1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/mm_inline.h> 53 #include <linux/page_cgroup.h> 54 #include <linux/cpu.h> 55 #include <linux/oom.h> 56 #include "internal.h" 57 #include <net/sock.h> 58 #include <net/ip.h> 59 #include <net/tcp_memcontrol.h> 60 61 #include <asm/uaccess.h> 62 63 #include <trace/events/vmscan.h> 64 65 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 66 EXPORT_SYMBOL(mem_cgroup_subsys); 67 68 #define MEM_CGROUP_RECLAIM_RETRIES 5 69 static struct mem_cgroup *root_mem_cgroup __read_mostly; 70 71 #ifdef CONFIG_MEMCG_SWAP 72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 73 int do_swap_account __read_mostly; 74 75 /* for remember boot option*/ 76 #ifdef CONFIG_MEMCG_SWAP_ENABLED 77 static int really_do_swap_account __initdata = 1; 78 #else 79 static int really_do_swap_account __initdata = 0; 80 #endif 81 82 #else 83 #define do_swap_account 0 84 #endif 85 86 87 /* 88 * Statistics for memory cgroup. 89 */ 90 enum mem_cgroup_stat_index { 91 /* 92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 93 */ 94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 98 MEM_CGROUP_STAT_NSTATS, 99 }; 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "mapped_file", 105 "swap", 106 }; 107 108 enum mem_cgroup_events_index { 109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 113 MEM_CGROUP_EVENTS_NSTATS, 114 }; 115 116 static const char * const mem_cgroup_events_names[] = { 117 "pgpgin", 118 "pgpgout", 119 "pgfault", 120 "pgmajfault", 121 }; 122 123 /* 124 * Per memcg event counter is incremented at every pagein/pageout. With THP, 125 * it will be incremated by the number of pages. This counter is used for 126 * for trigger some periodic events. This is straightforward and better 127 * than using jiffies etc. to handle periodic memcg event. 128 */ 129 enum mem_cgroup_events_target { 130 MEM_CGROUP_TARGET_THRESH, 131 MEM_CGROUP_TARGET_SOFTLIMIT, 132 MEM_CGROUP_TARGET_NUMAINFO, 133 MEM_CGROUP_NTARGETS, 134 }; 135 #define THRESHOLDS_EVENTS_TARGET 128 136 #define SOFTLIMIT_EVENTS_TARGET 1024 137 #define NUMAINFO_EVENTS_TARGET 1024 138 139 struct mem_cgroup_stat_cpu { 140 long count[MEM_CGROUP_STAT_NSTATS]; 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 142 unsigned long nr_page_events; 143 unsigned long targets[MEM_CGROUP_NTARGETS]; 144 }; 145 146 struct mem_cgroup_reclaim_iter { 147 /* css_id of the last scanned hierarchy member */ 148 int position; 149 /* scan generation, increased every round-trip */ 150 unsigned int generation; 151 }; 152 153 /* 154 * per-zone information in memory controller. 155 */ 156 struct mem_cgroup_per_zone { 157 struct lruvec lruvec; 158 unsigned long lru_size[NR_LRU_LISTS]; 159 160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 161 162 struct rb_node tree_node; /* RB tree node */ 163 unsigned long long usage_in_excess;/* Set to the value by which */ 164 /* the soft limit is exceeded*/ 165 bool on_tree; 166 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 167 /* use container_of */ 168 }; 169 170 struct mem_cgroup_per_node { 171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 172 }; 173 174 struct mem_cgroup_lru_info { 175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 176 }; 177 178 /* 179 * Cgroups above their limits are maintained in a RB-Tree, independent of 180 * their hierarchy representation 181 */ 182 183 struct mem_cgroup_tree_per_zone { 184 struct rb_root rb_root; 185 spinlock_t lock; 186 }; 187 188 struct mem_cgroup_tree_per_node { 189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 190 }; 191 192 struct mem_cgroup_tree { 193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 194 }; 195 196 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 197 198 struct mem_cgroup_threshold { 199 struct eventfd_ctx *eventfd; 200 u64 threshold; 201 }; 202 203 /* For threshold */ 204 struct mem_cgroup_threshold_ary { 205 /* An array index points to threshold just below or equal to usage. */ 206 int current_threshold; 207 /* Size of entries[] */ 208 unsigned int size; 209 /* Array of thresholds */ 210 struct mem_cgroup_threshold entries[0]; 211 }; 212 213 struct mem_cgroup_thresholds { 214 /* Primary thresholds array */ 215 struct mem_cgroup_threshold_ary *primary; 216 /* 217 * Spare threshold array. 218 * This is needed to make mem_cgroup_unregister_event() "never fail". 219 * It must be able to store at least primary->size - 1 entries. 220 */ 221 struct mem_cgroup_threshold_ary *spare; 222 }; 223 224 /* for OOM */ 225 struct mem_cgroup_eventfd_list { 226 struct list_head list; 227 struct eventfd_ctx *eventfd; 228 }; 229 230 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 232 233 /* 234 * The memory controller data structure. The memory controller controls both 235 * page cache and RSS per cgroup. We would eventually like to provide 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 237 * to help the administrator determine what knobs to tune. 238 * 239 * TODO: Add a water mark for the memory controller. Reclaim will begin when 240 * we hit the water mark. May be even add a low water mark, such that 241 * no reclaim occurs from a cgroup at it's low water mark, this is 242 * a feature that will be implemented much later in the future. 243 */ 244 struct mem_cgroup { 245 struct cgroup_subsys_state css; 246 /* 247 * the counter to account for memory usage 248 */ 249 struct res_counter res; 250 251 union { 252 /* 253 * the counter to account for mem+swap usage. 254 */ 255 struct res_counter memsw; 256 257 /* 258 * rcu_freeing is used only when freeing struct mem_cgroup, 259 * so put it into a union to avoid wasting more memory. 260 * It must be disjoint from the css field. It could be 261 * in a union with the res field, but res plays a much 262 * larger part in mem_cgroup life than memsw, and might 263 * be of interest, even at time of free, when debugging. 264 * So share rcu_head with the less interesting memsw. 265 */ 266 struct rcu_head rcu_freeing; 267 /* 268 * We also need some space for a worker in deferred freeing. 269 * By the time we call it, rcu_freeing is no longer in use. 270 */ 271 struct work_struct work_freeing; 272 }; 273 274 /* 275 * the counter to account for kernel memory usage. 276 */ 277 struct res_counter kmem; 278 /* 279 * Per cgroup active and inactive list, similar to the 280 * per zone LRU lists. 281 */ 282 struct mem_cgroup_lru_info info; 283 int last_scanned_node; 284 #if MAX_NUMNODES > 1 285 nodemask_t scan_nodes; 286 atomic_t numainfo_events; 287 atomic_t numainfo_updating; 288 #endif 289 /* 290 * Should the accounting and control be hierarchical, per subtree? 291 */ 292 bool use_hierarchy; 293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 294 295 bool oom_lock; 296 atomic_t under_oom; 297 298 atomic_t refcnt; 299 300 int swappiness; 301 /* OOM-Killer disable */ 302 int oom_kill_disable; 303 304 /* set when res.limit == memsw.limit */ 305 bool memsw_is_minimum; 306 307 /* protect arrays of thresholds */ 308 struct mutex thresholds_lock; 309 310 /* thresholds for memory usage. RCU-protected */ 311 struct mem_cgroup_thresholds thresholds; 312 313 /* thresholds for mem+swap usage. RCU-protected */ 314 struct mem_cgroup_thresholds memsw_thresholds; 315 316 /* For oom notifier event fd */ 317 struct list_head oom_notify; 318 319 /* 320 * Should we move charges of a task when a task is moved into this 321 * mem_cgroup ? And what type of charges should we move ? 322 */ 323 unsigned long move_charge_at_immigrate; 324 /* 325 * set > 0 if pages under this cgroup are moving to other cgroup. 326 */ 327 atomic_t moving_account; 328 /* taken only while moving_account > 0 */ 329 spinlock_t move_lock; 330 /* 331 * percpu counter. 332 */ 333 struct mem_cgroup_stat_cpu __percpu *stat; 334 /* 335 * used when a cpu is offlined or other synchronizations 336 * See mem_cgroup_read_stat(). 337 */ 338 struct mem_cgroup_stat_cpu nocpu_base; 339 spinlock_t pcp_counter_lock; 340 341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 342 struct tcp_memcontrol tcp_mem; 343 #endif 344 #if defined(CONFIG_MEMCG_KMEM) 345 /* analogous to slab_common's slab_caches list. per-memcg */ 346 struct list_head memcg_slab_caches; 347 /* Not a spinlock, we can take a lot of time walking the list */ 348 struct mutex slab_caches_mutex; 349 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 350 int kmemcg_id; 351 #endif 352 }; 353 354 /* internal only representation about the status of kmem accounting. */ 355 enum { 356 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 357 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 358 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 359 }; 360 361 /* We account when limit is on, but only after call sites are patched */ 362 #define KMEM_ACCOUNTED_MASK \ 363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 364 365 #ifdef CONFIG_MEMCG_KMEM 366 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 367 { 368 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 369 } 370 371 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 372 { 373 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 374 } 375 376 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 377 { 378 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 379 } 380 381 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 382 { 383 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 384 } 385 386 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 387 { 388 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 389 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 390 } 391 392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 393 { 394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 395 &memcg->kmem_account_flags); 396 } 397 #endif 398 399 /* Stuffs for move charges at task migration. */ 400 /* 401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 402 * left-shifted bitmap of these types. 403 */ 404 enum move_type { 405 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 406 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 407 NR_MOVE_TYPE, 408 }; 409 410 /* "mc" and its members are protected by cgroup_mutex */ 411 static struct move_charge_struct { 412 spinlock_t lock; /* for from, to */ 413 struct mem_cgroup *from; 414 struct mem_cgroup *to; 415 unsigned long precharge; 416 unsigned long moved_charge; 417 unsigned long moved_swap; 418 struct task_struct *moving_task; /* a task moving charges */ 419 wait_queue_head_t waitq; /* a waitq for other context */ 420 } mc = { 421 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 422 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 423 }; 424 425 static bool move_anon(void) 426 { 427 return test_bit(MOVE_CHARGE_TYPE_ANON, 428 &mc.to->move_charge_at_immigrate); 429 } 430 431 static bool move_file(void) 432 { 433 return test_bit(MOVE_CHARGE_TYPE_FILE, 434 &mc.to->move_charge_at_immigrate); 435 } 436 437 /* 438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 439 * limit reclaim to prevent infinite loops, if they ever occur. 440 */ 441 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 442 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 443 444 enum charge_type { 445 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 446 MEM_CGROUP_CHARGE_TYPE_ANON, 447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 448 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 449 NR_CHARGE_TYPE, 450 }; 451 452 /* for encoding cft->private value on file */ 453 enum res_type { 454 _MEM, 455 _MEMSWAP, 456 _OOM_TYPE, 457 _KMEM, 458 }; 459 460 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 461 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 462 #define MEMFILE_ATTR(val) ((val) & 0xffff) 463 /* Used for OOM nofiier */ 464 #define OOM_CONTROL (0) 465 466 /* 467 * Reclaim flags for mem_cgroup_hierarchical_reclaim 468 */ 469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 470 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 472 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 473 474 static void mem_cgroup_get(struct mem_cgroup *memcg); 475 static void mem_cgroup_put(struct mem_cgroup *memcg); 476 477 static inline 478 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 479 { 480 return container_of(s, struct mem_cgroup, css); 481 } 482 483 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 484 { 485 return (memcg == root_mem_cgroup); 486 } 487 488 /* Writing them here to avoid exposing memcg's inner layout */ 489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 490 491 void sock_update_memcg(struct sock *sk) 492 { 493 if (mem_cgroup_sockets_enabled) { 494 struct mem_cgroup *memcg; 495 struct cg_proto *cg_proto; 496 497 BUG_ON(!sk->sk_prot->proto_cgroup); 498 499 /* Socket cloning can throw us here with sk_cgrp already 500 * filled. It won't however, necessarily happen from 501 * process context. So the test for root memcg given 502 * the current task's memcg won't help us in this case. 503 * 504 * Respecting the original socket's memcg is a better 505 * decision in this case. 506 */ 507 if (sk->sk_cgrp) { 508 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 509 mem_cgroup_get(sk->sk_cgrp->memcg); 510 return; 511 } 512 513 rcu_read_lock(); 514 memcg = mem_cgroup_from_task(current); 515 cg_proto = sk->sk_prot->proto_cgroup(memcg); 516 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 517 mem_cgroup_get(memcg); 518 sk->sk_cgrp = cg_proto; 519 } 520 rcu_read_unlock(); 521 } 522 } 523 EXPORT_SYMBOL(sock_update_memcg); 524 525 void sock_release_memcg(struct sock *sk) 526 { 527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 528 struct mem_cgroup *memcg; 529 WARN_ON(!sk->sk_cgrp->memcg); 530 memcg = sk->sk_cgrp->memcg; 531 mem_cgroup_put(memcg); 532 } 533 } 534 535 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 536 { 537 if (!memcg || mem_cgroup_is_root(memcg)) 538 return NULL; 539 540 return &memcg->tcp_mem.cg_proto; 541 } 542 EXPORT_SYMBOL(tcp_proto_cgroup); 543 544 static void disarm_sock_keys(struct mem_cgroup *memcg) 545 { 546 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 547 return; 548 static_key_slow_dec(&memcg_socket_limit_enabled); 549 } 550 #else 551 static void disarm_sock_keys(struct mem_cgroup *memcg) 552 { 553 } 554 #endif 555 556 #ifdef CONFIG_MEMCG_KMEM 557 /* 558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 559 * There are two main reasons for not using the css_id for this: 560 * 1) this works better in sparse environments, where we have a lot of memcgs, 561 * but only a few kmem-limited. Or also, if we have, for instance, 200 562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 563 * 200 entry array for that. 564 * 565 * 2) In order not to violate the cgroup API, we would like to do all memory 566 * allocation in ->create(). At that point, we haven't yet allocated the 567 * css_id. Having a separate index prevents us from messing with the cgroup 568 * core for this 569 * 570 * The current size of the caches array is stored in 571 * memcg_limited_groups_array_size. It will double each time we have to 572 * increase it. 573 */ 574 static DEFINE_IDA(kmem_limited_groups); 575 int memcg_limited_groups_array_size; 576 577 /* 578 * MIN_SIZE is different than 1, because we would like to avoid going through 579 * the alloc/free process all the time. In a small machine, 4 kmem-limited 580 * cgroups is a reasonable guess. In the future, it could be a parameter or 581 * tunable, but that is strictly not necessary. 582 * 583 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 584 * this constant directly from cgroup, but it is understandable that this is 585 * better kept as an internal representation in cgroup.c. In any case, the 586 * css_id space is not getting any smaller, and we don't have to necessarily 587 * increase ours as well if it increases. 588 */ 589 #define MEMCG_CACHES_MIN_SIZE 4 590 #define MEMCG_CACHES_MAX_SIZE 65535 591 592 /* 593 * A lot of the calls to the cache allocation functions are expected to be 594 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 595 * conditional to this static branch, we'll have to allow modules that does 596 * kmem_cache_alloc and the such to see this symbol as well 597 */ 598 struct static_key memcg_kmem_enabled_key; 599 EXPORT_SYMBOL(memcg_kmem_enabled_key); 600 601 static void disarm_kmem_keys(struct mem_cgroup *memcg) 602 { 603 if (memcg_kmem_is_active(memcg)) { 604 static_key_slow_dec(&memcg_kmem_enabled_key); 605 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 606 } 607 /* 608 * This check can't live in kmem destruction function, 609 * since the charges will outlive the cgroup 610 */ 611 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 612 } 613 #else 614 static void disarm_kmem_keys(struct mem_cgroup *memcg) 615 { 616 } 617 #endif /* CONFIG_MEMCG_KMEM */ 618 619 static void disarm_static_keys(struct mem_cgroup *memcg) 620 { 621 disarm_sock_keys(memcg); 622 disarm_kmem_keys(memcg); 623 } 624 625 static void drain_all_stock_async(struct mem_cgroup *memcg); 626 627 static struct mem_cgroup_per_zone * 628 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 629 { 630 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 631 } 632 633 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 634 { 635 return &memcg->css; 636 } 637 638 static struct mem_cgroup_per_zone * 639 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 640 { 641 int nid = page_to_nid(page); 642 int zid = page_zonenum(page); 643 644 return mem_cgroup_zoneinfo(memcg, nid, zid); 645 } 646 647 static struct mem_cgroup_tree_per_zone * 648 soft_limit_tree_node_zone(int nid, int zid) 649 { 650 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 651 } 652 653 static struct mem_cgroup_tree_per_zone * 654 soft_limit_tree_from_page(struct page *page) 655 { 656 int nid = page_to_nid(page); 657 int zid = page_zonenum(page); 658 659 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 660 } 661 662 static void 663 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 664 struct mem_cgroup_per_zone *mz, 665 struct mem_cgroup_tree_per_zone *mctz, 666 unsigned long long new_usage_in_excess) 667 { 668 struct rb_node **p = &mctz->rb_root.rb_node; 669 struct rb_node *parent = NULL; 670 struct mem_cgroup_per_zone *mz_node; 671 672 if (mz->on_tree) 673 return; 674 675 mz->usage_in_excess = new_usage_in_excess; 676 if (!mz->usage_in_excess) 677 return; 678 while (*p) { 679 parent = *p; 680 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 681 tree_node); 682 if (mz->usage_in_excess < mz_node->usage_in_excess) 683 p = &(*p)->rb_left; 684 /* 685 * We can't avoid mem cgroups that are over their soft 686 * limit by the same amount 687 */ 688 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 689 p = &(*p)->rb_right; 690 } 691 rb_link_node(&mz->tree_node, parent, p); 692 rb_insert_color(&mz->tree_node, &mctz->rb_root); 693 mz->on_tree = true; 694 } 695 696 static void 697 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 698 struct mem_cgroup_per_zone *mz, 699 struct mem_cgroup_tree_per_zone *mctz) 700 { 701 if (!mz->on_tree) 702 return; 703 rb_erase(&mz->tree_node, &mctz->rb_root); 704 mz->on_tree = false; 705 } 706 707 static void 708 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 709 struct mem_cgroup_per_zone *mz, 710 struct mem_cgroup_tree_per_zone *mctz) 711 { 712 spin_lock(&mctz->lock); 713 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 714 spin_unlock(&mctz->lock); 715 } 716 717 718 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 719 { 720 unsigned long long excess; 721 struct mem_cgroup_per_zone *mz; 722 struct mem_cgroup_tree_per_zone *mctz; 723 int nid = page_to_nid(page); 724 int zid = page_zonenum(page); 725 mctz = soft_limit_tree_from_page(page); 726 727 /* 728 * Necessary to update all ancestors when hierarchy is used. 729 * because their event counter is not touched. 730 */ 731 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 732 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 733 excess = res_counter_soft_limit_excess(&memcg->res); 734 /* 735 * We have to update the tree if mz is on RB-tree or 736 * mem is over its softlimit. 737 */ 738 if (excess || mz->on_tree) { 739 spin_lock(&mctz->lock); 740 /* if on-tree, remove it */ 741 if (mz->on_tree) 742 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 743 /* 744 * Insert again. mz->usage_in_excess will be updated. 745 * If excess is 0, no tree ops. 746 */ 747 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 748 spin_unlock(&mctz->lock); 749 } 750 } 751 } 752 753 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 754 { 755 int node, zone; 756 struct mem_cgroup_per_zone *mz; 757 struct mem_cgroup_tree_per_zone *mctz; 758 759 for_each_node(node) { 760 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 761 mz = mem_cgroup_zoneinfo(memcg, node, zone); 762 mctz = soft_limit_tree_node_zone(node, zone); 763 mem_cgroup_remove_exceeded(memcg, mz, mctz); 764 } 765 } 766 } 767 768 static struct mem_cgroup_per_zone * 769 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 770 { 771 struct rb_node *rightmost = NULL; 772 struct mem_cgroup_per_zone *mz; 773 774 retry: 775 mz = NULL; 776 rightmost = rb_last(&mctz->rb_root); 777 if (!rightmost) 778 goto done; /* Nothing to reclaim from */ 779 780 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 781 /* 782 * Remove the node now but someone else can add it back, 783 * we will to add it back at the end of reclaim to its correct 784 * position in the tree. 785 */ 786 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 787 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 788 !css_tryget(&mz->memcg->css)) 789 goto retry; 790 done: 791 return mz; 792 } 793 794 static struct mem_cgroup_per_zone * 795 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 796 { 797 struct mem_cgroup_per_zone *mz; 798 799 spin_lock(&mctz->lock); 800 mz = __mem_cgroup_largest_soft_limit_node(mctz); 801 spin_unlock(&mctz->lock); 802 return mz; 803 } 804 805 /* 806 * Implementation Note: reading percpu statistics for memcg. 807 * 808 * Both of vmstat[] and percpu_counter has threshold and do periodic 809 * synchronization to implement "quick" read. There are trade-off between 810 * reading cost and precision of value. Then, we may have a chance to implement 811 * a periodic synchronizion of counter in memcg's counter. 812 * 813 * But this _read() function is used for user interface now. The user accounts 814 * memory usage by memory cgroup and he _always_ requires exact value because 815 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 816 * have to visit all online cpus and make sum. So, for now, unnecessary 817 * synchronization is not implemented. (just implemented for cpu hotplug) 818 * 819 * If there are kernel internal actions which can make use of some not-exact 820 * value, and reading all cpu value can be performance bottleneck in some 821 * common workload, threashold and synchonization as vmstat[] should be 822 * implemented. 823 */ 824 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 825 enum mem_cgroup_stat_index idx) 826 { 827 long val = 0; 828 int cpu; 829 830 get_online_cpus(); 831 for_each_online_cpu(cpu) 832 val += per_cpu(memcg->stat->count[idx], cpu); 833 #ifdef CONFIG_HOTPLUG_CPU 834 spin_lock(&memcg->pcp_counter_lock); 835 val += memcg->nocpu_base.count[idx]; 836 spin_unlock(&memcg->pcp_counter_lock); 837 #endif 838 put_online_cpus(); 839 return val; 840 } 841 842 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 843 bool charge) 844 { 845 int val = (charge) ? 1 : -1; 846 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 847 } 848 849 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 850 enum mem_cgroup_events_index idx) 851 { 852 unsigned long val = 0; 853 int cpu; 854 855 for_each_online_cpu(cpu) 856 val += per_cpu(memcg->stat->events[idx], cpu); 857 #ifdef CONFIG_HOTPLUG_CPU 858 spin_lock(&memcg->pcp_counter_lock); 859 val += memcg->nocpu_base.events[idx]; 860 spin_unlock(&memcg->pcp_counter_lock); 861 #endif 862 return val; 863 } 864 865 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 866 bool anon, int nr_pages) 867 { 868 preempt_disable(); 869 870 /* 871 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 872 * counted as CACHE even if it's on ANON LRU. 873 */ 874 if (anon) 875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 876 nr_pages); 877 else 878 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 879 nr_pages); 880 881 /* pagein of a big page is an event. So, ignore page size */ 882 if (nr_pages > 0) 883 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 884 else { 885 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 886 nr_pages = -nr_pages; /* for event */ 887 } 888 889 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 890 891 preempt_enable(); 892 } 893 894 unsigned long 895 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 896 { 897 struct mem_cgroup_per_zone *mz; 898 899 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 900 return mz->lru_size[lru]; 901 } 902 903 static unsigned long 904 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 905 unsigned int lru_mask) 906 { 907 struct mem_cgroup_per_zone *mz; 908 enum lru_list lru; 909 unsigned long ret = 0; 910 911 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 912 913 for_each_lru(lru) { 914 if (BIT(lru) & lru_mask) 915 ret += mz->lru_size[lru]; 916 } 917 return ret; 918 } 919 920 static unsigned long 921 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 922 int nid, unsigned int lru_mask) 923 { 924 u64 total = 0; 925 int zid; 926 927 for (zid = 0; zid < MAX_NR_ZONES; zid++) 928 total += mem_cgroup_zone_nr_lru_pages(memcg, 929 nid, zid, lru_mask); 930 931 return total; 932 } 933 934 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 935 unsigned int lru_mask) 936 { 937 int nid; 938 u64 total = 0; 939 940 for_each_node_state(nid, N_MEMORY) 941 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 942 return total; 943 } 944 945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 946 enum mem_cgroup_events_target target) 947 { 948 unsigned long val, next; 949 950 val = __this_cpu_read(memcg->stat->nr_page_events); 951 next = __this_cpu_read(memcg->stat->targets[target]); 952 /* from time_after() in jiffies.h */ 953 if ((long)next - (long)val < 0) { 954 switch (target) { 955 case MEM_CGROUP_TARGET_THRESH: 956 next = val + THRESHOLDS_EVENTS_TARGET; 957 break; 958 case MEM_CGROUP_TARGET_SOFTLIMIT: 959 next = val + SOFTLIMIT_EVENTS_TARGET; 960 break; 961 case MEM_CGROUP_TARGET_NUMAINFO: 962 next = val + NUMAINFO_EVENTS_TARGET; 963 break; 964 default: 965 break; 966 } 967 __this_cpu_write(memcg->stat->targets[target], next); 968 return true; 969 } 970 return false; 971 } 972 973 /* 974 * Check events in order. 975 * 976 */ 977 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 978 { 979 preempt_disable(); 980 /* threshold event is triggered in finer grain than soft limit */ 981 if (unlikely(mem_cgroup_event_ratelimit(memcg, 982 MEM_CGROUP_TARGET_THRESH))) { 983 bool do_softlimit; 984 bool do_numainfo __maybe_unused; 985 986 do_softlimit = mem_cgroup_event_ratelimit(memcg, 987 MEM_CGROUP_TARGET_SOFTLIMIT); 988 #if MAX_NUMNODES > 1 989 do_numainfo = mem_cgroup_event_ratelimit(memcg, 990 MEM_CGROUP_TARGET_NUMAINFO); 991 #endif 992 preempt_enable(); 993 994 mem_cgroup_threshold(memcg); 995 if (unlikely(do_softlimit)) 996 mem_cgroup_update_tree(memcg, page); 997 #if MAX_NUMNODES > 1 998 if (unlikely(do_numainfo)) 999 atomic_inc(&memcg->numainfo_events); 1000 #endif 1001 } else 1002 preempt_enable(); 1003 } 1004 1005 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 1006 { 1007 return mem_cgroup_from_css( 1008 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 1009 } 1010 1011 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1012 { 1013 /* 1014 * mm_update_next_owner() may clear mm->owner to NULL 1015 * if it races with swapoff, page migration, etc. 1016 * So this can be called with p == NULL. 1017 */ 1018 if (unlikely(!p)) 1019 return NULL; 1020 1021 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 1022 } 1023 1024 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1025 { 1026 struct mem_cgroup *memcg = NULL; 1027 1028 if (!mm) 1029 return NULL; 1030 /* 1031 * Because we have no locks, mm->owner's may be being moved to other 1032 * cgroup. We use css_tryget() here even if this looks 1033 * pessimistic (rather than adding locks here). 1034 */ 1035 rcu_read_lock(); 1036 do { 1037 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1038 if (unlikely(!memcg)) 1039 break; 1040 } while (!css_tryget(&memcg->css)); 1041 rcu_read_unlock(); 1042 return memcg; 1043 } 1044 1045 /** 1046 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1047 * @root: hierarchy root 1048 * @prev: previously returned memcg, NULL on first invocation 1049 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1050 * 1051 * Returns references to children of the hierarchy below @root, or 1052 * @root itself, or %NULL after a full round-trip. 1053 * 1054 * Caller must pass the return value in @prev on subsequent 1055 * invocations for reference counting, or use mem_cgroup_iter_break() 1056 * to cancel a hierarchy walk before the round-trip is complete. 1057 * 1058 * Reclaimers can specify a zone and a priority level in @reclaim to 1059 * divide up the memcgs in the hierarchy among all concurrent 1060 * reclaimers operating on the same zone and priority. 1061 */ 1062 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1063 struct mem_cgroup *prev, 1064 struct mem_cgroup_reclaim_cookie *reclaim) 1065 { 1066 struct mem_cgroup *memcg = NULL; 1067 int id = 0; 1068 1069 if (mem_cgroup_disabled()) 1070 return NULL; 1071 1072 if (!root) 1073 root = root_mem_cgroup; 1074 1075 if (prev && !reclaim) 1076 id = css_id(&prev->css); 1077 1078 if (prev && prev != root) 1079 css_put(&prev->css); 1080 1081 if (!root->use_hierarchy && root != root_mem_cgroup) { 1082 if (prev) 1083 return NULL; 1084 return root; 1085 } 1086 1087 while (!memcg) { 1088 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1089 struct cgroup_subsys_state *css; 1090 1091 if (reclaim) { 1092 int nid = zone_to_nid(reclaim->zone); 1093 int zid = zone_idx(reclaim->zone); 1094 struct mem_cgroup_per_zone *mz; 1095 1096 mz = mem_cgroup_zoneinfo(root, nid, zid); 1097 iter = &mz->reclaim_iter[reclaim->priority]; 1098 if (prev && reclaim->generation != iter->generation) 1099 return NULL; 1100 id = iter->position; 1101 } 1102 1103 rcu_read_lock(); 1104 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 1105 if (css) { 1106 if (css == &root->css || css_tryget(css)) 1107 memcg = mem_cgroup_from_css(css); 1108 } else 1109 id = 0; 1110 rcu_read_unlock(); 1111 1112 if (reclaim) { 1113 iter->position = id; 1114 if (!css) 1115 iter->generation++; 1116 else if (!prev && memcg) 1117 reclaim->generation = iter->generation; 1118 } 1119 1120 if (prev && !css) 1121 return NULL; 1122 } 1123 return memcg; 1124 } 1125 1126 /** 1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1128 * @root: hierarchy root 1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1130 */ 1131 void mem_cgroup_iter_break(struct mem_cgroup *root, 1132 struct mem_cgroup *prev) 1133 { 1134 if (!root) 1135 root = root_mem_cgroup; 1136 if (prev && prev != root) 1137 css_put(&prev->css); 1138 } 1139 1140 /* 1141 * Iteration constructs for visiting all cgroups (under a tree). If 1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1143 * be used for reference counting. 1144 */ 1145 #define for_each_mem_cgroup_tree(iter, root) \ 1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1147 iter != NULL; \ 1148 iter = mem_cgroup_iter(root, iter, NULL)) 1149 1150 #define for_each_mem_cgroup(iter) \ 1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1152 iter != NULL; \ 1153 iter = mem_cgroup_iter(NULL, iter, NULL)) 1154 1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1156 { 1157 struct mem_cgroup *memcg; 1158 1159 rcu_read_lock(); 1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1161 if (unlikely(!memcg)) 1162 goto out; 1163 1164 switch (idx) { 1165 case PGFAULT: 1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1167 break; 1168 case PGMAJFAULT: 1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1170 break; 1171 default: 1172 BUG(); 1173 } 1174 out: 1175 rcu_read_unlock(); 1176 } 1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1178 1179 /** 1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1181 * @zone: zone of the wanted lruvec 1182 * @memcg: memcg of the wanted lruvec 1183 * 1184 * Returns the lru list vector holding pages for the given @zone and 1185 * @mem. This can be the global zone lruvec, if the memory controller 1186 * is disabled. 1187 */ 1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1189 struct mem_cgroup *memcg) 1190 { 1191 struct mem_cgroup_per_zone *mz; 1192 struct lruvec *lruvec; 1193 1194 if (mem_cgroup_disabled()) { 1195 lruvec = &zone->lruvec; 1196 goto out; 1197 } 1198 1199 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1200 lruvec = &mz->lruvec; 1201 out: 1202 /* 1203 * Since a node can be onlined after the mem_cgroup was created, 1204 * we have to be prepared to initialize lruvec->zone here; 1205 * and if offlined then reonlined, we need to reinitialize it. 1206 */ 1207 if (unlikely(lruvec->zone != zone)) 1208 lruvec->zone = zone; 1209 return lruvec; 1210 } 1211 1212 /* 1213 * Following LRU functions are allowed to be used without PCG_LOCK. 1214 * Operations are called by routine of global LRU independently from memcg. 1215 * What we have to take care of here is validness of pc->mem_cgroup. 1216 * 1217 * Changes to pc->mem_cgroup happens when 1218 * 1. charge 1219 * 2. moving account 1220 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1221 * It is added to LRU before charge. 1222 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1223 * When moving account, the page is not on LRU. It's isolated. 1224 */ 1225 1226 /** 1227 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1228 * @page: the page 1229 * @zone: zone of the page 1230 */ 1231 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1232 { 1233 struct mem_cgroup_per_zone *mz; 1234 struct mem_cgroup *memcg; 1235 struct page_cgroup *pc; 1236 struct lruvec *lruvec; 1237 1238 if (mem_cgroup_disabled()) { 1239 lruvec = &zone->lruvec; 1240 goto out; 1241 } 1242 1243 pc = lookup_page_cgroup(page); 1244 memcg = pc->mem_cgroup; 1245 1246 /* 1247 * Surreptitiously switch any uncharged offlist page to root: 1248 * an uncharged page off lru does nothing to secure 1249 * its former mem_cgroup from sudden removal. 1250 * 1251 * Our caller holds lru_lock, and PageCgroupUsed is updated 1252 * under page_cgroup lock: between them, they make all uses 1253 * of pc->mem_cgroup safe. 1254 */ 1255 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1256 pc->mem_cgroup = memcg = root_mem_cgroup; 1257 1258 mz = page_cgroup_zoneinfo(memcg, page); 1259 lruvec = &mz->lruvec; 1260 out: 1261 /* 1262 * Since a node can be onlined after the mem_cgroup was created, 1263 * we have to be prepared to initialize lruvec->zone here; 1264 * and if offlined then reonlined, we need to reinitialize it. 1265 */ 1266 if (unlikely(lruvec->zone != zone)) 1267 lruvec->zone = zone; 1268 return lruvec; 1269 } 1270 1271 /** 1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1273 * @lruvec: mem_cgroup per zone lru vector 1274 * @lru: index of lru list the page is sitting on 1275 * @nr_pages: positive when adding or negative when removing 1276 * 1277 * This function must be called when a page is added to or removed from an 1278 * lru list. 1279 */ 1280 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1281 int nr_pages) 1282 { 1283 struct mem_cgroup_per_zone *mz; 1284 unsigned long *lru_size; 1285 1286 if (mem_cgroup_disabled()) 1287 return; 1288 1289 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1290 lru_size = mz->lru_size + lru; 1291 *lru_size += nr_pages; 1292 VM_BUG_ON((long)(*lru_size) < 0); 1293 } 1294 1295 /* 1296 * Checks whether given mem is same or in the root_mem_cgroup's 1297 * hierarchy subtree 1298 */ 1299 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1300 struct mem_cgroup *memcg) 1301 { 1302 if (root_memcg == memcg) 1303 return true; 1304 if (!root_memcg->use_hierarchy || !memcg) 1305 return false; 1306 return css_is_ancestor(&memcg->css, &root_memcg->css); 1307 } 1308 1309 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1310 struct mem_cgroup *memcg) 1311 { 1312 bool ret; 1313 1314 rcu_read_lock(); 1315 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1316 rcu_read_unlock(); 1317 return ret; 1318 } 1319 1320 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1321 { 1322 int ret; 1323 struct mem_cgroup *curr = NULL; 1324 struct task_struct *p; 1325 1326 p = find_lock_task_mm(task); 1327 if (p) { 1328 curr = try_get_mem_cgroup_from_mm(p->mm); 1329 task_unlock(p); 1330 } else { 1331 /* 1332 * All threads may have already detached their mm's, but the oom 1333 * killer still needs to detect if they have already been oom 1334 * killed to prevent needlessly killing additional tasks. 1335 */ 1336 task_lock(task); 1337 curr = mem_cgroup_from_task(task); 1338 if (curr) 1339 css_get(&curr->css); 1340 task_unlock(task); 1341 } 1342 if (!curr) 1343 return 0; 1344 /* 1345 * We should check use_hierarchy of "memcg" not "curr". Because checking 1346 * use_hierarchy of "curr" here make this function true if hierarchy is 1347 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1348 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1349 */ 1350 ret = mem_cgroup_same_or_subtree(memcg, curr); 1351 css_put(&curr->css); 1352 return ret; 1353 } 1354 1355 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1356 { 1357 unsigned long inactive_ratio; 1358 unsigned long inactive; 1359 unsigned long active; 1360 unsigned long gb; 1361 1362 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1363 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1364 1365 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1366 if (gb) 1367 inactive_ratio = int_sqrt(10 * gb); 1368 else 1369 inactive_ratio = 1; 1370 1371 return inactive * inactive_ratio < active; 1372 } 1373 1374 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1375 { 1376 unsigned long active; 1377 unsigned long inactive; 1378 1379 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1380 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1381 1382 return (active > inactive); 1383 } 1384 1385 #define mem_cgroup_from_res_counter(counter, member) \ 1386 container_of(counter, struct mem_cgroup, member) 1387 1388 /** 1389 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1390 * @memcg: the memory cgroup 1391 * 1392 * Returns the maximum amount of memory @mem can be charged with, in 1393 * pages. 1394 */ 1395 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1396 { 1397 unsigned long long margin; 1398 1399 margin = res_counter_margin(&memcg->res); 1400 if (do_swap_account) 1401 margin = min(margin, res_counter_margin(&memcg->memsw)); 1402 return margin >> PAGE_SHIFT; 1403 } 1404 1405 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1406 { 1407 struct cgroup *cgrp = memcg->css.cgroup; 1408 1409 /* root ? */ 1410 if (cgrp->parent == NULL) 1411 return vm_swappiness; 1412 1413 return memcg->swappiness; 1414 } 1415 1416 /* 1417 * memcg->moving_account is used for checking possibility that some thread is 1418 * calling move_account(). When a thread on CPU-A starts moving pages under 1419 * a memcg, other threads should check memcg->moving_account under 1420 * rcu_read_lock(), like this: 1421 * 1422 * CPU-A CPU-B 1423 * rcu_read_lock() 1424 * memcg->moving_account+1 if (memcg->mocing_account) 1425 * take heavy locks. 1426 * synchronize_rcu() update something. 1427 * rcu_read_unlock() 1428 * start move here. 1429 */ 1430 1431 /* for quick checking without looking up memcg */ 1432 atomic_t memcg_moving __read_mostly; 1433 1434 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1435 { 1436 atomic_inc(&memcg_moving); 1437 atomic_inc(&memcg->moving_account); 1438 synchronize_rcu(); 1439 } 1440 1441 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1442 { 1443 /* 1444 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1445 * We check NULL in callee rather than caller. 1446 */ 1447 if (memcg) { 1448 atomic_dec(&memcg_moving); 1449 atomic_dec(&memcg->moving_account); 1450 } 1451 } 1452 1453 /* 1454 * 2 routines for checking "mem" is under move_account() or not. 1455 * 1456 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1457 * is used for avoiding races in accounting. If true, 1458 * pc->mem_cgroup may be overwritten. 1459 * 1460 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1461 * under hierarchy of moving cgroups. This is for 1462 * waiting at hith-memory prressure caused by "move". 1463 */ 1464 1465 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1466 { 1467 VM_BUG_ON(!rcu_read_lock_held()); 1468 return atomic_read(&memcg->moving_account) > 0; 1469 } 1470 1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1472 { 1473 struct mem_cgroup *from; 1474 struct mem_cgroup *to; 1475 bool ret = false; 1476 /* 1477 * Unlike task_move routines, we access mc.to, mc.from not under 1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1479 */ 1480 spin_lock(&mc.lock); 1481 from = mc.from; 1482 to = mc.to; 1483 if (!from) 1484 goto unlock; 1485 1486 ret = mem_cgroup_same_or_subtree(memcg, from) 1487 || mem_cgroup_same_or_subtree(memcg, to); 1488 unlock: 1489 spin_unlock(&mc.lock); 1490 return ret; 1491 } 1492 1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1494 { 1495 if (mc.moving_task && current != mc.moving_task) { 1496 if (mem_cgroup_under_move(memcg)) { 1497 DEFINE_WAIT(wait); 1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1499 /* moving charge context might have finished. */ 1500 if (mc.moving_task) 1501 schedule(); 1502 finish_wait(&mc.waitq, &wait); 1503 return true; 1504 } 1505 } 1506 return false; 1507 } 1508 1509 /* 1510 * Take this lock when 1511 * - a code tries to modify page's memcg while it's USED. 1512 * - a code tries to modify page state accounting in a memcg. 1513 * see mem_cgroup_stolen(), too. 1514 */ 1515 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1516 unsigned long *flags) 1517 { 1518 spin_lock_irqsave(&memcg->move_lock, *flags); 1519 } 1520 1521 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1522 unsigned long *flags) 1523 { 1524 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1525 } 1526 1527 /** 1528 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1529 * @memcg: The memory cgroup that went over limit 1530 * @p: Task that is going to be killed 1531 * 1532 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1533 * enabled 1534 */ 1535 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1536 { 1537 struct cgroup *task_cgrp; 1538 struct cgroup *mem_cgrp; 1539 /* 1540 * Need a buffer in BSS, can't rely on allocations. The code relies 1541 * on the assumption that OOM is serialized for memory controller. 1542 * If this assumption is broken, revisit this code. 1543 */ 1544 static char memcg_name[PATH_MAX]; 1545 int ret; 1546 1547 if (!memcg || !p) 1548 return; 1549 1550 rcu_read_lock(); 1551 1552 mem_cgrp = memcg->css.cgroup; 1553 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1554 1555 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1556 if (ret < 0) { 1557 /* 1558 * Unfortunately, we are unable to convert to a useful name 1559 * But we'll still print out the usage information 1560 */ 1561 rcu_read_unlock(); 1562 goto done; 1563 } 1564 rcu_read_unlock(); 1565 1566 printk(KERN_INFO "Task in %s killed", memcg_name); 1567 1568 rcu_read_lock(); 1569 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1570 if (ret < 0) { 1571 rcu_read_unlock(); 1572 goto done; 1573 } 1574 rcu_read_unlock(); 1575 1576 /* 1577 * Continues from above, so we don't need an KERN_ level 1578 */ 1579 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1580 done: 1581 1582 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1583 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1584 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1585 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1586 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1587 "failcnt %llu\n", 1588 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1589 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1590 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1591 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1592 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1593 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1594 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1595 } 1596 1597 /* 1598 * This function returns the number of memcg under hierarchy tree. Returns 1599 * 1(self count) if no children. 1600 */ 1601 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1602 { 1603 int num = 0; 1604 struct mem_cgroup *iter; 1605 1606 for_each_mem_cgroup_tree(iter, memcg) 1607 num++; 1608 return num; 1609 } 1610 1611 /* 1612 * Return the memory (and swap, if configured) limit for a memcg. 1613 */ 1614 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1615 { 1616 u64 limit; 1617 1618 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1619 1620 /* 1621 * Do not consider swap space if we cannot swap due to swappiness 1622 */ 1623 if (mem_cgroup_swappiness(memcg)) { 1624 u64 memsw; 1625 1626 limit += total_swap_pages << PAGE_SHIFT; 1627 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1628 1629 /* 1630 * If memsw is finite and limits the amount of swap space 1631 * available to this memcg, return that limit. 1632 */ 1633 limit = min(limit, memsw); 1634 } 1635 1636 return limit; 1637 } 1638 1639 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1640 int order) 1641 { 1642 struct mem_cgroup *iter; 1643 unsigned long chosen_points = 0; 1644 unsigned long totalpages; 1645 unsigned int points = 0; 1646 struct task_struct *chosen = NULL; 1647 1648 /* 1649 * If current has a pending SIGKILL, then automatically select it. The 1650 * goal is to allow it to allocate so that it may quickly exit and free 1651 * its memory. 1652 */ 1653 if (fatal_signal_pending(current)) { 1654 set_thread_flag(TIF_MEMDIE); 1655 return; 1656 } 1657 1658 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1659 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1660 for_each_mem_cgroup_tree(iter, memcg) { 1661 struct cgroup *cgroup = iter->css.cgroup; 1662 struct cgroup_iter it; 1663 struct task_struct *task; 1664 1665 cgroup_iter_start(cgroup, &it); 1666 while ((task = cgroup_iter_next(cgroup, &it))) { 1667 switch (oom_scan_process_thread(task, totalpages, NULL, 1668 false)) { 1669 case OOM_SCAN_SELECT: 1670 if (chosen) 1671 put_task_struct(chosen); 1672 chosen = task; 1673 chosen_points = ULONG_MAX; 1674 get_task_struct(chosen); 1675 /* fall through */ 1676 case OOM_SCAN_CONTINUE: 1677 continue; 1678 case OOM_SCAN_ABORT: 1679 cgroup_iter_end(cgroup, &it); 1680 mem_cgroup_iter_break(memcg, iter); 1681 if (chosen) 1682 put_task_struct(chosen); 1683 return; 1684 case OOM_SCAN_OK: 1685 break; 1686 }; 1687 points = oom_badness(task, memcg, NULL, totalpages); 1688 if (points > chosen_points) { 1689 if (chosen) 1690 put_task_struct(chosen); 1691 chosen = task; 1692 chosen_points = points; 1693 get_task_struct(chosen); 1694 } 1695 } 1696 cgroup_iter_end(cgroup, &it); 1697 } 1698 1699 if (!chosen) 1700 return; 1701 points = chosen_points * 1000 / totalpages; 1702 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1703 NULL, "Memory cgroup out of memory"); 1704 } 1705 1706 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1707 gfp_t gfp_mask, 1708 unsigned long flags) 1709 { 1710 unsigned long total = 0; 1711 bool noswap = false; 1712 int loop; 1713 1714 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1715 noswap = true; 1716 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1717 noswap = true; 1718 1719 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1720 if (loop) 1721 drain_all_stock_async(memcg); 1722 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1723 /* 1724 * Allow limit shrinkers, which are triggered directly 1725 * by userspace, to catch signals and stop reclaim 1726 * after minimal progress, regardless of the margin. 1727 */ 1728 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1729 break; 1730 if (mem_cgroup_margin(memcg)) 1731 break; 1732 /* 1733 * If nothing was reclaimed after two attempts, there 1734 * may be no reclaimable pages in this hierarchy. 1735 */ 1736 if (loop && !total) 1737 break; 1738 } 1739 return total; 1740 } 1741 1742 /** 1743 * test_mem_cgroup_node_reclaimable 1744 * @memcg: the target memcg 1745 * @nid: the node ID to be checked. 1746 * @noswap : specify true here if the user wants flle only information. 1747 * 1748 * This function returns whether the specified memcg contains any 1749 * reclaimable pages on a node. Returns true if there are any reclaimable 1750 * pages in the node. 1751 */ 1752 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1753 int nid, bool noswap) 1754 { 1755 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1756 return true; 1757 if (noswap || !total_swap_pages) 1758 return false; 1759 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1760 return true; 1761 return false; 1762 1763 } 1764 #if MAX_NUMNODES > 1 1765 1766 /* 1767 * Always updating the nodemask is not very good - even if we have an empty 1768 * list or the wrong list here, we can start from some node and traverse all 1769 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1770 * 1771 */ 1772 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1773 { 1774 int nid; 1775 /* 1776 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1777 * pagein/pageout changes since the last update. 1778 */ 1779 if (!atomic_read(&memcg->numainfo_events)) 1780 return; 1781 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1782 return; 1783 1784 /* make a nodemask where this memcg uses memory from */ 1785 memcg->scan_nodes = node_states[N_MEMORY]; 1786 1787 for_each_node_mask(nid, node_states[N_MEMORY]) { 1788 1789 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1790 node_clear(nid, memcg->scan_nodes); 1791 } 1792 1793 atomic_set(&memcg->numainfo_events, 0); 1794 atomic_set(&memcg->numainfo_updating, 0); 1795 } 1796 1797 /* 1798 * Selecting a node where we start reclaim from. Because what we need is just 1799 * reducing usage counter, start from anywhere is O,K. Considering 1800 * memory reclaim from current node, there are pros. and cons. 1801 * 1802 * Freeing memory from current node means freeing memory from a node which 1803 * we'll use or we've used. So, it may make LRU bad. And if several threads 1804 * hit limits, it will see a contention on a node. But freeing from remote 1805 * node means more costs for memory reclaim because of memory latency. 1806 * 1807 * Now, we use round-robin. Better algorithm is welcomed. 1808 */ 1809 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1810 { 1811 int node; 1812 1813 mem_cgroup_may_update_nodemask(memcg); 1814 node = memcg->last_scanned_node; 1815 1816 node = next_node(node, memcg->scan_nodes); 1817 if (node == MAX_NUMNODES) 1818 node = first_node(memcg->scan_nodes); 1819 /* 1820 * We call this when we hit limit, not when pages are added to LRU. 1821 * No LRU may hold pages because all pages are UNEVICTABLE or 1822 * memcg is too small and all pages are not on LRU. In that case, 1823 * we use curret node. 1824 */ 1825 if (unlikely(node == MAX_NUMNODES)) 1826 node = numa_node_id(); 1827 1828 memcg->last_scanned_node = node; 1829 return node; 1830 } 1831 1832 /* 1833 * Check all nodes whether it contains reclaimable pages or not. 1834 * For quick scan, we make use of scan_nodes. This will allow us to skip 1835 * unused nodes. But scan_nodes is lazily updated and may not cotain 1836 * enough new information. We need to do double check. 1837 */ 1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1839 { 1840 int nid; 1841 1842 /* 1843 * quick check...making use of scan_node. 1844 * We can skip unused nodes. 1845 */ 1846 if (!nodes_empty(memcg->scan_nodes)) { 1847 for (nid = first_node(memcg->scan_nodes); 1848 nid < MAX_NUMNODES; 1849 nid = next_node(nid, memcg->scan_nodes)) { 1850 1851 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1852 return true; 1853 } 1854 } 1855 /* 1856 * Check rest of nodes. 1857 */ 1858 for_each_node_state(nid, N_MEMORY) { 1859 if (node_isset(nid, memcg->scan_nodes)) 1860 continue; 1861 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1862 return true; 1863 } 1864 return false; 1865 } 1866 1867 #else 1868 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1869 { 1870 return 0; 1871 } 1872 1873 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1874 { 1875 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1876 } 1877 #endif 1878 1879 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1880 struct zone *zone, 1881 gfp_t gfp_mask, 1882 unsigned long *total_scanned) 1883 { 1884 struct mem_cgroup *victim = NULL; 1885 int total = 0; 1886 int loop = 0; 1887 unsigned long excess; 1888 unsigned long nr_scanned; 1889 struct mem_cgroup_reclaim_cookie reclaim = { 1890 .zone = zone, 1891 .priority = 0, 1892 }; 1893 1894 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1895 1896 while (1) { 1897 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1898 if (!victim) { 1899 loop++; 1900 if (loop >= 2) { 1901 /* 1902 * If we have not been able to reclaim 1903 * anything, it might because there are 1904 * no reclaimable pages under this hierarchy 1905 */ 1906 if (!total) 1907 break; 1908 /* 1909 * We want to do more targeted reclaim. 1910 * excess >> 2 is not to excessive so as to 1911 * reclaim too much, nor too less that we keep 1912 * coming back to reclaim from this cgroup 1913 */ 1914 if (total >= (excess >> 2) || 1915 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1916 break; 1917 } 1918 continue; 1919 } 1920 if (!mem_cgroup_reclaimable(victim, false)) 1921 continue; 1922 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1923 zone, &nr_scanned); 1924 *total_scanned += nr_scanned; 1925 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1926 break; 1927 } 1928 mem_cgroup_iter_break(root_memcg, victim); 1929 return total; 1930 } 1931 1932 /* 1933 * Check OOM-Killer is already running under our hierarchy. 1934 * If someone is running, return false. 1935 * Has to be called with memcg_oom_lock 1936 */ 1937 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1938 { 1939 struct mem_cgroup *iter, *failed = NULL; 1940 1941 for_each_mem_cgroup_tree(iter, memcg) { 1942 if (iter->oom_lock) { 1943 /* 1944 * this subtree of our hierarchy is already locked 1945 * so we cannot give a lock. 1946 */ 1947 failed = iter; 1948 mem_cgroup_iter_break(memcg, iter); 1949 break; 1950 } else 1951 iter->oom_lock = true; 1952 } 1953 1954 if (!failed) 1955 return true; 1956 1957 /* 1958 * OK, we failed to lock the whole subtree so we have to clean up 1959 * what we set up to the failing subtree 1960 */ 1961 for_each_mem_cgroup_tree(iter, memcg) { 1962 if (iter == failed) { 1963 mem_cgroup_iter_break(memcg, iter); 1964 break; 1965 } 1966 iter->oom_lock = false; 1967 } 1968 return false; 1969 } 1970 1971 /* 1972 * Has to be called with memcg_oom_lock 1973 */ 1974 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1975 { 1976 struct mem_cgroup *iter; 1977 1978 for_each_mem_cgroup_tree(iter, memcg) 1979 iter->oom_lock = false; 1980 return 0; 1981 } 1982 1983 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1984 { 1985 struct mem_cgroup *iter; 1986 1987 for_each_mem_cgroup_tree(iter, memcg) 1988 atomic_inc(&iter->under_oom); 1989 } 1990 1991 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1992 { 1993 struct mem_cgroup *iter; 1994 1995 /* 1996 * When a new child is created while the hierarchy is under oom, 1997 * mem_cgroup_oom_lock() may not be called. We have to use 1998 * atomic_add_unless() here. 1999 */ 2000 for_each_mem_cgroup_tree(iter, memcg) 2001 atomic_add_unless(&iter->under_oom, -1, 0); 2002 } 2003 2004 static DEFINE_SPINLOCK(memcg_oom_lock); 2005 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2006 2007 struct oom_wait_info { 2008 struct mem_cgroup *memcg; 2009 wait_queue_t wait; 2010 }; 2011 2012 static int memcg_oom_wake_function(wait_queue_t *wait, 2013 unsigned mode, int sync, void *arg) 2014 { 2015 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2016 struct mem_cgroup *oom_wait_memcg; 2017 struct oom_wait_info *oom_wait_info; 2018 2019 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2020 oom_wait_memcg = oom_wait_info->memcg; 2021 2022 /* 2023 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2024 * Then we can use css_is_ancestor without taking care of RCU. 2025 */ 2026 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2027 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2028 return 0; 2029 return autoremove_wake_function(wait, mode, sync, arg); 2030 } 2031 2032 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2033 { 2034 /* for filtering, pass "memcg" as argument. */ 2035 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2036 } 2037 2038 static void memcg_oom_recover(struct mem_cgroup *memcg) 2039 { 2040 if (memcg && atomic_read(&memcg->under_oom)) 2041 memcg_wakeup_oom(memcg); 2042 } 2043 2044 /* 2045 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2046 */ 2047 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2048 int order) 2049 { 2050 struct oom_wait_info owait; 2051 bool locked, need_to_kill; 2052 2053 owait.memcg = memcg; 2054 owait.wait.flags = 0; 2055 owait.wait.func = memcg_oom_wake_function; 2056 owait.wait.private = current; 2057 INIT_LIST_HEAD(&owait.wait.task_list); 2058 need_to_kill = true; 2059 mem_cgroup_mark_under_oom(memcg); 2060 2061 /* At first, try to OOM lock hierarchy under memcg.*/ 2062 spin_lock(&memcg_oom_lock); 2063 locked = mem_cgroup_oom_lock(memcg); 2064 /* 2065 * Even if signal_pending(), we can't quit charge() loop without 2066 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2067 * under OOM is always welcomed, use TASK_KILLABLE here. 2068 */ 2069 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2070 if (!locked || memcg->oom_kill_disable) 2071 need_to_kill = false; 2072 if (locked) 2073 mem_cgroup_oom_notify(memcg); 2074 spin_unlock(&memcg_oom_lock); 2075 2076 if (need_to_kill) { 2077 finish_wait(&memcg_oom_waitq, &owait.wait); 2078 mem_cgroup_out_of_memory(memcg, mask, order); 2079 } else { 2080 schedule(); 2081 finish_wait(&memcg_oom_waitq, &owait.wait); 2082 } 2083 spin_lock(&memcg_oom_lock); 2084 if (locked) 2085 mem_cgroup_oom_unlock(memcg); 2086 memcg_wakeup_oom(memcg); 2087 spin_unlock(&memcg_oom_lock); 2088 2089 mem_cgroup_unmark_under_oom(memcg); 2090 2091 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2092 return false; 2093 /* Give chance to dying process */ 2094 schedule_timeout_uninterruptible(1); 2095 return true; 2096 } 2097 2098 /* 2099 * Currently used to update mapped file statistics, but the routine can be 2100 * generalized to update other statistics as well. 2101 * 2102 * Notes: Race condition 2103 * 2104 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2105 * it tends to be costly. But considering some conditions, we doesn't need 2106 * to do so _always_. 2107 * 2108 * Considering "charge", lock_page_cgroup() is not required because all 2109 * file-stat operations happen after a page is attached to radix-tree. There 2110 * are no race with "charge". 2111 * 2112 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2113 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2114 * if there are race with "uncharge". Statistics itself is properly handled 2115 * by flags. 2116 * 2117 * Considering "move", this is an only case we see a race. To make the race 2118 * small, we check mm->moving_account and detect there are possibility of race 2119 * If there is, we take a lock. 2120 */ 2121 2122 void __mem_cgroup_begin_update_page_stat(struct page *page, 2123 bool *locked, unsigned long *flags) 2124 { 2125 struct mem_cgroup *memcg; 2126 struct page_cgroup *pc; 2127 2128 pc = lookup_page_cgroup(page); 2129 again: 2130 memcg = pc->mem_cgroup; 2131 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2132 return; 2133 /* 2134 * If this memory cgroup is not under account moving, we don't 2135 * need to take move_lock_mem_cgroup(). Because we already hold 2136 * rcu_read_lock(), any calls to move_account will be delayed until 2137 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2138 */ 2139 if (!mem_cgroup_stolen(memcg)) 2140 return; 2141 2142 move_lock_mem_cgroup(memcg, flags); 2143 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2144 move_unlock_mem_cgroup(memcg, flags); 2145 goto again; 2146 } 2147 *locked = true; 2148 } 2149 2150 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2151 { 2152 struct page_cgroup *pc = lookup_page_cgroup(page); 2153 2154 /* 2155 * It's guaranteed that pc->mem_cgroup never changes while 2156 * lock is held because a routine modifies pc->mem_cgroup 2157 * should take move_lock_mem_cgroup(). 2158 */ 2159 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2160 } 2161 2162 void mem_cgroup_update_page_stat(struct page *page, 2163 enum mem_cgroup_page_stat_item idx, int val) 2164 { 2165 struct mem_cgroup *memcg; 2166 struct page_cgroup *pc = lookup_page_cgroup(page); 2167 unsigned long uninitialized_var(flags); 2168 2169 if (mem_cgroup_disabled()) 2170 return; 2171 2172 memcg = pc->mem_cgroup; 2173 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2174 return; 2175 2176 switch (idx) { 2177 case MEMCG_NR_FILE_MAPPED: 2178 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2179 break; 2180 default: 2181 BUG(); 2182 } 2183 2184 this_cpu_add(memcg->stat->count[idx], val); 2185 } 2186 2187 /* 2188 * size of first charge trial. "32" comes from vmscan.c's magic value. 2189 * TODO: maybe necessary to use big numbers in big irons. 2190 */ 2191 #define CHARGE_BATCH 32U 2192 struct memcg_stock_pcp { 2193 struct mem_cgroup *cached; /* this never be root cgroup */ 2194 unsigned int nr_pages; 2195 struct work_struct work; 2196 unsigned long flags; 2197 #define FLUSHING_CACHED_CHARGE 0 2198 }; 2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2200 static DEFINE_MUTEX(percpu_charge_mutex); 2201 2202 /** 2203 * consume_stock: Try to consume stocked charge on this cpu. 2204 * @memcg: memcg to consume from. 2205 * @nr_pages: how many pages to charge. 2206 * 2207 * The charges will only happen if @memcg matches the current cpu's memcg 2208 * stock, and at least @nr_pages are available in that stock. Failure to 2209 * service an allocation will refill the stock. 2210 * 2211 * returns true if successful, false otherwise. 2212 */ 2213 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2214 { 2215 struct memcg_stock_pcp *stock; 2216 bool ret = true; 2217 2218 if (nr_pages > CHARGE_BATCH) 2219 return false; 2220 2221 stock = &get_cpu_var(memcg_stock); 2222 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2223 stock->nr_pages -= nr_pages; 2224 else /* need to call res_counter_charge */ 2225 ret = false; 2226 put_cpu_var(memcg_stock); 2227 return ret; 2228 } 2229 2230 /* 2231 * Returns stocks cached in percpu to res_counter and reset cached information. 2232 */ 2233 static void drain_stock(struct memcg_stock_pcp *stock) 2234 { 2235 struct mem_cgroup *old = stock->cached; 2236 2237 if (stock->nr_pages) { 2238 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2239 2240 res_counter_uncharge(&old->res, bytes); 2241 if (do_swap_account) 2242 res_counter_uncharge(&old->memsw, bytes); 2243 stock->nr_pages = 0; 2244 } 2245 stock->cached = NULL; 2246 } 2247 2248 /* 2249 * This must be called under preempt disabled or must be called by 2250 * a thread which is pinned to local cpu. 2251 */ 2252 static void drain_local_stock(struct work_struct *dummy) 2253 { 2254 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2255 drain_stock(stock); 2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2257 } 2258 2259 /* 2260 * Cache charges(val) which is from res_counter, to local per_cpu area. 2261 * This will be consumed by consume_stock() function, later. 2262 */ 2263 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2264 { 2265 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2266 2267 if (stock->cached != memcg) { /* reset if necessary */ 2268 drain_stock(stock); 2269 stock->cached = memcg; 2270 } 2271 stock->nr_pages += nr_pages; 2272 put_cpu_var(memcg_stock); 2273 } 2274 2275 /* 2276 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2277 * of the hierarchy under it. sync flag says whether we should block 2278 * until the work is done. 2279 */ 2280 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2281 { 2282 int cpu, curcpu; 2283 2284 /* Notify other cpus that system-wide "drain" is running */ 2285 get_online_cpus(); 2286 curcpu = get_cpu(); 2287 for_each_online_cpu(cpu) { 2288 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2289 struct mem_cgroup *memcg; 2290 2291 memcg = stock->cached; 2292 if (!memcg || !stock->nr_pages) 2293 continue; 2294 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2295 continue; 2296 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2297 if (cpu == curcpu) 2298 drain_local_stock(&stock->work); 2299 else 2300 schedule_work_on(cpu, &stock->work); 2301 } 2302 } 2303 put_cpu(); 2304 2305 if (!sync) 2306 goto out; 2307 2308 for_each_online_cpu(cpu) { 2309 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2310 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2311 flush_work(&stock->work); 2312 } 2313 out: 2314 put_online_cpus(); 2315 } 2316 2317 /* 2318 * Tries to drain stocked charges in other cpus. This function is asynchronous 2319 * and just put a work per cpu for draining localy on each cpu. Caller can 2320 * expects some charges will be back to res_counter later but cannot wait for 2321 * it. 2322 */ 2323 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2324 { 2325 /* 2326 * If someone calls draining, avoid adding more kworker runs. 2327 */ 2328 if (!mutex_trylock(&percpu_charge_mutex)) 2329 return; 2330 drain_all_stock(root_memcg, false); 2331 mutex_unlock(&percpu_charge_mutex); 2332 } 2333 2334 /* This is a synchronous drain interface. */ 2335 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2336 { 2337 /* called when force_empty is called */ 2338 mutex_lock(&percpu_charge_mutex); 2339 drain_all_stock(root_memcg, true); 2340 mutex_unlock(&percpu_charge_mutex); 2341 } 2342 2343 /* 2344 * This function drains percpu counter value from DEAD cpu and 2345 * move it to local cpu. Note that this function can be preempted. 2346 */ 2347 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2348 { 2349 int i; 2350 2351 spin_lock(&memcg->pcp_counter_lock); 2352 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2353 long x = per_cpu(memcg->stat->count[i], cpu); 2354 2355 per_cpu(memcg->stat->count[i], cpu) = 0; 2356 memcg->nocpu_base.count[i] += x; 2357 } 2358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2359 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2360 2361 per_cpu(memcg->stat->events[i], cpu) = 0; 2362 memcg->nocpu_base.events[i] += x; 2363 } 2364 spin_unlock(&memcg->pcp_counter_lock); 2365 } 2366 2367 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2368 unsigned long action, 2369 void *hcpu) 2370 { 2371 int cpu = (unsigned long)hcpu; 2372 struct memcg_stock_pcp *stock; 2373 struct mem_cgroup *iter; 2374 2375 if (action == CPU_ONLINE) 2376 return NOTIFY_OK; 2377 2378 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2379 return NOTIFY_OK; 2380 2381 for_each_mem_cgroup(iter) 2382 mem_cgroup_drain_pcp_counter(iter, cpu); 2383 2384 stock = &per_cpu(memcg_stock, cpu); 2385 drain_stock(stock); 2386 return NOTIFY_OK; 2387 } 2388 2389 2390 /* See __mem_cgroup_try_charge() for details */ 2391 enum { 2392 CHARGE_OK, /* success */ 2393 CHARGE_RETRY, /* need to retry but retry is not bad */ 2394 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2395 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2396 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2397 }; 2398 2399 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2400 unsigned int nr_pages, unsigned int min_pages, 2401 bool oom_check) 2402 { 2403 unsigned long csize = nr_pages * PAGE_SIZE; 2404 struct mem_cgroup *mem_over_limit; 2405 struct res_counter *fail_res; 2406 unsigned long flags = 0; 2407 int ret; 2408 2409 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2410 2411 if (likely(!ret)) { 2412 if (!do_swap_account) 2413 return CHARGE_OK; 2414 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2415 if (likely(!ret)) 2416 return CHARGE_OK; 2417 2418 res_counter_uncharge(&memcg->res, csize); 2419 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2420 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2421 } else 2422 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2423 /* 2424 * Never reclaim on behalf of optional batching, retry with a 2425 * single page instead. 2426 */ 2427 if (nr_pages > min_pages) 2428 return CHARGE_RETRY; 2429 2430 if (!(gfp_mask & __GFP_WAIT)) 2431 return CHARGE_WOULDBLOCK; 2432 2433 if (gfp_mask & __GFP_NORETRY) 2434 return CHARGE_NOMEM; 2435 2436 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2438 return CHARGE_RETRY; 2439 /* 2440 * Even though the limit is exceeded at this point, reclaim 2441 * may have been able to free some pages. Retry the charge 2442 * before killing the task. 2443 * 2444 * Only for regular pages, though: huge pages are rather 2445 * unlikely to succeed so close to the limit, and we fall back 2446 * to regular pages anyway in case of failure. 2447 */ 2448 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2449 return CHARGE_RETRY; 2450 2451 /* 2452 * At task move, charge accounts can be doubly counted. So, it's 2453 * better to wait until the end of task_move if something is going on. 2454 */ 2455 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2456 return CHARGE_RETRY; 2457 2458 /* If we don't need to call oom-killer at el, return immediately */ 2459 if (!oom_check) 2460 return CHARGE_NOMEM; 2461 /* check OOM */ 2462 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2463 return CHARGE_OOM_DIE; 2464 2465 return CHARGE_RETRY; 2466 } 2467 2468 /* 2469 * __mem_cgroup_try_charge() does 2470 * 1. detect memcg to be charged against from passed *mm and *ptr, 2471 * 2. update res_counter 2472 * 3. call memory reclaim if necessary. 2473 * 2474 * In some special case, if the task is fatal, fatal_signal_pending() or 2475 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2476 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2477 * as possible without any hazards. 2: all pages should have a valid 2478 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2479 * pointer, that is treated as a charge to root_mem_cgroup. 2480 * 2481 * So __mem_cgroup_try_charge() will return 2482 * 0 ... on success, filling *ptr with a valid memcg pointer. 2483 * -ENOMEM ... charge failure because of resource limits. 2484 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2485 * 2486 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2487 * the oom-killer can be invoked. 2488 */ 2489 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2490 gfp_t gfp_mask, 2491 unsigned int nr_pages, 2492 struct mem_cgroup **ptr, 2493 bool oom) 2494 { 2495 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2496 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2497 struct mem_cgroup *memcg = NULL; 2498 int ret; 2499 2500 /* 2501 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2502 * in system level. So, allow to go ahead dying process in addition to 2503 * MEMDIE process. 2504 */ 2505 if (unlikely(test_thread_flag(TIF_MEMDIE) 2506 || fatal_signal_pending(current))) 2507 goto bypass; 2508 2509 /* 2510 * We always charge the cgroup the mm_struct belongs to. 2511 * The mm_struct's mem_cgroup changes on task migration if the 2512 * thread group leader migrates. It's possible that mm is not 2513 * set, if so charge the root memcg (happens for pagecache usage). 2514 */ 2515 if (!*ptr && !mm) 2516 *ptr = root_mem_cgroup; 2517 again: 2518 if (*ptr) { /* css should be a valid one */ 2519 memcg = *ptr; 2520 if (mem_cgroup_is_root(memcg)) 2521 goto done; 2522 if (consume_stock(memcg, nr_pages)) 2523 goto done; 2524 css_get(&memcg->css); 2525 } else { 2526 struct task_struct *p; 2527 2528 rcu_read_lock(); 2529 p = rcu_dereference(mm->owner); 2530 /* 2531 * Because we don't have task_lock(), "p" can exit. 2532 * In that case, "memcg" can point to root or p can be NULL with 2533 * race with swapoff. Then, we have small risk of mis-accouning. 2534 * But such kind of mis-account by race always happens because 2535 * we don't have cgroup_mutex(). It's overkill and we allo that 2536 * small race, here. 2537 * (*) swapoff at el will charge against mm-struct not against 2538 * task-struct. So, mm->owner can be NULL. 2539 */ 2540 memcg = mem_cgroup_from_task(p); 2541 if (!memcg) 2542 memcg = root_mem_cgroup; 2543 if (mem_cgroup_is_root(memcg)) { 2544 rcu_read_unlock(); 2545 goto done; 2546 } 2547 if (consume_stock(memcg, nr_pages)) { 2548 /* 2549 * It seems dagerous to access memcg without css_get(). 2550 * But considering how consume_stok works, it's not 2551 * necessary. If consume_stock success, some charges 2552 * from this memcg are cached on this cpu. So, we 2553 * don't need to call css_get()/css_tryget() before 2554 * calling consume_stock(). 2555 */ 2556 rcu_read_unlock(); 2557 goto done; 2558 } 2559 /* after here, we may be blocked. we need to get refcnt */ 2560 if (!css_tryget(&memcg->css)) { 2561 rcu_read_unlock(); 2562 goto again; 2563 } 2564 rcu_read_unlock(); 2565 } 2566 2567 do { 2568 bool oom_check; 2569 2570 /* If killed, bypass charge */ 2571 if (fatal_signal_pending(current)) { 2572 css_put(&memcg->css); 2573 goto bypass; 2574 } 2575 2576 oom_check = false; 2577 if (oom && !nr_oom_retries) { 2578 oom_check = true; 2579 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2580 } 2581 2582 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2583 oom_check); 2584 switch (ret) { 2585 case CHARGE_OK: 2586 break; 2587 case CHARGE_RETRY: /* not in OOM situation but retry */ 2588 batch = nr_pages; 2589 css_put(&memcg->css); 2590 memcg = NULL; 2591 goto again; 2592 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2593 css_put(&memcg->css); 2594 goto nomem; 2595 case CHARGE_NOMEM: /* OOM routine works */ 2596 if (!oom) { 2597 css_put(&memcg->css); 2598 goto nomem; 2599 } 2600 /* If oom, we never return -ENOMEM */ 2601 nr_oom_retries--; 2602 break; 2603 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2604 css_put(&memcg->css); 2605 goto bypass; 2606 } 2607 } while (ret != CHARGE_OK); 2608 2609 if (batch > nr_pages) 2610 refill_stock(memcg, batch - nr_pages); 2611 css_put(&memcg->css); 2612 done: 2613 *ptr = memcg; 2614 return 0; 2615 nomem: 2616 *ptr = NULL; 2617 return -ENOMEM; 2618 bypass: 2619 *ptr = root_mem_cgroup; 2620 return -EINTR; 2621 } 2622 2623 /* 2624 * Somemtimes we have to undo a charge we got by try_charge(). 2625 * This function is for that and do uncharge, put css's refcnt. 2626 * gotten by try_charge(). 2627 */ 2628 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2629 unsigned int nr_pages) 2630 { 2631 if (!mem_cgroup_is_root(memcg)) { 2632 unsigned long bytes = nr_pages * PAGE_SIZE; 2633 2634 res_counter_uncharge(&memcg->res, bytes); 2635 if (do_swap_account) 2636 res_counter_uncharge(&memcg->memsw, bytes); 2637 } 2638 } 2639 2640 /* 2641 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2642 * This is useful when moving usage to parent cgroup. 2643 */ 2644 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2645 unsigned int nr_pages) 2646 { 2647 unsigned long bytes = nr_pages * PAGE_SIZE; 2648 2649 if (mem_cgroup_is_root(memcg)) 2650 return; 2651 2652 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2653 if (do_swap_account) 2654 res_counter_uncharge_until(&memcg->memsw, 2655 memcg->memsw.parent, bytes); 2656 } 2657 2658 /* 2659 * A helper function to get mem_cgroup from ID. must be called under 2660 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2661 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2662 * called against removed memcg.) 2663 */ 2664 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2665 { 2666 struct cgroup_subsys_state *css; 2667 2668 /* ID 0 is unused ID */ 2669 if (!id) 2670 return NULL; 2671 css = css_lookup(&mem_cgroup_subsys, id); 2672 if (!css) 2673 return NULL; 2674 return mem_cgroup_from_css(css); 2675 } 2676 2677 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2678 { 2679 struct mem_cgroup *memcg = NULL; 2680 struct page_cgroup *pc; 2681 unsigned short id; 2682 swp_entry_t ent; 2683 2684 VM_BUG_ON(!PageLocked(page)); 2685 2686 pc = lookup_page_cgroup(page); 2687 lock_page_cgroup(pc); 2688 if (PageCgroupUsed(pc)) { 2689 memcg = pc->mem_cgroup; 2690 if (memcg && !css_tryget(&memcg->css)) 2691 memcg = NULL; 2692 } else if (PageSwapCache(page)) { 2693 ent.val = page_private(page); 2694 id = lookup_swap_cgroup_id(ent); 2695 rcu_read_lock(); 2696 memcg = mem_cgroup_lookup(id); 2697 if (memcg && !css_tryget(&memcg->css)) 2698 memcg = NULL; 2699 rcu_read_unlock(); 2700 } 2701 unlock_page_cgroup(pc); 2702 return memcg; 2703 } 2704 2705 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2706 struct page *page, 2707 unsigned int nr_pages, 2708 enum charge_type ctype, 2709 bool lrucare) 2710 { 2711 struct page_cgroup *pc = lookup_page_cgroup(page); 2712 struct zone *uninitialized_var(zone); 2713 struct lruvec *lruvec; 2714 bool was_on_lru = false; 2715 bool anon; 2716 2717 lock_page_cgroup(pc); 2718 VM_BUG_ON(PageCgroupUsed(pc)); 2719 /* 2720 * we don't need page_cgroup_lock about tail pages, becase they are not 2721 * accessed by any other context at this point. 2722 */ 2723 2724 /* 2725 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2726 * may already be on some other mem_cgroup's LRU. Take care of it. 2727 */ 2728 if (lrucare) { 2729 zone = page_zone(page); 2730 spin_lock_irq(&zone->lru_lock); 2731 if (PageLRU(page)) { 2732 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2733 ClearPageLRU(page); 2734 del_page_from_lru_list(page, lruvec, page_lru(page)); 2735 was_on_lru = true; 2736 } 2737 } 2738 2739 pc->mem_cgroup = memcg; 2740 /* 2741 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2742 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2743 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2744 * before USED bit, we need memory barrier here. 2745 * See mem_cgroup_add_lru_list(), etc. 2746 */ 2747 smp_wmb(); 2748 SetPageCgroupUsed(pc); 2749 2750 if (lrucare) { 2751 if (was_on_lru) { 2752 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2753 VM_BUG_ON(PageLRU(page)); 2754 SetPageLRU(page); 2755 add_page_to_lru_list(page, lruvec, page_lru(page)); 2756 } 2757 spin_unlock_irq(&zone->lru_lock); 2758 } 2759 2760 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2761 anon = true; 2762 else 2763 anon = false; 2764 2765 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2766 unlock_page_cgroup(pc); 2767 2768 /* 2769 * "charge_statistics" updated event counter. Then, check it. 2770 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2771 * if they exceeds softlimit. 2772 */ 2773 memcg_check_events(memcg, page); 2774 } 2775 2776 static DEFINE_MUTEX(set_limit_mutex); 2777 2778 #ifdef CONFIG_MEMCG_KMEM 2779 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2780 { 2781 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2782 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2783 } 2784 2785 /* 2786 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2787 * in the memcg_cache_params struct. 2788 */ 2789 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2790 { 2791 struct kmem_cache *cachep; 2792 2793 VM_BUG_ON(p->is_root_cache); 2794 cachep = p->root_cache; 2795 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2796 } 2797 2798 #ifdef CONFIG_SLABINFO 2799 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, 2800 struct seq_file *m) 2801 { 2802 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2803 struct memcg_cache_params *params; 2804 2805 if (!memcg_can_account_kmem(memcg)) 2806 return -EIO; 2807 2808 print_slabinfo_header(m); 2809 2810 mutex_lock(&memcg->slab_caches_mutex); 2811 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2812 cache_show(memcg_params_to_cache(params), m); 2813 mutex_unlock(&memcg->slab_caches_mutex); 2814 2815 return 0; 2816 } 2817 #endif 2818 2819 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2820 { 2821 struct res_counter *fail_res; 2822 struct mem_cgroup *_memcg; 2823 int ret = 0; 2824 bool may_oom; 2825 2826 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2827 if (ret) 2828 return ret; 2829 2830 /* 2831 * Conditions under which we can wait for the oom_killer. Those are 2832 * the same conditions tested by the core page allocator 2833 */ 2834 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2835 2836 _memcg = memcg; 2837 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2838 &_memcg, may_oom); 2839 2840 if (ret == -EINTR) { 2841 /* 2842 * __mem_cgroup_try_charge() chosed to bypass to root due to 2843 * OOM kill or fatal signal. Since our only options are to 2844 * either fail the allocation or charge it to this cgroup, do 2845 * it as a temporary condition. But we can't fail. From a 2846 * kmem/slab perspective, the cache has already been selected, 2847 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2848 * our minds. 2849 * 2850 * This condition will only trigger if the task entered 2851 * memcg_charge_kmem in a sane state, but was OOM-killed during 2852 * __mem_cgroup_try_charge() above. Tasks that were already 2853 * dying when the allocation triggers should have been already 2854 * directed to the root cgroup in memcontrol.h 2855 */ 2856 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2857 if (do_swap_account) 2858 res_counter_charge_nofail(&memcg->memsw, size, 2859 &fail_res); 2860 ret = 0; 2861 } else if (ret) 2862 res_counter_uncharge(&memcg->kmem, size); 2863 2864 return ret; 2865 } 2866 2867 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2868 { 2869 res_counter_uncharge(&memcg->res, size); 2870 if (do_swap_account) 2871 res_counter_uncharge(&memcg->memsw, size); 2872 2873 /* Not down to 0 */ 2874 if (res_counter_uncharge(&memcg->kmem, size)) 2875 return; 2876 2877 if (memcg_kmem_test_and_clear_dead(memcg)) 2878 mem_cgroup_put(memcg); 2879 } 2880 2881 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 2882 { 2883 if (!memcg) 2884 return; 2885 2886 mutex_lock(&memcg->slab_caches_mutex); 2887 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 2888 mutex_unlock(&memcg->slab_caches_mutex); 2889 } 2890 2891 /* 2892 * helper for acessing a memcg's index. It will be used as an index in the 2893 * child cache array in kmem_cache, and also to derive its name. This function 2894 * will return -1 when this is not a kmem-limited memcg. 2895 */ 2896 int memcg_cache_id(struct mem_cgroup *memcg) 2897 { 2898 return memcg ? memcg->kmemcg_id : -1; 2899 } 2900 2901 /* 2902 * This ends up being protected by the set_limit mutex, during normal 2903 * operation, because that is its main call site. 2904 * 2905 * But when we create a new cache, we can call this as well if its parent 2906 * is kmem-limited. That will have to hold set_limit_mutex as well. 2907 */ 2908 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 2909 { 2910 int num, ret; 2911 2912 num = ida_simple_get(&kmem_limited_groups, 2913 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2914 if (num < 0) 2915 return num; 2916 /* 2917 * After this point, kmem_accounted (that we test atomically in 2918 * the beginning of this conditional), is no longer 0. This 2919 * guarantees only one process will set the following boolean 2920 * to true. We don't need test_and_set because we're protected 2921 * by the set_limit_mutex anyway. 2922 */ 2923 memcg_kmem_set_activated(memcg); 2924 2925 ret = memcg_update_all_caches(num+1); 2926 if (ret) { 2927 ida_simple_remove(&kmem_limited_groups, num); 2928 memcg_kmem_clear_activated(memcg); 2929 return ret; 2930 } 2931 2932 memcg->kmemcg_id = num; 2933 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 2934 mutex_init(&memcg->slab_caches_mutex); 2935 return 0; 2936 } 2937 2938 static size_t memcg_caches_array_size(int num_groups) 2939 { 2940 ssize_t size; 2941 if (num_groups <= 0) 2942 return 0; 2943 2944 size = 2 * num_groups; 2945 if (size < MEMCG_CACHES_MIN_SIZE) 2946 size = MEMCG_CACHES_MIN_SIZE; 2947 else if (size > MEMCG_CACHES_MAX_SIZE) 2948 size = MEMCG_CACHES_MAX_SIZE; 2949 2950 return size; 2951 } 2952 2953 /* 2954 * We should update the current array size iff all caches updates succeed. This 2955 * can only be done from the slab side. The slab mutex needs to be held when 2956 * calling this. 2957 */ 2958 void memcg_update_array_size(int num) 2959 { 2960 if (num > memcg_limited_groups_array_size) 2961 memcg_limited_groups_array_size = memcg_caches_array_size(num); 2962 } 2963 2964 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 2965 { 2966 struct memcg_cache_params *cur_params = s->memcg_params; 2967 2968 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 2969 2970 if (num_groups > memcg_limited_groups_array_size) { 2971 int i; 2972 ssize_t size = memcg_caches_array_size(num_groups); 2973 2974 size *= sizeof(void *); 2975 size += sizeof(struct memcg_cache_params); 2976 2977 s->memcg_params = kzalloc(size, GFP_KERNEL); 2978 if (!s->memcg_params) { 2979 s->memcg_params = cur_params; 2980 return -ENOMEM; 2981 } 2982 2983 s->memcg_params->is_root_cache = true; 2984 2985 /* 2986 * There is the chance it will be bigger than 2987 * memcg_limited_groups_array_size, if we failed an allocation 2988 * in a cache, in which case all caches updated before it, will 2989 * have a bigger array. 2990 * 2991 * But if that is the case, the data after 2992 * memcg_limited_groups_array_size is certainly unused 2993 */ 2994 for (i = 0; i < memcg_limited_groups_array_size; i++) { 2995 if (!cur_params->memcg_caches[i]) 2996 continue; 2997 s->memcg_params->memcg_caches[i] = 2998 cur_params->memcg_caches[i]; 2999 } 3000 3001 /* 3002 * Ideally, we would wait until all caches succeed, and only 3003 * then free the old one. But this is not worth the extra 3004 * pointer per-cache we'd have to have for this. 3005 * 3006 * It is not a big deal if some caches are left with a size 3007 * bigger than the others. And all updates will reset this 3008 * anyway. 3009 */ 3010 kfree(cur_params); 3011 } 3012 return 0; 3013 } 3014 3015 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3016 struct kmem_cache *root_cache) 3017 { 3018 size_t size = sizeof(struct memcg_cache_params); 3019 3020 if (!memcg_kmem_enabled()) 3021 return 0; 3022 3023 if (!memcg) 3024 size += memcg_limited_groups_array_size * sizeof(void *); 3025 3026 s->memcg_params = kzalloc(size, GFP_KERNEL); 3027 if (!s->memcg_params) 3028 return -ENOMEM; 3029 3030 if (memcg) { 3031 s->memcg_params->memcg = memcg; 3032 s->memcg_params->root_cache = root_cache; 3033 } else 3034 s->memcg_params->is_root_cache = true; 3035 3036 return 0; 3037 } 3038 3039 void memcg_release_cache(struct kmem_cache *s) 3040 { 3041 struct kmem_cache *root; 3042 struct mem_cgroup *memcg; 3043 int id; 3044 3045 /* 3046 * This happens, for instance, when a root cache goes away before we 3047 * add any memcg. 3048 */ 3049 if (!s->memcg_params) 3050 return; 3051 3052 if (s->memcg_params->is_root_cache) 3053 goto out; 3054 3055 memcg = s->memcg_params->memcg; 3056 id = memcg_cache_id(memcg); 3057 3058 root = s->memcg_params->root_cache; 3059 root->memcg_params->memcg_caches[id] = NULL; 3060 mem_cgroup_put(memcg); 3061 3062 mutex_lock(&memcg->slab_caches_mutex); 3063 list_del(&s->memcg_params->list); 3064 mutex_unlock(&memcg->slab_caches_mutex); 3065 3066 out: 3067 kfree(s->memcg_params); 3068 } 3069 3070 /* 3071 * During the creation a new cache, we need to disable our accounting mechanism 3072 * altogether. This is true even if we are not creating, but rather just 3073 * enqueing new caches to be created. 3074 * 3075 * This is because that process will trigger allocations; some visible, like 3076 * explicit kmallocs to auxiliary data structures, name strings and internal 3077 * cache structures; some well concealed, like INIT_WORK() that can allocate 3078 * objects during debug. 3079 * 3080 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3081 * to it. This may not be a bounded recursion: since the first cache creation 3082 * failed to complete (waiting on the allocation), we'll just try to create the 3083 * cache again, failing at the same point. 3084 * 3085 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3086 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3087 * inside the following two functions. 3088 */ 3089 static inline void memcg_stop_kmem_account(void) 3090 { 3091 VM_BUG_ON(!current->mm); 3092 current->memcg_kmem_skip_account++; 3093 } 3094 3095 static inline void memcg_resume_kmem_account(void) 3096 { 3097 VM_BUG_ON(!current->mm); 3098 current->memcg_kmem_skip_account--; 3099 } 3100 3101 static void kmem_cache_destroy_work_func(struct work_struct *w) 3102 { 3103 struct kmem_cache *cachep; 3104 struct memcg_cache_params *p; 3105 3106 p = container_of(w, struct memcg_cache_params, destroy); 3107 3108 cachep = memcg_params_to_cache(p); 3109 3110 /* 3111 * If we get down to 0 after shrink, we could delete right away. 3112 * However, memcg_release_pages() already puts us back in the workqueue 3113 * in that case. If we proceed deleting, we'll get a dangling 3114 * reference, and removing the object from the workqueue in that case 3115 * is unnecessary complication. We are not a fast path. 3116 * 3117 * Note that this case is fundamentally different from racing with 3118 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3119 * kmem_cache_shrink, not only we would be reinserting a dead cache 3120 * into the queue, but doing so from inside the worker racing to 3121 * destroy it. 3122 * 3123 * So if we aren't down to zero, we'll just schedule a worker and try 3124 * again 3125 */ 3126 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3127 kmem_cache_shrink(cachep); 3128 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3129 return; 3130 } else 3131 kmem_cache_destroy(cachep); 3132 } 3133 3134 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3135 { 3136 if (!cachep->memcg_params->dead) 3137 return; 3138 3139 /* 3140 * There are many ways in which we can get here. 3141 * 3142 * We can get to a memory-pressure situation while the delayed work is 3143 * still pending to run. The vmscan shrinkers can then release all 3144 * cache memory and get us to destruction. If this is the case, we'll 3145 * be executed twice, which is a bug (the second time will execute over 3146 * bogus data). In this case, cancelling the work should be fine. 3147 * 3148 * But we can also get here from the worker itself, if 3149 * kmem_cache_shrink is enough to shake all the remaining objects and 3150 * get the page count to 0. In this case, we'll deadlock if we try to 3151 * cancel the work (the worker runs with an internal lock held, which 3152 * is the same lock we would hold for cancel_work_sync().) 3153 * 3154 * Since we can't possibly know who got us here, just refrain from 3155 * running if there is already work pending 3156 */ 3157 if (work_pending(&cachep->memcg_params->destroy)) 3158 return; 3159 /* 3160 * We have to defer the actual destroying to a workqueue, because 3161 * we might currently be in a context that cannot sleep. 3162 */ 3163 schedule_work(&cachep->memcg_params->destroy); 3164 } 3165 3166 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s) 3167 { 3168 char *name; 3169 struct dentry *dentry; 3170 3171 rcu_read_lock(); 3172 dentry = rcu_dereference(memcg->css.cgroup->dentry); 3173 rcu_read_unlock(); 3174 3175 BUG_ON(dentry == NULL); 3176 3177 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name, 3178 memcg_cache_id(memcg), dentry->d_name.name); 3179 3180 return name; 3181 } 3182 3183 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3184 struct kmem_cache *s) 3185 { 3186 char *name; 3187 struct kmem_cache *new; 3188 3189 name = memcg_cache_name(memcg, s); 3190 if (!name) 3191 return NULL; 3192 3193 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align, 3194 (s->flags & ~SLAB_PANIC), s->ctor, s); 3195 3196 if (new) 3197 new->allocflags |= __GFP_KMEMCG; 3198 3199 kfree(name); 3200 return new; 3201 } 3202 3203 /* 3204 * This lock protects updaters, not readers. We want readers to be as fast as 3205 * they can, and they will either see NULL or a valid cache value. Our model 3206 * allow them to see NULL, in which case the root memcg will be selected. 3207 * 3208 * We need this lock because multiple allocations to the same cache from a non 3209 * will span more than one worker. Only one of them can create the cache. 3210 */ 3211 static DEFINE_MUTEX(memcg_cache_mutex); 3212 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3213 struct kmem_cache *cachep) 3214 { 3215 struct kmem_cache *new_cachep; 3216 int idx; 3217 3218 BUG_ON(!memcg_can_account_kmem(memcg)); 3219 3220 idx = memcg_cache_id(memcg); 3221 3222 mutex_lock(&memcg_cache_mutex); 3223 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3224 if (new_cachep) 3225 goto out; 3226 3227 new_cachep = kmem_cache_dup(memcg, cachep); 3228 if (new_cachep == NULL) { 3229 new_cachep = cachep; 3230 goto out; 3231 } 3232 3233 mem_cgroup_get(memcg); 3234 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3235 3236 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3237 /* 3238 * the readers won't lock, make sure everybody sees the updated value, 3239 * so they won't put stuff in the queue again for no reason 3240 */ 3241 wmb(); 3242 out: 3243 mutex_unlock(&memcg_cache_mutex); 3244 return new_cachep; 3245 } 3246 3247 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3248 { 3249 struct kmem_cache *c; 3250 int i; 3251 3252 if (!s->memcg_params) 3253 return; 3254 if (!s->memcg_params->is_root_cache) 3255 return; 3256 3257 /* 3258 * If the cache is being destroyed, we trust that there is no one else 3259 * requesting objects from it. Even if there are, the sanity checks in 3260 * kmem_cache_destroy should caught this ill-case. 3261 * 3262 * Still, we don't want anyone else freeing memcg_caches under our 3263 * noses, which can happen if a new memcg comes to life. As usual, 3264 * we'll take the set_limit_mutex to protect ourselves against this. 3265 */ 3266 mutex_lock(&set_limit_mutex); 3267 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3268 c = s->memcg_params->memcg_caches[i]; 3269 if (!c) 3270 continue; 3271 3272 /* 3273 * We will now manually delete the caches, so to avoid races 3274 * we need to cancel all pending destruction workers and 3275 * proceed with destruction ourselves. 3276 * 3277 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3278 * and that could spawn the workers again: it is likely that 3279 * the cache still have active pages until this very moment. 3280 * This would lead us back to mem_cgroup_destroy_cache. 3281 * 3282 * But that will not execute at all if the "dead" flag is not 3283 * set, so flip it down to guarantee we are in control. 3284 */ 3285 c->memcg_params->dead = false; 3286 cancel_work_sync(&c->memcg_params->destroy); 3287 kmem_cache_destroy(c); 3288 } 3289 mutex_unlock(&set_limit_mutex); 3290 } 3291 3292 struct create_work { 3293 struct mem_cgroup *memcg; 3294 struct kmem_cache *cachep; 3295 struct work_struct work; 3296 }; 3297 3298 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3299 { 3300 struct kmem_cache *cachep; 3301 struct memcg_cache_params *params; 3302 3303 if (!memcg_kmem_is_active(memcg)) 3304 return; 3305 3306 mutex_lock(&memcg->slab_caches_mutex); 3307 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3308 cachep = memcg_params_to_cache(params); 3309 cachep->memcg_params->dead = true; 3310 INIT_WORK(&cachep->memcg_params->destroy, 3311 kmem_cache_destroy_work_func); 3312 schedule_work(&cachep->memcg_params->destroy); 3313 } 3314 mutex_unlock(&memcg->slab_caches_mutex); 3315 } 3316 3317 static void memcg_create_cache_work_func(struct work_struct *w) 3318 { 3319 struct create_work *cw; 3320 3321 cw = container_of(w, struct create_work, work); 3322 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3323 /* Drop the reference gotten when we enqueued. */ 3324 css_put(&cw->memcg->css); 3325 kfree(cw); 3326 } 3327 3328 /* 3329 * Enqueue the creation of a per-memcg kmem_cache. 3330 * Called with rcu_read_lock. 3331 */ 3332 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3333 struct kmem_cache *cachep) 3334 { 3335 struct create_work *cw; 3336 3337 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3338 if (cw == NULL) 3339 return; 3340 3341 /* The corresponding put will be done in the workqueue. */ 3342 if (!css_tryget(&memcg->css)) { 3343 kfree(cw); 3344 return; 3345 } 3346 3347 cw->memcg = memcg; 3348 cw->cachep = cachep; 3349 3350 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3351 schedule_work(&cw->work); 3352 } 3353 3354 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3355 struct kmem_cache *cachep) 3356 { 3357 /* 3358 * We need to stop accounting when we kmalloc, because if the 3359 * corresponding kmalloc cache is not yet created, the first allocation 3360 * in __memcg_create_cache_enqueue will recurse. 3361 * 3362 * However, it is better to enclose the whole function. Depending on 3363 * the debugging options enabled, INIT_WORK(), for instance, can 3364 * trigger an allocation. This too, will make us recurse. Because at 3365 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3366 * the safest choice is to do it like this, wrapping the whole function. 3367 */ 3368 memcg_stop_kmem_account(); 3369 __memcg_create_cache_enqueue(memcg, cachep); 3370 memcg_resume_kmem_account(); 3371 } 3372 /* 3373 * Return the kmem_cache we're supposed to use for a slab allocation. 3374 * We try to use the current memcg's version of the cache. 3375 * 3376 * If the cache does not exist yet, if we are the first user of it, 3377 * we either create it immediately, if possible, or create it asynchronously 3378 * in a workqueue. 3379 * In the latter case, we will let the current allocation go through with 3380 * the original cache. 3381 * 3382 * Can't be called in interrupt context or from kernel threads. 3383 * This function needs to be called with rcu_read_lock() held. 3384 */ 3385 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3386 gfp_t gfp) 3387 { 3388 struct mem_cgroup *memcg; 3389 int idx; 3390 3391 VM_BUG_ON(!cachep->memcg_params); 3392 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3393 3394 if (!current->mm || current->memcg_kmem_skip_account) 3395 return cachep; 3396 3397 rcu_read_lock(); 3398 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3399 rcu_read_unlock(); 3400 3401 if (!memcg_can_account_kmem(memcg)) 3402 return cachep; 3403 3404 idx = memcg_cache_id(memcg); 3405 3406 /* 3407 * barrier to mare sure we're always seeing the up to date value. The 3408 * code updating memcg_caches will issue a write barrier to match this. 3409 */ 3410 read_barrier_depends(); 3411 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) { 3412 /* 3413 * If we are in a safe context (can wait, and not in interrupt 3414 * context), we could be be predictable and return right away. 3415 * This would guarantee that the allocation being performed 3416 * already belongs in the new cache. 3417 * 3418 * However, there are some clashes that can arrive from locking. 3419 * For instance, because we acquire the slab_mutex while doing 3420 * kmem_cache_dup, this means no further allocation could happen 3421 * with the slab_mutex held. 3422 * 3423 * Also, because cache creation issue get_online_cpus(), this 3424 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3425 * that ends up reversed during cpu hotplug. (cpuset allocates 3426 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3427 * better to defer everything. 3428 */ 3429 memcg_create_cache_enqueue(memcg, cachep); 3430 return cachep; 3431 } 3432 3433 return cachep->memcg_params->memcg_caches[idx]; 3434 } 3435 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3436 3437 /* 3438 * We need to verify if the allocation against current->mm->owner's memcg is 3439 * possible for the given order. But the page is not allocated yet, so we'll 3440 * need a further commit step to do the final arrangements. 3441 * 3442 * It is possible for the task to switch cgroups in this mean time, so at 3443 * commit time, we can't rely on task conversion any longer. We'll then use 3444 * the handle argument to return to the caller which cgroup we should commit 3445 * against. We could also return the memcg directly and avoid the pointer 3446 * passing, but a boolean return value gives better semantics considering 3447 * the compiled-out case as well. 3448 * 3449 * Returning true means the allocation is possible. 3450 */ 3451 bool 3452 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3453 { 3454 struct mem_cgroup *memcg; 3455 int ret; 3456 3457 *_memcg = NULL; 3458 memcg = try_get_mem_cgroup_from_mm(current->mm); 3459 3460 /* 3461 * very rare case described in mem_cgroup_from_task. Unfortunately there 3462 * isn't much we can do without complicating this too much, and it would 3463 * be gfp-dependent anyway. Just let it go 3464 */ 3465 if (unlikely(!memcg)) 3466 return true; 3467 3468 if (!memcg_can_account_kmem(memcg)) { 3469 css_put(&memcg->css); 3470 return true; 3471 } 3472 3473 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3474 if (!ret) 3475 *_memcg = memcg; 3476 3477 css_put(&memcg->css); 3478 return (ret == 0); 3479 } 3480 3481 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3482 int order) 3483 { 3484 struct page_cgroup *pc; 3485 3486 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3487 3488 /* The page allocation failed. Revert */ 3489 if (!page) { 3490 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3491 return; 3492 } 3493 3494 pc = lookup_page_cgroup(page); 3495 lock_page_cgroup(pc); 3496 pc->mem_cgroup = memcg; 3497 SetPageCgroupUsed(pc); 3498 unlock_page_cgroup(pc); 3499 } 3500 3501 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3502 { 3503 struct mem_cgroup *memcg = NULL; 3504 struct page_cgroup *pc; 3505 3506 3507 pc = lookup_page_cgroup(page); 3508 /* 3509 * Fast unlocked return. Theoretically might have changed, have to 3510 * check again after locking. 3511 */ 3512 if (!PageCgroupUsed(pc)) 3513 return; 3514 3515 lock_page_cgroup(pc); 3516 if (PageCgroupUsed(pc)) { 3517 memcg = pc->mem_cgroup; 3518 ClearPageCgroupUsed(pc); 3519 } 3520 unlock_page_cgroup(pc); 3521 3522 /* 3523 * We trust that only if there is a memcg associated with the page, it 3524 * is a valid allocation 3525 */ 3526 if (!memcg) 3527 return; 3528 3529 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3530 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3531 } 3532 #else 3533 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3534 { 3535 } 3536 #endif /* CONFIG_MEMCG_KMEM */ 3537 3538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3539 3540 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3541 /* 3542 * Because tail pages are not marked as "used", set it. We're under 3543 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3544 * charge/uncharge will be never happen and move_account() is done under 3545 * compound_lock(), so we don't have to take care of races. 3546 */ 3547 void mem_cgroup_split_huge_fixup(struct page *head) 3548 { 3549 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3550 struct page_cgroup *pc; 3551 int i; 3552 3553 if (mem_cgroup_disabled()) 3554 return; 3555 for (i = 1; i < HPAGE_PMD_NR; i++) { 3556 pc = head_pc + i; 3557 pc->mem_cgroup = head_pc->mem_cgroup; 3558 smp_wmb();/* see __commit_charge() */ 3559 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3560 } 3561 } 3562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3563 3564 /** 3565 * mem_cgroup_move_account - move account of the page 3566 * @page: the page 3567 * @nr_pages: number of regular pages (>1 for huge pages) 3568 * @pc: page_cgroup of the page. 3569 * @from: mem_cgroup which the page is moved from. 3570 * @to: mem_cgroup which the page is moved to. @from != @to. 3571 * 3572 * The caller must confirm following. 3573 * - page is not on LRU (isolate_page() is useful.) 3574 * - compound_lock is held when nr_pages > 1 3575 * 3576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3577 * from old cgroup. 3578 */ 3579 static int mem_cgroup_move_account(struct page *page, 3580 unsigned int nr_pages, 3581 struct page_cgroup *pc, 3582 struct mem_cgroup *from, 3583 struct mem_cgroup *to) 3584 { 3585 unsigned long flags; 3586 int ret; 3587 bool anon = PageAnon(page); 3588 3589 VM_BUG_ON(from == to); 3590 VM_BUG_ON(PageLRU(page)); 3591 /* 3592 * The page is isolated from LRU. So, collapse function 3593 * will not handle this page. But page splitting can happen. 3594 * Do this check under compound_page_lock(). The caller should 3595 * hold it. 3596 */ 3597 ret = -EBUSY; 3598 if (nr_pages > 1 && !PageTransHuge(page)) 3599 goto out; 3600 3601 lock_page_cgroup(pc); 3602 3603 ret = -EINVAL; 3604 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3605 goto unlock; 3606 3607 move_lock_mem_cgroup(from, &flags); 3608 3609 if (!anon && page_mapped(page)) { 3610 /* Update mapped_file data for mem_cgroup */ 3611 preempt_disable(); 3612 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3613 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3614 preempt_enable(); 3615 } 3616 mem_cgroup_charge_statistics(from, anon, -nr_pages); 3617 3618 /* caller should have done css_get */ 3619 pc->mem_cgroup = to; 3620 mem_cgroup_charge_statistics(to, anon, nr_pages); 3621 move_unlock_mem_cgroup(from, &flags); 3622 ret = 0; 3623 unlock: 3624 unlock_page_cgroup(pc); 3625 /* 3626 * check events 3627 */ 3628 memcg_check_events(to, page); 3629 memcg_check_events(from, page); 3630 out: 3631 return ret; 3632 } 3633 3634 /** 3635 * mem_cgroup_move_parent - moves page to the parent group 3636 * @page: the page to move 3637 * @pc: page_cgroup of the page 3638 * @child: page's cgroup 3639 * 3640 * move charges to its parent or the root cgroup if the group has no 3641 * parent (aka use_hierarchy==0). 3642 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3643 * mem_cgroup_move_account fails) the failure is always temporary and 3644 * it signals a race with a page removal/uncharge or migration. In the 3645 * first case the page is on the way out and it will vanish from the LRU 3646 * on the next attempt and the call should be retried later. 3647 * Isolation from the LRU fails only if page has been isolated from 3648 * the LRU since we looked at it and that usually means either global 3649 * reclaim or migration going on. The page will either get back to the 3650 * LRU or vanish. 3651 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3652 * (!PageCgroupUsed) or moved to a different group. The page will 3653 * disappear in the next attempt. 3654 */ 3655 static int mem_cgroup_move_parent(struct page *page, 3656 struct page_cgroup *pc, 3657 struct mem_cgroup *child) 3658 { 3659 struct mem_cgroup *parent; 3660 unsigned int nr_pages; 3661 unsigned long uninitialized_var(flags); 3662 int ret; 3663 3664 VM_BUG_ON(mem_cgroup_is_root(child)); 3665 3666 ret = -EBUSY; 3667 if (!get_page_unless_zero(page)) 3668 goto out; 3669 if (isolate_lru_page(page)) 3670 goto put; 3671 3672 nr_pages = hpage_nr_pages(page); 3673 3674 parent = parent_mem_cgroup(child); 3675 /* 3676 * If no parent, move charges to root cgroup. 3677 */ 3678 if (!parent) 3679 parent = root_mem_cgroup; 3680 3681 if (nr_pages > 1) { 3682 VM_BUG_ON(!PageTransHuge(page)); 3683 flags = compound_lock_irqsave(page); 3684 } 3685 3686 ret = mem_cgroup_move_account(page, nr_pages, 3687 pc, child, parent); 3688 if (!ret) 3689 __mem_cgroup_cancel_local_charge(child, nr_pages); 3690 3691 if (nr_pages > 1) 3692 compound_unlock_irqrestore(page, flags); 3693 putback_lru_page(page); 3694 put: 3695 put_page(page); 3696 out: 3697 return ret; 3698 } 3699 3700 /* 3701 * Charge the memory controller for page usage. 3702 * Return 3703 * 0 if the charge was successful 3704 * < 0 if the cgroup is over its limit 3705 */ 3706 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3707 gfp_t gfp_mask, enum charge_type ctype) 3708 { 3709 struct mem_cgroup *memcg = NULL; 3710 unsigned int nr_pages = 1; 3711 bool oom = true; 3712 int ret; 3713 3714 if (PageTransHuge(page)) { 3715 nr_pages <<= compound_order(page); 3716 VM_BUG_ON(!PageTransHuge(page)); 3717 /* 3718 * Never OOM-kill a process for a huge page. The 3719 * fault handler will fall back to regular pages. 3720 */ 3721 oom = false; 3722 } 3723 3724 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3725 if (ret == -ENOMEM) 3726 return ret; 3727 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3728 return 0; 3729 } 3730 3731 int mem_cgroup_newpage_charge(struct page *page, 3732 struct mm_struct *mm, gfp_t gfp_mask) 3733 { 3734 if (mem_cgroup_disabled()) 3735 return 0; 3736 VM_BUG_ON(page_mapped(page)); 3737 VM_BUG_ON(page->mapping && !PageAnon(page)); 3738 VM_BUG_ON(!mm); 3739 return mem_cgroup_charge_common(page, mm, gfp_mask, 3740 MEM_CGROUP_CHARGE_TYPE_ANON); 3741 } 3742 3743 /* 3744 * While swap-in, try_charge -> commit or cancel, the page is locked. 3745 * And when try_charge() successfully returns, one refcnt to memcg without 3746 * struct page_cgroup is acquired. This refcnt will be consumed by 3747 * "commit()" or removed by "cancel()" 3748 */ 3749 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3750 struct page *page, 3751 gfp_t mask, 3752 struct mem_cgroup **memcgp) 3753 { 3754 struct mem_cgroup *memcg; 3755 struct page_cgroup *pc; 3756 int ret; 3757 3758 pc = lookup_page_cgroup(page); 3759 /* 3760 * Every swap fault against a single page tries to charge the 3761 * page, bail as early as possible. shmem_unuse() encounters 3762 * already charged pages, too. The USED bit is protected by 3763 * the page lock, which serializes swap cache removal, which 3764 * in turn serializes uncharging. 3765 */ 3766 if (PageCgroupUsed(pc)) 3767 return 0; 3768 if (!do_swap_account) 3769 goto charge_cur_mm; 3770 memcg = try_get_mem_cgroup_from_page(page); 3771 if (!memcg) 3772 goto charge_cur_mm; 3773 *memcgp = memcg; 3774 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3775 css_put(&memcg->css); 3776 if (ret == -EINTR) 3777 ret = 0; 3778 return ret; 3779 charge_cur_mm: 3780 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3781 if (ret == -EINTR) 3782 ret = 0; 3783 return ret; 3784 } 3785 3786 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3787 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3788 { 3789 *memcgp = NULL; 3790 if (mem_cgroup_disabled()) 3791 return 0; 3792 /* 3793 * A racing thread's fault, or swapoff, may have already 3794 * updated the pte, and even removed page from swap cache: in 3795 * those cases unuse_pte()'s pte_same() test will fail; but 3796 * there's also a KSM case which does need to charge the page. 3797 */ 3798 if (!PageSwapCache(page)) { 3799 int ret; 3800 3801 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3802 if (ret == -EINTR) 3803 ret = 0; 3804 return ret; 3805 } 3806 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3807 } 3808 3809 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3810 { 3811 if (mem_cgroup_disabled()) 3812 return; 3813 if (!memcg) 3814 return; 3815 __mem_cgroup_cancel_charge(memcg, 1); 3816 } 3817 3818 static void 3819 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3820 enum charge_type ctype) 3821 { 3822 if (mem_cgroup_disabled()) 3823 return; 3824 if (!memcg) 3825 return; 3826 3827 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3828 /* 3829 * Now swap is on-memory. This means this page may be 3830 * counted both as mem and swap....double count. 3831 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3832 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3833 * may call delete_from_swap_cache() before reach here. 3834 */ 3835 if (do_swap_account && PageSwapCache(page)) { 3836 swp_entry_t ent = {.val = page_private(page)}; 3837 mem_cgroup_uncharge_swap(ent); 3838 } 3839 } 3840 3841 void mem_cgroup_commit_charge_swapin(struct page *page, 3842 struct mem_cgroup *memcg) 3843 { 3844 __mem_cgroup_commit_charge_swapin(page, memcg, 3845 MEM_CGROUP_CHARGE_TYPE_ANON); 3846 } 3847 3848 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 3849 gfp_t gfp_mask) 3850 { 3851 struct mem_cgroup *memcg = NULL; 3852 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3853 int ret; 3854 3855 if (mem_cgroup_disabled()) 3856 return 0; 3857 if (PageCompound(page)) 3858 return 0; 3859 3860 if (!PageSwapCache(page)) 3861 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 3862 else { /* page is swapcache/shmem */ 3863 ret = __mem_cgroup_try_charge_swapin(mm, page, 3864 gfp_mask, &memcg); 3865 if (!ret) 3866 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3867 } 3868 return ret; 3869 } 3870 3871 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3872 unsigned int nr_pages, 3873 const enum charge_type ctype) 3874 { 3875 struct memcg_batch_info *batch = NULL; 3876 bool uncharge_memsw = true; 3877 3878 /* If swapout, usage of swap doesn't decrease */ 3879 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3880 uncharge_memsw = false; 3881 3882 batch = ¤t->memcg_batch; 3883 /* 3884 * In usual, we do css_get() when we remember memcg pointer. 3885 * But in this case, we keep res->usage until end of a series of 3886 * uncharges. Then, it's ok to ignore memcg's refcnt. 3887 */ 3888 if (!batch->memcg) 3889 batch->memcg = memcg; 3890 /* 3891 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 3892 * In those cases, all pages freed continuously can be expected to be in 3893 * the same cgroup and we have chance to coalesce uncharges. 3894 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 3895 * because we want to do uncharge as soon as possible. 3896 */ 3897 3898 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 3899 goto direct_uncharge; 3900 3901 if (nr_pages > 1) 3902 goto direct_uncharge; 3903 3904 /* 3905 * In typical case, batch->memcg == mem. This means we can 3906 * merge a series of uncharges to an uncharge of res_counter. 3907 * If not, we uncharge res_counter ony by one. 3908 */ 3909 if (batch->memcg != memcg) 3910 goto direct_uncharge; 3911 /* remember freed charge and uncharge it later */ 3912 batch->nr_pages++; 3913 if (uncharge_memsw) 3914 batch->memsw_nr_pages++; 3915 return; 3916 direct_uncharge: 3917 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 3918 if (uncharge_memsw) 3919 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 3920 if (unlikely(batch->memcg != memcg)) 3921 memcg_oom_recover(memcg); 3922 } 3923 3924 /* 3925 * uncharge if !page_mapped(page) 3926 */ 3927 static struct mem_cgroup * 3928 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 3929 bool end_migration) 3930 { 3931 struct mem_cgroup *memcg = NULL; 3932 unsigned int nr_pages = 1; 3933 struct page_cgroup *pc; 3934 bool anon; 3935 3936 if (mem_cgroup_disabled()) 3937 return NULL; 3938 3939 VM_BUG_ON(PageSwapCache(page)); 3940 3941 if (PageTransHuge(page)) { 3942 nr_pages <<= compound_order(page); 3943 VM_BUG_ON(!PageTransHuge(page)); 3944 } 3945 /* 3946 * Check if our page_cgroup is valid 3947 */ 3948 pc = lookup_page_cgroup(page); 3949 if (unlikely(!PageCgroupUsed(pc))) 3950 return NULL; 3951 3952 lock_page_cgroup(pc); 3953 3954 memcg = pc->mem_cgroup; 3955 3956 if (!PageCgroupUsed(pc)) 3957 goto unlock_out; 3958 3959 anon = PageAnon(page); 3960 3961 switch (ctype) { 3962 case MEM_CGROUP_CHARGE_TYPE_ANON: 3963 /* 3964 * Generally PageAnon tells if it's the anon statistics to be 3965 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3966 * used before page reached the stage of being marked PageAnon. 3967 */ 3968 anon = true; 3969 /* fallthrough */ 3970 case MEM_CGROUP_CHARGE_TYPE_DROP: 3971 /* See mem_cgroup_prepare_migration() */ 3972 if (page_mapped(page)) 3973 goto unlock_out; 3974 /* 3975 * Pages under migration may not be uncharged. But 3976 * end_migration() /must/ be the one uncharging the 3977 * unused post-migration page and so it has to call 3978 * here with the migration bit still set. See the 3979 * res_counter handling below. 3980 */ 3981 if (!end_migration && PageCgroupMigration(pc)) 3982 goto unlock_out; 3983 break; 3984 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3985 if (!PageAnon(page)) { /* Shared memory */ 3986 if (page->mapping && !page_is_file_cache(page)) 3987 goto unlock_out; 3988 } else if (page_mapped(page)) /* Anon */ 3989 goto unlock_out; 3990 break; 3991 default: 3992 break; 3993 } 3994 3995 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3996 3997 ClearPageCgroupUsed(pc); 3998 /* 3999 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4000 * freed from LRU. This is safe because uncharged page is expected not 4001 * to be reused (freed soon). Exception is SwapCache, it's handled by 4002 * special functions. 4003 */ 4004 4005 unlock_page_cgroup(pc); 4006 /* 4007 * even after unlock, we have memcg->res.usage here and this memcg 4008 * will never be freed. 4009 */ 4010 memcg_check_events(memcg, page); 4011 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4012 mem_cgroup_swap_statistics(memcg, true); 4013 mem_cgroup_get(memcg); 4014 } 4015 /* 4016 * Migration does not charge the res_counter for the 4017 * replacement page, so leave it alone when phasing out the 4018 * page that is unused after the migration. 4019 */ 4020 if (!end_migration && !mem_cgroup_is_root(memcg)) 4021 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4022 4023 return memcg; 4024 4025 unlock_out: 4026 unlock_page_cgroup(pc); 4027 return NULL; 4028 } 4029 4030 void mem_cgroup_uncharge_page(struct page *page) 4031 { 4032 /* early check. */ 4033 if (page_mapped(page)) 4034 return; 4035 VM_BUG_ON(page->mapping && !PageAnon(page)); 4036 if (PageSwapCache(page)) 4037 return; 4038 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4039 } 4040 4041 void mem_cgroup_uncharge_cache_page(struct page *page) 4042 { 4043 VM_BUG_ON(page_mapped(page)); 4044 VM_BUG_ON(page->mapping); 4045 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4046 } 4047 4048 /* 4049 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4050 * In that cases, pages are freed continuously and we can expect pages 4051 * are in the same memcg. All these calls itself limits the number of 4052 * pages freed at once, then uncharge_start/end() is called properly. 4053 * This may be called prural(2) times in a context, 4054 */ 4055 4056 void mem_cgroup_uncharge_start(void) 4057 { 4058 current->memcg_batch.do_batch++; 4059 /* We can do nest. */ 4060 if (current->memcg_batch.do_batch == 1) { 4061 current->memcg_batch.memcg = NULL; 4062 current->memcg_batch.nr_pages = 0; 4063 current->memcg_batch.memsw_nr_pages = 0; 4064 } 4065 } 4066 4067 void mem_cgroup_uncharge_end(void) 4068 { 4069 struct memcg_batch_info *batch = ¤t->memcg_batch; 4070 4071 if (!batch->do_batch) 4072 return; 4073 4074 batch->do_batch--; 4075 if (batch->do_batch) /* If stacked, do nothing. */ 4076 return; 4077 4078 if (!batch->memcg) 4079 return; 4080 /* 4081 * This "batch->memcg" is valid without any css_get/put etc... 4082 * bacause we hide charges behind us. 4083 */ 4084 if (batch->nr_pages) 4085 res_counter_uncharge(&batch->memcg->res, 4086 batch->nr_pages * PAGE_SIZE); 4087 if (batch->memsw_nr_pages) 4088 res_counter_uncharge(&batch->memcg->memsw, 4089 batch->memsw_nr_pages * PAGE_SIZE); 4090 memcg_oom_recover(batch->memcg); 4091 /* forget this pointer (for sanity check) */ 4092 batch->memcg = NULL; 4093 } 4094 4095 #ifdef CONFIG_SWAP 4096 /* 4097 * called after __delete_from_swap_cache() and drop "page" account. 4098 * memcg information is recorded to swap_cgroup of "ent" 4099 */ 4100 void 4101 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4102 { 4103 struct mem_cgroup *memcg; 4104 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4105 4106 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4107 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4108 4109 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4110 4111 /* 4112 * record memcg information, if swapout && memcg != NULL, 4113 * mem_cgroup_get() was called in uncharge(). 4114 */ 4115 if (do_swap_account && swapout && memcg) 4116 swap_cgroup_record(ent, css_id(&memcg->css)); 4117 } 4118 #endif 4119 4120 #ifdef CONFIG_MEMCG_SWAP 4121 /* 4122 * called from swap_entry_free(). remove record in swap_cgroup and 4123 * uncharge "memsw" account. 4124 */ 4125 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4126 { 4127 struct mem_cgroup *memcg; 4128 unsigned short id; 4129 4130 if (!do_swap_account) 4131 return; 4132 4133 id = swap_cgroup_record(ent, 0); 4134 rcu_read_lock(); 4135 memcg = mem_cgroup_lookup(id); 4136 if (memcg) { 4137 /* 4138 * We uncharge this because swap is freed. 4139 * This memcg can be obsolete one. We avoid calling css_tryget 4140 */ 4141 if (!mem_cgroup_is_root(memcg)) 4142 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4143 mem_cgroup_swap_statistics(memcg, false); 4144 mem_cgroup_put(memcg); 4145 } 4146 rcu_read_unlock(); 4147 } 4148 4149 /** 4150 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4151 * @entry: swap entry to be moved 4152 * @from: mem_cgroup which the entry is moved from 4153 * @to: mem_cgroup which the entry is moved to 4154 * 4155 * It succeeds only when the swap_cgroup's record for this entry is the same 4156 * as the mem_cgroup's id of @from. 4157 * 4158 * Returns 0 on success, -EINVAL on failure. 4159 * 4160 * The caller must have charged to @to, IOW, called res_counter_charge() about 4161 * both res and memsw, and called css_get(). 4162 */ 4163 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4164 struct mem_cgroup *from, struct mem_cgroup *to) 4165 { 4166 unsigned short old_id, new_id; 4167 4168 old_id = css_id(&from->css); 4169 new_id = css_id(&to->css); 4170 4171 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4172 mem_cgroup_swap_statistics(from, false); 4173 mem_cgroup_swap_statistics(to, true); 4174 /* 4175 * This function is only called from task migration context now. 4176 * It postpones res_counter and refcount handling till the end 4177 * of task migration(mem_cgroup_clear_mc()) for performance 4178 * improvement. But we cannot postpone mem_cgroup_get(to) 4179 * because if the process that has been moved to @to does 4180 * swap-in, the refcount of @to might be decreased to 0. 4181 */ 4182 mem_cgroup_get(to); 4183 return 0; 4184 } 4185 return -EINVAL; 4186 } 4187 #else 4188 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4189 struct mem_cgroup *from, struct mem_cgroup *to) 4190 { 4191 return -EINVAL; 4192 } 4193 #endif 4194 4195 /* 4196 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4197 * page belongs to. 4198 */ 4199 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4200 struct mem_cgroup **memcgp) 4201 { 4202 struct mem_cgroup *memcg = NULL; 4203 unsigned int nr_pages = 1; 4204 struct page_cgroup *pc; 4205 enum charge_type ctype; 4206 4207 *memcgp = NULL; 4208 4209 if (mem_cgroup_disabled()) 4210 return; 4211 4212 if (PageTransHuge(page)) 4213 nr_pages <<= compound_order(page); 4214 4215 pc = lookup_page_cgroup(page); 4216 lock_page_cgroup(pc); 4217 if (PageCgroupUsed(pc)) { 4218 memcg = pc->mem_cgroup; 4219 css_get(&memcg->css); 4220 /* 4221 * At migrating an anonymous page, its mapcount goes down 4222 * to 0 and uncharge() will be called. But, even if it's fully 4223 * unmapped, migration may fail and this page has to be 4224 * charged again. We set MIGRATION flag here and delay uncharge 4225 * until end_migration() is called 4226 * 4227 * Corner Case Thinking 4228 * A) 4229 * When the old page was mapped as Anon and it's unmap-and-freed 4230 * while migration was ongoing. 4231 * If unmap finds the old page, uncharge() of it will be delayed 4232 * until end_migration(). If unmap finds a new page, it's 4233 * uncharged when it make mapcount to be 1->0. If unmap code 4234 * finds swap_migration_entry, the new page will not be mapped 4235 * and end_migration() will find it(mapcount==0). 4236 * 4237 * B) 4238 * When the old page was mapped but migraion fails, the kernel 4239 * remaps it. A charge for it is kept by MIGRATION flag even 4240 * if mapcount goes down to 0. We can do remap successfully 4241 * without charging it again. 4242 * 4243 * C) 4244 * The "old" page is under lock_page() until the end of 4245 * migration, so, the old page itself will not be swapped-out. 4246 * If the new page is swapped out before end_migraton, our 4247 * hook to usual swap-out path will catch the event. 4248 */ 4249 if (PageAnon(page)) 4250 SetPageCgroupMigration(pc); 4251 } 4252 unlock_page_cgroup(pc); 4253 /* 4254 * If the page is not charged at this point, 4255 * we return here. 4256 */ 4257 if (!memcg) 4258 return; 4259 4260 *memcgp = memcg; 4261 /* 4262 * We charge new page before it's used/mapped. So, even if unlock_page() 4263 * is called before end_migration, we can catch all events on this new 4264 * page. In the case new page is migrated but not remapped, new page's 4265 * mapcount will be finally 0 and we call uncharge in end_migration(). 4266 */ 4267 if (PageAnon(page)) 4268 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4269 else 4270 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4271 /* 4272 * The page is committed to the memcg, but it's not actually 4273 * charged to the res_counter since we plan on replacing the 4274 * old one and only one page is going to be left afterwards. 4275 */ 4276 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4277 } 4278 4279 /* remove redundant charge if migration failed*/ 4280 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4281 struct page *oldpage, struct page *newpage, bool migration_ok) 4282 { 4283 struct page *used, *unused; 4284 struct page_cgroup *pc; 4285 bool anon; 4286 4287 if (!memcg) 4288 return; 4289 4290 if (!migration_ok) { 4291 used = oldpage; 4292 unused = newpage; 4293 } else { 4294 used = newpage; 4295 unused = oldpage; 4296 } 4297 anon = PageAnon(used); 4298 __mem_cgroup_uncharge_common(unused, 4299 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4300 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4301 true); 4302 css_put(&memcg->css); 4303 /* 4304 * We disallowed uncharge of pages under migration because mapcount 4305 * of the page goes down to zero, temporarly. 4306 * Clear the flag and check the page should be charged. 4307 */ 4308 pc = lookup_page_cgroup(oldpage); 4309 lock_page_cgroup(pc); 4310 ClearPageCgroupMigration(pc); 4311 unlock_page_cgroup(pc); 4312 4313 /* 4314 * If a page is a file cache, radix-tree replacement is very atomic 4315 * and we can skip this check. When it was an Anon page, its mapcount 4316 * goes down to 0. But because we added MIGRATION flage, it's not 4317 * uncharged yet. There are several case but page->mapcount check 4318 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4319 * check. (see prepare_charge() also) 4320 */ 4321 if (anon) 4322 mem_cgroup_uncharge_page(used); 4323 } 4324 4325 /* 4326 * At replace page cache, newpage is not under any memcg but it's on 4327 * LRU. So, this function doesn't touch res_counter but handles LRU 4328 * in correct way. Both pages are locked so we cannot race with uncharge. 4329 */ 4330 void mem_cgroup_replace_page_cache(struct page *oldpage, 4331 struct page *newpage) 4332 { 4333 struct mem_cgroup *memcg = NULL; 4334 struct page_cgroup *pc; 4335 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4336 4337 if (mem_cgroup_disabled()) 4338 return; 4339 4340 pc = lookup_page_cgroup(oldpage); 4341 /* fix accounting on old pages */ 4342 lock_page_cgroup(pc); 4343 if (PageCgroupUsed(pc)) { 4344 memcg = pc->mem_cgroup; 4345 mem_cgroup_charge_statistics(memcg, false, -1); 4346 ClearPageCgroupUsed(pc); 4347 } 4348 unlock_page_cgroup(pc); 4349 4350 /* 4351 * When called from shmem_replace_page(), in some cases the 4352 * oldpage has already been charged, and in some cases not. 4353 */ 4354 if (!memcg) 4355 return; 4356 /* 4357 * Even if newpage->mapping was NULL before starting replacement, 4358 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4359 * LRU while we overwrite pc->mem_cgroup. 4360 */ 4361 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4362 } 4363 4364 #ifdef CONFIG_DEBUG_VM 4365 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4366 { 4367 struct page_cgroup *pc; 4368 4369 pc = lookup_page_cgroup(page); 4370 /* 4371 * Can be NULL while feeding pages into the page allocator for 4372 * the first time, i.e. during boot or memory hotplug; 4373 * or when mem_cgroup_disabled(). 4374 */ 4375 if (likely(pc) && PageCgroupUsed(pc)) 4376 return pc; 4377 return NULL; 4378 } 4379 4380 bool mem_cgroup_bad_page_check(struct page *page) 4381 { 4382 if (mem_cgroup_disabled()) 4383 return false; 4384 4385 return lookup_page_cgroup_used(page) != NULL; 4386 } 4387 4388 void mem_cgroup_print_bad_page(struct page *page) 4389 { 4390 struct page_cgroup *pc; 4391 4392 pc = lookup_page_cgroup_used(page); 4393 if (pc) { 4394 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4395 pc, pc->flags, pc->mem_cgroup); 4396 } 4397 } 4398 #endif 4399 4400 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4401 unsigned long long val) 4402 { 4403 int retry_count; 4404 u64 memswlimit, memlimit; 4405 int ret = 0; 4406 int children = mem_cgroup_count_children(memcg); 4407 u64 curusage, oldusage; 4408 int enlarge; 4409 4410 /* 4411 * For keeping hierarchical_reclaim simple, how long we should retry 4412 * is depends on callers. We set our retry-count to be function 4413 * of # of children which we should visit in this loop. 4414 */ 4415 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4416 4417 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4418 4419 enlarge = 0; 4420 while (retry_count) { 4421 if (signal_pending(current)) { 4422 ret = -EINTR; 4423 break; 4424 } 4425 /* 4426 * Rather than hide all in some function, I do this in 4427 * open coded manner. You see what this really does. 4428 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4429 */ 4430 mutex_lock(&set_limit_mutex); 4431 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4432 if (memswlimit < val) { 4433 ret = -EINVAL; 4434 mutex_unlock(&set_limit_mutex); 4435 break; 4436 } 4437 4438 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4439 if (memlimit < val) 4440 enlarge = 1; 4441 4442 ret = res_counter_set_limit(&memcg->res, val); 4443 if (!ret) { 4444 if (memswlimit == val) 4445 memcg->memsw_is_minimum = true; 4446 else 4447 memcg->memsw_is_minimum = false; 4448 } 4449 mutex_unlock(&set_limit_mutex); 4450 4451 if (!ret) 4452 break; 4453 4454 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4455 MEM_CGROUP_RECLAIM_SHRINK); 4456 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4457 /* Usage is reduced ? */ 4458 if (curusage >= oldusage) 4459 retry_count--; 4460 else 4461 oldusage = curusage; 4462 } 4463 if (!ret && enlarge) 4464 memcg_oom_recover(memcg); 4465 4466 return ret; 4467 } 4468 4469 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4470 unsigned long long val) 4471 { 4472 int retry_count; 4473 u64 memlimit, memswlimit, oldusage, curusage; 4474 int children = mem_cgroup_count_children(memcg); 4475 int ret = -EBUSY; 4476 int enlarge = 0; 4477 4478 /* see mem_cgroup_resize_res_limit */ 4479 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4480 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4481 while (retry_count) { 4482 if (signal_pending(current)) { 4483 ret = -EINTR; 4484 break; 4485 } 4486 /* 4487 * Rather than hide all in some function, I do this in 4488 * open coded manner. You see what this really does. 4489 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4490 */ 4491 mutex_lock(&set_limit_mutex); 4492 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4493 if (memlimit > val) { 4494 ret = -EINVAL; 4495 mutex_unlock(&set_limit_mutex); 4496 break; 4497 } 4498 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4499 if (memswlimit < val) 4500 enlarge = 1; 4501 ret = res_counter_set_limit(&memcg->memsw, val); 4502 if (!ret) { 4503 if (memlimit == val) 4504 memcg->memsw_is_minimum = true; 4505 else 4506 memcg->memsw_is_minimum = false; 4507 } 4508 mutex_unlock(&set_limit_mutex); 4509 4510 if (!ret) 4511 break; 4512 4513 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4514 MEM_CGROUP_RECLAIM_NOSWAP | 4515 MEM_CGROUP_RECLAIM_SHRINK); 4516 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4517 /* Usage is reduced ? */ 4518 if (curusage >= oldusage) 4519 retry_count--; 4520 else 4521 oldusage = curusage; 4522 } 4523 if (!ret && enlarge) 4524 memcg_oom_recover(memcg); 4525 return ret; 4526 } 4527 4528 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4529 gfp_t gfp_mask, 4530 unsigned long *total_scanned) 4531 { 4532 unsigned long nr_reclaimed = 0; 4533 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4534 unsigned long reclaimed; 4535 int loop = 0; 4536 struct mem_cgroup_tree_per_zone *mctz; 4537 unsigned long long excess; 4538 unsigned long nr_scanned; 4539 4540 if (order > 0) 4541 return 0; 4542 4543 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4544 /* 4545 * This loop can run a while, specially if mem_cgroup's continuously 4546 * keep exceeding their soft limit and putting the system under 4547 * pressure 4548 */ 4549 do { 4550 if (next_mz) 4551 mz = next_mz; 4552 else 4553 mz = mem_cgroup_largest_soft_limit_node(mctz); 4554 if (!mz) 4555 break; 4556 4557 nr_scanned = 0; 4558 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4559 gfp_mask, &nr_scanned); 4560 nr_reclaimed += reclaimed; 4561 *total_scanned += nr_scanned; 4562 spin_lock(&mctz->lock); 4563 4564 /* 4565 * If we failed to reclaim anything from this memory cgroup 4566 * it is time to move on to the next cgroup 4567 */ 4568 next_mz = NULL; 4569 if (!reclaimed) { 4570 do { 4571 /* 4572 * Loop until we find yet another one. 4573 * 4574 * By the time we get the soft_limit lock 4575 * again, someone might have aded the 4576 * group back on the RB tree. Iterate to 4577 * make sure we get a different mem. 4578 * mem_cgroup_largest_soft_limit_node returns 4579 * NULL if no other cgroup is present on 4580 * the tree 4581 */ 4582 next_mz = 4583 __mem_cgroup_largest_soft_limit_node(mctz); 4584 if (next_mz == mz) 4585 css_put(&next_mz->memcg->css); 4586 else /* next_mz == NULL or other memcg */ 4587 break; 4588 } while (1); 4589 } 4590 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4591 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4592 /* 4593 * One school of thought says that we should not add 4594 * back the node to the tree if reclaim returns 0. 4595 * But our reclaim could return 0, simply because due 4596 * to priority we are exposing a smaller subset of 4597 * memory to reclaim from. Consider this as a longer 4598 * term TODO. 4599 */ 4600 /* If excess == 0, no tree ops */ 4601 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4602 spin_unlock(&mctz->lock); 4603 css_put(&mz->memcg->css); 4604 loop++; 4605 /* 4606 * Could not reclaim anything and there are no more 4607 * mem cgroups to try or we seem to be looping without 4608 * reclaiming anything. 4609 */ 4610 if (!nr_reclaimed && 4611 (next_mz == NULL || 4612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4613 break; 4614 } while (!nr_reclaimed); 4615 if (next_mz) 4616 css_put(&next_mz->memcg->css); 4617 return nr_reclaimed; 4618 } 4619 4620 /** 4621 * mem_cgroup_force_empty_list - clears LRU of a group 4622 * @memcg: group to clear 4623 * @node: NUMA node 4624 * @zid: zone id 4625 * @lru: lru to to clear 4626 * 4627 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4628 * reclaim the pages page themselves - pages are moved to the parent (or root) 4629 * group. 4630 */ 4631 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4632 int node, int zid, enum lru_list lru) 4633 { 4634 struct lruvec *lruvec; 4635 unsigned long flags; 4636 struct list_head *list; 4637 struct page *busy; 4638 struct zone *zone; 4639 4640 zone = &NODE_DATA(node)->node_zones[zid]; 4641 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4642 list = &lruvec->lists[lru]; 4643 4644 busy = NULL; 4645 do { 4646 struct page_cgroup *pc; 4647 struct page *page; 4648 4649 spin_lock_irqsave(&zone->lru_lock, flags); 4650 if (list_empty(list)) { 4651 spin_unlock_irqrestore(&zone->lru_lock, flags); 4652 break; 4653 } 4654 page = list_entry(list->prev, struct page, lru); 4655 if (busy == page) { 4656 list_move(&page->lru, list); 4657 busy = NULL; 4658 spin_unlock_irqrestore(&zone->lru_lock, flags); 4659 continue; 4660 } 4661 spin_unlock_irqrestore(&zone->lru_lock, flags); 4662 4663 pc = lookup_page_cgroup(page); 4664 4665 if (mem_cgroup_move_parent(page, pc, memcg)) { 4666 /* found lock contention or "pc" is obsolete. */ 4667 busy = page; 4668 cond_resched(); 4669 } else 4670 busy = NULL; 4671 } while (!list_empty(list)); 4672 } 4673 4674 /* 4675 * make mem_cgroup's charge to be 0 if there is no task by moving 4676 * all the charges and pages to the parent. 4677 * This enables deleting this mem_cgroup. 4678 * 4679 * Caller is responsible for holding css reference on the memcg. 4680 */ 4681 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4682 { 4683 int node, zid; 4684 u64 usage; 4685 4686 do { 4687 /* This is for making all *used* pages to be on LRU. */ 4688 lru_add_drain_all(); 4689 drain_all_stock_sync(memcg); 4690 mem_cgroup_start_move(memcg); 4691 for_each_node_state(node, N_MEMORY) { 4692 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4693 enum lru_list lru; 4694 for_each_lru(lru) { 4695 mem_cgroup_force_empty_list(memcg, 4696 node, zid, lru); 4697 } 4698 } 4699 } 4700 mem_cgroup_end_move(memcg); 4701 memcg_oom_recover(memcg); 4702 cond_resched(); 4703 4704 /* 4705 * Kernel memory may not necessarily be trackable to a specific 4706 * process. So they are not migrated, and therefore we can't 4707 * expect their value to drop to 0 here. 4708 * Having res filled up with kmem only is enough. 4709 * 4710 * This is a safety check because mem_cgroup_force_empty_list 4711 * could have raced with mem_cgroup_replace_page_cache callers 4712 * so the lru seemed empty but the page could have been added 4713 * right after the check. RES_USAGE should be safe as we always 4714 * charge before adding to the LRU. 4715 */ 4716 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4717 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4718 } while (usage > 0); 4719 } 4720 4721 /* 4722 * Reclaims as many pages from the given memcg as possible and moves 4723 * the rest to the parent. 4724 * 4725 * Caller is responsible for holding css reference for memcg. 4726 */ 4727 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4728 { 4729 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4730 struct cgroup *cgrp = memcg->css.cgroup; 4731 4732 /* returns EBUSY if there is a task or if we come here twice. */ 4733 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4734 return -EBUSY; 4735 4736 /* we call try-to-free pages for make this cgroup empty */ 4737 lru_add_drain_all(); 4738 /* try to free all pages in this cgroup */ 4739 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4740 int progress; 4741 4742 if (signal_pending(current)) 4743 return -EINTR; 4744 4745 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4746 false); 4747 if (!progress) { 4748 nr_retries--; 4749 /* maybe some writeback is necessary */ 4750 congestion_wait(BLK_RW_ASYNC, HZ/10); 4751 } 4752 4753 } 4754 lru_add_drain(); 4755 mem_cgroup_reparent_charges(memcg); 4756 4757 return 0; 4758 } 4759 4760 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 4761 { 4762 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4763 int ret; 4764 4765 if (mem_cgroup_is_root(memcg)) 4766 return -EINVAL; 4767 css_get(&memcg->css); 4768 ret = mem_cgroup_force_empty(memcg); 4769 css_put(&memcg->css); 4770 4771 return ret; 4772 } 4773 4774 4775 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 4776 { 4777 return mem_cgroup_from_cont(cont)->use_hierarchy; 4778 } 4779 4780 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 4781 u64 val) 4782 { 4783 int retval = 0; 4784 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4785 struct cgroup *parent = cont->parent; 4786 struct mem_cgroup *parent_memcg = NULL; 4787 4788 if (parent) 4789 parent_memcg = mem_cgroup_from_cont(parent); 4790 4791 cgroup_lock(); 4792 4793 if (memcg->use_hierarchy == val) 4794 goto out; 4795 4796 /* 4797 * If parent's use_hierarchy is set, we can't make any modifications 4798 * in the child subtrees. If it is unset, then the change can 4799 * occur, provided the current cgroup has no children. 4800 * 4801 * For the root cgroup, parent_mem is NULL, we allow value to be 4802 * set if there are no children. 4803 */ 4804 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4805 (val == 1 || val == 0)) { 4806 if (list_empty(&cont->children)) 4807 memcg->use_hierarchy = val; 4808 else 4809 retval = -EBUSY; 4810 } else 4811 retval = -EINVAL; 4812 4813 out: 4814 cgroup_unlock(); 4815 4816 return retval; 4817 } 4818 4819 4820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4821 enum mem_cgroup_stat_index idx) 4822 { 4823 struct mem_cgroup *iter; 4824 long val = 0; 4825 4826 /* Per-cpu values can be negative, use a signed accumulator */ 4827 for_each_mem_cgroup_tree(iter, memcg) 4828 val += mem_cgroup_read_stat(iter, idx); 4829 4830 if (val < 0) /* race ? */ 4831 val = 0; 4832 return val; 4833 } 4834 4835 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4836 { 4837 u64 val; 4838 4839 if (!mem_cgroup_is_root(memcg)) { 4840 if (!swap) 4841 return res_counter_read_u64(&memcg->res, RES_USAGE); 4842 else 4843 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4844 } 4845 4846 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4847 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4848 4849 if (swap) 4850 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4851 4852 return val << PAGE_SHIFT; 4853 } 4854 4855 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 4856 struct file *file, char __user *buf, 4857 size_t nbytes, loff_t *ppos) 4858 { 4859 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4860 char str[64]; 4861 u64 val; 4862 int name, len; 4863 enum res_type type; 4864 4865 type = MEMFILE_TYPE(cft->private); 4866 name = MEMFILE_ATTR(cft->private); 4867 4868 if (!do_swap_account && type == _MEMSWAP) 4869 return -EOPNOTSUPP; 4870 4871 switch (type) { 4872 case _MEM: 4873 if (name == RES_USAGE) 4874 val = mem_cgroup_usage(memcg, false); 4875 else 4876 val = res_counter_read_u64(&memcg->res, name); 4877 break; 4878 case _MEMSWAP: 4879 if (name == RES_USAGE) 4880 val = mem_cgroup_usage(memcg, true); 4881 else 4882 val = res_counter_read_u64(&memcg->memsw, name); 4883 break; 4884 case _KMEM: 4885 val = res_counter_read_u64(&memcg->kmem, name); 4886 break; 4887 default: 4888 BUG(); 4889 } 4890 4891 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 4892 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 4893 } 4894 4895 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) 4896 { 4897 int ret = -EINVAL; 4898 #ifdef CONFIG_MEMCG_KMEM 4899 bool must_inc_static_branch = false; 4900 4901 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4902 /* 4903 * For simplicity, we won't allow this to be disabled. It also can't 4904 * be changed if the cgroup has children already, or if tasks had 4905 * already joined. 4906 * 4907 * If tasks join before we set the limit, a person looking at 4908 * kmem.usage_in_bytes will have no way to determine when it took 4909 * place, which makes the value quite meaningless. 4910 * 4911 * After it first became limited, changes in the value of the limit are 4912 * of course permitted. 4913 * 4914 * Taking the cgroup_lock is really offensive, but it is so far the only 4915 * way to guarantee that no children will appear. There are plenty of 4916 * other offenders, and they should all go away. Fine grained locking 4917 * is probably the way to go here. When we are fully hierarchical, we 4918 * can also get rid of the use_hierarchy check. 4919 */ 4920 cgroup_lock(); 4921 mutex_lock(&set_limit_mutex); 4922 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 4923 if (cgroup_task_count(cont) || (memcg->use_hierarchy && 4924 !list_empty(&cont->children))) { 4925 ret = -EBUSY; 4926 goto out; 4927 } 4928 ret = res_counter_set_limit(&memcg->kmem, val); 4929 VM_BUG_ON(ret); 4930 4931 ret = memcg_update_cache_sizes(memcg); 4932 if (ret) { 4933 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 4934 goto out; 4935 } 4936 must_inc_static_branch = true; 4937 /* 4938 * kmem charges can outlive the cgroup. In the case of slab 4939 * pages, for instance, a page contain objects from various 4940 * processes, so it is unfeasible to migrate them away. We 4941 * need to reference count the memcg because of that. 4942 */ 4943 mem_cgroup_get(memcg); 4944 } else 4945 ret = res_counter_set_limit(&memcg->kmem, val); 4946 out: 4947 mutex_unlock(&set_limit_mutex); 4948 cgroup_unlock(); 4949 4950 /* 4951 * We are by now familiar with the fact that we can't inc the static 4952 * branch inside cgroup_lock. See disarm functions for details. A 4953 * worker here is overkill, but also wrong: After the limit is set, we 4954 * must start accounting right away. Since this operation can't fail, 4955 * we can safely defer it to here - no rollback will be needed. 4956 * 4957 * The boolean used to control this is also safe, because 4958 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be 4959 * able to set it to true; 4960 */ 4961 if (must_inc_static_branch) { 4962 static_key_slow_inc(&memcg_kmem_enabled_key); 4963 /* 4964 * setting the active bit after the inc will guarantee no one 4965 * starts accounting before all call sites are patched 4966 */ 4967 memcg_kmem_set_active(memcg); 4968 } 4969 4970 #endif 4971 return ret; 4972 } 4973 4974 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 4975 { 4976 int ret = 0; 4977 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4978 if (!parent) 4979 goto out; 4980 4981 memcg->kmem_account_flags = parent->kmem_account_flags; 4982 #ifdef CONFIG_MEMCG_KMEM 4983 /* 4984 * When that happen, we need to disable the static branch only on those 4985 * memcgs that enabled it. To achieve this, we would be forced to 4986 * complicate the code by keeping track of which memcgs were the ones 4987 * that actually enabled limits, and which ones got it from its 4988 * parents. 4989 * 4990 * It is a lot simpler just to do static_key_slow_inc() on every child 4991 * that is accounted. 4992 */ 4993 if (!memcg_kmem_is_active(memcg)) 4994 goto out; 4995 4996 /* 4997 * destroy(), called if we fail, will issue static_key_slow_inc() and 4998 * mem_cgroup_put() if kmem is enabled. We have to either call them 4999 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find 5000 * this more consistent, since it always leads to the same destroy path 5001 */ 5002 mem_cgroup_get(memcg); 5003 static_key_slow_inc(&memcg_kmem_enabled_key); 5004 5005 mutex_lock(&set_limit_mutex); 5006 ret = memcg_update_cache_sizes(memcg); 5007 mutex_unlock(&set_limit_mutex); 5008 #endif 5009 out: 5010 return ret; 5011 } 5012 5013 /* 5014 * The user of this function is... 5015 * RES_LIMIT. 5016 */ 5017 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 5018 const char *buffer) 5019 { 5020 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5021 enum res_type type; 5022 int name; 5023 unsigned long long val; 5024 int ret; 5025 5026 type = MEMFILE_TYPE(cft->private); 5027 name = MEMFILE_ATTR(cft->private); 5028 5029 if (!do_swap_account && type == _MEMSWAP) 5030 return -EOPNOTSUPP; 5031 5032 switch (name) { 5033 case RES_LIMIT: 5034 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5035 ret = -EINVAL; 5036 break; 5037 } 5038 /* This function does all necessary parse...reuse it */ 5039 ret = res_counter_memparse_write_strategy(buffer, &val); 5040 if (ret) 5041 break; 5042 if (type == _MEM) 5043 ret = mem_cgroup_resize_limit(memcg, val); 5044 else if (type == _MEMSWAP) 5045 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5046 else if (type == _KMEM) 5047 ret = memcg_update_kmem_limit(cont, val); 5048 else 5049 return -EINVAL; 5050 break; 5051 case RES_SOFT_LIMIT: 5052 ret = res_counter_memparse_write_strategy(buffer, &val); 5053 if (ret) 5054 break; 5055 /* 5056 * For memsw, soft limits are hard to implement in terms 5057 * of semantics, for now, we support soft limits for 5058 * control without swap 5059 */ 5060 if (type == _MEM) 5061 ret = res_counter_set_soft_limit(&memcg->res, val); 5062 else 5063 ret = -EINVAL; 5064 break; 5065 default: 5066 ret = -EINVAL; /* should be BUG() ? */ 5067 break; 5068 } 5069 return ret; 5070 } 5071 5072 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5073 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5074 { 5075 struct cgroup *cgroup; 5076 unsigned long long min_limit, min_memsw_limit, tmp; 5077 5078 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5079 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5080 cgroup = memcg->css.cgroup; 5081 if (!memcg->use_hierarchy) 5082 goto out; 5083 5084 while (cgroup->parent) { 5085 cgroup = cgroup->parent; 5086 memcg = mem_cgroup_from_cont(cgroup); 5087 if (!memcg->use_hierarchy) 5088 break; 5089 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5090 min_limit = min(min_limit, tmp); 5091 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5092 min_memsw_limit = min(min_memsw_limit, tmp); 5093 } 5094 out: 5095 *mem_limit = min_limit; 5096 *memsw_limit = min_memsw_limit; 5097 } 5098 5099 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 5100 { 5101 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5102 int name; 5103 enum res_type type; 5104 5105 type = MEMFILE_TYPE(event); 5106 name = MEMFILE_ATTR(event); 5107 5108 if (!do_swap_account && type == _MEMSWAP) 5109 return -EOPNOTSUPP; 5110 5111 switch (name) { 5112 case RES_MAX_USAGE: 5113 if (type == _MEM) 5114 res_counter_reset_max(&memcg->res); 5115 else if (type == _MEMSWAP) 5116 res_counter_reset_max(&memcg->memsw); 5117 else if (type == _KMEM) 5118 res_counter_reset_max(&memcg->kmem); 5119 else 5120 return -EINVAL; 5121 break; 5122 case RES_FAILCNT: 5123 if (type == _MEM) 5124 res_counter_reset_failcnt(&memcg->res); 5125 else if (type == _MEMSWAP) 5126 res_counter_reset_failcnt(&memcg->memsw); 5127 else if (type == _KMEM) 5128 res_counter_reset_failcnt(&memcg->kmem); 5129 else 5130 return -EINVAL; 5131 break; 5132 } 5133 5134 return 0; 5135 } 5136 5137 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 5138 struct cftype *cft) 5139 { 5140 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 5141 } 5142 5143 #ifdef CONFIG_MMU 5144 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5145 struct cftype *cft, u64 val) 5146 { 5147 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5148 5149 if (val >= (1 << NR_MOVE_TYPE)) 5150 return -EINVAL; 5151 /* 5152 * We check this value several times in both in can_attach() and 5153 * attach(), so we need cgroup lock to prevent this value from being 5154 * inconsistent. 5155 */ 5156 cgroup_lock(); 5157 memcg->move_charge_at_immigrate = val; 5158 cgroup_unlock(); 5159 5160 return 0; 5161 } 5162 #else 5163 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5164 struct cftype *cft, u64 val) 5165 { 5166 return -ENOSYS; 5167 } 5168 #endif 5169 5170 #ifdef CONFIG_NUMA 5171 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 5172 struct seq_file *m) 5173 { 5174 int nid; 5175 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5176 unsigned long node_nr; 5177 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5178 5179 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5180 seq_printf(m, "total=%lu", total_nr); 5181 for_each_node_state(nid, N_MEMORY) { 5182 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5183 seq_printf(m, " N%d=%lu", nid, node_nr); 5184 } 5185 seq_putc(m, '\n'); 5186 5187 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5188 seq_printf(m, "file=%lu", file_nr); 5189 for_each_node_state(nid, N_MEMORY) { 5190 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5191 LRU_ALL_FILE); 5192 seq_printf(m, " N%d=%lu", nid, node_nr); 5193 } 5194 seq_putc(m, '\n'); 5195 5196 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5197 seq_printf(m, "anon=%lu", anon_nr); 5198 for_each_node_state(nid, N_MEMORY) { 5199 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5200 LRU_ALL_ANON); 5201 seq_printf(m, " N%d=%lu", nid, node_nr); 5202 } 5203 seq_putc(m, '\n'); 5204 5205 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5206 seq_printf(m, "unevictable=%lu", unevictable_nr); 5207 for_each_node_state(nid, N_MEMORY) { 5208 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5209 BIT(LRU_UNEVICTABLE)); 5210 seq_printf(m, " N%d=%lu", nid, node_nr); 5211 } 5212 seq_putc(m, '\n'); 5213 return 0; 5214 } 5215 #endif /* CONFIG_NUMA */ 5216 5217 static const char * const mem_cgroup_lru_names[] = { 5218 "inactive_anon", 5219 "active_anon", 5220 "inactive_file", 5221 "active_file", 5222 "unevictable", 5223 }; 5224 5225 static inline void mem_cgroup_lru_names_not_uptodate(void) 5226 { 5227 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5228 } 5229 5230 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 5231 struct seq_file *m) 5232 { 5233 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5234 struct mem_cgroup *mi; 5235 unsigned int i; 5236 5237 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5238 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5239 continue; 5240 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5241 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5242 } 5243 5244 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5245 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5246 mem_cgroup_read_events(memcg, i)); 5247 5248 for (i = 0; i < NR_LRU_LISTS; i++) 5249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5251 5252 /* Hierarchical information */ 5253 { 5254 unsigned long long limit, memsw_limit; 5255 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5256 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5257 if (do_swap_account) 5258 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5259 memsw_limit); 5260 } 5261 5262 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5263 long long val = 0; 5264 5265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5266 continue; 5267 for_each_mem_cgroup_tree(mi, memcg) 5268 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5269 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5270 } 5271 5272 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5273 unsigned long long val = 0; 5274 5275 for_each_mem_cgroup_tree(mi, memcg) 5276 val += mem_cgroup_read_events(mi, i); 5277 seq_printf(m, "total_%s %llu\n", 5278 mem_cgroup_events_names[i], val); 5279 } 5280 5281 for (i = 0; i < NR_LRU_LISTS; i++) { 5282 unsigned long long val = 0; 5283 5284 for_each_mem_cgroup_tree(mi, memcg) 5285 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5286 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5287 } 5288 5289 #ifdef CONFIG_DEBUG_VM 5290 { 5291 int nid, zid; 5292 struct mem_cgroup_per_zone *mz; 5293 struct zone_reclaim_stat *rstat; 5294 unsigned long recent_rotated[2] = {0, 0}; 5295 unsigned long recent_scanned[2] = {0, 0}; 5296 5297 for_each_online_node(nid) 5298 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5299 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5300 rstat = &mz->lruvec.reclaim_stat; 5301 5302 recent_rotated[0] += rstat->recent_rotated[0]; 5303 recent_rotated[1] += rstat->recent_rotated[1]; 5304 recent_scanned[0] += rstat->recent_scanned[0]; 5305 recent_scanned[1] += rstat->recent_scanned[1]; 5306 } 5307 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5308 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5309 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5310 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5311 } 5312 #endif 5313 5314 return 0; 5315 } 5316 5317 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 5318 { 5319 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5320 5321 return mem_cgroup_swappiness(memcg); 5322 } 5323 5324 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 5325 u64 val) 5326 { 5327 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5328 struct mem_cgroup *parent; 5329 5330 if (val > 100) 5331 return -EINVAL; 5332 5333 if (cgrp->parent == NULL) 5334 return -EINVAL; 5335 5336 parent = mem_cgroup_from_cont(cgrp->parent); 5337 5338 cgroup_lock(); 5339 5340 /* If under hierarchy, only empty-root can set this value */ 5341 if ((parent->use_hierarchy) || 5342 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 5343 cgroup_unlock(); 5344 return -EINVAL; 5345 } 5346 5347 memcg->swappiness = val; 5348 5349 cgroup_unlock(); 5350 5351 return 0; 5352 } 5353 5354 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5355 { 5356 struct mem_cgroup_threshold_ary *t; 5357 u64 usage; 5358 int i; 5359 5360 rcu_read_lock(); 5361 if (!swap) 5362 t = rcu_dereference(memcg->thresholds.primary); 5363 else 5364 t = rcu_dereference(memcg->memsw_thresholds.primary); 5365 5366 if (!t) 5367 goto unlock; 5368 5369 usage = mem_cgroup_usage(memcg, swap); 5370 5371 /* 5372 * current_threshold points to threshold just below or equal to usage. 5373 * If it's not true, a threshold was crossed after last 5374 * call of __mem_cgroup_threshold(). 5375 */ 5376 i = t->current_threshold; 5377 5378 /* 5379 * Iterate backward over array of thresholds starting from 5380 * current_threshold and check if a threshold is crossed. 5381 * If none of thresholds below usage is crossed, we read 5382 * only one element of the array here. 5383 */ 5384 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5385 eventfd_signal(t->entries[i].eventfd, 1); 5386 5387 /* i = current_threshold + 1 */ 5388 i++; 5389 5390 /* 5391 * Iterate forward over array of thresholds starting from 5392 * current_threshold+1 and check if a threshold is crossed. 5393 * If none of thresholds above usage is crossed, we read 5394 * only one element of the array here. 5395 */ 5396 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5397 eventfd_signal(t->entries[i].eventfd, 1); 5398 5399 /* Update current_threshold */ 5400 t->current_threshold = i - 1; 5401 unlock: 5402 rcu_read_unlock(); 5403 } 5404 5405 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5406 { 5407 while (memcg) { 5408 __mem_cgroup_threshold(memcg, false); 5409 if (do_swap_account) 5410 __mem_cgroup_threshold(memcg, true); 5411 5412 memcg = parent_mem_cgroup(memcg); 5413 } 5414 } 5415 5416 static int compare_thresholds(const void *a, const void *b) 5417 { 5418 const struct mem_cgroup_threshold *_a = a; 5419 const struct mem_cgroup_threshold *_b = b; 5420 5421 return _a->threshold - _b->threshold; 5422 } 5423 5424 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5425 { 5426 struct mem_cgroup_eventfd_list *ev; 5427 5428 list_for_each_entry(ev, &memcg->oom_notify, list) 5429 eventfd_signal(ev->eventfd, 1); 5430 return 0; 5431 } 5432 5433 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5434 { 5435 struct mem_cgroup *iter; 5436 5437 for_each_mem_cgroup_tree(iter, memcg) 5438 mem_cgroup_oom_notify_cb(iter); 5439 } 5440 5441 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 5442 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5443 { 5444 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5445 struct mem_cgroup_thresholds *thresholds; 5446 struct mem_cgroup_threshold_ary *new; 5447 enum res_type type = MEMFILE_TYPE(cft->private); 5448 u64 threshold, usage; 5449 int i, size, ret; 5450 5451 ret = res_counter_memparse_write_strategy(args, &threshold); 5452 if (ret) 5453 return ret; 5454 5455 mutex_lock(&memcg->thresholds_lock); 5456 5457 if (type == _MEM) 5458 thresholds = &memcg->thresholds; 5459 else if (type == _MEMSWAP) 5460 thresholds = &memcg->memsw_thresholds; 5461 else 5462 BUG(); 5463 5464 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5465 5466 /* Check if a threshold crossed before adding a new one */ 5467 if (thresholds->primary) 5468 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5469 5470 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5471 5472 /* Allocate memory for new array of thresholds */ 5473 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5474 GFP_KERNEL); 5475 if (!new) { 5476 ret = -ENOMEM; 5477 goto unlock; 5478 } 5479 new->size = size; 5480 5481 /* Copy thresholds (if any) to new array */ 5482 if (thresholds->primary) { 5483 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5484 sizeof(struct mem_cgroup_threshold)); 5485 } 5486 5487 /* Add new threshold */ 5488 new->entries[size - 1].eventfd = eventfd; 5489 new->entries[size - 1].threshold = threshold; 5490 5491 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5492 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5493 compare_thresholds, NULL); 5494 5495 /* Find current threshold */ 5496 new->current_threshold = -1; 5497 for (i = 0; i < size; i++) { 5498 if (new->entries[i].threshold <= usage) { 5499 /* 5500 * new->current_threshold will not be used until 5501 * rcu_assign_pointer(), so it's safe to increment 5502 * it here. 5503 */ 5504 ++new->current_threshold; 5505 } else 5506 break; 5507 } 5508 5509 /* Free old spare buffer and save old primary buffer as spare */ 5510 kfree(thresholds->spare); 5511 thresholds->spare = thresholds->primary; 5512 5513 rcu_assign_pointer(thresholds->primary, new); 5514 5515 /* To be sure that nobody uses thresholds */ 5516 synchronize_rcu(); 5517 5518 unlock: 5519 mutex_unlock(&memcg->thresholds_lock); 5520 5521 return ret; 5522 } 5523 5524 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 5525 struct cftype *cft, struct eventfd_ctx *eventfd) 5526 { 5527 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5528 struct mem_cgroup_thresholds *thresholds; 5529 struct mem_cgroup_threshold_ary *new; 5530 enum res_type type = MEMFILE_TYPE(cft->private); 5531 u64 usage; 5532 int i, j, size; 5533 5534 mutex_lock(&memcg->thresholds_lock); 5535 if (type == _MEM) 5536 thresholds = &memcg->thresholds; 5537 else if (type == _MEMSWAP) 5538 thresholds = &memcg->memsw_thresholds; 5539 else 5540 BUG(); 5541 5542 if (!thresholds->primary) 5543 goto unlock; 5544 5545 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5546 5547 /* Check if a threshold crossed before removing */ 5548 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5549 5550 /* Calculate new number of threshold */ 5551 size = 0; 5552 for (i = 0; i < thresholds->primary->size; i++) { 5553 if (thresholds->primary->entries[i].eventfd != eventfd) 5554 size++; 5555 } 5556 5557 new = thresholds->spare; 5558 5559 /* Set thresholds array to NULL if we don't have thresholds */ 5560 if (!size) { 5561 kfree(new); 5562 new = NULL; 5563 goto swap_buffers; 5564 } 5565 5566 new->size = size; 5567 5568 /* Copy thresholds and find current threshold */ 5569 new->current_threshold = -1; 5570 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5571 if (thresholds->primary->entries[i].eventfd == eventfd) 5572 continue; 5573 5574 new->entries[j] = thresholds->primary->entries[i]; 5575 if (new->entries[j].threshold <= usage) { 5576 /* 5577 * new->current_threshold will not be used 5578 * until rcu_assign_pointer(), so it's safe to increment 5579 * it here. 5580 */ 5581 ++new->current_threshold; 5582 } 5583 j++; 5584 } 5585 5586 swap_buffers: 5587 /* Swap primary and spare array */ 5588 thresholds->spare = thresholds->primary; 5589 /* If all events are unregistered, free the spare array */ 5590 if (!new) { 5591 kfree(thresholds->spare); 5592 thresholds->spare = NULL; 5593 } 5594 5595 rcu_assign_pointer(thresholds->primary, new); 5596 5597 /* To be sure that nobody uses thresholds */ 5598 synchronize_rcu(); 5599 unlock: 5600 mutex_unlock(&memcg->thresholds_lock); 5601 } 5602 5603 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 5604 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5605 { 5606 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5607 struct mem_cgroup_eventfd_list *event; 5608 enum res_type type = MEMFILE_TYPE(cft->private); 5609 5610 BUG_ON(type != _OOM_TYPE); 5611 event = kmalloc(sizeof(*event), GFP_KERNEL); 5612 if (!event) 5613 return -ENOMEM; 5614 5615 spin_lock(&memcg_oom_lock); 5616 5617 event->eventfd = eventfd; 5618 list_add(&event->list, &memcg->oom_notify); 5619 5620 /* already in OOM ? */ 5621 if (atomic_read(&memcg->under_oom)) 5622 eventfd_signal(eventfd, 1); 5623 spin_unlock(&memcg_oom_lock); 5624 5625 return 0; 5626 } 5627 5628 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 5629 struct cftype *cft, struct eventfd_ctx *eventfd) 5630 { 5631 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5632 struct mem_cgroup_eventfd_list *ev, *tmp; 5633 enum res_type type = MEMFILE_TYPE(cft->private); 5634 5635 BUG_ON(type != _OOM_TYPE); 5636 5637 spin_lock(&memcg_oom_lock); 5638 5639 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5640 if (ev->eventfd == eventfd) { 5641 list_del(&ev->list); 5642 kfree(ev); 5643 } 5644 } 5645 5646 spin_unlock(&memcg_oom_lock); 5647 } 5648 5649 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 5650 struct cftype *cft, struct cgroup_map_cb *cb) 5651 { 5652 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5653 5654 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5655 5656 if (atomic_read(&memcg->under_oom)) 5657 cb->fill(cb, "under_oom", 1); 5658 else 5659 cb->fill(cb, "under_oom", 0); 5660 return 0; 5661 } 5662 5663 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 5664 struct cftype *cft, u64 val) 5665 { 5666 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5667 struct mem_cgroup *parent; 5668 5669 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5670 if (!cgrp->parent || !((val == 0) || (val == 1))) 5671 return -EINVAL; 5672 5673 parent = mem_cgroup_from_cont(cgrp->parent); 5674 5675 cgroup_lock(); 5676 /* oom-kill-disable is a flag for subhierarchy. */ 5677 if ((parent->use_hierarchy) || 5678 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 5679 cgroup_unlock(); 5680 return -EINVAL; 5681 } 5682 memcg->oom_kill_disable = val; 5683 if (!val) 5684 memcg_oom_recover(memcg); 5685 cgroup_unlock(); 5686 return 0; 5687 } 5688 5689 #ifdef CONFIG_MEMCG_KMEM 5690 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5691 { 5692 int ret; 5693 5694 memcg->kmemcg_id = -1; 5695 ret = memcg_propagate_kmem(memcg); 5696 if (ret) 5697 return ret; 5698 5699 return mem_cgroup_sockets_init(memcg, ss); 5700 }; 5701 5702 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5703 { 5704 mem_cgroup_sockets_destroy(memcg); 5705 5706 memcg_kmem_mark_dead(memcg); 5707 5708 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5709 return; 5710 5711 /* 5712 * Charges already down to 0, undo mem_cgroup_get() done in the charge 5713 * path here, being careful not to race with memcg_uncharge_kmem: it is 5714 * possible that the charges went down to 0 between mark_dead and the 5715 * res_counter read, so in that case, we don't need the put 5716 */ 5717 if (memcg_kmem_test_and_clear_dead(memcg)) 5718 mem_cgroup_put(memcg); 5719 } 5720 #else 5721 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5722 { 5723 return 0; 5724 } 5725 5726 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5727 { 5728 } 5729 #endif 5730 5731 static struct cftype mem_cgroup_files[] = { 5732 { 5733 .name = "usage_in_bytes", 5734 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5735 .read = mem_cgroup_read, 5736 .register_event = mem_cgroup_usage_register_event, 5737 .unregister_event = mem_cgroup_usage_unregister_event, 5738 }, 5739 { 5740 .name = "max_usage_in_bytes", 5741 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5742 .trigger = mem_cgroup_reset, 5743 .read = mem_cgroup_read, 5744 }, 5745 { 5746 .name = "limit_in_bytes", 5747 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5748 .write_string = mem_cgroup_write, 5749 .read = mem_cgroup_read, 5750 }, 5751 { 5752 .name = "soft_limit_in_bytes", 5753 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5754 .write_string = mem_cgroup_write, 5755 .read = mem_cgroup_read, 5756 }, 5757 { 5758 .name = "failcnt", 5759 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5760 .trigger = mem_cgroup_reset, 5761 .read = mem_cgroup_read, 5762 }, 5763 { 5764 .name = "stat", 5765 .read_seq_string = memcg_stat_show, 5766 }, 5767 { 5768 .name = "force_empty", 5769 .trigger = mem_cgroup_force_empty_write, 5770 }, 5771 { 5772 .name = "use_hierarchy", 5773 .write_u64 = mem_cgroup_hierarchy_write, 5774 .read_u64 = mem_cgroup_hierarchy_read, 5775 }, 5776 { 5777 .name = "swappiness", 5778 .read_u64 = mem_cgroup_swappiness_read, 5779 .write_u64 = mem_cgroup_swappiness_write, 5780 }, 5781 { 5782 .name = "move_charge_at_immigrate", 5783 .read_u64 = mem_cgroup_move_charge_read, 5784 .write_u64 = mem_cgroup_move_charge_write, 5785 }, 5786 { 5787 .name = "oom_control", 5788 .read_map = mem_cgroup_oom_control_read, 5789 .write_u64 = mem_cgroup_oom_control_write, 5790 .register_event = mem_cgroup_oom_register_event, 5791 .unregister_event = mem_cgroup_oom_unregister_event, 5792 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5793 }, 5794 #ifdef CONFIG_NUMA 5795 { 5796 .name = "numa_stat", 5797 .read_seq_string = memcg_numa_stat_show, 5798 }, 5799 #endif 5800 #ifdef CONFIG_MEMCG_SWAP 5801 { 5802 .name = "memsw.usage_in_bytes", 5803 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5804 .read = mem_cgroup_read, 5805 .register_event = mem_cgroup_usage_register_event, 5806 .unregister_event = mem_cgroup_usage_unregister_event, 5807 }, 5808 { 5809 .name = "memsw.max_usage_in_bytes", 5810 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5811 .trigger = mem_cgroup_reset, 5812 .read = mem_cgroup_read, 5813 }, 5814 { 5815 .name = "memsw.limit_in_bytes", 5816 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5817 .write_string = mem_cgroup_write, 5818 .read = mem_cgroup_read, 5819 }, 5820 { 5821 .name = "memsw.failcnt", 5822 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5823 .trigger = mem_cgroup_reset, 5824 .read = mem_cgroup_read, 5825 }, 5826 #endif 5827 #ifdef CONFIG_MEMCG_KMEM 5828 { 5829 .name = "kmem.limit_in_bytes", 5830 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5831 .write_string = mem_cgroup_write, 5832 .read = mem_cgroup_read, 5833 }, 5834 { 5835 .name = "kmem.usage_in_bytes", 5836 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5837 .read = mem_cgroup_read, 5838 }, 5839 { 5840 .name = "kmem.failcnt", 5841 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5842 .trigger = mem_cgroup_reset, 5843 .read = mem_cgroup_read, 5844 }, 5845 { 5846 .name = "kmem.max_usage_in_bytes", 5847 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5848 .trigger = mem_cgroup_reset, 5849 .read = mem_cgroup_read, 5850 }, 5851 #ifdef CONFIG_SLABINFO 5852 { 5853 .name = "kmem.slabinfo", 5854 .read_seq_string = mem_cgroup_slabinfo_read, 5855 }, 5856 #endif 5857 #endif 5858 { }, /* terminate */ 5859 }; 5860 5861 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5862 { 5863 struct mem_cgroup_per_node *pn; 5864 struct mem_cgroup_per_zone *mz; 5865 int zone, tmp = node; 5866 /* 5867 * This routine is called against possible nodes. 5868 * But it's BUG to call kmalloc() against offline node. 5869 * 5870 * TODO: this routine can waste much memory for nodes which will 5871 * never be onlined. It's better to use memory hotplug callback 5872 * function. 5873 */ 5874 if (!node_state(node, N_NORMAL_MEMORY)) 5875 tmp = -1; 5876 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5877 if (!pn) 5878 return 1; 5879 5880 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5881 mz = &pn->zoneinfo[zone]; 5882 lruvec_init(&mz->lruvec); 5883 mz->usage_in_excess = 0; 5884 mz->on_tree = false; 5885 mz->memcg = memcg; 5886 } 5887 memcg->info.nodeinfo[node] = pn; 5888 return 0; 5889 } 5890 5891 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5892 { 5893 kfree(memcg->info.nodeinfo[node]); 5894 } 5895 5896 static struct mem_cgroup *mem_cgroup_alloc(void) 5897 { 5898 struct mem_cgroup *memcg; 5899 int size = sizeof(struct mem_cgroup); 5900 5901 /* Can be very big if MAX_NUMNODES is very big */ 5902 if (size < PAGE_SIZE) 5903 memcg = kzalloc(size, GFP_KERNEL); 5904 else 5905 memcg = vzalloc(size); 5906 5907 if (!memcg) 5908 return NULL; 5909 5910 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 5911 if (!memcg->stat) 5912 goto out_free; 5913 spin_lock_init(&memcg->pcp_counter_lock); 5914 return memcg; 5915 5916 out_free: 5917 if (size < PAGE_SIZE) 5918 kfree(memcg); 5919 else 5920 vfree(memcg); 5921 return NULL; 5922 } 5923 5924 /* 5925 * At destroying mem_cgroup, references from swap_cgroup can remain. 5926 * (scanning all at force_empty is too costly...) 5927 * 5928 * Instead of clearing all references at force_empty, we remember 5929 * the number of reference from swap_cgroup and free mem_cgroup when 5930 * it goes down to 0. 5931 * 5932 * Removal of cgroup itself succeeds regardless of refs from swap. 5933 */ 5934 5935 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5936 { 5937 int node; 5938 int size = sizeof(struct mem_cgroup); 5939 5940 mem_cgroup_remove_from_trees(memcg); 5941 free_css_id(&mem_cgroup_subsys, &memcg->css); 5942 5943 for_each_node(node) 5944 free_mem_cgroup_per_zone_info(memcg, node); 5945 5946 free_percpu(memcg->stat); 5947 5948 /* 5949 * We need to make sure that (at least for now), the jump label 5950 * destruction code runs outside of the cgroup lock. This is because 5951 * get_online_cpus(), which is called from the static_branch update, 5952 * can't be called inside the cgroup_lock. cpusets are the ones 5953 * enforcing this dependency, so if they ever change, we might as well. 5954 * 5955 * schedule_work() will guarantee this happens. Be careful if you need 5956 * to move this code around, and make sure it is outside 5957 * the cgroup_lock. 5958 */ 5959 disarm_static_keys(memcg); 5960 if (size < PAGE_SIZE) 5961 kfree(memcg); 5962 else 5963 vfree(memcg); 5964 } 5965 5966 5967 /* 5968 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 5969 * but in process context. The work_freeing structure is overlaid 5970 * on the rcu_freeing structure, which itself is overlaid on memsw. 5971 */ 5972 static void free_work(struct work_struct *work) 5973 { 5974 struct mem_cgroup *memcg; 5975 5976 memcg = container_of(work, struct mem_cgroup, work_freeing); 5977 __mem_cgroup_free(memcg); 5978 } 5979 5980 static void free_rcu(struct rcu_head *rcu_head) 5981 { 5982 struct mem_cgroup *memcg; 5983 5984 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 5985 INIT_WORK(&memcg->work_freeing, free_work); 5986 schedule_work(&memcg->work_freeing); 5987 } 5988 5989 static void mem_cgroup_get(struct mem_cgroup *memcg) 5990 { 5991 atomic_inc(&memcg->refcnt); 5992 } 5993 5994 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 5995 { 5996 if (atomic_sub_and_test(count, &memcg->refcnt)) { 5997 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5998 call_rcu(&memcg->rcu_freeing, free_rcu); 5999 if (parent) 6000 mem_cgroup_put(parent); 6001 } 6002 } 6003 6004 static void mem_cgroup_put(struct mem_cgroup *memcg) 6005 { 6006 __mem_cgroup_put(memcg, 1); 6007 } 6008 6009 /* 6010 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6011 */ 6012 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6013 { 6014 if (!memcg->res.parent) 6015 return NULL; 6016 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6017 } 6018 EXPORT_SYMBOL(parent_mem_cgroup); 6019 6020 #ifdef CONFIG_MEMCG_SWAP 6021 static void __init enable_swap_cgroup(void) 6022 { 6023 if (!mem_cgroup_disabled() && really_do_swap_account) 6024 do_swap_account = 1; 6025 } 6026 #else 6027 static void __init enable_swap_cgroup(void) 6028 { 6029 } 6030 #endif 6031 6032 static int mem_cgroup_soft_limit_tree_init(void) 6033 { 6034 struct mem_cgroup_tree_per_node *rtpn; 6035 struct mem_cgroup_tree_per_zone *rtpz; 6036 int tmp, node, zone; 6037 6038 for_each_node(node) { 6039 tmp = node; 6040 if (!node_state(node, N_NORMAL_MEMORY)) 6041 tmp = -1; 6042 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6043 if (!rtpn) 6044 goto err_cleanup; 6045 6046 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6047 6048 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6049 rtpz = &rtpn->rb_tree_per_zone[zone]; 6050 rtpz->rb_root = RB_ROOT; 6051 spin_lock_init(&rtpz->lock); 6052 } 6053 } 6054 return 0; 6055 6056 err_cleanup: 6057 for_each_node(node) { 6058 if (!soft_limit_tree.rb_tree_per_node[node]) 6059 break; 6060 kfree(soft_limit_tree.rb_tree_per_node[node]); 6061 soft_limit_tree.rb_tree_per_node[node] = NULL; 6062 } 6063 return 1; 6064 6065 } 6066 6067 static struct cgroup_subsys_state * __ref 6068 mem_cgroup_css_alloc(struct cgroup *cont) 6069 { 6070 struct mem_cgroup *memcg, *parent; 6071 long error = -ENOMEM; 6072 int node; 6073 6074 memcg = mem_cgroup_alloc(); 6075 if (!memcg) 6076 return ERR_PTR(error); 6077 6078 for_each_node(node) 6079 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6080 goto free_out; 6081 6082 /* root ? */ 6083 if (cont->parent == NULL) { 6084 int cpu; 6085 enable_swap_cgroup(); 6086 parent = NULL; 6087 if (mem_cgroup_soft_limit_tree_init()) 6088 goto free_out; 6089 root_mem_cgroup = memcg; 6090 for_each_possible_cpu(cpu) { 6091 struct memcg_stock_pcp *stock = 6092 &per_cpu(memcg_stock, cpu); 6093 INIT_WORK(&stock->work, drain_local_stock); 6094 } 6095 } else { 6096 parent = mem_cgroup_from_cont(cont->parent); 6097 memcg->use_hierarchy = parent->use_hierarchy; 6098 memcg->oom_kill_disable = parent->oom_kill_disable; 6099 } 6100 6101 if (parent && parent->use_hierarchy) { 6102 res_counter_init(&memcg->res, &parent->res); 6103 res_counter_init(&memcg->memsw, &parent->memsw); 6104 res_counter_init(&memcg->kmem, &parent->kmem); 6105 6106 /* 6107 * We increment refcnt of the parent to ensure that we can 6108 * safely access it on res_counter_charge/uncharge. 6109 * This refcnt will be decremented when freeing this 6110 * mem_cgroup(see mem_cgroup_put). 6111 */ 6112 mem_cgroup_get(parent); 6113 } else { 6114 res_counter_init(&memcg->res, NULL); 6115 res_counter_init(&memcg->memsw, NULL); 6116 res_counter_init(&memcg->kmem, NULL); 6117 /* 6118 * Deeper hierachy with use_hierarchy == false doesn't make 6119 * much sense so let cgroup subsystem know about this 6120 * unfortunate state in our controller. 6121 */ 6122 if (parent && parent != root_mem_cgroup) 6123 mem_cgroup_subsys.broken_hierarchy = true; 6124 } 6125 memcg->last_scanned_node = MAX_NUMNODES; 6126 INIT_LIST_HEAD(&memcg->oom_notify); 6127 6128 if (parent) 6129 memcg->swappiness = mem_cgroup_swappiness(parent); 6130 atomic_set(&memcg->refcnt, 1); 6131 memcg->move_charge_at_immigrate = 0; 6132 mutex_init(&memcg->thresholds_lock); 6133 spin_lock_init(&memcg->move_lock); 6134 6135 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6136 if (error) { 6137 /* 6138 * We call put now because our (and parent's) refcnts 6139 * are already in place. mem_cgroup_put() will internally 6140 * call __mem_cgroup_free, so return directly 6141 */ 6142 mem_cgroup_put(memcg); 6143 return ERR_PTR(error); 6144 } 6145 return &memcg->css; 6146 free_out: 6147 __mem_cgroup_free(memcg); 6148 return ERR_PTR(error); 6149 } 6150 6151 static void mem_cgroup_css_offline(struct cgroup *cont) 6152 { 6153 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6154 6155 mem_cgroup_reparent_charges(memcg); 6156 mem_cgroup_destroy_all_caches(memcg); 6157 } 6158 6159 static void mem_cgroup_css_free(struct cgroup *cont) 6160 { 6161 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6162 6163 kmem_cgroup_destroy(memcg); 6164 6165 mem_cgroup_put(memcg); 6166 } 6167 6168 #ifdef CONFIG_MMU 6169 /* Handlers for move charge at task migration. */ 6170 #define PRECHARGE_COUNT_AT_ONCE 256 6171 static int mem_cgroup_do_precharge(unsigned long count) 6172 { 6173 int ret = 0; 6174 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6175 struct mem_cgroup *memcg = mc.to; 6176 6177 if (mem_cgroup_is_root(memcg)) { 6178 mc.precharge += count; 6179 /* we don't need css_get for root */ 6180 return ret; 6181 } 6182 /* try to charge at once */ 6183 if (count > 1) { 6184 struct res_counter *dummy; 6185 /* 6186 * "memcg" cannot be under rmdir() because we've already checked 6187 * by cgroup_lock_live_cgroup() that it is not removed and we 6188 * are still under the same cgroup_mutex. So we can postpone 6189 * css_get(). 6190 */ 6191 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6192 goto one_by_one; 6193 if (do_swap_account && res_counter_charge(&memcg->memsw, 6194 PAGE_SIZE * count, &dummy)) { 6195 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6196 goto one_by_one; 6197 } 6198 mc.precharge += count; 6199 return ret; 6200 } 6201 one_by_one: 6202 /* fall back to one by one charge */ 6203 while (count--) { 6204 if (signal_pending(current)) { 6205 ret = -EINTR; 6206 break; 6207 } 6208 if (!batch_count--) { 6209 batch_count = PRECHARGE_COUNT_AT_ONCE; 6210 cond_resched(); 6211 } 6212 ret = __mem_cgroup_try_charge(NULL, 6213 GFP_KERNEL, 1, &memcg, false); 6214 if (ret) 6215 /* mem_cgroup_clear_mc() will do uncharge later */ 6216 return ret; 6217 mc.precharge++; 6218 } 6219 return ret; 6220 } 6221 6222 /** 6223 * get_mctgt_type - get target type of moving charge 6224 * @vma: the vma the pte to be checked belongs 6225 * @addr: the address corresponding to the pte to be checked 6226 * @ptent: the pte to be checked 6227 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6228 * 6229 * Returns 6230 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6231 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6232 * move charge. if @target is not NULL, the page is stored in target->page 6233 * with extra refcnt got(Callers should handle it). 6234 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6235 * target for charge migration. if @target is not NULL, the entry is stored 6236 * in target->ent. 6237 * 6238 * Called with pte lock held. 6239 */ 6240 union mc_target { 6241 struct page *page; 6242 swp_entry_t ent; 6243 }; 6244 6245 enum mc_target_type { 6246 MC_TARGET_NONE = 0, 6247 MC_TARGET_PAGE, 6248 MC_TARGET_SWAP, 6249 }; 6250 6251 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6252 unsigned long addr, pte_t ptent) 6253 { 6254 struct page *page = vm_normal_page(vma, addr, ptent); 6255 6256 if (!page || !page_mapped(page)) 6257 return NULL; 6258 if (PageAnon(page)) { 6259 /* we don't move shared anon */ 6260 if (!move_anon()) 6261 return NULL; 6262 } else if (!move_file()) 6263 /* we ignore mapcount for file pages */ 6264 return NULL; 6265 if (!get_page_unless_zero(page)) 6266 return NULL; 6267 6268 return page; 6269 } 6270 6271 #ifdef CONFIG_SWAP 6272 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6273 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6274 { 6275 struct page *page = NULL; 6276 swp_entry_t ent = pte_to_swp_entry(ptent); 6277 6278 if (!move_anon() || non_swap_entry(ent)) 6279 return NULL; 6280 /* 6281 * Because lookup_swap_cache() updates some statistics counter, 6282 * we call find_get_page() with swapper_space directly. 6283 */ 6284 page = find_get_page(&swapper_space, ent.val); 6285 if (do_swap_account) 6286 entry->val = ent.val; 6287 6288 return page; 6289 } 6290 #else 6291 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6292 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6293 { 6294 return NULL; 6295 } 6296 #endif 6297 6298 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6299 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6300 { 6301 struct page *page = NULL; 6302 struct address_space *mapping; 6303 pgoff_t pgoff; 6304 6305 if (!vma->vm_file) /* anonymous vma */ 6306 return NULL; 6307 if (!move_file()) 6308 return NULL; 6309 6310 mapping = vma->vm_file->f_mapping; 6311 if (pte_none(ptent)) 6312 pgoff = linear_page_index(vma, addr); 6313 else /* pte_file(ptent) is true */ 6314 pgoff = pte_to_pgoff(ptent); 6315 6316 /* page is moved even if it's not RSS of this task(page-faulted). */ 6317 page = find_get_page(mapping, pgoff); 6318 6319 #ifdef CONFIG_SWAP 6320 /* shmem/tmpfs may report page out on swap: account for that too. */ 6321 if (radix_tree_exceptional_entry(page)) { 6322 swp_entry_t swap = radix_to_swp_entry(page); 6323 if (do_swap_account) 6324 *entry = swap; 6325 page = find_get_page(&swapper_space, swap.val); 6326 } 6327 #endif 6328 return page; 6329 } 6330 6331 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6332 unsigned long addr, pte_t ptent, union mc_target *target) 6333 { 6334 struct page *page = NULL; 6335 struct page_cgroup *pc; 6336 enum mc_target_type ret = MC_TARGET_NONE; 6337 swp_entry_t ent = { .val = 0 }; 6338 6339 if (pte_present(ptent)) 6340 page = mc_handle_present_pte(vma, addr, ptent); 6341 else if (is_swap_pte(ptent)) 6342 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6343 else if (pte_none(ptent) || pte_file(ptent)) 6344 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6345 6346 if (!page && !ent.val) 6347 return ret; 6348 if (page) { 6349 pc = lookup_page_cgroup(page); 6350 /* 6351 * Do only loose check w/o page_cgroup lock. 6352 * mem_cgroup_move_account() checks the pc is valid or not under 6353 * the lock. 6354 */ 6355 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6356 ret = MC_TARGET_PAGE; 6357 if (target) 6358 target->page = page; 6359 } 6360 if (!ret || !target) 6361 put_page(page); 6362 } 6363 /* There is a swap entry and a page doesn't exist or isn't charged */ 6364 if (ent.val && !ret && 6365 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6366 ret = MC_TARGET_SWAP; 6367 if (target) 6368 target->ent = ent; 6369 } 6370 return ret; 6371 } 6372 6373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6374 /* 6375 * We don't consider swapping or file mapped pages because THP does not 6376 * support them for now. 6377 * Caller should make sure that pmd_trans_huge(pmd) is true. 6378 */ 6379 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6380 unsigned long addr, pmd_t pmd, union mc_target *target) 6381 { 6382 struct page *page = NULL; 6383 struct page_cgroup *pc; 6384 enum mc_target_type ret = MC_TARGET_NONE; 6385 6386 page = pmd_page(pmd); 6387 VM_BUG_ON(!page || !PageHead(page)); 6388 if (!move_anon()) 6389 return ret; 6390 pc = lookup_page_cgroup(page); 6391 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6392 ret = MC_TARGET_PAGE; 6393 if (target) { 6394 get_page(page); 6395 target->page = page; 6396 } 6397 } 6398 return ret; 6399 } 6400 #else 6401 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6402 unsigned long addr, pmd_t pmd, union mc_target *target) 6403 { 6404 return MC_TARGET_NONE; 6405 } 6406 #endif 6407 6408 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6409 unsigned long addr, unsigned long end, 6410 struct mm_walk *walk) 6411 { 6412 struct vm_area_struct *vma = walk->private; 6413 pte_t *pte; 6414 spinlock_t *ptl; 6415 6416 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6417 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6418 mc.precharge += HPAGE_PMD_NR; 6419 spin_unlock(&vma->vm_mm->page_table_lock); 6420 return 0; 6421 } 6422 6423 if (pmd_trans_unstable(pmd)) 6424 return 0; 6425 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6426 for (; addr != end; pte++, addr += PAGE_SIZE) 6427 if (get_mctgt_type(vma, addr, *pte, NULL)) 6428 mc.precharge++; /* increment precharge temporarily */ 6429 pte_unmap_unlock(pte - 1, ptl); 6430 cond_resched(); 6431 6432 return 0; 6433 } 6434 6435 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6436 { 6437 unsigned long precharge; 6438 struct vm_area_struct *vma; 6439 6440 down_read(&mm->mmap_sem); 6441 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6442 struct mm_walk mem_cgroup_count_precharge_walk = { 6443 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6444 .mm = mm, 6445 .private = vma, 6446 }; 6447 if (is_vm_hugetlb_page(vma)) 6448 continue; 6449 walk_page_range(vma->vm_start, vma->vm_end, 6450 &mem_cgroup_count_precharge_walk); 6451 } 6452 up_read(&mm->mmap_sem); 6453 6454 precharge = mc.precharge; 6455 mc.precharge = 0; 6456 6457 return precharge; 6458 } 6459 6460 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6461 { 6462 unsigned long precharge = mem_cgroup_count_precharge(mm); 6463 6464 VM_BUG_ON(mc.moving_task); 6465 mc.moving_task = current; 6466 return mem_cgroup_do_precharge(precharge); 6467 } 6468 6469 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6470 static void __mem_cgroup_clear_mc(void) 6471 { 6472 struct mem_cgroup *from = mc.from; 6473 struct mem_cgroup *to = mc.to; 6474 6475 /* we must uncharge all the leftover precharges from mc.to */ 6476 if (mc.precharge) { 6477 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6478 mc.precharge = 0; 6479 } 6480 /* 6481 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6482 * we must uncharge here. 6483 */ 6484 if (mc.moved_charge) { 6485 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6486 mc.moved_charge = 0; 6487 } 6488 /* we must fixup refcnts and charges */ 6489 if (mc.moved_swap) { 6490 /* uncharge swap account from the old cgroup */ 6491 if (!mem_cgroup_is_root(mc.from)) 6492 res_counter_uncharge(&mc.from->memsw, 6493 PAGE_SIZE * mc.moved_swap); 6494 __mem_cgroup_put(mc.from, mc.moved_swap); 6495 6496 if (!mem_cgroup_is_root(mc.to)) { 6497 /* 6498 * we charged both to->res and to->memsw, so we should 6499 * uncharge to->res. 6500 */ 6501 res_counter_uncharge(&mc.to->res, 6502 PAGE_SIZE * mc.moved_swap); 6503 } 6504 /* we've already done mem_cgroup_get(mc.to) */ 6505 mc.moved_swap = 0; 6506 } 6507 memcg_oom_recover(from); 6508 memcg_oom_recover(to); 6509 wake_up_all(&mc.waitq); 6510 } 6511 6512 static void mem_cgroup_clear_mc(void) 6513 { 6514 struct mem_cgroup *from = mc.from; 6515 6516 /* 6517 * we must clear moving_task before waking up waiters at the end of 6518 * task migration. 6519 */ 6520 mc.moving_task = NULL; 6521 __mem_cgroup_clear_mc(); 6522 spin_lock(&mc.lock); 6523 mc.from = NULL; 6524 mc.to = NULL; 6525 spin_unlock(&mc.lock); 6526 mem_cgroup_end_move(from); 6527 } 6528 6529 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6530 struct cgroup_taskset *tset) 6531 { 6532 struct task_struct *p = cgroup_taskset_first(tset); 6533 int ret = 0; 6534 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 6535 6536 if (memcg->move_charge_at_immigrate) { 6537 struct mm_struct *mm; 6538 struct mem_cgroup *from = mem_cgroup_from_task(p); 6539 6540 VM_BUG_ON(from == memcg); 6541 6542 mm = get_task_mm(p); 6543 if (!mm) 6544 return 0; 6545 /* We move charges only when we move a owner of the mm */ 6546 if (mm->owner == p) { 6547 VM_BUG_ON(mc.from); 6548 VM_BUG_ON(mc.to); 6549 VM_BUG_ON(mc.precharge); 6550 VM_BUG_ON(mc.moved_charge); 6551 VM_BUG_ON(mc.moved_swap); 6552 mem_cgroup_start_move(from); 6553 spin_lock(&mc.lock); 6554 mc.from = from; 6555 mc.to = memcg; 6556 spin_unlock(&mc.lock); 6557 /* We set mc.moving_task later */ 6558 6559 ret = mem_cgroup_precharge_mc(mm); 6560 if (ret) 6561 mem_cgroup_clear_mc(); 6562 } 6563 mmput(mm); 6564 } 6565 return ret; 6566 } 6567 6568 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6569 struct cgroup_taskset *tset) 6570 { 6571 mem_cgroup_clear_mc(); 6572 } 6573 6574 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6575 unsigned long addr, unsigned long end, 6576 struct mm_walk *walk) 6577 { 6578 int ret = 0; 6579 struct vm_area_struct *vma = walk->private; 6580 pte_t *pte; 6581 spinlock_t *ptl; 6582 enum mc_target_type target_type; 6583 union mc_target target; 6584 struct page *page; 6585 struct page_cgroup *pc; 6586 6587 /* 6588 * We don't take compound_lock() here but no race with splitting thp 6589 * happens because: 6590 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6591 * under splitting, which means there's no concurrent thp split, 6592 * - if another thread runs into split_huge_page() just after we 6593 * entered this if-block, the thread must wait for page table lock 6594 * to be unlocked in __split_huge_page_splitting(), where the main 6595 * part of thp split is not executed yet. 6596 */ 6597 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6598 if (mc.precharge < HPAGE_PMD_NR) { 6599 spin_unlock(&vma->vm_mm->page_table_lock); 6600 return 0; 6601 } 6602 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6603 if (target_type == MC_TARGET_PAGE) { 6604 page = target.page; 6605 if (!isolate_lru_page(page)) { 6606 pc = lookup_page_cgroup(page); 6607 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6608 pc, mc.from, mc.to)) { 6609 mc.precharge -= HPAGE_PMD_NR; 6610 mc.moved_charge += HPAGE_PMD_NR; 6611 } 6612 putback_lru_page(page); 6613 } 6614 put_page(page); 6615 } 6616 spin_unlock(&vma->vm_mm->page_table_lock); 6617 return 0; 6618 } 6619 6620 if (pmd_trans_unstable(pmd)) 6621 return 0; 6622 retry: 6623 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6624 for (; addr != end; addr += PAGE_SIZE) { 6625 pte_t ptent = *(pte++); 6626 swp_entry_t ent; 6627 6628 if (!mc.precharge) 6629 break; 6630 6631 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6632 case MC_TARGET_PAGE: 6633 page = target.page; 6634 if (isolate_lru_page(page)) 6635 goto put; 6636 pc = lookup_page_cgroup(page); 6637 if (!mem_cgroup_move_account(page, 1, pc, 6638 mc.from, mc.to)) { 6639 mc.precharge--; 6640 /* we uncharge from mc.from later. */ 6641 mc.moved_charge++; 6642 } 6643 putback_lru_page(page); 6644 put: /* get_mctgt_type() gets the page */ 6645 put_page(page); 6646 break; 6647 case MC_TARGET_SWAP: 6648 ent = target.ent; 6649 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6650 mc.precharge--; 6651 /* we fixup refcnts and charges later. */ 6652 mc.moved_swap++; 6653 } 6654 break; 6655 default: 6656 break; 6657 } 6658 } 6659 pte_unmap_unlock(pte - 1, ptl); 6660 cond_resched(); 6661 6662 if (addr != end) { 6663 /* 6664 * We have consumed all precharges we got in can_attach(). 6665 * We try charge one by one, but don't do any additional 6666 * charges to mc.to if we have failed in charge once in attach() 6667 * phase. 6668 */ 6669 ret = mem_cgroup_do_precharge(1); 6670 if (!ret) 6671 goto retry; 6672 } 6673 6674 return ret; 6675 } 6676 6677 static void mem_cgroup_move_charge(struct mm_struct *mm) 6678 { 6679 struct vm_area_struct *vma; 6680 6681 lru_add_drain_all(); 6682 retry: 6683 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6684 /* 6685 * Someone who are holding the mmap_sem might be waiting in 6686 * waitq. So we cancel all extra charges, wake up all waiters, 6687 * and retry. Because we cancel precharges, we might not be able 6688 * to move enough charges, but moving charge is a best-effort 6689 * feature anyway, so it wouldn't be a big problem. 6690 */ 6691 __mem_cgroup_clear_mc(); 6692 cond_resched(); 6693 goto retry; 6694 } 6695 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6696 int ret; 6697 struct mm_walk mem_cgroup_move_charge_walk = { 6698 .pmd_entry = mem_cgroup_move_charge_pte_range, 6699 .mm = mm, 6700 .private = vma, 6701 }; 6702 if (is_vm_hugetlb_page(vma)) 6703 continue; 6704 ret = walk_page_range(vma->vm_start, vma->vm_end, 6705 &mem_cgroup_move_charge_walk); 6706 if (ret) 6707 /* 6708 * means we have consumed all precharges and failed in 6709 * doing additional charge. Just abandon here. 6710 */ 6711 break; 6712 } 6713 up_read(&mm->mmap_sem); 6714 } 6715 6716 static void mem_cgroup_move_task(struct cgroup *cont, 6717 struct cgroup_taskset *tset) 6718 { 6719 struct task_struct *p = cgroup_taskset_first(tset); 6720 struct mm_struct *mm = get_task_mm(p); 6721 6722 if (mm) { 6723 if (mc.to) 6724 mem_cgroup_move_charge(mm); 6725 mmput(mm); 6726 } 6727 if (mc.to) 6728 mem_cgroup_clear_mc(); 6729 } 6730 #else /* !CONFIG_MMU */ 6731 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6732 struct cgroup_taskset *tset) 6733 { 6734 return 0; 6735 } 6736 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6737 struct cgroup_taskset *tset) 6738 { 6739 } 6740 static void mem_cgroup_move_task(struct cgroup *cont, 6741 struct cgroup_taskset *tset) 6742 { 6743 } 6744 #endif 6745 6746 struct cgroup_subsys mem_cgroup_subsys = { 6747 .name = "memory", 6748 .subsys_id = mem_cgroup_subsys_id, 6749 .css_alloc = mem_cgroup_css_alloc, 6750 .css_offline = mem_cgroup_css_offline, 6751 .css_free = mem_cgroup_css_free, 6752 .can_attach = mem_cgroup_can_attach, 6753 .cancel_attach = mem_cgroup_cancel_attach, 6754 .attach = mem_cgroup_move_task, 6755 .base_cftypes = mem_cgroup_files, 6756 .early_init = 0, 6757 .use_id = 1, 6758 }; 6759 6760 /* 6761 * The rest of init is performed during ->css_alloc() for root css which 6762 * happens before initcalls. hotcpu_notifier() can't be done together as 6763 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug 6764 * dependency. Do it from a subsys_initcall(). 6765 */ 6766 static int __init mem_cgroup_init(void) 6767 { 6768 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6769 return 0; 6770 } 6771 subsys_initcall(mem_cgroup_init); 6772 6773 #ifdef CONFIG_MEMCG_SWAP 6774 static int __init enable_swap_account(char *s) 6775 { 6776 /* consider enabled if no parameter or 1 is given */ 6777 if (!strcmp(s, "1")) 6778 really_do_swap_account = 1; 6779 else if (!strcmp(s, "0")) 6780 really_do_swap_account = 0; 6781 return 1; 6782 } 6783 __setup("swapaccount=", enable_swap_account); 6784 6785 #endif 6786