1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 bool cgroup_memory_noswap __read_mostly; 91 #else 92 #define cgroup_memory_noswap 1 93 #endif 94 95 #ifdef CONFIG_CGROUP_WRITEBACK 96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 97 #endif 98 99 /* Whether legacy memory+swap accounting is active */ 100 static bool do_memsw_account(void) 101 { 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 103 } 104 105 #define THRESHOLDS_EVENTS_TARGET 128 106 #define SOFTLIMIT_EVENTS_TARGET 1024 107 108 /* 109 * Cgroups above their limits are maintained in a RB-Tree, independent of 110 * their hierarchy representation 111 */ 112 113 struct mem_cgroup_tree_per_node { 114 struct rb_root rb_root; 115 struct rb_node *rb_rightmost; 116 spinlock_t lock; 117 }; 118 119 struct mem_cgroup_tree { 120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 121 }; 122 123 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 124 125 /* for OOM */ 126 struct mem_cgroup_eventfd_list { 127 struct list_head list; 128 struct eventfd_ctx *eventfd; 129 }; 130 131 /* 132 * cgroup_event represents events which userspace want to receive. 133 */ 134 struct mem_cgroup_event { 135 /* 136 * memcg which the event belongs to. 137 */ 138 struct mem_cgroup *memcg; 139 /* 140 * eventfd to signal userspace about the event. 141 */ 142 struct eventfd_ctx *eventfd; 143 /* 144 * Each of these stored in a list by the cgroup. 145 */ 146 struct list_head list; 147 /* 148 * register_event() callback will be used to add new userspace 149 * waiter for changes related to this event. Use eventfd_signal() 150 * on eventfd to send notification to userspace. 151 */ 152 int (*register_event)(struct mem_cgroup *memcg, 153 struct eventfd_ctx *eventfd, const char *args); 154 /* 155 * unregister_event() callback will be called when userspace closes 156 * the eventfd or on cgroup removing. This callback must be set, 157 * if you want provide notification functionality. 158 */ 159 void (*unregister_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd); 161 /* 162 * All fields below needed to unregister event when 163 * userspace closes eventfd. 164 */ 165 poll_table pt; 166 wait_queue_head_t *wqh; 167 wait_queue_entry_t wait; 168 struct work_struct remove; 169 }; 170 171 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 173 174 /* Stuffs for move charges at task migration. */ 175 /* 176 * Types of charges to be moved. 177 */ 178 #define MOVE_ANON 0x1U 179 #define MOVE_FILE 0x2U 180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 181 182 /* "mc" and its members are protected by cgroup_mutex */ 183 static struct move_charge_struct { 184 spinlock_t lock; /* for from, to */ 185 struct mm_struct *mm; 186 struct mem_cgroup *from; 187 struct mem_cgroup *to; 188 unsigned long flags; 189 unsigned long precharge; 190 unsigned long moved_charge; 191 unsigned long moved_swap; 192 struct task_struct *moving_task; /* a task moving charges */ 193 wait_queue_head_t waitq; /* a waitq for other context */ 194 } mc = { 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 197 }; 198 199 /* 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 201 * limit reclaim to prevent infinite loops, if they ever occur. 202 */ 203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 205 206 /* for encoding cft->private value on file */ 207 enum res_type { 208 _MEM, 209 _MEMSWAP, 210 _OOM_TYPE, 211 _KMEM, 212 _TCP, 213 }; 214 215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 217 #define MEMFILE_ATTR(val) ((val) & 0xffff) 218 /* Used for OOM nofiier */ 219 #define OOM_CONTROL (0) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool should_force_charge(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 251 { 252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 extern spinlock_t css_set_lock; 257 258 static void obj_cgroup_release(struct percpu_ref *ref) 259 { 260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 261 struct mem_cgroup *memcg; 262 unsigned int nr_bytes; 263 unsigned int nr_pages; 264 unsigned long flags; 265 266 /* 267 * At this point all allocated objects are freed, and 268 * objcg->nr_charged_bytes can't have an arbitrary byte value. 269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 270 * 271 * The following sequence can lead to it: 272 * 1) CPU0: objcg == stock->cached_objcg 273 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 274 * PAGE_SIZE bytes are charged 275 * 3) CPU1: a process from another memcg is allocating something, 276 * the stock if flushed, 277 * objcg->nr_charged_bytes = PAGE_SIZE - 92 278 * 5) CPU0: we do release this object, 279 * 92 bytes are added to stock->nr_bytes 280 * 6) CPU0: stock is flushed, 281 * 92 bytes are added to objcg->nr_charged_bytes 282 * 283 * In the result, nr_charged_bytes == PAGE_SIZE. 284 * This page will be uncharged in obj_cgroup_release(). 285 */ 286 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 288 nr_pages = nr_bytes >> PAGE_SHIFT; 289 290 spin_lock_irqsave(&css_set_lock, flags); 291 memcg = obj_cgroup_memcg(objcg); 292 if (nr_pages) 293 __memcg_kmem_uncharge(memcg, nr_pages); 294 list_del(&objcg->list); 295 mem_cgroup_put(memcg); 296 spin_unlock_irqrestore(&css_set_lock, flags); 297 298 percpu_ref_exit(ref); 299 kfree_rcu(objcg, rcu); 300 } 301 302 static struct obj_cgroup *obj_cgroup_alloc(void) 303 { 304 struct obj_cgroup *objcg; 305 int ret; 306 307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 308 if (!objcg) 309 return NULL; 310 311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 312 GFP_KERNEL); 313 if (ret) { 314 kfree(objcg); 315 return NULL; 316 } 317 INIT_LIST_HEAD(&objcg->list); 318 return objcg; 319 } 320 321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 322 struct mem_cgroup *parent) 323 { 324 struct obj_cgroup *objcg, *iter; 325 326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 327 328 spin_lock_irq(&css_set_lock); 329 330 /* Move active objcg to the parent's list */ 331 xchg(&objcg->memcg, parent); 332 css_get(&parent->css); 333 list_add(&objcg->list, &parent->objcg_list); 334 335 /* Move already reparented objcgs to the parent's list */ 336 list_for_each_entry(iter, &memcg->objcg_list, list) { 337 css_get(&parent->css); 338 xchg(&iter->memcg, parent); 339 css_put(&memcg->css); 340 } 341 list_splice(&memcg->objcg_list, &parent->objcg_list); 342 343 spin_unlock_irq(&css_set_lock); 344 345 percpu_ref_kill(&objcg->refcnt); 346 } 347 348 /* 349 * This will be used as a shrinker list's index. 350 * The main reason for not using cgroup id for this: 351 * this works better in sparse environments, where we have a lot of memcgs, 352 * but only a few kmem-limited. Or also, if we have, for instance, 200 353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 354 * 200 entry array for that. 355 * 356 * The current size of the caches array is stored in memcg_nr_cache_ids. It 357 * will double each time we have to increase it. 358 */ 359 static DEFINE_IDA(memcg_cache_ida); 360 int memcg_nr_cache_ids; 361 362 /* Protects memcg_nr_cache_ids */ 363 static DECLARE_RWSEM(memcg_cache_ids_sem); 364 365 void memcg_get_cache_ids(void) 366 { 367 down_read(&memcg_cache_ids_sem); 368 } 369 370 void memcg_put_cache_ids(void) 371 { 372 up_read(&memcg_cache_ids_sem); 373 } 374 375 /* 376 * MIN_SIZE is different than 1, because we would like to avoid going through 377 * the alloc/free process all the time. In a small machine, 4 kmem-limited 378 * cgroups is a reasonable guess. In the future, it could be a parameter or 379 * tunable, but that is strictly not necessary. 380 * 381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 382 * this constant directly from cgroup, but it is understandable that this is 383 * better kept as an internal representation in cgroup.c. In any case, the 384 * cgrp_id space is not getting any smaller, and we don't have to necessarily 385 * increase ours as well if it increases. 386 */ 387 #define MEMCG_CACHES_MIN_SIZE 4 388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 389 390 /* 391 * A lot of the calls to the cache allocation functions are expected to be 392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 393 * conditional to this static branch, we'll have to allow modules that does 394 * kmem_cache_alloc and the such to see this symbol as well 395 */ 396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 397 EXPORT_SYMBOL(memcg_kmem_enabled_key); 398 #endif 399 400 static int memcg_shrinker_map_size; 401 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 402 403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 404 { 405 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 406 } 407 408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 409 int size, int old_size) 410 { 411 struct memcg_shrinker_map *new, *old; 412 int nid; 413 414 lockdep_assert_held(&memcg_shrinker_map_mutex); 415 416 for_each_node(nid) { 417 old = rcu_dereference_protected( 418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 419 /* Not yet online memcg */ 420 if (!old) 421 return 0; 422 423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 424 if (!new) 425 return -ENOMEM; 426 427 /* Set all old bits, clear all new bits */ 428 memset(new->map, (int)0xff, old_size); 429 memset((void *)new->map + old_size, 0, size - old_size); 430 431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 433 } 434 435 return 0; 436 } 437 438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 439 { 440 struct mem_cgroup_per_node *pn; 441 struct memcg_shrinker_map *map; 442 int nid; 443 444 if (mem_cgroup_is_root(memcg)) 445 return; 446 447 for_each_node(nid) { 448 pn = mem_cgroup_nodeinfo(memcg, nid); 449 map = rcu_dereference_protected(pn->shrinker_map, true); 450 if (map) 451 kvfree(map); 452 rcu_assign_pointer(pn->shrinker_map, NULL); 453 } 454 } 455 456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 457 { 458 struct memcg_shrinker_map *map; 459 int nid, size, ret = 0; 460 461 if (mem_cgroup_is_root(memcg)) 462 return 0; 463 464 mutex_lock(&memcg_shrinker_map_mutex); 465 size = memcg_shrinker_map_size; 466 for_each_node(nid) { 467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 468 if (!map) { 469 memcg_free_shrinker_maps(memcg); 470 ret = -ENOMEM; 471 break; 472 } 473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 474 } 475 mutex_unlock(&memcg_shrinker_map_mutex); 476 477 return ret; 478 } 479 480 int memcg_expand_shrinker_maps(int new_id) 481 { 482 int size, old_size, ret = 0; 483 struct mem_cgroup *memcg; 484 485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 486 old_size = memcg_shrinker_map_size; 487 if (size <= old_size) 488 return 0; 489 490 mutex_lock(&memcg_shrinker_map_mutex); 491 if (!root_mem_cgroup) 492 goto unlock; 493 494 for_each_mem_cgroup(memcg) { 495 if (mem_cgroup_is_root(memcg)) 496 continue; 497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 498 if (ret) { 499 mem_cgroup_iter_break(NULL, memcg); 500 goto unlock; 501 } 502 } 503 unlock: 504 if (!ret) 505 memcg_shrinker_map_size = size; 506 mutex_unlock(&memcg_shrinker_map_mutex); 507 return ret; 508 } 509 510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 511 { 512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 513 struct memcg_shrinker_map *map; 514 515 rcu_read_lock(); 516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 517 /* Pairs with smp mb in shrink_slab() */ 518 smp_mb__before_atomic(); 519 set_bit(shrinker_id, map->map); 520 rcu_read_unlock(); 521 } 522 } 523 524 /** 525 * mem_cgroup_css_from_page - css of the memcg associated with a page 526 * @page: page of interest 527 * 528 * If memcg is bound to the default hierarchy, css of the memcg associated 529 * with @page is returned. The returned css remains associated with @page 530 * until it is released. 531 * 532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 533 * is returned. 534 */ 535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 536 { 537 struct mem_cgroup *memcg; 538 539 memcg = page_memcg(page); 540 541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 542 memcg = root_mem_cgroup; 543 544 return &memcg->css; 545 } 546 547 /** 548 * page_cgroup_ino - return inode number of the memcg a page is charged to 549 * @page: the page 550 * 551 * Look up the closest online ancestor of the memory cgroup @page is charged to 552 * and return its inode number or 0 if @page is not charged to any cgroup. It 553 * is safe to call this function without holding a reference to @page. 554 * 555 * Note, this function is inherently racy, because there is nothing to prevent 556 * the cgroup inode from getting torn down and potentially reallocated a moment 557 * after page_cgroup_ino() returns, so it only should be used by callers that 558 * do not care (such as procfs interfaces). 559 */ 560 ino_t page_cgroup_ino(struct page *page) 561 { 562 struct mem_cgroup *memcg; 563 unsigned long ino = 0; 564 565 rcu_read_lock(); 566 memcg = page_memcg_check(page); 567 568 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 569 memcg = parent_mem_cgroup(memcg); 570 if (memcg) 571 ino = cgroup_ino(memcg->css.cgroup); 572 rcu_read_unlock(); 573 return ino; 574 } 575 576 static struct mem_cgroup_per_node * 577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 578 { 579 int nid = page_to_nid(page); 580 581 return memcg->nodeinfo[nid]; 582 } 583 584 static struct mem_cgroup_tree_per_node * 585 soft_limit_tree_node(int nid) 586 { 587 return soft_limit_tree.rb_tree_per_node[nid]; 588 } 589 590 static struct mem_cgroup_tree_per_node * 591 soft_limit_tree_from_page(struct page *page) 592 { 593 int nid = page_to_nid(page); 594 595 return soft_limit_tree.rb_tree_per_node[nid]; 596 } 597 598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 599 struct mem_cgroup_tree_per_node *mctz, 600 unsigned long new_usage_in_excess) 601 { 602 struct rb_node **p = &mctz->rb_root.rb_node; 603 struct rb_node *parent = NULL; 604 struct mem_cgroup_per_node *mz_node; 605 bool rightmost = true; 606 607 if (mz->on_tree) 608 return; 609 610 mz->usage_in_excess = new_usage_in_excess; 611 if (!mz->usage_in_excess) 612 return; 613 while (*p) { 614 parent = *p; 615 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 616 tree_node); 617 if (mz->usage_in_excess < mz_node->usage_in_excess) { 618 p = &(*p)->rb_left; 619 rightmost = false; 620 } else { 621 p = &(*p)->rb_right; 622 } 623 } 624 625 if (rightmost) 626 mctz->rb_rightmost = &mz->tree_node; 627 628 rb_link_node(&mz->tree_node, parent, p); 629 rb_insert_color(&mz->tree_node, &mctz->rb_root); 630 mz->on_tree = true; 631 } 632 633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 634 struct mem_cgroup_tree_per_node *mctz) 635 { 636 if (!mz->on_tree) 637 return; 638 639 if (&mz->tree_node == mctz->rb_rightmost) 640 mctz->rb_rightmost = rb_prev(&mz->tree_node); 641 642 rb_erase(&mz->tree_node, &mctz->rb_root); 643 mz->on_tree = false; 644 } 645 646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 647 struct mem_cgroup_tree_per_node *mctz) 648 { 649 unsigned long flags; 650 651 spin_lock_irqsave(&mctz->lock, flags); 652 __mem_cgroup_remove_exceeded(mz, mctz); 653 spin_unlock_irqrestore(&mctz->lock, flags); 654 } 655 656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 657 { 658 unsigned long nr_pages = page_counter_read(&memcg->memory); 659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 660 unsigned long excess = 0; 661 662 if (nr_pages > soft_limit) 663 excess = nr_pages - soft_limit; 664 665 return excess; 666 } 667 668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 669 { 670 unsigned long excess; 671 struct mem_cgroup_per_node *mz; 672 struct mem_cgroup_tree_per_node *mctz; 673 674 mctz = soft_limit_tree_from_page(page); 675 if (!mctz) 676 return; 677 /* 678 * Necessary to update all ancestors when hierarchy is used. 679 * because their event counter is not touched. 680 */ 681 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 682 mz = mem_cgroup_page_nodeinfo(memcg, page); 683 excess = soft_limit_excess(memcg); 684 /* 685 * We have to update the tree if mz is on RB-tree or 686 * mem is over its softlimit. 687 */ 688 if (excess || mz->on_tree) { 689 unsigned long flags; 690 691 spin_lock_irqsave(&mctz->lock, flags); 692 /* if on-tree, remove it */ 693 if (mz->on_tree) 694 __mem_cgroup_remove_exceeded(mz, mctz); 695 /* 696 * Insert again. mz->usage_in_excess will be updated. 697 * If excess is 0, no tree ops. 698 */ 699 __mem_cgroup_insert_exceeded(mz, mctz, excess); 700 spin_unlock_irqrestore(&mctz->lock, flags); 701 } 702 } 703 } 704 705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 706 { 707 struct mem_cgroup_tree_per_node *mctz; 708 struct mem_cgroup_per_node *mz; 709 int nid; 710 711 for_each_node(nid) { 712 mz = mem_cgroup_nodeinfo(memcg, nid); 713 mctz = soft_limit_tree_node(nid); 714 if (mctz) 715 mem_cgroup_remove_exceeded(mz, mctz); 716 } 717 } 718 719 static struct mem_cgroup_per_node * 720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 721 { 722 struct mem_cgroup_per_node *mz; 723 724 retry: 725 mz = NULL; 726 if (!mctz->rb_rightmost) 727 goto done; /* Nothing to reclaim from */ 728 729 mz = rb_entry(mctz->rb_rightmost, 730 struct mem_cgroup_per_node, tree_node); 731 /* 732 * Remove the node now but someone else can add it back, 733 * we will to add it back at the end of reclaim to its correct 734 * position in the tree. 735 */ 736 __mem_cgroup_remove_exceeded(mz, mctz); 737 if (!soft_limit_excess(mz->memcg) || 738 !css_tryget(&mz->memcg->css)) 739 goto retry; 740 done: 741 return mz; 742 } 743 744 static struct mem_cgroup_per_node * 745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 746 { 747 struct mem_cgroup_per_node *mz; 748 749 spin_lock_irq(&mctz->lock); 750 mz = __mem_cgroup_largest_soft_limit_node(mctz); 751 spin_unlock_irq(&mctz->lock); 752 return mz; 753 } 754 755 /** 756 * __mod_memcg_state - update cgroup memory statistics 757 * @memcg: the memory cgroup 758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 759 * @val: delta to add to the counter, can be negative 760 */ 761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 762 { 763 long x, threshold = MEMCG_CHARGE_BATCH; 764 765 if (mem_cgroup_disabled()) 766 return; 767 768 if (memcg_stat_item_in_bytes(idx)) 769 threshold <<= PAGE_SHIFT; 770 771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 772 if (unlikely(abs(x) > threshold)) { 773 struct mem_cgroup *mi; 774 775 /* 776 * Batch local counters to keep them in sync with 777 * the hierarchical ones. 778 */ 779 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 781 atomic_long_add(x, &mi->vmstats[idx]); 782 x = 0; 783 } 784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 785 } 786 787 static struct mem_cgroup_per_node * 788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 789 { 790 struct mem_cgroup *parent; 791 792 parent = parent_mem_cgroup(pn->memcg); 793 if (!parent) 794 return NULL; 795 return mem_cgroup_nodeinfo(parent, nid); 796 } 797 798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 799 int val) 800 { 801 struct mem_cgroup_per_node *pn; 802 struct mem_cgroup *memcg; 803 long x, threshold = MEMCG_CHARGE_BATCH; 804 805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 806 memcg = pn->memcg; 807 808 /* Update memcg */ 809 __mod_memcg_state(memcg, idx, val); 810 811 /* Update lruvec */ 812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 813 814 if (vmstat_item_in_bytes(idx)) 815 threshold <<= PAGE_SHIFT; 816 817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 818 if (unlikely(abs(x) > threshold)) { 819 pg_data_t *pgdat = lruvec_pgdat(lruvec); 820 struct mem_cgroup_per_node *pi; 821 822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 823 atomic_long_add(x, &pi->lruvec_stat[idx]); 824 x = 0; 825 } 826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 827 } 828 829 /** 830 * __mod_lruvec_state - update lruvec memory statistics 831 * @lruvec: the lruvec 832 * @idx: the stat item 833 * @val: delta to add to the counter, can be negative 834 * 835 * The lruvec is the intersection of the NUMA node and a cgroup. This 836 * function updates the all three counters that are affected by a 837 * change of state at this level: per-node, per-cgroup, per-lruvec. 838 */ 839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 840 int val) 841 { 842 /* Update node */ 843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 844 845 /* Update memcg and lruvec */ 846 if (!mem_cgroup_disabled()) 847 __mod_memcg_lruvec_state(lruvec, idx, val); 848 } 849 850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 851 int val) 852 { 853 struct page *head = compound_head(page); /* rmap on tail pages */ 854 struct mem_cgroup *memcg = page_memcg(head); 855 pg_data_t *pgdat = page_pgdat(page); 856 struct lruvec *lruvec; 857 858 /* Untracked pages have no memcg, no lruvec. Update only the node */ 859 if (!memcg) { 860 __mod_node_page_state(pgdat, idx, val); 861 return; 862 } 863 864 lruvec = mem_cgroup_lruvec(memcg, pgdat); 865 __mod_lruvec_state(lruvec, idx, val); 866 } 867 EXPORT_SYMBOL(__mod_lruvec_page_state); 868 869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 870 { 871 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 872 struct mem_cgroup *memcg; 873 struct lruvec *lruvec; 874 875 rcu_read_lock(); 876 memcg = mem_cgroup_from_obj(p); 877 878 /* 879 * Untracked pages have no memcg, no lruvec. Update only the 880 * node. If we reparent the slab objects to the root memcg, 881 * when we free the slab object, we need to update the per-memcg 882 * vmstats to keep it correct for the root memcg. 883 */ 884 if (!memcg) { 885 __mod_node_page_state(pgdat, idx, val); 886 } else { 887 lruvec = mem_cgroup_lruvec(memcg, pgdat); 888 __mod_lruvec_state(lruvec, idx, val); 889 } 890 rcu_read_unlock(); 891 } 892 893 /** 894 * __count_memcg_events - account VM events in a cgroup 895 * @memcg: the memory cgroup 896 * @idx: the event item 897 * @count: the number of events that occured 898 */ 899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 900 unsigned long count) 901 { 902 unsigned long x; 903 904 if (mem_cgroup_disabled()) 905 return; 906 907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 908 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 909 struct mem_cgroup *mi; 910 911 /* 912 * Batch local counters to keep them in sync with 913 * the hierarchical ones. 914 */ 915 __this_cpu_add(memcg->vmstats_local->events[idx], x); 916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 917 atomic_long_add(x, &mi->vmevents[idx]); 918 x = 0; 919 } 920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 921 } 922 923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 924 { 925 return atomic_long_read(&memcg->vmevents[event]); 926 } 927 928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 929 { 930 long x = 0; 931 int cpu; 932 933 for_each_possible_cpu(cpu) 934 x += per_cpu(memcg->vmstats_local->events[event], cpu); 935 return x; 936 } 937 938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 939 struct page *page, 940 int nr_pages) 941 { 942 /* pagein of a big page is an event. So, ignore page size */ 943 if (nr_pages > 0) 944 __count_memcg_events(memcg, PGPGIN, 1); 945 else { 946 __count_memcg_events(memcg, PGPGOUT, 1); 947 nr_pages = -nr_pages; /* for event */ 948 } 949 950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 951 } 952 953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 954 enum mem_cgroup_events_target target) 955 { 956 unsigned long val, next; 957 958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 960 /* from time_after() in jiffies.h */ 961 if ((long)(next - val) < 0) { 962 switch (target) { 963 case MEM_CGROUP_TARGET_THRESH: 964 next = val + THRESHOLDS_EVENTS_TARGET; 965 break; 966 case MEM_CGROUP_TARGET_SOFTLIMIT: 967 next = val + SOFTLIMIT_EVENTS_TARGET; 968 break; 969 default: 970 break; 971 } 972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 973 return true; 974 } 975 return false; 976 } 977 978 /* 979 * Check events in order. 980 * 981 */ 982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 983 { 984 /* threshold event is triggered in finer grain than soft limit */ 985 if (unlikely(mem_cgroup_event_ratelimit(memcg, 986 MEM_CGROUP_TARGET_THRESH))) { 987 bool do_softlimit; 988 989 do_softlimit = mem_cgroup_event_ratelimit(memcg, 990 MEM_CGROUP_TARGET_SOFTLIMIT); 991 mem_cgroup_threshold(memcg); 992 if (unlikely(do_softlimit)) 993 mem_cgroup_update_tree(memcg, page); 994 } 995 } 996 997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 998 { 999 /* 1000 * mm_update_next_owner() may clear mm->owner to NULL 1001 * if it races with swapoff, page migration, etc. 1002 * So this can be called with p == NULL. 1003 */ 1004 if (unlikely(!p)) 1005 return NULL; 1006 1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1008 } 1009 EXPORT_SYMBOL(mem_cgroup_from_task); 1010 1011 /** 1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1013 * @mm: mm from which memcg should be extracted. It can be NULL. 1014 * 1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 1017 * returned. 1018 */ 1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1020 { 1021 struct mem_cgroup *memcg; 1022 1023 if (mem_cgroup_disabled()) 1024 return NULL; 1025 1026 rcu_read_lock(); 1027 do { 1028 /* 1029 * Page cache insertions can happen withou an 1030 * actual mm context, e.g. during disk probing 1031 * on boot, loopback IO, acct() writes etc. 1032 */ 1033 if (unlikely(!mm)) 1034 memcg = root_mem_cgroup; 1035 else { 1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1037 if (unlikely(!memcg)) 1038 memcg = root_mem_cgroup; 1039 } 1040 } while (!css_tryget(&memcg->css)); 1041 rcu_read_unlock(); 1042 return memcg; 1043 } 1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1045 1046 /** 1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 1048 * @page: page from which memcg should be extracted. 1049 * 1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise 1051 * root_mem_cgroup is returned. 1052 */ 1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1054 { 1055 struct mem_cgroup *memcg = page_memcg(page); 1056 1057 if (mem_cgroup_disabled()) 1058 return NULL; 1059 1060 rcu_read_lock(); 1061 /* Page should not get uncharged and freed memcg under us. */ 1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1063 memcg = root_mem_cgroup; 1064 rcu_read_unlock(); 1065 return memcg; 1066 } 1067 EXPORT_SYMBOL(get_mem_cgroup_from_page); 1068 1069 static __always_inline struct mem_cgroup *active_memcg(void) 1070 { 1071 if (in_interrupt()) 1072 return this_cpu_read(int_active_memcg); 1073 else 1074 return current->active_memcg; 1075 } 1076 1077 static __always_inline struct mem_cgroup *get_active_memcg(void) 1078 { 1079 struct mem_cgroup *memcg; 1080 1081 rcu_read_lock(); 1082 memcg = active_memcg(); 1083 if (memcg) { 1084 /* current->active_memcg must hold a ref. */ 1085 if (WARN_ON_ONCE(!css_tryget(&memcg->css))) 1086 memcg = root_mem_cgroup; 1087 else 1088 memcg = current->active_memcg; 1089 } 1090 rcu_read_unlock(); 1091 1092 return memcg; 1093 } 1094 1095 static __always_inline bool memcg_kmem_bypass(void) 1096 { 1097 /* Allow remote memcg charging from any context. */ 1098 if (unlikely(active_memcg())) 1099 return false; 1100 1101 /* Memcg to charge can't be determined. */ 1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 1103 return true; 1104 1105 return false; 1106 } 1107 1108 /** 1109 * If active memcg is set, do not fallback to current->mm->memcg. 1110 */ 1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1112 { 1113 if (memcg_kmem_bypass()) 1114 return NULL; 1115 1116 if (unlikely(active_memcg())) 1117 return get_active_memcg(); 1118 1119 return get_mem_cgroup_from_mm(current->mm); 1120 } 1121 1122 /** 1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1124 * @root: hierarchy root 1125 * @prev: previously returned memcg, NULL on first invocation 1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1127 * 1128 * Returns references to children of the hierarchy below @root, or 1129 * @root itself, or %NULL after a full round-trip. 1130 * 1131 * Caller must pass the return value in @prev on subsequent 1132 * invocations for reference counting, or use mem_cgroup_iter_break() 1133 * to cancel a hierarchy walk before the round-trip is complete. 1134 * 1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1136 * in the hierarchy among all concurrent reclaimers operating on the 1137 * same node. 1138 */ 1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1140 struct mem_cgroup *prev, 1141 struct mem_cgroup_reclaim_cookie *reclaim) 1142 { 1143 struct mem_cgroup_reclaim_iter *iter; 1144 struct cgroup_subsys_state *css = NULL; 1145 struct mem_cgroup *memcg = NULL; 1146 struct mem_cgroup *pos = NULL; 1147 1148 if (mem_cgroup_disabled()) 1149 return NULL; 1150 1151 if (!root) 1152 root = root_mem_cgroup; 1153 1154 if (prev && !reclaim) 1155 pos = prev; 1156 1157 rcu_read_lock(); 1158 1159 if (reclaim) { 1160 struct mem_cgroup_per_node *mz; 1161 1162 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1163 iter = &mz->iter; 1164 1165 if (prev && reclaim->generation != iter->generation) 1166 goto out_unlock; 1167 1168 while (1) { 1169 pos = READ_ONCE(iter->position); 1170 if (!pos || css_tryget(&pos->css)) 1171 break; 1172 /* 1173 * css reference reached zero, so iter->position will 1174 * be cleared by ->css_released. However, we should not 1175 * rely on this happening soon, because ->css_released 1176 * is called from a work queue, and by busy-waiting we 1177 * might block it. So we clear iter->position right 1178 * away. 1179 */ 1180 (void)cmpxchg(&iter->position, pos, NULL); 1181 } 1182 } 1183 1184 if (pos) 1185 css = &pos->css; 1186 1187 for (;;) { 1188 css = css_next_descendant_pre(css, &root->css); 1189 if (!css) { 1190 /* 1191 * Reclaimers share the hierarchy walk, and a 1192 * new one might jump in right at the end of 1193 * the hierarchy - make sure they see at least 1194 * one group and restart from the beginning. 1195 */ 1196 if (!prev) 1197 continue; 1198 break; 1199 } 1200 1201 /* 1202 * Verify the css and acquire a reference. The root 1203 * is provided by the caller, so we know it's alive 1204 * and kicking, and don't take an extra reference. 1205 */ 1206 memcg = mem_cgroup_from_css(css); 1207 1208 if (css == &root->css) 1209 break; 1210 1211 if (css_tryget(css)) 1212 break; 1213 1214 memcg = NULL; 1215 } 1216 1217 if (reclaim) { 1218 /* 1219 * The position could have already been updated by a competing 1220 * thread, so check that the value hasn't changed since we read 1221 * it to avoid reclaiming from the same cgroup twice. 1222 */ 1223 (void)cmpxchg(&iter->position, pos, memcg); 1224 1225 if (pos) 1226 css_put(&pos->css); 1227 1228 if (!memcg) 1229 iter->generation++; 1230 else if (!prev) 1231 reclaim->generation = iter->generation; 1232 } 1233 1234 out_unlock: 1235 rcu_read_unlock(); 1236 if (prev && prev != root) 1237 css_put(&prev->css); 1238 1239 return memcg; 1240 } 1241 1242 /** 1243 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1244 * @root: hierarchy root 1245 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1246 */ 1247 void mem_cgroup_iter_break(struct mem_cgroup *root, 1248 struct mem_cgroup *prev) 1249 { 1250 if (!root) 1251 root = root_mem_cgroup; 1252 if (prev && prev != root) 1253 css_put(&prev->css); 1254 } 1255 1256 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1257 struct mem_cgroup *dead_memcg) 1258 { 1259 struct mem_cgroup_reclaim_iter *iter; 1260 struct mem_cgroup_per_node *mz; 1261 int nid; 1262 1263 for_each_node(nid) { 1264 mz = mem_cgroup_nodeinfo(from, nid); 1265 iter = &mz->iter; 1266 cmpxchg(&iter->position, dead_memcg, NULL); 1267 } 1268 } 1269 1270 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1271 { 1272 struct mem_cgroup *memcg = dead_memcg; 1273 struct mem_cgroup *last; 1274 1275 do { 1276 __invalidate_reclaim_iterators(memcg, dead_memcg); 1277 last = memcg; 1278 } while ((memcg = parent_mem_cgroup(memcg))); 1279 1280 /* 1281 * When cgruop1 non-hierarchy mode is used, 1282 * parent_mem_cgroup() does not walk all the way up to the 1283 * cgroup root (root_mem_cgroup). So we have to handle 1284 * dead_memcg from cgroup root separately. 1285 */ 1286 if (last != root_mem_cgroup) 1287 __invalidate_reclaim_iterators(root_mem_cgroup, 1288 dead_memcg); 1289 } 1290 1291 /** 1292 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1293 * @memcg: hierarchy root 1294 * @fn: function to call for each task 1295 * @arg: argument passed to @fn 1296 * 1297 * This function iterates over tasks attached to @memcg or to any of its 1298 * descendants and calls @fn for each task. If @fn returns a non-zero 1299 * value, the function breaks the iteration loop and returns the value. 1300 * Otherwise, it will iterate over all tasks and return 0. 1301 * 1302 * This function must not be called for the root memory cgroup. 1303 */ 1304 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1305 int (*fn)(struct task_struct *, void *), void *arg) 1306 { 1307 struct mem_cgroup *iter; 1308 int ret = 0; 1309 1310 BUG_ON(memcg == root_mem_cgroup); 1311 1312 for_each_mem_cgroup_tree(iter, memcg) { 1313 struct css_task_iter it; 1314 struct task_struct *task; 1315 1316 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1317 while (!ret && (task = css_task_iter_next(&it))) 1318 ret = fn(task, arg); 1319 css_task_iter_end(&it); 1320 if (ret) { 1321 mem_cgroup_iter_break(memcg, iter); 1322 break; 1323 } 1324 } 1325 return ret; 1326 } 1327 1328 #ifdef CONFIG_DEBUG_VM 1329 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1330 { 1331 struct mem_cgroup *memcg; 1332 1333 if (mem_cgroup_disabled()) 1334 return; 1335 1336 memcg = page_memcg(page); 1337 1338 if (!memcg) 1339 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page); 1340 else 1341 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page); 1342 } 1343 #endif 1344 1345 /** 1346 * lock_page_lruvec - lock and return lruvec for a given page. 1347 * @page: the page 1348 * 1349 * This series functions should be used in either conditions: 1350 * PageLRU is cleared or unset 1351 * or page->_refcount is zero 1352 * or page is locked. 1353 */ 1354 struct lruvec *lock_page_lruvec(struct page *page) 1355 { 1356 struct lruvec *lruvec; 1357 struct pglist_data *pgdat = page_pgdat(page); 1358 1359 rcu_read_lock(); 1360 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1361 spin_lock(&lruvec->lru_lock); 1362 rcu_read_unlock(); 1363 1364 lruvec_memcg_debug(lruvec, page); 1365 1366 return lruvec; 1367 } 1368 1369 struct lruvec *lock_page_lruvec_irq(struct page *page) 1370 { 1371 struct lruvec *lruvec; 1372 struct pglist_data *pgdat = page_pgdat(page); 1373 1374 rcu_read_lock(); 1375 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1376 spin_lock_irq(&lruvec->lru_lock); 1377 rcu_read_unlock(); 1378 1379 lruvec_memcg_debug(lruvec, page); 1380 1381 return lruvec; 1382 } 1383 1384 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) 1385 { 1386 struct lruvec *lruvec; 1387 struct pglist_data *pgdat = page_pgdat(page); 1388 1389 rcu_read_lock(); 1390 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1391 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1392 rcu_read_unlock(); 1393 1394 lruvec_memcg_debug(lruvec, page); 1395 1396 return lruvec; 1397 } 1398 1399 /** 1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1401 * @lruvec: mem_cgroup per zone lru vector 1402 * @lru: index of lru list the page is sitting on 1403 * @zid: zone id of the accounted pages 1404 * @nr_pages: positive when adding or negative when removing 1405 * 1406 * This function must be called under lru_lock, just before a page is added 1407 * to or just after a page is removed from an lru list (that ordering being 1408 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1409 */ 1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1411 int zid, int nr_pages) 1412 { 1413 struct mem_cgroup_per_node *mz; 1414 unsigned long *lru_size; 1415 long size; 1416 1417 if (mem_cgroup_disabled()) 1418 return; 1419 1420 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1421 lru_size = &mz->lru_zone_size[zid][lru]; 1422 1423 if (nr_pages < 0) 1424 *lru_size += nr_pages; 1425 1426 size = *lru_size; 1427 if (WARN_ONCE(size < 0, 1428 "%s(%p, %d, %d): lru_size %ld\n", 1429 __func__, lruvec, lru, nr_pages, size)) { 1430 VM_BUG_ON(1); 1431 *lru_size = 0; 1432 } 1433 1434 if (nr_pages > 0) 1435 *lru_size += nr_pages; 1436 } 1437 1438 /** 1439 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1440 * @memcg: the memory cgroup 1441 * 1442 * Returns the maximum amount of memory @mem can be charged with, in 1443 * pages. 1444 */ 1445 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1446 { 1447 unsigned long margin = 0; 1448 unsigned long count; 1449 unsigned long limit; 1450 1451 count = page_counter_read(&memcg->memory); 1452 limit = READ_ONCE(memcg->memory.max); 1453 if (count < limit) 1454 margin = limit - count; 1455 1456 if (do_memsw_account()) { 1457 count = page_counter_read(&memcg->memsw); 1458 limit = READ_ONCE(memcg->memsw.max); 1459 if (count < limit) 1460 margin = min(margin, limit - count); 1461 else 1462 margin = 0; 1463 } 1464 1465 return margin; 1466 } 1467 1468 /* 1469 * A routine for checking "mem" is under move_account() or not. 1470 * 1471 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1472 * moving cgroups. This is for waiting at high-memory pressure 1473 * caused by "move". 1474 */ 1475 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1476 { 1477 struct mem_cgroup *from; 1478 struct mem_cgroup *to; 1479 bool ret = false; 1480 /* 1481 * Unlike task_move routines, we access mc.to, mc.from not under 1482 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1483 */ 1484 spin_lock(&mc.lock); 1485 from = mc.from; 1486 to = mc.to; 1487 if (!from) 1488 goto unlock; 1489 1490 ret = mem_cgroup_is_descendant(from, memcg) || 1491 mem_cgroup_is_descendant(to, memcg); 1492 unlock: 1493 spin_unlock(&mc.lock); 1494 return ret; 1495 } 1496 1497 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1498 { 1499 if (mc.moving_task && current != mc.moving_task) { 1500 if (mem_cgroup_under_move(memcg)) { 1501 DEFINE_WAIT(wait); 1502 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1503 /* moving charge context might have finished. */ 1504 if (mc.moving_task) 1505 schedule(); 1506 finish_wait(&mc.waitq, &wait); 1507 return true; 1508 } 1509 } 1510 return false; 1511 } 1512 1513 struct memory_stat { 1514 const char *name; 1515 unsigned int ratio; 1516 unsigned int idx; 1517 }; 1518 1519 static struct memory_stat memory_stats[] = { 1520 { "anon", PAGE_SIZE, NR_ANON_MAPPED }, 1521 { "file", PAGE_SIZE, NR_FILE_PAGES }, 1522 { "kernel_stack", 1024, NR_KERNEL_STACK_KB }, 1523 { "pagetables", PAGE_SIZE, NR_PAGETABLE }, 1524 { "percpu", 1, MEMCG_PERCPU_B }, 1525 { "sock", PAGE_SIZE, MEMCG_SOCK }, 1526 { "shmem", PAGE_SIZE, NR_SHMEM }, 1527 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED }, 1528 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY }, 1529 { "file_writeback", PAGE_SIZE, NR_WRITEBACK }, 1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1531 /* 1532 * The ratio will be initialized in memory_stats_init(). Because 1533 * on some architectures, the macro of HPAGE_PMD_SIZE is not 1534 * constant(e.g. powerpc). 1535 */ 1536 { "anon_thp", 0, NR_ANON_THPS }, 1537 { "file_thp", 0, NR_FILE_THPS }, 1538 { "shmem_thp", 0, NR_SHMEM_THPS }, 1539 #endif 1540 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON }, 1541 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON }, 1542 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE }, 1543 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE }, 1544 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE }, 1545 1546 /* 1547 * Note: The slab_reclaimable and slab_unreclaimable must be 1548 * together and slab_reclaimable must be in front. 1549 */ 1550 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B }, 1551 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B }, 1552 1553 /* The memory events */ 1554 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON }, 1555 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE }, 1556 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON }, 1557 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE }, 1558 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON }, 1559 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE }, 1560 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM }, 1561 }; 1562 1563 static int __init memory_stats_init(void) 1564 { 1565 int i; 1566 1567 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1569 if (memory_stats[i].idx == NR_ANON_THPS || 1570 memory_stats[i].idx == NR_FILE_THPS || 1571 memory_stats[i].idx == NR_SHMEM_THPS) 1572 memory_stats[i].ratio = HPAGE_PMD_SIZE; 1573 #endif 1574 VM_BUG_ON(!memory_stats[i].ratio); 1575 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT); 1576 } 1577 1578 return 0; 1579 } 1580 pure_initcall(memory_stats_init); 1581 1582 static char *memory_stat_format(struct mem_cgroup *memcg) 1583 { 1584 struct seq_buf s; 1585 int i; 1586 1587 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1588 if (!s.buffer) 1589 return NULL; 1590 1591 /* 1592 * Provide statistics on the state of the memory subsystem as 1593 * well as cumulative event counters that show past behavior. 1594 * 1595 * This list is ordered following a combination of these gradients: 1596 * 1) generic big picture -> specifics and details 1597 * 2) reflecting userspace activity -> reflecting kernel heuristics 1598 * 1599 * Current memory state: 1600 */ 1601 1602 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1603 u64 size; 1604 1605 size = memcg_page_state(memcg, memory_stats[i].idx); 1606 size *= memory_stats[i].ratio; 1607 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1608 1609 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1610 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + 1611 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B); 1612 seq_buf_printf(&s, "slab %llu\n", size); 1613 } 1614 } 1615 1616 /* Accumulated memory events */ 1617 1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1619 memcg_events(memcg, PGFAULT)); 1620 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1621 memcg_events(memcg, PGMAJFAULT)); 1622 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1623 memcg_events(memcg, PGREFILL)); 1624 seq_buf_printf(&s, "pgscan %lu\n", 1625 memcg_events(memcg, PGSCAN_KSWAPD) + 1626 memcg_events(memcg, PGSCAN_DIRECT)); 1627 seq_buf_printf(&s, "pgsteal %lu\n", 1628 memcg_events(memcg, PGSTEAL_KSWAPD) + 1629 memcg_events(memcg, PGSTEAL_DIRECT)); 1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1631 memcg_events(memcg, PGACTIVATE)); 1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1633 memcg_events(memcg, PGDEACTIVATE)); 1634 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1635 memcg_events(memcg, PGLAZYFREE)); 1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1637 memcg_events(memcg, PGLAZYFREED)); 1638 1639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1640 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1641 memcg_events(memcg, THP_FAULT_ALLOC)); 1642 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1643 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1644 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1645 1646 /* The above should easily fit into one page */ 1647 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1648 1649 return s.buffer; 1650 } 1651 1652 #define K(x) ((x) << (PAGE_SHIFT-10)) 1653 /** 1654 * mem_cgroup_print_oom_context: Print OOM information relevant to 1655 * memory controller. 1656 * @memcg: The memory cgroup that went over limit 1657 * @p: Task that is going to be killed 1658 * 1659 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1660 * enabled 1661 */ 1662 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1663 { 1664 rcu_read_lock(); 1665 1666 if (memcg) { 1667 pr_cont(",oom_memcg="); 1668 pr_cont_cgroup_path(memcg->css.cgroup); 1669 } else 1670 pr_cont(",global_oom"); 1671 if (p) { 1672 pr_cont(",task_memcg="); 1673 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1674 } 1675 rcu_read_unlock(); 1676 } 1677 1678 /** 1679 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1680 * memory controller. 1681 * @memcg: The memory cgroup that went over limit 1682 */ 1683 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1684 { 1685 char *buf; 1686 1687 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1688 K((u64)page_counter_read(&memcg->memory)), 1689 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1690 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1691 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1692 K((u64)page_counter_read(&memcg->swap)), 1693 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1694 else { 1695 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1696 K((u64)page_counter_read(&memcg->memsw)), 1697 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1698 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1699 K((u64)page_counter_read(&memcg->kmem)), 1700 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1701 } 1702 1703 pr_info("Memory cgroup stats for "); 1704 pr_cont_cgroup_path(memcg->css.cgroup); 1705 pr_cont(":"); 1706 buf = memory_stat_format(memcg); 1707 if (!buf) 1708 return; 1709 pr_info("%s", buf); 1710 kfree(buf); 1711 } 1712 1713 /* 1714 * Return the memory (and swap, if configured) limit for a memcg. 1715 */ 1716 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1717 { 1718 unsigned long max = READ_ONCE(memcg->memory.max); 1719 1720 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1721 if (mem_cgroup_swappiness(memcg)) 1722 max += min(READ_ONCE(memcg->swap.max), 1723 (unsigned long)total_swap_pages); 1724 } else { /* v1 */ 1725 if (mem_cgroup_swappiness(memcg)) { 1726 /* Calculate swap excess capacity from memsw limit */ 1727 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1728 1729 max += min(swap, (unsigned long)total_swap_pages); 1730 } 1731 } 1732 return max; 1733 } 1734 1735 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1736 { 1737 return page_counter_read(&memcg->memory); 1738 } 1739 1740 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1741 int order) 1742 { 1743 struct oom_control oc = { 1744 .zonelist = NULL, 1745 .nodemask = NULL, 1746 .memcg = memcg, 1747 .gfp_mask = gfp_mask, 1748 .order = order, 1749 }; 1750 bool ret = true; 1751 1752 if (mutex_lock_killable(&oom_lock)) 1753 return true; 1754 1755 if (mem_cgroup_margin(memcg) >= (1 << order)) 1756 goto unlock; 1757 1758 /* 1759 * A few threads which were not waiting at mutex_lock_killable() can 1760 * fail to bail out. Therefore, check again after holding oom_lock. 1761 */ 1762 ret = should_force_charge() || out_of_memory(&oc); 1763 1764 unlock: 1765 mutex_unlock(&oom_lock); 1766 return ret; 1767 } 1768 1769 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1770 pg_data_t *pgdat, 1771 gfp_t gfp_mask, 1772 unsigned long *total_scanned) 1773 { 1774 struct mem_cgroup *victim = NULL; 1775 int total = 0; 1776 int loop = 0; 1777 unsigned long excess; 1778 unsigned long nr_scanned; 1779 struct mem_cgroup_reclaim_cookie reclaim = { 1780 .pgdat = pgdat, 1781 }; 1782 1783 excess = soft_limit_excess(root_memcg); 1784 1785 while (1) { 1786 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1787 if (!victim) { 1788 loop++; 1789 if (loop >= 2) { 1790 /* 1791 * If we have not been able to reclaim 1792 * anything, it might because there are 1793 * no reclaimable pages under this hierarchy 1794 */ 1795 if (!total) 1796 break; 1797 /* 1798 * We want to do more targeted reclaim. 1799 * excess >> 2 is not to excessive so as to 1800 * reclaim too much, nor too less that we keep 1801 * coming back to reclaim from this cgroup 1802 */ 1803 if (total >= (excess >> 2) || 1804 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1805 break; 1806 } 1807 continue; 1808 } 1809 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1810 pgdat, &nr_scanned); 1811 *total_scanned += nr_scanned; 1812 if (!soft_limit_excess(root_memcg)) 1813 break; 1814 } 1815 mem_cgroup_iter_break(root_memcg, victim); 1816 return total; 1817 } 1818 1819 #ifdef CONFIG_LOCKDEP 1820 static struct lockdep_map memcg_oom_lock_dep_map = { 1821 .name = "memcg_oom_lock", 1822 }; 1823 #endif 1824 1825 static DEFINE_SPINLOCK(memcg_oom_lock); 1826 1827 /* 1828 * Check OOM-Killer is already running under our hierarchy. 1829 * If someone is running, return false. 1830 */ 1831 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1832 { 1833 struct mem_cgroup *iter, *failed = NULL; 1834 1835 spin_lock(&memcg_oom_lock); 1836 1837 for_each_mem_cgroup_tree(iter, memcg) { 1838 if (iter->oom_lock) { 1839 /* 1840 * this subtree of our hierarchy is already locked 1841 * so we cannot give a lock. 1842 */ 1843 failed = iter; 1844 mem_cgroup_iter_break(memcg, iter); 1845 break; 1846 } else 1847 iter->oom_lock = true; 1848 } 1849 1850 if (failed) { 1851 /* 1852 * OK, we failed to lock the whole subtree so we have 1853 * to clean up what we set up to the failing subtree 1854 */ 1855 for_each_mem_cgroup_tree(iter, memcg) { 1856 if (iter == failed) { 1857 mem_cgroup_iter_break(memcg, iter); 1858 break; 1859 } 1860 iter->oom_lock = false; 1861 } 1862 } else 1863 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1864 1865 spin_unlock(&memcg_oom_lock); 1866 1867 return !failed; 1868 } 1869 1870 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1871 { 1872 struct mem_cgroup *iter; 1873 1874 spin_lock(&memcg_oom_lock); 1875 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1876 for_each_mem_cgroup_tree(iter, memcg) 1877 iter->oom_lock = false; 1878 spin_unlock(&memcg_oom_lock); 1879 } 1880 1881 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1882 { 1883 struct mem_cgroup *iter; 1884 1885 spin_lock(&memcg_oom_lock); 1886 for_each_mem_cgroup_tree(iter, memcg) 1887 iter->under_oom++; 1888 spin_unlock(&memcg_oom_lock); 1889 } 1890 1891 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1892 { 1893 struct mem_cgroup *iter; 1894 1895 /* 1896 * Be careful about under_oom underflows becase a child memcg 1897 * could have been added after mem_cgroup_mark_under_oom. 1898 */ 1899 spin_lock(&memcg_oom_lock); 1900 for_each_mem_cgroup_tree(iter, memcg) 1901 if (iter->under_oom > 0) 1902 iter->under_oom--; 1903 spin_unlock(&memcg_oom_lock); 1904 } 1905 1906 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1907 1908 struct oom_wait_info { 1909 struct mem_cgroup *memcg; 1910 wait_queue_entry_t wait; 1911 }; 1912 1913 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1914 unsigned mode, int sync, void *arg) 1915 { 1916 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1917 struct mem_cgroup *oom_wait_memcg; 1918 struct oom_wait_info *oom_wait_info; 1919 1920 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1921 oom_wait_memcg = oom_wait_info->memcg; 1922 1923 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1924 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1925 return 0; 1926 return autoremove_wake_function(wait, mode, sync, arg); 1927 } 1928 1929 static void memcg_oom_recover(struct mem_cgroup *memcg) 1930 { 1931 /* 1932 * For the following lockless ->under_oom test, the only required 1933 * guarantee is that it must see the state asserted by an OOM when 1934 * this function is called as a result of userland actions 1935 * triggered by the notification of the OOM. This is trivially 1936 * achieved by invoking mem_cgroup_mark_under_oom() before 1937 * triggering notification. 1938 */ 1939 if (memcg && memcg->under_oom) 1940 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1941 } 1942 1943 enum oom_status { 1944 OOM_SUCCESS, 1945 OOM_FAILED, 1946 OOM_ASYNC, 1947 OOM_SKIPPED 1948 }; 1949 1950 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1951 { 1952 enum oom_status ret; 1953 bool locked; 1954 1955 if (order > PAGE_ALLOC_COSTLY_ORDER) 1956 return OOM_SKIPPED; 1957 1958 memcg_memory_event(memcg, MEMCG_OOM); 1959 1960 /* 1961 * We are in the middle of the charge context here, so we 1962 * don't want to block when potentially sitting on a callstack 1963 * that holds all kinds of filesystem and mm locks. 1964 * 1965 * cgroup1 allows disabling the OOM killer and waiting for outside 1966 * handling until the charge can succeed; remember the context and put 1967 * the task to sleep at the end of the page fault when all locks are 1968 * released. 1969 * 1970 * On the other hand, in-kernel OOM killer allows for an async victim 1971 * memory reclaim (oom_reaper) and that means that we are not solely 1972 * relying on the oom victim to make a forward progress and we can 1973 * invoke the oom killer here. 1974 * 1975 * Please note that mem_cgroup_out_of_memory might fail to find a 1976 * victim and then we have to bail out from the charge path. 1977 */ 1978 if (memcg->oom_kill_disable) { 1979 if (!current->in_user_fault) 1980 return OOM_SKIPPED; 1981 css_get(&memcg->css); 1982 current->memcg_in_oom = memcg; 1983 current->memcg_oom_gfp_mask = mask; 1984 current->memcg_oom_order = order; 1985 1986 return OOM_ASYNC; 1987 } 1988 1989 mem_cgroup_mark_under_oom(memcg); 1990 1991 locked = mem_cgroup_oom_trylock(memcg); 1992 1993 if (locked) 1994 mem_cgroup_oom_notify(memcg); 1995 1996 mem_cgroup_unmark_under_oom(memcg); 1997 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1998 ret = OOM_SUCCESS; 1999 else 2000 ret = OOM_FAILED; 2001 2002 if (locked) 2003 mem_cgroup_oom_unlock(memcg); 2004 2005 return ret; 2006 } 2007 2008 /** 2009 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2010 * @handle: actually kill/wait or just clean up the OOM state 2011 * 2012 * This has to be called at the end of a page fault if the memcg OOM 2013 * handler was enabled. 2014 * 2015 * Memcg supports userspace OOM handling where failed allocations must 2016 * sleep on a waitqueue until the userspace task resolves the 2017 * situation. Sleeping directly in the charge context with all kinds 2018 * of locks held is not a good idea, instead we remember an OOM state 2019 * in the task and mem_cgroup_oom_synchronize() has to be called at 2020 * the end of the page fault to complete the OOM handling. 2021 * 2022 * Returns %true if an ongoing memcg OOM situation was detected and 2023 * completed, %false otherwise. 2024 */ 2025 bool mem_cgroup_oom_synchronize(bool handle) 2026 { 2027 struct mem_cgroup *memcg = current->memcg_in_oom; 2028 struct oom_wait_info owait; 2029 bool locked; 2030 2031 /* OOM is global, do not handle */ 2032 if (!memcg) 2033 return false; 2034 2035 if (!handle) 2036 goto cleanup; 2037 2038 owait.memcg = memcg; 2039 owait.wait.flags = 0; 2040 owait.wait.func = memcg_oom_wake_function; 2041 owait.wait.private = current; 2042 INIT_LIST_HEAD(&owait.wait.entry); 2043 2044 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2045 mem_cgroup_mark_under_oom(memcg); 2046 2047 locked = mem_cgroup_oom_trylock(memcg); 2048 2049 if (locked) 2050 mem_cgroup_oom_notify(memcg); 2051 2052 if (locked && !memcg->oom_kill_disable) { 2053 mem_cgroup_unmark_under_oom(memcg); 2054 finish_wait(&memcg_oom_waitq, &owait.wait); 2055 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2056 current->memcg_oom_order); 2057 } else { 2058 schedule(); 2059 mem_cgroup_unmark_under_oom(memcg); 2060 finish_wait(&memcg_oom_waitq, &owait.wait); 2061 } 2062 2063 if (locked) { 2064 mem_cgroup_oom_unlock(memcg); 2065 /* 2066 * There is no guarantee that an OOM-lock contender 2067 * sees the wakeups triggered by the OOM kill 2068 * uncharges. Wake any sleepers explicitely. 2069 */ 2070 memcg_oom_recover(memcg); 2071 } 2072 cleanup: 2073 current->memcg_in_oom = NULL; 2074 css_put(&memcg->css); 2075 return true; 2076 } 2077 2078 /** 2079 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2080 * @victim: task to be killed by the OOM killer 2081 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2082 * 2083 * Returns a pointer to a memory cgroup, which has to be cleaned up 2084 * by killing all belonging OOM-killable tasks. 2085 * 2086 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2087 */ 2088 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2089 struct mem_cgroup *oom_domain) 2090 { 2091 struct mem_cgroup *oom_group = NULL; 2092 struct mem_cgroup *memcg; 2093 2094 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2095 return NULL; 2096 2097 if (!oom_domain) 2098 oom_domain = root_mem_cgroup; 2099 2100 rcu_read_lock(); 2101 2102 memcg = mem_cgroup_from_task(victim); 2103 if (memcg == root_mem_cgroup) 2104 goto out; 2105 2106 /* 2107 * If the victim task has been asynchronously moved to a different 2108 * memory cgroup, we might end up killing tasks outside oom_domain. 2109 * In this case it's better to ignore memory.group.oom. 2110 */ 2111 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2112 goto out; 2113 2114 /* 2115 * Traverse the memory cgroup hierarchy from the victim task's 2116 * cgroup up to the OOMing cgroup (or root) to find the 2117 * highest-level memory cgroup with oom.group set. 2118 */ 2119 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2120 if (memcg->oom_group) 2121 oom_group = memcg; 2122 2123 if (memcg == oom_domain) 2124 break; 2125 } 2126 2127 if (oom_group) 2128 css_get(&oom_group->css); 2129 out: 2130 rcu_read_unlock(); 2131 2132 return oom_group; 2133 } 2134 2135 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2136 { 2137 pr_info("Tasks in "); 2138 pr_cont_cgroup_path(memcg->css.cgroup); 2139 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2140 } 2141 2142 /** 2143 * lock_page_memcg - lock a page and memcg binding 2144 * @page: the page 2145 * 2146 * This function protects unlocked LRU pages from being moved to 2147 * another cgroup. 2148 * 2149 * It ensures lifetime of the returned memcg. Caller is responsible 2150 * for the lifetime of the page; __unlock_page_memcg() is available 2151 * when @page might get freed inside the locked section. 2152 */ 2153 struct mem_cgroup *lock_page_memcg(struct page *page) 2154 { 2155 struct page *head = compound_head(page); /* rmap on tail pages */ 2156 struct mem_cgroup *memcg; 2157 unsigned long flags; 2158 2159 /* 2160 * The RCU lock is held throughout the transaction. The fast 2161 * path can get away without acquiring the memcg->move_lock 2162 * because page moving starts with an RCU grace period. 2163 * 2164 * The RCU lock also protects the memcg from being freed when 2165 * the page state that is going to change is the only thing 2166 * preventing the page itself from being freed. E.g. writeback 2167 * doesn't hold a page reference and relies on PG_writeback to 2168 * keep off truncation, migration and so forth. 2169 */ 2170 rcu_read_lock(); 2171 2172 if (mem_cgroup_disabled()) 2173 return NULL; 2174 again: 2175 memcg = page_memcg(head); 2176 if (unlikely(!memcg)) 2177 return NULL; 2178 2179 #ifdef CONFIG_PROVE_LOCKING 2180 local_irq_save(flags); 2181 might_lock(&memcg->move_lock); 2182 local_irq_restore(flags); 2183 #endif 2184 2185 if (atomic_read(&memcg->moving_account) <= 0) 2186 return memcg; 2187 2188 spin_lock_irqsave(&memcg->move_lock, flags); 2189 if (memcg != page_memcg(head)) { 2190 spin_unlock_irqrestore(&memcg->move_lock, flags); 2191 goto again; 2192 } 2193 2194 /* 2195 * When charge migration first begins, we can have locked and 2196 * unlocked page stat updates happening concurrently. Track 2197 * the task who has the lock for unlock_page_memcg(). 2198 */ 2199 memcg->move_lock_task = current; 2200 memcg->move_lock_flags = flags; 2201 2202 return memcg; 2203 } 2204 EXPORT_SYMBOL(lock_page_memcg); 2205 2206 /** 2207 * __unlock_page_memcg - unlock and unpin a memcg 2208 * @memcg: the memcg 2209 * 2210 * Unlock and unpin a memcg returned by lock_page_memcg(). 2211 */ 2212 void __unlock_page_memcg(struct mem_cgroup *memcg) 2213 { 2214 if (memcg && memcg->move_lock_task == current) { 2215 unsigned long flags = memcg->move_lock_flags; 2216 2217 memcg->move_lock_task = NULL; 2218 memcg->move_lock_flags = 0; 2219 2220 spin_unlock_irqrestore(&memcg->move_lock, flags); 2221 } 2222 2223 rcu_read_unlock(); 2224 } 2225 2226 /** 2227 * unlock_page_memcg - unlock a page and memcg binding 2228 * @page: the page 2229 */ 2230 void unlock_page_memcg(struct page *page) 2231 { 2232 struct page *head = compound_head(page); 2233 2234 __unlock_page_memcg(page_memcg(head)); 2235 } 2236 EXPORT_SYMBOL(unlock_page_memcg); 2237 2238 struct memcg_stock_pcp { 2239 struct mem_cgroup *cached; /* this never be root cgroup */ 2240 unsigned int nr_pages; 2241 2242 #ifdef CONFIG_MEMCG_KMEM 2243 struct obj_cgroup *cached_objcg; 2244 unsigned int nr_bytes; 2245 #endif 2246 2247 struct work_struct work; 2248 unsigned long flags; 2249 #define FLUSHING_CACHED_CHARGE 0 2250 }; 2251 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2252 static DEFINE_MUTEX(percpu_charge_mutex); 2253 2254 #ifdef CONFIG_MEMCG_KMEM 2255 static void drain_obj_stock(struct memcg_stock_pcp *stock); 2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2257 struct mem_cgroup *root_memcg); 2258 2259 #else 2260 static inline void drain_obj_stock(struct memcg_stock_pcp *stock) 2261 { 2262 } 2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2264 struct mem_cgroup *root_memcg) 2265 { 2266 return false; 2267 } 2268 #endif 2269 2270 /** 2271 * consume_stock: Try to consume stocked charge on this cpu. 2272 * @memcg: memcg to consume from. 2273 * @nr_pages: how many pages to charge. 2274 * 2275 * The charges will only happen if @memcg matches the current cpu's memcg 2276 * stock, and at least @nr_pages are available in that stock. Failure to 2277 * service an allocation will refill the stock. 2278 * 2279 * returns true if successful, false otherwise. 2280 */ 2281 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2282 { 2283 struct memcg_stock_pcp *stock; 2284 unsigned long flags; 2285 bool ret = false; 2286 2287 if (nr_pages > MEMCG_CHARGE_BATCH) 2288 return ret; 2289 2290 local_irq_save(flags); 2291 2292 stock = this_cpu_ptr(&memcg_stock); 2293 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2294 stock->nr_pages -= nr_pages; 2295 ret = true; 2296 } 2297 2298 local_irq_restore(flags); 2299 2300 return ret; 2301 } 2302 2303 /* 2304 * Returns stocks cached in percpu and reset cached information. 2305 */ 2306 static void drain_stock(struct memcg_stock_pcp *stock) 2307 { 2308 struct mem_cgroup *old = stock->cached; 2309 2310 if (!old) 2311 return; 2312 2313 if (stock->nr_pages) { 2314 page_counter_uncharge(&old->memory, stock->nr_pages); 2315 if (do_memsw_account()) 2316 page_counter_uncharge(&old->memsw, stock->nr_pages); 2317 stock->nr_pages = 0; 2318 } 2319 2320 css_put(&old->css); 2321 stock->cached = NULL; 2322 } 2323 2324 static void drain_local_stock(struct work_struct *dummy) 2325 { 2326 struct memcg_stock_pcp *stock; 2327 unsigned long flags; 2328 2329 /* 2330 * The only protection from memory hotplug vs. drain_stock races is 2331 * that we always operate on local CPU stock here with IRQ disabled 2332 */ 2333 local_irq_save(flags); 2334 2335 stock = this_cpu_ptr(&memcg_stock); 2336 drain_obj_stock(stock); 2337 drain_stock(stock); 2338 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2339 2340 local_irq_restore(flags); 2341 } 2342 2343 /* 2344 * Cache charges(val) to local per_cpu area. 2345 * This will be consumed by consume_stock() function, later. 2346 */ 2347 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2348 { 2349 struct memcg_stock_pcp *stock; 2350 unsigned long flags; 2351 2352 local_irq_save(flags); 2353 2354 stock = this_cpu_ptr(&memcg_stock); 2355 if (stock->cached != memcg) { /* reset if necessary */ 2356 drain_stock(stock); 2357 css_get(&memcg->css); 2358 stock->cached = memcg; 2359 } 2360 stock->nr_pages += nr_pages; 2361 2362 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2363 drain_stock(stock); 2364 2365 local_irq_restore(flags); 2366 } 2367 2368 /* 2369 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2370 * of the hierarchy under it. 2371 */ 2372 static void drain_all_stock(struct mem_cgroup *root_memcg) 2373 { 2374 int cpu, curcpu; 2375 2376 /* If someone's already draining, avoid adding running more workers. */ 2377 if (!mutex_trylock(&percpu_charge_mutex)) 2378 return; 2379 /* 2380 * Notify other cpus that system-wide "drain" is running 2381 * We do not care about races with the cpu hotplug because cpu down 2382 * as well as workers from this path always operate on the local 2383 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2384 */ 2385 curcpu = get_cpu(); 2386 for_each_online_cpu(cpu) { 2387 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2388 struct mem_cgroup *memcg; 2389 bool flush = false; 2390 2391 rcu_read_lock(); 2392 memcg = stock->cached; 2393 if (memcg && stock->nr_pages && 2394 mem_cgroup_is_descendant(memcg, root_memcg)) 2395 flush = true; 2396 if (obj_stock_flush_required(stock, root_memcg)) 2397 flush = true; 2398 rcu_read_unlock(); 2399 2400 if (flush && 2401 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2402 if (cpu == curcpu) 2403 drain_local_stock(&stock->work); 2404 else 2405 schedule_work_on(cpu, &stock->work); 2406 } 2407 } 2408 put_cpu(); 2409 mutex_unlock(&percpu_charge_mutex); 2410 } 2411 2412 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2413 { 2414 struct memcg_stock_pcp *stock; 2415 struct mem_cgroup *memcg, *mi; 2416 2417 stock = &per_cpu(memcg_stock, cpu); 2418 drain_stock(stock); 2419 2420 for_each_mem_cgroup(memcg) { 2421 int i; 2422 2423 for (i = 0; i < MEMCG_NR_STAT; i++) { 2424 int nid; 2425 long x; 2426 2427 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2428 if (x) 2429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2430 atomic_long_add(x, &memcg->vmstats[i]); 2431 2432 if (i >= NR_VM_NODE_STAT_ITEMS) 2433 continue; 2434 2435 for_each_node(nid) { 2436 struct mem_cgroup_per_node *pn; 2437 2438 pn = mem_cgroup_nodeinfo(memcg, nid); 2439 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2440 if (x) 2441 do { 2442 atomic_long_add(x, &pn->lruvec_stat[i]); 2443 } while ((pn = parent_nodeinfo(pn, nid))); 2444 } 2445 } 2446 2447 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2448 long x; 2449 2450 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2451 if (x) 2452 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2453 atomic_long_add(x, &memcg->vmevents[i]); 2454 } 2455 } 2456 2457 return 0; 2458 } 2459 2460 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2461 unsigned int nr_pages, 2462 gfp_t gfp_mask) 2463 { 2464 unsigned long nr_reclaimed = 0; 2465 2466 do { 2467 unsigned long pflags; 2468 2469 if (page_counter_read(&memcg->memory) <= 2470 READ_ONCE(memcg->memory.high)) 2471 continue; 2472 2473 memcg_memory_event(memcg, MEMCG_HIGH); 2474 2475 psi_memstall_enter(&pflags); 2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2477 gfp_mask, true); 2478 psi_memstall_leave(&pflags); 2479 } while ((memcg = parent_mem_cgroup(memcg)) && 2480 !mem_cgroup_is_root(memcg)); 2481 2482 return nr_reclaimed; 2483 } 2484 2485 static void high_work_func(struct work_struct *work) 2486 { 2487 struct mem_cgroup *memcg; 2488 2489 memcg = container_of(work, struct mem_cgroup, high_work); 2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2491 } 2492 2493 /* 2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2495 * enough to still cause a significant slowdown in most cases, while still 2496 * allowing diagnostics and tracing to proceed without becoming stuck. 2497 */ 2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2499 2500 /* 2501 * When calculating the delay, we use these either side of the exponentiation to 2502 * maintain precision and scale to a reasonable number of jiffies (see the table 2503 * below. 2504 * 2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2506 * overage ratio to a delay. 2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2509 * to produce a reasonable delay curve. 2510 * 2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2512 * reasonable delay curve compared to precision-adjusted overage, not 2513 * penalising heavily at first, but still making sure that growth beyond the 2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2515 * example, with a high of 100 megabytes: 2516 * 2517 * +-------+------------------------+ 2518 * | usage | time to allocate in ms | 2519 * +-------+------------------------+ 2520 * | 100M | 0 | 2521 * | 101M | 6 | 2522 * | 102M | 25 | 2523 * | 103M | 57 | 2524 * | 104M | 102 | 2525 * | 105M | 159 | 2526 * | 106M | 230 | 2527 * | 107M | 313 | 2528 * | 108M | 409 | 2529 * | 109M | 518 | 2530 * | 110M | 639 | 2531 * | 111M | 774 | 2532 * | 112M | 921 | 2533 * | 113M | 1081 | 2534 * | 114M | 1254 | 2535 * | 115M | 1439 | 2536 * | 116M | 1638 | 2537 * | 117M | 1849 | 2538 * | 118M | 2000 | 2539 * | 119M | 2000 | 2540 * | 120M | 2000 | 2541 * +-------+------------------------+ 2542 */ 2543 #define MEMCG_DELAY_PRECISION_SHIFT 20 2544 #define MEMCG_DELAY_SCALING_SHIFT 14 2545 2546 static u64 calculate_overage(unsigned long usage, unsigned long high) 2547 { 2548 u64 overage; 2549 2550 if (usage <= high) 2551 return 0; 2552 2553 /* 2554 * Prevent division by 0 in overage calculation by acting as if 2555 * it was a threshold of 1 page 2556 */ 2557 high = max(high, 1UL); 2558 2559 overage = usage - high; 2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2561 return div64_u64(overage, high); 2562 } 2563 2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2565 { 2566 u64 overage, max_overage = 0; 2567 2568 do { 2569 overage = calculate_overage(page_counter_read(&memcg->memory), 2570 READ_ONCE(memcg->memory.high)); 2571 max_overage = max(overage, max_overage); 2572 } while ((memcg = parent_mem_cgroup(memcg)) && 2573 !mem_cgroup_is_root(memcg)); 2574 2575 return max_overage; 2576 } 2577 2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2579 { 2580 u64 overage, max_overage = 0; 2581 2582 do { 2583 overage = calculate_overage(page_counter_read(&memcg->swap), 2584 READ_ONCE(memcg->swap.high)); 2585 if (overage) 2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2587 max_overage = max(overage, max_overage); 2588 } while ((memcg = parent_mem_cgroup(memcg)) && 2589 !mem_cgroup_is_root(memcg)); 2590 2591 return max_overage; 2592 } 2593 2594 /* 2595 * Get the number of jiffies that we should penalise a mischievous cgroup which 2596 * is exceeding its memory.high by checking both it and its ancestors. 2597 */ 2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2599 unsigned int nr_pages, 2600 u64 max_overage) 2601 { 2602 unsigned long penalty_jiffies; 2603 2604 if (!max_overage) 2605 return 0; 2606 2607 /* 2608 * We use overage compared to memory.high to calculate the number of 2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2610 * fairly lenient on small overages, and increasingly harsh when the 2611 * memcg in question makes it clear that it has no intention of stopping 2612 * its crazy behaviour, so we exponentially increase the delay based on 2613 * overage amount. 2614 */ 2615 penalty_jiffies = max_overage * max_overage * HZ; 2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2618 2619 /* 2620 * Factor in the task's own contribution to the overage, such that four 2621 * N-sized allocations are throttled approximately the same as one 2622 * 4N-sized allocation. 2623 * 2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2625 * larger the current charge patch is than that. 2626 */ 2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2628 } 2629 2630 /* 2631 * Scheduled by try_charge() to be executed from the userland return path 2632 * and reclaims memory over the high limit. 2633 */ 2634 void mem_cgroup_handle_over_high(void) 2635 { 2636 unsigned long penalty_jiffies; 2637 unsigned long pflags; 2638 unsigned long nr_reclaimed; 2639 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2640 int nr_retries = MAX_RECLAIM_RETRIES; 2641 struct mem_cgroup *memcg; 2642 bool in_retry = false; 2643 2644 if (likely(!nr_pages)) 2645 return; 2646 2647 memcg = get_mem_cgroup_from_mm(current->mm); 2648 current->memcg_nr_pages_over_high = 0; 2649 2650 retry_reclaim: 2651 /* 2652 * The allocating task should reclaim at least the batch size, but for 2653 * subsequent retries we only want to do what's necessary to prevent oom 2654 * or breaching resource isolation. 2655 * 2656 * This is distinct from memory.max or page allocator behaviour because 2657 * memory.high is currently batched, whereas memory.max and the page 2658 * allocator run every time an allocation is made. 2659 */ 2660 nr_reclaimed = reclaim_high(memcg, 2661 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2662 GFP_KERNEL); 2663 2664 /* 2665 * memory.high is breached and reclaim is unable to keep up. Throttle 2666 * allocators proactively to slow down excessive growth. 2667 */ 2668 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2669 mem_find_max_overage(memcg)); 2670 2671 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2672 swap_find_max_overage(memcg)); 2673 2674 /* 2675 * Clamp the max delay per usermode return so as to still keep the 2676 * application moving forwards and also permit diagnostics, albeit 2677 * extremely slowly. 2678 */ 2679 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2680 2681 /* 2682 * Don't sleep if the amount of jiffies this memcg owes us is so low 2683 * that it's not even worth doing, in an attempt to be nice to those who 2684 * go only a small amount over their memory.high value and maybe haven't 2685 * been aggressively reclaimed enough yet. 2686 */ 2687 if (penalty_jiffies <= HZ / 100) 2688 goto out; 2689 2690 /* 2691 * If reclaim is making forward progress but we're still over 2692 * memory.high, we want to encourage that rather than doing allocator 2693 * throttling. 2694 */ 2695 if (nr_reclaimed || nr_retries--) { 2696 in_retry = true; 2697 goto retry_reclaim; 2698 } 2699 2700 /* 2701 * If we exit early, we're guaranteed to die (since 2702 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2703 * need to account for any ill-begotten jiffies to pay them off later. 2704 */ 2705 psi_memstall_enter(&pflags); 2706 schedule_timeout_killable(penalty_jiffies); 2707 psi_memstall_leave(&pflags); 2708 2709 out: 2710 css_put(&memcg->css); 2711 } 2712 2713 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2714 unsigned int nr_pages) 2715 { 2716 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2717 int nr_retries = MAX_RECLAIM_RETRIES; 2718 struct mem_cgroup *mem_over_limit; 2719 struct page_counter *counter; 2720 enum oom_status oom_status; 2721 unsigned long nr_reclaimed; 2722 bool may_swap = true; 2723 bool drained = false; 2724 unsigned long pflags; 2725 2726 if (mem_cgroup_is_root(memcg)) 2727 return 0; 2728 retry: 2729 if (consume_stock(memcg, nr_pages)) 2730 return 0; 2731 2732 if (!do_memsw_account() || 2733 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2734 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2735 goto done_restock; 2736 if (do_memsw_account()) 2737 page_counter_uncharge(&memcg->memsw, batch); 2738 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2739 } else { 2740 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2741 may_swap = false; 2742 } 2743 2744 if (batch > nr_pages) { 2745 batch = nr_pages; 2746 goto retry; 2747 } 2748 2749 /* 2750 * Memcg doesn't have a dedicated reserve for atomic 2751 * allocations. But like the global atomic pool, we need to 2752 * put the burden of reclaim on regular allocation requests 2753 * and let these go through as privileged allocations. 2754 */ 2755 if (gfp_mask & __GFP_ATOMIC) 2756 goto force; 2757 2758 /* 2759 * Unlike in global OOM situations, memcg is not in a physical 2760 * memory shortage. Allow dying and OOM-killed tasks to 2761 * bypass the last charges so that they can exit quickly and 2762 * free their memory. 2763 */ 2764 if (unlikely(should_force_charge())) 2765 goto force; 2766 2767 /* 2768 * Prevent unbounded recursion when reclaim operations need to 2769 * allocate memory. This might exceed the limits temporarily, 2770 * but we prefer facilitating memory reclaim and getting back 2771 * under the limit over triggering OOM kills in these cases. 2772 */ 2773 if (unlikely(current->flags & PF_MEMALLOC)) 2774 goto force; 2775 2776 if (unlikely(task_in_memcg_oom(current))) 2777 goto nomem; 2778 2779 if (!gfpflags_allow_blocking(gfp_mask)) 2780 goto nomem; 2781 2782 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2783 2784 psi_memstall_enter(&pflags); 2785 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2786 gfp_mask, may_swap); 2787 psi_memstall_leave(&pflags); 2788 2789 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2790 goto retry; 2791 2792 if (!drained) { 2793 drain_all_stock(mem_over_limit); 2794 drained = true; 2795 goto retry; 2796 } 2797 2798 if (gfp_mask & __GFP_NORETRY) 2799 goto nomem; 2800 /* 2801 * Even though the limit is exceeded at this point, reclaim 2802 * may have been able to free some pages. Retry the charge 2803 * before killing the task. 2804 * 2805 * Only for regular pages, though: huge pages are rather 2806 * unlikely to succeed so close to the limit, and we fall back 2807 * to regular pages anyway in case of failure. 2808 */ 2809 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2810 goto retry; 2811 /* 2812 * At task move, charge accounts can be doubly counted. So, it's 2813 * better to wait until the end of task_move if something is going on. 2814 */ 2815 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2816 goto retry; 2817 2818 if (nr_retries--) 2819 goto retry; 2820 2821 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2822 goto nomem; 2823 2824 if (gfp_mask & __GFP_NOFAIL) 2825 goto force; 2826 2827 if (fatal_signal_pending(current)) 2828 goto force; 2829 2830 /* 2831 * keep retrying as long as the memcg oom killer is able to make 2832 * a forward progress or bypass the charge if the oom killer 2833 * couldn't make any progress. 2834 */ 2835 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2836 get_order(nr_pages * PAGE_SIZE)); 2837 switch (oom_status) { 2838 case OOM_SUCCESS: 2839 nr_retries = MAX_RECLAIM_RETRIES; 2840 goto retry; 2841 case OOM_FAILED: 2842 goto force; 2843 default: 2844 goto nomem; 2845 } 2846 nomem: 2847 if (!(gfp_mask & __GFP_NOFAIL)) 2848 return -ENOMEM; 2849 force: 2850 /* 2851 * The allocation either can't fail or will lead to more memory 2852 * being freed very soon. Allow memory usage go over the limit 2853 * temporarily by force charging it. 2854 */ 2855 page_counter_charge(&memcg->memory, nr_pages); 2856 if (do_memsw_account()) 2857 page_counter_charge(&memcg->memsw, nr_pages); 2858 2859 return 0; 2860 2861 done_restock: 2862 if (batch > nr_pages) 2863 refill_stock(memcg, batch - nr_pages); 2864 2865 /* 2866 * If the hierarchy is above the normal consumption range, schedule 2867 * reclaim on returning to userland. We can perform reclaim here 2868 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2869 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2870 * not recorded as it most likely matches current's and won't 2871 * change in the meantime. As high limit is checked again before 2872 * reclaim, the cost of mismatch is negligible. 2873 */ 2874 do { 2875 bool mem_high, swap_high; 2876 2877 mem_high = page_counter_read(&memcg->memory) > 2878 READ_ONCE(memcg->memory.high); 2879 swap_high = page_counter_read(&memcg->swap) > 2880 READ_ONCE(memcg->swap.high); 2881 2882 /* Don't bother a random interrupted task */ 2883 if (in_interrupt()) { 2884 if (mem_high) { 2885 schedule_work(&memcg->high_work); 2886 break; 2887 } 2888 continue; 2889 } 2890 2891 if (mem_high || swap_high) { 2892 /* 2893 * The allocating tasks in this cgroup will need to do 2894 * reclaim or be throttled to prevent further growth 2895 * of the memory or swap footprints. 2896 * 2897 * Target some best-effort fairness between the tasks, 2898 * and distribute reclaim work and delay penalties 2899 * based on how much each task is actually allocating. 2900 */ 2901 current->memcg_nr_pages_over_high += batch; 2902 set_notify_resume(current); 2903 break; 2904 } 2905 } while ((memcg = parent_mem_cgroup(memcg))); 2906 2907 return 0; 2908 } 2909 2910 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2911 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2912 { 2913 if (mem_cgroup_is_root(memcg)) 2914 return; 2915 2916 page_counter_uncharge(&memcg->memory, nr_pages); 2917 if (do_memsw_account()) 2918 page_counter_uncharge(&memcg->memsw, nr_pages); 2919 } 2920 #endif 2921 2922 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2923 { 2924 VM_BUG_ON_PAGE(page_memcg(page), page); 2925 /* 2926 * Any of the following ensures page's memcg stability: 2927 * 2928 * - the page lock 2929 * - LRU isolation 2930 * - lock_page_memcg() 2931 * - exclusive reference 2932 */ 2933 page->memcg_data = (unsigned long)memcg; 2934 } 2935 2936 #ifdef CONFIG_MEMCG_KMEM 2937 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2938 gfp_t gfp) 2939 { 2940 unsigned int objects = objs_per_slab_page(s, page); 2941 void *vec; 2942 2943 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2944 page_to_nid(page)); 2945 if (!vec) 2946 return -ENOMEM; 2947 2948 if (!set_page_objcgs(page, vec)) 2949 kfree(vec); 2950 else 2951 kmemleak_not_leak(vec); 2952 2953 return 0; 2954 } 2955 2956 /* 2957 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2958 * 2959 * A passed kernel object can be a slab object or a generic kernel page, so 2960 * different mechanisms for getting the memory cgroup pointer should be used. 2961 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2962 * can not know for sure how the kernel object is implemented. 2963 * mem_cgroup_from_obj() can be safely used in such cases. 2964 * 2965 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2966 * cgroup_mutex, etc. 2967 */ 2968 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2969 { 2970 struct page *page; 2971 2972 if (mem_cgroup_disabled()) 2973 return NULL; 2974 2975 page = virt_to_head_page(p); 2976 2977 /* 2978 * Slab objects are accounted individually, not per-page. 2979 * Memcg membership data for each individual object is saved in 2980 * the page->obj_cgroups. 2981 */ 2982 if (page_objcgs_check(page)) { 2983 struct obj_cgroup *objcg; 2984 unsigned int off; 2985 2986 off = obj_to_index(page->slab_cache, page, p); 2987 objcg = page_objcgs(page)[off]; 2988 if (objcg) 2989 return obj_cgroup_memcg(objcg); 2990 2991 return NULL; 2992 } 2993 2994 /* 2995 * page_memcg_check() is used here, because page_has_obj_cgroups() 2996 * check above could fail because the object cgroups vector wasn't set 2997 * at that moment, but it can be set concurrently. 2998 * page_memcg_check(page) will guarantee that a proper memory 2999 * cgroup pointer or NULL will be returned. 3000 */ 3001 return page_memcg_check(page); 3002 } 3003 3004 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3005 { 3006 struct obj_cgroup *objcg = NULL; 3007 struct mem_cgroup *memcg; 3008 3009 if (memcg_kmem_bypass()) 3010 return NULL; 3011 3012 rcu_read_lock(); 3013 if (unlikely(active_memcg())) 3014 memcg = active_memcg(); 3015 else 3016 memcg = mem_cgroup_from_task(current); 3017 3018 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 3019 objcg = rcu_dereference(memcg->objcg); 3020 if (objcg && obj_cgroup_tryget(objcg)) 3021 break; 3022 objcg = NULL; 3023 } 3024 rcu_read_unlock(); 3025 3026 return objcg; 3027 } 3028 3029 static int memcg_alloc_cache_id(void) 3030 { 3031 int id, size; 3032 int err; 3033 3034 id = ida_simple_get(&memcg_cache_ida, 3035 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3036 if (id < 0) 3037 return id; 3038 3039 if (id < memcg_nr_cache_ids) 3040 return id; 3041 3042 /* 3043 * There's no space for the new id in memcg_caches arrays, 3044 * so we have to grow them. 3045 */ 3046 down_write(&memcg_cache_ids_sem); 3047 3048 size = 2 * (id + 1); 3049 if (size < MEMCG_CACHES_MIN_SIZE) 3050 size = MEMCG_CACHES_MIN_SIZE; 3051 else if (size > MEMCG_CACHES_MAX_SIZE) 3052 size = MEMCG_CACHES_MAX_SIZE; 3053 3054 err = memcg_update_all_list_lrus(size); 3055 if (!err) 3056 memcg_nr_cache_ids = size; 3057 3058 up_write(&memcg_cache_ids_sem); 3059 3060 if (err) { 3061 ida_simple_remove(&memcg_cache_ida, id); 3062 return err; 3063 } 3064 return id; 3065 } 3066 3067 static void memcg_free_cache_id(int id) 3068 { 3069 ida_simple_remove(&memcg_cache_ida, id); 3070 } 3071 3072 /** 3073 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 3074 * @memcg: memory cgroup to charge 3075 * @gfp: reclaim mode 3076 * @nr_pages: number of pages to charge 3077 * 3078 * Returns 0 on success, an error code on failure. 3079 */ 3080 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 3081 unsigned int nr_pages) 3082 { 3083 struct page_counter *counter; 3084 int ret; 3085 3086 ret = try_charge(memcg, gfp, nr_pages); 3087 if (ret) 3088 return ret; 3089 3090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 3091 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 3092 3093 /* 3094 * Enforce __GFP_NOFAIL allocation because callers are not 3095 * prepared to see failures and likely do not have any failure 3096 * handling code. 3097 */ 3098 if (gfp & __GFP_NOFAIL) { 3099 page_counter_charge(&memcg->kmem, nr_pages); 3100 return 0; 3101 } 3102 cancel_charge(memcg, nr_pages); 3103 return -ENOMEM; 3104 } 3105 return 0; 3106 } 3107 3108 /** 3109 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 3110 * @memcg: memcg to uncharge 3111 * @nr_pages: number of pages to uncharge 3112 */ 3113 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 3114 { 3115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3116 page_counter_uncharge(&memcg->kmem, nr_pages); 3117 3118 page_counter_uncharge(&memcg->memory, nr_pages); 3119 if (do_memsw_account()) 3120 page_counter_uncharge(&memcg->memsw, nr_pages); 3121 } 3122 3123 /** 3124 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3125 * @page: page to charge 3126 * @gfp: reclaim mode 3127 * @order: allocation order 3128 * 3129 * Returns 0 on success, an error code on failure. 3130 */ 3131 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3132 { 3133 struct mem_cgroup *memcg; 3134 int ret = 0; 3135 3136 memcg = get_mem_cgroup_from_current(); 3137 if (memcg && !mem_cgroup_is_root(memcg)) { 3138 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 3139 if (!ret) { 3140 page->memcg_data = (unsigned long)memcg | 3141 MEMCG_DATA_KMEM; 3142 return 0; 3143 } 3144 css_put(&memcg->css); 3145 } 3146 return ret; 3147 } 3148 3149 /** 3150 * __memcg_kmem_uncharge_page: uncharge a kmem page 3151 * @page: page to uncharge 3152 * @order: allocation order 3153 */ 3154 void __memcg_kmem_uncharge_page(struct page *page, int order) 3155 { 3156 struct mem_cgroup *memcg = page_memcg(page); 3157 unsigned int nr_pages = 1 << order; 3158 3159 if (!memcg) 3160 return; 3161 3162 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3163 __memcg_kmem_uncharge(memcg, nr_pages); 3164 page->memcg_data = 0; 3165 css_put(&memcg->css); 3166 } 3167 3168 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3169 { 3170 struct memcg_stock_pcp *stock; 3171 unsigned long flags; 3172 bool ret = false; 3173 3174 local_irq_save(flags); 3175 3176 stock = this_cpu_ptr(&memcg_stock); 3177 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3178 stock->nr_bytes -= nr_bytes; 3179 ret = true; 3180 } 3181 3182 local_irq_restore(flags); 3183 3184 return ret; 3185 } 3186 3187 static void drain_obj_stock(struct memcg_stock_pcp *stock) 3188 { 3189 struct obj_cgroup *old = stock->cached_objcg; 3190 3191 if (!old) 3192 return; 3193 3194 if (stock->nr_bytes) { 3195 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3196 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3197 3198 if (nr_pages) { 3199 rcu_read_lock(); 3200 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); 3201 rcu_read_unlock(); 3202 } 3203 3204 /* 3205 * The leftover is flushed to the centralized per-memcg value. 3206 * On the next attempt to refill obj stock it will be moved 3207 * to a per-cpu stock (probably, on an other CPU), see 3208 * refill_obj_stock(). 3209 * 3210 * How often it's flushed is a trade-off between the memory 3211 * limit enforcement accuracy and potential CPU contention, 3212 * so it might be changed in the future. 3213 */ 3214 atomic_add(nr_bytes, &old->nr_charged_bytes); 3215 stock->nr_bytes = 0; 3216 } 3217 3218 obj_cgroup_put(old); 3219 stock->cached_objcg = NULL; 3220 } 3221 3222 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3223 struct mem_cgroup *root_memcg) 3224 { 3225 struct mem_cgroup *memcg; 3226 3227 if (stock->cached_objcg) { 3228 memcg = obj_cgroup_memcg(stock->cached_objcg); 3229 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3230 return true; 3231 } 3232 3233 return false; 3234 } 3235 3236 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3237 { 3238 struct memcg_stock_pcp *stock; 3239 unsigned long flags; 3240 3241 local_irq_save(flags); 3242 3243 stock = this_cpu_ptr(&memcg_stock); 3244 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3245 drain_obj_stock(stock); 3246 obj_cgroup_get(objcg); 3247 stock->cached_objcg = objcg; 3248 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); 3249 } 3250 stock->nr_bytes += nr_bytes; 3251 3252 if (stock->nr_bytes > PAGE_SIZE) 3253 drain_obj_stock(stock); 3254 3255 local_irq_restore(flags); 3256 } 3257 3258 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3259 { 3260 struct mem_cgroup *memcg; 3261 unsigned int nr_pages, nr_bytes; 3262 int ret; 3263 3264 if (consume_obj_stock(objcg, size)) 3265 return 0; 3266 3267 /* 3268 * In theory, memcg->nr_charged_bytes can have enough 3269 * pre-charged bytes to satisfy the allocation. However, 3270 * flushing memcg->nr_charged_bytes requires two atomic 3271 * operations, and memcg->nr_charged_bytes can't be big, 3272 * so it's better to ignore it and try grab some new pages. 3273 * memcg->nr_charged_bytes will be flushed in 3274 * refill_obj_stock(), called from this function or 3275 * independently later. 3276 */ 3277 rcu_read_lock(); 3278 retry: 3279 memcg = obj_cgroup_memcg(objcg); 3280 if (unlikely(!css_tryget(&memcg->css))) 3281 goto retry; 3282 rcu_read_unlock(); 3283 3284 nr_pages = size >> PAGE_SHIFT; 3285 nr_bytes = size & (PAGE_SIZE - 1); 3286 3287 if (nr_bytes) 3288 nr_pages += 1; 3289 3290 ret = __memcg_kmem_charge(memcg, gfp, nr_pages); 3291 if (!ret && nr_bytes) 3292 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); 3293 3294 css_put(&memcg->css); 3295 return ret; 3296 } 3297 3298 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3299 { 3300 refill_obj_stock(objcg, size); 3301 } 3302 3303 #endif /* CONFIG_MEMCG_KMEM */ 3304 3305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3306 /* 3307 * Because page_memcg(head) is not set on compound tails, set it now. 3308 */ 3309 void mem_cgroup_split_huge_fixup(struct page *head) 3310 { 3311 struct mem_cgroup *memcg = page_memcg(head); 3312 int i; 3313 3314 if (mem_cgroup_disabled()) 3315 return; 3316 3317 for (i = 1; i < HPAGE_PMD_NR; i++) { 3318 css_get(&memcg->css); 3319 head[i].memcg_data = (unsigned long)memcg; 3320 } 3321 } 3322 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3323 3324 #ifdef CONFIG_MEMCG_SWAP 3325 /** 3326 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3327 * @entry: swap entry to be moved 3328 * @from: mem_cgroup which the entry is moved from 3329 * @to: mem_cgroup which the entry is moved to 3330 * 3331 * It succeeds only when the swap_cgroup's record for this entry is the same 3332 * as the mem_cgroup's id of @from. 3333 * 3334 * Returns 0 on success, -EINVAL on failure. 3335 * 3336 * The caller must have charged to @to, IOW, called page_counter_charge() about 3337 * both res and memsw, and called css_get(). 3338 */ 3339 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3340 struct mem_cgroup *from, struct mem_cgroup *to) 3341 { 3342 unsigned short old_id, new_id; 3343 3344 old_id = mem_cgroup_id(from); 3345 new_id = mem_cgroup_id(to); 3346 3347 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3348 mod_memcg_state(from, MEMCG_SWAP, -1); 3349 mod_memcg_state(to, MEMCG_SWAP, 1); 3350 return 0; 3351 } 3352 return -EINVAL; 3353 } 3354 #else 3355 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3356 struct mem_cgroup *from, struct mem_cgroup *to) 3357 { 3358 return -EINVAL; 3359 } 3360 #endif 3361 3362 static DEFINE_MUTEX(memcg_max_mutex); 3363 3364 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3365 unsigned long max, bool memsw) 3366 { 3367 bool enlarge = false; 3368 bool drained = false; 3369 int ret; 3370 bool limits_invariant; 3371 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3372 3373 do { 3374 if (signal_pending(current)) { 3375 ret = -EINTR; 3376 break; 3377 } 3378 3379 mutex_lock(&memcg_max_mutex); 3380 /* 3381 * Make sure that the new limit (memsw or memory limit) doesn't 3382 * break our basic invariant rule memory.max <= memsw.max. 3383 */ 3384 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3385 max <= memcg->memsw.max; 3386 if (!limits_invariant) { 3387 mutex_unlock(&memcg_max_mutex); 3388 ret = -EINVAL; 3389 break; 3390 } 3391 if (max > counter->max) 3392 enlarge = true; 3393 ret = page_counter_set_max(counter, max); 3394 mutex_unlock(&memcg_max_mutex); 3395 3396 if (!ret) 3397 break; 3398 3399 if (!drained) { 3400 drain_all_stock(memcg); 3401 drained = true; 3402 continue; 3403 } 3404 3405 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3406 GFP_KERNEL, !memsw)) { 3407 ret = -EBUSY; 3408 break; 3409 } 3410 } while (true); 3411 3412 if (!ret && enlarge) 3413 memcg_oom_recover(memcg); 3414 3415 return ret; 3416 } 3417 3418 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3419 gfp_t gfp_mask, 3420 unsigned long *total_scanned) 3421 { 3422 unsigned long nr_reclaimed = 0; 3423 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3424 unsigned long reclaimed; 3425 int loop = 0; 3426 struct mem_cgroup_tree_per_node *mctz; 3427 unsigned long excess; 3428 unsigned long nr_scanned; 3429 3430 if (order > 0) 3431 return 0; 3432 3433 mctz = soft_limit_tree_node(pgdat->node_id); 3434 3435 /* 3436 * Do not even bother to check the largest node if the root 3437 * is empty. Do it lockless to prevent lock bouncing. Races 3438 * are acceptable as soft limit is best effort anyway. 3439 */ 3440 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3441 return 0; 3442 3443 /* 3444 * This loop can run a while, specially if mem_cgroup's continuously 3445 * keep exceeding their soft limit and putting the system under 3446 * pressure 3447 */ 3448 do { 3449 if (next_mz) 3450 mz = next_mz; 3451 else 3452 mz = mem_cgroup_largest_soft_limit_node(mctz); 3453 if (!mz) 3454 break; 3455 3456 nr_scanned = 0; 3457 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3458 gfp_mask, &nr_scanned); 3459 nr_reclaimed += reclaimed; 3460 *total_scanned += nr_scanned; 3461 spin_lock_irq(&mctz->lock); 3462 __mem_cgroup_remove_exceeded(mz, mctz); 3463 3464 /* 3465 * If we failed to reclaim anything from this memory cgroup 3466 * it is time to move on to the next cgroup 3467 */ 3468 next_mz = NULL; 3469 if (!reclaimed) 3470 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3471 3472 excess = soft_limit_excess(mz->memcg); 3473 /* 3474 * One school of thought says that we should not add 3475 * back the node to the tree if reclaim returns 0. 3476 * But our reclaim could return 0, simply because due 3477 * to priority we are exposing a smaller subset of 3478 * memory to reclaim from. Consider this as a longer 3479 * term TODO. 3480 */ 3481 /* If excess == 0, no tree ops */ 3482 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3483 spin_unlock_irq(&mctz->lock); 3484 css_put(&mz->memcg->css); 3485 loop++; 3486 /* 3487 * Could not reclaim anything and there are no more 3488 * mem cgroups to try or we seem to be looping without 3489 * reclaiming anything. 3490 */ 3491 if (!nr_reclaimed && 3492 (next_mz == NULL || 3493 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3494 break; 3495 } while (!nr_reclaimed); 3496 if (next_mz) 3497 css_put(&next_mz->memcg->css); 3498 return nr_reclaimed; 3499 } 3500 3501 /* 3502 * Reclaims as many pages from the given memcg as possible. 3503 * 3504 * Caller is responsible for holding css reference for memcg. 3505 */ 3506 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3507 { 3508 int nr_retries = MAX_RECLAIM_RETRIES; 3509 3510 /* we call try-to-free pages for make this cgroup empty */ 3511 lru_add_drain_all(); 3512 3513 drain_all_stock(memcg); 3514 3515 /* try to free all pages in this cgroup */ 3516 while (nr_retries && page_counter_read(&memcg->memory)) { 3517 int progress; 3518 3519 if (signal_pending(current)) 3520 return -EINTR; 3521 3522 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3523 GFP_KERNEL, true); 3524 if (!progress) { 3525 nr_retries--; 3526 /* maybe some writeback is necessary */ 3527 congestion_wait(BLK_RW_ASYNC, HZ/10); 3528 } 3529 3530 } 3531 3532 return 0; 3533 } 3534 3535 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3536 char *buf, size_t nbytes, 3537 loff_t off) 3538 { 3539 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3540 3541 if (mem_cgroup_is_root(memcg)) 3542 return -EINVAL; 3543 return mem_cgroup_force_empty(memcg) ?: nbytes; 3544 } 3545 3546 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3547 struct cftype *cft) 3548 { 3549 return 1; 3550 } 3551 3552 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3553 struct cftype *cft, u64 val) 3554 { 3555 if (val == 1) 3556 return 0; 3557 3558 pr_warn_once("Non-hierarchical mode is deprecated. " 3559 "Please report your usecase to linux-mm@kvack.org if you " 3560 "depend on this functionality.\n"); 3561 3562 return -EINVAL; 3563 } 3564 3565 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3566 { 3567 unsigned long val; 3568 3569 if (mem_cgroup_is_root(memcg)) { 3570 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3571 memcg_page_state(memcg, NR_ANON_MAPPED); 3572 if (swap) 3573 val += memcg_page_state(memcg, MEMCG_SWAP); 3574 } else { 3575 if (!swap) 3576 val = page_counter_read(&memcg->memory); 3577 else 3578 val = page_counter_read(&memcg->memsw); 3579 } 3580 return val; 3581 } 3582 3583 enum { 3584 RES_USAGE, 3585 RES_LIMIT, 3586 RES_MAX_USAGE, 3587 RES_FAILCNT, 3588 RES_SOFT_LIMIT, 3589 }; 3590 3591 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3592 struct cftype *cft) 3593 { 3594 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3595 struct page_counter *counter; 3596 3597 switch (MEMFILE_TYPE(cft->private)) { 3598 case _MEM: 3599 counter = &memcg->memory; 3600 break; 3601 case _MEMSWAP: 3602 counter = &memcg->memsw; 3603 break; 3604 case _KMEM: 3605 counter = &memcg->kmem; 3606 break; 3607 case _TCP: 3608 counter = &memcg->tcpmem; 3609 break; 3610 default: 3611 BUG(); 3612 } 3613 3614 switch (MEMFILE_ATTR(cft->private)) { 3615 case RES_USAGE: 3616 if (counter == &memcg->memory) 3617 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3618 if (counter == &memcg->memsw) 3619 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3620 return (u64)page_counter_read(counter) * PAGE_SIZE; 3621 case RES_LIMIT: 3622 return (u64)counter->max * PAGE_SIZE; 3623 case RES_MAX_USAGE: 3624 return (u64)counter->watermark * PAGE_SIZE; 3625 case RES_FAILCNT: 3626 return counter->failcnt; 3627 case RES_SOFT_LIMIT: 3628 return (u64)memcg->soft_limit * PAGE_SIZE; 3629 default: 3630 BUG(); 3631 } 3632 } 3633 3634 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3635 { 3636 unsigned long stat[MEMCG_NR_STAT] = {0}; 3637 struct mem_cgroup *mi; 3638 int node, cpu, i; 3639 3640 for_each_online_cpu(cpu) 3641 for (i = 0; i < MEMCG_NR_STAT; i++) 3642 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3643 3644 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3645 for (i = 0; i < MEMCG_NR_STAT; i++) 3646 atomic_long_add(stat[i], &mi->vmstats[i]); 3647 3648 for_each_node(node) { 3649 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3650 struct mem_cgroup_per_node *pi; 3651 3652 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3653 stat[i] = 0; 3654 3655 for_each_online_cpu(cpu) 3656 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3657 stat[i] += per_cpu( 3658 pn->lruvec_stat_cpu->count[i], cpu); 3659 3660 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3661 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3662 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3663 } 3664 } 3665 3666 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3667 { 3668 unsigned long events[NR_VM_EVENT_ITEMS]; 3669 struct mem_cgroup *mi; 3670 int cpu, i; 3671 3672 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3673 events[i] = 0; 3674 3675 for_each_online_cpu(cpu) 3676 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3677 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3678 cpu); 3679 3680 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3681 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3682 atomic_long_add(events[i], &mi->vmevents[i]); 3683 } 3684 3685 #ifdef CONFIG_MEMCG_KMEM 3686 static int memcg_online_kmem(struct mem_cgroup *memcg) 3687 { 3688 struct obj_cgroup *objcg; 3689 int memcg_id; 3690 3691 if (cgroup_memory_nokmem) 3692 return 0; 3693 3694 BUG_ON(memcg->kmemcg_id >= 0); 3695 BUG_ON(memcg->kmem_state); 3696 3697 memcg_id = memcg_alloc_cache_id(); 3698 if (memcg_id < 0) 3699 return memcg_id; 3700 3701 objcg = obj_cgroup_alloc(); 3702 if (!objcg) { 3703 memcg_free_cache_id(memcg_id); 3704 return -ENOMEM; 3705 } 3706 objcg->memcg = memcg; 3707 rcu_assign_pointer(memcg->objcg, objcg); 3708 3709 static_branch_enable(&memcg_kmem_enabled_key); 3710 3711 memcg->kmemcg_id = memcg_id; 3712 memcg->kmem_state = KMEM_ONLINE; 3713 3714 return 0; 3715 } 3716 3717 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3718 { 3719 struct cgroup_subsys_state *css; 3720 struct mem_cgroup *parent, *child; 3721 int kmemcg_id; 3722 3723 if (memcg->kmem_state != KMEM_ONLINE) 3724 return; 3725 3726 memcg->kmem_state = KMEM_ALLOCATED; 3727 3728 parent = parent_mem_cgroup(memcg); 3729 if (!parent) 3730 parent = root_mem_cgroup; 3731 3732 memcg_reparent_objcgs(memcg, parent); 3733 3734 kmemcg_id = memcg->kmemcg_id; 3735 BUG_ON(kmemcg_id < 0); 3736 3737 /* 3738 * Change kmemcg_id of this cgroup and all its descendants to the 3739 * parent's id, and then move all entries from this cgroup's list_lrus 3740 * to ones of the parent. After we have finished, all list_lrus 3741 * corresponding to this cgroup are guaranteed to remain empty. The 3742 * ordering is imposed by list_lru_node->lock taken by 3743 * memcg_drain_all_list_lrus(). 3744 */ 3745 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3746 css_for_each_descendant_pre(css, &memcg->css) { 3747 child = mem_cgroup_from_css(css); 3748 BUG_ON(child->kmemcg_id != kmemcg_id); 3749 child->kmemcg_id = parent->kmemcg_id; 3750 } 3751 rcu_read_unlock(); 3752 3753 memcg_drain_all_list_lrus(kmemcg_id, parent); 3754 3755 memcg_free_cache_id(kmemcg_id); 3756 } 3757 3758 static void memcg_free_kmem(struct mem_cgroup *memcg) 3759 { 3760 /* css_alloc() failed, offlining didn't happen */ 3761 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3762 memcg_offline_kmem(memcg); 3763 } 3764 #else 3765 static int memcg_online_kmem(struct mem_cgroup *memcg) 3766 { 3767 return 0; 3768 } 3769 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3770 { 3771 } 3772 static void memcg_free_kmem(struct mem_cgroup *memcg) 3773 { 3774 } 3775 #endif /* CONFIG_MEMCG_KMEM */ 3776 3777 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3778 unsigned long max) 3779 { 3780 int ret; 3781 3782 mutex_lock(&memcg_max_mutex); 3783 ret = page_counter_set_max(&memcg->kmem, max); 3784 mutex_unlock(&memcg_max_mutex); 3785 return ret; 3786 } 3787 3788 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3789 { 3790 int ret; 3791 3792 mutex_lock(&memcg_max_mutex); 3793 3794 ret = page_counter_set_max(&memcg->tcpmem, max); 3795 if (ret) 3796 goto out; 3797 3798 if (!memcg->tcpmem_active) { 3799 /* 3800 * The active flag needs to be written after the static_key 3801 * update. This is what guarantees that the socket activation 3802 * function is the last one to run. See mem_cgroup_sk_alloc() 3803 * for details, and note that we don't mark any socket as 3804 * belonging to this memcg until that flag is up. 3805 * 3806 * We need to do this, because static_keys will span multiple 3807 * sites, but we can't control their order. If we mark a socket 3808 * as accounted, but the accounting functions are not patched in 3809 * yet, we'll lose accounting. 3810 * 3811 * We never race with the readers in mem_cgroup_sk_alloc(), 3812 * because when this value change, the code to process it is not 3813 * patched in yet. 3814 */ 3815 static_branch_inc(&memcg_sockets_enabled_key); 3816 memcg->tcpmem_active = true; 3817 } 3818 out: 3819 mutex_unlock(&memcg_max_mutex); 3820 return ret; 3821 } 3822 3823 /* 3824 * The user of this function is... 3825 * RES_LIMIT. 3826 */ 3827 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3828 char *buf, size_t nbytes, loff_t off) 3829 { 3830 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3831 unsigned long nr_pages; 3832 int ret; 3833 3834 buf = strstrip(buf); 3835 ret = page_counter_memparse(buf, "-1", &nr_pages); 3836 if (ret) 3837 return ret; 3838 3839 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3840 case RES_LIMIT: 3841 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3842 ret = -EINVAL; 3843 break; 3844 } 3845 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3846 case _MEM: 3847 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3848 break; 3849 case _MEMSWAP: 3850 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3851 break; 3852 case _KMEM: 3853 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3854 "Please report your usecase to linux-mm@kvack.org if you " 3855 "depend on this functionality.\n"); 3856 ret = memcg_update_kmem_max(memcg, nr_pages); 3857 break; 3858 case _TCP: 3859 ret = memcg_update_tcp_max(memcg, nr_pages); 3860 break; 3861 } 3862 break; 3863 case RES_SOFT_LIMIT: 3864 memcg->soft_limit = nr_pages; 3865 ret = 0; 3866 break; 3867 } 3868 return ret ?: nbytes; 3869 } 3870 3871 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3872 size_t nbytes, loff_t off) 3873 { 3874 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3875 struct page_counter *counter; 3876 3877 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3878 case _MEM: 3879 counter = &memcg->memory; 3880 break; 3881 case _MEMSWAP: 3882 counter = &memcg->memsw; 3883 break; 3884 case _KMEM: 3885 counter = &memcg->kmem; 3886 break; 3887 case _TCP: 3888 counter = &memcg->tcpmem; 3889 break; 3890 default: 3891 BUG(); 3892 } 3893 3894 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3895 case RES_MAX_USAGE: 3896 page_counter_reset_watermark(counter); 3897 break; 3898 case RES_FAILCNT: 3899 counter->failcnt = 0; 3900 break; 3901 default: 3902 BUG(); 3903 } 3904 3905 return nbytes; 3906 } 3907 3908 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3909 struct cftype *cft) 3910 { 3911 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3912 } 3913 3914 #ifdef CONFIG_MMU 3915 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3916 struct cftype *cft, u64 val) 3917 { 3918 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3919 3920 if (val & ~MOVE_MASK) 3921 return -EINVAL; 3922 3923 /* 3924 * No kind of locking is needed in here, because ->can_attach() will 3925 * check this value once in the beginning of the process, and then carry 3926 * on with stale data. This means that changes to this value will only 3927 * affect task migrations starting after the change. 3928 */ 3929 memcg->move_charge_at_immigrate = val; 3930 return 0; 3931 } 3932 #else 3933 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3934 struct cftype *cft, u64 val) 3935 { 3936 return -ENOSYS; 3937 } 3938 #endif 3939 3940 #ifdef CONFIG_NUMA 3941 3942 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3943 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3944 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3945 3946 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3947 int nid, unsigned int lru_mask, bool tree) 3948 { 3949 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3950 unsigned long nr = 0; 3951 enum lru_list lru; 3952 3953 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3954 3955 for_each_lru(lru) { 3956 if (!(BIT(lru) & lru_mask)) 3957 continue; 3958 if (tree) 3959 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3960 else 3961 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3962 } 3963 return nr; 3964 } 3965 3966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3967 unsigned int lru_mask, 3968 bool tree) 3969 { 3970 unsigned long nr = 0; 3971 enum lru_list lru; 3972 3973 for_each_lru(lru) { 3974 if (!(BIT(lru) & lru_mask)) 3975 continue; 3976 if (tree) 3977 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3978 else 3979 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3980 } 3981 return nr; 3982 } 3983 3984 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3985 { 3986 struct numa_stat { 3987 const char *name; 3988 unsigned int lru_mask; 3989 }; 3990 3991 static const struct numa_stat stats[] = { 3992 { "total", LRU_ALL }, 3993 { "file", LRU_ALL_FILE }, 3994 { "anon", LRU_ALL_ANON }, 3995 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3996 }; 3997 const struct numa_stat *stat; 3998 int nid; 3999 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4000 4001 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4002 seq_printf(m, "%s=%lu", stat->name, 4003 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4004 false)); 4005 for_each_node_state(nid, N_MEMORY) 4006 seq_printf(m, " N%d=%lu", nid, 4007 mem_cgroup_node_nr_lru_pages(memcg, nid, 4008 stat->lru_mask, false)); 4009 seq_putc(m, '\n'); 4010 } 4011 4012 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4013 4014 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4015 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4016 true)); 4017 for_each_node_state(nid, N_MEMORY) 4018 seq_printf(m, " N%d=%lu", nid, 4019 mem_cgroup_node_nr_lru_pages(memcg, nid, 4020 stat->lru_mask, true)); 4021 seq_putc(m, '\n'); 4022 } 4023 4024 return 0; 4025 } 4026 #endif /* CONFIG_NUMA */ 4027 4028 static const unsigned int memcg1_stats[] = { 4029 NR_FILE_PAGES, 4030 NR_ANON_MAPPED, 4031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4032 NR_ANON_THPS, 4033 #endif 4034 NR_SHMEM, 4035 NR_FILE_MAPPED, 4036 NR_FILE_DIRTY, 4037 NR_WRITEBACK, 4038 MEMCG_SWAP, 4039 }; 4040 4041 static const char *const memcg1_stat_names[] = { 4042 "cache", 4043 "rss", 4044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4045 "rss_huge", 4046 #endif 4047 "shmem", 4048 "mapped_file", 4049 "dirty", 4050 "writeback", 4051 "swap", 4052 }; 4053 4054 /* Universal VM events cgroup1 shows, original sort order */ 4055 static const unsigned int memcg1_events[] = { 4056 PGPGIN, 4057 PGPGOUT, 4058 PGFAULT, 4059 PGMAJFAULT, 4060 }; 4061 4062 static int memcg_stat_show(struct seq_file *m, void *v) 4063 { 4064 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4065 unsigned long memory, memsw; 4066 struct mem_cgroup *mi; 4067 unsigned int i; 4068 4069 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4070 4071 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4072 unsigned long nr; 4073 4074 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4075 continue; 4076 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4077 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4078 if (memcg1_stats[i] == NR_ANON_THPS) 4079 nr *= HPAGE_PMD_NR; 4080 #endif 4081 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4082 } 4083 4084 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4085 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4086 memcg_events_local(memcg, memcg1_events[i])); 4087 4088 for (i = 0; i < NR_LRU_LISTS; i++) 4089 seq_printf(m, "%s %lu\n", lru_list_name(i), 4090 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4091 PAGE_SIZE); 4092 4093 /* Hierarchical information */ 4094 memory = memsw = PAGE_COUNTER_MAX; 4095 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4096 memory = min(memory, READ_ONCE(mi->memory.max)); 4097 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4098 } 4099 seq_printf(m, "hierarchical_memory_limit %llu\n", 4100 (u64)memory * PAGE_SIZE); 4101 if (do_memsw_account()) 4102 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4103 (u64)memsw * PAGE_SIZE); 4104 4105 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4106 unsigned long nr; 4107 4108 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4109 continue; 4110 nr = memcg_page_state(memcg, memcg1_stats[i]); 4111 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4112 if (memcg1_stats[i] == NR_ANON_THPS) 4113 nr *= HPAGE_PMD_NR; 4114 #endif 4115 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4116 (u64)nr * PAGE_SIZE); 4117 } 4118 4119 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4120 seq_printf(m, "total_%s %llu\n", 4121 vm_event_name(memcg1_events[i]), 4122 (u64)memcg_events(memcg, memcg1_events[i])); 4123 4124 for (i = 0; i < NR_LRU_LISTS; i++) 4125 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4126 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4127 PAGE_SIZE); 4128 4129 #ifdef CONFIG_DEBUG_VM 4130 { 4131 pg_data_t *pgdat; 4132 struct mem_cgroup_per_node *mz; 4133 unsigned long anon_cost = 0; 4134 unsigned long file_cost = 0; 4135 4136 for_each_online_pgdat(pgdat) { 4137 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 4138 4139 anon_cost += mz->lruvec.anon_cost; 4140 file_cost += mz->lruvec.file_cost; 4141 } 4142 seq_printf(m, "anon_cost %lu\n", anon_cost); 4143 seq_printf(m, "file_cost %lu\n", file_cost); 4144 } 4145 #endif 4146 4147 return 0; 4148 } 4149 4150 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4151 struct cftype *cft) 4152 { 4153 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4154 4155 return mem_cgroup_swappiness(memcg); 4156 } 4157 4158 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4159 struct cftype *cft, u64 val) 4160 { 4161 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4162 4163 if (val > 100) 4164 return -EINVAL; 4165 4166 if (css->parent) 4167 memcg->swappiness = val; 4168 else 4169 vm_swappiness = val; 4170 4171 return 0; 4172 } 4173 4174 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4175 { 4176 struct mem_cgroup_threshold_ary *t; 4177 unsigned long usage; 4178 int i; 4179 4180 rcu_read_lock(); 4181 if (!swap) 4182 t = rcu_dereference(memcg->thresholds.primary); 4183 else 4184 t = rcu_dereference(memcg->memsw_thresholds.primary); 4185 4186 if (!t) 4187 goto unlock; 4188 4189 usage = mem_cgroup_usage(memcg, swap); 4190 4191 /* 4192 * current_threshold points to threshold just below or equal to usage. 4193 * If it's not true, a threshold was crossed after last 4194 * call of __mem_cgroup_threshold(). 4195 */ 4196 i = t->current_threshold; 4197 4198 /* 4199 * Iterate backward over array of thresholds starting from 4200 * current_threshold and check if a threshold is crossed. 4201 * If none of thresholds below usage is crossed, we read 4202 * only one element of the array here. 4203 */ 4204 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4205 eventfd_signal(t->entries[i].eventfd, 1); 4206 4207 /* i = current_threshold + 1 */ 4208 i++; 4209 4210 /* 4211 * Iterate forward over array of thresholds starting from 4212 * current_threshold+1 and check if a threshold is crossed. 4213 * If none of thresholds above usage is crossed, we read 4214 * only one element of the array here. 4215 */ 4216 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4217 eventfd_signal(t->entries[i].eventfd, 1); 4218 4219 /* Update current_threshold */ 4220 t->current_threshold = i - 1; 4221 unlock: 4222 rcu_read_unlock(); 4223 } 4224 4225 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4226 { 4227 while (memcg) { 4228 __mem_cgroup_threshold(memcg, false); 4229 if (do_memsw_account()) 4230 __mem_cgroup_threshold(memcg, true); 4231 4232 memcg = parent_mem_cgroup(memcg); 4233 } 4234 } 4235 4236 static int compare_thresholds(const void *a, const void *b) 4237 { 4238 const struct mem_cgroup_threshold *_a = a; 4239 const struct mem_cgroup_threshold *_b = b; 4240 4241 if (_a->threshold > _b->threshold) 4242 return 1; 4243 4244 if (_a->threshold < _b->threshold) 4245 return -1; 4246 4247 return 0; 4248 } 4249 4250 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4251 { 4252 struct mem_cgroup_eventfd_list *ev; 4253 4254 spin_lock(&memcg_oom_lock); 4255 4256 list_for_each_entry(ev, &memcg->oom_notify, list) 4257 eventfd_signal(ev->eventfd, 1); 4258 4259 spin_unlock(&memcg_oom_lock); 4260 return 0; 4261 } 4262 4263 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4264 { 4265 struct mem_cgroup *iter; 4266 4267 for_each_mem_cgroup_tree(iter, memcg) 4268 mem_cgroup_oom_notify_cb(iter); 4269 } 4270 4271 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4272 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4273 { 4274 struct mem_cgroup_thresholds *thresholds; 4275 struct mem_cgroup_threshold_ary *new; 4276 unsigned long threshold; 4277 unsigned long usage; 4278 int i, size, ret; 4279 4280 ret = page_counter_memparse(args, "-1", &threshold); 4281 if (ret) 4282 return ret; 4283 4284 mutex_lock(&memcg->thresholds_lock); 4285 4286 if (type == _MEM) { 4287 thresholds = &memcg->thresholds; 4288 usage = mem_cgroup_usage(memcg, false); 4289 } else if (type == _MEMSWAP) { 4290 thresholds = &memcg->memsw_thresholds; 4291 usage = mem_cgroup_usage(memcg, true); 4292 } else 4293 BUG(); 4294 4295 /* Check if a threshold crossed before adding a new one */ 4296 if (thresholds->primary) 4297 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4298 4299 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4300 4301 /* Allocate memory for new array of thresholds */ 4302 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4303 if (!new) { 4304 ret = -ENOMEM; 4305 goto unlock; 4306 } 4307 new->size = size; 4308 4309 /* Copy thresholds (if any) to new array */ 4310 if (thresholds->primary) 4311 memcpy(new->entries, thresholds->primary->entries, 4312 flex_array_size(new, entries, size - 1)); 4313 4314 /* Add new threshold */ 4315 new->entries[size - 1].eventfd = eventfd; 4316 new->entries[size - 1].threshold = threshold; 4317 4318 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4319 sort(new->entries, size, sizeof(*new->entries), 4320 compare_thresholds, NULL); 4321 4322 /* Find current threshold */ 4323 new->current_threshold = -1; 4324 for (i = 0; i < size; i++) { 4325 if (new->entries[i].threshold <= usage) { 4326 /* 4327 * new->current_threshold will not be used until 4328 * rcu_assign_pointer(), so it's safe to increment 4329 * it here. 4330 */ 4331 ++new->current_threshold; 4332 } else 4333 break; 4334 } 4335 4336 /* Free old spare buffer and save old primary buffer as spare */ 4337 kfree(thresholds->spare); 4338 thresholds->spare = thresholds->primary; 4339 4340 rcu_assign_pointer(thresholds->primary, new); 4341 4342 /* To be sure that nobody uses thresholds */ 4343 synchronize_rcu(); 4344 4345 unlock: 4346 mutex_unlock(&memcg->thresholds_lock); 4347 4348 return ret; 4349 } 4350 4351 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4352 struct eventfd_ctx *eventfd, const char *args) 4353 { 4354 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4355 } 4356 4357 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4358 struct eventfd_ctx *eventfd, const char *args) 4359 { 4360 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4361 } 4362 4363 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4364 struct eventfd_ctx *eventfd, enum res_type type) 4365 { 4366 struct mem_cgroup_thresholds *thresholds; 4367 struct mem_cgroup_threshold_ary *new; 4368 unsigned long usage; 4369 int i, j, size, entries; 4370 4371 mutex_lock(&memcg->thresholds_lock); 4372 4373 if (type == _MEM) { 4374 thresholds = &memcg->thresholds; 4375 usage = mem_cgroup_usage(memcg, false); 4376 } else if (type == _MEMSWAP) { 4377 thresholds = &memcg->memsw_thresholds; 4378 usage = mem_cgroup_usage(memcg, true); 4379 } else 4380 BUG(); 4381 4382 if (!thresholds->primary) 4383 goto unlock; 4384 4385 /* Check if a threshold crossed before removing */ 4386 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4387 4388 /* Calculate new number of threshold */ 4389 size = entries = 0; 4390 for (i = 0; i < thresholds->primary->size; i++) { 4391 if (thresholds->primary->entries[i].eventfd != eventfd) 4392 size++; 4393 else 4394 entries++; 4395 } 4396 4397 new = thresholds->spare; 4398 4399 /* If no items related to eventfd have been cleared, nothing to do */ 4400 if (!entries) 4401 goto unlock; 4402 4403 /* Set thresholds array to NULL if we don't have thresholds */ 4404 if (!size) { 4405 kfree(new); 4406 new = NULL; 4407 goto swap_buffers; 4408 } 4409 4410 new->size = size; 4411 4412 /* Copy thresholds and find current threshold */ 4413 new->current_threshold = -1; 4414 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4415 if (thresholds->primary->entries[i].eventfd == eventfd) 4416 continue; 4417 4418 new->entries[j] = thresholds->primary->entries[i]; 4419 if (new->entries[j].threshold <= usage) { 4420 /* 4421 * new->current_threshold will not be used 4422 * until rcu_assign_pointer(), so it's safe to increment 4423 * it here. 4424 */ 4425 ++new->current_threshold; 4426 } 4427 j++; 4428 } 4429 4430 swap_buffers: 4431 /* Swap primary and spare array */ 4432 thresholds->spare = thresholds->primary; 4433 4434 rcu_assign_pointer(thresholds->primary, new); 4435 4436 /* To be sure that nobody uses thresholds */ 4437 synchronize_rcu(); 4438 4439 /* If all events are unregistered, free the spare array */ 4440 if (!new) { 4441 kfree(thresholds->spare); 4442 thresholds->spare = NULL; 4443 } 4444 unlock: 4445 mutex_unlock(&memcg->thresholds_lock); 4446 } 4447 4448 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4449 struct eventfd_ctx *eventfd) 4450 { 4451 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4452 } 4453 4454 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4455 struct eventfd_ctx *eventfd) 4456 { 4457 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4458 } 4459 4460 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4461 struct eventfd_ctx *eventfd, const char *args) 4462 { 4463 struct mem_cgroup_eventfd_list *event; 4464 4465 event = kmalloc(sizeof(*event), GFP_KERNEL); 4466 if (!event) 4467 return -ENOMEM; 4468 4469 spin_lock(&memcg_oom_lock); 4470 4471 event->eventfd = eventfd; 4472 list_add(&event->list, &memcg->oom_notify); 4473 4474 /* already in OOM ? */ 4475 if (memcg->under_oom) 4476 eventfd_signal(eventfd, 1); 4477 spin_unlock(&memcg_oom_lock); 4478 4479 return 0; 4480 } 4481 4482 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4483 struct eventfd_ctx *eventfd) 4484 { 4485 struct mem_cgroup_eventfd_list *ev, *tmp; 4486 4487 spin_lock(&memcg_oom_lock); 4488 4489 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4490 if (ev->eventfd == eventfd) { 4491 list_del(&ev->list); 4492 kfree(ev); 4493 } 4494 } 4495 4496 spin_unlock(&memcg_oom_lock); 4497 } 4498 4499 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4500 { 4501 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4502 4503 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4504 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4505 seq_printf(sf, "oom_kill %lu\n", 4506 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4507 return 0; 4508 } 4509 4510 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4511 struct cftype *cft, u64 val) 4512 { 4513 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4514 4515 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4516 if (!css->parent || !((val == 0) || (val == 1))) 4517 return -EINVAL; 4518 4519 memcg->oom_kill_disable = val; 4520 if (!val) 4521 memcg_oom_recover(memcg); 4522 4523 return 0; 4524 } 4525 4526 #ifdef CONFIG_CGROUP_WRITEBACK 4527 4528 #include <trace/events/writeback.h> 4529 4530 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4531 { 4532 return wb_domain_init(&memcg->cgwb_domain, gfp); 4533 } 4534 4535 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4536 { 4537 wb_domain_exit(&memcg->cgwb_domain); 4538 } 4539 4540 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4541 { 4542 wb_domain_size_changed(&memcg->cgwb_domain); 4543 } 4544 4545 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4546 { 4547 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4548 4549 if (!memcg->css.parent) 4550 return NULL; 4551 4552 return &memcg->cgwb_domain; 4553 } 4554 4555 /* 4556 * idx can be of type enum memcg_stat_item or node_stat_item. 4557 * Keep in sync with memcg_exact_page(). 4558 */ 4559 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4560 { 4561 long x = atomic_long_read(&memcg->vmstats[idx]); 4562 int cpu; 4563 4564 for_each_online_cpu(cpu) 4565 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4566 if (x < 0) 4567 x = 0; 4568 return x; 4569 } 4570 4571 /** 4572 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4573 * @wb: bdi_writeback in question 4574 * @pfilepages: out parameter for number of file pages 4575 * @pheadroom: out parameter for number of allocatable pages according to memcg 4576 * @pdirty: out parameter for number of dirty pages 4577 * @pwriteback: out parameter for number of pages under writeback 4578 * 4579 * Determine the numbers of file, headroom, dirty, and writeback pages in 4580 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4581 * is a bit more involved. 4582 * 4583 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4584 * headroom is calculated as the lowest headroom of itself and the 4585 * ancestors. Note that this doesn't consider the actual amount of 4586 * available memory in the system. The caller should further cap 4587 * *@pheadroom accordingly. 4588 */ 4589 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4590 unsigned long *pheadroom, unsigned long *pdirty, 4591 unsigned long *pwriteback) 4592 { 4593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4594 struct mem_cgroup *parent; 4595 4596 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4597 4598 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4599 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4600 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4601 *pheadroom = PAGE_COUNTER_MAX; 4602 4603 while ((parent = parent_mem_cgroup(memcg))) { 4604 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4605 READ_ONCE(memcg->memory.high)); 4606 unsigned long used = page_counter_read(&memcg->memory); 4607 4608 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4609 memcg = parent; 4610 } 4611 } 4612 4613 /* 4614 * Foreign dirty flushing 4615 * 4616 * There's an inherent mismatch between memcg and writeback. The former 4617 * trackes ownership per-page while the latter per-inode. This was a 4618 * deliberate design decision because honoring per-page ownership in the 4619 * writeback path is complicated, may lead to higher CPU and IO overheads 4620 * and deemed unnecessary given that write-sharing an inode across 4621 * different cgroups isn't a common use-case. 4622 * 4623 * Combined with inode majority-writer ownership switching, this works well 4624 * enough in most cases but there are some pathological cases. For 4625 * example, let's say there are two cgroups A and B which keep writing to 4626 * different but confined parts of the same inode. B owns the inode and 4627 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4628 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4629 * triggering background writeback. A will be slowed down without a way to 4630 * make writeback of the dirty pages happen. 4631 * 4632 * Conditions like the above can lead to a cgroup getting repatedly and 4633 * severely throttled after making some progress after each 4634 * dirty_expire_interval while the underyling IO device is almost 4635 * completely idle. 4636 * 4637 * Solving this problem completely requires matching the ownership tracking 4638 * granularities between memcg and writeback in either direction. However, 4639 * the more egregious behaviors can be avoided by simply remembering the 4640 * most recent foreign dirtying events and initiating remote flushes on 4641 * them when local writeback isn't enough to keep the memory clean enough. 4642 * 4643 * The following two functions implement such mechanism. When a foreign 4644 * page - a page whose memcg and writeback ownerships don't match - is 4645 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4646 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4647 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4648 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4649 * foreign bdi_writebacks which haven't expired. Both the numbers of 4650 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4651 * limited to MEMCG_CGWB_FRN_CNT. 4652 * 4653 * The mechanism only remembers IDs and doesn't hold any object references. 4654 * As being wrong occasionally doesn't matter, updates and accesses to the 4655 * records are lockless and racy. 4656 */ 4657 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4658 struct bdi_writeback *wb) 4659 { 4660 struct mem_cgroup *memcg = page_memcg(page); 4661 struct memcg_cgwb_frn *frn; 4662 u64 now = get_jiffies_64(); 4663 u64 oldest_at = now; 4664 int oldest = -1; 4665 int i; 4666 4667 trace_track_foreign_dirty(page, wb); 4668 4669 /* 4670 * Pick the slot to use. If there is already a slot for @wb, keep 4671 * using it. If not replace the oldest one which isn't being 4672 * written out. 4673 */ 4674 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4675 frn = &memcg->cgwb_frn[i]; 4676 if (frn->bdi_id == wb->bdi->id && 4677 frn->memcg_id == wb->memcg_css->id) 4678 break; 4679 if (time_before64(frn->at, oldest_at) && 4680 atomic_read(&frn->done.cnt) == 1) { 4681 oldest = i; 4682 oldest_at = frn->at; 4683 } 4684 } 4685 4686 if (i < MEMCG_CGWB_FRN_CNT) { 4687 /* 4688 * Re-using an existing one. Update timestamp lazily to 4689 * avoid making the cacheline hot. We want them to be 4690 * reasonably up-to-date and significantly shorter than 4691 * dirty_expire_interval as that's what expires the record. 4692 * Use the shorter of 1s and dirty_expire_interval / 8. 4693 */ 4694 unsigned long update_intv = 4695 min_t(unsigned long, HZ, 4696 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4697 4698 if (time_before64(frn->at, now - update_intv)) 4699 frn->at = now; 4700 } else if (oldest >= 0) { 4701 /* replace the oldest free one */ 4702 frn = &memcg->cgwb_frn[oldest]; 4703 frn->bdi_id = wb->bdi->id; 4704 frn->memcg_id = wb->memcg_css->id; 4705 frn->at = now; 4706 } 4707 } 4708 4709 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4711 { 4712 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4713 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4714 u64 now = jiffies_64; 4715 int i; 4716 4717 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4718 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4719 4720 /* 4721 * If the record is older than dirty_expire_interval, 4722 * writeback on it has already started. No need to kick it 4723 * off again. Also, don't start a new one if there's 4724 * already one in flight. 4725 */ 4726 if (time_after64(frn->at, now - intv) && 4727 atomic_read(&frn->done.cnt) == 1) { 4728 frn->at = 0; 4729 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4730 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4731 WB_REASON_FOREIGN_FLUSH, 4732 &frn->done); 4733 } 4734 } 4735 } 4736 4737 #else /* CONFIG_CGROUP_WRITEBACK */ 4738 4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4740 { 4741 return 0; 4742 } 4743 4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4745 { 4746 } 4747 4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4749 { 4750 } 4751 4752 #endif /* CONFIG_CGROUP_WRITEBACK */ 4753 4754 /* 4755 * DO NOT USE IN NEW FILES. 4756 * 4757 * "cgroup.event_control" implementation. 4758 * 4759 * This is way over-engineered. It tries to support fully configurable 4760 * events for each user. Such level of flexibility is completely 4761 * unnecessary especially in the light of the planned unified hierarchy. 4762 * 4763 * Please deprecate this and replace with something simpler if at all 4764 * possible. 4765 */ 4766 4767 /* 4768 * Unregister event and free resources. 4769 * 4770 * Gets called from workqueue. 4771 */ 4772 static void memcg_event_remove(struct work_struct *work) 4773 { 4774 struct mem_cgroup_event *event = 4775 container_of(work, struct mem_cgroup_event, remove); 4776 struct mem_cgroup *memcg = event->memcg; 4777 4778 remove_wait_queue(event->wqh, &event->wait); 4779 4780 event->unregister_event(memcg, event->eventfd); 4781 4782 /* Notify userspace the event is going away. */ 4783 eventfd_signal(event->eventfd, 1); 4784 4785 eventfd_ctx_put(event->eventfd); 4786 kfree(event); 4787 css_put(&memcg->css); 4788 } 4789 4790 /* 4791 * Gets called on EPOLLHUP on eventfd when user closes it. 4792 * 4793 * Called with wqh->lock held and interrupts disabled. 4794 */ 4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4796 int sync, void *key) 4797 { 4798 struct mem_cgroup_event *event = 4799 container_of(wait, struct mem_cgroup_event, wait); 4800 struct mem_cgroup *memcg = event->memcg; 4801 __poll_t flags = key_to_poll(key); 4802 4803 if (flags & EPOLLHUP) { 4804 /* 4805 * If the event has been detached at cgroup removal, we 4806 * can simply return knowing the other side will cleanup 4807 * for us. 4808 * 4809 * We can't race against event freeing since the other 4810 * side will require wqh->lock via remove_wait_queue(), 4811 * which we hold. 4812 */ 4813 spin_lock(&memcg->event_list_lock); 4814 if (!list_empty(&event->list)) { 4815 list_del_init(&event->list); 4816 /* 4817 * We are in atomic context, but cgroup_event_remove() 4818 * may sleep, so we have to call it in workqueue. 4819 */ 4820 schedule_work(&event->remove); 4821 } 4822 spin_unlock(&memcg->event_list_lock); 4823 } 4824 4825 return 0; 4826 } 4827 4828 static void memcg_event_ptable_queue_proc(struct file *file, 4829 wait_queue_head_t *wqh, poll_table *pt) 4830 { 4831 struct mem_cgroup_event *event = 4832 container_of(pt, struct mem_cgroup_event, pt); 4833 4834 event->wqh = wqh; 4835 add_wait_queue(wqh, &event->wait); 4836 } 4837 4838 /* 4839 * DO NOT USE IN NEW FILES. 4840 * 4841 * Parse input and register new cgroup event handler. 4842 * 4843 * Input must be in format '<event_fd> <control_fd> <args>'. 4844 * Interpretation of args is defined by control file implementation. 4845 */ 4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4847 char *buf, size_t nbytes, loff_t off) 4848 { 4849 struct cgroup_subsys_state *css = of_css(of); 4850 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4851 struct mem_cgroup_event *event; 4852 struct cgroup_subsys_state *cfile_css; 4853 unsigned int efd, cfd; 4854 struct fd efile; 4855 struct fd cfile; 4856 const char *name; 4857 char *endp; 4858 int ret; 4859 4860 buf = strstrip(buf); 4861 4862 efd = simple_strtoul(buf, &endp, 10); 4863 if (*endp != ' ') 4864 return -EINVAL; 4865 buf = endp + 1; 4866 4867 cfd = simple_strtoul(buf, &endp, 10); 4868 if ((*endp != ' ') && (*endp != '\0')) 4869 return -EINVAL; 4870 buf = endp + 1; 4871 4872 event = kzalloc(sizeof(*event), GFP_KERNEL); 4873 if (!event) 4874 return -ENOMEM; 4875 4876 event->memcg = memcg; 4877 INIT_LIST_HEAD(&event->list); 4878 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4879 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4880 INIT_WORK(&event->remove, memcg_event_remove); 4881 4882 efile = fdget(efd); 4883 if (!efile.file) { 4884 ret = -EBADF; 4885 goto out_kfree; 4886 } 4887 4888 event->eventfd = eventfd_ctx_fileget(efile.file); 4889 if (IS_ERR(event->eventfd)) { 4890 ret = PTR_ERR(event->eventfd); 4891 goto out_put_efile; 4892 } 4893 4894 cfile = fdget(cfd); 4895 if (!cfile.file) { 4896 ret = -EBADF; 4897 goto out_put_eventfd; 4898 } 4899 4900 /* the process need read permission on control file */ 4901 /* AV: shouldn't we check that it's been opened for read instead? */ 4902 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4903 if (ret < 0) 4904 goto out_put_cfile; 4905 4906 /* 4907 * Determine the event callbacks and set them in @event. This used 4908 * to be done via struct cftype but cgroup core no longer knows 4909 * about these events. The following is crude but the whole thing 4910 * is for compatibility anyway. 4911 * 4912 * DO NOT ADD NEW FILES. 4913 */ 4914 name = cfile.file->f_path.dentry->d_name.name; 4915 4916 if (!strcmp(name, "memory.usage_in_bytes")) { 4917 event->register_event = mem_cgroup_usage_register_event; 4918 event->unregister_event = mem_cgroup_usage_unregister_event; 4919 } else if (!strcmp(name, "memory.oom_control")) { 4920 event->register_event = mem_cgroup_oom_register_event; 4921 event->unregister_event = mem_cgroup_oom_unregister_event; 4922 } else if (!strcmp(name, "memory.pressure_level")) { 4923 event->register_event = vmpressure_register_event; 4924 event->unregister_event = vmpressure_unregister_event; 4925 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4926 event->register_event = memsw_cgroup_usage_register_event; 4927 event->unregister_event = memsw_cgroup_usage_unregister_event; 4928 } else { 4929 ret = -EINVAL; 4930 goto out_put_cfile; 4931 } 4932 4933 /* 4934 * Verify @cfile should belong to @css. Also, remaining events are 4935 * automatically removed on cgroup destruction but the removal is 4936 * asynchronous, so take an extra ref on @css. 4937 */ 4938 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4939 &memory_cgrp_subsys); 4940 ret = -EINVAL; 4941 if (IS_ERR(cfile_css)) 4942 goto out_put_cfile; 4943 if (cfile_css != css) { 4944 css_put(cfile_css); 4945 goto out_put_cfile; 4946 } 4947 4948 ret = event->register_event(memcg, event->eventfd, buf); 4949 if (ret) 4950 goto out_put_css; 4951 4952 vfs_poll(efile.file, &event->pt); 4953 4954 spin_lock(&memcg->event_list_lock); 4955 list_add(&event->list, &memcg->event_list); 4956 spin_unlock(&memcg->event_list_lock); 4957 4958 fdput(cfile); 4959 fdput(efile); 4960 4961 return nbytes; 4962 4963 out_put_css: 4964 css_put(css); 4965 out_put_cfile: 4966 fdput(cfile); 4967 out_put_eventfd: 4968 eventfd_ctx_put(event->eventfd); 4969 out_put_efile: 4970 fdput(efile); 4971 out_kfree: 4972 kfree(event); 4973 4974 return ret; 4975 } 4976 4977 static struct cftype mem_cgroup_legacy_files[] = { 4978 { 4979 .name = "usage_in_bytes", 4980 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4981 .read_u64 = mem_cgroup_read_u64, 4982 }, 4983 { 4984 .name = "max_usage_in_bytes", 4985 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4986 .write = mem_cgroup_reset, 4987 .read_u64 = mem_cgroup_read_u64, 4988 }, 4989 { 4990 .name = "limit_in_bytes", 4991 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4992 .write = mem_cgroup_write, 4993 .read_u64 = mem_cgroup_read_u64, 4994 }, 4995 { 4996 .name = "soft_limit_in_bytes", 4997 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4998 .write = mem_cgroup_write, 4999 .read_u64 = mem_cgroup_read_u64, 5000 }, 5001 { 5002 .name = "failcnt", 5003 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5004 .write = mem_cgroup_reset, 5005 .read_u64 = mem_cgroup_read_u64, 5006 }, 5007 { 5008 .name = "stat", 5009 .seq_show = memcg_stat_show, 5010 }, 5011 { 5012 .name = "force_empty", 5013 .write = mem_cgroup_force_empty_write, 5014 }, 5015 { 5016 .name = "use_hierarchy", 5017 .write_u64 = mem_cgroup_hierarchy_write, 5018 .read_u64 = mem_cgroup_hierarchy_read, 5019 }, 5020 { 5021 .name = "cgroup.event_control", /* XXX: for compat */ 5022 .write = memcg_write_event_control, 5023 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5024 }, 5025 { 5026 .name = "swappiness", 5027 .read_u64 = mem_cgroup_swappiness_read, 5028 .write_u64 = mem_cgroup_swappiness_write, 5029 }, 5030 { 5031 .name = "move_charge_at_immigrate", 5032 .read_u64 = mem_cgroup_move_charge_read, 5033 .write_u64 = mem_cgroup_move_charge_write, 5034 }, 5035 { 5036 .name = "oom_control", 5037 .seq_show = mem_cgroup_oom_control_read, 5038 .write_u64 = mem_cgroup_oom_control_write, 5039 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5040 }, 5041 { 5042 .name = "pressure_level", 5043 }, 5044 #ifdef CONFIG_NUMA 5045 { 5046 .name = "numa_stat", 5047 .seq_show = memcg_numa_stat_show, 5048 }, 5049 #endif 5050 { 5051 .name = "kmem.limit_in_bytes", 5052 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5053 .write = mem_cgroup_write, 5054 .read_u64 = mem_cgroup_read_u64, 5055 }, 5056 { 5057 .name = "kmem.usage_in_bytes", 5058 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5059 .read_u64 = mem_cgroup_read_u64, 5060 }, 5061 { 5062 .name = "kmem.failcnt", 5063 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5064 .write = mem_cgroup_reset, 5065 .read_u64 = mem_cgroup_read_u64, 5066 }, 5067 { 5068 .name = "kmem.max_usage_in_bytes", 5069 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5070 .write = mem_cgroup_reset, 5071 .read_u64 = mem_cgroup_read_u64, 5072 }, 5073 #if defined(CONFIG_MEMCG_KMEM) && \ 5074 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5075 { 5076 .name = "kmem.slabinfo", 5077 .seq_show = memcg_slab_show, 5078 }, 5079 #endif 5080 { 5081 .name = "kmem.tcp.limit_in_bytes", 5082 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5083 .write = mem_cgroup_write, 5084 .read_u64 = mem_cgroup_read_u64, 5085 }, 5086 { 5087 .name = "kmem.tcp.usage_in_bytes", 5088 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5089 .read_u64 = mem_cgroup_read_u64, 5090 }, 5091 { 5092 .name = "kmem.tcp.failcnt", 5093 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5094 .write = mem_cgroup_reset, 5095 .read_u64 = mem_cgroup_read_u64, 5096 }, 5097 { 5098 .name = "kmem.tcp.max_usage_in_bytes", 5099 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5100 .write = mem_cgroup_reset, 5101 .read_u64 = mem_cgroup_read_u64, 5102 }, 5103 { }, /* terminate */ 5104 }; 5105 5106 /* 5107 * Private memory cgroup IDR 5108 * 5109 * Swap-out records and page cache shadow entries need to store memcg 5110 * references in constrained space, so we maintain an ID space that is 5111 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5112 * memory-controlled cgroups to 64k. 5113 * 5114 * However, there usually are many references to the offline CSS after 5115 * the cgroup has been destroyed, such as page cache or reclaimable 5116 * slab objects, that don't need to hang on to the ID. We want to keep 5117 * those dead CSS from occupying IDs, or we might quickly exhaust the 5118 * relatively small ID space and prevent the creation of new cgroups 5119 * even when there are much fewer than 64k cgroups - possibly none. 5120 * 5121 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5122 * be freed and recycled when it's no longer needed, which is usually 5123 * when the CSS is offlined. 5124 * 5125 * The only exception to that are records of swapped out tmpfs/shmem 5126 * pages that need to be attributed to live ancestors on swapin. But 5127 * those references are manageable from userspace. 5128 */ 5129 5130 static DEFINE_IDR(mem_cgroup_idr); 5131 5132 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5133 { 5134 if (memcg->id.id > 0) { 5135 idr_remove(&mem_cgroup_idr, memcg->id.id); 5136 memcg->id.id = 0; 5137 } 5138 } 5139 5140 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5141 unsigned int n) 5142 { 5143 refcount_add(n, &memcg->id.ref); 5144 } 5145 5146 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5147 { 5148 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5149 mem_cgroup_id_remove(memcg); 5150 5151 /* Memcg ID pins CSS */ 5152 css_put(&memcg->css); 5153 } 5154 } 5155 5156 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5157 { 5158 mem_cgroup_id_put_many(memcg, 1); 5159 } 5160 5161 /** 5162 * mem_cgroup_from_id - look up a memcg from a memcg id 5163 * @id: the memcg id to look up 5164 * 5165 * Caller must hold rcu_read_lock(). 5166 */ 5167 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5168 { 5169 WARN_ON_ONCE(!rcu_read_lock_held()); 5170 return idr_find(&mem_cgroup_idr, id); 5171 } 5172 5173 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5174 { 5175 struct mem_cgroup_per_node *pn; 5176 int tmp = node; 5177 /* 5178 * This routine is called against possible nodes. 5179 * But it's BUG to call kmalloc() against offline node. 5180 * 5181 * TODO: this routine can waste much memory for nodes which will 5182 * never be onlined. It's better to use memory hotplug callback 5183 * function. 5184 */ 5185 if (!node_state(node, N_NORMAL_MEMORY)) 5186 tmp = -1; 5187 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5188 if (!pn) 5189 return 1; 5190 5191 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat, 5192 GFP_KERNEL_ACCOUNT); 5193 if (!pn->lruvec_stat_local) { 5194 kfree(pn); 5195 return 1; 5196 } 5197 5198 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat, 5199 GFP_KERNEL_ACCOUNT); 5200 if (!pn->lruvec_stat_cpu) { 5201 free_percpu(pn->lruvec_stat_local); 5202 kfree(pn); 5203 return 1; 5204 } 5205 5206 lruvec_init(&pn->lruvec); 5207 pn->usage_in_excess = 0; 5208 pn->on_tree = false; 5209 pn->memcg = memcg; 5210 5211 memcg->nodeinfo[node] = pn; 5212 return 0; 5213 } 5214 5215 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5216 { 5217 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5218 5219 if (!pn) 5220 return; 5221 5222 free_percpu(pn->lruvec_stat_cpu); 5223 free_percpu(pn->lruvec_stat_local); 5224 kfree(pn); 5225 } 5226 5227 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5228 { 5229 int node; 5230 5231 for_each_node(node) 5232 free_mem_cgroup_per_node_info(memcg, node); 5233 free_percpu(memcg->vmstats_percpu); 5234 free_percpu(memcg->vmstats_local); 5235 kfree(memcg); 5236 } 5237 5238 static void mem_cgroup_free(struct mem_cgroup *memcg) 5239 { 5240 memcg_wb_domain_exit(memcg); 5241 /* 5242 * Flush percpu vmstats and vmevents to guarantee the value correctness 5243 * on parent's and all ancestor levels. 5244 */ 5245 memcg_flush_percpu_vmstats(memcg); 5246 memcg_flush_percpu_vmevents(memcg); 5247 __mem_cgroup_free(memcg); 5248 } 5249 5250 static struct mem_cgroup *mem_cgroup_alloc(void) 5251 { 5252 struct mem_cgroup *memcg; 5253 unsigned int size; 5254 int node; 5255 int __maybe_unused i; 5256 long error = -ENOMEM; 5257 5258 size = sizeof(struct mem_cgroup); 5259 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5260 5261 memcg = kzalloc(size, GFP_KERNEL); 5262 if (!memcg) 5263 return ERR_PTR(error); 5264 5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5266 1, MEM_CGROUP_ID_MAX, 5267 GFP_KERNEL); 5268 if (memcg->id.id < 0) { 5269 error = memcg->id.id; 5270 goto fail; 5271 } 5272 5273 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5274 GFP_KERNEL_ACCOUNT); 5275 if (!memcg->vmstats_local) 5276 goto fail; 5277 5278 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5279 GFP_KERNEL_ACCOUNT); 5280 if (!memcg->vmstats_percpu) 5281 goto fail; 5282 5283 for_each_node(node) 5284 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5285 goto fail; 5286 5287 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5288 goto fail; 5289 5290 INIT_WORK(&memcg->high_work, high_work_func); 5291 INIT_LIST_HEAD(&memcg->oom_notify); 5292 mutex_init(&memcg->thresholds_lock); 5293 spin_lock_init(&memcg->move_lock); 5294 vmpressure_init(&memcg->vmpressure); 5295 INIT_LIST_HEAD(&memcg->event_list); 5296 spin_lock_init(&memcg->event_list_lock); 5297 memcg->socket_pressure = jiffies; 5298 #ifdef CONFIG_MEMCG_KMEM 5299 memcg->kmemcg_id = -1; 5300 INIT_LIST_HEAD(&memcg->objcg_list); 5301 #endif 5302 #ifdef CONFIG_CGROUP_WRITEBACK 5303 INIT_LIST_HEAD(&memcg->cgwb_list); 5304 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5305 memcg->cgwb_frn[i].done = 5306 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5307 #endif 5308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5309 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5310 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5311 memcg->deferred_split_queue.split_queue_len = 0; 5312 #endif 5313 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5314 return memcg; 5315 fail: 5316 mem_cgroup_id_remove(memcg); 5317 __mem_cgroup_free(memcg); 5318 return ERR_PTR(error); 5319 } 5320 5321 static struct cgroup_subsys_state * __ref 5322 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5323 { 5324 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5325 struct mem_cgroup *memcg, *old_memcg; 5326 long error = -ENOMEM; 5327 5328 old_memcg = set_active_memcg(parent); 5329 memcg = mem_cgroup_alloc(); 5330 set_active_memcg(old_memcg); 5331 if (IS_ERR(memcg)) 5332 return ERR_CAST(memcg); 5333 5334 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5335 memcg->soft_limit = PAGE_COUNTER_MAX; 5336 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5337 if (parent) { 5338 memcg->swappiness = mem_cgroup_swappiness(parent); 5339 memcg->oom_kill_disable = parent->oom_kill_disable; 5340 5341 page_counter_init(&memcg->memory, &parent->memory); 5342 page_counter_init(&memcg->swap, &parent->swap); 5343 page_counter_init(&memcg->kmem, &parent->kmem); 5344 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5345 } else { 5346 page_counter_init(&memcg->memory, NULL); 5347 page_counter_init(&memcg->swap, NULL); 5348 page_counter_init(&memcg->kmem, NULL); 5349 page_counter_init(&memcg->tcpmem, NULL); 5350 5351 root_mem_cgroup = memcg; 5352 return &memcg->css; 5353 } 5354 5355 /* The following stuff does not apply to the root */ 5356 error = memcg_online_kmem(memcg); 5357 if (error) 5358 goto fail; 5359 5360 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5361 static_branch_inc(&memcg_sockets_enabled_key); 5362 5363 return &memcg->css; 5364 fail: 5365 mem_cgroup_id_remove(memcg); 5366 mem_cgroup_free(memcg); 5367 return ERR_PTR(error); 5368 } 5369 5370 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5371 { 5372 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5373 5374 /* 5375 * A memcg must be visible for memcg_expand_shrinker_maps() 5376 * by the time the maps are allocated. So, we allocate maps 5377 * here, when for_each_mem_cgroup() can't skip it. 5378 */ 5379 if (memcg_alloc_shrinker_maps(memcg)) { 5380 mem_cgroup_id_remove(memcg); 5381 return -ENOMEM; 5382 } 5383 5384 /* Online state pins memcg ID, memcg ID pins CSS */ 5385 refcount_set(&memcg->id.ref, 1); 5386 css_get(css); 5387 return 0; 5388 } 5389 5390 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5391 { 5392 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5393 struct mem_cgroup_event *event, *tmp; 5394 5395 /* 5396 * Unregister events and notify userspace. 5397 * Notify userspace about cgroup removing only after rmdir of cgroup 5398 * directory to avoid race between userspace and kernelspace. 5399 */ 5400 spin_lock(&memcg->event_list_lock); 5401 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5402 list_del_init(&event->list); 5403 schedule_work(&event->remove); 5404 } 5405 spin_unlock(&memcg->event_list_lock); 5406 5407 page_counter_set_min(&memcg->memory, 0); 5408 page_counter_set_low(&memcg->memory, 0); 5409 5410 memcg_offline_kmem(memcg); 5411 wb_memcg_offline(memcg); 5412 5413 drain_all_stock(memcg); 5414 5415 mem_cgroup_id_put(memcg); 5416 } 5417 5418 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5419 { 5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5421 5422 invalidate_reclaim_iterators(memcg); 5423 } 5424 5425 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5426 { 5427 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5428 int __maybe_unused i; 5429 5430 #ifdef CONFIG_CGROUP_WRITEBACK 5431 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5432 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5433 #endif 5434 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5435 static_branch_dec(&memcg_sockets_enabled_key); 5436 5437 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5438 static_branch_dec(&memcg_sockets_enabled_key); 5439 5440 vmpressure_cleanup(&memcg->vmpressure); 5441 cancel_work_sync(&memcg->high_work); 5442 mem_cgroup_remove_from_trees(memcg); 5443 memcg_free_shrinker_maps(memcg); 5444 memcg_free_kmem(memcg); 5445 mem_cgroup_free(memcg); 5446 } 5447 5448 /** 5449 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5450 * @css: the target css 5451 * 5452 * Reset the states of the mem_cgroup associated with @css. This is 5453 * invoked when the userland requests disabling on the default hierarchy 5454 * but the memcg is pinned through dependency. The memcg should stop 5455 * applying policies and should revert to the vanilla state as it may be 5456 * made visible again. 5457 * 5458 * The current implementation only resets the essential configurations. 5459 * This needs to be expanded to cover all the visible parts. 5460 */ 5461 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5462 { 5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5464 5465 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5466 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5467 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5468 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5469 page_counter_set_min(&memcg->memory, 0); 5470 page_counter_set_low(&memcg->memory, 0); 5471 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5472 memcg->soft_limit = PAGE_COUNTER_MAX; 5473 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5474 memcg_wb_domain_size_changed(memcg); 5475 } 5476 5477 #ifdef CONFIG_MMU 5478 /* Handlers for move charge at task migration. */ 5479 static int mem_cgroup_do_precharge(unsigned long count) 5480 { 5481 int ret; 5482 5483 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5484 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5485 if (!ret) { 5486 mc.precharge += count; 5487 return ret; 5488 } 5489 5490 /* Try charges one by one with reclaim, but do not retry */ 5491 while (count--) { 5492 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5493 if (ret) 5494 return ret; 5495 mc.precharge++; 5496 cond_resched(); 5497 } 5498 return 0; 5499 } 5500 5501 union mc_target { 5502 struct page *page; 5503 swp_entry_t ent; 5504 }; 5505 5506 enum mc_target_type { 5507 MC_TARGET_NONE = 0, 5508 MC_TARGET_PAGE, 5509 MC_TARGET_SWAP, 5510 MC_TARGET_DEVICE, 5511 }; 5512 5513 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5514 unsigned long addr, pte_t ptent) 5515 { 5516 struct page *page = vm_normal_page(vma, addr, ptent); 5517 5518 if (!page || !page_mapped(page)) 5519 return NULL; 5520 if (PageAnon(page)) { 5521 if (!(mc.flags & MOVE_ANON)) 5522 return NULL; 5523 } else { 5524 if (!(mc.flags & MOVE_FILE)) 5525 return NULL; 5526 } 5527 if (!get_page_unless_zero(page)) 5528 return NULL; 5529 5530 return page; 5531 } 5532 5533 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5534 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5535 pte_t ptent, swp_entry_t *entry) 5536 { 5537 struct page *page = NULL; 5538 swp_entry_t ent = pte_to_swp_entry(ptent); 5539 5540 if (!(mc.flags & MOVE_ANON)) 5541 return NULL; 5542 5543 /* 5544 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5545 * a device and because they are not accessible by CPU they are store 5546 * as special swap entry in the CPU page table. 5547 */ 5548 if (is_device_private_entry(ent)) { 5549 page = device_private_entry_to_page(ent); 5550 /* 5551 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5552 * a refcount of 1 when free (unlike normal page) 5553 */ 5554 if (!page_ref_add_unless(page, 1, 1)) 5555 return NULL; 5556 return page; 5557 } 5558 5559 if (non_swap_entry(ent)) 5560 return NULL; 5561 5562 /* 5563 * Because lookup_swap_cache() updates some statistics counter, 5564 * we call find_get_page() with swapper_space directly. 5565 */ 5566 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5567 entry->val = ent.val; 5568 5569 return page; 5570 } 5571 #else 5572 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5573 pte_t ptent, swp_entry_t *entry) 5574 { 5575 return NULL; 5576 } 5577 #endif 5578 5579 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5580 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5581 { 5582 if (!vma->vm_file) /* anonymous vma */ 5583 return NULL; 5584 if (!(mc.flags & MOVE_FILE)) 5585 return NULL; 5586 5587 /* page is moved even if it's not RSS of this task(page-faulted). */ 5588 /* shmem/tmpfs may report page out on swap: account for that too. */ 5589 return find_get_incore_page(vma->vm_file->f_mapping, 5590 linear_page_index(vma, addr)); 5591 } 5592 5593 /** 5594 * mem_cgroup_move_account - move account of the page 5595 * @page: the page 5596 * @compound: charge the page as compound or small page 5597 * @from: mem_cgroup which the page is moved from. 5598 * @to: mem_cgroup which the page is moved to. @from != @to. 5599 * 5600 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5601 * 5602 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5603 * from old cgroup. 5604 */ 5605 static int mem_cgroup_move_account(struct page *page, 5606 bool compound, 5607 struct mem_cgroup *from, 5608 struct mem_cgroup *to) 5609 { 5610 struct lruvec *from_vec, *to_vec; 5611 struct pglist_data *pgdat; 5612 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5613 int ret; 5614 5615 VM_BUG_ON(from == to); 5616 VM_BUG_ON_PAGE(PageLRU(page), page); 5617 VM_BUG_ON(compound && !PageTransHuge(page)); 5618 5619 /* 5620 * Prevent mem_cgroup_migrate() from looking at 5621 * page's memory cgroup of its source page while we change it. 5622 */ 5623 ret = -EBUSY; 5624 if (!trylock_page(page)) 5625 goto out; 5626 5627 ret = -EINVAL; 5628 if (page_memcg(page) != from) 5629 goto out_unlock; 5630 5631 pgdat = page_pgdat(page); 5632 from_vec = mem_cgroup_lruvec(from, pgdat); 5633 to_vec = mem_cgroup_lruvec(to, pgdat); 5634 5635 lock_page_memcg(page); 5636 5637 if (PageAnon(page)) { 5638 if (page_mapped(page)) { 5639 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5640 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5641 if (PageTransHuge(page)) { 5642 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5643 -nr_pages); 5644 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5645 nr_pages); 5646 } 5647 5648 } 5649 } else { 5650 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5651 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5652 5653 if (PageSwapBacked(page)) { 5654 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5655 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5656 } 5657 5658 if (page_mapped(page)) { 5659 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5660 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5661 } 5662 5663 if (PageDirty(page)) { 5664 struct address_space *mapping = page_mapping(page); 5665 5666 if (mapping_can_writeback(mapping)) { 5667 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5668 -nr_pages); 5669 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5670 nr_pages); 5671 } 5672 } 5673 } 5674 5675 if (PageWriteback(page)) { 5676 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5677 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5678 } 5679 5680 /* 5681 * All state has been migrated, let's switch to the new memcg. 5682 * 5683 * It is safe to change page's memcg here because the page 5684 * is referenced, charged, isolated, and locked: we can't race 5685 * with (un)charging, migration, LRU putback, or anything else 5686 * that would rely on a stable page's memory cgroup. 5687 * 5688 * Note that lock_page_memcg is a memcg lock, not a page lock, 5689 * to save space. As soon as we switch page's memory cgroup to a 5690 * new memcg that isn't locked, the above state can change 5691 * concurrently again. Make sure we're truly done with it. 5692 */ 5693 smp_mb(); 5694 5695 css_get(&to->css); 5696 css_put(&from->css); 5697 5698 page->memcg_data = (unsigned long)to; 5699 5700 __unlock_page_memcg(from); 5701 5702 ret = 0; 5703 5704 local_irq_disable(); 5705 mem_cgroup_charge_statistics(to, page, nr_pages); 5706 memcg_check_events(to, page); 5707 mem_cgroup_charge_statistics(from, page, -nr_pages); 5708 memcg_check_events(from, page); 5709 local_irq_enable(); 5710 out_unlock: 5711 unlock_page(page); 5712 out: 5713 return ret; 5714 } 5715 5716 /** 5717 * get_mctgt_type - get target type of moving charge 5718 * @vma: the vma the pte to be checked belongs 5719 * @addr: the address corresponding to the pte to be checked 5720 * @ptent: the pte to be checked 5721 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5722 * 5723 * Returns 5724 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5725 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5726 * move charge. if @target is not NULL, the page is stored in target->page 5727 * with extra refcnt got(Callers should handle it). 5728 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5729 * target for charge migration. if @target is not NULL, the entry is stored 5730 * in target->ent. 5731 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5732 * (so ZONE_DEVICE page and thus not on the lru). 5733 * For now we such page is charge like a regular page would be as for all 5734 * intent and purposes it is just special memory taking the place of a 5735 * regular page. 5736 * 5737 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5738 * 5739 * Called with pte lock held. 5740 */ 5741 5742 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5743 unsigned long addr, pte_t ptent, union mc_target *target) 5744 { 5745 struct page *page = NULL; 5746 enum mc_target_type ret = MC_TARGET_NONE; 5747 swp_entry_t ent = { .val = 0 }; 5748 5749 if (pte_present(ptent)) 5750 page = mc_handle_present_pte(vma, addr, ptent); 5751 else if (is_swap_pte(ptent)) 5752 page = mc_handle_swap_pte(vma, ptent, &ent); 5753 else if (pte_none(ptent)) 5754 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5755 5756 if (!page && !ent.val) 5757 return ret; 5758 if (page) { 5759 /* 5760 * Do only loose check w/o serialization. 5761 * mem_cgroup_move_account() checks the page is valid or 5762 * not under LRU exclusion. 5763 */ 5764 if (page_memcg(page) == mc.from) { 5765 ret = MC_TARGET_PAGE; 5766 if (is_device_private_page(page)) 5767 ret = MC_TARGET_DEVICE; 5768 if (target) 5769 target->page = page; 5770 } 5771 if (!ret || !target) 5772 put_page(page); 5773 } 5774 /* 5775 * There is a swap entry and a page doesn't exist or isn't charged. 5776 * But we cannot move a tail-page in a THP. 5777 */ 5778 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5779 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5780 ret = MC_TARGET_SWAP; 5781 if (target) 5782 target->ent = ent; 5783 } 5784 return ret; 5785 } 5786 5787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5788 /* 5789 * We don't consider PMD mapped swapping or file mapped pages because THP does 5790 * not support them for now. 5791 * Caller should make sure that pmd_trans_huge(pmd) is true. 5792 */ 5793 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5794 unsigned long addr, pmd_t pmd, union mc_target *target) 5795 { 5796 struct page *page = NULL; 5797 enum mc_target_type ret = MC_TARGET_NONE; 5798 5799 if (unlikely(is_swap_pmd(pmd))) { 5800 VM_BUG_ON(thp_migration_supported() && 5801 !is_pmd_migration_entry(pmd)); 5802 return ret; 5803 } 5804 page = pmd_page(pmd); 5805 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5806 if (!(mc.flags & MOVE_ANON)) 5807 return ret; 5808 if (page_memcg(page) == mc.from) { 5809 ret = MC_TARGET_PAGE; 5810 if (target) { 5811 get_page(page); 5812 target->page = page; 5813 } 5814 } 5815 return ret; 5816 } 5817 #else 5818 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5819 unsigned long addr, pmd_t pmd, union mc_target *target) 5820 { 5821 return MC_TARGET_NONE; 5822 } 5823 #endif 5824 5825 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5826 unsigned long addr, unsigned long end, 5827 struct mm_walk *walk) 5828 { 5829 struct vm_area_struct *vma = walk->vma; 5830 pte_t *pte; 5831 spinlock_t *ptl; 5832 5833 ptl = pmd_trans_huge_lock(pmd, vma); 5834 if (ptl) { 5835 /* 5836 * Note their can not be MC_TARGET_DEVICE for now as we do not 5837 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5838 * this might change. 5839 */ 5840 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5841 mc.precharge += HPAGE_PMD_NR; 5842 spin_unlock(ptl); 5843 return 0; 5844 } 5845 5846 if (pmd_trans_unstable(pmd)) 5847 return 0; 5848 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5849 for (; addr != end; pte++, addr += PAGE_SIZE) 5850 if (get_mctgt_type(vma, addr, *pte, NULL)) 5851 mc.precharge++; /* increment precharge temporarily */ 5852 pte_unmap_unlock(pte - 1, ptl); 5853 cond_resched(); 5854 5855 return 0; 5856 } 5857 5858 static const struct mm_walk_ops precharge_walk_ops = { 5859 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5860 }; 5861 5862 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5863 { 5864 unsigned long precharge; 5865 5866 mmap_read_lock(mm); 5867 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5868 mmap_read_unlock(mm); 5869 5870 precharge = mc.precharge; 5871 mc.precharge = 0; 5872 5873 return precharge; 5874 } 5875 5876 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5877 { 5878 unsigned long precharge = mem_cgroup_count_precharge(mm); 5879 5880 VM_BUG_ON(mc.moving_task); 5881 mc.moving_task = current; 5882 return mem_cgroup_do_precharge(precharge); 5883 } 5884 5885 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5886 static void __mem_cgroup_clear_mc(void) 5887 { 5888 struct mem_cgroup *from = mc.from; 5889 struct mem_cgroup *to = mc.to; 5890 5891 /* we must uncharge all the leftover precharges from mc.to */ 5892 if (mc.precharge) { 5893 cancel_charge(mc.to, mc.precharge); 5894 mc.precharge = 0; 5895 } 5896 /* 5897 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5898 * we must uncharge here. 5899 */ 5900 if (mc.moved_charge) { 5901 cancel_charge(mc.from, mc.moved_charge); 5902 mc.moved_charge = 0; 5903 } 5904 /* we must fixup refcnts and charges */ 5905 if (mc.moved_swap) { 5906 /* uncharge swap account from the old cgroup */ 5907 if (!mem_cgroup_is_root(mc.from)) 5908 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5909 5910 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5911 5912 /* 5913 * we charged both to->memory and to->memsw, so we 5914 * should uncharge to->memory. 5915 */ 5916 if (!mem_cgroup_is_root(mc.to)) 5917 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5918 5919 mc.moved_swap = 0; 5920 } 5921 memcg_oom_recover(from); 5922 memcg_oom_recover(to); 5923 wake_up_all(&mc.waitq); 5924 } 5925 5926 static void mem_cgroup_clear_mc(void) 5927 { 5928 struct mm_struct *mm = mc.mm; 5929 5930 /* 5931 * we must clear moving_task before waking up waiters at the end of 5932 * task migration. 5933 */ 5934 mc.moving_task = NULL; 5935 __mem_cgroup_clear_mc(); 5936 spin_lock(&mc.lock); 5937 mc.from = NULL; 5938 mc.to = NULL; 5939 mc.mm = NULL; 5940 spin_unlock(&mc.lock); 5941 5942 mmput(mm); 5943 } 5944 5945 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5946 { 5947 struct cgroup_subsys_state *css; 5948 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5949 struct mem_cgroup *from; 5950 struct task_struct *leader, *p; 5951 struct mm_struct *mm; 5952 unsigned long move_flags; 5953 int ret = 0; 5954 5955 /* charge immigration isn't supported on the default hierarchy */ 5956 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5957 return 0; 5958 5959 /* 5960 * Multi-process migrations only happen on the default hierarchy 5961 * where charge immigration is not used. Perform charge 5962 * immigration if @tset contains a leader and whine if there are 5963 * multiple. 5964 */ 5965 p = NULL; 5966 cgroup_taskset_for_each_leader(leader, css, tset) { 5967 WARN_ON_ONCE(p); 5968 p = leader; 5969 memcg = mem_cgroup_from_css(css); 5970 } 5971 if (!p) 5972 return 0; 5973 5974 /* 5975 * We are now commited to this value whatever it is. Changes in this 5976 * tunable will only affect upcoming migrations, not the current one. 5977 * So we need to save it, and keep it going. 5978 */ 5979 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5980 if (!move_flags) 5981 return 0; 5982 5983 from = mem_cgroup_from_task(p); 5984 5985 VM_BUG_ON(from == memcg); 5986 5987 mm = get_task_mm(p); 5988 if (!mm) 5989 return 0; 5990 /* We move charges only when we move a owner of the mm */ 5991 if (mm->owner == p) { 5992 VM_BUG_ON(mc.from); 5993 VM_BUG_ON(mc.to); 5994 VM_BUG_ON(mc.precharge); 5995 VM_BUG_ON(mc.moved_charge); 5996 VM_BUG_ON(mc.moved_swap); 5997 5998 spin_lock(&mc.lock); 5999 mc.mm = mm; 6000 mc.from = from; 6001 mc.to = memcg; 6002 mc.flags = move_flags; 6003 spin_unlock(&mc.lock); 6004 /* We set mc.moving_task later */ 6005 6006 ret = mem_cgroup_precharge_mc(mm); 6007 if (ret) 6008 mem_cgroup_clear_mc(); 6009 } else { 6010 mmput(mm); 6011 } 6012 return ret; 6013 } 6014 6015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6016 { 6017 if (mc.to) 6018 mem_cgroup_clear_mc(); 6019 } 6020 6021 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6022 unsigned long addr, unsigned long end, 6023 struct mm_walk *walk) 6024 { 6025 int ret = 0; 6026 struct vm_area_struct *vma = walk->vma; 6027 pte_t *pte; 6028 spinlock_t *ptl; 6029 enum mc_target_type target_type; 6030 union mc_target target; 6031 struct page *page; 6032 6033 ptl = pmd_trans_huge_lock(pmd, vma); 6034 if (ptl) { 6035 if (mc.precharge < HPAGE_PMD_NR) { 6036 spin_unlock(ptl); 6037 return 0; 6038 } 6039 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6040 if (target_type == MC_TARGET_PAGE) { 6041 page = target.page; 6042 if (!isolate_lru_page(page)) { 6043 if (!mem_cgroup_move_account(page, true, 6044 mc.from, mc.to)) { 6045 mc.precharge -= HPAGE_PMD_NR; 6046 mc.moved_charge += HPAGE_PMD_NR; 6047 } 6048 putback_lru_page(page); 6049 } 6050 put_page(page); 6051 } else if (target_type == MC_TARGET_DEVICE) { 6052 page = target.page; 6053 if (!mem_cgroup_move_account(page, true, 6054 mc.from, mc.to)) { 6055 mc.precharge -= HPAGE_PMD_NR; 6056 mc.moved_charge += HPAGE_PMD_NR; 6057 } 6058 put_page(page); 6059 } 6060 spin_unlock(ptl); 6061 return 0; 6062 } 6063 6064 if (pmd_trans_unstable(pmd)) 6065 return 0; 6066 retry: 6067 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6068 for (; addr != end; addr += PAGE_SIZE) { 6069 pte_t ptent = *(pte++); 6070 bool device = false; 6071 swp_entry_t ent; 6072 6073 if (!mc.precharge) 6074 break; 6075 6076 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6077 case MC_TARGET_DEVICE: 6078 device = true; 6079 fallthrough; 6080 case MC_TARGET_PAGE: 6081 page = target.page; 6082 /* 6083 * We can have a part of the split pmd here. Moving it 6084 * can be done but it would be too convoluted so simply 6085 * ignore such a partial THP and keep it in original 6086 * memcg. There should be somebody mapping the head. 6087 */ 6088 if (PageTransCompound(page)) 6089 goto put; 6090 if (!device && isolate_lru_page(page)) 6091 goto put; 6092 if (!mem_cgroup_move_account(page, false, 6093 mc.from, mc.to)) { 6094 mc.precharge--; 6095 /* we uncharge from mc.from later. */ 6096 mc.moved_charge++; 6097 } 6098 if (!device) 6099 putback_lru_page(page); 6100 put: /* get_mctgt_type() gets the page */ 6101 put_page(page); 6102 break; 6103 case MC_TARGET_SWAP: 6104 ent = target.ent; 6105 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6106 mc.precharge--; 6107 mem_cgroup_id_get_many(mc.to, 1); 6108 /* we fixup other refcnts and charges later. */ 6109 mc.moved_swap++; 6110 } 6111 break; 6112 default: 6113 break; 6114 } 6115 } 6116 pte_unmap_unlock(pte - 1, ptl); 6117 cond_resched(); 6118 6119 if (addr != end) { 6120 /* 6121 * We have consumed all precharges we got in can_attach(). 6122 * We try charge one by one, but don't do any additional 6123 * charges to mc.to if we have failed in charge once in attach() 6124 * phase. 6125 */ 6126 ret = mem_cgroup_do_precharge(1); 6127 if (!ret) 6128 goto retry; 6129 } 6130 6131 return ret; 6132 } 6133 6134 static const struct mm_walk_ops charge_walk_ops = { 6135 .pmd_entry = mem_cgroup_move_charge_pte_range, 6136 }; 6137 6138 static void mem_cgroup_move_charge(void) 6139 { 6140 lru_add_drain_all(); 6141 /* 6142 * Signal lock_page_memcg() to take the memcg's move_lock 6143 * while we're moving its pages to another memcg. Then wait 6144 * for already started RCU-only updates to finish. 6145 */ 6146 atomic_inc(&mc.from->moving_account); 6147 synchronize_rcu(); 6148 retry: 6149 if (unlikely(!mmap_read_trylock(mc.mm))) { 6150 /* 6151 * Someone who are holding the mmap_lock might be waiting in 6152 * waitq. So we cancel all extra charges, wake up all waiters, 6153 * and retry. Because we cancel precharges, we might not be able 6154 * to move enough charges, but moving charge is a best-effort 6155 * feature anyway, so it wouldn't be a big problem. 6156 */ 6157 __mem_cgroup_clear_mc(); 6158 cond_resched(); 6159 goto retry; 6160 } 6161 /* 6162 * When we have consumed all precharges and failed in doing 6163 * additional charge, the page walk just aborts. 6164 */ 6165 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6166 NULL); 6167 6168 mmap_read_unlock(mc.mm); 6169 atomic_dec(&mc.from->moving_account); 6170 } 6171 6172 static void mem_cgroup_move_task(void) 6173 { 6174 if (mc.to) { 6175 mem_cgroup_move_charge(); 6176 mem_cgroup_clear_mc(); 6177 } 6178 } 6179 #else /* !CONFIG_MMU */ 6180 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6181 { 6182 return 0; 6183 } 6184 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6185 { 6186 } 6187 static void mem_cgroup_move_task(void) 6188 { 6189 } 6190 #endif 6191 6192 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6193 { 6194 if (value == PAGE_COUNTER_MAX) 6195 seq_puts(m, "max\n"); 6196 else 6197 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6198 6199 return 0; 6200 } 6201 6202 static u64 memory_current_read(struct cgroup_subsys_state *css, 6203 struct cftype *cft) 6204 { 6205 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6206 6207 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6208 } 6209 6210 static int memory_min_show(struct seq_file *m, void *v) 6211 { 6212 return seq_puts_memcg_tunable(m, 6213 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6214 } 6215 6216 static ssize_t memory_min_write(struct kernfs_open_file *of, 6217 char *buf, size_t nbytes, loff_t off) 6218 { 6219 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6220 unsigned long min; 6221 int err; 6222 6223 buf = strstrip(buf); 6224 err = page_counter_memparse(buf, "max", &min); 6225 if (err) 6226 return err; 6227 6228 page_counter_set_min(&memcg->memory, min); 6229 6230 return nbytes; 6231 } 6232 6233 static int memory_low_show(struct seq_file *m, void *v) 6234 { 6235 return seq_puts_memcg_tunable(m, 6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6237 } 6238 6239 static ssize_t memory_low_write(struct kernfs_open_file *of, 6240 char *buf, size_t nbytes, loff_t off) 6241 { 6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6243 unsigned long low; 6244 int err; 6245 6246 buf = strstrip(buf); 6247 err = page_counter_memparse(buf, "max", &low); 6248 if (err) 6249 return err; 6250 6251 page_counter_set_low(&memcg->memory, low); 6252 6253 return nbytes; 6254 } 6255 6256 static int memory_high_show(struct seq_file *m, void *v) 6257 { 6258 return seq_puts_memcg_tunable(m, 6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6260 } 6261 6262 static ssize_t memory_high_write(struct kernfs_open_file *of, 6263 char *buf, size_t nbytes, loff_t off) 6264 { 6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6266 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6267 bool drained = false; 6268 unsigned long high; 6269 int err; 6270 6271 buf = strstrip(buf); 6272 err = page_counter_memparse(buf, "max", &high); 6273 if (err) 6274 return err; 6275 6276 for (;;) { 6277 unsigned long nr_pages = page_counter_read(&memcg->memory); 6278 unsigned long reclaimed; 6279 6280 if (nr_pages <= high) 6281 break; 6282 6283 if (signal_pending(current)) 6284 break; 6285 6286 if (!drained) { 6287 drain_all_stock(memcg); 6288 drained = true; 6289 continue; 6290 } 6291 6292 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6293 GFP_KERNEL, true); 6294 6295 if (!reclaimed && !nr_retries--) 6296 break; 6297 } 6298 6299 page_counter_set_high(&memcg->memory, high); 6300 6301 memcg_wb_domain_size_changed(memcg); 6302 6303 return nbytes; 6304 } 6305 6306 static int memory_max_show(struct seq_file *m, void *v) 6307 { 6308 return seq_puts_memcg_tunable(m, 6309 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6310 } 6311 6312 static ssize_t memory_max_write(struct kernfs_open_file *of, 6313 char *buf, size_t nbytes, loff_t off) 6314 { 6315 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6316 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6317 bool drained = false; 6318 unsigned long max; 6319 int err; 6320 6321 buf = strstrip(buf); 6322 err = page_counter_memparse(buf, "max", &max); 6323 if (err) 6324 return err; 6325 6326 xchg(&memcg->memory.max, max); 6327 6328 for (;;) { 6329 unsigned long nr_pages = page_counter_read(&memcg->memory); 6330 6331 if (nr_pages <= max) 6332 break; 6333 6334 if (signal_pending(current)) 6335 break; 6336 6337 if (!drained) { 6338 drain_all_stock(memcg); 6339 drained = true; 6340 continue; 6341 } 6342 6343 if (nr_reclaims) { 6344 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6345 GFP_KERNEL, true)) 6346 nr_reclaims--; 6347 continue; 6348 } 6349 6350 memcg_memory_event(memcg, MEMCG_OOM); 6351 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6352 break; 6353 } 6354 6355 memcg_wb_domain_size_changed(memcg); 6356 return nbytes; 6357 } 6358 6359 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6360 { 6361 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6362 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6363 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6364 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6365 seq_printf(m, "oom_kill %lu\n", 6366 atomic_long_read(&events[MEMCG_OOM_KILL])); 6367 } 6368 6369 static int memory_events_show(struct seq_file *m, void *v) 6370 { 6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6372 6373 __memory_events_show(m, memcg->memory_events); 6374 return 0; 6375 } 6376 6377 static int memory_events_local_show(struct seq_file *m, void *v) 6378 { 6379 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6380 6381 __memory_events_show(m, memcg->memory_events_local); 6382 return 0; 6383 } 6384 6385 static int memory_stat_show(struct seq_file *m, void *v) 6386 { 6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6388 char *buf; 6389 6390 buf = memory_stat_format(memcg); 6391 if (!buf) 6392 return -ENOMEM; 6393 seq_puts(m, buf); 6394 kfree(buf); 6395 return 0; 6396 } 6397 6398 #ifdef CONFIG_NUMA 6399 static int memory_numa_stat_show(struct seq_file *m, void *v) 6400 { 6401 int i; 6402 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6403 6404 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6405 int nid; 6406 6407 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6408 continue; 6409 6410 seq_printf(m, "%s", memory_stats[i].name); 6411 for_each_node_state(nid, N_MEMORY) { 6412 u64 size; 6413 struct lruvec *lruvec; 6414 6415 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6416 size = lruvec_page_state(lruvec, memory_stats[i].idx); 6417 size *= memory_stats[i].ratio; 6418 seq_printf(m, " N%d=%llu", nid, size); 6419 } 6420 seq_putc(m, '\n'); 6421 } 6422 6423 return 0; 6424 } 6425 #endif 6426 6427 static int memory_oom_group_show(struct seq_file *m, void *v) 6428 { 6429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6430 6431 seq_printf(m, "%d\n", memcg->oom_group); 6432 6433 return 0; 6434 } 6435 6436 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6437 char *buf, size_t nbytes, loff_t off) 6438 { 6439 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6440 int ret, oom_group; 6441 6442 buf = strstrip(buf); 6443 if (!buf) 6444 return -EINVAL; 6445 6446 ret = kstrtoint(buf, 0, &oom_group); 6447 if (ret) 6448 return ret; 6449 6450 if (oom_group != 0 && oom_group != 1) 6451 return -EINVAL; 6452 6453 memcg->oom_group = oom_group; 6454 6455 return nbytes; 6456 } 6457 6458 static struct cftype memory_files[] = { 6459 { 6460 .name = "current", 6461 .flags = CFTYPE_NOT_ON_ROOT, 6462 .read_u64 = memory_current_read, 6463 }, 6464 { 6465 .name = "min", 6466 .flags = CFTYPE_NOT_ON_ROOT, 6467 .seq_show = memory_min_show, 6468 .write = memory_min_write, 6469 }, 6470 { 6471 .name = "low", 6472 .flags = CFTYPE_NOT_ON_ROOT, 6473 .seq_show = memory_low_show, 6474 .write = memory_low_write, 6475 }, 6476 { 6477 .name = "high", 6478 .flags = CFTYPE_NOT_ON_ROOT, 6479 .seq_show = memory_high_show, 6480 .write = memory_high_write, 6481 }, 6482 { 6483 .name = "max", 6484 .flags = CFTYPE_NOT_ON_ROOT, 6485 .seq_show = memory_max_show, 6486 .write = memory_max_write, 6487 }, 6488 { 6489 .name = "events", 6490 .flags = CFTYPE_NOT_ON_ROOT, 6491 .file_offset = offsetof(struct mem_cgroup, events_file), 6492 .seq_show = memory_events_show, 6493 }, 6494 { 6495 .name = "events.local", 6496 .flags = CFTYPE_NOT_ON_ROOT, 6497 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6498 .seq_show = memory_events_local_show, 6499 }, 6500 { 6501 .name = "stat", 6502 .seq_show = memory_stat_show, 6503 }, 6504 #ifdef CONFIG_NUMA 6505 { 6506 .name = "numa_stat", 6507 .seq_show = memory_numa_stat_show, 6508 }, 6509 #endif 6510 { 6511 .name = "oom.group", 6512 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6513 .seq_show = memory_oom_group_show, 6514 .write = memory_oom_group_write, 6515 }, 6516 { } /* terminate */ 6517 }; 6518 6519 struct cgroup_subsys memory_cgrp_subsys = { 6520 .css_alloc = mem_cgroup_css_alloc, 6521 .css_online = mem_cgroup_css_online, 6522 .css_offline = mem_cgroup_css_offline, 6523 .css_released = mem_cgroup_css_released, 6524 .css_free = mem_cgroup_css_free, 6525 .css_reset = mem_cgroup_css_reset, 6526 .can_attach = mem_cgroup_can_attach, 6527 .cancel_attach = mem_cgroup_cancel_attach, 6528 .post_attach = mem_cgroup_move_task, 6529 .dfl_cftypes = memory_files, 6530 .legacy_cftypes = mem_cgroup_legacy_files, 6531 .early_init = 0, 6532 }; 6533 6534 /* 6535 * This function calculates an individual cgroup's effective 6536 * protection which is derived from its own memory.min/low, its 6537 * parent's and siblings' settings, as well as the actual memory 6538 * distribution in the tree. 6539 * 6540 * The following rules apply to the effective protection values: 6541 * 6542 * 1. At the first level of reclaim, effective protection is equal to 6543 * the declared protection in memory.min and memory.low. 6544 * 6545 * 2. To enable safe delegation of the protection configuration, at 6546 * subsequent levels the effective protection is capped to the 6547 * parent's effective protection. 6548 * 6549 * 3. To make complex and dynamic subtrees easier to configure, the 6550 * user is allowed to overcommit the declared protection at a given 6551 * level. If that is the case, the parent's effective protection is 6552 * distributed to the children in proportion to how much protection 6553 * they have declared and how much of it they are utilizing. 6554 * 6555 * This makes distribution proportional, but also work-conserving: 6556 * if one cgroup claims much more protection than it uses memory, 6557 * the unused remainder is available to its siblings. 6558 * 6559 * 4. Conversely, when the declared protection is undercommitted at a 6560 * given level, the distribution of the larger parental protection 6561 * budget is NOT proportional. A cgroup's protection from a sibling 6562 * is capped to its own memory.min/low setting. 6563 * 6564 * 5. However, to allow protecting recursive subtrees from each other 6565 * without having to declare each individual cgroup's fixed share 6566 * of the ancestor's claim to protection, any unutilized - 6567 * "floating" - protection from up the tree is distributed in 6568 * proportion to each cgroup's *usage*. This makes the protection 6569 * neutral wrt sibling cgroups and lets them compete freely over 6570 * the shared parental protection budget, but it protects the 6571 * subtree as a whole from neighboring subtrees. 6572 * 6573 * Note that 4. and 5. are not in conflict: 4. is about protecting 6574 * against immediate siblings whereas 5. is about protecting against 6575 * neighboring subtrees. 6576 */ 6577 static unsigned long effective_protection(unsigned long usage, 6578 unsigned long parent_usage, 6579 unsigned long setting, 6580 unsigned long parent_effective, 6581 unsigned long siblings_protected) 6582 { 6583 unsigned long protected; 6584 unsigned long ep; 6585 6586 protected = min(usage, setting); 6587 /* 6588 * If all cgroups at this level combined claim and use more 6589 * protection then what the parent affords them, distribute 6590 * shares in proportion to utilization. 6591 * 6592 * We are using actual utilization rather than the statically 6593 * claimed protection in order to be work-conserving: claimed 6594 * but unused protection is available to siblings that would 6595 * otherwise get a smaller chunk than what they claimed. 6596 */ 6597 if (siblings_protected > parent_effective) 6598 return protected * parent_effective / siblings_protected; 6599 6600 /* 6601 * Ok, utilized protection of all children is within what the 6602 * parent affords them, so we know whatever this child claims 6603 * and utilizes is effectively protected. 6604 * 6605 * If there is unprotected usage beyond this value, reclaim 6606 * will apply pressure in proportion to that amount. 6607 * 6608 * If there is unutilized protection, the cgroup will be fully 6609 * shielded from reclaim, but we do return a smaller value for 6610 * protection than what the group could enjoy in theory. This 6611 * is okay. With the overcommit distribution above, effective 6612 * protection is always dependent on how memory is actually 6613 * consumed among the siblings anyway. 6614 */ 6615 ep = protected; 6616 6617 /* 6618 * If the children aren't claiming (all of) the protection 6619 * afforded to them by the parent, distribute the remainder in 6620 * proportion to the (unprotected) memory of each cgroup. That 6621 * way, cgroups that aren't explicitly prioritized wrt each 6622 * other compete freely over the allowance, but they are 6623 * collectively protected from neighboring trees. 6624 * 6625 * We're using unprotected memory for the weight so that if 6626 * some cgroups DO claim explicit protection, we don't protect 6627 * the same bytes twice. 6628 * 6629 * Check both usage and parent_usage against the respective 6630 * protected values. One should imply the other, but they 6631 * aren't read atomically - make sure the division is sane. 6632 */ 6633 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6634 return ep; 6635 if (parent_effective > siblings_protected && 6636 parent_usage > siblings_protected && 6637 usage > protected) { 6638 unsigned long unclaimed; 6639 6640 unclaimed = parent_effective - siblings_protected; 6641 unclaimed *= usage - protected; 6642 unclaimed /= parent_usage - siblings_protected; 6643 6644 ep += unclaimed; 6645 } 6646 6647 return ep; 6648 } 6649 6650 /** 6651 * mem_cgroup_protected - check if memory consumption is in the normal range 6652 * @root: the top ancestor of the sub-tree being checked 6653 * @memcg: the memory cgroup to check 6654 * 6655 * WARNING: This function is not stateless! It can only be used as part 6656 * of a top-down tree iteration, not for isolated queries. 6657 */ 6658 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6659 struct mem_cgroup *memcg) 6660 { 6661 unsigned long usage, parent_usage; 6662 struct mem_cgroup *parent; 6663 6664 if (mem_cgroup_disabled()) 6665 return; 6666 6667 if (!root) 6668 root = root_mem_cgroup; 6669 6670 /* 6671 * Effective values of the reclaim targets are ignored so they 6672 * can be stale. Have a look at mem_cgroup_protection for more 6673 * details. 6674 * TODO: calculation should be more robust so that we do not need 6675 * that special casing. 6676 */ 6677 if (memcg == root) 6678 return; 6679 6680 usage = page_counter_read(&memcg->memory); 6681 if (!usage) 6682 return; 6683 6684 parent = parent_mem_cgroup(memcg); 6685 /* No parent means a non-hierarchical mode on v1 memcg */ 6686 if (!parent) 6687 return; 6688 6689 if (parent == root) { 6690 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6691 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6692 return; 6693 } 6694 6695 parent_usage = page_counter_read(&parent->memory); 6696 6697 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6698 READ_ONCE(memcg->memory.min), 6699 READ_ONCE(parent->memory.emin), 6700 atomic_long_read(&parent->memory.children_min_usage))); 6701 6702 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6703 READ_ONCE(memcg->memory.low), 6704 READ_ONCE(parent->memory.elow), 6705 atomic_long_read(&parent->memory.children_low_usage))); 6706 } 6707 6708 /** 6709 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6710 * @page: page to charge 6711 * @mm: mm context of the victim 6712 * @gfp_mask: reclaim mode 6713 * 6714 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6715 * pages according to @gfp_mask if necessary. 6716 * 6717 * Returns 0 on success. Otherwise, an error code is returned. 6718 */ 6719 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6720 { 6721 unsigned int nr_pages = thp_nr_pages(page); 6722 struct mem_cgroup *memcg = NULL; 6723 int ret = 0; 6724 6725 if (mem_cgroup_disabled()) 6726 goto out; 6727 6728 if (PageSwapCache(page)) { 6729 swp_entry_t ent = { .val = page_private(page), }; 6730 unsigned short id; 6731 6732 /* 6733 * Every swap fault against a single page tries to charge the 6734 * page, bail as early as possible. shmem_unuse() encounters 6735 * already charged pages, too. page and memcg binding is 6736 * protected by the page lock, which serializes swap cache 6737 * removal, which in turn serializes uncharging. 6738 */ 6739 VM_BUG_ON_PAGE(!PageLocked(page), page); 6740 if (page_memcg(compound_head(page))) 6741 goto out; 6742 6743 id = lookup_swap_cgroup_id(ent); 6744 rcu_read_lock(); 6745 memcg = mem_cgroup_from_id(id); 6746 if (memcg && !css_tryget_online(&memcg->css)) 6747 memcg = NULL; 6748 rcu_read_unlock(); 6749 } 6750 6751 if (!memcg) 6752 memcg = get_mem_cgroup_from_mm(mm); 6753 6754 ret = try_charge(memcg, gfp_mask, nr_pages); 6755 if (ret) 6756 goto out_put; 6757 6758 css_get(&memcg->css); 6759 commit_charge(page, memcg); 6760 6761 local_irq_disable(); 6762 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6763 memcg_check_events(memcg, page); 6764 local_irq_enable(); 6765 6766 if (PageSwapCache(page)) { 6767 swp_entry_t entry = { .val = page_private(page) }; 6768 /* 6769 * The swap entry might not get freed for a long time, 6770 * let's not wait for it. The page already received a 6771 * memory+swap charge, drop the swap entry duplicate. 6772 */ 6773 mem_cgroup_uncharge_swap(entry, nr_pages); 6774 } 6775 6776 out_put: 6777 css_put(&memcg->css); 6778 out: 6779 return ret; 6780 } 6781 6782 struct uncharge_gather { 6783 struct mem_cgroup *memcg; 6784 unsigned long nr_pages; 6785 unsigned long pgpgout; 6786 unsigned long nr_kmem; 6787 struct page *dummy_page; 6788 }; 6789 6790 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6791 { 6792 memset(ug, 0, sizeof(*ug)); 6793 } 6794 6795 static void uncharge_batch(const struct uncharge_gather *ug) 6796 { 6797 unsigned long flags; 6798 6799 if (!mem_cgroup_is_root(ug->memcg)) { 6800 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6801 if (do_memsw_account()) 6802 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6803 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6804 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6805 memcg_oom_recover(ug->memcg); 6806 } 6807 6808 local_irq_save(flags); 6809 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6810 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6811 memcg_check_events(ug->memcg, ug->dummy_page); 6812 local_irq_restore(flags); 6813 6814 /* drop reference from uncharge_page */ 6815 css_put(&ug->memcg->css); 6816 } 6817 6818 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6819 { 6820 unsigned long nr_pages; 6821 6822 VM_BUG_ON_PAGE(PageLRU(page), page); 6823 6824 if (!page_memcg(page)) 6825 return; 6826 6827 /* 6828 * Nobody should be changing or seriously looking at 6829 * page_memcg(page) at this point, we have fully 6830 * exclusive access to the page. 6831 */ 6832 6833 if (ug->memcg != page_memcg(page)) { 6834 if (ug->memcg) { 6835 uncharge_batch(ug); 6836 uncharge_gather_clear(ug); 6837 } 6838 ug->memcg = page_memcg(page); 6839 6840 /* pairs with css_put in uncharge_batch */ 6841 css_get(&ug->memcg->css); 6842 } 6843 6844 nr_pages = compound_nr(page); 6845 ug->nr_pages += nr_pages; 6846 6847 if (PageMemcgKmem(page)) 6848 ug->nr_kmem += nr_pages; 6849 else 6850 ug->pgpgout++; 6851 6852 ug->dummy_page = page; 6853 page->memcg_data = 0; 6854 css_put(&ug->memcg->css); 6855 } 6856 6857 static void uncharge_list(struct list_head *page_list) 6858 { 6859 struct uncharge_gather ug; 6860 struct list_head *next; 6861 6862 uncharge_gather_clear(&ug); 6863 6864 /* 6865 * Note that the list can be a single page->lru; hence the 6866 * do-while loop instead of a simple list_for_each_entry(). 6867 */ 6868 next = page_list->next; 6869 do { 6870 struct page *page; 6871 6872 page = list_entry(next, struct page, lru); 6873 next = page->lru.next; 6874 6875 uncharge_page(page, &ug); 6876 } while (next != page_list); 6877 6878 if (ug.memcg) 6879 uncharge_batch(&ug); 6880 } 6881 6882 /** 6883 * mem_cgroup_uncharge - uncharge a page 6884 * @page: page to uncharge 6885 * 6886 * Uncharge a page previously charged with mem_cgroup_charge(). 6887 */ 6888 void mem_cgroup_uncharge(struct page *page) 6889 { 6890 struct uncharge_gather ug; 6891 6892 if (mem_cgroup_disabled()) 6893 return; 6894 6895 /* Don't touch page->lru of any random page, pre-check: */ 6896 if (!page_memcg(page)) 6897 return; 6898 6899 uncharge_gather_clear(&ug); 6900 uncharge_page(page, &ug); 6901 uncharge_batch(&ug); 6902 } 6903 6904 /** 6905 * mem_cgroup_uncharge_list - uncharge a list of page 6906 * @page_list: list of pages to uncharge 6907 * 6908 * Uncharge a list of pages previously charged with 6909 * mem_cgroup_charge(). 6910 */ 6911 void mem_cgroup_uncharge_list(struct list_head *page_list) 6912 { 6913 if (mem_cgroup_disabled()) 6914 return; 6915 6916 if (!list_empty(page_list)) 6917 uncharge_list(page_list); 6918 } 6919 6920 /** 6921 * mem_cgroup_migrate - charge a page's replacement 6922 * @oldpage: currently circulating page 6923 * @newpage: replacement page 6924 * 6925 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6926 * be uncharged upon free. 6927 * 6928 * Both pages must be locked, @newpage->mapping must be set up. 6929 */ 6930 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6931 { 6932 struct mem_cgroup *memcg; 6933 unsigned int nr_pages; 6934 unsigned long flags; 6935 6936 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6937 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6938 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6939 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6940 newpage); 6941 6942 if (mem_cgroup_disabled()) 6943 return; 6944 6945 /* Page cache replacement: new page already charged? */ 6946 if (page_memcg(newpage)) 6947 return; 6948 6949 memcg = page_memcg(oldpage); 6950 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); 6951 if (!memcg) 6952 return; 6953 6954 /* Force-charge the new page. The old one will be freed soon */ 6955 nr_pages = thp_nr_pages(newpage); 6956 6957 page_counter_charge(&memcg->memory, nr_pages); 6958 if (do_memsw_account()) 6959 page_counter_charge(&memcg->memsw, nr_pages); 6960 6961 css_get(&memcg->css); 6962 commit_charge(newpage, memcg); 6963 6964 local_irq_save(flags); 6965 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6966 memcg_check_events(memcg, newpage); 6967 local_irq_restore(flags); 6968 } 6969 6970 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6971 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6972 6973 void mem_cgroup_sk_alloc(struct sock *sk) 6974 { 6975 struct mem_cgroup *memcg; 6976 6977 if (!mem_cgroup_sockets_enabled) 6978 return; 6979 6980 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6981 if (in_interrupt()) 6982 return; 6983 6984 rcu_read_lock(); 6985 memcg = mem_cgroup_from_task(current); 6986 if (memcg == root_mem_cgroup) 6987 goto out; 6988 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6989 goto out; 6990 if (css_tryget(&memcg->css)) 6991 sk->sk_memcg = memcg; 6992 out: 6993 rcu_read_unlock(); 6994 } 6995 6996 void mem_cgroup_sk_free(struct sock *sk) 6997 { 6998 if (sk->sk_memcg) 6999 css_put(&sk->sk_memcg->css); 7000 } 7001 7002 /** 7003 * mem_cgroup_charge_skmem - charge socket memory 7004 * @memcg: memcg to charge 7005 * @nr_pages: number of pages to charge 7006 * 7007 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7008 * @memcg's configured limit, %false if the charge had to be forced. 7009 */ 7010 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7011 { 7012 gfp_t gfp_mask = GFP_KERNEL; 7013 7014 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7015 struct page_counter *fail; 7016 7017 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7018 memcg->tcpmem_pressure = 0; 7019 return true; 7020 } 7021 page_counter_charge(&memcg->tcpmem, nr_pages); 7022 memcg->tcpmem_pressure = 1; 7023 return false; 7024 } 7025 7026 /* Don't block in the packet receive path */ 7027 if (in_softirq()) 7028 gfp_mask = GFP_NOWAIT; 7029 7030 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7031 7032 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 7033 return true; 7034 7035 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 7036 return false; 7037 } 7038 7039 /** 7040 * mem_cgroup_uncharge_skmem - uncharge socket memory 7041 * @memcg: memcg to uncharge 7042 * @nr_pages: number of pages to uncharge 7043 */ 7044 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7045 { 7046 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7047 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7048 return; 7049 } 7050 7051 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7052 7053 refill_stock(memcg, nr_pages); 7054 } 7055 7056 static int __init cgroup_memory(char *s) 7057 { 7058 char *token; 7059 7060 while ((token = strsep(&s, ",")) != NULL) { 7061 if (!*token) 7062 continue; 7063 if (!strcmp(token, "nosocket")) 7064 cgroup_memory_nosocket = true; 7065 if (!strcmp(token, "nokmem")) 7066 cgroup_memory_nokmem = true; 7067 } 7068 return 0; 7069 } 7070 __setup("cgroup.memory=", cgroup_memory); 7071 7072 /* 7073 * subsys_initcall() for memory controller. 7074 * 7075 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7076 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7077 * basically everything that doesn't depend on a specific mem_cgroup structure 7078 * should be initialized from here. 7079 */ 7080 static int __init mem_cgroup_init(void) 7081 { 7082 int cpu, node; 7083 7084 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7085 memcg_hotplug_cpu_dead); 7086 7087 for_each_possible_cpu(cpu) 7088 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7089 drain_local_stock); 7090 7091 for_each_node(node) { 7092 struct mem_cgroup_tree_per_node *rtpn; 7093 7094 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7095 node_online(node) ? node : NUMA_NO_NODE); 7096 7097 rtpn->rb_root = RB_ROOT; 7098 rtpn->rb_rightmost = NULL; 7099 spin_lock_init(&rtpn->lock); 7100 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7101 } 7102 7103 return 0; 7104 } 7105 subsys_initcall(mem_cgroup_init); 7106 7107 #ifdef CONFIG_MEMCG_SWAP 7108 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7109 { 7110 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7111 /* 7112 * The root cgroup cannot be destroyed, so it's refcount must 7113 * always be >= 1. 7114 */ 7115 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7116 VM_BUG_ON(1); 7117 break; 7118 } 7119 memcg = parent_mem_cgroup(memcg); 7120 if (!memcg) 7121 memcg = root_mem_cgroup; 7122 } 7123 return memcg; 7124 } 7125 7126 /** 7127 * mem_cgroup_swapout - transfer a memsw charge to swap 7128 * @page: page whose memsw charge to transfer 7129 * @entry: swap entry to move the charge to 7130 * 7131 * Transfer the memsw charge of @page to @entry. 7132 */ 7133 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7134 { 7135 struct mem_cgroup *memcg, *swap_memcg; 7136 unsigned int nr_entries; 7137 unsigned short oldid; 7138 7139 VM_BUG_ON_PAGE(PageLRU(page), page); 7140 VM_BUG_ON_PAGE(page_count(page), page); 7141 7142 if (mem_cgroup_disabled()) 7143 return; 7144 7145 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7146 return; 7147 7148 memcg = page_memcg(page); 7149 7150 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7151 if (!memcg) 7152 return; 7153 7154 /* 7155 * In case the memcg owning these pages has been offlined and doesn't 7156 * have an ID allocated to it anymore, charge the closest online 7157 * ancestor for the swap instead and transfer the memory+swap charge. 7158 */ 7159 swap_memcg = mem_cgroup_id_get_online(memcg); 7160 nr_entries = thp_nr_pages(page); 7161 /* Get references for the tail pages, too */ 7162 if (nr_entries > 1) 7163 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7164 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7165 nr_entries); 7166 VM_BUG_ON_PAGE(oldid, page); 7167 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7168 7169 page->memcg_data = 0; 7170 7171 if (!mem_cgroup_is_root(memcg)) 7172 page_counter_uncharge(&memcg->memory, nr_entries); 7173 7174 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7175 if (!mem_cgroup_is_root(swap_memcg)) 7176 page_counter_charge(&swap_memcg->memsw, nr_entries); 7177 page_counter_uncharge(&memcg->memsw, nr_entries); 7178 } 7179 7180 /* 7181 * Interrupts should be disabled here because the caller holds the 7182 * i_pages lock which is taken with interrupts-off. It is 7183 * important here to have the interrupts disabled because it is the 7184 * only synchronisation we have for updating the per-CPU variables. 7185 */ 7186 VM_BUG_ON(!irqs_disabled()); 7187 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7188 memcg_check_events(memcg, page); 7189 7190 css_put(&memcg->css); 7191 } 7192 7193 /** 7194 * mem_cgroup_try_charge_swap - try charging swap space for a page 7195 * @page: page being added to swap 7196 * @entry: swap entry to charge 7197 * 7198 * Try to charge @page's memcg for the swap space at @entry. 7199 * 7200 * Returns 0 on success, -ENOMEM on failure. 7201 */ 7202 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7203 { 7204 unsigned int nr_pages = thp_nr_pages(page); 7205 struct page_counter *counter; 7206 struct mem_cgroup *memcg; 7207 unsigned short oldid; 7208 7209 if (mem_cgroup_disabled()) 7210 return 0; 7211 7212 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7213 return 0; 7214 7215 memcg = page_memcg(page); 7216 7217 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7218 if (!memcg) 7219 return 0; 7220 7221 if (!entry.val) { 7222 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7223 return 0; 7224 } 7225 7226 memcg = mem_cgroup_id_get_online(memcg); 7227 7228 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7229 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7230 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7231 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7232 mem_cgroup_id_put(memcg); 7233 return -ENOMEM; 7234 } 7235 7236 /* Get references for the tail pages, too */ 7237 if (nr_pages > 1) 7238 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7239 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7240 VM_BUG_ON_PAGE(oldid, page); 7241 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7242 7243 return 0; 7244 } 7245 7246 /** 7247 * mem_cgroup_uncharge_swap - uncharge swap space 7248 * @entry: swap entry to uncharge 7249 * @nr_pages: the amount of swap space to uncharge 7250 */ 7251 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7252 { 7253 struct mem_cgroup *memcg; 7254 unsigned short id; 7255 7256 id = swap_cgroup_record(entry, 0, nr_pages); 7257 rcu_read_lock(); 7258 memcg = mem_cgroup_from_id(id); 7259 if (memcg) { 7260 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7261 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7262 page_counter_uncharge(&memcg->swap, nr_pages); 7263 else 7264 page_counter_uncharge(&memcg->memsw, nr_pages); 7265 } 7266 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7267 mem_cgroup_id_put_many(memcg, nr_pages); 7268 } 7269 rcu_read_unlock(); 7270 } 7271 7272 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7273 { 7274 long nr_swap_pages = get_nr_swap_pages(); 7275 7276 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7277 return nr_swap_pages; 7278 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7279 nr_swap_pages = min_t(long, nr_swap_pages, 7280 READ_ONCE(memcg->swap.max) - 7281 page_counter_read(&memcg->swap)); 7282 return nr_swap_pages; 7283 } 7284 7285 bool mem_cgroup_swap_full(struct page *page) 7286 { 7287 struct mem_cgroup *memcg; 7288 7289 VM_BUG_ON_PAGE(!PageLocked(page), page); 7290 7291 if (vm_swap_full()) 7292 return true; 7293 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7294 return false; 7295 7296 memcg = page_memcg(page); 7297 if (!memcg) 7298 return false; 7299 7300 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7301 unsigned long usage = page_counter_read(&memcg->swap); 7302 7303 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7304 usage * 2 >= READ_ONCE(memcg->swap.max)) 7305 return true; 7306 } 7307 7308 return false; 7309 } 7310 7311 static int __init setup_swap_account(char *s) 7312 { 7313 if (!strcmp(s, "1")) 7314 cgroup_memory_noswap = false; 7315 else if (!strcmp(s, "0")) 7316 cgroup_memory_noswap = true; 7317 return 1; 7318 } 7319 __setup("swapaccount=", setup_swap_account); 7320 7321 static u64 swap_current_read(struct cgroup_subsys_state *css, 7322 struct cftype *cft) 7323 { 7324 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7325 7326 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7327 } 7328 7329 static int swap_high_show(struct seq_file *m, void *v) 7330 { 7331 return seq_puts_memcg_tunable(m, 7332 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7333 } 7334 7335 static ssize_t swap_high_write(struct kernfs_open_file *of, 7336 char *buf, size_t nbytes, loff_t off) 7337 { 7338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7339 unsigned long high; 7340 int err; 7341 7342 buf = strstrip(buf); 7343 err = page_counter_memparse(buf, "max", &high); 7344 if (err) 7345 return err; 7346 7347 page_counter_set_high(&memcg->swap, high); 7348 7349 return nbytes; 7350 } 7351 7352 static int swap_max_show(struct seq_file *m, void *v) 7353 { 7354 return seq_puts_memcg_tunable(m, 7355 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7356 } 7357 7358 static ssize_t swap_max_write(struct kernfs_open_file *of, 7359 char *buf, size_t nbytes, loff_t off) 7360 { 7361 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7362 unsigned long max; 7363 int err; 7364 7365 buf = strstrip(buf); 7366 err = page_counter_memparse(buf, "max", &max); 7367 if (err) 7368 return err; 7369 7370 xchg(&memcg->swap.max, max); 7371 7372 return nbytes; 7373 } 7374 7375 static int swap_events_show(struct seq_file *m, void *v) 7376 { 7377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7378 7379 seq_printf(m, "high %lu\n", 7380 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7381 seq_printf(m, "max %lu\n", 7382 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7383 seq_printf(m, "fail %lu\n", 7384 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7385 7386 return 0; 7387 } 7388 7389 static struct cftype swap_files[] = { 7390 { 7391 .name = "swap.current", 7392 .flags = CFTYPE_NOT_ON_ROOT, 7393 .read_u64 = swap_current_read, 7394 }, 7395 { 7396 .name = "swap.high", 7397 .flags = CFTYPE_NOT_ON_ROOT, 7398 .seq_show = swap_high_show, 7399 .write = swap_high_write, 7400 }, 7401 { 7402 .name = "swap.max", 7403 .flags = CFTYPE_NOT_ON_ROOT, 7404 .seq_show = swap_max_show, 7405 .write = swap_max_write, 7406 }, 7407 { 7408 .name = "swap.events", 7409 .flags = CFTYPE_NOT_ON_ROOT, 7410 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7411 .seq_show = swap_events_show, 7412 }, 7413 { } /* terminate */ 7414 }; 7415 7416 static struct cftype memsw_files[] = { 7417 { 7418 .name = "memsw.usage_in_bytes", 7419 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7420 .read_u64 = mem_cgroup_read_u64, 7421 }, 7422 { 7423 .name = "memsw.max_usage_in_bytes", 7424 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7425 .write = mem_cgroup_reset, 7426 .read_u64 = mem_cgroup_read_u64, 7427 }, 7428 { 7429 .name = "memsw.limit_in_bytes", 7430 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7431 .write = mem_cgroup_write, 7432 .read_u64 = mem_cgroup_read_u64, 7433 }, 7434 { 7435 .name = "memsw.failcnt", 7436 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7437 .write = mem_cgroup_reset, 7438 .read_u64 = mem_cgroup_read_u64, 7439 }, 7440 { }, /* terminate */ 7441 }; 7442 7443 /* 7444 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7445 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7446 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7447 * boot parameter. This may result in premature OOPS inside 7448 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7449 */ 7450 static int __init mem_cgroup_swap_init(void) 7451 { 7452 /* No memory control -> no swap control */ 7453 if (mem_cgroup_disabled()) 7454 cgroup_memory_noswap = true; 7455 7456 if (cgroup_memory_noswap) 7457 return 0; 7458 7459 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7460 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7461 7462 return 0; 7463 } 7464 core_initcall(mem_cgroup_swap_init); 7465 7466 #endif /* CONFIG_MEMCG_SWAP */ 7467