1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/mm.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/seq_buf.h> 61 #include "internal.h" 62 #include <net/sock.h> 63 #include <net/ip.h> 64 #include "slab.h" 65 66 #include <linux/uaccess.h> 67 68 #include <trace/events/vmscan.h> 69 70 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 71 EXPORT_SYMBOL(memory_cgrp_subsys); 72 73 struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 #define MEM_CGROUP_RECLAIM_RETRIES 5 76 77 /* Socket memory accounting disabled? */ 78 static bool cgroup_memory_nosocket; 79 80 /* Kernel memory accounting disabled? */ 81 static bool cgroup_memory_nokmem; 82 83 /* Whether the swap controller is active */ 84 #ifdef CONFIG_MEMCG_SWAP 85 int do_swap_account __read_mostly; 86 #else 87 #define do_swap_account 0 88 #endif 89 90 /* Whether legacy memory+swap accounting is active */ 91 static bool do_memsw_account(void) 92 { 93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 94 } 95 96 static const char *const mem_cgroup_lru_names[] = { 97 "inactive_anon", 98 "active_anon", 99 "inactive_file", 100 "active_file", 101 "unevictable", 102 }; 103 104 #define THRESHOLDS_EVENTS_TARGET 128 105 #define SOFTLIMIT_EVENTS_TARGET 1024 106 #define NUMAINFO_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 enum charge_type { 207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 208 MEM_CGROUP_CHARGE_TYPE_ANON, 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 211 NR_CHARGE_TYPE, 212 }; 213 214 /* for encoding cft->private value on file */ 215 enum res_type { 216 _MEM, 217 _MEMSWAP, 218 _OOM_TYPE, 219 _KMEM, 220 _TCP, 221 }; 222 223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 225 #define MEMFILE_ATTR(val) ((val) & 0xffff) 226 /* Used for OOM nofiier */ 227 #define OOM_CONTROL (0) 228 229 /* 230 * Iteration constructs for visiting all cgroups (under a tree). If 231 * loops are exited prematurely (break), mem_cgroup_iter_break() must 232 * be used for reference counting. 233 */ 234 #define for_each_mem_cgroup_tree(iter, root) \ 235 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 236 iter != NULL; \ 237 iter = mem_cgroup_iter(root, iter, NULL)) 238 239 #define for_each_mem_cgroup(iter) \ 240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 241 iter != NULL; \ 242 iter = mem_cgroup_iter(NULL, iter, NULL)) 243 244 static inline bool should_force_charge(void) 245 { 246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 247 (current->flags & PF_EXITING); 248 } 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 #ifdef CONFIG_MEMCG_KMEM 264 /* 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 266 * The main reason for not using cgroup id for this: 267 * this works better in sparse environments, where we have a lot of memcgs, 268 * but only a few kmem-limited. Or also, if we have, for instance, 200 269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 270 * 200 entry array for that. 271 * 272 * The current size of the caches array is stored in memcg_nr_cache_ids. It 273 * will double each time we have to increase it. 274 */ 275 static DEFINE_IDA(memcg_cache_ida); 276 int memcg_nr_cache_ids; 277 278 /* Protects memcg_nr_cache_ids */ 279 static DECLARE_RWSEM(memcg_cache_ids_sem); 280 281 void memcg_get_cache_ids(void) 282 { 283 down_read(&memcg_cache_ids_sem); 284 } 285 286 void memcg_put_cache_ids(void) 287 { 288 up_read(&memcg_cache_ids_sem); 289 } 290 291 /* 292 * MIN_SIZE is different than 1, because we would like to avoid going through 293 * the alloc/free process all the time. In a small machine, 4 kmem-limited 294 * cgroups is a reasonable guess. In the future, it could be a parameter or 295 * tunable, but that is strictly not necessary. 296 * 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 298 * this constant directly from cgroup, but it is understandable that this is 299 * better kept as an internal representation in cgroup.c. In any case, the 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily 301 * increase ours as well if it increases. 302 */ 303 #define MEMCG_CACHES_MIN_SIZE 4 304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 305 306 /* 307 * A lot of the calls to the cache allocation functions are expected to be 308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 309 * conditional to this static branch, we'll have to allow modules that does 310 * kmem_cache_alloc and the such to see this symbol as well 311 */ 312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 313 EXPORT_SYMBOL(memcg_kmem_enabled_key); 314 315 struct workqueue_struct *memcg_kmem_cache_wq; 316 317 static int memcg_shrinker_map_size; 318 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 319 320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 321 { 322 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 323 } 324 325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 326 int size, int old_size) 327 { 328 struct memcg_shrinker_map *new, *old; 329 int nid; 330 331 lockdep_assert_held(&memcg_shrinker_map_mutex); 332 333 for_each_node(nid) { 334 old = rcu_dereference_protected( 335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 336 /* Not yet online memcg */ 337 if (!old) 338 return 0; 339 340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 341 if (!new) 342 return -ENOMEM; 343 344 /* Set all old bits, clear all new bits */ 345 memset(new->map, (int)0xff, old_size); 346 memset((void *)new->map + old_size, 0, size - old_size); 347 348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 350 } 351 352 return 0; 353 } 354 355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 356 { 357 struct mem_cgroup_per_node *pn; 358 struct memcg_shrinker_map *map; 359 int nid; 360 361 if (mem_cgroup_is_root(memcg)) 362 return; 363 364 for_each_node(nid) { 365 pn = mem_cgroup_nodeinfo(memcg, nid); 366 map = rcu_dereference_protected(pn->shrinker_map, true); 367 if (map) 368 kvfree(map); 369 rcu_assign_pointer(pn->shrinker_map, NULL); 370 } 371 } 372 373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 374 { 375 struct memcg_shrinker_map *map; 376 int nid, size, ret = 0; 377 378 if (mem_cgroup_is_root(memcg)) 379 return 0; 380 381 mutex_lock(&memcg_shrinker_map_mutex); 382 size = memcg_shrinker_map_size; 383 for_each_node(nid) { 384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 385 if (!map) { 386 memcg_free_shrinker_maps(memcg); 387 ret = -ENOMEM; 388 break; 389 } 390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 391 } 392 mutex_unlock(&memcg_shrinker_map_mutex); 393 394 return ret; 395 } 396 397 int memcg_expand_shrinker_maps(int new_id) 398 { 399 int size, old_size, ret = 0; 400 struct mem_cgroup *memcg; 401 402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 403 old_size = memcg_shrinker_map_size; 404 if (size <= old_size) 405 return 0; 406 407 mutex_lock(&memcg_shrinker_map_mutex); 408 if (!root_mem_cgroup) 409 goto unlock; 410 411 for_each_mem_cgroup(memcg) { 412 if (mem_cgroup_is_root(memcg)) 413 continue; 414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 415 if (ret) 416 goto unlock; 417 } 418 unlock: 419 if (!ret) 420 memcg_shrinker_map_size = size; 421 mutex_unlock(&memcg_shrinker_map_mutex); 422 return ret; 423 } 424 425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 426 { 427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 428 struct memcg_shrinker_map *map; 429 430 rcu_read_lock(); 431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 432 /* Pairs with smp mb in shrink_slab() */ 433 smp_mb__before_atomic(); 434 set_bit(shrinker_id, map->map); 435 rcu_read_unlock(); 436 } 437 } 438 439 #else /* CONFIG_MEMCG_KMEM */ 440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 441 { 442 return 0; 443 } 444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 445 #endif /* CONFIG_MEMCG_KMEM */ 446 447 /** 448 * mem_cgroup_css_from_page - css of the memcg associated with a page 449 * @page: page of interest 450 * 451 * If memcg is bound to the default hierarchy, css of the memcg associated 452 * with @page is returned. The returned css remains associated with @page 453 * until it is released. 454 * 455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 456 * is returned. 457 */ 458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 459 { 460 struct mem_cgroup *memcg; 461 462 memcg = page->mem_cgroup; 463 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 465 memcg = root_mem_cgroup; 466 467 return &memcg->css; 468 } 469 470 /** 471 * page_cgroup_ino - return inode number of the memcg a page is charged to 472 * @page: the page 473 * 474 * Look up the closest online ancestor of the memory cgroup @page is charged to 475 * and return its inode number or 0 if @page is not charged to any cgroup. It 476 * is safe to call this function without holding a reference to @page. 477 * 478 * Note, this function is inherently racy, because there is nothing to prevent 479 * the cgroup inode from getting torn down and potentially reallocated a moment 480 * after page_cgroup_ino() returns, so it only should be used by callers that 481 * do not care (such as procfs interfaces). 482 */ 483 ino_t page_cgroup_ino(struct page *page) 484 { 485 struct mem_cgroup *memcg; 486 unsigned long ino = 0; 487 488 rcu_read_lock(); 489 if (PageHead(page) && PageSlab(page)) 490 memcg = memcg_from_slab_page(page); 491 else 492 memcg = READ_ONCE(page->mem_cgroup); 493 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 494 memcg = parent_mem_cgroup(memcg); 495 if (memcg) 496 ino = cgroup_ino(memcg->css.cgroup); 497 rcu_read_unlock(); 498 return ino; 499 } 500 501 static struct mem_cgroup_per_node * 502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 503 { 504 int nid = page_to_nid(page); 505 506 return memcg->nodeinfo[nid]; 507 } 508 509 static struct mem_cgroup_tree_per_node * 510 soft_limit_tree_node(int nid) 511 { 512 return soft_limit_tree.rb_tree_per_node[nid]; 513 } 514 515 static struct mem_cgroup_tree_per_node * 516 soft_limit_tree_from_page(struct page *page) 517 { 518 int nid = page_to_nid(page); 519 520 return soft_limit_tree.rb_tree_per_node[nid]; 521 } 522 523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 524 struct mem_cgroup_tree_per_node *mctz, 525 unsigned long new_usage_in_excess) 526 { 527 struct rb_node **p = &mctz->rb_root.rb_node; 528 struct rb_node *parent = NULL; 529 struct mem_cgroup_per_node *mz_node; 530 bool rightmost = true; 531 532 if (mz->on_tree) 533 return; 534 535 mz->usage_in_excess = new_usage_in_excess; 536 if (!mz->usage_in_excess) 537 return; 538 while (*p) { 539 parent = *p; 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 541 tree_node); 542 if (mz->usage_in_excess < mz_node->usage_in_excess) { 543 p = &(*p)->rb_left; 544 rightmost = false; 545 } 546 547 /* 548 * We can't avoid mem cgroups that are over their soft 549 * limit by the same amount 550 */ 551 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 552 p = &(*p)->rb_right; 553 } 554 555 if (rightmost) 556 mctz->rb_rightmost = &mz->tree_node; 557 558 rb_link_node(&mz->tree_node, parent, p); 559 rb_insert_color(&mz->tree_node, &mctz->rb_root); 560 mz->on_tree = true; 561 } 562 563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 564 struct mem_cgroup_tree_per_node *mctz) 565 { 566 if (!mz->on_tree) 567 return; 568 569 if (&mz->tree_node == mctz->rb_rightmost) 570 mctz->rb_rightmost = rb_prev(&mz->tree_node); 571 572 rb_erase(&mz->tree_node, &mctz->rb_root); 573 mz->on_tree = false; 574 } 575 576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 577 struct mem_cgroup_tree_per_node *mctz) 578 { 579 unsigned long flags; 580 581 spin_lock_irqsave(&mctz->lock, flags); 582 __mem_cgroup_remove_exceeded(mz, mctz); 583 spin_unlock_irqrestore(&mctz->lock, flags); 584 } 585 586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 587 { 588 unsigned long nr_pages = page_counter_read(&memcg->memory); 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 590 unsigned long excess = 0; 591 592 if (nr_pages > soft_limit) 593 excess = nr_pages - soft_limit; 594 595 return excess; 596 } 597 598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 599 { 600 unsigned long excess; 601 struct mem_cgroup_per_node *mz; 602 struct mem_cgroup_tree_per_node *mctz; 603 604 mctz = soft_limit_tree_from_page(page); 605 if (!mctz) 606 return; 607 /* 608 * Necessary to update all ancestors when hierarchy is used. 609 * because their event counter is not touched. 610 */ 611 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 612 mz = mem_cgroup_page_nodeinfo(memcg, page); 613 excess = soft_limit_excess(memcg); 614 /* 615 * We have to update the tree if mz is on RB-tree or 616 * mem is over its softlimit. 617 */ 618 if (excess || mz->on_tree) { 619 unsigned long flags; 620 621 spin_lock_irqsave(&mctz->lock, flags); 622 /* if on-tree, remove it */ 623 if (mz->on_tree) 624 __mem_cgroup_remove_exceeded(mz, mctz); 625 /* 626 * Insert again. mz->usage_in_excess will be updated. 627 * If excess is 0, no tree ops. 628 */ 629 __mem_cgroup_insert_exceeded(mz, mctz, excess); 630 spin_unlock_irqrestore(&mctz->lock, flags); 631 } 632 } 633 } 634 635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 636 { 637 struct mem_cgroup_tree_per_node *mctz; 638 struct mem_cgroup_per_node *mz; 639 int nid; 640 641 for_each_node(nid) { 642 mz = mem_cgroup_nodeinfo(memcg, nid); 643 mctz = soft_limit_tree_node(nid); 644 if (mctz) 645 mem_cgroup_remove_exceeded(mz, mctz); 646 } 647 } 648 649 static struct mem_cgroup_per_node * 650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 651 { 652 struct mem_cgroup_per_node *mz; 653 654 retry: 655 mz = NULL; 656 if (!mctz->rb_rightmost) 657 goto done; /* Nothing to reclaim from */ 658 659 mz = rb_entry(mctz->rb_rightmost, 660 struct mem_cgroup_per_node, tree_node); 661 /* 662 * Remove the node now but someone else can add it back, 663 * we will to add it back at the end of reclaim to its correct 664 * position in the tree. 665 */ 666 __mem_cgroup_remove_exceeded(mz, mctz); 667 if (!soft_limit_excess(mz->memcg) || 668 !css_tryget_online(&mz->memcg->css)) 669 goto retry; 670 done: 671 return mz; 672 } 673 674 static struct mem_cgroup_per_node * 675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 676 { 677 struct mem_cgroup_per_node *mz; 678 679 spin_lock_irq(&mctz->lock); 680 mz = __mem_cgroup_largest_soft_limit_node(mctz); 681 spin_unlock_irq(&mctz->lock); 682 return mz; 683 } 684 685 /** 686 * __mod_memcg_state - update cgroup memory statistics 687 * @memcg: the memory cgroup 688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 689 * @val: delta to add to the counter, can be negative 690 */ 691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 692 { 693 long x; 694 695 if (mem_cgroup_disabled()) 696 return; 697 698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 700 struct mem_cgroup *mi; 701 702 /* 703 * Batch local counters to keep them in sync with 704 * the hierarchical ones. 705 */ 706 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 708 atomic_long_add(x, &mi->vmstats[idx]); 709 x = 0; 710 } 711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 712 } 713 714 static struct mem_cgroup_per_node * 715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 716 { 717 struct mem_cgroup *parent; 718 719 parent = parent_mem_cgroup(pn->memcg); 720 if (!parent) 721 return NULL; 722 return mem_cgroup_nodeinfo(parent, nid); 723 } 724 725 /** 726 * __mod_lruvec_state - update lruvec memory statistics 727 * @lruvec: the lruvec 728 * @idx: the stat item 729 * @val: delta to add to the counter, can be negative 730 * 731 * The lruvec is the intersection of the NUMA node and a cgroup. This 732 * function updates the all three counters that are affected by a 733 * change of state at this level: per-node, per-cgroup, per-lruvec. 734 */ 735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 736 int val) 737 { 738 pg_data_t *pgdat = lruvec_pgdat(lruvec); 739 struct mem_cgroup_per_node *pn; 740 struct mem_cgroup *memcg; 741 long x; 742 743 /* Update node */ 744 __mod_node_page_state(pgdat, idx, val); 745 746 if (mem_cgroup_disabled()) 747 return; 748 749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 750 memcg = pn->memcg; 751 752 /* Update memcg */ 753 __mod_memcg_state(memcg, idx, val); 754 755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 757 struct mem_cgroup_per_node *pi; 758 759 /* 760 * Batch local counters to keep them in sync with 761 * the hierarchical ones. 762 */ 763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x); 764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 765 atomic_long_add(x, &pi->lruvec_stat[idx]); 766 x = 0; 767 } 768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 769 } 770 771 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 772 { 773 struct page *page = virt_to_head_page(p); 774 pg_data_t *pgdat = page_pgdat(page); 775 struct mem_cgroup *memcg; 776 struct lruvec *lruvec; 777 778 rcu_read_lock(); 779 memcg = memcg_from_slab_page(page); 780 781 /* Untracked pages have no memcg, no lruvec. Update only the node */ 782 if (!memcg || memcg == root_mem_cgroup) { 783 __mod_node_page_state(pgdat, idx, val); 784 } else { 785 lruvec = mem_cgroup_lruvec(pgdat, memcg); 786 __mod_lruvec_state(lruvec, idx, val); 787 } 788 rcu_read_unlock(); 789 } 790 791 /** 792 * __count_memcg_events - account VM events in a cgroup 793 * @memcg: the memory cgroup 794 * @idx: the event item 795 * @count: the number of events that occured 796 */ 797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 798 unsigned long count) 799 { 800 unsigned long x; 801 802 if (mem_cgroup_disabled()) 803 return; 804 805 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 806 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 807 struct mem_cgroup *mi; 808 809 /* 810 * Batch local counters to keep them in sync with 811 * the hierarchical ones. 812 */ 813 __this_cpu_add(memcg->vmstats_local->events[idx], x); 814 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 815 atomic_long_add(x, &mi->vmevents[idx]); 816 x = 0; 817 } 818 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 819 } 820 821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 822 { 823 return atomic_long_read(&memcg->vmevents[event]); 824 } 825 826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 827 { 828 long x = 0; 829 int cpu; 830 831 for_each_possible_cpu(cpu) 832 x += per_cpu(memcg->vmstats_local->events[event], cpu); 833 return x; 834 } 835 836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 837 struct page *page, 838 bool compound, int nr_pages) 839 { 840 /* 841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 842 * counted as CACHE even if it's on ANON LRU. 843 */ 844 if (PageAnon(page)) 845 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 846 else { 847 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 848 if (PageSwapBacked(page)) 849 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 850 } 851 852 if (compound) { 853 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 854 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 855 } 856 857 /* pagein of a big page is an event. So, ignore page size */ 858 if (nr_pages > 0) 859 __count_memcg_events(memcg, PGPGIN, 1); 860 else { 861 __count_memcg_events(memcg, PGPGOUT, 1); 862 nr_pages = -nr_pages; /* for event */ 863 } 864 865 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 866 } 867 868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 869 enum mem_cgroup_events_target target) 870 { 871 unsigned long val, next; 872 873 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 874 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 875 /* from time_after() in jiffies.h */ 876 if ((long)(next - val) < 0) { 877 switch (target) { 878 case MEM_CGROUP_TARGET_THRESH: 879 next = val + THRESHOLDS_EVENTS_TARGET; 880 break; 881 case MEM_CGROUP_TARGET_SOFTLIMIT: 882 next = val + SOFTLIMIT_EVENTS_TARGET; 883 break; 884 case MEM_CGROUP_TARGET_NUMAINFO: 885 next = val + NUMAINFO_EVENTS_TARGET; 886 break; 887 default: 888 break; 889 } 890 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 891 return true; 892 } 893 return false; 894 } 895 896 /* 897 * Check events in order. 898 * 899 */ 900 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 901 { 902 /* threshold event is triggered in finer grain than soft limit */ 903 if (unlikely(mem_cgroup_event_ratelimit(memcg, 904 MEM_CGROUP_TARGET_THRESH))) { 905 bool do_softlimit; 906 bool do_numainfo __maybe_unused; 907 908 do_softlimit = mem_cgroup_event_ratelimit(memcg, 909 MEM_CGROUP_TARGET_SOFTLIMIT); 910 #if MAX_NUMNODES > 1 911 do_numainfo = mem_cgroup_event_ratelimit(memcg, 912 MEM_CGROUP_TARGET_NUMAINFO); 913 #endif 914 mem_cgroup_threshold(memcg); 915 if (unlikely(do_softlimit)) 916 mem_cgroup_update_tree(memcg, page); 917 #if MAX_NUMNODES > 1 918 if (unlikely(do_numainfo)) 919 atomic_inc(&memcg->numainfo_events); 920 #endif 921 } 922 } 923 924 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 925 { 926 /* 927 * mm_update_next_owner() may clear mm->owner to NULL 928 * if it races with swapoff, page migration, etc. 929 * So this can be called with p == NULL. 930 */ 931 if (unlikely(!p)) 932 return NULL; 933 934 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 935 } 936 EXPORT_SYMBOL(mem_cgroup_from_task); 937 938 /** 939 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 940 * @mm: mm from which memcg should be extracted. It can be NULL. 941 * 942 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 943 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 944 * returned. 945 */ 946 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 947 { 948 struct mem_cgroup *memcg; 949 950 if (mem_cgroup_disabled()) 951 return NULL; 952 953 rcu_read_lock(); 954 do { 955 /* 956 * Page cache insertions can happen withou an 957 * actual mm context, e.g. during disk probing 958 * on boot, loopback IO, acct() writes etc. 959 */ 960 if (unlikely(!mm)) 961 memcg = root_mem_cgroup; 962 else { 963 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 964 if (unlikely(!memcg)) 965 memcg = root_mem_cgroup; 966 } 967 } while (!css_tryget_online(&memcg->css)); 968 rcu_read_unlock(); 969 return memcg; 970 } 971 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 972 973 /** 974 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 975 * @page: page from which memcg should be extracted. 976 * 977 * Obtain a reference on page->memcg and returns it if successful. Otherwise 978 * root_mem_cgroup is returned. 979 */ 980 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 981 { 982 struct mem_cgroup *memcg = page->mem_cgroup; 983 984 if (mem_cgroup_disabled()) 985 return NULL; 986 987 rcu_read_lock(); 988 if (!memcg || !css_tryget_online(&memcg->css)) 989 memcg = root_mem_cgroup; 990 rcu_read_unlock(); 991 return memcg; 992 } 993 EXPORT_SYMBOL(get_mem_cgroup_from_page); 994 995 /** 996 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 997 */ 998 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 999 { 1000 if (unlikely(current->active_memcg)) { 1001 struct mem_cgroup *memcg = root_mem_cgroup; 1002 1003 rcu_read_lock(); 1004 if (css_tryget_online(¤t->active_memcg->css)) 1005 memcg = current->active_memcg; 1006 rcu_read_unlock(); 1007 return memcg; 1008 } 1009 return get_mem_cgroup_from_mm(current->mm); 1010 } 1011 1012 /** 1013 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1014 * @root: hierarchy root 1015 * @prev: previously returned memcg, NULL on first invocation 1016 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1017 * 1018 * Returns references to children of the hierarchy below @root, or 1019 * @root itself, or %NULL after a full round-trip. 1020 * 1021 * Caller must pass the return value in @prev on subsequent 1022 * invocations for reference counting, or use mem_cgroup_iter_break() 1023 * to cancel a hierarchy walk before the round-trip is complete. 1024 * 1025 * Reclaimers can specify a node and a priority level in @reclaim to 1026 * divide up the memcgs in the hierarchy among all concurrent 1027 * reclaimers operating on the same node and priority. 1028 */ 1029 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1030 struct mem_cgroup *prev, 1031 struct mem_cgroup_reclaim_cookie *reclaim) 1032 { 1033 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1034 struct cgroup_subsys_state *css = NULL; 1035 struct mem_cgroup *memcg = NULL; 1036 struct mem_cgroup *pos = NULL; 1037 1038 if (mem_cgroup_disabled()) 1039 return NULL; 1040 1041 if (!root) 1042 root = root_mem_cgroup; 1043 1044 if (prev && !reclaim) 1045 pos = prev; 1046 1047 if (!root->use_hierarchy && root != root_mem_cgroup) { 1048 if (prev) 1049 goto out; 1050 return root; 1051 } 1052 1053 rcu_read_lock(); 1054 1055 if (reclaim) { 1056 struct mem_cgroup_per_node *mz; 1057 1058 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1059 iter = &mz->iter[reclaim->priority]; 1060 1061 if (prev && reclaim->generation != iter->generation) 1062 goto out_unlock; 1063 1064 while (1) { 1065 pos = READ_ONCE(iter->position); 1066 if (!pos || css_tryget(&pos->css)) 1067 break; 1068 /* 1069 * css reference reached zero, so iter->position will 1070 * be cleared by ->css_released. However, we should not 1071 * rely on this happening soon, because ->css_released 1072 * is called from a work queue, and by busy-waiting we 1073 * might block it. So we clear iter->position right 1074 * away. 1075 */ 1076 (void)cmpxchg(&iter->position, pos, NULL); 1077 } 1078 } 1079 1080 if (pos) 1081 css = &pos->css; 1082 1083 for (;;) { 1084 css = css_next_descendant_pre(css, &root->css); 1085 if (!css) { 1086 /* 1087 * Reclaimers share the hierarchy walk, and a 1088 * new one might jump in right at the end of 1089 * the hierarchy - make sure they see at least 1090 * one group and restart from the beginning. 1091 */ 1092 if (!prev) 1093 continue; 1094 break; 1095 } 1096 1097 /* 1098 * Verify the css and acquire a reference. The root 1099 * is provided by the caller, so we know it's alive 1100 * and kicking, and don't take an extra reference. 1101 */ 1102 memcg = mem_cgroup_from_css(css); 1103 1104 if (css == &root->css) 1105 break; 1106 1107 if (css_tryget(css)) 1108 break; 1109 1110 memcg = NULL; 1111 } 1112 1113 if (reclaim) { 1114 /* 1115 * The position could have already been updated by a competing 1116 * thread, so check that the value hasn't changed since we read 1117 * it to avoid reclaiming from the same cgroup twice. 1118 */ 1119 (void)cmpxchg(&iter->position, pos, memcg); 1120 1121 if (pos) 1122 css_put(&pos->css); 1123 1124 if (!memcg) 1125 iter->generation++; 1126 else if (!prev) 1127 reclaim->generation = iter->generation; 1128 } 1129 1130 out_unlock: 1131 rcu_read_unlock(); 1132 out: 1133 if (prev && prev != root) 1134 css_put(&prev->css); 1135 1136 return memcg; 1137 } 1138 1139 /** 1140 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1141 * @root: hierarchy root 1142 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1143 */ 1144 void mem_cgroup_iter_break(struct mem_cgroup *root, 1145 struct mem_cgroup *prev) 1146 { 1147 if (!root) 1148 root = root_mem_cgroup; 1149 if (prev && prev != root) 1150 css_put(&prev->css); 1151 } 1152 1153 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1154 struct mem_cgroup *dead_memcg) 1155 { 1156 struct mem_cgroup_reclaim_iter *iter; 1157 struct mem_cgroup_per_node *mz; 1158 int nid; 1159 int i; 1160 1161 for_each_node(nid) { 1162 mz = mem_cgroup_nodeinfo(from, nid); 1163 for (i = 0; i <= DEF_PRIORITY; i++) { 1164 iter = &mz->iter[i]; 1165 cmpxchg(&iter->position, 1166 dead_memcg, NULL); 1167 } 1168 } 1169 } 1170 1171 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1172 { 1173 struct mem_cgroup *memcg = dead_memcg; 1174 struct mem_cgroup *last; 1175 1176 do { 1177 __invalidate_reclaim_iterators(memcg, dead_memcg); 1178 last = memcg; 1179 } while ((memcg = parent_mem_cgroup(memcg))); 1180 1181 /* 1182 * When cgruop1 non-hierarchy mode is used, 1183 * parent_mem_cgroup() does not walk all the way up to the 1184 * cgroup root (root_mem_cgroup). So we have to handle 1185 * dead_memcg from cgroup root separately. 1186 */ 1187 if (last != root_mem_cgroup) 1188 __invalidate_reclaim_iterators(root_mem_cgroup, 1189 dead_memcg); 1190 } 1191 1192 /** 1193 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1194 * @memcg: hierarchy root 1195 * @fn: function to call for each task 1196 * @arg: argument passed to @fn 1197 * 1198 * This function iterates over tasks attached to @memcg or to any of its 1199 * descendants and calls @fn for each task. If @fn returns a non-zero 1200 * value, the function breaks the iteration loop and returns the value. 1201 * Otherwise, it will iterate over all tasks and return 0. 1202 * 1203 * This function must not be called for the root memory cgroup. 1204 */ 1205 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1206 int (*fn)(struct task_struct *, void *), void *arg) 1207 { 1208 struct mem_cgroup *iter; 1209 int ret = 0; 1210 1211 BUG_ON(memcg == root_mem_cgroup); 1212 1213 for_each_mem_cgroup_tree(iter, memcg) { 1214 struct css_task_iter it; 1215 struct task_struct *task; 1216 1217 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1218 while (!ret && (task = css_task_iter_next(&it))) 1219 ret = fn(task, arg); 1220 css_task_iter_end(&it); 1221 if (ret) { 1222 mem_cgroup_iter_break(memcg, iter); 1223 break; 1224 } 1225 } 1226 return ret; 1227 } 1228 1229 /** 1230 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1231 * @page: the page 1232 * @pgdat: pgdat of the page 1233 * 1234 * This function is only safe when following the LRU page isolation 1235 * and putback protocol: the LRU lock must be held, and the page must 1236 * either be PageLRU() or the caller must have isolated/allocated it. 1237 */ 1238 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1239 { 1240 struct mem_cgroup_per_node *mz; 1241 struct mem_cgroup *memcg; 1242 struct lruvec *lruvec; 1243 1244 if (mem_cgroup_disabled()) { 1245 lruvec = &pgdat->lruvec; 1246 goto out; 1247 } 1248 1249 memcg = page->mem_cgroup; 1250 /* 1251 * Swapcache readahead pages are added to the LRU - and 1252 * possibly migrated - before they are charged. 1253 */ 1254 if (!memcg) 1255 memcg = root_mem_cgroup; 1256 1257 mz = mem_cgroup_page_nodeinfo(memcg, page); 1258 lruvec = &mz->lruvec; 1259 out: 1260 /* 1261 * Since a node can be onlined after the mem_cgroup was created, 1262 * we have to be prepared to initialize lruvec->zone here; 1263 * and if offlined then reonlined, we need to reinitialize it. 1264 */ 1265 if (unlikely(lruvec->pgdat != pgdat)) 1266 lruvec->pgdat = pgdat; 1267 return lruvec; 1268 } 1269 1270 /** 1271 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1272 * @lruvec: mem_cgroup per zone lru vector 1273 * @lru: index of lru list the page is sitting on 1274 * @zid: zone id of the accounted pages 1275 * @nr_pages: positive when adding or negative when removing 1276 * 1277 * This function must be called under lru_lock, just before a page is added 1278 * to or just after a page is removed from an lru list (that ordering being 1279 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1280 */ 1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1282 int zid, int nr_pages) 1283 { 1284 struct mem_cgroup_per_node *mz; 1285 unsigned long *lru_size; 1286 long size; 1287 1288 if (mem_cgroup_disabled()) 1289 return; 1290 1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1292 lru_size = &mz->lru_zone_size[zid][lru]; 1293 1294 if (nr_pages < 0) 1295 *lru_size += nr_pages; 1296 1297 size = *lru_size; 1298 if (WARN_ONCE(size < 0, 1299 "%s(%p, %d, %d): lru_size %ld\n", 1300 __func__, lruvec, lru, nr_pages, size)) { 1301 VM_BUG_ON(1); 1302 *lru_size = 0; 1303 } 1304 1305 if (nr_pages > 0) 1306 *lru_size += nr_pages; 1307 } 1308 1309 /** 1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1311 * @memcg: the memory cgroup 1312 * 1313 * Returns the maximum amount of memory @mem can be charged with, in 1314 * pages. 1315 */ 1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1317 { 1318 unsigned long margin = 0; 1319 unsigned long count; 1320 unsigned long limit; 1321 1322 count = page_counter_read(&memcg->memory); 1323 limit = READ_ONCE(memcg->memory.max); 1324 if (count < limit) 1325 margin = limit - count; 1326 1327 if (do_memsw_account()) { 1328 count = page_counter_read(&memcg->memsw); 1329 limit = READ_ONCE(memcg->memsw.max); 1330 if (count <= limit) 1331 margin = min(margin, limit - count); 1332 else 1333 margin = 0; 1334 } 1335 1336 return margin; 1337 } 1338 1339 /* 1340 * A routine for checking "mem" is under move_account() or not. 1341 * 1342 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1343 * moving cgroups. This is for waiting at high-memory pressure 1344 * caused by "move". 1345 */ 1346 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1347 { 1348 struct mem_cgroup *from; 1349 struct mem_cgroup *to; 1350 bool ret = false; 1351 /* 1352 * Unlike task_move routines, we access mc.to, mc.from not under 1353 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1354 */ 1355 spin_lock(&mc.lock); 1356 from = mc.from; 1357 to = mc.to; 1358 if (!from) 1359 goto unlock; 1360 1361 ret = mem_cgroup_is_descendant(from, memcg) || 1362 mem_cgroup_is_descendant(to, memcg); 1363 unlock: 1364 spin_unlock(&mc.lock); 1365 return ret; 1366 } 1367 1368 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1369 { 1370 if (mc.moving_task && current != mc.moving_task) { 1371 if (mem_cgroup_under_move(memcg)) { 1372 DEFINE_WAIT(wait); 1373 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1374 /* moving charge context might have finished. */ 1375 if (mc.moving_task) 1376 schedule(); 1377 finish_wait(&mc.waitq, &wait); 1378 return true; 1379 } 1380 } 1381 return false; 1382 } 1383 1384 static char *memory_stat_format(struct mem_cgroup *memcg) 1385 { 1386 struct seq_buf s; 1387 int i; 1388 1389 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1390 if (!s.buffer) 1391 return NULL; 1392 1393 /* 1394 * Provide statistics on the state of the memory subsystem as 1395 * well as cumulative event counters that show past behavior. 1396 * 1397 * This list is ordered following a combination of these gradients: 1398 * 1) generic big picture -> specifics and details 1399 * 2) reflecting userspace activity -> reflecting kernel heuristics 1400 * 1401 * Current memory state: 1402 */ 1403 1404 seq_buf_printf(&s, "anon %llu\n", 1405 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1406 PAGE_SIZE); 1407 seq_buf_printf(&s, "file %llu\n", 1408 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1409 PAGE_SIZE); 1410 seq_buf_printf(&s, "kernel_stack %llu\n", 1411 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1412 1024); 1413 seq_buf_printf(&s, "slab %llu\n", 1414 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1415 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1416 PAGE_SIZE); 1417 seq_buf_printf(&s, "sock %llu\n", 1418 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1419 PAGE_SIZE); 1420 1421 seq_buf_printf(&s, "shmem %llu\n", 1422 (u64)memcg_page_state(memcg, NR_SHMEM) * 1423 PAGE_SIZE); 1424 seq_buf_printf(&s, "file_mapped %llu\n", 1425 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1426 PAGE_SIZE); 1427 seq_buf_printf(&s, "file_dirty %llu\n", 1428 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1429 PAGE_SIZE); 1430 seq_buf_printf(&s, "file_writeback %llu\n", 1431 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1432 PAGE_SIZE); 1433 1434 /* 1435 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1436 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1437 * arse because it requires migrating the work out of rmap to a place 1438 * where the page->mem_cgroup is set up and stable. 1439 */ 1440 seq_buf_printf(&s, "anon_thp %llu\n", 1441 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1442 PAGE_SIZE); 1443 1444 for (i = 0; i < NR_LRU_LISTS; i++) 1445 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], 1446 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1447 PAGE_SIZE); 1448 1449 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1450 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1451 PAGE_SIZE); 1452 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1453 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1454 PAGE_SIZE); 1455 1456 /* Accumulated memory events */ 1457 1458 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); 1459 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); 1460 1461 seq_buf_printf(&s, "workingset_refault %lu\n", 1462 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1463 seq_buf_printf(&s, "workingset_activate %lu\n", 1464 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1465 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1466 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1467 1468 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); 1469 seq_buf_printf(&s, "pgscan %lu\n", 1470 memcg_events(memcg, PGSCAN_KSWAPD) + 1471 memcg_events(memcg, PGSCAN_DIRECT)); 1472 seq_buf_printf(&s, "pgsteal %lu\n", 1473 memcg_events(memcg, PGSTEAL_KSWAPD) + 1474 memcg_events(memcg, PGSTEAL_DIRECT)); 1475 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); 1476 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); 1477 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); 1478 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); 1479 1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1481 seq_buf_printf(&s, "thp_fault_alloc %lu\n", 1482 memcg_events(memcg, THP_FAULT_ALLOC)); 1483 seq_buf_printf(&s, "thp_collapse_alloc %lu\n", 1484 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1486 1487 /* The above should easily fit into one page */ 1488 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1489 1490 return s.buffer; 1491 } 1492 1493 #define K(x) ((x) << (PAGE_SHIFT-10)) 1494 /** 1495 * mem_cgroup_print_oom_context: Print OOM information relevant to 1496 * memory controller. 1497 * @memcg: The memory cgroup that went over limit 1498 * @p: Task that is going to be killed 1499 * 1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1501 * enabled 1502 */ 1503 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1504 { 1505 rcu_read_lock(); 1506 1507 if (memcg) { 1508 pr_cont(",oom_memcg="); 1509 pr_cont_cgroup_path(memcg->css.cgroup); 1510 } else 1511 pr_cont(",global_oom"); 1512 if (p) { 1513 pr_cont(",task_memcg="); 1514 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1515 } 1516 rcu_read_unlock(); 1517 } 1518 1519 /** 1520 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1521 * memory controller. 1522 * @memcg: The memory cgroup that went over limit 1523 */ 1524 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1525 { 1526 char *buf; 1527 1528 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1529 K((u64)page_counter_read(&memcg->memory)), 1530 K((u64)memcg->memory.max), memcg->memory.failcnt); 1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1532 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1533 K((u64)page_counter_read(&memcg->swap)), 1534 K((u64)memcg->swap.max), memcg->swap.failcnt); 1535 else { 1536 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1537 K((u64)page_counter_read(&memcg->memsw)), 1538 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1539 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1540 K((u64)page_counter_read(&memcg->kmem)), 1541 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1542 } 1543 1544 pr_info("Memory cgroup stats for "); 1545 pr_cont_cgroup_path(memcg->css.cgroup); 1546 pr_cont(":"); 1547 buf = memory_stat_format(memcg); 1548 if (!buf) 1549 return; 1550 pr_info("%s", buf); 1551 kfree(buf); 1552 } 1553 1554 /* 1555 * Return the memory (and swap, if configured) limit for a memcg. 1556 */ 1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1558 { 1559 unsigned long max; 1560 1561 max = memcg->memory.max; 1562 if (mem_cgroup_swappiness(memcg)) { 1563 unsigned long memsw_max; 1564 unsigned long swap_max; 1565 1566 memsw_max = memcg->memsw.max; 1567 swap_max = memcg->swap.max; 1568 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1569 max = min(max + swap_max, memsw_max); 1570 } 1571 return max; 1572 } 1573 1574 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1575 int order) 1576 { 1577 struct oom_control oc = { 1578 .zonelist = NULL, 1579 .nodemask = NULL, 1580 .memcg = memcg, 1581 .gfp_mask = gfp_mask, 1582 .order = order, 1583 }; 1584 bool ret; 1585 1586 if (mutex_lock_killable(&oom_lock)) 1587 return true; 1588 /* 1589 * A few threads which were not waiting at mutex_lock_killable() can 1590 * fail to bail out. Therefore, check again after holding oom_lock. 1591 */ 1592 ret = should_force_charge() || out_of_memory(&oc); 1593 mutex_unlock(&oom_lock); 1594 return ret; 1595 } 1596 1597 #if MAX_NUMNODES > 1 1598 1599 /** 1600 * test_mem_cgroup_node_reclaimable 1601 * @memcg: the target memcg 1602 * @nid: the node ID to be checked. 1603 * @noswap : specify true here if the user wants flle only information. 1604 * 1605 * This function returns whether the specified memcg contains any 1606 * reclaimable pages on a node. Returns true if there are any reclaimable 1607 * pages in the node. 1608 */ 1609 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1610 int nid, bool noswap) 1611 { 1612 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1613 1614 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1615 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1616 return true; 1617 if (noswap || !total_swap_pages) 1618 return false; 1619 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1620 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1621 return true; 1622 return false; 1623 1624 } 1625 1626 /* 1627 * Always updating the nodemask is not very good - even if we have an empty 1628 * list or the wrong list here, we can start from some node and traverse all 1629 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1630 * 1631 */ 1632 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1633 { 1634 int nid; 1635 /* 1636 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1637 * pagein/pageout changes since the last update. 1638 */ 1639 if (!atomic_read(&memcg->numainfo_events)) 1640 return; 1641 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1642 return; 1643 1644 /* make a nodemask where this memcg uses memory from */ 1645 memcg->scan_nodes = node_states[N_MEMORY]; 1646 1647 for_each_node_mask(nid, node_states[N_MEMORY]) { 1648 1649 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1650 node_clear(nid, memcg->scan_nodes); 1651 } 1652 1653 atomic_set(&memcg->numainfo_events, 0); 1654 atomic_set(&memcg->numainfo_updating, 0); 1655 } 1656 1657 /* 1658 * Selecting a node where we start reclaim from. Because what we need is just 1659 * reducing usage counter, start from anywhere is O,K. Considering 1660 * memory reclaim from current node, there are pros. and cons. 1661 * 1662 * Freeing memory from current node means freeing memory from a node which 1663 * we'll use or we've used. So, it may make LRU bad. And if several threads 1664 * hit limits, it will see a contention on a node. But freeing from remote 1665 * node means more costs for memory reclaim because of memory latency. 1666 * 1667 * Now, we use round-robin. Better algorithm is welcomed. 1668 */ 1669 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1670 { 1671 int node; 1672 1673 mem_cgroup_may_update_nodemask(memcg); 1674 node = memcg->last_scanned_node; 1675 1676 node = next_node_in(node, memcg->scan_nodes); 1677 /* 1678 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1679 * last time it really checked all the LRUs due to rate limiting. 1680 * Fallback to the current node in that case for simplicity. 1681 */ 1682 if (unlikely(node == MAX_NUMNODES)) 1683 node = numa_node_id(); 1684 1685 memcg->last_scanned_node = node; 1686 return node; 1687 } 1688 #else 1689 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1690 { 1691 return 0; 1692 } 1693 #endif 1694 1695 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1696 pg_data_t *pgdat, 1697 gfp_t gfp_mask, 1698 unsigned long *total_scanned) 1699 { 1700 struct mem_cgroup *victim = NULL; 1701 int total = 0; 1702 int loop = 0; 1703 unsigned long excess; 1704 unsigned long nr_scanned; 1705 struct mem_cgroup_reclaim_cookie reclaim = { 1706 .pgdat = pgdat, 1707 .priority = 0, 1708 }; 1709 1710 excess = soft_limit_excess(root_memcg); 1711 1712 while (1) { 1713 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1714 if (!victim) { 1715 loop++; 1716 if (loop >= 2) { 1717 /* 1718 * If we have not been able to reclaim 1719 * anything, it might because there are 1720 * no reclaimable pages under this hierarchy 1721 */ 1722 if (!total) 1723 break; 1724 /* 1725 * We want to do more targeted reclaim. 1726 * excess >> 2 is not to excessive so as to 1727 * reclaim too much, nor too less that we keep 1728 * coming back to reclaim from this cgroup 1729 */ 1730 if (total >= (excess >> 2) || 1731 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1732 break; 1733 } 1734 continue; 1735 } 1736 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1737 pgdat, &nr_scanned); 1738 *total_scanned += nr_scanned; 1739 if (!soft_limit_excess(root_memcg)) 1740 break; 1741 } 1742 mem_cgroup_iter_break(root_memcg, victim); 1743 return total; 1744 } 1745 1746 #ifdef CONFIG_LOCKDEP 1747 static struct lockdep_map memcg_oom_lock_dep_map = { 1748 .name = "memcg_oom_lock", 1749 }; 1750 #endif 1751 1752 static DEFINE_SPINLOCK(memcg_oom_lock); 1753 1754 /* 1755 * Check OOM-Killer is already running under our hierarchy. 1756 * If someone is running, return false. 1757 */ 1758 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1759 { 1760 struct mem_cgroup *iter, *failed = NULL; 1761 1762 spin_lock(&memcg_oom_lock); 1763 1764 for_each_mem_cgroup_tree(iter, memcg) { 1765 if (iter->oom_lock) { 1766 /* 1767 * this subtree of our hierarchy is already locked 1768 * so we cannot give a lock. 1769 */ 1770 failed = iter; 1771 mem_cgroup_iter_break(memcg, iter); 1772 break; 1773 } else 1774 iter->oom_lock = true; 1775 } 1776 1777 if (failed) { 1778 /* 1779 * OK, we failed to lock the whole subtree so we have 1780 * to clean up what we set up to the failing subtree 1781 */ 1782 for_each_mem_cgroup_tree(iter, memcg) { 1783 if (iter == failed) { 1784 mem_cgroup_iter_break(memcg, iter); 1785 break; 1786 } 1787 iter->oom_lock = false; 1788 } 1789 } else 1790 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1791 1792 spin_unlock(&memcg_oom_lock); 1793 1794 return !failed; 1795 } 1796 1797 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1798 { 1799 struct mem_cgroup *iter; 1800 1801 spin_lock(&memcg_oom_lock); 1802 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1803 for_each_mem_cgroup_tree(iter, memcg) 1804 iter->oom_lock = false; 1805 spin_unlock(&memcg_oom_lock); 1806 } 1807 1808 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1809 { 1810 struct mem_cgroup *iter; 1811 1812 spin_lock(&memcg_oom_lock); 1813 for_each_mem_cgroup_tree(iter, memcg) 1814 iter->under_oom++; 1815 spin_unlock(&memcg_oom_lock); 1816 } 1817 1818 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1819 { 1820 struct mem_cgroup *iter; 1821 1822 /* 1823 * When a new child is created while the hierarchy is under oom, 1824 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1825 */ 1826 spin_lock(&memcg_oom_lock); 1827 for_each_mem_cgroup_tree(iter, memcg) 1828 if (iter->under_oom > 0) 1829 iter->under_oom--; 1830 spin_unlock(&memcg_oom_lock); 1831 } 1832 1833 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1834 1835 struct oom_wait_info { 1836 struct mem_cgroup *memcg; 1837 wait_queue_entry_t wait; 1838 }; 1839 1840 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1841 unsigned mode, int sync, void *arg) 1842 { 1843 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1844 struct mem_cgroup *oom_wait_memcg; 1845 struct oom_wait_info *oom_wait_info; 1846 1847 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1848 oom_wait_memcg = oom_wait_info->memcg; 1849 1850 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1851 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1852 return 0; 1853 return autoremove_wake_function(wait, mode, sync, arg); 1854 } 1855 1856 static void memcg_oom_recover(struct mem_cgroup *memcg) 1857 { 1858 /* 1859 * For the following lockless ->under_oom test, the only required 1860 * guarantee is that it must see the state asserted by an OOM when 1861 * this function is called as a result of userland actions 1862 * triggered by the notification of the OOM. This is trivially 1863 * achieved by invoking mem_cgroup_mark_under_oom() before 1864 * triggering notification. 1865 */ 1866 if (memcg && memcg->under_oom) 1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1868 } 1869 1870 enum oom_status { 1871 OOM_SUCCESS, 1872 OOM_FAILED, 1873 OOM_ASYNC, 1874 OOM_SKIPPED 1875 }; 1876 1877 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1878 { 1879 enum oom_status ret; 1880 bool locked; 1881 1882 if (order > PAGE_ALLOC_COSTLY_ORDER) 1883 return OOM_SKIPPED; 1884 1885 memcg_memory_event(memcg, MEMCG_OOM); 1886 1887 /* 1888 * We are in the middle of the charge context here, so we 1889 * don't want to block when potentially sitting on a callstack 1890 * that holds all kinds of filesystem and mm locks. 1891 * 1892 * cgroup1 allows disabling the OOM killer and waiting for outside 1893 * handling until the charge can succeed; remember the context and put 1894 * the task to sleep at the end of the page fault when all locks are 1895 * released. 1896 * 1897 * On the other hand, in-kernel OOM killer allows for an async victim 1898 * memory reclaim (oom_reaper) and that means that we are not solely 1899 * relying on the oom victim to make a forward progress and we can 1900 * invoke the oom killer here. 1901 * 1902 * Please note that mem_cgroup_out_of_memory might fail to find a 1903 * victim and then we have to bail out from the charge path. 1904 */ 1905 if (memcg->oom_kill_disable) { 1906 if (!current->in_user_fault) 1907 return OOM_SKIPPED; 1908 css_get(&memcg->css); 1909 current->memcg_in_oom = memcg; 1910 current->memcg_oom_gfp_mask = mask; 1911 current->memcg_oom_order = order; 1912 1913 return OOM_ASYNC; 1914 } 1915 1916 mem_cgroup_mark_under_oom(memcg); 1917 1918 locked = mem_cgroup_oom_trylock(memcg); 1919 1920 if (locked) 1921 mem_cgroup_oom_notify(memcg); 1922 1923 mem_cgroup_unmark_under_oom(memcg); 1924 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1925 ret = OOM_SUCCESS; 1926 else 1927 ret = OOM_FAILED; 1928 1929 if (locked) 1930 mem_cgroup_oom_unlock(memcg); 1931 1932 return ret; 1933 } 1934 1935 /** 1936 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1937 * @handle: actually kill/wait or just clean up the OOM state 1938 * 1939 * This has to be called at the end of a page fault if the memcg OOM 1940 * handler was enabled. 1941 * 1942 * Memcg supports userspace OOM handling where failed allocations must 1943 * sleep on a waitqueue until the userspace task resolves the 1944 * situation. Sleeping directly in the charge context with all kinds 1945 * of locks held is not a good idea, instead we remember an OOM state 1946 * in the task and mem_cgroup_oom_synchronize() has to be called at 1947 * the end of the page fault to complete the OOM handling. 1948 * 1949 * Returns %true if an ongoing memcg OOM situation was detected and 1950 * completed, %false otherwise. 1951 */ 1952 bool mem_cgroup_oom_synchronize(bool handle) 1953 { 1954 struct mem_cgroup *memcg = current->memcg_in_oom; 1955 struct oom_wait_info owait; 1956 bool locked; 1957 1958 /* OOM is global, do not handle */ 1959 if (!memcg) 1960 return false; 1961 1962 if (!handle) 1963 goto cleanup; 1964 1965 owait.memcg = memcg; 1966 owait.wait.flags = 0; 1967 owait.wait.func = memcg_oom_wake_function; 1968 owait.wait.private = current; 1969 INIT_LIST_HEAD(&owait.wait.entry); 1970 1971 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1972 mem_cgroup_mark_under_oom(memcg); 1973 1974 locked = mem_cgroup_oom_trylock(memcg); 1975 1976 if (locked) 1977 mem_cgroup_oom_notify(memcg); 1978 1979 if (locked && !memcg->oom_kill_disable) { 1980 mem_cgroup_unmark_under_oom(memcg); 1981 finish_wait(&memcg_oom_waitq, &owait.wait); 1982 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1983 current->memcg_oom_order); 1984 } else { 1985 schedule(); 1986 mem_cgroup_unmark_under_oom(memcg); 1987 finish_wait(&memcg_oom_waitq, &owait.wait); 1988 } 1989 1990 if (locked) { 1991 mem_cgroup_oom_unlock(memcg); 1992 /* 1993 * There is no guarantee that an OOM-lock contender 1994 * sees the wakeups triggered by the OOM kill 1995 * uncharges. Wake any sleepers explicitely. 1996 */ 1997 memcg_oom_recover(memcg); 1998 } 1999 cleanup: 2000 current->memcg_in_oom = NULL; 2001 css_put(&memcg->css); 2002 return true; 2003 } 2004 2005 /** 2006 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2007 * @victim: task to be killed by the OOM killer 2008 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2009 * 2010 * Returns a pointer to a memory cgroup, which has to be cleaned up 2011 * by killing all belonging OOM-killable tasks. 2012 * 2013 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2014 */ 2015 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2016 struct mem_cgroup *oom_domain) 2017 { 2018 struct mem_cgroup *oom_group = NULL; 2019 struct mem_cgroup *memcg; 2020 2021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2022 return NULL; 2023 2024 if (!oom_domain) 2025 oom_domain = root_mem_cgroup; 2026 2027 rcu_read_lock(); 2028 2029 memcg = mem_cgroup_from_task(victim); 2030 if (memcg == root_mem_cgroup) 2031 goto out; 2032 2033 /* 2034 * Traverse the memory cgroup hierarchy from the victim task's 2035 * cgroup up to the OOMing cgroup (or root) to find the 2036 * highest-level memory cgroup with oom.group set. 2037 */ 2038 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2039 if (memcg->oom_group) 2040 oom_group = memcg; 2041 2042 if (memcg == oom_domain) 2043 break; 2044 } 2045 2046 if (oom_group) 2047 css_get(&oom_group->css); 2048 out: 2049 rcu_read_unlock(); 2050 2051 return oom_group; 2052 } 2053 2054 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2055 { 2056 pr_info("Tasks in "); 2057 pr_cont_cgroup_path(memcg->css.cgroup); 2058 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2059 } 2060 2061 /** 2062 * lock_page_memcg - lock a page->mem_cgroup binding 2063 * @page: the page 2064 * 2065 * This function protects unlocked LRU pages from being moved to 2066 * another cgroup. 2067 * 2068 * It ensures lifetime of the returned memcg. Caller is responsible 2069 * for the lifetime of the page; __unlock_page_memcg() is available 2070 * when @page might get freed inside the locked section. 2071 */ 2072 struct mem_cgroup *lock_page_memcg(struct page *page) 2073 { 2074 struct mem_cgroup *memcg; 2075 unsigned long flags; 2076 2077 /* 2078 * The RCU lock is held throughout the transaction. The fast 2079 * path can get away without acquiring the memcg->move_lock 2080 * because page moving starts with an RCU grace period. 2081 * 2082 * The RCU lock also protects the memcg from being freed when 2083 * the page state that is going to change is the only thing 2084 * preventing the page itself from being freed. E.g. writeback 2085 * doesn't hold a page reference and relies on PG_writeback to 2086 * keep off truncation, migration and so forth. 2087 */ 2088 rcu_read_lock(); 2089 2090 if (mem_cgroup_disabled()) 2091 return NULL; 2092 again: 2093 memcg = page->mem_cgroup; 2094 if (unlikely(!memcg)) 2095 return NULL; 2096 2097 if (atomic_read(&memcg->moving_account) <= 0) 2098 return memcg; 2099 2100 spin_lock_irqsave(&memcg->move_lock, flags); 2101 if (memcg != page->mem_cgroup) { 2102 spin_unlock_irqrestore(&memcg->move_lock, flags); 2103 goto again; 2104 } 2105 2106 /* 2107 * When charge migration first begins, we can have locked and 2108 * unlocked page stat updates happening concurrently. Track 2109 * the task who has the lock for unlock_page_memcg(). 2110 */ 2111 memcg->move_lock_task = current; 2112 memcg->move_lock_flags = flags; 2113 2114 return memcg; 2115 } 2116 EXPORT_SYMBOL(lock_page_memcg); 2117 2118 /** 2119 * __unlock_page_memcg - unlock and unpin a memcg 2120 * @memcg: the memcg 2121 * 2122 * Unlock and unpin a memcg returned by lock_page_memcg(). 2123 */ 2124 void __unlock_page_memcg(struct mem_cgroup *memcg) 2125 { 2126 if (memcg && memcg->move_lock_task == current) { 2127 unsigned long flags = memcg->move_lock_flags; 2128 2129 memcg->move_lock_task = NULL; 2130 memcg->move_lock_flags = 0; 2131 2132 spin_unlock_irqrestore(&memcg->move_lock, flags); 2133 } 2134 2135 rcu_read_unlock(); 2136 } 2137 2138 /** 2139 * unlock_page_memcg - unlock a page->mem_cgroup binding 2140 * @page: the page 2141 */ 2142 void unlock_page_memcg(struct page *page) 2143 { 2144 __unlock_page_memcg(page->mem_cgroup); 2145 } 2146 EXPORT_SYMBOL(unlock_page_memcg); 2147 2148 struct memcg_stock_pcp { 2149 struct mem_cgroup *cached; /* this never be root cgroup */ 2150 unsigned int nr_pages; 2151 struct work_struct work; 2152 unsigned long flags; 2153 #define FLUSHING_CACHED_CHARGE 0 2154 }; 2155 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2156 static DEFINE_MUTEX(percpu_charge_mutex); 2157 2158 /** 2159 * consume_stock: Try to consume stocked charge on this cpu. 2160 * @memcg: memcg to consume from. 2161 * @nr_pages: how many pages to charge. 2162 * 2163 * The charges will only happen if @memcg matches the current cpu's memcg 2164 * stock, and at least @nr_pages are available in that stock. Failure to 2165 * service an allocation will refill the stock. 2166 * 2167 * returns true if successful, false otherwise. 2168 */ 2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2170 { 2171 struct memcg_stock_pcp *stock; 2172 unsigned long flags; 2173 bool ret = false; 2174 2175 if (nr_pages > MEMCG_CHARGE_BATCH) 2176 return ret; 2177 2178 local_irq_save(flags); 2179 2180 stock = this_cpu_ptr(&memcg_stock); 2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2182 stock->nr_pages -= nr_pages; 2183 ret = true; 2184 } 2185 2186 local_irq_restore(flags); 2187 2188 return ret; 2189 } 2190 2191 /* 2192 * Returns stocks cached in percpu and reset cached information. 2193 */ 2194 static void drain_stock(struct memcg_stock_pcp *stock) 2195 { 2196 struct mem_cgroup *old = stock->cached; 2197 2198 if (stock->nr_pages) { 2199 page_counter_uncharge(&old->memory, stock->nr_pages); 2200 if (do_memsw_account()) 2201 page_counter_uncharge(&old->memsw, stock->nr_pages); 2202 css_put_many(&old->css, stock->nr_pages); 2203 stock->nr_pages = 0; 2204 } 2205 stock->cached = NULL; 2206 } 2207 2208 static void drain_local_stock(struct work_struct *dummy) 2209 { 2210 struct memcg_stock_pcp *stock; 2211 unsigned long flags; 2212 2213 /* 2214 * The only protection from memory hotplug vs. drain_stock races is 2215 * that we always operate on local CPU stock here with IRQ disabled 2216 */ 2217 local_irq_save(flags); 2218 2219 stock = this_cpu_ptr(&memcg_stock); 2220 drain_stock(stock); 2221 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2222 2223 local_irq_restore(flags); 2224 } 2225 2226 /* 2227 * Cache charges(val) to local per_cpu area. 2228 * This will be consumed by consume_stock() function, later. 2229 */ 2230 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2231 { 2232 struct memcg_stock_pcp *stock; 2233 unsigned long flags; 2234 2235 local_irq_save(flags); 2236 2237 stock = this_cpu_ptr(&memcg_stock); 2238 if (stock->cached != memcg) { /* reset if necessary */ 2239 drain_stock(stock); 2240 stock->cached = memcg; 2241 } 2242 stock->nr_pages += nr_pages; 2243 2244 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2245 drain_stock(stock); 2246 2247 local_irq_restore(flags); 2248 } 2249 2250 /* 2251 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2252 * of the hierarchy under it. 2253 */ 2254 static void drain_all_stock(struct mem_cgroup *root_memcg) 2255 { 2256 int cpu, curcpu; 2257 2258 /* If someone's already draining, avoid adding running more workers. */ 2259 if (!mutex_trylock(&percpu_charge_mutex)) 2260 return; 2261 /* 2262 * Notify other cpus that system-wide "drain" is running 2263 * We do not care about races with the cpu hotplug because cpu down 2264 * as well as workers from this path always operate on the local 2265 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2266 */ 2267 curcpu = get_cpu(); 2268 for_each_online_cpu(cpu) { 2269 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2270 struct mem_cgroup *memcg; 2271 2272 memcg = stock->cached; 2273 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2274 continue; 2275 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2276 css_put(&memcg->css); 2277 continue; 2278 } 2279 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2280 if (cpu == curcpu) 2281 drain_local_stock(&stock->work); 2282 else 2283 schedule_work_on(cpu, &stock->work); 2284 } 2285 css_put(&memcg->css); 2286 } 2287 put_cpu(); 2288 mutex_unlock(&percpu_charge_mutex); 2289 } 2290 2291 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2292 { 2293 struct memcg_stock_pcp *stock; 2294 struct mem_cgroup *memcg, *mi; 2295 2296 stock = &per_cpu(memcg_stock, cpu); 2297 drain_stock(stock); 2298 2299 for_each_mem_cgroup(memcg) { 2300 int i; 2301 2302 for (i = 0; i < MEMCG_NR_STAT; i++) { 2303 int nid; 2304 long x; 2305 2306 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2307 if (x) 2308 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2309 atomic_long_add(x, &memcg->vmstats[i]); 2310 2311 if (i >= NR_VM_NODE_STAT_ITEMS) 2312 continue; 2313 2314 for_each_node(nid) { 2315 struct mem_cgroup_per_node *pn; 2316 2317 pn = mem_cgroup_nodeinfo(memcg, nid); 2318 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2319 if (x) 2320 do { 2321 atomic_long_add(x, &pn->lruvec_stat[i]); 2322 } while ((pn = parent_nodeinfo(pn, nid))); 2323 } 2324 } 2325 2326 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2327 long x; 2328 2329 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2330 if (x) 2331 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2332 atomic_long_add(x, &memcg->vmevents[i]); 2333 } 2334 } 2335 2336 return 0; 2337 } 2338 2339 static void reclaim_high(struct mem_cgroup *memcg, 2340 unsigned int nr_pages, 2341 gfp_t gfp_mask) 2342 { 2343 do { 2344 if (page_counter_read(&memcg->memory) <= memcg->high) 2345 continue; 2346 memcg_memory_event(memcg, MEMCG_HIGH); 2347 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2348 } while ((memcg = parent_mem_cgroup(memcg))); 2349 } 2350 2351 static void high_work_func(struct work_struct *work) 2352 { 2353 struct mem_cgroup *memcg; 2354 2355 memcg = container_of(work, struct mem_cgroup, high_work); 2356 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2357 } 2358 2359 /* 2360 * Scheduled by try_charge() to be executed from the userland return path 2361 * and reclaims memory over the high limit. 2362 */ 2363 void mem_cgroup_handle_over_high(void) 2364 { 2365 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2366 struct mem_cgroup *memcg; 2367 2368 if (likely(!nr_pages)) 2369 return; 2370 2371 memcg = get_mem_cgroup_from_mm(current->mm); 2372 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2373 css_put(&memcg->css); 2374 current->memcg_nr_pages_over_high = 0; 2375 } 2376 2377 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2378 unsigned int nr_pages) 2379 { 2380 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2381 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2382 struct mem_cgroup *mem_over_limit; 2383 struct page_counter *counter; 2384 unsigned long nr_reclaimed; 2385 bool may_swap = true; 2386 bool drained = false; 2387 enum oom_status oom_status; 2388 2389 if (mem_cgroup_is_root(memcg)) 2390 return 0; 2391 retry: 2392 if (consume_stock(memcg, nr_pages)) 2393 return 0; 2394 2395 if (!do_memsw_account() || 2396 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2397 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2398 goto done_restock; 2399 if (do_memsw_account()) 2400 page_counter_uncharge(&memcg->memsw, batch); 2401 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2402 } else { 2403 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2404 may_swap = false; 2405 } 2406 2407 if (batch > nr_pages) { 2408 batch = nr_pages; 2409 goto retry; 2410 } 2411 2412 /* 2413 * Unlike in global OOM situations, memcg is not in a physical 2414 * memory shortage. Allow dying and OOM-killed tasks to 2415 * bypass the last charges so that they can exit quickly and 2416 * free their memory. 2417 */ 2418 if (unlikely(should_force_charge())) 2419 goto force; 2420 2421 /* 2422 * Prevent unbounded recursion when reclaim operations need to 2423 * allocate memory. This might exceed the limits temporarily, 2424 * but we prefer facilitating memory reclaim and getting back 2425 * under the limit over triggering OOM kills in these cases. 2426 */ 2427 if (unlikely(current->flags & PF_MEMALLOC)) 2428 goto force; 2429 2430 if (unlikely(task_in_memcg_oom(current))) 2431 goto nomem; 2432 2433 if (!gfpflags_allow_blocking(gfp_mask)) 2434 goto nomem; 2435 2436 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2437 2438 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2439 gfp_mask, may_swap); 2440 2441 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2442 goto retry; 2443 2444 if (!drained) { 2445 drain_all_stock(mem_over_limit); 2446 drained = true; 2447 goto retry; 2448 } 2449 2450 if (gfp_mask & __GFP_NORETRY) 2451 goto nomem; 2452 /* 2453 * Even though the limit is exceeded at this point, reclaim 2454 * may have been able to free some pages. Retry the charge 2455 * before killing the task. 2456 * 2457 * Only for regular pages, though: huge pages are rather 2458 * unlikely to succeed so close to the limit, and we fall back 2459 * to regular pages anyway in case of failure. 2460 */ 2461 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2462 goto retry; 2463 /* 2464 * At task move, charge accounts can be doubly counted. So, it's 2465 * better to wait until the end of task_move if something is going on. 2466 */ 2467 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2468 goto retry; 2469 2470 if (nr_retries--) 2471 goto retry; 2472 2473 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2474 goto nomem; 2475 2476 if (gfp_mask & __GFP_NOFAIL) 2477 goto force; 2478 2479 if (fatal_signal_pending(current)) 2480 goto force; 2481 2482 /* 2483 * keep retrying as long as the memcg oom killer is able to make 2484 * a forward progress or bypass the charge if the oom killer 2485 * couldn't make any progress. 2486 */ 2487 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2488 get_order(nr_pages * PAGE_SIZE)); 2489 switch (oom_status) { 2490 case OOM_SUCCESS: 2491 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2492 goto retry; 2493 case OOM_FAILED: 2494 goto force; 2495 default: 2496 goto nomem; 2497 } 2498 nomem: 2499 if (!(gfp_mask & __GFP_NOFAIL)) 2500 return -ENOMEM; 2501 force: 2502 /* 2503 * The allocation either can't fail or will lead to more memory 2504 * being freed very soon. Allow memory usage go over the limit 2505 * temporarily by force charging it. 2506 */ 2507 page_counter_charge(&memcg->memory, nr_pages); 2508 if (do_memsw_account()) 2509 page_counter_charge(&memcg->memsw, nr_pages); 2510 css_get_many(&memcg->css, nr_pages); 2511 2512 return 0; 2513 2514 done_restock: 2515 css_get_many(&memcg->css, batch); 2516 if (batch > nr_pages) 2517 refill_stock(memcg, batch - nr_pages); 2518 2519 /* 2520 * If the hierarchy is above the normal consumption range, schedule 2521 * reclaim on returning to userland. We can perform reclaim here 2522 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2523 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2524 * not recorded as it most likely matches current's and won't 2525 * change in the meantime. As high limit is checked again before 2526 * reclaim, the cost of mismatch is negligible. 2527 */ 2528 do { 2529 if (page_counter_read(&memcg->memory) > memcg->high) { 2530 /* Don't bother a random interrupted task */ 2531 if (in_interrupt()) { 2532 schedule_work(&memcg->high_work); 2533 break; 2534 } 2535 current->memcg_nr_pages_over_high += batch; 2536 set_notify_resume(current); 2537 break; 2538 } 2539 } while ((memcg = parent_mem_cgroup(memcg))); 2540 2541 return 0; 2542 } 2543 2544 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2545 { 2546 if (mem_cgroup_is_root(memcg)) 2547 return; 2548 2549 page_counter_uncharge(&memcg->memory, nr_pages); 2550 if (do_memsw_account()) 2551 page_counter_uncharge(&memcg->memsw, nr_pages); 2552 2553 css_put_many(&memcg->css, nr_pages); 2554 } 2555 2556 static void lock_page_lru(struct page *page, int *isolated) 2557 { 2558 pg_data_t *pgdat = page_pgdat(page); 2559 2560 spin_lock_irq(&pgdat->lru_lock); 2561 if (PageLRU(page)) { 2562 struct lruvec *lruvec; 2563 2564 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2565 ClearPageLRU(page); 2566 del_page_from_lru_list(page, lruvec, page_lru(page)); 2567 *isolated = 1; 2568 } else 2569 *isolated = 0; 2570 } 2571 2572 static void unlock_page_lru(struct page *page, int isolated) 2573 { 2574 pg_data_t *pgdat = page_pgdat(page); 2575 2576 if (isolated) { 2577 struct lruvec *lruvec; 2578 2579 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2580 VM_BUG_ON_PAGE(PageLRU(page), page); 2581 SetPageLRU(page); 2582 add_page_to_lru_list(page, lruvec, page_lru(page)); 2583 } 2584 spin_unlock_irq(&pgdat->lru_lock); 2585 } 2586 2587 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2588 bool lrucare) 2589 { 2590 int isolated; 2591 2592 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2593 2594 /* 2595 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2596 * may already be on some other mem_cgroup's LRU. Take care of it. 2597 */ 2598 if (lrucare) 2599 lock_page_lru(page, &isolated); 2600 2601 /* 2602 * Nobody should be changing or seriously looking at 2603 * page->mem_cgroup at this point: 2604 * 2605 * - the page is uncharged 2606 * 2607 * - the page is off-LRU 2608 * 2609 * - an anonymous fault has exclusive page access, except for 2610 * a locked page table 2611 * 2612 * - a page cache insertion, a swapin fault, or a migration 2613 * have the page locked 2614 */ 2615 page->mem_cgroup = memcg; 2616 2617 if (lrucare) 2618 unlock_page_lru(page, isolated); 2619 } 2620 2621 #ifdef CONFIG_MEMCG_KMEM 2622 static int memcg_alloc_cache_id(void) 2623 { 2624 int id, size; 2625 int err; 2626 2627 id = ida_simple_get(&memcg_cache_ida, 2628 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2629 if (id < 0) 2630 return id; 2631 2632 if (id < memcg_nr_cache_ids) 2633 return id; 2634 2635 /* 2636 * There's no space for the new id in memcg_caches arrays, 2637 * so we have to grow them. 2638 */ 2639 down_write(&memcg_cache_ids_sem); 2640 2641 size = 2 * (id + 1); 2642 if (size < MEMCG_CACHES_MIN_SIZE) 2643 size = MEMCG_CACHES_MIN_SIZE; 2644 else if (size > MEMCG_CACHES_MAX_SIZE) 2645 size = MEMCG_CACHES_MAX_SIZE; 2646 2647 err = memcg_update_all_caches(size); 2648 if (!err) 2649 err = memcg_update_all_list_lrus(size); 2650 if (!err) 2651 memcg_nr_cache_ids = size; 2652 2653 up_write(&memcg_cache_ids_sem); 2654 2655 if (err) { 2656 ida_simple_remove(&memcg_cache_ida, id); 2657 return err; 2658 } 2659 return id; 2660 } 2661 2662 static void memcg_free_cache_id(int id) 2663 { 2664 ida_simple_remove(&memcg_cache_ida, id); 2665 } 2666 2667 struct memcg_kmem_cache_create_work { 2668 struct mem_cgroup *memcg; 2669 struct kmem_cache *cachep; 2670 struct work_struct work; 2671 }; 2672 2673 static void memcg_kmem_cache_create_func(struct work_struct *w) 2674 { 2675 struct memcg_kmem_cache_create_work *cw = 2676 container_of(w, struct memcg_kmem_cache_create_work, work); 2677 struct mem_cgroup *memcg = cw->memcg; 2678 struct kmem_cache *cachep = cw->cachep; 2679 2680 memcg_create_kmem_cache(memcg, cachep); 2681 2682 css_put(&memcg->css); 2683 kfree(cw); 2684 } 2685 2686 /* 2687 * Enqueue the creation of a per-memcg kmem_cache. 2688 */ 2689 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2690 struct kmem_cache *cachep) 2691 { 2692 struct memcg_kmem_cache_create_work *cw; 2693 2694 if (!css_tryget_online(&memcg->css)) 2695 return; 2696 2697 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2698 if (!cw) 2699 return; 2700 2701 cw->memcg = memcg; 2702 cw->cachep = cachep; 2703 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2704 2705 queue_work(memcg_kmem_cache_wq, &cw->work); 2706 } 2707 2708 static inline bool memcg_kmem_bypass(void) 2709 { 2710 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2711 return true; 2712 return false; 2713 } 2714 2715 /** 2716 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2717 * @cachep: the original global kmem cache 2718 * 2719 * Return the kmem_cache we're supposed to use for a slab allocation. 2720 * We try to use the current memcg's version of the cache. 2721 * 2722 * If the cache does not exist yet, if we are the first user of it, we 2723 * create it asynchronously in a workqueue and let the current allocation 2724 * go through with the original cache. 2725 * 2726 * This function takes a reference to the cache it returns to assure it 2727 * won't get destroyed while we are working with it. Once the caller is 2728 * done with it, memcg_kmem_put_cache() must be called to release the 2729 * reference. 2730 */ 2731 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2732 { 2733 struct mem_cgroup *memcg; 2734 struct kmem_cache *memcg_cachep; 2735 struct memcg_cache_array *arr; 2736 int kmemcg_id; 2737 2738 VM_BUG_ON(!is_root_cache(cachep)); 2739 2740 if (memcg_kmem_bypass()) 2741 return cachep; 2742 2743 rcu_read_lock(); 2744 2745 if (unlikely(current->active_memcg)) 2746 memcg = current->active_memcg; 2747 else 2748 memcg = mem_cgroup_from_task(current); 2749 2750 if (!memcg || memcg == root_mem_cgroup) 2751 goto out_unlock; 2752 2753 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2754 if (kmemcg_id < 0) 2755 goto out_unlock; 2756 2757 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2758 2759 /* 2760 * Make sure we will access the up-to-date value. The code updating 2761 * memcg_caches issues a write barrier to match the data dependency 2762 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2763 */ 2764 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2765 2766 /* 2767 * If we are in a safe context (can wait, and not in interrupt 2768 * context), we could be be predictable and return right away. 2769 * This would guarantee that the allocation being performed 2770 * already belongs in the new cache. 2771 * 2772 * However, there are some clashes that can arrive from locking. 2773 * For instance, because we acquire the slab_mutex while doing 2774 * memcg_create_kmem_cache, this means no further allocation 2775 * could happen with the slab_mutex held. So it's better to 2776 * defer everything. 2777 * 2778 * If the memcg is dying or memcg_cache is about to be released, 2779 * don't bother creating new kmem_caches. Because memcg_cachep 2780 * is ZEROed as the fist step of kmem offlining, we don't need 2781 * percpu_ref_tryget_live() here. css_tryget_online() check in 2782 * memcg_schedule_kmem_cache_create() will prevent us from 2783 * creation of a new kmem_cache. 2784 */ 2785 if (unlikely(!memcg_cachep)) 2786 memcg_schedule_kmem_cache_create(memcg, cachep); 2787 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2788 cachep = memcg_cachep; 2789 out_unlock: 2790 rcu_read_unlock(); 2791 return cachep; 2792 } 2793 2794 /** 2795 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2796 * @cachep: the cache returned by memcg_kmem_get_cache 2797 */ 2798 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2799 { 2800 if (!is_root_cache(cachep)) 2801 percpu_ref_put(&cachep->memcg_params.refcnt); 2802 } 2803 2804 /** 2805 * __memcg_kmem_charge_memcg: charge a kmem page 2806 * @page: page to charge 2807 * @gfp: reclaim mode 2808 * @order: allocation order 2809 * @memcg: memory cgroup to charge 2810 * 2811 * Returns 0 on success, an error code on failure. 2812 */ 2813 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2814 struct mem_cgroup *memcg) 2815 { 2816 unsigned int nr_pages = 1 << order; 2817 struct page_counter *counter; 2818 int ret; 2819 2820 ret = try_charge(memcg, gfp, nr_pages); 2821 if (ret) 2822 return ret; 2823 2824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2825 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2826 cancel_charge(memcg, nr_pages); 2827 return -ENOMEM; 2828 } 2829 return 0; 2830 } 2831 2832 /** 2833 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2834 * @page: page to charge 2835 * @gfp: reclaim mode 2836 * @order: allocation order 2837 * 2838 * Returns 0 on success, an error code on failure. 2839 */ 2840 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2841 { 2842 struct mem_cgroup *memcg; 2843 int ret = 0; 2844 2845 if (memcg_kmem_bypass()) 2846 return 0; 2847 2848 memcg = get_mem_cgroup_from_current(); 2849 if (!mem_cgroup_is_root(memcg)) { 2850 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2851 if (!ret) { 2852 page->mem_cgroup = memcg; 2853 __SetPageKmemcg(page); 2854 } 2855 } 2856 css_put(&memcg->css); 2857 return ret; 2858 } 2859 2860 /** 2861 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2862 * @memcg: memcg to uncharge 2863 * @nr_pages: number of pages to uncharge 2864 */ 2865 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2866 unsigned int nr_pages) 2867 { 2868 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2869 page_counter_uncharge(&memcg->kmem, nr_pages); 2870 2871 page_counter_uncharge(&memcg->memory, nr_pages); 2872 if (do_memsw_account()) 2873 page_counter_uncharge(&memcg->memsw, nr_pages); 2874 } 2875 /** 2876 * __memcg_kmem_uncharge: uncharge a kmem page 2877 * @page: page to uncharge 2878 * @order: allocation order 2879 */ 2880 void __memcg_kmem_uncharge(struct page *page, int order) 2881 { 2882 struct mem_cgroup *memcg = page->mem_cgroup; 2883 unsigned int nr_pages = 1 << order; 2884 2885 if (!memcg) 2886 return; 2887 2888 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2889 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2890 page->mem_cgroup = NULL; 2891 2892 /* slab pages do not have PageKmemcg flag set */ 2893 if (PageKmemcg(page)) 2894 __ClearPageKmemcg(page); 2895 2896 css_put_many(&memcg->css, nr_pages); 2897 } 2898 #endif /* CONFIG_MEMCG_KMEM */ 2899 2900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2901 2902 /* 2903 * Because tail pages are not marked as "used", set it. We're under 2904 * pgdat->lru_lock and migration entries setup in all page mappings. 2905 */ 2906 void mem_cgroup_split_huge_fixup(struct page *head) 2907 { 2908 int i; 2909 2910 if (mem_cgroup_disabled()) 2911 return; 2912 2913 for (i = 1; i < HPAGE_PMD_NR; i++) 2914 head[i].mem_cgroup = head->mem_cgroup; 2915 2916 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2917 } 2918 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2919 2920 #ifdef CONFIG_MEMCG_SWAP 2921 /** 2922 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2923 * @entry: swap entry to be moved 2924 * @from: mem_cgroup which the entry is moved from 2925 * @to: mem_cgroup which the entry is moved to 2926 * 2927 * It succeeds only when the swap_cgroup's record for this entry is the same 2928 * as the mem_cgroup's id of @from. 2929 * 2930 * Returns 0 on success, -EINVAL on failure. 2931 * 2932 * The caller must have charged to @to, IOW, called page_counter_charge() about 2933 * both res and memsw, and called css_get(). 2934 */ 2935 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2936 struct mem_cgroup *from, struct mem_cgroup *to) 2937 { 2938 unsigned short old_id, new_id; 2939 2940 old_id = mem_cgroup_id(from); 2941 new_id = mem_cgroup_id(to); 2942 2943 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2944 mod_memcg_state(from, MEMCG_SWAP, -1); 2945 mod_memcg_state(to, MEMCG_SWAP, 1); 2946 return 0; 2947 } 2948 return -EINVAL; 2949 } 2950 #else 2951 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2952 struct mem_cgroup *from, struct mem_cgroup *to) 2953 { 2954 return -EINVAL; 2955 } 2956 #endif 2957 2958 static DEFINE_MUTEX(memcg_max_mutex); 2959 2960 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2961 unsigned long max, bool memsw) 2962 { 2963 bool enlarge = false; 2964 bool drained = false; 2965 int ret; 2966 bool limits_invariant; 2967 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2968 2969 do { 2970 if (signal_pending(current)) { 2971 ret = -EINTR; 2972 break; 2973 } 2974 2975 mutex_lock(&memcg_max_mutex); 2976 /* 2977 * Make sure that the new limit (memsw or memory limit) doesn't 2978 * break our basic invariant rule memory.max <= memsw.max. 2979 */ 2980 limits_invariant = memsw ? max >= memcg->memory.max : 2981 max <= memcg->memsw.max; 2982 if (!limits_invariant) { 2983 mutex_unlock(&memcg_max_mutex); 2984 ret = -EINVAL; 2985 break; 2986 } 2987 if (max > counter->max) 2988 enlarge = true; 2989 ret = page_counter_set_max(counter, max); 2990 mutex_unlock(&memcg_max_mutex); 2991 2992 if (!ret) 2993 break; 2994 2995 if (!drained) { 2996 drain_all_stock(memcg); 2997 drained = true; 2998 continue; 2999 } 3000 3001 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3002 GFP_KERNEL, !memsw)) { 3003 ret = -EBUSY; 3004 break; 3005 } 3006 } while (true); 3007 3008 if (!ret && enlarge) 3009 memcg_oom_recover(memcg); 3010 3011 return ret; 3012 } 3013 3014 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3015 gfp_t gfp_mask, 3016 unsigned long *total_scanned) 3017 { 3018 unsigned long nr_reclaimed = 0; 3019 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3020 unsigned long reclaimed; 3021 int loop = 0; 3022 struct mem_cgroup_tree_per_node *mctz; 3023 unsigned long excess; 3024 unsigned long nr_scanned; 3025 3026 if (order > 0) 3027 return 0; 3028 3029 mctz = soft_limit_tree_node(pgdat->node_id); 3030 3031 /* 3032 * Do not even bother to check the largest node if the root 3033 * is empty. Do it lockless to prevent lock bouncing. Races 3034 * are acceptable as soft limit is best effort anyway. 3035 */ 3036 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3037 return 0; 3038 3039 /* 3040 * This loop can run a while, specially if mem_cgroup's continuously 3041 * keep exceeding their soft limit and putting the system under 3042 * pressure 3043 */ 3044 do { 3045 if (next_mz) 3046 mz = next_mz; 3047 else 3048 mz = mem_cgroup_largest_soft_limit_node(mctz); 3049 if (!mz) 3050 break; 3051 3052 nr_scanned = 0; 3053 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3054 gfp_mask, &nr_scanned); 3055 nr_reclaimed += reclaimed; 3056 *total_scanned += nr_scanned; 3057 spin_lock_irq(&mctz->lock); 3058 __mem_cgroup_remove_exceeded(mz, mctz); 3059 3060 /* 3061 * If we failed to reclaim anything from this memory cgroup 3062 * it is time to move on to the next cgroup 3063 */ 3064 next_mz = NULL; 3065 if (!reclaimed) 3066 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3067 3068 excess = soft_limit_excess(mz->memcg); 3069 /* 3070 * One school of thought says that we should not add 3071 * back the node to the tree if reclaim returns 0. 3072 * But our reclaim could return 0, simply because due 3073 * to priority we are exposing a smaller subset of 3074 * memory to reclaim from. Consider this as a longer 3075 * term TODO. 3076 */ 3077 /* If excess == 0, no tree ops */ 3078 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3079 spin_unlock_irq(&mctz->lock); 3080 css_put(&mz->memcg->css); 3081 loop++; 3082 /* 3083 * Could not reclaim anything and there are no more 3084 * mem cgroups to try or we seem to be looping without 3085 * reclaiming anything. 3086 */ 3087 if (!nr_reclaimed && 3088 (next_mz == NULL || 3089 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3090 break; 3091 } while (!nr_reclaimed); 3092 if (next_mz) 3093 css_put(&next_mz->memcg->css); 3094 return nr_reclaimed; 3095 } 3096 3097 /* 3098 * Test whether @memcg has children, dead or alive. Note that this 3099 * function doesn't care whether @memcg has use_hierarchy enabled and 3100 * returns %true if there are child csses according to the cgroup 3101 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3102 */ 3103 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3104 { 3105 bool ret; 3106 3107 rcu_read_lock(); 3108 ret = css_next_child(NULL, &memcg->css); 3109 rcu_read_unlock(); 3110 return ret; 3111 } 3112 3113 /* 3114 * Reclaims as many pages from the given memcg as possible. 3115 * 3116 * Caller is responsible for holding css reference for memcg. 3117 */ 3118 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3119 { 3120 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3121 3122 /* we call try-to-free pages for make this cgroup empty */ 3123 lru_add_drain_all(); 3124 3125 drain_all_stock(memcg); 3126 3127 /* try to free all pages in this cgroup */ 3128 while (nr_retries && page_counter_read(&memcg->memory)) { 3129 int progress; 3130 3131 if (signal_pending(current)) 3132 return -EINTR; 3133 3134 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3135 GFP_KERNEL, true); 3136 if (!progress) { 3137 nr_retries--; 3138 /* maybe some writeback is necessary */ 3139 congestion_wait(BLK_RW_ASYNC, HZ/10); 3140 } 3141 3142 } 3143 3144 return 0; 3145 } 3146 3147 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3148 char *buf, size_t nbytes, 3149 loff_t off) 3150 { 3151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3152 3153 if (mem_cgroup_is_root(memcg)) 3154 return -EINVAL; 3155 return mem_cgroup_force_empty(memcg) ?: nbytes; 3156 } 3157 3158 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3159 struct cftype *cft) 3160 { 3161 return mem_cgroup_from_css(css)->use_hierarchy; 3162 } 3163 3164 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3165 struct cftype *cft, u64 val) 3166 { 3167 int retval = 0; 3168 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3169 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3170 3171 if (memcg->use_hierarchy == val) 3172 return 0; 3173 3174 /* 3175 * If parent's use_hierarchy is set, we can't make any modifications 3176 * in the child subtrees. If it is unset, then the change can 3177 * occur, provided the current cgroup has no children. 3178 * 3179 * For the root cgroup, parent_mem is NULL, we allow value to be 3180 * set if there are no children. 3181 */ 3182 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3183 (val == 1 || val == 0)) { 3184 if (!memcg_has_children(memcg)) 3185 memcg->use_hierarchy = val; 3186 else 3187 retval = -EBUSY; 3188 } else 3189 retval = -EINVAL; 3190 3191 return retval; 3192 } 3193 3194 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3195 { 3196 unsigned long val; 3197 3198 if (mem_cgroup_is_root(memcg)) { 3199 val = memcg_page_state(memcg, MEMCG_CACHE) + 3200 memcg_page_state(memcg, MEMCG_RSS); 3201 if (swap) 3202 val += memcg_page_state(memcg, MEMCG_SWAP); 3203 } else { 3204 if (!swap) 3205 val = page_counter_read(&memcg->memory); 3206 else 3207 val = page_counter_read(&memcg->memsw); 3208 } 3209 return val; 3210 } 3211 3212 enum { 3213 RES_USAGE, 3214 RES_LIMIT, 3215 RES_MAX_USAGE, 3216 RES_FAILCNT, 3217 RES_SOFT_LIMIT, 3218 }; 3219 3220 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3221 struct cftype *cft) 3222 { 3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3224 struct page_counter *counter; 3225 3226 switch (MEMFILE_TYPE(cft->private)) { 3227 case _MEM: 3228 counter = &memcg->memory; 3229 break; 3230 case _MEMSWAP: 3231 counter = &memcg->memsw; 3232 break; 3233 case _KMEM: 3234 counter = &memcg->kmem; 3235 break; 3236 case _TCP: 3237 counter = &memcg->tcpmem; 3238 break; 3239 default: 3240 BUG(); 3241 } 3242 3243 switch (MEMFILE_ATTR(cft->private)) { 3244 case RES_USAGE: 3245 if (counter == &memcg->memory) 3246 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3247 if (counter == &memcg->memsw) 3248 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3249 return (u64)page_counter_read(counter) * PAGE_SIZE; 3250 case RES_LIMIT: 3251 return (u64)counter->max * PAGE_SIZE; 3252 case RES_MAX_USAGE: 3253 return (u64)counter->watermark * PAGE_SIZE; 3254 case RES_FAILCNT: 3255 return counter->failcnt; 3256 case RES_SOFT_LIMIT: 3257 return (u64)memcg->soft_limit * PAGE_SIZE; 3258 default: 3259 BUG(); 3260 } 3261 } 3262 3263 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3264 { 3265 unsigned long stat[MEMCG_NR_STAT]; 3266 struct mem_cgroup *mi; 3267 int node, cpu, i; 3268 3269 for (i = 0; i < MEMCG_NR_STAT; i++) 3270 stat[i] = 0; 3271 3272 for_each_online_cpu(cpu) 3273 for (i = 0; i < MEMCG_NR_STAT; i++) 3274 stat[i] += raw_cpu_read(memcg->vmstats_percpu->stat[i]); 3275 3276 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3277 for (i = 0; i < MEMCG_NR_STAT; i++) 3278 atomic_long_add(stat[i], &mi->vmstats[i]); 3279 3280 for_each_node(node) { 3281 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3282 struct mem_cgroup_per_node *pi; 3283 3284 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3285 stat[i] = 0; 3286 3287 for_each_online_cpu(cpu) 3288 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3289 stat[i] += raw_cpu_read( 3290 pn->lruvec_stat_cpu->count[i]); 3291 3292 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3293 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3294 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3295 } 3296 } 3297 3298 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3299 { 3300 unsigned long events[NR_VM_EVENT_ITEMS]; 3301 struct mem_cgroup *mi; 3302 int cpu, i; 3303 3304 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3305 events[i] = 0; 3306 3307 for_each_online_cpu(cpu) 3308 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3309 events[i] += raw_cpu_read( 3310 memcg->vmstats_percpu->events[i]); 3311 3312 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3313 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3314 atomic_long_add(events[i], &mi->vmevents[i]); 3315 } 3316 3317 #ifdef CONFIG_MEMCG_KMEM 3318 static int memcg_online_kmem(struct mem_cgroup *memcg) 3319 { 3320 int memcg_id; 3321 3322 if (cgroup_memory_nokmem) 3323 return 0; 3324 3325 BUG_ON(memcg->kmemcg_id >= 0); 3326 BUG_ON(memcg->kmem_state); 3327 3328 memcg_id = memcg_alloc_cache_id(); 3329 if (memcg_id < 0) 3330 return memcg_id; 3331 3332 static_branch_inc(&memcg_kmem_enabled_key); 3333 /* 3334 * A memory cgroup is considered kmem-online as soon as it gets 3335 * kmemcg_id. Setting the id after enabling static branching will 3336 * guarantee no one starts accounting before all call sites are 3337 * patched. 3338 */ 3339 memcg->kmemcg_id = memcg_id; 3340 memcg->kmem_state = KMEM_ONLINE; 3341 INIT_LIST_HEAD(&memcg->kmem_caches); 3342 3343 return 0; 3344 } 3345 3346 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3347 { 3348 struct cgroup_subsys_state *css; 3349 struct mem_cgroup *parent, *child; 3350 int kmemcg_id; 3351 3352 if (memcg->kmem_state != KMEM_ONLINE) 3353 return; 3354 /* 3355 * Clear the online state before clearing memcg_caches array 3356 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3357 * guarantees that no cache will be created for this cgroup 3358 * after we are done (see memcg_create_kmem_cache()). 3359 */ 3360 memcg->kmem_state = KMEM_ALLOCATED; 3361 3362 parent = parent_mem_cgroup(memcg); 3363 if (!parent) 3364 parent = root_mem_cgroup; 3365 3366 memcg_deactivate_kmem_caches(memcg, parent); 3367 3368 kmemcg_id = memcg->kmemcg_id; 3369 BUG_ON(kmemcg_id < 0); 3370 3371 /* 3372 * Change kmemcg_id of this cgroup and all its descendants to the 3373 * parent's id, and then move all entries from this cgroup's list_lrus 3374 * to ones of the parent. After we have finished, all list_lrus 3375 * corresponding to this cgroup are guaranteed to remain empty. The 3376 * ordering is imposed by list_lru_node->lock taken by 3377 * memcg_drain_all_list_lrus(). 3378 */ 3379 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3380 css_for_each_descendant_pre(css, &memcg->css) { 3381 child = mem_cgroup_from_css(css); 3382 BUG_ON(child->kmemcg_id != kmemcg_id); 3383 child->kmemcg_id = parent->kmemcg_id; 3384 if (!memcg->use_hierarchy) 3385 break; 3386 } 3387 rcu_read_unlock(); 3388 3389 memcg_drain_all_list_lrus(kmemcg_id, parent); 3390 3391 memcg_free_cache_id(kmemcg_id); 3392 } 3393 3394 static void memcg_free_kmem(struct mem_cgroup *memcg) 3395 { 3396 /* css_alloc() failed, offlining didn't happen */ 3397 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3398 memcg_offline_kmem(memcg); 3399 3400 if (memcg->kmem_state == KMEM_ALLOCATED) { 3401 WARN_ON(!list_empty(&memcg->kmem_caches)); 3402 static_branch_dec(&memcg_kmem_enabled_key); 3403 } 3404 } 3405 #else 3406 static int memcg_online_kmem(struct mem_cgroup *memcg) 3407 { 3408 return 0; 3409 } 3410 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3411 { 3412 } 3413 static void memcg_free_kmem(struct mem_cgroup *memcg) 3414 { 3415 } 3416 #endif /* CONFIG_MEMCG_KMEM */ 3417 3418 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3419 unsigned long max) 3420 { 3421 int ret; 3422 3423 mutex_lock(&memcg_max_mutex); 3424 ret = page_counter_set_max(&memcg->kmem, max); 3425 mutex_unlock(&memcg_max_mutex); 3426 return ret; 3427 } 3428 3429 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3430 { 3431 int ret; 3432 3433 mutex_lock(&memcg_max_mutex); 3434 3435 ret = page_counter_set_max(&memcg->tcpmem, max); 3436 if (ret) 3437 goto out; 3438 3439 if (!memcg->tcpmem_active) { 3440 /* 3441 * The active flag needs to be written after the static_key 3442 * update. This is what guarantees that the socket activation 3443 * function is the last one to run. See mem_cgroup_sk_alloc() 3444 * for details, and note that we don't mark any socket as 3445 * belonging to this memcg until that flag is up. 3446 * 3447 * We need to do this, because static_keys will span multiple 3448 * sites, but we can't control their order. If we mark a socket 3449 * as accounted, but the accounting functions are not patched in 3450 * yet, we'll lose accounting. 3451 * 3452 * We never race with the readers in mem_cgroup_sk_alloc(), 3453 * because when this value change, the code to process it is not 3454 * patched in yet. 3455 */ 3456 static_branch_inc(&memcg_sockets_enabled_key); 3457 memcg->tcpmem_active = true; 3458 } 3459 out: 3460 mutex_unlock(&memcg_max_mutex); 3461 return ret; 3462 } 3463 3464 /* 3465 * The user of this function is... 3466 * RES_LIMIT. 3467 */ 3468 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3469 char *buf, size_t nbytes, loff_t off) 3470 { 3471 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3472 unsigned long nr_pages; 3473 int ret; 3474 3475 buf = strstrip(buf); 3476 ret = page_counter_memparse(buf, "-1", &nr_pages); 3477 if (ret) 3478 return ret; 3479 3480 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3481 case RES_LIMIT: 3482 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3483 ret = -EINVAL; 3484 break; 3485 } 3486 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3487 case _MEM: 3488 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3489 break; 3490 case _MEMSWAP: 3491 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3492 break; 3493 case _KMEM: 3494 ret = memcg_update_kmem_max(memcg, nr_pages); 3495 break; 3496 case _TCP: 3497 ret = memcg_update_tcp_max(memcg, nr_pages); 3498 break; 3499 } 3500 break; 3501 case RES_SOFT_LIMIT: 3502 memcg->soft_limit = nr_pages; 3503 ret = 0; 3504 break; 3505 } 3506 return ret ?: nbytes; 3507 } 3508 3509 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3510 size_t nbytes, loff_t off) 3511 { 3512 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3513 struct page_counter *counter; 3514 3515 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3516 case _MEM: 3517 counter = &memcg->memory; 3518 break; 3519 case _MEMSWAP: 3520 counter = &memcg->memsw; 3521 break; 3522 case _KMEM: 3523 counter = &memcg->kmem; 3524 break; 3525 case _TCP: 3526 counter = &memcg->tcpmem; 3527 break; 3528 default: 3529 BUG(); 3530 } 3531 3532 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3533 case RES_MAX_USAGE: 3534 page_counter_reset_watermark(counter); 3535 break; 3536 case RES_FAILCNT: 3537 counter->failcnt = 0; 3538 break; 3539 default: 3540 BUG(); 3541 } 3542 3543 return nbytes; 3544 } 3545 3546 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3547 struct cftype *cft) 3548 { 3549 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3550 } 3551 3552 #ifdef CONFIG_MMU 3553 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3554 struct cftype *cft, u64 val) 3555 { 3556 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3557 3558 if (val & ~MOVE_MASK) 3559 return -EINVAL; 3560 3561 /* 3562 * No kind of locking is needed in here, because ->can_attach() will 3563 * check this value once in the beginning of the process, and then carry 3564 * on with stale data. This means that changes to this value will only 3565 * affect task migrations starting after the change. 3566 */ 3567 memcg->move_charge_at_immigrate = val; 3568 return 0; 3569 } 3570 #else 3571 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3572 struct cftype *cft, u64 val) 3573 { 3574 return -ENOSYS; 3575 } 3576 #endif 3577 3578 #ifdef CONFIG_NUMA 3579 3580 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3581 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3582 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3583 3584 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3585 int nid, unsigned int lru_mask) 3586 { 3587 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3588 unsigned long nr = 0; 3589 enum lru_list lru; 3590 3591 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3592 3593 for_each_lru(lru) { 3594 if (!(BIT(lru) & lru_mask)) 3595 continue; 3596 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3597 } 3598 return nr; 3599 } 3600 3601 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3602 unsigned int lru_mask) 3603 { 3604 unsigned long nr = 0; 3605 enum lru_list lru; 3606 3607 for_each_lru(lru) { 3608 if (!(BIT(lru) & lru_mask)) 3609 continue; 3610 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3611 } 3612 return nr; 3613 } 3614 3615 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3616 { 3617 struct numa_stat { 3618 const char *name; 3619 unsigned int lru_mask; 3620 }; 3621 3622 static const struct numa_stat stats[] = { 3623 { "total", LRU_ALL }, 3624 { "file", LRU_ALL_FILE }, 3625 { "anon", LRU_ALL_ANON }, 3626 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3627 }; 3628 const struct numa_stat *stat; 3629 int nid; 3630 unsigned long nr; 3631 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3632 3633 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3634 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3635 seq_printf(m, "%s=%lu", stat->name, nr); 3636 for_each_node_state(nid, N_MEMORY) { 3637 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3638 stat->lru_mask); 3639 seq_printf(m, " N%d=%lu", nid, nr); 3640 } 3641 seq_putc(m, '\n'); 3642 } 3643 3644 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3645 struct mem_cgroup *iter; 3646 3647 nr = 0; 3648 for_each_mem_cgroup_tree(iter, memcg) 3649 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3650 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3651 for_each_node_state(nid, N_MEMORY) { 3652 nr = 0; 3653 for_each_mem_cgroup_tree(iter, memcg) 3654 nr += mem_cgroup_node_nr_lru_pages( 3655 iter, nid, stat->lru_mask); 3656 seq_printf(m, " N%d=%lu", nid, nr); 3657 } 3658 seq_putc(m, '\n'); 3659 } 3660 3661 return 0; 3662 } 3663 #endif /* CONFIG_NUMA */ 3664 3665 static const unsigned int memcg1_stats[] = { 3666 MEMCG_CACHE, 3667 MEMCG_RSS, 3668 MEMCG_RSS_HUGE, 3669 NR_SHMEM, 3670 NR_FILE_MAPPED, 3671 NR_FILE_DIRTY, 3672 NR_WRITEBACK, 3673 MEMCG_SWAP, 3674 }; 3675 3676 static const char *const memcg1_stat_names[] = { 3677 "cache", 3678 "rss", 3679 "rss_huge", 3680 "shmem", 3681 "mapped_file", 3682 "dirty", 3683 "writeback", 3684 "swap", 3685 }; 3686 3687 /* Universal VM events cgroup1 shows, original sort order */ 3688 static const unsigned int memcg1_events[] = { 3689 PGPGIN, 3690 PGPGOUT, 3691 PGFAULT, 3692 PGMAJFAULT, 3693 }; 3694 3695 static const char *const memcg1_event_names[] = { 3696 "pgpgin", 3697 "pgpgout", 3698 "pgfault", 3699 "pgmajfault", 3700 }; 3701 3702 static int memcg_stat_show(struct seq_file *m, void *v) 3703 { 3704 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3705 unsigned long memory, memsw; 3706 struct mem_cgroup *mi; 3707 unsigned int i; 3708 3709 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3710 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3711 3712 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3713 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3714 continue; 3715 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3716 memcg_page_state_local(memcg, memcg1_stats[i]) * 3717 PAGE_SIZE); 3718 } 3719 3720 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3721 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3722 memcg_events_local(memcg, memcg1_events[i])); 3723 3724 for (i = 0; i < NR_LRU_LISTS; i++) 3725 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3726 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3727 PAGE_SIZE); 3728 3729 /* Hierarchical information */ 3730 memory = memsw = PAGE_COUNTER_MAX; 3731 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3732 memory = min(memory, mi->memory.max); 3733 memsw = min(memsw, mi->memsw.max); 3734 } 3735 seq_printf(m, "hierarchical_memory_limit %llu\n", 3736 (u64)memory * PAGE_SIZE); 3737 if (do_memsw_account()) 3738 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3739 (u64)memsw * PAGE_SIZE); 3740 3741 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3742 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3743 continue; 3744 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3745 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3746 PAGE_SIZE); 3747 } 3748 3749 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3750 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3751 (u64)memcg_events(memcg, memcg1_events[i])); 3752 3753 for (i = 0; i < NR_LRU_LISTS; i++) 3754 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3755 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3756 PAGE_SIZE); 3757 3758 #ifdef CONFIG_DEBUG_VM 3759 { 3760 pg_data_t *pgdat; 3761 struct mem_cgroup_per_node *mz; 3762 struct zone_reclaim_stat *rstat; 3763 unsigned long recent_rotated[2] = {0, 0}; 3764 unsigned long recent_scanned[2] = {0, 0}; 3765 3766 for_each_online_pgdat(pgdat) { 3767 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3768 rstat = &mz->lruvec.reclaim_stat; 3769 3770 recent_rotated[0] += rstat->recent_rotated[0]; 3771 recent_rotated[1] += rstat->recent_rotated[1]; 3772 recent_scanned[0] += rstat->recent_scanned[0]; 3773 recent_scanned[1] += rstat->recent_scanned[1]; 3774 } 3775 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3776 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3777 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3778 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3779 } 3780 #endif 3781 3782 return 0; 3783 } 3784 3785 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3786 struct cftype *cft) 3787 { 3788 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3789 3790 return mem_cgroup_swappiness(memcg); 3791 } 3792 3793 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3794 struct cftype *cft, u64 val) 3795 { 3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3797 3798 if (val > 100) 3799 return -EINVAL; 3800 3801 if (css->parent) 3802 memcg->swappiness = val; 3803 else 3804 vm_swappiness = val; 3805 3806 return 0; 3807 } 3808 3809 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3810 { 3811 struct mem_cgroup_threshold_ary *t; 3812 unsigned long usage; 3813 int i; 3814 3815 rcu_read_lock(); 3816 if (!swap) 3817 t = rcu_dereference(memcg->thresholds.primary); 3818 else 3819 t = rcu_dereference(memcg->memsw_thresholds.primary); 3820 3821 if (!t) 3822 goto unlock; 3823 3824 usage = mem_cgroup_usage(memcg, swap); 3825 3826 /* 3827 * current_threshold points to threshold just below or equal to usage. 3828 * If it's not true, a threshold was crossed after last 3829 * call of __mem_cgroup_threshold(). 3830 */ 3831 i = t->current_threshold; 3832 3833 /* 3834 * Iterate backward over array of thresholds starting from 3835 * current_threshold and check if a threshold is crossed. 3836 * If none of thresholds below usage is crossed, we read 3837 * only one element of the array here. 3838 */ 3839 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3840 eventfd_signal(t->entries[i].eventfd, 1); 3841 3842 /* i = current_threshold + 1 */ 3843 i++; 3844 3845 /* 3846 * Iterate forward over array of thresholds starting from 3847 * current_threshold+1 and check if a threshold is crossed. 3848 * If none of thresholds above usage is crossed, we read 3849 * only one element of the array here. 3850 */ 3851 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3852 eventfd_signal(t->entries[i].eventfd, 1); 3853 3854 /* Update current_threshold */ 3855 t->current_threshold = i - 1; 3856 unlock: 3857 rcu_read_unlock(); 3858 } 3859 3860 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3861 { 3862 while (memcg) { 3863 __mem_cgroup_threshold(memcg, false); 3864 if (do_memsw_account()) 3865 __mem_cgroup_threshold(memcg, true); 3866 3867 memcg = parent_mem_cgroup(memcg); 3868 } 3869 } 3870 3871 static int compare_thresholds(const void *a, const void *b) 3872 { 3873 const struct mem_cgroup_threshold *_a = a; 3874 const struct mem_cgroup_threshold *_b = b; 3875 3876 if (_a->threshold > _b->threshold) 3877 return 1; 3878 3879 if (_a->threshold < _b->threshold) 3880 return -1; 3881 3882 return 0; 3883 } 3884 3885 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3886 { 3887 struct mem_cgroup_eventfd_list *ev; 3888 3889 spin_lock(&memcg_oom_lock); 3890 3891 list_for_each_entry(ev, &memcg->oom_notify, list) 3892 eventfd_signal(ev->eventfd, 1); 3893 3894 spin_unlock(&memcg_oom_lock); 3895 return 0; 3896 } 3897 3898 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3899 { 3900 struct mem_cgroup *iter; 3901 3902 for_each_mem_cgroup_tree(iter, memcg) 3903 mem_cgroup_oom_notify_cb(iter); 3904 } 3905 3906 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3907 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3908 { 3909 struct mem_cgroup_thresholds *thresholds; 3910 struct mem_cgroup_threshold_ary *new; 3911 unsigned long threshold; 3912 unsigned long usage; 3913 int i, size, ret; 3914 3915 ret = page_counter_memparse(args, "-1", &threshold); 3916 if (ret) 3917 return ret; 3918 3919 mutex_lock(&memcg->thresholds_lock); 3920 3921 if (type == _MEM) { 3922 thresholds = &memcg->thresholds; 3923 usage = mem_cgroup_usage(memcg, false); 3924 } else if (type == _MEMSWAP) { 3925 thresholds = &memcg->memsw_thresholds; 3926 usage = mem_cgroup_usage(memcg, true); 3927 } else 3928 BUG(); 3929 3930 /* Check if a threshold crossed before adding a new one */ 3931 if (thresholds->primary) 3932 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3933 3934 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3935 3936 /* Allocate memory for new array of thresholds */ 3937 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3938 if (!new) { 3939 ret = -ENOMEM; 3940 goto unlock; 3941 } 3942 new->size = size; 3943 3944 /* Copy thresholds (if any) to new array */ 3945 if (thresholds->primary) { 3946 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3947 sizeof(struct mem_cgroup_threshold)); 3948 } 3949 3950 /* Add new threshold */ 3951 new->entries[size - 1].eventfd = eventfd; 3952 new->entries[size - 1].threshold = threshold; 3953 3954 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3955 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3956 compare_thresholds, NULL); 3957 3958 /* Find current threshold */ 3959 new->current_threshold = -1; 3960 for (i = 0; i < size; i++) { 3961 if (new->entries[i].threshold <= usage) { 3962 /* 3963 * new->current_threshold will not be used until 3964 * rcu_assign_pointer(), so it's safe to increment 3965 * it here. 3966 */ 3967 ++new->current_threshold; 3968 } else 3969 break; 3970 } 3971 3972 /* Free old spare buffer and save old primary buffer as spare */ 3973 kfree(thresholds->spare); 3974 thresholds->spare = thresholds->primary; 3975 3976 rcu_assign_pointer(thresholds->primary, new); 3977 3978 /* To be sure that nobody uses thresholds */ 3979 synchronize_rcu(); 3980 3981 unlock: 3982 mutex_unlock(&memcg->thresholds_lock); 3983 3984 return ret; 3985 } 3986 3987 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3988 struct eventfd_ctx *eventfd, const char *args) 3989 { 3990 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3991 } 3992 3993 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3994 struct eventfd_ctx *eventfd, const char *args) 3995 { 3996 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3997 } 3998 3999 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4000 struct eventfd_ctx *eventfd, enum res_type type) 4001 { 4002 struct mem_cgroup_thresholds *thresholds; 4003 struct mem_cgroup_threshold_ary *new; 4004 unsigned long usage; 4005 int i, j, size; 4006 4007 mutex_lock(&memcg->thresholds_lock); 4008 4009 if (type == _MEM) { 4010 thresholds = &memcg->thresholds; 4011 usage = mem_cgroup_usage(memcg, false); 4012 } else if (type == _MEMSWAP) { 4013 thresholds = &memcg->memsw_thresholds; 4014 usage = mem_cgroup_usage(memcg, true); 4015 } else 4016 BUG(); 4017 4018 if (!thresholds->primary) 4019 goto unlock; 4020 4021 /* Check if a threshold crossed before removing */ 4022 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4023 4024 /* Calculate new number of threshold */ 4025 size = 0; 4026 for (i = 0; i < thresholds->primary->size; i++) { 4027 if (thresholds->primary->entries[i].eventfd != eventfd) 4028 size++; 4029 } 4030 4031 new = thresholds->spare; 4032 4033 /* Set thresholds array to NULL if we don't have thresholds */ 4034 if (!size) { 4035 kfree(new); 4036 new = NULL; 4037 goto swap_buffers; 4038 } 4039 4040 new->size = size; 4041 4042 /* Copy thresholds and find current threshold */ 4043 new->current_threshold = -1; 4044 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4045 if (thresholds->primary->entries[i].eventfd == eventfd) 4046 continue; 4047 4048 new->entries[j] = thresholds->primary->entries[i]; 4049 if (new->entries[j].threshold <= usage) { 4050 /* 4051 * new->current_threshold will not be used 4052 * until rcu_assign_pointer(), so it's safe to increment 4053 * it here. 4054 */ 4055 ++new->current_threshold; 4056 } 4057 j++; 4058 } 4059 4060 swap_buffers: 4061 /* Swap primary and spare array */ 4062 thresholds->spare = thresholds->primary; 4063 4064 rcu_assign_pointer(thresholds->primary, new); 4065 4066 /* To be sure that nobody uses thresholds */ 4067 synchronize_rcu(); 4068 4069 /* If all events are unregistered, free the spare array */ 4070 if (!new) { 4071 kfree(thresholds->spare); 4072 thresholds->spare = NULL; 4073 } 4074 unlock: 4075 mutex_unlock(&memcg->thresholds_lock); 4076 } 4077 4078 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4079 struct eventfd_ctx *eventfd) 4080 { 4081 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4082 } 4083 4084 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4085 struct eventfd_ctx *eventfd) 4086 { 4087 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4088 } 4089 4090 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4091 struct eventfd_ctx *eventfd, const char *args) 4092 { 4093 struct mem_cgroup_eventfd_list *event; 4094 4095 event = kmalloc(sizeof(*event), GFP_KERNEL); 4096 if (!event) 4097 return -ENOMEM; 4098 4099 spin_lock(&memcg_oom_lock); 4100 4101 event->eventfd = eventfd; 4102 list_add(&event->list, &memcg->oom_notify); 4103 4104 /* already in OOM ? */ 4105 if (memcg->under_oom) 4106 eventfd_signal(eventfd, 1); 4107 spin_unlock(&memcg_oom_lock); 4108 4109 return 0; 4110 } 4111 4112 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4113 struct eventfd_ctx *eventfd) 4114 { 4115 struct mem_cgroup_eventfd_list *ev, *tmp; 4116 4117 spin_lock(&memcg_oom_lock); 4118 4119 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4120 if (ev->eventfd == eventfd) { 4121 list_del(&ev->list); 4122 kfree(ev); 4123 } 4124 } 4125 4126 spin_unlock(&memcg_oom_lock); 4127 } 4128 4129 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4130 { 4131 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4132 4133 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4134 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4135 seq_printf(sf, "oom_kill %lu\n", 4136 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4137 return 0; 4138 } 4139 4140 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4141 struct cftype *cft, u64 val) 4142 { 4143 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4144 4145 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4146 if (!css->parent || !((val == 0) || (val == 1))) 4147 return -EINVAL; 4148 4149 memcg->oom_kill_disable = val; 4150 if (!val) 4151 memcg_oom_recover(memcg); 4152 4153 return 0; 4154 } 4155 4156 #ifdef CONFIG_CGROUP_WRITEBACK 4157 4158 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4159 { 4160 return wb_domain_init(&memcg->cgwb_domain, gfp); 4161 } 4162 4163 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4164 { 4165 wb_domain_exit(&memcg->cgwb_domain); 4166 } 4167 4168 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4169 { 4170 wb_domain_size_changed(&memcg->cgwb_domain); 4171 } 4172 4173 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4174 { 4175 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4176 4177 if (!memcg->css.parent) 4178 return NULL; 4179 4180 return &memcg->cgwb_domain; 4181 } 4182 4183 /* 4184 * idx can be of type enum memcg_stat_item or node_stat_item. 4185 * Keep in sync with memcg_exact_page(). 4186 */ 4187 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4188 { 4189 long x = atomic_long_read(&memcg->vmstats[idx]); 4190 int cpu; 4191 4192 for_each_online_cpu(cpu) 4193 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4194 if (x < 0) 4195 x = 0; 4196 return x; 4197 } 4198 4199 /** 4200 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4201 * @wb: bdi_writeback in question 4202 * @pfilepages: out parameter for number of file pages 4203 * @pheadroom: out parameter for number of allocatable pages according to memcg 4204 * @pdirty: out parameter for number of dirty pages 4205 * @pwriteback: out parameter for number of pages under writeback 4206 * 4207 * Determine the numbers of file, headroom, dirty, and writeback pages in 4208 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4209 * is a bit more involved. 4210 * 4211 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4212 * headroom is calculated as the lowest headroom of itself and the 4213 * ancestors. Note that this doesn't consider the actual amount of 4214 * available memory in the system. The caller should further cap 4215 * *@pheadroom accordingly. 4216 */ 4217 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4218 unsigned long *pheadroom, unsigned long *pdirty, 4219 unsigned long *pwriteback) 4220 { 4221 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4222 struct mem_cgroup *parent; 4223 4224 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4225 4226 /* this should eventually include NR_UNSTABLE_NFS */ 4227 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4228 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4229 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4230 *pheadroom = PAGE_COUNTER_MAX; 4231 4232 while ((parent = parent_mem_cgroup(memcg))) { 4233 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4234 unsigned long used = page_counter_read(&memcg->memory); 4235 4236 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4237 memcg = parent; 4238 } 4239 } 4240 4241 #else /* CONFIG_CGROUP_WRITEBACK */ 4242 4243 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4244 { 4245 return 0; 4246 } 4247 4248 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4249 { 4250 } 4251 4252 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4253 { 4254 } 4255 4256 #endif /* CONFIG_CGROUP_WRITEBACK */ 4257 4258 /* 4259 * DO NOT USE IN NEW FILES. 4260 * 4261 * "cgroup.event_control" implementation. 4262 * 4263 * This is way over-engineered. It tries to support fully configurable 4264 * events for each user. Such level of flexibility is completely 4265 * unnecessary especially in the light of the planned unified hierarchy. 4266 * 4267 * Please deprecate this and replace with something simpler if at all 4268 * possible. 4269 */ 4270 4271 /* 4272 * Unregister event and free resources. 4273 * 4274 * Gets called from workqueue. 4275 */ 4276 static void memcg_event_remove(struct work_struct *work) 4277 { 4278 struct mem_cgroup_event *event = 4279 container_of(work, struct mem_cgroup_event, remove); 4280 struct mem_cgroup *memcg = event->memcg; 4281 4282 remove_wait_queue(event->wqh, &event->wait); 4283 4284 event->unregister_event(memcg, event->eventfd); 4285 4286 /* Notify userspace the event is going away. */ 4287 eventfd_signal(event->eventfd, 1); 4288 4289 eventfd_ctx_put(event->eventfd); 4290 kfree(event); 4291 css_put(&memcg->css); 4292 } 4293 4294 /* 4295 * Gets called on EPOLLHUP on eventfd when user closes it. 4296 * 4297 * Called with wqh->lock held and interrupts disabled. 4298 */ 4299 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4300 int sync, void *key) 4301 { 4302 struct mem_cgroup_event *event = 4303 container_of(wait, struct mem_cgroup_event, wait); 4304 struct mem_cgroup *memcg = event->memcg; 4305 __poll_t flags = key_to_poll(key); 4306 4307 if (flags & EPOLLHUP) { 4308 /* 4309 * If the event has been detached at cgroup removal, we 4310 * can simply return knowing the other side will cleanup 4311 * for us. 4312 * 4313 * We can't race against event freeing since the other 4314 * side will require wqh->lock via remove_wait_queue(), 4315 * which we hold. 4316 */ 4317 spin_lock(&memcg->event_list_lock); 4318 if (!list_empty(&event->list)) { 4319 list_del_init(&event->list); 4320 /* 4321 * We are in atomic context, but cgroup_event_remove() 4322 * may sleep, so we have to call it in workqueue. 4323 */ 4324 schedule_work(&event->remove); 4325 } 4326 spin_unlock(&memcg->event_list_lock); 4327 } 4328 4329 return 0; 4330 } 4331 4332 static void memcg_event_ptable_queue_proc(struct file *file, 4333 wait_queue_head_t *wqh, poll_table *pt) 4334 { 4335 struct mem_cgroup_event *event = 4336 container_of(pt, struct mem_cgroup_event, pt); 4337 4338 event->wqh = wqh; 4339 add_wait_queue(wqh, &event->wait); 4340 } 4341 4342 /* 4343 * DO NOT USE IN NEW FILES. 4344 * 4345 * Parse input and register new cgroup event handler. 4346 * 4347 * Input must be in format '<event_fd> <control_fd> <args>'. 4348 * Interpretation of args is defined by control file implementation. 4349 */ 4350 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4351 char *buf, size_t nbytes, loff_t off) 4352 { 4353 struct cgroup_subsys_state *css = of_css(of); 4354 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4355 struct mem_cgroup_event *event; 4356 struct cgroup_subsys_state *cfile_css; 4357 unsigned int efd, cfd; 4358 struct fd efile; 4359 struct fd cfile; 4360 const char *name; 4361 char *endp; 4362 int ret; 4363 4364 buf = strstrip(buf); 4365 4366 efd = simple_strtoul(buf, &endp, 10); 4367 if (*endp != ' ') 4368 return -EINVAL; 4369 buf = endp + 1; 4370 4371 cfd = simple_strtoul(buf, &endp, 10); 4372 if ((*endp != ' ') && (*endp != '\0')) 4373 return -EINVAL; 4374 buf = endp + 1; 4375 4376 event = kzalloc(sizeof(*event), GFP_KERNEL); 4377 if (!event) 4378 return -ENOMEM; 4379 4380 event->memcg = memcg; 4381 INIT_LIST_HEAD(&event->list); 4382 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4383 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4384 INIT_WORK(&event->remove, memcg_event_remove); 4385 4386 efile = fdget(efd); 4387 if (!efile.file) { 4388 ret = -EBADF; 4389 goto out_kfree; 4390 } 4391 4392 event->eventfd = eventfd_ctx_fileget(efile.file); 4393 if (IS_ERR(event->eventfd)) { 4394 ret = PTR_ERR(event->eventfd); 4395 goto out_put_efile; 4396 } 4397 4398 cfile = fdget(cfd); 4399 if (!cfile.file) { 4400 ret = -EBADF; 4401 goto out_put_eventfd; 4402 } 4403 4404 /* the process need read permission on control file */ 4405 /* AV: shouldn't we check that it's been opened for read instead? */ 4406 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4407 if (ret < 0) 4408 goto out_put_cfile; 4409 4410 /* 4411 * Determine the event callbacks and set them in @event. This used 4412 * to be done via struct cftype but cgroup core no longer knows 4413 * about these events. The following is crude but the whole thing 4414 * is for compatibility anyway. 4415 * 4416 * DO NOT ADD NEW FILES. 4417 */ 4418 name = cfile.file->f_path.dentry->d_name.name; 4419 4420 if (!strcmp(name, "memory.usage_in_bytes")) { 4421 event->register_event = mem_cgroup_usage_register_event; 4422 event->unregister_event = mem_cgroup_usage_unregister_event; 4423 } else if (!strcmp(name, "memory.oom_control")) { 4424 event->register_event = mem_cgroup_oom_register_event; 4425 event->unregister_event = mem_cgroup_oom_unregister_event; 4426 } else if (!strcmp(name, "memory.pressure_level")) { 4427 event->register_event = vmpressure_register_event; 4428 event->unregister_event = vmpressure_unregister_event; 4429 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4430 event->register_event = memsw_cgroup_usage_register_event; 4431 event->unregister_event = memsw_cgroup_usage_unregister_event; 4432 } else { 4433 ret = -EINVAL; 4434 goto out_put_cfile; 4435 } 4436 4437 /* 4438 * Verify @cfile should belong to @css. Also, remaining events are 4439 * automatically removed on cgroup destruction but the removal is 4440 * asynchronous, so take an extra ref on @css. 4441 */ 4442 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4443 &memory_cgrp_subsys); 4444 ret = -EINVAL; 4445 if (IS_ERR(cfile_css)) 4446 goto out_put_cfile; 4447 if (cfile_css != css) { 4448 css_put(cfile_css); 4449 goto out_put_cfile; 4450 } 4451 4452 ret = event->register_event(memcg, event->eventfd, buf); 4453 if (ret) 4454 goto out_put_css; 4455 4456 vfs_poll(efile.file, &event->pt); 4457 4458 spin_lock(&memcg->event_list_lock); 4459 list_add(&event->list, &memcg->event_list); 4460 spin_unlock(&memcg->event_list_lock); 4461 4462 fdput(cfile); 4463 fdput(efile); 4464 4465 return nbytes; 4466 4467 out_put_css: 4468 css_put(css); 4469 out_put_cfile: 4470 fdput(cfile); 4471 out_put_eventfd: 4472 eventfd_ctx_put(event->eventfd); 4473 out_put_efile: 4474 fdput(efile); 4475 out_kfree: 4476 kfree(event); 4477 4478 return ret; 4479 } 4480 4481 static struct cftype mem_cgroup_legacy_files[] = { 4482 { 4483 .name = "usage_in_bytes", 4484 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4485 .read_u64 = mem_cgroup_read_u64, 4486 }, 4487 { 4488 .name = "max_usage_in_bytes", 4489 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4490 .write = mem_cgroup_reset, 4491 .read_u64 = mem_cgroup_read_u64, 4492 }, 4493 { 4494 .name = "limit_in_bytes", 4495 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4496 .write = mem_cgroup_write, 4497 .read_u64 = mem_cgroup_read_u64, 4498 }, 4499 { 4500 .name = "soft_limit_in_bytes", 4501 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4502 .write = mem_cgroup_write, 4503 .read_u64 = mem_cgroup_read_u64, 4504 }, 4505 { 4506 .name = "failcnt", 4507 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4508 .write = mem_cgroup_reset, 4509 .read_u64 = mem_cgroup_read_u64, 4510 }, 4511 { 4512 .name = "stat", 4513 .seq_show = memcg_stat_show, 4514 }, 4515 { 4516 .name = "force_empty", 4517 .write = mem_cgroup_force_empty_write, 4518 }, 4519 { 4520 .name = "use_hierarchy", 4521 .write_u64 = mem_cgroup_hierarchy_write, 4522 .read_u64 = mem_cgroup_hierarchy_read, 4523 }, 4524 { 4525 .name = "cgroup.event_control", /* XXX: for compat */ 4526 .write = memcg_write_event_control, 4527 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4528 }, 4529 { 4530 .name = "swappiness", 4531 .read_u64 = mem_cgroup_swappiness_read, 4532 .write_u64 = mem_cgroup_swappiness_write, 4533 }, 4534 { 4535 .name = "move_charge_at_immigrate", 4536 .read_u64 = mem_cgroup_move_charge_read, 4537 .write_u64 = mem_cgroup_move_charge_write, 4538 }, 4539 { 4540 .name = "oom_control", 4541 .seq_show = mem_cgroup_oom_control_read, 4542 .write_u64 = mem_cgroup_oom_control_write, 4543 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4544 }, 4545 { 4546 .name = "pressure_level", 4547 }, 4548 #ifdef CONFIG_NUMA 4549 { 4550 .name = "numa_stat", 4551 .seq_show = memcg_numa_stat_show, 4552 }, 4553 #endif 4554 { 4555 .name = "kmem.limit_in_bytes", 4556 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4557 .write = mem_cgroup_write, 4558 .read_u64 = mem_cgroup_read_u64, 4559 }, 4560 { 4561 .name = "kmem.usage_in_bytes", 4562 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4563 .read_u64 = mem_cgroup_read_u64, 4564 }, 4565 { 4566 .name = "kmem.failcnt", 4567 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4568 .write = mem_cgroup_reset, 4569 .read_u64 = mem_cgroup_read_u64, 4570 }, 4571 { 4572 .name = "kmem.max_usage_in_bytes", 4573 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4574 .write = mem_cgroup_reset, 4575 .read_u64 = mem_cgroup_read_u64, 4576 }, 4577 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4578 { 4579 .name = "kmem.slabinfo", 4580 .seq_start = memcg_slab_start, 4581 .seq_next = memcg_slab_next, 4582 .seq_stop = memcg_slab_stop, 4583 .seq_show = memcg_slab_show, 4584 }, 4585 #endif 4586 { 4587 .name = "kmem.tcp.limit_in_bytes", 4588 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4589 .write = mem_cgroup_write, 4590 .read_u64 = mem_cgroup_read_u64, 4591 }, 4592 { 4593 .name = "kmem.tcp.usage_in_bytes", 4594 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4595 .read_u64 = mem_cgroup_read_u64, 4596 }, 4597 { 4598 .name = "kmem.tcp.failcnt", 4599 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4600 .write = mem_cgroup_reset, 4601 .read_u64 = mem_cgroup_read_u64, 4602 }, 4603 { 4604 .name = "kmem.tcp.max_usage_in_bytes", 4605 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4606 .write = mem_cgroup_reset, 4607 .read_u64 = mem_cgroup_read_u64, 4608 }, 4609 { }, /* terminate */ 4610 }; 4611 4612 /* 4613 * Private memory cgroup IDR 4614 * 4615 * Swap-out records and page cache shadow entries need to store memcg 4616 * references in constrained space, so we maintain an ID space that is 4617 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4618 * memory-controlled cgroups to 64k. 4619 * 4620 * However, there usually are many references to the oflline CSS after 4621 * the cgroup has been destroyed, such as page cache or reclaimable 4622 * slab objects, that don't need to hang on to the ID. We want to keep 4623 * those dead CSS from occupying IDs, or we might quickly exhaust the 4624 * relatively small ID space and prevent the creation of new cgroups 4625 * even when there are much fewer than 64k cgroups - possibly none. 4626 * 4627 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4628 * be freed and recycled when it's no longer needed, which is usually 4629 * when the CSS is offlined. 4630 * 4631 * The only exception to that are records of swapped out tmpfs/shmem 4632 * pages that need to be attributed to live ancestors on swapin. But 4633 * those references are manageable from userspace. 4634 */ 4635 4636 static DEFINE_IDR(mem_cgroup_idr); 4637 4638 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4639 { 4640 if (memcg->id.id > 0) { 4641 idr_remove(&mem_cgroup_idr, memcg->id.id); 4642 memcg->id.id = 0; 4643 } 4644 } 4645 4646 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4647 { 4648 refcount_add(n, &memcg->id.ref); 4649 } 4650 4651 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4652 { 4653 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4654 mem_cgroup_id_remove(memcg); 4655 4656 /* Memcg ID pins CSS */ 4657 css_put(&memcg->css); 4658 } 4659 } 4660 4661 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4662 { 4663 mem_cgroup_id_get_many(memcg, 1); 4664 } 4665 4666 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4667 { 4668 mem_cgroup_id_put_many(memcg, 1); 4669 } 4670 4671 /** 4672 * mem_cgroup_from_id - look up a memcg from a memcg id 4673 * @id: the memcg id to look up 4674 * 4675 * Caller must hold rcu_read_lock(). 4676 */ 4677 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4678 { 4679 WARN_ON_ONCE(!rcu_read_lock_held()); 4680 return idr_find(&mem_cgroup_idr, id); 4681 } 4682 4683 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4684 { 4685 struct mem_cgroup_per_node *pn; 4686 int tmp = node; 4687 /* 4688 * This routine is called against possible nodes. 4689 * But it's BUG to call kmalloc() against offline node. 4690 * 4691 * TODO: this routine can waste much memory for nodes which will 4692 * never be onlined. It's better to use memory hotplug callback 4693 * function. 4694 */ 4695 if (!node_state(node, N_NORMAL_MEMORY)) 4696 tmp = -1; 4697 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4698 if (!pn) 4699 return 1; 4700 4701 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4702 if (!pn->lruvec_stat_local) { 4703 kfree(pn); 4704 return 1; 4705 } 4706 4707 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4708 if (!pn->lruvec_stat_cpu) { 4709 free_percpu(pn->lruvec_stat_local); 4710 kfree(pn); 4711 return 1; 4712 } 4713 4714 lruvec_init(&pn->lruvec); 4715 pn->usage_in_excess = 0; 4716 pn->on_tree = false; 4717 pn->memcg = memcg; 4718 4719 memcg->nodeinfo[node] = pn; 4720 return 0; 4721 } 4722 4723 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4724 { 4725 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4726 4727 if (!pn) 4728 return; 4729 4730 free_percpu(pn->lruvec_stat_cpu); 4731 free_percpu(pn->lruvec_stat_local); 4732 kfree(pn); 4733 } 4734 4735 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4736 { 4737 int node; 4738 4739 /* 4740 * Flush percpu vmstats and vmevents to guarantee the value correctness 4741 * on parent's and all ancestor levels. 4742 */ 4743 memcg_flush_percpu_vmstats(memcg); 4744 memcg_flush_percpu_vmevents(memcg); 4745 for_each_node(node) 4746 free_mem_cgroup_per_node_info(memcg, node); 4747 free_percpu(memcg->vmstats_percpu); 4748 free_percpu(memcg->vmstats_local); 4749 kfree(memcg); 4750 } 4751 4752 static void mem_cgroup_free(struct mem_cgroup *memcg) 4753 { 4754 memcg_wb_domain_exit(memcg); 4755 __mem_cgroup_free(memcg); 4756 } 4757 4758 static struct mem_cgroup *mem_cgroup_alloc(void) 4759 { 4760 struct mem_cgroup *memcg; 4761 unsigned int size; 4762 int node; 4763 4764 size = sizeof(struct mem_cgroup); 4765 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4766 4767 memcg = kzalloc(size, GFP_KERNEL); 4768 if (!memcg) 4769 return NULL; 4770 4771 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4772 1, MEM_CGROUP_ID_MAX, 4773 GFP_KERNEL); 4774 if (memcg->id.id < 0) 4775 goto fail; 4776 4777 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4778 if (!memcg->vmstats_local) 4779 goto fail; 4780 4781 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4782 if (!memcg->vmstats_percpu) 4783 goto fail; 4784 4785 for_each_node(node) 4786 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4787 goto fail; 4788 4789 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4790 goto fail; 4791 4792 INIT_WORK(&memcg->high_work, high_work_func); 4793 memcg->last_scanned_node = MAX_NUMNODES; 4794 INIT_LIST_HEAD(&memcg->oom_notify); 4795 mutex_init(&memcg->thresholds_lock); 4796 spin_lock_init(&memcg->move_lock); 4797 vmpressure_init(&memcg->vmpressure); 4798 INIT_LIST_HEAD(&memcg->event_list); 4799 spin_lock_init(&memcg->event_list_lock); 4800 memcg->socket_pressure = jiffies; 4801 #ifdef CONFIG_MEMCG_KMEM 4802 memcg->kmemcg_id = -1; 4803 #endif 4804 #ifdef CONFIG_CGROUP_WRITEBACK 4805 INIT_LIST_HEAD(&memcg->cgwb_list); 4806 #endif 4807 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4808 return memcg; 4809 fail: 4810 mem_cgroup_id_remove(memcg); 4811 __mem_cgroup_free(memcg); 4812 return NULL; 4813 } 4814 4815 static struct cgroup_subsys_state * __ref 4816 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4817 { 4818 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4819 struct mem_cgroup *memcg; 4820 long error = -ENOMEM; 4821 4822 memcg = mem_cgroup_alloc(); 4823 if (!memcg) 4824 return ERR_PTR(error); 4825 4826 memcg->high = PAGE_COUNTER_MAX; 4827 memcg->soft_limit = PAGE_COUNTER_MAX; 4828 if (parent) { 4829 memcg->swappiness = mem_cgroup_swappiness(parent); 4830 memcg->oom_kill_disable = parent->oom_kill_disable; 4831 } 4832 if (parent && parent->use_hierarchy) { 4833 memcg->use_hierarchy = true; 4834 page_counter_init(&memcg->memory, &parent->memory); 4835 page_counter_init(&memcg->swap, &parent->swap); 4836 page_counter_init(&memcg->memsw, &parent->memsw); 4837 page_counter_init(&memcg->kmem, &parent->kmem); 4838 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4839 } else { 4840 page_counter_init(&memcg->memory, NULL); 4841 page_counter_init(&memcg->swap, NULL); 4842 page_counter_init(&memcg->memsw, NULL); 4843 page_counter_init(&memcg->kmem, NULL); 4844 page_counter_init(&memcg->tcpmem, NULL); 4845 /* 4846 * Deeper hierachy with use_hierarchy == false doesn't make 4847 * much sense so let cgroup subsystem know about this 4848 * unfortunate state in our controller. 4849 */ 4850 if (parent != root_mem_cgroup) 4851 memory_cgrp_subsys.broken_hierarchy = true; 4852 } 4853 4854 /* The following stuff does not apply to the root */ 4855 if (!parent) { 4856 #ifdef CONFIG_MEMCG_KMEM 4857 INIT_LIST_HEAD(&memcg->kmem_caches); 4858 #endif 4859 root_mem_cgroup = memcg; 4860 return &memcg->css; 4861 } 4862 4863 error = memcg_online_kmem(memcg); 4864 if (error) 4865 goto fail; 4866 4867 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4868 static_branch_inc(&memcg_sockets_enabled_key); 4869 4870 return &memcg->css; 4871 fail: 4872 mem_cgroup_id_remove(memcg); 4873 mem_cgroup_free(memcg); 4874 return ERR_PTR(-ENOMEM); 4875 } 4876 4877 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4878 { 4879 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4880 4881 /* 4882 * A memcg must be visible for memcg_expand_shrinker_maps() 4883 * by the time the maps are allocated. So, we allocate maps 4884 * here, when for_each_mem_cgroup() can't skip it. 4885 */ 4886 if (memcg_alloc_shrinker_maps(memcg)) { 4887 mem_cgroup_id_remove(memcg); 4888 return -ENOMEM; 4889 } 4890 4891 /* Online state pins memcg ID, memcg ID pins CSS */ 4892 refcount_set(&memcg->id.ref, 1); 4893 css_get(css); 4894 return 0; 4895 } 4896 4897 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4898 { 4899 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4900 struct mem_cgroup_event *event, *tmp; 4901 4902 /* 4903 * Unregister events and notify userspace. 4904 * Notify userspace about cgroup removing only after rmdir of cgroup 4905 * directory to avoid race between userspace and kernelspace. 4906 */ 4907 spin_lock(&memcg->event_list_lock); 4908 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4909 list_del_init(&event->list); 4910 schedule_work(&event->remove); 4911 } 4912 spin_unlock(&memcg->event_list_lock); 4913 4914 page_counter_set_min(&memcg->memory, 0); 4915 page_counter_set_low(&memcg->memory, 0); 4916 4917 memcg_offline_kmem(memcg); 4918 wb_memcg_offline(memcg); 4919 4920 drain_all_stock(memcg); 4921 4922 mem_cgroup_id_put(memcg); 4923 } 4924 4925 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4926 { 4927 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4928 4929 invalidate_reclaim_iterators(memcg); 4930 } 4931 4932 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4933 { 4934 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4935 4936 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4937 static_branch_dec(&memcg_sockets_enabled_key); 4938 4939 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4940 static_branch_dec(&memcg_sockets_enabled_key); 4941 4942 vmpressure_cleanup(&memcg->vmpressure); 4943 cancel_work_sync(&memcg->high_work); 4944 mem_cgroup_remove_from_trees(memcg); 4945 memcg_free_shrinker_maps(memcg); 4946 memcg_free_kmem(memcg); 4947 mem_cgroup_free(memcg); 4948 } 4949 4950 /** 4951 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4952 * @css: the target css 4953 * 4954 * Reset the states of the mem_cgroup associated with @css. This is 4955 * invoked when the userland requests disabling on the default hierarchy 4956 * but the memcg is pinned through dependency. The memcg should stop 4957 * applying policies and should revert to the vanilla state as it may be 4958 * made visible again. 4959 * 4960 * The current implementation only resets the essential configurations. 4961 * This needs to be expanded to cover all the visible parts. 4962 */ 4963 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4964 { 4965 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4966 4967 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4968 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4969 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4970 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4971 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4972 page_counter_set_min(&memcg->memory, 0); 4973 page_counter_set_low(&memcg->memory, 0); 4974 memcg->high = PAGE_COUNTER_MAX; 4975 memcg->soft_limit = PAGE_COUNTER_MAX; 4976 memcg_wb_domain_size_changed(memcg); 4977 } 4978 4979 #ifdef CONFIG_MMU 4980 /* Handlers for move charge at task migration. */ 4981 static int mem_cgroup_do_precharge(unsigned long count) 4982 { 4983 int ret; 4984 4985 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4986 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4987 if (!ret) { 4988 mc.precharge += count; 4989 return ret; 4990 } 4991 4992 /* Try charges one by one with reclaim, but do not retry */ 4993 while (count--) { 4994 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4995 if (ret) 4996 return ret; 4997 mc.precharge++; 4998 cond_resched(); 4999 } 5000 return 0; 5001 } 5002 5003 union mc_target { 5004 struct page *page; 5005 swp_entry_t ent; 5006 }; 5007 5008 enum mc_target_type { 5009 MC_TARGET_NONE = 0, 5010 MC_TARGET_PAGE, 5011 MC_TARGET_SWAP, 5012 MC_TARGET_DEVICE, 5013 }; 5014 5015 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5016 unsigned long addr, pte_t ptent) 5017 { 5018 struct page *page = vm_normal_page(vma, addr, ptent); 5019 5020 if (!page || !page_mapped(page)) 5021 return NULL; 5022 if (PageAnon(page)) { 5023 if (!(mc.flags & MOVE_ANON)) 5024 return NULL; 5025 } else { 5026 if (!(mc.flags & MOVE_FILE)) 5027 return NULL; 5028 } 5029 if (!get_page_unless_zero(page)) 5030 return NULL; 5031 5032 return page; 5033 } 5034 5035 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5036 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5037 pte_t ptent, swp_entry_t *entry) 5038 { 5039 struct page *page = NULL; 5040 swp_entry_t ent = pte_to_swp_entry(ptent); 5041 5042 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5043 return NULL; 5044 5045 /* 5046 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5047 * a device and because they are not accessible by CPU they are store 5048 * as special swap entry in the CPU page table. 5049 */ 5050 if (is_device_private_entry(ent)) { 5051 page = device_private_entry_to_page(ent); 5052 /* 5053 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5054 * a refcount of 1 when free (unlike normal page) 5055 */ 5056 if (!page_ref_add_unless(page, 1, 1)) 5057 return NULL; 5058 return page; 5059 } 5060 5061 /* 5062 * Because lookup_swap_cache() updates some statistics counter, 5063 * we call find_get_page() with swapper_space directly. 5064 */ 5065 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5066 if (do_memsw_account()) 5067 entry->val = ent.val; 5068 5069 return page; 5070 } 5071 #else 5072 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5073 pte_t ptent, swp_entry_t *entry) 5074 { 5075 return NULL; 5076 } 5077 #endif 5078 5079 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5080 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5081 { 5082 struct page *page = NULL; 5083 struct address_space *mapping; 5084 pgoff_t pgoff; 5085 5086 if (!vma->vm_file) /* anonymous vma */ 5087 return NULL; 5088 if (!(mc.flags & MOVE_FILE)) 5089 return NULL; 5090 5091 mapping = vma->vm_file->f_mapping; 5092 pgoff = linear_page_index(vma, addr); 5093 5094 /* page is moved even if it's not RSS of this task(page-faulted). */ 5095 #ifdef CONFIG_SWAP 5096 /* shmem/tmpfs may report page out on swap: account for that too. */ 5097 if (shmem_mapping(mapping)) { 5098 page = find_get_entry(mapping, pgoff); 5099 if (xa_is_value(page)) { 5100 swp_entry_t swp = radix_to_swp_entry(page); 5101 if (do_memsw_account()) 5102 *entry = swp; 5103 page = find_get_page(swap_address_space(swp), 5104 swp_offset(swp)); 5105 } 5106 } else 5107 page = find_get_page(mapping, pgoff); 5108 #else 5109 page = find_get_page(mapping, pgoff); 5110 #endif 5111 return page; 5112 } 5113 5114 /** 5115 * mem_cgroup_move_account - move account of the page 5116 * @page: the page 5117 * @compound: charge the page as compound or small page 5118 * @from: mem_cgroup which the page is moved from. 5119 * @to: mem_cgroup which the page is moved to. @from != @to. 5120 * 5121 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5122 * 5123 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5124 * from old cgroup. 5125 */ 5126 static int mem_cgroup_move_account(struct page *page, 5127 bool compound, 5128 struct mem_cgroup *from, 5129 struct mem_cgroup *to) 5130 { 5131 unsigned long flags; 5132 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5133 int ret; 5134 bool anon; 5135 5136 VM_BUG_ON(from == to); 5137 VM_BUG_ON_PAGE(PageLRU(page), page); 5138 VM_BUG_ON(compound && !PageTransHuge(page)); 5139 5140 /* 5141 * Prevent mem_cgroup_migrate() from looking at 5142 * page->mem_cgroup of its source page while we change it. 5143 */ 5144 ret = -EBUSY; 5145 if (!trylock_page(page)) 5146 goto out; 5147 5148 ret = -EINVAL; 5149 if (page->mem_cgroup != from) 5150 goto out_unlock; 5151 5152 anon = PageAnon(page); 5153 5154 spin_lock_irqsave(&from->move_lock, flags); 5155 5156 if (!anon && page_mapped(page)) { 5157 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 5158 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 5159 } 5160 5161 /* 5162 * move_lock grabbed above and caller set from->moving_account, so 5163 * mod_memcg_page_state will serialize updates to PageDirty. 5164 * So mapping should be stable for dirty pages. 5165 */ 5166 if (!anon && PageDirty(page)) { 5167 struct address_space *mapping = page_mapping(page); 5168 5169 if (mapping_cap_account_dirty(mapping)) { 5170 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 5171 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 5172 } 5173 } 5174 5175 if (PageWriteback(page)) { 5176 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 5177 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 5178 } 5179 5180 /* 5181 * It is safe to change page->mem_cgroup here because the page 5182 * is referenced, charged, and isolated - we can't race with 5183 * uncharging, charging, migration, or LRU putback. 5184 */ 5185 5186 /* caller should have done css_get */ 5187 page->mem_cgroup = to; 5188 spin_unlock_irqrestore(&from->move_lock, flags); 5189 5190 ret = 0; 5191 5192 local_irq_disable(); 5193 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5194 memcg_check_events(to, page); 5195 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5196 memcg_check_events(from, page); 5197 local_irq_enable(); 5198 out_unlock: 5199 unlock_page(page); 5200 out: 5201 return ret; 5202 } 5203 5204 /** 5205 * get_mctgt_type - get target type of moving charge 5206 * @vma: the vma the pte to be checked belongs 5207 * @addr: the address corresponding to the pte to be checked 5208 * @ptent: the pte to be checked 5209 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5210 * 5211 * Returns 5212 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5213 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5214 * move charge. if @target is not NULL, the page is stored in target->page 5215 * with extra refcnt got(Callers should handle it). 5216 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5217 * target for charge migration. if @target is not NULL, the entry is stored 5218 * in target->ent. 5219 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5220 * (so ZONE_DEVICE page and thus not on the lru). 5221 * For now we such page is charge like a regular page would be as for all 5222 * intent and purposes it is just special memory taking the place of a 5223 * regular page. 5224 * 5225 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5226 * 5227 * Called with pte lock held. 5228 */ 5229 5230 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5231 unsigned long addr, pte_t ptent, union mc_target *target) 5232 { 5233 struct page *page = NULL; 5234 enum mc_target_type ret = MC_TARGET_NONE; 5235 swp_entry_t ent = { .val = 0 }; 5236 5237 if (pte_present(ptent)) 5238 page = mc_handle_present_pte(vma, addr, ptent); 5239 else if (is_swap_pte(ptent)) 5240 page = mc_handle_swap_pte(vma, ptent, &ent); 5241 else if (pte_none(ptent)) 5242 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5243 5244 if (!page && !ent.val) 5245 return ret; 5246 if (page) { 5247 /* 5248 * Do only loose check w/o serialization. 5249 * mem_cgroup_move_account() checks the page is valid or 5250 * not under LRU exclusion. 5251 */ 5252 if (page->mem_cgroup == mc.from) { 5253 ret = MC_TARGET_PAGE; 5254 if (is_device_private_page(page)) 5255 ret = MC_TARGET_DEVICE; 5256 if (target) 5257 target->page = page; 5258 } 5259 if (!ret || !target) 5260 put_page(page); 5261 } 5262 /* 5263 * There is a swap entry and a page doesn't exist or isn't charged. 5264 * But we cannot move a tail-page in a THP. 5265 */ 5266 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5267 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5268 ret = MC_TARGET_SWAP; 5269 if (target) 5270 target->ent = ent; 5271 } 5272 return ret; 5273 } 5274 5275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5276 /* 5277 * We don't consider PMD mapped swapping or file mapped pages because THP does 5278 * not support them for now. 5279 * Caller should make sure that pmd_trans_huge(pmd) is true. 5280 */ 5281 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5282 unsigned long addr, pmd_t pmd, union mc_target *target) 5283 { 5284 struct page *page = NULL; 5285 enum mc_target_type ret = MC_TARGET_NONE; 5286 5287 if (unlikely(is_swap_pmd(pmd))) { 5288 VM_BUG_ON(thp_migration_supported() && 5289 !is_pmd_migration_entry(pmd)); 5290 return ret; 5291 } 5292 page = pmd_page(pmd); 5293 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5294 if (!(mc.flags & MOVE_ANON)) 5295 return ret; 5296 if (page->mem_cgroup == mc.from) { 5297 ret = MC_TARGET_PAGE; 5298 if (target) { 5299 get_page(page); 5300 target->page = page; 5301 } 5302 } 5303 return ret; 5304 } 5305 #else 5306 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5307 unsigned long addr, pmd_t pmd, union mc_target *target) 5308 { 5309 return MC_TARGET_NONE; 5310 } 5311 #endif 5312 5313 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5314 unsigned long addr, unsigned long end, 5315 struct mm_walk *walk) 5316 { 5317 struct vm_area_struct *vma = walk->vma; 5318 pte_t *pte; 5319 spinlock_t *ptl; 5320 5321 ptl = pmd_trans_huge_lock(pmd, vma); 5322 if (ptl) { 5323 /* 5324 * Note their can not be MC_TARGET_DEVICE for now as we do not 5325 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5326 * this might change. 5327 */ 5328 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5329 mc.precharge += HPAGE_PMD_NR; 5330 spin_unlock(ptl); 5331 return 0; 5332 } 5333 5334 if (pmd_trans_unstable(pmd)) 5335 return 0; 5336 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5337 for (; addr != end; pte++, addr += PAGE_SIZE) 5338 if (get_mctgt_type(vma, addr, *pte, NULL)) 5339 mc.precharge++; /* increment precharge temporarily */ 5340 pte_unmap_unlock(pte - 1, ptl); 5341 cond_resched(); 5342 5343 return 0; 5344 } 5345 5346 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5347 { 5348 unsigned long precharge; 5349 5350 struct mm_walk mem_cgroup_count_precharge_walk = { 5351 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5352 .mm = mm, 5353 }; 5354 down_read(&mm->mmap_sem); 5355 walk_page_range(0, mm->highest_vm_end, 5356 &mem_cgroup_count_precharge_walk); 5357 up_read(&mm->mmap_sem); 5358 5359 precharge = mc.precharge; 5360 mc.precharge = 0; 5361 5362 return precharge; 5363 } 5364 5365 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5366 { 5367 unsigned long precharge = mem_cgroup_count_precharge(mm); 5368 5369 VM_BUG_ON(mc.moving_task); 5370 mc.moving_task = current; 5371 return mem_cgroup_do_precharge(precharge); 5372 } 5373 5374 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5375 static void __mem_cgroup_clear_mc(void) 5376 { 5377 struct mem_cgroup *from = mc.from; 5378 struct mem_cgroup *to = mc.to; 5379 5380 /* we must uncharge all the leftover precharges from mc.to */ 5381 if (mc.precharge) { 5382 cancel_charge(mc.to, mc.precharge); 5383 mc.precharge = 0; 5384 } 5385 /* 5386 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5387 * we must uncharge here. 5388 */ 5389 if (mc.moved_charge) { 5390 cancel_charge(mc.from, mc.moved_charge); 5391 mc.moved_charge = 0; 5392 } 5393 /* we must fixup refcnts and charges */ 5394 if (mc.moved_swap) { 5395 /* uncharge swap account from the old cgroup */ 5396 if (!mem_cgroup_is_root(mc.from)) 5397 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5398 5399 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5400 5401 /* 5402 * we charged both to->memory and to->memsw, so we 5403 * should uncharge to->memory. 5404 */ 5405 if (!mem_cgroup_is_root(mc.to)) 5406 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5407 5408 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5409 css_put_many(&mc.to->css, mc.moved_swap); 5410 5411 mc.moved_swap = 0; 5412 } 5413 memcg_oom_recover(from); 5414 memcg_oom_recover(to); 5415 wake_up_all(&mc.waitq); 5416 } 5417 5418 static void mem_cgroup_clear_mc(void) 5419 { 5420 struct mm_struct *mm = mc.mm; 5421 5422 /* 5423 * we must clear moving_task before waking up waiters at the end of 5424 * task migration. 5425 */ 5426 mc.moving_task = NULL; 5427 __mem_cgroup_clear_mc(); 5428 spin_lock(&mc.lock); 5429 mc.from = NULL; 5430 mc.to = NULL; 5431 mc.mm = NULL; 5432 spin_unlock(&mc.lock); 5433 5434 mmput(mm); 5435 } 5436 5437 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5438 { 5439 struct cgroup_subsys_state *css; 5440 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5441 struct mem_cgroup *from; 5442 struct task_struct *leader, *p; 5443 struct mm_struct *mm; 5444 unsigned long move_flags; 5445 int ret = 0; 5446 5447 /* charge immigration isn't supported on the default hierarchy */ 5448 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5449 return 0; 5450 5451 /* 5452 * Multi-process migrations only happen on the default hierarchy 5453 * where charge immigration is not used. Perform charge 5454 * immigration if @tset contains a leader and whine if there are 5455 * multiple. 5456 */ 5457 p = NULL; 5458 cgroup_taskset_for_each_leader(leader, css, tset) { 5459 WARN_ON_ONCE(p); 5460 p = leader; 5461 memcg = mem_cgroup_from_css(css); 5462 } 5463 if (!p) 5464 return 0; 5465 5466 /* 5467 * We are now commited to this value whatever it is. Changes in this 5468 * tunable will only affect upcoming migrations, not the current one. 5469 * So we need to save it, and keep it going. 5470 */ 5471 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5472 if (!move_flags) 5473 return 0; 5474 5475 from = mem_cgroup_from_task(p); 5476 5477 VM_BUG_ON(from == memcg); 5478 5479 mm = get_task_mm(p); 5480 if (!mm) 5481 return 0; 5482 /* We move charges only when we move a owner of the mm */ 5483 if (mm->owner == p) { 5484 VM_BUG_ON(mc.from); 5485 VM_BUG_ON(mc.to); 5486 VM_BUG_ON(mc.precharge); 5487 VM_BUG_ON(mc.moved_charge); 5488 VM_BUG_ON(mc.moved_swap); 5489 5490 spin_lock(&mc.lock); 5491 mc.mm = mm; 5492 mc.from = from; 5493 mc.to = memcg; 5494 mc.flags = move_flags; 5495 spin_unlock(&mc.lock); 5496 /* We set mc.moving_task later */ 5497 5498 ret = mem_cgroup_precharge_mc(mm); 5499 if (ret) 5500 mem_cgroup_clear_mc(); 5501 } else { 5502 mmput(mm); 5503 } 5504 return ret; 5505 } 5506 5507 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5508 { 5509 if (mc.to) 5510 mem_cgroup_clear_mc(); 5511 } 5512 5513 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5514 unsigned long addr, unsigned long end, 5515 struct mm_walk *walk) 5516 { 5517 int ret = 0; 5518 struct vm_area_struct *vma = walk->vma; 5519 pte_t *pte; 5520 spinlock_t *ptl; 5521 enum mc_target_type target_type; 5522 union mc_target target; 5523 struct page *page; 5524 5525 ptl = pmd_trans_huge_lock(pmd, vma); 5526 if (ptl) { 5527 if (mc.precharge < HPAGE_PMD_NR) { 5528 spin_unlock(ptl); 5529 return 0; 5530 } 5531 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5532 if (target_type == MC_TARGET_PAGE) { 5533 page = target.page; 5534 if (!isolate_lru_page(page)) { 5535 if (!mem_cgroup_move_account(page, true, 5536 mc.from, mc.to)) { 5537 mc.precharge -= HPAGE_PMD_NR; 5538 mc.moved_charge += HPAGE_PMD_NR; 5539 } 5540 putback_lru_page(page); 5541 } 5542 put_page(page); 5543 } else if (target_type == MC_TARGET_DEVICE) { 5544 page = target.page; 5545 if (!mem_cgroup_move_account(page, true, 5546 mc.from, mc.to)) { 5547 mc.precharge -= HPAGE_PMD_NR; 5548 mc.moved_charge += HPAGE_PMD_NR; 5549 } 5550 put_page(page); 5551 } 5552 spin_unlock(ptl); 5553 return 0; 5554 } 5555 5556 if (pmd_trans_unstable(pmd)) 5557 return 0; 5558 retry: 5559 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5560 for (; addr != end; addr += PAGE_SIZE) { 5561 pte_t ptent = *(pte++); 5562 bool device = false; 5563 swp_entry_t ent; 5564 5565 if (!mc.precharge) 5566 break; 5567 5568 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5569 case MC_TARGET_DEVICE: 5570 device = true; 5571 /* fall through */ 5572 case MC_TARGET_PAGE: 5573 page = target.page; 5574 /* 5575 * We can have a part of the split pmd here. Moving it 5576 * can be done but it would be too convoluted so simply 5577 * ignore such a partial THP and keep it in original 5578 * memcg. There should be somebody mapping the head. 5579 */ 5580 if (PageTransCompound(page)) 5581 goto put; 5582 if (!device && isolate_lru_page(page)) 5583 goto put; 5584 if (!mem_cgroup_move_account(page, false, 5585 mc.from, mc.to)) { 5586 mc.precharge--; 5587 /* we uncharge from mc.from later. */ 5588 mc.moved_charge++; 5589 } 5590 if (!device) 5591 putback_lru_page(page); 5592 put: /* get_mctgt_type() gets the page */ 5593 put_page(page); 5594 break; 5595 case MC_TARGET_SWAP: 5596 ent = target.ent; 5597 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5598 mc.precharge--; 5599 /* we fixup refcnts and charges later. */ 5600 mc.moved_swap++; 5601 } 5602 break; 5603 default: 5604 break; 5605 } 5606 } 5607 pte_unmap_unlock(pte - 1, ptl); 5608 cond_resched(); 5609 5610 if (addr != end) { 5611 /* 5612 * We have consumed all precharges we got in can_attach(). 5613 * We try charge one by one, but don't do any additional 5614 * charges to mc.to if we have failed in charge once in attach() 5615 * phase. 5616 */ 5617 ret = mem_cgroup_do_precharge(1); 5618 if (!ret) 5619 goto retry; 5620 } 5621 5622 return ret; 5623 } 5624 5625 static void mem_cgroup_move_charge(void) 5626 { 5627 struct mm_walk mem_cgroup_move_charge_walk = { 5628 .pmd_entry = mem_cgroup_move_charge_pte_range, 5629 .mm = mc.mm, 5630 }; 5631 5632 lru_add_drain_all(); 5633 /* 5634 * Signal lock_page_memcg() to take the memcg's move_lock 5635 * while we're moving its pages to another memcg. Then wait 5636 * for already started RCU-only updates to finish. 5637 */ 5638 atomic_inc(&mc.from->moving_account); 5639 synchronize_rcu(); 5640 retry: 5641 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5642 /* 5643 * Someone who are holding the mmap_sem might be waiting in 5644 * waitq. So we cancel all extra charges, wake up all waiters, 5645 * and retry. Because we cancel precharges, we might not be able 5646 * to move enough charges, but moving charge is a best-effort 5647 * feature anyway, so it wouldn't be a big problem. 5648 */ 5649 __mem_cgroup_clear_mc(); 5650 cond_resched(); 5651 goto retry; 5652 } 5653 /* 5654 * When we have consumed all precharges and failed in doing 5655 * additional charge, the page walk just aborts. 5656 */ 5657 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5658 5659 up_read(&mc.mm->mmap_sem); 5660 atomic_dec(&mc.from->moving_account); 5661 } 5662 5663 static void mem_cgroup_move_task(void) 5664 { 5665 if (mc.to) { 5666 mem_cgroup_move_charge(); 5667 mem_cgroup_clear_mc(); 5668 } 5669 } 5670 #else /* !CONFIG_MMU */ 5671 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5672 { 5673 return 0; 5674 } 5675 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5676 { 5677 } 5678 static void mem_cgroup_move_task(void) 5679 { 5680 } 5681 #endif 5682 5683 /* 5684 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5685 * to verify whether we're attached to the default hierarchy on each mount 5686 * attempt. 5687 */ 5688 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5689 { 5690 /* 5691 * use_hierarchy is forced on the default hierarchy. cgroup core 5692 * guarantees that @root doesn't have any children, so turning it 5693 * on for the root memcg is enough. 5694 */ 5695 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5696 root_mem_cgroup->use_hierarchy = true; 5697 else 5698 root_mem_cgroup->use_hierarchy = false; 5699 } 5700 5701 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5702 { 5703 if (value == PAGE_COUNTER_MAX) 5704 seq_puts(m, "max\n"); 5705 else 5706 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5707 5708 return 0; 5709 } 5710 5711 static u64 memory_current_read(struct cgroup_subsys_state *css, 5712 struct cftype *cft) 5713 { 5714 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5715 5716 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5717 } 5718 5719 static int memory_min_show(struct seq_file *m, void *v) 5720 { 5721 return seq_puts_memcg_tunable(m, 5722 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5723 } 5724 5725 static ssize_t memory_min_write(struct kernfs_open_file *of, 5726 char *buf, size_t nbytes, loff_t off) 5727 { 5728 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5729 unsigned long min; 5730 int err; 5731 5732 buf = strstrip(buf); 5733 err = page_counter_memparse(buf, "max", &min); 5734 if (err) 5735 return err; 5736 5737 page_counter_set_min(&memcg->memory, min); 5738 5739 return nbytes; 5740 } 5741 5742 static int memory_low_show(struct seq_file *m, void *v) 5743 { 5744 return seq_puts_memcg_tunable(m, 5745 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5746 } 5747 5748 static ssize_t memory_low_write(struct kernfs_open_file *of, 5749 char *buf, size_t nbytes, loff_t off) 5750 { 5751 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5752 unsigned long low; 5753 int err; 5754 5755 buf = strstrip(buf); 5756 err = page_counter_memparse(buf, "max", &low); 5757 if (err) 5758 return err; 5759 5760 page_counter_set_low(&memcg->memory, low); 5761 5762 return nbytes; 5763 } 5764 5765 static int memory_high_show(struct seq_file *m, void *v) 5766 { 5767 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5768 } 5769 5770 static ssize_t memory_high_write(struct kernfs_open_file *of, 5771 char *buf, size_t nbytes, loff_t off) 5772 { 5773 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5774 unsigned long nr_pages; 5775 unsigned long high; 5776 int err; 5777 5778 buf = strstrip(buf); 5779 err = page_counter_memparse(buf, "max", &high); 5780 if (err) 5781 return err; 5782 5783 memcg->high = high; 5784 5785 nr_pages = page_counter_read(&memcg->memory); 5786 if (nr_pages > high) 5787 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5788 GFP_KERNEL, true); 5789 5790 memcg_wb_domain_size_changed(memcg); 5791 return nbytes; 5792 } 5793 5794 static int memory_max_show(struct seq_file *m, void *v) 5795 { 5796 return seq_puts_memcg_tunable(m, 5797 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5798 } 5799 5800 static ssize_t memory_max_write(struct kernfs_open_file *of, 5801 char *buf, size_t nbytes, loff_t off) 5802 { 5803 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5804 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5805 bool drained = false; 5806 unsigned long max; 5807 int err; 5808 5809 buf = strstrip(buf); 5810 err = page_counter_memparse(buf, "max", &max); 5811 if (err) 5812 return err; 5813 5814 xchg(&memcg->memory.max, max); 5815 5816 for (;;) { 5817 unsigned long nr_pages = page_counter_read(&memcg->memory); 5818 5819 if (nr_pages <= max) 5820 break; 5821 5822 if (signal_pending(current)) { 5823 err = -EINTR; 5824 break; 5825 } 5826 5827 if (!drained) { 5828 drain_all_stock(memcg); 5829 drained = true; 5830 continue; 5831 } 5832 5833 if (nr_reclaims) { 5834 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5835 GFP_KERNEL, true)) 5836 nr_reclaims--; 5837 continue; 5838 } 5839 5840 memcg_memory_event(memcg, MEMCG_OOM); 5841 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5842 break; 5843 } 5844 5845 memcg_wb_domain_size_changed(memcg); 5846 return nbytes; 5847 } 5848 5849 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 5850 { 5851 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 5852 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 5853 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 5854 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 5855 seq_printf(m, "oom_kill %lu\n", 5856 atomic_long_read(&events[MEMCG_OOM_KILL])); 5857 } 5858 5859 static int memory_events_show(struct seq_file *m, void *v) 5860 { 5861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5862 5863 __memory_events_show(m, memcg->memory_events); 5864 return 0; 5865 } 5866 5867 static int memory_events_local_show(struct seq_file *m, void *v) 5868 { 5869 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5870 5871 __memory_events_show(m, memcg->memory_events_local); 5872 return 0; 5873 } 5874 5875 static int memory_stat_show(struct seq_file *m, void *v) 5876 { 5877 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5878 char *buf; 5879 5880 buf = memory_stat_format(memcg); 5881 if (!buf) 5882 return -ENOMEM; 5883 seq_puts(m, buf); 5884 kfree(buf); 5885 return 0; 5886 } 5887 5888 static int memory_oom_group_show(struct seq_file *m, void *v) 5889 { 5890 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5891 5892 seq_printf(m, "%d\n", memcg->oom_group); 5893 5894 return 0; 5895 } 5896 5897 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5898 char *buf, size_t nbytes, loff_t off) 5899 { 5900 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5901 int ret, oom_group; 5902 5903 buf = strstrip(buf); 5904 if (!buf) 5905 return -EINVAL; 5906 5907 ret = kstrtoint(buf, 0, &oom_group); 5908 if (ret) 5909 return ret; 5910 5911 if (oom_group != 0 && oom_group != 1) 5912 return -EINVAL; 5913 5914 memcg->oom_group = oom_group; 5915 5916 return nbytes; 5917 } 5918 5919 static struct cftype memory_files[] = { 5920 { 5921 .name = "current", 5922 .flags = CFTYPE_NOT_ON_ROOT, 5923 .read_u64 = memory_current_read, 5924 }, 5925 { 5926 .name = "min", 5927 .flags = CFTYPE_NOT_ON_ROOT, 5928 .seq_show = memory_min_show, 5929 .write = memory_min_write, 5930 }, 5931 { 5932 .name = "low", 5933 .flags = CFTYPE_NOT_ON_ROOT, 5934 .seq_show = memory_low_show, 5935 .write = memory_low_write, 5936 }, 5937 { 5938 .name = "high", 5939 .flags = CFTYPE_NOT_ON_ROOT, 5940 .seq_show = memory_high_show, 5941 .write = memory_high_write, 5942 }, 5943 { 5944 .name = "max", 5945 .flags = CFTYPE_NOT_ON_ROOT, 5946 .seq_show = memory_max_show, 5947 .write = memory_max_write, 5948 }, 5949 { 5950 .name = "events", 5951 .flags = CFTYPE_NOT_ON_ROOT, 5952 .file_offset = offsetof(struct mem_cgroup, events_file), 5953 .seq_show = memory_events_show, 5954 }, 5955 { 5956 .name = "events.local", 5957 .flags = CFTYPE_NOT_ON_ROOT, 5958 .file_offset = offsetof(struct mem_cgroup, events_local_file), 5959 .seq_show = memory_events_local_show, 5960 }, 5961 { 5962 .name = "stat", 5963 .flags = CFTYPE_NOT_ON_ROOT, 5964 .seq_show = memory_stat_show, 5965 }, 5966 { 5967 .name = "oom.group", 5968 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5969 .seq_show = memory_oom_group_show, 5970 .write = memory_oom_group_write, 5971 }, 5972 { } /* terminate */ 5973 }; 5974 5975 struct cgroup_subsys memory_cgrp_subsys = { 5976 .css_alloc = mem_cgroup_css_alloc, 5977 .css_online = mem_cgroup_css_online, 5978 .css_offline = mem_cgroup_css_offline, 5979 .css_released = mem_cgroup_css_released, 5980 .css_free = mem_cgroup_css_free, 5981 .css_reset = mem_cgroup_css_reset, 5982 .can_attach = mem_cgroup_can_attach, 5983 .cancel_attach = mem_cgroup_cancel_attach, 5984 .post_attach = mem_cgroup_move_task, 5985 .bind = mem_cgroup_bind, 5986 .dfl_cftypes = memory_files, 5987 .legacy_cftypes = mem_cgroup_legacy_files, 5988 .early_init = 0, 5989 }; 5990 5991 /** 5992 * mem_cgroup_protected - check if memory consumption is in the normal range 5993 * @root: the top ancestor of the sub-tree being checked 5994 * @memcg: the memory cgroup to check 5995 * 5996 * WARNING: This function is not stateless! It can only be used as part 5997 * of a top-down tree iteration, not for isolated queries. 5998 * 5999 * Returns one of the following: 6000 * MEMCG_PROT_NONE: cgroup memory is not protected 6001 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6002 * an unprotected supply of reclaimable memory from other cgroups. 6003 * MEMCG_PROT_MIN: cgroup memory is protected 6004 * 6005 * @root is exclusive; it is never protected when looked at directly 6006 * 6007 * To provide a proper hierarchical behavior, effective memory.min/low values 6008 * are used. Below is the description of how effective memory.low is calculated. 6009 * Effective memory.min values is calculated in the same way. 6010 * 6011 * Effective memory.low is always equal or less than the original memory.low. 6012 * If there is no memory.low overcommittment (which is always true for 6013 * top-level memory cgroups), these two values are equal. 6014 * Otherwise, it's a part of parent's effective memory.low, 6015 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6016 * memory.low usages, where memory.low usage is the size of actually 6017 * protected memory. 6018 * 6019 * low_usage 6020 * elow = min( memory.low, parent->elow * ------------------ ), 6021 * siblings_low_usage 6022 * 6023 * | memory.current, if memory.current < memory.low 6024 * low_usage = | 6025 * | 0, otherwise. 6026 * 6027 * 6028 * Such definition of the effective memory.low provides the expected 6029 * hierarchical behavior: parent's memory.low value is limiting 6030 * children, unprotected memory is reclaimed first and cgroups, 6031 * which are not using their guarantee do not affect actual memory 6032 * distribution. 6033 * 6034 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6035 * 6036 * A A/memory.low = 2G, A/memory.current = 6G 6037 * //\\ 6038 * BC DE B/memory.low = 3G B/memory.current = 2G 6039 * C/memory.low = 1G C/memory.current = 2G 6040 * D/memory.low = 0 D/memory.current = 2G 6041 * E/memory.low = 10G E/memory.current = 0 6042 * 6043 * and the memory pressure is applied, the following memory distribution 6044 * is expected (approximately): 6045 * 6046 * A/memory.current = 2G 6047 * 6048 * B/memory.current = 1.3G 6049 * C/memory.current = 0.6G 6050 * D/memory.current = 0 6051 * E/memory.current = 0 6052 * 6053 * These calculations require constant tracking of the actual low usages 6054 * (see propagate_protected_usage()), as well as recursive calculation of 6055 * effective memory.low values. But as we do call mem_cgroup_protected() 6056 * path for each memory cgroup top-down from the reclaim, 6057 * it's possible to optimize this part, and save calculated elow 6058 * for next usage. This part is intentionally racy, but it's ok, 6059 * as memory.low is a best-effort mechanism. 6060 */ 6061 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6062 struct mem_cgroup *memcg) 6063 { 6064 struct mem_cgroup *parent; 6065 unsigned long emin, parent_emin; 6066 unsigned long elow, parent_elow; 6067 unsigned long usage; 6068 6069 if (mem_cgroup_disabled()) 6070 return MEMCG_PROT_NONE; 6071 6072 if (!root) 6073 root = root_mem_cgroup; 6074 if (memcg == root) 6075 return MEMCG_PROT_NONE; 6076 6077 usage = page_counter_read(&memcg->memory); 6078 if (!usage) 6079 return MEMCG_PROT_NONE; 6080 6081 emin = memcg->memory.min; 6082 elow = memcg->memory.low; 6083 6084 parent = parent_mem_cgroup(memcg); 6085 /* No parent means a non-hierarchical mode on v1 memcg */ 6086 if (!parent) 6087 return MEMCG_PROT_NONE; 6088 6089 if (parent == root) 6090 goto exit; 6091 6092 parent_emin = READ_ONCE(parent->memory.emin); 6093 emin = min(emin, parent_emin); 6094 if (emin && parent_emin) { 6095 unsigned long min_usage, siblings_min_usage; 6096 6097 min_usage = min(usage, memcg->memory.min); 6098 siblings_min_usage = atomic_long_read( 6099 &parent->memory.children_min_usage); 6100 6101 if (min_usage && siblings_min_usage) 6102 emin = min(emin, parent_emin * min_usage / 6103 siblings_min_usage); 6104 } 6105 6106 parent_elow = READ_ONCE(parent->memory.elow); 6107 elow = min(elow, parent_elow); 6108 if (elow && parent_elow) { 6109 unsigned long low_usage, siblings_low_usage; 6110 6111 low_usage = min(usage, memcg->memory.low); 6112 siblings_low_usage = atomic_long_read( 6113 &parent->memory.children_low_usage); 6114 6115 if (low_usage && siblings_low_usage) 6116 elow = min(elow, parent_elow * low_usage / 6117 siblings_low_usage); 6118 } 6119 6120 exit: 6121 memcg->memory.emin = emin; 6122 memcg->memory.elow = elow; 6123 6124 if (usage <= emin) 6125 return MEMCG_PROT_MIN; 6126 else if (usage <= elow) 6127 return MEMCG_PROT_LOW; 6128 else 6129 return MEMCG_PROT_NONE; 6130 } 6131 6132 /** 6133 * mem_cgroup_try_charge - try charging a page 6134 * @page: page to charge 6135 * @mm: mm context of the victim 6136 * @gfp_mask: reclaim mode 6137 * @memcgp: charged memcg return 6138 * @compound: charge the page as compound or small page 6139 * 6140 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6141 * pages according to @gfp_mask if necessary. 6142 * 6143 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6144 * Otherwise, an error code is returned. 6145 * 6146 * After page->mapping has been set up, the caller must finalize the 6147 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6148 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6149 */ 6150 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6151 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6152 bool compound) 6153 { 6154 struct mem_cgroup *memcg = NULL; 6155 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6156 int ret = 0; 6157 6158 if (mem_cgroup_disabled()) 6159 goto out; 6160 6161 if (PageSwapCache(page)) { 6162 /* 6163 * Every swap fault against a single page tries to charge the 6164 * page, bail as early as possible. shmem_unuse() encounters 6165 * already charged pages, too. The USED bit is protected by 6166 * the page lock, which serializes swap cache removal, which 6167 * in turn serializes uncharging. 6168 */ 6169 VM_BUG_ON_PAGE(!PageLocked(page), page); 6170 if (compound_head(page)->mem_cgroup) 6171 goto out; 6172 6173 if (do_swap_account) { 6174 swp_entry_t ent = { .val = page_private(page), }; 6175 unsigned short id = lookup_swap_cgroup_id(ent); 6176 6177 rcu_read_lock(); 6178 memcg = mem_cgroup_from_id(id); 6179 if (memcg && !css_tryget_online(&memcg->css)) 6180 memcg = NULL; 6181 rcu_read_unlock(); 6182 } 6183 } 6184 6185 if (!memcg) 6186 memcg = get_mem_cgroup_from_mm(mm); 6187 6188 ret = try_charge(memcg, gfp_mask, nr_pages); 6189 6190 css_put(&memcg->css); 6191 out: 6192 *memcgp = memcg; 6193 return ret; 6194 } 6195 6196 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6197 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6198 bool compound) 6199 { 6200 struct mem_cgroup *memcg; 6201 int ret; 6202 6203 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6204 memcg = *memcgp; 6205 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6206 return ret; 6207 } 6208 6209 /** 6210 * mem_cgroup_commit_charge - commit a page charge 6211 * @page: page to charge 6212 * @memcg: memcg to charge the page to 6213 * @lrucare: page might be on LRU already 6214 * @compound: charge the page as compound or small page 6215 * 6216 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6217 * after page->mapping has been set up. This must happen atomically 6218 * as part of the page instantiation, i.e. under the page table lock 6219 * for anonymous pages, under the page lock for page and swap cache. 6220 * 6221 * In addition, the page must not be on the LRU during the commit, to 6222 * prevent racing with task migration. If it might be, use @lrucare. 6223 * 6224 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6225 */ 6226 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6227 bool lrucare, bool compound) 6228 { 6229 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6230 6231 VM_BUG_ON_PAGE(!page->mapping, page); 6232 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6233 6234 if (mem_cgroup_disabled()) 6235 return; 6236 /* 6237 * Swap faults will attempt to charge the same page multiple 6238 * times. But reuse_swap_page() might have removed the page 6239 * from swapcache already, so we can't check PageSwapCache(). 6240 */ 6241 if (!memcg) 6242 return; 6243 6244 commit_charge(page, memcg, lrucare); 6245 6246 local_irq_disable(); 6247 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6248 memcg_check_events(memcg, page); 6249 local_irq_enable(); 6250 6251 if (do_memsw_account() && PageSwapCache(page)) { 6252 swp_entry_t entry = { .val = page_private(page) }; 6253 /* 6254 * The swap entry might not get freed for a long time, 6255 * let's not wait for it. The page already received a 6256 * memory+swap charge, drop the swap entry duplicate. 6257 */ 6258 mem_cgroup_uncharge_swap(entry, nr_pages); 6259 } 6260 } 6261 6262 /** 6263 * mem_cgroup_cancel_charge - cancel a page charge 6264 * @page: page to charge 6265 * @memcg: memcg to charge the page to 6266 * @compound: charge the page as compound or small page 6267 * 6268 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6269 */ 6270 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6271 bool compound) 6272 { 6273 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6274 6275 if (mem_cgroup_disabled()) 6276 return; 6277 /* 6278 * Swap faults will attempt to charge the same page multiple 6279 * times. But reuse_swap_page() might have removed the page 6280 * from swapcache already, so we can't check PageSwapCache(). 6281 */ 6282 if (!memcg) 6283 return; 6284 6285 cancel_charge(memcg, nr_pages); 6286 } 6287 6288 struct uncharge_gather { 6289 struct mem_cgroup *memcg; 6290 unsigned long pgpgout; 6291 unsigned long nr_anon; 6292 unsigned long nr_file; 6293 unsigned long nr_kmem; 6294 unsigned long nr_huge; 6295 unsigned long nr_shmem; 6296 struct page *dummy_page; 6297 }; 6298 6299 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6300 { 6301 memset(ug, 0, sizeof(*ug)); 6302 } 6303 6304 static void uncharge_batch(const struct uncharge_gather *ug) 6305 { 6306 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6307 unsigned long flags; 6308 6309 if (!mem_cgroup_is_root(ug->memcg)) { 6310 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6311 if (do_memsw_account()) 6312 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6313 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6314 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6315 memcg_oom_recover(ug->memcg); 6316 } 6317 6318 local_irq_save(flags); 6319 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6320 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6321 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6322 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6323 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6324 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6325 memcg_check_events(ug->memcg, ug->dummy_page); 6326 local_irq_restore(flags); 6327 6328 if (!mem_cgroup_is_root(ug->memcg)) 6329 css_put_many(&ug->memcg->css, nr_pages); 6330 } 6331 6332 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6333 { 6334 VM_BUG_ON_PAGE(PageLRU(page), page); 6335 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6336 !PageHWPoison(page) , page); 6337 6338 if (!page->mem_cgroup) 6339 return; 6340 6341 /* 6342 * Nobody should be changing or seriously looking at 6343 * page->mem_cgroup at this point, we have fully 6344 * exclusive access to the page. 6345 */ 6346 6347 if (ug->memcg != page->mem_cgroup) { 6348 if (ug->memcg) { 6349 uncharge_batch(ug); 6350 uncharge_gather_clear(ug); 6351 } 6352 ug->memcg = page->mem_cgroup; 6353 } 6354 6355 if (!PageKmemcg(page)) { 6356 unsigned int nr_pages = 1; 6357 6358 if (PageTransHuge(page)) { 6359 nr_pages <<= compound_order(page); 6360 ug->nr_huge += nr_pages; 6361 } 6362 if (PageAnon(page)) 6363 ug->nr_anon += nr_pages; 6364 else { 6365 ug->nr_file += nr_pages; 6366 if (PageSwapBacked(page)) 6367 ug->nr_shmem += nr_pages; 6368 } 6369 ug->pgpgout++; 6370 } else { 6371 ug->nr_kmem += 1 << compound_order(page); 6372 __ClearPageKmemcg(page); 6373 } 6374 6375 ug->dummy_page = page; 6376 page->mem_cgroup = NULL; 6377 } 6378 6379 static void uncharge_list(struct list_head *page_list) 6380 { 6381 struct uncharge_gather ug; 6382 struct list_head *next; 6383 6384 uncharge_gather_clear(&ug); 6385 6386 /* 6387 * Note that the list can be a single page->lru; hence the 6388 * do-while loop instead of a simple list_for_each_entry(). 6389 */ 6390 next = page_list->next; 6391 do { 6392 struct page *page; 6393 6394 page = list_entry(next, struct page, lru); 6395 next = page->lru.next; 6396 6397 uncharge_page(page, &ug); 6398 } while (next != page_list); 6399 6400 if (ug.memcg) 6401 uncharge_batch(&ug); 6402 } 6403 6404 /** 6405 * mem_cgroup_uncharge - uncharge a page 6406 * @page: page to uncharge 6407 * 6408 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6409 * mem_cgroup_commit_charge(). 6410 */ 6411 void mem_cgroup_uncharge(struct page *page) 6412 { 6413 struct uncharge_gather ug; 6414 6415 if (mem_cgroup_disabled()) 6416 return; 6417 6418 /* Don't touch page->lru of any random page, pre-check: */ 6419 if (!page->mem_cgroup) 6420 return; 6421 6422 uncharge_gather_clear(&ug); 6423 uncharge_page(page, &ug); 6424 uncharge_batch(&ug); 6425 } 6426 6427 /** 6428 * mem_cgroup_uncharge_list - uncharge a list of page 6429 * @page_list: list of pages to uncharge 6430 * 6431 * Uncharge a list of pages previously charged with 6432 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6433 */ 6434 void mem_cgroup_uncharge_list(struct list_head *page_list) 6435 { 6436 if (mem_cgroup_disabled()) 6437 return; 6438 6439 if (!list_empty(page_list)) 6440 uncharge_list(page_list); 6441 } 6442 6443 /** 6444 * mem_cgroup_migrate - charge a page's replacement 6445 * @oldpage: currently circulating page 6446 * @newpage: replacement page 6447 * 6448 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6449 * be uncharged upon free. 6450 * 6451 * Both pages must be locked, @newpage->mapping must be set up. 6452 */ 6453 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6454 { 6455 struct mem_cgroup *memcg; 6456 unsigned int nr_pages; 6457 bool compound; 6458 unsigned long flags; 6459 6460 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6461 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6462 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6463 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6464 newpage); 6465 6466 if (mem_cgroup_disabled()) 6467 return; 6468 6469 /* Page cache replacement: new page already charged? */ 6470 if (newpage->mem_cgroup) 6471 return; 6472 6473 /* Swapcache readahead pages can get replaced before being charged */ 6474 memcg = oldpage->mem_cgroup; 6475 if (!memcg) 6476 return; 6477 6478 /* Force-charge the new page. The old one will be freed soon */ 6479 compound = PageTransHuge(newpage); 6480 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6481 6482 page_counter_charge(&memcg->memory, nr_pages); 6483 if (do_memsw_account()) 6484 page_counter_charge(&memcg->memsw, nr_pages); 6485 css_get_many(&memcg->css, nr_pages); 6486 6487 commit_charge(newpage, memcg, false); 6488 6489 local_irq_save(flags); 6490 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6491 memcg_check_events(memcg, newpage); 6492 local_irq_restore(flags); 6493 } 6494 6495 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6496 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6497 6498 void mem_cgroup_sk_alloc(struct sock *sk) 6499 { 6500 struct mem_cgroup *memcg; 6501 6502 if (!mem_cgroup_sockets_enabled) 6503 return; 6504 6505 /* 6506 * Socket cloning can throw us here with sk_memcg already 6507 * filled. It won't however, necessarily happen from 6508 * process context. So the test for root memcg given 6509 * the current task's memcg won't help us in this case. 6510 * 6511 * Respecting the original socket's memcg is a better 6512 * decision in this case. 6513 */ 6514 if (sk->sk_memcg) { 6515 css_get(&sk->sk_memcg->css); 6516 return; 6517 } 6518 6519 rcu_read_lock(); 6520 memcg = mem_cgroup_from_task(current); 6521 if (memcg == root_mem_cgroup) 6522 goto out; 6523 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6524 goto out; 6525 if (css_tryget_online(&memcg->css)) 6526 sk->sk_memcg = memcg; 6527 out: 6528 rcu_read_unlock(); 6529 } 6530 6531 void mem_cgroup_sk_free(struct sock *sk) 6532 { 6533 if (sk->sk_memcg) 6534 css_put(&sk->sk_memcg->css); 6535 } 6536 6537 /** 6538 * mem_cgroup_charge_skmem - charge socket memory 6539 * @memcg: memcg to charge 6540 * @nr_pages: number of pages to charge 6541 * 6542 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6543 * @memcg's configured limit, %false if the charge had to be forced. 6544 */ 6545 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6546 { 6547 gfp_t gfp_mask = GFP_KERNEL; 6548 6549 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6550 struct page_counter *fail; 6551 6552 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6553 memcg->tcpmem_pressure = 0; 6554 return true; 6555 } 6556 page_counter_charge(&memcg->tcpmem, nr_pages); 6557 memcg->tcpmem_pressure = 1; 6558 return false; 6559 } 6560 6561 /* Don't block in the packet receive path */ 6562 if (in_softirq()) 6563 gfp_mask = GFP_NOWAIT; 6564 6565 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6566 6567 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6568 return true; 6569 6570 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6571 return false; 6572 } 6573 6574 /** 6575 * mem_cgroup_uncharge_skmem - uncharge socket memory 6576 * @memcg: memcg to uncharge 6577 * @nr_pages: number of pages to uncharge 6578 */ 6579 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6580 { 6581 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6582 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6583 return; 6584 } 6585 6586 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6587 6588 refill_stock(memcg, nr_pages); 6589 } 6590 6591 static int __init cgroup_memory(char *s) 6592 { 6593 char *token; 6594 6595 while ((token = strsep(&s, ",")) != NULL) { 6596 if (!*token) 6597 continue; 6598 if (!strcmp(token, "nosocket")) 6599 cgroup_memory_nosocket = true; 6600 if (!strcmp(token, "nokmem")) 6601 cgroup_memory_nokmem = true; 6602 } 6603 return 0; 6604 } 6605 __setup("cgroup.memory=", cgroup_memory); 6606 6607 /* 6608 * subsys_initcall() for memory controller. 6609 * 6610 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6611 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6612 * basically everything that doesn't depend on a specific mem_cgroup structure 6613 * should be initialized from here. 6614 */ 6615 static int __init mem_cgroup_init(void) 6616 { 6617 int cpu, node; 6618 6619 #ifdef CONFIG_MEMCG_KMEM 6620 /* 6621 * Kmem cache creation is mostly done with the slab_mutex held, 6622 * so use a workqueue with limited concurrency to avoid stalling 6623 * all worker threads in case lots of cgroups are created and 6624 * destroyed simultaneously. 6625 */ 6626 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6627 BUG_ON(!memcg_kmem_cache_wq); 6628 #endif 6629 6630 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6631 memcg_hotplug_cpu_dead); 6632 6633 for_each_possible_cpu(cpu) 6634 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6635 drain_local_stock); 6636 6637 for_each_node(node) { 6638 struct mem_cgroup_tree_per_node *rtpn; 6639 6640 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6641 node_online(node) ? node : NUMA_NO_NODE); 6642 6643 rtpn->rb_root = RB_ROOT; 6644 rtpn->rb_rightmost = NULL; 6645 spin_lock_init(&rtpn->lock); 6646 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6647 } 6648 6649 return 0; 6650 } 6651 subsys_initcall(mem_cgroup_init); 6652 6653 #ifdef CONFIG_MEMCG_SWAP 6654 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6655 { 6656 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6657 /* 6658 * The root cgroup cannot be destroyed, so it's refcount must 6659 * always be >= 1. 6660 */ 6661 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6662 VM_BUG_ON(1); 6663 break; 6664 } 6665 memcg = parent_mem_cgroup(memcg); 6666 if (!memcg) 6667 memcg = root_mem_cgroup; 6668 } 6669 return memcg; 6670 } 6671 6672 /** 6673 * mem_cgroup_swapout - transfer a memsw charge to swap 6674 * @page: page whose memsw charge to transfer 6675 * @entry: swap entry to move the charge to 6676 * 6677 * Transfer the memsw charge of @page to @entry. 6678 */ 6679 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6680 { 6681 struct mem_cgroup *memcg, *swap_memcg; 6682 unsigned int nr_entries; 6683 unsigned short oldid; 6684 6685 VM_BUG_ON_PAGE(PageLRU(page), page); 6686 VM_BUG_ON_PAGE(page_count(page), page); 6687 6688 if (!do_memsw_account()) 6689 return; 6690 6691 memcg = page->mem_cgroup; 6692 6693 /* Readahead page, never charged */ 6694 if (!memcg) 6695 return; 6696 6697 /* 6698 * In case the memcg owning these pages has been offlined and doesn't 6699 * have an ID allocated to it anymore, charge the closest online 6700 * ancestor for the swap instead and transfer the memory+swap charge. 6701 */ 6702 swap_memcg = mem_cgroup_id_get_online(memcg); 6703 nr_entries = hpage_nr_pages(page); 6704 /* Get references for the tail pages, too */ 6705 if (nr_entries > 1) 6706 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6707 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6708 nr_entries); 6709 VM_BUG_ON_PAGE(oldid, page); 6710 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6711 6712 page->mem_cgroup = NULL; 6713 6714 if (!mem_cgroup_is_root(memcg)) 6715 page_counter_uncharge(&memcg->memory, nr_entries); 6716 6717 if (memcg != swap_memcg) { 6718 if (!mem_cgroup_is_root(swap_memcg)) 6719 page_counter_charge(&swap_memcg->memsw, nr_entries); 6720 page_counter_uncharge(&memcg->memsw, nr_entries); 6721 } 6722 6723 /* 6724 * Interrupts should be disabled here because the caller holds the 6725 * i_pages lock which is taken with interrupts-off. It is 6726 * important here to have the interrupts disabled because it is the 6727 * only synchronisation we have for updating the per-CPU variables. 6728 */ 6729 VM_BUG_ON(!irqs_disabled()); 6730 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6731 -nr_entries); 6732 memcg_check_events(memcg, page); 6733 6734 if (!mem_cgroup_is_root(memcg)) 6735 css_put_many(&memcg->css, nr_entries); 6736 } 6737 6738 /** 6739 * mem_cgroup_try_charge_swap - try charging swap space for a page 6740 * @page: page being added to swap 6741 * @entry: swap entry to charge 6742 * 6743 * Try to charge @page's memcg for the swap space at @entry. 6744 * 6745 * Returns 0 on success, -ENOMEM on failure. 6746 */ 6747 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6748 { 6749 unsigned int nr_pages = hpage_nr_pages(page); 6750 struct page_counter *counter; 6751 struct mem_cgroup *memcg; 6752 unsigned short oldid; 6753 6754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6755 return 0; 6756 6757 memcg = page->mem_cgroup; 6758 6759 /* Readahead page, never charged */ 6760 if (!memcg) 6761 return 0; 6762 6763 if (!entry.val) { 6764 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6765 return 0; 6766 } 6767 6768 memcg = mem_cgroup_id_get_online(memcg); 6769 6770 if (!mem_cgroup_is_root(memcg) && 6771 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6772 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6773 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6774 mem_cgroup_id_put(memcg); 6775 return -ENOMEM; 6776 } 6777 6778 /* Get references for the tail pages, too */ 6779 if (nr_pages > 1) 6780 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6781 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6782 VM_BUG_ON_PAGE(oldid, page); 6783 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6784 6785 return 0; 6786 } 6787 6788 /** 6789 * mem_cgroup_uncharge_swap - uncharge swap space 6790 * @entry: swap entry to uncharge 6791 * @nr_pages: the amount of swap space to uncharge 6792 */ 6793 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6794 { 6795 struct mem_cgroup *memcg; 6796 unsigned short id; 6797 6798 if (!do_swap_account) 6799 return; 6800 6801 id = swap_cgroup_record(entry, 0, nr_pages); 6802 rcu_read_lock(); 6803 memcg = mem_cgroup_from_id(id); 6804 if (memcg) { 6805 if (!mem_cgroup_is_root(memcg)) { 6806 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6807 page_counter_uncharge(&memcg->swap, nr_pages); 6808 else 6809 page_counter_uncharge(&memcg->memsw, nr_pages); 6810 } 6811 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6812 mem_cgroup_id_put_many(memcg, nr_pages); 6813 } 6814 rcu_read_unlock(); 6815 } 6816 6817 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6818 { 6819 long nr_swap_pages = get_nr_swap_pages(); 6820 6821 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6822 return nr_swap_pages; 6823 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6824 nr_swap_pages = min_t(long, nr_swap_pages, 6825 READ_ONCE(memcg->swap.max) - 6826 page_counter_read(&memcg->swap)); 6827 return nr_swap_pages; 6828 } 6829 6830 bool mem_cgroup_swap_full(struct page *page) 6831 { 6832 struct mem_cgroup *memcg; 6833 6834 VM_BUG_ON_PAGE(!PageLocked(page), page); 6835 6836 if (vm_swap_full()) 6837 return true; 6838 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6839 return false; 6840 6841 memcg = page->mem_cgroup; 6842 if (!memcg) 6843 return false; 6844 6845 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6846 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6847 return true; 6848 6849 return false; 6850 } 6851 6852 /* for remember boot option*/ 6853 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6854 static int really_do_swap_account __initdata = 1; 6855 #else 6856 static int really_do_swap_account __initdata; 6857 #endif 6858 6859 static int __init enable_swap_account(char *s) 6860 { 6861 if (!strcmp(s, "1")) 6862 really_do_swap_account = 1; 6863 else if (!strcmp(s, "0")) 6864 really_do_swap_account = 0; 6865 return 1; 6866 } 6867 __setup("swapaccount=", enable_swap_account); 6868 6869 static u64 swap_current_read(struct cgroup_subsys_state *css, 6870 struct cftype *cft) 6871 { 6872 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6873 6874 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6875 } 6876 6877 static int swap_max_show(struct seq_file *m, void *v) 6878 { 6879 return seq_puts_memcg_tunable(m, 6880 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6881 } 6882 6883 static ssize_t swap_max_write(struct kernfs_open_file *of, 6884 char *buf, size_t nbytes, loff_t off) 6885 { 6886 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6887 unsigned long max; 6888 int err; 6889 6890 buf = strstrip(buf); 6891 err = page_counter_memparse(buf, "max", &max); 6892 if (err) 6893 return err; 6894 6895 xchg(&memcg->swap.max, max); 6896 6897 return nbytes; 6898 } 6899 6900 static int swap_events_show(struct seq_file *m, void *v) 6901 { 6902 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6903 6904 seq_printf(m, "max %lu\n", 6905 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6906 seq_printf(m, "fail %lu\n", 6907 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6908 6909 return 0; 6910 } 6911 6912 static struct cftype swap_files[] = { 6913 { 6914 .name = "swap.current", 6915 .flags = CFTYPE_NOT_ON_ROOT, 6916 .read_u64 = swap_current_read, 6917 }, 6918 { 6919 .name = "swap.max", 6920 .flags = CFTYPE_NOT_ON_ROOT, 6921 .seq_show = swap_max_show, 6922 .write = swap_max_write, 6923 }, 6924 { 6925 .name = "swap.events", 6926 .flags = CFTYPE_NOT_ON_ROOT, 6927 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6928 .seq_show = swap_events_show, 6929 }, 6930 { } /* terminate */ 6931 }; 6932 6933 static struct cftype memsw_cgroup_files[] = { 6934 { 6935 .name = "memsw.usage_in_bytes", 6936 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6937 .read_u64 = mem_cgroup_read_u64, 6938 }, 6939 { 6940 .name = "memsw.max_usage_in_bytes", 6941 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6942 .write = mem_cgroup_reset, 6943 .read_u64 = mem_cgroup_read_u64, 6944 }, 6945 { 6946 .name = "memsw.limit_in_bytes", 6947 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6948 .write = mem_cgroup_write, 6949 .read_u64 = mem_cgroup_read_u64, 6950 }, 6951 { 6952 .name = "memsw.failcnt", 6953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6954 .write = mem_cgroup_reset, 6955 .read_u64 = mem_cgroup_read_u64, 6956 }, 6957 { }, /* terminate */ 6958 }; 6959 6960 static int __init mem_cgroup_swap_init(void) 6961 { 6962 if (!mem_cgroup_disabled() && really_do_swap_account) { 6963 do_swap_account = 1; 6964 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6965 swap_files)); 6966 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6967 memsw_cgroup_files)); 6968 } 6969 return 0; 6970 } 6971 subsys_initcall(mem_cgroup_swap_init); 6972 6973 #endif /* CONFIG_MEMCG_SWAP */ 6974