xref: /linux/mm/memcontrol.c (revision 7f356166aebb0d956d367dfe55e19d7783277d09)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 /* Active memory cgroup to use from an interrupt context */
77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78 
79 /* Socket memory accounting disabled? */
80 static bool cgroup_memory_nosocket;
81 
82 /* Kernel memory accounting disabled? */
83 static bool cgroup_memory_nokmem;
84 
85 /* Whether the swap controller is active */
86 #ifdef CONFIG_MEMCG_SWAP
87 bool cgroup_memory_noswap __read_mostly;
88 #else
89 #define cgroup_memory_noswap		1
90 #endif
91 
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95 
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 }
101 
102 #define THRESHOLDS_EVENTS_TARGET 128
103 #define SOFTLIMIT_EVENTS_TARGET 1024
104 
105 /*
106  * Cgroups above their limits are maintained in a RB-Tree, independent of
107  * their hierarchy representation
108  */
109 
110 struct mem_cgroup_tree_per_node {
111 	struct rb_root rb_root;
112 	struct rb_node *rb_rightmost;
113 	spinlock_t lock;
114 };
115 
116 struct mem_cgroup_tree {
117 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118 };
119 
120 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121 
122 /* for OOM */
123 struct mem_cgroup_eventfd_list {
124 	struct list_head list;
125 	struct eventfd_ctx *eventfd;
126 };
127 
128 /*
129  * cgroup_event represents events which userspace want to receive.
130  */
131 struct mem_cgroup_event {
132 	/*
133 	 * memcg which the event belongs to.
134 	 */
135 	struct mem_cgroup *memcg;
136 	/*
137 	 * eventfd to signal userspace about the event.
138 	 */
139 	struct eventfd_ctx *eventfd;
140 	/*
141 	 * Each of these stored in a list by the cgroup.
142 	 */
143 	struct list_head list;
144 	/*
145 	 * register_event() callback will be used to add new userspace
146 	 * waiter for changes related to this event.  Use eventfd_signal()
147 	 * on eventfd to send notification to userspace.
148 	 */
149 	int (*register_event)(struct mem_cgroup *memcg,
150 			      struct eventfd_ctx *eventfd, const char *args);
151 	/*
152 	 * unregister_event() callback will be called when userspace closes
153 	 * the eventfd or on cgroup removing.  This callback must be set,
154 	 * if you want provide notification functionality.
155 	 */
156 	void (*unregister_event)(struct mem_cgroup *memcg,
157 				 struct eventfd_ctx *eventfd);
158 	/*
159 	 * All fields below needed to unregister event when
160 	 * userspace closes eventfd.
161 	 */
162 	poll_table pt;
163 	wait_queue_head_t *wqh;
164 	wait_queue_entry_t wait;
165 	struct work_struct remove;
166 };
167 
168 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 
171 /* Stuffs for move charges at task migration. */
172 /*
173  * Types of charges to be moved.
174  */
175 #define MOVE_ANON	0x1U
176 #define MOVE_FILE	0x2U
177 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178 
179 /* "mc" and its members are protected by cgroup_mutex */
180 static struct move_charge_struct {
181 	spinlock_t	  lock; /* for from, to */
182 	struct mm_struct  *mm;
183 	struct mem_cgroup *from;
184 	struct mem_cgroup *to;
185 	unsigned long flags;
186 	unsigned long precharge;
187 	unsigned long moved_charge;
188 	unsigned long moved_swap;
189 	struct task_struct *moving_task;	/* a task moving charges */
190 	wait_queue_head_t waitq;		/* a waitq for other context */
191 } mc = {
192 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194 };
195 
196 /*
197  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198  * limit reclaim to prevent infinite loops, if they ever occur.
199  */
200 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202 
203 /* for encoding cft->private value on file */
204 enum res_type {
205 	_MEM,
206 	_MEMSWAP,
207 	_OOM_TYPE,
208 	_KMEM,
209 	_TCP,
210 };
211 
212 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
213 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214 #define MEMFILE_ATTR(val)	((val) & 0xffff)
215 /* Used for OOM nofiier */
216 #define OOM_CONTROL		(0)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool should_force_charge(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248 {
249 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250 }
251 
252 #ifdef CONFIG_MEMCG_KMEM
253 extern spinlock_t css_set_lock;
254 
255 static void obj_cgroup_release(struct percpu_ref *ref)
256 {
257 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 	struct mem_cgroup *memcg;
259 	unsigned int nr_bytes;
260 	unsigned int nr_pages;
261 	unsigned long flags;
262 
263 	/*
264 	 * At this point all allocated objects are freed, and
265 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 	 *
268 	 * The following sequence can lead to it:
269 	 * 1) CPU0: objcg == stock->cached_objcg
270 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 	 *          PAGE_SIZE bytes are charged
272 	 * 3) CPU1: a process from another memcg is allocating something,
273 	 *          the stock if flushed,
274 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
275 	 * 5) CPU0: we do release this object,
276 	 *          92 bytes are added to stock->nr_bytes
277 	 * 6) CPU0: stock is flushed,
278 	 *          92 bytes are added to objcg->nr_charged_bytes
279 	 *
280 	 * In the result, nr_charged_bytes == PAGE_SIZE.
281 	 * This page will be uncharged in obj_cgroup_release().
282 	 */
283 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 	nr_pages = nr_bytes >> PAGE_SHIFT;
286 
287 	spin_lock_irqsave(&css_set_lock, flags);
288 	memcg = obj_cgroup_memcg(objcg);
289 	if (nr_pages)
290 		__memcg_kmem_uncharge(memcg, nr_pages);
291 	list_del(&objcg->list);
292 	mem_cgroup_put(memcg);
293 	spin_unlock_irqrestore(&css_set_lock, flags);
294 
295 	percpu_ref_exit(ref);
296 	kfree_rcu(objcg, rcu);
297 }
298 
299 static struct obj_cgroup *obj_cgroup_alloc(void)
300 {
301 	struct obj_cgroup *objcg;
302 	int ret;
303 
304 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 	if (!objcg)
306 		return NULL;
307 
308 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 			      GFP_KERNEL);
310 	if (ret) {
311 		kfree(objcg);
312 		return NULL;
313 	}
314 	INIT_LIST_HEAD(&objcg->list);
315 	return objcg;
316 }
317 
318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 				  struct mem_cgroup *parent)
320 {
321 	struct obj_cgroup *objcg, *iter;
322 
323 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324 
325 	spin_lock_irq(&css_set_lock);
326 
327 	/* Move active objcg to the parent's list */
328 	xchg(&objcg->memcg, parent);
329 	css_get(&parent->css);
330 	list_add(&objcg->list, &parent->objcg_list);
331 
332 	/* Move already reparented objcgs to the parent's list */
333 	list_for_each_entry(iter, &memcg->objcg_list, list) {
334 		css_get(&parent->css);
335 		xchg(&iter->memcg, parent);
336 		css_put(&memcg->css);
337 	}
338 	list_splice(&memcg->objcg_list, &parent->objcg_list);
339 
340 	spin_unlock_irq(&css_set_lock);
341 
342 	percpu_ref_kill(&objcg->refcnt);
343 }
344 
345 /*
346  * This will be used as a shrinker list's index.
347  * The main reason for not using cgroup id for this:
348  *  this works better in sparse environments, where we have a lot of memcgs,
349  *  but only a few kmem-limited. Or also, if we have, for instance, 200
350  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
351  *  200 entry array for that.
352  *
353  * The current size of the caches array is stored in memcg_nr_cache_ids. It
354  * will double each time we have to increase it.
355  */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358 
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361 
362 void memcg_get_cache_ids(void)
363 {
364 	down_read(&memcg_cache_ids_sem);
365 }
366 
367 void memcg_put_cache_ids(void)
368 {
369 	up_read(&memcg_cache_ids_sem);
370 }
371 
372 /*
373  * MIN_SIZE is different than 1, because we would like to avoid going through
374  * the alloc/free process all the time. In a small machine, 4 kmem-limited
375  * cgroups is a reasonable guess. In the future, it could be a parameter or
376  * tunable, but that is strictly not necessary.
377  *
378  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379  * this constant directly from cgroup, but it is understandable that this is
380  * better kept as an internal representation in cgroup.c. In any case, the
381  * cgrp_id space is not getting any smaller, and we don't have to necessarily
382  * increase ours as well if it increases.
383  */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386 
387 /*
388  * A lot of the calls to the cache allocation functions are expected to be
389  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390  * conditional to this static branch, we'll have to allow modules that does
391  * kmem_cache_alloc and the such to see this symbol as well
392  */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396 
397 static int memcg_shrinker_map_size;
398 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399 
400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401 {
402 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403 }
404 
405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 					 int size, int old_size)
407 {
408 	struct memcg_shrinker_map *new, *old;
409 	int nid;
410 
411 	lockdep_assert_held(&memcg_shrinker_map_mutex);
412 
413 	for_each_node(nid) {
414 		old = rcu_dereference_protected(
415 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 		/* Not yet online memcg */
417 		if (!old)
418 			return 0;
419 
420 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 		if (!new)
422 			return -ENOMEM;
423 
424 		/* Set all old bits, clear all new bits */
425 		memset(new->map, (int)0xff, old_size);
426 		memset((void *)new->map + old_size, 0, size - old_size);
427 
428 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 	}
431 
432 	return 0;
433 }
434 
435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436 {
437 	struct mem_cgroup_per_node *pn;
438 	struct memcg_shrinker_map *map;
439 	int nid;
440 
441 	if (mem_cgroup_is_root(memcg))
442 		return;
443 
444 	for_each_node(nid) {
445 		pn = mem_cgroup_nodeinfo(memcg, nid);
446 		map = rcu_dereference_protected(pn->shrinker_map, true);
447 		if (map)
448 			kvfree(map);
449 		rcu_assign_pointer(pn->shrinker_map, NULL);
450 	}
451 }
452 
453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454 {
455 	struct memcg_shrinker_map *map;
456 	int nid, size, ret = 0;
457 
458 	if (mem_cgroup_is_root(memcg))
459 		return 0;
460 
461 	mutex_lock(&memcg_shrinker_map_mutex);
462 	size = memcg_shrinker_map_size;
463 	for_each_node(nid) {
464 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 		if (!map) {
466 			memcg_free_shrinker_maps(memcg);
467 			ret = -ENOMEM;
468 			break;
469 		}
470 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 	}
472 	mutex_unlock(&memcg_shrinker_map_mutex);
473 
474 	return ret;
475 }
476 
477 int memcg_expand_shrinker_maps(int new_id)
478 {
479 	int size, old_size, ret = 0;
480 	struct mem_cgroup *memcg;
481 
482 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 	old_size = memcg_shrinker_map_size;
484 	if (size <= old_size)
485 		return 0;
486 
487 	mutex_lock(&memcg_shrinker_map_mutex);
488 	if (!root_mem_cgroup)
489 		goto unlock;
490 
491 	for_each_mem_cgroup(memcg) {
492 		if (mem_cgroup_is_root(memcg))
493 			continue;
494 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 		if (ret) {
496 			mem_cgroup_iter_break(NULL, memcg);
497 			goto unlock;
498 		}
499 	}
500 unlock:
501 	if (!ret)
502 		memcg_shrinker_map_size = size;
503 	mutex_unlock(&memcg_shrinker_map_mutex);
504 	return ret;
505 }
506 
507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508 {
509 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 		struct memcg_shrinker_map *map;
511 
512 		rcu_read_lock();
513 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 		/* Pairs with smp mb in shrink_slab() */
515 		smp_mb__before_atomic();
516 		set_bit(shrinker_id, map->map);
517 		rcu_read_unlock();
518 	}
519 }
520 
521 /**
522  * mem_cgroup_css_from_page - css of the memcg associated with a page
523  * @page: page of interest
524  *
525  * If memcg is bound to the default hierarchy, css of the memcg associated
526  * with @page is returned.  The returned css remains associated with @page
527  * until it is released.
528  *
529  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530  * is returned.
531  */
532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533 {
534 	struct mem_cgroup *memcg;
535 
536 	memcg = page_memcg(page);
537 
538 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 		memcg = root_mem_cgroup;
540 
541 	return &memcg->css;
542 }
543 
544 /**
545  * page_cgroup_ino - return inode number of the memcg a page is charged to
546  * @page: the page
547  *
548  * Look up the closest online ancestor of the memory cgroup @page is charged to
549  * and return its inode number or 0 if @page is not charged to any cgroup. It
550  * is safe to call this function without holding a reference to @page.
551  *
552  * Note, this function is inherently racy, because there is nothing to prevent
553  * the cgroup inode from getting torn down and potentially reallocated a moment
554  * after page_cgroup_ino() returns, so it only should be used by callers that
555  * do not care (such as procfs interfaces).
556  */
557 ino_t page_cgroup_ino(struct page *page)
558 {
559 	struct mem_cgroup *memcg;
560 	unsigned long ino = 0;
561 
562 	rcu_read_lock();
563 	memcg = page_memcg_check(page);
564 
565 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
566 		memcg = parent_mem_cgroup(memcg);
567 	if (memcg)
568 		ino = cgroup_ino(memcg->css.cgroup);
569 	rcu_read_unlock();
570 	return ino;
571 }
572 
573 static struct mem_cgroup_per_node *
574 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
575 {
576 	int nid = page_to_nid(page);
577 
578 	return memcg->nodeinfo[nid];
579 }
580 
581 static struct mem_cgroup_tree_per_node *
582 soft_limit_tree_node(int nid)
583 {
584 	return soft_limit_tree.rb_tree_per_node[nid];
585 }
586 
587 static struct mem_cgroup_tree_per_node *
588 soft_limit_tree_from_page(struct page *page)
589 {
590 	int nid = page_to_nid(page);
591 
592 	return soft_limit_tree.rb_tree_per_node[nid];
593 }
594 
595 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
596 					 struct mem_cgroup_tree_per_node *mctz,
597 					 unsigned long new_usage_in_excess)
598 {
599 	struct rb_node **p = &mctz->rb_root.rb_node;
600 	struct rb_node *parent = NULL;
601 	struct mem_cgroup_per_node *mz_node;
602 	bool rightmost = true;
603 
604 	if (mz->on_tree)
605 		return;
606 
607 	mz->usage_in_excess = new_usage_in_excess;
608 	if (!mz->usage_in_excess)
609 		return;
610 	while (*p) {
611 		parent = *p;
612 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
613 					tree_node);
614 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
615 			p = &(*p)->rb_left;
616 			rightmost = false;
617 		}
618 
619 		/*
620 		 * We can't avoid mem cgroups that are over their soft
621 		 * limit by the same amount
622 		 */
623 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
624 			p = &(*p)->rb_right;
625 	}
626 
627 	if (rightmost)
628 		mctz->rb_rightmost = &mz->tree_node;
629 
630 	rb_link_node(&mz->tree_node, parent, p);
631 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
632 	mz->on_tree = true;
633 }
634 
635 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
636 					 struct mem_cgroup_tree_per_node *mctz)
637 {
638 	if (!mz->on_tree)
639 		return;
640 
641 	if (&mz->tree_node == mctz->rb_rightmost)
642 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
643 
644 	rb_erase(&mz->tree_node, &mctz->rb_root);
645 	mz->on_tree = false;
646 }
647 
648 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
649 				       struct mem_cgroup_tree_per_node *mctz)
650 {
651 	unsigned long flags;
652 
653 	spin_lock_irqsave(&mctz->lock, flags);
654 	__mem_cgroup_remove_exceeded(mz, mctz);
655 	spin_unlock_irqrestore(&mctz->lock, flags);
656 }
657 
658 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
659 {
660 	unsigned long nr_pages = page_counter_read(&memcg->memory);
661 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
662 	unsigned long excess = 0;
663 
664 	if (nr_pages > soft_limit)
665 		excess = nr_pages - soft_limit;
666 
667 	return excess;
668 }
669 
670 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
671 {
672 	unsigned long excess;
673 	struct mem_cgroup_per_node *mz;
674 	struct mem_cgroup_tree_per_node *mctz;
675 
676 	mctz = soft_limit_tree_from_page(page);
677 	if (!mctz)
678 		return;
679 	/*
680 	 * Necessary to update all ancestors when hierarchy is used.
681 	 * because their event counter is not touched.
682 	 */
683 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
684 		mz = mem_cgroup_page_nodeinfo(memcg, page);
685 		excess = soft_limit_excess(memcg);
686 		/*
687 		 * We have to update the tree if mz is on RB-tree or
688 		 * mem is over its softlimit.
689 		 */
690 		if (excess || mz->on_tree) {
691 			unsigned long flags;
692 
693 			spin_lock_irqsave(&mctz->lock, flags);
694 			/* if on-tree, remove it */
695 			if (mz->on_tree)
696 				__mem_cgroup_remove_exceeded(mz, mctz);
697 			/*
698 			 * Insert again. mz->usage_in_excess will be updated.
699 			 * If excess is 0, no tree ops.
700 			 */
701 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
702 			spin_unlock_irqrestore(&mctz->lock, flags);
703 		}
704 	}
705 }
706 
707 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
708 {
709 	struct mem_cgroup_tree_per_node *mctz;
710 	struct mem_cgroup_per_node *mz;
711 	int nid;
712 
713 	for_each_node(nid) {
714 		mz = mem_cgroup_nodeinfo(memcg, nid);
715 		mctz = soft_limit_tree_node(nid);
716 		if (mctz)
717 			mem_cgroup_remove_exceeded(mz, mctz);
718 	}
719 }
720 
721 static struct mem_cgroup_per_node *
722 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
723 {
724 	struct mem_cgroup_per_node *mz;
725 
726 retry:
727 	mz = NULL;
728 	if (!mctz->rb_rightmost)
729 		goto done;		/* Nothing to reclaim from */
730 
731 	mz = rb_entry(mctz->rb_rightmost,
732 		      struct mem_cgroup_per_node, tree_node);
733 	/*
734 	 * Remove the node now but someone else can add it back,
735 	 * we will to add it back at the end of reclaim to its correct
736 	 * position in the tree.
737 	 */
738 	__mem_cgroup_remove_exceeded(mz, mctz);
739 	if (!soft_limit_excess(mz->memcg) ||
740 	    !css_tryget(&mz->memcg->css))
741 		goto retry;
742 done:
743 	return mz;
744 }
745 
746 static struct mem_cgroup_per_node *
747 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
748 {
749 	struct mem_cgroup_per_node *mz;
750 
751 	spin_lock_irq(&mctz->lock);
752 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
753 	spin_unlock_irq(&mctz->lock);
754 	return mz;
755 }
756 
757 /**
758  * __mod_memcg_state - update cgroup memory statistics
759  * @memcg: the memory cgroup
760  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
761  * @val: delta to add to the counter, can be negative
762  */
763 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
764 {
765 	long x, threshold = MEMCG_CHARGE_BATCH;
766 
767 	if (mem_cgroup_disabled())
768 		return;
769 
770 	if (memcg_stat_item_in_bytes(idx))
771 		threshold <<= PAGE_SHIFT;
772 
773 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
774 	if (unlikely(abs(x) > threshold)) {
775 		struct mem_cgroup *mi;
776 
777 		/*
778 		 * Batch local counters to keep them in sync with
779 		 * the hierarchical ones.
780 		 */
781 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
782 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
783 			atomic_long_add(x, &mi->vmstats[idx]);
784 		x = 0;
785 	}
786 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
787 }
788 
789 static struct mem_cgroup_per_node *
790 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
791 {
792 	struct mem_cgroup *parent;
793 
794 	parent = parent_mem_cgroup(pn->memcg);
795 	if (!parent)
796 		return NULL;
797 	return mem_cgroup_nodeinfo(parent, nid);
798 }
799 
800 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
801 			      int val)
802 {
803 	struct mem_cgroup_per_node *pn;
804 	struct mem_cgroup *memcg;
805 	long x, threshold = MEMCG_CHARGE_BATCH;
806 
807 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
808 	memcg = pn->memcg;
809 
810 	/* Update memcg */
811 	__mod_memcg_state(memcg, idx, val);
812 
813 	/* Update lruvec */
814 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
815 
816 	if (vmstat_item_in_bytes(idx))
817 		threshold <<= PAGE_SHIFT;
818 
819 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
820 	if (unlikely(abs(x) > threshold)) {
821 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
822 		struct mem_cgroup_per_node *pi;
823 
824 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
825 			atomic_long_add(x, &pi->lruvec_stat[idx]);
826 		x = 0;
827 	}
828 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
829 }
830 
831 /**
832  * __mod_lruvec_state - update lruvec memory statistics
833  * @lruvec: the lruvec
834  * @idx: the stat item
835  * @val: delta to add to the counter, can be negative
836  *
837  * The lruvec is the intersection of the NUMA node and a cgroup. This
838  * function updates the all three counters that are affected by a
839  * change of state at this level: per-node, per-cgroup, per-lruvec.
840  */
841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 			int val)
843 {
844 	/* Update node */
845 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846 
847 	/* Update memcg and lruvec */
848 	if (!mem_cgroup_disabled())
849 		__mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851 
852 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
853 {
854 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
855 	struct mem_cgroup *memcg;
856 	struct lruvec *lruvec;
857 
858 	rcu_read_lock();
859 	memcg = mem_cgroup_from_obj(p);
860 
861 	/*
862 	 * Untracked pages have no memcg, no lruvec. Update only the
863 	 * node. If we reparent the slab objects to the root memcg,
864 	 * when we free the slab object, we need to update the per-memcg
865 	 * vmstats to keep it correct for the root memcg.
866 	 */
867 	if (!memcg) {
868 		__mod_node_page_state(pgdat, idx, val);
869 	} else {
870 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
871 		__mod_lruvec_state(lruvec, idx, val);
872 	}
873 	rcu_read_unlock();
874 }
875 
876 void mod_memcg_obj_state(void *p, int idx, int val)
877 {
878 	struct mem_cgroup *memcg;
879 
880 	rcu_read_lock();
881 	memcg = mem_cgroup_from_obj(p);
882 	if (memcg)
883 		mod_memcg_state(memcg, idx, val);
884 	rcu_read_unlock();
885 }
886 
887 /**
888  * __count_memcg_events - account VM events in a cgroup
889  * @memcg: the memory cgroup
890  * @idx: the event item
891  * @count: the number of events that occured
892  */
893 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
894 			  unsigned long count)
895 {
896 	unsigned long x;
897 
898 	if (mem_cgroup_disabled())
899 		return;
900 
901 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
902 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
903 		struct mem_cgroup *mi;
904 
905 		/*
906 		 * Batch local counters to keep them in sync with
907 		 * the hierarchical ones.
908 		 */
909 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
910 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
911 			atomic_long_add(x, &mi->vmevents[idx]);
912 		x = 0;
913 	}
914 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
915 }
916 
917 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
918 {
919 	return atomic_long_read(&memcg->vmevents[event]);
920 }
921 
922 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
923 {
924 	long x = 0;
925 	int cpu;
926 
927 	for_each_possible_cpu(cpu)
928 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
929 	return x;
930 }
931 
932 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
933 					 struct page *page,
934 					 int nr_pages)
935 {
936 	/* pagein of a big page is an event. So, ignore page size */
937 	if (nr_pages > 0)
938 		__count_memcg_events(memcg, PGPGIN, 1);
939 	else {
940 		__count_memcg_events(memcg, PGPGOUT, 1);
941 		nr_pages = -nr_pages; /* for event */
942 	}
943 
944 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
945 }
946 
947 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
948 				       enum mem_cgroup_events_target target)
949 {
950 	unsigned long val, next;
951 
952 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
953 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
954 	/* from time_after() in jiffies.h */
955 	if ((long)(next - val) < 0) {
956 		switch (target) {
957 		case MEM_CGROUP_TARGET_THRESH:
958 			next = val + THRESHOLDS_EVENTS_TARGET;
959 			break;
960 		case MEM_CGROUP_TARGET_SOFTLIMIT:
961 			next = val + SOFTLIMIT_EVENTS_TARGET;
962 			break;
963 		default:
964 			break;
965 		}
966 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
967 		return true;
968 	}
969 	return false;
970 }
971 
972 /*
973  * Check events in order.
974  *
975  */
976 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
977 {
978 	/* threshold event is triggered in finer grain than soft limit */
979 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
980 						MEM_CGROUP_TARGET_THRESH))) {
981 		bool do_softlimit;
982 
983 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
984 						MEM_CGROUP_TARGET_SOFTLIMIT);
985 		mem_cgroup_threshold(memcg);
986 		if (unlikely(do_softlimit))
987 			mem_cgroup_update_tree(memcg, page);
988 	}
989 }
990 
991 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
992 {
993 	/*
994 	 * mm_update_next_owner() may clear mm->owner to NULL
995 	 * if it races with swapoff, page migration, etc.
996 	 * So this can be called with p == NULL.
997 	 */
998 	if (unlikely(!p))
999 		return NULL;
1000 
1001 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1002 }
1003 EXPORT_SYMBOL(mem_cgroup_from_task);
1004 
1005 /**
1006  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1007  * @mm: mm from which memcg should be extracted. It can be NULL.
1008  *
1009  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1010  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1011  * returned.
1012  */
1013 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1014 {
1015 	struct mem_cgroup *memcg;
1016 
1017 	if (mem_cgroup_disabled())
1018 		return NULL;
1019 
1020 	rcu_read_lock();
1021 	do {
1022 		/*
1023 		 * Page cache insertions can happen withou an
1024 		 * actual mm context, e.g. during disk probing
1025 		 * on boot, loopback IO, acct() writes etc.
1026 		 */
1027 		if (unlikely(!mm))
1028 			memcg = root_mem_cgroup;
1029 		else {
1030 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 			if (unlikely(!memcg))
1032 				memcg = root_mem_cgroup;
1033 		}
1034 	} while (!css_tryget(&memcg->css));
1035 	rcu_read_unlock();
1036 	return memcg;
1037 }
1038 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1039 
1040 /**
1041  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1042  * @page: page from which memcg should be extracted.
1043  *
1044  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1045  * root_mem_cgroup is returned.
1046  */
1047 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1048 {
1049 	struct mem_cgroup *memcg = page_memcg(page);
1050 
1051 	if (mem_cgroup_disabled())
1052 		return NULL;
1053 
1054 	rcu_read_lock();
1055 	/* Page should not get uncharged and freed memcg under us. */
1056 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1057 		memcg = root_mem_cgroup;
1058 	rcu_read_unlock();
1059 	return memcg;
1060 }
1061 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1062 
1063 static __always_inline struct mem_cgroup *active_memcg(void)
1064 {
1065 	if (in_interrupt())
1066 		return this_cpu_read(int_active_memcg);
1067 	else
1068 		return current->active_memcg;
1069 }
1070 
1071 static __always_inline struct mem_cgroup *get_active_memcg(void)
1072 {
1073 	struct mem_cgroup *memcg;
1074 
1075 	rcu_read_lock();
1076 	memcg = active_memcg();
1077 	if (memcg) {
1078 		/* current->active_memcg must hold a ref. */
1079 		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1080 			memcg = root_mem_cgroup;
1081 		else
1082 			memcg = current->active_memcg;
1083 	}
1084 	rcu_read_unlock();
1085 
1086 	return memcg;
1087 }
1088 
1089 static __always_inline bool memcg_kmem_bypass(void)
1090 {
1091 	/* Allow remote memcg charging from any context. */
1092 	if (unlikely(active_memcg()))
1093 		return false;
1094 
1095 	/* Memcg to charge can't be determined. */
1096 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1097 		return true;
1098 
1099 	return false;
1100 }
1101 
1102 /**
1103  * If active memcg is set, do not fallback to current->mm->memcg.
1104  */
1105 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1106 {
1107 	if (memcg_kmem_bypass())
1108 		return NULL;
1109 
1110 	if (unlikely(active_memcg()))
1111 		return get_active_memcg();
1112 
1113 	return get_mem_cgroup_from_mm(current->mm);
1114 }
1115 
1116 /**
1117  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1118  * @root: hierarchy root
1119  * @prev: previously returned memcg, NULL on first invocation
1120  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1121  *
1122  * Returns references to children of the hierarchy below @root, or
1123  * @root itself, or %NULL after a full round-trip.
1124  *
1125  * Caller must pass the return value in @prev on subsequent
1126  * invocations for reference counting, or use mem_cgroup_iter_break()
1127  * to cancel a hierarchy walk before the round-trip is complete.
1128  *
1129  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1130  * in the hierarchy among all concurrent reclaimers operating on the
1131  * same node.
1132  */
1133 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1134 				   struct mem_cgroup *prev,
1135 				   struct mem_cgroup_reclaim_cookie *reclaim)
1136 {
1137 	struct mem_cgroup_reclaim_iter *iter;
1138 	struct cgroup_subsys_state *css = NULL;
1139 	struct mem_cgroup *memcg = NULL;
1140 	struct mem_cgroup *pos = NULL;
1141 
1142 	if (mem_cgroup_disabled())
1143 		return NULL;
1144 
1145 	if (!root)
1146 		root = root_mem_cgroup;
1147 
1148 	if (prev && !reclaim)
1149 		pos = prev;
1150 
1151 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1152 		if (prev)
1153 			goto out;
1154 		return root;
1155 	}
1156 
1157 	rcu_read_lock();
1158 
1159 	if (reclaim) {
1160 		struct mem_cgroup_per_node *mz;
1161 
1162 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1163 		iter = &mz->iter;
1164 
1165 		if (prev && reclaim->generation != iter->generation)
1166 			goto out_unlock;
1167 
1168 		while (1) {
1169 			pos = READ_ONCE(iter->position);
1170 			if (!pos || css_tryget(&pos->css))
1171 				break;
1172 			/*
1173 			 * css reference reached zero, so iter->position will
1174 			 * be cleared by ->css_released. However, we should not
1175 			 * rely on this happening soon, because ->css_released
1176 			 * is called from a work queue, and by busy-waiting we
1177 			 * might block it. So we clear iter->position right
1178 			 * away.
1179 			 */
1180 			(void)cmpxchg(&iter->position, pos, NULL);
1181 		}
1182 	}
1183 
1184 	if (pos)
1185 		css = &pos->css;
1186 
1187 	for (;;) {
1188 		css = css_next_descendant_pre(css, &root->css);
1189 		if (!css) {
1190 			/*
1191 			 * Reclaimers share the hierarchy walk, and a
1192 			 * new one might jump in right at the end of
1193 			 * the hierarchy - make sure they see at least
1194 			 * one group and restart from the beginning.
1195 			 */
1196 			if (!prev)
1197 				continue;
1198 			break;
1199 		}
1200 
1201 		/*
1202 		 * Verify the css and acquire a reference.  The root
1203 		 * is provided by the caller, so we know it's alive
1204 		 * and kicking, and don't take an extra reference.
1205 		 */
1206 		memcg = mem_cgroup_from_css(css);
1207 
1208 		if (css == &root->css)
1209 			break;
1210 
1211 		if (css_tryget(css))
1212 			break;
1213 
1214 		memcg = NULL;
1215 	}
1216 
1217 	if (reclaim) {
1218 		/*
1219 		 * The position could have already been updated by a competing
1220 		 * thread, so check that the value hasn't changed since we read
1221 		 * it to avoid reclaiming from the same cgroup twice.
1222 		 */
1223 		(void)cmpxchg(&iter->position, pos, memcg);
1224 
1225 		if (pos)
1226 			css_put(&pos->css);
1227 
1228 		if (!memcg)
1229 			iter->generation++;
1230 		else if (!prev)
1231 			reclaim->generation = iter->generation;
1232 	}
1233 
1234 out_unlock:
1235 	rcu_read_unlock();
1236 out:
1237 	if (prev && prev != root)
1238 		css_put(&prev->css);
1239 
1240 	return memcg;
1241 }
1242 
1243 /**
1244  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1245  * @root: hierarchy root
1246  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1247  */
1248 void mem_cgroup_iter_break(struct mem_cgroup *root,
1249 			   struct mem_cgroup *prev)
1250 {
1251 	if (!root)
1252 		root = root_mem_cgroup;
1253 	if (prev && prev != root)
1254 		css_put(&prev->css);
1255 }
1256 
1257 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1258 					struct mem_cgroup *dead_memcg)
1259 {
1260 	struct mem_cgroup_reclaim_iter *iter;
1261 	struct mem_cgroup_per_node *mz;
1262 	int nid;
1263 
1264 	for_each_node(nid) {
1265 		mz = mem_cgroup_nodeinfo(from, nid);
1266 		iter = &mz->iter;
1267 		cmpxchg(&iter->position, dead_memcg, NULL);
1268 	}
1269 }
1270 
1271 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1272 {
1273 	struct mem_cgroup *memcg = dead_memcg;
1274 	struct mem_cgroup *last;
1275 
1276 	do {
1277 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1278 		last = memcg;
1279 	} while ((memcg = parent_mem_cgroup(memcg)));
1280 
1281 	/*
1282 	 * When cgruop1 non-hierarchy mode is used,
1283 	 * parent_mem_cgroup() does not walk all the way up to the
1284 	 * cgroup root (root_mem_cgroup). So we have to handle
1285 	 * dead_memcg from cgroup root separately.
1286 	 */
1287 	if (last != root_mem_cgroup)
1288 		__invalidate_reclaim_iterators(root_mem_cgroup,
1289 						dead_memcg);
1290 }
1291 
1292 /**
1293  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1294  * @memcg: hierarchy root
1295  * @fn: function to call for each task
1296  * @arg: argument passed to @fn
1297  *
1298  * This function iterates over tasks attached to @memcg or to any of its
1299  * descendants and calls @fn for each task. If @fn returns a non-zero
1300  * value, the function breaks the iteration loop and returns the value.
1301  * Otherwise, it will iterate over all tasks and return 0.
1302  *
1303  * This function must not be called for the root memory cgroup.
1304  */
1305 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1306 			  int (*fn)(struct task_struct *, void *), void *arg)
1307 {
1308 	struct mem_cgroup *iter;
1309 	int ret = 0;
1310 
1311 	BUG_ON(memcg == root_mem_cgroup);
1312 
1313 	for_each_mem_cgroup_tree(iter, memcg) {
1314 		struct css_task_iter it;
1315 		struct task_struct *task;
1316 
1317 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1318 		while (!ret && (task = css_task_iter_next(&it)))
1319 			ret = fn(task, arg);
1320 		css_task_iter_end(&it);
1321 		if (ret) {
1322 			mem_cgroup_iter_break(memcg, iter);
1323 			break;
1324 		}
1325 	}
1326 	return ret;
1327 }
1328 
1329 /**
1330  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1331  * @page: the page
1332  * @pgdat: pgdat of the page
1333  *
1334  * This function relies on page->mem_cgroup being stable - see the
1335  * access rules in commit_charge().
1336  */
1337 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1338 {
1339 	struct mem_cgroup_per_node *mz;
1340 	struct mem_cgroup *memcg;
1341 	struct lruvec *lruvec;
1342 
1343 	if (mem_cgroup_disabled()) {
1344 		lruvec = &pgdat->__lruvec;
1345 		goto out;
1346 	}
1347 
1348 	memcg = page_memcg(page);
1349 	/*
1350 	 * Swapcache readahead pages are added to the LRU - and
1351 	 * possibly migrated - before they are charged.
1352 	 */
1353 	if (!memcg)
1354 		memcg = root_mem_cgroup;
1355 
1356 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1357 	lruvec = &mz->lruvec;
1358 out:
1359 	/*
1360 	 * Since a node can be onlined after the mem_cgroup was created,
1361 	 * we have to be prepared to initialize lruvec->zone here;
1362 	 * and if offlined then reonlined, we need to reinitialize it.
1363 	 */
1364 	if (unlikely(lruvec->pgdat != pgdat))
1365 		lruvec->pgdat = pgdat;
1366 	return lruvec;
1367 }
1368 
1369 /**
1370  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1371  * @lruvec: mem_cgroup per zone lru vector
1372  * @lru: index of lru list the page is sitting on
1373  * @zid: zone id of the accounted pages
1374  * @nr_pages: positive when adding or negative when removing
1375  *
1376  * This function must be called under lru_lock, just before a page is added
1377  * to or just after a page is removed from an lru list (that ordering being
1378  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1379  */
1380 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1381 				int zid, int nr_pages)
1382 {
1383 	struct mem_cgroup_per_node *mz;
1384 	unsigned long *lru_size;
1385 	long size;
1386 
1387 	if (mem_cgroup_disabled())
1388 		return;
1389 
1390 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1391 	lru_size = &mz->lru_zone_size[zid][lru];
1392 
1393 	if (nr_pages < 0)
1394 		*lru_size += nr_pages;
1395 
1396 	size = *lru_size;
1397 	if (WARN_ONCE(size < 0,
1398 		"%s(%p, %d, %d): lru_size %ld\n",
1399 		__func__, lruvec, lru, nr_pages, size)) {
1400 		VM_BUG_ON(1);
1401 		*lru_size = 0;
1402 	}
1403 
1404 	if (nr_pages > 0)
1405 		*lru_size += nr_pages;
1406 }
1407 
1408 /**
1409  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1410  * @memcg: the memory cgroup
1411  *
1412  * Returns the maximum amount of memory @mem can be charged with, in
1413  * pages.
1414  */
1415 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1416 {
1417 	unsigned long margin = 0;
1418 	unsigned long count;
1419 	unsigned long limit;
1420 
1421 	count = page_counter_read(&memcg->memory);
1422 	limit = READ_ONCE(memcg->memory.max);
1423 	if (count < limit)
1424 		margin = limit - count;
1425 
1426 	if (do_memsw_account()) {
1427 		count = page_counter_read(&memcg->memsw);
1428 		limit = READ_ONCE(memcg->memsw.max);
1429 		if (count < limit)
1430 			margin = min(margin, limit - count);
1431 		else
1432 			margin = 0;
1433 	}
1434 
1435 	return margin;
1436 }
1437 
1438 /*
1439  * A routine for checking "mem" is under move_account() or not.
1440  *
1441  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1442  * moving cgroups. This is for waiting at high-memory pressure
1443  * caused by "move".
1444  */
1445 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1446 {
1447 	struct mem_cgroup *from;
1448 	struct mem_cgroup *to;
1449 	bool ret = false;
1450 	/*
1451 	 * Unlike task_move routines, we access mc.to, mc.from not under
1452 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1453 	 */
1454 	spin_lock(&mc.lock);
1455 	from = mc.from;
1456 	to = mc.to;
1457 	if (!from)
1458 		goto unlock;
1459 
1460 	ret = mem_cgroup_is_descendant(from, memcg) ||
1461 		mem_cgroup_is_descendant(to, memcg);
1462 unlock:
1463 	spin_unlock(&mc.lock);
1464 	return ret;
1465 }
1466 
1467 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1468 {
1469 	if (mc.moving_task && current != mc.moving_task) {
1470 		if (mem_cgroup_under_move(memcg)) {
1471 			DEFINE_WAIT(wait);
1472 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1473 			/* moving charge context might have finished. */
1474 			if (mc.moving_task)
1475 				schedule();
1476 			finish_wait(&mc.waitq, &wait);
1477 			return true;
1478 		}
1479 	}
1480 	return false;
1481 }
1482 
1483 struct memory_stat {
1484 	const char *name;
1485 	unsigned int ratio;
1486 	unsigned int idx;
1487 };
1488 
1489 static struct memory_stat memory_stats[] = {
1490 	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
1491 	{ "file", PAGE_SIZE, NR_FILE_PAGES },
1492 	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1493 	{ "percpu", 1, MEMCG_PERCPU_B },
1494 	{ "sock", PAGE_SIZE, MEMCG_SOCK },
1495 	{ "shmem", PAGE_SIZE, NR_SHMEM },
1496 	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1497 	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1498 	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1500 	/*
1501 	 * The ratio will be initialized in memory_stats_init(). Because
1502 	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1503 	 * constant(e.g. powerpc).
1504 	 */
1505 	{ "anon_thp", 0, NR_ANON_THPS },
1506 #endif
1507 	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1508 	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1509 	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1510 	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1511 	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1512 
1513 	/*
1514 	 * Note: The slab_reclaimable and slab_unreclaimable must be
1515 	 * together and slab_reclaimable must be in front.
1516 	 */
1517 	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1518 	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1519 
1520 	/* The memory events */
1521 	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1522 	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1523 	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1524 	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1525 	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1526 	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1527 	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1528 };
1529 
1530 static int __init memory_stats_init(void)
1531 {
1532 	int i;
1533 
1534 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1536 		if (memory_stats[i].idx == NR_ANON_THPS)
1537 			memory_stats[i].ratio = HPAGE_PMD_SIZE;
1538 #endif
1539 		VM_BUG_ON(!memory_stats[i].ratio);
1540 		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1541 	}
1542 
1543 	return 0;
1544 }
1545 pure_initcall(memory_stats_init);
1546 
1547 static char *memory_stat_format(struct mem_cgroup *memcg)
1548 {
1549 	struct seq_buf s;
1550 	int i;
1551 
1552 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1553 	if (!s.buffer)
1554 		return NULL;
1555 
1556 	/*
1557 	 * Provide statistics on the state of the memory subsystem as
1558 	 * well as cumulative event counters that show past behavior.
1559 	 *
1560 	 * This list is ordered following a combination of these gradients:
1561 	 * 1) generic big picture -> specifics and details
1562 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1563 	 *
1564 	 * Current memory state:
1565 	 */
1566 
1567 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1568 		u64 size;
1569 
1570 		size = memcg_page_state(memcg, memory_stats[i].idx);
1571 		size *= memory_stats[i].ratio;
1572 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1573 
1574 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1575 			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1576 			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1577 			seq_buf_printf(&s, "slab %llu\n", size);
1578 		}
1579 	}
1580 
1581 	/* Accumulated memory events */
1582 
1583 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1584 		       memcg_events(memcg, PGFAULT));
1585 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1586 		       memcg_events(memcg, PGMAJFAULT));
1587 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1588 		       memcg_events(memcg, PGREFILL));
1589 	seq_buf_printf(&s, "pgscan %lu\n",
1590 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1591 		       memcg_events(memcg, PGSCAN_DIRECT));
1592 	seq_buf_printf(&s, "pgsteal %lu\n",
1593 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1594 		       memcg_events(memcg, PGSTEAL_DIRECT));
1595 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1596 		       memcg_events(memcg, PGACTIVATE));
1597 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1598 		       memcg_events(memcg, PGDEACTIVATE));
1599 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1600 		       memcg_events(memcg, PGLAZYFREE));
1601 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1602 		       memcg_events(memcg, PGLAZYFREED));
1603 
1604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1605 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1606 		       memcg_events(memcg, THP_FAULT_ALLOC));
1607 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1608 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1610 
1611 	/* The above should easily fit into one page */
1612 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1613 
1614 	return s.buffer;
1615 }
1616 
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1618 /**
1619  * mem_cgroup_print_oom_context: Print OOM information relevant to
1620  * memory controller.
1621  * @memcg: The memory cgroup that went over limit
1622  * @p: Task that is going to be killed
1623  *
1624  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1625  * enabled
1626  */
1627 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1628 {
1629 	rcu_read_lock();
1630 
1631 	if (memcg) {
1632 		pr_cont(",oom_memcg=");
1633 		pr_cont_cgroup_path(memcg->css.cgroup);
1634 	} else
1635 		pr_cont(",global_oom");
1636 	if (p) {
1637 		pr_cont(",task_memcg=");
1638 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1639 	}
1640 	rcu_read_unlock();
1641 }
1642 
1643 /**
1644  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1645  * memory controller.
1646  * @memcg: The memory cgroup that went over limit
1647  */
1648 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1649 {
1650 	char *buf;
1651 
1652 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1653 		K((u64)page_counter_read(&memcg->memory)),
1654 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1655 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1656 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1657 			K((u64)page_counter_read(&memcg->swap)),
1658 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1659 	else {
1660 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1661 			K((u64)page_counter_read(&memcg->memsw)),
1662 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1663 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1664 			K((u64)page_counter_read(&memcg->kmem)),
1665 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1666 	}
1667 
1668 	pr_info("Memory cgroup stats for ");
1669 	pr_cont_cgroup_path(memcg->css.cgroup);
1670 	pr_cont(":");
1671 	buf = memory_stat_format(memcg);
1672 	if (!buf)
1673 		return;
1674 	pr_info("%s", buf);
1675 	kfree(buf);
1676 }
1677 
1678 /*
1679  * Return the memory (and swap, if configured) limit for a memcg.
1680  */
1681 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1682 {
1683 	unsigned long max = READ_ONCE(memcg->memory.max);
1684 
1685 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1686 		if (mem_cgroup_swappiness(memcg))
1687 			max += min(READ_ONCE(memcg->swap.max),
1688 				   (unsigned long)total_swap_pages);
1689 	} else { /* v1 */
1690 		if (mem_cgroup_swappiness(memcg)) {
1691 			/* Calculate swap excess capacity from memsw limit */
1692 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1693 
1694 			max += min(swap, (unsigned long)total_swap_pages);
1695 		}
1696 	}
1697 	return max;
1698 }
1699 
1700 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1701 {
1702 	return page_counter_read(&memcg->memory);
1703 }
1704 
1705 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1706 				     int order)
1707 {
1708 	struct oom_control oc = {
1709 		.zonelist = NULL,
1710 		.nodemask = NULL,
1711 		.memcg = memcg,
1712 		.gfp_mask = gfp_mask,
1713 		.order = order,
1714 	};
1715 	bool ret = true;
1716 
1717 	if (mutex_lock_killable(&oom_lock))
1718 		return true;
1719 
1720 	if (mem_cgroup_margin(memcg) >= (1 << order))
1721 		goto unlock;
1722 
1723 	/*
1724 	 * A few threads which were not waiting at mutex_lock_killable() can
1725 	 * fail to bail out. Therefore, check again after holding oom_lock.
1726 	 */
1727 	ret = should_force_charge() || out_of_memory(&oc);
1728 
1729 unlock:
1730 	mutex_unlock(&oom_lock);
1731 	return ret;
1732 }
1733 
1734 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1735 				   pg_data_t *pgdat,
1736 				   gfp_t gfp_mask,
1737 				   unsigned long *total_scanned)
1738 {
1739 	struct mem_cgroup *victim = NULL;
1740 	int total = 0;
1741 	int loop = 0;
1742 	unsigned long excess;
1743 	unsigned long nr_scanned;
1744 	struct mem_cgroup_reclaim_cookie reclaim = {
1745 		.pgdat = pgdat,
1746 	};
1747 
1748 	excess = soft_limit_excess(root_memcg);
1749 
1750 	while (1) {
1751 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1752 		if (!victim) {
1753 			loop++;
1754 			if (loop >= 2) {
1755 				/*
1756 				 * If we have not been able to reclaim
1757 				 * anything, it might because there are
1758 				 * no reclaimable pages under this hierarchy
1759 				 */
1760 				if (!total)
1761 					break;
1762 				/*
1763 				 * We want to do more targeted reclaim.
1764 				 * excess >> 2 is not to excessive so as to
1765 				 * reclaim too much, nor too less that we keep
1766 				 * coming back to reclaim from this cgroup
1767 				 */
1768 				if (total >= (excess >> 2) ||
1769 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1770 					break;
1771 			}
1772 			continue;
1773 		}
1774 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1775 					pgdat, &nr_scanned);
1776 		*total_scanned += nr_scanned;
1777 		if (!soft_limit_excess(root_memcg))
1778 			break;
1779 	}
1780 	mem_cgroup_iter_break(root_memcg, victim);
1781 	return total;
1782 }
1783 
1784 #ifdef CONFIG_LOCKDEP
1785 static struct lockdep_map memcg_oom_lock_dep_map = {
1786 	.name = "memcg_oom_lock",
1787 };
1788 #endif
1789 
1790 static DEFINE_SPINLOCK(memcg_oom_lock);
1791 
1792 /*
1793  * Check OOM-Killer is already running under our hierarchy.
1794  * If someone is running, return false.
1795  */
1796 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1797 {
1798 	struct mem_cgroup *iter, *failed = NULL;
1799 
1800 	spin_lock(&memcg_oom_lock);
1801 
1802 	for_each_mem_cgroup_tree(iter, memcg) {
1803 		if (iter->oom_lock) {
1804 			/*
1805 			 * this subtree of our hierarchy is already locked
1806 			 * so we cannot give a lock.
1807 			 */
1808 			failed = iter;
1809 			mem_cgroup_iter_break(memcg, iter);
1810 			break;
1811 		} else
1812 			iter->oom_lock = true;
1813 	}
1814 
1815 	if (failed) {
1816 		/*
1817 		 * OK, we failed to lock the whole subtree so we have
1818 		 * to clean up what we set up to the failing subtree
1819 		 */
1820 		for_each_mem_cgroup_tree(iter, memcg) {
1821 			if (iter == failed) {
1822 				mem_cgroup_iter_break(memcg, iter);
1823 				break;
1824 			}
1825 			iter->oom_lock = false;
1826 		}
1827 	} else
1828 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1829 
1830 	spin_unlock(&memcg_oom_lock);
1831 
1832 	return !failed;
1833 }
1834 
1835 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1836 {
1837 	struct mem_cgroup *iter;
1838 
1839 	spin_lock(&memcg_oom_lock);
1840 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1841 	for_each_mem_cgroup_tree(iter, memcg)
1842 		iter->oom_lock = false;
1843 	spin_unlock(&memcg_oom_lock);
1844 }
1845 
1846 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1847 {
1848 	struct mem_cgroup *iter;
1849 
1850 	spin_lock(&memcg_oom_lock);
1851 	for_each_mem_cgroup_tree(iter, memcg)
1852 		iter->under_oom++;
1853 	spin_unlock(&memcg_oom_lock);
1854 }
1855 
1856 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1857 {
1858 	struct mem_cgroup *iter;
1859 
1860 	/*
1861 	 * Be careful about under_oom underflows becase a child memcg
1862 	 * could have been added after mem_cgroup_mark_under_oom.
1863 	 */
1864 	spin_lock(&memcg_oom_lock);
1865 	for_each_mem_cgroup_tree(iter, memcg)
1866 		if (iter->under_oom > 0)
1867 			iter->under_oom--;
1868 	spin_unlock(&memcg_oom_lock);
1869 }
1870 
1871 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1872 
1873 struct oom_wait_info {
1874 	struct mem_cgroup *memcg;
1875 	wait_queue_entry_t	wait;
1876 };
1877 
1878 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1879 	unsigned mode, int sync, void *arg)
1880 {
1881 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1882 	struct mem_cgroup *oom_wait_memcg;
1883 	struct oom_wait_info *oom_wait_info;
1884 
1885 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1886 	oom_wait_memcg = oom_wait_info->memcg;
1887 
1888 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1889 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1890 		return 0;
1891 	return autoremove_wake_function(wait, mode, sync, arg);
1892 }
1893 
1894 static void memcg_oom_recover(struct mem_cgroup *memcg)
1895 {
1896 	/*
1897 	 * For the following lockless ->under_oom test, the only required
1898 	 * guarantee is that it must see the state asserted by an OOM when
1899 	 * this function is called as a result of userland actions
1900 	 * triggered by the notification of the OOM.  This is trivially
1901 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1902 	 * triggering notification.
1903 	 */
1904 	if (memcg && memcg->under_oom)
1905 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1906 }
1907 
1908 enum oom_status {
1909 	OOM_SUCCESS,
1910 	OOM_FAILED,
1911 	OOM_ASYNC,
1912 	OOM_SKIPPED
1913 };
1914 
1915 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1916 {
1917 	enum oom_status ret;
1918 	bool locked;
1919 
1920 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1921 		return OOM_SKIPPED;
1922 
1923 	memcg_memory_event(memcg, MEMCG_OOM);
1924 
1925 	/*
1926 	 * We are in the middle of the charge context here, so we
1927 	 * don't want to block when potentially sitting on a callstack
1928 	 * that holds all kinds of filesystem and mm locks.
1929 	 *
1930 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1931 	 * handling until the charge can succeed; remember the context and put
1932 	 * the task to sleep at the end of the page fault when all locks are
1933 	 * released.
1934 	 *
1935 	 * On the other hand, in-kernel OOM killer allows for an async victim
1936 	 * memory reclaim (oom_reaper) and that means that we are not solely
1937 	 * relying on the oom victim to make a forward progress and we can
1938 	 * invoke the oom killer here.
1939 	 *
1940 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1941 	 * victim and then we have to bail out from the charge path.
1942 	 */
1943 	if (memcg->oom_kill_disable) {
1944 		if (!current->in_user_fault)
1945 			return OOM_SKIPPED;
1946 		css_get(&memcg->css);
1947 		current->memcg_in_oom = memcg;
1948 		current->memcg_oom_gfp_mask = mask;
1949 		current->memcg_oom_order = order;
1950 
1951 		return OOM_ASYNC;
1952 	}
1953 
1954 	mem_cgroup_mark_under_oom(memcg);
1955 
1956 	locked = mem_cgroup_oom_trylock(memcg);
1957 
1958 	if (locked)
1959 		mem_cgroup_oom_notify(memcg);
1960 
1961 	mem_cgroup_unmark_under_oom(memcg);
1962 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1963 		ret = OOM_SUCCESS;
1964 	else
1965 		ret = OOM_FAILED;
1966 
1967 	if (locked)
1968 		mem_cgroup_oom_unlock(memcg);
1969 
1970 	return ret;
1971 }
1972 
1973 /**
1974  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1975  * @handle: actually kill/wait or just clean up the OOM state
1976  *
1977  * This has to be called at the end of a page fault if the memcg OOM
1978  * handler was enabled.
1979  *
1980  * Memcg supports userspace OOM handling where failed allocations must
1981  * sleep on a waitqueue until the userspace task resolves the
1982  * situation.  Sleeping directly in the charge context with all kinds
1983  * of locks held is not a good idea, instead we remember an OOM state
1984  * in the task and mem_cgroup_oom_synchronize() has to be called at
1985  * the end of the page fault to complete the OOM handling.
1986  *
1987  * Returns %true if an ongoing memcg OOM situation was detected and
1988  * completed, %false otherwise.
1989  */
1990 bool mem_cgroup_oom_synchronize(bool handle)
1991 {
1992 	struct mem_cgroup *memcg = current->memcg_in_oom;
1993 	struct oom_wait_info owait;
1994 	bool locked;
1995 
1996 	/* OOM is global, do not handle */
1997 	if (!memcg)
1998 		return false;
1999 
2000 	if (!handle)
2001 		goto cleanup;
2002 
2003 	owait.memcg = memcg;
2004 	owait.wait.flags = 0;
2005 	owait.wait.func = memcg_oom_wake_function;
2006 	owait.wait.private = current;
2007 	INIT_LIST_HEAD(&owait.wait.entry);
2008 
2009 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2010 	mem_cgroup_mark_under_oom(memcg);
2011 
2012 	locked = mem_cgroup_oom_trylock(memcg);
2013 
2014 	if (locked)
2015 		mem_cgroup_oom_notify(memcg);
2016 
2017 	if (locked && !memcg->oom_kill_disable) {
2018 		mem_cgroup_unmark_under_oom(memcg);
2019 		finish_wait(&memcg_oom_waitq, &owait.wait);
2020 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2021 					 current->memcg_oom_order);
2022 	} else {
2023 		schedule();
2024 		mem_cgroup_unmark_under_oom(memcg);
2025 		finish_wait(&memcg_oom_waitq, &owait.wait);
2026 	}
2027 
2028 	if (locked) {
2029 		mem_cgroup_oom_unlock(memcg);
2030 		/*
2031 		 * There is no guarantee that an OOM-lock contender
2032 		 * sees the wakeups triggered by the OOM kill
2033 		 * uncharges.  Wake any sleepers explicitely.
2034 		 */
2035 		memcg_oom_recover(memcg);
2036 	}
2037 cleanup:
2038 	current->memcg_in_oom = NULL;
2039 	css_put(&memcg->css);
2040 	return true;
2041 }
2042 
2043 /**
2044  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2045  * @victim: task to be killed by the OOM killer
2046  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2047  *
2048  * Returns a pointer to a memory cgroup, which has to be cleaned up
2049  * by killing all belonging OOM-killable tasks.
2050  *
2051  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2052  */
2053 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2054 					    struct mem_cgroup *oom_domain)
2055 {
2056 	struct mem_cgroup *oom_group = NULL;
2057 	struct mem_cgroup *memcg;
2058 
2059 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2060 		return NULL;
2061 
2062 	if (!oom_domain)
2063 		oom_domain = root_mem_cgroup;
2064 
2065 	rcu_read_lock();
2066 
2067 	memcg = mem_cgroup_from_task(victim);
2068 	if (memcg == root_mem_cgroup)
2069 		goto out;
2070 
2071 	/*
2072 	 * If the victim task has been asynchronously moved to a different
2073 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2074 	 * In this case it's better to ignore memory.group.oom.
2075 	 */
2076 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2077 		goto out;
2078 
2079 	/*
2080 	 * Traverse the memory cgroup hierarchy from the victim task's
2081 	 * cgroup up to the OOMing cgroup (or root) to find the
2082 	 * highest-level memory cgroup with oom.group set.
2083 	 */
2084 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2085 		if (memcg->oom_group)
2086 			oom_group = memcg;
2087 
2088 		if (memcg == oom_domain)
2089 			break;
2090 	}
2091 
2092 	if (oom_group)
2093 		css_get(&oom_group->css);
2094 out:
2095 	rcu_read_unlock();
2096 
2097 	return oom_group;
2098 }
2099 
2100 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2101 {
2102 	pr_info("Tasks in ");
2103 	pr_cont_cgroup_path(memcg->css.cgroup);
2104 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2105 }
2106 
2107 /**
2108  * lock_page_memcg - lock a page and memcg binding
2109  * @page: the page
2110  *
2111  * This function protects unlocked LRU pages from being moved to
2112  * another cgroup.
2113  *
2114  * It ensures lifetime of the returned memcg. Caller is responsible
2115  * for the lifetime of the page; __unlock_page_memcg() is available
2116  * when @page might get freed inside the locked section.
2117  */
2118 struct mem_cgroup *lock_page_memcg(struct page *page)
2119 {
2120 	struct page *head = compound_head(page); /* rmap on tail pages */
2121 	struct mem_cgroup *memcg;
2122 	unsigned long flags;
2123 
2124 	/*
2125 	 * The RCU lock is held throughout the transaction.  The fast
2126 	 * path can get away without acquiring the memcg->move_lock
2127 	 * because page moving starts with an RCU grace period.
2128 	 *
2129 	 * The RCU lock also protects the memcg from being freed when
2130 	 * the page state that is going to change is the only thing
2131 	 * preventing the page itself from being freed. E.g. writeback
2132 	 * doesn't hold a page reference and relies on PG_writeback to
2133 	 * keep off truncation, migration and so forth.
2134          */
2135 	rcu_read_lock();
2136 
2137 	if (mem_cgroup_disabled())
2138 		return NULL;
2139 again:
2140 	memcg = page_memcg(head);
2141 	if (unlikely(!memcg))
2142 		return NULL;
2143 
2144 	if (atomic_read(&memcg->moving_account) <= 0)
2145 		return memcg;
2146 
2147 	spin_lock_irqsave(&memcg->move_lock, flags);
2148 	if (memcg != page_memcg(head)) {
2149 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 		goto again;
2151 	}
2152 
2153 	/*
2154 	 * When charge migration first begins, we can have locked and
2155 	 * unlocked page stat updates happening concurrently.  Track
2156 	 * the task who has the lock for unlock_page_memcg().
2157 	 */
2158 	memcg->move_lock_task = current;
2159 	memcg->move_lock_flags = flags;
2160 
2161 	return memcg;
2162 }
2163 EXPORT_SYMBOL(lock_page_memcg);
2164 
2165 /**
2166  * __unlock_page_memcg - unlock and unpin a memcg
2167  * @memcg: the memcg
2168  *
2169  * Unlock and unpin a memcg returned by lock_page_memcg().
2170  */
2171 void __unlock_page_memcg(struct mem_cgroup *memcg)
2172 {
2173 	if (memcg && memcg->move_lock_task == current) {
2174 		unsigned long flags = memcg->move_lock_flags;
2175 
2176 		memcg->move_lock_task = NULL;
2177 		memcg->move_lock_flags = 0;
2178 
2179 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2180 	}
2181 
2182 	rcu_read_unlock();
2183 }
2184 
2185 /**
2186  * unlock_page_memcg - unlock a page and memcg binding
2187  * @page: the page
2188  */
2189 void unlock_page_memcg(struct page *page)
2190 {
2191 	struct page *head = compound_head(page);
2192 
2193 	__unlock_page_memcg(page_memcg(head));
2194 }
2195 EXPORT_SYMBOL(unlock_page_memcg);
2196 
2197 struct memcg_stock_pcp {
2198 	struct mem_cgroup *cached; /* this never be root cgroup */
2199 	unsigned int nr_pages;
2200 
2201 #ifdef CONFIG_MEMCG_KMEM
2202 	struct obj_cgroup *cached_objcg;
2203 	unsigned int nr_bytes;
2204 #endif
2205 
2206 	struct work_struct work;
2207 	unsigned long flags;
2208 #define FLUSHING_CACHED_CHARGE	0
2209 };
2210 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2211 static DEFINE_MUTEX(percpu_charge_mutex);
2212 
2213 #ifdef CONFIG_MEMCG_KMEM
2214 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2215 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2216 				     struct mem_cgroup *root_memcg);
2217 
2218 #else
2219 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2220 {
2221 }
2222 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2223 				     struct mem_cgroup *root_memcg)
2224 {
2225 	return false;
2226 }
2227 #endif
2228 
2229 /**
2230  * consume_stock: Try to consume stocked charge on this cpu.
2231  * @memcg: memcg to consume from.
2232  * @nr_pages: how many pages to charge.
2233  *
2234  * The charges will only happen if @memcg matches the current cpu's memcg
2235  * stock, and at least @nr_pages are available in that stock.  Failure to
2236  * service an allocation will refill the stock.
2237  *
2238  * returns true if successful, false otherwise.
2239  */
2240 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2241 {
2242 	struct memcg_stock_pcp *stock;
2243 	unsigned long flags;
2244 	bool ret = false;
2245 
2246 	if (nr_pages > MEMCG_CHARGE_BATCH)
2247 		return ret;
2248 
2249 	local_irq_save(flags);
2250 
2251 	stock = this_cpu_ptr(&memcg_stock);
2252 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2253 		stock->nr_pages -= nr_pages;
2254 		ret = true;
2255 	}
2256 
2257 	local_irq_restore(flags);
2258 
2259 	return ret;
2260 }
2261 
2262 /*
2263  * Returns stocks cached in percpu and reset cached information.
2264  */
2265 static void drain_stock(struct memcg_stock_pcp *stock)
2266 {
2267 	struct mem_cgroup *old = stock->cached;
2268 
2269 	if (!old)
2270 		return;
2271 
2272 	if (stock->nr_pages) {
2273 		page_counter_uncharge(&old->memory, stock->nr_pages);
2274 		if (do_memsw_account())
2275 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2276 		stock->nr_pages = 0;
2277 	}
2278 
2279 	css_put(&old->css);
2280 	stock->cached = NULL;
2281 }
2282 
2283 static void drain_local_stock(struct work_struct *dummy)
2284 {
2285 	struct memcg_stock_pcp *stock;
2286 	unsigned long flags;
2287 
2288 	/*
2289 	 * The only protection from memory hotplug vs. drain_stock races is
2290 	 * that we always operate on local CPU stock here with IRQ disabled
2291 	 */
2292 	local_irq_save(flags);
2293 
2294 	stock = this_cpu_ptr(&memcg_stock);
2295 	drain_obj_stock(stock);
2296 	drain_stock(stock);
2297 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2298 
2299 	local_irq_restore(flags);
2300 }
2301 
2302 /*
2303  * Cache charges(val) to local per_cpu area.
2304  * This will be consumed by consume_stock() function, later.
2305  */
2306 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2307 {
2308 	struct memcg_stock_pcp *stock;
2309 	unsigned long flags;
2310 
2311 	local_irq_save(flags);
2312 
2313 	stock = this_cpu_ptr(&memcg_stock);
2314 	if (stock->cached != memcg) { /* reset if necessary */
2315 		drain_stock(stock);
2316 		css_get(&memcg->css);
2317 		stock->cached = memcg;
2318 	}
2319 	stock->nr_pages += nr_pages;
2320 
2321 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2322 		drain_stock(stock);
2323 
2324 	local_irq_restore(flags);
2325 }
2326 
2327 /*
2328  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2329  * of the hierarchy under it.
2330  */
2331 static void drain_all_stock(struct mem_cgroup *root_memcg)
2332 {
2333 	int cpu, curcpu;
2334 
2335 	/* If someone's already draining, avoid adding running more workers. */
2336 	if (!mutex_trylock(&percpu_charge_mutex))
2337 		return;
2338 	/*
2339 	 * Notify other cpus that system-wide "drain" is running
2340 	 * We do not care about races with the cpu hotplug because cpu down
2341 	 * as well as workers from this path always operate on the local
2342 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2343 	 */
2344 	curcpu = get_cpu();
2345 	for_each_online_cpu(cpu) {
2346 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2347 		struct mem_cgroup *memcg;
2348 		bool flush = false;
2349 
2350 		rcu_read_lock();
2351 		memcg = stock->cached;
2352 		if (memcg && stock->nr_pages &&
2353 		    mem_cgroup_is_descendant(memcg, root_memcg))
2354 			flush = true;
2355 		if (obj_stock_flush_required(stock, root_memcg))
2356 			flush = true;
2357 		rcu_read_unlock();
2358 
2359 		if (flush &&
2360 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2361 			if (cpu == curcpu)
2362 				drain_local_stock(&stock->work);
2363 			else
2364 				schedule_work_on(cpu, &stock->work);
2365 		}
2366 	}
2367 	put_cpu();
2368 	mutex_unlock(&percpu_charge_mutex);
2369 }
2370 
2371 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2372 {
2373 	struct memcg_stock_pcp *stock;
2374 	struct mem_cgroup *memcg, *mi;
2375 
2376 	stock = &per_cpu(memcg_stock, cpu);
2377 	drain_stock(stock);
2378 
2379 	for_each_mem_cgroup(memcg) {
2380 		int i;
2381 
2382 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2383 			int nid;
2384 			long x;
2385 
2386 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2387 			if (x)
2388 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2389 					atomic_long_add(x, &memcg->vmstats[i]);
2390 
2391 			if (i >= NR_VM_NODE_STAT_ITEMS)
2392 				continue;
2393 
2394 			for_each_node(nid) {
2395 				struct mem_cgroup_per_node *pn;
2396 
2397 				pn = mem_cgroup_nodeinfo(memcg, nid);
2398 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2399 				if (x)
2400 					do {
2401 						atomic_long_add(x, &pn->lruvec_stat[i]);
2402 					} while ((pn = parent_nodeinfo(pn, nid)));
2403 			}
2404 		}
2405 
2406 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2407 			long x;
2408 
2409 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2410 			if (x)
2411 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2412 					atomic_long_add(x, &memcg->vmevents[i]);
2413 		}
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2420 				  unsigned int nr_pages,
2421 				  gfp_t gfp_mask)
2422 {
2423 	unsigned long nr_reclaimed = 0;
2424 
2425 	do {
2426 		unsigned long pflags;
2427 
2428 		if (page_counter_read(&memcg->memory) <=
2429 		    READ_ONCE(memcg->memory.high))
2430 			continue;
2431 
2432 		memcg_memory_event(memcg, MEMCG_HIGH);
2433 
2434 		psi_memstall_enter(&pflags);
2435 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2436 							     gfp_mask, true);
2437 		psi_memstall_leave(&pflags);
2438 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2439 		 !mem_cgroup_is_root(memcg));
2440 
2441 	return nr_reclaimed;
2442 }
2443 
2444 static void high_work_func(struct work_struct *work)
2445 {
2446 	struct mem_cgroup *memcg;
2447 
2448 	memcg = container_of(work, struct mem_cgroup, high_work);
2449 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2450 }
2451 
2452 /*
2453  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2454  * enough to still cause a significant slowdown in most cases, while still
2455  * allowing diagnostics and tracing to proceed without becoming stuck.
2456  */
2457 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2458 
2459 /*
2460  * When calculating the delay, we use these either side of the exponentiation to
2461  * maintain precision and scale to a reasonable number of jiffies (see the table
2462  * below.
2463  *
2464  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2465  *   overage ratio to a delay.
2466  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2467  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2468  *   to produce a reasonable delay curve.
2469  *
2470  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2471  * reasonable delay curve compared to precision-adjusted overage, not
2472  * penalising heavily at first, but still making sure that growth beyond the
2473  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2474  * example, with a high of 100 megabytes:
2475  *
2476  *  +-------+------------------------+
2477  *  | usage | time to allocate in ms |
2478  *  +-------+------------------------+
2479  *  | 100M  |                      0 |
2480  *  | 101M  |                      6 |
2481  *  | 102M  |                     25 |
2482  *  | 103M  |                     57 |
2483  *  | 104M  |                    102 |
2484  *  | 105M  |                    159 |
2485  *  | 106M  |                    230 |
2486  *  | 107M  |                    313 |
2487  *  | 108M  |                    409 |
2488  *  | 109M  |                    518 |
2489  *  | 110M  |                    639 |
2490  *  | 111M  |                    774 |
2491  *  | 112M  |                    921 |
2492  *  | 113M  |                   1081 |
2493  *  | 114M  |                   1254 |
2494  *  | 115M  |                   1439 |
2495  *  | 116M  |                   1638 |
2496  *  | 117M  |                   1849 |
2497  *  | 118M  |                   2000 |
2498  *  | 119M  |                   2000 |
2499  *  | 120M  |                   2000 |
2500  *  +-------+------------------------+
2501  */
2502  #define MEMCG_DELAY_PRECISION_SHIFT 20
2503  #define MEMCG_DELAY_SCALING_SHIFT 14
2504 
2505 static u64 calculate_overage(unsigned long usage, unsigned long high)
2506 {
2507 	u64 overage;
2508 
2509 	if (usage <= high)
2510 		return 0;
2511 
2512 	/*
2513 	 * Prevent division by 0 in overage calculation by acting as if
2514 	 * it was a threshold of 1 page
2515 	 */
2516 	high = max(high, 1UL);
2517 
2518 	overage = usage - high;
2519 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2520 	return div64_u64(overage, high);
2521 }
2522 
2523 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2524 {
2525 	u64 overage, max_overage = 0;
2526 
2527 	do {
2528 		overage = calculate_overage(page_counter_read(&memcg->memory),
2529 					    READ_ONCE(memcg->memory.high));
2530 		max_overage = max(overage, max_overage);
2531 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2532 		 !mem_cgroup_is_root(memcg));
2533 
2534 	return max_overage;
2535 }
2536 
2537 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2538 {
2539 	u64 overage, max_overage = 0;
2540 
2541 	do {
2542 		overage = calculate_overage(page_counter_read(&memcg->swap),
2543 					    READ_ONCE(memcg->swap.high));
2544 		if (overage)
2545 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2546 		max_overage = max(overage, max_overage);
2547 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2548 		 !mem_cgroup_is_root(memcg));
2549 
2550 	return max_overage;
2551 }
2552 
2553 /*
2554  * Get the number of jiffies that we should penalise a mischievous cgroup which
2555  * is exceeding its memory.high by checking both it and its ancestors.
2556  */
2557 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2558 					  unsigned int nr_pages,
2559 					  u64 max_overage)
2560 {
2561 	unsigned long penalty_jiffies;
2562 
2563 	if (!max_overage)
2564 		return 0;
2565 
2566 	/*
2567 	 * We use overage compared to memory.high to calculate the number of
2568 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2569 	 * fairly lenient on small overages, and increasingly harsh when the
2570 	 * memcg in question makes it clear that it has no intention of stopping
2571 	 * its crazy behaviour, so we exponentially increase the delay based on
2572 	 * overage amount.
2573 	 */
2574 	penalty_jiffies = max_overage * max_overage * HZ;
2575 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2576 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2577 
2578 	/*
2579 	 * Factor in the task's own contribution to the overage, such that four
2580 	 * N-sized allocations are throttled approximately the same as one
2581 	 * 4N-sized allocation.
2582 	 *
2583 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2584 	 * larger the current charge patch is than that.
2585 	 */
2586 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2587 }
2588 
2589 /*
2590  * Scheduled by try_charge() to be executed from the userland return path
2591  * and reclaims memory over the high limit.
2592  */
2593 void mem_cgroup_handle_over_high(void)
2594 {
2595 	unsigned long penalty_jiffies;
2596 	unsigned long pflags;
2597 	unsigned long nr_reclaimed;
2598 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2599 	int nr_retries = MAX_RECLAIM_RETRIES;
2600 	struct mem_cgroup *memcg;
2601 	bool in_retry = false;
2602 
2603 	if (likely(!nr_pages))
2604 		return;
2605 
2606 	memcg = get_mem_cgroup_from_mm(current->mm);
2607 	current->memcg_nr_pages_over_high = 0;
2608 
2609 retry_reclaim:
2610 	/*
2611 	 * The allocating task should reclaim at least the batch size, but for
2612 	 * subsequent retries we only want to do what's necessary to prevent oom
2613 	 * or breaching resource isolation.
2614 	 *
2615 	 * This is distinct from memory.max or page allocator behaviour because
2616 	 * memory.high is currently batched, whereas memory.max and the page
2617 	 * allocator run every time an allocation is made.
2618 	 */
2619 	nr_reclaimed = reclaim_high(memcg,
2620 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2621 				    GFP_KERNEL);
2622 
2623 	/*
2624 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2625 	 * allocators proactively to slow down excessive growth.
2626 	 */
2627 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2628 					       mem_find_max_overage(memcg));
2629 
2630 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2631 						swap_find_max_overage(memcg));
2632 
2633 	/*
2634 	 * Clamp the max delay per usermode return so as to still keep the
2635 	 * application moving forwards and also permit diagnostics, albeit
2636 	 * extremely slowly.
2637 	 */
2638 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2639 
2640 	/*
2641 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2642 	 * that it's not even worth doing, in an attempt to be nice to those who
2643 	 * go only a small amount over their memory.high value and maybe haven't
2644 	 * been aggressively reclaimed enough yet.
2645 	 */
2646 	if (penalty_jiffies <= HZ / 100)
2647 		goto out;
2648 
2649 	/*
2650 	 * If reclaim is making forward progress but we're still over
2651 	 * memory.high, we want to encourage that rather than doing allocator
2652 	 * throttling.
2653 	 */
2654 	if (nr_reclaimed || nr_retries--) {
2655 		in_retry = true;
2656 		goto retry_reclaim;
2657 	}
2658 
2659 	/*
2660 	 * If we exit early, we're guaranteed to die (since
2661 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2662 	 * need to account for any ill-begotten jiffies to pay them off later.
2663 	 */
2664 	psi_memstall_enter(&pflags);
2665 	schedule_timeout_killable(penalty_jiffies);
2666 	psi_memstall_leave(&pflags);
2667 
2668 out:
2669 	css_put(&memcg->css);
2670 }
2671 
2672 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2673 		      unsigned int nr_pages)
2674 {
2675 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2676 	int nr_retries = MAX_RECLAIM_RETRIES;
2677 	struct mem_cgroup *mem_over_limit;
2678 	struct page_counter *counter;
2679 	enum oom_status oom_status;
2680 	unsigned long nr_reclaimed;
2681 	bool may_swap = true;
2682 	bool drained = false;
2683 	unsigned long pflags;
2684 
2685 	if (mem_cgroup_is_root(memcg))
2686 		return 0;
2687 retry:
2688 	if (consume_stock(memcg, nr_pages))
2689 		return 0;
2690 
2691 	if (!do_memsw_account() ||
2692 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2693 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2694 			goto done_restock;
2695 		if (do_memsw_account())
2696 			page_counter_uncharge(&memcg->memsw, batch);
2697 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2698 	} else {
2699 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2700 		may_swap = false;
2701 	}
2702 
2703 	if (batch > nr_pages) {
2704 		batch = nr_pages;
2705 		goto retry;
2706 	}
2707 
2708 	/*
2709 	 * Memcg doesn't have a dedicated reserve for atomic
2710 	 * allocations. But like the global atomic pool, we need to
2711 	 * put the burden of reclaim on regular allocation requests
2712 	 * and let these go through as privileged allocations.
2713 	 */
2714 	if (gfp_mask & __GFP_ATOMIC)
2715 		goto force;
2716 
2717 	/*
2718 	 * Unlike in global OOM situations, memcg is not in a physical
2719 	 * memory shortage.  Allow dying and OOM-killed tasks to
2720 	 * bypass the last charges so that they can exit quickly and
2721 	 * free their memory.
2722 	 */
2723 	if (unlikely(should_force_charge()))
2724 		goto force;
2725 
2726 	/*
2727 	 * Prevent unbounded recursion when reclaim operations need to
2728 	 * allocate memory. This might exceed the limits temporarily,
2729 	 * but we prefer facilitating memory reclaim and getting back
2730 	 * under the limit over triggering OOM kills in these cases.
2731 	 */
2732 	if (unlikely(current->flags & PF_MEMALLOC))
2733 		goto force;
2734 
2735 	if (unlikely(task_in_memcg_oom(current)))
2736 		goto nomem;
2737 
2738 	if (!gfpflags_allow_blocking(gfp_mask))
2739 		goto nomem;
2740 
2741 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2742 
2743 	psi_memstall_enter(&pflags);
2744 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2745 						    gfp_mask, may_swap);
2746 	psi_memstall_leave(&pflags);
2747 
2748 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2749 		goto retry;
2750 
2751 	if (!drained) {
2752 		drain_all_stock(mem_over_limit);
2753 		drained = true;
2754 		goto retry;
2755 	}
2756 
2757 	if (gfp_mask & __GFP_NORETRY)
2758 		goto nomem;
2759 	/*
2760 	 * Even though the limit is exceeded at this point, reclaim
2761 	 * may have been able to free some pages.  Retry the charge
2762 	 * before killing the task.
2763 	 *
2764 	 * Only for regular pages, though: huge pages are rather
2765 	 * unlikely to succeed so close to the limit, and we fall back
2766 	 * to regular pages anyway in case of failure.
2767 	 */
2768 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2769 		goto retry;
2770 	/*
2771 	 * At task move, charge accounts can be doubly counted. So, it's
2772 	 * better to wait until the end of task_move if something is going on.
2773 	 */
2774 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2775 		goto retry;
2776 
2777 	if (nr_retries--)
2778 		goto retry;
2779 
2780 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2781 		goto nomem;
2782 
2783 	if (gfp_mask & __GFP_NOFAIL)
2784 		goto force;
2785 
2786 	if (fatal_signal_pending(current))
2787 		goto force;
2788 
2789 	/*
2790 	 * keep retrying as long as the memcg oom killer is able to make
2791 	 * a forward progress or bypass the charge if the oom killer
2792 	 * couldn't make any progress.
2793 	 */
2794 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2795 		       get_order(nr_pages * PAGE_SIZE));
2796 	switch (oom_status) {
2797 	case OOM_SUCCESS:
2798 		nr_retries = MAX_RECLAIM_RETRIES;
2799 		goto retry;
2800 	case OOM_FAILED:
2801 		goto force;
2802 	default:
2803 		goto nomem;
2804 	}
2805 nomem:
2806 	if (!(gfp_mask & __GFP_NOFAIL))
2807 		return -ENOMEM;
2808 force:
2809 	/*
2810 	 * The allocation either can't fail or will lead to more memory
2811 	 * being freed very soon.  Allow memory usage go over the limit
2812 	 * temporarily by force charging it.
2813 	 */
2814 	page_counter_charge(&memcg->memory, nr_pages);
2815 	if (do_memsw_account())
2816 		page_counter_charge(&memcg->memsw, nr_pages);
2817 
2818 	return 0;
2819 
2820 done_restock:
2821 	if (batch > nr_pages)
2822 		refill_stock(memcg, batch - nr_pages);
2823 
2824 	/*
2825 	 * If the hierarchy is above the normal consumption range, schedule
2826 	 * reclaim on returning to userland.  We can perform reclaim here
2827 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2828 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2829 	 * not recorded as it most likely matches current's and won't
2830 	 * change in the meantime.  As high limit is checked again before
2831 	 * reclaim, the cost of mismatch is negligible.
2832 	 */
2833 	do {
2834 		bool mem_high, swap_high;
2835 
2836 		mem_high = page_counter_read(&memcg->memory) >
2837 			READ_ONCE(memcg->memory.high);
2838 		swap_high = page_counter_read(&memcg->swap) >
2839 			READ_ONCE(memcg->swap.high);
2840 
2841 		/* Don't bother a random interrupted task */
2842 		if (in_interrupt()) {
2843 			if (mem_high) {
2844 				schedule_work(&memcg->high_work);
2845 				break;
2846 			}
2847 			continue;
2848 		}
2849 
2850 		if (mem_high || swap_high) {
2851 			/*
2852 			 * The allocating tasks in this cgroup will need to do
2853 			 * reclaim or be throttled to prevent further growth
2854 			 * of the memory or swap footprints.
2855 			 *
2856 			 * Target some best-effort fairness between the tasks,
2857 			 * and distribute reclaim work and delay penalties
2858 			 * based on how much each task is actually allocating.
2859 			 */
2860 			current->memcg_nr_pages_over_high += batch;
2861 			set_notify_resume(current);
2862 			break;
2863 		}
2864 	} while ((memcg = parent_mem_cgroup(memcg)));
2865 
2866 	return 0;
2867 }
2868 
2869 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2870 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2871 {
2872 	if (mem_cgroup_is_root(memcg))
2873 		return;
2874 
2875 	page_counter_uncharge(&memcg->memory, nr_pages);
2876 	if (do_memsw_account())
2877 		page_counter_uncharge(&memcg->memsw, nr_pages);
2878 }
2879 #endif
2880 
2881 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2882 {
2883 	VM_BUG_ON_PAGE(page_memcg(page), page);
2884 	/*
2885 	 * Any of the following ensures page->mem_cgroup stability:
2886 	 *
2887 	 * - the page lock
2888 	 * - LRU isolation
2889 	 * - lock_page_memcg()
2890 	 * - exclusive reference
2891 	 */
2892 	page->memcg_data = (unsigned long)memcg;
2893 }
2894 
2895 #ifdef CONFIG_MEMCG_KMEM
2896 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2897 				 gfp_t gfp)
2898 {
2899 	unsigned int objects = objs_per_slab_page(s, page);
2900 	void *vec;
2901 
2902 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2903 			   page_to_nid(page));
2904 	if (!vec)
2905 		return -ENOMEM;
2906 
2907 	if (!set_page_objcgs(page, vec))
2908 		kfree(vec);
2909 	else
2910 		kmemleak_not_leak(vec);
2911 
2912 	return 0;
2913 }
2914 
2915 /*
2916  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2917  *
2918  * A passed kernel object can be a slab object or a generic kernel page, so
2919  * different mechanisms for getting the memory cgroup pointer should be used.
2920  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2921  * can not know for sure how the kernel object is implemented.
2922  * mem_cgroup_from_obj() can be safely used in such cases.
2923  *
2924  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2925  * cgroup_mutex, etc.
2926  */
2927 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2928 {
2929 	struct page *page;
2930 
2931 	if (mem_cgroup_disabled())
2932 		return NULL;
2933 
2934 	page = virt_to_head_page(p);
2935 
2936 	/*
2937 	 * Slab objects are accounted individually, not per-page.
2938 	 * Memcg membership data for each individual object is saved in
2939 	 * the page->obj_cgroups.
2940 	 */
2941 	if (page_objcgs_check(page)) {
2942 		struct obj_cgroup *objcg;
2943 		unsigned int off;
2944 
2945 		off = obj_to_index(page->slab_cache, page, p);
2946 		objcg = page_objcgs(page)[off];
2947 		if (objcg)
2948 			return obj_cgroup_memcg(objcg);
2949 
2950 		return NULL;
2951 	}
2952 
2953 	/*
2954 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2955 	 * check above could fail because the object cgroups vector wasn't set
2956 	 * at that moment, but it can be set concurrently.
2957 	 * page_memcg_check(page) will guarantee that a proper memory
2958 	 * cgroup pointer or NULL will be returned.
2959 	 */
2960 	return page_memcg_check(page);
2961 }
2962 
2963 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2964 {
2965 	struct obj_cgroup *objcg = NULL;
2966 	struct mem_cgroup *memcg;
2967 
2968 	if (memcg_kmem_bypass())
2969 		return NULL;
2970 
2971 	rcu_read_lock();
2972 	if (unlikely(active_memcg()))
2973 		memcg = active_memcg();
2974 	else
2975 		memcg = mem_cgroup_from_task(current);
2976 
2977 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2978 		objcg = rcu_dereference(memcg->objcg);
2979 		if (objcg && obj_cgroup_tryget(objcg))
2980 			break;
2981 	}
2982 	rcu_read_unlock();
2983 
2984 	return objcg;
2985 }
2986 
2987 static int memcg_alloc_cache_id(void)
2988 {
2989 	int id, size;
2990 	int err;
2991 
2992 	id = ida_simple_get(&memcg_cache_ida,
2993 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2994 	if (id < 0)
2995 		return id;
2996 
2997 	if (id < memcg_nr_cache_ids)
2998 		return id;
2999 
3000 	/*
3001 	 * There's no space for the new id in memcg_caches arrays,
3002 	 * so we have to grow them.
3003 	 */
3004 	down_write(&memcg_cache_ids_sem);
3005 
3006 	size = 2 * (id + 1);
3007 	if (size < MEMCG_CACHES_MIN_SIZE)
3008 		size = MEMCG_CACHES_MIN_SIZE;
3009 	else if (size > MEMCG_CACHES_MAX_SIZE)
3010 		size = MEMCG_CACHES_MAX_SIZE;
3011 
3012 	err = memcg_update_all_list_lrus(size);
3013 	if (!err)
3014 		memcg_nr_cache_ids = size;
3015 
3016 	up_write(&memcg_cache_ids_sem);
3017 
3018 	if (err) {
3019 		ida_simple_remove(&memcg_cache_ida, id);
3020 		return err;
3021 	}
3022 	return id;
3023 }
3024 
3025 static void memcg_free_cache_id(int id)
3026 {
3027 	ida_simple_remove(&memcg_cache_ida, id);
3028 }
3029 
3030 /**
3031  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3032  * @memcg: memory cgroup to charge
3033  * @gfp: reclaim mode
3034  * @nr_pages: number of pages to charge
3035  *
3036  * Returns 0 on success, an error code on failure.
3037  */
3038 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3039 			unsigned int nr_pages)
3040 {
3041 	struct page_counter *counter;
3042 	int ret;
3043 
3044 	ret = try_charge(memcg, gfp, nr_pages);
3045 	if (ret)
3046 		return ret;
3047 
3048 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3049 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3050 
3051 		/*
3052 		 * Enforce __GFP_NOFAIL allocation because callers are not
3053 		 * prepared to see failures and likely do not have any failure
3054 		 * handling code.
3055 		 */
3056 		if (gfp & __GFP_NOFAIL) {
3057 			page_counter_charge(&memcg->kmem, nr_pages);
3058 			return 0;
3059 		}
3060 		cancel_charge(memcg, nr_pages);
3061 		return -ENOMEM;
3062 	}
3063 	return 0;
3064 }
3065 
3066 /**
3067  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3068  * @memcg: memcg to uncharge
3069  * @nr_pages: number of pages to uncharge
3070  */
3071 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3072 {
3073 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3074 		page_counter_uncharge(&memcg->kmem, nr_pages);
3075 
3076 	page_counter_uncharge(&memcg->memory, nr_pages);
3077 	if (do_memsw_account())
3078 		page_counter_uncharge(&memcg->memsw, nr_pages);
3079 }
3080 
3081 /**
3082  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3083  * @page: page to charge
3084  * @gfp: reclaim mode
3085  * @order: allocation order
3086  *
3087  * Returns 0 on success, an error code on failure.
3088  */
3089 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3090 {
3091 	struct mem_cgroup *memcg;
3092 	int ret = 0;
3093 
3094 	memcg = get_mem_cgroup_from_current();
3095 	if (memcg && !mem_cgroup_is_root(memcg)) {
3096 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3097 		if (!ret) {
3098 			page->memcg_data = (unsigned long)memcg |
3099 				MEMCG_DATA_KMEM;
3100 			return 0;
3101 		}
3102 		css_put(&memcg->css);
3103 	}
3104 	return ret;
3105 }
3106 
3107 /**
3108  * __memcg_kmem_uncharge_page: uncharge a kmem page
3109  * @page: page to uncharge
3110  * @order: allocation order
3111  */
3112 void __memcg_kmem_uncharge_page(struct page *page, int order)
3113 {
3114 	struct mem_cgroup *memcg = page_memcg(page);
3115 	unsigned int nr_pages = 1 << order;
3116 
3117 	if (!memcg)
3118 		return;
3119 
3120 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3121 	__memcg_kmem_uncharge(memcg, nr_pages);
3122 	page->memcg_data = 0;
3123 	css_put(&memcg->css);
3124 }
3125 
3126 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3127 {
3128 	struct memcg_stock_pcp *stock;
3129 	unsigned long flags;
3130 	bool ret = false;
3131 
3132 	local_irq_save(flags);
3133 
3134 	stock = this_cpu_ptr(&memcg_stock);
3135 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3136 		stock->nr_bytes -= nr_bytes;
3137 		ret = true;
3138 	}
3139 
3140 	local_irq_restore(flags);
3141 
3142 	return ret;
3143 }
3144 
3145 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3146 {
3147 	struct obj_cgroup *old = stock->cached_objcg;
3148 
3149 	if (!old)
3150 		return;
3151 
3152 	if (stock->nr_bytes) {
3153 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3154 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3155 
3156 		if (nr_pages) {
3157 			rcu_read_lock();
3158 			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3159 			rcu_read_unlock();
3160 		}
3161 
3162 		/*
3163 		 * The leftover is flushed to the centralized per-memcg value.
3164 		 * On the next attempt to refill obj stock it will be moved
3165 		 * to a per-cpu stock (probably, on an other CPU), see
3166 		 * refill_obj_stock().
3167 		 *
3168 		 * How often it's flushed is a trade-off between the memory
3169 		 * limit enforcement accuracy and potential CPU contention,
3170 		 * so it might be changed in the future.
3171 		 */
3172 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3173 		stock->nr_bytes = 0;
3174 	}
3175 
3176 	obj_cgroup_put(old);
3177 	stock->cached_objcg = NULL;
3178 }
3179 
3180 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3181 				     struct mem_cgroup *root_memcg)
3182 {
3183 	struct mem_cgroup *memcg;
3184 
3185 	if (stock->cached_objcg) {
3186 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3187 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3188 			return true;
3189 	}
3190 
3191 	return false;
3192 }
3193 
3194 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3195 {
3196 	struct memcg_stock_pcp *stock;
3197 	unsigned long flags;
3198 
3199 	local_irq_save(flags);
3200 
3201 	stock = this_cpu_ptr(&memcg_stock);
3202 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3203 		drain_obj_stock(stock);
3204 		obj_cgroup_get(objcg);
3205 		stock->cached_objcg = objcg;
3206 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3207 	}
3208 	stock->nr_bytes += nr_bytes;
3209 
3210 	if (stock->nr_bytes > PAGE_SIZE)
3211 		drain_obj_stock(stock);
3212 
3213 	local_irq_restore(flags);
3214 }
3215 
3216 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3217 {
3218 	struct mem_cgroup *memcg;
3219 	unsigned int nr_pages, nr_bytes;
3220 	int ret;
3221 
3222 	if (consume_obj_stock(objcg, size))
3223 		return 0;
3224 
3225 	/*
3226 	 * In theory, memcg->nr_charged_bytes can have enough
3227 	 * pre-charged bytes to satisfy the allocation. However,
3228 	 * flushing memcg->nr_charged_bytes requires two atomic
3229 	 * operations, and memcg->nr_charged_bytes can't be big,
3230 	 * so it's better to ignore it and try grab some new pages.
3231 	 * memcg->nr_charged_bytes will be flushed in
3232 	 * refill_obj_stock(), called from this function or
3233 	 * independently later.
3234 	 */
3235 	rcu_read_lock();
3236 	memcg = obj_cgroup_memcg(objcg);
3237 	css_get(&memcg->css);
3238 	rcu_read_unlock();
3239 
3240 	nr_pages = size >> PAGE_SHIFT;
3241 	nr_bytes = size & (PAGE_SIZE - 1);
3242 
3243 	if (nr_bytes)
3244 		nr_pages += 1;
3245 
3246 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3247 	if (!ret && nr_bytes)
3248 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3249 
3250 	css_put(&memcg->css);
3251 	return ret;
3252 }
3253 
3254 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3255 {
3256 	refill_obj_stock(objcg, size);
3257 }
3258 
3259 #endif /* CONFIG_MEMCG_KMEM */
3260 
3261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3262 
3263 /*
3264  * Because tail pages are not marked as "used", set it. We're under
3265  * pgdat->lru_lock and migration entries setup in all page mappings.
3266  */
3267 void mem_cgroup_split_huge_fixup(struct page *head)
3268 {
3269 	struct mem_cgroup *memcg = page_memcg(head);
3270 	int i;
3271 
3272 	if (mem_cgroup_disabled())
3273 		return;
3274 
3275 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3276 		css_get(&memcg->css);
3277 		head[i].memcg_data = (unsigned long)memcg;
3278 	}
3279 }
3280 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3281 
3282 #ifdef CONFIG_MEMCG_SWAP
3283 /**
3284  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3285  * @entry: swap entry to be moved
3286  * @from:  mem_cgroup which the entry is moved from
3287  * @to:  mem_cgroup which the entry is moved to
3288  *
3289  * It succeeds only when the swap_cgroup's record for this entry is the same
3290  * as the mem_cgroup's id of @from.
3291  *
3292  * Returns 0 on success, -EINVAL on failure.
3293  *
3294  * The caller must have charged to @to, IOW, called page_counter_charge() about
3295  * both res and memsw, and called css_get().
3296  */
3297 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3298 				struct mem_cgroup *from, struct mem_cgroup *to)
3299 {
3300 	unsigned short old_id, new_id;
3301 
3302 	old_id = mem_cgroup_id(from);
3303 	new_id = mem_cgroup_id(to);
3304 
3305 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3306 		mod_memcg_state(from, MEMCG_SWAP, -1);
3307 		mod_memcg_state(to, MEMCG_SWAP, 1);
3308 		return 0;
3309 	}
3310 	return -EINVAL;
3311 }
3312 #else
3313 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3314 				struct mem_cgroup *from, struct mem_cgroup *to)
3315 {
3316 	return -EINVAL;
3317 }
3318 #endif
3319 
3320 static DEFINE_MUTEX(memcg_max_mutex);
3321 
3322 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3323 				 unsigned long max, bool memsw)
3324 {
3325 	bool enlarge = false;
3326 	bool drained = false;
3327 	int ret;
3328 	bool limits_invariant;
3329 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3330 
3331 	do {
3332 		if (signal_pending(current)) {
3333 			ret = -EINTR;
3334 			break;
3335 		}
3336 
3337 		mutex_lock(&memcg_max_mutex);
3338 		/*
3339 		 * Make sure that the new limit (memsw or memory limit) doesn't
3340 		 * break our basic invariant rule memory.max <= memsw.max.
3341 		 */
3342 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3343 					   max <= memcg->memsw.max;
3344 		if (!limits_invariant) {
3345 			mutex_unlock(&memcg_max_mutex);
3346 			ret = -EINVAL;
3347 			break;
3348 		}
3349 		if (max > counter->max)
3350 			enlarge = true;
3351 		ret = page_counter_set_max(counter, max);
3352 		mutex_unlock(&memcg_max_mutex);
3353 
3354 		if (!ret)
3355 			break;
3356 
3357 		if (!drained) {
3358 			drain_all_stock(memcg);
3359 			drained = true;
3360 			continue;
3361 		}
3362 
3363 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3364 					GFP_KERNEL, !memsw)) {
3365 			ret = -EBUSY;
3366 			break;
3367 		}
3368 	} while (true);
3369 
3370 	if (!ret && enlarge)
3371 		memcg_oom_recover(memcg);
3372 
3373 	return ret;
3374 }
3375 
3376 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3377 					    gfp_t gfp_mask,
3378 					    unsigned long *total_scanned)
3379 {
3380 	unsigned long nr_reclaimed = 0;
3381 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3382 	unsigned long reclaimed;
3383 	int loop = 0;
3384 	struct mem_cgroup_tree_per_node *mctz;
3385 	unsigned long excess;
3386 	unsigned long nr_scanned;
3387 
3388 	if (order > 0)
3389 		return 0;
3390 
3391 	mctz = soft_limit_tree_node(pgdat->node_id);
3392 
3393 	/*
3394 	 * Do not even bother to check the largest node if the root
3395 	 * is empty. Do it lockless to prevent lock bouncing. Races
3396 	 * are acceptable as soft limit is best effort anyway.
3397 	 */
3398 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3399 		return 0;
3400 
3401 	/*
3402 	 * This loop can run a while, specially if mem_cgroup's continuously
3403 	 * keep exceeding their soft limit and putting the system under
3404 	 * pressure
3405 	 */
3406 	do {
3407 		if (next_mz)
3408 			mz = next_mz;
3409 		else
3410 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3411 		if (!mz)
3412 			break;
3413 
3414 		nr_scanned = 0;
3415 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3416 						    gfp_mask, &nr_scanned);
3417 		nr_reclaimed += reclaimed;
3418 		*total_scanned += nr_scanned;
3419 		spin_lock_irq(&mctz->lock);
3420 		__mem_cgroup_remove_exceeded(mz, mctz);
3421 
3422 		/*
3423 		 * If we failed to reclaim anything from this memory cgroup
3424 		 * it is time to move on to the next cgroup
3425 		 */
3426 		next_mz = NULL;
3427 		if (!reclaimed)
3428 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3429 
3430 		excess = soft_limit_excess(mz->memcg);
3431 		/*
3432 		 * One school of thought says that we should not add
3433 		 * back the node to the tree if reclaim returns 0.
3434 		 * But our reclaim could return 0, simply because due
3435 		 * to priority we are exposing a smaller subset of
3436 		 * memory to reclaim from. Consider this as a longer
3437 		 * term TODO.
3438 		 */
3439 		/* If excess == 0, no tree ops */
3440 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3441 		spin_unlock_irq(&mctz->lock);
3442 		css_put(&mz->memcg->css);
3443 		loop++;
3444 		/*
3445 		 * Could not reclaim anything and there are no more
3446 		 * mem cgroups to try or we seem to be looping without
3447 		 * reclaiming anything.
3448 		 */
3449 		if (!nr_reclaimed &&
3450 			(next_mz == NULL ||
3451 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3452 			break;
3453 	} while (!nr_reclaimed);
3454 	if (next_mz)
3455 		css_put(&next_mz->memcg->css);
3456 	return nr_reclaimed;
3457 }
3458 
3459 /*
3460  * Test whether @memcg has children, dead or alive.  Note that this
3461  * function doesn't care whether @memcg has use_hierarchy enabled and
3462  * returns %true if there are child csses according to the cgroup
3463  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3464  */
3465 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3466 {
3467 	bool ret;
3468 
3469 	rcu_read_lock();
3470 	ret = css_next_child(NULL, &memcg->css);
3471 	rcu_read_unlock();
3472 	return ret;
3473 }
3474 
3475 /*
3476  * Reclaims as many pages from the given memcg as possible.
3477  *
3478  * Caller is responsible for holding css reference for memcg.
3479  */
3480 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3481 {
3482 	int nr_retries = MAX_RECLAIM_RETRIES;
3483 
3484 	/* we call try-to-free pages for make this cgroup empty */
3485 	lru_add_drain_all();
3486 
3487 	drain_all_stock(memcg);
3488 
3489 	/* try to free all pages in this cgroup */
3490 	while (nr_retries && page_counter_read(&memcg->memory)) {
3491 		int progress;
3492 
3493 		if (signal_pending(current))
3494 			return -EINTR;
3495 
3496 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3497 							GFP_KERNEL, true);
3498 		if (!progress) {
3499 			nr_retries--;
3500 			/* maybe some writeback is necessary */
3501 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3502 		}
3503 
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3510 					    char *buf, size_t nbytes,
3511 					    loff_t off)
3512 {
3513 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3514 
3515 	if (mem_cgroup_is_root(memcg))
3516 		return -EINVAL;
3517 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3518 }
3519 
3520 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3521 				     struct cftype *cft)
3522 {
3523 	return mem_cgroup_from_css(css)->use_hierarchy;
3524 }
3525 
3526 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3527 				      struct cftype *cft, u64 val)
3528 {
3529 	int retval = 0;
3530 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3531 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3532 
3533 	if (memcg->use_hierarchy == val)
3534 		return 0;
3535 
3536 	/*
3537 	 * If parent's use_hierarchy is set, we can't make any modifications
3538 	 * in the child subtrees. If it is unset, then the change can
3539 	 * occur, provided the current cgroup has no children.
3540 	 *
3541 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3542 	 * set if there are no children.
3543 	 */
3544 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3545 				(val == 1 || val == 0)) {
3546 		if (!memcg_has_children(memcg))
3547 			memcg->use_hierarchy = val;
3548 		else
3549 			retval = -EBUSY;
3550 	} else
3551 		retval = -EINVAL;
3552 
3553 	return retval;
3554 }
3555 
3556 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3557 {
3558 	unsigned long val;
3559 
3560 	if (mem_cgroup_is_root(memcg)) {
3561 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3562 			memcg_page_state(memcg, NR_ANON_MAPPED);
3563 		if (swap)
3564 			val += memcg_page_state(memcg, MEMCG_SWAP);
3565 	} else {
3566 		if (!swap)
3567 			val = page_counter_read(&memcg->memory);
3568 		else
3569 			val = page_counter_read(&memcg->memsw);
3570 	}
3571 	return val;
3572 }
3573 
3574 enum {
3575 	RES_USAGE,
3576 	RES_LIMIT,
3577 	RES_MAX_USAGE,
3578 	RES_FAILCNT,
3579 	RES_SOFT_LIMIT,
3580 };
3581 
3582 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3583 			       struct cftype *cft)
3584 {
3585 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3586 	struct page_counter *counter;
3587 
3588 	switch (MEMFILE_TYPE(cft->private)) {
3589 	case _MEM:
3590 		counter = &memcg->memory;
3591 		break;
3592 	case _MEMSWAP:
3593 		counter = &memcg->memsw;
3594 		break;
3595 	case _KMEM:
3596 		counter = &memcg->kmem;
3597 		break;
3598 	case _TCP:
3599 		counter = &memcg->tcpmem;
3600 		break;
3601 	default:
3602 		BUG();
3603 	}
3604 
3605 	switch (MEMFILE_ATTR(cft->private)) {
3606 	case RES_USAGE:
3607 		if (counter == &memcg->memory)
3608 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3609 		if (counter == &memcg->memsw)
3610 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3611 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3612 	case RES_LIMIT:
3613 		return (u64)counter->max * PAGE_SIZE;
3614 	case RES_MAX_USAGE:
3615 		return (u64)counter->watermark * PAGE_SIZE;
3616 	case RES_FAILCNT:
3617 		return counter->failcnt;
3618 	case RES_SOFT_LIMIT:
3619 		return (u64)memcg->soft_limit * PAGE_SIZE;
3620 	default:
3621 		BUG();
3622 	}
3623 }
3624 
3625 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3626 {
3627 	unsigned long stat[MEMCG_NR_STAT] = {0};
3628 	struct mem_cgroup *mi;
3629 	int node, cpu, i;
3630 
3631 	for_each_online_cpu(cpu)
3632 		for (i = 0; i < MEMCG_NR_STAT; i++)
3633 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3634 
3635 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3636 		for (i = 0; i < MEMCG_NR_STAT; i++)
3637 			atomic_long_add(stat[i], &mi->vmstats[i]);
3638 
3639 	for_each_node(node) {
3640 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3641 		struct mem_cgroup_per_node *pi;
3642 
3643 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3644 			stat[i] = 0;
3645 
3646 		for_each_online_cpu(cpu)
3647 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3648 				stat[i] += per_cpu(
3649 					pn->lruvec_stat_cpu->count[i], cpu);
3650 
3651 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3652 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3653 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3654 	}
3655 }
3656 
3657 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3658 {
3659 	unsigned long events[NR_VM_EVENT_ITEMS];
3660 	struct mem_cgroup *mi;
3661 	int cpu, i;
3662 
3663 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3664 		events[i] = 0;
3665 
3666 	for_each_online_cpu(cpu)
3667 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3668 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3669 					     cpu);
3670 
3671 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3672 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3673 			atomic_long_add(events[i], &mi->vmevents[i]);
3674 }
3675 
3676 #ifdef CONFIG_MEMCG_KMEM
3677 static int memcg_online_kmem(struct mem_cgroup *memcg)
3678 {
3679 	struct obj_cgroup *objcg;
3680 	int memcg_id;
3681 
3682 	if (cgroup_memory_nokmem)
3683 		return 0;
3684 
3685 	BUG_ON(memcg->kmemcg_id >= 0);
3686 	BUG_ON(memcg->kmem_state);
3687 
3688 	memcg_id = memcg_alloc_cache_id();
3689 	if (memcg_id < 0)
3690 		return memcg_id;
3691 
3692 	objcg = obj_cgroup_alloc();
3693 	if (!objcg) {
3694 		memcg_free_cache_id(memcg_id);
3695 		return -ENOMEM;
3696 	}
3697 	objcg->memcg = memcg;
3698 	rcu_assign_pointer(memcg->objcg, objcg);
3699 
3700 	static_branch_enable(&memcg_kmem_enabled_key);
3701 
3702 	/*
3703 	 * A memory cgroup is considered kmem-online as soon as it gets
3704 	 * kmemcg_id. Setting the id after enabling static branching will
3705 	 * guarantee no one starts accounting before all call sites are
3706 	 * patched.
3707 	 */
3708 	memcg->kmemcg_id = memcg_id;
3709 	memcg->kmem_state = KMEM_ONLINE;
3710 
3711 	return 0;
3712 }
3713 
3714 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3715 {
3716 	struct cgroup_subsys_state *css;
3717 	struct mem_cgroup *parent, *child;
3718 	int kmemcg_id;
3719 
3720 	if (memcg->kmem_state != KMEM_ONLINE)
3721 		return;
3722 
3723 	memcg->kmem_state = KMEM_ALLOCATED;
3724 
3725 	parent = parent_mem_cgroup(memcg);
3726 	if (!parent)
3727 		parent = root_mem_cgroup;
3728 
3729 	memcg_reparent_objcgs(memcg, parent);
3730 
3731 	kmemcg_id = memcg->kmemcg_id;
3732 	BUG_ON(kmemcg_id < 0);
3733 
3734 	/*
3735 	 * Change kmemcg_id of this cgroup and all its descendants to the
3736 	 * parent's id, and then move all entries from this cgroup's list_lrus
3737 	 * to ones of the parent. After we have finished, all list_lrus
3738 	 * corresponding to this cgroup are guaranteed to remain empty. The
3739 	 * ordering is imposed by list_lru_node->lock taken by
3740 	 * memcg_drain_all_list_lrus().
3741 	 */
3742 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3743 	css_for_each_descendant_pre(css, &memcg->css) {
3744 		child = mem_cgroup_from_css(css);
3745 		BUG_ON(child->kmemcg_id != kmemcg_id);
3746 		child->kmemcg_id = parent->kmemcg_id;
3747 		if (!memcg->use_hierarchy)
3748 			break;
3749 	}
3750 	rcu_read_unlock();
3751 
3752 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3753 
3754 	memcg_free_cache_id(kmemcg_id);
3755 }
3756 
3757 static void memcg_free_kmem(struct mem_cgroup *memcg)
3758 {
3759 	/* css_alloc() failed, offlining didn't happen */
3760 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3761 		memcg_offline_kmem(memcg);
3762 }
3763 #else
3764 static int memcg_online_kmem(struct mem_cgroup *memcg)
3765 {
3766 	return 0;
3767 }
3768 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3769 {
3770 }
3771 static void memcg_free_kmem(struct mem_cgroup *memcg)
3772 {
3773 }
3774 #endif /* CONFIG_MEMCG_KMEM */
3775 
3776 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3777 				 unsigned long max)
3778 {
3779 	int ret;
3780 
3781 	mutex_lock(&memcg_max_mutex);
3782 	ret = page_counter_set_max(&memcg->kmem, max);
3783 	mutex_unlock(&memcg_max_mutex);
3784 	return ret;
3785 }
3786 
3787 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3788 {
3789 	int ret;
3790 
3791 	mutex_lock(&memcg_max_mutex);
3792 
3793 	ret = page_counter_set_max(&memcg->tcpmem, max);
3794 	if (ret)
3795 		goto out;
3796 
3797 	if (!memcg->tcpmem_active) {
3798 		/*
3799 		 * The active flag needs to be written after the static_key
3800 		 * update. This is what guarantees that the socket activation
3801 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3802 		 * for details, and note that we don't mark any socket as
3803 		 * belonging to this memcg until that flag is up.
3804 		 *
3805 		 * We need to do this, because static_keys will span multiple
3806 		 * sites, but we can't control their order. If we mark a socket
3807 		 * as accounted, but the accounting functions are not patched in
3808 		 * yet, we'll lose accounting.
3809 		 *
3810 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3811 		 * because when this value change, the code to process it is not
3812 		 * patched in yet.
3813 		 */
3814 		static_branch_inc(&memcg_sockets_enabled_key);
3815 		memcg->tcpmem_active = true;
3816 	}
3817 out:
3818 	mutex_unlock(&memcg_max_mutex);
3819 	return ret;
3820 }
3821 
3822 /*
3823  * The user of this function is...
3824  * RES_LIMIT.
3825  */
3826 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3827 				char *buf, size_t nbytes, loff_t off)
3828 {
3829 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3830 	unsigned long nr_pages;
3831 	int ret;
3832 
3833 	buf = strstrip(buf);
3834 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3835 	if (ret)
3836 		return ret;
3837 
3838 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3839 	case RES_LIMIT:
3840 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3841 			ret = -EINVAL;
3842 			break;
3843 		}
3844 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3845 		case _MEM:
3846 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3847 			break;
3848 		case _MEMSWAP:
3849 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3850 			break;
3851 		case _KMEM:
3852 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3853 				     "Please report your usecase to linux-mm@kvack.org if you "
3854 				     "depend on this functionality.\n");
3855 			ret = memcg_update_kmem_max(memcg, nr_pages);
3856 			break;
3857 		case _TCP:
3858 			ret = memcg_update_tcp_max(memcg, nr_pages);
3859 			break;
3860 		}
3861 		break;
3862 	case RES_SOFT_LIMIT:
3863 		memcg->soft_limit = nr_pages;
3864 		ret = 0;
3865 		break;
3866 	}
3867 	return ret ?: nbytes;
3868 }
3869 
3870 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3871 				size_t nbytes, loff_t off)
3872 {
3873 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3874 	struct page_counter *counter;
3875 
3876 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3877 	case _MEM:
3878 		counter = &memcg->memory;
3879 		break;
3880 	case _MEMSWAP:
3881 		counter = &memcg->memsw;
3882 		break;
3883 	case _KMEM:
3884 		counter = &memcg->kmem;
3885 		break;
3886 	case _TCP:
3887 		counter = &memcg->tcpmem;
3888 		break;
3889 	default:
3890 		BUG();
3891 	}
3892 
3893 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3894 	case RES_MAX_USAGE:
3895 		page_counter_reset_watermark(counter);
3896 		break;
3897 	case RES_FAILCNT:
3898 		counter->failcnt = 0;
3899 		break;
3900 	default:
3901 		BUG();
3902 	}
3903 
3904 	return nbytes;
3905 }
3906 
3907 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3908 					struct cftype *cft)
3909 {
3910 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3911 }
3912 
3913 #ifdef CONFIG_MMU
3914 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3915 					struct cftype *cft, u64 val)
3916 {
3917 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3918 
3919 	if (val & ~MOVE_MASK)
3920 		return -EINVAL;
3921 
3922 	/*
3923 	 * No kind of locking is needed in here, because ->can_attach() will
3924 	 * check this value once in the beginning of the process, and then carry
3925 	 * on with stale data. This means that changes to this value will only
3926 	 * affect task migrations starting after the change.
3927 	 */
3928 	memcg->move_charge_at_immigrate = val;
3929 	return 0;
3930 }
3931 #else
3932 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3933 					struct cftype *cft, u64 val)
3934 {
3935 	return -ENOSYS;
3936 }
3937 #endif
3938 
3939 #ifdef CONFIG_NUMA
3940 
3941 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3942 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3943 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3944 
3945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3946 				int nid, unsigned int lru_mask, bool tree)
3947 {
3948 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3949 	unsigned long nr = 0;
3950 	enum lru_list lru;
3951 
3952 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3953 
3954 	for_each_lru(lru) {
3955 		if (!(BIT(lru) & lru_mask))
3956 			continue;
3957 		if (tree)
3958 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3959 		else
3960 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3961 	}
3962 	return nr;
3963 }
3964 
3965 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3966 					     unsigned int lru_mask,
3967 					     bool tree)
3968 {
3969 	unsigned long nr = 0;
3970 	enum lru_list lru;
3971 
3972 	for_each_lru(lru) {
3973 		if (!(BIT(lru) & lru_mask))
3974 			continue;
3975 		if (tree)
3976 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3977 		else
3978 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3979 	}
3980 	return nr;
3981 }
3982 
3983 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3984 {
3985 	struct numa_stat {
3986 		const char *name;
3987 		unsigned int lru_mask;
3988 	};
3989 
3990 	static const struct numa_stat stats[] = {
3991 		{ "total", LRU_ALL },
3992 		{ "file", LRU_ALL_FILE },
3993 		{ "anon", LRU_ALL_ANON },
3994 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3995 	};
3996 	const struct numa_stat *stat;
3997 	int nid;
3998 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3999 
4000 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001 		seq_printf(m, "%s=%lu", stat->name,
4002 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 						   false));
4004 		for_each_node_state(nid, N_MEMORY)
4005 			seq_printf(m, " N%d=%lu", nid,
4006 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 							stat->lru_mask, false));
4008 		seq_putc(m, '\n');
4009 	}
4010 
4011 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012 
4013 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 						   true));
4016 		for_each_node_state(nid, N_MEMORY)
4017 			seq_printf(m, " N%d=%lu", nid,
4018 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 							stat->lru_mask, true));
4020 		seq_putc(m, '\n');
4021 	}
4022 
4023 	return 0;
4024 }
4025 #endif /* CONFIG_NUMA */
4026 
4027 static const unsigned int memcg1_stats[] = {
4028 	NR_FILE_PAGES,
4029 	NR_ANON_MAPPED,
4030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 	NR_ANON_THPS,
4032 #endif
4033 	NR_SHMEM,
4034 	NR_FILE_MAPPED,
4035 	NR_FILE_DIRTY,
4036 	NR_WRITEBACK,
4037 	MEMCG_SWAP,
4038 };
4039 
4040 static const char *const memcg1_stat_names[] = {
4041 	"cache",
4042 	"rss",
4043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4044 	"rss_huge",
4045 #endif
4046 	"shmem",
4047 	"mapped_file",
4048 	"dirty",
4049 	"writeback",
4050 	"swap",
4051 };
4052 
4053 /* Universal VM events cgroup1 shows, original sort order */
4054 static const unsigned int memcg1_events[] = {
4055 	PGPGIN,
4056 	PGPGOUT,
4057 	PGFAULT,
4058 	PGMAJFAULT,
4059 };
4060 
4061 static int memcg_stat_show(struct seq_file *m, void *v)
4062 {
4063 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4064 	unsigned long memory, memsw;
4065 	struct mem_cgroup *mi;
4066 	unsigned int i;
4067 
4068 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4069 
4070 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4071 		unsigned long nr;
4072 
4073 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4074 			continue;
4075 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077 		if (memcg1_stats[i] == NR_ANON_THPS)
4078 			nr *= HPAGE_PMD_NR;
4079 #endif
4080 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4081 	}
4082 
4083 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4084 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4085 			   memcg_events_local(memcg, memcg1_events[i]));
4086 
4087 	for (i = 0; i < NR_LRU_LISTS; i++)
4088 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4089 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4090 			   PAGE_SIZE);
4091 
4092 	/* Hierarchical information */
4093 	memory = memsw = PAGE_COUNTER_MAX;
4094 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4095 		memory = min(memory, READ_ONCE(mi->memory.max));
4096 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4097 	}
4098 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4099 		   (u64)memory * PAGE_SIZE);
4100 	if (do_memsw_account())
4101 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4102 			   (u64)memsw * PAGE_SIZE);
4103 
4104 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4105 		unsigned long nr;
4106 
4107 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4108 			continue;
4109 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4110 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4111 		if (memcg1_stats[i] == NR_ANON_THPS)
4112 			nr *= HPAGE_PMD_NR;
4113 #endif
4114 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4115 						(u64)nr * PAGE_SIZE);
4116 	}
4117 
4118 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4119 		seq_printf(m, "total_%s %llu\n",
4120 			   vm_event_name(memcg1_events[i]),
4121 			   (u64)memcg_events(memcg, memcg1_events[i]));
4122 
4123 	for (i = 0; i < NR_LRU_LISTS; i++)
4124 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4125 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4126 			   PAGE_SIZE);
4127 
4128 #ifdef CONFIG_DEBUG_VM
4129 	{
4130 		pg_data_t *pgdat;
4131 		struct mem_cgroup_per_node *mz;
4132 		unsigned long anon_cost = 0;
4133 		unsigned long file_cost = 0;
4134 
4135 		for_each_online_pgdat(pgdat) {
4136 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4137 
4138 			anon_cost += mz->lruvec.anon_cost;
4139 			file_cost += mz->lruvec.file_cost;
4140 		}
4141 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4142 		seq_printf(m, "file_cost %lu\n", file_cost);
4143 	}
4144 #endif
4145 
4146 	return 0;
4147 }
4148 
4149 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4150 				      struct cftype *cft)
4151 {
4152 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4153 
4154 	return mem_cgroup_swappiness(memcg);
4155 }
4156 
4157 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4158 				       struct cftype *cft, u64 val)
4159 {
4160 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4161 
4162 	if (val > 100)
4163 		return -EINVAL;
4164 
4165 	if (css->parent)
4166 		memcg->swappiness = val;
4167 	else
4168 		vm_swappiness = val;
4169 
4170 	return 0;
4171 }
4172 
4173 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4174 {
4175 	struct mem_cgroup_threshold_ary *t;
4176 	unsigned long usage;
4177 	int i;
4178 
4179 	rcu_read_lock();
4180 	if (!swap)
4181 		t = rcu_dereference(memcg->thresholds.primary);
4182 	else
4183 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4184 
4185 	if (!t)
4186 		goto unlock;
4187 
4188 	usage = mem_cgroup_usage(memcg, swap);
4189 
4190 	/*
4191 	 * current_threshold points to threshold just below or equal to usage.
4192 	 * If it's not true, a threshold was crossed after last
4193 	 * call of __mem_cgroup_threshold().
4194 	 */
4195 	i = t->current_threshold;
4196 
4197 	/*
4198 	 * Iterate backward over array of thresholds starting from
4199 	 * current_threshold and check if a threshold is crossed.
4200 	 * If none of thresholds below usage is crossed, we read
4201 	 * only one element of the array here.
4202 	 */
4203 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4204 		eventfd_signal(t->entries[i].eventfd, 1);
4205 
4206 	/* i = current_threshold + 1 */
4207 	i++;
4208 
4209 	/*
4210 	 * Iterate forward over array of thresholds starting from
4211 	 * current_threshold+1 and check if a threshold is crossed.
4212 	 * If none of thresholds above usage is crossed, we read
4213 	 * only one element of the array here.
4214 	 */
4215 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4216 		eventfd_signal(t->entries[i].eventfd, 1);
4217 
4218 	/* Update current_threshold */
4219 	t->current_threshold = i - 1;
4220 unlock:
4221 	rcu_read_unlock();
4222 }
4223 
4224 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4225 {
4226 	while (memcg) {
4227 		__mem_cgroup_threshold(memcg, false);
4228 		if (do_memsw_account())
4229 			__mem_cgroup_threshold(memcg, true);
4230 
4231 		memcg = parent_mem_cgroup(memcg);
4232 	}
4233 }
4234 
4235 static int compare_thresholds(const void *a, const void *b)
4236 {
4237 	const struct mem_cgroup_threshold *_a = a;
4238 	const struct mem_cgroup_threshold *_b = b;
4239 
4240 	if (_a->threshold > _b->threshold)
4241 		return 1;
4242 
4243 	if (_a->threshold < _b->threshold)
4244 		return -1;
4245 
4246 	return 0;
4247 }
4248 
4249 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4250 {
4251 	struct mem_cgroup_eventfd_list *ev;
4252 
4253 	spin_lock(&memcg_oom_lock);
4254 
4255 	list_for_each_entry(ev, &memcg->oom_notify, list)
4256 		eventfd_signal(ev->eventfd, 1);
4257 
4258 	spin_unlock(&memcg_oom_lock);
4259 	return 0;
4260 }
4261 
4262 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4263 {
4264 	struct mem_cgroup *iter;
4265 
4266 	for_each_mem_cgroup_tree(iter, memcg)
4267 		mem_cgroup_oom_notify_cb(iter);
4268 }
4269 
4270 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4271 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4272 {
4273 	struct mem_cgroup_thresholds *thresholds;
4274 	struct mem_cgroup_threshold_ary *new;
4275 	unsigned long threshold;
4276 	unsigned long usage;
4277 	int i, size, ret;
4278 
4279 	ret = page_counter_memparse(args, "-1", &threshold);
4280 	if (ret)
4281 		return ret;
4282 
4283 	mutex_lock(&memcg->thresholds_lock);
4284 
4285 	if (type == _MEM) {
4286 		thresholds = &memcg->thresholds;
4287 		usage = mem_cgroup_usage(memcg, false);
4288 	} else if (type == _MEMSWAP) {
4289 		thresholds = &memcg->memsw_thresholds;
4290 		usage = mem_cgroup_usage(memcg, true);
4291 	} else
4292 		BUG();
4293 
4294 	/* Check if a threshold crossed before adding a new one */
4295 	if (thresholds->primary)
4296 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4297 
4298 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4299 
4300 	/* Allocate memory for new array of thresholds */
4301 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4302 	if (!new) {
4303 		ret = -ENOMEM;
4304 		goto unlock;
4305 	}
4306 	new->size = size;
4307 
4308 	/* Copy thresholds (if any) to new array */
4309 	if (thresholds->primary)
4310 		memcpy(new->entries, thresholds->primary->entries,
4311 		       flex_array_size(new, entries, size - 1));
4312 
4313 	/* Add new threshold */
4314 	new->entries[size - 1].eventfd = eventfd;
4315 	new->entries[size - 1].threshold = threshold;
4316 
4317 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4318 	sort(new->entries, size, sizeof(*new->entries),
4319 			compare_thresholds, NULL);
4320 
4321 	/* Find current threshold */
4322 	new->current_threshold = -1;
4323 	for (i = 0; i < size; i++) {
4324 		if (new->entries[i].threshold <= usage) {
4325 			/*
4326 			 * new->current_threshold will not be used until
4327 			 * rcu_assign_pointer(), so it's safe to increment
4328 			 * it here.
4329 			 */
4330 			++new->current_threshold;
4331 		} else
4332 			break;
4333 	}
4334 
4335 	/* Free old spare buffer and save old primary buffer as spare */
4336 	kfree(thresholds->spare);
4337 	thresholds->spare = thresholds->primary;
4338 
4339 	rcu_assign_pointer(thresholds->primary, new);
4340 
4341 	/* To be sure that nobody uses thresholds */
4342 	synchronize_rcu();
4343 
4344 unlock:
4345 	mutex_unlock(&memcg->thresholds_lock);
4346 
4347 	return ret;
4348 }
4349 
4350 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4351 	struct eventfd_ctx *eventfd, const char *args)
4352 {
4353 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4354 }
4355 
4356 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4357 	struct eventfd_ctx *eventfd, const char *args)
4358 {
4359 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4360 }
4361 
4362 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4363 	struct eventfd_ctx *eventfd, enum res_type type)
4364 {
4365 	struct mem_cgroup_thresholds *thresholds;
4366 	struct mem_cgroup_threshold_ary *new;
4367 	unsigned long usage;
4368 	int i, j, size, entries;
4369 
4370 	mutex_lock(&memcg->thresholds_lock);
4371 
4372 	if (type == _MEM) {
4373 		thresholds = &memcg->thresholds;
4374 		usage = mem_cgroup_usage(memcg, false);
4375 	} else if (type == _MEMSWAP) {
4376 		thresholds = &memcg->memsw_thresholds;
4377 		usage = mem_cgroup_usage(memcg, true);
4378 	} else
4379 		BUG();
4380 
4381 	if (!thresholds->primary)
4382 		goto unlock;
4383 
4384 	/* Check if a threshold crossed before removing */
4385 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4386 
4387 	/* Calculate new number of threshold */
4388 	size = entries = 0;
4389 	for (i = 0; i < thresholds->primary->size; i++) {
4390 		if (thresholds->primary->entries[i].eventfd != eventfd)
4391 			size++;
4392 		else
4393 			entries++;
4394 	}
4395 
4396 	new = thresholds->spare;
4397 
4398 	/* If no items related to eventfd have been cleared, nothing to do */
4399 	if (!entries)
4400 		goto unlock;
4401 
4402 	/* Set thresholds array to NULL if we don't have thresholds */
4403 	if (!size) {
4404 		kfree(new);
4405 		new = NULL;
4406 		goto swap_buffers;
4407 	}
4408 
4409 	new->size = size;
4410 
4411 	/* Copy thresholds and find current threshold */
4412 	new->current_threshold = -1;
4413 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4414 		if (thresholds->primary->entries[i].eventfd == eventfd)
4415 			continue;
4416 
4417 		new->entries[j] = thresholds->primary->entries[i];
4418 		if (new->entries[j].threshold <= usage) {
4419 			/*
4420 			 * new->current_threshold will not be used
4421 			 * until rcu_assign_pointer(), so it's safe to increment
4422 			 * it here.
4423 			 */
4424 			++new->current_threshold;
4425 		}
4426 		j++;
4427 	}
4428 
4429 swap_buffers:
4430 	/* Swap primary and spare array */
4431 	thresholds->spare = thresholds->primary;
4432 
4433 	rcu_assign_pointer(thresholds->primary, new);
4434 
4435 	/* To be sure that nobody uses thresholds */
4436 	synchronize_rcu();
4437 
4438 	/* If all events are unregistered, free the spare array */
4439 	if (!new) {
4440 		kfree(thresholds->spare);
4441 		thresholds->spare = NULL;
4442 	}
4443 unlock:
4444 	mutex_unlock(&memcg->thresholds_lock);
4445 }
4446 
4447 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4448 	struct eventfd_ctx *eventfd)
4449 {
4450 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4451 }
4452 
4453 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4454 	struct eventfd_ctx *eventfd)
4455 {
4456 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4457 }
4458 
4459 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4460 	struct eventfd_ctx *eventfd, const char *args)
4461 {
4462 	struct mem_cgroup_eventfd_list *event;
4463 
4464 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4465 	if (!event)
4466 		return -ENOMEM;
4467 
4468 	spin_lock(&memcg_oom_lock);
4469 
4470 	event->eventfd = eventfd;
4471 	list_add(&event->list, &memcg->oom_notify);
4472 
4473 	/* already in OOM ? */
4474 	if (memcg->under_oom)
4475 		eventfd_signal(eventfd, 1);
4476 	spin_unlock(&memcg_oom_lock);
4477 
4478 	return 0;
4479 }
4480 
4481 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4482 	struct eventfd_ctx *eventfd)
4483 {
4484 	struct mem_cgroup_eventfd_list *ev, *tmp;
4485 
4486 	spin_lock(&memcg_oom_lock);
4487 
4488 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4489 		if (ev->eventfd == eventfd) {
4490 			list_del(&ev->list);
4491 			kfree(ev);
4492 		}
4493 	}
4494 
4495 	spin_unlock(&memcg_oom_lock);
4496 }
4497 
4498 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4499 {
4500 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4501 
4502 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4503 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4504 	seq_printf(sf, "oom_kill %lu\n",
4505 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4506 	return 0;
4507 }
4508 
4509 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4510 	struct cftype *cft, u64 val)
4511 {
4512 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4513 
4514 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4515 	if (!css->parent || !((val == 0) || (val == 1)))
4516 		return -EINVAL;
4517 
4518 	memcg->oom_kill_disable = val;
4519 	if (!val)
4520 		memcg_oom_recover(memcg);
4521 
4522 	return 0;
4523 }
4524 
4525 #ifdef CONFIG_CGROUP_WRITEBACK
4526 
4527 #include <trace/events/writeback.h>
4528 
4529 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4530 {
4531 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4532 }
4533 
4534 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4535 {
4536 	wb_domain_exit(&memcg->cgwb_domain);
4537 }
4538 
4539 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4540 {
4541 	wb_domain_size_changed(&memcg->cgwb_domain);
4542 }
4543 
4544 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4545 {
4546 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4547 
4548 	if (!memcg->css.parent)
4549 		return NULL;
4550 
4551 	return &memcg->cgwb_domain;
4552 }
4553 
4554 /*
4555  * idx can be of type enum memcg_stat_item or node_stat_item.
4556  * Keep in sync with memcg_exact_page().
4557  */
4558 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4559 {
4560 	long x = atomic_long_read(&memcg->vmstats[idx]);
4561 	int cpu;
4562 
4563 	for_each_online_cpu(cpu)
4564 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4565 	if (x < 0)
4566 		x = 0;
4567 	return x;
4568 }
4569 
4570 /**
4571  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4572  * @wb: bdi_writeback in question
4573  * @pfilepages: out parameter for number of file pages
4574  * @pheadroom: out parameter for number of allocatable pages according to memcg
4575  * @pdirty: out parameter for number of dirty pages
4576  * @pwriteback: out parameter for number of pages under writeback
4577  *
4578  * Determine the numbers of file, headroom, dirty, and writeback pages in
4579  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4580  * is a bit more involved.
4581  *
4582  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4583  * headroom is calculated as the lowest headroom of itself and the
4584  * ancestors.  Note that this doesn't consider the actual amount of
4585  * available memory in the system.  The caller should further cap
4586  * *@pheadroom accordingly.
4587  */
4588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4589 			 unsigned long *pheadroom, unsigned long *pdirty,
4590 			 unsigned long *pwriteback)
4591 {
4592 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4593 	struct mem_cgroup *parent;
4594 
4595 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4596 
4597 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4598 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4599 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4600 	*pheadroom = PAGE_COUNTER_MAX;
4601 
4602 	while ((parent = parent_mem_cgroup(memcg))) {
4603 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4604 					    READ_ONCE(memcg->memory.high));
4605 		unsigned long used = page_counter_read(&memcg->memory);
4606 
4607 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4608 		memcg = parent;
4609 	}
4610 }
4611 
4612 /*
4613  * Foreign dirty flushing
4614  *
4615  * There's an inherent mismatch between memcg and writeback.  The former
4616  * trackes ownership per-page while the latter per-inode.  This was a
4617  * deliberate design decision because honoring per-page ownership in the
4618  * writeback path is complicated, may lead to higher CPU and IO overheads
4619  * and deemed unnecessary given that write-sharing an inode across
4620  * different cgroups isn't a common use-case.
4621  *
4622  * Combined with inode majority-writer ownership switching, this works well
4623  * enough in most cases but there are some pathological cases.  For
4624  * example, let's say there are two cgroups A and B which keep writing to
4625  * different but confined parts of the same inode.  B owns the inode and
4626  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4627  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4628  * triggering background writeback.  A will be slowed down without a way to
4629  * make writeback of the dirty pages happen.
4630  *
4631  * Conditions like the above can lead to a cgroup getting repatedly and
4632  * severely throttled after making some progress after each
4633  * dirty_expire_interval while the underyling IO device is almost
4634  * completely idle.
4635  *
4636  * Solving this problem completely requires matching the ownership tracking
4637  * granularities between memcg and writeback in either direction.  However,
4638  * the more egregious behaviors can be avoided by simply remembering the
4639  * most recent foreign dirtying events and initiating remote flushes on
4640  * them when local writeback isn't enough to keep the memory clean enough.
4641  *
4642  * The following two functions implement such mechanism.  When a foreign
4643  * page - a page whose memcg and writeback ownerships don't match - is
4644  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4645  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4646  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4647  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4648  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4649  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4650  * limited to MEMCG_CGWB_FRN_CNT.
4651  *
4652  * The mechanism only remembers IDs and doesn't hold any object references.
4653  * As being wrong occasionally doesn't matter, updates and accesses to the
4654  * records are lockless and racy.
4655  */
4656 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4657 					     struct bdi_writeback *wb)
4658 {
4659 	struct mem_cgroup *memcg = page_memcg(page);
4660 	struct memcg_cgwb_frn *frn;
4661 	u64 now = get_jiffies_64();
4662 	u64 oldest_at = now;
4663 	int oldest = -1;
4664 	int i;
4665 
4666 	trace_track_foreign_dirty(page, wb);
4667 
4668 	/*
4669 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4670 	 * using it.  If not replace the oldest one which isn't being
4671 	 * written out.
4672 	 */
4673 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4674 		frn = &memcg->cgwb_frn[i];
4675 		if (frn->bdi_id == wb->bdi->id &&
4676 		    frn->memcg_id == wb->memcg_css->id)
4677 			break;
4678 		if (time_before64(frn->at, oldest_at) &&
4679 		    atomic_read(&frn->done.cnt) == 1) {
4680 			oldest = i;
4681 			oldest_at = frn->at;
4682 		}
4683 	}
4684 
4685 	if (i < MEMCG_CGWB_FRN_CNT) {
4686 		/*
4687 		 * Re-using an existing one.  Update timestamp lazily to
4688 		 * avoid making the cacheline hot.  We want them to be
4689 		 * reasonably up-to-date and significantly shorter than
4690 		 * dirty_expire_interval as that's what expires the record.
4691 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4692 		 */
4693 		unsigned long update_intv =
4694 			min_t(unsigned long, HZ,
4695 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4696 
4697 		if (time_before64(frn->at, now - update_intv))
4698 			frn->at = now;
4699 	} else if (oldest >= 0) {
4700 		/* replace the oldest free one */
4701 		frn = &memcg->cgwb_frn[oldest];
4702 		frn->bdi_id = wb->bdi->id;
4703 		frn->memcg_id = wb->memcg_css->id;
4704 		frn->at = now;
4705 	}
4706 }
4707 
4708 /* issue foreign writeback flushes for recorded foreign dirtying events */
4709 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4710 {
4711 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4712 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4713 	u64 now = jiffies_64;
4714 	int i;
4715 
4716 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4717 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4718 
4719 		/*
4720 		 * If the record is older than dirty_expire_interval,
4721 		 * writeback on it has already started.  No need to kick it
4722 		 * off again.  Also, don't start a new one if there's
4723 		 * already one in flight.
4724 		 */
4725 		if (time_after64(frn->at, now - intv) &&
4726 		    atomic_read(&frn->done.cnt) == 1) {
4727 			frn->at = 0;
4728 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4729 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4730 					       WB_REASON_FOREIGN_FLUSH,
4731 					       &frn->done);
4732 		}
4733 	}
4734 }
4735 
4736 #else	/* CONFIG_CGROUP_WRITEBACK */
4737 
4738 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4739 {
4740 	return 0;
4741 }
4742 
4743 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4744 {
4745 }
4746 
4747 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4748 {
4749 }
4750 
4751 #endif	/* CONFIG_CGROUP_WRITEBACK */
4752 
4753 /*
4754  * DO NOT USE IN NEW FILES.
4755  *
4756  * "cgroup.event_control" implementation.
4757  *
4758  * This is way over-engineered.  It tries to support fully configurable
4759  * events for each user.  Such level of flexibility is completely
4760  * unnecessary especially in the light of the planned unified hierarchy.
4761  *
4762  * Please deprecate this and replace with something simpler if at all
4763  * possible.
4764  */
4765 
4766 /*
4767  * Unregister event and free resources.
4768  *
4769  * Gets called from workqueue.
4770  */
4771 static void memcg_event_remove(struct work_struct *work)
4772 {
4773 	struct mem_cgroup_event *event =
4774 		container_of(work, struct mem_cgroup_event, remove);
4775 	struct mem_cgroup *memcg = event->memcg;
4776 
4777 	remove_wait_queue(event->wqh, &event->wait);
4778 
4779 	event->unregister_event(memcg, event->eventfd);
4780 
4781 	/* Notify userspace the event is going away. */
4782 	eventfd_signal(event->eventfd, 1);
4783 
4784 	eventfd_ctx_put(event->eventfd);
4785 	kfree(event);
4786 	css_put(&memcg->css);
4787 }
4788 
4789 /*
4790  * Gets called on EPOLLHUP on eventfd when user closes it.
4791  *
4792  * Called with wqh->lock held and interrupts disabled.
4793  */
4794 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4795 			    int sync, void *key)
4796 {
4797 	struct mem_cgroup_event *event =
4798 		container_of(wait, struct mem_cgroup_event, wait);
4799 	struct mem_cgroup *memcg = event->memcg;
4800 	__poll_t flags = key_to_poll(key);
4801 
4802 	if (flags & EPOLLHUP) {
4803 		/*
4804 		 * If the event has been detached at cgroup removal, we
4805 		 * can simply return knowing the other side will cleanup
4806 		 * for us.
4807 		 *
4808 		 * We can't race against event freeing since the other
4809 		 * side will require wqh->lock via remove_wait_queue(),
4810 		 * which we hold.
4811 		 */
4812 		spin_lock(&memcg->event_list_lock);
4813 		if (!list_empty(&event->list)) {
4814 			list_del_init(&event->list);
4815 			/*
4816 			 * We are in atomic context, but cgroup_event_remove()
4817 			 * may sleep, so we have to call it in workqueue.
4818 			 */
4819 			schedule_work(&event->remove);
4820 		}
4821 		spin_unlock(&memcg->event_list_lock);
4822 	}
4823 
4824 	return 0;
4825 }
4826 
4827 static void memcg_event_ptable_queue_proc(struct file *file,
4828 		wait_queue_head_t *wqh, poll_table *pt)
4829 {
4830 	struct mem_cgroup_event *event =
4831 		container_of(pt, struct mem_cgroup_event, pt);
4832 
4833 	event->wqh = wqh;
4834 	add_wait_queue(wqh, &event->wait);
4835 }
4836 
4837 /*
4838  * DO NOT USE IN NEW FILES.
4839  *
4840  * Parse input and register new cgroup event handler.
4841  *
4842  * Input must be in format '<event_fd> <control_fd> <args>'.
4843  * Interpretation of args is defined by control file implementation.
4844  */
4845 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4846 					 char *buf, size_t nbytes, loff_t off)
4847 {
4848 	struct cgroup_subsys_state *css = of_css(of);
4849 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4850 	struct mem_cgroup_event *event;
4851 	struct cgroup_subsys_state *cfile_css;
4852 	unsigned int efd, cfd;
4853 	struct fd efile;
4854 	struct fd cfile;
4855 	const char *name;
4856 	char *endp;
4857 	int ret;
4858 
4859 	buf = strstrip(buf);
4860 
4861 	efd = simple_strtoul(buf, &endp, 10);
4862 	if (*endp != ' ')
4863 		return -EINVAL;
4864 	buf = endp + 1;
4865 
4866 	cfd = simple_strtoul(buf, &endp, 10);
4867 	if ((*endp != ' ') && (*endp != '\0'))
4868 		return -EINVAL;
4869 	buf = endp + 1;
4870 
4871 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4872 	if (!event)
4873 		return -ENOMEM;
4874 
4875 	event->memcg = memcg;
4876 	INIT_LIST_HEAD(&event->list);
4877 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4878 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4879 	INIT_WORK(&event->remove, memcg_event_remove);
4880 
4881 	efile = fdget(efd);
4882 	if (!efile.file) {
4883 		ret = -EBADF;
4884 		goto out_kfree;
4885 	}
4886 
4887 	event->eventfd = eventfd_ctx_fileget(efile.file);
4888 	if (IS_ERR(event->eventfd)) {
4889 		ret = PTR_ERR(event->eventfd);
4890 		goto out_put_efile;
4891 	}
4892 
4893 	cfile = fdget(cfd);
4894 	if (!cfile.file) {
4895 		ret = -EBADF;
4896 		goto out_put_eventfd;
4897 	}
4898 
4899 	/* the process need read permission on control file */
4900 	/* AV: shouldn't we check that it's been opened for read instead? */
4901 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4902 	if (ret < 0)
4903 		goto out_put_cfile;
4904 
4905 	/*
4906 	 * Determine the event callbacks and set them in @event.  This used
4907 	 * to be done via struct cftype but cgroup core no longer knows
4908 	 * about these events.  The following is crude but the whole thing
4909 	 * is for compatibility anyway.
4910 	 *
4911 	 * DO NOT ADD NEW FILES.
4912 	 */
4913 	name = cfile.file->f_path.dentry->d_name.name;
4914 
4915 	if (!strcmp(name, "memory.usage_in_bytes")) {
4916 		event->register_event = mem_cgroup_usage_register_event;
4917 		event->unregister_event = mem_cgroup_usage_unregister_event;
4918 	} else if (!strcmp(name, "memory.oom_control")) {
4919 		event->register_event = mem_cgroup_oom_register_event;
4920 		event->unregister_event = mem_cgroup_oom_unregister_event;
4921 	} else if (!strcmp(name, "memory.pressure_level")) {
4922 		event->register_event = vmpressure_register_event;
4923 		event->unregister_event = vmpressure_unregister_event;
4924 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4925 		event->register_event = memsw_cgroup_usage_register_event;
4926 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4927 	} else {
4928 		ret = -EINVAL;
4929 		goto out_put_cfile;
4930 	}
4931 
4932 	/*
4933 	 * Verify @cfile should belong to @css.  Also, remaining events are
4934 	 * automatically removed on cgroup destruction but the removal is
4935 	 * asynchronous, so take an extra ref on @css.
4936 	 */
4937 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4938 					       &memory_cgrp_subsys);
4939 	ret = -EINVAL;
4940 	if (IS_ERR(cfile_css))
4941 		goto out_put_cfile;
4942 	if (cfile_css != css) {
4943 		css_put(cfile_css);
4944 		goto out_put_cfile;
4945 	}
4946 
4947 	ret = event->register_event(memcg, event->eventfd, buf);
4948 	if (ret)
4949 		goto out_put_css;
4950 
4951 	vfs_poll(efile.file, &event->pt);
4952 
4953 	spin_lock(&memcg->event_list_lock);
4954 	list_add(&event->list, &memcg->event_list);
4955 	spin_unlock(&memcg->event_list_lock);
4956 
4957 	fdput(cfile);
4958 	fdput(efile);
4959 
4960 	return nbytes;
4961 
4962 out_put_css:
4963 	css_put(css);
4964 out_put_cfile:
4965 	fdput(cfile);
4966 out_put_eventfd:
4967 	eventfd_ctx_put(event->eventfd);
4968 out_put_efile:
4969 	fdput(efile);
4970 out_kfree:
4971 	kfree(event);
4972 
4973 	return ret;
4974 }
4975 
4976 static struct cftype mem_cgroup_legacy_files[] = {
4977 	{
4978 		.name = "usage_in_bytes",
4979 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4980 		.read_u64 = mem_cgroup_read_u64,
4981 	},
4982 	{
4983 		.name = "max_usage_in_bytes",
4984 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4985 		.write = mem_cgroup_reset,
4986 		.read_u64 = mem_cgroup_read_u64,
4987 	},
4988 	{
4989 		.name = "limit_in_bytes",
4990 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4991 		.write = mem_cgroup_write,
4992 		.read_u64 = mem_cgroup_read_u64,
4993 	},
4994 	{
4995 		.name = "soft_limit_in_bytes",
4996 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4997 		.write = mem_cgroup_write,
4998 		.read_u64 = mem_cgroup_read_u64,
4999 	},
5000 	{
5001 		.name = "failcnt",
5002 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5003 		.write = mem_cgroup_reset,
5004 		.read_u64 = mem_cgroup_read_u64,
5005 	},
5006 	{
5007 		.name = "stat",
5008 		.seq_show = memcg_stat_show,
5009 	},
5010 	{
5011 		.name = "force_empty",
5012 		.write = mem_cgroup_force_empty_write,
5013 	},
5014 	{
5015 		.name = "use_hierarchy",
5016 		.write_u64 = mem_cgroup_hierarchy_write,
5017 		.read_u64 = mem_cgroup_hierarchy_read,
5018 	},
5019 	{
5020 		.name = "cgroup.event_control",		/* XXX: for compat */
5021 		.write = memcg_write_event_control,
5022 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5023 	},
5024 	{
5025 		.name = "swappiness",
5026 		.read_u64 = mem_cgroup_swappiness_read,
5027 		.write_u64 = mem_cgroup_swappiness_write,
5028 	},
5029 	{
5030 		.name = "move_charge_at_immigrate",
5031 		.read_u64 = mem_cgroup_move_charge_read,
5032 		.write_u64 = mem_cgroup_move_charge_write,
5033 	},
5034 	{
5035 		.name = "oom_control",
5036 		.seq_show = mem_cgroup_oom_control_read,
5037 		.write_u64 = mem_cgroup_oom_control_write,
5038 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5039 	},
5040 	{
5041 		.name = "pressure_level",
5042 	},
5043 #ifdef CONFIG_NUMA
5044 	{
5045 		.name = "numa_stat",
5046 		.seq_show = memcg_numa_stat_show,
5047 	},
5048 #endif
5049 	{
5050 		.name = "kmem.limit_in_bytes",
5051 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5052 		.write = mem_cgroup_write,
5053 		.read_u64 = mem_cgroup_read_u64,
5054 	},
5055 	{
5056 		.name = "kmem.usage_in_bytes",
5057 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5058 		.read_u64 = mem_cgroup_read_u64,
5059 	},
5060 	{
5061 		.name = "kmem.failcnt",
5062 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5063 		.write = mem_cgroup_reset,
5064 		.read_u64 = mem_cgroup_read_u64,
5065 	},
5066 	{
5067 		.name = "kmem.max_usage_in_bytes",
5068 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5069 		.write = mem_cgroup_reset,
5070 		.read_u64 = mem_cgroup_read_u64,
5071 	},
5072 #if defined(CONFIG_MEMCG_KMEM) && \
5073 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5074 	{
5075 		.name = "kmem.slabinfo",
5076 		.seq_show = memcg_slab_show,
5077 	},
5078 #endif
5079 	{
5080 		.name = "kmem.tcp.limit_in_bytes",
5081 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5082 		.write = mem_cgroup_write,
5083 		.read_u64 = mem_cgroup_read_u64,
5084 	},
5085 	{
5086 		.name = "kmem.tcp.usage_in_bytes",
5087 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5088 		.read_u64 = mem_cgroup_read_u64,
5089 	},
5090 	{
5091 		.name = "kmem.tcp.failcnt",
5092 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5093 		.write = mem_cgroup_reset,
5094 		.read_u64 = mem_cgroup_read_u64,
5095 	},
5096 	{
5097 		.name = "kmem.tcp.max_usage_in_bytes",
5098 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5099 		.write = mem_cgroup_reset,
5100 		.read_u64 = mem_cgroup_read_u64,
5101 	},
5102 	{ },	/* terminate */
5103 };
5104 
5105 /*
5106  * Private memory cgroup IDR
5107  *
5108  * Swap-out records and page cache shadow entries need to store memcg
5109  * references in constrained space, so we maintain an ID space that is
5110  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5111  * memory-controlled cgroups to 64k.
5112  *
5113  * However, there usually are many references to the offline CSS after
5114  * the cgroup has been destroyed, such as page cache or reclaimable
5115  * slab objects, that don't need to hang on to the ID. We want to keep
5116  * those dead CSS from occupying IDs, or we might quickly exhaust the
5117  * relatively small ID space and prevent the creation of new cgroups
5118  * even when there are much fewer than 64k cgroups - possibly none.
5119  *
5120  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5121  * be freed and recycled when it's no longer needed, which is usually
5122  * when the CSS is offlined.
5123  *
5124  * The only exception to that are records of swapped out tmpfs/shmem
5125  * pages that need to be attributed to live ancestors on swapin. But
5126  * those references are manageable from userspace.
5127  */
5128 
5129 static DEFINE_IDR(mem_cgroup_idr);
5130 
5131 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5132 {
5133 	if (memcg->id.id > 0) {
5134 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5135 		memcg->id.id = 0;
5136 	}
5137 }
5138 
5139 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5140 						  unsigned int n)
5141 {
5142 	refcount_add(n, &memcg->id.ref);
5143 }
5144 
5145 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5146 {
5147 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5148 		mem_cgroup_id_remove(memcg);
5149 
5150 		/* Memcg ID pins CSS */
5151 		css_put(&memcg->css);
5152 	}
5153 }
5154 
5155 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5156 {
5157 	mem_cgroup_id_put_many(memcg, 1);
5158 }
5159 
5160 /**
5161  * mem_cgroup_from_id - look up a memcg from a memcg id
5162  * @id: the memcg id to look up
5163  *
5164  * Caller must hold rcu_read_lock().
5165  */
5166 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5167 {
5168 	WARN_ON_ONCE(!rcu_read_lock_held());
5169 	return idr_find(&mem_cgroup_idr, id);
5170 }
5171 
5172 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5173 {
5174 	struct mem_cgroup_per_node *pn;
5175 	int tmp = node;
5176 	/*
5177 	 * This routine is called against possible nodes.
5178 	 * But it's BUG to call kmalloc() against offline node.
5179 	 *
5180 	 * TODO: this routine can waste much memory for nodes which will
5181 	 *       never be onlined. It's better to use memory hotplug callback
5182 	 *       function.
5183 	 */
5184 	if (!node_state(node, N_NORMAL_MEMORY))
5185 		tmp = -1;
5186 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5187 	if (!pn)
5188 		return 1;
5189 
5190 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5191 						 GFP_KERNEL_ACCOUNT);
5192 	if (!pn->lruvec_stat_local) {
5193 		kfree(pn);
5194 		return 1;
5195 	}
5196 
5197 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5198 					       GFP_KERNEL_ACCOUNT);
5199 	if (!pn->lruvec_stat_cpu) {
5200 		free_percpu(pn->lruvec_stat_local);
5201 		kfree(pn);
5202 		return 1;
5203 	}
5204 
5205 	lruvec_init(&pn->lruvec);
5206 	pn->usage_in_excess = 0;
5207 	pn->on_tree = false;
5208 	pn->memcg = memcg;
5209 
5210 	memcg->nodeinfo[node] = pn;
5211 	return 0;
5212 }
5213 
5214 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5215 {
5216 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5217 
5218 	if (!pn)
5219 		return;
5220 
5221 	free_percpu(pn->lruvec_stat_cpu);
5222 	free_percpu(pn->lruvec_stat_local);
5223 	kfree(pn);
5224 }
5225 
5226 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5227 {
5228 	int node;
5229 
5230 	for_each_node(node)
5231 		free_mem_cgroup_per_node_info(memcg, node);
5232 	free_percpu(memcg->vmstats_percpu);
5233 	free_percpu(memcg->vmstats_local);
5234 	kfree(memcg);
5235 }
5236 
5237 static void mem_cgroup_free(struct mem_cgroup *memcg)
5238 {
5239 	memcg_wb_domain_exit(memcg);
5240 	/*
5241 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5242 	 * on parent's and all ancestor levels.
5243 	 */
5244 	memcg_flush_percpu_vmstats(memcg);
5245 	memcg_flush_percpu_vmevents(memcg);
5246 	__mem_cgroup_free(memcg);
5247 }
5248 
5249 static struct mem_cgroup *mem_cgroup_alloc(void)
5250 {
5251 	struct mem_cgroup *memcg;
5252 	unsigned int size;
5253 	int node;
5254 	int __maybe_unused i;
5255 	long error = -ENOMEM;
5256 
5257 	size = sizeof(struct mem_cgroup);
5258 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5259 
5260 	memcg = kzalloc(size, GFP_KERNEL);
5261 	if (!memcg)
5262 		return ERR_PTR(error);
5263 
5264 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5265 				 1, MEM_CGROUP_ID_MAX,
5266 				 GFP_KERNEL);
5267 	if (memcg->id.id < 0) {
5268 		error = memcg->id.id;
5269 		goto fail;
5270 	}
5271 
5272 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5273 						GFP_KERNEL_ACCOUNT);
5274 	if (!memcg->vmstats_local)
5275 		goto fail;
5276 
5277 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5278 						 GFP_KERNEL_ACCOUNT);
5279 	if (!memcg->vmstats_percpu)
5280 		goto fail;
5281 
5282 	for_each_node(node)
5283 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5284 			goto fail;
5285 
5286 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5287 		goto fail;
5288 
5289 	INIT_WORK(&memcg->high_work, high_work_func);
5290 	INIT_LIST_HEAD(&memcg->oom_notify);
5291 	mutex_init(&memcg->thresholds_lock);
5292 	spin_lock_init(&memcg->move_lock);
5293 	vmpressure_init(&memcg->vmpressure);
5294 	INIT_LIST_HEAD(&memcg->event_list);
5295 	spin_lock_init(&memcg->event_list_lock);
5296 	memcg->socket_pressure = jiffies;
5297 #ifdef CONFIG_MEMCG_KMEM
5298 	memcg->kmemcg_id = -1;
5299 	INIT_LIST_HEAD(&memcg->objcg_list);
5300 #endif
5301 #ifdef CONFIG_CGROUP_WRITEBACK
5302 	INIT_LIST_HEAD(&memcg->cgwb_list);
5303 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5304 		memcg->cgwb_frn[i].done =
5305 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5306 #endif
5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5309 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5310 	memcg->deferred_split_queue.split_queue_len = 0;
5311 #endif
5312 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5313 	return memcg;
5314 fail:
5315 	mem_cgroup_id_remove(memcg);
5316 	__mem_cgroup_free(memcg);
5317 	return ERR_PTR(error);
5318 }
5319 
5320 static struct cgroup_subsys_state * __ref
5321 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322 {
5323 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324 	struct mem_cgroup *memcg, *old_memcg;
5325 	long error = -ENOMEM;
5326 
5327 	old_memcg = set_active_memcg(parent);
5328 	memcg = mem_cgroup_alloc();
5329 	set_active_memcg(old_memcg);
5330 	if (IS_ERR(memcg))
5331 		return ERR_CAST(memcg);
5332 
5333 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5334 	memcg->soft_limit = PAGE_COUNTER_MAX;
5335 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5336 	if (parent) {
5337 		memcg->swappiness = mem_cgroup_swappiness(parent);
5338 		memcg->oom_kill_disable = parent->oom_kill_disable;
5339 	}
5340 	if (!parent) {
5341 		page_counter_init(&memcg->memory, NULL);
5342 		page_counter_init(&memcg->swap, NULL);
5343 		page_counter_init(&memcg->kmem, NULL);
5344 		page_counter_init(&memcg->tcpmem, NULL);
5345 	} else if (parent->use_hierarchy) {
5346 		memcg->use_hierarchy = true;
5347 		page_counter_init(&memcg->memory, &parent->memory);
5348 		page_counter_init(&memcg->swap, &parent->swap);
5349 		page_counter_init(&memcg->kmem, &parent->kmem);
5350 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5351 	} else {
5352 		page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5353 		page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5354 		page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5355 		page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5356 		/*
5357 		 * Deeper hierachy with use_hierarchy == false doesn't make
5358 		 * much sense so let cgroup subsystem know about this
5359 		 * unfortunate state in our controller.
5360 		 */
5361 		if (parent != root_mem_cgroup)
5362 			memory_cgrp_subsys.broken_hierarchy = true;
5363 	}
5364 
5365 	/* The following stuff does not apply to the root */
5366 	if (!parent) {
5367 		root_mem_cgroup = memcg;
5368 		return &memcg->css;
5369 	}
5370 
5371 	error = memcg_online_kmem(memcg);
5372 	if (error)
5373 		goto fail;
5374 
5375 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5376 		static_branch_inc(&memcg_sockets_enabled_key);
5377 
5378 	return &memcg->css;
5379 fail:
5380 	mem_cgroup_id_remove(memcg);
5381 	mem_cgroup_free(memcg);
5382 	return ERR_PTR(error);
5383 }
5384 
5385 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5386 {
5387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388 
5389 	/*
5390 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5391 	 * by the time the maps are allocated. So, we allocate maps
5392 	 * here, when for_each_mem_cgroup() can't skip it.
5393 	 */
5394 	if (memcg_alloc_shrinker_maps(memcg)) {
5395 		mem_cgroup_id_remove(memcg);
5396 		return -ENOMEM;
5397 	}
5398 
5399 	/* Online state pins memcg ID, memcg ID pins CSS */
5400 	refcount_set(&memcg->id.ref, 1);
5401 	css_get(css);
5402 	return 0;
5403 }
5404 
5405 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5406 {
5407 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5408 	struct mem_cgroup_event *event, *tmp;
5409 
5410 	/*
5411 	 * Unregister events and notify userspace.
5412 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5413 	 * directory to avoid race between userspace and kernelspace.
5414 	 */
5415 	spin_lock(&memcg->event_list_lock);
5416 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5417 		list_del_init(&event->list);
5418 		schedule_work(&event->remove);
5419 	}
5420 	spin_unlock(&memcg->event_list_lock);
5421 
5422 	page_counter_set_min(&memcg->memory, 0);
5423 	page_counter_set_low(&memcg->memory, 0);
5424 
5425 	memcg_offline_kmem(memcg);
5426 	wb_memcg_offline(memcg);
5427 
5428 	drain_all_stock(memcg);
5429 
5430 	mem_cgroup_id_put(memcg);
5431 }
5432 
5433 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5434 {
5435 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5436 
5437 	invalidate_reclaim_iterators(memcg);
5438 }
5439 
5440 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5441 {
5442 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443 	int __maybe_unused i;
5444 
5445 #ifdef CONFIG_CGROUP_WRITEBACK
5446 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5447 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5448 #endif
5449 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5450 		static_branch_dec(&memcg_sockets_enabled_key);
5451 
5452 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5453 		static_branch_dec(&memcg_sockets_enabled_key);
5454 
5455 	vmpressure_cleanup(&memcg->vmpressure);
5456 	cancel_work_sync(&memcg->high_work);
5457 	mem_cgroup_remove_from_trees(memcg);
5458 	memcg_free_shrinker_maps(memcg);
5459 	memcg_free_kmem(memcg);
5460 	mem_cgroup_free(memcg);
5461 }
5462 
5463 /**
5464  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5465  * @css: the target css
5466  *
5467  * Reset the states of the mem_cgroup associated with @css.  This is
5468  * invoked when the userland requests disabling on the default hierarchy
5469  * but the memcg is pinned through dependency.  The memcg should stop
5470  * applying policies and should revert to the vanilla state as it may be
5471  * made visible again.
5472  *
5473  * The current implementation only resets the essential configurations.
5474  * This needs to be expanded to cover all the visible parts.
5475  */
5476 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5477 {
5478 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5479 
5480 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5481 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5482 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5483 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5484 	page_counter_set_min(&memcg->memory, 0);
5485 	page_counter_set_low(&memcg->memory, 0);
5486 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5487 	memcg->soft_limit = PAGE_COUNTER_MAX;
5488 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5489 	memcg_wb_domain_size_changed(memcg);
5490 }
5491 
5492 #ifdef CONFIG_MMU
5493 /* Handlers for move charge at task migration. */
5494 static int mem_cgroup_do_precharge(unsigned long count)
5495 {
5496 	int ret;
5497 
5498 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5499 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5500 	if (!ret) {
5501 		mc.precharge += count;
5502 		return ret;
5503 	}
5504 
5505 	/* Try charges one by one with reclaim, but do not retry */
5506 	while (count--) {
5507 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5508 		if (ret)
5509 			return ret;
5510 		mc.precharge++;
5511 		cond_resched();
5512 	}
5513 	return 0;
5514 }
5515 
5516 union mc_target {
5517 	struct page	*page;
5518 	swp_entry_t	ent;
5519 };
5520 
5521 enum mc_target_type {
5522 	MC_TARGET_NONE = 0,
5523 	MC_TARGET_PAGE,
5524 	MC_TARGET_SWAP,
5525 	MC_TARGET_DEVICE,
5526 };
5527 
5528 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5529 						unsigned long addr, pte_t ptent)
5530 {
5531 	struct page *page = vm_normal_page(vma, addr, ptent);
5532 
5533 	if (!page || !page_mapped(page))
5534 		return NULL;
5535 	if (PageAnon(page)) {
5536 		if (!(mc.flags & MOVE_ANON))
5537 			return NULL;
5538 	} else {
5539 		if (!(mc.flags & MOVE_FILE))
5540 			return NULL;
5541 	}
5542 	if (!get_page_unless_zero(page))
5543 		return NULL;
5544 
5545 	return page;
5546 }
5547 
5548 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5549 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5550 			pte_t ptent, swp_entry_t *entry)
5551 {
5552 	struct page *page = NULL;
5553 	swp_entry_t ent = pte_to_swp_entry(ptent);
5554 
5555 	if (!(mc.flags & MOVE_ANON))
5556 		return NULL;
5557 
5558 	/*
5559 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5560 	 * a device and because they are not accessible by CPU they are store
5561 	 * as special swap entry in the CPU page table.
5562 	 */
5563 	if (is_device_private_entry(ent)) {
5564 		page = device_private_entry_to_page(ent);
5565 		/*
5566 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5567 		 * a refcount of 1 when free (unlike normal page)
5568 		 */
5569 		if (!page_ref_add_unless(page, 1, 1))
5570 			return NULL;
5571 		return page;
5572 	}
5573 
5574 	if (non_swap_entry(ent))
5575 		return NULL;
5576 
5577 	/*
5578 	 * Because lookup_swap_cache() updates some statistics counter,
5579 	 * we call find_get_page() with swapper_space directly.
5580 	 */
5581 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5582 	entry->val = ent.val;
5583 
5584 	return page;
5585 }
5586 #else
5587 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5588 			pte_t ptent, swp_entry_t *entry)
5589 {
5590 	return NULL;
5591 }
5592 #endif
5593 
5594 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5595 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5596 {
5597 	if (!vma->vm_file) /* anonymous vma */
5598 		return NULL;
5599 	if (!(mc.flags & MOVE_FILE))
5600 		return NULL;
5601 
5602 	/* page is moved even if it's not RSS of this task(page-faulted). */
5603 	/* shmem/tmpfs may report page out on swap: account for that too. */
5604 	return find_get_incore_page(vma->vm_file->f_mapping,
5605 			linear_page_index(vma, addr));
5606 }
5607 
5608 /**
5609  * mem_cgroup_move_account - move account of the page
5610  * @page: the page
5611  * @compound: charge the page as compound or small page
5612  * @from: mem_cgroup which the page is moved from.
5613  * @to:	mem_cgroup which the page is moved to. @from != @to.
5614  *
5615  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5616  *
5617  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5618  * from old cgroup.
5619  */
5620 static int mem_cgroup_move_account(struct page *page,
5621 				   bool compound,
5622 				   struct mem_cgroup *from,
5623 				   struct mem_cgroup *to)
5624 {
5625 	struct lruvec *from_vec, *to_vec;
5626 	struct pglist_data *pgdat;
5627 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5628 	int ret;
5629 
5630 	VM_BUG_ON(from == to);
5631 	VM_BUG_ON_PAGE(PageLRU(page), page);
5632 	VM_BUG_ON(compound && !PageTransHuge(page));
5633 
5634 	/*
5635 	 * Prevent mem_cgroup_migrate() from looking at
5636 	 * page's memory cgroup of its source page while we change it.
5637 	 */
5638 	ret = -EBUSY;
5639 	if (!trylock_page(page))
5640 		goto out;
5641 
5642 	ret = -EINVAL;
5643 	if (page_memcg(page) != from)
5644 		goto out_unlock;
5645 
5646 	pgdat = page_pgdat(page);
5647 	from_vec = mem_cgroup_lruvec(from, pgdat);
5648 	to_vec = mem_cgroup_lruvec(to, pgdat);
5649 
5650 	lock_page_memcg(page);
5651 
5652 	if (PageAnon(page)) {
5653 		if (page_mapped(page)) {
5654 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5655 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5656 			if (PageTransHuge(page)) {
5657 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5658 						   -nr_pages);
5659 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5660 						   nr_pages);
5661 			}
5662 
5663 		}
5664 	} else {
5665 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5666 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5667 
5668 		if (PageSwapBacked(page)) {
5669 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5670 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5671 		}
5672 
5673 		if (page_mapped(page)) {
5674 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5675 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5676 		}
5677 
5678 		if (PageDirty(page)) {
5679 			struct address_space *mapping = page_mapping(page);
5680 
5681 			if (mapping_can_writeback(mapping)) {
5682 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5683 						   -nr_pages);
5684 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5685 						   nr_pages);
5686 			}
5687 		}
5688 	}
5689 
5690 	if (PageWriteback(page)) {
5691 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5692 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5693 	}
5694 
5695 	/*
5696 	 * All state has been migrated, let's switch to the new memcg.
5697 	 *
5698 	 * It is safe to change page's memcg here because the page
5699 	 * is referenced, charged, isolated, and locked: we can't race
5700 	 * with (un)charging, migration, LRU putback, or anything else
5701 	 * that would rely on a stable page's memory cgroup.
5702 	 *
5703 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5704 	 * to save space. As soon as we switch page's memory cgroup to a
5705 	 * new memcg that isn't locked, the above state can change
5706 	 * concurrently again. Make sure we're truly done with it.
5707 	 */
5708 	smp_mb();
5709 
5710 	css_get(&to->css);
5711 	css_put(&from->css);
5712 
5713 	page->memcg_data = (unsigned long)to;
5714 
5715 	__unlock_page_memcg(from);
5716 
5717 	ret = 0;
5718 
5719 	local_irq_disable();
5720 	mem_cgroup_charge_statistics(to, page, nr_pages);
5721 	memcg_check_events(to, page);
5722 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5723 	memcg_check_events(from, page);
5724 	local_irq_enable();
5725 out_unlock:
5726 	unlock_page(page);
5727 out:
5728 	return ret;
5729 }
5730 
5731 /**
5732  * get_mctgt_type - get target type of moving charge
5733  * @vma: the vma the pte to be checked belongs
5734  * @addr: the address corresponding to the pte to be checked
5735  * @ptent: the pte to be checked
5736  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5737  *
5738  * Returns
5739  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5740  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5741  *     move charge. if @target is not NULL, the page is stored in target->page
5742  *     with extra refcnt got(Callers should handle it).
5743  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5744  *     target for charge migration. if @target is not NULL, the entry is stored
5745  *     in target->ent.
5746  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5747  *     (so ZONE_DEVICE page and thus not on the lru).
5748  *     For now we such page is charge like a regular page would be as for all
5749  *     intent and purposes it is just special memory taking the place of a
5750  *     regular page.
5751  *
5752  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5753  *
5754  * Called with pte lock held.
5755  */
5756 
5757 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5758 		unsigned long addr, pte_t ptent, union mc_target *target)
5759 {
5760 	struct page *page = NULL;
5761 	enum mc_target_type ret = MC_TARGET_NONE;
5762 	swp_entry_t ent = { .val = 0 };
5763 
5764 	if (pte_present(ptent))
5765 		page = mc_handle_present_pte(vma, addr, ptent);
5766 	else if (is_swap_pte(ptent))
5767 		page = mc_handle_swap_pte(vma, ptent, &ent);
5768 	else if (pte_none(ptent))
5769 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5770 
5771 	if (!page && !ent.val)
5772 		return ret;
5773 	if (page) {
5774 		/*
5775 		 * Do only loose check w/o serialization.
5776 		 * mem_cgroup_move_account() checks the page is valid or
5777 		 * not under LRU exclusion.
5778 		 */
5779 		if (page_memcg(page) == mc.from) {
5780 			ret = MC_TARGET_PAGE;
5781 			if (is_device_private_page(page))
5782 				ret = MC_TARGET_DEVICE;
5783 			if (target)
5784 				target->page = page;
5785 		}
5786 		if (!ret || !target)
5787 			put_page(page);
5788 	}
5789 	/*
5790 	 * There is a swap entry and a page doesn't exist or isn't charged.
5791 	 * But we cannot move a tail-page in a THP.
5792 	 */
5793 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5794 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5795 		ret = MC_TARGET_SWAP;
5796 		if (target)
5797 			target->ent = ent;
5798 	}
5799 	return ret;
5800 }
5801 
5802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5803 /*
5804  * We don't consider PMD mapped swapping or file mapped pages because THP does
5805  * not support them for now.
5806  * Caller should make sure that pmd_trans_huge(pmd) is true.
5807  */
5808 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5809 		unsigned long addr, pmd_t pmd, union mc_target *target)
5810 {
5811 	struct page *page = NULL;
5812 	enum mc_target_type ret = MC_TARGET_NONE;
5813 
5814 	if (unlikely(is_swap_pmd(pmd))) {
5815 		VM_BUG_ON(thp_migration_supported() &&
5816 				  !is_pmd_migration_entry(pmd));
5817 		return ret;
5818 	}
5819 	page = pmd_page(pmd);
5820 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5821 	if (!(mc.flags & MOVE_ANON))
5822 		return ret;
5823 	if (page_memcg(page) == mc.from) {
5824 		ret = MC_TARGET_PAGE;
5825 		if (target) {
5826 			get_page(page);
5827 			target->page = page;
5828 		}
5829 	}
5830 	return ret;
5831 }
5832 #else
5833 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5834 		unsigned long addr, pmd_t pmd, union mc_target *target)
5835 {
5836 	return MC_TARGET_NONE;
5837 }
5838 #endif
5839 
5840 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5841 					unsigned long addr, unsigned long end,
5842 					struct mm_walk *walk)
5843 {
5844 	struct vm_area_struct *vma = walk->vma;
5845 	pte_t *pte;
5846 	spinlock_t *ptl;
5847 
5848 	ptl = pmd_trans_huge_lock(pmd, vma);
5849 	if (ptl) {
5850 		/*
5851 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5852 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5853 		 * this might change.
5854 		 */
5855 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5856 			mc.precharge += HPAGE_PMD_NR;
5857 		spin_unlock(ptl);
5858 		return 0;
5859 	}
5860 
5861 	if (pmd_trans_unstable(pmd))
5862 		return 0;
5863 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5864 	for (; addr != end; pte++, addr += PAGE_SIZE)
5865 		if (get_mctgt_type(vma, addr, *pte, NULL))
5866 			mc.precharge++;	/* increment precharge temporarily */
5867 	pte_unmap_unlock(pte - 1, ptl);
5868 	cond_resched();
5869 
5870 	return 0;
5871 }
5872 
5873 static const struct mm_walk_ops precharge_walk_ops = {
5874 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5875 };
5876 
5877 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5878 {
5879 	unsigned long precharge;
5880 
5881 	mmap_read_lock(mm);
5882 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5883 	mmap_read_unlock(mm);
5884 
5885 	precharge = mc.precharge;
5886 	mc.precharge = 0;
5887 
5888 	return precharge;
5889 }
5890 
5891 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5892 {
5893 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5894 
5895 	VM_BUG_ON(mc.moving_task);
5896 	mc.moving_task = current;
5897 	return mem_cgroup_do_precharge(precharge);
5898 }
5899 
5900 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5901 static void __mem_cgroup_clear_mc(void)
5902 {
5903 	struct mem_cgroup *from = mc.from;
5904 	struct mem_cgroup *to = mc.to;
5905 
5906 	/* we must uncharge all the leftover precharges from mc.to */
5907 	if (mc.precharge) {
5908 		cancel_charge(mc.to, mc.precharge);
5909 		mc.precharge = 0;
5910 	}
5911 	/*
5912 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5913 	 * we must uncharge here.
5914 	 */
5915 	if (mc.moved_charge) {
5916 		cancel_charge(mc.from, mc.moved_charge);
5917 		mc.moved_charge = 0;
5918 	}
5919 	/* we must fixup refcnts and charges */
5920 	if (mc.moved_swap) {
5921 		/* uncharge swap account from the old cgroup */
5922 		if (!mem_cgroup_is_root(mc.from))
5923 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5924 
5925 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5926 
5927 		/*
5928 		 * we charged both to->memory and to->memsw, so we
5929 		 * should uncharge to->memory.
5930 		 */
5931 		if (!mem_cgroup_is_root(mc.to))
5932 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5933 
5934 		mc.moved_swap = 0;
5935 	}
5936 	memcg_oom_recover(from);
5937 	memcg_oom_recover(to);
5938 	wake_up_all(&mc.waitq);
5939 }
5940 
5941 static void mem_cgroup_clear_mc(void)
5942 {
5943 	struct mm_struct *mm = mc.mm;
5944 
5945 	/*
5946 	 * we must clear moving_task before waking up waiters at the end of
5947 	 * task migration.
5948 	 */
5949 	mc.moving_task = NULL;
5950 	__mem_cgroup_clear_mc();
5951 	spin_lock(&mc.lock);
5952 	mc.from = NULL;
5953 	mc.to = NULL;
5954 	mc.mm = NULL;
5955 	spin_unlock(&mc.lock);
5956 
5957 	mmput(mm);
5958 }
5959 
5960 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5961 {
5962 	struct cgroup_subsys_state *css;
5963 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5964 	struct mem_cgroup *from;
5965 	struct task_struct *leader, *p;
5966 	struct mm_struct *mm;
5967 	unsigned long move_flags;
5968 	int ret = 0;
5969 
5970 	/* charge immigration isn't supported on the default hierarchy */
5971 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5972 		return 0;
5973 
5974 	/*
5975 	 * Multi-process migrations only happen on the default hierarchy
5976 	 * where charge immigration is not used.  Perform charge
5977 	 * immigration if @tset contains a leader and whine if there are
5978 	 * multiple.
5979 	 */
5980 	p = NULL;
5981 	cgroup_taskset_for_each_leader(leader, css, tset) {
5982 		WARN_ON_ONCE(p);
5983 		p = leader;
5984 		memcg = mem_cgroup_from_css(css);
5985 	}
5986 	if (!p)
5987 		return 0;
5988 
5989 	/*
5990 	 * We are now commited to this value whatever it is. Changes in this
5991 	 * tunable will only affect upcoming migrations, not the current one.
5992 	 * So we need to save it, and keep it going.
5993 	 */
5994 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5995 	if (!move_flags)
5996 		return 0;
5997 
5998 	from = mem_cgroup_from_task(p);
5999 
6000 	VM_BUG_ON(from == memcg);
6001 
6002 	mm = get_task_mm(p);
6003 	if (!mm)
6004 		return 0;
6005 	/* We move charges only when we move a owner of the mm */
6006 	if (mm->owner == p) {
6007 		VM_BUG_ON(mc.from);
6008 		VM_BUG_ON(mc.to);
6009 		VM_BUG_ON(mc.precharge);
6010 		VM_BUG_ON(mc.moved_charge);
6011 		VM_BUG_ON(mc.moved_swap);
6012 
6013 		spin_lock(&mc.lock);
6014 		mc.mm = mm;
6015 		mc.from = from;
6016 		mc.to = memcg;
6017 		mc.flags = move_flags;
6018 		spin_unlock(&mc.lock);
6019 		/* We set mc.moving_task later */
6020 
6021 		ret = mem_cgroup_precharge_mc(mm);
6022 		if (ret)
6023 			mem_cgroup_clear_mc();
6024 	} else {
6025 		mmput(mm);
6026 	}
6027 	return ret;
6028 }
6029 
6030 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6031 {
6032 	if (mc.to)
6033 		mem_cgroup_clear_mc();
6034 }
6035 
6036 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6037 				unsigned long addr, unsigned long end,
6038 				struct mm_walk *walk)
6039 {
6040 	int ret = 0;
6041 	struct vm_area_struct *vma = walk->vma;
6042 	pte_t *pte;
6043 	spinlock_t *ptl;
6044 	enum mc_target_type target_type;
6045 	union mc_target target;
6046 	struct page *page;
6047 
6048 	ptl = pmd_trans_huge_lock(pmd, vma);
6049 	if (ptl) {
6050 		if (mc.precharge < HPAGE_PMD_NR) {
6051 			spin_unlock(ptl);
6052 			return 0;
6053 		}
6054 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6055 		if (target_type == MC_TARGET_PAGE) {
6056 			page = target.page;
6057 			if (!isolate_lru_page(page)) {
6058 				if (!mem_cgroup_move_account(page, true,
6059 							     mc.from, mc.to)) {
6060 					mc.precharge -= HPAGE_PMD_NR;
6061 					mc.moved_charge += HPAGE_PMD_NR;
6062 				}
6063 				putback_lru_page(page);
6064 			}
6065 			put_page(page);
6066 		} else if (target_type == MC_TARGET_DEVICE) {
6067 			page = target.page;
6068 			if (!mem_cgroup_move_account(page, true,
6069 						     mc.from, mc.to)) {
6070 				mc.precharge -= HPAGE_PMD_NR;
6071 				mc.moved_charge += HPAGE_PMD_NR;
6072 			}
6073 			put_page(page);
6074 		}
6075 		spin_unlock(ptl);
6076 		return 0;
6077 	}
6078 
6079 	if (pmd_trans_unstable(pmd))
6080 		return 0;
6081 retry:
6082 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6083 	for (; addr != end; addr += PAGE_SIZE) {
6084 		pte_t ptent = *(pte++);
6085 		bool device = false;
6086 		swp_entry_t ent;
6087 
6088 		if (!mc.precharge)
6089 			break;
6090 
6091 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6092 		case MC_TARGET_DEVICE:
6093 			device = true;
6094 			fallthrough;
6095 		case MC_TARGET_PAGE:
6096 			page = target.page;
6097 			/*
6098 			 * We can have a part of the split pmd here. Moving it
6099 			 * can be done but it would be too convoluted so simply
6100 			 * ignore such a partial THP and keep it in original
6101 			 * memcg. There should be somebody mapping the head.
6102 			 */
6103 			if (PageTransCompound(page))
6104 				goto put;
6105 			if (!device && isolate_lru_page(page))
6106 				goto put;
6107 			if (!mem_cgroup_move_account(page, false,
6108 						mc.from, mc.to)) {
6109 				mc.precharge--;
6110 				/* we uncharge from mc.from later. */
6111 				mc.moved_charge++;
6112 			}
6113 			if (!device)
6114 				putback_lru_page(page);
6115 put:			/* get_mctgt_type() gets the page */
6116 			put_page(page);
6117 			break;
6118 		case MC_TARGET_SWAP:
6119 			ent = target.ent;
6120 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6121 				mc.precharge--;
6122 				mem_cgroup_id_get_many(mc.to, 1);
6123 				/* we fixup other refcnts and charges later. */
6124 				mc.moved_swap++;
6125 			}
6126 			break;
6127 		default:
6128 			break;
6129 		}
6130 	}
6131 	pte_unmap_unlock(pte - 1, ptl);
6132 	cond_resched();
6133 
6134 	if (addr != end) {
6135 		/*
6136 		 * We have consumed all precharges we got in can_attach().
6137 		 * We try charge one by one, but don't do any additional
6138 		 * charges to mc.to if we have failed in charge once in attach()
6139 		 * phase.
6140 		 */
6141 		ret = mem_cgroup_do_precharge(1);
6142 		if (!ret)
6143 			goto retry;
6144 	}
6145 
6146 	return ret;
6147 }
6148 
6149 static const struct mm_walk_ops charge_walk_ops = {
6150 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6151 };
6152 
6153 static void mem_cgroup_move_charge(void)
6154 {
6155 	lru_add_drain_all();
6156 	/*
6157 	 * Signal lock_page_memcg() to take the memcg's move_lock
6158 	 * while we're moving its pages to another memcg. Then wait
6159 	 * for already started RCU-only updates to finish.
6160 	 */
6161 	atomic_inc(&mc.from->moving_account);
6162 	synchronize_rcu();
6163 retry:
6164 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6165 		/*
6166 		 * Someone who are holding the mmap_lock might be waiting in
6167 		 * waitq. So we cancel all extra charges, wake up all waiters,
6168 		 * and retry. Because we cancel precharges, we might not be able
6169 		 * to move enough charges, but moving charge is a best-effort
6170 		 * feature anyway, so it wouldn't be a big problem.
6171 		 */
6172 		__mem_cgroup_clear_mc();
6173 		cond_resched();
6174 		goto retry;
6175 	}
6176 	/*
6177 	 * When we have consumed all precharges and failed in doing
6178 	 * additional charge, the page walk just aborts.
6179 	 */
6180 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6181 			NULL);
6182 
6183 	mmap_read_unlock(mc.mm);
6184 	atomic_dec(&mc.from->moving_account);
6185 }
6186 
6187 static void mem_cgroup_move_task(void)
6188 {
6189 	if (mc.to) {
6190 		mem_cgroup_move_charge();
6191 		mem_cgroup_clear_mc();
6192 	}
6193 }
6194 #else	/* !CONFIG_MMU */
6195 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6196 {
6197 	return 0;
6198 }
6199 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6200 {
6201 }
6202 static void mem_cgroup_move_task(void)
6203 {
6204 }
6205 #endif
6206 
6207 /*
6208  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6209  * to verify whether we're attached to the default hierarchy on each mount
6210  * attempt.
6211  */
6212 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6213 {
6214 	/*
6215 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6216 	 * guarantees that @root doesn't have any children, so turning it
6217 	 * on for the root memcg is enough.
6218 	 */
6219 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6220 		root_mem_cgroup->use_hierarchy = true;
6221 	else
6222 		root_mem_cgroup->use_hierarchy = false;
6223 }
6224 
6225 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6226 {
6227 	if (value == PAGE_COUNTER_MAX)
6228 		seq_puts(m, "max\n");
6229 	else
6230 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6231 
6232 	return 0;
6233 }
6234 
6235 static u64 memory_current_read(struct cgroup_subsys_state *css,
6236 			       struct cftype *cft)
6237 {
6238 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6239 
6240 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6241 }
6242 
6243 static int memory_min_show(struct seq_file *m, void *v)
6244 {
6245 	return seq_puts_memcg_tunable(m,
6246 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6247 }
6248 
6249 static ssize_t memory_min_write(struct kernfs_open_file *of,
6250 				char *buf, size_t nbytes, loff_t off)
6251 {
6252 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6253 	unsigned long min;
6254 	int err;
6255 
6256 	buf = strstrip(buf);
6257 	err = page_counter_memparse(buf, "max", &min);
6258 	if (err)
6259 		return err;
6260 
6261 	page_counter_set_min(&memcg->memory, min);
6262 
6263 	return nbytes;
6264 }
6265 
6266 static int memory_low_show(struct seq_file *m, void *v)
6267 {
6268 	return seq_puts_memcg_tunable(m,
6269 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6270 }
6271 
6272 static ssize_t memory_low_write(struct kernfs_open_file *of,
6273 				char *buf, size_t nbytes, loff_t off)
6274 {
6275 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6276 	unsigned long low;
6277 	int err;
6278 
6279 	buf = strstrip(buf);
6280 	err = page_counter_memparse(buf, "max", &low);
6281 	if (err)
6282 		return err;
6283 
6284 	page_counter_set_low(&memcg->memory, low);
6285 
6286 	return nbytes;
6287 }
6288 
6289 static int memory_high_show(struct seq_file *m, void *v)
6290 {
6291 	return seq_puts_memcg_tunable(m,
6292 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6293 }
6294 
6295 static ssize_t memory_high_write(struct kernfs_open_file *of,
6296 				 char *buf, size_t nbytes, loff_t off)
6297 {
6298 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6299 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6300 	bool drained = false;
6301 	unsigned long high;
6302 	int err;
6303 
6304 	buf = strstrip(buf);
6305 	err = page_counter_memparse(buf, "max", &high);
6306 	if (err)
6307 		return err;
6308 
6309 	for (;;) {
6310 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6311 		unsigned long reclaimed;
6312 
6313 		if (nr_pages <= high)
6314 			break;
6315 
6316 		if (signal_pending(current))
6317 			break;
6318 
6319 		if (!drained) {
6320 			drain_all_stock(memcg);
6321 			drained = true;
6322 			continue;
6323 		}
6324 
6325 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6326 							 GFP_KERNEL, true);
6327 
6328 		if (!reclaimed && !nr_retries--)
6329 			break;
6330 	}
6331 
6332 	page_counter_set_high(&memcg->memory, high);
6333 
6334 	memcg_wb_domain_size_changed(memcg);
6335 
6336 	return nbytes;
6337 }
6338 
6339 static int memory_max_show(struct seq_file *m, void *v)
6340 {
6341 	return seq_puts_memcg_tunable(m,
6342 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6343 }
6344 
6345 static ssize_t memory_max_write(struct kernfs_open_file *of,
6346 				char *buf, size_t nbytes, loff_t off)
6347 {
6348 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6349 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6350 	bool drained = false;
6351 	unsigned long max;
6352 	int err;
6353 
6354 	buf = strstrip(buf);
6355 	err = page_counter_memparse(buf, "max", &max);
6356 	if (err)
6357 		return err;
6358 
6359 	xchg(&memcg->memory.max, max);
6360 
6361 	for (;;) {
6362 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6363 
6364 		if (nr_pages <= max)
6365 			break;
6366 
6367 		if (signal_pending(current))
6368 			break;
6369 
6370 		if (!drained) {
6371 			drain_all_stock(memcg);
6372 			drained = true;
6373 			continue;
6374 		}
6375 
6376 		if (nr_reclaims) {
6377 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6378 							  GFP_KERNEL, true))
6379 				nr_reclaims--;
6380 			continue;
6381 		}
6382 
6383 		memcg_memory_event(memcg, MEMCG_OOM);
6384 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6385 			break;
6386 	}
6387 
6388 	memcg_wb_domain_size_changed(memcg);
6389 	return nbytes;
6390 }
6391 
6392 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6393 {
6394 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6395 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6396 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6397 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6398 	seq_printf(m, "oom_kill %lu\n",
6399 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6400 }
6401 
6402 static int memory_events_show(struct seq_file *m, void *v)
6403 {
6404 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6405 
6406 	__memory_events_show(m, memcg->memory_events);
6407 	return 0;
6408 }
6409 
6410 static int memory_events_local_show(struct seq_file *m, void *v)
6411 {
6412 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6413 
6414 	__memory_events_show(m, memcg->memory_events_local);
6415 	return 0;
6416 }
6417 
6418 static int memory_stat_show(struct seq_file *m, void *v)
6419 {
6420 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6421 	char *buf;
6422 
6423 	buf = memory_stat_format(memcg);
6424 	if (!buf)
6425 		return -ENOMEM;
6426 	seq_puts(m, buf);
6427 	kfree(buf);
6428 	return 0;
6429 }
6430 
6431 #ifdef CONFIG_NUMA
6432 static int memory_numa_stat_show(struct seq_file *m, void *v)
6433 {
6434 	int i;
6435 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6436 
6437 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6438 		int nid;
6439 
6440 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6441 			continue;
6442 
6443 		seq_printf(m, "%s", memory_stats[i].name);
6444 		for_each_node_state(nid, N_MEMORY) {
6445 			u64 size;
6446 			struct lruvec *lruvec;
6447 
6448 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6449 			size = lruvec_page_state(lruvec, memory_stats[i].idx);
6450 			size *= memory_stats[i].ratio;
6451 			seq_printf(m, " N%d=%llu", nid, size);
6452 		}
6453 		seq_putc(m, '\n');
6454 	}
6455 
6456 	return 0;
6457 }
6458 #endif
6459 
6460 static int memory_oom_group_show(struct seq_file *m, void *v)
6461 {
6462 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6463 
6464 	seq_printf(m, "%d\n", memcg->oom_group);
6465 
6466 	return 0;
6467 }
6468 
6469 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6470 				      char *buf, size_t nbytes, loff_t off)
6471 {
6472 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6473 	int ret, oom_group;
6474 
6475 	buf = strstrip(buf);
6476 	if (!buf)
6477 		return -EINVAL;
6478 
6479 	ret = kstrtoint(buf, 0, &oom_group);
6480 	if (ret)
6481 		return ret;
6482 
6483 	if (oom_group != 0 && oom_group != 1)
6484 		return -EINVAL;
6485 
6486 	memcg->oom_group = oom_group;
6487 
6488 	return nbytes;
6489 }
6490 
6491 static struct cftype memory_files[] = {
6492 	{
6493 		.name = "current",
6494 		.flags = CFTYPE_NOT_ON_ROOT,
6495 		.read_u64 = memory_current_read,
6496 	},
6497 	{
6498 		.name = "min",
6499 		.flags = CFTYPE_NOT_ON_ROOT,
6500 		.seq_show = memory_min_show,
6501 		.write = memory_min_write,
6502 	},
6503 	{
6504 		.name = "low",
6505 		.flags = CFTYPE_NOT_ON_ROOT,
6506 		.seq_show = memory_low_show,
6507 		.write = memory_low_write,
6508 	},
6509 	{
6510 		.name = "high",
6511 		.flags = CFTYPE_NOT_ON_ROOT,
6512 		.seq_show = memory_high_show,
6513 		.write = memory_high_write,
6514 	},
6515 	{
6516 		.name = "max",
6517 		.flags = CFTYPE_NOT_ON_ROOT,
6518 		.seq_show = memory_max_show,
6519 		.write = memory_max_write,
6520 	},
6521 	{
6522 		.name = "events",
6523 		.flags = CFTYPE_NOT_ON_ROOT,
6524 		.file_offset = offsetof(struct mem_cgroup, events_file),
6525 		.seq_show = memory_events_show,
6526 	},
6527 	{
6528 		.name = "events.local",
6529 		.flags = CFTYPE_NOT_ON_ROOT,
6530 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6531 		.seq_show = memory_events_local_show,
6532 	},
6533 	{
6534 		.name = "stat",
6535 		.seq_show = memory_stat_show,
6536 	},
6537 #ifdef CONFIG_NUMA
6538 	{
6539 		.name = "numa_stat",
6540 		.seq_show = memory_numa_stat_show,
6541 	},
6542 #endif
6543 	{
6544 		.name = "oom.group",
6545 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6546 		.seq_show = memory_oom_group_show,
6547 		.write = memory_oom_group_write,
6548 	},
6549 	{ }	/* terminate */
6550 };
6551 
6552 struct cgroup_subsys memory_cgrp_subsys = {
6553 	.css_alloc = mem_cgroup_css_alloc,
6554 	.css_online = mem_cgroup_css_online,
6555 	.css_offline = mem_cgroup_css_offline,
6556 	.css_released = mem_cgroup_css_released,
6557 	.css_free = mem_cgroup_css_free,
6558 	.css_reset = mem_cgroup_css_reset,
6559 	.can_attach = mem_cgroup_can_attach,
6560 	.cancel_attach = mem_cgroup_cancel_attach,
6561 	.post_attach = mem_cgroup_move_task,
6562 	.bind = mem_cgroup_bind,
6563 	.dfl_cftypes = memory_files,
6564 	.legacy_cftypes = mem_cgroup_legacy_files,
6565 	.early_init = 0,
6566 };
6567 
6568 /*
6569  * This function calculates an individual cgroup's effective
6570  * protection which is derived from its own memory.min/low, its
6571  * parent's and siblings' settings, as well as the actual memory
6572  * distribution in the tree.
6573  *
6574  * The following rules apply to the effective protection values:
6575  *
6576  * 1. At the first level of reclaim, effective protection is equal to
6577  *    the declared protection in memory.min and memory.low.
6578  *
6579  * 2. To enable safe delegation of the protection configuration, at
6580  *    subsequent levels the effective protection is capped to the
6581  *    parent's effective protection.
6582  *
6583  * 3. To make complex and dynamic subtrees easier to configure, the
6584  *    user is allowed to overcommit the declared protection at a given
6585  *    level. If that is the case, the parent's effective protection is
6586  *    distributed to the children in proportion to how much protection
6587  *    they have declared and how much of it they are utilizing.
6588  *
6589  *    This makes distribution proportional, but also work-conserving:
6590  *    if one cgroup claims much more protection than it uses memory,
6591  *    the unused remainder is available to its siblings.
6592  *
6593  * 4. Conversely, when the declared protection is undercommitted at a
6594  *    given level, the distribution of the larger parental protection
6595  *    budget is NOT proportional. A cgroup's protection from a sibling
6596  *    is capped to its own memory.min/low setting.
6597  *
6598  * 5. However, to allow protecting recursive subtrees from each other
6599  *    without having to declare each individual cgroup's fixed share
6600  *    of the ancestor's claim to protection, any unutilized -
6601  *    "floating" - protection from up the tree is distributed in
6602  *    proportion to each cgroup's *usage*. This makes the protection
6603  *    neutral wrt sibling cgroups and lets them compete freely over
6604  *    the shared parental protection budget, but it protects the
6605  *    subtree as a whole from neighboring subtrees.
6606  *
6607  * Note that 4. and 5. are not in conflict: 4. is about protecting
6608  * against immediate siblings whereas 5. is about protecting against
6609  * neighboring subtrees.
6610  */
6611 static unsigned long effective_protection(unsigned long usage,
6612 					  unsigned long parent_usage,
6613 					  unsigned long setting,
6614 					  unsigned long parent_effective,
6615 					  unsigned long siblings_protected)
6616 {
6617 	unsigned long protected;
6618 	unsigned long ep;
6619 
6620 	protected = min(usage, setting);
6621 	/*
6622 	 * If all cgroups at this level combined claim and use more
6623 	 * protection then what the parent affords them, distribute
6624 	 * shares in proportion to utilization.
6625 	 *
6626 	 * We are using actual utilization rather than the statically
6627 	 * claimed protection in order to be work-conserving: claimed
6628 	 * but unused protection is available to siblings that would
6629 	 * otherwise get a smaller chunk than what they claimed.
6630 	 */
6631 	if (siblings_protected > parent_effective)
6632 		return protected * parent_effective / siblings_protected;
6633 
6634 	/*
6635 	 * Ok, utilized protection of all children is within what the
6636 	 * parent affords them, so we know whatever this child claims
6637 	 * and utilizes is effectively protected.
6638 	 *
6639 	 * If there is unprotected usage beyond this value, reclaim
6640 	 * will apply pressure in proportion to that amount.
6641 	 *
6642 	 * If there is unutilized protection, the cgroup will be fully
6643 	 * shielded from reclaim, but we do return a smaller value for
6644 	 * protection than what the group could enjoy in theory. This
6645 	 * is okay. With the overcommit distribution above, effective
6646 	 * protection is always dependent on how memory is actually
6647 	 * consumed among the siblings anyway.
6648 	 */
6649 	ep = protected;
6650 
6651 	/*
6652 	 * If the children aren't claiming (all of) the protection
6653 	 * afforded to them by the parent, distribute the remainder in
6654 	 * proportion to the (unprotected) memory of each cgroup. That
6655 	 * way, cgroups that aren't explicitly prioritized wrt each
6656 	 * other compete freely over the allowance, but they are
6657 	 * collectively protected from neighboring trees.
6658 	 *
6659 	 * We're using unprotected memory for the weight so that if
6660 	 * some cgroups DO claim explicit protection, we don't protect
6661 	 * the same bytes twice.
6662 	 *
6663 	 * Check both usage and parent_usage against the respective
6664 	 * protected values. One should imply the other, but they
6665 	 * aren't read atomically - make sure the division is sane.
6666 	 */
6667 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6668 		return ep;
6669 	if (parent_effective > siblings_protected &&
6670 	    parent_usage > siblings_protected &&
6671 	    usage > protected) {
6672 		unsigned long unclaimed;
6673 
6674 		unclaimed = parent_effective - siblings_protected;
6675 		unclaimed *= usage - protected;
6676 		unclaimed /= parent_usage - siblings_protected;
6677 
6678 		ep += unclaimed;
6679 	}
6680 
6681 	return ep;
6682 }
6683 
6684 /**
6685  * mem_cgroup_protected - check if memory consumption is in the normal range
6686  * @root: the top ancestor of the sub-tree being checked
6687  * @memcg: the memory cgroup to check
6688  *
6689  * WARNING: This function is not stateless! It can only be used as part
6690  *          of a top-down tree iteration, not for isolated queries.
6691  */
6692 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6693 				     struct mem_cgroup *memcg)
6694 {
6695 	unsigned long usage, parent_usage;
6696 	struct mem_cgroup *parent;
6697 
6698 	if (mem_cgroup_disabled())
6699 		return;
6700 
6701 	if (!root)
6702 		root = root_mem_cgroup;
6703 
6704 	/*
6705 	 * Effective values of the reclaim targets are ignored so they
6706 	 * can be stale. Have a look at mem_cgroup_protection for more
6707 	 * details.
6708 	 * TODO: calculation should be more robust so that we do not need
6709 	 * that special casing.
6710 	 */
6711 	if (memcg == root)
6712 		return;
6713 
6714 	usage = page_counter_read(&memcg->memory);
6715 	if (!usage)
6716 		return;
6717 
6718 	parent = parent_mem_cgroup(memcg);
6719 	/* No parent means a non-hierarchical mode on v1 memcg */
6720 	if (!parent)
6721 		return;
6722 
6723 	if (parent == root) {
6724 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6725 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6726 		return;
6727 	}
6728 
6729 	parent_usage = page_counter_read(&parent->memory);
6730 
6731 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6732 			READ_ONCE(memcg->memory.min),
6733 			READ_ONCE(parent->memory.emin),
6734 			atomic_long_read(&parent->memory.children_min_usage)));
6735 
6736 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6737 			READ_ONCE(memcg->memory.low),
6738 			READ_ONCE(parent->memory.elow),
6739 			atomic_long_read(&parent->memory.children_low_usage)));
6740 }
6741 
6742 /**
6743  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6744  * @page: page to charge
6745  * @mm: mm context of the victim
6746  * @gfp_mask: reclaim mode
6747  *
6748  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6749  * pages according to @gfp_mask if necessary.
6750  *
6751  * Returns 0 on success. Otherwise, an error code is returned.
6752  */
6753 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6754 {
6755 	unsigned int nr_pages = thp_nr_pages(page);
6756 	struct mem_cgroup *memcg = NULL;
6757 	int ret = 0;
6758 
6759 	if (mem_cgroup_disabled())
6760 		goto out;
6761 
6762 	if (PageSwapCache(page)) {
6763 		swp_entry_t ent = { .val = page_private(page), };
6764 		unsigned short id;
6765 
6766 		/*
6767 		 * Every swap fault against a single page tries to charge the
6768 		 * page, bail as early as possible.  shmem_unuse() encounters
6769 		 * already charged pages, too.  page and memcg binding is
6770 		 * protected by the page lock, which serializes swap cache
6771 		 * removal, which in turn serializes uncharging.
6772 		 */
6773 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6774 		if (page_memcg(compound_head(page)))
6775 			goto out;
6776 
6777 		id = lookup_swap_cgroup_id(ent);
6778 		rcu_read_lock();
6779 		memcg = mem_cgroup_from_id(id);
6780 		if (memcg && !css_tryget_online(&memcg->css))
6781 			memcg = NULL;
6782 		rcu_read_unlock();
6783 	}
6784 
6785 	if (!memcg)
6786 		memcg = get_mem_cgroup_from_mm(mm);
6787 
6788 	ret = try_charge(memcg, gfp_mask, nr_pages);
6789 	if (ret)
6790 		goto out_put;
6791 
6792 	css_get(&memcg->css);
6793 	commit_charge(page, memcg);
6794 
6795 	local_irq_disable();
6796 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6797 	memcg_check_events(memcg, page);
6798 	local_irq_enable();
6799 
6800 	if (PageSwapCache(page)) {
6801 		swp_entry_t entry = { .val = page_private(page) };
6802 		/*
6803 		 * The swap entry might not get freed for a long time,
6804 		 * let's not wait for it.  The page already received a
6805 		 * memory+swap charge, drop the swap entry duplicate.
6806 		 */
6807 		mem_cgroup_uncharge_swap(entry, nr_pages);
6808 	}
6809 
6810 out_put:
6811 	css_put(&memcg->css);
6812 out:
6813 	return ret;
6814 }
6815 
6816 struct uncharge_gather {
6817 	struct mem_cgroup *memcg;
6818 	unsigned long nr_pages;
6819 	unsigned long pgpgout;
6820 	unsigned long nr_kmem;
6821 	struct page *dummy_page;
6822 };
6823 
6824 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6825 {
6826 	memset(ug, 0, sizeof(*ug));
6827 }
6828 
6829 static void uncharge_batch(const struct uncharge_gather *ug)
6830 {
6831 	unsigned long flags;
6832 
6833 	if (!mem_cgroup_is_root(ug->memcg)) {
6834 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6835 		if (do_memsw_account())
6836 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6837 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6838 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6839 		memcg_oom_recover(ug->memcg);
6840 	}
6841 
6842 	local_irq_save(flags);
6843 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6844 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6845 	memcg_check_events(ug->memcg, ug->dummy_page);
6846 	local_irq_restore(flags);
6847 
6848 	/* drop reference from uncharge_page */
6849 	css_put(&ug->memcg->css);
6850 }
6851 
6852 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6853 {
6854 	unsigned long nr_pages;
6855 
6856 	VM_BUG_ON_PAGE(PageLRU(page), page);
6857 
6858 	if (!page_memcg(page))
6859 		return;
6860 
6861 	/*
6862 	 * Nobody should be changing or seriously looking at
6863 	 * page_memcg(page) at this point, we have fully
6864 	 * exclusive access to the page.
6865 	 */
6866 
6867 	if (ug->memcg != page_memcg(page)) {
6868 		if (ug->memcg) {
6869 			uncharge_batch(ug);
6870 			uncharge_gather_clear(ug);
6871 		}
6872 		ug->memcg = page_memcg(page);
6873 
6874 		/* pairs with css_put in uncharge_batch */
6875 		css_get(&ug->memcg->css);
6876 	}
6877 
6878 	nr_pages = compound_nr(page);
6879 	ug->nr_pages += nr_pages;
6880 
6881 	if (PageMemcgKmem(page))
6882 		ug->nr_kmem += nr_pages;
6883 	else
6884 		ug->pgpgout++;
6885 
6886 	ug->dummy_page = page;
6887 	page->memcg_data = 0;
6888 	css_put(&ug->memcg->css);
6889 }
6890 
6891 static void uncharge_list(struct list_head *page_list)
6892 {
6893 	struct uncharge_gather ug;
6894 	struct list_head *next;
6895 
6896 	uncharge_gather_clear(&ug);
6897 
6898 	/*
6899 	 * Note that the list can be a single page->lru; hence the
6900 	 * do-while loop instead of a simple list_for_each_entry().
6901 	 */
6902 	next = page_list->next;
6903 	do {
6904 		struct page *page;
6905 
6906 		page = list_entry(next, struct page, lru);
6907 		next = page->lru.next;
6908 
6909 		uncharge_page(page, &ug);
6910 	} while (next != page_list);
6911 
6912 	if (ug.memcg)
6913 		uncharge_batch(&ug);
6914 }
6915 
6916 /**
6917  * mem_cgroup_uncharge - uncharge a page
6918  * @page: page to uncharge
6919  *
6920  * Uncharge a page previously charged with mem_cgroup_charge().
6921  */
6922 void mem_cgroup_uncharge(struct page *page)
6923 {
6924 	struct uncharge_gather ug;
6925 
6926 	if (mem_cgroup_disabled())
6927 		return;
6928 
6929 	/* Don't touch page->lru of any random page, pre-check: */
6930 	if (!page_memcg(page))
6931 		return;
6932 
6933 	uncharge_gather_clear(&ug);
6934 	uncharge_page(page, &ug);
6935 	uncharge_batch(&ug);
6936 }
6937 
6938 /**
6939  * mem_cgroup_uncharge_list - uncharge a list of page
6940  * @page_list: list of pages to uncharge
6941  *
6942  * Uncharge a list of pages previously charged with
6943  * mem_cgroup_charge().
6944  */
6945 void mem_cgroup_uncharge_list(struct list_head *page_list)
6946 {
6947 	if (mem_cgroup_disabled())
6948 		return;
6949 
6950 	if (!list_empty(page_list))
6951 		uncharge_list(page_list);
6952 }
6953 
6954 /**
6955  * mem_cgroup_migrate - charge a page's replacement
6956  * @oldpage: currently circulating page
6957  * @newpage: replacement page
6958  *
6959  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6960  * be uncharged upon free.
6961  *
6962  * Both pages must be locked, @newpage->mapping must be set up.
6963  */
6964 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6965 {
6966 	struct mem_cgroup *memcg;
6967 	unsigned int nr_pages;
6968 	unsigned long flags;
6969 
6970 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6971 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6972 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6973 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6974 		       newpage);
6975 
6976 	if (mem_cgroup_disabled())
6977 		return;
6978 
6979 	/* Page cache replacement: new page already charged? */
6980 	if (page_memcg(newpage))
6981 		return;
6982 
6983 	/* Swapcache readahead pages can get replaced before being charged */
6984 	memcg = page_memcg(oldpage);
6985 	if (!memcg)
6986 		return;
6987 
6988 	/* Force-charge the new page. The old one will be freed soon */
6989 	nr_pages = thp_nr_pages(newpage);
6990 
6991 	page_counter_charge(&memcg->memory, nr_pages);
6992 	if (do_memsw_account())
6993 		page_counter_charge(&memcg->memsw, nr_pages);
6994 
6995 	css_get(&memcg->css);
6996 	commit_charge(newpage, memcg);
6997 
6998 	local_irq_save(flags);
6999 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7000 	memcg_check_events(memcg, newpage);
7001 	local_irq_restore(flags);
7002 }
7003 
7004 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7005 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7006 
7007 void mem_cgroup_sk_alloc(struct sock *sk)
7008 {
7009 	struct mem_cgroup *memcg;
7010 
7011 	if (!mem_cgroup_sockets_enabled)
7012 		return;
7013 
7014 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7015 	if (in_interrupt())
7016 		return;
7017 
7018 	rcu_read_lock();
7019 	memcg = mem_cgroup_from_task(current);
7020 	if (memcg == root_mem_cgroup)
7021 		goto out;
7022 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7023 		goto out;
7024 	if (css_tryget(&memcg->css))
7025 		sk->sk_memcg = memcg;
7026 out:
7027 	rcu_read_unlock();
7028 }
7029 
7030 void mem_cgroup_sk_free(struct sock *sk)
7031 {
7032 	if (sk->sk_memcg)
7033 		css_put(&sk->sk_memcg->css);
7034 }
7035 
7036 /**
7037  * mem_cgroup_charge_skmem - charge socket memory
7038  * @memcg: memcg to charge
7039  * @nr_pages: number of pages to charge
7040  *
7041  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7042  * @memcg's configured limit, %false if the charge had to be forced.
7043  */
7044 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7045 {
7046 	gfp_t gfp_mask = GFP_KERNEL;
7047 
7048 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7049 		struct page_counter *fail;
7050 
7051 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7052 			memcg->tcpmem_pressure = 0;
7053 			return true;
7054 		}
7055 		page_counter_charge(&memcg->tcpmem, nr_pages);
7056 		memcg->tcpmem_pressure = 1;
7057 		return false;
7058 	}
7059 
7060 	/* Don't block in the packet receive path */
7061 	if (in_softirq())
7062 		gfp_mask = GFP_NOWAIT;
7063 
7064 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7065 
7066 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7067 		return true;
7068 
7069 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7070 	return false;
7071 }
7072 
7073 /**
7074  * mem_cgroup_uncharge_skmem - uncharge socket memory
7075  * @memcg: memcg to uncharge
7076  * @nr_pages: number of pages to uncharge
7077  */
7078 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7079 {
7080 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7081 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7082 		return;
7083 	}
7084 
7085 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7086 
7087 	refill_stock(memcg, nr_pages);
7088 }
7089 
7090 static int __init cgroup_memory(char *s)
7091 {
7092 	char *token;
7093 
7094 	while ((token = strsep(&s, ",")) != NULL) {
7095 		if (!*token)
7096 			continue;
7097 		if (!strcmp(token, "nosocket"))
7098 			cgroup_memory_nosocket = true;
7099 		if (!strcmp(token, "nokmem"))
7100 			cgroup_memory_nokmem = true;
7101 	}
7102 	return 0;
7103 }
7104 __setup("cgroup.memory=", cgroup_memory);
7105 
7106 /*
7107  * subsys_initcall() for memory controller.
7108  *
7109  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7110  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7111  * basically everything that doesn't depend on a specific mem_cgroup structure
7112  * should be initialized from here.
7113  */
7114 static int __init mem_cgroup_init(void)
7115 {
7116 	int cpu, node;
7117 
7118 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7119 				  memcg_hotplug_cpu_dead);
7120 
7121 	for_each_possible_cpu(cpu)
7122 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7123 			  drain_local_stock);
7124 
7125 	for_each_node(node) {
7126 		struct mem_cgroup_tree_per_node *rtpn;
7127 
7128 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7129 				    node_online(node) ? node : NUMA_NO_NODE);
7130 
7131 		rtpn->rb_root = RB_ROOT;
7132 		rtpn->rb_rightmost = NULL;
7133 		spin_lock_init(&rtpn->lock);
7134 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7135 	}
7136 
7137 	return 0;
7138 }
7139 subsys_initcall(mem_cgroup_init);
7140 
7141 #ifdef CONFIG_MEMCG_SWAP
7142 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7143 {
7144 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7145 		/*
7146 		 * The root cgroup cannot be destroyed, so it's refcount must
7147 		 * always be >= 1.
7148 		 */
7149 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7150 			VM_BUG_ON(1);
7151 			break;
7152 		}
7153 		memcg = parent_mem_cgroup(memcg);
7154 		if (!memcg)
7155 			memcg = root_mem_cgroup;
7156 	}
7157 	return memcg;
7158 }
7159 
7160 /**
7161  * mem_cgroup_swapout - transfer a memsw charge to swap
7162  * @page: page whose memsw charge to transfer
7163  * @entry: swap entry to move the charge to
7164  *
7165  * Transfer the memsw charge of @page to @entry.
7166  */
7167 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7168 {
7169 	struct mem_cgroup *memcg, *swap_memcg;
7170 	unsigned int nr_entries;
7171 	unsigned short oldid;
7172 
7173 	VM_BUG_ON_PAGE(PageLRU(page), page);
7174 	VM_BUG_ON_PAGE(page_count(page), page);
7175 
7176 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7177 		return;
7178 
7179 	memcg = page_memcg(page);
7180 
7181 	/* Readahead page, never charged */
7182 	if (!memcg)
7183 		return;
7184 
7185 	/*
7186 	 * In case the memcg owning these pages has been offlined and doesn't
7187 	 * have an ID allocated to it anymore, charge the closest online
7188 	 * ancestor for the swap instead and transfer the memory+swap charge.
7189 	 */
7190 	swap_memcg = mem_cgroup_id_get_online(memcg);
7191 	nr_entries = thp_nr_pages(page);
7192 	/* Get references for the tail pages, too */
7193 	if (nr_entries > 1)
7194 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7195 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7196 				   nr_entries);
7197 	VM_BUG_ON_PAGE(oldid, page);
7198 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7199 
7200 	page->memcg_data = 0;
7201 
7202 	if (!mem_cgroup_is_root(memcg))
7203 		page_counter_uncharge(&memcg->memory, nr_entries);
7204 
7205 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7206 		if (!mem_cgroup_is_root(swap_memcg))
7207 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7208 		page_counter_uncharge(&memcg->memsw, nr_entries);
7209 	}
7210 
7211 	/*
7212 	 * Interrupts should be disabled here because the caller holds the
7213 	 * i_pages lock which is taken with interrupts-off. It is
7214 	 * important here to have the interrupts disabled because it is the
7215 	 * only synchronisation we have for updating the per-CPU variables.
7216 	 */
7217 	VM_BUG_ON(!irqs_disabled());
7218 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7219 	memcg_check_events(memcg, page);
7220 
7221 	css_put(&memcg->css);
7222 }
7223 
7224 /**
7225  * mem_cgroup_try_charge_swap - try charging swap space for a page
7226  * @page: page being added to swap
7227  * @entry: swap entry to charge
7228  *
7229  * Try to charge @page's memcg for the swap space at @entry.
7230  *
7231  * Returns 0 on success, -ENOMEM on failure.
7232  */
7233 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7234 {
7235 	unsigned int nr_pages = thp_nr_pages(page);
7236 	struct page_counter *counter;
7237 	struct mem_cgroup *memcg;
7238 	unsigned short oldid;
7239 
7240 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7241 		return 0;
7242 
7243 	memcg = page_memcg(page);
7244 
7245 	/* Readahead page, never charged */
7246 	if (!memcg)
7247 		return 0;
7248 
7249 	if (!entry.val) {
7250 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7251 		return 0;
7252 	}
7253 
7254 	memcg = mem_cgroup_id_get_online(memcg);
7255 
7256 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7257 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7258 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7259 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7260 		mem_cgroup_id_put(memcg);
7261 		return -ENOMEM;
7262 	}
7263 
7264 	/* Get references for the tail pages, too */
7265 	if (nr_pages > 1)
7266 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7267 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7268 	VM_BUG_ON_PAGE(oldid, page);
7269 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7270 
7271 	return 0;
7272 }
7273 
7274 /**
7275  * mem_cgroup_uncharge_swap - uncharge swap space
7276  * @entry: swap entry to uncharge
7277  * @nr_pages: the amount of swap space to uncharge
7278  */
7279 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7280 {
7281 	struct mem_cgroup *memcg;
7282 	unsigned short id;
7283 
7284 	id = swap_cgroup_record(entry, 0, nr_pages);
7285 	rcu_read_lock();
7286 	memcg = mem_cgroup_from_id(id);
7287 	if (memcg) {
7288 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7289 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7290 				page_counter_uncharge(&memcg->swap, nr_pages);
7291 			else
7292 				page_counter_uncharge(&memcg->memsw, nr_pages);
7293 		}
7294 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7295 		mem_cgroup_id_put_many(memcg, nr_pages);
7296 	}
7297 	rcu_read_unlock();
7298 }
7299 
7300 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7301 {
7302 	long nr_swap_pages = get_nr_swap_pages();
7303 
7304 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7305 		return nr_swap_pages;
7306 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7307 		nr_swap_pages = min_t(long, nr_swap_pages,
7308 				      READ_ONCE(memcg->swap.max) -
7309 				      page_counter_read(&memcg->swap));
7310 	return nr_swap_pages;
7311 }
7312 
7313 bool mem_cgroup_swap_full(struct page *page)
7314 {
7315 	struct mem_cgroup *memcg;
7316 
7317 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7318 
7319 	if (vm_swap_full())
7320 		return true;
7321 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7322 		return false;
7323 
7324 	memcg = page_memcg(page);
7325 	if (!memcg)
7326 		return false;
7327 
7328 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7329 		unsigned long usage = page_counter_read(&memcg->swap);
7330 
7331 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7332 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7333 			return true;
7334 	}
7335 
7336 	return false;
7337 }
7338 
7339 static int __init setup_swap_account(char *s)
7340 {
7341 	if (!strcmp(s, "1"))
7342 		cgroup_memory_noswap = 0;
7343 	else if (!strcmp(s, "0"))
7344 		cgroup_memory_noswap = 1;
7345 	return 1;
7346 }
7347 __setup("swapaccount=", setup_swap_account);
7348 
7349 static u64 swap_current_read(struct cgroup_subsys_state *css,
7350 			     struct cftype *cft)
7351 {
7352 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7353 
7354 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7355 }
7356 
7357 static int swap_high_show(struct seq_file *m, void *v)
7358 {
7359 	return seq_puts_memcg_tunable(m,
7360 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7361 }
7362 
7363 static ssize_t swap_high_write(struct kernfs_open_file *of,
7364 			       char *buf, size_t nbytes, loff_t off)
7365 {
7366 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7367 	unsigned long high;
7368 	int err;
7369 
7370 	buf = strstrip(buf);
7371 	err = page_counter_memparse(buf, "max", &high);
7372 	if (err)
7373 		return err;
7374 
7375 	page_counter_set_high(&memcg->swap, high);
7376 
7377 	return nbytes;
7378 }
7379 
7380 static int swap_max_show(struct seq_file *m, void *v)
7381 {
7382 	return seq_puts_memcg_tunable(m,
7383 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7384 }
7385 
7386 static ssize_t swap_max_write(struct kernfs_open_file *of,
7387 			      char *buf, size_t nbytes, loff_t off)
7388 {
7389 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7390 	unsigned long max;
7391 	int err;
7392 
7393 	buf = strstrip(buf);
7394 	err = page_counter_memparse(buf, "max", &max);
7395 	if (err)
7396 		return err;
7397 
7398 	xchg(&memcg->swap.max, max);
7399 
7400 	return nbytes;
7401 }
7402 
7403 static int swap_events_show(struct seq_file *m, void *v)
7404 {
7405 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7406 
7407 	seq_printf(m, "high %lu\n",
7408 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7409 	seq_printf(m, "max %lu\n",
7410 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7411 	seq_printf(m, "fail %lu\n",
7412 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7413 
7414 	return 0;
7415 }
7416 
7417 static struct cftype swap_files[] = {
7418 	{
7419 		.name = "swap.current",
7420 		.flags = CFTYPE_NOT_ON_ROOT,
7421 		.read_u64 = swap_current_read,
7422 	},
7423 	{
7424 		.name = "swap.high",
7425 		.flags = CFTYPE_NOT_ON_ROOT,
7426 		.seq_show = swap_high_show,
7427 		.write = swap_high_write,
7428 	},
7429 	{
7430 		.name = "swap.max",
7431 		.flags = CFTYPE_NOT_ON_ROOT,
7432 		.seq_show = swap_max_show,
7433 		.write = swap_max_write,
7434 	},
7435 	{
7436 		.name = "swap.events",
7437 		.flags = CFTYPE_NOT_ON_ROOT,
7438 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7439 		.seq_show = swap_events_show,
7440 	},
7441 	{ }	/* terminate */
7442 };
7443 
7444 static struct cftype memsw_files[] = {
7445 	{
7446 		.name = "memsw.usage_in_bytes",
7447 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7448 		.read_u64 = mem_cgroup_read_u64,
7449 	},
7450 	{
7451 		.name = "memsw.max_usage_in_bytes",
7452 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7453 		.write = mem_cgroup_reset,
7454 		.read_u64 = mem_cgroup_read_u64,
7455 	},
7456 	{
7457 		.name = "memsw.limit_in_bytes",
7458 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7459 		.write = mem_cgroup_write,
7460 		.read_u64 = mem_cgroup_read_u64,
7461 	},
7462 	{
7463 		.name = "memsw.failcnt",
7464 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7465 		.write = mem_cgroup_reset,
7466 		.read_u64 = mem_cgroup_read_u64,
7467 	},
7468 	{ },	/* terminate */
7469 };
7470 
7471 /*
7472  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7473  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7474  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7475  * boot parameter. This may result in premature OOPS inside
7476  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7477  */
7478 static int __init mem_cgroup_swap_init(void)
7479 {
7480 	/* No memory control -> no swap control */
7481 	if (mem_cgroup_disabled())
7482 		cgroup_memory_noswap = true;
7483 
7484 	if (cgroup_memory_noswap)
7485 		return 0;
7486 
7487 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7488 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7489 
7490 	return 0;
7491 }
7492 core_initcall(mem_cgroup_swap_init);
7493 
7494 #endif /* CONFIG_MEMCG_SWAP */
7495