xref: /linux/mm/memcontrol.c (revision 861e10be08c69808065d755d3e3cab5d520a2d32)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60 
61 #include <asm/uaccess.h>
62 
63 #include <trace/events/vmscan.h>
64 
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67 
68 #define MEM_CGROUP_RECLAIM_RETRIES	5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70 
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74 
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81 
82 #else
83 #define do_swap_account		0
84 #endif
85 
86 
87 /*
88  * Statistics for memory cgroup.
89  */
90 enum mem_cgroup_stat_index {
91 	/*
92 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 	 */
94 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 	MEM_CGROUP_STAT_NSTATS,
99 };
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"mapped_file",
105 	"swap",
106 };
107 
108 enum mem_cgroup_events_index {
109 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
110 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
112 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 	MEM_CGROUP_EVENTS_NSTATS,
114 };
115 
116 static const char * const mem_cgroup_events_names[] = {
117 	"pgpgin",
118 	"pgpgout",
119 	"pgfault",
120 	"pgmajfault",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/* css_id of the last scanned hierarchy member */
148 	int position;
149 	/* scan generation, increased every round-trip */
150 	unsigned int generation;
151 };
152 
153 /*
154  * per-zone information in memory controller.
155  */
156 struct mem_cgroup_per_zone {
157 	struct lruvec		lruvec;
158 	unsigned long		lru_size[NR_LRU_LISTS];
159 
160 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
161 
162 	struct rb_node		tree_node;	/* RB tree node */
163 	unsigned long long	usage_in_excess;/* Set to the value by which */
164 						/* the soft limit is exceeded*/
165 	bool			on_tree;
166 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167 						/* use container_of	   */
168 };
169 
170 struct mem_cgroup_per_node {
171 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
172 };
173 
174 struct mem_cgroup_lru_info {
175 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
176 };
177 
178 /*
179  * Cgroups above their limits are maintained in a RB-Tree, independent of
180  * their hierarchy representation
181  */
182 
183 struct mem_cgroup_tree_per_zone {
184 	struct rb_root rb_root;
185 	spinlock_t lock;
186 };
187 
188 struct mem_cgroup_tree_per_node {
189 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190 };
191 
192 struct mem_cgroup_tree {
193 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194 };
195 
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197 
198 struct mem_cgroup_threshold {
199 	struct eventfd_ctx *eventfd;
200 	u64 threshold;
201 };
202 
203 /* For threshold */
204 struct mem_cgroup_threshold_ary {
205 	/* An array index points to threshold just below or equal to usage. */
206 	int current_threshold;
207 	/* Size of entries[] */
208 	unsigned int size;
209 	/* Array of thresholds */
210 	struct mem_cgroup_threshold entries[0];
211 };
212 
213 struct mem_cgroup_thresholds {
214 	/* Primary thresholds array */
215 	struct mem_cgroup_threshold_ary *primary;
216 	/*
217 	 * Spare threshold array.
218 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 	 * It must be able to store at least primary->size - 1 entries.
220 	 */
221 	struct mem_cgroup_threshold_ary *spare;
222 };
223 
224 /* for OOM */
225 struct mem_cgroup_eventfd_list {
226 	struct list_head list;
227 	struct eventfd_ctx *eventfd;
228 };
229 
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232 
233 /*
234  * The memory controller data structure. The memory controller controls both
235  * page cache and RSS per cgroup. We would eventually like to provide
236  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237  * to help the administrator determine what knobs to tune.
238  *
239  * TODO: Add a water mark for the memory controller. Reclaim will begin when
240  * we hit the water mark. May be even add a low water mark, such that
241  * no reclaim occurs from a cgroup at it's low water mark, this is
242  * a feature that will be implemented much later in the future.
243  */
244 struct mem_cgroup {
245 	struct cgroup_subsys_state css;
246 	/*
247 	 * the counter to account for memory usage
248 	 */
249 	struct res_counter res;
250 
251 	union {
252 		/*
253 		 * the counter to account for mem+swap usage.
254 		 */
255 		struct res_counter memsw;
256 
257 		/*
258 		 * rcu_freeing is used only when freeing struct mem_cgroup,
259 		 * so put it into a union to avoid wasting more memory.
260 		 * It must be disjoint from the css field.  It could be
261 		 * in a union with the res field, but res plays a much
262 		 * larger part in mem_cgroup life than memsw, and might
263 		 * be of interest, even at time of free, when debugging.
264 		 * So share rcu_head with the less interesting memsw.
265 		 */
266 		struct rcu_head rcu_freeing;
267 		/*
268 		 * We also need some space for a worker in deferred freeing.
269 		 * By the time we call it, rcu_freeing is no longer in use.
270 		 */
271 		struct work_struct work_freeing;
272 	};
273 
274 	/*
275 	 * the counter to account for kernel memory usage.
276 	 */
277 	struct res_counter kmem;
278 	/*
279 	 * Per cgroup active and inactive list, similar to the
280 	 * per zone LRU lists.
281 	 */
282 	struct mem_cgroup_lru_info info;
283 	int last_scanned_node;
284 #if MAX_NUMNODES > 1
285 	nodemask_t	scan_nodes;
286 	atomic_t	numainfo_events;
287 	atomic_t	numainfo_updating;
288 #endif
289 	/*
290 	 * Should the accounting and control be hierarchical, per subtree?
291 	 */
292 	bool use_hierarchy;
293 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 
295 	bool		oom_lock;
296 	atomic_t	under_oom;
297 
298 	atomic_t	refcnt;
299 
300 	int	swappiness;
301 	/* OOM-Killer disable */
302 	int		oom_kill_disable;
303 
304 	/* set when res.limit == memsw.limit */
305 	bool		memsw_is_minimum;
306 
307 	/* protect arrays of thresholds */
308 	struct mutex thresholds_lock;
309 
310 	/* thresholds for memory usage. RCU-protected */
311 	struct mem_cgroup_thresholds thresholds;
312 
313 	/* thresholds for mem+swap usage. RCU-protected */
314 	struct mem_cgroup_thresholds memsw_thresholds;
315 
316 	/* For oom notifier event fd */
317 	struct list_head oom_notify;
318 
319 	/*
320 	 * Should we move charges of a task when a task is moved into this
321 	 * mem_cgroup ? And what type of charges should we move ?
322 	 */
323 	unsigned long 	move_charge_at_immigrate;
324 	/*
325 	 * set > 0 if pages under this cgroup are moving to other cgroup.
326 	 */
327 	atomic_t	moving_account;
328 	/* taken only while moving_account > 0 */
329 	spinlock_t	move_lock;
330 	/*
331 	 * percpu counter.
332 	 */
333 	struct mem_cgroup_stat_cpu __percpu *stat;
334 	/*
335 	 * used when a cpu is offlined or other synchronizations
336 	 * See mem_cgroup_read_stat().
337 	 */
338 	struct mem_cgroup_stat_cpu nocpu_base;
339 	spinlock_t pcp_counter_lock;
340 
341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
342 	struct tcp_memcontrol tcp_mem;
343 #endif
344 #if defined(CONFIG_MEMCG_KMEM)
345 	/* analogous to slab_common's slab_caches list. per-memcg */
346 	struct list_head memcg_slab_caches;
347 	/* Not a spinlock, we can take a lot of time walking the list */
348 	struct mutex slab_caches_mutex;
349         /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 	int kmemcg_id;
351 #endif
352 };
353 
354 /* internal only representation about the status of kmem accounting. */
355 enum {
356 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
359 };
360 
361 /* We account when limit is on, but only after call sites are patched */
362 #define KMEM_ACCOUNTED_MASK \
363 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
364 
365 #ifdef CONFIG_MEMCG_KMEM
366 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
367 {
368 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
369 }
370 
371 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
372 {
373 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
374 }
375 
376 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
377 {
378 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
379 }
380 
381 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
382 {
383 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
384 }
385 
386 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
387 {
388 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
389 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
390 }
391 
392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
393 {
394 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
395 				  &memcg->kmem_account_flags);
396 }
397 #endif
398 
399 /* Stuffs for move charges at task migration. */
400 /*
401  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
402  * left-shifted bitmap of these types.
403  */
404 enum move_type {
405 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
406 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
407 	NR_MOVE_TYPE,
408 };
409 
410 /* "mc" and its members are protected by cgroup_mutex */
411 static struct move_charge_struct {
412 	spinlock_t	  lock; /* for from, to */
413 	struct mem_cgroup *from;
414 	struct mem_cgroup *to;
415 	unsigned long precharge;
416 	unsigned long moved_charge;
417 	unsigned long moved_swap;
418 	struct task_struct *moving_task;	/* a task moving charges */
419 	wait_queue_head_t waitq;		/* a waitq for other context */
420 } mc = {
421 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
423 };
424 
425 static bool move_anon(void)
426 {
427 	return test_bit(MOVE_CHARGE_TYPE_ANON,
428 					&mc.to->move_charge_at_immigrate);
429 }
430 
431 static bool move_file(void)
432 {
433 	return test_bit(MOVE_CHARGE_TYPE_FILE,
434 					&mc.to->move_charge_at_immigrate);
435 }
436 
437 /*
438  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
439  * limit reclaim to prevent infinite loops, if they ever occur.
440  */
441 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
442 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
443 
444 enum charge_type {
445 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446 	MEM_CGROUP_CHARGE_TYPE_ANON,
447 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
448 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
449 	NR_CHARGE_TYPE,
450 };
451 
452 /* for encoding cft->private value on file */
453 enum res_type {
454 	_MEM,
455 	_MEMSWAP,
456 	_OOM_TYPE,
457 	_KMEM,
458 };
459 
460 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
461 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
462 #define MEMFILE_ATTR(val)	((val) & 0xffff)
463 /* Used for OOM nofiier */
464 #define OOM_CONTROL		(0)
465 
466 /*
467  * Reclaim flags for mem_cgroup_hierarchical_reclaim
468  */
469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
470 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
472 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
473 
474 static void mem_cgroup_get(struct mem_cgroup *memcg);
475 static void mem_cgroup_put(struct mem_cgroup *memcg);
476 
477 static inline
478 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
479 {
480 	return container_of(s, struct mem_cgroup, css);
481 }
482 
483 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
484 {
485 	return (memcg == root_mem_cgroup);
486 }
487 
488 /* Writing them here to avoid exposing memcg's inner layout */
489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
490 
491 void sock_update_memcg(struct sock *sk)
492 {
493 	if (mem_cgroup_sockets_enabled) {
494 		struct mem_cgroup *memcg;
495 		struct cg_proto *cg_proto;
496 
497 		BUG_ON(!sk->sk_prot->proto_cgroup);
498 
499 		/* Socket cloning can throw us here with sk_cgrp already
500 		 * filled. It won't however, necessarily happen from
501 		 * process context. So the test for root memcg given
502 		 * the current task's memcg won't help us in this case.
503 		 *
504 		 * Respecting the original socket's memcg is a better
505 		 * decision in this case.
506 		 */
507 		if (sk->sk_cgrp) {
508 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
509 			mem_cgroup_get(sk->sk_cgrp->memcg);
510 			return;
511 		}
512 
513 		rcu_read_lock();
514 		memcg = mem_cgroup_from_task(current);
515 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
516 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
517 			mem_cgroup_get(memcg);
518 			sk->sk_cgrp = cg_proto;
519 		}
520 		rcu_read_unlock();
521 	}
522 }
523 EXPORT_SYMBOL(sock_update_memcg);
524 
525 void sock_release_memcg(struct sock *sk)
526 {
527 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
528 		struct mem_cgroup *memcg;
529 		WARN_ON(!sk->sk_cgrp->memcg);
530 		memcg = sk->sk_cgrp->memcg;
531 		mem_cgroup_put(memcg);
532 	}
533 }
534 
535 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
536 {
537 	if (!memcg || mem_cgroup_is_root(memcg))
538 		return NULL;
539 
540 	return &memcg->tcp_mem.cg_proto;
541 }
542 EXPORT_SYMBOL(tcp_proto_cgroup);
543 
544 static void disarm_sock_keys(struct mem_cgroup *memcg)
545 {
546 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
547 		return;
548 	static_key_slow_dec(&memcg_socket_limit_enabled);
549 }
550 #else
551 static void disarm_sock_keys(struct mem_cgroup *memcg)
552 {
553 }
554 #endif
555 
556 #ifdef CONFIG_MEMCG_KMEM
557 /*
558  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
559  * There are two main reasons for not using the css_id for this:
560  *  1) this works better in sparse environments, where we have a lot of memcgs,
561  *     but only a few kmem-limited. Or also, if we have, for instance, 200
562  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
563  *     200 entry array for that.
564  *
565  *  2) In order not to violate the cgroup API, we would like to do all memory
566  *     allocation in ->create(). At that point, we haven't yet allocated the
567  *     css_id. Having a separate index prevents us from messing with the cgroup
568  *     core for this
569  *
570  * The current size of the caches array is stored in
571  * memcg_limited_groups_array_size.  It will double each time we have to
572  * increase it.
573  */
574 static DEFINE_IDA(kmem_limited_groups);
575 int memcg_limited_groups_array_size;
576 
577 /*
578  * MIN_SIZE is different than 1, because we would like to avoid going through
579  * the alloc/free process all the time. In a small machine, 4 kmem-limited
580  * cgroups is a reasonable guess. In the future, it could be a parameter or
581  * tunable, but that is strictly not necessary.
582  *
583  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
584  * this constant directly from cgroup, but it is understandable that this is
585  * better kept as an internal representation in cgroup.c. In any case, the
586  * css_id space is not getting any smaller, and we don't have to necessarily
587  * increase ours as well if it increases.
588  */
589 #define MEMCG_CACHES_MIN_SIZE 4
590 #define MEMCG_CACHES_MAX_SIZE 65535
591 
592 /*
593  * A lot of the calls to the cache allocation functions are expected to be
594  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
595  * conditional to this static branch, we'll have to allow modules that does
596  * kmem_cache_alloc and the such to see this symbol as well
597  */
598 struct static_key memcg_kmem_enabled_key;
599 EXPORT_SYMBOL(memcg_kmem_enabled_key);
600 
601 static void disarm_kmem_keys(struct mem_cgroup *memcg)
602 {
603 	if (memcg_kmem_is_active(memcg)) {
604 		static_key_slow_dec(&memcg_kmem_enabled_key);
605 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
606 	}
607 	/*
608 	 * This check can't live in kmem destruction function,
609 	 * since the charges will outlive the cgroup
610 	 */
611 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
612 }
613 #else
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 {
616 }
617 #endif /* CONFIG_MEMCG_KMEM */
618 
619 static void disarm_static_keys(struct mem_cgroup *memcg)
620 {
621 	disarm_sock_keys(memcg);
622 	disarm_kmem_keys(memcg);
623 }
624 
625 static void drain_all_stock_async(struct mem_cgroup *memcg);
626 
627 static struct mem_cgroup_per_zone *
628 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
629 {
630 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
631 }
632 
633 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634 {
635 	return &memcg->css;
636 }
637 
638 static struct mem_cgroup_per_zone *
639 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640 {
641 	int nid = page_to_nid(page);
642 	int zid = page_zonenum(page);
643 
644 	return mem_cgroup_zoneinfo(memcg, nid, zid);
645 }
646 
647 static struct mem_cgroup_tree_per_zone *
648 soft_limit_tree_node_zone(int nid, int zid)
649 {
650 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
651 }
652 
653 static struct mem_cgroup_tree_per_zone *
654 soft_limit_tree_from_page(struct page *page)
655 {
656 	int nid = page_to_nid(page);
657 	int zid = page_zonenum(page);
658 
659 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
660 }
661 
662 static void
663 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
664 				struct mem_cgroup_per_zone *mz,
665 				struct mem_cgroup_tree_per_zone *mctz,
666 				unsigned long long new_usage_in_excess)
667 {
668 	struct rb_node **p = &mctz->rb_root.rb_node;
669 	struct rb_node *parent = NULL;
670 	struct mem_cgroup_per_zone *mz_node;
671 
672 	if (mz->on_tree)
673 		return;
674 
675 	mz->usage_in_excess = new_usage_in_excess;
676 	if (!mz->usage_in_excess)
677 		return;
678 	while (*p) {
679 		parent = *p;
680 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
681 					tree_node);
682 		if (mz->usage_in_excess < mz_node->usage_in_excess)
683 			p = &(*p)->rb_left;
684 		/*
685 		 * We can't avoid mem cgroups that are over their soft
686 		 * limit by the same amount
687 		 */
688 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
689 			p = &(*p)->rb_right;
690 	}
691 	rb_link_node(&mz->tree_node, parent, p);
692 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
693 	mz->on_tree = true;
694 }
695 
696 static void
697 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
698 				struct mem_cgroup_per_zone *mz,
699 				struct mem_cgroup_tree_per_zone *mctz)
700 {
701 	if (!mz->on_tree)
702 		return;
703 	rb_erase(&mz->tree_node, &mctz->rb_root);
704 	mz->on_tree = false;
705 }
706 
707 static void
708 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
709 				struct mem_cgroup_per_zone *mz,
710 				struct mem_cgroup_tree_per_zone *mctz)
711 {
712 	spin_lock(&mctz->lock);
713 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
714 	spin_unlock(&mctz->lock);
715 }
716 
717 
718 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
719 {
720 	unsigned long long excess;
721 	struct mem_cgroup_per_zone *mz;
722 	struct mem_cgroup_tree_per_zone *mctz;
723 	int nid = page_to_nid(page);
724 	int zid = page_zonenum(page);
725 	mctz = soft_limit_tree_from_page(page);
726 
727 	/*
728 	 * Necessary to update all ancestors when hierarchy is used.
729 	 * because their event counter is not touched.
730 	 */
731 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
732 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
733 		excess = res_counter_soft_limit_excess(&memcg->res);
734 		/*
735 		 * We have to update the tree if mz is on RB-tree or
736 		 * mem is over its softlimit.
737 		 */
738 		if (excess || mz->on_tree) {
739 			spin_lock(&mctz->lock);
740 			/* if on-tree, remove it */
741 			if (mz->on_tree)
742 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
743 			/*
744 			 * Insert again. mz->usage_in_excess will be updated.
745 			 * If excess is 0, no tree ops.
746 			 */
747 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
748 			spin_unlock(&mctz->lock);
749 		}
750 	}
751 }
752 
753 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
754 {
755 	int node, zone;
756 	struct mem_cgroup_per_zone *mz;
757 	struct mem_cgroup_tree_per_zone *mctz;
758 
759 	for_each_node(node) {
760 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
761 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
762 			mctz = soft_limit_tree_node_zone(node, zone);
763 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
764 		}
765 	}
766 }
767 
768 static struct mem_cgroup_per_zone *
769 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
770 {
771 	struct rb_node *rightmost = NULL;
772 	struct mem_cgroup_per_zone *mz;
773 
774 retry:
775 	mz = NULL;
776 	rightmost = rb_last(&mctz->rb_root);
777 	if (!rightmost)
778 		goto done;		/* Nothing to reclaim from */
779 
780 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
781 	/*
782 	 * Remove the node now but someone else can add it back,
783 	 * we will to add it back at the end of reclaim to its correct
784 	 * position in the tree.
785 	 */
786 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
787 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
788 		!css_tryget(&mz->memcg->css))
789 		goto retry;
790 done:
791 	return mz;
792 }
793 
794 static struct mem_cgroup_per_zone *
795 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
796 {
797 	struct mem_cgroup_per_zone *mz;
798 
799 	spin_lock(&mctz->lock);
800 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
801 	spin_unlock(&mctz->lock);
802 	return mz;
803 }
804 
805 /*
806  * Implementation Note: reading percpu statistics for memcg.
807  *
808  * Both of vmstat[] and percpu_counter has threshold and do periodic
809  * synchronization to implement "quick" read. There are trade-off between
810  * reading cost and precision of value. Then, we may have a chance to implement
811  * a periodic synchronizion of counter in memcg's counter.
812  *
813  * But this _read() function is used for user interface now. The user accounts
814  * memory usage by memory cgroup and he _always_ requires exact value because
815  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
816  * have to visit all online cpus and make sum. So, for now, unnecessary
817  * synchronization is not implemented. (just implemented for cpu hotplug)
818  *
819  * If there are kernel internal actions which can make use of some not-exact
820  * value, and reading all cpu value can be performance bottleneck in some
821  * common workload, threashold and synchonization as vmstat[] should be
822  * implemented.
823  */
824 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
825 				 enum mem_cgroup_stat_index idx)
826 {
827 	long val = 0;
828 	int cpu;
829 
830 	get_online_cpus();
831 	for_each_online_cpu(cpu)
832 		val += per_cpu(memcg->stat->count[idx], cpu);
833 #ifdef CONFIG_HOTPLUG_CPU
834 	spin_lock(&memcg->pcp_counter_lock);
835 	val += memcg->nocpu_base.count[idx];
836 	spin_unlock(&memcg->pcp_counter_lock);
837 #endif
838 	put_online_cpus();
839 	return val;
840 }
841 
842 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
843 					 bool charge)
844 {
845 	int val = (charge) ? 1 : -1;
846 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
847 }
848 
849 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
850 					    enum mem_cgroup_events_index idx)
851 {
852 	unsigned long val = 0;
853 	int cpu;
854 
855 	for_each_online_cpu(cpu)
856 		val += per_cpu(memcg->stat->events[idx], cpu);
857 #ifdef CONFIG_HOTPLUG_CPU
858 	spin_lock(&memcg->pcp_counter_lock);
859 	val += memcg->nocpu_base.events[idx];
860 	spin_unlock(&memcg->pcp_counter_lock);
861 #endif
862 	return val;
863 }
864 
865 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
866 					 bool anon, int nr_pages)
867 {
868 	preempt_disable();
869 
870 	/*
871 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
872 	 * counted as CACHE even if it's on ANON LRU.
873 	 */
874 	if (anon)
875 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
876 				nr_pages);
877 	else
878 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
879 				nr_pages);
880 
881 	/* pagein of a big page is an event. So, ignore page size */
882 	if (nr_pages > 0)
883 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
884 	else {
885 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
886 		nr_pages = -nr_pages; /* for event */
887 	}
888 
889 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
890 
891 	preempt_enable();
892 }
893 
894 unsigned long
895 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
896 {
897 	struct mem_cgroup_per_zone *mz;
898 
899 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
900 	return mz->lru_size[lru];
901 }
902 
903 static unsigned long
904 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
905 			unsigned int lru_mask)
906 {
907 	struct mem_cgroup_per_zone *mz;
908 	enum lru_list lru;
909 	unsigned long ret = 0;
910 
911 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
912 
913 	for_each_lru(lru) {
914 		if (BIT(lru) & lru_mask)
915 			ret += mz->lru_size[lru];
916 	}
917 	return ret;
918 }
919 
920 static unsigned long
921 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
922 			int nid, unsigned int lru_mask)
923 {
924 	u64 total = 0;
925 	int zid;
926 
927 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
928 		total += mem_cgroup_zone_nr_lru_pages(memcg,
929 						nid, zid, lru_mask);
930 
931 	return total;
932 }
933 
934 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
935 			unsigned int lru_mask)
936 {
937 	int nid;
938 	u64 total = 0;
939 
940 	for_each_node_state(nid, N_MEMORY)
941 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
942 	return total;
943 }
944 
945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
946 				       enum mem_cgroup_events_target target)
947 {
948 	unsigned long val, next;
949 
950 	val = __this_cpu_read(memcg->stat->nr_page_events);
951 	next = __this_cpu_read(memcg->stat->targets[target]);
952 	/* from time_after() in jiffies.h */
953 	if ((long)next - (long)val < 0) {
954 		switch (target) {
955 		case MEM_CGROUP_TARGET_THRESH:
956 			next = val + THRESHOLDS_EVENTS_TARGET;
957 			break;
958 		case MEM_CGROUP_TARGET_SOFTLIMIT:
959 			next = val + SOFTLIMIT_EVENTS_TARGET;
960 			break;
961 		case MEM_CGROUP_TARGET_NUMAINFO:
962 			next = val + NUMAINFO_EVENTS_TARGET;
963 			break;
964 		default:
965 			break;
966 		}
967 		__this_cpu_write(memcg->stat->targets[target], next);
968 		return true;
969 	}
970 	return false;
971 }
972 
973 /*
974  * Check events in order.
975  *
976  */
977 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
978 {
979 	preempt_disable();
980 	/* threshold event is triggered in finer grain than soft limit */
981 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
982 						MEM_CGROUP_TARGET_THRESH))) {
983 		bool do_softlimit;
984 		bool do_numainfo __maybe_unused;
985 
986 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
987 						MEM_CGROUP_TARGET_SOFTLIMIT);
988 #if MAX_NUMNODES > 1
989 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
990 						MEM_CGROUP_TARGET_NUMAINFO);
991 #endif
992 		preempt_enable();
993 
994 		mem_cgroup_threshold(memcg);
995 		if (unlikely(do_softlimit))
996 			mem_cgroup_update_tree(memcg, page);
997 #if MAX_NUMNODES > 1
998 		if (unlikely(do_numainfo))
999 			atomic_inc(&memcg->numainfo_events);
1000 #endif
1001 	} else
1002 		preempt_enable();
1003 }
1004 
1005 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1006 {
1007 	return mem_cgroup_from_css(
1008 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1009 }
1010 
1011 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1012 {
1013 	/*
1014 	 * mm_update_next_owner() may clear mm->owner to NULL
1015 	 * if it races with swapoff, page migration, etc.
1016 	 * So this can be called with p == NULL.
1017 	 */
1018 	if (unlikely(!p))
1019 		return NULL;
1020 
1021 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1022 }
1023 
1024 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1025 {
1026 	struct mem_cgroup *memcg = NULL;
1027 
1028 	if (!mm)
1029 		return NULL;
1030 	/*
1031 	 * Because we have no locks, mm->owner's may be being moved to other
1032 	 * cgroup. We use css_tryget() here even if this looks
1033 	 * pessimistic (rather than adding locks here).
1034 	 */
1035 	rcu_read_lock();
1036 	do {
1037 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 		if (unlikely(!memcg))
1039 			break;
1040 	} while (!css_tryget(&memcg->css));
1041 	rcu_read_unlock();
1042 	return memcg;
1043 }
1044 
1045 /**
1046  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1047  * @root: hierarchy root
1048  * @prev: previously returned memcg, NULL on first invocation
1049  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1050  *
1051  * Returns references to children of the hierarchy below @root, or
1052  * @root itself, or %NULL after a full round-trip.
1053  *
1054  * Caller must pass the return value in @prev on subsequent
1055  * invocations for reference counting, or use mem_cgroup_iter_break()
1056  * to cancel a hierarchy walk before the round-trip is complete.
1057  *
1058  * Reclaimers can specify a zone and a priority level in @reclaim to
1059  * divide up the memcgs in the hierarchy among all concurrent
1060  * reclaimers operating on the same zone and priority.
1061  */
1062 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1063 				   struct mem_cgroup *prev,
1064 				   struct mem_cgroup_reclaim_cookie *reclaim)
1065 {
1066 	struct mem_cgroup *memcg = NULL;
1067 	int id = 0;
1068 
1069 	if (mem_cgroup_disabled())
1070 		return NULL;
1071 
1072 	if (!root)
1073 		root = root_mem_cgroup;
1074 
1075 	if (prev && !reclaim)
1076 		id = css_id(&prev->css);
1077 
1078 	if (prev && prev != root)
1079 		css_put(&prev->css);
1080 
1081 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1082 		if (prev)
1083 			return NULL;
1084 		return root;
1085 	}
1086 
1087 	while (!memcg) {
1088 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1089 		struct cgroup_subsys_state *css;
1090 
1091 		if (reclaim) {
1092 			int nid = zone_to_nid(reclaim->zone);
1093 			int zid = zone_idx(reclaim->zone);
1094 			struct mem_cgroup_per_zone *mz;
1095 
1096 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1097 			iter = &mz->reclaim_iter[reclaim->priority];
1098 			if (prev && reclaim->generation != iter->generation)
1099 				return NULL;
1100 			id = iter->position;
1101 		}
1102 
1103 		rcu_read_lock();
1104 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1105 		if (css) {
1106 			if (css == &root->css || css_tryget(css))
1107 				memcg = mem_cgroup_from_css(css);
1108 		} else
1109 			id = 0;
1110 		rcu_read_unlock();
1111 
1112 		if (reclaim) {
1113 			iter->position = id;
1114 			if (!css)
1115 				iter->generation++;
1116 			else if (!prev && memcg)
1117 				reclaim->generation = iter->generation;
1118 		}
1119 
1120 		if (prev && !css)
1121 			return NULL;
1122 	}
1123 	return memcg;
1124 }
1125 
1126 /**
1127  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128  * @root: hierarchy root
1129  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130  */
1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 			   struct mem_cgroup *prev)
1133 {
1134 	if (!root)
1135 		root = root_mem_cgroup;
1136 	if (prev && prev != root)
1137 		css_put(&prev->css);
1138 }
1139 
1140 /*
1141  * Iteration constructs for visiting all cgroups (under a tree).  If
1142  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143  * be used for reference counting.
1144  */
1145 #define for_each_mem_cgroup_tree(iter, root)		\
1146 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1147 	     iter != NULL;				\
1148 	     iter = mem_cgroup_iter(root, iter, NULL))
1149 
1150 #define for_each_mem_cgroup(iter)			\
1151 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1152 	     iter != NULL;				\
1153 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1154 
1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156 {
1157 	struct mem_cgroup *memcg;
1158 
1159 	rcu_read_lock();
1160 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 	if (unlikely(!memcg))
1162 		goto out;
1163 
1164 	switch (idx) {
1165 	case PGFAULT:
1166 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167 		break;
1168 	case PGMAJFAULT:
1169 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 		break;
1171 	default:
1172 		BUG();
1173 	}
1174 out:
1175 	rcu_read_unlock();
1176 }
1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178 
1179 /**
1180  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181  * @zone: zone of the wanted lruvec
1182  * @memcg: memcg of the wanted lruvec
1183  *
1184  * Returns the lru list vector holding pages for the given @zone and
1185  * @mem.  This can be the global zone lruvec, if the memory controller
1186  * is disabled.
1187  */
1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 				      struct mem_cgroup *memcg)
1190 {
1191 	struct mem_cgroup_per_zone *mz;
1192 	struct lruvec *lruvec;
1193 
1194 	if (mem_cgroup_disabled()) {
1195 		lruvec = &zone->lruvec;
1196 		goto out;
1197 	}
1198 
1199 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1200 	lruvec = &mz->lruvec;
1201 out:
1202 	/*
1203 	 * Since a node can be onlined after the mem_cgroup was created,
1204 	 * we have to be prepared to initialize lruvec->zone here;
1205 	 * and if offlined then reonlined, we need to reinitialize it.
1206 	 */
1207 	if (unlikely(lruvec->zone != zone))
1208 		lruvec->zone = zone;
1209 	return lruvec;
1210 }
1211 
1212 /*
1213  * Following LRU functions are allowed to be used without PCG_LOCK.
1214  * Operations are called by routine of global LRU independently from memcg.
1215  * What we have to take care of here is validness of pc->mem_cgroup.
1216  *
1217  * Changes to pc->mem_cgroup happens when
1218  * 1. charge
1219  * 2. moving account
1220  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1221  * It is added to LRU before charge.
1222  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1223  * When moving account, the page is not on LRU. It's isolated.
1224  */
1225 
1226 /**
1227  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1228  * @page: the page
1229  * @zone: zone of the page
1230  */
1231 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1232 {
1233 	struct mem_cgroup_per_zone *mz;
1234 	struct mem_cgroup *memcg;
1235 	struct page_cgroup *pc;
1236 	struct lruvec *lruvec;
1237 
1238 	if (mem_cgroup_disabled()) {
1239 		lruvec = &zone->lruvec;
1240 		goto out;
1241 	}
1242 
1243 	pc = lookup_page_cgroup(page);
1244 	memcg = pc->mem_cgroup;
1245 
1246 	/*
1247 	 * Surreptitiously switch any uncharged offlist page to root:
1248 	 * an uncharged page off lru does nothing to secure
1249 	 * its former mem_cgroup from sudden removal.
1250 	 *
1251 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1252 	 * under page_cgroup lock: between them, they make all uses
1253 	 * of pc->mem_cgroup safe.
1254 	 */
1255 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1256 		pc->mem_cgroup = memcg = root_mem_cgroup;
1257 
1258 	mz = page_cgroup_zoneinfo(memcg, page);
1259 	lruvec = &mz->lruvec;
1260 out:
1261 	/*
1262 	 * Since a node can be onlined after the mem_cgroup was created,
1263 	 * we have to be prepared to initialize lruvec->zone here;
1264 	 * and if offlined then reonlined, we need to reinitialize it.
1265 	 */
1266 	if (unlikely(lruvec->zone != zone))
1267 		lruvec->zone = zone;
1268 	return lruvec;
1269 }
1270 
1271 /**
1272  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273  * @lruvec: mem_cgroup per zone lru vector
1274  * @lru: index of lru list the page is sitting on
1275  * @nr_pages: positive when adding or negative when removing
1276  *
1277  * This function must be called when a page is added to or removed from an
1278  * lru list.
1279  */
1280 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1281 				int nr_pages)
1282 {
1283 	struct mem_cgroup_per_zone *mz;
1284 	unsigned long *lru_size;
1285 
1286 	if (mem_cgroup_disabled())
1287 		return;
1288 
1289 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1290 	lru_size = mz->lru_size + lru;
1291 	*lru_size += nr_pages;
1292 	VM_BUG_ON((long)(*lru_size) < 0);
1293 }
1294 
1295 /*
1296  * Checks whether given mem is same or in the root_mem_cgroup's
1297  * hierarchy subtree
1298  */
1299 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1300 				  struct mem_cgroup *memcg)
1301 {
1302 	if (root_memcg == memcg)
1303 		return true;
1304 	if (!root_memcg->use_hierarchy || !memcg)
1305 		return false;
1306 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1307 }
1308 
1309 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1310 				       struct mem_cgroup *memcg)
1311 {
1312 	bool ret;
1313 
1314 	rcu_read_lock();
1315 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1316 	rcu_read_unlock();
1317 	return ret;
1318 }
1319 
1320 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1321 {
1322 	int ret;
1323 	struct mem_cgroup *curr = NULL;
1324 	struct task_struct *p;
1325 
1326 	p = find_lock_task_mm(task);
1327 	if (p) {
1328 		curr = try_get_mem_cgroup_from_mm(p->mm);
1329 		task_unlock(p);
1330 	} else {
1331 		/*
1332 		 * All threads may have already detached their mm's, but the oom
1333 		 * killer still needs to detect if they have already been oom
1334 		 * killed to prevent needlessly killing additional tasks.
1335 		 */
1336 		task_lock(task);
1337 		curr = mem_cgroup_from_task(task);
1338 		if (curr)
1339 			css_get(&curr->css);
1340 		task_unlock(task);
1341 	}
1342 	if (!curr)
1343 		return 0;
1344 	/*
1345 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1346 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1347 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1348 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1349 	 */
1350 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1351 	css_put(&curr->css);
1352 	return ret;
1353 }
1354 
1355 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1356 {
1357 	unsigned long inactive_ratio;
1358 	unsigned long inactive;
1359 	unsigned long active;
1360 	unsigned long gb;
1361 
1362 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1363 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1364 
1365 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1366 	if (gb)
1367 		inactive_ratio = int_sqrt(10 * gb);
1368 	else
1369 		inactive_ratio = 1;
1370 
1371 	return inactive * inactive_ratio < active;
1372 }
1373 
1374 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1375 {
1376 	unsigned long active;
1377 	unsigned long inactive;
1378 
1379 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1380 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1381 
1382 	return (active > inactive);
1383 }
1384 
1385 #define mem_cgroup_from_res_counter(counter, member)	\
1386 	container_of(counter, struct mem_cgroup, member)
1387 
1388 /**
1389  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1390  * @memcg: the memory cgroup
1391  *
1392  * Returns the maximum amount of memory @mem can be charged with, in
1393  * pages.
1394  */
1395 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1396 {
1397 	unsigned long long margin;
1398 
1399 	margin = res_counter_margin(&memcg->res);
1400 	if (do_swap_account)
1401 		margin = min(margin, res_counter_margin(&memcg->memsw));
1402 	return margin >> PAGE_SHIFT;
1403 }
1404 
1405 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1406 {
1407 	struct cgroup *cgrp = memcg->css.cgroup;
1408 
1409 	/* root ? */
1410 	if (cgrp->parent == NULL)
1411 		return vm_swappiness;
1412 
1413 	return memcg->swappiness;
1414 }
1415 
1416 /*
1417  * memcg->moving_account is used for checking possibility that some thread is
1418  * calling move_account(). When a thread on CPU-A starts moving pages under
1419  * a memcg, other threads should check memcg->moving_account under
1420  * rcu_read_lock(), like this:
1421  *
1422  *         CPU-A                                    CPU-B
1423  *                                              rcu_read_lock()
1424  *         memcg->moving_account+1              if (memcg->mocing_account)
1425  *                                                   take heavy locks.
1426  *         synchronize_rcu()                    update something.
1427  *                                              rcu_read_unlock()
1428  *         start move here.
1429  */
1430 
1431 /* for quick checking without looking up memcg */
1432 atomic_t memcg_moving __read_mostly;
1433 
1434 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1435 {
1436 	atomic_inc(&memcg_moving);
1437 	atomic_inc(&memcg->moving_account);
1438 	synchronize_rcu();
1439 }
1440 
1441 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1442 {
1443 	/*
1444 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1445 	 * We check NULL in callee rather than caller.
1446 	 */
1447 	if (memcg) {
1448 		atomic_dec(&memcg_moving);
1449 		atomic_dec(&memcg->moving_account);
1450 	}
1451 }
1452 
1453 /*
1454  * 2 routines for checking "mem" is under move_account() or not.
1455  *
1456  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1457  *			  is used for avoiding races in accounting.  If true,
1458  *			  pc->mem_cgroup may be overwritten.
1459  *
1460  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1461  *			  under hierarchy of moving cgroups. This is for
1462  *			  waiting at hith-memory prressure caused by "move".
1463  */
1464 
1465 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1466 {
1467 	VM_BUG_ON(!rcu_read_lock_held());
1468 	return atomic_read(&memcg->moving_account) > 0;
1469 }
1470 
1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1472 {
1473 	struct mem_cgroup *from;
1474 	struct mem_cgroup *to;
1475 	bool ret = false;
1476 	/*
1477 	 * Unlike task_move routines, we access mc.to, mc.from not under
1478 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 	 */
1480 	spin_lock(&mc.lock);
1481 	from = mc.from;
1482 	to = mc.to;
1483 	if (!from)
1484 		goto unlock;
1485 
1486 	ret = mem_cgroup_same_or_subtree(memcg, from)
1487 		|| mem_cgroup_same_or_subtree(memcg, to);
1488 unlock:
1489 	spin_unlock(&mc.lock);
1490 	return ret;
1491 }
1492 
1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1494 {
1495 	if (mc.moving_task && current != mc.moving_task) {
1496 		if (mem_cgroup_under_move(memcg)) {
1497 			DEFINE_WAIT(wait);
1498 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1499 			/* moving charge context might have finished. */
1500 			if (mc.moving_task)
1501 				schedule();
1502 			finish_wait(&mc.waitq, &wait);
1503 			return true;
1504 		}
1505 	}
1506 	return false;
1507 }
1508 
1509 /*
1510  * Take this lock when
1511  * - a code tries to modify page's memcg while it's USED.
1512  * - a code tries to modify page state accounting in a memcg.
1513  * see mem_cgroup_stolen(), too.
1514  */
1515 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1516 				  unsigned long *flags)
1517 {
1518 	spin_lock_irqsave(&memcg->move_lock, *flags);
1519 }
1520 
1521 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1522 				unsigned long *flags)
1523 {
1524 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1525 }
1526 
1527 /**
1528  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1529  * @memcg: The memory cgroup that went over limit
1530  * @p: Task that is going to be killed
1531  *
1532  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1533  * enabled
1534  */
1535 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1536 {
1537 	struct cgroup *task_cgrp;
1538 	struct cgroup *mem_cgrp;
1539 	/*
1540 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1541 	 * on the assumption that OOM is serialized for memory controller.
1542 	 * If this assumption is broken, revisit this code.
1543 	 */
1544 	static char memcg_name[PATH_MAX];
1545 	int ret;
1546 
1547 	if (!memcg || !p)
1548 		return;
1549 
1550 	rcu_read_lock();
1551 
1552 	mem_cgrp = memcg->css.cgroup;
1553 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1554 
1555 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1556 	if (ret < 0) {
1557 		/*
1558 		 * Unfortunately, we are unable to convert to a useful name
1559 		 * But we'll still print out the usage information
1560 		 */
1561 		rcu_read_unlock();
1562 		goto done;
1563 	}
1564 	rcu_read_unlock();
1565 
1566 	printk(KERN_INFO "Task in %s killed", memcg_name);
1567 
1568 	rcu_read_lock();
1569 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1570 	if (ret < 0) {
1571 		rcu_read_unlock();
1572 		goto done;
1573 	}
1574 	rcu_read_unlock();
1575 
1576 	/*
1577 	 * Continues from above, so we don't need an KERN_ level
1578 	 */
1579 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1580 done:
1581 
1582 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1583 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1584 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1585 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1586 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1587 		"failcnt %llu\n",
1588 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1589 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1590 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1591 	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1592 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1593 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1594 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1595 }
1596 
1597 /*
1598  * This function returns the number of memcg under hierarchy tree. Returns
1599  * 1(self count) if no children.
1600  */
1601 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1602 {
1603 	int num = 0;
1604 	struct mem_cgroup *iter;
1605 
1606 	for_each_mem_cgroup_tree(iter, memcg)
1607 		num++;
1608 	return num;
1609 }
1610 
1611 /*
1612  * Return the memory (and swap, if configured) limit for a memcg.
1613  */
1614 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1615 {
1616 	u64 limit;
1617 
1618 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1619 
1620 	/*
1621 	 * Do not consider swap space if we cannot swap due to swappiness
1622 	 */
1623 	if (mem_cgroup_swappiness(memcg)) {
1624 		u64 memsw;
1625 
1626 		limit += total_swap_pages << PAGE_SHIFT;
1627 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1628 
1629 		/*
1630 		 * If memsw is finite and limits the amount of swap space
1631 		 * available to this memcg, return that limit.
1632 		 */
1633 		limit = min(limit, memsw);
1634 	}
1635 
1636 	return limit;
1637 }
1638 
1639 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1640 				     int order)
1641 {
1642 	struct mem_cgroup *iter;
1643 	unsigned long chosen_points = 0;
1644 	unsigned long totalpages;
1645 	unsigned int points = 0;
1646 	struct task_struct *chosen = NULL;
1647 
1648 	/*
1649 	 * If current has a pending SIGKILL, then automatically select it.  The
1650 	 * goal is to allow it to allocate so that it may quickly exit and free
1651 	 * its memory.
1652 	 */
1653 	if (fatal_signal_pending(current)) {
1654 		set_thread_flag(TIF_MEMDIE);
1655 		return;
1656 	}
1657 
1658 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1659 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1660 	for_each_mem_cgroup_tree(iter, memcg) {
1661 		struct cgroup *cgroup = iter->css.cgroup;
1662 		struct cgroup_iter it;
1663 		struct task_struct *task;
1664 
1665 		cgroup_iter_start(cgroup, &it);
1666 		while ((task = cgroup_iter_next(cgroup, &it))) {
1667 			switch (oom_scan_process_thread(task, totalpages, NULL,
1668 							false)) {
1669 			case OOM_SCAN_SELECT:
1670 				if (chosen)
1671 					put_task_struct(chosen);
1672 				chosen = task;
1673 				chosen_points = ULONG_MAX;
1674 				get_task_struct(chosen);
1675 				/* fall through */
1676 			case OOM_SCAN_CONTINUE:
1677 				continue;
1678 			case OOM_SCAN_ABORT:
1679 				cgroup_iter_end(cgroup, &it);
1680 				mem_cgroup_iter_break(memcg, iter);
1681 				if (chosen)
1682 					put_task_struct(chosen);
1683 				return;
1684 			case OOM_SCAN_OK:
1685 				break;
1686 			};
1687 			points = oom_badness(task, memcg, NULL, totalpages);
1688 			if (points > chosen_points) {
1689 				if (chosen)
1690 					put_task_struct(chosen);
1691 				chosen = task;
1692 				chosen_points = points;
1693 				get_task_struct(chosen);
1694 			}
1695 		}
1696 		cgroup_iter_end(cgroup, &it);
1697 	}
1698 
1699 	if (!chosen)
1700 		return;
1701 	points = chosen_points * 1000 / totalpages;
1702 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1703 			 NULL, "Memory cgroup out of memory");
1704 }
1705 
1706 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1707 					gfp_t gfp_mask,
1708 					unsigned long flags)
1709 {
1710 	unsigned long total = 0;
1711 	bool noswap = false;
1712 	int loop;
1713 
1714 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1715 		noswap = true;
1716 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1717 		noswap = true;
1718 
1719 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1720 		if (loop)
1721 			drain_all_stock_async(memcg);
1722 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1723 		/*
1724 		 * Allow limit shrinkers, which are triggered directly
1725 		 * by userspace, to catch signals and stop reclaim
1726 		 * after minimal progress, regardless of the margin.
1727 		 */
1728 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1729 			break;
1730 		if (mem_cgroup_margin(memcg))
1731 			break;
1732 		/*
1733 		 * If nothing was reclaimed after two attempts, there
1734 		 * may be no reclaimable pages in this hierarchy.
1735 		 */
1736 		if (loop && !total)
1737 			break;
1738 	}
1739 	return total;
1740 }
1741 
1742 /**
1743  * test_mem_cgroup_node_reclaimable
1744  * @memcg: the target memcg
1745  * @nid: the node ID to be checked.
1746  * @noswap : specify true here if the user wants flle only information.
1747  *
1748  * This function returns whether the specified memcg contains any
1749  * reclaimable pages on a node. Returns true if there are any reclaimable
1750  * pages in the node.
1751  */
1752 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1753 		int nid, bool noswap)
1754 {
1755 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1756 		return true;
1757 	if (noswap || !total_swap_pages)
1758 		return false;
1759 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1760 		return true;
1761 	return false;
1762 
1763 }
1764 #if MAX_NUMNODES > 1
1765 
1766 /*
1767  * Always updating the nodemask is not very good - even if we have an empty
1768  * list or the wrong list here, we can start from some node and traverse all
1769  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1770  *
1771  */
1772 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1773 {
1774 	int nid;
1775 	/*
1776 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1777 	 * pagein/pageout changes since the last update.
1778 	 */
1779 	if (!atomic_read(&memcg->numainfo_events))
1780 		return;
1781 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1782 		return;
1783 
1784 	/* make a nodemask where this memcg uses memory from */
1785 	memcg->scan_nodes = node_states[N_MEMORY];
1786 
1787 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1788 
1789 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1790 			node_clear(nid, memcg->scan_nodes);
1791 	}
1792 
1793 	atomic_set(&memcg->numainfo_events, 0);
1794 	atomic_set(&memcg->numainfo_updating, 0);
1795 }
1796 
1797 /*
1798  * Selecting a node where we start reclaim from. Because what we need is just
1799  * reducing usage counter, start from anywhere is O,K. Considering
1800  * memory reclaim from current node, there are pros. and cons.
1801  *
1802  * Freeing memory from current node means freeing memory from a node which
1803  * we'll use or we've used. So, it may make LRU bad. And if several threads
1804  * hit limits, it will see a contention on a node. But freeing from remote
1805  * node means more costs for memory reclaim because of memory latency.
1806  *
1807  * Now, we use round-robin. Better algorithm is welcomed.
1808  */
1809 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1810 {
1811 	int node;
1812 
1813 	mem_cgroup_may_update_nodemask(memcg);
1814 	node = memcg->last_scanned_node;
1815 
1816 	node = next_node(node, memcg->scan_nodes);
1817 	if (node == MAX_NUMNODES)
1818 		node = first_node(memcg->scan_nodes);
1819 	/*
1820 	 * We call this when we hit limit, not when pages are added to LRU.
1821 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1822 	 * memcg is too small and all pages are not on LRU. In that case,
1823 	 * we use curret node.
1824 	 */
1825 	if (unlikely(node == MAX_NUMNODES))
1826 		node = numa_node_id();
1827 
1828 	memcg->last_scanned_node = node;
1829 	return node;
1830 }
1831 
1832 /*
1833  * Check all nodes whether it contains reclaimable pages or not.
1834  * For quick scan, we make use of scan_nodes. This will allow us to skip
1835  * unused nodes. But scan_nodes is lazily updated and may not cotain
1836  * enough new information. We need to do double check.
1837  */
1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839 {
1840 	int nid;
1841 
1842 	/*
1843 	 * quick check...making use of scan_node.
1844 	 * We can skip unused nodes.
1845 	 */
1846 	if (!nodes_empty(memcg->scan_nodes)) {
1847 		for (nid = first_node(memcg->scan_nodes);
1848 		     nid < MAX_NUMNODES;
1849 		     nid = next_node(nid, memcg->scan_nodes)) {
1850 
1851 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1852 				return true;
1853 		}
1854 	}
1855 	/*
1856 	 * Check rest of nodes.
1857 	 */
1858 	for_each_node_state(nid, N_MEMORY) {
1859 		if (node_isset(nid, memcg->scan_nodes))
1860 			continue;
1861 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1862 			return true;
1863 	}
1864 	return false;
1865 }
1866 
1867 #else
1868 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1869 {
1870 	return 0;
1871 }
1872 
1873 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1874 {
1875 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1876 }
1877 #endif
1878 
1879 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1880 				   struct zone *zone,
1881 				   gfp_t gfp_mask,
1882 				   unsigned long *total_scanned)
1883 {
1884 	struct mem_cgroup *victim = NULL;
1885 	int total = 0;
1886 	int loop = 0;
1887 	unsigned long excess;
1888 	unsigned long nr_scanned;
1889 	struct mem_cgroup_reclaim_cookie reclaim = {
1890 		.zone = zone,
1891 		.priority = 0,
1892 	};
1893 
1894 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1895 
1896 	while (1) {
1897 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1898 		if (!victim) {
1899 			loop++;
1900 			if (loop >= 2) {
1901 				/*
1902 				 * If we have not been able to reclaim
1903 				 * anything, it might because there are
1904 				 * no reclaimable pages under this hierarchy
1905 				 */
1906 				if (!total)
1907 					break;
1908 				/*
1909 				 * We want to do more targeted reclaim.
1910 				 * excess >> 2 is not to excessive so as to
1911 				 * reclaim too much, nor too less that we keep
1912 				 * coming back to reclaim from this cgroup
1913 				 */
1914 				if (total >= (excess >> 2) ||
1915 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1916 					break;
1917 			}
1918 			continue;
1919 		}
1920 		if (!mem_cgroup_reclaimable(victim, false))
1921 			continue;
1922 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1923 						     zone, &nr_scanned);
1924 		*total_scanned += nr_scanned;
1925 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1926 			break;
1927 	}
1928 	mem_cgroup_iter_break(root_memcg, victim);
1929 	return total;
1930 }
1931 
1932 /*
1933  * Check OOM-Killer is already running under our hierarchy.
1934  * If someone is running, return false.
1935  * Has to be called with memcg_oom_lock
1936  */
1937 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1938 {
1939 	struct mem_cgroup *iter, *failed = NULL;
1940 
1941 	for_each_mem_cgroup_tree(iter, memcg) {
1942 		if (iter->oom_lock) {
1943 			/*
1944 			 * this subtree of our hierarchy is already locked
1945 			 * so we cannot give a lock.
1946 			 */
1947 			failed = iter;
1948 			mem_cgroup_iter_break(memcg, iter);
1949 			break;
1950 		} else
1951 			iter->oom_lock = true;
1952 	}
1953 
1954 	if (!failed)
1955 		return true;
1956 
1957 	/*
1958 	 * OK, we failed to lock the whole subtree so we have to clean up
1959 	 * what we set up to the failing subtree
1960 	 */
1961 	for_each_mem_cgroup_tree(iter, memcg) {
1962 		if (iter == failed) {
1963 			mem_cgroup_iter_break(memcg, iter);
1964 			break;
1965 		}
1966 		iter->oom_lock = false;
1967 	}
1968 	return false;
1969 }
1970 
1971 /*
1972  * Has to be called with memcg_oom_lock
1973  */
1974 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1975 {
1976 	struct mem_cgroup *iter;
1977 
1978 	for_each_mem_cgroup_tree(iter, memcg)
1979 		iter->oom_lock = false;
1980 	return 0;
1981 }
1982 
1983 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1984 {
1985 	struct mem_cgroup *iter;
1986 
1987 	for_each_mem_cgroup_tree(iter, memcg)
1988 		atomic_inc(&iter->under_oom);
1989 }
1990 
1991 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1992 {
1993 	struct mem_cgroup *iter;
1994 
1995 	/*
1996 	 * When a new child is created while the hierarchy is under oom,
1997 	 * mem_cgroup_oom_lock() may not be called. We have to use
1998 	 * atomic_add_unless() here.
1999 	 */
2000 	for_each_mem_cgroup_tree(iter, memcg)
2001 		atomic_add_unless(&iter->under_oom, -1, 0);
2002 }
2003 
2004 static DEFINE_SPINLOCK(memcg_oom_lock);
2005 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2006 
2007 struct oom_wait_info {
2008 	struct mem_cgroup *memcg;
2009 	wait_queue_t	wait;
2010 };
2011 
2012 static int memcg_oom_wake_function(wait_queue_t *wait,
2013 	unsigned mode, int sync, void *arg)
2014 {
2015 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2016 	struct mem_cgroup *oom_wait_memcg;
2017 	struct oom_wait_info *oom_wait_info;
2018 
2019 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2020 	oom_wait_memcg = oom_wait_info->memcg;
2021 
2022 	/*
2023 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2024 	 * Then we can use css_is_ancestor without taking care of RCU.
2025 	 */
2026 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2027 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2028 		return 0;
2029 	return autoremove_wake_function(wait, mode, sync, arg);
2030 }
2031 
2032 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2033 {
2034 	/* for filtering, pass "memcg" as argument. */
2035 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2036 }
2037 
2038 static void memcg_oom_recover(struct mem_cgroup *memcg)
2039 {
2040 	if (memcg && atomic_read(&memcg->under_oom))
2041 		memcg_wakeup_oom(memcg);
2042 }
2043 
2044 /*
2045  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2046  */
2047 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2048 				  int order)
2049 {
2050 	struct oom_wait_info owait;
2051 	bool locked, need_to_kill;
2052 
2053 	owait.memcg = memcg;
2054 	owait.wait.flags = 0;
2055 	owait.wait.func = memcg_oom_wake_function;
2056 	owait.wait.private = current;
2057 	INIT_LIST_HEAD(&owait.wait.task_list);
2058 	need_to_kill = true;
2059 	mem_cgroup_mark_under_oom(memcg);
2060 
2061 	/* At first, try to OOM lock hierarchy under memcg.*/
2062 	spin_lock(&memcg_oom_lock);
2063 	locked = mem_cgroup_oom_lock(memcg);
2064 	/*
2065 	 * Even if signal_pending(), we can't quit charge() loop without
2066 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2067 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2068 	 */
2069 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2070 	if (!locked || memcg->oom_kill_disable)
2071 		need_to_kill = false;
2072 	if (locked)
2073 		mem_cgroup_oom_notify(memcg);
2074 	spin_unlock(&memcg_oom_lock);
2075 
2076 	if (need_to_kill) {
2077 		finish_wait(&memcg_oom_waitq, &owait.wait);
2078 		mem_cgroup_out_of_memory(memcg, mask, order);
2079 	} else {
2080 		schedule();
2081 		finish_wait(&memcg_oom_waitq, &owait.wait);
2082 	}
2083 	spin_lock(&memcg_oom_lock);
2084 	if (locked)
2085 		mem_cgroup_oom_unlock(memcg);
2086 	memcg_wakeup_oom(memcg);
2087 	spin_unlock(&memcg_oom_lock);
2088 
2089 	mem_cgroup_unmark_under_oom(memcg);
2090 
2091 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2092 		return false;
2093 	/* Give chance to dying process */
2094 	schedule_timeout_uninterruptible(1);
2095 	return true;
2096 }
2097 
2098 /*
2099  * Currently used to update mapped file statistics, but the routine can be
2100  * generalized to update other statistics as well.
2101  *
2102  * Notes: Race condition
2103  *
2104  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2105  * it tends to be costly. But considering some conditions, we doesn't need
2106  * to do so _always_.
2107  *
2108  * Considering "charge", lock_page_cgroup() is not required because all
2109  * file-stat operations happen after a page is attached to radix-tree. There
2110  * are no race with "charge".
2111  *
2112  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2113  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2114  * if there are race with "uncharge". Statistics itself is properly handled
2115  * by flags.
2116  *
2117  * Considering "move", this is an only case we see a race. To make the race
2118  * small, we check mm->moving_account and detect there are possibility of race
2119  * If there is, we take a lock.
2120  */
2121 
2122 void __mem_cgroup_begin_update_page_stat(struct page *page,
2123 				bool *locked, unsigned long *flags)
2124 {
2125 	struct mem_cgroup *memcg;
2126 	struct page_cgroup *pc;
2127 
2128 	pc = lookup_page_cgroup(page);
2129 again:
2130 	memcg = pc->mem_cgroup;
2131 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2132 		return;
2133 	/*
2134 	 * If this memory cgroup is not under account moving, we don't
2135 	 * need to take move_lock_mem_cgroup(). Because we already hold
2136 	 * rcu_read_lock(), any calls to move_account will be delayed until
2137 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2138 	 */
2139 	if (!mem_cgroup_stolen(memcg))
2140 		return;
2141 
2142 	move_lock_mem_cgroup(memcg, flags);
2143 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2144 		move_unlock_mem_cgroup(memcg, flags);
2145 		goto again;
2146 	}
2147 	*locked = true;
2148 }
2149 
2150 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2151 {
2152 	struct page_cgroup *pc = lookup_page_cgroup(page);
2153 
2154 	/*
2155 	 * It's guaranteed that pc->mem_cgroup never changes while
2156 	 * lock is held because a routine modifies pc->mem_cgroup
2157 	 * should take move_lock_mem_cgroup().
2158 	 */
2159 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2160 }
2161 
2162 void mem_cgroup_update_page_stat(struct page *page,
2163 				 enum mem_cgroup_page_stat_item idx, int val)
2164 {
2165 	struct mem_cgroup *memcg;
2166 	struct page_cgroup *pc = lookup_page_cgroup(page);
2167 	unsigned long uninitialized_var(flags);
2168 
2169 	if (mem_cgroup_disabled())
2170 		return;
2171 
2172 	memcg = pc->mem_cgroup;
2173 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2174 		return;
2175 
2176 	switch (idx) {
2177 	case MEMCG_NR_FILE_MAPPED:
2178 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2179 		break;
2180 	default:
2181 		BUG();
2182 	}
2183 
2184 	this_cpu_add(memcg->stat->count[idx], val);
2185 }
2186 
2187 /*
2188  * size of first charge trial. "32" comes from vmscan.c's magic value.
2189  * TODO: maybe necessary to use big numbers in big irons.
2190  */
2191 #define CHARGE_BATCH	32U
2192 struct memcg_stock_pcp {
2193 	struct mem_cgroup *cached; /* this never be root cgroup */
2194 	unsigned int nr_pages;
2195 	struct work_struct work;
2196 	unsigned long flags;
2197 #define FLUSHING_CACHED_CHARGE	0
2198 };
2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2200 static DEFINE_MUTEX(percpu_charge_mutex);
2201 
2202 /**
2203  * consume_stock: Try to consume stocked charge on this cpu.
2204  * @memcg: memcg to consume from.
2205  * @nr_pages: how many pages to charge.
2206  *
2207  * The charges will only happen if @memcg matches the current cpu's memcg
2208  * stock, and at least @nr_pages are available in that stock.  Failure to
2209  * service an allocation will refill the stock.
2210  *
2211  * returns true if successful, false otherwise.
2212  */
2213 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2214 {
2215 	struct memcg_stock_pcp *stock;
2216 	bool ret = true;
2217 
2218 	if (nr_pages > CHARGE_BATCH)
2219 		return false;
2220 
2221 	stock = &get_cpu_var(memcg_stock);
2222 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2223 		stock->nr_pages -= nr_pages;
2224 	else /* need to call res_counter_charge */
2225 		ret = false;
2226 	put_cpu_var(memcg_stock);
2227 	return ret;
2228 }
2229 
2230 /*
2231  * Returns stocks cached in percpu to res_counter and reset cached information.
2232  */
2233 static void drain_stock(struct memcg_stock_pcp *stock)
2234 {
2235 	struct mem_cgroup *old = stock->cached;
2236 
2237 	if (stock->nr_pages) {
2238 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2239 
2240 		res_counter_uncharge(&old->res, bytes);
2241 		if (do_swap_account)
2242 			res_counter_uncharge(&old->memsw, bytes);
2243 		stock->nr_pages = 0;
2244 	}
2245 	stock->cached = NULL;
2246 }
2247 
2248 /*
2249  * This must be called under preempt disabled or must be called by
2250  * a thread which is pinned to local cpu.
2251  */
2252 static void drain_local_stock(struct work_struct *dummy)
2253 {
2254 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2255 	drain_stock(stock);
2256 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257 }
2258 
2259 /*
2260  * Cache charges(val) which is from res_counter, to local per_cpu area.
2261  * This will be consumed by consume_stock() function, later.
2262  */
2263 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2264 {
2265 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2266 
2267 	if (stock->cached != memcg) { /* reset if necessary */
2268 		drain_stock(stock);
2269 		stock->cached = memcg;
2270 	}
2271 	stock->nr_pages += nr_pages;
2272 	put_cpu_var(memcg_stock);
2273 }
2274 
2275 /*
2276  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277  * of the hierarchy under it. sync flag says whether we should block
2278  * until the work is done.
2279  */
2280 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2281 {
2282 	int cpu, curcpu;
2283 
2284 	/* Notify other cpus that system-wide "drain" is running */
2285 	get_online_cpus();
2286 	curcpu = get_cpu();
2287 	for_each_online_cpu(cpu) {
2288 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2289 		struct mem_cgroup *memcg;
2290 
2291 		memcg = stock->cached;
2292 		if (!memcg || !stock->nr_pages)
2293 			continue;
2294 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2295 			continue;
2296 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2297 			if (cpu == curcpu)
2298 				drain_local_stock(&stock->work);
2299 			else
2300 				schedule_work_on(cpu, &stock->work);
2301 		}
2302 	}
2303 	put_cpu();
2304 
2305 	if (!sync)
2306 		goto out;
2307 
2308 	for_each_online_cpu(cpu) {
2309 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2310 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2311 			flush_work(&stock->work);
2312 	}
2313 out:
2314  	put_online_cpus();
2315 }
2316 
2317 /*
2318  * Tries to drain stocked charges in other cpus. This function is asynchronous
2319  * and just put a work per cpu for draining localy on each cpu. Caller can
2320  * expects some charges will be back to res_counter later but cannot wait for
2321  * it.
2322  */
2323 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2324 {
2325 	/*
2326 	 * If someone calls draining, avoid adding more kworker runs.
2327 	 */
2328 	if (!mutex_trylock(&percpu_charge_mutex))
2329 		return;
2330 	drain_all_stock(root_memcg, false);
2331 	mutex_unlock(&percpu_charge_mutex);
2332 }
2333 
2334 /* This is a synchronous drain interface. */
2335 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2336 {
2337 	/* called when force_empty is called */
2338 	mutex_lock(&percpu_charge_mutex);
2339 	drain_all_stock(root_memcg, true);
2340 	mutex_unlock(&percpu_charge_mutex);
2341 }
2342 
2343 /*
2344  * This function drains percpu counter value from DEAD cpu and
2345  * move it to local cpu. Note that this function can be preempted.
2346  */
2347 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2348 {
2349 	int i;
2350 
2351 	spin_lock(&memcg->pcp_counter_lock);
2352 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2353 		long x = per_cpu(memcg->stat->count[i], cpu);
2354 
2355 		per_cpu(memcg->stat->count[i], cpu) = 0;
2356 		memcg->nocpu_base.count[i] += x;
2357 	}
2358 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2359 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2360 
2361 		per_cpu(memcg->stat->events[i], cpu) = 0;
2362 		memcg->nocpu_base.events[i] += x;
2363 	}
2364 	spin_unlock(&memcg->pcp_counter_lock);
2365 }
2366 
2367 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2368 					unsigned long action,
2369 					void *hcpu)
2370 {
2371 	int cpu = (unsigned long)hcpu;
2372 	struct memcg_stock_pcp *stock;
2373 	struct mem_cgroup *iter;
2374 
2375 	if (action == CPU_ONLINE)
2376 		return NOTIFY_OK;
2377 
2378 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2379 		return NOTIFY_OK;
2380 
2381 	for_each_mem_cgroup(iter)
2382 		mem_cgroup_drain_pcp_counter(iter, cpu);
2383 
2384 	stock = &per_cpu(memcg_stock, cpu);
2385 	drain_stock(stock);
2386 	return NOTIFY_OK;
2387 }
2388 
2389 
2390 /* See __mem_cgroup_try_charge() for details */
2391 enum {
2392 	CHARGE_OK,		/* success */
2393 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2394 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2395 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2396 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2397 };
2398 
2399 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2400 				unsigned int nr_pages, unsigned int min_pages,
2401 				bool oom_check)
2402 {
2403 	unsigned long csize = nr_pages * PAGE_SIZE;
2404 	struct mem_cgroup *mem_over_limit;
2405 	struct res_counter *fail_res;
2406 	unsigned long flags = 0;
2407 	int ret;
2408 
2409 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2410 
2411 	if (likely(!ret)) {
2412 		if (!do_swap_account)
2413 			return CHARGE_OK;
2414 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2415 		if (likely(!ret))
2416 			return CHARGE_OK;
2417 
2418 		res_counter_uncharge(&memcg->res, csize);
2419 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2420 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2421 	} else
2422 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2423 	/*
2424 	 * Never reclaim on behalf of optional batching, retry with a
2425 	 * single page instead.
2426 	 */
2427 	if (nr_pages > min_pages)
2428 		return CHARGE_RETRY;
2429 
2430 	if (!(gfp_mask & __GFP_WAIT))
2431 		return CHARGE_WOULDBLOCK;
2432 
2433 	if (gfp_mask & __GFP_NORETRY)
2434 		return CHARGE_NOMEM;
2435 
2436 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2437 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2438 		return CHARGE_RETRY;
2439 	/*
2440 	 * Even though the limit is exceeded at this point, reclaim
2441 	 * may have been able to free some pages.  Retry the charge
2442 	 * before killing the task.
2443 	 *
2444 	 * Only for regular pages, though: huge pages are rather
2445 	 * unlikely to succeed so close to the limit, and we fall back
2446 	 * to regular pages anyway in case of failure.
2447 	 */
2448 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2449 		return CHARGE_RETRY;
2450 
2451 	/*
2452 	 * At task move, charge accounts can be doubly counted. So, it's
2453 	 * better to wait until the end of task_move if something is going on.
2454 	 */
2455 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2456 		return CHARGE_RETRY;
2457 
2458 	/* If we don't need to call oom-killer at el, return immediately */
2459 	if (!oom_check)
2460 		return CHARGE_NOMEM;
2461 	/* check OOM */
2462 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2463 		return CHARGE_OOM_DIE;
2464 
2465 	return CHARGE_RETRY;
2466 }
2467 
2468 /*
2469  * __mem_cgroup_try_charge() does
2470  * 1. detect memcg to be charged against from passed *mm and *ptr,
2471  * 2. update res_counter
2472  * 3. call memory reclaim if necessary.
2473  *
2474  * In some special case, if the task is fatal, fatal_signal_pending() or
2475  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2476  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2477  * as possible without any hazards. 2: all pages should have a valid
2478  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2479  * pointer, that is treated as a charge to root_mem_cgroup.
2480  *
2481  * So __mem_cgroup_try_charge() will return
2482  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2483  *  -ENOMEM ...  charge failure because of resource limits.
2484  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2485  *
2486  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2487  * the oom-killer can be invoked.
2488  */
2489 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2490 				   gfp_t gfp_mask,
2491 				   unsigned int nr_pages,
2492 				   struct mem_cgroup **ptr,
2493 				   bool oom)
2494 {
2495 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2496 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2497 	struct mem_cgroup *memcg = NULL;
2498 	int ret;
2499 
2500 	/*
2501 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2502 	 * in system level. So, allow to go ahead dying process in addition to
2503 	 * MEMDIE process.
2504 	 */
2505 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2506 		     || fatal_signal_pending(current)))
2507 		goto bypass;
2508 
2509 	/*
2510 	 * We always charge the cgroup the mm_struct belongs to.
2511 	 * The mm_struct's mem_cgroup changes on task migration if the
2512 	 * thread group leader migrates. It's possible that mm is not
2513 	 * set, if so charge the root memcg (happens for pagecache usage).
2514 	 */
2515 	if (!*ptr && !mm)
2516 		*ptr = root_mem_cgroup;
2517 again:
2518 	if (*ptr) { /* css should be a valid one */
2519 		memcg = *ptr;
2520 		if (mem_cgroup_is_root(memcg))
2521 			goto done;
2522 		if (consume_stock(memcg, nr_pages))
2523 			goto done;
2524 		css_get(&memcg->css);
2525 	} else {
2526 		struct task_struct *p;
2527 
2528 		rcu_read_lock();
2529 		p = rcu_dereference(mm->owner);
2530 		/*
2531 		 * Because we don't have task_lock(), "p" can exit.
2532 		 * In that case, "memcg" can point to root or p can be NULL with
2533 		 * race with swapoff. Then, we have small risk of mis-accouning.
2534 		 * But such kind of mis-account by race always happens because
2535 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2536 		 * small race, here.
2537 		 * (*) swapoff at el will charge against mm-struct not against
2538 		 * task-struct. So, mm->owner can be NULL.
2539 		 */
2540 		memcg = mem_cgroup_from_task(p);
2541 		if (!memcg)
2542 			memcg = root_mem_cgroup;
2543 		if (mem_cgroup_is_root(memcg)) {
2544 			rcu_read_unlock();
2545 			goto done;
2546 		}
2547 		if (consume_stock(memcg, nr_pages)) {
2548 			/*
2549 			 * It seems dagerous to access memcg without css_get().
2550 			 * But considering how consume_stok works, it's not
2551 			 * necessary. If consume_stock success, some charges
2552 			 * from this memcg are cached on this cpu. So, we
2553 			 * don't need to call css_get()/css_tryget() before
2554 			 * calling consume_stock().
2555 			 */
2556 			rcu_read_unlock();
2557 			goto done;
2558 		}
2559 		/* after here, we may be blocked. we need to get refcnt */
2560 		if (!css_tryget(&memcg->css)) {
2561 			rcu_read_unlock();
2562 			goto again;
2563 		}
2564 		rcu_read_unlock();
2565 	}
2566 
2567 	do {
2568 		bool oom_check;
2569 
2570 		/* If killed, bypass charge */
2571 		if (fatal_signal_pending(current)) {
2572 			css_put(&memcg->css);
2573 			goto bypass;
2574 		}
2575 
2576 		oom_check = false;
2577 		if (oom && !nr_oom_retries) {
2578 			oom_check = true;
2579 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2580 		}
2581 
2582 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2583 		    oom_check);
2584 		switch (ret) {
2585 		case CHARGE_OK:
2586 			break;
2587 		case CHARGE_RETRY: /* not in OOM situation but retry */
2588 			batch = nr_pages;
2589 			css_put(&memcg->css);
2590 			memcg = NULL;
2591 			goto again;
2592 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2593 			css_put(&memcg->css);
2594 			goto nomem;
2595 		case CHARGE_NOMEM: /* OOM routine works */
2596 			if (!oom) {
2597 				css_put(&memcg->css);
2598 				goto nomem;
2599 			}
2600 			/* If oom, we never return -ENOMEM */
2601 			nr_oom_retries--;
2602 			break;
2603 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2604 			css_put(&memcg->css);
2605 			goto bypass;
2606 		}
2607 	} while (ret != CHARGE_OK);
2608 
2609 	if (batch > nr_pages)
2610 		refill_stock(memcg, batch - nr_pages);
2611 	css_put(&memcg->css);
2612 done:
2613 	*ptr = memcg;
2614 	return 0;
2615 nomem:
2616 	*ptr = NULL;
2617 	return -ENOMEM;
2618 bypass:
2619 	*ptr = root_mem_cgroup;
2620 	return -EINTR;
2621 }
2622 
2623 /*
2624  * Somemtimes we have to undo a charge we got by try_charge().
2625  * This function is for that and do uncharge, put css's refcnt.
2626  * gotten by try_charge().
2627  */
2628 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2629 				       unsigned int nr_pages)
2630 {
2631 	if (!mem_cgroup_is_root(memcg)) {
2632 		unsigned long bytes = nr_pages * PAGE_SIZE;
2633 
2634 		res_counter_uncharge(&memcg->res, bytes);
2635 		if (do_swap_account)
2636 			res_counter_uncharge(&memcg->memsw, bytes);
2637 	}
2638 }
2639 
2640 /*
2641  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2642  * This is useful when moving usage to parent cgroup.
2643  */
2644 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2645 					unsigned int nr_pages)
2646 {
2647 	unsigned long bytes = nr_pages * PAGE_SIZE;
2648 
2649 	if (mem_cgroup_is_root(memcg))
2650 		return;
2651 
2652 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2653 	if (do_swap_account)
2654 		res_counter_uncharge_until(&memcg->memsw,
2655 						memcg->memsw.parent, bytes);
2656 }
2657 
2658 /*
2659  * A helper function to get mem_cgroup from ID. must be called under
2660  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2661  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2662  * called against removed memcg.)
2663  */
2664 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2665 {
2666 	struct cgroup_subsys_state *css;
2667 
2668 	/* ID 0 is unused ID */
2669 	if (!id)
2670 		return NULL;
2671 	css = css_lookup(&mem_cgroup_subsys, id);
2672 	if (!css)
2673 		return NULL;
2674 	return mem_cgroup_from_css(css);
2675 }
2676 
2677 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2678 {
2679 	struct mem_cgroup *memcg = NULL;
2680 	struct page_cgroup *pc;
2681 	unsigned short id;
2682 	swp_entry_t ent;
2683 
2684 	VM_BUG_ON(!PageLocked(page));
2685 
2686 	pc = lookup_page_cgroup(page);
2687 	lock_page_cgroup(pc);
2688 	if (PageCgroupUsed(pc)) {
2689 		memcg = pc->mem_cgroup;
2690 		if (memcg && !css_tryget(&memcg->css))
2691 			memcg = NULL;
2692 	} else if (PageSwapCache(page)) {
2693 		ent.val = page_private(page);
2694 		id = lookup_swap_cgroup_id(ent);
2695 		rcu_read_lock();
2696 		memcg = mem_cgroup_lookup(id);
2697 		if (memcg && !css_tryget(&memcg->css))
2698 			memcg = NULL;
2699 		rcu_read_unlock();
2700 	}
2701 	unlock_page_cgroup(pc);
2702 	return memcg;
2703 }
2704 
2705 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2706 				       struct page *page,
2707 				       unsigned int nr_pages,
2708 				       enum charge_type ctype,
2709 				       bool lrucare)
2710 {
2711 	struct page_cgroup *pc = lookup_page_cgroup(page);
2712 	struct zone *uninitialized_var(zone);
2713 	struct lruvec *lruvec;
2714 	bool was_on_lru = false;
2715 	bool anon;
2716 
2717 	lock_page_cgroup(pc);
2718 	VM_BUG_ON(PageCgroupUsed(pc));
2719 	/*
2720 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2721 	 * accessed by any other context at this point.
2722 	 */
2723 
2724 	/*
2725 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2726 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2727 	 */
2728 	if (lrucare) {
2729 		zone = page_zone(page);
2730 		spin_lock_irq(&zone->lru_lock);
2731 		if (PageLRU(page)) {
2732 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2733 			ClearPageLRU(page);
2734 			del_page_from_lru_list(page, lruvec, page_lru(page));
2735 			was_on_lru = true;
2736 		}
2737 	}
2738 
2739 	pc->mem_cgroup = memcg;
2740 	/*
2741 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2742 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2743 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2744 	 * before USED bit, we need memory barrier here.
2745 	 * See mem_cgroup_add_lru_list(), etc.
2746  	 */
2747 	smp_wmb();
2748 	SetPageCgroupUsed(pc);
2749 
2750 	if (lrucare) {
2751 		if (was_on_lru) {
2752 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2753 			VM_BUG_ON(PageLRU(page));
2754 			SetPageLRU(page);
2755 			add_page_to_lru_list(page, lruvec, page_lru(page));
2756 		}
2757 		spin_unlock_irq(&zone->lru_lock);
2758 	}
2759 
2760 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2761 		anon = true;
2762 	else
2763 		anon = false;
2764 
2765 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2766 	unlock_page_cgroup(pc);
2767 
2768 	/*
2769 	 * "charge_statistics" updated event counter. Then, check it.
2770 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2771 	 * if they exceeds softlimit.
2772 	 */
2773 	memcg_check_events(memcg, page);
2774 }
2775 
2776 static DEFINE_MUTEX(set_limit_mutex);
2777 
2778 #ifdef CONFIG_MEMCG_KMEM
2779 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2780 {
2781 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2782 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2783 }
2784 
2785 /*
2786  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2787  * in the memcg_cache_params struct.
2788  */
2789 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2790 {
2791 	struct kmem_cache *cachep;
2792 
2793 	VM_BUG_ON(p->is_root_cache);
2794 	cachep = p->root_cache;
2795 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2796 }
2797 
2798 #ifdef CONFIG_SLABINFO
2799 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2800 					struct seq_file *m)
2801 {
2802 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2803 	struct memcg_cache_params *params;
2804 
2805 	if (!memcg_can_account_kmem(memcg))
2806 		return -EIO;
2807 
2808 	print_slabinfo_header(m);
2809 
2810 	mutex_lock(&memcg->slab_caches_mutex);
2811 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2812 		cache_show(memcg_params_to_cache(params), m);
2813 	mutex_unlock(&memcg->slab_caches_mutex);
2814 
2815 	return 0;
2816 }
2817 #endif
2818 
2819 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2820 {
2821 	struct res_counter *fail_res;
2822 	struct mem_cgroup *_memcg;
2823 	int ret = 0;
2824 	bool may_oom;
2825 
2826 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2827 	if (ret)
2828 		return ret;
2829 
2830 	/*
2831 	 * Conditions under which we can wait for the oom_killer. Those are
2832 	 * the same conditions tested by the core page allocator
2833 	 */
2834 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2835 
2836 	_memcg = memcg;
2837 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2838 				      &_memcg, may_oom);
2839 
2840 	if (ret == -EINTR)  {
2841 		/*
2842 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
2843 		 * OOM kill or fatal signal.  Since our only options are to
2844 		 * either fail the allocation or charge it to this cgroup, do
2845 		 * it as a temporary condition. But we can't fail. From a
2846 		 * kmem/slab perspective, the cache has already been selected,
2847 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2848 		 * our minds.
2849 		 *
2850 		 * This condition will only trigger if the task entered
2851 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2852 		 * __mem_cgroup_try_charge() above. Tasks that were already
2853 		 * dying when the allocation triggers should have been already
2854 		 * directed to the root cgroup in memcontrol.h
2855 		 */
2856 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2857 		if (do_swap_account)
2858 			res_counter_charge_nofail(&memcg->memsw, size,
2859 						  &fail_res);
2860 		ret = 0;
2861 	} else if (ret)
2862 		res_counter_uncharge(&memcg->kmem, size);
2863 
2864 	return ret;
2865 }
2866 
2867 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2868 {
2869 	res_counter_uncharge(&memcg->res, size);
2870 	if (do_swap_account)
2871 		res_counter_uncharge(&memcg->memsw, size);
2872 
2873 	/* Not down to 0 */
2874 	if (res_counter_uncharge(&memcg->kmem, size))
2875 		return;
2876 
2877 	if (memcg_kmem_test_and_clear_dead(memcg))
2878 		mem_cgroup_put(memcg);
2879 }
2880 
2881 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2882 {
2883 	if (!memcg)
2884 		return;
2885 
2886 	mutex_lock(&memcg->slab_caches_mutex);
2887 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2888 	mutex_unlock(&memcg->slab_caches_mutex);
2889 }
2890 
2891 /*
2892  * helper for acessing a memcg's index. It will be used as an index in the
2893  * child cache array in kmem_cache, and also to derive its name. This function
2894  * will return -1 when this is not a kmem-limited memcg.
2895  */
2896 int memcg_cache_id(struct mem_cgroup *memcg)
2897 {
2898 	return memcg ? memcg->kmemcg_id : -1;
2899 }
2900 
2901 /*
2902  * This ends up being protected by the set_limit mutex, during normal
2903  * operation, because that is its main call site.
2904  *
2905  * But when we create a new cache, we can call this as well if its parent
2906  * is kmem-limited. That will have to hold set_limit_mutex as well.
2907  */
2908 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2909 {
2910 	int num, ret;
2911 
2912 	num = ida_simple_get(&kmem_limited_groups,
2913 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2914 	if (num < 0)
2915 		return num;
2916 	/*
2917 	 * After this point, kmem_accounted (that we test atomically in
2918 	 * the beginning of this conditional), is no longer 0. This
2919 	 * guarantees only one process will set the following boolean
2920 	 * to true. We don't need test_and_set because we're protected
2921 	 * by the set_limit_mutex anyway.
2922 	 */
2923 	memcg_kmem_set_activated(memcg);
2924 
2925 	ret = memcg_update_all_caches(num+1);
2926 	if (ret) {
2927 		ida_simple_remove(&kmem_limited_groups, num);
2928 		memcg_kmem_clear_activated(memcg);
2929 		return ret;
2930 	}
2931 
2932 	memcg->kmemcg_id = num;
2933 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2934 	mutex_init(&memcg->slab_caches_mutex);
2935 	return 0;
2936 }
2937 
2938 static size_t memcg_caches_array_size(int num_groups)
2939 {
2940 	ssize_t size;
2941 	if (num_groups <= 0)
2942 		return 0;
2943 
2944 	size = 2 * num_groups;
2945 	if (size < MEMCG_CACHES_MIN_SIZE)
2946 		size = MEMCG_CACHES_MIN_SIZE;
2947 	else if (size > MEMCG_CACHES_MAX_SIZE)
2948 		size = MEMCG_CACHES_MAX_SIZE;
2949 
2950 	return size;
2951 }
2952 
2953 /*
2954  * We should update the current array size iff all caches updates succeed. This
2955  * can only be done from the slab side. The slab mutex needs to be held when
2956  * calling this.
2957  */
2958 void memcg_update_array_size(int num)
2959 {
2960 	if (num > memcg_limited_groups_array_size)
2961 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
2962 }
2963 
2964 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2965 {
2966 	struct memcg_cache_params *cur_params = s->memcg_params;
2967 
2968 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2969 
2970 	if (num_groups > memcg_limited_groups_array_size) {
2971 		int i;
2972 		ssize_t size = memcg_caches_array_size(num_groups);
2973 
2974 		size *= sizeof(void *);
2975 		size += sizeof(struct memcg_cache_params);
2976 
2977 		s->memcg_params = kzalloc(size, GFP_KERNEL);
2978 		if (!s->memcg_params) {
2979 			s->memcg_params = cur_params;
2980 			return -ENOMEM;
2981 		}
2982 
2983 		s->memcg_params->is_root_cache = true;
2984 
2985 		/*
2986 		 * There is the chance it will be bigger than
2987 		 * memcg_limited_groups_array_size, if we failed an allocation
2988 		 * in a cache, in which case all caches updated before it, will
2989 		 * have a bigger array.
2990 		 *
2991 		 * But if that is the case, the data after
2992 		 * memcg_limited_groups_array_size is certainly unused
2993 		 */
2994 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
2995 			if (!cur_params->memcg_caches[i])
2996 				continue;
2997 			s->memcg_params->memcg_caches[i] =
2998 						cur_params->memcg_caches[i];
2999 		}
3000 
3001 		/*
3002 		 * Ideally, we would wait until all caches succeed, and only
3003 		 * then free the old one. But this is not worth the extra
3004 		 * pointer per-cache we'd have to have for this.
3005 		 *
3006 		 * It is not a big deal if some caches are left with a size
3007 		 * bigger than the others. And all updates will reset this
3008 		 * anyway.
3009 		 */
3010 		kfree(cur_params);
3011 	}
3012 	return 0;
3013 }
3014 
3015 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3016 			 struct kmem_cache *root_cache)
3017 {
3018 	size_t size = sizeof(struct memcg_cache_params);
3019 
3020 	if (!memcg_kmem_enabled())
3021 		return 0;
3022 
3023 	if (!memcg)
3024 		size += memcg_limited_groups_array_size * sizeof(void *);
3025 
3026 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3027 	if (!s->memcg_params)
3028 		return -ENOMEM;
3029 
3030 	if (memcg) {
3031 		s->memcg_params->memcg = memcg;
3032 		s->memcg_params->root_cache = root_cache;
3033 	} else
3034 		s->memcg_params->is_root_cache = true;
3035 
3036 	return 0;
3037 }
3038 
3039 void memcg_release_cache(struct kmem_cache *s)
3040 {
3041 	struct kmem_cache *root;
3042 	struct mem_cgroup *memcg;
3043 	int id;
3044 
3045 	/*
3046 	 * This happens, for instance, when a root cache goes away before we
3047 	 * add any memcg.
3048 	 */
3049 	if (!s->memcg_params)
3050 		return;
3051 
3052 	if (s->memcg_params->is_root_cache)
3053 		goto out;
3054 
3055 	memcg = s->memcg_params->memcg;
3056 	id  = memcg_cache_id(memcg);
3057 
3058 	root = s->memcg_params->root_cache;
3059 	root->memcg_params->memcg_caches[id] = NULL;
3060 	mem_cgroup_put(memcg);
3061 
3062 	mutex_lock(&memcg->slab_caches_mutex);
3063 	list_del(&s->memcg_params->list);
3064 	mutex_unlock(&memcg->slab_caches_mutex);
3065 
3066 out:
3067 	kfree(s->memcg_params);
3068 }
3069 
3070 /*
3071  * During the creation a new cache, we need to disable our accounting mechanism
3072  * altogether. This is true even if we are not creating, but rather just
3073  * enqueing new caches to be created.
3074  *
3075  * This is because that process will trigger allocations; some visible, like
3076  * explicit kmallocs to auxiliary data structures, name strings and internal
3077  * cache structures; some well concealed, like INIT_WORK() that can allocate
3078  * objects during debug.
3079  *
3080  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3081  * to it. This may not be a bounded recursion: since the first cache creation
3082  * failed to complete (waiting on the allocation), we'll just try to create the
3083  * cache again, failing at the same point.
3084  *
3085  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3086  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3087  * inside the following two functions.
3088  */
3089 static inline void memcg_stop_kmem_account(void)
3090 {
3091 	VM_BUG_ON(!current->mm);
3092 	current->memcg_kmem_skip_account++;
3093 }
3094 
3095 static inline void memcg_resume_kmem_account(void)
3096 {
3097 	VM_BUG_ON(!current->mm);
3098 	current->memcg_kmem_skip_account--;
3099 }
3100 
3101 static void kmem_cache_destroy_work_func(struct work_struct *w)
3102 {
3103 	struct kmem_cache *cachep;
3104 	struct memcg_cache_params *p;
3105 
3106 	p = container_of(w, struct memcg_cache_params, destroy);
3107 
3108 	cachep = memcg_params_to_cache(p);
3109 
3110 	/*
3111 	 * If we get down to 0 after shrink, we could delete right away.
3112 	 * However, memcg_release_pages() already puts us back in the workqueue
3113 	 * in that case. If we proceed deleting, we'll get a dangling
3114 	 * reference, and removing the object from the workqueue in that case
3115 	 * is unnecessary complication. We are not a fast path.
3116 	 *
3117 	 * Note that this case is fundamentally different from racing with
3118 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3119 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3120 	 * into the queue, but doing so from inside the worker racing to
3121 	 * destroy it.
3122 	 *
3123 	 * So if we aren't down to zero, we'll just schedule a worker and try
3124 	 * again
3125 	 */
3126 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3127 		kmem_cache_shrink(cachep);
3128 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3129 			return;
3130 	} else
3131 		kmem_cache_destroy(cachep);
3132 }
3133 
3134 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3135 {
3136 	if (!cachep->memcg_params->dead)
3137 		return;
3138 
3139 	/*
3140 	 * There are many ways in which we can get here.
3141 	 *
3142 	 * We can get to a memory-pressure situation while the delayed work is
3143 	 * still pending to run. The vmscan shrinkers can then release all
3144 	 * cache memory and get us to destruction. If this is the case, we'll
3145 	 * be executed twice, which is a bug (the second time will execute over
3146 	 * bogus data). In this case, cancelling the work should be fine.
3147 	 *
3148 	 * But we can also get here from the worker itself, if
3149 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3150 	 * get the page count to 0. In this case, we'll deadlock if we try to
3151 	 * cancel the work (the worker runs with an internal lock held, which
3152 	 * is the same lock we would hold for cancel_work_sync().)
3153 	 *
3154 	 * Since we can't possibly know who got us here, just refrain from
3155 	 * running if there is already work pending
3156 	 */
3157 	if (work_pending(&cachep->memcg_params->destroy))
3158 		return;
3159 	/*
3160 	 * We have to defer the actual destroying to a workqueue, because
3161 	 * we might currently be in a context that cannot sleep.
3162 	 */
3163 	schedule_work(&cachep->memcg_params->destroy);
3164 }
3165 
3166 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3167 {
3168 	char *name;
3169 	struct dentry *dentry;
3170 
3171 	rcu_read_lock();
3172 	dentry = rcu_dereference(memcg->css.cgroup->dentry);
3173 	rcu_read_unlock();
3174 
3175 	BUG_ON(dentry == NULL);
3176 
3177 	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3178 			 memcg_cache_id(memcg), dentry->d_name.name);
3179 
3180 	return name;
3181 }
3182 
3183 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3184 					 struct kmem_cache *s)
3185 {
3186 	char *name;
3187 	struct kmem_cache *new;
3188 
3189 	name = memcg_cache_name(memcg, s);
3190 	if (!name)
3191 		return NULL;
3192 
3193 	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3194 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3195 
3196 	if (new)
3197 		new->allocflags |= __GFP_KMEMCG;
3198 
3199 	kfree(name);
3200 	return new;
3201 }
3202 
3203 /*
3204  * This lock protects updaters, not readers. We want readers to be as fast as
3205  * they can, and they will either see NULL or a valid cache value. Our model
3206  * allow them to see NULL, in which case the root memcg will be selected.
3207  *
3208  * We need this lock because multiple allocations to the same cache from a non
3209  * will span more than one worker. Only one of them can create the cache.
3210  */
3211 static DEFINE_MUTEX(memcg_cache_mutex);
3212 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3213 						  struct kmem_cache *cachep)
3214 {
3215 	struct kmem_cache *new_cachep;
3216 	int idx;
3217 
3218 	BUG_ON(!memcg_can_account_kmem(memcg));
3219 
3220 	idx = memcg_cache_id(memcg);
3221 
3222 	mutex_lock(&memcg_cache_mutex);
3223 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3224 	if (new_cachep)
3225 		goto out;
3226 
3227 	new_cachep = kmem_cache_dup(memcg, cachep);
3228 	if (new_cachep == NULL) {
3229 		new_cachep = cachep;
3230 		goto out;
3231 	}
3232 
3233 	mem_cgroup_get(memcg);
3234 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3235 
3236 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3237 	/*
3238 	 * the readers won't lock, make sure everybody sees the updated value,
3239 	 * so they won't put stuff in the queue again for no reason
3240 	 */
3241 	wmb();
3242 out:
3243 	mutex_unlock(&memcg_cache_mutex);
3244 	return new_cachep;
3245 }
3246 
3247 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3248 {
3249 	struct kmem_cache *c;
3250 	int i;
3251 
3252 	if (!s->memcg_params)
3253 		return;
3254 	if (!s->memcg_params->is_root_cache)
3255 		return;
3256 
3257 	/*
3258 	 * If the cache is being destroyed, we trust that there is no one else
3259 	 * requesting objects from it. Even if there are, the sanity checks in
3260 	 * kmem_cache_destroy should caught this ill-case.
3261 	 *
3262 	 * Still, we don't want anyone else freeing memcg_caches under our
3263 	 * noses, which can happen if a new memcg comes to life. As usual,
3264 	 * we'll take the set_limit_mutex to protect ourselves against this.
3265 	 */
3266 	mutex_lock(&set_limit_mutex);
3267 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3268 		c = s->memcg_params->memcg_caches[i];
3269 		if (!c)
3270 			continue;
3271 
3272 		/*
3273 		 * We will now manually delete the caches, so to avoid races
3274 		 * we need to cancel all pending destruction workers and
3275 		 * proceed with destruction ourselves.
3276 		 *
3277 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3278 		 * and that could spawn the workers again: it is likely that
3279 		 * the cache still have active pages until this very moment.
3280 		 * This would lead us back to mem_cgroup_destroy_cache.
3281 		 *
3282 		 * But that will not execute at all if the "dead" flag is not
3283 		 * set, so flip it down to guarantee we are in control.
3284 		 */
3285 		c->memcg_params->dead = false;
3286 		cancel_work_sync(&c->memcg_params->destroy);
3287 		kmem_cache_destroy(c);
3288 	}
3289 	mutex_unlock(&set_limit_mutex);
3290 }
3291 
3292 struct create_work {
3293 	struct mem_cgroup *memcg;
3294 	struct kmem_cache *cachep;
3295 	struct work_struct work;
3296 };
3297 
3298 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3299 {
3300 	struct kmem_cache *cachep;
3301 	struct memcg_cache_params *params;
3302 
3303 	if (!memcg_kmem_is_active(memcg))
3304 		return;
3305 
3306 	mutex_lock(&memcg->slab_caches_mutex);
3307 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3308 		cachep = memcg_params_to_cache(params);
3309 		cachep->memcg_params->dead = true;
3310 		INIT_WORK(&cachep->memcg_params->destroy,
3311 				  kmem_cache_destroy_work_func);
3312 		schedule_work(&cachep->memcg_params->destroy);
3313 	}
3314 	mutex_unlock(&memcg->slab_caches_mutex);
3315 }
3316 
3317 static void memcg_create_cache_work_func(struct work_struct *w)
3318 {
3319 	struct create_work *cw;
3320 
3321 	cw = container_of(w, struct create_work, work);
3322 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3323 	/* Drop the reference gotten when we enqueued. */
3324 	css_put(&cw->memcg->css);
3325 	kfree(cw);
3326 }
3327 
3328 /*
3329  * Enqueue the creation of a per-memcg kmem_cache.
3330  * Called with rcu_read_lock.
3331  */
3332 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3333 					 struct kmem_cache *cachep)
3334 {
3335 	struct create_work *cw;
3336 
3337 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3338 	if (cw == NULL)
3339 		return;
3340 
3341 	/* The corresponding put will be done in the workqueue. */
3342 	if (!css_tryget(&memcg->css)) {
3343 		kfree(cw);
3344 		return;
3345 	}
3346 
3347 	cw->memcg = memcg;
3348 	cw->cachep = cachep;
3349 
3350 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3351 	schedule_work(&cw->work);
3352 }
3353 
3354 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3355 				       struct kmem_cache *cachep)
3356 {
3357 	/*
3358 	 * We need to stop accounting when we kmalloc, because if the
3359 	 * corresponding kmalloc cache is not yet created, the first allocation
3360 	 * in __memcg_create_cache_enqueue will recurse.
3361 	 *
3362 	 * However, it is better to enclose the whole function. Depending on
3363 	 * the debugging options enabled, INIT_WORK(), for instance, can
3364 	 * trigger an allocation. This too, will make us recurse. Because at
3365 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3366 	 * the safest choice is to do it like this, wrapping the whole function.
3367 	 */
3368 	memcg_stop_kmem_account();
3369 	__memcg_create_cache_enqueue(memcg, cachep);
3370 	memcg_resume_kmem_account();
3371 }
3372 /*
3373  * Return the kmem_cache we're supposed to use for a slab allocation.
3374  * We try to use the current memcg's version of the cache.
3375  *
3376  * If the cache does not exist yet, if we are the first user of it,
3377  * we either create it immediately, if possible, or create it asynchronously
3378  * in a workqueue.
3379  * In the latter case, we will let the current allocation go through with
3380  * the original cache.
3381  *
3382  * Can't be called in interrupt context or from kernel threads.
3383  * This function needs to be called with rcu_read_lock() held.
3384  */
3385 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3386 					  gfp_t gfp)
3387 {
3388 	struct mem_cgroup *memcg;
3389 	int idx;
3390 
3391 	VM_BUG_ON(!cachep->memcg_params);
3392 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3393 
3394 	if (!current->mm || current->memcg_kmem_skip_account)
3395 		return cachep;
3396 
3397 	rcu_read_lock();
3398 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3399 	rcu_read_unlock();
3400 
3401 	if (!memcg_can_account_kmem(memcg))
3402 		return cachep;
3403 
3404 	idx = memcg_cache_id(memcg);
3405 
3406 	/*
3407 	 * barrier to mare sure we're always seeing the up to date value.  The
3408 	 * code updating memcg_caches will issue a write barrier to match this.
3409 	 */
3410 	read_barrier_depends();
3411 	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3412 		/*
3413 		 * If we are in a safe context (can wait, and not in interrupt
3414 		 * context), we could be be predictable and return right away.
3415 		 * This would guarantee that the allocation being performed
3416 		 * already belongs in the new cache.
3417 		 *
3418 		 * However, there are some clashes that can arrive from locking.
3419 		 * For instance, because we acquire the slab_mutex while doing
3420 		 * kmem_cache_dup, this means no further allocation could happen
3421 		 * with the slab_mutex held.
3422 		 *
3423 		 * Also, because cache creation issue get_online_cpus(), this
3424 		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3425 		 * that ends up reversed during cpu hotplug. (cpuset allocates
3426 		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3427 		 * better to defer everything.
3428 		 */
3429 		memcg_create_cache_enqueue(memcg, cachep);
3430 		return cachep;
3431 	}
3432 
3433 	return cachep->memcg_params->memcg_caches[idx];
3434 }
3435 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3436 
3437 /*
3438  * We need to verify if the allocation against current->mm->owner's memcg is
3439  * possible for the given order. But the page is not allocated yet, so we'll
3440  * need a further commit step to do the final arrangements.
3441  *
3442  * It is possible for the task to switch cgroups in this mean time, so at
3443  * commit time, we can't rely on task conversion any longer.  We'll then use
3444  * the handle argument to return to the caller which cgroup we should commit
3445  * against. We could also return the memcg directly and avoid the pointer
3446  * passing, but a boolean return value gives better semantics considering
3447  * the compiled-out case as well.
3448  *
3449  * Returning true means the allocation is possible.
3450  */
3451 bool
3452 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3453 {
3454 	struct mem_cgroup *memcg;
3455 	int ret;
3456 
3457 	*_memcg = NULL;
3458 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3459 
3460 	/*
3461 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3462 	 * isn't much we can do without complicating this too much, and it would
3463 	 * be gfp-dependent anyway. Just let it go
3464 	 */
3465 	if (unlikely(!memcg))
3466 		return true;
3467 
3468 	if (!memcg_can_account_kmem(memcg)) {
3469 		css_put(&memcg->css);
3470 		return true;
3471 	}
3472 
3473 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3474 	if (!ret)
3475 		*_memcg = memcg;
3476 
3477 	css_put(&memcg->css);
3478 	return (ret == 0);
3479 }
3480 
3481 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3482 			      int order)
3483 {
3484 	struct page_cgroup *pc;
3485 
3486 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3487 
3488 	/* The page allocation failed. Revert */
3489 	if (!page) {
3490 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3491 		return;
3492 	}
3493 
3494 	pc = lookup_page_cgroup(page);
3495 	lock_page_cgroup(pc);
3496 	pc->mem_cgroup = memcg;
3497 	SetPageCgroupUsed(pc);
3498 	unlock_page_cgroup(pc);
3499 }
3500 
3501 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3502 {
3503 	struct mem_cgroup *memcg = NULL;
3504 	struct page_cgroup *pc;
3505 
3506 
3507 	pc = lookup_page_cgroup(page);
3508 	/*
3509 	 * Fast unlocked return. Theoretically might have changed, have to
3510 	 * check again after locking.
3511 	 */
3512 	if (!PageCgroupUsed(pc))
3513 		return;
3514 
3515 	lock_page_cgroup(pc);
3516 	if (PageCgroupUsed(pc)) {
3517 		memcg = pc->mem_cgroup;
3518 		ClearPageCgroupUsed(pc);
3519 	}
3520 	unlock_page_cgroup(pc);
3521 
3522 	/*
3523 	 * We trust that only if there is a memcg associated with the page, it
3524 	 * is a valid allocation
3525 	 */
3526 	if (!memcg)
3527 		return;
3528 
3529 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3530 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3531 }
3532 #else
3533 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3534 {
3535 }
3536 #endif /* CONFIG_MEMCG_KMEM */
3537 
3538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3539 
3540 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3541 /*
3542  * Because tail pages are not marked as "used", set it. We're under
3543  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3544  * charge/uncharge will be never happen and move_account() is done under
3545  * compound_lock(), so we don't have to take care of races.
3546  */
3547 void mem_cgroup_split_huge_fixup(struct page *head)
3548 {
3549 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3550 	struct page_cgroup *pc;
3551 	int i;
3552 
3553 	if (mem_cgroup_disabled())
3554 		return;
3555 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3556 		pc = head_pc + i;
3557 		pc->mem_cgroup = head_pc->mem_cgroup;
3558 		smp_wmb();/* see __commit_charge() */
3559 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3560 	}
3561 }
3562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3563 
3564 /**
3565  * mem_cgroup_move_account - move account of the page
3566  * @page: the page
3567  * @nr_pages: number of regular pages (>1 for huge pages)
3568  * @pc:	page_cgroup of the page.
3569  * @from: mem_cgroup which the page is moved from.
3570  * @to:	mem_cgroup which the page is moved to. @from != @to.
3571  *
3572  * The caller must confirm following.
3573  * - page is not on LRU (isolate_page() is useful.)
3574  * - compound_lock is held when nr_pages > 1
3575  *
3576  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3577  * from old cgroup.
3578  */
3579 static int mem_cgroup_move_account(struct page *page,
3580 				   unsigned int nr_pages,
3581 				   struct page_cgroup *pc,
3582 				   struct mem_cgroup *from,
3583 				   struct mem_cgroup *to)
3584 {
3585 	unsigned long flags;
3586 	int ret;
3587 	bool anon = PageAnon(page);
3588 
3589 	VM_BUG_ON(from == to);
3590 	VM_BUG_ON(PageLRU(page));
3591 	/*
3592 	 * The page is isolated from LRU. So, collapse function
3593 	 * will not handle this page. But page splitting can happen.
3594 	 * Do this check under compound_page_lock(). The caller should
3595 	 * hold it.
3596 	 */
3597 	ret = -EBUSY;
3598 	if (nr_pages > 1 && !PageTransHuge(page))
3599 		goto out;
3600 
3601 	lock_page_cgroup(pc);
3602 
3603 	ret = -EINVAL;
3604 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3605 		goto unlock;
3606 
3607 	move_lock_mem_cgroup(from, &flags);
3608 
3609 	if (!anon && page_mapped(page)) {
3610 		/* Update mapped_file data for mem_cgroup */
3611 		preempt_disable();
3612 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3613 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3614 		preempt_enable();
3615 	}
3616 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3617 
3618 	/* caller should have done css_get */
3619 	pc->mem_cgroup = to;
3620 	mem_cgroup_charge_statistics(to, anon, nr_pages);
3621 	move_unlock_mem_cgroup(from, &flags);
3622 	ret = 0;
3623 unlock:
3624 	unlock_page_cgroup(pc);
3625 	/*
3626 	 * check events
3627 	 */
3628 	memcg_check_events(to, page);
3629 	memcg_check_events(from, page);
3630 out:
3631 	return ret;
3632 }
3633 
3634 /**
3635  * mem_cgroup_move_parent - moves page to the parent group
3636  * @page: the page to move
3637  * @pc: page_cgroup of the page
3638  * @child: page's cgroup
3639  *
3640  * move charges to its parent or the root cgroup if the group has no
3641  * parent (aka use_hierarchy==0).
3642  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3643  * mem_cgroup_move_account fails) the failure is always temporary and
3644  * it signals a race with a page removal/uncharge or migration. In the
3645  * first case the page is on the way out and it will vanish from the LRU
3646  * on the next attempt and the call should be retried later.
3647  * Isolation from the LRU fails only if page has been isolated from
3648  * the LRU since we looked at it and that usually means either global
3649  * reclaim or migration going on. The page will either get back to the
3650  * LRU or vanish.
3651  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3652  * (!PageCgroupUsed) or moved to a different group. The page will
3653  * disappear in the next attempt.
3654  */
3655 static int mem_cgroup_move_parent(struct page *page,
3656 				  struct page_cgroup *pc,
3657 				  struct mem_cgroup *child)
3658 {
3659 	struct mem_cgroup *parent;
3660 	unsigned int nr_pages;
3661 	unsigned long uninitialized_var(flags);
3662 	int ret;
3663 
3664 	VM_BUG_ON(mem_cgroup_is_root(child));
3665 
3666 	ret = -EBUSY;
3667 	if (!get_page_unless_zero(page))
3668 		goto out;
3669 	if (isolate_lru_page(page))
3670 		goto put;
3671 
3672 	nr_pages = hpage_nr_pages(page);
3673 
3674 	parent = parent_mem_cgroup(child);
3675 	/*
3676 	 * If no parent, move charges to root cgroup.
3677 	 */
3678 	if (!parent)
3679 		parent = root_mem_cgroup;
3680 
3681 	if (nr_pages > 1) {
3682 		VM_BUG_ON(!PageTransHuge(page));
3683 		flags = compound_lock_irqsave(page);
3684 	}
3685 
3686 	ret = mem_cgroup_move_account(page, nr_pages,
3687 				pc, child, parent);
3688 	if (!ret)
3689 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3690 
3691 	if (nr_pages > 1)
3692 		compound_unlock_irqrestore(page, flags);
3693 	putback_lru_page(page);
3694 put:
3695 	put_page(page);
3696 out:
3697 	return ret;
3698 }
3699 
3700 /*
3701  * Charge the memory controller for page usage.
3702  * Return
3703  * 0 if the charge was successful
3704  * < 0 if the cgroup is over its limit
3705  */
3706 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3707 				gfp_t gfp_mask, enum charge_type ctype)
3708 {
3709 	struct mem_cgroup *memcg = NULL;
3710 	unsigned int nr_pages = 1;
3711 	bool oom = true;
3712 	int ret;
3713 
3714 	if (PageTransHuge(page)) {
3715 		nr_pages <<= compound_order(page);
3716 		VM_BUG_ON(!PageTransHuge(page));
3717 		/*
3718 		 * Never OOM-kill a process for a huge page.  The
3719 		 * fault handler will fall back to regular pages.
3720 		 */
3721 		oom = false;
3722 	}
3723 
3724 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3725 	if (ret == -ENOMEM)
3726 		return ret;
3727 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3728 	return 0;
3729 }
3730 
3731 int mem_cgroup_newpage_charge(struct page *page,
3732 			      struct mm_struct *mm, gfp_t gfp_mask)
3733 {
3734 	if (mem_cgroup_disabled())
3735 		return 0;
3736 	VM_BUG_ON(page_mapped(page));
3737 	VM_BUG_ON(page->mapping && !PageAnon(page));
3738 	VM_BUG_ON(!mm);
3739 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3740 					MEM_CGROUP_CHARGE_TYPE_ANON);
3741 }
3742 
3743 /*
3744  * While swap-in, try_charge -> commit or cancel, the page is locked.
3745  * And when try_charge() successfully returns, one refcnt to memcg without
3746  * struct page_cgroup is acquired. This refcnt will be consumed by
3747  * "commit()" or removed by "cancel()"
3748  */
3749 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3750 					  struct page *page,
3751 					  gfp_t mask,
3752 					  struct mem_cgroup **memcgp)
3753 {
3754 	struct mem_cgroup *memcg;
3755 	struct page_cgroup *pc;
3756 	int ret;
3757 
3758 	pc = lookup_page_cgroup(page);
3759 	/*
3760 	 * Every swap fault against a single page tries to charge the
3761 	 * page, bail as early as possible.  shmem_unuse() encounters
3762 	 * already charged pages, too.  The USED bit is protected by
3763 	 * the page lock, which serializes swap cache removal, which
3764 	 * in turn serializes uncharging.
3765 	 */
3766 	if (PageCgroupUsed(pc))
3767 		return 0;
3768 	if (!do_swap_account)
3769 		goto charge_cur_mm;
3770 	memcg = try_get_mem_cgroup_from_page(page);
3771 	if (!memcg)
3772 		goto charge_cur_mm;
3773 	*memcgp = memcg;
3774 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3775 	css_put(&memcg->css);
3776 	if (ret == -EINTR)
3777 		ret = 0;
3778 	return ret;
3779 charge_cur_mm:
3780 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3781 	if (ret == -EINTR)
3782 		ret = 0;
3783 	return ret;
3784 }
3785 
3786 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3787 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3788 {
3789 	*memcgp = NULL;
3790 	if (mem_cgroup_disabled())
3791 		return 0;
3792 	/*
3793 	 * A racing thread's fault, or swapoff, may have already
3794 	 * updated the pte, and even removed page from swap cache: in
3795 	 * those cases unuse_pte()'s pte_same() test will fail; but
3796 	 * there's also a KSM case which does need to charge the page.
3797 	 */
3798 	if (!PageSwapCache(page)) {
3799 		int ret;
3800 
3801 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3802 		if (ret == -EINTR)
3803 			ret = 0;
3804 		return ret;
3805 	}
3806 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3807 }
3808 
3809 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3810 {
3811 	if (mem_cgroup_disabled())
3812 		return;
3813 	if (!memcg)
3814 		return;
3815 	__mem_cgroup_cancel_charge(memcg, 1);
3816 }
3817 
3818 static void
3819 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3820 					enum charge_type ctype)
3821 {
3822 	if (mem_cgroup_disabled())
3823 		return;
3824 	if (!memcg)
3825 		return;
3826 
3827 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3828 	/*
3829 	 * Now swap is on-memory. This means this page may be
3830 	 * counted both as mem and swap....double count.
3831 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3832 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3833 	 * may call delete_from_swap_cache() before reach here.
3834 	 */
3835 	if (do_swap_account && PageSwapCache(page)) {
3836 		swp_entry_t ent = {.val = page_private(page)};
3837 		mem_cgroup_uncharge_swap(ent);
3838 	}
3839 }
3840 
3841 void mem_cgroup_commit_charge_swapin(struct page *page,
3842 				     struct mem_cgroup *memcg)
3843 {
3844 	__mem_cgroup_commit_charge_swapin(page, memcg,
3845 					  MEM_CGROUP_CHARGE_TYPE_ANON);
3846 }
3847 
3848 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3849 				gfp_t gfp_mask)
3850 {
3851 	struct mem_cgroup *memcg = NULL;
3852 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3853 	int ret;
3854 
3855 	if (mem_cgroup_disabled())
3856 		return 0;
3857 	if (PageCompound(page))
3858 		return 0;
3859 
3860 	if (!PageSwapCache(page))
3861 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3862 	else { /* page is swapcache/shmem */
3863 		ret = __mem_cgroup_try_charge_swapin(mm, page,
3864 						     gfp_mask, &memcg);
3865 		if (!ret)
3866 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
3867 	}
3868 	return ret;
3869 }
3870 
3871 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3872 				   unsigned int nr_pages,
3873 				   const enum charge_type ctype)
3874 {
3875 	struct memcg_batch_info *batch = NULL;
3876 	bool uncharge_memsw = true;
3877 
3878 	/* If swapout, usage of swap doesn't decrease */
3879 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3880 		uncharge_memsw = false;
3881 
3882 	batch = &current->memcg_batch;
3883 	/*
3884 	 * In usual, we do css_get() when we remember memcg pointer.
3885 	 * But in this case, we keep res->usage until end of a series of
3886 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
3887 	 */
3888 	if (!batch->memcg)
3889 		batch->memcg = memcg;
3890 	/*
3891 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3892 	 * In those cases, all pages freed continuously can be expected to be in
3893 	 * the same cgroup and we have chance to coalesce uncharges.
3894 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3895 	 * because we want to do uncharge as soon as possible.
3896 	 */
3897 
3898 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3899 		goto direct_uncharge;
3900 
3901 	if (nr_pages > 1)
3902 		goto direct_uncharge;
3903 
3904 	/*
3905 	 * In typical case, batch->memcg == mem. This means we can
3906 	 * merge a series of uncharges to an uncharge of res_counter.
3907 	 * If not, we uncharge res_counter ony by one.
3908 	 */
3909 	if (batch->memcg != memcg)
3910 		goto direct_uncharge;
3911 	/* remember freed charge and uncharge it later */
3912 	batch->nr_pages++;
3913 	if (uncharge_memsw)
3914 		batch->memsw_nr_pages++;
3915 	return;
3916 direct_uncharge:
3917 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3918 	if (uncharge_memsw)
3919 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3920 	if (unlikely(batch->memcg != memcg))
3921 		memcg_oom_recover(memcg);
3922 }
3923 
3924 /*
3925  * uncharge if !page_mapped(page)
3926  */
3927 static struct mem_cgroup *
3928 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3929 			     bool end_migration)
3930 {
3931 	struct mem_cgroup *memcg = NULL;
3932 	unsigned int nr_pages = 1;
3933 	struct page_cgroup *pc;
3934 	bool anon;
3935 
3936 	if (mem_cgroup_disabled())
3937 		return NULL;
3938 
3939 	VM_BUG_ON(PageSwapCache(page));
3940 
3941 	if (PageTransHuge(page)) {
3942 		nr_pages <<= compound_order(page);
3943 		VM_BUG_ON(!PageTransHuge(page));
3944 	}
3945 	/*
3946 	 * Check if our page_cgroup is valid
3947 	 */
3948 	pc = lookup_page_cgroup(page);
3949 	if (unlikely(!PageCgroupUsed(pc)))
3950 		return NULL;
3951 
3952 	lock_page_cgroup(pc);
3953 
3954 	memcg = pc->mem_cgroup;
3955 
3956 	if (!PageCgroupUsed(pc))
3957 		goto unlock_out;
3958 
3959 	anon = PageAnon(page);
3960 
3961 	switch (ctype) {
3962 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3963 		/*
3964 		 * Generally PageAnon tells if it's the anon statistics to be
3965 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3966 		 * used before page reached the stage of being marked PageAnon.
3967 		 */
3968 		anon = true;
3969 		/* fallthrough */
3970 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3971 		/* See mem_cgroup_prepare_migration() */
3972 		if (page_mapped(page))
3973 			goto unlock_out;
3974 		/*
3975 		 * Pages under migration may not be uncharged.  But
3976 		 * end_migration() /must/ be the one uncharging the
3977 		 * unused post-migration page and so it has to call
3978 		 * here with the migration bit still set.  See the
3979 		 * res_counter handling below.
3980 		 */
3981 		if (!end_migration && PageCgroupMigration(pc))
3982 			goto unlock_out;
3983 		break;
3984 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3985 		if (!PageAnon(page)) {	/* Shared memory */
3986 			if (page->mapping && !page_is_file_cache(page))
3987 				goto unlock_out;
3988 		} else if (page_mapped(page)) /* Anon */
3989 				goto unlock_out;
3990 		break;
3991 	default:
3992 		break;
3993 	}
3994 
3995 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3996 
3997 	ClearPageCgroupUsed(pc);
3998 	/*
3999 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4000 	 * freed from LRU. This is safe because uncharged page is expected not
4001 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4002 	 * special functions.
4003 	 */
4004 
4005 	unlock_page_cgroup(pc);
4006 	/*
4007 	 * even after unlock, we have memcg->res.usage here and this memcg
4008 	 * will never be freed.
4009 	 */
4010 	memcg_check_events(memcg, page);
4011 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4012 		mem_cgroup_swap_statistics(memcg, true);
4013 		mem_cgroup_get(memcg);
4014 	}
4015 	/*
4016 	 * Migration does not charge the res_counter for the
4017 	 * replacement page, so leave it alone when phasing out the
4018 	 * page that is unused after the migration.
4019 	 */
4020 	if (!end_migration && !mem_cgroup_is_root(memcg))
4021 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4022 
4023 	return memcg;
4024 
4025 unlock_out:
4026 	unlock_page_cgroup(pc);
4027 	return NULL;
4028 }
4029 
4030 void mem_cgroup_uncharge_page(struct page *page)
4031 {
4032 	/* early check. */
4033 	if (page_mapped(page))
4034 		return;
4035 	VM_BUG_ON(page->mapping && !PageAnon(page));
4036 	if (PageSwapCache(page))
4037 		return;
4038 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4039 }
4040 
4041 void mem_cgroup_uncharge_cache_page(struct page *page)
4042 {
4043 	VM_BUG_ON(page_mapped(page));
4044 	VM_BUG_ON(page->mapping);
4045 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4046 }
4047 
4048 /*
4049  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4050  * In that cases, pages are freed continuously and we can expect pages
4051  * are in the same memcg. All these calls itself limits the number of
4052  * pages freed at once, then uncharge_start/end() is called properly.
4053  * This may be called prural(2) times in a context,
4054  */
4055 
4056 void mem_cgroup_uncharge_start(void)
4057 {
4058 	current->memcg_batch.do_batch++;
4059 	/* We can do nest. */
4060 	if (current->memcg_batch.do_batch == 1) {
4061 		current->memcg_batch.memcg = NULL;
4062 		current->memcg_batch.nr_pages = 0;
4063 		current->memcg_batch.memsw_nr_pages = 0;
4064 	}
4065 }
4066 
4067 void mem_cgroup_uncharge_end(void)
4068 {
4069 	struct memcg_batch_info *batch = &current->memcg_batch;
4070 
4071 	if (!batch->do_batch)
4072 		return;
4073 
4074 	batch->do_batch--;
4075 	if (batch->do_batch) /* If stacked, do nothing. */
4076 		return;
4077 
4078 	if (!batch->memcg)
4079 		return;
4080 	/*
4081 	 * This "batch->memcg" is valid without any css_get/put etc...
4082 	 * bacause we hide charges behind us.
4083 	 */
4084 	if (batch->nr_pages)
4085 		res_counter_uncharge(&batch->memcg->res,
4086 				     batch->nr_pages * PAGE_SIZE);
4087 	if (batch->memsw_nr_pages)
4088 		res_counter_uncharge(&batch->memcg->memsw,
4089 				     batch->memsw_nr_pages * PAGE_SIZE);
4090 	memcg_oom_recover(batch->memcg);
4091 	/* forget this pointer (for sanity check) */
4092 	batch->memcg = NULL;
4093 }
4094 
4095 #ifdef CONFIG_SWAP
4096 /*
4097  * called after __delete_from_swap_cache() and drop "page" account.
4098  * memcg information is recorded to swap_cgroup of "ent"
4099  */
4100 void
4101 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4102 {
4103 	struct mem_cgroup *memcg;
4104 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4105 
4106 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4107 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4108 
4109 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4110 
4111 	/*
4112 	 * record memcg information,  if swapout && memcg != NULL,
4113 	 * mem_cgroup_get() was called in uncharge().
4114 	 */
4115 	if (do_swap_account && swapout && memcg)
4116 		swap_cgroup_record(ent, css_id(&memcg->css));
4117 }
4118 #endif
4119 
4120 #ifdef CONFIG_MEMCG_SWAP
4121 /*
4122  * called from swap_entry_free(). remove record in swap_cgroup and
4123  * uncharge "memsw" account.
4124  */
4125 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4126 {
4127 	struct mem_cgroup *memcg;
4128 	unsigned short id;
4129 
4130 	if (!do_swap_account)
4131 		return;
4132 
4133 	id = swap_cgroup_record(ent, 0);
4134 	rcu_read_lock();
4135 	memcg = mem_cgroup_lookup(id);
4136 	if (memcg) {
4137 		/*
4138 		 * We uncharge this because swap is freed.
4139 		 * This memcg can be obsolete one. We avoid calling css_tryget
4140 		 */
4141 		if (!mem_cgroup_is_root(memcg))
4142 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4143 		mem_cgroup_swap_statistics(memcg, false);
4144 		mem_cgroup_put(memcg);
4145 	}
4146 	rcu_read_unlock();
4147 }
4148 
4149 /**
4150  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4151  * @entry: swap entry to be moved
4152  * @from:  mem_cgroup which the entry is moved from
4153  * @to:  mem_cgroup which the entry is moved to
4154  *
4155  * It succeeds only when the swap_cgroup's record for this entry is the same
4156  * as the mem_cgroup's id of @from.
4157  *
4158  * Returns 0 on success, -EINVAL on failure.
4159  *
4160  * The caller must have charged to @to, IOW, called res_counter_charge() about
4161  * both res and memsw, and called css_get().
4162  */
4163 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4164 				struct mem_cgroup *from, struct mem_cgroup *to)
4165 {
4166 	unsigned short old_id, new_id;
4167 
4168 	old_id = css_id(&from->css);
4169 	new_id = css_id(&to->css);
4170 
4171 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4172 		mem_cgroup_swap_statistics(from, false);
4173 		mem_cgroup_swap_statistics(to, true);
4174 		/*
4175 		 * This function is only called from task migration context now.
4176 		 * It postpones res_counter and refcount handling till the end
4177 		 * of task migration(mem_cgroup_clear_mc()) for performance
4178 		 * improvement. But we cannot postpone mem_cgroup_get(to)
4179 		 * because if the process that has been moved to @to does
4180 		 * swap-in, the refcount of @to might be decreased to 0.
4181 		 */
4182 		mem_cgroup_get(to);
4183 		return 0;
4184 	}
4185 	return -EINVAL;
4186 }
4187 #else
4188 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4189 				struct mem_cgroup *from, struct mem_cgroup *to)
4190 {
4191 	return -EINVAL;
4192 }
4193 #endif
4194 
4195 /*
4196  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4197  * page belongs to.
4198  */
4199 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4200 				  struct mem_cgroup **memcgp)
4201 {
4202 	struct mem_cgroup *memcg = NULL;
4203 	unsigned int nr_pages = 1;
4204 	struct page_cgroup *pc;
4205 	enum charge_type ctype;
4206 
4207 	*memcgp = NULL;
4208 
4209 	if (mem_cgroup_disabled())
4210 		return;
4211 
4212 	if (PageTransHuge(page))
4213 		nr_pages <<= compound_order(page);
4214 
4215 	pc = lookup_page_cgroup(page);
4216 	lock_page_cgroup(pc);
4217 	if (PageCgroupUsed(pc)) {
4218 		memcg = pc->mem_cgroup;
4219 		css_get(&memcg->css);
4220 		/*
4221 		 * At migrating an anonymous page, its mapcount goes down
4222 		 * to 0 and uncharge() will be called. But, even if it's fully
4223 		 * unmapped, migration may fail and this page has to be
4224 		 * charged again. We set MIGRATION flag here and delay uncharge
4225 		 * until end_migration() is called
4226 		 *
4227 		 * Corner Case Thinking
4228 		 * A)
4229 		 * When the old page was mapped as Anon and it's unmap-and-freed
4230 		 * while migration was ongoing.
4231 		 * If unmap finds the old page, uncharge() of it will be delayed
4232 		 * until end_migration(). If unmap finds a new page, it's
4233 		 * uncharged when it make mapcount to be 1->0. If unmap code
4234 		 * finds swap_migration_entry, the new page will not be mapped
4235 		 * and end_migration() will find it(mapcount==0).
4236 		 *
4237 		 * B)
4238 		 * When the old page was mapped but migraion fails, the kernel
4239 		 * remaps it. A charge for it is kept by MIGRATION flag even
4240 		 * if mapcount goes down to 0. We can do remap successfully
4241 		 * without charging it again.
4242 		 *
4243 		 * C)
4244 		 * The "old" page is under lock_page() until the end of
4245 		 * migration, so, the old page itself will not be swapped-out.
4246 		 * If the new page is swapped out before end_migraton, our
4247 		 * hook to usual swap-out path will catch the event.
4248 		 */
4249 		if (PageAnon(page))
4250 			SetPageCgroupMigration(pc);
4251 	}
4252 	unlock_page_cgroup(pc);
4253 	/*
4254 	 * If the page is not charged at this point,
4255 	 * we return here.
4256 	 */
4257 	if (!memcg)
4258 		return;
4259 
4260 	*memcgp = memcg;
4261 	/*
4262 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4263 	 * is called before end_migration, we can catch all events on this new
4264 	 * page. In the case new page is migrated but not remapped, new page's
4265 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4266 	 */
4267 	if (PageAnon(page))
4268 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4269 	else
4270 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4271 	/*
4272 	 * The page is committed to the memcg, but it's not actually
4273 	 * charged to the res_counter since we plan on replacing the
4274 	 * old one and only one page is going to be left afterwards.
4275 	 */
4276 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4277 }
4278 
4279 /* remove redundant charge if migration failed*/
4280 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4281 	struct page *oldpage, struct page *newpage, bool migration_ok)
4282 {
4283 	struct page *used, *unused;
4284 	struct page_cgroup *pc;
4285 	bool anon;
4286 
4287 	if (!memcg)
4288 		return;
4289 
4290 	if (!migration_ok) {
4291 		used = oldpage;
4292 		unused = newpage;
4293 	} else {
4294 		used = newpage;
4295 		unused = oldpage;
4296 	}
4297 	anon = PageAnon(used);
4298 	__mem_cgroup_uncharge_common(unused,
4299 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4300 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4301 				     true);
4302 	css_put(&memcg->css);
4303 	/*
4304 	 * We disallowed uncharge of pages under migration because mapcount
4305 	 * of the page goes down to zero, temporarly.
4306 	 * Clear the flag and check the page should be charged.
4307 	 */
4308 	pc = lookup_page_cgroup(oldpage);
4309 	lock_page_cgroup(pc);
4310 	ClearPageCgroupMigration(pc);
4311 	unlock_page_cgroup(pc);
4312 
4313 	/*
4314 	 * If a page is a file cache, radix-tree replacement is very atomic
4315 	 * and we can skip this check. When it was an Anon page, its mapcount
4316 	 * goes down to 0. But because we added MIGRATION flage, it's not
4317 	 * uncharged yet. There are several case but page->mapcount check
4318 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4319 	 * check. (see prepare_charge() also)
4320 	 */
4321 	if (anon)
4322 		mem_cgroup_uncharge_page(used);
4323 }
4324 
4325 /*
4326  * At replace page cache, newpage is not under any memcg but it's on
4327  * LRU. So, this function doesn't touch res_counter but handles LRU
4328  * in correct way. Both pages are locked so we cannot race with uncharge.
4329  */
4330 void mem_cgroup_replace_page_cache(struct page *oldpage,
4331 				  struct page *newpage)
4332 {
4333 	struct mem_cgroup *memcg = NULL;
4334 	struct page_cgroup *pc;
4335 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4336 
4337 	if (mem_cgroup_disabled())
4338 		return;
4339 
4340 	pc = lookup_page_cgroup(oldpage);
4341 	/* fix accounting on old pages */
4342 	lock_page_cgroup(pc);
4343 	if (PageCgroupUsed(pc)) {
4344 		memcg = pc->mem_cgroup;
4345 		mem_cgroup_charge_statistics(memcg, false, -1);
4346 		ClearPageCgroupUsed(pc);
4347 	}
4348 	unlock_page_cgroup(pc);
4349 
4350 	/*
4351 	 * When called from shmem_replace_page(), in some cases the
4352 	 * oldpage has already been charged, and in some cases not.
4353 	 */
4354 	if (!memcg)
4355 		return;
4356 	/*
4357 	 * Even if newpage->mapping was NULL before starting replacement,
4358 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4359 	 * LRU while we overwrite pc->mem_cgroup.
4360 	 */
4361 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4362 }
4363 
4364 #ifdef CONFIG_DEBUG_VM
4365 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4366 {
4367 	struct page_cgroup *pc;
4368 
4369 	pc = lookup_page_cgroup(page);
4370 	/*
4371 	 * Can be NULL while feeding pages into the page allocator for
4372 	 * the first time, i.e. during boot or memory hotplug;
4373 	 * or when mem_cgroup_disabled().
4374 	 */
4375 	if (likely(pc) && PageCgroupUsed(pc))
4376 		return pc;
4377 	return NULL;
4378 }
4379 
4380 bool mem_cgroup_bad_page_check(struct page *page)
4381 {
4382 	if (mem_cgroup_disabled())
4383 		return false;
4384 
4385 	return lookup_page_cgroup_used(page) != NULL;
4386 }
4387 
4388 void mem_cgroup_print_bad_page(struct page *page)
4389 {
4390 	struct page_cgroup *pc;
4391 
4392 	pc = lookup_page_cgroup_used(page);
4393 	if (pc) {
4394 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4395 		       pc, pc->flags, pc->mem_cgroup);
4396 	}
4397 }
4398 #endif
4399 
4400 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4401 				unsigned long long val)
4402 {
4403 	int retry_count;
4404 	u64 memswlimit, memlimit;
4405 	int ret = 0;
4406 	int children = mem_cgroup_count_children(memcg);
4407 	u64 curusage, oldusage;
4408 	int enlarge;
4409 
4410 	/*
4411 	 * For keeping hierarchical_reclaim simple, how long we should retry
4412 	 * is depends on callers. We set our retry-count to be function
4413 	 * of # of children which we should visit in this loop.
4414 	 */
4415 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4416 
4417 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4418 
4419 	enlarge = 0;
4420 	while (retry_count) {
4421 		if (signal_pending(current)) {
4422 			ret = -EINTR;
4423 			break;
4424 		}
4425 		/*
4426 		 * Rather than hide all in some function, I do this in
4427 		 * open coded manner. You see what this really does.
4428 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4429 		 */
4430 		mutex_lock(&set_limit_mutex);
4431 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4432 		if (memswlimit < val) {
4433 			ret = -EINVAL;
4434 			mutex_unlock(&set_limit_mutex);
4435 			break;
4436 		}
4437 
4438 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4439 		if (memlimit < val)
4440 			enlarge = 1;
4441 
4442 		ret = res_counter_set_limit(&memcg->res, val);
4443 		if (!ret) {
4444 			if (memswlimit == val)
4445 				memcg->memsw_is_minimum = true;
4446 			else
4447 				memcg->memsw_is_minimum = false;
4448 		}
4449 		mutex_unlock(&set_limit_mutex);
4450 
4451 		if (!ret)
4452 			break;
4453 
4454 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4455 				   MEM_CGROUP_RECLAIM_SHRINK);
4456 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4457 		/* Usage is reduced ? */
4458   		if (curusage >= oldusage)
4459 			retry_count--;
4460 		else
4461 			oldusage = curusage;
4462 	}
4463 	if (!ret && enlarge)
4464 		memcg_oom_recover(memcg);
4465 
4466 	return ret;
4467 }
4468 
4469 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4470 					unsigned long long val)
4471 {
4472 	int retry_count;
4473 	u64 memlimit, memswlimit, oldusage, curusage;
4474 	int children = mem_cgroup_count_children(memcg);
4475 	int ret = -EBUSY;
4476 	int enlarge = 0;
4477 
4478 	/* see mem_cgroup_resize_res_limit */
4479  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4480 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4481 	while (retry_count) {
4482 		if (signal_pending(current)) {
4483 			ret = -EINTR;
4484 			break;
4485 		}
4486 		/*
4487 		 * Rather than hide all in some function, I do this in
4488 		 * open coded manner. You see what this really does.
4489 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4490 		 */
4491 		mutex_lock(&set_limit_mutex);
4492 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4493 		if (memlimit > val) {
4494 			ret = -EINVAL;
4495 			mutex_unlock(&set_limit_mutex);
4496 			break;
4497 		}
4498 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4499 		if (memswlimit < val)
4500 			enlarge = 1;
4501 		ret = res_counter_set_limit(&memcg->memsw, val);
4502 		if (!ret) {
4503 			if (memlimit == val)
4504 				memcg->memsw_is_minimum = true;
4505 			else
4506 				memcg->memsw_is_minimum = false;
4507 		}
4508 		mutex_unlock(&set_limit_mutex);
4509 
4510 		if (!ret)
4511 			break;
4512 
4513 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4514 				   MEM_CGROUP_RECLAIM_NOSWAP |
4515 				   MEM_CGROUP_RECLAIM_SHRINK);
4516 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4517 		/* Usage is reduced ? */
4518 		if (curusage >= oldusage)
4519 			retry_count--;
4520 		else
4521 			oldusage = curusage;
4522 	}
4523 	if (!ret && enlarge)
4524 		memcg_oom_recover(memcg);
4525 	return ret;
4526 }
4527 
4528 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4529 					    gfp_t gfp_mask,
4530 					    unsigned long *total_scanned)
4531 {
4532 	unsigned long nr_reclaimed = 0;
4533 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4534 	unsigned long reclaimed;
4535 	int loop = 0;
4536 	struct mem_cgroup_tree_per_zone *mctz;
4537 	unsigned long long excess;
4538 	unsigned long nr_scanned;
4539 
4540 	if (order > 0)
4541 		return 0;
4542 
4543 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4544 	/*
4545 	 * This loop can run a while, specially if mem_cgroup's continuously
4546 	 * keep exceeding their soft limit and putting the system under
4547 	 * pressure
4548 	 */
4549 	do {
4550 		if (next_mz)
4551 			mz = next_mz;
4552 		else
4553 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4554 		if (!mz)
4555 			break;
4556 
4557 		nr_scanned = 0;
4558 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4559 						    gfp_mask, &nr_scanned);
4560 		nr_reclaimed += reclaimed;
4561 		*total_scanned += nr_scanned;
4562 		spin_lock(&mctz->lock);
4563 
4564 		/*
4565 		 * If we failed to reclaim anything from this memory cgroup
4566 		 * it is time to move on to the next cgroup
4567 		 */
4568 		next_mz = NULL;
4569 		if (!reclaimed) {
4570 			do {
4571 				/*
4572 				 * Loop until we find yet another one.
4573 				 *
4574 				 * By the time we get the soft_limit lock
4575 				 * again, someone might have aded the
4576 				 * group back on the RB tree. Iterate to
4577 				 * make sure we get a different mem.
4578 				 * mem_cgroup_largest_soft_limit_node returns
4579 				 * NULL if no other cgroup is present on
4580 				 * the tree
4581 				 */
4582 				next_mz =
4583 				__mem_cgroup_largest_soft_limit_node(mctz);
4584 				if (next_mz == mz)
4585 					css_put(&next_mz->memcg->css);
4586 				else /* next_mz == NULL or other memcg */
4587 					break;
4588 			} while (1);
4589 		}
4590 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4591 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4592 		/*
4593 		 * One school of thought says that we should not add
4594 		 * back the node to the tree if reclaim returns 0.
4595 		 * But our reclaim could return 0, simply because due
4596 		 * to priority we are exposing a smaller subset of
4597 		 * memory to reclaim from. Consider this as a longer
4598 		 * term TODO.
4599 		 */
4600 		/* If excess == 0, no tree ops */
4601 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4602 		spin_unlock(&mctz->lock);
4603 		css_put(&mz->memcg->css);
4604 		loop++;
4605 		/*
4606 		 * Could not reclaim anything and there are no more
4607 		 * mem cgroups to try or we seem to be looping without
4608 		 * reclaiming anything.
4609 		 */
4610 		if (!nr_reclaimed &&
4611 			(next_mz == NULL ||
4612 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4613 			break;
4614 	} while (!nr_reclaimed);
4615 	if (next_mz)
4616 		css_put(&next_mz->memcg->css);
4617 	return nr_reclaimed;
4618 }
4619 
4620 /**
4621  * mem_cgroup_force_empty_list - clears LRU of a group
4622  * @memcg: group to clear
4623  * @node: NUMA node
4624  * @zid: zone id
4625  * @lru: lru to to clear
4626  *
4627  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4628  * reclaim the pages page themselves - pages are moved to the parent (or root)
4629  * group.
4630  */
4631 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4632 				int node, int zid, enum lru_list lru)
4633 {
4634 	struct lruvec *lruvec;
4635 	unsigned long flags;
4636 	struct list_head *list;
4637 	struct page *busy;
4638 	struct zone *zone;
4639 
4640 	zone = &NODE_DATA(node)->node_zones[zid];
4641 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4642 	list = &lruvec->lists[lru];
4643 
4644 	busy = NULL;
4645 	do {
4646 		struct page_cgroup *pc;
4647 		struct page *page;
4648 
4649 		spin_lock_irqsave(&zone->lru_lock, flags);
4650 		if (list_empty(list)) {
4651 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4652 			break;
4653 		}
4654 		page = list_entry(list->prev, struct page, lru);
4655 		if (busy == page) {
4656 			list_move(&page->lru, list);
4657 			busy = NULL;
4658 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4659 			continue;
4660 		}
4661 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4662 
4663 		pc = lookup_page_cgroup(page);
4664 
4665 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4666 			/* found lock contention or "pc" is obsolete. */
4667 			busy = page;
4668 			cond_resched();
4669 		} else
4670 			busy = NULL;
4671 	} while (!list_empty(list));
4672 }
4673 
4674 /*
4675  * make mem_cgroup's charge to be 0 if there is no task by moving
4676  * all the charges and pages to the parent.
4677  * This enables deleting this mem_cgroup.
4678  *
4679  * Caller is responsible for holding css reference on the memcg.
4680  */
4681 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4682 {
4683 	int node, zid;
4684 	u64 usage;
4685 
4686 	do {
4687 		/* This is for making all *used* pages to be on LRU. */
4688 		lru_add_drain_all();
4689 		drain_all_stock_sync(memcg);
4690 		mem_cgroup_start_move(memcg);
4691 		for_each_node_state(node, N_MEMORY) {
4692 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4693 				enum lru_list lru;
4694 				for_each_lru(lru) {
4695 					mem_cgroup_force_empty_list(memcg,
4696 							node, zid, lru);
4697 				}
4698 			}
4699 		}
4700 		mem_cgroup_end_move(memcg);
4701 		memcg_oom_recover(memcg);
4702 		cond_resched();
4703 
4704 		/*
4705 		 * Kernel memory may not necessarily be trackable to a specific
4706 		 * process. So they are not migrated, and therefore we can't
4707 		 * expect their value to drop to 0 here.
4708 		 * Having res filled up with kmem only is enough.
4709 		 *
4710 		 * This is a safety check because mem_cgroup_force_empty_list
4711 		 * could have raced with mem_cgroup_replace_page_cache callers
4712 		 * so the lru seemed empty but the page could have been added
4713 		 * right after the check. RES_USAGE should be safe as we always
4714 		 * charge before adding to the LRU.
4715 		 */
4716 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4717 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4718 	} while (usage > 0);
4719 }
4720 
4721 /*
4722  * Reclaims as many pages from the given memcg as possible and moves
4723  * the rest to the parent.
4724  *
4725  * Caller is responsible for holding css reference for memcg.
4726  */
4727 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4728 {
4729 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4730 	struct cgroup *cgrp = memcg->css.cgroup;
4731 
4732 	/* returns EBUSY if there is a task or if we come here twice. */
4733 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4734 		return -EBUSY;
4735 
4736 	/* we call try-to-free pages for make this cgroup empty */
4737 	lru_add_drain_all();
4738 	/* try to free all pages in this cgroup */
4739 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4740 		int progress;
4741 
4742 		if (signal_pending(current))
4743 			return -EINTR;
4744 
4745 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4746 						false);
4747 		if (!progress) {
4748 			nr_retries--;
4749 			/* maybe some writeback is necessary */
4750 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4751 		}
4752 
4753 	}
4754 	lru_add_drain();
4755 	mem_cgroup_reparent_charges(memcg);
4756 
4757 	return 0;
4758 }
4759 
4760 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4761 {
4762 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4763 	int ret;
4764 
4765 	if (mem_cgroup_is_root(memcg))
4766 		return -EINVAL;
4767 	css_get(&memcg->css);
4768 	ret = mem_cgroup_force_empty(memcg);
4769 	css_put(&memcg->css);
4770 
4771 	return ret;
4772 }
4773 
4774 
4775 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4776 {
4777 	return mem_cgroup_from_cont(cont)->use_hierarchy;
4778 }
4779 
4780 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4781 					u64 val)
4782 {
4783 	int retval = 0;
4784 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4785 	struct cgroup *parent = cont->parent;
4786 	struct mem_cgroup *parent_memcg = NULL;
4787 
4788 	if (parent)
4789 		parent_memcg = mem_cgroup_from_cont(parent);
4790 
4791 	cgroup_lock();
4792 
4793 	if (memcg->use_hierarchy == val)
4794 		goto out;
4795 
4796 	/*
4797 	 * If parent's use_hierarchy is set, we can't make any modifications
4798 	 * in the child subtrees. If it is unset, then the change can
4799 	 * occur, provided the current cgroup has no children.
4800 	 *
4801 	 * For the root cgroup, parent_mem is NULL, we allow value to be
4802 	 * set if there are no children.
4803 	 */
4804 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4805 				(val == 1 || val == 0)) {
4806 		if (list_empty(&cont->children))
4807 			memcg->use_hierarchy = val;
4808 		else
4809 			retval = -EBUSY;
4810 	} else
4811 		retval = -EINVAL;
4812 
4813 out:
4814 	cgroup_unlock();
4815 
4816 	return retval;
4817 }
4818 
4819 
4820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4821 					       enum mem_cgroup_stat_index idx)
4822 {
4823 	struct mem_cgroup *iter;
4824 	long val = 0;
4825 
4826 	/* Per-cpu values can be negative, use a signed accumulator */
4827 	for_each_mem_cgroup_tree(iter, memcg)
4828 		val += mem_cgroup_read_stat(iter, idx);
4829 
4830 	if (val < 0) /* race ? */
4831 		val = 0;
4832 	return val;
4833 }
4834 
4835 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4836 {
4837 	u64 val;
4838 
4839 	if (!mem_cgroup_is_root(memcg)) {
4840 		if (!swap)
4841 			return res_counter_read_u64(&memcg->res, RES_USAGE);
4842 		else
4843 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4844 	}
4845 
4846 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4847 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4848 
4849 	if (swap)
4850 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4851 
4852 	return val << PAGE_SHIFT;
4853 }
4854 
4855 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4856 			       struct file *file, char __user *buf,
4857 			       size_t nbytes, loff_t *ppos)
4858 {
4859 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4860 	char str[64];
4861 	u64 val;
4862 	int name, len;
4863 	enum res_type type;
4864 
4865 	type = MEMFILE_TYPE(cft->private);
4866 	name = MEMFILE_ATTR(cft->private);
4867 
4868 	if (!do_swap_account && type == _MEMSWAP)
4869 		return -EOPNOTSUPP;
4870 
4871 	switch (type) {
4872 	case _MEM:
4873 		if (name == RES_USAGE)
4874 			val = mem_cgroup_usage(memcg, false);
4875 		else
4876 			val = res_counter_read_u64(&memcg->res, name);
4877 		break;
4878 	case _MEMSWAP:
4879 		if (name == RES_USAGE)
4880 			val = mem_cgroup_usage(memcg, true);
4881 		else
4882 			val = res_counter_read_u64(&memcg->memsw, name);
4883 		break;
4884 	case _KMEM:
4885 		val = res_counter_read_u64(&memcg->kmem, name);
4886 		break;
4887 	default:
4888 		BUG();
4889 	}
4890 
4891 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4892 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4893 }
4894 
4895 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4896 {
4897 	int ret = -EINVAL;
4898 #ifdef CONFIG_MEMCG_KMEM
4899 	bool must_inc_static_branch = false;
4900 
4901 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4902 	/*
4903 	 * For simplicity, we won't allow this to be disabled.  It also can't
4904 	 * be changed if the cgroup has children already, or if tasks had
4905 	 * already joined.
4906 	 *
4907 	 * If tasks join before we set the limit, a person looking at
4908 	 * kmem.usage_in_bytes will have no way to determine when it took
4909 	 * place, which makes the value quite meaningless.
4910 	 *
4911 	 * After it first became limited, changes in the value of the limit are
4912 	 * of course permitted.
4913 	 *
4914 	 * Taking the cgroup_lock is really offensive, but it is so far the only
4915 	 * way to guarantee that no children will appear. There are plenty of
4916 	 * other offenders, and they should all go away. Fine grained locking
4917 	 * is probably the way to go here. When we are fully hierarchical, we
4918 	 * can also get rid of the use_hierarchy check.
4919 	 */
4920 	cgroup_lock();
4921 	mutex_lock(&set_limit_mutex);
4922 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4923 		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4924 						!list_empty(&cont->children))) {
4925 			ret = -EBUSY;
4926 			goto out;
4927 		}
4928 		ret = res_counter_set_limit(&memcg->kmem, val);
4929 		VM_BUG_ON(ret);
4930 
4931 		ret = memcg_update_cache_sizes(memcg);
4932 		if (ret) {
4933 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4934 			goto out;
4935 		}
4936 		must_inc_static_branch = true;
4937 		/*
4938 		 * kmem charges can outlive the cgroup. In the case of slab
4939 		 * pages, for instance, a page contain objects from various
4940 		 * processes, so it is unfeasible to migrate them away. We
4941 		 * need to reference count the memcg because of that.
4942 		 */
4943 		mem_cgroup_get(memcg);
4944 	} else
4945 		ret = res_counter_set_limit(&memcg->kmem, val);
4946 out:
4947 	mutex_unlock(&set_limit_mutex);
4948 	cgroup_unlock();
4949 
4950 	/*
4951 	 * We are by now familiar with the fact that we can't inc the static
4952 	 * branch inside cgroup_lock. See disarm functions for details. A
4953 	 * worker here is overkill, but also wrong: After the limit is set, we
4954 	 * must start accounting right away. Since this operation can't fail,
4955 	 * we can safely defer it to here - no rollback will be needed.
4956 	 *
4957 	 * The boolean used to control this is also safe, because
4958 	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4959 	 * able to set it to true;
4960 	 */
4961 	if (must_inc_static_branch) {
4962 		static_key_slow_inc(&memcg_kmem_enabled_key);
4963 		/*
4964 		 * setting the active bit after the inc will guarantee no one
4965 		 * starts accounting before all call sites are patched
4966 		 */
4967 		memcg_kmem_set_active(memcg);
4968 	}
4969 
4970 #endif
4971 	return ret;
4972 }
4973 
4974 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4975 {
4976 	int ret = 0;
4977 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4978 	if (!parent)
4979 		goto out;
4980 
4981 	memcg->kmem_account_flags = parent->kmem_account_flags;
4982 #ifdef CONFIG_MEMCG_KMEM
4983 	/*
4984 	 * When that happen, we need to disable the static branch only on those
4985 	 * memcgs that enabled it. To achieve this, we would be forced to
4986 	 * complicate the code by keeping track of which memcgs were the ones
4987 	 * that actually enabled limits, and which ones got it from its
4988 	 * parents.
4989 	 *
4990 	 * It is a lot simpler just to do static_key_slow_inc() on every child
4991 	 * that is accounted.
4992 	 */
4993 	if (!memcg_kmem_is_active(memcg))
4994 		goto out;
4995 
4996 	/*
4997 	 * destroy(), called if we fail, will issue static_key_slow_inc() and
4998 	 * mem_cgroup_put() if kmem is enabled. We have to either call them
4999 	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5000 	 * this more consistent, since it always leads to the same destroy path
5001 	 */
5002 	mem_cgroup_get(memcg);
5003 	static_key_slow_inc(&memcg_kmem_enabled_key);
5004 
5005 	mutex_lock(&set_limit_mutex);
5006 	ret = memcg_update_cache_sizes(memcg);
5007 	mutex_unlock(&set_limit_mutex);
5008 #endif
5009 out:
5010 	return ret;
5011 }
5012 
5013 /*
5014  * The user of this function is...
5015  * RES_LIMIT.
5016  */
5017 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5018 			    const char *buffer)
5019 {
5020 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5021 	enum res_type type;
5022 	int name;
5023 	unsigned long long val;
5024 	int ret;
5025 
5026 	type = MEMFILE_TYPE(cft->private);
5027 	name = MEMFILE_ATTR(cft->private);
5028 
5029 	if (!do_swap_account && type == _MEMSWAP)
5030 		return -EOPNOTSUPP;
5031 
5032 	switch (name) {
5033 	case RES_LIMIT:
5034 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5035 			ret = -EINVAL;
5036 			break;
5037 		}
5038 		/* This function does all necessary parse...reuse it */
5039 		ret = res_counter_memparse_write_strategy(buffer, &val);
5040 		if (ret)
5041 			break;
5042 		if (type == _MEM)
5043 			ret = mem_cgroup_resize_limit(memcg, val);
5044 		else if (type == _MEMSWAP)
5045 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5046 		else if (type == _KMEM)
5047 			ret = memcg_update_kmem_limit(cont, val);
5048 		else
5049 			return -EINVAL;
5050 		break;
5051 	case RES_SOFT_LIMIT:
5052 		ret = res_counter_memparse_write_strategy(buffer, &val);
5053 		if (ret)
5054 			break;
5055 		/*
5056 		 * For memsw, soft limits are hard to implement in terms
5057 		 * of semantics, for now, we support soft limits for
5058 		 * control without swap
5059 		 */
5060 		if (type == _MEM)
5061 			ret = res_counter_set_soft_limit(&memcg->res, val);
5062 		else
5063 			ret = -EINVAL;
5064 		break;
5065 	default:
5066 		ret = -EINVAL; /* should be BUG() ? */
5067 		break;
5068 	}
5069 	return ret;
5070 }
5071 
5072 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5073 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5074 {
5075 	struct cgroup *cgroup;
5076 	unsigned long long min_limit, min_memsw_limit, tmp;
5077 
5078 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5079 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5080 	cgroup = memcg->css.cgroup;
5081 	if (!memcg->use_hierarchy)
5082 		goto out;
5083 
5084 	while (cgroup->parent) {
5085 		cgroup = cgroup->parent;
5086 		memcg = mem_cgroup_from_cont(cgroup);
5087 		if (!memcg->use_hierarchy)
5088 			break;
5089 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5090 		min_limit = min(min_limit, tmp);
5091 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5092 		min_memsw_limit = min(min_memsw_limit, tmp);
5093 	}
5094 out:
5095 	*mem_limit = min_limit;
5096 	*memsw_limit = min_memsw_limit;
5097 }
5098 
5099 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5100 {
5101 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5102 	int name;
5103 	enum res_type type;
5104 
5105 	type = MEMFILE_TYPE(event);
5106 	name = MEMFILE_ATTR(event);
5107 
5108 	if (!do_swap_account && type == _MEMSWAP)
5109 		return -EOPNOTSUPP;
5110 
5111 	switch (name) {
5112 	case RES_MAX_USAGE:
5113 		if (type == _MEM)
5114 			res_counter_reset_max(&memcg->res);
5115 		else if (type == _MEMSWAP)
5116 			res_counter_reset_max(&memcg->memsw);
5117 		else if (type == _KMEM)
5118 			res_counter_reset_max(&memcg->kmem);
5119 		else
5120 			return -EINVAL;
5121 		break;
5122 	case RES_FAILCNT:
5123 		if (type == _MEM)
5124 			res_counter_reset_failcnt(&memcg->res);
5125 		else if (type == _MEMSWAP)
5126 			res_counter_reset_failcnt(&memcg->memsw);
5127 		else if (type == _KMEM)
5128 			res_counter_reset_failcnt(&memcg->kmem);
5129 		else
5130 			return -EINVAL;
5131 		break;
5132 	}
5133 
5134 	return 0;
5135 }
5136 
5137 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5138 					struct cftype *cft)
5139 {
5140 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5141 }
5142 
5143 #ifdef CONFIG_MMU
5144 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5145 					struct cftype *cft, u64 val)
5146 {
5147 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5148 
5149 	if (val >= (1 << NR_MOVE_TYPE))
5150 		return -EINVAL;
5151 	/*
5152 	 * We check this value several times in both in can_attach() and
5153 	 * attach(), so we need cgroup lock to prevent this value from being
5154 	 * inconsistent.
5155 	 */
5156 	cgroup_lock();
5157 	memcg->move_charge_at_immigrate = val;
5158 	cgroup_unlock();
5159 
5160 	return 0;
5161 }
5162 #else
5163 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5164 					struct cftype *cft, u64 val)
5165 {
5166 	return -ENOSYS;
5167 }
5168 #endif
5169 
5170 #ifdef CONFIG_NUMA
5171 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5172 				      struct seq_file *m)
5173 {
5174 	int nid;
5175 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5176 	unsigned long node_nr;
5177 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5178 
5179 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5180 	seq_printf(m, "total=%lu", total_nr);
5181 	for_each_node_state(nid, N_MEMORY) {
5182 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5183 		seq_printf(m, " N%d=%lu", nid, node_nr);
5184 	}
5185 	seq_putc(m, '\n');
5186 
5187 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5188 	seq_printf(m, "file=%lu", file_nr);
5189 	for_each_node_state(nid, N_MEMORY) {
5190 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5191 				LRU_ALL_FILE);
5192 		seq_printf(m, " N%d=%lu", nid, node_nr);
5193 	}
5194 	seq_putc(m, '\n');
5195 
5196 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5197 	seq_printf(m, "anon=%lu", anon_nr);
5198 	for_each_node_state(nid, N_MEMORY) {
5199 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5200 				LRU_ALL_ANON);
5201 		seq_printf(m, " N%d=%lu", nid, node_nr);
5202 	}
5203 	seq_putc(m, '\n');
5204 
5205 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5206 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5207 	for_each_node_state(nid, N_MEMORY) {
5208 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5209 				BIT(LRU_UNEVICTABLE));
5210 		seq_printf(m, " N%d=%lu", nid, node_nr);
5211 	}
5212 	seq_putc(m, '\n');
5213 	return 0;
5214 }
5215 #endif /* CONFIG_NUMA */
5216 
5217 static const char * const mem_cgroup_lru_names[] = {
5218 	"inactive_anon",
5219 	"active_anon",
5220 	"inactive_file",
5221 	"active_file",
5222 	"unevictable",
5223 };
5224 
5225 static inline void mem_cgroup_lru_names_not_uptodate(void)
5226 {
5227 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5228 }
5229 
5230 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5231 				 struct seq_file *m)
5232 {
5233 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5234 	struct mem_cgroup *mi;
5235 	unsigned int i;
5236 
5237 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5238 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5239 			continue;
5240 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5241 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5242 	}
5243 
5244 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5245 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5246 			   mem_cgroup_read_events(memcg, i));
5247 
5248 	for (i = 0; i < NR_LRU_LISTS; i++)
5249 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5250 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5251 
5252 	/* Hierarchical information */
5253 	{
5254 		unsigned long long limit, memsw_limit;
5255 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5256 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5257 		if (do_swap_account)
5258 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5259 				   memsw_limit);
5260 	}
5261 
5262 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5263 		long long val = 0;
5264 
5265 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5266 			continue;
5267 		for_each_mem_cgroup_tree(mi, memcg)
5268 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5269 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5270 	}
5271 
5272 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5273 		unsigned long long val = 0;
5274 
5275 		for_each_mem_cgroup_tree(mi, memcg)
5276 			val += mem_cgroup_read_events(mi, i);
5277 		seq_printf(m, "total_%s %llu\n",
5278 			   mem_cgroup_events_names[i], val);
5279 	}
5280 
5281 	for (i = 0; i < NR_LRU_LISTS; i++) {
5282 		unsigned long long val = 0;
5283 
5284 		for_each_mem_cgroup_tree(mi, memcg)
5285 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5286 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5287 	}
5288 
5289 #ifdef CONFIG_DEBUG_VM
5290 	{
5291 		int nid, zid;
5292 		struct mem_cgroup_per_zone *mz;
5293 		struct zone_reclaim_stat *rstat;
5294 		unsigned long recent_rotated[2] = {0, 0};
5295 		unsigned long recent_scanned[2] = {0, 0};
5296 
5297 		for_each_online_node(nid)
5298 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5299 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5300 				rstat = &mz->lruvec.reclaim_stat;
5301 
5302 				recent_rotated[0] += rstat->recent_rotated[0];
5303 				recent_rotated[1] += rstat->recent_rotated[1];
5304 				recent_scanned[0] += rstat->recent_scanned[0];
5305 				recent_scanned[1] += rstat->recent_scanned[1];
5306 			}
5307 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5308 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5309 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5310 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5311 	}
5312 #endif
5313 
5314 	return 0;
5315 }
5316 
5317 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5318 {
5319 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5320 
5321 	return mem_cgroup_swappiness(memcg);
5322 }
5323 
5324 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5325 				       u64 val)
5326 {
5327 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5328 	struct mem_cgroup *parent;
5329 
5330 	if (val > 100)
5331 		return -EINVAL;
5332 
5333 	if (cgrp->parent == NULL)
5334 		return -EINVAL;
5335 
5336 	parent = mem_cgroup_from_cont(cgrp->parent);
5337 
5338 	cgroup_lock();
5339 
5340 	/* If under hierarchy, only empty-root can set this value */
5341 	if ((parent->use_hierarchy) ||
5342 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5343 		cgroup_unlock();
5344 		return -EINVAL;
5345 	}
5346 
5347 	memcg->swappiness = val;
5348 
5349 	cgroup_unlock();
5350 
5351 	return 0;
5352 }
5353 
5354 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5355 {
5356 	struct mem_cgroup_threshold_ary *t;
5357 	u64 usage;
5358 	int i;
5359 
5360 	rcu_read_lock();
5361 	if (!swap)
5362 		t = rcu_dereference(memcg->thresholds.primary);
5363 	else
5364 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5365 
5366 	if (!t)
5367 		goto unlock;
5368 
5369 	usage = mem_cgroup_usage(memcg, swap);
5370 
5371 	/*
5372 	 * current_threshold points to threshold just below or equal to usage.
5373 	 * If it's not true, a threshold was crossed after last
5374 	 * call of __mem_cgroup_threshold().
5375 	 */
5376 	i = t->current_threshold;
5377 
5378 	/*
5379 	 * Iterate backward over array of thresholds starting from
5380 	 * current_threshold and check if a threshold is crossed.
5381 	 * If none of thresholds below usage is crossed, we read
5382 	 * only one element of the array here.
5383 	 */
5384 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5385 		eventfd_signal(t->entries[i].eventfd, 1);
5386 
5387 	/* i = current_threshold + 1 */
5388 	i++;
5389 
5390 	/*
5391 	 * Iterate forward over array of thresholds starting from
5392 	 * current_threshold+1 and check if a threshold is crossed.
5393 	 * If none of thresholds above usage is crossed, we read
5394 	 * only one element of the array here.
5395 	 */
5396 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5397 		eventfd_signal(t->entries[i].eventfd, 1);
5398 
5399 	/* Update current_threshold */
5400 	t->current_threshold = i - 1;
5401 unlock:
5402 	rcu_read_unlock();
5403 }
5404 
5405 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5406 {
5407 	while (memcg) {
5408 		__mem_cgroup_threshold(memcg, false);
5409 		if (do_swap_account)
5410 			__mem_cgroup_threshold(memcg, true);
5411 
5412 		memcg = parent_mem_cgroup(memcg);
5413 	}
5414 }
5415 
5416 static int compare_thresholds(const void *a, const void *b)
5417 {
5418 	const struct mem_cgroup_threshold *_a = a;
5419 	const struct mem_cgroup_threshold *_b = b;
5420 
5421 	return _a->threshold - _b->threshold;
5422 }
5423 
5424 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5425 {
5426 	struct mem_cgroup_eventfd_list *ev;
5427 
5428 	list_for_each_entry(ev, &memcg->oom_notify, list)
5429 		eventfd_signal(ev->eventfd, 1);
5430 	return 0;
5431 }
5432 
5433 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5434 {
5435 	struct mem_cgroup *iter;
5436 
5437 	for_each_mem_cgroup_tree(iter, memcg)
5438 		mem_cgroup_oom_notify_cb(iter);
5439 }
5440 
5441 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5442 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5443 {
5444 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5445 	struct mem_cgroup_thresholds *thresholds;
5446 	struct mem_cgroup_threshold_ary *new;
5447 	enum res_type type = MEMFILE_TYPE(cft->private);
5448 	u64 threshold, usage;
5449 	int i, size, ret;
5450 
5451 	ret = res_counter_memparse_write_strategy(args, &threshold);
5452 	if (ret)
5453 		return ret;
5454 
5455 	mutex_lock(&memcg->thresholds_lock);
5456 
5457 	if (type == _MEM)
5458 		thresholds = &memcg->thresholds;
5459 	else if (type == _MEMSWAP)
5460 		thresholds = &memcg->memsw_thresholds;
5461 	else
5462 		BUG();
5463 
5464 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5465 
5466 	/* Check if a threshold crossed before adding a new one */
5467 	if (thresholds->primary)
5468 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5469 
5470 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5471 
5472 	/* Allocate memory for new array of thresholds */
5473 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5474 			GFP_KERNEL);
5475 	if (!new) {
5476 		ret = -ENOMEM;
5477 		goto unlock;
5478 	}
5479 	new->size = size;
5480 
5481 	/* Copy thresholds (if any) to new array */
5482 	if (thresholds->primary) {
5483 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5484 				sizeof(struct mem_cgroup_threshold));
5485 	}
5486 
5487 	/* Add new threshold */
5488 	new->entries[size - 1].eventfd = eventfd;
5489 	new->entries[size - 1].threshold = threshold;
5490 
5491 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5492 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5493 			compare_thresholds, NULL);
5494 
5495 	/* Find current threshold */
5496 	new->current_threshold = -1;
5497 	for (i = 0; i < size; i++) {
5498 		if (new->entries[i].threshold <= usage) {
5499 			/*
5500 			 * new->current_threshold will not be used until
5501 			 * rcu_assign_pointer(), so it's safe to increment
5502 			 * it here.
5503 			 */
5504 			++new->current_threshold;
5505 		} else
5506 			break;
5507 	}
5508 
5509 	/* Free old spare buffer and save old primary buffer as spare */
5510 	kfree(thresholds->spare);
5511 	thresholds->spare = thresholds->primary;
5512 
5513 	rcu_assign_pointer(thresholds->primary, new);
5514 
5515 	/* To be sure that nobody uses thresholds */
5516 	synchronize_rcu();
5517 
5518 unlock:
5519 	mutex_unlock(&memcg->thresholds_lock);
5520 
5521 	return ret;
5522 }
5523 
5524 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5525 	struct cftype *cft, struct eventfd_ctx *eventfd)
5526 {
5527 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5528 	struct mem_cgroup_thresholds *thresholds;
5529 	struct mem_cgroup_threshold_ary *new;
5530 	enum res_type type = MEMFILE_TYPE(cft->private);
5531 	u64 usage;
5532 	int i, j, size;
5533 
5534 	mutex_lock(&memcg->thresholds_lock);
5535 	if (type == _MEM)
5536 		thresholds = &memcg->thresholds;
5537 	else if (type == _MEMSWAP)
5538 		thresholds = &memcg->memsw_thresholds;
5539 	else
5540 		BUG();
5541 
5542 	if (!thresholds->primary)
5543 		goto unlock;
5544 
5545 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5546 
5547 	/* Check if a threshold crossed before removing */
5548 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5549 
5550 	/* Calculate new number of threshold */
5551 	size = 0;
5552 	for (i = 0; i < thresholds->primary->size; i++) {
5553 		if (thresholds->primary->entries[i].eventfd != eventfd)
5554 			size++;
5555 	}
5556 
5557 	new = thresholds->spare;
5558 
5559 	/* Set thresholds array to NULL if we don't have thresholds */
5560 	if (!size) {
5561 		kfree(new);
5562 		new = NULL;
5563 		goto swap_buffers;
5564 	}
5565 
5566 	new->size = size;
5567 
5568 	/* Copy thresholds and find current threshold */
5569 	new->current_threshold = -1;
5570 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5571 		if (thresholds->primary->entries[i].eventfd == eventfd)
5572 			continue;
5573 
5574 		new->entries[j] = thresholds->primary->entries[i];
5575 		if (new->entries[j].threshold <= usage) {
5576 			/*
5577 			 * new->current_threshold will not be used
5578 			 * until rcu_assign_pointer(), so it's safe to increment
5579 			 * it here.
5580 			 */
5581 			++new->current_threshold;
5582 		}
5583 		j++;
5584 	}
5585 
5586 swap_buffers:
5587 	/* Swap primary and spare array */
5588 	thresholds->spare = thresholds->primary;
5589 	/* If all events are unregistered, free the spare array */
5590 	if (!new) {
5591 		kfree(thresholds->spare);
5592 		thresholds->spare = NULL;
5593 	}
5594 
5595 	rcu_assign_pointer(thresholds->primary, new);
5596 
5597 	/* To be sure that nobody uses thresholds */
5598 	synchronize_rcu();
5599 unlock:
5600 	mutex_unlock(&memcg->thresholds_lock);
5601 }
5602 
5603 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5604 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5605 {
5606 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5607 	struct mem_cgroup_eventfd_list *event;
5608 	enum res_type type = MEMFILE_TYPE(cft->private);
5609 
5610 	BUG_ON(type != _OOM_TYPE);
5611 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5612 	if (!event)
5613 		return -ENOMEM;
5614 
5615 	spin_lock(&memcg_oom_lock);
5616 
5617 	event->eventfd = eventfd;
5618 	list_add(&event->list, &memcg->oom_notify);
5619 
5620 	/* already in OOM ? */
5621 	if (atomic_read(&memcg->under_oom))
5622 		eventfd_signal(eventfd, 1);
5623 	spin_unlock(&memcg_oom_lock);
5624 
5625 	return 0;
5626 }
5627 
5628 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5629 	struct cftype *cft, struct eventfd_ctx *eventfd)
5630 {
5631 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5632 	struct mem_cgroup_eventfd_list *ev, *tmp;
5633 	enum res_type type = MEMFILE_TYPE(cft->private);
5634 
5635 	BUG_ON(type != _OOM_TYPE);
5636 
5637 	spin_lock(&memcg_oom_lock);
5638 
5639 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5640 		if (ev->eventfd == eventfd) {
5641 			list_del(&ev->list);
5642 			kfree(ev);
5643 		}
5644 	}
5645 
5646 	spin_unlock(&memcg_oom_lock);
5647 }
5648 
5649 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5650 	struct cftype *cft,  struct cgroup_map_cb *cb)
5651 {
5652 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5653 
5654 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5655 
5656 	if (atomic_read(&memcg->under_oom))
5657 		cb->fill(cb, "under_oom", 1);
5658 	else
5659 		cb->fill(cb, "under_oom", 0);
5660 	return 0;
5661 }
5662 
5663 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5664 	struct cftype *cft, u64 val)
5665 {
5666 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5667 	struct mem_cgroup *parent;
5668 
5669 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5670 	if (!cgrp->parent || !((val == 0) || (val == 1)))
5671 		return -EINVAL;
5672 
5673 	parent = mem_cgroup_from_cont(cgrp->parent);
5674 
5675 	cgroup_lock();
5676 	/* oom-kill-disable is a flag for subhierarchy. */
5677 	if ((parent->use_hierarchy) ||
5678 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5679 		cgroup_unlock();
5680 		return -EINVAL;
5681 	}
5682 	memcg->oom_kill_disable = val;
5683 	if (!val)
5684 		memcg_oom_recover(memcg);
5685 	cgroup_unlock();
5686 	return 0;
5687 }
5688 
5689 #ifdef CONFIG_MEMCG_KMEM
5690 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5691 {
5692 	int ret;
5693 
5694 	memcg->kmemcg_id = -1;
5695 	ret = memcg_propagate_kmem(memcg);
5696 	if (ret)
5697 		return ret;
5698 
5699 	return mem_cgroup_sockets_init(memcg, ss);
5700 };
5701 
5702 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5703 {
5704 	mem_cgroup_sockets_destroy(memcg);
5705 
5706 	memcg_kmem_mark_dead(memcg);
5707 
5708 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5709 		return;
5710 
5711 	/*
5712 	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5713 	 * path here, being careful not to race with memcg_uncharge_kmem: it is
5714 	 * possible that the charges went down to 0 between mark_dead and the
5715 	 * res_counter read, so in that case, we don't need the put
5716 	 */
5717 	if (memcg_kmem_test_and_clear_dead(memcg))
5718 		mem_cgroup_put(memcg);
5719 }
5720 #else
5721 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5722 {
5723 	return 0;
5724 }
5725 
5726 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5727 {
5728 }
5729 #endif
5730 
5731 static struct cftype mem_cgroup_files[] = {
5732 	{
5733 		.name = "usage_in_bytes",
5734 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5735 		.read = mem_cgroup_read,
5736 		.register_event = mem_cgroup_usage_register_event,
5737 		.unregister_event = mem_cgroup_usage_unregister_event,
5738 	},
5739 	{
5740 		.name = "max_usage_in_bytes",
5741 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5742 		.trigger = mem_cgroup_reset,
5743 		.read = mem_cgroup_read,
5744 	},
5745 	{
5746 		.name = "limit_in_bytes",
5747 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5748 		.write_string = mem_cgroup_write,
5749 		.read = mem_cgroup_read,
5750 	},
5751 	{
5752 		.name = "soft_limit_in_bytes",
5753 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5754 		.write_string = mem_cgroup_write,
5755 		.read = mem_cgroup_read,
5756 	},
5757 	{
5758 		.name = "failcnt",
5759 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5760 		.trigger = mem_cgroup_reset,
5761 		.read = mem_cgroup_read,
5762 	},
5763 	{
5764 		.name = "stat",
5765 		.read_seq_string = memcg_stat_show,
5766 	},
5767 	{
5768 		.name = "force_empty",
5769 		.trigger = mem_cgroup_force_empty_write,
5770 	},
5771 	{
5772 		.name = "use_hierarchy",
5773 		.write_u64 = mem_cgroup_hierarchy_write,
5774 		.read_u64 = mem_cgroup_hierarchy_read,
5775 	},
5776 	{
5777 		.name = "swappiness",
5778 		.read_u64 = mem_cgroup_swappiness_read,
5779 		.write_u64 = mem_cgroup_swappiness_write,
5780 	},
5781 	{
5782 		.name = "move_charge_at_immigrate",
5783 		.read_u64 = mem_cgroup_move_charge_read,
5784 		.write_u64 = mem_cgroup_move_charge_write,
5785 	},
5786 	{
5787 		.name = "oom_control",
5788 		.read_map = mem_cgroup_oom_control_read,
5789 		.write_u64 = mem_cgroup_oom_control_write,
5790 		.register_event = mem_cgroup_oom_register_event,
5791 		.unregister_event = mem_cgroup_oom_unregister_event,
5792 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5793 	},
5794 #ifdef CONFIG_NUMA
5795 	{
5796 		.name = "numa_stat",
5797 		.read_seq_string = memcg_numa_stat_show,
5798 	},
5799 #endif
5800 #ifdef CONFIG_MEMCG_SWAP
5801 	{
5802 		.name = "memsw.usage_in_bytes",
5803 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5804 		.read = mem_cgroup_read,
5805 		.register_event = mem_cgroup_usage_register_event,
5806 		.unregister_event = mem_cgroup_usage_unregister_event,
5807 	},
5808 	{
5809 		.name = "memsw.max_usage_in_bytes",
5810 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5811 		.trigger = mem_cgroup_reset,
5812 		.read = mem_cgroup_read,
5813 	},
5814 	{
5815 		.name = "memsw.limit_in_bytes",
5816 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5817 		.write_string = mem_cgroup_write,
5818 		.read = mem_cgroup_read,
5819 	},
5820 	{
5821 		.name = "memsw.failcnt",
5822 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5823 		.trigger = mem_cgroup_reset,
5824 		.read = mem_cgroup_read,
5825 	},
5826 #endif
5827 #ifdef CONFIG_MEMCG_KMEM
5828 	{
5829 		.name = "kmem.limit_in_bytes",
5830 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5831 		.write_string = mem_cgroup_write,
5832 		.read = mem_cgroup_read,
5833 	},
5834 	{
5835 		.name = "kmem.usage_in_bytes",
5836 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5837 		.read = mem_cgroup_read,
5838 	},
5839 	{
5840 		.name = "kmem.failcnt",
5841 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5842 		.trigger = mem_cgroup_reset,
5843 		.read = mem_cgroup_read,
5844 	},
5845 	{
5846 		.name = "kmem.max_usage_in_bytes",
5847 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5848 		.trigger = mem_cgroup_reset,
5849 		.read = mem_cgroup_read,
5850 	},
5851 #ifdef CONFIG_SLABINFO
5852 	{
5853 		.name = "kmem.slabinfo",
5854 		.read_seq_string = mem_cgroup_slabinfo_read,
5855 	},
5856 #endif
5857 #endif
5858 	{ },	/* terminate */
5859 };
5860 
5861 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5862 {
5863 	struct mem_cgroup_per_node *pn;
5864 	struct mem_cgroup_per_zone *mz;
5865 	int zone, tmp = node;
5866 	/*
5867 	 * This routine is called against possible nodes.
5868 	 * But it's BUG to call kmalloc() against offline node.
5869 	 *
5870 	 * TODO: this routine can waste much memory for nodes which will
5871 	 *       never be onlined. It's better to use memory hotplug callback
5872 	 *       function.
5873 	 */
5874 	if (!node_state(node, N_NORMAL_MEMORY))
5875 		tmp = -1;
5876 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5877 	if (!pn)
5878 		return 1;
5879 
5880 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5881 		mz = &pn->zoneinfo[zone];
5882 		lruvec_init(&mz->lruvec);
5883 		mz->usage_in_excess = 0;
5884 		mz->on_tree = false;
5885 		mz->memcg = memcg;
5886 	}
5887 	memcg->info.nodeinfo[node] = pn;
5888 	return 0;
5889 }
5890 
5891 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5892 {
5893 	kfree(memcg->info.nodeinfo[node]);
5894 }
5895 
5896 static struct mem_cgroup *mem_cgroup_alloc(void)
5897 {
5898 	struct mem_cgroup *memcg;
5899 	int size = sizeof(struct mem_cgroup);
5900 
5901 	/* Can be very big if MAX_NUMNODES is very big */
5902 	if (size < PAGE_SIZE)
5903 		memcg = kzalloc(size, GFP_KERNEL);
5904 	else
5905 		memcg = vzalloc(size);
5906 
5907 	if (!memcg)
5908 		return NULL;
5909 
5910 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5911 	if (!memcg->stat)
5912 		goto out_free;
5913 	spin_lock_init(&memcg->pcp_counter_lock);
5914 	return memcg;
5915 
5916 out_free:
5917 	if (size < PAGE_SIZE)
5918 		kfree(memcg);
5919 	else
5920 		vfree(memcg);
5921 	return NULL;
5922 }
5923 
5924 /*
5925  * At destroying mem_cgroup, references from swap_cgroup can remain.
5926  * (scanning all at force_empty is too costly...)
5927  *
5928  * Instead of clearing all references at force_empty, we remember
5929  * the number of reference from swap_cgroup and free mem_cgroup when
5930  * it goes down to 0.
5931  *
5932  * Removal of cgroup itself succeeds regardless of refs from swap.
5933  */
5934 
5935 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5936 {
5937 	int node;
5938 	int size = sizeof(struct mem_cgroup);
5939 
5940 	mem_cgroup_remove_from_trees(memcg);
5941 	free_css_id(&mem_cgroup_subsys, &memcg->css);
5942 
5943 	for_each_node(node)
5944 		free_mem_cgroup_per_zone_info(memcg, node);
5945 
5946 	free_percpu(memcg->stat);
5947 
5948 	/*
5949 	 * We need to make sure that (at least for now), the jump label
5950 	 * destruction code runs outside of the cgroup lock. This is because
5951 	 * get_online_cpus(), which is called from the static_branch update,
5952 	 * can't be called inside the cgroup_lock. cpusets are the ones
5953 	 * enforcing this dependency, so if they ever change, we might as well.
5954 	 *
5955 	 * schedule_work() will guarantee this happens. Be careful if you need
5956 	 * to move this code around, and make sure it is outside
5957 	 * the cgroup_lock.
5958 	 */
5959 	disarm_static_keys(memcg);
5960 	if (size < PAGE_SIZE)
5961 		kfree(memcg);
5962 	else
5963 		vfree(memcg);
5964 }
5965 
5966 
5967 /*
5968  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5969  * but in process context.  The work_freeing structure is overlaid
5970  * on the rcu_freeing structure, which itself is overlaid on memsw.
5971  */
5972 static void free_work(struct work_struct *work)
5973 {
5974 	struct mem_cgroup *memcg;
5975 
5976 	memcg = container_of(work, struct mem_cgroup, work_freeing);
5977 	__mem_cgroup_free(memcg);
5978 }
5979 
5980 static void free_rcu(struct rcu_head *rcu_head)
5981 {
5982 	struct mem_cgroup *memcg;
5983 
5984 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5985 	INIT_WORK(&memcg->work_freeing, free_work);
5986 	schedule_work(&memcg->work_freeing);
5987 }
5988 
5989 static void mem_cgroup_get(struct mem_cgroup *memcg)
5990 {
5991 	atomic_inc(&memcg->refcnt);
5992 }
5993 
5994 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5995 {
5996 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
5997 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5998 		call_rcu(&memcg->rcu_freeing, free_rcu);
5999 		if (parent)
6000 			mem_cgroup_put(parent);
6001 	}
6002 }
6003 
6004 static void mem_cgroup_put(struct mem_cgroup *memcg)
6005 {
6006 	__mem_cgroup_put(memcg, 1);
6007 }
6008 
6009 /*
6010  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6011  */
6012 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6013 {
6014 	if (!memcg->res.parent)
6015 		return NULL;
6016 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6017 }
6018 EXPORT_SYMBOL(parent_mem_cgroup);
6019 
6020 #ifdef CONFIG_MEMCG_SWAP
6021 static void __init enable_swap_cgroup(void)
6022 {
6023 	if (!mem_cgroup_disabled() && really_do_swap_account)
6024 		do_swap_account = 1;
6025 }
6026 #else
6027 static void __init enable_swap_cgroup(void)
6028 {
6029 }
6030 #endif
6031 
6032 static int mem_cgroup_soft_limit_tree_init(void)
6033 {
6034 	struct mem_cgroup_tree_per_node *rtpn;
6035 	struct mem_cgroup_tree_per_zone *rtpz;
6036 	int tmp, node, zone;
6037 
6038 	for_each_node(node) {
6039 		tmp = node;
6040 		if (!node_state(node, N_NORMAL_MEMORY))
6041 			tmp = -1;
6042 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6043 		if (!rtpn)
6044 			goto err_cleanup;
6045 
6046 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6047 
6048 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6049 			rtpz = &rtpn->rb_tree_per_zone[zone];
6050 			rtpz->rb_root = RB_ROOT;
6051 			spin_lock_init(&rtpz->lock);
6052 		}
6053 	}
6054 	return 0;
6055 
6056 err_cleanup:
6057 	for_each_node(node) {
6058 		if (!soft_limit_tree.rb_tree_per_node[node])
6059 			break;
6060 		kfree(soft_limit_tree.rb_tree_per_node[node]);
6061 		soft_limit_tree.rb_tree_per_node[node] = NULL;
6062 	}
6063 	return 1;
6064 
6065 }
6066 
6067 static struct cgroup_subsys_state * __ref
6068 mem_cgroup_css_alloc(struct cgroup *cont)
6069 {
6070 	struct mem_cgroup *memcg, *parent;
6071 	long error = -ENOMEM;
6072 	int node;
6073 
6074 	memcg = mem_cgroup_alloc();
6075 	if (!memcg)
6076 		return ERR_PTR(error);
6077 
6078 	for_each_node(node)
6079 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6080 			goto free_out;
6081 
6082 	/* root ? */
6083 	if (cont->parent == NULL) {
6084 		int cpu;
6085 		enable_swap_cgroup();
6086 		parent = NULL;
6087 		if (mem_cgroup_soft_limit_tree_init())
6088 			goto free_out;
6089 		root_mem_cgroup = memcg;
6090 		for_each_possible_cpu(cpu) {
6091 			struct memcg_stock_pcp *stock =
6092 						&per_cpu(memcg_stock, cpu);
6093 			INIT_WORK(&stock->work, drain_local_stock);
6094 		}
6095 	} else {
6096 		parent = mem_cgroup_from_cont(cont->parent);
6097 		memcg->use_hierarchy = parent->use_hierarchy;
6098 		memcg->oom_kill_disable = parent->oom_kill_disable;
6099 	}
6100 
6101 	if (parent && parent->use_hierarchy) {
6102 		res_counter_init(&memcg->res, &parent->res);
6103 		res_counter_init(&memcg->memsw, &parent->memsw);
6104 		res_counter_init(&memcg->kmem, &parent->kmem);
6105 
6106 		/*
6107 		 * We increment refcnt of the parent to ensure that we can
6108 		 * safely access it on res_counter_charge/uncharge.
6109 		 * This refcnt will be decremented when freeing this
6110 		 * mem_cgroup(see mem_cgroup_put).
6111 		 */
6112 		mem_cgroup_get(parent);
6113 	} else {
6114 		res_counter_init(&memcg->res, NULL);
6115 		res_counter_init(&memcg->memsw, NULL);
6116 		res_counter_init(&memcg->kmem, NULL);
6117 		/*
6118 		 * Deeper hierachy with use_hierarchy == false doesn't make
6119 		 * much sense so let cgroup subsystem know about this
6120 		 * unfortunate state in our controller.
6121 		 */
6122 		if (parent && parent != root_mem_cgroup)
6123 			mem_cgroup_subsys.broken_hierarchy = true;
6124 	}
6125 	memcg->last_scanned_node = MAX_NUMNODES;
6126 	INIT_LIST_HEAD(&memcg->oom_notify);
6127 
6128 	if (parent)
6129 		memcg->swappiness = mem_cgroup_swappiness(parent);
6130 	atomic_set(&memcg->refcnt, 1);
6131 	memcg->move_charge_at_immigrate = 0;
6132 	mutex_init(&memcg->thresholds_lock);
6133 	spin_lock_init(&memcg->move_lock);
6134 
6135 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6136 	if (error) {
6137 		/*
6138 		 * We call put now because our (and parent's) refcnts
6139 		 * are already in place. mem_cgroup_put() will internally
6140 		 * call __mem_cgroup_free, so return directly
6141 		 */
6142 		mem_cgroup_put(memcg);
6143 		return ERR_PTR(error);
6144 	}
6145 	return &memcg->css;
6146 free_out:
6147 	__mem_cgroup_free(memcg);
6148 	return ERR_PTR(error);
6149 }
6150 
6151 static void mem_cgroup_css_offline(struct cgroup *cont)
6152 {
6153 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6154 
6155 	mem_cgroup_reparent_charges(memcg);
6156 	mem_cgroup_destroy_all_caches(memcg);
6157 }
6158 
6159 static void mem_cgroup_css_free(struct cgroup *cont)
6160 {
6161 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6162 
6163 	kmem_cgroup_destroy(memcg);
6164 
6165 	mem_cgroup_put(memcg);
6166 }
6167 
6168 #ifdef CONFIG_MMU
6169 /* Handlers for move charge at task migration. */
6170 #define PRECHARGE_COUNT_AT_ONCE	256
6171 static int mem_cgroup_do_precharge(unsigned long count)
6172 {
6173 	int ret = 0;
6174 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6175 	struct mem_cgroup *memcg = mc.to;
6176 
6177 	if (mem_cgroup_is_root(memcg)) {
6178 		mc.precharge += count;
6179 		/* we don't need css_get for root */
6180 		return ret;
6181 	}
6182 	/* try to charge at once */
6183 	if (count > 1) {
6184 		struct res_counter *dummy;
6185 		/*
6186 		 * "memcg" cannot be under rmdir() because we've already checked
6187 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6188 		 * are still under the same cgroup_mutex. So we can postpone
6189 		 * css_get().
6190 		 */
6191 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6192 			goto one_by_one;
6193 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6194 						PAGE_SIZE * count, &dummy)) {
6195 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6196 			goto one_by_one;
6197 		}
6198 		mc.precharge += count;
6199 		return ret;
6200 	}
6201 one_by_one:
6202 	/* fall back to one by one charge */
6203 	while (count--) {
6204 		if (signal_pending(current)) {
6205 			ret = -EINTR;
6206 			break;
6207 		}
6208 		if (!batch_count--) {
6209 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6210 			cond_resched();
6211 		}
6212 		ret = __mem_cgroup_try_charge(NULL,
6213 					GFP_KERNEL, 1, &memcg, false);
6214 		if (ret)
6215 			/* mem_cgroup_clear_mc() will do uncharge later */
6216 			return ret;
6217 		mc.precharge++;
6218 	}
6219 	return ret;
6220 }
6221 
6222 /**
6223  * get_mctgt_type - get target type of moving charge
6224  * @vma: the vma the pte to be checked belongs
6225  * @addr: the address corresponding to the pte to be checked
6226  * @ptent: the pte to be checked
6227  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6228  *
6229  * Returns
6230  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6231  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6232  *     move charge. if @target is not NULL, the page is stored in target->page
6233  *     with extra refcnt got(Callers should handle it).
6234  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6235  *     target for charge migration. if @target is not NULL, the entry is stored
6236  *     in target->ent.
6237  *
6238  * Called with pte lock held.
6239  */
6240 union mc_target {
6241 	struct page	*page;
6242 	swp_entry_t	ent;
6243 };
6244 
6245 enum mc_target_type {
6246 	MC_TARGET_NONE = 0,
6247 	MC_TARGET_PAGE,
6248 	MC_TARGET_SWAP,
6249 };
6250 
6251 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6252 						unsigned long addr, pte_t ptent)
6253 {
6254 	struct page *page = vm_normal_page(vma, addr, ptent);
6255 
6256 	if (!page || !page_mapped(page))
6257 		return NULL;
6258 	if (PageAnon(page)) {
6259 		/* we don't move shared anon */
6260 		if (!move_anon())
6261 			return NULL;
6262 	} else if (!move_file())
6263 		/* we ignore mapcount for file pages */
6264 		return NULL;
6265 	if (!get_page_unless_zero(page))
6266 		return NULL;
6267 
6268 	return page;
6269 }
6270 
6271 #ifdef CONFIG_SWAP
6272 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6273 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6274 {
6275 	struct page *page = NULL;
6276 	swp_entry_t ent = pte_to_swp_entry(ptent);
6277 
6278 	if (!move_anon() || non_swap_entry(ent))
6279 		return NULL;
6280 	/*
6281 	 * Because lookup_swap_cache() updates some statistics counter,
6282 	 * we call find_get_page() with swapper_space directly.
6283 	 */
6284 	page = find_get_page(&swapper_space, ent.val);
6285 	if (do_swap_account)
6286 		entry->val = ent.val;
6287 
6288 	return page;
6289 }
6290 #else
6291 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6292 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6293 {
6294 	return NULL;
6295 }
6296 #endif
6297 
6298 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6299 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6300 {
6301 	struct page *page = NULL;
6302 	struct address_space *mapping;
6303 	pgoff_t pgoff;
6304 
6305 	if (!vma->vm_file) /* anonymous vma */
6306 		return NULL;
6307 	if (!move_file())
6308 		return NULL;
6309 
6310 	mapping = vma->vm_file->f_mapping;
6311 	if (pte_none(ptent))
6312 		pgoff = linear_page_index(vma, addr);
6313 	else /* pte_file(ptent) is true */
6314 		pgoff = pte_to_pgoff(ptent);
6315 
6316 	/* page is moved even if it's not RSS of this task(page-faulted). */
6317 	page = find_get_page(mapping, pgoff);
6318 
6319 #ifdef CONFIG_SWAP
6320 	/* shmem/tmpfs may report page out on swap: account for that too. */
6321 	if (radix_tree_exceptional_entry(page)) {
6322 		swp_entry_t swap = radix_to_swp_entry(page);
6323 		if (do_swap_account)
6324 			*entry = swap;
6325 		page = find_get_page(&swapper_space, swap.val);
6326 	}
6327 #endif
6328 	return page;
6329 }
6330 
6331 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6332 		unsigned long addr, pte_t ptent, union mc_target *target)
6333 {
6334 	struct page *page = NULL;
6335 	struct page_cgroup *pc;
6336 	enum mc_target_type ret = MC_TARGET_NONE;
6337 	swp_entry_t ent = { .val = 0 };
6338 
6339 	if (pte_present(ptent))
6340 		page = mc_handle_present_pte(vma, addr, ptent);
6341 	else if (is_swap_pte(ptent))
6342 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6343 	else if (pte_none(ptent) || pte_file(ptent))
6344 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6345 
6346 	if (!page && !ent.val)
6347 		return ret;
6348 	if (page) {
6349 		pc = lookup_page_cgroup(page);
6350 		/*
6351 		 * Do only loose check w/o page_cgroup lock.
6352 		 * mem_cgroup_move_account() checks the pc is valid or not under
6353 		 * the lock.
6354 		 */
6355 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6356 			ret = MC_TARGET_PAGE;
6357 			if (target)
6358 				target->page = page;
6359 		}
6360 		if (!ret || !target)
6361 			put_page(page);
6362 	}
6363 	/* There is a swap entry and a page doesn't exist or isn't charged */
6364 	if (ent.val && !ret &&
6365 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6366 		ret = MC_TARGET_SWAP;
6367 		if (target)
6368 			target->ent = ent;
6369 	}
6370 	return ret;
6371 }
6372 
6373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6374 /*
6375  * We don't consider swapping or file mapped pages because THP does not
6376  * support them for now.
6377  * Caller should make sure that pmd_trans_huge(pmd) is true.
6378  */
6379 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6380 		unsigned long addr, pmd_t pmd, union mc_target *target)
6381 {
6382 	struct page *page = NULL;
6383 	struct page_cgroup *pc;
6384 	enum mc_target_type ret = MC_TARGET_NONE;
6385 
6386 	page = pmd_page(pmd);
6387 	VM_BUG_ON(!page || !PageHead(page));
6388 	if (!move_anon())
6389 		return ret;
6390 	pc = lookup_page_cgroup(page);
6391 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6392 		ret = MC_TARGET_PAGE;
6393 		if (target) {
6394 			get_page(page);
6395 			target->page = page;
6396 		}
6397 	}
6398 	return ret;
6399 }
6400 #else
6401 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6402 		unsigned long addr, pmd_t pmd, union mc_target *target)
6403 {
6404 	return MC_TARGET_NONE;
6405 }
6406 #endif
6407 
6408 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6409 					unsigned long addr, unsigned long end,
6410 					struct mm_walk *walk)
6411 {
6412 	struct vm_area_struct *vma = walk->private;
6413 	pte_t *pte;
6414 	spinlock_t *ptl;
6415 
6416 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6417 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6418 			mc.precharge += HPAGE_PMD_NR;
6419 		spin_unlock(&vma->vm_mm->page_table_lock);
6420 		return 0;
6421 	}
6422 
6423 	if (pmd_trans_unstable(pmd))
6424 		return 0;
6425 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6426 	for (; addr != end; pte++, addr += PAGE_SIZE)
6427 		if (get_mctgt_type(vma, addr, *pte, NULL))
6428 			mc.precharge++;	/* increment precharge temporarily */
6429 	pte_unmap_unlock(pte - 1, ptl);
6430 	cond_resched();
6431 
6432 	return 0;
6433 }
6434 
6435 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6436 {
6437 	unsigned long precharge;
6438 	struct vm_area_struct *vma;
6439 
6440 	down_read(&mm->mmap_sem);
6441 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6442 		struct mm_walk mem_cgroup_count_precharge_walk = {
6443 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6444 			.mm = mm,
6445 			.private = vma,
6446 		};
6447 		if (is_vm_hugetlb_page(vma))
6448 			continue;
6449 		walk_page_range(vma->vm_start, vma->vm_end,
6450 					&mem_cgroup_count_precharge_walk);
6451 	}
6452 	up_read(&mm->mmap_sem);
6453 
6454 	precharge = mc.precharge;
6455 	mc.precharge = 0;
6456 
6457 	return precharge;
6458 }
6459 
6460 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6461 {
6462 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6463 
6464 	VM_BUG_ON(mc.moving_task);
6465 	mc.moving_task = current;
6466 	return mem_cgroup_do_precharge(precharge);
6467 }
6468 
6469 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6470 static void __mem_cgroup_clear_mc(void)
6471 {
6472 	struct mem_cgroup *from = mc.from;
6473 	struct mem_cgroup *to = mc.to;
6474 
6475 	/* we must uncharge all the leftover precharges from mc.to */
6476 	if (mc.precharge) {
6477 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6478 		mc.precharge = 0;
6479 	}
6480 	/*
6481 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6482 	 * we must uncharge here.
6483 	 */
6484 	if (mc.moved_charge) {
6485 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6486 		mc.moved_charge = 0;
6487 	}
6488 	/* we must fixup refcnts and charges */
6489 	if (mc.moved_swap) {
6490 		/* uncharge swap account from the old cgroup */
6491 		if (!mem_cgroup_is_root(mc.from))
6492 			res_counter_uncharge(&mc.from->memsw,
6493 						PAGE_SIZE * mc.moved_swap);
6494 		__mem_cgroup_put(mc.from, mc.moved_swap);
6495 
6496 		if (!mem_cgroup_is_root(mc.to)) {
6497 			/*
6498 			 * we charged both to->res and to->memsw, so we should
6499 			 * uncharge to->res.
6500 			 */
6501 			res_counter_uncharge(&mc.to->res,
6502 						PAGE_SIZE * mc.moved_swap);
6503 		}
6504 		/* we've already done mem_cgroup_get(mc.to) */
6505 		mc.moved_swap = 0;
6506 	}
6507 	memcg_oom_recover(from);
6508 	memcg_oom_recover(to);
6509 	wake_up_all(&mc.waitq);
6510 }
6511 
6512 static void mem_cgroup_clear_mc(void)
6513 {
6514 	struct mem_cgroup *from = mc.from;
6515 
6516 	/*
6517 	 * we must clear moving_task before waking up waiters at the end of
6518 	 * task migration.
6519 	 */
6520 	mc.moving_task = NULL;
6521 	__mem_cgroup_clear_mc();
6522 	spin_lock(&mc.lock);
6523 	mc.from = NULL;
6524 	mc.to = NULL;
6525 	spin_unlock(&mc.lock);
6526 	mem_cgroup_end_move(from);
6527 }
6528 
6529 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6530 				 struct cgroup_taskset *tset)
6531 {
6532 	struct task_struct *p = cgroup_taskset_first(tset);
6533 	int ret = 0;
6534 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6535 
6536 	if (memcg->move_charge_at_immigrate) {
6537 		struct mm_struct *mm;
6538 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6539 
6540 		VM_BUG_ON(from == memcg);
6541 
6542 		mm = get_task_mm(p);
6543 		if (!mm)
6544 			return 0;
6545 		/* We move charges only when we move a owner of the mm */
6546 		if (mm->owner == p) {
6547 			VM_BUG_ON(mc.from);
6548 			VM_BUG_ON(mc.to);
6549 			VM_BUG_ON(mc.precharge);
6550 			VM_BUG_ON(mc.moved_charge);
6551 			VM_BUG_ON(mc.moved_swap);
6552 			mem_cgroup_start_move(from);
6553 			spin_lock(&mc.lock);
6554 			mc.from = from;
6555 			mc.to = memcg;
6556 			spin_unlock(&mc.lock);
6557 			/* We set mc.moving_task later */
6558 
6559 			ret = mem_cgroup_precharge_mc(mm);
6560 			if (ret)
6561 				mem_cgroup_clear_mc();
6562 		}
6563 		mmput(mm);
6564 	}
6565 	return ret;
6566 }
6567 
6568 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6569 				     struct cgroup_taskset *tset)
6570 {
6571 	mem_cgroup_clear_mc();
6572 }
6573 
6574 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6575 				unsigned long addr, unsigned long end,
6576 				struct mm_walk *walk)
6577 {
6578 	int ret = 0;
6579 	struct vm_area_struct *vma = walk->private;
6580 	pte_t *pte;
6581 	spinlock_t *ptl;
6582 	enum mc_target_type target_type;
6583 	union mc_target target;
6584 	struct page *page;
6585 	struct page_cgroup *pc;
6586 
6587 	/*
6588 	 * We don't take compound_lock() here but no race with splitting thp
6589 	 * happens because:
6590 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6591 	 *    under splitting, which means there's no concurrent thp split,
6592 	 *  - if another thread runs into split_huge_page() just after we
6593 	 *    entered this if-block, the thread must wait for page table lock
6594 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6595 	 *    part of thp split is not executed yet.
6596 	 */
6597 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6598 		if (mc.precharge < HPAGE_PMD_NR) {
6599 			spin_unlock(&vma->vm_mm->page_table_lock);
6600 			return 0;
6601 		}
6602 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6603 		if (target_type == MC_TARGET_PAGE) {
6604 			page = target.page;
6605 			if (!isolate_lru_page(page)) {
6606 				pc = lookup_page_cgroup(page);
6607 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6608 							pc, mc.from, mc.to)) {
6609 					mc.precharge -= HPAGE_PMD_NR;
6610 					mc.moved_charge += HPAGE_PMD_NR;
6611 				}
6612 				putback_lru_page(page);
6613 			}
6614 			put_page(page);
6615 		}
6616 		spin_unlock(&vma->vm_mm->page_table_lock);
6617 		return 0;
6618 	}
6619 
6620 	if (pmd_trans_unstable(pmd))
6621 		return 0;
6622 retry:
6623 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6624 	for (; addr != end; addr += PAGE_SIZE) {
6625 		pte_t ptent = *(pte++);
6626 		swp_entry_t ent;
6627 
6628 		if (!mc.precharge)
6629 			break;
6630 
6631 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6632 		case MC_TARGET_PAGE:
6633 			page = target.page;
6634 			if (isolate_lru_page(page))
6635 				goto put;
6636 			pc = lookup_page_cgroup(page);
6637 			if (!mem_cgroup_move_account(page, 1, pc,
6638 						     mc.from, mc.to)) {
6639 				mc.precharge--;
6640 				/* we uncharge from mc.from later. */
6641 				mc.moved_charge++;
6642 			}
6643 			putback_lru_page(page);
6644 put:			/* get_mctgt_type() gets the page */
6645 			put_page(page);
6646 			break;
6647 		case MC_TARGET_SWAP:
6648 			ent = target.ent;
6649 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6650 				mc.precharge--;
6651 				/* we fixup refcnts and charges later. */
6652 				mc.moved_swap++;
6653 			}
6654 			break;
6655 		default:
6656 			break;
6657 		}
6658 	}
6659 	pte_unmap_unlock(pte - 1, ptl);
6660 	cond_resched();
6661 
6662 	if (addr != end) {
6663 		/*
6664 		 * We have consumed all precharges we got in can_attach().
6665 		 * We try charge one by one, but don't do any additional
6666 		 * charges to mc.to if we have failed in charge once in attach()
6667 		 * phase.
6668 		 */
6669 		ret = mem_cgroup_do_precharge(1);
6670 		if (!ret)
6671 			goto retry;
6672 	}
6673 
6674 	return ret;
6675 }
6676 
6677 static void mem_cgroup_move_charge(struct mm_struct *mm)
6678 {
6679 	struct vm_area_struct *vma;
6680 
6681 	lru_add_drain_all();
6682 retry:
6683 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6684 		/*
6685 		 * Someone who are holding the mmap_sem might be waiting in
6686 		 * waitq. So we cancel all extra charges, wake up all waiters,
6687 		 * and retry. Because we cancel precharges, we might not be able
6688 		 * to move enough charges, but moving charge is a best-effort
6689 		 * feature anyway, so it wouldn't be a big problem.
6690 		 */
6691 		__mem_cgroup_clear_mc();
6692 		cond_resched();
6693 		goto retry;
6694 	}
6695 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6696 		int ret;
6697 		struct mm_walk mem_cgroup_move_charge_walk = {
6698 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6699 			.mm = mm,
6700 			.private = vma,
6701 		};
6702 		if (is_vm_hugetlb_page(vma))
6703 			continue;
6704 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6705 						&mem_cgroup_move_charge_walk);
6706 		if (ret)
6707 			/*
6708 			 * means we have consumed all precharges and failed in
6709 			 * doing additional charge. Just abandon here.
6710 			 */
6711 			break;
6712 	}
6713 	up_read(&mm->mmap_sem);
6714 }
6715 
6716 static void mem_cgroup_move_task(struct cgroup *cont,
6717 				 struct cgroup_taskset *tset)
6718 {
6719 	struct task_struct *p = cgroup_taskset_first(tset);
6720 	struct mm_struct *mm = get_task_mm(p);
6721 
6722 	if (mm) {
6723 		if (mc.to)
6724 			mem_cgroup_move_charge(mm);
6725 		mmput(mm);
6726 	}
6727 	if (mc.to)
6728 		mem_cgroup_clear_mc();
6729 }
6730 #else	/* !CONFIG_MMU */
6731 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6732 				 struct cgroup_taskset *tset)
6733 {
6734 	return 0;
6735 }
6736 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6737 				     struct cgroup_taskset *tset)
6738 {
6739 }
6740 static void mem_cgroup_move_task(struct cgroup *cont,
6741 				 struct cgroup_taskset *tset)
6742 {
6743 }
6744 #endif
6745 
6746 struct cgroup_subsys mem_cgroup_subsys = {
6747 	.name = "memory",
6748 	.subsys_id = mem_cgroup_subsys_id,
6749 	.css_alloc = mem_cgroup_css_alloc,
6750 	.css_offline = mem_cgroup_css_offline,
6751 	.css_free = mem_cgroup_css_free,
6752 	.can_attach = mem_cgroup_can_attach,
6753 	.cancel_attach = mem_cgroup_cancel_attach,
6754 	.attach = mem_cgroup_move_task,
6755 	.base_cftypes = mem_cgroup_files,
6756 	.early_init = 0,
6757 	.use_id = 1,
6758 };
6759 
6760 /*
6761  * The rest of init is performed during ->css_alloc() for root css which
6762  * happens before initcalls.  hotcpu_notifier() can't be done together as
6763  * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
6764  * dependency.  Do it from a subsys_initcall().
6765  */
6766 static int __init mem_cgroup_init(void)
6767 {
6768 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6769 	return 0;
6770 }
6771 subsys_initcall(mem_cgroup_init);
6772 
6773 #ifdef CONFIG_MEMCG_SWAP
6774 static int __init enable_swap_account(char *s)
6775 {
6776 	/* consider enabled if no parameter or 1 is given */
6777 	if (!strcmp(s, "1"))
6778 		really_do_swap_account = 1;
6779 	else if (!strcmp(s, "0"))
6780 		really_do_swap_account = 0;
6781 	return 1;
6782 }
6783 __setup("swapaccount=", enable_swap_account);
6784 
6785 #endif
6786