598 .seq_show = memory_min_show, 4599 .write = memory_min_write, 4600 }, 4601 { 4602 .name = "low", 4603 .flags = CFTYPE_NOT_ON_ROOT, 4604 .seq_show = memory_low_show, 4605 .write = memory_low_write, 4606 }, 4607 { 4608 .name = "high", 4609 .flags = CFTYPE_NOT_ON_ROOT, 4610 .seq_show = memory_high_show, 4611 .write = memory_high_write, 4612 }, 4613 { 4614 .name = "max", 4615 .flags = CFTYPE_NOT_ON_ROOT, 4616 .seq_show = memory_max_show, 4617 .write = memory_max_write, 4618 }, 4619 { 4620 .name = "events", 4621 .flags = CFTYPE_NOT_ON_ROOT, 4622 .file_offset = offsetof(struct mem_cgroup, events_file), 4623 .seq_show = memory_events_show, 4624 }, 4625 { 4626 .name = "events.local", 4627 .flags = CFTYPE_NOT_ON_ROOT, 4628 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4629 .seq_show = memory_events_local_show, 4630 }, 4631 { 4632 .name = "stat", 4633 .seq_show = memory_stat_show, 4634 }, 4635 #ifdef CONFIG_NUMA 4636 { 4637 .name = "numa_stat", 4638 .seq_show = memory_numa_stat_show, 4639 }, 4640 #endif 4641 { 4642 .name = "oom.group", 4643 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4644 .seq_show = memory_oom_group_show, 4645 .write = memory_oom_group_write, 4646 }, 4647 { 4648 .name = "reclaim", 4649 .flags = CFTYPE_NS_DELEGATABLE, 4650 .write = memory_reclaim, 4651 }, 4652 { } /* terminate */ 4653 }; 4654 4655 struct cgroup_subsys memory_cgrp_subsys = { 4656 .css_alloc = mem_cgroup_css_alloc, 4657 .css_online = mem_cgroup_css_online, 4658 .css_offline = mem_cgroup_css_offline, 4659 .css_released = mem_cgroup_css_released, 4660 .css_free = mem_cgroup_css_free, 4661 .css_reset = mem_cgroup_css_reset, 4662 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4663 .attach = mem_cgroup_attach, 4664 .fork = mem_cgroup_fork, 4665 .exit = mem_cgroup_exit, 4666 .dfl_cftypes = memory_files, 4667 #ifdef CONFIG_MEMCG_V1 4668 .legacy_cftypes = mem_cgroup_legacy_files, 4669 #endif 4670 .early_init = 0, 4671 }; 4672 4673 /** 4674 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4675 * @root: the top ancestor of the sub-tree being checked 4676 * @memcg: the memory cgroup to check 4677 * 4678 * WARNING: This function is not stateless! It can only be used as part 4679 * of a top-down tree iteration, not for isolated queries. 4680 */ 4681 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4682 struct mem_cgroup *memcg) 4683 { 4684 bool recursive_protection = 4685 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4686 4687 if (mem_cgroup_disabled()) 4688 return; 4689 4690 if (!root) 4691 root = root_mem_cgroup; 4692 4693 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4694 } 4695 4696 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4697 gfp_t gfp) 4698 { 4699 int ret; 4700 4701 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4702 if (ret) 4703 goto out; 4704 4705 css_get(&memcg->css); 4706 commit_charge(folio, memcg); 4707 memcg1_commit_charge(folio, memcg); 4708 out: 4709 return ret; 4710 } 4711 4712 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4713 { 4714 struct mem_cgroup *memcg; 4715 int ret; 4716 4717 memcg = get_mem_cgroup_from_mm(mm); 4718 ret = charge_memcg(folio, memcg, gfp); 4719 css_put(&memcg->css); 4720 4721 return ret; 4722 } 4723 4724 /** 4725 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4726 * @folio: folio being charged 4727 * @gfp: reclaim mode 4728 * 4729 * This function is called when allocating a huge page folio, after the page has 4730 * already been obtained and charged to the appropriate hugetlb cgroup 4731 * controller (if it is enabled). 4732 * 4733 * Returns ENOMEM if the memcg is already full. 4734 * Returns 0 if either the charge was successful, or if we skip the charging. 4735 */ 4736 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4737 { 4738 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4739 int ret = 0; 4740 4741 /* 4742 * Even memcg does not account for hugetlb, we still want to update 4743 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4744 * charging the memcg. 4745 */ 4746 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4747 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4748 goto out; 4749 4750 if (charge_memcg(folio, memcg, gfp)) 4751 ret = -ENOMEM; 4752 4753 out: 4754 mem_cgroup_put(memcg); 4755 return ret; 4756 } 4757 4758 /** 4759 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4760 * @folio: folio to charge. 4761 * @mm: mm context of the victim 4762 * @gfp: reclaim mode 4763 * @entry: swap entry for which the folio is allocated 4764 * 4765 * This function charges a folio allocated for swapin. Please call this before 4766 * adding the folio to the swapcache. 4767 * 4768 * Returns 0 on success. Otherwise, an error code is returned. 4769 */ 4770 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4771 gfp_t gfp, swp_entry_t entry) 4772 { 4773 struct mem_cgroup *memcg; 4774 unsigned short id; 4775 int ret; 4776 4777 if (mem_cgroup_disabled()) 4778 return 0; 4779 4780 id = lookup_swap_cgroup_id(entry); 4781 rcu_read_lock(); 4782 memcg = mem_cgroup_from_id(id); 4783 if (!memcg || !css_tryget_online(&memcg->css)) 4784 memcg = get_mem_cgroup_from_mm(mm); 4785 rcu_read_unlock(); 4786 4787 ret = charge_memcg(folio, memcg, gfp); 4788 4789 css_put(&memcg->css); 4790 return ret; 4791 } 4792 4793 struct uncharge_gather { 4794 struct mem_cgroup *memcg; 4795 unsigned long nr_memory; 4796 unsigned long pgpgout; 4797 unsigned long nr_kmem; 4798 int nid; 4799 }; 4800 4801 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4802 { 4803 memset(ug, 0, sizeof(*ug)); 4804 } 4805 4806 static void uncharge_batch(const struct uncharge_gather *ug) 4807 { 4808 if (ug->nr_memory) { 4809 memcg_uncharge(ug->memcg, ug->nr_memory); 4810 if (ug->nr_kmem) { 4811 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4812 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4813 } 4814 memcg1_oom_recover(ug->memcg); 4815 } 4816 4817 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4818 4819 /* drop reference from uncharge_folio */ 4820 css_put(&ug->memcg->css); 4821 } 4822 4823 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4824 { 4825 long nr_pages; 4826 struct mem_cgroup *memcg; 4827 struct obj_cgroup *objcg; 4828 4829 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4830 4831 /* 4832 * Nobody should be changing or seriously looking at 4833 * folio memcg or objcg at this point, we have fully 4834 * exclusive access to the folio. 4835 */ 4836 if (folio_memcg_kmem(folio)) { 4837 objcg = __folio_objcg(folio); 4838 /* 4839 * This get matches the put at the end of the function and 4840 * kmem pages do not hold memcg references anymore. 4841 */ 4842 memcg = get_mem_cgroup_from_objcg(objcg); 4843 } else { 4844 memcg = __folio_memcg(folio); 4845 } 4846 4847 if (!memcg) 4848 return; 4849 4850 if (ug->memcg != memcg) { 4851 if (ug->memcg) { 4852 uncharge_batch(ug); 4853 uncharge_gather_clear(ug); 4854 } 4855 ug->memcg = memcg; 4856 ug->nid = folio_nid(folio); 4857 4858 /* pairs with css_put in uncharge_batch */ 4859 css_get(&memcg->css); 4860 } 4861 4862 nr_pages = folio_nr_pages(folio); 4863 4864 if (folio_memcg_kmem(folio)) { 4865 ug->nr_memory += nr_pages; 4866 ug->nr_kmem += nr_pages; 4867 4868 folio->memcg_data = 0; 4869 obj_cgroup_put(objcg); 4870 } else { 4871 /* LRU pages aren't accounted at the root level */ 4872 if (!mem_cgroup_is_root(memcg)) 4873 ug->nr_memory += nr_pages; 4874 ug->pgpgout++; 4875 4876 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4877 folio->memcg_data = 0; 4878 } 4879 4880 css_put(&memcg->css); 4881 } 4882 4883 void __mem_cgroup_uncharge(struct folio *folio) 4884 { 4885 struct uncharge_gather ug; 4886 4887 /* Don't touch folio->lru of any random page, pre-check: */ 4888 if (!folio_memcg_charged(folio)) 4889 return; 4890 4891 uncharge_gather_clear(&ug); 4892 uncharge_folio(folio, &ug); 4893 uncharge_batch(&ug); 4894 } 4895 4896 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4897 { 4898 struct uncharge_gather ug; 4899 unsigned int i; 4900 4901 uncharge_gather_clear(&ug); 4902 for (i = 0; i < folios->nr; i++) 4903 uncharge_folio(folios->folios[i], &ug); 4904 if (ug.memcg) 4905 uncharge_batch(&ug); 4906 } 4907 4908 /** 4909 * mem_cgroup_replace_folio - Charge a folio's replacement. 4910 * @old: Currently circulating folio. 4911 * @new: Replacement folio. 4912 * 4913 * Charge @new as a replacement folio for @old. @old will 4914 * be uncharged upon free. 4915 * 4916 * Both folios must be locked, @new->mapping must be set up. 4917 */ 4918 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4919 { 4920 struct mem_cgroup *memcg; 4921 long nr_pages = folio_nr_pages(new); 4922 4923 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4924 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4925 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4926 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4927 4928 if (mem_cgroup_disabled()) 4929 return; 4930 4931 /* Page cache replacement: new folio already charged? */ 4932 if (folio_memcg_charged(new)) 4933 return; 4934 4935 memcg = folio_memcg(old); 4936 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4937 if (!memcg) 4938 return; 4939 4940 /* Force-charge the new page. The old one will be freed soon */ 4941 if (!mem_cgroup_is_root(memcg)) { 4942 page_counter_charge(&memcg->memory, nr_pages); 4943 if (do_memsw_account()) 4944 page_counter_charge(&memcg->memsw, nr_pages); 4945 } 4946 4947 css_get(&memcg->css); 4948 commit_charge(new, memcg); 4949 memcg1_commit_charge(new, memcg); 4950 } 4951 4952 /** 4953 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4954 * @old: Currently circulating folio. 4955 * @new: Replacement folio. 4956 * 4957 * Transfer the memcg data from the old folio to the new folio for migration. 4958 * The old folio's data info will be cleared. Note that the memory counters 4959 * will remain unchanged throughout the process. 4960 * 4961 * Both folios must be locked, @new->mapping must be set up. 4962 */ 4963 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4964 { 4965 struct mem_cgroup *memcg; 4966 4967 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4968 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4969 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4970 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4971 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4972 4973 if (mem_cgroup_disabled()) 4974 return; 4975 4976 memcg = folio_memcg(old); 4977 /* 4978 * Note that it is normal to see !memcg for a hugetlb folio. 4979 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4980 * was not selected. 4981 */ 4982 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4983 if (!memcg) 4984 return; 4985 4986 /* Transfer the charge and the css ref */ 4987 commit_charge(new, memcg); 4988 4989 /* Warning should never happen, so don't worry about refcount non-0 */ 4990 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4991 old->memcg_data = 0; 4992 } 4993 4994 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4995 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4996 4997 void mem_cgroup_sk_alloc(struct sock *sk) 4998 { 4999 struct mem_cgroup *memcg; 5000 5001 if (!mem_cgroup_sockets_enabled) 5002 return; 5003 5004 /* Do not associate the sock with unrelated interrupted task's memcg. */ 5005 if (!in_task()) 5006 return; 5007 5008 rcu_read_lock(); 5009 memcg = mem_cgroup_from_task(current); 5010 if (mem_cgroup_is_root(memcg)) 5011 goto out; 5012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 5013 goto out; 5014 if (css_tryget(&memcg->css)) 5015 sk->sk_memcg = memcg; 5016 out: 5017 rcu_read_unlock(); 5018 } 5019 5020 void mem_cgroup_sk_free(struct sock *sk) 5021 { 5022 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 5023 5024 if (memcg) 5025 css_put(&memcg->css); 5026 } 5027 5028 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk) 5029 { 5030 struct mem_cgroup *memcg; 5031 5032 if (sk->sk_memcg == newsk->sk_memcg) 5033 return; 5034 5035 mem_cgroup_sk_free(newsk); 5036 5037 memcg = mem_cgroup_from_sk(sk); 5038 if (memcg) 5039 css_get(&memcg->css); 5040 5041 newsk->sk_memcg = sk->sk_memcg; 5042 } 5043 5044 /** 5045 * mem_cgroup_sk_charge - charge socket memory 5046 * @sk: socket in memcg to charge 5047 * @nr_pages: number of pages to charge 5048 * @gfp_mask: reclaim mode 5049 * 5050 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5051 * @memcg's configured limit, %false if it doesn't. 5052 */ 5053 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages, 5054 gfp_t gfp_mask) 5055 { 5056 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 5057 5058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5059 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5060 5061 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5062 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5063 return true; 5064 } 5065 5066 return false; 5067 } 5068 5069 /** 5070 * mem_cgroup_sk_uncharge - uncharge socket memory 5071 * @sk: socket in memcg to uncharge 5072 * @nr_pages: number of pages to uncharge 5073 */ 5074 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages) 5075 { 5076 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 5077 5078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5079 memcg1_uncharge_skmem(memcg, nr_pages); 5080 return; 5081 } 5082 5083 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5084 5085 refill_stock(memcg, nr_pages); 5086 } 5087 5088 static int __init cgroup_memory(char *s) 5089 { 5090 char *token; 5091 5092 while ((token = strsep(&s, ",")) != NULL) { 5093 if (!*token) 5094 continue; 5095 if (!strcmp(token, "nosocket")) 5096 cgroup_memory_nosocket = true; 5097 if (!strcmp(token, "nokmem")) 5098 cgroup_memory_nokmem = true; 5099 if (!strcmp(token, "nobpf")) 5100 cgroup_memory_nobpf = true; 5101 } 5102 return 1; 5103 } 5104 __setup("cgroup.memory=", cgroup_memory); 5105 5106 /* 5107 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5108 * 5109 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5110 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5111 * basically everything that doesn't depend on a specific mem_cgroup structure 5112 * should be initialized from here. 5113 */ 5114 int __init mem_cgroup_init(void) 5115 { 5116 unsigned int memcg_size; 5117 int cpu; 5118 5119 /* 5120 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5121 * used for per-memcg-per-cpu caching of per-node statistics. In order 5122 * to work fine, we should make sure that the overfill threshold can't 5123 * exceed S32_MAX / PAGE_SIZE. 5124 */ 5125 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5126 5127 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5128 memcg_hotplug_cpu_dead); 5129 5130 for_each_possible_cpu(cpu) { 5131 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5132 drain_local_memcg_stock); 5133 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, 5134 drain_local_obj_stock); 5135 } 5136 5137 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5138 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5139 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5140 5141 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5142 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5143 5144 return 0; 5145 } 5146 5147 #ifdef CONFIG_SWAP 5148 /** 5149 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5150 * @folio: folio being added to swap 5151 * @entry: swap entry to charge 5152 * 5153 * Try to charge @folio's memcg for the swap space at @entry. 5154 * 5155 * Returns 0 on success, -ENOMEM on failure. 5156 */ 5157 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5158 { 5159 unsigned int nr_pages = folio_nr_pages(folio); 5160 struct page_counter *counter; 5161 struct mem_cgroup *memcg; 5162 5163 if (do_memsw_account()) 5164 return 0; 5165 5166 memcg = folio_memcg(folio); 5167 5168 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5169 if (!memcg) 5170 return 0; 5171 5172 if (!entry.val) { 5173 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5174 return 0; 5175 } 5176 5177 memcg = mem_cgroup_id_get_online(memcg); 5178 5179 if (!mem_cgroup_is_root(memcg) && 5180 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5181 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5182 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5183 mem_cgroup_id_put(memcg); 5184 return -ENOMEM; 5185 } 5186 5187 /* Get references for the tail pages, too */ 5188 if (nr_pages > 1) 5189 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5190 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5191 5192 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5193 5194 return 0; 5195 } 5196 5197 /** 5198 * __mem_cgroup_uncharge_swap - uncharge swap space 5199 * @entry: swap entry to uncharge 5200 * @nr_pages: the amount of swap space to uncharge 5201 */ 5202 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5203 { 5204 struct mem_cgroup *memcg; 5205 unsigned short id; 5206 5207 id = swap_cgroup_clear(entry, nr_pages); 5208 rcu_read_lock(); 5209 memcg = mem_cgroup_from_id(id); 5210 if (memcg) { 5211 if (!mem_cgroup_is_root(memcg)) { 5212 if (do_memsw_account()) 5213 page_counter_uncharge(&memcg->memsw, nr_pages); 5214 else 5215 page_counter_uncharge(&memcg->swap, nr_pages); 5216 } 5217 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5218 mem_cgroup_id_put_many(memcg, nr_pages); 5219 } 5220 rcu_read_unlock(); 5221 } 5222 5223 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5224 { 5225 long nr_swap_pages = get_nr_swap_pages(); 5226 5227 if (mem_cgroup_disabled() || do_memsw_account()) 5228 return nr_swap_pages; 5229 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5230 nr_swap_pages = min_t(long, nr_swap_pages, 5231 READ_ONCE(memcg->swap.max) - 5232 page_counter_read(&memcg->swap)); 5233 return nr_swap_pages; 5234 } 5235 5236 bool mem_cgroup_swap_full(struct folio *folio) 5237 { 5238 struct mem_cgroup *memcg; 5239 5240 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5241 5242 if (vm_swap_full()) 5243 return true; 5244 if (do_memsw_account()) 5245 return false; 5246 5247 memcg = folio_memcg(folio); 5248 if (!memcg) 5249 return false; 5250 5251 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5252 unsigned long usage = page_counter_read(&memcg->swap); 5253 5254 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5255 usage * 2 >= READ_ONCE(memcg->swap.max)) 5256 return true; 5257 } 5258 5259 return false; 5260 } 5261 5262 static int __init setup_swap_account(char *s) 5263 { 5264 bool res; 5265 5266 if (!kstrtobool(s, &res) && !res) 5267 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5268 "in favor of configuring swap control via cgroupfs. " 5269 "Please report your usecase to linux-mm@kvack.org if you " 5270 "depend on this functionality.\n"); 5271 return 1; 5272 } 5273 __setup("swapaccount=", setup_swap_account); 5274 5275 static u64 swap_current_read(struct cgroup_subsys_state *css, 5276 struct cftype *cft) 5277 { 5278 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5279 5280 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5281 } 5282 5283 static int swap_peak_show(struct seq_file *sf, void *v) 5284 { 5285 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5286 5287 return peak_show(sf, v, &memcg->swap); 5288 } 5289 5290 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5291 size_t nbytes, loff_t off) 5292 { 5293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5294 5295 return peak_write(of, buf, nbytes, off, &memcg->swap, 5296 &memcg->swap_peaks); 5297 } 5298 5299 static int swap_high_show(struct seq_file *m, void *v) 5300 { 5301 return seq_puts_memcg_tunable(m, 5302 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5303 } 5304 5305 static ssize_t swap_high_write(struct kernfs_open_file *of, 5306 char *buf, size_t nbytes, loff_t off) 5307 { 5308 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5309 unsigned long high; 5310 int err; 5311 5312 buf = strstrip(buf); 5313 err = page_counter_memparse(buf, "max", &high); 5314 if (err) 5315 return err; 5316 5317 page_counter_set_high(&memcg->swap, high); 5318 5319 return nbytes; 5320 } 5321 5322 static int swap_max_show(struct seq_file *m, void *v) 5323 { 5324 return seq_puts_memcg_tunable(m, 5325 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5326 } 5327 5328 static ssize_t swap_max_write(struct kernfs_open_file *of, 5329 char *buf, size_t nbytes, loff_t off) 5330 { 5331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5332 unsigned long max; 5333 int err; 5334 5335 buf = strstrip(buf); 5336 err = page_counter_memparse(buf, "max", &max); 5337 if (err) 5338 return err; 5339 5340 xchg(&memcg->swap.max, max); 5341 5342 return nbytes; 5343 } 5344 5345 static int swap_events_show(struct seq_file *m, void *v) 5346 { 5347 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5348 5349 seq_printf(m, "high %lu\n", 5350 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5351 seq_printf(m, "max %lu\n", 5352 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5353 seq_printf(m, "fail %lu\n", 5354 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5355 5356 return 0; 5357 } 5358 5359 static struct cftype swap_files[] = { 5360 { 5361 .name = "swap.current", 5362 .flags = CFTYPE_NOT_ON_ROOT, 5363 .read_u64 = swap_current_read, 5364 }, 5365 { 5366 .name = "swap.high", 5367 .flags = CFTYPE_NOT_ON_ROOT, 5368 .seq_show = swap_high_show, 5369 .write = swap_high_write, 5370 }, 5371 { 5372 .name = "swap.max", 5373 .flags = CFTYPE_NOT_ON_ROOT, 5374 .seq_show = swap_max_show, 5375 .write = swap_max_write, 5376 }, 5377 { 5378 .name = "swap.peak", 5379 .flags = CFTYPE_NOT_ON_ROOT, 5380 .open = peak_open, 5381 .release = peak_release, 5382 .seq_show = swap_peak_show, 5383 .write = swap_peak_write, 5384 }, 5385 { 5386 .name = "swap.events", 5387 .flags = CFTYPE_NOT_ON_ROOT, 5388 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5389 .seq_show = swap_events_show, 5390 }, 5391 { } /* terminate */ 5392 }; 5393 5394 #ifdef CONFIG_ZSWAP 5395 /** 5396 * obj_cgroup_may_zswap - check if this cgroup can zswap 5397 * @objcg: the object cgroup 5398 * 5399 * Check if the hierarchical zswap limit has been reached. 5400 * 5401 * This doesn't check for specific headroom, and it is not atomic 5402 * either. But with zswap, the size of the allocation is only known 5403 * once compression has occurred, and this optimistic pre-check avoids 5404 * spending cycles on compression when there is already no room left 5405 * or zswap is disabled altogether somewhere in the hierarchy. 5406 */ 5407 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5408 { 5409 struct mem_cgroup *memcg, *original_memcg; 5410 bool ret = true; 5411 5412 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5413 return true; 5414 5415 original_memcg = get_mem_cgroup_from_objcg(objcg); 5416 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5417 memcg = parent_mem_cgroup(memcg)) { 5418 unsigned long max = READ_ONCE(memcg->zswap_max); 5419 unsigned long pages; 5420 5421 if (max == PAGE_COUNTER_MAX) 5422 continue; 5423 if (max == 0) { 5424 ret = false; 5425 break; 5426 } 5427 5428 /* Force flush to get accurate stats for charging */ 5429 __mem_cgroup_flush_stats(memcg, true); 5430 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5431 if (pages < max) 5432 continue; 5433 ret = false; 5434 break; 5435 } 5436 mem_cgroup_put(original_memcg); 5437 return ret; 5438 } 5439 5440 /** 5441 * obj_cgroup_charge_zswap - charge compression backend memory 5442 * @objcg: the object cgroup 5443 * @size: size of compressed object 5444 * 5445 * This forces the charge after obj_cgroup_may_zswap() allowed 5446 * compression and storage in zwap for this cgroup to go ahead. 5447 */ 5448 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5449 { 5450 struct mem_cgroup *memcg; 5451 5452 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5453 return; 5454 5455 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5456 5457 /* PF_MEMALLOC context, charging must succeed */ 5458 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5459 VM_WARN_ON_ONCE(1); 5460 5461 rcu_read_lock(); 5462 memcg = obj_cgroup_memcg(objcg); 5463 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5464 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5465 rcu_read_unlock(); 5466 } 5467 5468 /** 5469 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5470 * @objcg: the object cgroup 5471 * @size: size of compressed object 5472 * 5473 * Uncharges zswap memory on page in. 5474 */ 5475 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5476 { 5477 struct mem_cgroup *memcg; 5478 5479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5480 return; 5481 5482 obj_cgroup_uncharge(objcg, size); 5483 5484 rcu_read_lock(); 5485 memcg = obj_cgroup_memcg(objcg); 5486 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5487 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5488 rcu_read_unlock(); 5489 } 5490 5491 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5492 { 5493 /* if zswap is disabled, do not block pages going to the swapping device */ 5494 if (!zswap_is_enabled()) 5495 return true; 5496 5497 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5498 if (!READ_ONCE(memcg->zswap_writeback)) 5499 return false; 5500 5501 return true; 5502 } 5503 5504 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5505 struct cftype *cft) 5506 { 5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5508 5509 mem_cgroup_flush_stats(memcg); 5510 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5511 } 5512 5513 static int zswap_max_show(struct seq_file *m, void *v) 5514 { 5515 return seq_puts_memcg_tunable(m, 5516 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5517 } 5518 5519 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5520 char *buf, size_t nbytes, loff_t off) 5521 { 5522 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5523 unsigned long max; 5524 int err; 5525 5526 buf = strstrip(buf); 5527 err = page_counter_memparse(buf, "max", &max); 5528 if (err) 5529 return err; 5530 5531 xchg(&memcg->zswap_max, max); 5532 5533 return nbytes; 5534 } 5535 5536 static int zswap_writeback_show(struct seq_file *m, void *v) 5537 { 5538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5539 5540 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5541 return 0; 5542 } 5543 5544 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5545 char *buf, size_t nbytes, loff_t off) 5546 { 5547 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5548 int zswap_writeback; 5549 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5550 5551 if (parse_ret) 5552 return parse_ret; 5553 5554 if (zswap_writeback != 0 && zswap_writeback != 1) 5555 return -EINVAL; 5556 5557 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5558 return nbytes; 5559 } 5560 5561 static struct cftype zswap_files[] = { 5562 { 5563 .name = "zswap.current", 5564 .flags = CFTYPE_NOT_ON_ROOT, 5565 .read_u64 = zswap_current_read, 5566 }, 5567 { 5568 .name = "zswap.max", 5569 .flags = CFTYPE_NOT_ON_ROOT, 5570 .seq_show = zswap_max_show, 5571 .write = zswap_max_write, 5572 }, 5573 { 5574 .name = "zswap.writeback", 5575 .seq_show = zswap_writeback_show, 5576 .write = zswap_writeback_write, 5577 }, 5578 { } /* terminate */ 5579 }; 5580 #endif /* CONFIG_ZSWAP */ 5581 5582 static int __init mem_cgroup_swap_init(void) 5583 { 5584 if (mem_cgroup_disabled()) 5585 return 0; 5586 5587 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5588 #ifdef CONFIG_MEMCG_V1 5589 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5590 #endif 5591 #ifdef CONFIG_ZSWAP 5592 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5593 #endif 5594 return 0; 5595 } 5596 subsys_initcall(mem_cgroup_swap_init); 5597 5598 #endif /* CONFIG_SWAP */ 5599 5600 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5601 { 5602 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5603 } 5604