xref: /linux/mm/memcontrol.c (revision 81499d338995fa288464c585f49211cfaa6ffdce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap		1
93 #endif
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_OOM_TYPE,
211 	_KMEM,
212 	_TCP,
213 };
214 
215 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)	((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL		(0)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool should_force_charge(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257 
258 static void obj_cgroup_release(struct percpu_ref *ref)
259 {
260 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 	struct mem_cgroup *memcg;
262 	unsigned int nr_bytes;
263 	unsigned int nr_pages;
264 	unsigned long flags;
265 
266 	/*
267 	 * At this point all allocated objects are freed, and
268 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 	 *
271 	 * The following sequence can lead to it:
272 	 * 1) CPU0: objcg == stock->cached_objcg
273 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 	 *          PAGE_SIZE bytes are charged
275 	 * 3) CPU1: a process from another memcg is allocating something,
276 	 *          the stock if flushed,
277 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
278 	 * 5) CPU0: we do release this object,
279 	 *          92 bytes are added to stock->nr_bytes
280 	 * 6) CPU0: stock is flushed,
281 	 *          92 bytes are added to objcg->nr_charged_bytes
282 	 *
283 	 * In the result, nr_charged_bytes == PAGE_SIZE.
284 	 * This page will be uncharged in obj_cgroup_release().
285 	 */
286 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 	nr_pages = nr_bytes >> PAGE_SHIFT;
289 
290 	spin_lock_irqsave(&css_set_lock, flags);
291 	memcg = obj_cgroup_memcg(objcg);
292 	if (nr_pages)
293 		__memcg_kmem_uncharge(memcg, nr_pages);
294 	list_del(&objcg->list);
295 	mem_cgroup_put(memcg);
296 	spin_unlock_irqrestore(&css_set_lock, flags);
297 
298 	percpu_ref_exit(ref);
299 	kfree_rcu(objcg, rcu);
300 }
301 
302 static struct obj_cgroup *obj_cgroup_alloc(void)
303 {
304 	struct obj_cgroup *objcg;
305 	int ret;
306 
307 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 	if (!objcg)
309 		return NULL;
310 
311 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 			      GFP_KERNEL);
313 	if (ret) {
314 		kfree(objcg);
315 		return NULL;
316 	}
317 	INIT_LIST_HEAD(&objcg->list);
318 	return objcg;
319 }
320 
321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 				  struct mem_cgroup *parent)
323 {
324 	struct obj_cgroup *objcg, *iter;
325 
326 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327 
328 	spin_lock_irq(&css_set_lock);
329 
330 	/* Move active objcg to the parent's list */
331 	xchg(&objcg->memcg, parent);
332 	css_get(&parent->css);
333 	list_add(&objcg->list, &parent->objcg_list);
334 
335 	/* Move already reparented objcgs to the parent's list */
336 	list_for_each_entry(iter, &memcg->objcg_list, list) {
337 		css_get(&parent->css);
338 		xchg(&iter->memcg, parent);
339 		css_put(&memcg->css);
340 	}
341 	list_splice(&memcg->objcg_list, &parent->objcg_list);
342 
343 	spin_unlock_irq(&css_set_lock);
344 
345 	percpu_ref_kill(&objcg->refcnt);
346 }
347 
348 /*
349  * This will be used as a shrinker list's index.
350  * The main reason for not using cgroup id for this:
351  *  this works better in sparse environments, where we have a lot of memcgs,
352  *  but only a few kmem-limited. Or also, if we have, for instance, 200
353  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
354  *  200 entry array for that.
355  *
356  * The current size of the caches array is stored in memcg_nr_cache_ids. It
357  * will double each time we have to increase it.
358  */
359 static DEFINE_IDA(memcg_cache_ida);
360 int memcg_nr_cache_ids;
361 
362 /* Protects memcg_nr_cache_ids */
363 static DECLARE_RWSEM(memcg_cache_ids_sem);
364 
365 void memcg_get_cache_ids(void)
366 {
367 	down_read(&memcg_cache_ids_sem);
368 }
369 
370 void memcg_put_cache_ids(void)
371 {
372 	up_read(&memcg_cache_ids_sem);
373 }
374 
375 /*
376  * MIN_SIZE is different than 1, because we would like to avoid going through
377  * the alloc/free process all the time. In a small machine, 4 kmem-limited
378  * cgroups is a reasonable guess. In the future, it could be a parameter or
379  * tunable, but that is strictly not necessary.
380  *
381  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382  * this constant directly from cgroup, but it is understandable that this is
383  * better kept as an internal representation in cgroup.c. In any case, the
384  * cgrp_id space is not getting any smaller, and we don't have to necessarily
385  * increase ours as well if it increases.
386  */
387 #define MEMCG_CACHES_MIN_SIZE 4
388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389 
390 /*
391  * A lot of the calls to the cache allocation functions are expected to be
392  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393  * conditional to this static branch, we'll have to allow modules that does
394  * kmem_cache_alloc and the such to see this symbol as well
395  */
396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397 EXPORT_SYMBOL(memcg_kmem_enabled_key);
398 #endif
399 
400 static int memcg_shrinker_map_size;
401 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402 
403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404 {
405 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406 }
407 
408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 					 int size, int old_size)
410 {
411 	struct memcg_shrinker_map *new, *old;
412 	int nid;
413 
414 	lockdep_assert_held(&memcg_shrinker_map_mutex);
415 
416 	for_each_node(nid) {
417 		old = rcu_dereference_protected(
418 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 		/* Not yet online memcg */
420 		if (!old)
421 			return 0;
422 
423 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 		if (!new)
425 			return -ENOMEM;
426 
427 		/* Set all old bits, clear all new bits */
428 		memset(new->map, (int)0xff, old_size);
429 		memset((void *)new->map + old_size, 0, size - old_size);
430 
431 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 	}
434 
435 	return 0;
436 }
437 
438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439 {
440 	struct mem_cgroup_per_node *pn;
441 	struct memcg_shrinker_map *map;
442 	int nid;
443 
444 	if (mem_cgroup_is_root(memcg))
445 		return;
446 
447 	for_each_node(nid) {
448 		pn = mem_cgroup_nodeinfo(memcg, nid);
449 		map = rcu_dereference_protected(pn->shrinker_map, true);
450 		if (map)
451 			kvfree(map);
452 		rcu_assign_pointer(pn->shrinker_map, NULL);
453 	}
454 }
455 
456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457 {
458 	struct memcg_shrinker_map *map;
459 	int nid, size, ret = 0;
460 
461 	if (mem_cgroup_is_root(memcg))
462 		return 0;
463 
464 	mutex_lock(&memcg_shrinker_map_mutex);
465 	size = memcg_shrinker_map_size;
466 	for_each_node(nid) {
467 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 		if (!map) {
469 			memcg_free_shrinker_maps(memcg);
470 			ret = -ENOMEM;
471 			break;
472 		}
473 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 	}
475 	mutex_unlock(&memcg_shrinker_map_mutex);
476 
477 	return ret;
478 }
479 
480 int memcg_expand_shrinker_maps(int new_id)
481 {
482 	int size, old_size, ret = 0;
483 	struct mem_cgroup *memcg;
484 
485 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 	old_size = memcg_shrinker_map_size;
487 	if (size <= old_size)
488 		return 0;
489 
490 	mutex_lock(&memcg_shrinker_map_mutex);
491 	if (!root_mem_cgroup)
492 		goto unlock;
493 
494 	for_each_mem_cgroup(memcg) {
495 		if (mem_cgroup_is_root(memcg))
496 			continue;
497 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 		if (ret) {
499 			mem_cgroup_iter_break(NULL, memcg);
500 			goto unlock;
501 		}
502 	}
503 unlock:
504 	if (!ret)
505 		memcg_shrinker_map_size = size;
506 	mutex_unlock(&memcg_shrinker_map_mutex);
507 	return ret;
508 }
509 
510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511 {
512 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 		struct memcg_shrinker_map *map;
514 
515 		rcu_read_lock();
516 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 		/* Pairs with smp mb in shrink_slab() */
518 		smp_mb__before_atomic();
519 		set_bit(shrinker_id, map->map);
520 		rcu_read_unlock();
521 	}
522 }
523 
524 /**
525  * mem_cgroup_css_from_page - css of the memcg associated with a page
526  * @page: page of interest
527  *
528  * If memcg is bound to the default hierarchy, css of the memcg associated
529  * with @page is returned.  The returned css remains associated with @page
530  * until it is released.
531  *
532  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533  * is returned.
534  */
535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536 {
537 	struct mem_cgroup *memcg;
538 
539 	memcg = page_memcg(page);
540 
541 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 		memcg = root_mem_cgroup;
543 
544 	return &memcg->css;
545 }
546 
547 /**
548  * page_cgroup_ino - return inode number of the memcg a page is charged to
549  * @page: the page
550  *
551  * Look up the closest online ancestor of the memory cgroup @page is charged to
552  * and return its inode number or 0 if @page is not charged to any cgroup. It
553  * is safe to call this function without holding a reference to @page.
554  *
555  * Note, this function is inherently racy, because there is nothing to prevent
556  * the cgroup inode from getting torn down and potentially reallocated a moment
557  * after page_cgroup_ino() returns, so it only should be used by callers that
558  * do not care (such as procfs interfaces).
559  */
560 ino_t page_cgroup_ino(struct page *page)
561 {
562 	struct mem_cgroup *memcg;
563 	unsigned long ino = 0;
564 
565 	rcu_read_lock();
566 	memcg = page_memcg_check(page);
567 
568 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 		memcg = parent_mem_cgroup(memcg);
570 	if (memcg)
571 		ino = cgroup_ino(memcg->css.cgroup);
572 	rcu_read_unlock();
573 	return ino;
574 }
575 
576 static struct mem_cgroup_per_node *
577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578 {
579 	int nid = page_to_nid(page);
580 
581 	return memcg->nodeinfo[nid];
582 }
583 
584 static struct mem_cgroup_tree_per_node *
585 soft_limit_tree_node(int nid)
586 {
587 	return soft_limit_tree.rb_tree_per_node[nid];
588 }
589 
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_from_page(struct page *page)
592 {
593 	int nid = page_to_nid(page);
594 
595 	return soft_limit_tree.rb_tree_per_node[nid];
596 }
597 
598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 					 struct mem_cgroup_tree_per_node *mctz,
600 					 unsigned long new_usage_in_excess)
601 {
602 	struct rb_node **p = &mctz->rb_root.rb_node;
603 	struct rb_node *parent = NULL;
604 	struct mem_cgroup_per_node *mz_node;
605 	bool rightmost = true;
606 
607 	if (mz->on_tree)
608 		return;
609 
610 	mz->usage_in_excess = new_usage_in_excess;
611 	if (!mz->usage_in_excess)
612 		return;
613 	while (*p) {
614 		parent = *p;
615 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616 					tree_node);
617 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
618 			p = &(*p)->rb_left;
619 			rightmost = false;
620 		} else {
621 			p = &(*p)->rb_right;
622 		}
623 	}
624 
625 	if (rightmost)
626 		mctz->rb_rightmost = &mz->tree_node;
627 
628 	rb_link_node(&mz->tree_node, parent, p);
629 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 	mz->on_tree = true;
631 }
632 
633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 					 struct mem_cgroup_tree_per_node *mctz)
635 {
636 	if (!mz->on_tree)
637 		return;
638 
639 	if (&mz->tree_node == mctz->rb_rightmost)
640 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
641 
642 	rb_erase(&mz->tree_node, &mctz->rb_root);
643 	mz->on_tree = false;
644 }
645 
646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 				       struct mem_cgroup_tree_per_node *mctz)
648 {
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&mctz->lock, flags);
652 	__mem_cgroup_remove_exceeded(mz, mctz);
653 	spin_unlock_irqrestore(&mctz->lock, flags);
654 }
655 
656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657 {
658 	unsigned long nr_pages = page_counter_read(&memcg->memory);
659 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 	unsigned long excess = 0;
661 
662 	if (nr_pages > soft_limit)
663 		excess = nr_pages - soft_limit;
664 
665 	return excess;
666 }
667 
668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669 {
670 	unsigned long excess;
671 	struct mem_cgroup_per_node *mz;
672 	struct mem_cgroup_tree_per_node *mctz;
673 
674 	mctz = soft_limit_tree_from_page(page);
675 	if (!mctz)
676 		return;
677 	/*
678 	 * Necessary to update all ancestors when hierarchy is used.
679 	 * because their event counter is not touched.
680 	 */
681 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682 		mz = mem_cgroup_page_nodeinfo(memcg, page);
683 		excess = soft_limit_excess(memcg);
684 		/*
685 		 * We have to update the tree if mz is on RB-tree or
686 		 * mem is over its softlimit.
687 		 */
688 		if (excess || mz->on_tree) {
689 			unsigned long flags;
690 
691 			spin_lock_irqsave(&mctz->lock, flags);
692 			/* if on-tree, remove it */
693 			if (mz->on_tree)
694 				__mem_cgroup_remove_exceeded(mz, mctz);
695 			/*
696 			 * Insert again. mz->usage_in_excess will be updated.
697 			 * If excess is 0, no tree ops.
698 			 */
699 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
700 			spin_unlock_irqrestore(&mctz->lock, flags);
701 		}
702 	}
703 }
704 
705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706 {
707 	struct mem_cgroup_tree_per_node *mctz;
708 	struct mem_cgroup_per_node *mz;
709 	int nid;
710 
711 	for_each_node(nid) {
712 		mz = mem_cgroup_nodeinfo(memcg, nid);
713 		mctz = soft_limit_tree_node(nid);
714 		if (mctz)
715 			mem_cgroup_remove_exceeded(mz, mctz);
716 	}
717 }
718 
719 static struct mem_cgroup_per_node *
720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721 {
722 	struct mem_cgroup_per_node *mz;
723 
724 retry:
725 	mz = NULL;
726 	if (!mctz->rb_rightmost)
727 		goto done;		/* Nothing to reclaim from */
728 
729 	mz = rb_entry(mctz->rb_rightmost,
730 		      struct mem_cgroup_per_node, tree_node);
731 	/*
732 	 * Remove the node now but someone else can add it back,
733 	 * we will to add it back at the end of reclaim to its correct
734 	 * position in the tree.
735 	 */
736 	__mem_cgroup_remove_exceeded(mz, mctz);
737 	if (!soft_limit_excess(mz->memcg) ||
738 	    !css_tryget(&mz->memcg->css))
739 		goto retry;
740 done:
741 	return mz;
742 }
743 
744 static struct mem_cgroup_per_node *
745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746 {
747 	struct mem_cgroup_per_node *mz;
748 
749 	spin_lock_irq(&mctz->lock);
750 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
751 	spin_unlock_irq(&mctz->lock);
752 	return mz;
753 }
754 
755 /**
756  * __mod_memcg_state - update cgroup memory statistics
757  * @memcg: the memory cgroup
758  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759  * @val: delta to add to the counter, can be negative
760  */
761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762 {
763 	long x, threshold = MEMCG_CHARGE_BATCH;
764 
765 	if (mem_cgroup_disabled())
766 		return;
767 
768 	if (memcg_stat_item_in_bytes(idx))
769 		threshold <<= PAGE_SHIFT;
770 
771 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772 	if (unlikely(abs(x) > threshold)) {
773 		struct mem_cgroup *mi;
774 
775 		/*
776 		 * Batch local counters to keep them in sync with
777 		 * the hierarchical ones.
778 		 */
779 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 			atomic_long_add(x, &mi->vmstats[idx]);
782 		x = 0;
783 	}
784 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785 }
786 
787 static struct mem_cgroup_per_node *
788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789 {
790 	struct mem_cgroup *parent;
791 
792 	parent = parent_mem_cgroup(pn->memcg);
793 	if (!parent)
794 		return NULL;
795 	return mem_cgroup_nodeinfo(parent, nid);
796 }
797 
798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 			      int val)
800 {
801 	struct mem_cgroup_per_node *pn;
802 	struct mem_cgroup *memcg;
803 	long x, threshold = MEMCG_CHARGE_BATCH;
804 
805 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806 	memcg = pn->memcg;
807 
808 	/* Update memcg */
809 	__mod_memcg_state(memcg, idx, val);
810 
811 	/* Update lruvec */
812 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813 
814 	if (vmstat_item_in_bytes(idx))
815 		threshold <<= PAGE_SHIFT;
816 
817 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818 	if (unlikely(abs(x) > threshold)) {
819 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 		struct mem_cgroup_per_node *pi;
821 
822 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 			atomic_long_add(x, &pi->lruvec_stat[idx]);
824 		x = 0;
825 	}
826 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827 }
828 
829 /**
830  * __mod_lruvec_state - update lruvec memory statistics
831  * @lruvec: the lruvec
832  * @idx: the stat item
833  * @val: delta to add to the counter, can be negative
834  *
835  * The lruvec is the intersection of the NUMA node and a cgroup. This
836  * function updates the all three counters that are affected by a
837  * change of state at this level: per-node, per-cgroup, per-lruvec.
838  */
839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 			int val)
841 {
842 	/* Update node */
843 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844 
845 	/* Update memcg and lruvec */
846 	if (!mem_cgroup_disabled())
847 		__mod_memcg_lruvec_state(lruvec, idx, val);
848 }
849 
850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 			     int val)
852 {
853 	struct page *head = compound_head(page); /* rmap on tail pages */
854 	struct mem_cgroup *memcg = page_memcg(head);
855 	pg_data_t *pgdat = page_pgdat(page);
856 	struct lruvec *lruvec;
857 
858 	/* Untracked pages have no memcg, no lruvec. Update only the node */
859 	if (!memcg) {
860 		__mod_node_page_state(pgdat, idx, val);
861 		return;
862 	}
863 
864 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 	__mod_lruvec_state(lruvec, idx, val);
866 }
867 EXPORT_SYMBOL(__mod_lruvec_page_state);
868 
869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870 {
871 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 	struct mem_cgroup *memcg;
873 	struct lruvec *lruvec;
874 
875 	rcu_read_lock();
876 	memcg = mem_cgroup_from_obj(p);
877 
878 	/*
879 	 * Untracked pages have no memcg, no lruvec. Update only the
880 	 * node. If we reparent the slab objects to the root memcg,
881 	 * when we free the slab object, we need to update the per-memcg
882 	 * vmstats to keep it correct for the root memcg.
883 	 */
884 	if (!memcg) {
885 		__mod_node_page_state(pgdat, idx, val);
886 	} else {
887 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 		__mod_lruvec_state(lruvec, idx, val);
889 	}
890 	rcu_read_unlock();
891 }
892 
893 /**
894  * __count_memcg_events - account VM events in a cgroup
895  * @memcg: the memory cgroup
896  * @idx: the event item
897  * @count: the number of events that occured
898  */
899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 			  unsigned long count)
901 {
902 	unsigned long x;
903 
904 	if (mem_cgroup_disabled())
905 		return;
906 
907 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 		struct mem_cgroup *mi;
910 
911 		/*
912 		 * Batch local counters to keep them in sync with
913 		 * the hierarchical ones.
914 		 */
915 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
916 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 			atomic_long_add(x, &mi->vmevents[idx]);
918 		x = 0;
919 	}
920 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921 }
922 
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924 {
925 	return atomic_long_read(&memcg->vmevents[event]);
926 }
927 
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 	long x = 0;
931 	int cpu;
932 
933 	for_each_possible_cpu(cpu)
934 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 	return x;
936 }
937 
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 					 struct page *page,
940 					 int nr_pages)
941 {
942 	/* pagein of a big page is an event. So, ignore page size */
943 	if (nr_pages > 0)
944 		__count_memcg_events(memcg, PGPGIN, 1);
945 	else {
946 		__count_memcg_events(memcg, PGPGOUT, 1);
947 		nr_pages = -nr_pages; /* for event */
948 	}
949 
950 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 }
952 
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 				       enum mem_cgroup_events_target target)
955 {
956 	unsigned long val, next;
957 
958 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960 	/* from time_after() in jiffies.h */
961 	if ((long)(next - val) < 0) {
962 		switch (target) {
963 		case MEM_CGROUP_TARGET_THRESH:
964 			next = val + THRESHOLDS_EVENTS_TARGET;
965 			break;
966 		case MEM_CGROUP_TARGET_SOFTLIMIT:
967 			next = val + SOFTLIMIT_EVENTS_TARGET;
968 			break;
969 		default:
970 			break;
971 		}
972 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973 		return true;
974 	}
975 	return false;
976 }
977 
978 /*
979  * Check events in order.
980  *
981  */
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 {
984 	/* threshold event is triggered in finer grain than soft limit */
985 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 						MEM_CGROUP_TARGET_THRESH))) {
987 		bool do_softlimit;
988 
989 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 						MEM_CGROUP_TARGET_SOFTLIMIT);
991 		mem_cgroup_threshold(memcg);
992 		if (unlikely(do_softlimit))
993 			mem_cgroup_update_tree(memcg, page);
994 	}
995 }
996 
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998 {
999 	/*
1000 	 * mm_update_next_owner() may clear mm->owner to NULL
1001 	 * if it races with swapoff, page migration, etc.
1002 	 * So this can be called with p == NULL.
1003 	 */
1004 	if (unlikely(!p))
1005 		return NULL;
1006 
1007 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008 }
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1010 
1011 /**
1012  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013  * @mm: mm from which memcg should be extracted. It can be NULL.
1014  *
1015  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017  * returned.
1018  */
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020 {
1021 	struct mem_cgroup *memcg;
1022 
1023 	if (mem_cgroup_disabled())
1024 		return NULL;
1025 
1026 	rcu_read_lock();
1027 	do {
1028 		/*
1029 		 * Page cache insertions can happen withou an
1030 		 * actual mm context, e.g. during disk probing
1031 		 * on boot, loopback IO, acct() writes etc.
1032 		 */
1033 		if (unlikely(!mm))
1034 			memcg = root_mem_cgroup;
1035 		else {
1036 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 			if (unlikely(!memcg))
1038 				memcg = root_mem_cgroup;
1039 		}
1040 	} while (!css_tryget(&memcg->css));
1041 	rcu_read_unlock();
1042 	return memcg;
1043 }
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045 
1046 /**
1047  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048  * @page: page from which memcg should be extracted.
1049  *
1050  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051  * root_mem_cgroup is returned.
1052  */
1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054 {
1055 	struct mem_cgroup *memcg = page_memcg(page);
1056 
1057 	if (mem_cgroup_disabled())
1058 		return NULL;
1059 
1060 	rcu_read_lock();
1061 	/* Page should not get uncharged and freed memcg under us. */
1062 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 		memcg = root_mem_cgroup;
1064 	rcu_read_unlock();
1065 	return memcg;
1066 }
1067 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068 
1069 static __always_inline struct mem_cgroup *active_memcg(void)
1070 {
1071 	if (in_interrupt())
1072 		return this_cpu_read(int_active_memcg);
1073 	else
1074 		return current->active_memcg;
1075 }
1076 
1077 static __always_inline struct mem_cgroup *get_active_memcg(void)
1078 {
1079 	struct mem_cgroup *memcg;
1080 
1081 	rcu_read_lock();
1082 	memcg = active_memcg();
1083 	if (memcg) {
1084 		/* current->active_memcg must hold a ref. */
1085 		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1086 			memcg = root_mem_cgroup;
1087 		else
1088 			memcg = current->active_memcg;
1089 	}
1090 	rcu_read_unlock();
1091 
1092 	return memcg;
1093 }
1094 
1095 static __always_inline bool memcg_kmem_bypass(void)
1096 {
1097 	/* Allow remote memcg charging from any context. */
1098 	if (unlikely(active_memcg()))
1099 		return false;
1100 
1101 	/* Memcg to charge can't be determined. */
1102 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 		return true;
1104 
1105 	return false;
1106 }
1107 
1108 /**
1109  * If active memcg is set, do not fallback to current->mm->memcg.
1110  */
1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112 {
1113 	if (memcg_kmem_bypass())
1114 		return NULL;
1115 
1116 	if (unlikely(active_memcg()))
1117 		return get_active_memcg();
1118 
1119 	return get_mem_cgroup_from_mm(current->mm);
1120 }
1121 
1122 /**
1123  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124  * @root: hierarchy root
1125  * @prev: previously returned memcg, NULL on first invocation
1126  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127  *
1128  * Returns references to children of the hierarchy below @root, or
1129  * @root itself, or %NULL after a full round-trip.
1130  *
1131  * Caller must pass the return value in @prev on subsequent
1132  * invocations for reference counting, or use mem_cgroup_iter_break()
1133  * to cancel a hierarchy walk before the round-trip is complete.
1134  *
1135  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136  * in the hierarchy among all concurrent reclaimers operating on the
1137  * same node.
1138  */
1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140 				   struct mem_cgroup *prev,
1141 				   struct mem_cgroup_reclaim_cookie *reclaim)
1142 {
1143 	struct mem_cgroup_reclaim_iter *iter;
1144 	struct cgroup_subsys_state *css = NULL;
1145 	struct mem_cgroup *memcg = NULL;
1146 	struct mem_cgroup *pos = NULL;
1147 
1148 	if (mem_cgroup_disabled())
1149 		return NULL;
1150 
1151 	if (!root)
1152 		root = root_mem_cgroup;
1153 
1154 	if (prev && !reclaim)
1155 		pos = prev;
1156 
1157 	rcu_read_lock();
1158 
1159 	if (reclaim) {
1160 		struct mem_cgroup_per_node *mz;
1161 
1162 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1163 		iter = &mz->iter;
1164 
1165 		if (prev && reclaim->generation != iter->generation)
1166 			goto out_unlock;
1167 
1168 		while (1) {
1169 			pos = READ_ONCE(iter->position);
1170 			if (!pos || css_tryget(&pos->css))
1171 				break;
1172 			/*
1173 			 * css reference reached zero, so iter->position will
1174 			 * be cleared by ->css_released. However, we should not
1175 			 * rely on this happening soon, because ->css_released
1176 			 * is called from a work queue, and by busy-waiting we
1177 			 * might block it. So we clear iter->position right
1178 			 * away.
1179 			 */
1180 			(void)cmpxchg(&iter->position, pos, NULL);
1181 		}
1182 	}
1183 
1184 	if (pos)
1185 		css = &pos->css;
1186 
1187 	for (;;) {
1188 		css = css_next_descendant_pre(css, &root->css);
1189 		if (!css) {
1190 			/*
1191 			 * Reclaimers share the hierarchy walk, and a
1192 			 * new one might jump in right at the end of
1193 			 * the hierarchy - make sure they see at least
1194 			 * one group and restart from the beginning.
1195 			 */
1196 			if (!prev)
1197 				continue;
1198 			break;
1199 		}
1200 
1201 		/*
1202 		 * Verify the css and acquire a reference.  The root
1203 		 * is provided by the caller, so we know it's alive
1204 		 * and kicking, and don't take an extra reference.
1205 		 */
1206 		memcg = mem_cgroup_from_css(css);
1207 
1208 		if (css == &root->css)
1209 			break;
1210 
1211 		if (css_tryget(css))
1212 			break;
1213 
1214 		memcg = NULL;
1215 	}
1216 
1217 	if (reclaim) {
1218 		/*
1219 		 * The position could have already been updated by a competing
1220 		 * thread, so check that the value hasn't changed since we read
1221 		 * it to avoid reclaiming from the same cgroup twice.
1222 		 */
1223 		(void)cmpxchg(&iter->position, pos, memcg);
1224 
1225 		if (pos)
1226 			css_put(&pos->css);
1227 
1228 		if (!memcg)
1229 			iter->generation++;
1230 		else if (!prev)
1231 			reclaim->generation = iter->generation;
1232 	}
1233 
1234 out_unlock:
1235 	rcu_read_unlock();
1236 	if (prev && prev != root)
1237 		css_put(&prev->css);
1238 
1239 	return memcg;
1240 }
1241 
1242 /**
1243  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1244  * @root: hierarchy root
1245  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1246  */
1247 void mem_cgroup_iter_break(struct mem_cgroup *root,
1248 			   struct mem_cgroup *prev)
1249 {
1250 	if (!root)
1251 		root = root_mem_cgroup;
1252 	if (prev && prev != root)
1253 		css_put(&prev->css);
1254 }
1255 
1256 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1257 					struct mem_cgroup *dead_memcg)
1258 {
1259 	struct mem_cgroup_reclaim_iter *iter;
1260 	struct mem_cgroup_per_node *mz;
1261 	int nid;
1262 
1263 	for_each_node(nid) {
1264 		mz = mem_cgroup_nodeinfo(from, nid);
1265 		iter = &mz->iter;
1266 		cmpxchg(&iter->position, dead_memcg, NULL);
1267 	}
1268 }
1269 
1270 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1271 {
1272 	struct mem_cgroup *memcg = dead_memcg;
1273 	struct mem_cgroup *last;
1274 
1275 	do {
1276 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1277 		last = memcg;
1278 	} while ((memcg = parent_mem_cgroup(memcg)));
1279 
1280 	/*
1281 	 * When cgruop1 non-hierarchy mode is used,
1282 	 * parent_mem_cgroup() does not walk all the way up to the
1283 	 * cgroup root (root_mem_cgroup). So we have to handle
1284 	 * dead_memcg from cgroup root separately.
1285 	 */
1286 	if (last != root_mem_cgroup)
1287 		__invalidate_reclaim_iterators(root_mem_cgroup,
1288 						dead_memcg);
1289 }
1290 
1291 /**
1292  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1293  * @memcg: hierarchy root
1294  * @fn: function to call for each task
1295  * @arg: argument passed to @fn
1296  *
1297  * This function iterates over tasks attached to @memcg or to any of its
1298  * descendants and calls @fn for each task. If @fn returns a non-zero
1299  * value, the function breaks the iteration loop and returns the value.
1300  * Otherwise, it will iterate over all tasks and return 0.
1301  *
1302  * This function must not be called for the root memory cgroup.
1303  */
1304 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1305 			  int (*fn)(struct task_struct *, void *), void *arg)
1306 {
1307 	struct mem_cgroup *iter;
1308 	int ret = 0;
1309 
1310 	BUG_ON(memcg == root_mem_cgroup);
1311 
1312 	for_each_mem_cgroup_tree(iter, memcg) {
1313 		struct css_task_iter it;
1314 		struct task_struct *task;
1315 
1316 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1317 		while (!ret && (task = css_task_iter_next(&it)))
1318 			ret = fn(task, arg);
1319 		css_task_iter_end(&it);
1320 		if (ret) {
1321 			mem_cgroup_iter_break(memcg, iter);
1322 			break;
1323 		}
1324 	}
1325 	return ret;
1326 }
1327 
1328 #ifdef CONFIG_DEBUG_VM
1329 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1330 {
1331 	struct mem_cgroup *memcg;
1332 
1333 	if (mem_cgroup_disabled())
1334 		return;
1335 
1336 	memcg = page_memcg(page);
1337 
1338 	if (!memcg)
1339 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1340 	else
1341 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1342 }
1343 #endif
1344 
1345 /**
1346  * lock_page_lruvec - lock and return lruvec for a given page.
1347  * @page: the page
1348  *
1349  * This series functions should be used in either conditions:
1350  * PageLRU is cleared or unset
1351  * or page->_refcount is zero
1352  * or page is locked.
1353  */
1354 struct lruvec *lock_page_lruvec(struct page *page)
1355 {
1356 	struct lruvec *lruvec;
1357 	struct pglist_data *pgdat = page_pgdat(page);
1358 
1359 	rcu_read_lock();
1360 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1361 	spin_lock(&lruvec->lru_lock);
1362 	rcu_read_unlock();
1363 
1364 	lruvec_memcg_debug(lruvec, page);
1365 
1366 	return lruvec;
1367 }
1368 
1369 struct lruvec *lock_page_lruvec_irq(struct page *page)
1370 {
1371 	struct lruvec *lruvec;
1372 	struct pglist_data *pgdat = page_pgdat(page);
1373 
1374 	rcu_read_lock();
1375 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1376 	spin_lock_irq(&lruvec->lru_lock);
1377 	rcu_read_unlock();
1378 
1379 	lruvec_memcg_debug(lruvec, page);
1380 
1381 	return lruvec;
1382 }
1383 
1384 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1385 {
1386 	struct lruvec *lruvec;
1387 	struct pglist_data *pgdat = page_pgdat(page);
1388 
1389 	rcu_read_lock();
1390 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1391 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1392 	rcu_read_unlock();
1393 
1394 	lruvec_memcg_debug(lruvec, page);
1395 
1396 	return lruvec;
1397 }
1398 
1399 /**
1400  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401  * @lruvec: mem_cgroup per zone lru vector
1402  * @lru: index of lru list the page is sitting on
1403  * @zid: zone id of the accounted pages
1404  * @nr_pages: positive when adding or negative when removing
1405  *
1406  * This function must be called under lru_lock, just before a page is added
1407  * to or just after a page is removed from an lru list (that ordering being
1408  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1409  */
1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 				int zid, int nr_pages)
1412 {
1413 	struct mem_cgroup_per_node *mz;
1414 	unsigned long *lru_size;
1415 	long size;
1416 
1417 	if (mem_cgroup_disabled())
1418 		return;
1419 
1420 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1421 	lru_size = &mz->lru_zone_size[zid][lru];
1422 
1423 	if (nr_pages < 0)
1424 		*lru_size += nr_pages;
1425 
1426 	size = *lru_size;
1427 	if (WARN_ONCE(size < 0,
1428 		"%s(%p, %d, %d): lru_size %ld\n",
1429 		__func__, lruvec, lru, nr_pages, size)) {
1430 		VM_BUG_ON(1);
1431 		*lru_size = 0;
1432 	}
1433 
1434 	if (nr_pages > 0)
1435 		*lru_size += nr_pages;
1436 }
1437 
1438 /**
1439  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1440  * @memcg: the memory cgroup
1441  *
1442  * Returns the maximum amount of memory @mem can be charged with, in
1443  * pages.
1444  */
1445 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1446 {
1447 	unsigned long margin = 0;
1448 	unsigned long count;
1449 	unsigned long limit;
1450 
1451 	count = page_counter_read(&memcg->memory);
1452 	limit = READ_ONCE(memcg->memory.max);
1453 	if (count < limit)
1454 		margin = limit - count;
1455 
1456 	if (do_memsw_account()) {
1457 		count = page_counter_read(&memcg->memsw);
1458 		limit = READ_ONCE(memcg->memsw.max);
1459 		if (count < limit)
1460 			margin = min(margin, limit - count);
1461 		else
1462 			margin = 0;
1463 	}
1464 
1465 	return margin;
1466 }
1467 
1468 /*
1469  * A routine for checking "mem" is under move_account() or not.
1470  *
1471  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1472  * moving cgroups. This is for waiting at high-memory pressure
1473  * caused by "move".
1474  */
1475 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1476 {
1477 	struct mem_cgroup *from;
1478 	struct mem_cgroup *to;
1479 	bool ret = false;
1480 	/*
1481 	 * Unlike task_move routines, we access mc.to, mc.from not under
1482 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1483 	 */
1484 	spin_lock(&mc.lock);
1485 	from = mc.from;
1486 	to = mc.to;
1487 	if (!from)
1488 		goto unlock;
1489 
1490 	ret = mem_cgroup_is_descendant(from, memcg) ||
1491 		mem_cgroup_is_descendant(to, memcg);
1492 unlock:
1493 	spin_unlock(&mc.lock);
1494 	return ret;
1495 }
1496 
1497 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1498 {
1499 	if (mc.moving_task && current != mc.moving_task) {
1500 		if (mem_cgroup_under_move(memcg)) {
1501 			DEFINE_WAIT(wait);
1502 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1503 			/* moving charge context might have finished. */
1504 			if (mc.moving_task)
1505 				schedule();
1506 			finish_wait(&mc.waitq, &wait);
1507 			return true;
1508 		}
1509 	}
1510 	return false;
1511 }
1512 
1513 struct memory_stat {
1514 	const char *name;
1515 	unsigned int ratio;
1516 	unsigned int idx;
1517 };
1518 
1519 static struct memory_stat memory_stats[] = {
1520 	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
1521 	{ "file", PAGE_SIZE, NR_FILE_PAGES },
1522 	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1523 	{ "pagetables", PAGE_SIZE, NR_PAGETABLE },
1524 	{ "percpu", 1, MEMCG_PERCPU_B },
1525 	{ "sock", PAGE_SIZE, MEMCG_SOCK },
1526 	{ "shmem", PAGE_SIZE, NR_SHMEM },
1527 	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1528 	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1529 	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 	/*
1532 	 * The ratio will be initialized in memory_stats_init(). Because
1533 	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1534 	 * constant(e.g. powerpc).
1535 	 */
1536 	{ "anon_thp", 0, NR_ANON_THPS },
1537 	{ "file_thp", 0, NR_FILE_THPS },
1538 	{ "shmem_thp", 0, NR_SHMEM_THPS },
1539 #endif
1540 	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1541 	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1542 	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1543 	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1544 	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1545 
1546 	/*
1547 	 * Note: The slab_reclaimable and slab_unreclaimable must be
1548 	 * together and slab_reclaimable must be in front.
1549 	 */
1550 	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1551 	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1552 
1553 	/* The memory events */
1554 	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1555 	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1556 	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1557 	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1558 	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1559 	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1560 	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1561 };
1562 
1563 static int __init memory_stats_init(void)
1564 {
1565 	int i;
1566 
1567 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569 		if (memory_stats[i].idx == NR_ANON_THPS ||
1570 		    memory_stats[i].idx == NR_FILE_THPS ||
1571 		    memory_stats[i].idx == NR_SHMEM_THPS)
1572 			memory_stats[i].ratio = HPAGE_PMD_SIZE;
1573 #endif
1574 		VM_BUG_ON(!memory_stats[i].ratio);
1575 		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1576 	}
1577 
1578 	return 0;
1579 }
1580 pure_initcall(memory_stats_init);
1581 
1582 static char *memory_stat_format(struct mem_cgroup *memcg)
1583 {
1584 	struct seq_buf s;
1585 	int i;
1586 
1587 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1588 	if (!s.buffer)
1589 		return NULL;
1590 
1591 	/*
1592 	 * Provide statistics on the state of the memory subsystem as
1593 	 * well as cumulative event counters that show past behavior.
1594 	 *
1595 	 * This list is ordered following a combination of these gradients:
1596 	 * 1) generic big picture -> specifics and details
1597 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1598 	 *
1599 	 * Current memory state:
1600 	 */
1601 
1602 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603 		u64 size;
1604 
1605 		size = memcg_page_state(memcg, memory_stats[i].idx);
1606 		size *= memory_stats[i].ratio;
1607 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1608 
1609 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1610 			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1611 			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1612 			seq_buf_printf(&s, "slab %llu\n", size);
1613 		}
1614 	}
1615 
1616 	/* Accumulated memory events */
1617 
1618 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1619 		       memcg_events(memcg, PGFAULT));
1620 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1621 		       memcg_events(memcg, PGMAJFAULT));
1622 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1623 		       memcg_events(memcg, PGREFILL));
1624 	seq_buf_printf(&s, "pgscan %lu\n",
1625 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1626 		       memcg_events(memcg, PGSCAN_DIRECT));
1627 	seq_buf_printf(&s, "pgsteal %lu\n",
1628 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1629 		       memcg_events(memcg, PGSTEAL_DIRECT));
1630 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1631 		       memcg_events(memcg, PGACTIVATE));
1632 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1633 		       memcg_events(memcg, PGDEACTIVATE));
1634 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1635 		       memcg_events(memcg, PGLAZYFREE));
1636 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1637 		       memcg_events(memcg, PGLAZYFREED));
1638 
1639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1640 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1641 		       memcg_events(memcg, THP_FAULT_ALLOC));
1642 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1643 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1644 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1645 
1646 	/* The above should easily fit into one page */
1647 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1648 
1649 	return s.buffer;
1650 }
1651 
1652 #define K(x) ((x) << (PAGE_SHIFT-10))
1653 /**
1654  * mem_cgroup_print_oom_context: Print OOM information relevant to
1655  * memory controller.
1656  * @memcg: The memory cgroup that went over limit
1657  * @p: Task that is going to be killed
1658  *
1659  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1660  * enabled
1661  */
1662 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1663 {
1664 	rcu_read_lock();
1665 
1666 	if (memcg) {
1667 		pr_cont(",oom_memcg=");
1668 		pr_cont_cgroup_path(memcg->css.cgroup);
1669 	} else
1670 		pr_cont(",global_oom");
1671 	if (p) {
1672 		pr_cont(",task_memcg=");
1673 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1674 	}
1675 	rcu_read_unlock();
1676 }
1677 
1678 /**
1679  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1680  * memory controller.
1681  * @memcg: The memory cgroup that went over limit
1682  */
1683 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1684 {
1685 	char *buf;
1686 
1687 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1688 		K((u64)page_counter_read(&memcg->memory)),
1689 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1690 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1691 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1692 			K((u64)page_counter_read(&memcg->swap)),
1693 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1694 	else {
1695 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1696 			K((u64)page_counter_read(&memcg->memsw)),
1697 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1698 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1699 			K((u64)page_counter_read(&memcg->kmem)),
1700 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1701 	}
1702 
1703 	pr_info("Memory cgroup stats for ");
1704 	pr_cont_cgroup_path(memcg->css.cgroup);
1705 	pr_cont(":");
1706 	buf = memory_stat_format(memcg);
1707 	if (!buf)
1708 		return;
1709 	pr_info("%s", buf);
1710 	kfree(buf);
1711 }
1712 
1713 /*
1714  * Return the memory (and swap, if configured) limit for a memcg.
1715  */
1716 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1717 {
1718 	unsigned long max = READ_ONCE(memcg->memory.max);
1719 
1720 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1721 		if (mem_cgroup_swappiness(memcg))
1722 			max += min(READ_ONCE(memcg->swap.max),
1723 				   (unsigned long)total_swap_pages);
1724 	} else { /* v1 */
1725 		if (mem_cgroup_swappiness(memcg)) {
1726 			/* Calculate swap excess capacity from memsw limit */
1727 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1728 
1729 			max += min(swap, (unsigned long)total_swap_pages);
1730 		}
1731 	}
1732 	return max;
1733 }
1734 
1735 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1736 {
1737 	return page_counter_read(&memcg->memory);
1738 }
1739 
1740 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1741 				     int order)
1742 {
1743 	struct oom_control oc = {
1744 		.zonelist = NULL,
1745 		.nodemask = NULL,
1746 		.memcg = memcg,
1747 		.gfp_mask = gfp_mask,
1748 		.order = order,
1749 	};
1750 	bool ret = true;
1751 
1752 	if (mutex_lock_killable(&oom_lock))
1753 		return true;
1754 
1755 	if (mem_cgroup_margin(memcg) >= (1 << order))
1756 		goto unlock;
1757 
1758 	/*
1759 	 * A few threads which were not waiting at mutex_lock_killable() can
1760 	 * fail to bail out. Therefore, check again after holding oom_lock.
1761 	 */
1762 	ret = should_force_charge() || out_of_memory(&oc);
1763 
1764 unlock:
1765 	mutex_unlock(&oom_lock);
1766 	return ret;
1767 }
1768 
1769 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1770 				   pg_data_t *pgdat,
1771 				   gfp_t gfp_mask,
1772 				   unsigned long *total_scanned)
1773 {
1774 	struct mem_cgroup *victim = NULL;
1775 	int total = 0;
1776 	int loop = 0;
1777 	unsigned long excess;
1778 	unsigned long nr_scanned;
1779 	struct mem_cgroup_reclaim_cookie reclaim = {
1780 		.pgdat = pgdat,
1781 	};
1782 
1783 	excess = soft_limit_excess(root_memcg);
1784 
1785 	while (1) {
1786 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1787 		if (!victim) {
1788 			loop++;
1789 			if (loop >= 2) {
1790 				/*
1791 				 * If we have not been able to reclaim
1792 				 * anything, it might because there are
1793 				 * no reclaimable pages under this hierarchy
1794 				 */
1795 				if (!total)
1796 					break;
1797 				/*
1798 				 * We want to do more targeted reclaim.
1799 				 * excess >> 2 is not to excessive so as to
1800 				 * reclaim too much, nor too less that we keep
1801 				 * coming back to reclaim from this cgroup
1802 				 */
1803 				if (total >= (excess >> 2) ||
1804 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1805 					break;
1806 			}
1807 			continue;
1808 		}
1809 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1810 					pgdat, &nr_scanned);
1811 		*total_scanned += nr_scanned;
1812 		if (!soft_limit_excess(root_memcg))
1813 			break;
1814 	}
1815 	mem_cgroup_iter_break(root_memcg, victim);
1816 	return total;
1817 }
1818 
1819 #ifdef CONFIG_LOCKDEP
1820 static struct lockdep_map memcg_oom_lock_dep_map = {
1821 	.name = "memcg_oom_lock",
1822 };
1823 #endif
1824 
1825 static DEFINE_SPINLOCK(memcg_oom_lock);
1826 
1827 /*
1828  * Check OOM-Killer is already running under our hierarchy.
1829  * If someone is running, return false.
1830  */
1831 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1832 {
1833 	struct mem_cgroup *iter, *failed = NULL;
1834 
1835 	spin_lock(&memcg_oom_lock);
1836 
1837 	for_each_mem_cgroup_tree(iter, memcg) {
1838 		if (iter->oom_lock) {
1839 			/*
1840 			 * this subtree of our hierarchy is already locked
1841 			 * so we cannot give a lock.
1842 			 */
1843 			failed = iter;
1844 			mem_cgroup_iter_break(memcg, iter);
1845 			break;
1846 		} else
1847 			iter->oom_lock = true;
1848 	}
1849 
1850 	if (failed) {
1851 		/*
1852 		 * OK, we failed to lock the whole subtree so we have
1853 		 * to clean up what we set up to the failing subtree
1854 		 */
1855 		for_each_mem_cgroup_tree(iter, memcg) {
1856 			if (iter == failed) {
1857 				mem_cgroup_iter_break(memcg, iter);
1858 				break;
1859 			}
1860 			iter->oom_lock = false;
1861 		}
1862 	} else
1863 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1864 
1865 	spin_unlock(&memcg_oom_lock);
1866 
1867 	return !failed;
1868 }
1869 
1870 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1871 {
1872 	struct mem_cgroup *iter;
1873 
1874 	spin_lock(&memcg_oom_lock);
1875 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1876 	for_each_mem_cgroup_tree(iter, memcg)
1877 		iter->oom_lock = false;
1878 	spin_unlock(&memcg_oom_lock);
1879 }
1880 
1881 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1882 {
1883 	struct mem_cgroup *iter;
1884 
1885 	spin_lock(&memcg_oom_lock);
1886 	for_each_mem_cgroup_tree(iter, memcg)
1887 		iter->under_oom++;
1888 	spin_unlock(&memcg_oom_lock);
1889 }
1890 
1891 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1892 {
1893 	struct mem_cgroup *iter;
1894 
1895 	/*
1896 	 * Be careful about under_oom underflows becase a child memcg
1897 	 * could have been added after mem_cgroup_mark_under_oom.
1898 	 */
1899 	spin_lock(&memcg_oom_lock);
1900 	for_each_mem_cgroup_tree(iter, memcg)
1901 		if (iter->under_oom > 0)
1902 			iter->under_oom--;
1903 	spin_unlock(&memcg_oom_lock);
1904 }
1905 
1906 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1907 
1908 struct oom_wait_info {
1909 	struct mem_cgroup *memcg;
1910 	wait_queue_entry_t	wait;
1911 };
1912 
1913 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1914 	unsigned mode, int sync, void *arg)
1915 {
1916 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1917 	struct mem_cgroup *oom_wait_memcg;
1918 	struct oom_wait_info *oom_wait_info;
1919 
1920 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1921 	oom_wait_memcg = oom_wait_info->memcg;
1922 
1923 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1924 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1925 		return 0;
1926 	return autoremove_wake_function(wait, mode, sync, arg);
1927 }
1928 
1929 static void memcg_oom_recover(struct mem_cgroup *memcg)
1930 {
1931 	/*
1932 	 * For the following lockless ->under_oom test, the only required
1933 	 * guarantee is that it must see the state asserted by an OOM when
1934 	 * this function is called as a result of userland actions
1935 	 * triggered by the notification of the OOM.  This is trivially
1936 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1937 	 * triggering notification.
1938 	 */
1939 	if (memcg && memcg->under_oom)
1940 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1941 }
1942 
1943 enum oom_status {
1944 	OOM_SUCCESS,
1945 	OOM_FAILED,
1946 	OOM_ASYNC,
1947 	OOM_SKIPPED
1948 };
1949 
1950 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1951 {
1952 	enum oom_status ret;
1953 	bool locked;
1954 
1955 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1956 		return OOM_SKIPPED;
1957 
1958 	memcg_memory_event(memcg, MEMCG_OOM);
1959 
1960 	/*
1961 	 * We are in the middle of the charge context here, so we
1962 	 * don't want to block when potentially sitting on a callstack
1963 	 * that holds all kinds of filesystem and mm locks.
1964 	 *
1965 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1966 	 * handling until the charge can succeed; remember the context and put
1967 	 * the task to sleep at the end of the page fault when all locks are
1968 	 * released.
1969 	 *
1970 	 * On the other hand, in-kernel OOM killer allows for an async victim
1971 	 * memory reclaim (oom_reaper) and that means that we are not solely
1972 	 * relying on the oom victim to make a forward progress and we can
1973 	 * invoke the oom killer here.
1974 	 *
1975 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1976 	 * victim and then we have to bail out from the charge path.
1977 	 */
1978 	if (memcg->oom_kill_disable) {
1979 		if (!current->in_user_fault)
1980 			return OOM_SKIPPED;
1981 		css_get(&memcg->css);
1982 		current->memcg_in_oom = memcg;
1983 		current->memcg_oom_gfp_mask = mask;
1984 		current->memcg_oom_order = order;
1985 
1986 		return OOM_ASYNC;
1987 	}
1988 
1989 	mem_cgroup_mark_under_oom(memcg);
1990 
1991 	locked = mem_cgroup_oom_trylock(memcg);
1992 
1993 	if (locked)
1994 		mem_cgroup_oom_notify(memcg);
1995 
1996 	mem_cgroup_unmark_under_oom(memcg);
1997 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1998 		ret = OOM_SUCCESS;
1999 	else
2000 		ret = OOM_FAILED;
2001 
2002 	if (locked)
2003 		mem_cgroup_oom_unlock(memcg);
2004 
2005 	return ret;
2006 }
2007 
2008 /**
2009  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2010  * @handle: actually kill/wait or just clean up the OOM state
2011  *
2012  * This has to be called at the end of a page fault if the memcg OOM
2013  * handler was enabled.
2014  *
2015  * Memcg supports userspace OOM handling where failed allocations must
2016  * sleep on a waitqueue until the userspace task resolves the
2017  * situation.  Sleeping directly in the charge context with all kinds
2018  * of locks held is not a good idea, instead we remember an OOM state
2019  * in the task and mem_cgroup_oom_synchronize() has to be called at
2020  * the end of the page fault to complete the OOM handling.
2021  *
2022  * Returns %true if an ongoing memcg OOM situation was detected and
2023  * completed, %false otherwise.
2024  */
2025 bool mem_cgroup_oom_synchronize(bool handle)
2026 {
2027 	struct mem_cgroup *memcg = current->memcg_in_oom;
2028 	struct oom_wait_info owait;
2029 	bool locked;
2030 
2031 	/* OOM is global, do not handle */
2032 	if (!memcg)
2033 		return false;
2034 
2035 	if (!handle)
2036 		goto cleanup;
2037 
2038 	owait.memcg = memcg;
2039 	owait.wait.flags = 0;
2040 	owait.wait.func = memcg_oom_wake_function;
2041 	owait.wait.private = current;
2042 	INIT_LIST_HEAD(&owait.wait.entry);
2043 
2044 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2045 	mem_cgroup_mark_under_oom(memcg);
2046 
2047 	locked = mem_cgroup_oom_trylock(memcg);
2048 
2049 	if (locked)
2050 		mem_cgroup_oom_notify(memcg);
2051 
2052 	if (locked && !memcg->oom_kill_disable) {
2053 		mem_cgroup_unmark_under_oom(memcg);
2054 		finish_wait(&memcg_oom_waitq, &owait.wait);
2055 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2056 					 current->memcg_oom_order);
2057 	} else {
2058 		schedule();
2059 		mem_cgroup_unmark_under_oom(memcg);
2060 		finish_wait(&memcg_oom_waitq, &owait.wait);
2061 	}
2062 
2063 	if (locked) {
2064 		mem_cgroup_oom_unlock(memcg);
2065 		/*
2066 		 * There is no guarantee that an OOM-lock contender
2067 		 * sees the wakeups triggered by the OOM kill
2068 		 * uncharges.  Wake any sleepers explicitely.
2069 		 */
2070 		memcg_oom_recover(memcg);
2071 	}
2072 cleanup:
2073 	current->memcg_in_oom = NULL;
2074 	css_put(&memcg->css);
2075 	return true;
2076 }
2077 
2078 /**
2079  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2080  * @victim: task to be killed by the OOM killer
2081  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2082  *
2083  * Returns a pointer to a memory cgroup, which has to be cleaned up
2084  * by killing all belonging OOM-killable tasks.
2085  *
2086  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2087  */
2088 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2089 					    struct mem_cgroup *oom_domain)
2090 {
2091 	struct mem_cgroup *oom_group = NULL;
2092 	struct mem_cgroup *memcg;
2093 
2094 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2095 		return NULL;
2096 
2097 	if (!oom_domain)
2098 		oom_domain = root_mem_cgroup;
2099 
2100 	rcu_read_lock();
2101 
2102 	memcg = mem_cgroup_from_task(victim);
2103 	if (memcg == root_mem_cgroup)
2104 		goto out;
2105 
2106 	/*
2107 	 * If the victim task has been asynchronously moved to a different
2108 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2109 	 * In this case it's better to ignore memory.group.oom.
2110 	 */
2111 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2112 		goto out;
2113 
2114 	/*
2115 	 * Traverse the memory cgroup hierarchy from the victim task's
2116 	 * cgroup up to the OOMing cgroup (or root) to find the
2117 	 * highest-level memory cgroup with oom.group set.
2118 	 */
2119 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2120 		if (memcg->oom_group)
2121 			oom_group = memcg;
2122 
2123 		if (memcg == oom_domain)
2124 			break;
2125 	}
2126 
2127 	if (oom_group)
2128 		css_get(&oom_group->css);
2129 out:
2130 	rcu_read_unlock();
2131 
2132 	return oom_group;
2133 }
2134 
2135 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2136 {
2137 	pr_info("Tasks in ");
2138 	pr_cont_cgroup_path(memcg->css.cgroup);
2139 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2140 }
2141 
2142 /**
2143  * lock_page_memcg - lock a page and memcg binding
2144  * @page: the page
2145  *
2146  * This function protects unlocked LRU pages from being moved to
2147  * another cgroup.
2148  *
2149  * It ensures lifetime of the returned memcg. Caller is responsible
2150  * for the lifetime of the page; __unlock_page_memcg() is available
2151  * when @page might get freed inside the locked section.
2152  */
2153 struct mem_cgroup *lock_page_memcg(struct page *page)
2154 {
2155 	struct page *head = compound_head(page); /* rmap on tail pages */
2156 	struct mem_cgroup *memcg;
2157 	unsigned long flags;
2158 
2159 	/*
2160 	 * The RCU lock is held throughout the transaction.  The fast
2161 	 * path can get away without acquiring the memcg->move_lock
2162 	 * because page moving starts with an RCU grace period.
2163 	 *
2164 	 * The RCU lock also protects the memcg from being freed when
2165 	 * the page state that is going to change is the only thing
2166 	 * preventing the page itself from being freed. E.g. writeback
2167 	 * doesn't hold a page reference and relies on PG_writeback to
2168 	 * keep off truncation, migration and so forth.
2169          */
2170 	rcu_read_lock();
2171 
2172 	if (mem_cgroup_disabled())
2173 		return NULL;
2174 again:
2175 	memcg = page_memcg(head);
2176 	if (unlikely(!memcg))
2177 		return NULL;
2178 
2179 #ifdef CONFIG_PROVE_LOCKING
2180 	local_irq_save(flags);
2181 	might_lock(&memcg->move_lock);
2182 	local_irq_restore(flags);
2183 #endif
2184 
2185 	if (atomic_read(&memcg->moving_account) <= 0)
2186 		return memcg;
2187 
2188 	spin_lock_irqsave(&memcg->move_lock, flags);
2189 	if (memcg != page_memcg(head)) {
2190 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2191 		goto again;
2192 	}
2193 
2194 	/*
2195 	 * When charge migration first begins, we can have locked and
2196 	 * unlocked page stat updates happening concurrently.  Track
2197 	 * the task who has the lock for unlock_page_memcg().
2198 	 */
2199 	memcg->move_lock_task = current;
2200 	memcg->move_lock_flags = flags;
2201 
2202 	return memcg;
2203 }
2204 EXPORT_SYMBOL(lock_page_memcg);
2205 
2206 /**
2207  * __unlock_page_memcg - unlock and unpin a memcg
2208  * @memcg: the memcg
2209  *
2210  * Unlock and unpin a memcg returned by lock_page_memcg().
2211  */
2212 void __unlock_page_memcg(struct mem_cgroup *memcg)
2213 {
2214 	if (memcg && memcg->move_lock_task == current) {
2215 		unsigned long flags = memcg->move_lock_flags;
2216 
2217 		memcg->move_lock_task = NULL;
2218 		memcg->move_lock_flags = 0;
2219 
2220 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2221 	}
2222 
2223 	rcu_read_unlock();
2224 }
2225 
2226 /**
2227  * unlock_page_memcg - unlock a page and memcg binding
2228  * @page: the page
2229  */
2230 void unlock_page_memcg(struct page *page)
2231 {
2232 	struct page *head = compound_head(page);
2233 
2234 	__unlock_page_memcg(page_memcg(head));
2235 }
2236 EXPORT_SYMBOL(unlock_page_memcg);
2237 
2238 struct memcg_stock_pcp {
2239 	struct mem_cgroup *cached; /* this never be root cgroup */
2240 	unsigned int nr_pages;
2241 
2242 #ifdef CONFIG_MEMCG_KMEM
2243 	struct obj_cgroup *cached_objcg;
2244 	unsigned int nr_bytes;
2245 #endif
2246 
2247 	struct work_struct work;
2248 	unsigned long flags;
2249 #define FLUSHING_CACHED_CHARGE	0
2250 };
2251 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2252 static DEFINE_MUTEX(percpu_charge_mutex);
2253 
2254 #ifdef CONFIG_MEMCG_KMEM
2255 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257 				     struct mem_cgroup *root_memcg);
2258 
2259 #else
2260 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2261 {
2262 }
2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 				     struct mem_cgroup *root_memcg)
2265 {
2266 	return false;
2267 }
2268 #endif
2269 
2270 /**
2271  * consume_stock: Try to consume stocked charge on this cpu.
2272  * @memcg: memcg to consume from.
2273  * @nr_pages: how many pages to charge.
2274  *
2275  * The charges will only happen if @memcg matches the current cpu's memcg
2276  * stock, and at least @nr_pages are available in that stock.  Failure to
2277  * service an allocation will refill the stock.
2278  *
2279  * returns true if successful, false otherwise.
2280  */
2281 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2282 {
2283 	struct memcg_stock_pcp *stock;
2284 	unsigned long flags;
2285 	bool ret = false;
2286 
2287 	if (nr_pages > MEMCG_CHARGE_BATCH)
2288 		return ret;
2289 
2290 	local_irq_save(flags);
2291 
2292 	stock = this_cpu_ptr(&memcg_stock);
2293 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2294 		stock->nr_pages -= nr_pages;
2295 		ret = true;
2296 	}
2297 
2298 	local_irq_restore(flags);
2299 
2300 	return ret;
2301 }
2302 
2303 /*
2304  * Returns stocks cached in percpu and reset cached information.
2305  */
2306 static void drain_stock(struct memcg_stock_pcp *stock)
2307 {
2308 	struct mem_cgroup *old = stock->cached;
2309 
2310 	if (!old)
2311 		return;
2312 
2313 	if (stock->nr_pages) {
2314 		page_counter_uncharge(&old->memory, stock->nr_pages);
2315 		if (do_memsw_account())
2316 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2317 		stock->nr_pages = 0;
2318 	}
2319 
2320 	css_put(&old->css);
2321 	stock->cached = NULL;
2322 }
2323 
2324 static void drain_local_stock(struct work_struct *dummy)
2325 {
2326 	struct memcg_stock_pcp *stock;
2327 	unsigned long flags;
2328 
2329 	/*
2330 	 * The only protection from memory hotplug vs. drain_stock races is
2331 	 * that we always operate on local CPU stock here with IRQ disabled
2332 	 */
2333 	local_irq_save(flags);
2334 
2335 	stock = this_cpu_ptr(&memcg_stock);
2336 	drain_obj_stock(stock);
2337 	drain_stock(stock);
2338 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2339 
2340 	local_irq_restore(flags);
2341 }
2342 
2343 /*
2344  * Cache charges(val) to local per_cpu area.
2345  * This will be consumed by consume_stock() function, later.
2346  */
2347 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2348 {
2349 	struct memcg_stock_pcp *stock;
2350 	unsigned long flags;
2351 
2352 	local_irq_save(flags);
2353 
2354 	stock = this_cpu_ptr(&memcg_stock);
2355 	if (stock->cached != memcg) { /* reset if necessary */
2356 		drain_stock(stock);
2357 		css_get(&memcg->css);
2358 		stock->cached = memcg;
2359 	}
2360 	stock->nr_pages += nr_pages;
2361 
2362 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2363 		drain_stock(stock);
2364 
2365 	local_irq_restore(flags);
2366 }
2367 
2368 /*
2369  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2370  * of the hierarchy under it.
2371  */
2372 static void drain_all_stock(struct mem_cgroup *root_memcg)
2373 {
2374 	int cpu, curcpu;
2375 
2376 	/* If someone's already draining, avoid adding running more workers. */
2377 	if (!mutex_trylock(&percpu_charge_mutex))
2378 		return;
2379 	/*
2380 	 * Notify other cpus that system-wide "drain" is running
2381 	 * We do not care about races with the cpu hotplug because cpu down
2382 	 * as well as workers from this path always operate on the local
2383 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2384 	 */
2385 	curcpu = get_cpu();
2386 	for_each_online_cpu(cpu) {
2387 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2388 		struct mem_cgroup *memcg;
2389 		bool flush = false;
2390 
2391 		rcu_read_lock();
2392 		memcg = stock->cached;
2393 		if (memcg && stock->nr_pages &&
2394 		    mem_cgroup_is_descendant(memcg, root_memcg))
2395 			flush = true;
2396 		if (obj_stock_flush_required(stock, root_memcg))
2397 			flush = true;
2398 		rcu_read_unlock();
2399 
2400 		if (flush &&
2401 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 			if (cpu == curcpu)
2403 				drain_local_stock(&stock->work);
2404 			else
2405 				schedule_work_on(cpu, &stock->work);
2406 		}
2407 	}
2408 	put_cpu();
2409 	mutex_unlock(&percpu_charge_mutex);
2410 }
2411 
2412 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2413 {
2414 	struct memcg_stock_pcp *stock;
2415 	struct mem_cgroup *memcg, *mi;
2416 
2417 	stock = &per_cpu(memcg_stock, cpu);
2418 	drain_stock(stock);
2419 
2420 	for_each_mem_cgroup(memcg) {
2421 		int i;
2422 
2423 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2424 			int nid;
2425 			long x;
2426 
2427 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2428 			if (x)
2429 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2430 					atomic_long_add(x, &memcg->vmstats[i]);
2431 
2432 			if (i >= NR_VM_NODE_STAT_ITEMS)
2433 				continue;
2434 
2435 			for_each_node(nid) {
2436 				struct mem_cgroup_per_node *pn;
2437 
2438 				pn = mem_cgroup_nodeinfo(memcg, nid);
2439 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2440 				if (x)
2441 					do {
2442 						atomic_long_add(x, &pn->lruvec_stat[i]);
2443 					} while ((pn = parent_nodeinfo(pn, nid)));
2444 			}
2445 		}
2446 
2447 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2448 			long x;
2449 
2450 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2451 			if (x)
2452 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2453 					atomic_long_add(x, &memcg->vmevents[i]);
2454 		}
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 				  unsigned int nr_pages,
2462 				  gfp_t gfp_mask)
2463 {
2464 	unsigned long nr_reclaimed = 0;
2465 
2466 	do {
2467 		unsigned long pflags;
2468 
2469 		if (page_counter_read(&memcg->memory) <=
2470 		    READ_ONCE(memcg->memory.high))
2471 			continue;
2472 
2473 		memcg_memory_event(memcg, MEMCG_HIGH);
2474 
2475 		psi_memstall_enter(&pflags);
2476 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 							     gfp_mask, true);
2478 		psi_memstall_leave(&pflags);
2479 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2480 		 !mem_cgroup_is_root(memcg));
2481 
2482 	return nr_reclaimed;
2483 }
2484 
2485 static void high_work_func(struct work_struct *work)
2486 {
2487 	struct mem_cgroup *memcg;
2488 
2489 	memcg = container_of(work, struct mem_cgroup, high_work);
2490 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2491 }
2492 
2493 /*
2494  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2495  * enough to still cause a significant slowdown in most cases, while still
2496  * allowing diagnostics and tracing to proceed without becoming stuck.
2497  */
2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2499 
2500 /*
2501  * When calculating the delay, we use these either side of the exponentiation to
2502  * maintain precision and scale to a reasonable number of jiffies (see the table
2503  * below.
2504  *
2505  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2506  *   overage ratio to a delay.
2507  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2508  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2509  *   to produce a reasonable delay curve.
2510  *
2511  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2512  * reasonable delay curve compared to precision-adjusted overage, not
2513  * penalising heavily at first, but still making sure that growth beyond the
2514  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2515  * example, with a high of 100 megabytes:
2516  *
2517  *  +-------+------------------------+
2518  *  | usage | time to allocate in ms |
2519  *  +-------+------------------------+
2520  *  | 100M  |                      0 |
2521  *  | 101M  |                      6 |
2522  *  | 102M  |                     25 |
2523  *  | 103M  |                     57 |
2524  *  | 104M  |                    102 |
2525  *  | 105M  |                    159 |
2526  *  | 106M  |                    230 |
2527  *  | 107M  |                    313 |
2528  *  | 108M  |                    409 |
2529  *  | 109M  |                    518 |
2530  *  | 110M  |                    639 |
2531  *  | 111M  |                    774 |
2532  *  | 112M  |                    921 |
2533  *  | 113M  |                   1081 |
2534  *  | 114M  |                   1254 |
2535  *  | 115M  |                   1439 |
2536  *  | 116M  |                   1638 |
2537  *  | 117M  |                   1849 |
2538  *  | 118M  |                   2000 |
2539  *  | 119M  |                   2000 |
2540  *  | 120M  |                   2000 |
2541  *  +-------+------------------------+
2542  */
2543  #define MEMCG_DELAY_PRECISION_SHIFT 20
2544  #define MEMCG_DELAY_SCALING_SHIFT 14
2545 
2546 static u64 calculate_overage(unsigned long usage, unsigned long high)
2547 {
2548 	u64 overage;
2549 
2550 	if (usage <= high)
2551 		return 0;
2552 
2553 	/*
2554 	 * Prevent division by 0 in overage calculation by acting as if
2555 	 * it was a threshold of 1 page
2556 	 */
2557 	high = max(high, 1UL);
2558 
2559 	overage = usage - high;
2560 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2561 	return div64_u64(overage, high);
2562 }
2563 
2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2565 {
2566 	u64 overage, max_overage = 0;
2567 
2568 	do {
2569 		overage = calculate_overage(page_counter_read(&memcg->memory),
2570 					    READ_ONCE(memcg->memory.high));
2571 		max_overage = max(overage, max_overage);
2572 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2573 		 !mem_cgroup_is_root(memcg));
2574 
2575 	return max_overage;
2576 }
2577 
2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2579 {
2580 	u64 overage, max_overage = 0;
2581 
2582 	do {
2583 		overage = calculate_overage(page_counter_read(&memcg->swap),
2584 					    READ_ONCE(memcg->swap.high));
2585 		if (overage)
2586 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2587 		max_overage = max(overage, max_overage);
2588 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2589 		 !mem_cgroup_is_root(memcg));
2590 
2591 	return max_overage;
2592 }
2593 
2594 /*
2595  * Get the number of jiffies that we should penalise a mischievous cgroup which
2596  * is exceeding its memory.high by checking both it and its ancestors.
2597  */
2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2599 					  unsigned int nr_pages,
2600 					  u64 max_overage)
2601 {
2602 	unsigned long penalty_jiffies;
2603 
2604 	if (!max_overage)
2605 		return 0;
2606 
2607 	/*
2608 	 * We use overage compared to memory.high to calculate the number of
2609 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2610 	 * fairly lenient on small overages, and increasingly harsh when the
2611 	 * memcg in question makes it clear that it has no intention of stopping
2612 	 * its crazy behaviour, so we exponentially increase the delay based on
2613 	 * overage amount.
2614 	 */
2615 	penalty_jiffies = max_overage * max_overage * HZ;
2616 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2617 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2618 
2619 	/*
2620 	 * Factor in the task's own contribution to the overage, such that four
2621 	 * N-sized allocations are throttled approximately the same as one
2622 	 * 4N-sized allocation.
2623 	 *
2624 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2625 	 * larger the current charge patch is than that.
2626 	 */
2627 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2628 }
2629 
2630 /*
2631  * Scheduled by try_charge() to be executed from the userland return path
2632  * and reclaims memory over the high limit.
2633  */
2634 void mem_cgroup_handle_over_high(void)
2635 {
2636 	unsigned long penalty_jiffies;
2637 	unsigned long pflags;
2638 	unsigned long nr_reclaimed;
2639 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2640 	int nr_retries = MAX_RECLAIM_RETRIES;
2641 	struct mem_cgroup *memcg;
2642 	bool in_retry = false;
2643 
2644 	if (likely(!nr_pages))
2645 		return;
2646 
2647 	memcg = get_mem_cgroup_from_mm(current->mm);
2648 	current->memcg_nr_pages_over_high = 0;
2649 
2650 retry_reclaim:
2651 	/*
2652 	 * The allocating task should reclaim at least the batch size, but for
2653 	 * subsequent retries we only want to do what's necessary to prevent oom
2654 	 * or breaching resource isolation.
2655 	 *
2656 	 * This is distinct from memory.max or page allocator behaviour because
2657 	 * memory.high is currently batched, whereas memory.max and the page
2658 	 * allocator run every time an allocation is made.
2659 	 */
2660 	nr_reclaimed = reclaim_high(memcg,
2661 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2662 				    GFP_KERNEL);
2663 
2664 	/*
2665 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2666 	 * allocators proactively to slow down excessive growth.
2667 	 */
2668 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2669 					       mem_find_max_overage(memcg));
2670 
2671 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2672 						swap_find_max_overage(memcg));
2673 
2674 	/*
2675 	 * Clamp the max delay per usermode return so as to still keep the
2676 	 * application moving forwards and also permit diagnostics, albeit
2677 	 * extremely slowly.
2678 	 */
2679 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2680 
2681 	/*
2682 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2683 	 * that it's not even worth doing, in an attempt to be nice to those who
2684 	 * go only a small amount over their memory.high value and maybe haven't
2685 	 * been aggressively reclaimed enough yet.
2686 	 */
2687 	if (penalty_jiffies <= HZ / 100)
2688 		goto out;
2689 
2690 	/*
2691 	 * If reclaim is making forward progress but we're still over
2692 	 * memory.high, we want to encourage that rather than doing allocator
2693 	 * throttling.
2694 	 */
2695 	if (nr_reclaimed || nr_retries--) {
2696 		in_retry = true;
2697 		goto retry_reclaim;
2698 	}
2699 
2700 	/*
2701 	 * If we exit early, we're guaranteed to die (since
2702 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2703 	 * need to account for any ill-begotten jiffies to pay them off later.
2704 	 */
2705 	psi_memstall_enter(&pflags);
2706 	schedule_timeout_killable(penalty_jiffies);
2707 	psi_memstall_leave(&pflags);
2708 
2709 out:
2710 	css_put(&memcg->css);
2711 }
2712 
2713 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2714 		      unsigned int nr_pages)
2715 {
2716 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2717 	int nr_retries = MAX_RECLAIM_RETRIES;
2718 	struct mem_cgroup *mem_over_limit;
2719 	struct page_counter *counter;
2720 	enum oom_status oom_status;
2721 	unsigned long nr_reclaimed;
2722 	bool may_swap = true;
2723 	bool drained = false;
2724 	unsigned long pflags;
2725 
2726 	if (mem_cgroup_is_root(memcg))
2727 		return 0;
2728 retry:
2729 	if (consume_stock(memcg, nr_pages))
2730 		return 0;
2731 
2732 	if (!do_memsw_account() ||
2733 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2734 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2735 			goto done_restock;
2736 		if (do_memsw_account())
2737 			page_counter_uncharge(&memcg->memsw, batch);
2738 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2739 	} else {
2740 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2741 		may_swap = false;
2742 	}
2743 
2744 	if (batch > nr_pages) {
2745 		batch = nr_pages;
2746 		goto retry;
2747 	}
2748 
2749 	/*
2750 	 * Memcg doesn't have a dedicated reserve for atomic
2751 	 * allocations. But like the global atomic pool, we need to
2752 	 * put the burden of reclaim on regular allocation requests
2753 	 * and let these go through as privileged allocations.
2754 	 */
2755 	if (gfp_mask & __GFP_ATOMIC)
2756 		goto force;
2757 
2758 	/*
2759 	 * Unlike in global OOM situations, memcg is not in a physical
2760 	 * memory shortage.  Allow dying and OOM-killed tasks to
2761 	 * bypass the last charges so that they can exit quickly and
2762 	 * free their memory.
2763 	 */
2764 	if (unlikely(should_force_charge()))
2765 		goto force;
2766 
2767 	/*
2768 	 * Prevent unbounded recursion when reclaim operations need to
2769 	 * allocate memory. This might exceed the limits temporarily,
2770 	 * but we prefer facilitating memory reclaim and getting back
2771 	 * under the limit over triggering OOM kills in these cases.
2772 	 */
2773 	if (unlikely(current->flags & PF_MEMALLOC))
2774 		goto force;
2775 
2776 	if (unlikely(task_in_memcg_oom(current)))
2777 		goto nomem;
2778 
2779 	if (!gfpflags_allow_blocking(gfp_mask))
2780 		goto nomem;
2781 
2782 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2783 
2784 	psi_memstall_enter(&pflags);
2785 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2786 						    gfp_mask, may_swap);
2787 	psi_memstall_leave(&pflags);
2788 
2789 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2790 		goto retry;
2791 
2792 	if (!drained) {
2793 		drain_all_stock(mem_over_limit);
2794 		drained = true;
2795 		goto retry;
2796 	}
2797 
2798 	if (gfp_mask & __GFP_NORETRY)
2799 		goto nomem;
2800 	/*
2801 	 * Even though the limit is exceeded at this point, reclaim
2802 	 * may have been able to free some pages.  Retry the charge
2803 	 * before killing the task.
2804 	 *
2805 	 * Only for regular pages, though: huge pages are rather
2806 	 * unlikely to succeed so close to the limit, and we fall back
2807 	 * to regular pages anyway in case of failure.
2808 	 */
2809 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2810 		goto retry;
2811 	/*
2812 	 * At task move, charge accounts can be doubly counted. So, it's
2813 	 * better to wait until the end of task_move if something is going on.
2814 	 */
2815 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2816 		goto retry;
2817 
2818 	if (nr_retries--)
2819 		goto retry;
2820 
2821 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2822 		goto nomem;
2823 
2824 	if (gfp_mask & __GFP_NOFAIL)
2825 		goto force;
2826 
2827 	if (fatal_signal_pending(current))
2828 		goto force;
2829 
2830 	/*
2831 	 * keep retrying as long as the memcg oom killer is able to make
2832 	 * a forward progress or bypass the charge if the oom killer
2833 	 * couldn't make any progress.
2834 	 */
2835 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2836 		       get_order(nr_pages * PAGE_SIZE));
2837 	switch (oom_status) {
2838 	case OOM_SUCCESS:
2839 		nr_retries = MAX_RECLAIM_RETRIES;
2840 		goto retry;
2841 	case OOM_FAILED:
2842 		goto force;
2843 	default:
2844 		goto nomem;
2845 	}
2846 nomem:
2847 	if (!(gfp_mask & __GFP_NOFAIL))
2848 		return -ENOMEM;
2849 force:
2850 	/*
2851 	 * The allocation either can't fail or will lead to more memory
2852 	 * being freed very soon.  Allow memory usage go over the limit
2853 	 * temporarily by force charging it.
2854 	 */
2855 	page_counter_charge(&memcg->memory, nr_pages);
2856 	if (do_memsw_account())
2857 		page_counter_charge(&memcg->memsw, nr_pages);
2858 
2859 	return 0;
2860 
2861 done_restock:
2862 	if (batch > nr_pages)
2863 		refill_stock(memcg, batch - nr_pages);
2864 
2865 	/*
2866 	 * If the hierarchy is above the normal consumption range, schedule
2867 	 * reclaim on returning to userland.  We can perform reclaim here
2868 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2869 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2870 	 * not recorded as it most likely matches current's and won't
2871 	 * change in the meantime.  As high limit is checked again before
2872 	 * reclaim, the cost of mismatch is negligible.
2873 	 */
2874 	do {
2875 		bool mem_high, swap_high;
2876 
2877 		mem_high = page_counter_read(&memcg->memory) >
2878 			READ_ONCE(memcg->memory.high);
2879 		swap_high = page_counter_read(&memcg->swap) >
2880 			READ_ONCE(memcg->swap.high);
2881 
2882 		/* Don't bother a random interrupted task */
2883 		if (in_interrupt()) {
2884 			if (mem_high) {
2885 				schedule_work(&memcg->high_work);
2886 				break;
2887 			}
2888 			continue;
2889 		}
2890 
2891 		if (mem_high || swap_high) {
2892 			/*
2893 			 * The allocating tasks in this cgroup will need to do
2894 			 * reclaim or be throttled to prevent further growth
2895 			 * of the memory or swap footprints.
2896 			 *
2897 			 * Target some best-effort fairness between the tasks,
2898 			 * and distribute reclaim work and delay penalties
2899 			 * based on how much each task is actually allocating.
2900 			 */
2901 			current->memcg_nr_pages_over_high += batch;
2902 			set_notify_resume(current);
2903 			break;
2904 		}
2905 	} while ((memcg = parent_mem_cgroup(memcg)));
2906 
2907 	return 0;
2908 }
2909 
2910 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2911 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2912 {
2913 	if (mem_cgroup_is_root(memcg))
2914 		return;
2915 
2916 	page_counter_uncharge(&memcg->memory, nr_pages);
2917 	if (do_memsw_account())
2918 		page_counter_uncharge(&memcg->memsw, nr_pages);
2919 }
2920 #endif
2921 
2922 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2923 {
2924 	VM_BUG_ON_PAGE(page_memcg(page), page);
2925 	/*
2926 	 * Any of the following ensures page's memcg stability:
2927 	 *
2928 	 * - the page lock
2929 	 * - LRU isolation
2930 	 * - lock_page_memcg()
2931 	 * - exclusive reference
2932 	 */
2933 	page->memcg_data = (unsigned long)memcg;
2934 }
2935 
2936 #ifdef CONFIG_MEMCG_KMEM
2937 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2938 				 gfp_t gfp)
2939 {
2940 	unsigned int objects = objs_per_slab_page(s, page);
2941 	void *vec;
2942 
2943 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2944 			   page_to_nid(page));
2945 	if (!vec)
2946 		return -ENOMEM;
2947 
2948 	if (!set_page_objcgs(page, vec))
2949 		kfree(vec);
2950 	else
2951 		kmemleak_not_leak(vec);
2952 
2953 	return 0;
2954 }
2955 
2956 /*
2957  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2958  *
2959  * A passed kernel object can be a slab object or a generic kernel page, so
2960  * different mechanisms for getting the memory cgroup pointer should be used.
2961  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2962  * can not know for sure how the kernel object is implemented.
2963  * mem_cgroup_from_obj() can be safely used in such cases.
2964  *
2965  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2966  * cgroup_mutex, etc.
2967  */
2968 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2969 {
2970 	struct page *page;
2971 
2972 	if (mem_cgroup_disabled())
2973 		return NULL;
2974 
2975 	page = virt_to_head_page(p);
2976 
2977 	/*
2978 	 * Slab objects are accounted individually, not per-page.
2979 	 * Memcg membership data for each individual object is saved in
2980 	 * the page->obj_cgroups.
2981 	 */
2982 	if (page_objcgs_check(page)) {
2983 		struct obj_cgroup *objcg;
2984 		unsigned int off;
2985 
2986 		off = obj_to_index(page->slab_cache, page, p);
2987 		objcg = page_objcgs(page)[off];
2988 		if (objcg)
2989 			return obj_cgroup_memcg(objcg);
2990 
2991 		return NULL;
2992 	}
2993 
2994 	/*
2995 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2996 	 * check above could fail because the object cgroups vector wasn't set
2997 	 * at that moment, but it can be set concurrently.
2998 	 * page_memcg_check(page) will guarantee that a proper memory
2999 	 * cgroup pointer or NULL will be returned.
3000 	 */
3001 	return page_memcg_check(page);
3002 }
3003 
3004 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3005 {
3006 	struct obj_cgroup *objcg = NULL;
3007 	struct mem_cgroup *memcg;
3008 
3009 	if (memcg_kmem_bypass())
3010 		return NULL;
3011 
3012 	rcu_read_lock();
3013 	if (unlikely(active_memcg()))
3014 		memcg = active_memcg();
3015 	else
3016 		memcg = mem_cgroup_from_task(current);
3017 
3018 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3019 		objcg = rcu_dereference(memcg->objcg);
3020 		if (objcg && obj_cgroup_tryget(objcg))
3021 			break;
3022 		objcg = NULL;
3023 	}
3024 	rcu_read_unlock();
3025 
3026 	return objcg;
3027 }
3028 
3029 static int memcg_alloc_cache_id(void)
3030 {
3031 	int id, size;
3032 	int err;
3033 
3034 	id = ida_simple_get(&memcg_cache_ida,
3035 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3036 	if (id < 0)
3037 		return id;
3038 
3039 	if (id < memcg_nr_cache_ids)
3040 		return id;
3041 
3042 	/*
3043 	 * There's no space for the new id in memcg_caches arrays,
3044 	 * so we have to grow them.
3045 	 */
3046 	down_write(&memcg_cache_ids_sem);
3047 
3048 	size = 2 * (id + 1);
3049 	if (size < MEMCG_CACHES_MIN_SIZE)
3050 		size = MEMCG_CACHES_MIN_SIZE;
3051 	else if (size > MEMCG_CACHES_MAX_SIZE)
3052 		size = MEMCG_CACHES_MAX_SIZE;
3053 
3054 	err = memcg_update_all_list_lrus(size);
3055 	if (!err)
3056 		memcg_nr_cache_ids = size;
3057 
3058 	up_write(&memcg_cache_ids_sem);
3059 
3060 	if (err) {
3061 		ida_simple_remove(&memcg_cache_ida, id);
3062 		return err;
3063 	}
3064 	return id;
3065 }
3066 
3067 static void memcg_free_cache_id(int id)
3068 {
3069 	ida_simple_remove(&memcg_cache_ida, id);
3070 }
3071 
3072 /**
3073  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3074  * @memcg: memory cgroup to charge
3075  * @gfp: reclaim mode
3076  * @nr_pages: number of pages to charge
3077  *
3078  * Returns 0 on success, an error code on failure.
3079  */
3080 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3081 			unsigned int nr_pages)
3082 {
3083 	struct page_counter *counter;
3084 	int ret;
3085 
3086 	ret = try_charge(memcg, gfp, nr_pages);
3087 	if (ret)
3088 		return ret;
3089 
3090 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3091 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3092 
3093 		/*
3094 		 * Enforce __GFP_NOFAIL allocation because callers are not
3095 		 * prepared to see failures and likely do not have any failure
3096 		 * handling code.
3097 		 */
3098 		if (gfp & __GFP_NOFAIL) {
3099 			page_counter_charge(&memcg->kmem, nr_pages);
3100 			return 0;
3101 		}
3102 		cancel_charge(memcg, nr_pages);
3103 		return -ENOMEM;
3104 	}
3105 	return 0;
3106 }
3107 
3108 /**
3109  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3110  * @memcg: memcg to uncharge
3111  * @nr_pages: number of pages to uncharge
3112  */
3113 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3114 {
3115 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3116 		page_counter_uncharge(&memcg->kmem, nr_pages);
3117 
3118 	page_counter_uncharge(&memcg->memory, nr_pages);
3119 	if (do_memsw_account())
3120 		page_counter_uncharge(&memcg->memsw, nr_pages);
3121 }
3122 
3123 /**
3124  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3125  * @page: page to charge
3126  * @gfp: reclaim mode
3127  * @order: allocation order
3128  *
3129  * Returns 0 on success, an error code on failure.
3130  */
3131 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3132 {
3133 	struct mem_cgroup *memcg;
3134 	int ret = 0;
3135 
3136 	memcg = get_mem_cgroup_from_current();
3137 	if (memcg && !mem_cgroup_is_root(memcg)) {
3138 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3139 		if (!ret) {
3140 			page->memcg_data = (unsigned long)memcg |
3141 				MEMCG_DATA_KMEM;
3142 			return 0;
3143 		}
3144 		css_put(&memcg->css);
3145 	}
3146 	return ret;
3147 }
3148 
3149 /**
3150  * __memcg_kmem_uncharge_page: uncharge a kmem page
3151  * @page: page to uncharge
3152  * @order: allocation order
3153  */
3154 void __memcg_kmem_uncharge_page(struct page *page, int order)
3155 {
3156 	struct mem_cgroup *memcg = page_memcg(page);
3157 	unsigned int nr_pages = 1 << order;
3158 
3159 	if (!memcg)
3160 		return;
3161 
3162 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3163 	__memcg_kmem_uncharge(memcg, nr_pages);
3164 	page->memcg_data = 0;
3165 	css_put(&memcg->css);
3166 }
3167 
3168 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3169 {
3170 	struct memcg_stock_pcp *stock;
3171 	unsigned long flags;
3172 	bool ret = false;
3173 
3174 	local_irq_save(flags);
3175 
3176 	stock = this_cpu_ptr(&memcg_stock);
3177 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3178 		stock->nr_bytes -= nr_bytes;
3179 		ret = true;
3180 	}
3181 
3182 	local_irq_restore(flags);
3183 
3184 	return ret;
3185 }
3186 
3187 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3188 {
3189 	struct obj_cgroup *old = stock->cached_objcg;
3190 
3191 	if (!old)
3192 		return;
3193 
3194 	if (stock->nr_bytes) {
3195 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3196 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3197 
3198 		if (nr_pages) {
3199 			rcu_read_lock();
3200 			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3201 			rcu_read_unlock();
3202 		}
3203 
3204 		/*
3205 		 * The leftover is flushed to the centralized per-memcg value.
3206 		 * On the next attempt to refill obj stock it will be moved
3207 		 * to a per-cpu stock (probably, on an other CPU), see
3208 		 * refill_obj_stock().
3209 		 *
3210 		 * How often it's flushed is a trade-off between the memory
3211 		 * limit enforcement accuracy and potential CPU contention,
3212 		 * so it might be changed in the future.
3213 		 */
3214 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 		stock->nr_bytes = 0;
3216 	}
3217 
3218 	obj_cgroup_put(old);
3219 	stock->cached_objcg = NULL;
3220 }
3221 
3222 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3223 				     struct mem_cgroup *root_memcg)
3224 {
3225 	struct mem_cgroup *memcg;
3226 
3227 	if (stock->cached_objcg) {
3228 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3229 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3230 			return true;
3231 	}
3232 
3233 	return false;
3234 }
3235 
3236 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3237 {
3238 	struct memcg_stock_pcp *stock;
3239 	unsigned long flags;
3240 
3241 	local_irq_save(flags);
3242 
3243 	stock = this_cpu_ptr(&memcg_stock);
3244 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3245 		drain_obj_stock(stock);
3246 		obj_cgroup_get(objcg);
3247 		stock->cached_objcg = objcg;
3248 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3249 	}
3250 	stock->nr_bytes += nr_bytes;
3251 
3252 	if (stock->nr_bytes > PAGE_SIZE)
3253 		drain_obj_stock(stock);
3254 
3255 	local_irq_restore(flags);
3256 }
3257 
3258 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3259 {
3260 	struct mem_cgroup *memcg;
3261 	unsigned int nr_pages, nr_bytes;
3262 	int ret;
3263 
3264 	if (consume_obj_stock(objcg, size))
3265 		return 0;
3266 
3267 	/*
3268 	 * In theory, memcg->nr_charged_bytes can have enough
3269 	 * pre-charged bytes to satisfy the allocation. However,
3270 	 * flushing memcg->nr_charged_bytes requires two atomic
3271 	 * operations, and memcg->nr_charged_bytes can't be big,
3272 	 * so it's better to ignore it and try grab some new pages.
3273 	 * memcg->nr_charged_bytes will be flushed in
3274 	 * refill_obj_stock(), called from this function or
3275 	 * independently later.
3276 	 */
3277 	rcu_read_lock();
3278 retry:
3279 	memcg = obj_cgroup_memcg(objcg);
3280 	if (unlikely(!css_tryget(&memcg->css)))
3281 		goto retry;
3282 	rcu_read_unlock();
3283 
3284 	nr_pages = size >> PAGE_SHIFT;
3285 	nr_bytes = size & (PAGE_SIZE - 1);
3286 
3287 	if (nr_bytes)
3288 		nr_pages += 1;
3289 
3290 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3291 	if (!ret && nr_bytes)
3292 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3293 
3294 	css_put(&memcg->css);
3295 	return ret;
3296 }
3297 
3298 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3299 {
3300 	refill_obj_stock(objcg, size);
3301 }
3302 
3303 #endif /* CONFIG_MEMCG_KMEM */
3304 
3305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3306 /*
3307  * Because page_memcg(head) is not set on compound tails, set it now.
3308  */
3309 void mem_cgroup_split_huge_fixup(struct page *head)
3310 {
3311 	struct mem_cgroup *memcg = page_memcg(head);
3312 	int i;
3313 
3314 	if (mem_cgroup_disabled())
3315 		return;
3316 
3317 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3318 		css_get(&memcg->css);
3319 		head[i].memcg_data = (unsigned long)memcg;
3320 	}
3321 }
3322 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3323 
3324 #ifdef CONFIG_MEMCG_SWAP
3325 /**
3326  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3327  * @entry: swap entry to be moved
3328  * @from:  mem_cgroup which the entry is moved from
3329  * @to:  mem_cgroup which the entry is moved to
3330  *
3331  * It succeeds only when the swap_cgroup's record for this entry is the same
3332  * as the mem_cgroup's id of @from.
3333  *
3334  * Returns 0 on success, -EINVAL on failure.
3335  *
3336  * The caller must have charged to @to, IOW, called page_counter_charge() about
3337  * both res and memsw, and called css_get().
3338  */
3339 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3340 				struct mem_cgroup *from, struct mem_cgroup *to)
3341 {
3342 	unsigned short old_id, new_id;
3343 
3344 	old_id = mem_cgroup_id(from);
3345 	new_id = mem_cgroup_id(to);
3346 
3347 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3348 		mod_memcg_state(from, MEMCG_SWAP, -1);
3349 		mod_memcg_state(to, MEMCG_SWAP, 1);
3350 		return 0;
3351 	}
3352 	return -EINVAL;
3353 }
3354 #else
3355 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3356 				struct mem_cgroup *from, struct mem_cgroup *to)
3357 {
3358 	return -EINVAL;
3359 }
3360 #endif
3361 
3362 static DEFINE_MUTEX(memcg_max_mutex);
3363 
3364 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3365 				 unsigned long max, bool memsw)
3366 {
3367 	bool enlarge = false;
3368 	bool drained = false;
3369 	int ret;
3370 	bool limits_invariant;
3371 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3372 
3373 	do {
3374 		if (signal_pending(current)) {
3375 			ret = -EINTR;
3376 			break;
3377 		}
3378 
3379 		mutex_lock(&memcg_max_mutex);
3380 		/*
3381 		 * Make sure that the new limit (memsw or memory limit) doesn't
3382 		 * break our basic invariant rule memory.max <= memsw.max.
3383 		 */
3384 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3385 					   max <= memcg->memsw.max;
3386 		if (!limits_invariant) {
3387 			mutex_unlock(&memcg_max_mutex);
3388 			ret = -EINVAL;
3389 			break;
3390 		}
3391 		if (max > counter->max)
3392 			enlarge = true;
3393 		ret = page_counter_set_max(counter, max);
3394 		mutex_unlock(&memcg_max_mutex);
3395 
3396 		if (!ret)
3397 			break;
3398 
3399 		if (!drained) {
3400 			drain_all_stock(memcg);
3401 			drained = true;
3402 			continue;
3403 		}
3404 
3405 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3406 					GFP_KERNEL, !memsw)) {
3407 			ret = -EBUSY;
3408 			break;
3409 		}
3410 	} while (true);
3411 
3412 	if (!ret && enlarge)
3413 		memcg_oom_recover(memcg);
3414 
3415 	return ret;
3416 }
3417 
3418 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3419 					    gfp_t gfp_mask,
3420 					    unsigned long *total_scanned)
3421 {
3422 	unsigned long nr_reclaimed = 0;
3423 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3424 	unsigned long reclaimed;
3425 	int loop = 0;
3426 	struct mem_cgroup_tree_per_node *mctz;
3427 	unsigned long excess;
3428 	unsigned long nr_scanned;
3429 
3430 	if (order > 0)
3431 		return 0;
3432 
3433 	mctz = soft_limit_tree_node(pgdat->node_id);
3434 
3435 	/*
3436 	 * Do not even bother to check the largest node if the root
3437 	 * is empty. Do it lockless to prevent lock bouncing. Races
3438 	 * are acceptable as soft limit is best effort anyway.
3439 	 */
3440 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3441 		return 0;
3442 
3443 	/*
3444 	 * This loop can run a while, specially if mem_cgroup's continuously
3445 	 * keep exceeding their soft limit and putting the system under
3446 	 * pressure
3447 	 */
3448 	do {
3449 		if (next_mz)
3450 			mz = next_mz;
3451 		else
3452 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3453 		if (!mz)
3454 			break;
3455 
3456 		nr_scanned = 0;
3457 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3458 						    gfp_mask, &nr_scanned);
3459 		nr_reclaimed += reclaimed;
3460 		*total_scanned += nr_scanned;
3461 		spin_lock_irq(&mctz->lock);
3462 		__mem_cgroup_remove_exceeded(mz, mctz);
3463 
3464 		/*
3465 		 * If we failed to reclaim anything from this memory cgroup
3466 		 * it is time to move on to the next cgroup
3467 		 */
3468 		next_mz = NULL;
3469 		if (!reclaimed)
3470 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3471 
3472 		excess = soft_limit_excess(mz->memcg);
3473 		/*
3474 		 * One school of thought says that we should not add
3475 		 * back the node to the tree if reclaim returns 0.
3476 		 * But our reclaim could return 0, simply because due
3477 		 * to priority we are exposing a smaller subset of
3478 		 * memory to reclaim from. Consider this as a longer
3479 		 * term TODO.
3480 		 */
3481 		/* If excess == 0, no tree ops */
3482 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3483 		spin_unlock_irq(&mctz->lock);
3484 		css_put(&mz->memcg->css);
3485 		loop++;
3486 		/*
3487 		 * Could not reclaim anything and there are no more
3488 		 * mem cgroups to try or we seem to be looping without
3489 		 * reclaiming anything.
3490 		 */
3491 		if (!nr_reclaimed &&
3492 			(next_mz == NULL ||
3493 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3494 			break;
3495 	} while (!nr_reclaimed);
3496 	if (next_mz)
3497 		css_put(&next_mz->memcg->css);
3498 	return nr_reclaimed;
3499 }
3500 
3501 /*
3502  * Reclaims as many pages from the given memcg as possible.
3503  *
3504  * Caller is responsible for holding css reference for memcg.
3505  */
3506 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3507 {
3508 	int nr_retries = MAX_RECLAIM_RETRIES;
3509 
3510 	/* we call try-to-free pages for make this cgroup empty */
3511 	lru_add_drain_all();
3512 
3513 	drain_all_stock(memcg);
3514 
3515 	/* try to free all pages in this cgroup */
3516 	while (nr_retries && page_counter_read(&memcg->memory)) {
3517 		int progress;
3518 
3519 		if (signal_pending(current))
3520 			return -EINTR;
3521 
3522 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3523 							GFP_KERNEL, true);
3524 		if (!progress) {
3525 			nr_retries--;
3526 			/* maybe some writeback is necessary */
3527 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3528 		}
3529 
3530 	}
3531 
3532 	return 0;
3533 }
3534 
3535 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3536 					    char *buf, size_t nbytes,
3537 					    loff_t off)
3538 {
3539 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3540 
3541 	if (mem_cgroup_is_root(memcg))
3542 		return -EINVAL;
3543 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3544 }
3545 
3546 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3547 				     struct cftype *cft)
3548 {
3549 	return 1;
3550 }
3551 
3552 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3553 				      struct cftype *cft, u64 val)
3554 {
3555 	if (val == 1)
3556 		return 0;
3557 
3558 	pr_warn_once("Non-hierarchical mode is deprecated. "
3559 		     "Please report your usecase to linux-mm@kvack.org if you "
3560 		     "depend on this functionality.\n");
3561 
3562 	return -EINVAL;
3563 }
3564 
3565 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3566 {
3567 	unsigned long val;
3568 
3569 	if (mem_cgroup_is_root(memcg)) {
3570 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3571 			memcg_page_state(memcg, NR_ANON_MAPPED);
3572 		if (swap)
3573 			val += memcg_page_state(memcg, MEMCG_SWAP);
3574 	} else {
3575 		if (!swap)
3576 			val = page_counter_read(&memcg->memory);
3577 		else
3578 			val = page_counter_read(&memcg->memsw);
3579 	}
3580 	return val;
3581 }
3582 
3583 enum {
3584 	RES_USAGE,
3585 	RES_LIMIT,
3586 	RES_MAX_USAGE,
3587 	RES_FAILCNT,
3588 	RES_SOFT_LIMIT,
3589 };
3590 
3591 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3592 			       struct cftype *cft)
3593 {
3594 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3595 	struct page_counter *counter;
3596 
3597 	switch (MEMFILE_TYPE(cft->private)) {
3598 	case _MEM:
3599 		counter = &memcg->memory;
3600 		break;
3601 	case _MEMSWAP:
3602 		counter = &memcg->memsw;
3603 		break;
3604 	case _KMEM:
3605 		counter = &memcg->kmem;
3606 		break;
3607 	case _TCP:
3608 		counter = &memcg->tcpmem;
3609 		break;
3610 	default:
3611 		BUG();
3612 	}
3613 
3614 	switch (MEMFILE_ATTR(cft->private)) {
3615 	case RES_USAGE:
3616 		if (counter == &memcg->memory)
3617 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3618 		if (counter == &memcg->memsw)
3619 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3620 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3621 	case RES_LIMIT:
3622 		return (u64)counter->max * PAGE_SIZE;
3623 	case RES_MAX_USAGE:
3624 		return (u64)counter->watermark * PAGE_SIZE;
3625 	case RES_FAILCNT:
3626 		return counter->failcnt;
3627 	case RES_SOFT_LIMIT:
3628 		return (u64)memcg->soft_limit * PAGE_SIZE;
3629 	default:
3630 		BUG();
3631 	}
3632 }
3633 
3634 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3635 {
3636 	unsigned long stat[MEMCG_NR_STAT] = {0};
3637 	struct mem_cgroup *mi;
3638 	int node, cpu, i;
3639 
3640 	for_each_online_cpu(cpu)
3641 		for (i = 0; i < MEMCG_NR_STAT; i++)
3642 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3643 
3644 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3645 		for (i = 0; i < MEMCG_NR_STAT; i++)
3646 			atomic_long_add(stat[i], &mi->vmstats[i]);
3647 
3648 	for_each_node(node) {
3649 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3650 		struct mem_cgroup_per_node *pi;
3651 
3652 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3653 			stat[i] = 0;
3654 
3655 		for_each_online_cpu(cpu)
3656 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3657 				stat[i] += per_cpu(
3658 					pn->lruvec_stat_cpu->count[i], cpu);
3659 
3660 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3661 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3662 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3663 	}
3664 }
3665 
3666 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3667 {
3668 	unsigned long events[NR_VM_EVENT_ITEMS];
3669 	struct mem_cgroup *mi;
3670 	int cpu, i;
3671 
3672 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3673 		events[i] = 0;
3674 
3675 	for_each_online_cpu(cpu)
3676 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3677 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3678 					     cpu);
3679 
3680 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3681 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3682 			atomic_long_add(events[i], &mi->vmevents[i]);
3683 }
3684 
3685 #ifdef CONFIG_MEMCG_KMEM
3686 static int memcg_online_kmem(struct mem_cgroup *memcg)
3687 {
3688 	struct obj_cgroup *objcg;
3689 	int memcg_id;
3690 
3691 	if (cgroup_memory_nokmem)
3692 		return 0;
3693 
3694 	BUG_ON(memcg->kmemcg_id >= 0);
3695 	BUG_ON(memcg->kmem_state);
3696 
3697 	memcg_id = memcg_alloc_cache_id();
3698 	if (memcg_id < 0)
3699 		return memcg_id;
3700 
3701 	objcg = obj_cgroup_alloc();
3702 	if (!objcg) {
3703 		memcg_free_cache_id(memcg_id);
3704 		return -ENOMEM;
3705 	}
3706 	objcg->memcg = memcg;
3707 	rcu_assign_pointer(memcg->objcg, objcg);
3708 
3709 	static_branch_enable(&memcg_kmem_enabled_key);
3710 
3711 	memcg->kmemcg_id = memcg_id;
3712 	memcg->kmem_state = KMEM_ONLINE;
3713 
3714 	return 0;
3715 }
3716 
3717 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3718 {
3719 	struct cgroup_subsys_state *css;
3720 	struct mem_cgroup *parent, *child;
3721 	int kmemcg_id;
3722 
3723 	if (memcg->kmem_state != KMEM_ONLINE)
3724 		return;
3725 
3726 	memcg->kmem_state = KMEM_ALLOCATED;
3727 
3728 	parent = parent_mem_cgroup(memcg);
3729 	if (!parent)
3730 		parent = root_mem_cgroup;
3731 
3732 	memcg_reparent_objcgs(memcg, parent);
3733 
3734 	kmemcg_id = memcg->kmemcg_id;
3735 	BUG_ON(kmemcg_id < 0);
3736 
3737 	/*
3738 	 * Change kmemcg_id of this cgroup and all its descendants to the
3739 	 * parent's id, and then move all entries from this cgroup's list_lrus
3740 	 * to ones of the parent. After we have finished, all list_lrus
3741 	 * corresponding to this cgroup are guaranteed to remain empty. The
3742 	 * ordering is imposed by list_lru_node->lock taken by
3743 	 * memcg_drain_all_list_lrus().
3744 	 */
3745 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3746 	css_for_each_descendant_pre(css, &memcg->css) {
3747 		child = mem_cgroup_from_css(css);
3748 		BUG_ON(child->kmemcg_id != kmemcg_id);
3749 		child->kmemcg_id = parent->kmemcg_id;
3750 	}
3751 	rcu_read_unlock();
3752 
3753 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3754 
3755 	memcg_free_cache_id(kmemcg_id);
3756 }
3757 
3758 static void memcg_free_kmem(struct mem_cgroup *memcg)
3759 {
3760 	/* css_alloc() failed, offlining didn't happen */
3761 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3762 		memcg_offline_kmem(memcg);
3763 }
3764 #else
3765 static int memcg_online_kmem(struct mem_cgroup *memcg)
3766 {
3767 	return 0;
3768 }
3769 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3770 {
3771 }
3772 static void memcg_free_kmem(struct mem_cgroup *memcg)
3773 {
3774 }
3775 #endif /* CONFIG_MEMCG_KMEM */
3776 
3777 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3778 				 unsigned long max)
3779 {
3780 	int ret;
3781 
3782 	mutex_lock(&memcg_max_mutex);
3783 	ret = page_counter_set_max(&memcg->kmem, max);
3784 	mutex_unlock(&memcg_max_mutex);
3785 	return ret;
3786 }
3787 
3788 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3789 {
3790 	int ret;
3791 
3792 	mutex_lock(&memcg_max_mutex);
3793 
3794 	ret = page_counter_set_max(&memcg->tcpmem, max);
3795 	if (ret)
3796 		goto out;
3797 
3798 	if (!memcg->tcpmem_active) {
3799 		/*
3800 		 * The active flag needs to be written after the static_key
3801 		 * update. This is what guarantees that the socket activation
3802 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3803 		 * for details, and note that we don't mark any socket as
3804 		 * belonging to this memcg until that flag is up.
3805 		 *
3806 		 * We need to do this, because static_keys will span multiple
3807 		 * sites, but we can't control their order. If we mark a socket
3808 		 * as accounted, but the accounting functions are not patched in
3809 		 * yet, we'll lose accounting.
3810 		 *
3811 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3812 		 * because when this value change, the code to process it is not
3813 		 * patched in yet.
3814 		 */
3815 		static_branch_inc(&memcg_sockets_enabled_key);
3816 		memcg->tcpmem_active = true;
3817 	}
3818 out:
3819 	mutex_unlock(&memcg_max_mutex);
3820 	return ret;
3821 }
3822 
3823 /*
3824  * The user of this function is...
3825  * RES_LIMIT.
3826  */
3827 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3828 				char *buf, size_t nbytes, loff_t off)
3829 {
3830 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3831 	unsigned long nr_pages;
3832 	int ret;
3833 
3834 	buf = strstrip(buf);
3835 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3836 	if (ret)
3837 		return ret;
3838 
3839 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3840 	case RES_LIMIT:
3841 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3842 			ret = -EINVAL;
3843 			break;
3844 		}
3845 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3846 		case _MEM:
3847 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3848 			break;
3849 		case _MEMSWAP:
3850 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3851 			break;
3852 		case _KMEM:
3853 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3854 				     "Please report your usecase to linux-mm@kvack.org if you "
3855 				     "depend on this functionality.\n");
3856 			ret = memcg_update_kmem_max(memcg, nr_pages);
3857 			break;
3858 		case _TCP:
3859 			ret = memcg_update_tcp_max(memcg, nr_pages);
3860 			break;
3861 		}
3862 		break;
3863 	case RES_SOFT_LIMIT:
3864 		memcg->soft_limit = nr_pages;
3865 		ret = 0;
3866 		break;
3867 	}
3868 	return ret ?: nbytes;
3869 }
3870 
3871 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3872 				size_t nbytes, loff_t off)
3873 {
3874 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3875 	struct page_counter *counter;
3876 
3877 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3878 	case _MEM:
3879 		counter = &memcg->memory;
3880 		break;
3881 	case _MEMSWAP:
3882 		counter = &memcg->memsw;
3883 		break;
3884 	case _KMEM:
3885 		counter = &memcg->kmem;
3886 		break;
3887 	case _TCP:
3888 		counter = &memcg->tcpmem;
3889 		break;
3890 	default:
3891 		BUG();
3892 	}
3893 
3894 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3895 	case RES_MAX_USAGE:
3896 		page_counter_reset_watermark(counter);
3897 		break;
3898 	case RES_FAILCNT:
3899 		counter->failcnt = 0;
3900 		break;
3901 	default:
3902 		BUG();
3903 	}
3904 
3905 	return nbytes;
3906 }
3907 
3908 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3909 					struct cftype *cft)
3910 {
3911 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3912 }
3913 
3914 #ifdef CONFIG_MMU
3915 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3916 					struct cftype *cft, u64 val)
3917 {
3918 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3919 
3920 	if (val & ~MOVE_MASK)
3921 		return -EINVAL;
3922 
3923 	/*
3924 	 * No kind of locking is needed in here, because ->can_attach() will
3925 	 * check this value once in the beginning of the process, and then carry
3926 	 * on with stale data. This means that changes to this value will only
3927 	 * affect task migrations starting after the change.
3928 	 */
3929 	memcg->move_charge_at_immigrate = val;
3930 	return 0;
3931 }
3932 #else
3933 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3934 					struct cftype *cft, u64 val)
3935 {
3936 	return -ENOSYS;
3937 }
3938 #endif
3939 
3940 #ifdef CONFIG_NUMA
3941 
3942 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3943 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3944 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3945 
3946 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3947 				int nid, unsigned int lru_mask, bool tree)
3948 {
3949 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3950 	unsigned long nr = 0;
3951 	enum lru_list lru;
3952 
3953 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3954 
3955 	for_each_lru(lru) {
3956 		if (!(BIT(lru) & lru_mask))
3957 			continue;
3958 		if (tree)
3959 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3960 		else
3961 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3962 	}
3963 	return nr;
3964 }
3965 
3966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3967 					     unsigned int lru_mask,
3968 					     bool tree)
3969 {
3970 	unsigned long nr = 0;
3971 	enum lru_list lru;
3972 
3973 	for_each_lru(lru) {
3974 		if (!(BIT(lru) & lru_mask))
3975 			continue;
3976 		if (tree)
3977 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3978 		else
3979 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3980 	}
3981 	return nr;
3982 }
3983 
3984 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3985 {
3986 	struct numa_stat {
3987 		const char *name;
3988 		unsigned int lru_mask;
3989 	};
3990 
3991 	static const struct numa_stat stats[] = {
3992 		{ "total", LRU_ALL },
3993 		{ "file", LRU_ALL_FILE },
3994 		{ "anon", LRU_ALL_ANON },
3995 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3996 	};
3997 	const struct numa_stat *stat;
3998 	int nid;
3999 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4000 
4001 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4002 		seq_printf(m, "%s=%lu", stat->name,
4003 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4004 						   false));
4005 		for_each_node_state(nid, N_MEMORY)
4006 			seq_printf(m, " N%d=%lu", nid,
4007 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4008 							stat->lru_mask, false));
4009 		seq_putc(m, '\n');
4010 	}
4011 
4012 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4013 
4014 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4015 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4016 						   true));
4017 		for_each_node_state(nid, N_MEMORY)
4018 			seq_printf(m, " N%d=%lu", nid,
4019 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4020 							stat->lru_mask, true));
4021 		seq_putc(m, '\n');
4022 	}
4023 
4024 	return 0;
4025 }
4026 #endif /* CONFIG_NUMA */
4027 
4028 static const unsigned int memcg1_stats[] = {
4029 	NR_FILE_PAGES,
4030 	NR_ANON_MAPPED,
4031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4032 	NR_ANON_THPS,
4033 #endif
4034 	NR_SHMEM,
4035 	NR_FILE_MAPPED,
4036 	NR_FILE_DIRTY,
4037 	NR_WRITEBACK,
4038 	MEMCG_SWAP,
4039 };
4040 
4041 static const char *const memcg1_stat_names[] = {
4042 	"cache",
4043 	"rss",
4044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4045 	"rss_huge",
4046 #endif
4047 	"shmem",
4048 	"mapped_file",
4049 	"dirty",
4050 	"writeback",
4051 	"swap",
4052 };
4053 
4054 /* Universal VM events cgroup1 shows, original sort order */
4055 static const unsigned int memcg1_events[] = {
4056 	PGPGIN,
4057 	PGPGOUT,
4058 	PGFAULT,
4059 	PGMAJFAULT,
4060 };
4061 
4062 static int memcg_stat_show(struct seq_file *m, void *v)
4063 {
4064 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4065 	unsigned long memory, memsw;
4066 	struct mem_cgroup *mi;
4067 	unsigned int i;
4068 
4069 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4070 
4071 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4072 		unsigned long nr;
4073 
4074 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4075 			continue;
4076 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4077 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4078 		if (memcg1_stats[i] == NR_ANON_THPS)
4079 			nr *= HPAGE_PMD_NR;
4080 #endif
4081 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4082 	}
4083 
4084 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4085 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4086 			   memcg_events_local(memcg, memcg1_events[i]));
4087 
4088 	for (i = 0; i < NR_LRU_LISTS; i++)
4089 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4090 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4091 			   PAGE_SIZE);
4092 
4093 	/* Hierarchical information */
4094 	memory = memsw = PAGE_COUNTER_MAX;
4095 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4096 		memory = min(memory, READ_ONCE(mi->memory.max));
4097 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4098 	}
4099 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4100 		   (u64)memory * PAGE_SIZE);
4101 	if (do_memsw_account())
4102 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4103 			   (u64)memsw * PAGE_SIZE);
4104 
4105 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4106 		unsigned long nr;
4107 
4108 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4109 			continue;
4110 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4111 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4112 		if (memcg1_stats[i] == NR_ANON_THPS)
4113 			nr *= HPAGE_PMD_NR;
4114 #endif
4115 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4116 						(u64)nr * PAGE_SIZE);
4117 	}
4118 
4119 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4120 		seq_printf(m, "total_%s %llu\n",
4121 			   vm_event_name(memcg1_events[i]),
4122 			   (u64)memcg_events(memcg, memcg1_events[i]));
4123 
4124 	for (i = 0; i < NR_LRU_LISTS; i++)
4125 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4126 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4127 			   PAGE_SIZE);
4128 
4129 #ifdef CONFIG_DEBUG_VM
4130 	{
4131 		pg_data_t *pgdat;
4132 		struct mem_cgroup_per_node *mz;
4133 		unsigned long anon_cost = 0;
4134 		unsigned long file_cost = 0;
4135 
4136 		for_each_online_pgdat(pgdat) {
4137 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4138 
4139 			anon_cost += mz->lruvec.anon_cost;
4140 			file_cost += mz->lruvec.file_cost;
4141 		}
4142 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4143 		seq_printf(m, "file_cost %lu\n", file_cost);
4144 	}
4145 #endif
4146 
4147 	return 0;
4148 }
4149 
4150 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4151 				      struct cftype *cft)
4152 {
4153 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4154 
4155 	return mem_cgroup_swappiness(memcg);
4156 }
4157 
4158 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4159 				       struct cftype *cft, u64 val)
4160 {
4161 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4162 
4163 	if (val > 100)
4164 		return -EINVAL;
4165 
4166 	if (css->parent)
4167 		memcg->swappiness = val;
4168 	else
4169 		vm_swappiness = val;
4170 
4171 	return 0;
4172 }
4173 
4174 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4175 {
4176 	struct mem_cgroup_threshold_ary *t;
4177 	unsigned long usage;
4178 	int i;
4179 
4180 	rcu_read_lock();
4181 	if (!swap)
4182 		t = rcu_dereference(memcg->thresholds.primary);
4183 	else
4184 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4185 
4186 	if (!t)
4187 		goto unlock;
4188 
4189 	usage = mem_cgroup_usage(memcg, swap);
4190 
4191 	/*
4192 	 * current_threshold points to threshold just below or equal to usage.
4193 	 * If it's not true, a threshold was crossed after last
4194 	 * call of __mem_cgroup_threshold().
4195 	 */
4196 	i = t->current_threshold;
4197 
4198 	/*
4199 	 * Iterate backward over array of thresholds starting from
4200 	 * current_threshold and check if a threshold is crossed.
4201 	 * If none of thresholds below usage is crossed, we read
4202 	 * only one element of the array here.
4203 	 */
4204 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4205 		eventfd_signal(t->entries[i].eventfd, 1);
4206 
4207 	/* i = current_threshold + 1 */
4208 	i++;
4209 
4210 	/*
4211 	 * Iterate forward over array of thresholds starting from
4212 	 * current_threshold+1 and check if a threshold is crossed.
4213 	 * If none of thresholds above usage is crossed, we read
4214 	 * only one element of the array here.
4215 	 */
4216 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4217 		eventfd_signal(t->entries[i].eventfd, 1);
4218 
4219 	/* Update current_threshold */
4220 	t->current_threshold = i - 1;
4221 unlock:
4222 	rcu_read_unlock();
4223 }
4224 
4225 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4226 {
4227 	while (memcg) {
4228 		__mem_cgroup_threshold(memcg, false);
4229 		if (do_memsw_account())
4230 			__mem_cgroup_threshold(memcg, true);
4231 
4232 		memcg = parent_mem_cgroup(memcg);
4233 	}
4234 }
4235 
4236 static int compare_thresholds(const void *a, const void *b)
4237 {
4238 	const struct mem_cgroup_threshold *_a = a;
4239 	const struct mem_cgroup_threshold *_b = b;
4240 
4241 	if (_a->threshold > _b->threshold)
4242 		return 1;
4243 
4244 	if (_a->threshold < _b->threshold)
4245 		return -1;
4246 
4247 	return 0;
4248 }
4249 
4250 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4251 {
4252 	struct mem_cgroup_eventfd_list *ev;
4253 
4254 	spin_lock(&memcg_oom_lock);
4255 
4256 	list_for_each_entry(ev, &memcg->oom_notify, list)
4257 		eventfd_signal(ev->eventfd, 1);
4258 
4259 	spin_unlock(&memcg_oom_lock);
4260 	return 0;
4261 }
4262 
4263 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4264 {
4265 	struct mem_cgroup *iter;
4266 
4267 	for_each_mem_cgroup_tree(iter, memcg)
4268 		mem_cgroup_oom_notify_cb(iter);
4269 }
4270 
4271 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4272 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4273 {
4274 	struct mem_cgroup_thresholds *thresholds;
4275 	struct mem_cgroup_threshold_ary *new;
4276 	unsigned long threshold;
4277 	unsigned long usage;
4278 	int i, size, ret;
4279 
4280 	ret = page_counter_memparse(args, "-1", &threshold);
4281 	if (ret)
4282 		return ret;
4283 
4284 	mutex_lock(&memcg->thresholds_lock);
4285 
4286 	if (type == _MEM) {
4287 		thresholds = &memcg->thresholds;
4288 		usage = mem_cgroup_usage(memcg, false);
4289 	} else if (type == _MEMSWAP) {
4290 		thresholds = &memcg->memsw_thresholds;
4291 		usage = mem_cgroup_usage(memcg, true);
4292 	} else
4293 		BUG();
4294 
4295 	/* Check if a threshold crossed before adding a new one */
4296 	if (thresholds->primary)
4297 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4298 
4299 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4300 
4301 	/* Allocate memory for new array of thresholds */
4302 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4303 	if (!new) {
4304 		ret = -ENOMEM;
4305 		goto unlock;
4306 	}
4307 	new->size = size;
4308 
4309 	/* Copy thresholds (if any) to new array */
4310 	if (thresholds->primary)
4311 		memcpy(new->entries, thresholds->primary->entries,
4312 		       flex_array_size(new, entries, size - 1));
4313 
4314 	/* Add new threshold */
4315 	new->entries[size - 1].eventfd = eventfd;
4316 	new->entries[size - 1].threshold = threshold;
4317 
4318 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4319 	sort(new->entries, size, sizeof(*new->entries),
4320 			compare_thresholds, NULL);
4321 
4322 	/* Find current threshold */
4323 	new->current_threshold = -1;
4324 	for (i = 0; i < size; i++) {
4325 		if (new->entries[i].threshold <= usage) {
4326 			/*
4327 			 * new->current_threshold will not be used until
4328 			 * rcu_assign_pointer(), so it's safe to increment
4329 			 * it here.
4330 			 */
4331 			++new->current_threshold;
4332 		} else
4333 			break;
4334 	}
4335 
4336 	/* Free old spare buffer and save old primary buffer as spare */
4337 	kfree(thresholds->spare);
4338 	thresholds->spare = thresholds->primary;
4339 
4340 	rcu_assign_pointer(thresholds->primary, new);
4341 
4342 	/* To be sure that nobody uses thresholds */
4343 	synchronize_rcu();
4344 
4345 unlock:
4346 	mutex_unlock(&memcg->thresholds_lock);
4347 
4348 	return ret;
4349 }
4350 
4351 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4352 	struct eventfd_ctx *eventfd, const char *args)
4353 {
4354 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4355 }
4356 
4357 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4358 	struct eventfd_ctx *eventfd, const char *args)
4359 {
4360 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4361 }
4362 
4363 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4364 	struct eventfd_ctx *eventfd, enum res_type type)
4365 {
4366 	struct mem_cgroup_thresholds *thresholds;
4367 	struct mem_cgroup_threshold_ary *new;
4368 	unsigned long usage;
4369 	int i, j, size, entries;
4370 
4371 	mutex_lock(&memcg->thresholds_lock);
4372 
4373 	if (type == _MEM) {
4374 		thresholds = &memcg->thresholds;
4375 		usage = mem_cgroup_usage(memcg, false);
4376 	} else if (type == _MEMSWAP) {
4377 		thresholds = &memcg->memsw_thresholds;
4378 		usage = mem_cgroup_usage(memcg, true);
4379 	} else
4380 		BUG();
4381 
4382 	if (!thresholds->primary)
4383 		goto unlock;
4384 
4385 	/* Check if a threshold crossed before removing */
4386 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4387 
4388 	/* Calculate new number of threshold */
4389 	size = entries = 0;
4390 	for (i = 0; i < thresholds->primary->size; i++) {
4391 		if (thresholds->primary->entries[i].eventfd != eventfd)
4392 			size++;
4393 		else
4394 			entries++;
4395 	}
4396 
4397 	new = thresholds->spare;
4398 
4399 	/* If no items related to eventfd have been cleared, nothing to do */
4400 	if (!entries)
4401 		goto unlock;
4402 
4403 	/* Set thresholds array to NULL if we don't have thresholds */
4404 	if (!size) {
4405 		kfree(new);
4406 		new = NULL;
4407 		goto swap_buffers;
4408 	}
4409 
4410 	new->size = size;
4411 
4412 	/* Copy thresholds and find current threshold */
4413 	new->current_threshold = -1;
4414 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4415 		if (thresholds->primary->entries[i].eventfd == eventfd)
4416 			continue;
4417 
4418 		new->entries[j] = thresholds->primary->entries[i];
4419 		if (new->entries[j].threshold <= usage) {
4420 			/*
4421 			 * new->current_threshold will not be used
4422 			 * until rcu_assign_pointer(), so it's safe to increment
4423 			 * it here.
4424 			 */
4425 			++new->current_threshold;
4426 		}
4427 		j++;
4428 	}
4429 
4430 swap_buffers:
4431 	/* Swap primary and spare array */
4432 	thresholds->spare = thresholds->primary;
4433 
4434 	rcu_assign_pointer(thresholds->primary, new);
4435 
4436 	/* To be sure that nobody uses thresholds */
4437 	synchronize_rcu();
4438 
4439 	/* If all events are unregistered, free the spare array */
4440 	if (!new) {
4441 		kfree(thresholds->spare);
4442 		thresholds->spare = NULL;
4443 	}
4444 unlock:
4445 	mutex_unlock(&memcg->thresholds_lock);
4446 }
4447 
4448 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4449 	struct eventfd_ctx *eventfd)
4450 {
4451 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4452 }
4453 
4454 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4455 	struct eventfd_ctx *eventfd)
4456 {
4457 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4458 }
4459 
4460 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4461 	struct eventfd_ctx *eventfd, const char *args)
4462 {
4463 	struct mem_cgroup_eventfd_list *event;
4464 
4465 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4466 	if (!event)
4467 		return -ENOMEM;
4468 
4469 	spin_lock(&memcg_oom_lock);
4470 
4471 	event->eventfd = eventfd;
4472 	list_add(&event->list, &memcg->oom_notify);
4473 
4474 	/* already in OOM ? */
4475 	if (memcg->under_oom)
4476 		eventfd_signal(eventfd, 1);
4477 	spin_unlock(&memcg_oom_lock);
4478 
4479 	return 0;
4480 }
4481 
4482 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4483 	struct eventfd_ctx *eventfd)
4484 {
4485 	struct mem_cgroup_eventfd_list *ev, *tmp;
4486 
4487 	spin_lock(&memcg_oom_lock);
4488 
4489 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4490 		if (ev->eventfd == eventfd) {
4491 			list_del(&ev->list);
4492 			kfree(ev);
4493 		}
4494 	}
4495 
4496 	spin_unlock(&memcg_oom_lock);
4497 }
4498 
4499 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4500 {
4501 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4502 
4503 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4504 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4505 	seq_printf(sf, "oom_kill %lu\n",
4506 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4507 	return 0;
4508 }
4509 
4510 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4511 	struct cftype *cft, u64 val)
4512 {
4513 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4514 
4515 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4516 	if (!css->parent || !((val == 0) || (val == 1)))
4517 		return -EINVAL;
4518 
4519 	memcg->oom_kill_disable = val;
4520 	if (!val)
4521 		memcg_oom_recover(memcg);
4522 
4523 	return 0;
4524 }
4525 
4526 #ifdef CONFIG_CGROUP_WRITEBACK
4527 
4528 #include <trace/events/writeback.h>
4529 
4530 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4531 {
4532 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4533 }
4534 
4535 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4536 {
4537 	wb_domain_exit(&memcg->cgwb_domain);
4538 }
4539 
4540 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4541 {
4542 	wb_domain_size_changed(&memcg->cgwb_domain);
4543 }
4544 
4545 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4546 {
4547 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4548 
4549 	if (!memcg->css.parent)
4550 		return NULL;
4551 
4552 	return &memcg->cgwb_domain;
4553 }
4554 
4555 /*
4556  * idx can be of type enum memcg_stat_item or node_stat_item.
4557  * Keep in sync with memcg_exact_page().
4558  */
4559 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4560 {
4561 	long x = atomic_long_read(&memcg->vmstats[idx]);
4562 	int cpu;
4563 
4564 	for_each_online_cpu(cpu)
4565 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4566 	if (x < 0)
4567 		x = 0;
4568 	return x;
4569 }
4570 
4571 /**
4572  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4573  * @wb: bdi_writeback in question
4574  * @pfilepages: out parameter for number of file pages
4575  * @pheadroom: out parameter for number of allocatable pages according to memcg
4576  * @pdirty: out parameter for number of dirty pages
4577  * @pwriteback: out parameter for number of pages under writeback
4578  *
4579  * Determine the numbers of file, headroom, dirty, and writeback pages in
4580  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4581  * is a bit more involved.
4582  *
4583  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4584  * headroom is calculated as the lowest headroom of itself and the
4585  * ancestors.  Note that this doesn't consider the actual amount of
4586  * available memory in the system.  The caller should further cap
4587  * *@pheadroom accordingly.
4588  */
4589 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4590 			 unsigned long *pheadroom, unsigned long *pdirty,
4591 			 unsigned long *pwriteback)
4592 {
4593 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4594 	struct mem_cgroup *parent;
4595 
4596 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4597 
4598 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4599 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4600 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4601 	*pheadroom = PAGE_COUNTER_MAX;
4602 
4603 	while ((parent = parent_mem_cgroup(memcg))) {
4604 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4605 					    READ_ONCE(memcg->memory.high));
4606 		unsigned long used = page_counter_read(&memcg->memory);
4607 
4608 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4609 		memcg = parent;
4610 	}
4611 }
4612 
4613 /*
4614  * Foreign dirty flushing
4615  *
4616  * There's an inherent mismatch between memcg and writeback.  The former
4617  * trackes ownership per-page while the latter per-inode.  This was a
4618  * deliberate design decision because honoring per-page ownership in the
4619  * writeback path is complicated, may lead to higher CPU and IO overheads
4620  * and deemed unnecessary given that write-sharing an inode across
4621  * different cgroups isn't a common use-case.
4622  *
4623  * Combined with inode majority-writer ownership switching, this works well
4624  * enough in most cases but there are some pathological cases.  For
4625  * example, let's say there are two cgroups A and B which keep writing to
4626  * different but confined parts of the same inode.  B owns the inode and
4627  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4628  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4629  * triggering background writeback.  A will be slowed down without a way to
4630  * make writeback of the dirty pages happen.
4631  *
4632  * Conditions like the above can lead to a cgroup getting repatedly and
4633  * severely throttled after making some progress after each
4634  * dirty_expire_interval while the underyling IO device is almost
4635  * completely idle.
4636  *
4637  * Solving this problem completely requires matching the ownership tracking
4638  * granularities between memcg and writeback in either direction.  However,
4639  * the more egregious behaviors can be avoided by simply remembering the
4640  * most recent foreign dirtying events and initiating remote flushes on
4641  * them when local writeback isn't enough to keep the memory clean enough.
4642  *
4643  * The following two functions implement such mechanism.  When a foreign
4644  * page - a page whose memcg and writeback ownerships don't match - is
4645  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4646  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4647  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4648  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4649  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4650  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4651  * limited to MEMCG_CGWB_FRN_CNT.
4652  *
4653  * The mechanism only remembers IDs and doesn't hold any object references.
4654  * As being wrong occasionally doesn't matter, updates and accesses to the
4655  * records are lockless and racy.
4656  */
4657 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4658 					     struct bdi_writeback *wb)
4659 {
4660 	struct mem_cgroup *memcg = page_memcg(page);
4661 	struct memcg_cgwb_frn *frn;
4662 	u64 now = get_jiffies_64();
4663 	u64 oldest_at = now;
4664 	int oldest = -1;
4665 	int i;
4666 
4667 	trace_track_foreign_dirty(page, wb);
4668 
4669 	/*
4670 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4671 	 * using it.  If not replace the oldest one which isn't being
4672 	 * written out.
4673 	 */
4674 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4675 		frn = &memcg->cgwb_frn[i];
4676 		if (frn->bdi_id == wb->bdi->id &&
4677 		    frn->memcg_id == wb->memcg_css->id)
4678 			break;
4679 		if (time_before64(frn->at, oldest_at) &&
4680 		    atomic_read(&frn->done.cnt) == 1) {
4681 			oldest = i;
4682 			oldest_at = frn->at;
4683 		}
4684 	}
4685 
4686 	if (i < MEMCG_CGWB_FRN_CNT) {
4687 		/*
4688 		 * Re-using an existing one.  Update timestamp lazily to
4689 		 * avoid making the cacheline hot.  We want them to be
4690 		 * reasonably up-to-date and significantly shorter than
4691 		 * dirty_expire_interval as that's what expires the record.
4692 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4693 		 */
4694 		unsigned long update_intv =
4695 			min_t(unsigned long, HZ,
4696 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4697 
4698 		if (time_before64(frn->at, now - update_intv))
4699 			frn->at = now;
4700 	} else if (oldest >= 0) {
4701 		/* replace the oldest free one */
4702 		frn = &memcg->cgwb_frn[oldest];
4703 		frn->bdi_id = wb->bdi->id;
4704 		frn->memcg_id = wb->memcg_css->id;
4705 		frn->at = now;
4706 	}
4707 }
4708 
4709 /* issue foreign writeback flushes for recorded foreign dirtying events */
4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4711 {
4712 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4713 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4714 	u64 now = jiffies_64;
4715 	int i;
4716 
4717 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4718 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4719 
4720 		/*
4721 		 * If the record is older than dirty_expire_interval,
4722 		 * writeback on it has already started.  No need to kick it
4723 		 * off again.  Also, don't start a new one if there's
4724 		 * already one in flight.
4725 		 */
4726 		if (time_after64(frn->at, now - intv) &&
4727 		    atomic_read(&frn->done.cnt) == 1) {
4728 			frn->at = 0;
4729 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4730 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4731 					       WB_REASON_FOREIGN_FLUSH,
4732 					       &frn->done);
4733 		}
4734 	}
4735 }
4736 
4737 #else	/* CONFIG_CGROUP_WRITEBACK */
4738 
4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4740 {
4741 	return 0;
4742 }
4743 
4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4745 {
4746 }
4747 
4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4749 {
4750 }
4751 
4752 #endif	/* CONFIG_CGROUP_WRITEBACK */
4753 
4754 /*
4755  * DO NOT USE IN NEW FILES.
4756  *
4757  * "cgroup.event_control" implementation.
4758  *
4759  * This is way over-engineered.  It tries to support fully configurable
4760  * events for each user.  Such level of flexibility is completely
4761  * unnecessary especially in the light of the planned unified hierarchy.
4762  *
4763  * Please deprecate this and replace with something simpler if at all
4764  * possible.
4765  */
4766 
4767 /*
4768  * Unregister event and free resources.
4769  *
4770  * Gets called from workqueue.
4771  */
4772 static void memcg_event_remove(struct work_struct *work)
4773 {
4774 	struct mem_cgroup_event *event =
4775 		container_of(work, struct mem_cgroup_event, remove);
4776 	struct mem_cgroup *memcg = event->memcg;
4777 
4778 	remove_wait_queue(event->wqh, &event->wait);
4779 
4780 	event->unregister_event(memcg, event->eventfd);
4781 
4782 	/* Notify userspace the event is going away. */
4783 	eventfd_signal(event->eventfd, 1);
4784 
4785 	eventfd_ctx_put(event->eventfd);
4786 	kfree(event);
4787 	css_put(&memcg->css);
4788 }
4789 
4790 /*
4791  * Gets called on EPOLLHUP on eventfd when user closes it.
4792  *
4793  * Called with wqh->lock held and interrupts disabled.
4794  */
4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4796 			    int sync, void *key)
4797 {
4798 	struct mem_cgroup_event *event =
4799 		container_of(wait, struct mem_cgroup_event, wait);
4800 	struct mem_cgroup *memcg = event->memcg;
4801 	__poll_t flags = key_to_poll(key);
4802 
4803 	if (flags & EPOLLHUP) {
4804 		/*
4805 		 * If the event has been detached at cgroup removal, we
4806 		 * can simply return knowing the other side will cleanup
4807 		 * for us.
4808 		 *
4809 		 * We can't race against event freeing since the other
4810 		 * side will require wqh->lock via remove_wait_queue(),
4811 		 * which we hold.
4812 		 */
4813 		spin_lock(&memcg->event_list_lock);
4814 		if (!list_empty(&event->list)) {
4815 			list_del_init(&event->list);
4816 			/*
4817 			 * We are in atomic context, but cgroup_event_remove()
4818 			 * may sleep, so we have to call it in workqueue.
4819 			 */
4820 			schedule_work(&event->remove);
4821 		}
4822 		spin_unlock(&memcg->event_list_lock);
4823 	}
4824 
4825 	return 0;
4826 }
4827 
4828 static void memcg_event_ptable_queue_proc(struct file *file,
4829 		wait_queue_head_t *wqh, poll_table *pt)
4830 {
4831 	struct mem_cgroup_event *event =
4832 		container_of(pt, struct mem_cgroup_event, pt);
4833 
4834 	event->wqh = wqh;
4835 	add_wait_queue(wqh, &event->wait);
4836 }
4837 
4838 /*
4839  * DO NOT USE IN NEW FILES.
4840  *
4841  * Parse input and register new cgroup event handler.
4842  *
4843  * Input must be in format '<event_fd> <control_fd> <args>'.
4844  * Interpretation of args is defined by control file implementation.
4845  */
4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4847 					 char *buf, size_t nbytes, loff_t off)
4848 {
4849 	struct cgroup_subsys_state *css = of_css(of);
4850 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4851 	struct mem_cgroup_event *event;
4852 	struct cgroup_subsys_state *cfile_css;
4853 	unsigned int efd, cfd;
4854 	struct fd efile;
4855 	struct fd cfile;
4856 	const char *name;
4857 	char *endp;
4858 	int ret;
4859 
4860 	buf = strstrip(buf);
4861 
4862 	efd = simple_strtoul(buf, &endp, 10);
4863 	if (*endp != ' ')
4864 		return -EINVAL;
4865 	buf = endp + 1;
4866 
4867 	cfd = simple_strtoul(buf, &endp, 10);
4868 	if ((*endp != ' ') && (*endp != '\0'))
4869 		return -EINVAL;
4870 	buf = endp + 1;
4871 
4872 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4873 	if (!event)
4874 		return -ENOMEM;
4875 
4876 	event->memcg = memcg;
4877 	INIT_LIST_HEAD(&event->list);
4878 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4879 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4880 	INIT_WORK(&event->remove, memcg_event_remove);
4881 
4882 	efile = fdget(efd);
4883 	if (!efile.file) {
4884 		ret = -EBADF;
4885 		goto out_kfree;
4886 	}
4887 
4888 	event->eventfd = eventfd_ctx_fileget(efile.file);
4889 	if (IS_ERR(event->eventfd)) {
4890 		ret = PTR_ERR(event->eventfd);
4891 		goto out_put_efile;
4892 	}
4893 
4894 	cfile = fdget(cfd);
4895 	if (!cfile.file) {
4896 		ret = -EBADF;
4897 		goto out_put_eventfd;
4898 	}
4899 
4900 	/* the process need read permission on control file */
4901 	/* AV: shouldn't we check that it's been opened for read instead? */
4902 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4903 	if (ret < 0)
4904 		goto out_put_cfile;
4905 
4906 	/*
4907 	 * Determine the event callbacks and set them in @event.  This used
4908 	 * to be done via struct cftype but cgroup core no longer knows
4909 	 * about these events.  The following is crude but the whole thing
4910 	 * is for compatibility anyway.
4911 	 *
4912 	 * DO NOT ADD NEW FILES.
4913 	 */
4914 	name = cfile.file->f_path.dentry->d_name.name;
4915 
4916 	if (!strcmp(name, "memory.usage_in_bytes")) {
4917 		event->register_event = mem_cgroup_usage_register_event;
4918 		event->unregister_event = mem_cgroup_usage_unregister_event;
4919 	} else if (!strcmp(name, "memory.oom_control")) {
4920 		event->register_event = mem_cgroup_oom_register_event;
4921 		event->unregister_event = mem_cgroup_oom_unregister_event;
4922 	} else if (!strcmp(name, "memory.pressure_level")) {
4923 		event->register_event = vmpressure_register_event;
4924 		event->unregister_event = vmpressure_unregister_event;
4925 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4926 		event->register_event = memsw_cgroup_usage_register_event;
4927 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4928 	} else {
4929 		ret = -EINVAL;
4930 		goto out_put_cfile;
4931 	}
4932 
4933 	/*
4934 	 * Verify @cfile should belong to @css.  Also, remaining events are
4935 	 * automatically removed on cgroup destruction but the removal is
4936 	 * asynchronous, so take an extra ref on @css.
4937 	 */
4938 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4939 					       &memory_cgrp_subsys);
4940 	ret = -EINVAL;
4941 	if (IS_ERR(cfile_css))
4942 		goto out_put_cfile;
4943 	if (cfile_css != css) {
4944 		css_put(cfile_css);
4945 		goto out_put_cfile;
4946 	}
4947 
4948 	ret = event->register_event(memcg, event->eventfd, buf);
4949 	if (ret)
4950 		goto out_put_css;
4951 
4952 	vfs_poll(efile.file, &event->pt);
4953 
4954 	spin_lock(&memcg->event_list_lock);
4955 	list_add(&event->list, &memcg->event_list);
4956 	spin_unlock(&memcg->event_list_lock);
4957 
4958 	fdput(cfile);
4959 	fdput(efile);
4960 
4961 	return nbytes;
4962 
4963 out_put_css:
4964 	css_put(css);
4965 out_put_cfile:
4966 	fdput(cfile);
4967 out_put_eventfd:
4968 	eventfd_ctx_put(event->eventfd);
4969 out_put_efile:
4970 	fdput(efile);
4971 out_kfree:
4972 	kfree(event);
4973 
4974 	return ret;
4975 }
4976 
4977 static struct cftype mem_cgroup_legacy_files[] = {
4978 	{
4979 		.name = "usage_in_bytes",
4980 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4981 		.read_u64 = mem_cgroup_read_u64,
4982 	},
4983 	{
4984 		.name = "max_usage_in_bytes",
4985 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4986 		.write = mem_cgroup_reset,
4987 		.read_u64 = mem_cgroup_read_u64,
4988 	},
4989 	{
4990 		.name = "limit_in_bytes",
4991 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4992 		.write = mem_cgroup_write,
4993 		.read_u64 = mem_cgroup_read_u64,
4994 	},
4995 	{
4996 		.name = "soft_limit_in_bytes",
4997 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4998 		.write = mem_cgroup_write,
4999 		.read_u64 = mem_cgroup_read_u64,
5000 	},
5001 	{
5002 		.name = "failcnt",
5003 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5004 		.write = mem_cgroup_reset,
5005 		.read_u64 = mem_cgroup_read_u64,
5006 	},
5007 	{
5008 		.name = "stat",
5009 		.seq_show = memcg_stat_show,
5010 	},
5011 	{
5012 		.name = "force_empty",
5013 		.write = mem_cgroup_force_empty_write,
5014 	},
5015 	{
5016 		.name = "use_hierarchy",
5017 		.write_u64 = mem_cgroup_hierarchy_write,
5018 		.read_u64 = mem_cgroup_hierarchy_read,
5019 	},
5020 	{
5021 		.name = "cgroup.event_control",		/* XXX: for compat */
5022 		.write = memcg_write_event_control,
5023 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5024 	},
5025 	{
5026 		.name = "swappiness",
5027 		.read_u64 = mem_cgroup_swappiness_read,
5028 		.write_u64 = mem_cgroup_swappiness_write,
5029 	},
5030 	{
5031 		.name = "move_charge_at_immigrate",
5032 		.read_u64 = mem_cgroup_move_charge_read,
5033 		.write_u64 = mem_cgroup_move_charge_write,
5034 	},
5035 	{
5036 		.name = "oom_control",
5037 		.seq_show = mem_cgroup_oom_control_read,
5038 		.write_u64 = mem_cgroup_oom_control_write,
5039 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5040 	},
5041 	{
5042 		.name = "pressure_level",
5043 	},
5044 #ifdef CONFIG_NUMA
5045 	{
5046 		.name = "numa_stat",
5047 		.seq_show = memcg_numa_stat_show,
5048 	},
5049 #endif
5050 	{
5051 		.name = "kmem.limit_in_bytes",
5052 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5053 		.write = mem_cgroup_write,
5054 		.read_u64 = mem_cgroup_read_u64,
5055 	},
5056 	{
5057 		.name = "kmem.usage_in_bytes",
5058 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5059 		.read_u64 = mem_cgroup_read_u64,
5060 	},
5061 	{
5062 		.name = "kmem.failcnt",
5063 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5064 		.write = mem_cgroup_reset,
5065 		.read_u64 = mem_cgroup_read_u64,
5066 	},
5067 	{
5068 		.name = "kmem.max_usage_in_bytes",
5069 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5070 		.write = mem_cgroup_reset,
5071 		.read_u64 = mem_cgroup_read_u64,
5072 	},
5073 #if defined(CONFIG_MEMCG_KMEM) && \
5074 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5075 	{
5076 		.name = "kmem.slabinfo",
5077 		.seq_show = memcg_slab_show,
5078 	},
5079 #endif
5080 	{
5081 		.name = "kmem.tcp.limit_in_bytes",
5082 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5083 		.write = mem_cgroup_write,
5084 		.read_u64 = mem_cgroup_read_u64,
5085 	},
5086 	{
5087 		.name = "kmem.tcp.usage_in_bytes",
5088 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5089 		.read_u64 = mem_cgroup_read_u64,
5090 	},
5091 	{
5092 		.name = "kmem.tcp.failcnt",
5093 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5094 		.write = mem_cgroup_reset,
5095 		.read_u64 = mem_cgroup_read_u64,
5096 	},
5097 	{
5098 		.name = "kmem.tcp.max_usage_in_bytes",
5099 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5100 		.write = mem_cgroup_reset,
5101 		.read_u64 = mem_cgroup_read_u64,
5102 	},
5103 	{ },	/* terminate */
5104 };
5105 
5106 /*
5107  * Private memory cgroup IDR
5108  *
5109  * Swap-out records and page cache shadow entries need to store memcg
5110  * references in constrained space, so we maintain an ID space that is
5111  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5112  * memory-controlled cgroups to 64k.
5113  *
5114  * However, there usually are many references to the offline CSS after
5115  * the cgroup has been destroyed, such as page cache or reclaimable
5116  * slab objects, that don't need to hang on to the ID. We want to keep
5117  * those dead CSS from occupying IDs, or we might quickly exhaust the
5118  * relatively small ID space and prevent the creation of new cgroups
5119  * even when there are much fewer than 64k cgroups - possibly none.
5120  *
5121  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5122  * be freed and recycled when it's no longer needed, which is usually
5123  * when the CSS is offlined.
5124  *
5125  * The only exception to that are records of swapped out tmpfs/shmem
5126  * pages that need to be attributed to live ancestors on swapin. But
5127  * those references are manageable from userspace.
5128  */
5129 
5130 static DEFINE_IDR(mem_cgroup_idr);
5131 
5132 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5133 {
5134 	if (memcg->id.id > 0) {
5135 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5136 		memcg->id.id = 0;
5137 	}
5138 }
5139 
5140 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5141 						  unsigned int n)
5142 {
5143 	refcount_add(n, &memcg->id.ref);
5144 }
5145 
5146 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5147 {
5148 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5149 		mem_cgroup_id_remove(memcg);
5150 
5151 		/* Memcg ID pins CSS */
5152 		css_put(&memcg->css);
5153 	}
5154 }
5155 
5156 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5157 {
5158 	mem_cgroup_id_put_many(memcg, 1);
5159 }
5160 
5161 /**
5162  * mem_cgroup_from_id - look up a memcg from a memcg id
5163  * @id: the memcg id to look up
5164  *
5165  * Caller must hold rcu_read_lock().
5166  */
5167 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5168 {
5169 	WARN_ON_ONCE(!rcu_read_lock_held());
5170 	return idr_find(&mem_cgroup_idr, id);
5171 }
5172 
5173 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5174 {
5175 	struct mem_cgroup_per_node *pn;
5176 	int tmp = node;
5177 	/*
5178 	 * This routine is called against possible nodes.
5179 	 * But it's BUG to call kmalloc() against offline node.
5180 	 *
5181 	 * TODO: this routine can waste much memory for nodes which will
5182 	 *       never be onlined. It's better to use memory hotplug callback
5183 	 *       function.
5184 	 */
5185 	if (!node_state(node, N_NORMAL_MEMORY))
5186 		tmp = -1;
5187 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5188 	if (!pn)
5189 		return 1;
5190 
5191 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5192 						 GFP_KERNEL_ACCOUNT);
5193 	if (!pn->lruvec_stat_local) {
5194 		kfree(pn);
5195 		return 1;
5196 	}
5197 
5198 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5199 					       GFP_KERNEL_ACCOUNT);
5200 	if (!pn->lruvec_stat_cpu) {
5201 		free_percpu(pn->lruvec_stat_local);
5202 		kfree(pn);
5203 		return 1;
5204 	}
5205 
5206 	lruvec_init(&pn->lruvec);
5207 	pn->usage_in_excess = 0;
5208 	pn->on_tree = false;
5209 	pn->memcg = memcg;
5210 
5211 	memcg->nodeinfo[node] = pn;
5212 	return 0;
5213 }
5214 
5215 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5216 {
5217 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5218 
5219 	if (!pn)
5220 		return;
5221 
5222 	free_percpu(pn->lruvec_stat_cpu);
5223 	free_percpu(pn->lruvec_stat_local);
5224 	kfree(pn);
5225 }
5226 
5227 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5228 {
5229 	int node;
5230 
5231 	for_each_node(node)
5232 		free_mem_cgroup_per_node_info(memcg, node);
5233 	free_percpu(memcg->vmstats_percpu);
5234 	free_percpu(memcg->vmstats_local);
5235 	kfree(memcg);
5236 }
5237 
5238 static void mem_cgroup_free(struct mem_cgroup *memcg)
5239 {
5240 	memcg_wb_domain_exit(memcg);
5241 	/*
5242 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5243 	 * on parent's and all ancestor levels.
5244 	 */
5245 	memcg_flush_percpu_vmstats(memcg);
5246 	memcg_flush_percpu_vmevents(memcg);
5247 	__mem_cgroup_free(memcg);
5248 }
5249 
5250 static struct mem_cgroup *mem_cgroup_alloc(void)
5251 {
5252 	struct mem_cgroup *memcg;
5253 	unsigned int size;
5254 	int node;
5255 	int __maybe_unused i;
5256 	long error = -ENOMEM;
5257 
5258 	size = sizeof(struct mem_cgroup);
5259 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5260 
5261 	memcg = kzalloc(size, GFP_KERNEL);
5262 	if (!memcg)
5263 		return ERR_PTR(error);
5264 
5265 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 				 1, MEM_CGROUP_ID_MAX,
5267 				 GFP_KERNEL);
5268 	if (memcg->id.id < 0) {
5269 		error = memcg->id.id;
5270 		goto fail;
5271 	}
5272 
5273 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5274 						GFP_KERNEL_ACCOUNT);
5275 	if (!memcg->vmstats_local)
5276 		goto fail;
5277 
5278 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5279 						 GFP_KERNEL_ACCOUNT);
5280 	if (!memcg->vmstats_percpu)
5281 		goto fail;
5282 
5283 	for_each_node(node)
5284 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5285 			goto fail;
5286 
5287 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5288 		goto fail;
5289 
5290 	INIT_WORK(&memcg->high_work, high_work_func);
5291 	INIT_LIST_HEAD(&memcg->oom_notify);
5292 	mutex_init(&memcg->thresholds_lock);
5293 	spin_lock_init(&memcg->move_lock);
5294 	vmpressure_init(&memcg->vmpressure);
5295 	INIT_LIST_HEAD(&memcg->event_list);
5296 	spin_lock_init(&memcg->event_list_lock);
5297 	memcg->socket_pressure = jiffies;
5298 #ifdef CONFIG_MEMCG_KMEM
5299 	memcg->kmemcg_id = -1;
5300 	INIT_LIST_HEAD(&memcg->objcg_list);
5301 #endif
5302 #ifdef CONFIG_CGROUP_WRITEBACK
5303 	INIT_LIST_HEAD(&memcg->cgwb_list);
5304 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5305 		memcg->cgwb_frn[i].done =
5306 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5307 #endif
5308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5309 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5310 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5311 	memcg->deferred_split_queue.split_queue_len = 0;
5312 #endif
5313 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5314 	return memcg;
5315 fail:
5316 	mem_cgroup_id_remove(memcg);
5317 	__mem_cgroup_free(memcg);
5318 	return ERR_PTR(error);
5319 }
5320 
5321 static struct cgroup_subsys_state * __ref
5322 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5323 {
5324 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5325 	struct mem_cgroup *memcg, *old_memcg;
5326 	long error = -ENOMEM;
5327 
5328 	old_memcg = set_active_memcg(parent);
5329 	memcg = mem_cgroup_alloc();
5330 	set_active_memcg(old_memcg);
5331 	if (IS_ERR(memcg))
5332 		return ERR_CAST(memcg);
5333 
5334 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5335 	memcg->soft_limit = PAGE_COUNTER_MAX;
5336 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5337 	if (parent) {
5338 		memcg->swappiness = mem_cgroup_swappiness(parent);
5339 		memcg->oom_kill_disable = parent->oom_kill_disable;
5340 
5341 		page_counter_init(&memcg->memory, &parent->memory);
5342 		page_counter_init(&memcg->swap, &parent->swap);
5343 		page_counter_init(&memcg->kmem, &parent->kmem);
5344 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5345 	} else {
5346 		page_counter_init(&memcg->memory, NULL);
5347 		page_counter_init(&memcg->swap, NULL);
5348 		page_counter_init(&memcg->kmem, NULL);
5349 		page_counter_init(&memcg->tcpmem, NULL);
5350 
5351 		root_mem_cgroup = memcg;
5352 		return &memcg->css;
5353 	}
5354 
5355 	/* The following stuff does not apply to the root */
5356 	error = memcg_online_kmem(memcg);
5357 	if (error)
5358 		goto fail;
5359 
5360 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5361 		static_branch_inc(&memcg_sockets_enabled_key);
5362 
5363 	return &memcg->css;
5364 fail:
5365 	mem_cgroup_id_remove(memcg);
5366 	mem_cgroup_free(memcg);
5367 	return ERR_PTR(error);
5368 }
5369 
5370 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5371 {
5372 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5373 
5374 	/*
5375 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5376 	 * by the time the maps are allocated. So, we allocate maps
5377 	 * here, when for_each_mem_cgroup() can't skip it.
5378 	 */
5379 	if (memcg_alloc_shrinker_maps(memcg)) {
5380 		mem_cgroup_id_remove(memcg);
5381 		return -ENOMEM;
5382 	}
5383 
5384 	/* Online state pins memcg ID, memcg ID pins CSS */
5385 	refcount_set(&memcg->id.ref, 1);
5386 	css_get(css);
5387 	return 0;
5388 }
5389 
5390 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5391 {
5392 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393 	struct mem_cgroup_event *event, *tmp;
5394 
5395 	/*
5396 	 * Unregister events and notify userspace.
5397 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5398 	 * directory to avoid race between userspace and kernelspace.
5399 	 */
5400 	spin_lock(&memcg->event_list_lock);
5401 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5402 		list_del_init(&event->list);
5403 		schedule_work(&event->remove);
5404 	}
5405 	spin_unlock(&memcg->event_list_lock);
5406 
5407 	page_counter_set_min(&memcg->memory, 0);
5408 	page_counter_set_low(&memcg->memory, 0);
5409 
5410 	memcg_offline_kmem(memcg);
5411 	wb_memcg_offline(memcg);
5412 
5413 	drain_all_stock(memcg);
5414 
5415 	mem_cgroup_id_put(memcg);
5416 }
5417 
5418 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5419 {
5420 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421 
5422 	invalidate_reclaim_iterators(memcg);
5423 }
5424 
5425 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5426 {
5427 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428 	int __maybe_unused i;
5429 
5430 #ifdef CONFIG_CGROUP_WRITEBACK
5431 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5432 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5433 #endif
5434 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5435 		static_branch_dec(&memcg_sockets_enabled_key);
5436 
5437 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5438 		static_branch_dec(&memcg_sockets_enabled_key);
5439 
5440 	vmpressure_cleanup(&memcg->vmpressure);
5441 	cancel_work_sync(&memcg->high_work);
5442 	mem_cgroup_remove_from_trees(memcg);
5443 	memcg_free_shrinker_maps(memcg);
5444 	memcg_free_kmem(memcg);
5445 	mem_cgroup_free(memcg);
5446 }
5447 
5448 /**
5449  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5450  * @css: the target css
5451  *
5452  * Reset the states of the mem_cgroup associated with @css.  This is
5453  * invoked when the userland requests disabling on the default hierarchy
5454  * but the memcg is pinned through dependency.  The memcg should stop
5455  * applying policies and should revert to the vanilla state as it may be
5456  * made visible again.
5457  *
5458  * The current implementation only resets the essential configurations.
5459  * This needs to be expanded to cover all the visible parts.
5460  */
5461 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5462 {
5463 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5464 
5465 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5466 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5467 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5468 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5469 	page_counter_set_min(&memcg->memory, 0);
5470 	page_counter_set_low(&memcg->memory, 0);
5471 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5472 	memcg->soft_limit = PAGE_COUNTER_MAX;
5473 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5474 	memcg_wb_domain_size_changed(memcg);
5475 }
5476 
5477 #ifdef CONFIG_MMU
5478 /* Handlers for move charge at task migration. */
5479 static int mem_cgroup_do_precharge(unsigned long count)
5480 {
5481 	int ret;
5482 
5483 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5484 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5485 	if (!ret) {
5486 		mc.precharge += count;
5487 		return ret;
5488 	}
5489 
5490 	/* Try charges one by one with reclaim, but do not retry */
5491 	while (count--) {
5492 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5493 		if (ret)
5494 			return ret;
5495 		mc.precharge++;
5496 		cond_resched();
5497 	}
5498 	return 0;
5499 }
5500 
5501 union mc_target {
5502 	struct page	*page;
5503 	swp_entry_t	ent;
5504 };
5505 
5506 enum mc_target_type {
5507 	MC_TARGET_NONE = 0,
5508 	MC_TARGET_PAGE,
5509 	MC_TARGET_SWAP,
5510 	MC_TARGET_DEVICE,
5511 };
5512 
5513 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5514 						unsigned long addr, pte_t ptent)
5515 {
5516 	struct page *page = vm_normal_page(vma, addr, ptent);
5517 
5518 	if (!page || !page_mapped(page))
5519 		return NULL;
5520 	if (PageAnon(page)) {
5521 		if (!(mc.flags & MOVE_ANON))
5522 			return NULL;
5523 	} else {
5524 		if (!(mc.flags & MOVE_FILE))
5525 			return NULL;
5526 	}
5527 	if (!get_page_unless_zero(page))
5528 		return NULL;
5529 
5530 	return page;
5531 }
5532 
5533 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5534 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5535 			pte_t ptent, swp_entry_t *entry)
5536 {
5537 	struct page *page = NULL;
5538 	swp_entry_t ent = pte_to_swp_entry(ptent);
5539 
5540 	if (!(mc.flags & MOVE_ANON))
5541 		return NULL;
5542 
5543 	/*
5544 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5545 	 * a device and because they are not accessible by CPU they are store
5546 	 * as special swap entry in the CPU page table.
5547 	 */
5548 	if (is_device_private_entry(ent)) {
5549 		page = device_private_entry_to_page(ent);
5550 		/*
5551 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5552 		 * a refcount of 1 when free (unlike normal page)
5553 		 */
5554 		if (!page_ref_add_unless(page, 1, 1))
5555 			return NULL;
5556 		return page;
5557 	}
5558 
5559 	if (non_swap_entry(ent))
5560 		return NULL;
5561 
5562 	/*
5563 	 * Because lookup_swap_cache() updates some statistics counter,
5564 	 * we call find_get_page() with swapper_space directly.
5565 	 */
5566 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5567 	entry->val = ent.val;
5568 
5569 	return page;
5570 }
5571 #else
5572 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5573 			pte_t ptent, swp_entry_t *entry)
5574 {
5575 	return NULL;
5576 }
5577 #endif
5578 
5579 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5580 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5581 {
5582 	if (!vma->vm_file) /* anonymous vma */
5583 		return NULL;
5584 	if (!(mc.flags & MOVE_FILE))
5585 		return NULL;
5586 
5587 	/* page is moved even if it's not RSS of this task(page-faulted). */
5588 	/* shmem/tmpfs may report page out on swap: account for that too. */
5589 	return find_get_incore_page(vma->vm_file->f_mapping,
5590 			linear_page_index(vma, addr));
5591 }
5592 
5593 /**
5594  * mem_cgroup_move_account - move account of the page
5595  * @page: the page
5596  * @compound: charge the page as compound or small page
5597  * @from: mem_cgroup which the page is moved from.
5598  * @to:	mem_cgroup which the page is moved to. @from != @to.
5599  *
5600  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5601  *
5602  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5603  * from old cgroup.
5604  */
5605 static int mem_cgroup_move_account(struct page *page,
5606 				   bool compound,
5607 				   struct mem_cgroup *from,
5608 				   struct mem_cgroup *to)
5609 {
5610 	struct lruvec *from_vec, *to_vec;
5611 	struct pglist_data *pgdat;
5612 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5613 	int ret;
5614 
5615 	VM_BUG_ON(from == to);
5616 	VM_BUG_ON_PAGE(PageLRU(page), page);
5617 	VM_BUG_ON(compound && !PageTransHuge(page));
5618 
5619 	/*
5620 	 * Prevent mem_cgroup_migrate() from looking at
5621 	 * page's memory cgroup of its source page while we change it.
5622 	 */
5623 	ret = -EBUSY;
5624 	if (!trylock_page(page))
5625 		goto out;
5626 
5627 	ret = -EINVAL;
5628 	if (page_memcg(page) != from)
5629 		goto out_unlock;
5630 
5631 	pgdat = page_pgdat(page);
5632 	from_vec = mem_cgroup_lruvec(from, pgdat);
5633 	to_vec = mem_cgroup_lruvec(to, pgdat);
5634 
5635 	lock_page_memcg(page);
5636 
5637 	if (PageAnon(page)) {
5638 		if (page_mapped(page)) {
5639 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5640 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5641 			if (PageTransHuge(page)) {
5642 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5643 						   -nr_pages);
5644 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5645 						   nr_pages);
5646 			}
5647 
5648 		}
5649 	} else {
5650 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5651 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5652 
5653 		if (PageSwapBacked(page)) {
5654 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5655 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5656 		}
5657 
5658 		if (page_mapped(page)) {
5659 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5660 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5661 		}
5662 
5663 		if (PageDirty(page)) {
5664 			struct address_space *mapping = page_mapping(page);
5665 
5666 			if (mapping_can_writeback(mapping)) {
5667 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5668 						   -nr_pages);
5669 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5670 						   nr_pages);
5671 			}
5672 		}
5673 	}
5674 
5675 	if (PageWriteback(page)) {
5676 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5677 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5678 	}
5679 
5680 	/*
5681 	 * All state has been migrated, let's switch to the new memcg.
5682 	 *
5683 	 * It is safe to change page's memcg here because the page
5684 	 * is referenced, charged, isolated, and locked: we can't race
5685 	 * with (un)charging, migration, LRU putback, or anything else
5686 	 * that would rely on a stable page's memory cgroup.
5687 	 *
5688 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5689 	 * to save space. As soon as we switch page's memory cgroup to a
5690 	 * new memcg that isn't locked, the above state can change
5691 	 * concurrently again. Make sure we're truly done with it.
5692 	 */
5693 	smp_mb();
5694 
5695 	css_get(&to->css);
5696 	css_put(&from->css);
5697 
5698 	page->memcg_data = (unsigned long)to;
5699 
5700 	__unlock_page_memcg(from);
5701 
5702 	ret = 0;
5703 
5704 	local_irq_disable();
5705 	mem_cgroup_charge_statistics(to, page, nr_pages);
5706 	memcg_check_events(to, page);
5707 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5708 	memcg_check_events(from, page);
5709 	local_irq_enable();
5710 out_unlock:
5711 	unlock_page(page);
5712 out:
5713 	return ret;
5714 }
5715 
5716 /**
5717  * get_mctgt_type - get target type of moving charge
5718  * @vma: the vma the pte to be checked belongs
5719  * @addr: the address corresponding to the pte to be checked
5720  * @ptent: the pte to be checked
5721  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5722  *
5723  * Returns
5724  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5725  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5726  *     move charge. if @target is not NULL, the page is stored in target->page
5727  *     with extra refcnt got(Callers should handle it).
5728  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5729  *     target for charge migration. if @target is not NULL, the entry is stored
5730  *     in target->ent.
5731  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5732  *     (so ZONE_DEVICE page and thus not on the lru).
5733  *     For now we such page is charge like a regular page would be as for all
5734  *     intent and purposes it is just special memory taking the place of a
5735  *     regular page.
5736  *
5737  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5738  *
5739  * Called with pte lock held.
5740  */
5741 
5742 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5743 		unsigned long addr, pte_t ptent, union mc_target *target)
5744 {
5745 	struct page *page = NULL;
5746 	enum mc_target_type ret = MC_TARGET_NONE;
5747 	swp_entry_t ent = { .val = 0 };
5748 
5749 	if (pte_present(ptent))
5750 		page = mc_handle_present_pte(vma, addr, ptent);
5751 	else if (is_swap_pte(ptent))
5752 		page = mc_handle_swap_pte(vma, ptent, &ent);
5753 	else if (pte_none(ptent))
5754 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5755 
5756 	if (!page && !ent.val)
5757 		return ret;
5758 	if (page) {
5759 		/*
5760 		 * Do only loose check w/o serialization.
5761 		 * mem_cgroup_move_account() checks the page is valid or
5762 		 * not under LRU exclusion.
5763 		 */
5764 		if (page_memcg(page) == mc.from) {
5765 			ret = MC_TARGET_PAGE;
5766 			if (is_device_private_page(page))
5767 				ret = MC_TARGET_DEVICE;
5768 			if (target)
5769 				target->page = page;
5770 		}
5771 		if (!ret || !target)
5772 			put_page(page);
5773 	}
5774 	/*
5775 	 * There is a swap entry and a page doesn't exist or isn't charged.
5776 	 * But we cannot move a tail-page in a THP.
5777 	 */
5778 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5779 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5780 		ret = MC_TARGET_SWAP;
5781 		if (target)
5782 			target->ent = ent;
5783 	}
5784 	return ret;
5785 }
5786 
5787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5788 /*
5789  * We don't consider PMD mapped swapping or file mapped pages because THP does
5790  * not support them for now.
5791  * Caller should make sure that pmd_trans_huge(pmd) is true.
5792  */
5793 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5794 		unsigned long addr, pmd_t pmd, union mc_target *target)
5795 {
5796 	struct page *page = NULL;
5797 	enum mc_target_type ret = MC_TARGET_NONE;
5798 
5799 	if (unlikely(is_swap_pmd(pmd))) {
5800 		VM_BUG_ON(thp_migration_supported() &&
5801 				  !is_pmd_migration_entry(pmd));
5802 		return ret;
5803 	}
5804 	page = pmd_page(pmd);
5805 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5806 	if (!(mc.flags & MOVE_ANON))
5807 		return ret;
5808 	if (page_memcg(page) == mc.from) {
5809 		ret = MC_TARGET_PAGE;
5810 		if (target) {
5811 			get_page(page);
5812 			target->page = page;
5813 		}
5814 	}
5815 	return ret;
5816 }
5817 #else
5818 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5819 		unsigned long addr, pmd_t pmd, union mc_target *target)
5820 {
5821 	return MC_TARGET_NONE;
5822 }
5823 #endif
5824 
5825 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5826 					unsigned long addr, unsigned long end,
5827 					struct mm_walk *walk)
5828 {
5829 	struct vm_area_struct *vma = walk->vma;
5830 	pte_t *pte;
5831 	spinlock_t *ptl;
5832 
5833 	ptl = pmd_trans_huge_lock(pmd, vma);
5834 	if (ptl) {
5835 		/*
5836 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5837 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5838 		 * this might change.
5839 		 */
5840 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5841 			mc.precharge += HPAGE_PMD_NR;
5842 		spin_unlock(ptl);
5843 		return 0;
5844 	}
5845 
5846 	if (pmd_trans_unstable(pmd))
5847 		return 0;
5848 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5849 	for (; addr != end; pte++, addr += PAGE_SIZE)
5850 		if (get_mctgt_type(vma, addr, *pte, NULL))
5851 			mc.precharge++;	/* increment precharge temporarily */
5852 	pte_unmap_unlock(pte - 1, ptl);
5853 	cond_resched();
5854 
5855 	return 0;
5856 }
5857 
5858 static const struct mm_walk_ops precharge_walk_ops = {
5859 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5860 };
5861 
5862 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5863 {
5864 	unsigned long precharge;
5865 
5866 	mmap_read_lock(mm);
5867 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5868 	mmap_read_unlock(mm);
5869 
5870 	precharge = mc.precharge;
5871 	mc.precharge = 0;
5872 
5873 	return precharge;
5874 }
5875 
5876 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5877 {
5878 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5879 
5880 	VM_BUG_ON(mc.moving_task);
5881 	mc.moving_task = current;
5882 	return mem_cgroup_do_precharge(precharge);
5883 }
5884 
5885 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5886 static void __mem_cgroup_clear_mc(void)
5887 {
5888 	struct mem_cgroup *from = mc.from;
5889 	struct mem_cgroup *to = mc.to;
5890 
5891 	/* we must uncharge all the leftover precharges from mc.to */
5892 	if (mc.precharge) {
5893 		cancel_charge(mc.to, mc.precharge);
5894 		mc.precharge = 0;
5895 	}
5896 	/*
5897 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5898 	 * we must uncharge here.
5899 	 */
5900 	if (mc.moved_charge) {
5901 		cancel_charge(mc.from, mc.moved_charge);
5902 		mc.moved_charge = 0;
5903 	}
5904 	/* we must fixup refcnts and charges */
5905 	if (mc.moved_swap) {
5906 		/* uncharge swap account from the old cgroup */
5907 		if (!mem_cgroup_is_root(mc.from))
5908 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5909 
5910 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5911 
5912 		/*
5913 		 * we charged both to->memory and to->memsw, so we
5914 		 * should uncharge to->memory.
5915 		 */
5916 		if (!mem_cgroup_is_root(mc.to))
5917 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5918 
5919 		mc.moved_swap = 0;
5920 	}
5921 	memcg_oom_recover(from);
5922 	memcg_oom_recover(to);
5923 	wake_up_all(&mc.waitq);
5924 }
5925 
5926 static void mem_cgroup_clear_mc(void)
5927 {
5928 	struct mm_struct *mm = mc.mm;
5929 
5930 	/*
5931 	 * we must clear moving_task before waking up waiters at the end of
5932 	 * task migration.
5933 	 */
5934 	mc.moving_task = NULL;
5935 	__mem_cgroup_clear_mc();
5936 	spin_lock(&mc.lock);
5937 	mc.from = NULL;
5938 	mc.to = NULL;
5939 	mc.mm = NULL;
5940 	spin_unlock(&mc.lock);
5941 
5942 	mmput(mm);
5943 }
5944 
5945 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5946 {
5947 	struct cgroup_subsys_state *css;
5948 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5949 	struct mem_cgroup *from;
5950 	struct task_struct *leader, *p;
5951 	struct mm_struct *mm;
5952 	unsigned long move_flags;
5953 	int ret = 0;
5954 
5955 	/* charge immigration isn't supported on the default hierarchy */
5956 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5957 		return 0;
5958 
5959 	/*
5960 	 * Multi-process migrations only happen on the default hierarchy
5961 	 * where charge immigration is not used.  Perform charge
5962 	 * immigration if @tset contains a leader and whine if there are
5963 	 * multiple.
5964 	 */
5965 	p = NULL;
5966 	cgroup_taskset_for_each_leader(leader, css, tset) {
5967 		WARN_ON_ONCE(p);
5968 		p = leader;
5969 		memcg = mem_cgroup_from_css(css);
5970 	}
5971 	if (!p)
5972 		return 0;
5973 
5974 	/*
5975 	 * We are now commited to this value whatever it is. Changes in this
5976 	 * tunable will only affect upcoming migrations, not the current one.
5977 	 * So we need to save it, and keep it going.
5978 	 */
5979 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5980 	if (!move_flags)
5981 		return 0;
5982 
5983 	from = mem_cgroup_from_task(p);
5984 
5985 	VM_BUG_ON(from == memcg);
5986 
5987 	mm = get_task_mm(p);
5988 	if (!mm)
5989 		return 0;
5990 	/* We move charges only when we move a owner of the mm */
5991 	if (mm->owner == p) {
5992 		VM_BUG_ON(mc.from);
5993 		VM_BUG_ON(mc.to);
5994 		VM_BUG_ON(mc.precharge);
5995 		VM_BUG_ON(mc.moved_charge);
5996 		VM_BUG_ON(mc.moved_swap);
5997 
5998 		spin_lock(&mc.lock);
5999 		mc.mm = mm;
6000 		mc.from = from;
6001 		mc.to = memcg;
6002 		mc.flags = move_flags;
6003 		spin_unlock(&mc.lock);
6004 		/* We set mc.moving_task later */
6005 
6006 		ret = mem_cgroup_precharge_mc(mm);
6007 		if (ret)
6008 			mem_cgroup_clear_mc();
6009 	} else {
6010 		mmput(mm);
6011 	}
6012 	return ret;
6013 }
6014 
6015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6016 {
6017 	if (mc.to)
6018 		mem_cgroup_clear_mc();
6019 }
6020 
6021 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6022 				unsigned long addr, unsigned long end,
6023 				struct mm_walk *walk)
6024 {
6025 	int ret = 0;
6026 	struct vm_area_struct *vma = walk->vma;
6027 	pte_t *pte;
6028 	spinlock_t *ptl;
6029 	enum mc_target_type target_type;
6030 	union mc_target target;
6031 	struct page *page;
6032 
6033 	ptl = pmd_trans_huge_lock(pmd, vma);
6034 	if (ptl) {
6035 		if (mc.precharge < HPAGE_PMD_NR) {
6036 			spin_unlock(ptl);
6037 			return 0;
6038 		}
6039 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6040 		if (target_type == MC_TARGET_PAGE) {
6041 			page = target.page;
6042 			if (!isolate_lru_page(page)) {
6043 				if (!mem_cgroup_move_account(page, true,
6044 							     mc.from, mc.to)) {
6045 					mc.precharge -= HPAGE_PMD_NR;
6046 					mc.moved_charge += HPAGE_PMD_NR;
6047 				}
6048 				putback_lru_page(page);
6049 			}
6050 			put_page(page);
6051 		} else if (target_type == MC_TARGET_DEVICE) {
6052 			page = target.page;
6053 			if (!mem_cgroup_move_account(page, true,
6054 						     mc.from, mc.to)) {
6055 				mc.precharge -= HPAGE_PMD_NR;
6056 				mc.moved_charge += HPAGE_PMD_NR;
6057 			}
6058 			put_page(page);
6059 		}
6060 		spin_unlock(ptl);
6061 		return 0;
6062 	}
6063 
6064 	if (pmd_trans_unstable(pmd))
6065 		return 0;
6066 retry:
6067 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6068 	for (; addr != end; addr += PAGE_SIZE) {
6069 		pte_t ptent = *(pte++);
6070 		bool device = false;
6071 		swp_entry_t ent;
6072 
6073 		if (!mc.precharge)
6074 			break;
6075 
6076 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6077 		case MC_TARGET_DEVICE:
6078 			device = true;
6079 			fallthrough;
6080 		case MC_TARGET_PAGE:
6081 			page = target.page;
6082 			/*
6083 			 * We can have a part of the split pmd here. Moving it
6084 			 * can be done but it would be too convoluted so simply
6085 			 * ignore such a partial THP and keep it in original
6086 			 * memcg. There should be somebody mapping the head.
6087 			 */
6088 			if (PageTransCompound(page))
6089 				goto put;
6090 			if (!device && isolate_lru_page(page))
6091 				goto put;
6092 			if (!mem_cgroup_move_account(page, false,
6093 						mc.from, mc.to)) {
6094 				mc.precharge--;
6095 				/* we uncharge from mc.from later. */
6096 				mc.moved_charge++;
6097 			}
6098 			if (!device)
6099 				putback_lru_page(page);
6100 put:			/* get_mctgt_type() gets the page */
6101 			put_page(page);
6102 			break;
6103 		case MC_TARGET_SWAP:
6104 			ent = target.ent;
6105 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6106 				mc.precharge--;
6107 				mem_cgroup_id_get_many(mc.to, 1);
6108 				/* we fixup other refcnts and charges later. */
6109 				mc.moved_swap++;
6110 			}
6111 			break;
6112 		default:
6113 			break;
6114 		}
6115 	}
6116 	pte_unmap_unlock(pte - 1, ptl);
6117 	cond_resched();
6118 
6119 	if (addr != end) {
6120 		/*
6121 		 * We have consumed all precharges we got in can_attach().
6122 		 * We try charge one by one, but don't do any additional
6123 		 * charges to mc.to if we have failed in charge once in attach()
6124 		 * phase.
6125 		 */
6126 		ret = mem_cgroup_do_precharge(1);
6127 		if (!ret)
6128 			goto retry;
6129 	}
6130 
6131 	return ret;
6132 }
6133 
6134 static const struct mm_walk_ops charge_walk_ops = {
6135 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6136 };
6137 
6138 static void mem_cgroup_move_charge(void)
6139 {
6140 	lru_add_drain_all();
6141 	/*
6142 	 * Signal lock_page_memcg() to take the memcg's move_lock
6143 	 * while we're moving its pages to another memcg. Then wait
6144 	 * for already started RCU-only updates to finish.
6145 	 */
6146 	atomic_inc(&mc.from->moving_account);
6147 	synchronize_rcu();
6148 retry:
6149 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6150 		/*
6151 		 * Someone who are holding the mmap_lock might be waiting in
6152 		 * waitq. So we cancel all extra charges, wake up all waiters,
6153 		 * and retry. Because we cancel precharges, we might not be able
6154 		 * to move enough charges, but moving charge is a best-effort
6155 		 * feature anyway, so it wouldn't be a big problem.
6156 		 */
6157 		__mem_cgroup_clear_mc();
6158 		cond_resched();
6159 		goto retry;
6160 	}
6161 	/*
6162 	 * When we have consumed all precharges and failed in doing
6163 	 * additional charge, the page walk just aborts.
6164 	 */
6165 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6166 			NULL);
6167 
6168 	mmap_read_unlock(mc.mm);
6169 	atomic_dec(&mc.from->moving_account);
6170 }
6171 
6172 static void mem_cgroup_move_task(void)
6173 {
6174 	if (mc.to) {
6175 		mem_cgroup_move_charge();
6176 		mem_cgroup_clear_mc();
6177 	}
6178 }
6179 #else	/* !CONFIG_MMU */
6180 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6181 {
6182 	return 0;
6183 }
6184 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6185 {
6186 }
6187 static void mem_cgroup_move_task(void)
6188 {
6189 }
6190 #endif
6191 
6192 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6193 {
6194 	if (value == PAGE_COUNTER_MAX)
6195 		seq_puts(m, "max\n");
6196 	else
6197 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6198 
6199 	return 0;
6200 }
6201 
6202 static u64 memory_current_read(struct cgroup_subsys_state *css,
6203 			       struct cftype *cft)
6204 {
6205 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6206 
6207 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6208 }
6209 
6210 static int memory_min_show(struct seq_file *m, void *v)
6211 {
6212 	return seq_puts_memcg_tunable(m,
6213 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6214 }
6215 
6216 static ssize_t memory_min_write(struct kernfs_open_file *of,
6217 				char *buf, size_t nbytes, loff_t off)
6218 {
6219 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6220 	unsigned long min;
6221 	int err;
6222 
6223 	buf = strstrip(buf);
6224 	err = page_counter_memparse(buf, "max", &min);
6225 	if (err)
6226 		return err;
6227 
6228 	page_counter_set_min(&memcg->memory, min);
6229 
6230 	return nbytes;
6231 }
6232 
6233 static int memory_low_show(struct seq_file *m, void *v)
6234 {
6235 	return seq_puts_memcg_tunable(m,
6236 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6237 }
6238 
6239 static ssize_t memory_low_write(struct kernfs_open_file *of,
6240 				char *buf, size_t nbytes, loff_t off)
6241 {
6242 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6243 	unsigned long low;
6244 	int err;
6245 
6246 	buf = strstrip(buf);
6247 	err = page_counter_memparse(buf, "max", &low);
6248 	if (err)
6249 		return err;
6250 
6251 	page_counter_set_low(&memcg->memory, low);
6252 
6253 	return nbytes;
6254 }
6255 
6256 static int memory_high_show(struct seq_file *m, void *v)
6257 {
6258 	return seq_puts_memcg_tunable(m,
6259 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6260 }
6261 
6262 static ssize_t memory_high_write(struct kernfs_open_file *of,
6263 				 char *buf, size_t nbytes, loff_t off)
6264 {
6265 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6266 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6267 	bool drained = false;
6268 	unsigned long high;
6269 	int err;
6270 
6271 	buf = strstrip(buf);
6272 	err = page_counter_memparse(buf, "max", &high);
6273 	if (err)
6274 		return err;
6275 
6276 	for (;;) {
6277 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6278 		unsigned long reclaimed;
6279 
6280 		if (nr_pages <= high)
6281 			break;
6282 
6283 		if (signal_pending(current))
6284 			break;
6285 
6286 		if (!drained) {
6287 			drain_all_stock(memcg);
6288 			drained = true;
6289 			continue;
6290 		}
6291 
6292 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6293 							 GFP_KERNEL, true);
6294 
6295 		if (!reclaimed && !nr_retries--)
6296 			break;
6297 	}
6298 
6299 	page_counter_set_high(&memcg->memory, high);
6300 
6301 	memcg_wb_domain_size_changed(memcg);
6302 
6303 	return nbytes;
6304 }
6305 
6306 static int memory_max_show(struct seq_file *m, void *v)
6307 {
6308 	return seq_puts_memcg_tunable(m,
6309 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6310 }
6311 
6312 static ssize_t memory_max_write(struct kernfs_open_file *of,
6313 				char *buf, size_t nbytes, loff_t off)
6314 {
6315 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6316 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6317 	bool drained = false;
6318 	unsigned long max;
6319 	int err;
6320 
6321 	buf = strstrip(buf);
6322 	err = page_counter_memparse(buf, "max", &max);
6323 	if (err)
6324 		return err;
6325 
6326 	xchg(&memcg->memory.max, max);
6327 
6328 	for (;;) {
6329 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6330 
6331 		if (nr_pages <= max)
6332 			break;
6333 
6334 		if (signal_pending(current))
6335 			break;
6336 
6337 		if (!drained) {
6338 			drain_all_stock(memcg);
6339 			drained = true;
6340 			continue;
6341 		}
6342 
6343 		if (nr_reclaims) {
6344 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6345 							  GFP_KERNEL, true))
6346 				nr_reclaims--;
6347 			continue;
6348 		}
6349 
6350 		memcg_memory_event(memcg, MEMCG_OOM);
6351 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6352 			break;
6353 	}
6354 
6355 	memcg_wb_domain_size_changed(memcg);
6356 	return nbytes;
6357 }
6358 
6359 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6360 {
6361 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6362 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6363 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6364 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6365 	seq_printf(m, "oom_kill %lu\n",
6366 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6367 }
6368 
6369 static int memory_events_show(struct seq_file *m, void *v)
6370 {
6371 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372 
6373 	__memory_events_show(m, memcg->memory_events);
6374 	return 0;
6375 }
6376 
6377 static int memory_events_local_show(struct seq_file *m, void *v)
6378 {
6379 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380 
6381 	__memory_events_show(m, memcg->memory_events_local);
6382 	return 0;
6383 }
6384 
6385 static int memory_stat_show(struct seq_file *m, void *v)
6386 {
6387 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388 	char *buf;
6389 
6390 	buf = memory_stat_format(memcg);
6391 	if (!buf)
6392 		return -ENOMEM;
6393 	seq_puts(m, buf);
6394 	kfree(buf);
6395 	return 0;
6396 }
6397 
6398 #ifdef CONFIG_NUMA
6399 static int memory_numa_stat_show(struct seq_file *m, void *v)
6400 {
6401 	int i;
6402 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6403 
6404 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6405 		int nid;
6406 
6407 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6408 			continue;
6409 
6410 		seq_printf(m, "%s", memory_stats[i].name);
6411 		for_each_node_state(nid, N_MEMORY) {
6412 			u64 size;
6413 			struct lruvec *lruvec;
6414 
6415 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6416 			size = lruvec_page_state(lruvec, memory_stats[i].idx);
6417 			size *= memory_stats[i].ratio;
6418 			seq_printf(m, " N%d=%llu", nid, size);
6419 		}
6420 		seq_putc(m, '\n');
6421 	}
6422 
6423 	return 0;
6424 }
6425 #endif
6426 
6427 static int memory_oom_group_show(struct seq_file *m, void *v)
6428 {
6429 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6430 
6431 	seq_printf(m, "%d\n", memcg->oom_group);
6432 
6433 	return 0;
6434 }
6435 
6436 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6437 				      char *buf, size_t nbytes, loff_t off)
6438 {
6439 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6440 	int ret, oom_group;
6441 
6442 	buf = strstrip(buf);
6443 	if (!buf)
6444 		return -EINVAL;
6445 
6446 	ret = kstrtoint(buf, 0, &oom_group);
6447 	if (ret)
6448 		return ret;
6449 
6450 	if (oom_group != 0 && oom_group != 1)
6451 		return -EINVAL;
6452 
6453 	memcg->oom_group = oom_group;
6454 
6455 	return nbytes;
6456 }
6457 
6458 static struct cftype memory_files[] = {
6459 	{
6460 		.name = "current",
6461 		.flags = CFTYPE_NOT_ON_ROOT,
6462 		.read_u64 = memory_current_read,
6463 	},
6464 	{
6465 		.name = "min",
6466 		.flags = CFTYPE_NOT_ON_ROOT,
6467 		.seq_show = memory_min_show,
6468 		.write = memory_min_write,
6469 	},
6470 	{
6471 		.name = "low",
6472 		.flags = CFTYPE_NOT_ON_ROOT,
6473 		.seq_show = memory_low_show,
6474 		.write = memory_low_write,
6475 	},
6476 	{
6477 		.name = "high",
6478 		.flags = CFTYPE_NOT_ON_ROOT,
6479 		.seq_show = memory_high_show,
6480 		.write = memory_high_write,
6481 	},
6482 	{
6483 		.name = "max",
6484 		.flags = CFTYPE_NOT_ON_ROOT,
6485 		.seq_show = memory_max_show,
6486 		.write = memory_max_write,
6487 	},
6488 	{
6489 		.name = "events",
6490 		.flags = CFTYPE_NOT_ON_ROOT,
6491 		.file_offset = offsetof(struct mem_cgroup, events_file),
6492 		.seq_show = memory_events_show,
6493 	},
6494 	{
6495 		.name = "events.local",
6496 		.flags = CFTYPE_NOT_ON_ROOT,
6497 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6498 		.seq_show = memory_events_local_show,
6499 	},
6500 	{
6501 		.name = "stat",
6502 		.seq_show = memory_stat_show,
6503 	},
6504 #ifdef CONFIG_NUMA
6505 	{
6506 		.name = "numa_stat",
6507 		.seq_show = memory_numa_stat_show,
6508 	},
6509 #endif
6510 	{
6511 		.name = "oom.group",
6512 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6513 		.seq_show = memory_oom_group_show,
6514 		.write = memory_oom_group_write,
6515 	},
6516 	{ }	/* terminate */
6517 };
6518 
6519 struct cgroup_subsys memory_cgrp_subsys = {
6520 	.css_alloc = mem_cgroup_css_alloc,
6521 	.css_online = mem_cgroup_css_online,
6522 	.css_offline = mem_cgroup_css_offline,
6523 	.css_released = mem_cgroup_css_released,
6524 	.css_free = mem_cgroup_css_free,
6525 	.css_reset = mem_cgroup_css_reset,
6526 	.can_attach = mem_cgroup_can_attach,
6527 	.cancel_attach = mem_cgroup_cancel_attach,
6528 	.post_attach = mem_cgroup_move_task,
6529 	.dfl_cftypes = memory_files,
6530 	.legacy_cftypes = mem_cgroup_legacy_files,
6531 	.early_init = 0,
6532 };
6533 
6534 /*
6535  * This function calculates an individual cgroup's effective
6536  * protection which is derived from its own memory.min/low, its
6537  * parent's and siblings' settings, as well as the actual memory
6538  * distribution in the tree.
6539  *
6540  * The following rules apply to the effective protection values:
6541  *
6542  * 1. At the first level of reclaim, effective protection is equal to
6543  *    the declared protection in memory.min and memory.low.
6544  *
6545  * 2. To enable safe delegation of the protection configuration, at
6546  *    subsequent levels the effective protection is capped to the
6547  *    parent's effective protection.
6548  *
6549  * 3. To make complex and dynamic subtrees easier to configure, the
6550  *    user is allowed to overcommit the declared protection at a given
6551  *    level. If that is the case, the parent's effective protection is
6552  *    distributed to the children in proportion to how much protection
6553  *    they have declared and how much of it they are utilizing.
6554  *
6555  *    This makes distribution proportional, but also work-conserving:
6556  *    if one cgroup claims much more protection than it uses memory,
6557  *    the unused remainder is available to its siblings.
6558  *
6559  * 4. Conversely, when the declared protection is undercommitted at a
6560  *    given level, the distribution of the larger parental protection
6561  *    budget is NOT proportional. A cgroup's protection from a sibling
6562  *    is capped to its own memory.min/low setting.
6563  *
6564  * 5. However, to allow protecting recursive subtrees from each other
6565  *    without having to declare each individual cgroup's fixed share
6566  *    of the ancestor's claim to protection, any unutilized -
6567  *    "floating" - protection from up the tree is distributed in
6568  *    proportion to each cgroup's *usage*. This makes the protection
6569  *    neutral wrt sibling cgroups and lets them compete freely over
6570  *    the shared parental protection budget, but it protects the
6571  *    subtree as a whole from neighboring subtrees.
6572  *
6573  * Note that 4. and 5. are not in conflict: 4. is about protecting
6574  * against immediate siblings whereas 5. is about protecting against
6575  * neighboring subtrees.
6576  */
6577 static unsigned long effective_protection(unsigned long usage,
6578 					  unsigned long parent_usage,
6579 					  unsigned long setting,
6580 					  unsigned long parent_effective,
6581 					  unsigned long siblings_protected)
6582 {
6583 	unsigned long protected;
6584 	unsigned long ep;
6585 
6586 	protected = min(usage, setting);
6587 	/*
6588 	 * If all cgroups at this level combined claim and use more
6589 	 * protection then what the parent affords them, distribute
6590 	 * shares in proportion to utilization.
6591 	 *
6592 	 * We are using actual utilization rather than the statically
6593 	 * claimed protection in order to be work-conserving: claimed
6594 	 * but unused protection is available to siblings that would
6595 	 * otherwise get a smaller chunk than what they claimed.
6596 	 */
6597 	if (siblings_protected > parent_effective)
6598 		return protected * parent_effective / siblings_protected;
6599 
6600 	/*
6601 	 * Ok, utilized protection of all children is within what the
6602 	 * parent affords them, so we know whatever this child claims
6603 	 * and utilizes is effectively protected.
6604 	 *
6605 	 * If there is unprotected usage beyond this value, reclaim
6606 	 * will apply pressure in proportion to that amount.
6607 	 *
6608 	 * If there is unutilized protection, the cgroup will be fully
6609 	 * shielded from reclaim, but we do return a smaller value for
6610 	 * protection than what the group could enjoy in theory. This
6611 	 * is okay. With the overcommit distribution above, effective
6612 	 * protection is always dependent on how memory is actually
6613 	 * consumed among the siblings anyway.
6614 	 */
6615 	ep = protected;
6616 
6617 	/*
6618 	 * If the children aren't claiming (all of) the protection
6619 	 * afforded to them by the parent, distribute the remainder in
6620 	 * proportion to the (unprotected) memory of each cgroup. That
6621 	 * way, cgroups that aren't explicitly prioritized wrt each
6622 	 * other compete freely over the allowance, but they are
6623 	 * collectively protected from neighboring trees.
6624 	 *
6625 	 * We're using unprotected memory for the weight so that if
6626 	 * some cgroups DO claim explicit protection, we don't protect
6627 	 * the same bytes twice.
6628 	 *
6629 	 * Check both usage and parent_usage against the respective
6630 	 * protected values. One should imply the other, but they
6631 	 * aren't read atomically - make sure the division is sane.
6632 	 */
6633 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6634 		return ep;
6635 	if (parent_effective > siblings_protected &&
6636 	    parent_usage > siblings_protected &&
6637 	    usage > protected) {
6638 		unsigned long unclaimed;
6639 
6640 		unclaimed = parent_effective - siblings_protected;
6641 		unclaimed *= usage - protected;
6642 		unclaimed /= parent_usage - siblings_protected;
6643 
6644 		ep += unclaimed;
6645 	}
6646 
6647 	return ep;
6648 }
6649 
6650 /**
6651  * mem_cgroup_protected - check if memory consumption is in the normal range
6652  * @root: the top ancestor of the sub-tree being checked
6653  * @memcg: the memory cgroup to check
6654  *
6655  * WARNING: This function is not stateless! It can only be used as part
6656  *          of a top-down tree iteration, not for isolated queries.
6657  */
6658 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6659 				     struct mem_cgroup *memcg)
6660 {
6661 	unsigned long usage, parent_usage;
6662 	struct mem_cgroup *parent;
6663 
6664 	if (mem_cgroup_disabled())
6665 		return;
6666 
6667 	if (!root)
6668 		root = root_mem_cgroup;
6669 
6670 	/*
6671 	 * Effective values of the reclaim targets are ignored so they
6672 	 * can be stale. Have a look at mem_cgroup_protection for more
6673 	 * details.
6674 	 * TODO: calculation should be more robust so that we do not need
6675 	 * that special casing.
6676 	 */
6677 	if (memcg == root)
6678 		return;
6679 
6680 	usage = page_counter_read(&memcg->memory);
6681 	if (!usage)
6682 		return;
6683 
6684 	parent = parent_mem_cgroup(memcg);
6685 	/* No parent means a non-hierarchical mode on v1 memcg */
6686 	if (!parent)
6687 		return;
6688 
6689 	if (parent == root) {
6690 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6691 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6692 		return;
6693 	}
6694 
6695 	parent_usage = page_counter_read(&parent->memory);
6696 
6697 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6698 			READ_ONCE(memcg->memory.min),
6699 			READ_ONCE(parent->memory.emin),
6700 			atomic_long_read(&parent->memory.children_min_usage)));
6701 
6702 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6703 			READ_ONCE(memcg->memory.low),
6704 			READ_ONCE(parent->memory.elow),
6705 			atomic_long_read(&parent->memory.children_low_usage)));
6706 }
6707 
6708 /**
6709  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6710  * @page: page to charge
6711  * @mm: mm context of the victim
6712  * @gfp_mask: reclaim mode
6713  *
6714  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6715  * pages according to @gfp_mask if necessary.
6716  *
6717  * Returns 0 on success. Otherwise, an error code is returned.
6718  */
6719 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6720 {
6721 	unsigned int nr_pages = thp_nr_pages(page);
6722 	struct mem_cgroup *memcg = NULL;
6723 	int ret = 0;
6724 
6725 	if (mem_cgroup_disabled())
6726 		goto out;
6727 
6728 	if (PageSwapCache(page)) {
6729 		swp_entry_t ent = { .val = page_private(page), };
6730 		unsigned short id;
6731 
6732 		/*
6733 		 * Every swap fault against a single page tries to charge the
6734 		 * page, bail as early as possible.  shmem_unuse() encounters
6735 		 * already charged pages, too.  page and memcg binding is
6736 		 * protected by the page lock, which serializes swap cache
6737 		 * removal, which in turn serializes uncharging.
6738 		 */
6739 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6740 		if (page_memcg(compound_head(page)))
6741 			goto out;
6742 
6743 		id = lookup_swap_cgroup_id(ent);
6744 		rcu_read_lock();
6745 		memcg = mem_cgroup_from_id(id);
6746 		if (memcg && !css_tryget_online(&memcg->css))
6747 			memcg = NULL;
6748 		rcu_read_unlock();
6749 	}
6750 
6751 	if (!memcg)
6752 		memcg = get_mem_cgroup_from_mm(mm);
6753 
6754 	ret = try_charge(memcg, gfp_mask, nr_pages);
6755 	if (ret)
6756 		goto out_put;
6757 
6758 	css_get(&memcg->css);
6759 	commit_charge(page, memcg);
6760 
6761 	local_irq_disable();
6762 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6763 	memcg_check_events(memcg, page);
6764 	local_irq_enable();
6765 
6766 	if (PageSwapCache(page)) {
6767 		swp_entry_t entry = { .val = page_private(page) };
6768 		/*
6769 		 * The swap entry might not get freed for a long time,
6770 		 * let's not wait for it.  The page already received a
6771 		 * memory+swap charge, drop the swap entry duplicate.
6772 		 */
6773 		mem_cgroup_uncharge_swap(entry, nr_pages);
6774 	}
6775 
6776 out_put:
6777 	css_put(&memcg->css);
6778 out:
6779 	return ret;
6780 }
6781 
6782 struct uncharge_gather {
6783 	struct mem_cgroup *memcg;
6784 	unsigned long nr_pages;
6785 	unsigned long pgpgout;
6786 	unsigned long nr_kmem;
6787 	struct page *dummy_page;
6788 };
6789 
6790 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6791 {
6792 	memset(ug, 0, sizeof(*ug));
6793 }
6794 
6795 static void uncharge_batch(const struct uncharge_gather *ug)
6796 {
6797 	unsigned long flags;
6798 
6799 	if (!mem_cgroup_is_root(ug->memcg)) {
6800 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6801 		if (do_memsw_account())
6802 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6803 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6804 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6805 		memcg_oom_recover(ug->memcg);
6806 	}
6807 
6808 	local_irq_save(flags);
6809 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6810 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6811 	memcg_check_events(ug->memcg, ug->dummy_page);
6812 	local_irq_restore(flags);
6813 
6814 	/* drop reference from uncharge_page */
6815 	css_put(&ug->memcg->css);
6816 }
6817 
6818 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6819 {
6820 	unsigned long nr_pages;
6821 
6822 	VM_BUG_ON_PAGE(PageLRU(page), page);
6823 
6824 	if (!page_memcg(page))
6825 		return;
6826 
6827 	/*
6828 	 * Nobody should be changing or seriously looking at
6829 	 * page_memcg(page) at this point, we have fully
6830 	 * exclusive access to the page.
6831 	 */
6832 
6833 	if (ug->memcg != page_memcg(page)) {
6834 		if (ug->memcg) {
6835 			uncharge_batch(ug);
6836 			uncharge_gather_clear(ug);
6837 		}
6838 		ug->memcg = page_memcg(page);
6839 
6840 		/* pairs with css_put in uncharge_batch */
6841 		css_get(&ug->memcg->css);
6842 	}
6843 
6844 	nr_pages = compound_nr(page);
6845 	ug->nr_pages += nr_pages;
6846 
6847 	if (PageMemcgKmem(page))
6848 		ug->nr_kmem += nr_pages;
6849 	else
6850 		ug->pgpgout++;
6851 
6852 	ug->dummy_page = page;
6853 	page->memcg_data = 0;
6854 	css_put(&ug->memcg->css);
6855 }
6856 
6857 static void uncharge_list(struct list_head *page_list)
6858 {
6859 	struct uncharge_gather ug;
6860 	struct list_head *next;
6861 
6862 	uncharge_gather_clear(&ug);
6863 
6864 	/*
6865 	 * Note that the list can be a single page->lru; hence the
6866 	 * do-while loop instead of a simple list_for_each_entry().
6867 	 */
6868 	next = page_list->next;
6869 	do {
6870 		struct page *page;
6871 
6872 		page = list_entry(next, struct page, lru);
6873 		next = page->lru.next;
6874 
6875 		uncharge_page(page, &ug);
6876 	} while (next != page_list);
6877 
6878 	if (ug.memcg)
6879 		uncharge_batch(&ug);
6880 }
6881 
6882 /**
6883  * mem_cgroup_uncharge - uncharge a page
6884  * @page: page to uncharge
6885  *
6886  * Uncharge a page previously charged with mem_cgroup_charge().
6887  */
6888 void mem_cgroup_uncharge(struct page *page)
6889 {
6890 	struct uncharge_gather ug;
6891 
6892 	if (mem_cgroup_disabled())
6893 		return;
6894 
6895 	/* Don't touch page->lru of any random page, pre-check: */
6896 	if (!page_memcg(page))
6897 		return;
6898 
6899 	uncharge_gather_clear(&ug);
6900 	uncharge_page(page, &ug);
6901 	uncharge_batch(&ug);
6902 }
6903 
6904 /**
6905  * mem_cgroup_uncharge_list - uncharge a list of page
6906  * @page_list: list of pages to uncharge
6907  *
6908  * Uncharge a list of pages previously charged with
6909  * mem_cgroup_charge().
6910  */
6911 void mem_cgroup_uncharge_list(struct list_head *page_list)
6912 {
6913 	if (mem_cgroup_disabled())
6914 		return;
6915 
6916 	if (!list_empty(page_list))
6917 		uncharge_list(page_list);
6918 }
6919 
6920 /**
6921  * mem_cgroup_migrate - charge a page's replacement
6922  * @oldpage: currently circulating page
6923  * @newpage: replacement page
6924  *
6925  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6926  * be uncharged upon free.
6927  *
6928  * Both pages must be locked, @newpage->mapping must be set up.
6929  */
6930 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6931 {
6932 	struct mem_cgroup *memcg;
6933 	unsigned int nr_pages;
6934 	unsigned long flags;
6935 
6936 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6937 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6938 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6939 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6940 		       newpage);
6941 
6942 	if (mem_cgroup_disabled())
6943 		return;
6944 
6945 	/* Page cache replacement: new page already charged? */
6946 	if (page_memcg(newpage))
6947 		return;
6948 
6949 	memcg = page_memcg(oldpage);
6950 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6951 	if (!memcg)
6952 		return;
6953 
6954 	/* Force-charge the new page. The old one will be freed soon */
6955 	nr_pages = thp_nr_pages(newpage);
6956 
6957 	page_counter_charge(&memcg->memory, nr_pages);
6958 	if (do_memsw_account())
6959 		page_counter_charge(&memcg->memsw, nr_pages);
6960 
6961 	css_get(&memcg->css);
6962 	commit_charge(newpage, memcg);
6963 
6964 	local_irq_save(flags);
6965 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6966 	memcg_check_events(memcg, newpage);
6967 	local_irq_restore(flags);
6968 }
6969 
6970 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6971 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6972 
6973 void mem_cgroup_sk_alloc(struct sock *sk)
6974 {
6975 	struct mem_cgroup *memcg;
6976 
6977 	if (!mem_cgroup_sockets_enabled)
6978 		return;
6979 
6980 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6981 	if (in_interrupt())
6982 		return;
6983 
6984 	rcu_read_lock();
6985 	memcg = mem_cgroup_from_task(current);
6986 	if (memcg == root_mem_cgroup)
6987 		goto out;
6988 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6989 		goto out;
6990 	if (css_tryget(&memcg->css))
6991 		sk->sk_memcg = memcg;
6992 out:
6993 	rcu_read_unlock();
6994 }
6995 
6996 void mem_cgroup_sk_free(struct sock *sk)
6997 {
6998 	if (sk->sk_memcg)
6999 		css_put(&sk->sk_memcg->css);
7000 }
7001 
7002 /**
7003  * mem_cgroup_charge_skmem - charge socket memory
7004  * @memcg: memcg to charge
7005  * @nr_pages: number of pages to charge
7006  *
7007  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7008  * @memcg's configured limit, %false if the charge had to be forced.
7009  */
7010 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011 {
7012 	gfp_t gfp_mask = GFP_KERNEL;
7013 
7014 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7015 		struct page_counter *fail;
7016 
7017 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7018 			memcg->tcpmem_pressure = 0;
7019 			return true;
7020 		}
7021 		page_counter_charge(&memcg->tcpmem, nr_pages);
7022 		memcg->tcpmem_pressure = 1;
7023 		return false;
7024 	}
7025 
7026 	/* Don't block in the packet receive path */
7027 	if (in_softirq())
7028 		gfp_mask = GFP_NOWAIT;
7029 
7030 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7031 
7032 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7033 		return true;
7034 
7035 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7036 	return false;
7037 }
7038 
7039 /**
7040  * mem_cgroup_uncharge_skmem - uncharge socket memory
7041  * @memcg: memcg to uncharge
7042  * @nr_pages: number of pages to uncharge
7043  */
7044 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7045 {
7046 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7047 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7048 		return;
7049 	}
7050 
7051 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7052 
7053 	refill_stock(memcg, nr_pages);
7054 }
7055 
7056 static int __init cgroup_memory(char *s)
7057 {
7058 	char *token;
7059 
7060 	while ((token = strsep(&s, ",")) != NULL) {
7061 		if (!*token)
7062 			continue;
7063 		if (!strcmp(token, "nosocket"))
7064 			cgroup_memory_nosocket = true;
7065 		if (!strcmp(token, "nokmem"))
7066 			cgroup_memory_nokmem = true;
7067 	}
7068 	return 0;
7069 }
7070 __setup("cgroup.memory=", cgroup_memory);
7071 
7072 /*
7073  * subsys_initcall() for memory controller.
7074  *
7075  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7076  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7077  * basically everything that doesn't depend on a specific mem_cgroup structure
7078  * should be initialized from here.
7079  */
7080 static int __init mem_cgroup_init(void)
7081 {
7082 	int cpu, node;
7083 
7084 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7085 				  memcg_hotplug_cpu_dead);
7086 
7087 	for_each_possible_cpu(cpu)
7088 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7089 			  drain_local_stock);
7090 
7091 	for_each_node(node) {
7092 		struct mem_cgroup_tree_per_node *rtpn;
7093 
7094 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7095 				    node_online(node) ? node : NUMA_NO_NODE);
7096 
7097 		rtpn->rb_root = RB_ROOT;
7098 		rtpn->rb_rightmost = NULL;
7099 		spin_lock_init(&rtpn->lock);
7100 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7101 	}
7102 
7103 	return 0;
7104 }
7105 subsys_initcall(mem_cgroup_init);
7106 
7107 #ifdef CONFIG_MEMCG_SWAP
7108 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7109 {
7110 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7111 		/*
7112 		 * The root cgroup cannot be destroyed, so it's refcount must
7113 		 * always be >= 1.
7114 		 */
7115 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7116 			VM_BUG_ON(1);
7117 			break;
7118 		}
7119 		memcg = parent_mem_cgroup(memcg);
7120 		if (!memcg)
7121 			memcg = root_mem_cgroup;
7122 	}
7123 	return memcg;
7124 }
7125 
7126 /**
7127  * mem_cgroup_swapout - transfer a memsw charge to swap
7128  * @page: page whose memsw charge to transfer
7129  * @entry: swap entry to move the charge to
7130  *
7131  * Transfer the memsw charge of @page to @entry.
7132  */
7133 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7134 {
7135 	struct mem_cgroup *memcg, *swap_memcg;
7136 	unsigned int nr_entries;
7137 	unsigned short oldid;
7138 
7139 	VM_BUG_ON_PAGE(PageLRU(page), page);
7140 	VM_BUG_ON_PAGE(page_count(page), page);
7141 
7142 	if (mem_cgroup_disabled())
7143 		return;
7144 
7145 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7146 		return;
7147 
7148 	memcg = page_memcg(page);
7149 
7150 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7151 	if (!memcg)
7152 		return;
7153 
7154 	/*
7155 	 * In case the memcg owning these pages has been offlined and doesn't
7156 	 * have an ID allocated to it anymore, charge the closest online
7157 	 * ancestor for the swap instead and transfer the memory+swap charge.
7158 	 */
7159 	swap_memcg = mem_cgroup_id_get_online(memcg);
7160 	nr_entries = thp_nr_pages(page);
7161 	/* Get references for the tail pages, too */
7162 	if (nr_entries > 1)
7163 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7164 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7165 				   nr_entries);
7166 	VM_BUG_ON_PAGE(oldid, page);
7167 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7168 
7169 	page->memcg_data = 0;
7170 
7171 	if (!mem_cgroup_is_root(memcg))
7172 		page_counter_uncharge(&memcg->memory, nr_entries);
7173 
7174 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7175 		if (!mem_cgroup_is_root(swap_memcg))
7176 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7177 		page_counter_uncharge(&memcg->memsw, nr_entries);
7178 	}
7179 
7180 	/*
7181 	 * Interrupts should be disabled here because the caller holds the
7182 	 * i_pages lock which is taken with interrupts-off. It is
7183 	 * important here to have the interrupts disabled because it is the
7184 	 * only synchronisation we have for updating the per-CPU variables.
7185 	 */
7186 	VM_BUG_ON(!irqs_disabled());
7187 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7188 	memcg_check_events(memcg, page);
7189 
7190 	css_put(&memcg->css);
7191 }
7192 
7193 /**
7194  * mem_cgroup_try_charge_swap - try charging swap space for a page
7195  * @page: page being added to swap
7196  * @entry: swap entry to charge
7197  *
7198  * Try to charge @page's memcg for the swap space at @entry.
7199  *
7200  * Returns 0 on success, -ENOMEM on failure.
7201  */
7202 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7203 {
7204 	unsigned int nr_pages = thp_nr_pages(page);
7205 	struct page_counter *counter;
7206 	struct mem_cgroup *memcg;
7207 	unsigned short oldid;
7208 
7209 	if (mem_cgroup_disabled())
7210 		return 0;
7211 
7212 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7213 		return 0;
7214 
7215 	memcg = page_memcg(page);
7216 
7217 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7218 	if (!memcg)
7219 		return 0;
7220 
7221 	if (!entry.val) {
7222 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7223 		return 0;
7224 	}
7225 
7226 	memcg = mem_cgroup_id_get_online(memcg);
7227 
7228 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7229 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7230 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7231 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7232 		mem_cgroup_id_put(memcg);
7233 		return -ENOMEM;
7234 	}
7235 
7236 	/* Get references for the tail pages, too */
7237 	if (nr_pages > 1)
7238 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7239 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7240 	VM_BUG_ON_PAGE(oldid, page);
7241 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7242 
7243 	return 0;
7244 }
7245 
7246 /**
7247  * mem_cgroup_uncharge_swap - uncharge swap space
7248  * @entry: swap entry to uncharge
7249  * @nr_pages: the amount of swap space to uncharge
7250  */
7251 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7252 {
7253 	struct mem_cgroup *memcg;
7254 	unsigned short id;
7255 
7256 	id = swap_cgroup_record(entry, 0, nr_pages);
7257 	rcu_read_lock();
7258 	memcg = mem_cgroup_from_id(id);
7259 	if (memcg) {
7260 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7261 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7262 				page_counter_uncharge(&memcg->swap, nr_pages);
7263 			else
7264 				page_counter_uncharge(&memcg->memsw, nr_pages);
7265 		}
7266 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7267 		mem_cgroup_id_put_many(memcg, nr_pages);
7268 	}
7269 	rcu_read_unlock();
7270 }
7271 
7272 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7273 {
7274 	long nr_swap_pages = get_nr_swap_pages();
7275 
7276 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7277 		return nr_swap_pages;
7278 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7279 		nr_swap_pages = min_t(long, nr_swap_pages,
7280 				      READ_ONCE(memcg->swap.max) -
7281 				      page_counter_read(&memcg->swap));
7282 	return nr_swap_pages;
7283 }
7284 
7285 bool mem_cgroup_swap_full(struct page *page)
7286 {
7287 	struct mem_cgroup *memcg;
7288 
7289 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7290 
7291 	if (vm_swap_full())
7292 		return true;
7293 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7294 		return false;
7295 
7296 	memcg = page_memcg(page);
7297 	if (!memcg)
7298 		return false;
7299 
7300 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7301 		unsigned long usage = page_counter_read(&memcg->swap);
7302 
7303 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7304 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7305 			return true;
7306 	}
7307 
7308 	return false;
7309 }
7310 
7311 static int __init setup_swap_account(char *s)
7312 {
7313 	if (!strcmp(s, "1"))
7314 		cgroup_memory_noswap = false;
7315 	else if (!strcmp(s, "0"))
7316 		cgroup_memory_noswap = true;
7317 	return 1;
7318 }
7319 __setup("swapaccount=", setup_swap_account);
7320 
7321 static u64 swap_current_read(struct cgroup_subsys_state *css,
7322 			     struct cftype *cft)
7323 {
7324 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7325 
7326 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7327 }
7328 
7329 static int swap_high_show(struct seq_file *m, void *v)
7330 {
7331 	return seq_puts_memcg_tunable(m,
7332 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7333 }
7334 
7335 static ssize_t swap_high_write(struct kernfs_open_file *of,
7336 			       char *buf, size_t nbytes, loff_t off)
7337 {
7338 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7339 	unsigned long high;
7340 	int err;
7341 
7342 	buf = strstrip(buf);
7343 	err = page_counter_memparse(buf, "max", &high);
7344 	if (err)
7345 		return err;
7346 
7347 	page_counter_set_high(&memcg->swap, high);
7348 
7349 	return nbytes;
7350 }
7351 
7352 static int swap_max_show(struct seq_file *m, void *v)
7353 {
7354 	return seq_puts_memcg_tunable(m,
7355 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7356 }
7357 
7358 static ssize_t swap_max_write(struct kernfs_open_file *of,
7359 			      char *buf, size_t nbytes, loff_t off)
7360 {
7361 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7362 	unsigned long max;
7363 	int err;
7364 
7365 	buf = strstrip(buf);
7366 	err = page_counter_memparse(buf, "max", &max);
7367 	if (err)
7368 		return err;
7369 
7370 	xchg(&memcg->swap.max, max);
7371 
7372 	return nbytes;
7373 }
7374 
7375 static int swap_events_show(struct seq_file *m, void *v)
7376 {
7377 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7378 
7379 	seq_printf(m, "high %lu\n",
7380 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7381 	seq_printf(m, "max %lu\n",
7382 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7383 	seq_printf(m, "fail %lu\n",
7384 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7385 
7386 	return 0;
7387 }
7388 
7389 static struct cftype swap_files[] = {
7390 	{
7391 		.name = "swap.current",
7392 		.flags = CFTYPE_NOT_ON_ROOT,
7393 		.read_u64 = swap_current_read,
7394 	},
7395 	{
7396 		.name = "swap.high",
7397 		.flags = CFTYPE_NOT_ON_ROOT,
7398 		.seq_show = swap_high_show,
7399 		.write = swap_high_write,
7400 	},
7401 	{
7402 		.name = "swap.max",
7403 		.flags = CFTYPE_NOT_ON_ROOT,
7404 		.seq_show = swap_max_show,
7405 		.write = swap_max_write,
7406 	},
7407 	{
7408 		.name = "swap.events",
7409 		.flags = CFTYPE_NOT_ON_ROOT,
7410 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7411 		.seq_show = swap_events_show,
7412 	},
7413 	{ }	/* terminate */
7414 };
7415 
7416 static struct cftype memsw_files[] = {
7417 	{
7418 		.name = "memsw.usage_in_bytes",
7419 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7420 		.read_u64 = mem_cgroup_read_u64,
7421 	},
7422 	{
7423 		.name = "memsw.max_usage_in_bytes",
7424 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7425 		.write = mem_cgroup_reset,
7426 		.read_u64 = mem_cgroup_read_u64,
7427 	},
7428 	{
7429 		.name = "memsw.limit_in_bytes",
7430 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7431 		.write = mem_cgroup_write,
7432 		.read_u64 = mem_cgroup_read_u64,
7433 	},
7434 	{
7435 		.name = "memsw.failcnt",
7436 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7437 		.write = mem_cgroup_reset,
7438 		.read_u64 = mem_cgroup_read_u64,
7439 	},
7440 	{ },	/* terminate */
7441 };
7442 
7443 /*
7444  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7445  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7446  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7447  * boot parameter. This may result in premature OOPS inside
7448  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7449  */
7450 static int __init mem_cgroup_swap_init(void)
7451 {
7452 	/* No memory control -> no swap control */
7453 	if (mem_cgroup_disabled())
7454 		cgroup_memory_noswap = true;
7455 
7456 	if (cgroup_memory_noswap)
7457 		return 0;
7458 
7459 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7460 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7461 
7462 	return 0;
7463 }
7464 core_initcall(mem_cgroup_swap_init);
7465 
7466 #endif /* CONFIG_MEMCG_SWAP */
7467