xref: /linux/mm/memcontrol.c (revision 7d11965ddb9b9b1e0a5d13c58345ada1ccbc663b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 /*
89  * Statistics for memory cgroup.
90  */
91 enum mem_cgroup_stat_index {
92 	/*
93 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 	 */
95 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
96 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
97 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
98 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
99 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 	MEM_CGROUP_STAT_NSTATS,
101 };
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"swap",
109 };
110 
111 enum mem_cgroup_events_index {
112 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
113 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
115 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 	MEM_CGROUP_EVENTS_NSTATS,
117 };
118 
119 static const char * const mem_cgroup_events_names[] = {
120 	"pgpgin",
121 	"pgpgout",
122 	"pgfault",
123 	"pgmajfault",
124 };
125 
126 static const char * const mem_cgroup_lru_names[] = {
127 	"inactive_anon",
128 	"active_anon",
129 	"inactive_file",
130 	"active_file",
131 	"unevictable",
132 };
133 
134 /*
135  * Per memcg event counter is incremented at every pagein/pageout. With THP,
136  * it will be incremated by the number of pages. This counter is used for
137  * for trigger some periodic events. This is straightforward and better
138  * than using jiffies etc. to handle periodic memcg event.
139  */
140 enum mem_cgroup_events_target {
141 	MEM_CGROUP_TARGET_THRESH,
142 	MEM_CGROUP_TARGET_SOFTLIMIT,
143 	MEM_CGROUP_TARGET_NUMAINFO,
144 	MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET	1024
149 
150 struct mem_cgroup_stat_cpu {
151 	long count[MEM_CGROUP_STAT_NSTATS];
152 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 	unsigned long nr_page_events;
154 	unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156 
157 struct mem_cgroup_reclaim_iter {
158 	/*
159 	 * last scanned hierarchy member. Valid only if last_dead_count
160 	 * matches memcg->dead_count of the hierarchy root group.
161 	 */
162 	struct mem_cgroup *last_visited;
163 	unsigned long last_dead_count;
164 
165 	/* scan generation, increased every round-trip */
166 	unsigned int generation;
167 };
168 
169 /*
170  * per-zone information in memory controller.
171  */
172 struct mem_cgroup_per_zone {
173 	struct lruvec		lruvec;
174 	unsigned long		lru_size[NR_LRU_LISTS];
175 
176 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177 
178 	struct rb_node		tree_node;	/* RB tree node */
179 	unsigned long long	usage_in_excess;/* Set to the value by which */
180 						/* the soft limit is exceeded*/
181 	bool			on_tree;
182 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183 						/* use container_of	   */
184 };
185 
186 struct mem_cgroup_per_node {
187 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189 
190 struct mem_cgroup_lru_info {
191 	struct mem_cgroup_per_node *nodeinfo[0];
192 };
193 
194 /*
195  * Cgroups above their limits are maintained in a RB-Tree, independent of
196  * their hierarchy representation
197  */
198 
199 struct mem_cgroup_tree_per_zone {
200 	struct rb_root rb_root;
201 	spinlock_t lock;
202 };
203 
204 struct mem_cgroup_tree_per_node {
205 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206 };
207 
208 struct mem_cgroup_tree {
209 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210 };
211 
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213 
214 struct mem_cgroup_threshold {
215 	struct eventfd_ctx *eventfd;
216 	u64 threshold;
217 };
218 
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 	/* An array index points to threshold just below or equal to usage. */
222 	int current_threshold;
223 	/* Size of entries[] */
224 	unsigned int size;
225 	/* Array of thresholds */
226 	struct mem_cgroup_threshold entries[0];
227 };
228 
229 struct mem_cgroup_thresholds {
230 	/* Primary thresholds array */
231 	struct mem_cgroup_threshold_ary *primary;
232 	/*
233 	 * Spare threshold array.
234 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 	 * It must be able to store at least primary->size - 1 entries.
236 	 */
237 	struct mem_cgroup_threshold_ary *spare;
238 };
239 
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 	struct list_head list;
243 	struct eventfd_ctx *eventfd;
244 };
245 
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248 
249 /*
250  * The memory controller data structure. The memory controller controls both
251  * page cache and RSS per cgroup. We would eventually like to provide
252  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253  * to help the administrator determine what knobs to tune.
254  *
255  * TODO: Add a water mark for the memory controller. Reclaim will begin when
256  * we hit the water mark. May be even add a low water mark, such that
257  * no reclaim occurs from a cgroup at it's low water mark, this is
258  * a feature that will be implemented much later in the future.
259  */
260 struct mem_cgroup {
261 	struct cgroup_subsys_state css;
262 	/*
263 	 * the counter to account for memory usage
264 	 */
265 	struct res_counter res;
266 
267 	/* vmpressure notifications */
268 	struct vmpressure vmpressure;
269 
270 	union {
271 		/*
272 		 * the counter to account for mem+swap usage.
273 		 */
274 		struct res_counter memsw;
275 
276 		/*
277 		 * rcu_freeing is used only when freeing struct mem_cgroup,
278 		 * so put it into a union to avoid wasting more memory.
279 		 * It must be disjoint from the css field.  It could be
280 		 * in a union with the res field, but res plays a much
281 		 * larger part in mem_cgroup life than memsw, and might
282 		 * be of interest, even at time of free, when debugging.
283 		 * So share rcu_head with the less interesting memsw.
284 		 */
285 		struct rcu_head rcu_freeing;
286 		/*
287 		 * We also need some space for a worker in deferred freeing.
288 		 * By the time we call it, rcu_freeing is no longer in use.
289 		 */
290 		struct work_struct work_freeing;
291 	};
292 
293 	/*
294 	 * the counter to account for kernel memory usage.
295 	 */
296 	struct res_counter kmem;
297 	/*
298 	 * Should the accounting and control be hierarchical, per subtree?
299 	 */
300 	bool use_hierarchy;
301 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 
303 	bool		oom_lock;
304 	atomic_t	under_oom;
305 
306 	atomic_t	refcnt;
307 
308 	int	swappiness;
309 	/* OOM-Killer disable */
310 	int		oom_kill_disable;
311 
312 	/* set when res.limit == memsw.limit */
313 	bool		memsw_is_minimum;
314 
315 	/* protect arrays of thresholds */
316 	struct mutex thresholds_lock;
317 
318 	/* thresholds for memory usage. RCU-protected */
319 	struct mem_cgroup_thresholds thresholds;
320 
321 	/* thresholds for mem+swap usage. RCU-protected */
322 	struct mem_cgroup_thresholds memsw_thresholds;
323 
324 	/* For oom notifier event fd */
325 	struct list_head oom_notify;
326 
327 	/*
328 	 * Should we move charges of a task when a task is moved into this
329 	 * mem_cgroup ? And what type of charges should we move ?
330 	 */
331 	unsigned long 	move_charge_at_immigrate;
332 	/*
333 	 * set > 0 if pages under this cgroup are moving to other cgroup.
334 	 */
335 	atomic_t	moving_account;
336 	/* taken only while moving_account > 0 */
337 	spinlock_t	move_lock;
338 	/*
339 	 * percpu counter.
340 	 */
341 	struct mem_cgroup_stat_cpu __percpu *stat;
342 	/*
343 	 * used when a cpu is offlined or other synchronizations
344 	 * See mem_cgroup_read_stat().
345 	 */
346 	struct mem_cgroup_stat_cpu nocpu_base;
347 	spinlock_t pcp_counter_lock;
348 
349 	atomic_t	dead_count;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 	struct tcp_memcontrol tcp_mem;
352 #endif
353 #if defined(CONFIG_MEMCG_KMEM)
354 	/* analogous to slab_common's slab_caches list. per-memcg */
355 	struct list_head memcg_slab_caches;
356 	/* Not a spinlock, we can take a lot of time walking the list */
357 	struct mutex slab_caches_mutex;
358         /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 	int kmemcg_id;
360 #endif
361 
362 	int last_scanned_node;
363 #if MAX_NUMNODES > 1
364 	nodemask_t	scan_nodes;
365 	atomic_t	numainfo_events;
366 	atomic_t	numainfo_updating;
367 #endif
368 
369 	/*
370 	 * Per cgroup active and inactive list, similar to the
371 	 * per zone LRU lists.
372 	 *
373 	 * WARNING: This has to be the last element of the struct. Don't
374 	 * add new fields after this point.
375 	 */
376 	struct mem_cgroup_lru_info info;
377 };
378 
379 static size_t memcg_size(void)
380 {
381 	return sizeof(struct mem_cgroup) +
382 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
383 }
384 
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
390 };
391 
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
395 
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
398 {
399 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
400 }
401 
402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
403 {
404 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405 }
406 
407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
408 {
409 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
410 }
411 
412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
413 {
414 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415 }
416 
417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
418 {
419 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
421 }
422 
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
424 {
425 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 				  &memcg->kmem_account_flags);
427 }
428 #endif
429 
430 /* Stuffs for move charges at task migration. */
431 /*
432  * Types of charges to be moved. "move_charge_at_immitgrate" and
433  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
434  */
435 enum move_type {
436 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
437 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
438 	NR_MOVE_TYPE,
439 };
440 
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct {
443 	spinlock_t	  lock; /* for from, to */
444 	struct mem_cgroup *from;
445 	struct mem_cgroup *to;
446 	unsigned long immigrate_flags;
447 	unsigned long precharge;
448 	unsigned long moved_charge;
449 	unsigned long moved_swap;
450 	struct task_struct *moving_task;	/* a task moving charges */
451 	wait_queue_head_t waitq;		/* a waitq for other context */
452 } mc = {
453 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
455 };
456 
457 static bool move_anon(void)
458 {
459 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
460 }
461 
462 static bool move_file(void)
463 {
464 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
465 }
466 
467 /*
468  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469  * limit reclaim to prevent infinite loops, if they ever occur.
470  */
471 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
472 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
473 
474 enum charge_type {
475 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476 	MEM_CGROUP_CHARGE_TYPE_ANON,
477 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
478 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
479 	NR_CHARGE_TYPE,
480 };
481 
482 /* for encoding cft->private value on file */
483 enum res_type {
484 	_MEM,
485 	_MEMSWAP,
486 	_OOM_TYPE,
487 	_KMEM,
488 };
489 
490 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
491 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val)	((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL		(0)
495 
496 /*
497  * Reclaim flags for mem_cgroup_hierarchical_reclaim
498  */
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
503 
504 /*
505  * The memcg_create_mutex will be held whenever a new cgroup is created.
506  * As a consequence, any change that needs to protect against new child cgroups
507  * appearing has to hold it as well.
508  */
509 static DEFINE_MUTEX(memcg_create_mutex);
510 
511 static void mem_cgroup_get(struct mem_cgroup *memcg);
512 static void mem_cgroup_put(struct mem_cgroup *memcg);
513 
514 static inline
515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
516 {
517 	return container_of(s, struct mem_cgroup, css);
518 }
519 
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
522 {
523 	if (!memcg)
524 		memcg = root_mem_cgroup;
525 	return &memcg->vmpressure;
526 }
527 
528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
529 {
530 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
531 }
532 
533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
534 {
535 	return &mem_cgroup_from_css(css)->vmpressure;
536 }
537 
538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
539 {
540 	return (memcg == root_mem_cgroup);
541 }
542 
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
545 
546 void sock_update_memcg(struct sock *sk)
547 {
548 	if (mem_cgroup_sockets_enabled) {
549 		struct mem_cgroup *memcg;
550 		struct cg_proto *cg_proto;
551 
552 		BUG_ON(!sk->sk_prot->proto_cgroup);
553 
554 		/* Socket cloning can throw us here with sk_cgrp already
555 		 * filled. It won't however, necessarily happen from
556 		 * process context. So the test for root memcg given
557 		 * the current task's memcg won't help us in this case.
558 		 *
559 		 * Respecting the original socket's memcg is a better
560 		 * decision in this case.
561 		 */
562 		if (sk->sk_cgrp) {
563 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 			mem_cgroup_get(sk->sk_cgrp->memcg);
565 			return;
566 		}
567 
568 		rcu_read_lock();
569 		memcg = mem_cgroup_from_task(current);
570 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
572 			mem_cgroup_get(memcg);
573 			sk->sk_cgrp = cg_proto;
574 		}
575 		rcu_read_unlock();
576 	}
577 }
578 EXPORT_SYMBOL(sock_update_memcg);
579 
580 void sock_release_memcg(struct sock *sk)
581 {
582 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
583 		struct mem_cgroup *memcg;
584 		WARN_ON(!sk->sk_cgrp->memcg);
585 		memcg = sk->sk_cgrp->memcg;
586 		mem_cgroup_put(memcg);
587 	}
588 }
589 
590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
591 {
592 	if (!memcg || mem_cgroup_is_root(memcg))
593 		return NULL;
594 
595 	return &memcg->tcp_mem.cg_proto;
596 }
597 EXPORT_SYMBOL(tcp_proto_cgroup);
598 
599 static void disarm_sock_keys(struct mem_cgroup *memcg)
600 {
601 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 		return;
603 	static_key_slow_dec(&memcg_socket_limit_enabled);
604 }
605 #else
606 static void disarm_sock_keys(struct mem_cgroup *memcg)
607 {
608 }
609 #endif
610 
611 #ifdef CONFIG_MEMCG_KMEM
612 /*
613  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614  * There are two main reasons for not using the css_id for this:
615  *  1) this works better in sparse environments, where we have a lot of memcgs,
616  *     but only a few kmem-limited. Or also, if we have, for instance, 200
617  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
618  *     200 entry array for that.
619  *
620  *  2) In order not to violate the cgroup API, we would like to do all memory
621  *     allocation in ->create(). At that point, we haven't yet allocated the
622  *     css_id. Having a separate index prevents us from messing with the cgroup
623  *     core for this
624  *
625  * The current size of the caches array is stored in
626  * memcg_limited_groups_array_size.  It will double each time we have to
627  * increase it.
628  */
629 static DEFINE_IDA(kmem_limited_groups);
630 int memcg_limited_groups_array_size;
631 
632 /*
633  * MIN_SIZE is different than 1, because we would like to avoid going through
634  * the alloc/free process all the time. In a small machine, 4 kmem-limited
635  * cgroups is a reasonable guess. In the future, it could be a parameter or
636  * tunable, but that is strictly not necessary.
637  *
638  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639  * this constant directly from cgroup, but it is understandable that this is
640  * better kept as an internal representation in cgroup.c. In any case, the
641  * css_id space is not getting any smaller, and we don't have to necessarily
642  * increase ours as well if it increases.
643  */
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
646 
647 /*
648  * A lot of the calls to the cache allocation functions are expected to be
649  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650  * conditional to this static branch, we'll have to allow modules that does
651  * kmem_cache_alloc and the such to see this symbol as well
652  */
653 struct static_key memcg_kmem_enabled_key;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key);
655 
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 	if (memcg_kmem_is_active(memcg)) {
659 		static_key_slow_dec(&memcg_kmem_enabled_key);
660 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
661 	}
662 	/*
663 	 * This check can't live in kmem destruction function,
664 	 * since the charges will outlive the cgroup
665 	 */
666 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 }
668 #else
669 static void disarm_kmem_keys(struct mem_cgroup *memcg)
670 {
671 }
672 #endif /* CONFIG_MEMCG_KMEM */
673 
674 static void disarm_static_keys(struct mem_cgroup *memcg)
675 {
676 	disarm_sock_keys(memcg);
677 	disarm_kmem_keys(memcg);
678 }
679 
680 static void drain_all_stock_async(struct mem_cgroup *memcg);
681 
682 static struct mem_cgroup_per_zone *
683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684 {
685 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
687 }
688 
689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690 {
691 	return &memcg->css;
692 }
693 
694 static struct mem_cgroup_per_zone *
695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696 {
697 	int nid = page_to_nid(page);
698 	int zid = page_zonenum(page);
699 
700 	return mem_cgroup_zoneinfo(memcg, nid, zid);
701 }
702 
703 static struct mem_cgroup_tree_per_zone *
704 soft_limit_tree_node_zone(int nid, int zid)
705 {
706 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707 }
708 
709 static struct mem_cgroup_tree_per_zone *
710 soft_limit_tree_from_page(struct page *page)
711 {
712 	int nid = page_to_nid(page);
713 	int zid = page_zonenum(page);
714 
715 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
716 }
717 
718 static void
719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720 				struct mem_cgroup_per_zone *mz,
721 				struct mem_cgroup_tree_per_zone *mctz,
722 				unsigned long long new_usage_in_excess)
723 {
724 	struct rb_node **p = &mctz->rb_root.rb_node;
725 	struct rb_node *parent = NULL;
726 	struct mem_cgroup_per_zone *mz_node;
727 
728 	if (mz->on_tree)
729 		return;
730 
731 	mz->usage_in_excess = new_usage_in_excess;
732 	if (!mz->usage_in_excess)
733 		return;
734 	while (*p) {
735 		parent = *p;
736 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 					tree_node);
738 		if (mz->usage_in_excess < mz_node->usage_in_excess)
739 			p = &(*p)->rb_left;
740 		/*
741 		 * We can't avoid mem cgroups that are over their soft
742 		 * limit by the same amount
743 		 */
744 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 			p = &(*p)->rb_right;
746 	}
747 	rb_link_node(&mz->tree_node, parent, p);
748 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 	mz->on_tree = true;
750 }
751 
752 static void
753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 				struct mem_cgroup_per_zone *mz,
755 				struct mem_cgroup_tree_per_zone *mctz)
756 {
757 	if (!mz->on_tree)
758 		return;
759 	rb_erase(&mz->tree_node, &mctz->rb_root);
760 	mz->on_tree = false;
761 }
762 
763 static void
764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 				struct mem_cgroup_per_zone *mz,
766 				struct mem_cgroup_tree_per_zone *mctz)
767 {
768 	spin_lock(&mctz->lock);
769 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 	spin_unlock(&mctz->lock);
771 }
772 
773 
774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
775 {
776 	unsigned long long excess;
777 	struct mem_cgroup_per_zone *mz;
778 	struct mem_cgroup_tree_per_zone *mctz;
779 	int nid = page_to_nid(page);
780 	int zid = page_zonenum(page);
781 	mctz = soft_limit_tree_from_page(page);
782 
783 	/*
784 	 * Necessary to update all ancestors when hierarchy is used.
785 	 * because their event counter is not touched.
786 	 */
787 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 		excess = res_counter_soft_limit_excess(&memcg->res);
790 		/*
791 		 * We have to update the tree if mz is on RB-tree or
792 		 * mem is over its softlimit.
793 		 */
794 		if (excess || mz->on_tree) {
795 			spin_lock(&mctz->lock);
796 			/* if on-tree, remove it */
797 			if (mz->on_tree)
798 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
799 			/*
800 			 * Insert again. mz->usage_in_excess will be updated.
801 			 * If excess is 0, no tree ops.
802 			 */
803 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 			spin_unlock(&mctz->lock);
805 		}
806 	}
807 }
808 
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
810 {
811 	int node, zone;
812 	struct mem_cgroup_per_zone *mz;
813 	struct mem_cgroup_tree_per_zone *mctz;
814 
815 	for_each_node(node) {
816 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
818 			mctz = soft_limit_tree_node_zone(node, zone);
819 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
820 		}
821 	}
822 }
823 
824 static struct mem_cgroup_per_zone *
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
826 {
827 	struct rb_node *rightmost = NULL;
828 	struct mem_cgroup_per_zone *mz;
829 
830 retry:
831 	mz = NULL;
832 	rightmost = rb_last(&mctz->rb_root);
833 	if (!rightmost)
834 		goto done;		/* Nothing to reclaim from */
835 
836 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
837 	/*
838 	 * Remove the node now but someone else can add it back,
839 	 * we will to add it back at the end of reclaim to its correct
840 	 * position in the tree.
841 	 */
842 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 		!css_tryget(&mz->memcg->css))
845 		goto retry;
846 done:
847 	return mz;
848 }
849 
850 static struct mem_cgroup_per_zone *
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
852 {
853 	struct mem_cgroup_per_zone *mz;
854 
855 	spin_lock(&mctz->lock);
856 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 	spin_unlock(&mctz->lock);
858 	return mz;
859 }
860 
861 /*
862  * Implementation Note: reading percpu statistics for memcg.
863  *
864  * Both of vmstat[] and percpu_counter has threshold and do periodic
865  * synchronization to implement "quick" read. There are trade-off between
866  * reading cost and precision of value. Then, we may have a chance to implement
867  * a periodic synchronizion of counter in memcg's counter.
868  *
869  * But this _read() function is used for user interface now. The user accounts
870  * memory usage by memory cgroup and he _always_ requires exact value because
871  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872  * have to visit all online cpus and make sum. So, for now, unnecessary
873  * synchronization is not implemented. (just implemented for cpu hotplug)
874  *
875  * If there are kernel internal actions which can make use of some not-exact
876  * value, and reading all cpu value can be performance bottleneck in some
877  * common workload, threashold and synchonization as vmstat[] should be
878  * implemented.
879  */
880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881 				 enum mem_cgroup_stat_index idx)
882 {
883 	long val = 0;
884 	int cpu;
885 
886 	get_online_cpus();
887 	for_each_online_cpu(cpu)
888 		val += per_cpu(memcg->stat->count[idx], cpu);
889 #ifdef CONFIG_HOTPLUG_CPU
890 	spin_lock(&memcg->pcp_counter_lock);
891 	val += memcg->nocpu_base.count[idx];
892 	spin_unlock(&memcg->pcp_counter_lock);
893 #endif
894 	put_online_cpus();
895 	return val;
896 }
897 
898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 					 bool charge)
900 {
901 	int val = (charge) ? 1 : -1;
902 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 }
904 
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 					    enum mem_cgroup_events_index idx)
907 {
908 	unsigned long val = 0;
909 	int cpu;
910 
911 	for_each_online_cpu(cpu)
912 		val += per_cpu(memcg->stat->events[idx], cpu);
913 #ifdef CONFIG_HOTPLUG_CPU
914 	spin_lock(&memcg->pcp_counter_lock);
915 	val += memcg->nocpu_base.events[idx];
916 	spin_unlock(&memcg->pcp_counter_lock);
917 #endif
918 	return val;
919 }
920 
921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922 					 struct page *page,
923 					 bool anon, int nr_pages)
924 {
925 	preempt_disable();
926 
927 	/*
928 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 	 * counted as CACHE even if it's on ANON LRU.
930 	 */
931 	if (anon)
932 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933 				nr_pages);
934 	else
935 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936 				nr_pages);
937 
938 	if (PageTransHuge(page))
939 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 				nr_pages);
941 
942 	/* pagein of a big page is an event. So, ignore page size */
943 	if (nr_pages > 0)
944 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945 	else {
946 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 		nr_pages = -nr_pages; /* for event */
948 	}
949 
950 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
951 
952 	preempt_enable();
953 }
954 
955 unsigned long
956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 
960 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 	return mz->lru_size[lru];
962 }
963 
964 static unsigned long
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966 			unsigned int lru_mask)
967 {
968 	struct mem_cgroup_per_zone *mz;
969 	enum lru_list lru;
970 	unsigned long ret = 0;
971 
972 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
973 
974 	for_each_lru(lru) {
975 		if (BIT(lru) & lru_mask)
976 			ret += mz->lru_size[lru];
977 	}
978 	return ret;
979 }
980 
981 static unsigned long
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 			int nid, unsigned int lru_mask)
984 {
985 	u64 total = 0;
986 	int zid;
987 
988 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 		total += mem_cgroup_zone_nr_lru_pages(memcg,
990 						nid, zid, lru_mask);
991 
992 	return total;
993 }
994 
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996 			unsigned int lru_mask)
997 {
998 	int nid;
999 	u64 total = 0;
1000 
1001 	for_each_node_state(nid, N_MEMORY)
1002 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003 	return total;
1004 }
1005 
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 				       enum mem_cgroup_events_target target)
1008 {
1009 	unsigned long val, next;
1010 
1011 	val = __this_cpu_read(memcg->stat->nr_page_events);
1012 	next = __this_cpu_read(memcg->stat->targets[target]);
1013 	/* from time_after() in jiffies.h */
1014 	if ((long)next - (long)val < 0) {
1015 		switch (target) {
1016 		case MEM_CGROUP_TARGET_THRESH:
1017 			next = val + THRESHOLDS_EVENTS_TARGET;
1018 			break;
1019 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 			next = val + SOFTLIMIT_EVENTS_TARGET;
1021 			break;
1022 		case MEM_CGROUP_TARGET_NUMAINFO:
1023 			next = val + NUMAINFO_EVENTS_TARGET;
1024 			break;
1025 		default:
1026 			break;
1027 		}
1028 		__this_cpu_write(memcg->stat->targets[target], next);
1029 		return true;
1030 	}
1031 	return false;
1032 }
1033 
1034 /*
1035  * Check events in order.
1036  *
1037  */
1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1039 {
1040 	preempt_disable();
1041 	/* threshold event is triggered in finer grain than soft limit */
1042 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 						MEM_CGROUP_TARGET_THRESH))) {
1044 		bool do_softlimit;
1045 		bool do_numainfo __maybe_unused;
1046 
1047 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 						MEM_CGROUP_TARGET_SOFTLIMIT);
1049 #if MAX_NUMNODES > 1
1050 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 						MEM_CGROUP_TARGET_NUMAINFO);
1052 #endif
1053 		preempt_enable();
1054 
1055 		mem_cgroup_threshold(memcg);
1056 		if (unlikely(do_softlimit))
1057 			mem_cgroup_update_tree(memcg, page);
1058 #if MAX_NUMNODES > 1
1059 		if (unlikely(do_numainfo))
1060 			atomic_inc(&memcg->numainfo_events);
1061 #endif
1062 	} else
1063 		preempt_enable();
1064 }
1065 
1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1067 {
1068 	return mem_cgroup_from_css(
1069 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1070 }
1071 
1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1073 {
1074 	/*
1075 	 * mm_update_next_owner() may clear mm->owner to NULL
1076 	 * if it races with swapoff, page migration, etc.
1077 	 * So this can be called with p == NULL.
1078 	 */
1079 	if (unlikely(!p))
1080 		return NULL;
1081 
1082 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1083 }
1084 
1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1086 {
1087 	struct mem_cgroup *memcg = NULL;
1088 
1089 	if (!mm)
1090 		return NULL;
1091 	/*
1092 	 * Because we have no locks, mm->owner's may be being moved to other
1093 	 * cgroup. We use css_tryget() here even if this looks
1094 	 * pessimistic (rather than adding locks here).
1095 	 */
1096 	rcu_read_lock();
1097 	do {
1098 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 		if (unlikely(!memcg))
1100 			break;
1101 	} while (!css_tryget(&memcg->css));
1102 	rcu_read_unlock();
1103 	return memcg;
1104 }
1105 
1106 /*
1107  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108  * ref. count) or NULL if the whole root's subtree has been visited.
1109  *
1110  * helper function to be used by mem_cgroup_iter
1111  */
1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 		struct mem_cgroup *last_visited)
1114 {
1115 	struct cgroup *prev_cgroup, *next_cgroup;
1116 
1117 	/*
1118 	 * Root is not visited by cgroup iterators so it needs an
1119 	 * explicit visit.
1120 	 */
1121 	if (!last_visited)
1122 		return root;
1123 
1124 	prev_cgroup = (last_visited == root) ? NULL
1125 		: last_visited->css.cgroup;
1126 skip_node:
1127 	next_cgroup = cgroup_next_descendant_pre(
1128 			prev_cgroup, root->css.cgroup);
1129 
1130 	/*
1131 	 * Even if we found a group we have to make sure it is
1132 	 * alive. css && !memcg means that the groups should be
1133 	 * skipped and we should continue the tree walk.
1134 	 * last_visited css is safe to use because it is
1135 	 * protected by css_get and the tree walk is rcu safe.
1136 	 */
1137 	if (next_cgroup) {
1138 		struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 				next_cgroup);
1140 		if (css_tryget(&mem->css))
1141 			return mem;
1142 		else {
1143 			prev_cgroup = next_cgroup;
1144 			goto skip_node;
1145 		}
1146 	}
1147 
1148 	return NULL;
1149 }
1150 
1151 /**
1152  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1153  * @root: hierarchy root
1154  * @prev: previously returned memcg, NULL on first invocation
1155  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1156  *
1157  * Returns references to children of the hierarchy below @root, or
1158  * @root itself, or %NULL after a full round-trip.
1159  *
1160  * Caller must pass the return value in @prev on subsequent
1161  * invocations for reference counting, or use mem_cgroup_iter_break()
1162  * to cancel a hierarchy walk before the round-trip is complete.
1163  *
1164  * Reclaimers can specify a zone and a priority level in @reclaim to
1165  * divide up the memcgs in the hierarchy among all concurrent
1166  * reclaimers operating on the same zone and priority.
1167  */
1168 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1169 				   struct mem_cgroup *prev,
1170 				   struct mem_cgroup_reclaim_cookie *reclaim)
1171 {
1172 	struct mem_cgroup *memcg = NULL;
1173 	struct mem_cgroup *last_visited = NULL;
1174 	unsigned long uninitialized_var(dead_count);
1175 
1176 	if (mem_cgroup_disabled())
1177 		return NULL;
1178 
1179 	if (!root)
1180 		root = root_mem_cgroup;
1181 
1182 	if (prev && !reclaim)
1183 		last_visited = prev;
1184 
1185 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1186 		if (prev)
1187 			goto out_css_put;
1188 		return root;
1189 	}
1190 
1191 	rcu_read_lock();
1192 	while (!memcg) {
1193 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1194 
1195 		if (reclaim) {
1196 			int nid = zone_to_nid(reclaim->zone);
1197 			int zid = zone_idx(reclaim->zone);
1198 			struct mem_cgroup_per_zone *mz;
1199 
1200 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1201 			iter = &mz->reclaim_iter[reclaim->priority];
1202 			if (prev && reclaim->generation != iter->generation) {
1203 				iter->last_visited = NULL;
1204 				goto out_unlock;
1205 			}
1206 
1207 			/*
1208 			 * If the dead_count mismatches, a destruction
1209 			 * has happened or is happening concurrently.
1210 			 * If the dead_count matches, a destruction
1211 			 * might still happen concurrently, but since
1212 			 * we checked under RCU, that destruction
1213 			 * won't free the object until we release the
1214 			 * RCU reader lock.  Thus, the dead_count
1215 			 * check verifies the pointer is still valid,
1216 			 * css_tryget() verifies the cgroup pointed to
1217 			 * is alive.
1218 			 */
1219 			dead_count = atomic_read(&root->dead_count);
1220 			if (dead_count == iter->last_dead_count) {
1221 				smp_rmb();
1222 				last_visited = iter->last_visited;
1223 				if (last_visited &&
1224 				    !css_tryget(&last_visited->css))
1225 					last_visited = NULL;
1226 			}
1227 		}
1228 
1229 		memcg = __mem_cgroup_iter_next(root, last_visited);
1230 
1231 		if (reclaim) {
1232 			if (last_visited)
1233 				css_put(&last_visited->css);
1234 
1235 			iter->last_visited = memcg;
1236 			smp_wmb();
1237 			iter->last_dead_count = dead_count;
1238 
1239 			if (!memcg)
1240 				iter->generation++;
1241 			else if (!prev && memcg)
1242 				reclaim->generation = iter->generation;
1243 		}
1244 
1245 		if (prev && !memcg)
1246 			goto out_unlock;
1247 	}
1248 out_unlock:
1249 	rcu_read_unlock();
1250 out_css_put:
1251 	if (prev && prev != root)
1252 		css_put(&prev->css);
1253 
1254 	return memcg;
1255 }
1256 
1257 /**
1258  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259  * @root: hierarchy root
1260  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261  */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 			   struct mem_cgroup *prev)
1264 {
1265 	if (!root)
1266 		root = root_mem_cgroup;
1267 	if (prev && prev != root)
1268 		css_put(&prev->css);
1269 }
1270 
1271 /*
1272  * Iteration constructs for visiting all cgroups (under a tree).  If
1273  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274  * be used for reference counting.
1275  */
1276 #define for_each_mem_cgroup_tree(iter, root)		\
1277 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1278 	     iter != NULL;				\
1279 	     iter = mem_cgroup_iter(root, iter, NULL))
1280 
1281 #define for_each_mem_cgroup(iter)			\
1282 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1283 	     iter != NULL;				\
1284 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1285 
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287 {
1288 	struct mem_cgroup *memcg;
1289 
1290 	rcu_read_lock();
1291 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 	if (unlikely(!memcg))
1293 		goto out;
1294 
1295 	switch (idx) {
1296 	case PGFAULT:
1297 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 		break;
1299 	case PGMAJFAULT:
1300 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 		break;
1302 	default:
1303 		BUG();
1304 	}
1305 out:
1306 	rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309 
1310 /**
1311  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312  * @zone: zone of the wanted lruvec
1313  * @memcg: memcg of the wanted lruvec
1314  *
1315  * Returns the lru list vector holding pages for the given @zone and
1316  * @mem.  This can be the global zone lruvec, if the memory controller
1317  * is disabled.
1318  */
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 				      struct mem_cgroup *memcg)
1321 {
1322 	struct mem_cgroup_per_zone *mz;
1323 	struct lruvec *lruvec;
1324 
1325 	if (mem_cgroup_disabled()) {
1326 		lruvec = &zone->lruvec;
1327 		goto out;
1328 	}
1329 
1330 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1331 	lruvec = &mz->lruvec;
1332 out:
1333 	/*
1334 	 * Since a node can be onlined after the mem_cgroup was created,
1335 	 * we have to be prepared to initialize lruvec->zone here;
1336 	 * and if offlined then reonlined, we need to reinitialize it.
1337 	 */
1338 	if (unlikely(lruvec->zone != zone))
1339 		lruvec->zone = zone;
1340 	return lruvec;
1341 }
1342 
1343 /*
1344  * Following LRU functions are allowed to be used without PCG_LOCK.
1345  * Operations are called by routine of global LRU independently from memcg.
1346  * What we have to take care of here is validness of pc->mem_cgroup.
1347  *
1348  * Changes to pc->mem_cgroup happens when
1349  * 1. charge
1350  * 2. moving account
1351  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1352  * It is added to LRU before charge.
1353  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1354  * When moving account, the page is not on LRU. It's isolated.
1355  */
1356 
1357 /**
1358  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1359  * @page: the page
1360  * @zone: zone of the page
1361  */
1362 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1363 {
1364 	struct mem_cgroup_per_zone *mz;
1365 	struct mem_cgroup *memcg;
1366 	struct page_cgroup *pc;
1367 	struct lruvec *lruvec;
1368 
1369 	if (mem_cgroup_disabled()) {
1370 		lruvec = &zone->lruvec;
1371 		goto out;
1372 	}
1373 
1374 	pc = lookup_page_cgroup(page);
1375 	memcg = pc->mem_cgroup;
1376 
1377 	/*
1378 	 * Surreptitiously switch any uncharged offlist page to root:
1379 	 * an uncharged page off lru does nothing to secure
1380 	 * its former mem_cgroup from sudden removal.
1381 	 *
1382 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 	 * under page_cgroup lock: between them, they make all uses
1384 	 * of pc->mem_cgroup safe.
1385 	 */
1386 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1387 		pc->mem_cgroup = memcg = root_mem_cgroup;
1388 
1389 	mz = page_cgroup_zoneinfo(memcg, page);
1390 	lruvec = &mz->lruvec;
1391 out:
1392 	/*
1393 	 * Since a node can be onlined after the mem_cgroup was created,
1394 	 * we have to be prepared to initialize lruvec->zone here;
1395 	 * and if offlined then reonlined, we need to reinitialize it.
1396 	 */
1397 	if (unlikely(lruvec->zone != zone))
1398 		lruvec->zone = zone;
1399 	return lruvec;
1400 }
1401 
1402 /**
1403  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404  * @lruvec: mem_cgroup per zone lru vector
1405  * @lru: index of lru list the page is sitting on
1406  * @nr_pages: positive when adding or negative when removing
1407  *
1408  * This function must be called when a page is added to or removed from an
1409  * lru list.
1410  */
1411 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1412 				int nr_pages)
1413 {
1414 	struct mem_cgroup_per_zone *mz;
1415 	unsigned long *lru_size;
1416 
1417 	if (mem_cgroup_disabled())
1418 		return;
1419 
1420 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1421 	lru_size = mz->lru_size + lru;
1422 	*lru_size += nr_pages;
1423 	VM_BUG_ON((long)(*lru_size) < 0);
1424 }
1425 
1426 /*
1427  * Checks whether given mem is same or in the root_mem_cgroup's
1428  * hierarchy subtree
1429  */
1430 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1431 				  struct mem_cgroup *memcg)
1432 {
1433 	if (root_memcg == memcg)
1434 		return true;
1435 	if (!root_memcg->use_hierarchy || !memcg)
1436 		return false;
1437 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1438 }
1439 
1440 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 				       struct mem_cgroup *memcg)
1442 {
1443 	bool ret;
1444 
1445 	rcu_read_lock();
1446 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1447 	rcu_read_unlock();
1448 	return ret;
1449 }
1450 
1451 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1452 {
1453 	int ret;
1454 	struct mem_cgroup *curr = NULL;
1455 	struct task_struct *p;
1456 
1457 	p = find_lock_task_mm(task);
1458 	if (p) {
1459 		curr = try_get_mem_cgroup_from_mm(p->mm);
1460 		task_unlock(p);
1461 	} else {
1462 		/*
1463 		 * All threads may have already detached their mm's, but the oom
1464 		 * killer still needs to detect if they have already been oom
1465 		 * killed to prevent needlessly killing additional tasks.
1466 		 */
1467 		task_lock(task);
1468 		curr = mem_cgroup_from_task(task);
1469 		if (curr)
1470 			css_get(&curr->css);
1471 		task_unlock(task);
1472 	}
1473 	if (!curr)
1474 		return 0;
1475 	/*
1476 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1477 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1478 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1479 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1480 	 */
1481 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1482 	css_put(&curr->css);
1483 	return ret;
1484 }
1485 
1486 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1487 {
1488 	unsigned long inactive_ratio;
1489 	unsigned long inactive;
1490 	unsigned long active;
1491 	unsigned long gb;
1492 
1493 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1494 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1495 
1496 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1497 	if (gb)
1498 		inactive_ratio = int_sqrt(10 * gb);
1499 	else
1500 		inactive_ratio = 1;
1501 
1502 	return inactive * inactive_ratio < active;
1503 }
1504 
1505 #define mem_cgroup_from_res_counter(counter, member)	\
1506 	container_of(counter, struct mem_cgroup, member)
1507 
1508 /**
1509  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1510  * @memcg: the memory cgroup
1511  *
1512  * Returns the maximum amount of memory @mem can be charged with, in
1513  * pages.
1514  */
1515 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1516 {
1517 	unsigned long long margin;
1518 
1519 	margin = res_counter_margin(&memcg->res);
1520 	if (do_swap_account)
1521 		margin = min(margin, res_counter_margin(&memcg->memsw));
1522 	return margin >> PAGE_SHIFT;
1523 }
1524 
1525 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1526 {
1527 	struct cgroup *cgrp = memcg->css.cgroup;
1528 
1529 	/* root ? */
1530 	if (cgrp->parent == NULL)
1531 		return vm_swappiness;
1532 
1533 	return memcg->swappiness;
1534 }
1535 
1536 /*
1537  * memcg->moving_account is used for checking possibility that some thread is
1538  * calling move_account(). When a thread on CPU-A starts moving pages under
1539  * a memcg, other threads should check memcg->moving_account under
1540  * rcu_read_lock(), like this:
1541  *
1542  *         CPU-A                                    CPU-B
1543  *                                              rcu_read_lock()
1544  *         memcg->moving_account+1              if (memcg->mocing_account)
1545  *                                                   take heavy locks.
1546  *         synchronize_rcu()                    update something.
1547  *                                              rcu_read_unlock()
1548  *         start move here.
1549  */
1550 
1551 /* for quick checking without looking up memcg */
1552 atomic_t memcg_moving __read_mostly;
1553 
1554 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1555 {
1556 	atomic_inc(&memcg_moving);
1557 	atomic_inc(&memcg->moving_account);
1558 	synchronize_rcu();
1559 }
1560 
1561 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1562 {
1563 	/*
1564 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1565 	 * We check NULL in callee rather than caller.
1566 	 */
1567 	if (memcg) {
1568 		atomic_dec(&memcg_moving);
1569 		atomic_dec(&memcg->moving_account);
1570 	}
1571 }
1572 
1573 /*
1574  * 2 routines for checking "mem" is under move_account() or not.
1575  *
1576  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1577  *			  is used for avoiding races in accounting.  If true,
1578  *			  pc->mem_cgroup may be overwritten.
1579  *
1580  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1581  *			  under hierarchy of moving cgroups. This is for
1582  *			  waiting at hith-memory prressure caused by "move".
1583  */
1584 
1585 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1586 {
1587 	VM_BUG_ON(!rcu_read_lock_held());
1588 	return atomic_read(&memcg->moving_account) > 0;
1589 }
1590 
1591 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1592 {
1593 	struct mem_cgroup *from;
1594 	struct mem_cgroup *to;
1595 	bool ret = false;
1596 	/*
1597 	 * Unlike task_move routines, we access mc.to, mc.from not under
1598 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1599 	 */
1600 	spin_lock(&mc.lock);
1601 	from = mc.from;
1602 	to = mc.to;
1603 	if (!from)
1604 		goto unlock;
1605 
1606 	ret = mem_cgroup_same_or_subtree(memcg, from)
1607 		|| mem_cgroup_same_or_subtree(memcg, to);
1608 unlock:
1609 	spin_unlock(&mc.lock);
1610 	return ret;
1611 }
1612 
1613 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1614 {
1615 	if (mc.moving_task && current != mc.moving_task) {
1616 		if (mem_cgroup_under_move(memcg)) {
1617 			DEFINE_WAIT(wait);
1618 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1619 			/* moving charge context might have finished. */
1620 			if (mc.moving_task)
1621 				schedule();
1622 			finish_wait(&mc.waitq, &wait);
1623 			return true;
1624 		}
1625 	}
1626 	return false;
1627 }
1628 
1629 /*
1630  * Take this lock when
1631  * - a code tries to modify page's memcg while it's USED.
1632  * - a code tries to modify page state accounting in a memcg.
1633  * see mem_cgroup_stolen(), too.
1634  */
1635 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1636 				  unsigned long *flags)
1637 {
1638 	spin_lock_irqsave(&memcg->move_lock, *flags);
1639 }
1640 
1641 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1642 				unsigned long *flags)
1643 {
1644 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1645 }
1646 
1647 #define K(x) ((x) << (PAGE_SHIFT-10))
1648 /**
1649  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1650  * @memcg: The memory cgroup that went over limit
1651  * @p: Task that is going to be killed
1652  *
1653  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1654  * enabled
1655  */
1656 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1657 {
1658 	struct cgroup *task_cgrp;
1659 	struct cgroup *mem_cgrp;
1660 	/*
1661 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1662 	 * on the assumption that OOM is serialized for memory controller.
1663 	 * If this assumption is broken, revisit this code.
1664 	 */
1665 	static char memcg_name[PATH_MAX];
1666 	int ret;
1667 	struct mem_cgroup *iter;
1668 	unsigned int i;
1669 
1670 	if (!p)
1671 		return;
1672 
1673 	rcu_read_lock();
1674 
1675 	mem_cgrp = memcg->css.cgroup;
1676 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1677 
1678 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1679 	if (ret < 0) {
1680 		/*
1681 		 * Unfortunately, we are unable to convert to a useful name
1682 		 * But we'll still print out the usage information
1683 		 */
1684 		rcu_read_unlock();
1685 		goto done;
1686 	}
1687 	rcu_read_unlock();
1688 
1689 	pr_info("Task in %s killed", memcg_name);
1690 
1691 	rcu_read_lock();
1692 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1693 	if (ret < 0) {
1694 		rcu_read_unlock();
1695 		goto done;
1696 	}
1697 	rcu_read_unlock();
1698 
1699 	/*
1700 	 * Continues from above, so we don't need an KERN_ level
1701 	 */
1702 	pr_cont(" as a result of limit of %s\n", memcg_name);
1703 done:
1704 
1705 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1706 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1707 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1708 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1709 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1710 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1711 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1712 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1713 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1714 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1715 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1716 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1717 
1718 	for_each_mem_cgroup_tree(iter, memcg) {
1719 		pr_info("Memory cgroup stats");
1720 
1721 		rcu_read_lock();
1722 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1723 		if (!ret)
1724 			pr_cont(" for %s", memcg_name);
1725 		rcu_read_unlock();
1726 		pr_cont(":");
1727 
1728 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1729 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1730 				continue;
1731 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1732 				K(mem_cgroup_read_stat(iter, i)));
1733 		}
1734 
1735 		for (i = 0; i < NR_LRU_LISTS; i++)
1736 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1737 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1738 
1739 		pr_cont("\n");
1740 	}
1741 }
1742 
1743 /*
1744  * This function returns the number of memcg under hierarchy tree. Returns
1745  * 1(self count) if no children.
1746  */
1747 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1748 {
1749 	int num = 0;
1750 	struct mem_cgroup *iter;
1751 
1752 	for_each_mem_cgroup_tree(iter, memcg)
1753 		num++;
1754 	return num;
1755 }
1756 
1757 /*
1758  * Return the memory (and swap, if configured) limit for a memcg.
1759  */
1760 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1761 {
1762 	u64 limit;
1763 
1764 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1765 
1766 	/*
1767 	 * Do not consider swap space if we cannot swap due to swappiness
1768 	 */
1769 	if (mem_cgroup_swappiness(memcg)) {
1770 		u64 memsw;
1771 
1772 		limit += total_swap_pages << PAGE_SHIFT;
1773 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1774 
1775 		/*
1776 		 * If memsw is finite and limits the amount of swap space
1777 		 * available to this memcg, return that limit.
1778 		 */
1779 		limit = min(limit, memsw);
1780 	}
1781 
1782 	return limit;
1783 }
1784 
1785 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1786 				     int order)
1787 {
1788 	struct mem_cgroup *iter;
1789 	unsigned long chosen_points = 0;
1790 	unsigned long totalpages;
1791 	unsigned int points = 0;
1792 	struct task_struct *chosen = NULL;
1793 
1794 	/*
1795 	 * If current has a pending SIGKILL or is exiting, then automatically
1796 	 * select it.  The goal is to allow it to allocate so that it may
1797 	 * quickly exit and free its memory.
1798 	 */
1799 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1800 		set_thread_flag(TIF_MEMDIE);
1801 		return;
1802 	}
1803 
1804 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1805 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1806 	for_each_mem_cgroup_tree(iter, memcg) {
1807 		struct cgroup *cgroup = iter->css.cgroup;
1808 		struct cgroup_iter it;
1809 		struct task_struct *task;
1810 
1811 		cgroup_iter_start(cgroup, &it);
1812 		while ((task = cgroup_iter_next(cgroup, &it))) {
1813 			switch (oom_scan_process_thread(task, totalpages, NULL,
1814 							false)) {
1815 			case OOM_SCAN_SELECT:
1816 				if (chosen)
1817 					put_task_struct(chosen);
1818 				chosen = task;
1819 				chosen_points = ULONG_MAX;
1820 				get_task_struct(chosen);
1821 				/* fall through */
1822 			case OOM_SCAN_CONTINUE:
1823 				continue;
1824 			case OOM_SCAN_ABORT:
1825 				cgroup_iter_end(cgroup, &it);
1826 				mem_cgroup_iter_break(memcg, iter);
1827 				if (chosen)
1828 					put_task_struct(chosen);
1829 				return;
1830 			case OOM_SCAN_OK:
1831 				break;
1832 			};
1833 			points = oom_badness(task, memcg, NULL, totalpages);
1834 			if (points > chosen_points) {
1835 				if (chosen)
1836 					put_task_struct(chosen);
1837 				chosen = task;
1838 				chosen_points = points;
1839 				get_task_struct(chosen);
1840 			}
1841 		}
1842 		cgroup_iter_end(cgroup, &it);
1843 	}
1844 
1845 	if (!chosen)
1846 		return;
1847 	points = chosen_points * 1000 / totalpages;
1848 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1849 			 NULL, "Memory cgroup out of memory");
1850 }
1851 
1852 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1853 					gfp_t gfp_mask,
1854 					unsigned long flags)
1855 {
1856 	unsigned long total = 0;
1857 	bool noswap = false;
1858 	int loop;
1859 
1860 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1861 		noswap = true;
1862 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1863 		noswap = true;
1864 
1865 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1866 		if (loop)
1867 			drain_all_stock_async(memcg);
1868 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1869 		/*
1870 		 * Allow limit shrinkers, which are triggered directly
1871 		 * by userspace, to catch signals and stop reclaim
1872 		 * after minimal progress, regardless of the margin.
1873 		 */
1874 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1875 			break;
1876 		if (mem_cgroup_margin(memcg))
1877 			break;
1878 		/*
1879 		 * If nothing was reclaimed after two attempts, there
1880 		 * may be no reclaimable pages in this hierarchy.
1881 		 */
1882 		if (loop && !total)
1883 			break;
1884 	}
1885 	return total;
1886 }
1887 
1888 /**
1889  * test_mem_cgroup_node_reclaimable
1890  * @memcg: the target memcg
1891  * @nid: the node ID to be checked.
1892  * @noswap : specify true here if the user wants flle only information.
1893  *
1894  * This function returns whether the specified memcg contains any
1895  * reclaimable pages on a node. Returns true if there are any reclaimable
1896  * pages in the node.
1897  */
1898 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1899 		int nid, bool noswap)
1900 {
1901 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1902 		return true;
1903 	if (noswap || !total_swap_pages)
1904 		return false;
1905 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1906 		return true;
1907 	return false;
1908 
1909 }
1910 #if MAX_NUMNODES > 1
1911 
1912 /*
1913  * Always updating the nodemask is not very good - even if we have an empty
1914  * list or the wrong list here, we can start from some node and traverse all
1915  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1916  *
1917  */
1918 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1919 {
1920 	int nid;
1921 	/*
1922 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1923 	 * pagein/pageout changes since the last update.
1924 	 */
1925 	if (!atomic_read(&memcg->numainfo_events))
1926 		return;
1927 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1928 		return;
1929 
1930 	/* make a nodemask where this memcg uses memory from */
1931 	memcg->scan_nodes = node_states[N_MEMORY];
1932 
1933 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1934 
1935 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1936 			node_clear(nid, memcg->scan_nodes);
1937 	}
1938 
1939 	atomic_set(&memcg->numainfo_events, 0);
1940 	atomic_set(&memcg->numainfo_updating, 0);
1941 }
1942 
1943 /*
1944  * Selecting a node where we start reclaim from. Because what we need is just
1945  * reducing usage counter, start from anywhere is O,K. Considering
1946  * memory reclaim from current node, there are pros. and cons.
1947  *
1948  * Freeing memory from current node means freeing memory from a node which
1949  * we'll use or we've used. So, it may make LRU bad. And if several threads
1950  * hit limits, it will see a contention on a node. But freeing from remote
1951  * node means more costs for memory reclaim because of memory latency.
1952  *
1953  * Now, we use round-robin. Better algorithm is welcomed.
1954  */
1955 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1956 {
1957 	int node;
1958 
1959 	mem_cgroup_may_update_nodemask(memcg);
1960 	node = memcg->last_scanned_node;
1961 
1962 	node = next_node(node, memcg->scan_nodes);
1963 	if (node == MAX_NUMNODES)
1964 		node = first_node(memcg->scan_nodes);
1965 	/*
1966 	 * We call this when we hit limit, not when pages are added to LRU.
1967 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1968 	 * memcg is too small and all pages are not on LRU. In that case,
1969 	 * we use curret node.
1970 	 */
1971 	if (unlikely(node == MAX_NUMNODES))
1972 		node = numa_node_id();
1973 
1974 	memcg->last_scanned_node = node;
1975 	return node;
1976 }
1977 
1978 /*
1979  * Check all nodes whether it contains reclaimable pages or not.
1980  * For quick scan, we make use of scan_nodes. This will allow us to skip
1981  * unused nodes. But scan_nodes is lazily updated and may not cotain
1982  * enough new information. We need to do double check.
1983  */
1984 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1985 {
1986 	int nid;
1987 
1988 	/*
1989 	 * quick check...making use of scan_node.
1990 	 * We can skip unused nodes.
1991 	 */
1992 	if (!nodes_empty(memcg->scan_nodes)) {
1993 		for (nid = first_node(memcg->scan_nodes);
1994 		     nid < MAX_NUMNODES;
1995 		     nid = next_node(nid, memcg->scan_nodes)) {
1996 
1997 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1998 				return true;
1999 		}
2000 	}
2001 	/*
2002 	 * Check rest of nodes.
2003 	 */
2004 	for_each_node_state(nid, N_MEMORY) {
2005 		if (node_isset(nid, memcg->scan_nodes))
2006 			continue;
2007 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2008 			return true;
2009 	}
2010 	return false;
2011 }
2012 
2013 #else
2014 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2015 {
2016 	return 0;
2017 }
2018 
2019 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2020 {
2021 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2022 }
2023 #endif
2024 
2025 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2026 				   struct zone *zone,
2027 				   gfp_t gfp_mask,
2028 				   unsigned long *total_scanned)
2029 {
2030 	struct mem_cgroup *victim = NULL;
2031 	int total = 0;
2032 	int loop = 0;
2033 	unsigned long excess;
2034 	unsigned long nr_scanned;
2035 	struct mem_cgroup_reclaim_cookie reclaim = {
2036 		.zone = zone,
2037 		.priority = 0,
2038 	};
2039 
2040 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2041 
2042 	while (1) {
2043 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2044 		if (!victim) {
2045 			loop++;
2046 			if (loop >= 2) {
2047 				/*
2048 				 * If we have not been able to reclaim
2049 				 * anything, it might because there are
2050 				 * no reclaimable pages under this hierarchy
2051 				 */
2052 				if (!total)
2053 					break;
2054 				/*
2055 				 * We want to do more targeted reclaim.
2056 				 * excess >> 2 is not to excessive so as to
2057 				 * reclaim too much, nor too less that we keep
2058 				 * coming back to reclaim from this cgroup
2059 				 */
2060 				if (total >= (excess >> 2) ||
2061 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2062 					break;
2063 			}
2064 			continue;
2065 		}
2066 		if (!mem_cgroup_reclaimable(victim, false))
2067 			continue;
2068 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2069 						     zone, &nr_scanned);
2070 		*total_scanned += nr_scanned;
2071 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2072 			break;
2073 	}
2074 	mem_cgroup_iter_break(root_memcg, victim);
2075 	return total;
2076 }
2077 
2078 /*
2079  * Check OOM-Killer is already running under our hierarchy.
2080  * If someone is running, return false.
2081  * Has to be called with memcg_oom_lock
2082  */
2083 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2084 {
2085 	struct mem_cgroup *iter, *failed = NULL;
2086 
2087 	for_each_mem_cgroup_tree(iter, memcg) {
2088 		if (iter->oom_lock) {
2089 			/*
2090 			 * this subtree of our hierarchy is already locked
2091 			 * so we cannot give a lock.
2092 			 */
2093 			failed = iter;
2094 			mem_cgroup_iter_break(memcg, iter);
2095 			break;
2096 		} else
2097 			iter->oom_lock = true;
2098 	}
2099 
2100 	if (!failed)
2101 		return true;
2102 
2103 	/*
2104 	 * OK, we failed to lock the whole subtree so we have to clean up
2105 	 * what we set up to the failing subtree
2106 	 */
2107 	for_each_mem_cgroup_tree(iter, memcg) {
2108 		if (iter == failed) {
2109 			mem_cgroup_iter_break(memcg, iter);
2110 			break;
2111 		}
2112 		iter->oom_lock = false;
2113 	}
2114 	return false;
2115 }
2116 
2117 /*
2118  * Has to be called with memcg_oom_lock
2119  */
2120 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2121 {
2122 	struct mem_cgroup *iter;
2123 
2124 	for_each_mem_cgroup_tree(iter, memcg)
2125 		iter->oom_lock = false;
2126 	return 0;
2127 }
2128 
2129 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2130 {
2131 	struct mem_cgroup *iter;
2132 
2133 	for_each_mem_cgroup_tree(iter, memcg)
2134 		atomic_inc(&iter->under_oom);
2135 }
2136 
2137 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2138 {
2139 	struct mem_cgroup *iter;
2140 
2141 	/*
2142 	 * When a new child is created while the hierarchy is under oom,
2143 	 * mem_cgroup_oom_lock() may not be called. We have to use
2144 	 * atomic_add_unless() here.
2145 	 */
2146 	for_each_mem_cgroup_tree(iter, memcg)
2147 		atomic_add_unless(&iter->under_oom, -1, 0);
2148 }
2149 
2150 static DEFINE_SPINLOCK(memcg_oom_lock);
2151 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2152 
2153 struct oom_wait_info {
2154 	struct mem_cgroup *memcg;
2155 	wait_queue_t	wait;
2156 };
2157 
2158 static int memcg_oom_wake_function(wait_queue_t *wait,
2159 	unsigned mode, int sync, void *arg)
2160 {
2161 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2162 	struct mem_cgroup *oom_wait_memcg;
2163 	struct oom_wait_info *oom_wait_info;
2164 
2165 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2166 	oom_wait_memcg = oom_wait_info->memcg;
2167 
2168 	/*
2169 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2170 	 * Then we can use css_is_ancestor without taking care of RCU.
2171 	 */
2172 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2173 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2174 		return 0;
2175 	return autoremove_wake_function(wait, mode, sync, arg);
2176 }
2177 
2178 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2179 {
2180 	/* for filtering, pass "memcg" as argument. */
2181 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2182 }
2183 
2184 static void memcg_oom_recover(struct mem_cgroup *memcg)
2185 {
2186 	if (memcg && atomic_read(&memcg->under_oom))
2187 		memcg_wakeup_oom(memcg);
2188 }
2189 
2190 /*
2191  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2192  */
2193 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2194 				  int order)
2195 {
2196 	struct oom_wait_info owait;
2197 	bool locked, need_to_kill;
2198 
2199 	owait.memcg = memcg;
2200 	owait.wait.flags = 0;
2201 	owait.wait.func = memcg_oom_wake_function;
2202 	owait.wait.private = current;
2203 	INIT_LIST_HEAD(&owait.wait.task_list);
2204 	need_to_kill = true;
2205 	mem_cgroup_mark_under_oom(memcg);
2206 
2207 	/* At first, try to OOM lock hierarchy under memcg.*/
2208 	spin_lock(&memcg_oom_lock);
2209 	locked = mem_cgroup_oom_lock(memcg);
2210 	/*
2211 	 * Even if signal_pending(), we can't quit charge() loop without
2212 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2213 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2214 	 */
2215 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2216 	if (!locked || memcg->oom_kill_disable)
2217 		need_to_kill = false;
2218 	if (locked)
2219 		mem_cgroup_oom_notify(memcg);
2220 	spin_unlock(&memcg_oom_lock);
2221 
2222 	if (need_to_kill) {
2223 		finish_wait(&memcg_oom_waitq, &owait.wait);
2224 		mem_cgroup_out_of_memory(memcg, mask, order);
2225 	} else {
2226 		schedule();
2227 		finish_wait(&memcg_oom_waitq, &owait.wait);
2228 	}
2229 	spin_lock(&memcg_oom_lock);
2230 	if (locked)
2231 		mem_cgroup_oom_unlock(memcg);
2232 	memcg_wakeup_oom(memcg);
2233 	spin_unlock(&memcg_oom_lock);
2234 
2235 	mem_cgroup_unmark_under_oom(memcg);
2236 
2237 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2238 		return false;
2239 	/* Give chance to dying process */
2240 	schedule_timeout_uninterruptible(1);
2241 	return true;
2242 }
2243 
2244 /*
2245  * Currently used to update mapped file statistics, but the routine can be
2246  * generalized to update other statistics as well.
2247  *
2248  * Notes: Race condition
2249  *
2250  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2251  * it tends to be costly. But considering some conditions, we doesn't need
2252  * to do so _always_.
2253  *
2254  * Considering "charge", lock_page_cgroup() is not required because all
2255  * file-stat operations happen after a page is attached to radix-tree. There
2256  * are no race with "charge".
2257  *
2258  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2259  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2260  * if there are race with "uncharge". Statistics itself is properly handled
2261  * by flags.
2262  *
2263  * Considering "move", this is an only case we see a race. To make the race
2264  * small, we check mm->moving_account and detect there are possibility of race
2265  * If there is, we take a lock.
2266  */
2267 
2268 void __mem_cgroup_begin_update_page_stat(struct page *page,
2269 				bool *locked, unsigned long *flags)
2270 {
2271 	struct mem_cgroup *memcg;
2272 	struct page_cgroup *pc;
2273 
2274 	pc = lookup_page_cgroup(page);
2275 again:
2276 	memcg = pc->mem_cgroup;
2277 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2278 		return;
2279 	/*
2280 	 * If this memory cgroup is not under account moving, we don't
2281 	 * need to take move_lock_mem_cgroup(). Because we already hold
2282 	 * rcu_read_lock(), any calls to move_account will be delayed until
2283 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2284 	 */
2285 	if (!mem_cgroup_stolen(memcg))
2286 		return;
2287 
2288 	move_lock_mem_cgroup(memcg, flags);
2289 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2290 		move_unlock_mem_cgroup(memcg, flags);
2291 		goto again;
2292 	}
2293 	*locked = true;
2294 }
2295 
2296 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2297 {
2298 	struct page_cgroup *pc = lookup_page_cgroup(page);
2299 
2300 	/*
2301 	 * It's guaranteed that pc->mem_cgroup never changes while
2302 	 * lock is held because a routine modifies pc->mem_cgroup
2303 	 * should take move_lock_mem_cgroup().
2304 	 */
2305 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2306 }
2307 
2308 void mem_cgroup_update_page_stat(struct page *page,
2309 				 enum mem_cgroup_page_stat_item idx, int val)
2310 {
2311 	struct mem_cgroup *memcg;
2312 	struct page_cgroup *pc = lookup_page_cgroup(page);
2313 	unsigned long uninitialized_var(flags);
2314 
2315 	if (mem_cgroup_disabled())
2316 		return;
2317 
2318 	memcg = pc->mem_cgroup;
2319 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320 		return;
2321 
2322 	switch (idx) {
2323 	case MEMCG_NR_FILE_MAPPED:
2324 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2325 		break;
2326 	default:
2327 		BUG();
2328 	}
2329 
2330 	this_cpu_add(memcg->stat->count[idx], val);
2331 }
2332 
2333 /*
2334  * size of first charge trial. "32" comes from vmscan.c's magic value.
2335  * TODO: maybe necessary to use big numbers in big irons.
2336  */
2337 #define CHARGE_BATCH	32U
2338 struct memcg_stock_pcp {
2339 	struct mem_cgroup *cached; /* this never be root cgroup */
2340 	unsigned int nr_pages;
2341 	struct work_struct work;
2342 	unsigned long flags;
2343 #define FLUSHING_CACHED_CHARGE	0
2344 };
2345 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2346 static DEFINE_MUTEX(percpu_charge_mutex);
2347 
2348 /**
2349  * consume_stock: Try to consume stocked charge on this cpu.
2350  * @memcg: memcg to consume from.
2351  * @nr_pages: how many pages to charge.
2352  *
2353  * The charges will only happen if @memcg matches the current cpu's memcg
2354  * stock, and at least @nr_pages are available in that stock.  Failure to
2355  * service an allocation will refill the stock.
2356  *
2357  * returns true if successful, false otherwise.
2358  */
2359 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2360 {
2361 	struct memcg_stock_pcp *stock;
2362 	bool ret = true;
2363 
2364 	if (nr_pages > CHARGE_BATCH)
2365 		return false;
2366 
2367 	stock = &get_cpu_var(memcg_stock);
2368 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2369 		stock->nr_pages -= nr_pages;
2370 	else /* need to call res_counter_charge */
2371 		ret = false;
2372 	put_cpu_var(memcg_stock);
2373 	return ret;
2374 }
2375 
2376 /*
2377  * Returns stocks cached in percpu to res_counter and reset cached information.
2378  */
2379 static void drain_stock(struct memcg_stock_pcp *stock)
2380 {
2381 	struct mem_cgroup *old = stock->cached;
2382 
2383 	if (stock->nr_pages) {
2384 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2385 
2386 		res_counter_uncharge(&old->res, bytes);
2387 		if (do_swap_account)
2388 			res_counter_uncharge(&old->memsw, bytes);
2389 		stock->nr_pages = 0;
2390 	}
2391 	stock->cached = NULL;
2392 }
2393 
2394 /*
2395  * This must be called under preempt disabled or must be called by
2396  * a thread which is pinned to local cpu.
2397  */
2398 static void drain_local_stock(struct work_struct *dummy)
2399 {
2400 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2401 	drain_stock(stock);
2402 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2403 }
2404 
2405 static void __init memcg_stock_init(void)
2406 {
2407 	int cpu;
2408 
2409 	for_each_possible_cpu(cpu) {
2410 		struct memcg_stock_pcp *stock =
2411 					&per_cpu(memcg_stock, cpu);
2412 		INIT_WORK(&stock->work, drain_local_stock);
2413 	}
2414 }
2415 
2416 /*
2417  * Cache charges(val) which is from res_counter, to local per_cpu area.
2418  * This will be consumed by consume_stock() function, later.
2419  */
2420 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2421 {
2422 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2423 
2424 	if (stock->cached != memcg) { /* reset if necessary */
2425 		drain_stock(stock);
2426 		stock->cached = memcg;
2427 	}
2428 	stock->nr_pages += nr_pages;
2429 	put_cpu_var(memcg_stock);
2430 }
2431 
2432 /*
2433  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2434  * of the hierarchy under it. sync flag says whether we should block
2435  * until the work is done.
2436  */
2437 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2438 {
2439 	int cpu, curcpu;
2440 
2441 	/* Notify other cpus that system-wide "drain" is running */
2442 	get_online_cpus();
2443 	curcpu = get_cpu();
2444 	for_each_online_cpu(cpu) {
2445 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446 		struct mem_cgroup *memcg;
2447 
2448 		memcg = stock->cached;
2449 		if (!memcg || !stock->nr_pages)
2450 			continue;
2451 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2452 			continue;
2453 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2454 			if (cpu == curcpu)
2455 				drain_local_stock(&stock->work);
2456 			else
2457 				schedule_work_on(cpu, &stock->work);
2458 		}
2459 	}
2460 	put_cpu();
2461 
2462 	if (!sync)
2463 		goto out;
2464 
2465 	for_each_online_cpu(cpu) {
2466 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2467 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2468 			flush_work(&stock->work);
2469 	}
2470 out:
2471  	put_online_cpus();
2472 }
2473 
2474 /*
2475  * Tries to drain stocked charges in other cpus. This function is asynchronous
2476  * and just put a work per cpu for draining localy on each cpu. Caller can
2477  * expects some charges will be back to res_counter later but cannot wait for
2478  * it.
2479  */
2480 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2481 {
2482 	/*
2483 	 * If someone calls draining, avoid adding more kworker runs.
2484 	 */
2485 	if (!mutex_trylock(&percpu_charge_mutex))
2486 		return;
2487 	drain_all_stock(root_memcg, false);
2488 	mutex_unlock(&percpu_charge_mutex);
2489 }
2490 
2491 /* This is a synchronous drain interface. */
2492 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2493 {
2494 	/* called when force_empty is called */
2495 	mutex_lock(&percpu_charge_mutex);
2496 	drain_all_stock(root_memcg, true);
2497 	mutex_unlock(&percpu_charge_mutex);
2498 }
2499 
2500 /*
2501  * This function drains percpu counter value from DEAD cpu and
2502  * move it to local cpu. Note that this function can be preempted.
2503  */
2504 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2505 {
2506 	int i;
2507 
2508 	spin_lock(&memcg->pcp_counter_lock);
2509 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2510 		long x = per_cpu(memcg->stat->count[i], cpu);
2511 
2512 		per_cpu(memcg->stat->count[i], cpu) = 0;
2513 		memcg->nocpu_base.count[i] += x;
2514 	}
2515 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2516 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2517 
2518 		per_cpu(memcg->stat->events[i], cpu) = 0;
2519 		memcg->nocpu_base.events[i] += x;
2520 	}
2521 	spin_unlock(&memcg->pcp_counter_lock);
2522 }
2523 
2524 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2525 					unsigned long action,
2526 					void *hcpu)
2527 {
2528 	int cpu = (unsigned long)hcpu;
2529 	struct memcg_stock_pcp *stock;
2530 	struct mem_cgroup *iter;
2531 
2532 	if (action == CPU_ONLINE)
2533 		return NOTIFY_OK;
2534 
2535 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2536 		return NOTIFY_OK;
2537 
2538 	for_each_mem_cgroup(iter)
2539 		mem_cgroup_drain_pcp_counter(iter, cpu);
2540 
2541 	stock = &per_cpu(memcg_stock, cpu);
2542 	drain_stock(stock);
2543 	return NOTIFY_OK;
2544 }
2545 
2546 
2547 /* See __mem_cgroup_try_charge() for details */
2548 enum {
2549 	CHARGE_OK,		/* success */
2550 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2551 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2552 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2553 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2554 };
2555 
2556 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2557 				unsigned int nr_pages, unsigned int min_pages,
2558 				bool oom_check)
2559 {
2560 	unsigned long csize = nr_pages * PAGE_SIZE;
2561 	struct mem_cgroup *mem_over_limit;
2562 	struct res_counter *fail_res;
2563 	unsigned long flags = 0;
2564 	int ret;
2565 
2566 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2567 
2568 	if (likely(!ret)) {
2569 		if (!do_swap_account)
2570 			return CHARGE_OK;
2571 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2572 		if (likely(!ret))
2573 			return CHARGE_OK;
2574 
2575 		res_counter_uncharge(&memcg->res, csize);
2576 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2577 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2578 	} else
2579 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2580 	/*
2581 	 * Never reclaim on behalf of optional batching, retry with a
2582 	 * single page instead.
2583 	 */
2584 	if (nr_pages > min_pages)
2585 		return CHARGE_RETRY;
2586 
2587 	if (!(gfp_mask & __GFP_WAIT))
2588 		return CHARGE_WOULDBLOCK;
2589 
2590 	if (gfp_mask & __GFP_NORETRY)
2591 		return CHARGE_NOMEM;
2592 
2593 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2594 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2595 		return CHARGE_RETRY;
2596 	/*
2597 	 * Even though the limit is exceeded at this point, reclaim
2598 	 * may have been able to free some pages.  Retry the charge
2599 	 * before killing the task.
2600 	 *
2601 	 * Only for regular pages, though: huge pages are rather
2602 	 * unlikely to succeed so close to the limit, and we fall back
2603 	 * to regular pages anyway in case of failure.
2604 	 */
2605 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2606 		return CHARGE_RETRY;
2607 
2608 	/*
2609 	 * At task move, charge accounts can be doubly counted. So, it's
2610 	 * better to wait until the end of task_move if something is going on.
2611 	 */
2612 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2613 		return CHARGE_RETRY;
2614 
2615 	/* If we don't need to call oom-killer at el, return immediately */
2616 	if (!oom_check)
2617 		return CHARGE_NOMEM;
2618 	/* check OOM */
2619 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2620 		return CHARGE_OOM_DIE;
2621 
2622 	return CHARGE_RETRY;
2623 }
2624 
2625 /*
2626  * __mem_cgroup_try_charge() does
2627  * 1. detect memcg to be charged against from passed *mm and *ptr,
2628  * 2. update res_counter
2629  * 3. call memory reclaim if necessary.
2630  *
2631  * In some special case, if the task is fatal, fatal_signal_pending() or
2632  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2633  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2634  * as possible without any hazards. 2: all pages should have a valid
2635  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2636  * pointer, that is treated as a charge to root_mem_cgroup.
2637  *
2638  * So __mem_cgroup_try_charge() will return
2639  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2640  *  -ENOMEM ...  charge failure because of resource limits.
2641  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2642  *
2643  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2644  * the oom-killer can be invoked.
2645  */
2646 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2647 				   gfp_t gfp_mask,
2648 				   unsigned int nr_pages,
2649 				   struct mem_cgroup **ptr,
2650 				   bool oom)
2651 {
2652 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2653 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2654 	struct mem_cgroup *memcg = NULL;
2655 	int ret;
2656 
2657 	/*
2658 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2659 	 * in system level. So, allow to go ahead dying process in addition to
2660 	 * MEMDIE process.
2661 	 */
2662 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2663 		     || fatal_signal_pending(current)))
2664 		goto bypass;
2665 
2666 	/*
2667 	 * We always charge the cgroup the mm_struct belongs to.
2668 	 * The mm_struct's mem_cgroup changes on task migration if the
2669 	 * thread group leader migrates. It's possible that mm is not
2670 	 * set, if so charge the root memcg (happens for pagecache usage).
2671 	 */
2672 	if (!*ptr && !mm)
2673 		*ptr = root_mem_cgroup;
2674 again:
2675 	if (*ptr) { /* css should be a valid one */
2676 		memcg = *ptr;
2677 		if (mem_cgroup_is_root(memcg))
2678 			goto done;
2679 		if (consume_stock(memcg, nr_pages))
2680 			goto done;
2681 		css_get(&memcg->css);
2682 	} else {
2683 		struct task_struct *p;
2684 
2685 		rcu_read_lock();
2686 		p = rcu_dereference(mm->owner);
2687 		/*
2688 		 * Because we don't have task_lock(), "p" can exit.
2689 		 * In that case, "memcg" can point to root or p can be NULL with
2690 		 * race with swapoff. Then, we have small risk of mis-accouning.
2691 		 * But such kind of mis-account by race always happens because
2692 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2693 		 * small race, here.
2694 		 * (*) swapoff at el will charge against mm-struct not against
2695 		 * task-struct. So, mm->owner can be NULL.
2696 		 */
2697 		memcg = mem_cgroup_from_task(p);
2698 		if (!memcg)
2699 			memcg = root_mem_cgroup;
2700 		if (mem_cgroup_is_root(memcg)) {
2701 			rcu_read_unlock();
2702 			goto done;
2703 		}
2704 		if (consume_stock(memcg, nr_pages)) {
2705 			/*
2706 			 * It seems dagerous to access memcg without css_get().
2707 			 * But considering how consume_stok works, it's not
2708 			 * necessary. If consume_stock success, some charges
2709 			 * from this memcg are cached on this cpu. So, we
2710 			 * don't need to call css_get()/css_tryget() before
2711 			 * calling consume_stock().
2712 			 */
2713 			rcu_read_unlock();
2714 			goto done;
2715 		}
2716 		/* after here, we may be blocked. we need to get refcnt */
2717 		if (!css_tryget(&memcg->css)) {
2718 			rcu_read_unlock();
2719 			goto again;
2720 		}
2721 		rcu_read_unlock();
2722 	}
2723 
2724 	do {
2725 		bool oom_check;
2726 
2727 		/* If killed, bypass charge */
2728 		if (fatal_signal_pending(current)) {
2729 			css_put(&memcg->css);
2730 			goto bypass;
2731 		}
2732 
2733 		oom_check = false;
2734 		if (oom && !nr_oom_retries) {
2735 			oom_check = true;
2736 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2737 		}
2738 
2739 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2740 		    oom_check);
2741 		switch (ret) {
2742 		case CHARGE_OK:
2743 			break;
2744 		case CHARGE_RETRY: /* not in OOM situation but retry */
2745 			batch = nr_pages;
2746 			css_put(&memcg->css);
2747 			memcg = NULL;
2748 			goto again;
2749 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2750 			css_put(&memcg->css);
2751 			goto nomem;
2752 		case CHARGE_NOMEM: /* OOM routine works */
2753 			if (!oom) {
2754 				css_put(&memcg->css);
2755 				goto nomem;
2756 			}
2757 			/* If oom, we never return -ENOMEM */
2758 			nr_oom_retries--;
2759 			break;
2760 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2761 			css_put(&memcg->css);
2762 			goto bypass;
2763 		}
2764 	} while (ret != CHARGE_OK);
2765 
2766 	if (batch > nr_pages)
2767 		refill_stock(memcg, batch - nr_pages);
2768 	css_put(&memcg->css);
2769 done:
2770 	*ptr = memcg;
2771 	return 0;
2772 nomem:
2773 	*ptr = NULL;
2774 	return -ENOMEM;
2775 bypass:
2776 	*ptr = root_mem_cgroup;
2777 	return -EINTR;
2778 }
2779 
2780 /*
2781  * Somemtimes we have to undo a charge we got by try_charge().
2782  * This function is for that and do uncharge, put css's refcnt.
2783  * gotten by try_charge().
2784  */
2785 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2786 				       unsigned int nr_pages)
2787 {
2788 	if (!mem_cgroup_is_root(memcg)) {
2789 		unsigned long bytes = nr_pages * PAGE_SIZE;
2790 
2791 		res_counter_uncharge(&memcg->res, bytes);
2792 		if (do_swap_account)
2793 			res_counter_uncharge(&memcg->memsw, bytes);
2794 	}
2795 }
2796 
2797 /*
2798  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2799  * This is useful when moving usage to parent cgroup.
2800  */
2801 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2802 					unsigned int nr_pages)
2803 {
2804 	unsigned long bytes = nr_pages * PAGE_SIZE;
2805 
2806 	if (mem_cgroup_is_root(memcg))
2807 		return;
2808 
2809 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2810 	if (do_swap_account)
2811 		res_counter_uncharge_until(&memcg->memsw,
2812 						memcg->memsw.parent, bytes);
2813 }
2814 
2815 /*
2816  * A helper function to get mem_cgroup from ID. must be called under
2817  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2818  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2819  * called against removed memcg.)
2820  */
2821 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2822 {
2823 	struct cgroup_subsys_state *css;
2824 
2825 	/* ID 0 is unused ID */
2826 	if (!id)
2827 		return NULL;
2828 	css = css_lookup(&mem_cgroup_subsys, id);
2829 	if (!css)
2830 		return NULL;
2831 	return mem_cgroup_from_css(css);
2832 }
2833 
2834 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2835 {
2836 	struct mem_cgroup *memcg = NULL;
2837 	struct page_cgroup *pc;
2838 	unsigned short id;
2839 	swp_entry_t ent;
2840 
2841 	VM_BUG_ON(!PageLocked(page));
2842 
2843 	pc = lookup_page_cgroup(page);
2844 	lock_page_cgroup(pc);
2845 	if (PageCgroupUsed(pc)) {
2846 		memcg = pc->mem_cgroup;
2847 		if (memcg && !css_tryget(&memcg->css))
2848 			memcg = NULL;
2849 	} else if (PageSwapCache(page)) {
2850 		ent.val = page_private(page);
2851 		id = lookup_swap_cgroup_id(ent);
2852 		rcu_read_lock();
2853 		memcg = mem_cgroup_lookup(id);
2854 		if (memcg && !css_tryget(&memcg->css))
2855 			memcg = NULL;
2856 		rcu_read_unlock();
2857 	}
2858 	unlock_page_cgroup(pc);
2859 	return memcg;
2860 }
2861 
2862 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2863 				       struct page *page,
2864 				       unsigned int nr_pages,
2865 				       enum charge_type ctype,
2866 				       bool lrucare)
2867 {
2868 	struct page_cgroup *pc = lookup_page_cgroup(page);
2869 	struct zone *uninitialized_var(zone);
2870 	struct lruvec *lruvec;
2871 	bool was_on_lru = false;
2872 	bool anon;
2873 
2874 	lock_page_cgroup(pc);
2875 	VM_BUG_ON(PageCgroupUsed(pc));
2876 	/*
2877 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2878 	 * accessed by any other context at this point.
2879 	 */
2880 
2881 	/*
2882 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2883 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2884 	 */
2885 	if (lrucare) {
2886 		zone = page_zone(page);
2887 		spin_lock_irq(&zone->lru_lock);
2888 		if (PageLRU(page)) {
2889 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2890 			ClearPageLRU(page);
2891 			del_page_from_lru_list(page, lruvec, page_lru(page));
2892 			was_on_lru = true;
2893 		}
2894 	}
2895 
2896 	pc->mem_cgroup = memcg;
2897 	/*
2898 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2899 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2900 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2901 	 * before USED bit, we need memory barrier here.
2902 	 * See mem_cgroup_add_lru_list(), etc.
2903  	 */
2904 	smp_wmb();
2905 	SetPageCgroupUsed(pc);
2906 
2907 	if (lrucare) {
2908 		if (was_on_lru) {
2909 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2910 			VM_BUG_ON(PageLRU(page));
2911 			SetPageLRU(page);
2912 			add_page_to_lru_list(page, lruvec, page_lru(page));
2913 		}
2914 		spin_unlock_irq(&zone->lru_lock);
2915 	}
2916 
2917 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2918 		anon = true;
2919 	else
2920 		anon = false;
2921 
2922 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2923 	unlock_page_cgroup(pc);
2924 
2925 	/*
2926 	 * "charge_statistics" updated event counter. Then, check it.
2927 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2928 	 * if they exceeds softlimit.
2929 	 */
2930 	memcg_check_events(memcg, page);
2931 }
2932 
2933 static DEFINE_MUTEX(set_limit_mutex);
2934 
2935 #ifdef CONFIG_MEMCG_KMEM
2936 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2937 {
2938 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2939 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2940 }
2941 
2942 /*
2943  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2944  * in the memcg_cache_params struct.
2945  */
2946 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2947 {
2948 	struct kmem_cache *cachep;
2949 
2950 	VM_BUG_ON(p->is_root_cache);
2951 	cachep = p->root_cache;
2952 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2953 }
2954 
2955 #ifdef CONFIG_SLABINFO
2956 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2957 					struct seq_file *m)
2958 {
2959 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2960 	struct memcg_cache_params *params;
2961 
2962 	if (!memcg_can_account_kmem(memcg))
2963 		return -EIO;
2964 
2965 	print_slabinfo_header(m);
2966 
2967 	mutex_lock(&memcg->slab_caches_mutex);
2968 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2969 		cache_show(memcg_params_to_cache(params), m);
2970 	mutex_unlock(&memcg->slab_caches_mutex);
2971 
2972 	return 0;
2973 }
2974 #endif
2975 
2976 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2977 {
2978 	struct res_counter *fail_res;
2979 	struct mem_cgroup *_memcg;
2980 	int ret = 0;
2981 	bool may_oom;
2982 
2983 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2984 	if (ret)
2985 		return ret;
2986 
2987 	/*
2988 	 * Conditions under which we can wait for the oom_killer. Those are
2989 	 * the same conditions tested by the core page allocator
2990 	 */
2991 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2992 
2993 	_memcg = memcg;
2994 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2995 				      &_memcg, may_oom);
2996 
2997 	if (ret == -EINTR)  {
2998 		/*
2999 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3000 		 * OOM kill or fatal signal.  Since our only options are to
3001 		 * either fail the allocation or charge it to this cgroup, do
3002 		 * it as a temporary condition. But we can't fail. From a
3003 		 * kmem/slab perspective, the cache has already been selected,
3004 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3005 		 * our minds.
3006 		 *
3007 		 * This condition will only trigger if the task entered
3008 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3009 		 * __mem_cgroup_try_charge() above. Tasks that were already
3010 		 * dying when the allocation triggers should have been already
3011 		 * directed to the root cgroup in memcontrol.h
3012 		 */
3013 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3014 		if (do_swap_account)
3015 			res_counter_charge_nofail(&memcg->memsw, size,
3016 						  &fail_res);
3017 		ret = 0;
3018 	} else if (ret)
3019 		res_counter_uncharge(&memcg->kmem, size);
3020 
3021 	return ret;
3022 }
3023 
3024 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3025 {
3026 	res_counter_uncharge(&memcg->res, size);
3027 	if (do_swap_account)
3028 		res_counter_uncharge(&memcg->memsw, size);
3029 
3030 	/* Not down to 0 */
3031 	if (res_counter_uncharge(&memcg->kmem, size))
3032 		return;
3033 
3034 	if (memcg_kmem_test_and_clear_dead(memcg))
3035 		mem_cgroup_put(memcg);
3036 }
3037 
3038 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3039 {
3040 	if (!memcg)
3041 		return;
3042 
3043 	mutex_lock(&memcg->slab_caches_mutex);
3044 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3045 	mutex_unlock(&memcg->slab_caches_mutex);
3046 }
3047 
3048 /*
3049  * helper for acessing a memcg's index. It will be used as an index in the
3050  * child cache array in kmem_cache, and also to derive its name. This function
3051  * will return -1 when this is not a kmem-limited memcg.
3052  */
3053 int memcg_cache_id(struct mem_cgroup *memcg)
3054 {
3055 	return memcg ? memcg->kmemcg_id : -1;
3056 }
3057 
3058 /*
3059  * This ends up being protected by the set_limit mutex, during normal
3060  * operation, because that is its main call site.
3061  *
3062  * But when we create a new cache, we can call this as well if its parent
3063  * is kmem-limited. That will have to hold set_limit_mutex as well.
3064  */
3065 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3066 {
3067 	int num, ret;
3068 
3069 	num = ida_simple_get(&kmem_limited_groups,
3070 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3071 	if (num < 0)
3072 		return num;
3073 	/*
3074 	 * After this point, kmem_accounted (that we test atomically in
3075 	 * the beginning of this conditional), is no longer 0. This
3076 	 * guarantees only one process will set the following boolean
3077 	 * to true. We don't need test_and_set because we're protected
3078 	 * by the set_limit_mutex anyway.
3079 	 */
3080 	memcg_kmem_set_activated(memcg);
3081 
3082 	ret = memcg_update_all_caches(num+1);
3083 	if (ret) {
3084 		ida_simple_remove(&kmem_limited_groups, num);
3085 		memcg_kmem_clear_activated(memcg);
3086 		return ret;
3087 	}
3088 
3089 	memcg->kmemcg_id = num;
3090 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3091 	mutex_init(&memcg->slab_caches_mutex);
3092 	return 0;
3093 }
3094 
3095 static size_t memcg_caches_array_size(int num_groups)
3096 {
3097 	ssize_t size;
3098 	if (num_groups <= 0)
3099 		return 0;
3100 
3101 	size = 2 * num_groups;
3102 	if (size < MEMCG_CACHES_MIN_SIZE)
3103 		size = MEMCG_CACHES_MIN_SIZE;
3104 	else if (size > MEMCG_CACHES_MAX_SIZE)
3105 		size = MEMCG_CACHES_MAX_SIZE;
3106 
3107 	return size;
3108 }
3109 
3110 /*
3111  * We should update the current array size iff all caches updates succeed. This
3112  * can only be done from the slab side. The slab mutex needs to be held when
3113  * calling this.
3114  */
3115 void memcg_update_array_size(int num)
3116 {
3117 	if (num > memcg_limited_groups_array_size)
3118 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3119 }
3120 
3121 static void kmem_cache_destroy_work_func(struct work_struct *w);
3122 
3123 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3124 {
3125 	struct memcg_cache_params *cur_params = s->memcg_params;
3126 
3127 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3128 
3129 	if (num_groups > memcg_limited_groups_array_size) {
3130 		int i;
3131 		ssize_t size = memcg_caches_array_size(num_groups);
3132 
3133 		size *= sizeof(void *);
3134 		size += sizeof(struct memcg_cache_params);
3135 
3136 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3137 		if (!s->memcg_params) {
3138 			s->memcg_params = cur_params;
3139 			return -ENOMEM;
3140 		}
3141 
3142 		s->memcg_params->is_root_cache = true;
3143 
3144 		/*
3145 		 * There is the chance it will be bigger than
3146 		 * memcg_limited_groups_array_size, if we failed an allocation
3147 		 * in a cache, in which case all caches updated before it, will
3148 		 * have a bigger array.
3149 		 *
3150 		 * But if that is the case, the data after
3151 		 * memcg_limited_groups_array_size is certainly unused
3152 		 */
3153 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3154 			if (!cur_params->memcg_caches[i])
3155 				continue;
3156 			s->memcg_params->memcg_caches[i] =
3157 						cur_params->memcg_caches[i];
3158 		}
3159 
3160 		/*
3161 		 * Ideally, we would wait until all caches succeed, and only
3162 		 * then free the old one. But this is not worth the extra
3163 		 * pointer per-cache we'd have to have for this.
3164 		 *
3165 		 * It is not a big deal if some caches are left with a size
3166 		 * bigger than the others. And all updates will reset this
3167 		 * anyway.
3168 		 */
3169 		kfree(cur_params);
3170 	}
3171 	return 0;
3172 }
3173 
3174 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3175 			 struct kmem_cache *root_cache)
3176 {
3177 	size_t size = sizeof(struct memcg_cache_params);
3178 
3179 	if (!memcg_kmem_enabled())
3180 		return 0;
3181 
3182 	if (!memcg)
3183 		size += memcg_limited_groups_array_size * sizeof(void *);
3184 
3185 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3186 	if (!s->memcg_params)
3187 		return -ENOMEM;
3188 
3189 	INIT_WORK(&s->memcg_params->destroy,
3190 			kmem_cache_destroy_work_func);
3191 	if (memcg) {
3192 		s->memcg_params->memcg = memcg;
3193 		s->memcg_params->root_cache = root_cache;
3194 	} else
3195 		s->memcg_params->is_root_cache = true;
3196 
3197 	return 0;
3198 }
3199 
3200 void memcg_release_cache(struct kmem_cache *s)
3201 {
3202 	struct kmem_cache *root;
3203 	struct mem_cgroup *memcg;
3204 	int id;
3205 
3206 	/*
3207 	 * This happens, for instance, when a root cache goes away before we
3208 	 * add any memcg.
3209 	 */
3210 	if (!s->memcg_params)
3211 		return;
3212 
3213 	if (s->memcg_params->is_root_cache)
3214 		goto out;
3215 
3216 	memcg = s->memcg_params->memcg;
3217 	id  = memcg_cache_id(memcg);
3218 
3219 	root = s->memcg_params->root_cache;
3220 	root->memcg_params->memcg_caches[id] = NULL;
3221 
3222 	mutex_lock(&memcg->slab_caches_mutex);
3223 	list_del(&s->memcg_params->list);
3224 	mutex_unlock(&memcg->slab_caches_mutex);
3225 
3226 	mem_cgroup_put(memcg);
3227 out:
3228 	kfree(s->memcg_params);
3229 }
3230 
3231 /*
3232  * During the creation a new cache, we need to disable our accounting mechanism
3233  * altogether. This is true even if we are not creating, but rather just
3234  * enqueing new caches to be created.
3235  *
3236  * This is because that process will trigger allocations; some visible, like
3237  * explicit kmallocs to auxiliary data structures, name strings and internal
3238  * cache structures; some well concealed, like INIT_WORK() that can allocate
3239  * objects during debug.
3240  *
3241  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3242  * to it. This may not be a bounded recursion: since the first cache creation
3243  * failed to complete (waiting on the allocation), we'll just try to create the
3244  * cache again, failing at the same point.
3245  *
3246  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3247  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3248  * inside the following two functions.
3249  */
3250 static inline void memcg_stop_kmem_account(void)
3251 {
3252 	VM_BUG_ON(!current->mm);
3253 	current->memcg_kmem_skip_account++;
3254 }
3255 
3256 static inline void memcg_resume_kmem_account(void)
3257 {
3258 	VM_BUG_ON(!current->mm);
3259 	current->memcg_kmem_skip_account--;
3260 }
3261 
3262 static void kmem_cache_destroy_work_func(struct work_struct *w)
3263 {
3264 	struct kmem_cache *cachep;
3265 	struct memcg_cache_params *p;
3266 
3267 	p = container_of(w, struct memcg_cache_params, destroy);
3268 
3269 	cachep = memcg_params_to_cache(p);
3270 
3271 	/*
3272 	 * If we get down to 0 after shrink, we could delete right away.
3273 	 * However, memcg_release_pages() already puts us back in the workqueue
3274 	 * in that case. If we proceed deleting, we'll get a dangling
3275 	 * reference, and removing the object from the workqueue in that case
3276 	 * is unnecessary complication. We are not a fast path.
3277 	 *
3278 	 * Note that this case is fundamentally different from racing with
3279 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3280 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3281 	 * into the queue, but doing so from inside the worker racing to
3282 	 * destroy it.
3283 	 *
3284 	 * So if we aren't down to zero, we'll just schedule a worker and try
3285 	 * again
3286 	 */
3287 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3288 		kmem_cache_shrink(cachep);
3289 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3290 			return;
3291 	} else
3292 		kmem_cache_destroy(cachep);
3293 }
3294 
3295 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3296 {
3297 	if (!cachep->memcg_params->dead)
3298 		return;
3299 
3300 	/*
3301 	 * There are many ways in which we can get here.
3302 	 *
3303 	 * We can get to a memory-pressure situation while the delayed work is
3304 	 * still pending to run. The vmscan shrinkers can then release all
3305 	 * cache memory and get us to destruction. If this is the case, we'll
3306 	 * be executed twice, which is a bug (the second time will execute over
3307 	 * bogus data). In this case, cancelling the work should be fine.
3308 	 *
3309 	 * But we can also get here from the worker itself, if
3310 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3311 	 * get the page count to 0. In this case, we'll deadlock if we try to
3312 	 * cancel the work (the worker runs with an internal lock held, which
3313 	 * is the same lock we would hold for cancel_work_sync().)
3314 	 *
3315 	 * Since we can't possibly know who got us here, just refrain from
3316 	 * running if there is already work pending
3317 	 */
3318 	if (work_pending(&cachep->memcg_params->destroy))
3319 		return;
3320 	/*
3321 	 * We have to defer the actual destroying to a workqueue, because
3322 	 * we might currently be in a context that cannot sleep.
3323 	 */
3324 	schedule_work(&cachep->memcg_params->destroy);
3325 }
3326 
3327 /*
3328  * This lock protects updaters, not readers. We want readers to be as fast as
3329  * they can, and they will either see NULL or a valid cache value. Our model
3330  * allow them to see NULL, in which case the root memcg will be selected.
3331  *
3332  * We need this lock because multiple allocations to the same cache from a non
3333  * will span more than one worker. Only one of them can create the cache.
3334  */
3335 static DEFINE_MUTEX(memcg_cache_mutex);
3336 
3337 /*
3338  * Called with memcg_cache_mutex held
3339  */
3340 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3341 					 struct kmem_cache *s)
3342 {
3343 	struct kmem_cache *new;
3344 	static char *tmp_name = NULL;
3345 
3346 	lockdep_assert_held(&memcg_cache_mutex);
3347 
3348 	/*
3349 	 * kmem_cache_create_memcg duplicates the given name and
3350 	 * cgroup_name for this name requires RCU context.
3351 	 * This static temporary buffer is used to prevent from
3352 	 * pointless shortliving allocation.
3353 	 */
3354 	if (!tmp_name) {
3355 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3356 		if (!tmp_name)
3357 			return NULL;
3358 	}
3359 
3360 	rcu_read_lock();
3361 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3362 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3363 	rcu_read_unlock();
3364 
3365 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3366 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3367 
3368 	if (new)
3369 		new->allocflags |= __GFP_KMEMCG;
3370 
3371 	return new;
3372 }
3373 
3374 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3375 						  struct kmem_cache *cachep)
3376 {
3377 	struct kmem_cache *new_cachep;
3378 	int idx;
3379 
3380 	BUG_ON(!memcg_can_account_kmem(memcg));
3381 
3382 	idx = memcg_cache_id(memcg);
3383 
3384 	mutex_lock(&memcg_cache_mutex);
3385 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3386 	if (new_cachep)
3387 		goto out;
3388 
3389 	new_cachep = kmem_cache_dup(memcg, cachep);
3390 	if (new_cachep == NULL) {
3391 		new_cachep = cachep;
3392 		goto out;
3393 	}
3394 
3395 	mem_cgroup_get(memcg);
3396 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3397 
3398 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3399 	/*
3400 	 * the readers won't lock, make sure everybody sees the updated value,
3401 	 * so they won't put stuff in the queue again for no reason
3402 	 */
3403 	wmb();
3404 out:
3405 	mutex_unlock(&memcg_cache_mutex);
3406 	return new_cachep;
3407 }
3408 
3409 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3410 {
3411 	struct kmem_cache *c;
3412 	int i;
3413 
3414 	if (!s->memcg_params)
3415 		return;
3416 	if (!s->memcg_params->is_root_cache)
3417 		return;
3418 
3419 	/*
3420 	 * If the cache is being destroyed, we trust that there is no one else
3421 	 * requesting objects from it. Even if there are, the sanity checks in
3422 	 * kmem_cache_destroy should caught this ill-case.
3423 	 *
3424 	 * Still, we don't want anyone else freeing memcg_caches under our
3425 	 * noses, which can happen if a new memcg comes to life. As usual,
3426 	 * we'll take the set_limit_mutex to protect ourselves against this.
3427 	 */
3428 	mutex_lock(&set_limit_mutex);
3429 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3430 		c = s->memcg_params->memcg_caches[i];
3431 		if (!c)
3432 			continue;
3433 
3434 		/*
3435 		 * We will now manually delete the caches, so to avoid races
3436 		 * we need to cancel all pending destruction workers and
3437 		 * proceed with destruction ourselves.
3438 		 *
3439 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3440 		 * and that could spawn the workers again: it is likely that
3441 		 * the cache still have active pages until this very moment.
3442 		 * This would lead us back to mem_cgroup_destroy_cache.
3443 		 *
3444 		 * But that will not execute at all if the "dead" flag is not
3445 		 * set, so flip it down to guarantee we are in control.
3446 		 */
3447 		c->memcg_params->dead = false;
3448 		cancel_work_sync(&c->memcg_params->destroy);
3449 		kmem_cache_destroy(c);
3450 	}
3451 	mutex_unlock(&set_limit_mutex);
3452 }
3453 
3454 struct create_work {
3455 	struct mem_cgroup *memcg;
3456 	struct kmem_cache *cachep;
3457 	struct work_struct work;
3458 };
3459 
3460 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3461 {
3462 	struct kmem_cache *cachep;
3463 	struct memcg_cache_params *params;
3464 
3465 	if (!memcg_kmem_is_active(memcg))
3466 		return;
3467 
3468 	mutex_lock(&memcg->slab_caches_mutex);
3469 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3470 		cachep = memcg_params_to_cache(params);
3471 		cachep->memcg_params->dead = true;
3472 		schedule_work(&cachep->memcg_params->destroy);
3473 	}
3474 	mutex_unlock(&memcg->slab_caches_mutex);
3475 }
3476 
3477 static void memcg_create_cache_work_func(struct work_struct *w)
3478 {
3479 	struct create_work *cw;
3480 
3481 	cw = container_of(w, struct create_work, work);
3482 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3483 	/* Drop the reference gotten when we enqueued. */
3484 	css_put(&cw->memcg->css);
3485 	kfree(cw);
3486 }
3487 
3488 /*
3489  * Enqueue the creation of a per-memcg kmem_cache.
3490  */
3491 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3492 					 struct kmem_cache *cachep)
3493 {
3494 	struct create_work *cw;
3495 
3496 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3497 	if (cw == NULL) {
3498 		css_put(&memcg->css);
3499 		return;
3500 	}
3501 
3502 	cw->memcg = memcg;
3503 	cw->cachep = cachep;
3504 
3505 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3506 	schedule_work(&cw->work);
3507 }
3508 
3509 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3510 				       struct kmem_cache *cachep)
3511 {
3512 	/*
3513 	 * We need to stop accounting when we kmalloc, because if the
3514 	 * corresponding kmalloc cache is not yet created, the first allocation
3515 	 * in __memcg_create_cache_enqueue will recurse.
3516 	 *
3517 	 * However, it is better to enclose the whole function. Depending on
3518 	 * the debugging options enabled, INIT_WORK(), for instance, can
3519 	 * trigger an allocation. This too, will make us recurse. Because at
3520 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3521 	 * the safest choice is to do it like this, wrapping the whole function.
3522 	 */
3523 	memcg_stop_kmem_account();
3524 	__memcg_create_cache_enqueue(memcg, cachep);
3525 	memcg_resume_kmem_account();
3526 }
3527 /*
3528  * Return the kmem_cache we're supposed to use for a slab allocation.
3529  * We try to use the current memcg's version of the cache.
3530  *
3531  * If the cache does not exist yet, if we are the first user of it,
3532  * we either create it immediately, if possible, or create it asynchronously
3533  * in a workqueue.
3534  * In the latter case, we will let the current allocation go through with
3535  * the original cache.
3536  *
3537  * Can't be called in interrupt context or from kernel threads.
3538  * This function needs to be called with rcu_read_lock() held.
3539  */
3540 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3541 					  gfp_t gfp)
3542 {
3543 	struct mem_cgroup *memcg;
3544 	int idx;
3545 
3546 	VM_BUG_ON(!cachep->memcg_params);
3547 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3548 
3549 	if (!current->mm || current->memcg_kmem_skip_account)
3550 		return cachep;
3551 
3552 	rcu_read_lock();
3553 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3554 
3555 	if (!memcg_can_account_kmem(memcg))
3556 		goto out;
3557 
3558 	idx = memcg_cache_id(memcg);
3559 
3560 	/*
3561 	 * barrier to mare sure we're always seeing the up to date value.  The
3562 	 * code updating memcg_caches will issue a write barrier to match this.
3563 	 */
3564 	read_barrier_depends();
3565 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3566 		cachep = cachep->memcg_params->memcg_caches[idx];
3567 		goto out;
3568 	}
3569 
3570 	/* The corresponding put will be done in the workqueue. */
3571 	if (!css_tryget(&memcg->css))
3572 		goto out;
3573 	rcu_read_unlock();
3574 
3575 	/*
3576 	 * If we are in a safe context (can wait, and not in interrupt
3577 	 * context), we could be be predictable and return right away.
3578 	 * This would guarantee that the allocation being performed
3579 	 * already belongs in the new cache.
3580 	 *
3581 	 * However, there are some clashes that can arrive from locking.
3582 	 * For instance, because we acquire the slab_mutex while doing
3583 	 * kmem_cache_dup, this means no further allocation could happen
3584 	 * with the slab_mutex held.
3585 	 *
3586 	 * Also, because cache creation issue get_online_cpus(), this
3587 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3588 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3589 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3590 	 * better to defer everything.
3591 	 */
3592 	memcg_create_cache_enqueue(memcg, cachep);
3593 	return cachep;
3594 out:
3595 	rcu_read_unlock();
3596 	return cachep;
3597 }
3598 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3599 
3600 /*
3601  * We need to verify if the allocation against current->mm->owner's memcg is
3602  * possible for the given order. But the page is not allocated yet, so we'll
3603  * need a further commit step to do the final arrangements.
3604  *
3605  * It is possible for the task to switch cgroups in this mean time, so at
3606  * commit time, we can't rely on task conversion any longer.  We'll then use
3607  * the handle argument to return to the caller which cgroup we should commit
3608  * against. We could also return the memcg directly and avoid the pointer
3609  * passing, but a boolean return value gives better semantics considering
3610  * the compiled-out case as well.
3611  *
3612  * Returning true means the allocation is possible.
3613  */
3614 bool
3615 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3616 {
3617 	struct mem_cgroup *memcg;
3618 	int ret;
3619 
3620 	*_memcg = NULL;
3621 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3622 
3623 	/*
3624 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3625 	 * isn't much we can do without complicating this too much, and it would
3626 	 * be gfp-dependent anyway. Just let it go
3627 	 */
3628 	if (unlikely(!memcg))
3629 		return true;
3630 
3631 	if (!memcg_can_account_kmem(memcg)) {
3632 		css_put(&memcg->css);
3633 		return true;
3634 	}
3635 
3636 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3637 	if (!ret)
3638 		*_memcg = memcg;
3639 
3640 	css_put(&memcg->css);
3641 	return (ret == 0);
3642 }
3643 
3644 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3645 			      int order)
3646 {
3647 	struct page_cgroup *pc;
3648 
3649 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3650 
3651 	/* The page allocation failed. Revert */
3652 	if (!page) {
3653 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3654 		return;
3655 	}
3656 
3657 	pc = lookup_page_cgroup(page);
3658 	lock_page_cgroup(pc);
3659 	pc->mem_cgroup = memcg;
3660 	SetPageCgroupUsed(pc);
3661 	unlock_page_cgroup(pc);
3662 }
3663 
3664 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3665 {
3666 	struct mem_cgroup *memcg = NULL;
3667 	struct page_cgroup *pc;
3668 
3669 
3670 	pc = lookup_page_cgroup(page);
3671 	/*
3672 	 * Fast unlocked return. Theoretically might have changed, have to
3673 	 * check again after locking.
3674 	 */
3675 	if (!PageCgroupUsed(pc))
3676 		return;
3677 
3678 	lock_page_cgroup(pc);
3679 	if (PageCgroupUsed(pc)) {
3680 		memcg = pc->mem_cgroup;
3681 		ClearPageCgroupUsed(pc);
3682 	}
3683 	unlock_page_cgroup(pc);
3684 
3685 	/*
3686 	 * We trust that only if there is a memcg associated with the page, it
3687 	 * is a valid allocation
3688 	 */
3689 	if (!memcg)
3690 		return;
3691 
3692 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3693 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3694 }
3695 #else
3696 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3697 {
3698 }
3699 #endif /* CONFIG_MEMCG_KMEM */
3700 
3701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3702 
3703 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3704 /*
3705  * Because tail pages are not marked as "used", set it. We're under
3706  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3707  * charge/uncharge will be never happen and move_account() is done under
3708  * compound_lock(), so we don't have to take care of races.
3709  */
3710 void mem_cgroup_split_huge_fixup(struct page *head)
3711 {
3712 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3713 	struct page_cgroup *pc;
3714 	struct mem_cgroup *memcg;
3715 	int i;
3716 
3717 	if (mem_cgroup_disabled())
3718 		return;
3719 
3720 	memcg = head_pc->mem_cgroup;
3721 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3722 		pc = head_pc + i;
3723 		pc->mem_cgroup = memcg;
3724 		smp_wmb();/* see __commit_charge() */
3725 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3726 	}
3727 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3728 		       HPAGE_PMD_NR);
3729 }
3730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3731 
3732 /**
3733  * mem_cgroup_move_account - move account of the page
3734  * @page: the page
3735  * @nr_pages: number of regular pages (>1 for huge pages)
3736  * @pc:	page_cgroup of the page.
3737  * @from: mem_cgroup which the page is moved from.
3738  * @to:	mem_cgroup which the page is moved to. @from != @to.
3739  *
3740  * The caller must confirm following.
3741  * - page is not on LRU (isolate_page() is useful.)
3742  * - compound_lock is held when nr_pages > 1
3743  *
3744  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3745  * from old cgroup.
3746  */
3747 static int mem_cgroup_move_account(struct page *page,
3748 				   unsigned int nr_pages,
3749 				   struct page_cgroup *pc,
3750 				   struct mem_cgroup *from,
3751 				   struct mem_cgroup *to)
3752 {
3753 	unsigned long flags;
3754 	int ret;
3755 	bool anon = PageAnon(page);
3756 
3757 	VM_BUG_ON(from == to);
3758 	VM_BUG_ON(PageLRU(page));
3759 	/*
3760 	 * The page is isolated from LRU. So, collapse function
3761 	 * will not handle this page. But page splitting can happen.
3762 	 * Do this check under compound_page_lock(). The caller should
3763 	 * hold it.
3764 	 */
3765 	ret = -EBUSY;
3766 	if (nr_pages > 1 && !PageTransHuge(page))
3767 		goto out;
3768 
3769 	lock_page_cgroup(pc);
3770 
3771 	ret = -EINVAL;
3772 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3773 		goto unlock;
3774 
3775 	move_lock_mem_cgroup(from, &flags);
3776 
3777 	if (!anon && page_mapped(page)) {
3778 		/* Update mapped_file data for mem_cgroup */
3779 		preempt_disable();
3780 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3781 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3782 		preempt_enable();
3783 	}
3784 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3785 
3786 	/* caller should have done css_get */
3787 	pc->mem_cgroup = to;
3788 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3789 	move_unlock_mem_cgroup(from, &flags);
3790 	ret = 0;
3791 unlock:
3792 	unlock_page_cgroup(pc);
3793 	/*
3794 	 * check events
3795 	 */
3796 	memcg_check_events(to, page);
3797 	memcg_check_events(from, page);
3798 out:
3799 	return ret;
3800 }
3801 
3802 /**
3803  * mem_cgroup_move_parent - moves page to the parent group
3804  * @page: the page to move
3805  * @pc: page_cgroup of the page
3806  * @child: page's cgroup
3807  *
3808  * move charges to its parent or the root cgroup if the group has no
3809  * parent (aka use_hierarchy==0).
3810  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3811  * mem_cgroup_move_account fails) the failure is always temporary and
3812  * it signals a race with a page removal/uncharge or migration. In the
3813  * first case the page is on the way out and it will vanish from the LRU
3814  * on the next attempt and the call should be retried later.
3815  * Isolation from the LRU fails only if page has been isolated from
3816  * the LRU since we looked at it and that usually means either global
3817  * reclaim or migration going on. The page will either get back to the
3818  * LRU or vanish.
3819  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3820  * (!PageCgroupUsed) or moved to a different group. The page will
3821  * disappear in the next attempt.
3822  */
3823 static int mem_cgroup_move_parent(struct page *page,
3824 				  struct page_cgroup *pc,
3825 				  struct mem_cgroup *child)
3826 {
3827 	struct mem_cgroup *parent;
3828 	unsigned int nr_pages;
3829 	unsigned long uninitialized_var(flags);
3830 	int ret;
3831 
3832 	VM_BUG_ON(mem_cgroup_is_root(child));
3833 
3834 	ret = -EBUSY;
3835 	if (!get_page_unless_zero(page))
3836 		goto out;
3837 	if (isolate_lru_page(page))
3838 		goto put;
3839 
3840 	nr_pages = hpage_nr_pages(page);
3841 
3842 	parent = parent_mem_cgroup(child);
3843 	/*
3844 	 * If no parent, move charges to root cgroup.
3845 	 */
3846 	if (!parent)
3847 		parent = root_mem_cgroup;
3848 
3849 	if (nr_pages > 1) {
3850 		VM_BUG_ON(!PageTransHuge(page));
3851 		flags = compound_lock_irqsave(page);
3852 	}
3853 
3854 	ret = mem_cgroup_move_account(page, nr_pages,
3855 				pc, child, parent);
3856 	if (!ret)
3857 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3858 
3859 	if (nr_pages > 1)
3860 		compound_unlock_irqrestore(page, flags);
3861 	putback_lru_page(page);
3862 put:
3863 	put_page(page);
3864 out:
3865 	return ret;
3866 }
3867 
3868 /*
3869  * Charge the memory controller for page usage.
3870  * Return
3871  * 0 if the charge was successful
3872  * < 0 if the cgroup is over its limit
3873  */
3874 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3875 				gfp_t gfp_mask, enum charge_type ctype)
3876 {
3877 	struct mem_cgroup *memcg = NULL;
3878 	unsigned int nr_pages = 1;
3879 	bool oom = true;
3880 	int ret;
3881 
3882 	if (PageTransHuge(page)) {
3883 		nr_pages <<= compound_order(page);
3884 		VM_BUG_ON(!PageTransHuge(page));
3885 		/*
3886 		 * Never OOM-kill a process for a huge page.  The
3887 		 * fault handler will fall back to regular pages.
3888 		 */
3889 		oom = false;
3890 	}
3891 
3892 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3893 	if (ret == -ENOMEM)
3894 		return ret;
3895 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3896 	return 0;
3897 }
3898 
3899 int mem_cgroup_newpage_charge(struct page *page,
3900 			      struct mm_struct *mm, gfp_t gfp_mask)
3901 {
3902 	if (mem_cgroup_disabled())
3903 		return 0;
3904 	VM_BUG_ON(page_mapped(page));
3905 	VM_BUG_ON(page->mapping && !PageAnon(page));
3906 	VM_BUG_ON(!mm);
3907 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3908 					MEM_CGROUP_CHARGE_TYPE_ANON);
3909 }
3910 
3911 /*
3912  * While swap-in, try_charge -> commit or cancel, the page is locked.
3913  * And when try_charge() successfully returns, one refcnt to memcg without
3914  * struct page_cgroup is acquired. This refcnt will be consumed by
3915  * "commit()" or removed by "cancel()"
3916  */
3917 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3918 					  struct page *page,
3919 					  gfp_t mask,
3920 					  struct mem_cgroup **memcgp)
3921 {
3922 	struct mem_cgroup *memcg;
3923 	struct page_cgroup *pc;
3924 	int ret;
3925 
3926 	pc = lookup_page_cgroup(page);
3927 	/*
3928 	 * Every swap fault against a single page tries to charge the
3929 	 * page, bail as early as possible.  shmem_unuse() encounters
3930 	 * already charged pages, too.  The USED bit is protected by
3931 	 * the page lock, which serializes swap cache removal, which
3932 	 * in turn serializes uncharging.
3933 	 */
3934 	if (PageCgroupUsed(pc))
3935 		return 0;
3936 	if (!do_swap_account)
3937 		goto charge_cur_mm;
3938 	memcg = try_get_mem_cgroup_from_page(page);
3939 	if (!memcg)
3940 		goto charge_cur_mm;
3941 	*memcgp = memcg;
3942 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3943 	css_put(&memcg->css);
3944 	if (ret == -EINTR)
3945 		ret = 0;
3946 	return ret;
3947 charge_cur_mm:
3948 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3949 	if (ret == -EINTR)
3950 		ret = 0;
3951 	return ret;
3952 }
3953 
3954 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3955 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3956 {
3957 	*memcgp = NULL;
3958 	if (mem_cgroup_disabled())
3959 		return 0;
3960 	/*
3961 	 * A racing thread's fault, or swapoff, may have already
3962 	 * updated the pte, and even removed page from swap cache: in
3963 	 * those cases unuse_pte()'s pte_same() test will fail; but
3964 	 * there's also a KSM case which does need to charge the page.
3965 	 */
3966 	if (!PageSwapCache(page)) {
3967 		int ret;
3968 
3969 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3970 		if (ret == -EINTR)
3971 			ret = 0;
3972 		return ret;
3973 	}
3974 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3975 }
3976 
3977 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3978 {
3979 	if (mem_cgroup_disabled())
3980 		return;
3981 	if (!memcg)
3982 		return;
3983 	__mem_cgroup_cancel_charge(memcg, 1);
3984 }
3985 
3986 static void
3987 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3988 					enum charge_type ctype)
3989 {
3990 	if (mem_cgroup_disabled())
3991 		return;
3992 	if (!memcg)
3993 		return;
3994 
3995 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3996 	/*
3997 	 * Now swap is on-memory. This means this page may be
3998 	 * counted both as mem and swap....double count.
3999 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4000 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4001 	 * may call delete_from_swap_cache() before reach here.
4002 	 */
4003 	if (do_swap_account && PageSwapCache(page)) {
4004 		swp_entry_t ent = {.val = page_private(page)};
4005 		mem_cgroup_uncharge_swap(ent);
4006 	}
4007 }
4008 
4009 void mem_cgroup_commit_charge_swapin(struct page *page,
4010 				     struct mem_cgroup *memcg)
4011 {
4012 	__mem_cgroup_commit_charge_swapin(page, memcg,
4013 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4014 }
4015 
4016 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4017 				gfp_t gfp_mask)
4018 {
4019 	struct mem_cgroup *memcg = NULL;
4020 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4021 	int ret;
4022 
4023 	if (mem_cgroup_disabled())
4024 		return 0;
4025 	if (PageCompound(page))
4026 		return 0;
4027 
4028 	if (!PageSwapCache(page))
4029 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4030 	else { /* page is swapcache/shmem */
4031 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4032 						     gfp_mask, &memcg);
4033 		if (!ret)
4034 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4035 	}
4036 	return ret;
4037 }
4038 
4039 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4040 				   unsigned int nr_pages,
4041 				   const enum charge_type ctype)
4042 {
4043 	struct memcg_batch_info *batch = NULL;
4044 	bool uncharge_memsw = true;
4045 
4046 	/* If swapout, usage of swap doesn't decrease */
4047 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4048 		uncharge_memsw = false;
4049 
4050 	batch = &current->memcg_batch;
4051 	/*
4052 	 * In usual, we do css_get() when we remember memcg pointer.
4053 	 * But in this case, we keep res->usage until end of a series of
4054 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4055 	 */
4056 	if (!batch->memcg)
4057 		batch->memcg = memcg;
4058 	/*
4059 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4060 	 * In those cases, all pages freed continuously can be expected to be in
4061 	 * the same cgroup and we have chance to coalesce uncharges.
4062 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4063 	 * because we want to do uncharge as soon as possible.
4064 	 */
4065 
4066 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4067 		goto direct_uncharge;
4068 
4069 	if (nr_pages > 1)
4070 		goto direct_uncharge;
4071 
4072 	/*
4073 	 * In typical case, batch->memcg == mem. This means we can
4074 	 * merge a series of uncharges to an uncharge of res_counter.
4075 	 * If not, we uncharge res_counter ony by one.
4076 	 */
4077 	if (batch->memcg != memcg)
4078 		goto direct_uncharge;
4079 	/* remember freed charge and uncharge it later */
4080 	batch->nr_pages++;
4081 	if (uncharge_memsw)
4082 		batch->memsw_nr_pages++;
4083 	return;
4084 direct_uncharge:
4085 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4086 	if (uncharge_memsw)
4087 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4088 	if (unlikely(batch->memcg != memcg))
4089 		memcg_oom_recover(memcg);
4090 }
4091 
4092 /*
4093  * uncharge if !page_mapped(page)
4094  */
4095 static struct mem_cgroup *
4096 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4097 			     bool end_migration)
4098 {
4099 	struct mem_cgroup *memcg = NULL;
4100 	unsigned int nr_pages = 1;
4101 	struct page_cgroup *pc;
4102 	bool anon;
4103 
4104 	if (mem_cgroup_disabled())
4105 		return NULL;
4106 
4107 	if (PageTransHuge(page)) {
4108 		nr_pages <<= compound_order(page);
4109 		VM_BUG_ON(!PageTransHuge(page));
4110 	}
4111 	/*
4112 	 * Check if our page_cgroup is valid
4113 	 */
4114 	pc = lookup_page_cgroup(page);
4115 	if (unlikely(!PageCgroupUsed(pc)))
4116 		return NULL;
4117 
4118 	lock_page_cgroup(pc);
4119 
4120 	memcg = pc->mem_cgroup;
4121 
4122 	if (!PageCgroupUsed(pc))
4123 		goto unlock_out;
4124 
4125 	anon = PageAnon(page);
4126 
4127 	switch (ctype) {
4128 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4129 		/*
4130 		 * Generally PageAnon tells if it's the anon statistics to be
4131 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4132 		 * used before page reached the stage of being marked PageAnon.
4133 		 */
4134 		anon = true;
4135 		/* fallthrough */
4136 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4137 		/* See mem_cgroup_prepare_migration() */
4138 		if (page_mapped(page))
4139 			goto unlock_out;
4140 		/*
4141 		 * Pages under migration may not be uncharged.  But
4142 		 * end_migration() /must/ be the one uncharging the
4143 		 * unused post-migration page and so it has to call
4144 		 * here with the migration bit still set.  See the
4145 		 * res_counter handling below.
4146 		 */
4147 		if (!end_migration && PageCgroupMigration(pc))
4148 			goto unlock_out;
4149 		break;
4150 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4151 		if (!PageAnon(page)) {	/* Shared memory */
4152 			if (page->mapping && !page_is_file_cache(page))
4153 				goto unlock_out;
4154 		} else if (page_mapped(page)) /* Anon */
4155 				goto unlock_out;
4156 		break;
4157 	default:
4158 		break;
4159 	}
4160 
4161 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4162 
4163 	ClearPageCgroupUsed(pc);
4164 	/*
4165 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4166 	 * freed from LRU. This is safe because uncharged page is expected not
4167 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4168 	 * special functions.
4169 	 */
4170 
4171 	unlock_page_cgroup(pc);
4172 	/*
4173 	 * even after unlock, we have memcg->res.usage here and this memcg
4174 	 * will never be freed.
4175 	 */
4176 	memcg_check_events(memcg, page);
4177 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4178 		mem_cgroup_swap_statistics(memcg, true);
4179 		mem_cgroup_get(memcg);
4180 	}
4181 	/*
4182 	 * Migration does not charge the res_counter for the
4183 	 * replacement page, so leave it alone when phasing out the
4184 	 * page that is unused after the migration.
4185 	 */
4186 	if (!end_migration && !mem_cgroup_is_root(memcg))
4187 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4188 
4189 	return memcg;
4190 
4191 unlock_out:
4192 	unlock_page_cgroup(pc);
4193 	return NULL;
4194 }
4195 
4196 void mem_cgroup_uncharge_page(struct page *page)
4197 {
4198 	/* early check. */
4199 	if (page_mapped(page))
4200 		return;
4201 	VM_BUG_ON(page->mapping && !PageAnon(page));
4202 	/*
4203 	 * If the page is in swap cache, uncharge should be deferred
4204 	 * to the swap path, which also properly accounts swap usage
4205 	 * and handles memcg lifetime.
4206 	 *
4207 	 * Note that this check is not stable and reclaim may add the
4208 	 * page to swap cache at any time after this.  However, if the
4209 	 * page is not in swap cache by the time page->mapcount hits
4210 	 * 0, there won't be any page table references to the swap
4211 	 * slot, and reclaim will free it and not actually write the
4212 	 * page to disk.
4213 	 */
4214 	if (PageSwapCache(page))
4215 		return;
4216 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4217 }
4218 
4219 void mem_cgroup_uncharge_cache_page(struct page *page)
4220 {
4221 	VM_BUG_ON(page_mapped(page));
4222 	VM_BUG_ON(page->mapping);
4223 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4224 }
4225 
4226 /*
4227  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4228  * In that cases, pages are freed continuously and we can expect pages
4229  * are in the same memcg. All these calls itself limits the number of
4230  * pages freed at once, then uncharge_start/end() is called properly.
4231  * This may be called prural(2) times in a context,
4232  */
4233 
4234 void mem_cgroup_uncharge_start(void)
4235 {
4236 	current->memcg_batch.do_batch++;
4237 	/* We can do nest. */
4238 	if (current->memcg_batch.do_batch == 1) {
4239 		current->memcg_batch.memcg = NULL;
4240 		current->memcg_batch.nr_pages = 0;
4241 		current->memcg_batch.memsw_nr_pages = 0;
4242 	}
4243 }
4244 
4245 void mem_cgroup_uncharge_end(void)
4246 {
4247 	struct memcg_batch_info *batch = &current->memcg_batch;
4248 
4249 	if (!batch->do_batch)
4250 		return;
4251 
4252 	batch->do_batch--;
4253 	if (batch->do_batch) /* If stacked, do nothing. */
4254 		return;
4255 
4256 	if (!batch->memcg)
4257 		return;
4258 	/*
4259 	 * This "batch->memcg" is valid without any css_get/put etc...
4260 	 * bacause we hide charges behind us.
4261 	 */
4262 	if (batch->nr_pages)
4263 		res_counter_uncharge(&batch->memcg->res,
4264 				     batch->nr_pages * PAGE_SIZE);
4265 	if (batch->memsw_nr_pages)
4266 		res_counter_uncharge(&batch->memcg->memsw,
4267 				     batch->memsw_nr_pages * PAGE_SIZE);
4268 	memcg_oom_recover(batch->memcg);
4269 	/* forget this pointer (for sanity check) */
4270 	batch->memcg = NULL;
4271 }
4272 
4273 #ifdef CONFIG_SWAP
4274 /*
4275  * called after __delete_from_swap_cache() and drop "page" account.
4276  * memcg information is recorded to swap_cgroup of "ent"
4277  */
4278 void
4279 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4280 {
4281 	struct mem_cgroup *memcg;
4282 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4283 
4284 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4285 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4286 
4287 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4288 
4289 	/*
4290 	 * record memcg information,  if swapout && memcg != NULL,
4291 	 * mem_cgroup_get() was called in uncharge().
4292 	 */
4293 	if (do_swap_account && swapout && memcg)
4294 		swap_cgroup_record(ent, css_id(&memcg->css));
4295 }
4296 #endif
4297 
4298 #ifdef CONFIG_MEMCG_SWAP
4299 /*
4300  * called from swap_entry_free(). remove record in swap_cgroup and
4301  * uncharge "memsw" account.
4302  */
4303 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4304 {
4305 	struct mem_cgroup *memcg;
4306 	unsigned short id;
4307 
4308 	if (!do_swap_account)
4309 		return;
4310 
4311 	id = swap_cgroup_record(ent, 0);
4312 	rcu_read_lock();
4313 	memcg = mem_cgroup_lookup(id);
4314 	if (memcg) {
4315 		/*
4316 		 * We uncharge this because swap is freed.
4317 		 * This memcg can be obsolete one. We avoid calling css_tryget
4318 		 */
4319 		if (!mem_cgroup_is_root(memcg))
4320 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4321 		mem_cgroup_swap_statistics(memcg, false);
4322 		mem_cgroup_put(memcg);
4323 	}
4324 	rcu_read_unlock();
4325 }
4326 
4327 /**
4328  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4329  * @entry: swap entry to be moved
4330  * @from:  mem_cgroup which the entry is moved from
4331  * @to:  mem_cgroup which the entry is moved to
4332  *
4333  * It succeeds only when the swap_cgroup's record for this entry is the same
4334  * as the mem_cgroup's id of @from.
4335  *
4336  * Returns 0 on success, -EINVAL on failure.
4337  *
4338  * The caller must have charged to @to, IOW, called res_counter_charge() about
4339  * both res and memsw, and called css_get().
4340  */
4341 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4342 				struct mem_cgroup *from, struct mem_cgroup *to)
4343 {
4344 	unsigned short old_id, new_id;
4345 
4346 	old_id = css_id(&from->css);
4347 	new_id = css_id(&to->css);
4348 
4349 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4350 		mem_cgroup_swap_statistics(from, false);
4351 		mem_cgroup_swap_statistics(to, true);
4352 		/*
4353 		 * This function is only called from task migration context now.
4354 		 * It postpones res_counter and refcount handling till the end
4355 		 * of task migration(mem_cgroup_clear_mc()) for performance
4356 		 * improvement. But we cannot postpone mem_cgroup_get(to)
4357 		 * because if the process that has been moved to @to does
4358 		 * swap-in, the refcount of @to might be decreased to 0.
4359 		 */
4360 		mem_cgroup_get(to);
4361 		return 0;
4362 	}
4363 	return -EINVAL;
4364 }
4365 #else
4366 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4367 				struct mem_cgroup *from, struct mem_cgroup *to)
4368 {
4369 	return -EINVAL;
4370 }
4371 #endif
4372 
4373 /*
4374  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4375  * page belongs to.
4376  */
4377 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4378 				  struct mem_cgroup **memcgp)
4379 {
4380 	struct mem_cgroup *memcg = NULL;
4381 	unsigned int nr_pages = 1;
4382 	struct page_cgroup *pc;
4383 	enum charge_type ctype;
4384 
4385 	*memcgp = NULL;
4386 
4387 	if (mem_cgroup_disabled())
4388 		return;
4389 
4390 	if (PageTransHuge(page))
4391 		nr_pages <<= compound_order(page);
4392 
4393 	pc = lookup_page_cgroup(page);
4394 	lock_page_cgroup(pc);
4395 	if (PageCgroupUsed(pc)) {
4396 		memcg = pc->mem_cgroup;
4397 		css_get(&memcg->css);
4398 		/*
4399 		 * At migrating an anonymous page, its mapcount goes down
4400 		 * to 0 and uncharge() will be called. But, even if it's fully
4401 		 * unmapped, migration may fail and this page has to be
4402 		 * charged again. We set MIGRATION flag here and delay uncharge
4403 		 * until end_migration() is called
4404 		 *
4405 		 * Corner Case Thinking
4406 		 * A)
4407 		 * When the old page was mapped as Anon and it's unmap-and-freed
4408 		 * while migration was ongoing.
4409 		 * If unmap finds the old page, uncharge() of it will be delayed
4410 		 * until end_migration(). If unmap finds a new page, it's
4411 		 * uncharged when it make mapcount to be 1->0. If unmap code
4412 		 * finds swap_migration_entry, the new page will not be mapped
4413 		 * and end_migration() will find it(mapcount==0).
4414 		 *
4415 		 * B)
4416 		 * When the old page was mapped but migraion fails, the kernel
4417 		 * remaps it. A charge for it is kept by MIGRATION flag even
4418 		 * if mapcount goes down to 0. We can do remap successfully
4419 		 * without charging it again.
4420 		 *
4421 		 * C)
4422 		 * The "old" page is under lock_page() until the end of
4423 		 * migration, so, the old page itself will not be swapped-out.
4424 		 * If the new page is swapped out before end_migraton, our
4425 		 * hook to usual swap-out path will catch the event.
4426 		 */
4427 		if (PageAnon(page))
4428 			SetPageCgroupMigration(pc);
4429 	}
4430 	unlock_page_cgroup(pc);
4431 	/*
4432 	 * If the page is not charged at this point,
4433 	 * we return here.
4434 	 */
4435 	if (!memcg)
4436 		return;
4437 
4438 	*memcgp = memcg;
4439 	/*
4440 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4441 	 * is called before end_migration, we can catch all events on this new
4442 	 * page. In the case new page is migrated but not remapped, new page's
4443 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4444 	 */
4445 	if (PageAnon(page))
4446 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4447 	else
4448 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4449 	/*
4450 	 * The page is committed to the memcg, but it's not actually
4451 	 * charged to the res_counter since we plan on replacing the
4452 	 * old one and only one page is going to be left afterwards.
4453 	 */
4454 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4455 }
4456 
4457 /* remove redundant charge if migration failed*/
4458 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4459 	struct page *oldpage, struct page *newpage, bool migration_ok)
4460 {
4461 	struct page *used, *unused;
4462 	struct page_cgroup *pc;
4463 	bool anon;
4464 
4465 	if (!memcg)
4466 		return;
4467 
4468 	if (!migration_ok) {
4469 		used = oldpage;
4470 		unused = newpage;
4471 	} else {
4472 		used = newpage;
4473 		unused = oldpage;
4474 	}
4475 	anon = PageAnon(used);
4476 	__mem_cgroup_uncharge_common(unused,
4477 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4478 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4479 				     true);
4480 	css_put(&memcg->css);
4481 	/*
4482 	 * We disallowed uncharge of pages under migration because mapcount
4483 	 * of the page goes down to zero, temporarly.
4484 	 * Clear the flag and check the page should be charged.
4485 	 */
4486 	pc = lookup_page_cgroup(oldpage);
4487 	lock_page_cgroup(pc);
4488 	ClearPageCgroupMigration(pc);
4489 	unlock_page_cgroup(pc);
4490 
4491 	/*
4492 	 * If a page is a file cache, radix-tree replacement is very atomic
4493 	 * and we can skip this check. When it was an Anon page, its mapcount
4494 	 * goes down to 0. But because we added MIGRATION flage, it's not
4495 	 * uncharged yet. There are several case but page->mapcount check
4496 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4497 	 * check. (see prepare_charge() also)
4498 	 */
4499 	if (anon)
4500 		mem_cgroup_uncharge_page(used);
4501 }
4502 
4503 /*
4504  * At replace page cache, newpage is not under any memcg but it's on
4505  * LRU. So, this function doesn't touch res_counter but handles LRU
4506  * in correct way. Both pages are locked so we cannot race with uncharge.
4507  */
4508 void mem_cgroup_replace_page_cache(struct page *oldpage,
4509 				  struct page *newpage)
4510 {
4511 	struct mem_cgroup *memcg = NULL;
4512 	struct page_cgroup *pc;
4513 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4514 
4515 	if (mem_cgroup_disabled())
4516 		return;
4517 
4518 	pc = lookup_page_cgroup(oldpage);
4519 	/* fix accounting on old pages */
4520 	lock_page_cgroup(pc);
4521 	if (PageCgroupUsed(pc)) {
4522 		memcg = pc->mem_cgroup;
4523 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4524 		ClearPageCgroupUsed(pc);
4525 	}
4526 	unlock_page_cgroup(pc);
4527 
4528 	/*
4529 	 * When called from shmem_replace_page(), in some cases the
4530 	 * oldpage has already been charged, and in some cases not.
4531 	 */
4532 	if (!memcg)
4533 		return;
4534 	/*
4535 	 * Even if newpage->mapping was NULL before starting replacement,
4536 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4537 	 * LRU while we overwrite pc->mem_cgroup.
4538 	 */
4539 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4540 }
4541 
4542 #ifdef CONFIG_DEBUG_VM
4543 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4544 {
4545 	struct page_cgroup *pc;
4546 
4547 	pc = lookup_page_cgroup(page);
4548 	/*
4549 	 * Can be NULL while feeding pages into the page allocator for
4550 	 * the first time, i.e. during boot or memory hotplug;
4551 	 * or when mem_cgroup_disabled().
4552 	 */
4553 	if (likely(pc) && PageCgroupUsed(pc))
4554 		return pc;
4555 	return NULL;
4556 }
4557 
4558 bool mem_cgroup_bad_page_check(struct page *page)
4559 {
4560 	if (mem_cgroup_disabled())
4561 		return false;
4562 
4563 	return lookup_page_cgroup_used(page) != NULL;
4564 }
4565 
4566 void mem_cgroup_print_bad_page(struct page *page)
4567 {
4568 	struct page_cgroup *pc;
4569 
4570 	pc = lookup_page_cgroup_used(page);
4571 	if (pc) {
4572 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4573 			 pc, pc->flags, pc->mem_cgroup);
4574 	}
4575 }
4576 #endif
4577 
4578 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4579 				unsigned long long val)
4580 {
4581 	int retry_count;
4582 	u64 memswlimit, memlimit;
4583 	int ret = 0;
4584 	int children = mem_cgroup_count_children(memcg);
4585 	u64 curusage, oldusage;
4586 	int enlarge;
4587 
4588 	/*
4589 	 * For keeping hierarchical_reclaim simple, how long we should retry
4590 	 * is depends on callers. We set our retry-count to be function
4591 	 * of # of children which we should visit in this loop.
4592 	 */
4593 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4594 
4595 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4596 
4597 	enlarge = 0;
4598 	while (retry_count) {
4599 		if (signal_pending(current)) {
4600 			ret = -EINTR;
4601 			break;
4602 		}
4603 		/*
4604 		 * Rather than hide all in some function, I do this in
4605 		 * open coded manner. You see what this really does.
4606 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4607 		 */
4608 		mutex_lock(&set_limit_mutex);
4609 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4610 		if (memswlimit < val) {
4611 			ret = -EINVAL;
4612 			mutex_unlock(&set_limit_mutex);
4613 			break;
4614 		}
4615 
4616 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4617 		if (memlimit < val)
4618 			enlarge = 1;
4619 
4620 		ret = res_counter_set_limit(&memcg->res, val);
4621 		if (!ret) {
4622 			if (memswlimit == val)
4623 				memcg->memsw_is_minimum = true;
4624 			else
4625 				memcg->memsw_is_minimum = false;
4626 		}
4627 		mutex_unlock(&set_limit_mutex);
4628 
4629 		if (!ret)
4630 			break;
4631 
4632 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4633 				   MEM_CGROUP_RECLAIM_SHRINK);
4634 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4635 		/* Usage is reduced ? */
4636   		if (curusage >= oldusage)
4637 			retry_count--;
4638 		else
4639 			oldusage = curusage;
4640 	}
4641 	if (!ret && enlarge)
4642 		memcg_oom_recover(memcg);
4643 
4644 	return ret;
4645 }
4646 
4647 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4648 					unsigned long long val)
4649 {
4650 	int retry_count;
4651 	u64 memlimit, memswlimit, oldusage, curusage;
4652 	int children = mem_cgroup_count_children(memcg);
4653 	int ret = -EBUSY;
4654 	int enlarge = 0;
4655 
4656 	/* see mem_cgroup_resize_res_limit */
4657  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4658 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4659 	while (retry_count) {
4660 		if (signal_pending(current)) {
4661 			ret = -EINTR;
4662 			break;
4663 		}
4664 		/*
4665 		 * Rather than hide all in some function, I do this in
4666 		 * open coded manner. You see what this really does.
4667 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4668 		 */
4669 		mutex_lock(&set_limit_mutex);
4670 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4671 		if (memlimit > val) {
4672 			ret = -EINVAL;
4673 			mutex_unlock(&set_limit_mutex);
4674 			break;
4675 		}
4676 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4677 		if (memswlimit < val)
4678 			enlarge = 1;
4679 		ret = res_counter_set_limit(&memcg->memsw, val);
4680 		if (!ret) {
4681 			if (memlimit == val)
4682 				memcg->memsw_is_minimum = true;
4683 			else
4684 				memcg->memsw_is_minimum = false;
4685 		}
4686 		mutex_unlock(&set_limit_mutex);
4687 
4688 		if (!ret)
4689 			break;
4690 
4691 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4692 				   MEM_CGROUP_RECLAIM_NOSWAP |
4693 				   MEM_CGROUP_RECLAIM_SHRINK);
4694 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4695 		/* Usage is reduced ? */
4696 		if (curusage >= oldusage)
4697 			retry_count--;
4698 		else
4699 			oldusage = curusage;
4700 	}
4701 	if (!ret && enlarge)
4702 		memcg_oom_recover(memcg);
4703 	return ret;
4704 }
4705 
4706 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4707 					    gfp_t gfp_mask,
4708 					    unsigned long *total_scanned)
4709 {
4710 	unsigned long nr_reclaimed = 0;
4711 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4712 	unsigned long reclaimed;
4713 	int loop = 0;
4714 	struct mem_cgroup_tree_per_zone *mctz;
4715 	unsigned long long excess;
4716 	unsigned long nr_scanned;
4717 
4718 	if (order > 0)
4719 		return 0;
4720 
4721 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4722 	/*
4723 	 * This loop can run a while, specially if mem_cgroup's continuously
4724 	 * keep exceeding their soft limit and putting the system under
4725 	 * pressure
4726 	 */
4727 	do {
4728 		if (next_mz)
4729 			mz = next_mz;
4730 		else
4731 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4732 		if (!mz)
4733 			break;
4734 
4735 		nr_scanned = 0;
4736 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4737 						    gfp_mask, &nr_scanned);
4738 		nr_reclaimed += reclaimed;
4739 		*total_scanned += nr_scanned;
4740 		spin_lock(&mctz->lock);
4741 
4742 		/*
4743 		 * If we failed to reclaim anything from this memory cgroup
4744 		 * it is time to move on to the next cgroup
4745 		 */
4746 		next_mz = NULL;
4747 		if (!reclaimed) {
4748 			do {
4749 				/*
4750 				 * Loop until we find yet another one.
4751 				 *
4752 				 * By the time we get the soft_limit lock
4753 				 * again, someone might have aded the
4754 				 * group back on the RB tree. Iterate to
4755 				 * make sure we get a different mem.
4756 				 * mem_cgroup_largest_soft_limit_node returns
4757 				 * NULL if no other cgroup is present on
4758 				 * the tree
4759 				 */
4760 				next_mz =
4761 				__mem_cgroup_largest_soft_limit_node(mctz);
4762 				if (next_mz == mz)
4763 					css_put(&next_mz->memcg->css);
4764 				else /* next_mz == NULL or other memcg */
4765 					break;
4766 			} while (1);
4767 		}
4768 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4769 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4770 		/*
4771 		 * One school of thought says that we should not add
4772 		 * back the node to the tree if reclaim returns 0.
4773 		 * But our reclaim could return 0, simply because due
4774 		 * to priority we are exposing a smaller subset of
4775 		 * memory to reclaim from. Consider this as a longer
4776 		 * term TODO.
4777 		 */
4778 		/* If excess == 0, no tree ops */
4779 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4780 		spin_unlock(&mctz->lock);
4781 		css_put(&mz->memcg->css);
4782 		loop++;
4783 		/*
4784 		 * Could not reclaim anything and there are no more
4785 		 * mem cgroups to try or we seem to be looping without
4786 		 * reclaiming anything.
4787 		 */
4788 		if (!nr_reclaimed &&
4789 			(next_mz == NULL ||
4790 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4791 			break;
4792 	} while (!nr_reclaimed);
4793 	if (next_mz)
4794 		css_put(&next_mz->memcg->css);
4795 	return nr_reclaimed;
4796 }
4797 
4798 /**
4799  * mem_cgroup_force_empty_list - clears LRU of a group
4800  * @memcg: group to clear
4801  * @node: NUMA node
4802  * @zid: zone id
4803  * @lru: lru to to clear
4804  *
4805  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4806  * reclaim the pages page themselves - pages are moved to the parent (or root)
4807  * group.
4808  */
4809 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4810 				int node, int zid, enum lru_list lru)
4811 {
4812 	struct lruvec *lruvec;
4813 	unsigned long flags;
4814 	struct list_head *list;
4815 	struct page *busy;
4816 	struct zone *zone;
4817 
4818 	zone = &NODE_DATA(node)->node_zones[zid];
4819 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4820 	list = &lruvec->lists[lru];
4821 
4822 	busy = NULL;
4823 	do {
4824 		struct page_cgroup *pc;
4825 		struct page *page;
4826 
4827 		spin_lock_irqsave(&zone->lru_lock, flags);
4828 		if (list_empty(list)) {
4829 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4830 			break;
4831 		}
4832 		page = list_entry(list->prev, struct page, lru);
4833 		if (busy == page) {
4834 			list_move(&page->lru, list);
4835 			busy = NULL;
4836 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4837 			continue;
4838 		}
4839 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4840 
4841 		pc = lookup_page_cgroup(page);
4842 
4843 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4844 			/* found lock contention or "pc" is obsolete. */
4845 			busy = page;
4846 			cond_resched();
4847 		} else
4848 			busy = NULL;
4849 	} while (!list_empty(list));
4850 }
4851 
4852 /*
4853  * make mem_cgroup's charge to be 0 if there is no task by moving
4854  * all the charges and pages to the parent.
4855  * This enables deleting this mem_cgroup.
4856  *
4857  * Caller is responsible for holding css reference on the memcg.
4858  */
4859 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4860 {
4861 	int node, zid;
4862 	u64 usage;
4863 
4864 	do {
4865 		/* This is for making all *used* pages to be on LRU. */
4866 		lru_add_drain_all();
4867 		drain_all_stock_sync(memcg);
4868 		mem_cgroup_start_move(memcg);
4869 		for_each_node_state(node, N_MEMORY) {
4870 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4871 				enum lru_list lru;
4872 				for_each_lru(lru) {
4873 					mem_cgroup_force_empty_list(memcg,
4874 							node, zid, lru);
4875 				}
4876 			}
4877 		}
4878 		mem_cgroup_end_move(memcg);
4879 		memcg_oom_recover(memcg);
4880 		cond_resched();
4881 
4882 		/*
4883 		 * Kernel memory may not necessarily be trackable to a specific
4884 		 * process. So they are not migrated, and therefore we can't
4885 		 * expect their value to drop to 0 here.
4886 		 * Having res filled up with kmem only is enough.
4887 		 *
4888 		 * This is a safety check because mem_cgroup_force_empty_list
4889 		 * could have raced with mem_cgroup_replace_page_cache callers
4890 		 * so the lru seemed empty but the page could have been added
4891 		 * right after the check. RES_USAGE should be safe as we always
4892 		 * charge before adding to the LRU.
4893 		 */
4894 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4895 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4896 	} while (usage > 0);
4897 }
4898 
4899 /*
4900  * This mainly exists for tests during the setting of set of use_hierarchy.
4901  * Since this is the very setting we are changing, the current hierarchy value
4902  * is meaningless
4903  */
4904 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4905 {
4906 	struct cgroup *pos;
4907 
4908 	/* bounce at first found */
4909 	cgroup_for_each_child(pos, memcg->css.cgroup)
4910 		return true;
4911 	return false;
4912 }
4913 
4914 /*
4915  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4916  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4917  * from mem_cgroup_count_children(), in the sense that we don't really care how
4918  * many children we have; we only need to know if we have any.  It also counts
4919  * any memcg without hierarchy as infertile.
4920  */
4921 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4922 {
4923 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4924 }
4925 
4926 /*
4927  * Reclaims as many pages from the given memcg as possible and moves
4928  * the rest to the parent.
4929  *
4930  * Caller is responsible for holding css reference for memcg.
4931  */
4932 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4933 {
4934 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4935 	struct cgroup *cgrp = memcg->css.cgroup;
4936 
4937 	/* returns EBUSY if there is a task or if we come here twice. */
4938 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4939 		return -EBUSY;
4940 
4941 	/* we call try-to-free pages for make this cgroup empty */
4942 	lru_add_drain_all();
4943 	/* try to free all pages in this cgroup */
4944 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4945 		int progress;
4946 
4947 		if (signal_pending(current))
4948 			return -EINTR;
4949 
4950 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4951 						false);
4952 		if (!progress) {
4953 			nr_retries--;
4954 			/* maybe some writeback is necessary */
4955 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4956 		}
4957 
4958 	}
4959 	lru_add_drain();
4960 	mem_cgroup_reparent_charges(memcg);
4961 
4962 	return 0;
4963 }
4964 
4965 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4966 {
4967 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4968 	int ret;
4969 
4970 	if (mem_cgroup_is_root(memcg))
4971 		return -EINVAL;
4972 	css_get(&memcg->css);
4973 	ret = mem_cgroup_force_empty(memcg);
4974 	css_put(&memcg->css);
4975 
4976 	return ret;
4977 }
4978 
4979 
4980 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4981 {
4982 	return mem_cgroup_from_cont(cont)->use_hierarchy;
4983 }
4984 
4985 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4986 					u64 val)
4987 {
4988 	int retval = 0;
4989 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4990 	struct cgroup *parent = cont->parent;
4991 	struct mem_cgroup *parent_memcg = NULL;
4992 
4993 	if (parent)
4994 		parent_memcg = mem_cgroup_from_cont(parent);
4995 
4996 	mutex_lock(&memcg_create_mutex);
4997 
4998 	if (memcg->use_hierarchy == val)
4999 		goto out;
5000 
5001 	/*
5002 	 * If parent's use_hierarchy is set, we can't make any modifications
5003 	 * in the child subtrees. If it is unset, then the change can
5004 	 * occur, provided the current cgroup has no children.
5005 	 *
5006 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5007 	 * set if there are no children.
5008 	 */
5009 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5010 				(val == 1 || val == 0)) {
5011 		if (!__memcg_has_children(memcg))
5012 			memcg->use_hierarchy = val;
5013 		else
5014 			retval = -EBUSY;
5015 	} else
5016 		retval = -EINVAL;
5017 
5018 out:
5019 	mutex_unlock(&memcg_create_mutex);
5020 
5021 	return retval;
5022 }
5023 
5024 
5025 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5026 					       enum mem_cgroup_stat_index idx)
5027 {
5028 	struct mem_cgroup *iter;
5029 	long val = 0;
5030 
5031 	/* Per-cpu values can be negative, use a signed accumulator */
5032 	for_each_mem_cgroup_tree(iter, memcg)
5033 		val += mem_cgroup_read_stat(iter, idx);
5034 
5035 	if (val < 0) /* race ? */
5036 		val = 0;
5037 	return val;
5038 }
5039 
5040 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5041 {
5042 	u64 val;
5043 
5044 	if (!mem_cgroup_is_root(memcg)) {
5045 		if (!swap)
5046 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5047 		else
5048 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5049 	}
5050 
5051 	/*
5052 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5053 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5054 	 */
5055 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5056 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5057 
5058 	if (swap)
5059 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5060 
5061 	return val << PAGE_SHIFT;
5062 }
5063 
5064 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5065 			       struct file *file, char __user *buf,
5066 			       size_t nbytes, loff_t *ppos)
5067 {
5068 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5069 	char str[64];
5070 	u64 val;
5071 	int name, len;
5072 	enum res_type type;
5073 
5074 	type = MEMFILE_TYPE(cft->private);
5075 	name = MEMFILE_ATTR(cft->private);
5076 
5077 	switch (type) {
5078 	case _MEM:
5079 		if (name == RES_USAGE)
5080 			val = mem_cgroup_usage(memcg, false);
5081 		else
5082 			val = res_counter_read_u64(&memcg->res, name);
5083 		break;
5084 	case _MEMSWAP:
5085 		if (name == RES_USAGE)
5086 			val = mem_cgroup_usage(memcg, true);
5087 		else
5088 			val = res_counter_read_u64(&memcg->memsw, name);
5089 		break;
5090 	case _KMEM:
5091 		val = res_counter_read_u64(&memcg->kmem, name);
5092 		break;
5093 	default:
5094 		BUG();
5095 	}
5096 
5097 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5098 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5099 }
5100 
5101 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5102 {
5103 	int ret = -EINVAL;
5104 #ifdef CONFIG_MEMCG_KMEM
5105 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5106 	/*
5107 	 * For simplicity, we won't allow this to be disabled.  It also can't
5108 	 * be changed if the cgroup has children already, or if tasks had
5109 	 * already joined.
5110 	 *
5111 	 * If tasks join before we set the limit, a person looking at
5112 	 * kmem.usage_in_bytes will have no way to determine when it took
5113 	 * place, which makes the value quite meaningless.
5114 	 *
5115 	 * After it first became limited, changes in the value of the limit are
5116 	 * of course permitted.
5117 	 */
5118 	mutex_lock(&memcg_create_mutex);
5119 	mutex_lock(&set_limit_mutex);
5120 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5121 		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5122 			ret = -EBUSY;
5123 			goto out;
5124 		}
5125 		ret = res_counter_set_limit(&memcg->kmem, val);
5126 		VM_BUG_ON(ret);
5127 
5128 		ret = memcg_update_cache_sizes(memcg);
5129 		if (ret) {
5130 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5131 			goto out;
5132 		}
5133 		static_key_slow_inc(&memcg_kmem_enabled_key);
5134 		/*
5135 		 * setting the active bit after the inc will guarantee no one
5136 		 * starts accounting before all call sites are patched
5137 		 */
5138 		memcg_kmem_set_active(memcg);
5139 
5140 		/*
5141 		 * kmem charges can outlive the cgroup. In the case of slab
5142 		 * pages, for instance, a page contain objects from various
5143 		 * processes, so it is unfeasible to migrate them away. We
5144 		 * need to reference count the memcg because of that.
5145 		 */
5146 		mem_cgroup_get(memcg);
5147 	} else
5148 		ret = res_counter_set_limit(&memcg->kmem, val);
5149 out:
5150 	mutex_unlock(&set_limit_mutex);
5151 	mutex_unlock(&memcg_create_mutex);
5152 #endif
5153 	return ret;
5154 }
5155 
5156 #ifdef CONFIG_MEMCG_KMEM
5157 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5158 {
5159 	int ret = 0;
5160 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5161 	if (!parent)
5162 		goto out;
5163 
5164 	memcg->kmem_account_flags = parent->kmem_account_flags;
5165 	/*
5166 	 * When that happen, we need to disable the static branch only on those
5167 	 * memcgs that enabled it. To achieve this, we would be forced to
5168 	 * complicate the code by keeping track of which memcgs were the ones
5169 	 * that actually enabled limits, and which ones got it from its
5170 	 * parents.
5171 	 *
5172 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5173 	 * that is accounted.
5174 	 */
5175 	if (!memcg_kmem_is_active(memcg))
5176 		goto out;
5177 
5178 	/*
5179 	 * destroy(), called if we fail, will issue static_key_slow_inc() and
5180 	 * mem_cgroup_put() if kmem is enabled. We have to either call them
5181 	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5182 	 * this more consistent, since it always leads to the same destroy path
5183 	 */
5184 	mem_cgroup_get(memcg);
5185 	static_key_slow_inc(&memcg_kmem_enabled_key);
5186 
5187 	mutex_lock(&set_limit_mutex);
5188 	ret = memcg_update_cache_sizes(memcg);
5189 	mutex_unlock(&set_limit_mutex);
5190 out:
5191 	return ret;
5192 }
5193 #endif /* CONFIG_MEMCG_KMEM */
5194 
5195 /*
5196  * The user of this function is...
5197  * RES_LIMIT.
5198  */
5199 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5200 			    const char *buffer)
5201 {
5202 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5203 	enum res_type type;
5204 	int name;
5205 	unsigned long long val;
5206 	int ret;
5207 
5208 	type = MEMFILE_TYPE(cft->private);
5209 	name = MEMFILE_ATTR(cft->private);
5210 
5211 	switch (name) {
5212 	case RES_LIMIT:
5213 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5214 			ret = -EINVAL;
5215 			break;
5216 		}
5217 		/* This function does all necessary parse...reuse it */
5218 		ret = res_counter_memparse_write_strategy(buffer, &val);
5219 		if (ret)
5220 			break;
5221 		if (type == _MEM)
5222 			ret = mem_cgroup_resize_limit(memcg, val);
5223 		else if (type == _MEMSWAP)
5224 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5225 		else if (type == _KMEM)
5226 			ret = memcg_update_kmem_limit(cont, val);
5227 		else
5228 			return -EINVAL;
5229 		break;
5230 	case RES_SOFT_LIMIT:
5231 		ret = res_counter_memparse_write_strategy(buffer, &val);
5232 		if (ret)
5233 			break;
5234 		/*
5235 		 * For memsw, soft limits are hard to implement in terms
5236 		 * of semantics, for now, we support soft limits for
5237 		 * control without swap
5238 		 */
5239 		if (type == _MEM)
5240 			ret = res_counter_set_soft_limit(&memcg->res, val);
5241 		else
5242 			ret = -EINVAL;
5243 		break;
5244 	default:
5245 		ret = -EINVAL; /* should be BUG() ? */
5246 		break;
5247 	}
5248 	return ret;
5249 }
5250 
5251 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5252 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5253 {
5254 	struct cgroup *cgroup;
5255 	unsigned long long min_limit, min_memsw_limit, tmp;
5256 
5257 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5258 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5259 	cgroup = memcg->css.cgroup;
5260 	if (!memcg->use_hierarchy)
5261 		goto out;
5262 
5263 	while (cgroup->parent) {
5264 		cgroup = cgroup->parent;
5265 		memcg = mem_cgroup_from_cont(cgroup);
5266 		if (!memcg->use_hierarchy)
5267 			break;
5268 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5269 		min_limit = min(min_limit, tmp);
5270 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5271 		min_memsw_limit = min(min_memsw_limit, tmp);
5272 	}
5273 out:
5274 	*mem_limit = min_limit;
5275 	*memsw_limit = min_memsw_limit;
5276 }
5277 
5278 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5279 {
5280 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5281 	int name;
5282 	enum res_type type;
5283 
5284 	type = MEMFILE_TYPE(event);
5285 	name = MEMFILE_ATTR(event);
5286 
5287 	switch (name) {
5288 	case RES_MAX_USAGE:
5289 		if (type == _MEM)
5290 			res_counter_reset_max(&memcg->res);
5291 		else if (type == _MEMSWAP)
5292 			res_counter_reset_max(&memcg->memsw);
5293 		else if (type == _KMEM)
5294 			res_counter_reset_max(&memcg->kmem);
5295 		else
5296 			return -EINVAL;
5297 		break;
5298 	case RES_FAILCNT:
5299 		if (type == _MEM)
5300 			res_counter_reset_failcnt(&memcg->res);
5301 		else if (type == _MEMSWAP)
5302 			res_counter_reset_failcnt(&memcg->memsw);
5303 		else if (type == _KMEM)
5304 			res_counter_reset_failcnt(&memcg->kmem);
5305 		else
5306 			return -EINVAL;
5307 		break;
5308 	}
5309 
5310 	return 0;
5311 }
5312 
5313 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5314 					struct cftype *cft)
5315 {
5316 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5317 }
5318 
5319 #ifdef CONFIG_MMU
5320 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5321 					struct cftype *cft, u64 val)
5322 {
5323 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5324 
5325 	if (val >= (1 << NR_MOVE_TYPE))
5326 		return -EINVAL;
5327 
5328 	/*
5329 	 * No kind of locking is needed in here, because ->can_attach() will
5330 	 * check this value once in the beginning of the process, and then carry
5331 	 * on with stale data. This means that changes to this value will only
5332 	 * affect task migrations starting after the change.
5333 	 */
5334 	memcg->move_charge_at_immigrate = val;
5335 	return 0;
5336 }
5337 #else
5338 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5339 					struct cftype *cft, u64 val)
5340 {
5341 	return -ENOSYS;
5342 }
5343 #endif
5344 
5345 #ifdef CONFIG_NUMA
5346 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5347 				      struct seq_file *m)
5348 {
5349 	int nid;
5350 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5351 	unsigned long node_nr;
5352 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5353 
5354 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5355 	seq_printf(m, "total=%lu", total_nr);
5356 	for_each_node_state(nid, N_MEMORY) {
5357 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5358 		seq_printf(m, " N%d=%lu", nid, node_nr);
5359 	}
5360 	seq_putc(m, '\n');
5361 
5362 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5363 	seq_printf(m, "file=%lu", file_nr);
5364 	for_each_node_state(nid, N_MEMORY) {
5365 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5366 				LRU_ALL_FILE);
5367 		seq_printf(m, " N%d=%lu", nid, node_nr);
5368 	}
5369 	seq_putc(m, '\n');
5370 
5371 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5372 	seq_printf(m, "anon=%lu", anon_nr);
5373 	for_each_node_state(nid, N_MEMORY) {
5374 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5375 				LRU_ALL_ANON);
5376 		seq_printf(m, " N%d=%lu", nid, node_nr);
5377 	}
5378 	seq_putc(m, '\n');
5379 
5380 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5381 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5382 	for_each_node_state(nid, N_MEMORY) {
5383 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5384 				BIT(LRU_UNEVICTABLE));
5385 		seq_printf(m, " N%d=%lu", nid, node_nr);
5386 	}
5387 	seq_putc(m, '\n');
5388 	return 0;
5389 }
5390 #endif /* CONFIG_NUMA */
5391 
5392 static inline void mem_cgroup_lru_names_not_uptodate(void)
5393 {
5394 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5395 }
5396 
5397 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5398 				 struct seq_file *m)
5399 {
5400 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5401 	struct mem_cgroup *mi;
5402 	unsigned int i;
5403 
5404 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5405 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5406 			continue;
5407 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5408 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5409 	}
5410 
5411 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5412 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5413 			   mem_cgroup_read_events(memcg, i));
5414 
5415 	for (i = 0; i < NR_LRU_LISTS; i++)
5416 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5417 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5418 
5419 	/* Hierarchical information */
5420 	{
5421 		unsigned long long limit, memsw_limit;
5422 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5423 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5424 		if (do_swap_account)
5425 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5426 				   memsw_limit);
5427 	}
5428 
5429 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5430 		long long val = 0;
5431 
5432 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5433 			continue;
5434 		for_each_mem_cgroup_tree(mi, memcg)
5435 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5436 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5437 	}
5438 
5439 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5440 		unsigned long long val = 0;
5441 
5442 		for_each_mem_cgroup_tree(mi, memcg)
5443 			val += mem_cgroup_read_events(mi, i);
5444 		seq_printf(m, "total_%s %llu\n",
5445 			   mem_cgroup_events_names[i], val);
5446 	}
5447 
5448 	for (i = 0; i < NR_LRU_LISTS; i++) {
5449 		unsigned long long val = 0;
5450 
5451 		for_each_mem_cgroup_tree(mi, memcg)
5452 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5453 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5454 	}
5455 
5456 #ifdef CONFIG_DEBUG_VM
5457 	{
5458 		int nid, zid;
5459 		struct mem_cgroup_per_zone *mz;
5460 		struct zone_reclaim_stat *rstat;
5461 		unsigned long recent_rotated[2] = {0, 0};
5462 		unsigned long recent_scanned[2] = {0, 0};
5463 
5464 		for_each_online_node(nid)
5465 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5466 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5467 				rstat = &mz->lruvec.reclaim_stat;
5468 
5469 				recent_rotated[0] += rstat->recent_rotated[0];
5470 				recent_rotated[1] += rstat->recent_rotated[1];
5471 				recent_scanned[0] += rstat->recent_scanned[0];
5472 				recent_scanned[1] += rstat->recent_scanned[1];
5473 			}
5474 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5475 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5476 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5477 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5478 	}
5479 #endif
5480 
5481 	return 0;
5482 }
5483 
5484 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5485 {
5486 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5487 
5488 	return mem_cgroup_swappiness(memcg);
5489 }
5490 
5491 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5492 				       u64 val)
5493 {
5494 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5495 	struct mem_cgroup *parent;
5496 
5497 	if (val > 100)
5498 		return -EINVAL;
5499 
5500 	if (cgrp->parent == NULL)
5501 		return -EINVAL;
5502 
5503 	parent = mem_cgroup_from_cont(cgrp->parent);
5504 
5505 	mutex_lock(&memcg_create_mutex);
5506 
5507 	/* If under hierarchy, only empty-root can set this value */
5508 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5509 		mutex_unlock(&memcg_create_mutex);
5510 		return -EINVAL;
5511 	}
5512 
5513 	memcg->swappiness = val;
5514 
5515 	mutex_unlock(&memcg_create_mutex);
5516 
5517 	return 0;
5518 }
5519 
5520 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5521 {
5522 	struct mem_cgroup_threshold_ary *t;
5523 	u64 usage;
5524 	int i;
5525 
5526 	rcu_read_lock();
5527 	if (!swap)
5528 		t = rcu_dereference(memcg->thresholds.primary);
5529 	else
5530 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5531 
5532 	if (!t)
5533 		goto unlock;
5534 
5535 	usage = mem_cgroup_usage(memcg, swap);
5536 
5537 	/*
5538 	 * current_threshold points to threshold just below or equal to usage.
5539 	 * If it's not true, a threshold was crossed after last
5540 	 * call of __mem_cgroup_threshold().
5541 	 */
5542 	i = t->current_threshold;
5543 
5544 	/*
5545 	 * Iterate backward over array of thresholds starting from
5546 	 * current_threshold and check if a threshold is crossed.
5547 	 * If none of thresholds below usage is crossed, we read
5548 	 * only one element of the array here.
5549 	 */
5550 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5551 		eventfd_signal(t->entries[i].eventfd, 1);
5552 
5553 	/* i = current_threshold + 1 */
5554 	i++;
5555 
5556 	/*
5557 	 * Iterate forward over array of thresholds starting from
5558 	 * current_threshold+1 and check if a threshold is crossed.
5559 	 * If none of thresholds above usage is crossed, we read
5560 	 * only one element of the array here.
5561 	 */
5562 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5563 		eventfd_signal(t->entries[i].eventfd, 1);
5564 
5565 	/* Update current_threshold */
5566 	t->current_threshold = i - 1;
5567 unlock:
5568 	rcu_read_unlock();
5569 }
5570 
5571 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5572 {
5573 	while (memcg) {
5574 		__mem_cgroup_threshold(memcg, false);
5575 		if (do_swap_account)
5576 			__mem_cgroup_threshold(memcg, true);
5577 
5578 		memcg = parent_mem_cgroup(memcg);
5579 	}
5580 }
5581 
5582 static int compare_thresholds(const void *a, const void *b)
5583 {
5584 	const struct mem_cgroup_threshold *_a = a;
5585 	const struct mem_cgroup_threshold *_b = b;
5586 
5587 	return _a->threshold - _b->threshold;
5588 }
5589 
5590 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5591 {
5592 	struct mem_cgroup_eventfd_list *ev;
5593 
5594 	list_for_each_entry(ev, &memcg->oom_notify, list)
5595 		eventfd_signal(ev->eventfd, 1);
5596 	return 0;
5597 }
5598 
5599 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5600 {
5601 	struct mem_cgroup *iter;
5602 
5603 	for_each_mem_cgroup_tree(iter, memcg)
5604 		mem_cgroup_oom_notify_cb(iter);
5605 }
5606 
5607 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5608 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5609 {
5610 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5611 	struct mem_cgroup_thresholds *thresholds;
5612 	struct mem_cgroup_threshold_ary *new;
5613 	enum res_type type = MEMFILE_TYPE(cft->private);
5614 	u64 threshold, usage;
5615 	int i, size, ret;
5616 
5617 	ret = res_counter_memparse_write_strategy(args, &threshold);
5618 	if (ret)
5619 		return ret;
5620 
5621 	mutex_lock(&memcg->thresholds_lock);
5622 
5623 	if (type == _MEM)
5624 		thresholds = &memcg->thresholds;
5625 	else if (type == _MEMSWAP)
5626 		thresholds = &memcg->memsw_thresholds;
5627 	else
5628 		BUG();
5629 
5630 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5631 
5632 	/* Check if a threshold crossed before adding a new one */
5633 	if (thresholds->primary)
5634 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5635 
5636 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5637 
5638 	/* Allocate memory for new array of thresholds */
5639 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5640 			GFP_KERNEL);
5641 	if (!new) {
5642 		ret = -ENOMEM;
5643 		goto unlock;
5644 	}
5645 	new->size = size;
5646 
5647 	/* Copy thresholds (if any) to new array */
5648 	if (thresholds->primary) {
5649 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5650 				sizeof(struct mem_cgroup_threshold));
5651 	}
5652 
5653 	/* Add new threshold */
5654 	new->entries[size - 1].eventfd = eventfd;
5655 	new->entries[size - 1].threshold = threshold;
5656 
5657 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5658 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5659 			compare_thresholds, NULL);
5660 
5661 	/* Find current threshold */
5662 	new->current_threshold = -1;
5663 	for (i = 0; i < size; i++) {
5664 		if (new->entries[i].threshold <= usage) {
5665 			/*
5666 			 * new->current_threshold will not be used until
5667 			 * rcu_assign_pointer(), so it's safe to increment
5668 			 * it here.
5669 			 */
5670 			++new->current_threshold;
5671 		} else
5672 			break;
5673 	}
5674 
5675 	/* Free old spare buffer and save old primary buffer as spare */
5676 	kfree(thresholds->spare);
5677 	thresholds->spare = thresholds->primary;
5678 
5679 	rcu_assign_pointer(thresholds->primary, new);
5680 
5681 	/* To be sure that nobody uses thresholds */
5682 	synchronize_rcu();
5683 
5684 unlock:
5685 	mutex_unlock(&memcg->thresholds_lock);
5686 
5687 	return ret;
5688 }
5689 
5690 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5691 	struct cftype *cft, struct eventfd_ctx *eventfd)
5692 {
5693 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5694 	struct mem_cgroup_thresholds *thresholds;
5695 	struct mem_cgroup_threshold_ary *new;
5696 	enum res_type type = MEMFILE_TYPE(cft->private);
5697 	u64 usage;
5698 	int i, j, size;
5699 
5700 	mutex_lock(&memcg->thresholds_lock);
5701 	if (type == _MEM)
5702 		thresholds = &memcg->thresholds;
5703 	else if (type == _MEMSWAP)
5704 		thresholds = &memcg->memsw_thresholds;
5705 	else
5706 		BUG();
5707 
5708 	if (!thresholds->primary)
5709 		goto unlock;
5710 
5711 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5712 
5713 	/* Check if a threshold crossed before removing */
5714 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5715 
5716 	/* Calculate new number of threshold */
5717 	size = 0;
5718 	for (i = 0; i < thresholds->primary->size; i++) {
5719 		if (thresholds->primary->entries[i].eventfd != eventfd)
5720 			size++;
5721 	}
5722 
5723 	new = thresholds->spare;
5724 
5725 	/* Set thresholds array to NULL if we don't have thresholds */
5726 	if (!size) {
5727 		kfree(new);
5728 		new = NULL;
5729 		goto swap_buffers;
5730 	}
5731 
5732 	new->size = size;
5733 
5734 	/* Copy thresholds and find current threshold */
5735 	new->current_threshold = -1;
5736 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5737 		if (thresholds->primary->entries[i].eventfd == eventfd)
5738 			continue;
5739 
5740 		new->entries[j] = thresholds->primary->entries[i];
5741 		if (new->entries[j].threshold <= usage) {
5742 			/*
5743 			 * new->current_threshold will not be used
5744 			 * until rcu_assign_pointer(), so it's safe to increment
5745 			 * it here.
5746 			 */
5747 			++new->current_threshold;
5748 		}
5749 		j++;
5750 	}
5751 
5752 swap_buffers:
5753 	/* Swap primary and spare array */
5754 	thresholds->spare = thresholds->primary;
5755 	/* If all events are unregistered, free the spare array */
5756 	if (!new) {
5757 		kfree(thresholds->spare);
5758 		thresholds->spare = NULL;
5759 	}
5760 
5761 	rcu_assign_pointer(thresholds->primary, new);
5762 
5763 	/* To be sure that nobody uses thresholds */
5764 	synchronize_rcu();
5765 unlock:
5766 	mutex_unlock(&memcg->thresholds_lock);
5767 }
5768 
5769 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5770 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5771 {
5772 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5773 	struct mem_cgroup_eventfd_list *event;
5774 	enum res_type type = MEMFILE_TYPE(cft->private);
5775 
5776 	BUG_ON(type != _OOM_TYPE);
5777 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5778 	if (!event)
5779 		return -ENOMEM;
5780 
5781 	spin_lock(&memcg_oom_lock);
5782 
5783 	event->eventfd = eventfd;
5784 	list_add(&event->list, &memcg->oom_notify);
5785 
5786 	/* already in OOM ? */
5787 	if (atomic_read(&memcg->under_oom))
5788 		eventfd_signal(eventfd, 1);
5789 	spin_unlock(&memcg_oom_lock);
5790 
5791 	return 0;
5792 }
5793 
5794 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5795 	struct cftype *cft, struct eventfd_ctx *eventfd)
5796 {
5797 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5798 	struct mem_cgroup_eventfd_list *ev, *tmp;
5799 	enum res_type type = MEMFILE_TYPE(cft->private);
5800 
5801 	BUG_ON(type != _OOM_TYPE);
5802 
5803 	spin_lock(&memcg_oom_lock);
5804 
5805 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5806 		if (ev->eventfd == eventfd) {
5807 			list_del(&ev->list);
5808 			kfree(ev);
5809 		}
5810 	}
5811 
5812 	spin_unlock(&memcg_oom_lock);
5813 }
5814 
5815 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5816 	struct cftype *cft,  struct cgroup_map_cb *cb)
5817 {
5818 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5819 
5820 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5821 
5822 	if (atomic_read(&memcg->under_oom))
5823 		cb->fill(cb, "under_oom", 1);
5824 	else
5825 		cb->fill(cb, "under_oom", 0);
5826 	return 0;
5827 }
5828 
5829 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5830 	struct cftype *cft, u64 val)
5831 {
5832 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5833 	struct mem_cgroup *parent;
5834 
5835 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5836 	if (!cgrp->parent || !((val == 0) || (val == 1)))
5837 		return -EINVAL;
5838 
5839 	parent = mem_cgroup_from_cont(cgrp->parent);
5840 
5841 	mutex_lock(&memcg_create_mutex);
5842 	/* oom-kill-disable is a flag for subhierarchy. */
5843 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5844 		mutex_unlock(&memcg_create_mutex);
5845 		return -EINVAL;
5846 	}
5847 	memcg->oom_kill_disable = val;
5848 	if (!val)
5849 		memcg_oom_recover(memcg);
5850 	mutex_unlock(&memcg_create_mutex);
5851 	return 0;
5852 }
5853 
5854 #ifdef CONFIG_MEMCG_KMEM
5855 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5856 {
5857 	int ret;
5858 
5859 	memcg->kmemcg_id = -1;
5860 	ret = memcg_propagate_kmem(memcg);
5861 	if (ret)
5862 		return ret;
5863 
5864 	return mem_cgroup_sockets_init(memcg, ss);
5865 }
5866 
5867 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5868 {
5869 	mem_cgroup_sockets_destroy(memcg);
5870 
5871 	memcg_kmem_mark_dead(memcg);
5872 
5873 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5874 		return;
5875 
5876 	/*
5877 	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5878 	 * path here, being careful not to race with memcg_uncharge_kmem: it is
5879 	 * possible that the charges went down to 0 between mark_dead and the
5880 	 * res_counter read, so in that case, we don't need the put
5881 	 */
5882 	if (memcg_kmem_test_and_clear_dead(memcg))
5883 		mem_cgroup_put(memcg);
5884 }
5885 #else
5886 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5887 {
5888 	return 0;
5889 }
5890 
5891 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5892 {
5893 }
5894 #endif
5895 
5896 static struct cftype mem_cgroup_files[] = {
5897 	{
5898 		.name = "usage_in_bytes",
5899 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5900 		.read = mem_cgroup_read,
5901 		.register_event = mem_cgroup_usage_register_event,
5902 		.unregister_event = mem_cgroup_usage_unregister_event,
5903 	},
5904 	{
5905 		.name = "max_usage_in_bytes",
5906 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5907 		.trigger = mem_cgroup_reset,
5908 		.read = mem_cgroup_read,
5909 	},
5910 	{
5911 		.name = "limit_in_bytes",
5912 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5913 		.write_string = mem_cgroup_write,
5914 		.read = mem_cgroup_read,
5915 	},
5916 	{
5917 		.name = "soft_limit_in_bytes",
5918 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5919 		.write_string = mem_cgroup_write,
5920 		.read = mem_cgroup_read,
5921 	},
5922 	{
5923 		.name = "failcnt",
5924 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5925 		.trigger = mem_cgroup_reset,
5926 		.read = mem_cgroup_read,
5927 	},
5928 	{
5929 		.name = "stat",
5930 		.read_seq_string = memcg_stat_show,
5931 	},
5932 	{
5933 		.name = "force_empty",
5934 		.trigger = mem_cgroup_force_empty_write,
5935 	},
5936 	{
5937 		.name = "use_hierarchy",
5938 		.flags = CFTYPE_INSANE,
5939 		.write_u64 = mem_cgroup_hierarchy_write,
5940 		.read_u64 = mem_cgroup_hierarchy_read,
5941 	},
5942 	{
5943 		.name = "swappiness",
5944 		.read_u64 = mem_cgroup_swappiness_read,
5945 		.write_u64 = mem_cgroup_swappiness_write,
5946 	},
5947 	{
5948 		.name = "move_charge_at_immigrate",
5949 		.read_u64 = mem_cgroup_move_charge_read,
5950 		.write_u64 = mem_cgroup_move_charge_write,
5951 	},
5952 	{
5953 		.name = "oom_control",
5954 		.read_map = mem_cgroup_oom_control_read,
5955 		.write_u64 = mem_cgroup_oom_control_write,
5956 		.register_event = mem_cgroup_oom_register_event,
5957 		.unregister_event = mem_cgroup_oom_unregister_event,
5958 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5959 	},
5960 	{
5961 		.name = "pressure_level",
5962 		.register_event = vmpressure_register_event,
5963 		.unregister_event = vmpressure_unregister_event,
5964 	},
5965 #ifdef CONFIG_NUMA
5966 	{
5967 		.name = "numa_stat",
5968 		.read_seq_string = memcg_numa_stat_show,
5969 	},
5970 #endif
5971 #ifdef CONFIG_MEMCG_KMEM
5972 	{
5973 		.name = "kmem.limit_in_bytes",
5974 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5975 		.write_string = mem_cgroup_write,
5976 		.read = mem_cgroup_read,
5977 	},
5978 	{
5979 		.name = "kmem.usage_in_bytes",
5980 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5981 		.read = mem_cgroup_read,
5982 	},
5983 	{
5984 		.name = "kmem.failcnt",
5985 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5986 		.trigger = mem_cgroup_reset,
5987 		.read = mem_cgroup_read,
5988 	},
5989 	{
5990 		.name = "kmem.max_usage_in_bytes",
5991 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5992 		.trigger = mem_cgroup_reset,
5993 		.read = mem_cgroup_read,
5994 	},
5995 #ifdef CONFIG_SLABINFO
5996 	{
5997 		.name = "kmem.slabinfo",
5998 		.read_seq_string = mem_cgroup_slabinfo_read,
5999 	},
6000 #endif
6001 #endif
6002 	{ },	/* terminate */
6003 };
6004 
6005 #ifdef CONFIG_MEMCG_SWAP
6006 static struct cftype memsw_cgroup_files[] = {
6007 	{
6008 		.name = "memsw.usage_in_bytes",
6009 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6010 		.read = mem_cgroup_read,
6011 		.register_event = mem_cgroup_usage_register_event,
6012 		.unregister_event = mem_cgroup_usage_unregister_event,
6013 	},
6014 	{
6015 		.name = "memsw.max_usage_in_bytes",
6016 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6017 		.trigger = mem_cgroup_reset,
6018 		.read = mem_cgroup_read,
6019 	},
6020 	{
6021 		.name = "memsw.limit_in_bytes",
6022 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6023 		.write_string = mem_cgroup_write,
6024 		.read = mem_cgroup_read,
6025 	},
6026 	{
6027 		.name = "memsw.failcnt",
6028 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6029 		.trigger = mem_cgroup_reset,
6030 		.read = mem_cgroup_read,
6031 	},
6032 	{ },	/* terminate */
6033 };
6034 #endif
6035 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6036 {
6037 	struct mem_cgroup_per_node *pn;
6038 	struct mem_cgroup_per_zone *mz;
6039 	int zone, tmp = node;
6040 	/*
6041 	 * This routine is called against possible nodes.
6042 	 * But it's BUG to call kmalloc() against offline node.
6043 	 *
6044 	 * TODO: this routine can waste much memory for nodes which will
6045 	 *       never be onlined. It's better to use memory hotplug callback
6046 	 *       function.
6047 	 */
6048 	if (!node_state(node, N_NORMAL_MEMORY))
6049 		tmp = -1;
6050 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6051 	if (!pn)
6052 		return 1;
6053 
6054 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6055 		mz = &pn->zoneinfo[zone];
6056 		lruvec_init(&mz->lruvec);
6057 		mz->usage_in_excess = 0;
6058 		mz->on_tree = false;
6059 		mz->memcg = memcg;
6060 	}
6061 	memcg->info.nodeinfo[node] = pn;
6062 	return 0;
6063 }
6064 
6065 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6066 {
6067 	kfree(memcg->info.nodeinfo[node]);
6068 }
6069 
6070 static struct mem_cgroup *mem_cgroup_alloc(void)
6071 {
6072 	struct mem_cgroup *memcg;
6073 	size_t size = memcg_size();
6074 
6075 	/* Can be very big if nr_node_ids is very big */
6076 	if (size < PAGE_SIZE)
6077 		memcg = kzalloc(size, GFP_KERNEL);
6078 	else
6079 		memcg = vzalloc(size);
6080 
6081 	if (!memcg)
6082 		return NULL;
6083 
6084 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6085 	if (!memcg->stat)
6086 		goto out_free;
6087 	spin_lock_init(&memcg->pcp_counter_lock);
6088 	return memcg;
6089 
6090 out_free:
6091 	if (size < PAGE_SIZE)
6092 		kfree(memcg);
6093 	else
6094 		vfree(memcg);
6095 	return NULL;
6096 }
6097 
6098 /*
6099  * At destroying mem_cgroup, references from swap_cgroup can remain.
6100  * (scanning all at force_empty is too costly...)
6101  *
6102  * Instead of clearing all references at force_empty, we remember
6103  * the number of reference from swap_cgroup and free mem_cgroup when
6104  * it goes down to 0.
6105  *
6106  * Removal of cgroup itself succeeds regardless of refs from swap.
6107  */
6108 
6109 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6110 {
6111 	int node;
6112 	size_t size = memcg_size();
6113 
6114 	mem_cgroup_remove_from_trees(memcg);
6115 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6116 
6117 	for_each_node(node)
6118 		free_mem_cgroup_per_zone_info(memcg, node);
6119 
6120 	free_percpu(memcg->stat);
6121 
6122 	/*
6123 	 * We need to make sure that (at least for now), the jump label
6124 	 * destruction code runs outside of the cgroup lock. This is because
6125 	 * get_online_cpus(), which is called from the static_branch update,
6126 	 * can't be called inside the cgroup_lock. cpusets are the ones
6127 	 * enforcing this dependency, so if they ever change, we might as well.
6128 	 *
6129 	 * schedule_work() will guarantee this happens. Be careful if you need
6130 	 * to move this code around, and make sure it is outside
6131 	 * the cgroup_lock.
6132 	 */
6133 	disarm_static_keys(memcg);
6134 	if (size < PAGE_SIZE)
6135 		kfree(memcg);
6136 	else
6137 		vfree(memcg);
6138 }
6139 
6140 
6141 /*
6142  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6143  * but in process context.  The work_freeing structure is overlaid
6144  * on the rcu_freeing structure, which itself is overlaid on memsw.
6145  */
6146 static void free_work(struct work_struct *work)
6147 {
6148 	struct mem_cgroup *memcg;
6149 
6150 	memcg = container_of(work, struct mem_cgroup, work_freeing);
6151 	__mem_cgroup_free(memcg);
6152 }
6153 
6154 static void free_rcu(struct rcu_head *rcu_head)
6155 {
6156 	struct mem_cgroup *memcg;
6157 
6158 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6159 	INIT_WORK(&memcg->work_freeing, free_work);
6160 	schedule_work(&memcg->work_freeing);
6161 }
6162 
6163 static void mem_cgroup_get(struct mem_cgroup *memcg)
6164 {
6165 	atomic_inc(&memcg->refcnt);
6166 }
6167 
6168 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6169 {
6170 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
6171 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6172 		call_rcu(&memcg->rcu_freeing, free_rcu);
6173 		if (parent)
6174 			mem_cgroup_put(parent);
6175 	}
6176 }
6177 
6178 static void mem_cgroup_put(struct mem_cgroup *memcg)
6179 {
6180 	__mem_cgroup_put(memcg, 1);
6181 }
6182 
6183 /*
6184  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6185  */
6186 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6187 {
6188 	if (!memcg->res.parent)
6189 		return NULL;
6190 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6191 }
6192 EXPORT_SYMBOL(parent_mem_cgroup);
6193 
6194 static void __init mem_cgroup_soft_limit_tree_init(void)
6195 {
6196 	struct mem_cgroup_tree_per_node *rtpn;
6197 	struct mem_cgroup_tree_per_zone *rtpz;
6198 	int tmp, node, zone;
6199 
6200 	for_each_node(node) {
6201 		tmp = node;
6202 		if (!node_state(node, N_NORMAL_MEMORY))
6203 			tmp = -1;
6204 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6205 		BUG_ON(!rtpn);
6206 
6207 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6208 
6209 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6210 			rtpz = &rtpn->rb_tree_per_zone[zone];
6211 			rtpz->rb_root = RB_ROOT;
6212 			spin_lock_init(&rtpz->lock);
6213 		}
6214 	}
6215 }
6216 
6217 static struct cgroup_subsys_state * __ref
6218 mem_cgroup_css_alloc(struct cgroup *cont)
6219 {
6220 	struct mem_cgroup *memcg;
6221 	long error = -ENOMEM;
6222 	int node;
6223 
6224 	memcg = mem_cgroup_alloc();
6225 	if (!memcg)
6226 		return ERR_PTR(error);
6227 
6228 	for_each_node(node)
6229 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6230 			goto free_out;
6231 
6232 	/* root ? */
6233 	if (cont->parent == NULL) {
6234 		root_mem_cgroup = memcg;
6235 		res_counter_init(&memcg->res, NULL);
6236 		res_counter_init(&memcg->memsw, NULL);
6237 		res_counter_init(&memcg->kmem, NULL);
6238 	}
6239 
6240 	memcg->last_scanned_node = MAX_NUMNODES;
6241 	INIT_LIST_HEAD(&memcg->oom_notify);
6242 	atomic_set(&memcg->refcnt, 1);
6243 	memcg->move_charge_at_immigrate = 0;
6244 	mutex_init(&memcg->thresholds_lock);
6245 	spin_lock_init(&memcg->move_lock);
6246 	vmpressure_init(&memcg->vmpressure);
6247 
6248 	return &memcg->css;
6249 
6250 free_out:
6251 	__mem_cgroup_free(memcg);
6252 	return ERR_PTR(error);
6253 }
6254 
6255 static int
6256 mem_cgroup_css_online(struct cgroup *cont)
6257 {
6258 	struct mem_cgroup *memcg, *parent;
6259 	int error = 0;
6260 
6261 	if (!cont->parent)
6262 		return 0;
6263 
6264 	mutex_lock(&memcg_create_mutex);
6265 	memcg = mem_cgroup_from_cont(cont);
6266 	parent = mem_cgroup_from_cont(cont->parent);
6267 
6268 	memcg->use_hierarchy = parent->use_hierarchy;
6269 	memcg->oom_kill_disable = parent->oom_kill_disable;
6270 	memcg->swappiness = mem_cgroup_swappiness(parent);
6271 
6272 	if (parent->use_hierarchy) {
6273 		res_counter_init(&memcg->res, &parent->res);
6274 		res_counter_init(&memcg->memsw, &parent->memsw);
6275 		res_counter_init(&memcg->kmem, &parent->kmem);
6276 
6277 		/*
6278 		 * We increment refcnt of the parent to ensure that we can
6279 		 * safely access it on res_counter_charge/uncharge.
6280 		 * This refcnt will be decremented when freeing this
6281 		 * mem_cgroup(see mem_cgroup_put).
6282 		 */
6283 		mem_cgroup_get(parent);
6284 	} else {
6285 		res_counter_init(&memcg->res, NULL);
6286 		res_counter_init(&memcg->memsw, NULL);
6287 		res_counter_init(&memcg->kmem, NULL);
6288 		/*
6289 		 * Deeper hierachy with use_hierarchy == false doesn't make
6290 		 * much sense so let cgroup subsystem know about this
6291 		 * unfortunate state in our controller.
6292 		 */
6293 		if (parent != root_mem_cgroup)
6294 			mem_cgroup_subsys.broken_hierarchy = true;
6295 	}
6296 
6297 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6298 	mutex_unlock(&memcg_create_mutex);
6299 	if (error) {
6300 		/*
6301 		 * We call put now because our (and parent's) refcnts
6302 		 * are already in place. mem_cgroup_put() will internally
6303 		 * call __mem_cgroup_free, so return directly
6304 		 */
6305 		mem_cgroup_put(memcg);
6306 		if (parent->use_hierarchy)
6307 			mem_cgroup_put(parent);
6308 	}
6309 	return error;
6310 }
6311 
6312 /*
6313  * Announce all parents that a group from their hierarchy is gone.
6314  */
6315 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6316 {
6317 	struct mem_cgroup *parent = memcg;
6318 
6319 	while ((parent = parent_mem_cgroup(parent)))
6320 		atomic_inc(&parent->dead_count);
6321 
6322 	/*
6323 	 * if the root memcg is not hierarchical we have to check it
6324 	 * explicitely.
6325 	 */
6326 	if (!root_mem_cgroup->use_hierarchy)
6327 		atomic_inc(&root_mem_cgroup->dead_count);
6328 }
6329 
6330 static void mem_cgroup_css_offline(struct cgroup *cont)
6331 {
6332 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6333 
6334 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6335 	mem_cgroup_reparent_charges(memcg);
6336 	mem_cgroup_destroy_all_caches(memcg);
6337 }
6338 
6339 static void mem_cgroup_css_free(struct cgroup *cont)
6340 {
6341 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6342 
6343 	kmem_cgroup_destroy(memcg);
6344 
6345 	mem_cgroup_put(memcg);
6346 }
6347 
6348 #ifdef CONFIG_MMU
6349 /* Handlers for move charge at task migration. */
6350 #define PRECHARGE_COUNT_AT_ONCE	256
6351 static int mem_cgroup_do_precharge(unsigned long count)
6352 {
6353 	int ret = 0;
6354 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6355 	struct mem_cgroup *memcg = mc.to;
6356 
6357 	if (mem_cgroup_is_root(memcg)) {
6358 		mc.precharge += count;
6359 		/* we don't need css_get for root */
6360 		return ret;
6361 	}
6362 	/* try to charge at once */
6363 	if (count > 1) {
6364 		struct res_counter *dummy;
6365 		/*
6366 		 * "memcg" cannot be under rmdir() because we've already checked
6367 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6368 		 * are still under the same cgroup_mutex. So we can postpone
6369 		 * css_get().
6370 		 */
6371 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6372 			goto one_by_one;
6373 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6374 						PAGE_SIZE * count, &dummy)) {
6375 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6376 			goto one_by_one;
6377 		}
6378 		mc.precharge += count;
6379 		return ret;
6380 	}
6381 one_by_one:
6382 	/* fall back to one by one charge */
6383 	while (count--) {
6384 		if (signal_pending(current)) {
6385 			ret = -EINTR;
6386 			break;
6387 		}
6388 		if (!batch_count--) {
6389 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6390 			cond_resched();
6391 		}
6392 		ret = __mem_cgroup_try_charge(NULL,
6393 					GFP_KERNEL, 1, &memcg, false);
6394 		if (ret)
6395 			/* mem_cgroup_clear_mc() will do uncharge later */
6396 			return ret;
6397 		mc.precharge++;
6398 	}
6399 	return ret;
6400 }
6401 
6402 /**
6403  * get_mctgt_type - get target type of moving charge
6404  * @vma: the vma the pte to be checked belongs
6405  * @addr: the address corresponding to the pte to be checked
6406  * @ptent: the pte to be checked
6407  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6408  *
6409  * Returns
6410  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6411  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6412  *     move charge. if @target is not NULL, the page is stored in target->page
6413  *     with extra refcnt got(Callers should handle it).
6414  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6415  *     target for charge migration. if @target is not NULL, the entry is stored
6416  *     in target->ent.
6417  *
6418  * Called with pte lock held.
6419  */
6420 union mc_target {
6421 	struct page	*page;
6422 	swp_entry_t	ent;
6423 };
6424 
6425 enum mc_target_type {
6426 	MC_TARGET_NONE = 0,
6427 	MC_TARGET_PAGE,
6428 	MC_TARGET_SWAP,
6429 };
6430 
6431 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6432 						unsigned long addr, pte_t ptent)
6433 {
6434 	struct page *page = vm_normal_page(vma, addr, ptent);
6435 
6436 	if (!page || !page_mapped(page))
6437 		return NULL;
6438 	if (PageAnon(page)) {
6439 		/* we don't move shared anon */
6440 		if (!move_anon())
6441 			return NULL;
6442 	} else if (!move_file())
6443 		/* we ignore mapcount for file pages */
6444 		return NULL;
6445 	if (!get_page_unless_zero(page))
6446 		return NULL;
6447 
6448 	return page;
6449 }
6450 
6451 #ifdef CONFIG_SWAP
6452 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6453 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6454 {
6455 	struct page *page = NULL;
6456 	swp_entry_t ent = pte_to_swp_entry(ptent);
6457 
6458 	if (!move_anon() || non_swap_entry(ent))
6459 		return NULL;
6460 	/*
6461 	 * Because lookup_swap_cache() updates some statistics counter,
6462 	 * we call find_get_page() with swapper_space directly.
6463 	 */
6464 	page = find_get_page(swap_address_space(ent), ent.val);
6465 	if (do_swap_account)
6466 		entry->val = ent.val;
6467 
6468 	return page;
6469 }
6470 #else
6471 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6472 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6473 {
6474 	return NULL;
6475 }
6476 #endif
6477 
6478 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6479 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6480 {
6481 	struct page *page = NULL;
6482 	struct address_space *mapping;
6483 	pgoff_t pgoff;
6484 
6485 	if (!vma->vm_file) /* anonymous vma */
6486 		return NULL;
6487 	if (!move_file())
6488 		return NULL;
6489 
6490 	mapping = vma->vm_file->f_mapping;
6491 	if (pte_none(ptent))
6492 		pgoff = linear_page_index(vma, addr);
6493 	else /* pte_file(ptent) is true */
6494 		pgoff = pte_to_pgoff(ptent);
6495 
6496 	/* page is moved even if it's not RSS of this task(page-faulted). */
6497 	page = find_get_page(mapping, pgoff);
6498 
6499 #ifdef CONFIG_SWAP
6500 	/* shmem/tmpfs may report page out on swap: account for that too. */
6501 	if (radix_tree_exceptional_entry(page)) {
6502 		swp_entry_t swap = radix_to_swp_entry(page);
6503 		if (do_swap_account)
6504 			*entry = swap;
6505 		page = find_get_page(swap_address_space(swap), swap.val);
6506 	}
6507 #endif
6508 	return page;
6509 }
6510 
6511 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6512 		unsigned long addr, pte_t ptent, union mc_target *target)
6513 {
6514 	struct page *page = NULL;
6515 	struct page_cgroup *pc;
6516 	enum mc_target_type ret = MC_TARGET_NONE;
6517 	swp_entry_t ent = { .val = 0 };
6518 
6519 	if (pte_present(ptent))
6520 		page = mc_handle_present_pte(vma, addr, ptent);
6521 	else if (is_swap_pte(ptent))
6522 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6523 	else if (pte_none(ptent) || pte_file(ptent))
6524 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6525 
6526 	if (!page && !ent.val)
6527 		return ret;
6528 	if (page) {
6529 		pc = lookup_page_cgroup(page);
6530 		/*
6531 		 * Do only loose check w/o page_cgroup lock.
6532 		 * mem_cgroup_move_account() checks the pc is valid or not under
6533 		 * the lock.
6534 		 */
6535 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6536 			ret = MC_TARGET_PAGE;
6537 			if (target)
6538 				target->page = page;
6539 		}
6540 		if (!ret || !target)
6541 			put_page(page);
6542 	}
6543 	/* There is a swap entry and a page doesn't exist or isn't charged */
6544 	if (ent.val && !ret &&
6545 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6546 		ret = MC_TARGET_SWAP;
6547 		if (target)
6548 			target->ent = ent;
6549 	}
6550 	return ret;
6551 }
6552 
6553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6554 /*
6555  * We don't consider swapping or file mapped pages because THP does not
6556  * support them for now.
6557  * Caller should make sure that pmd_trans_huge(pmd) is true.
6558  */
6559 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6560 		unsigned long addr, pmd_t pmd, union mc_target *target)
6561 {
6562 	struct page *page = NULL;
6563 	struct page_cgroup *pc;
6564 	enum mc_target_type ret = MC_TARGET_NONE;
6565 
6566 	page = pmd_page(pmd);
6567 	VM_BUG_ON(!page || !PageHead(page));
6568 	if (!move_anon())
6569 		return ret;
6570 	pc = lookup_page_cgroup(page);
6571 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6572 		ret = MC_TARGET_PAGE;
6573 		if (target) {
6574 			get_page(page);
6575 			target->page = page;
6576 		}
6577 	}
6578 	return ret;
6579 }
6580 #else
6581 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6582 		unsigned long addr, pmd_t pmd, union mc_target *target)
6583 {
6584 	return MC_TARGET_NONE;
6585 }
6586 #endif
6587 
6588 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6589 					unsigned long addr, unsigned long end,
6590 					struct mm_walk *walk)
6591 {
6592 	struct vm_area_struct *vma = walk->private;
6593 	pte_t *pte;
6594 	spinlock_t *ptl;
6595 
6596 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6597 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6598 			mc.precharge += HPAGE_PMD_NR;
6599 		spin_unlock(&vma->vm_mm->page_table_lock);
6600 		return 0;
6601 	}
6602 
6603 	if (pmd_trans_unstable(pmd))
6604 		return 0;
6605 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6606 	for (; addr != end; pte++, addr += PAGE_SIZE)
6607 		if (get_mctgt_type(vma, addr, *pte, NULL))
6608 			mc.precharge++;	/* increment precharge temporarily */
6609 	pte_unmap_unlock(pte - 1, ptl);
6610 	cond_resched();
6611 
6612 	return 0;
6613 }
6614 
6615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6616 {
6617 	unsigned long precharge;
6618 	struct vm_area_struct *vma;
6619 
6620 	down_read(&mm->mmap_sem);
6621 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6622 		struct mm_walk mem_cgroup_count_precharge_walk = {
6623 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6624 			.mm = mm,
6625 			.private = vma,
6626 		};
6627 		if (is_vm_hugetlb_page(vma))
6628 			continue;
6629 		walk_page_range(vma->vm_start, vma->vm_end,
6630 					&mem_cgroup_count_precharge_walk);
6631 	}
6632 	up_read(&mm->mmap_sem);
6633 
6634 	precharge = mc.precharge;
6635 	mc.precharge = 0;
6636 
6637 	return precharge;
6638 }
6639 
6640 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6641 {
6642 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6643 
6644 	VM_BUG_ON(mc.moving_task);
6645 	mc.moving_task = current;
6646 	return mem_cgroup_do_precharge(precharge);
6647 }
6648 
6649 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6650 static void __mem_cgroup_clear_mc(void)
6651 {
6652 	struct mem_cgroup *from = mc.from;
6653 	struct mem_cgroup *to = mc.to;
6654 
6655 	/* we must uncharge all the leftover precharges from mc.to */
6656 	if (mc.precharge) {
6657 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6658 		mc.precharge = 0;
6659 	}
6660 	/*
6661 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6662 	 * we must uncharge here.
6663 	 */
6664 	if (mc.moved_charge) {
6665 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6666 		mc.moved_charge = 0;
6667 	}
6668 	/* we must fixup refcnts and charges */
6669 	if (mc.moved_swap) {
6670 		/* uncharge swap account from the old cgroup */
6671 		if (!mem_cgroup_is_root(mc.from))
6672 			res_counter_uncharge(&mc.from->memsw,
6673 						PAGE_SIZE * mc.moved_swap);
6674 		__mem_cgroup_put(mc.from, mc.moved_swap);
6675 
6676 		if (!mem_cgroup_is_root(mc.to)) {
6677 			/*
6678 			 * we charged both to->res and to->memsw, so we should
6679 			 * uncharge to->res.
6680 			 */
6681 			res_counter_uncharge(&mc.to->res,
6682 						PAGE_SIZE * mc.moved_swap);
6683 		}
6684 		/* we've already done mem_cgroup_get(mc.to) */
6685 		mc.moved_swap = 0;
6686 	}
6687 	memcg_oom_recover(from);
6688 	memcg_oom_recover(to);
6689 	wake_up_all(&mc.waitq);
6690 }
6691 
6692 static void mem_cgroup_clear_mc(void)
6693 {
6694 	struct mem_cgroup *from = mc.from;
6695 
6696 	/*
6697 	 * we must clear moving_task before waking up waiters at the end of
6698 	 * task migration.
6699 	 */
6700 	mc.moving_task = NULL;
6701 	__mem_cgroup_clear_mc();
6702 	spin_lock(&mc.lock);
6703 	mc.from = NULL;
6704 	mc.to = NULL;
6705 	spin_unlock(&mc.lock);
6706 	mem_cgroup_end_move(from);
6707 }
6708 
6709 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6710 				 struct cgroup_taskset *tset)
6711 {
6712 	struct task_struct *p = cgroup_taskset_first(tset);
6713 	int ret = 0;
6714 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6715 	unsigned long move_charge_at_immigrate;
6716 
6717 	/*
6718 	 * We are now commited to this value whatever it is. Changes in this
6719 	 * tunable will only affect upcoming migrations, not the current one.
6720 	 * So we need to save it, and keep it going.
6721 	 */
6722 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6723 	if (move_charge_at_immigrate) {
6724 		struct mm_struct *mm;
6725 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6726 
6727 		VM_BUG_ON(from == memcg);
6728 
6729 		mm = get_task_mm(p);
6730 		if (!mm)
6731 			return 0;
6732 		/* We move charges only when we move a owner of the mm */
6733 		if (mm->owner == p) {
6734 			VM_BUG_ON(mc.from);
6735 			VM_BUG_ON(mc.to);
6736 			VM_BUG_ON(mc.precharge);
6737 			VM_BUG_ON(mc.moved_charge);
6738 			VM_BUG_ON(mc.moved_swap);
6739 			mem_cgroup_start_move(from);
6740 			spin_lock(&mc.lock);
6741 			mc.from = from;
6742 			mc.to = memcg;
6743 			mc.immigrate_flags = move_charge_at_immigrate;
6744 			spin_unlock(&mc.lock);
6745 			/* We set mc.moving_task later */
6746 
6747 			ret = mem_cgroup_precharge_mc(mm);
6748 			if (ret)
6749 				mem_cgroup_clear_mc();
6750 		}
6751 		mmput(mm);
6752 	}
6753 	return ret;
6754 }
6755 
6756 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6757 				     struct cgroup_taskset *tset)
6758 {
6759 	mem_cgroup_clear_mc();
6760 }
6761 
6762 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6763 				unsigned long addr, unsigned long end,
6764 				struct mm_walk *walk)
6765 {
6766 	int ret = 0;
6767 	struct vm_area_struct *vma = walk->private;
6768 	pte_t *pte;
6769 	spinlock_t *ptl;
6770 	enum mc_target_type target_type;
6771 	union mc_target target;
6772 	struct page *page;
6773 	struct page_cgroup *pc;
6774 
6775 	/*
6776 	 * We don't take compound_lock() here but no race with splitting thp
6777 	 * happens because:
6778 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6779 	 *    under splitting, which means there's no concurrent thp split,
6780 	 *  - if another thread runs into split_huge_page() just after we
6781 	 *    entered this if-block, the thread must wait for page table lock
6782 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6783 	 *    part of thp split is not executed yet.
6784 	 */
6785 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6786 		if (mc.precharge < HPAGE_PMD_NR) {
6787 			spin_unlock(&vma->vm_mm->page_table_lock);
6788 			return 0;
6789 		}
6790 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6791 		if (target_type == MC_TARGET_PAGE) {
6792 			page = target.page;
6793 			if (!isolate_lru_page(page)) {
6794 				pc = lookup_page_cgroup(page);
6795 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6796 							pc, mc.from, mc.to)) {
6797 					mc.precharge -= HPAGE_PMD_NR;
6798 					mc.moved_charge += HPAGE_PMD_NR;
6799 				}
6800 				putback_lru_page(page);
6801 			}
6802 			put_page(page);
6803 		}
6804 		spin_unlock(&vma->vm_mm->page_table_lock);
6805 		return 0;
6806 	}
6807 
6808 	if (pmd_trans_unstable(pmd))
6809 		return 0;
6810 retry:
6811 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6812 	for (; addr != end; addr += PAGE_SIZE) {
6813 		pte_t ptent = *(pte++);
6814 		swp_entry_t ent;
6815 
6816 		if (!mc.precharge)
6817 			break;
6818 
6819 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6820 		case MC_TARGET_PAGE:
6821 			page = target.page;
6822 			if (isolate_lru_page(page))
6823 				goto put;
6824 			pc = lookup_page_cgroup(page);
6825 			if (!mem_cgroup_move_account(page, 1, pc,
6826 						     mc.from, mc.to)) {
6827 				mc.precharge--;
6828 				/* we uncharge from mc.from later. */
6829 				mc.moved_charge++;
6830 			}
6831 			putback_lru_page(page);
6832 put:			/* get_mctgt_type() gets the page */
6833 			put_page(page);
6834 			break;
6835 		case MC_TARGET_SWAP:
6836 			ent = target.ent;
6837 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6838 				mc.precharge--;
6839 				/* we fixup refcnts and charges later. */
6840 				mc.moved_swap++;
6841 			}
6842 			break;
6843 		default:
6844 			break;
6845 		}
6846 	}
6847 	pte_unmap_unlock(pte - 1, ptl);
6848 	cond_resched();
6849 
6850 	if (addr != end) {
6851 		/*
6852 		 * We have consumed all precharges we got in can_attach().
6853 		 * We try charge one by one, but don't do any additional
6854 		 * charges to mc.to if we have failed in charge once in attach()
6855 		 * phase.
6856 		 */
6857 		ret = mem_cgroup_do_precharge(1);
6858 		if (!ret)
6859 			goto retry;
6860 	}
6861 
6862 	return ret;
6863 }
6864 
6865 static void mem_cgroup_move_charge(struct mm_struct *mm)
6866 {
6867 	struct vm_area_struct *vma;
6868 
6869 	lru_add_drain_all();
6870 retry:
6871 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6872 		/*
6873 		 * Someone who are holding the mmap_sem might be waiting in
6874 		 * waitq. So we cancel all extra charges, wake up all waiters,
6875 		 * and retry. Because we cancel precharges, we might not be able
6876 		 * to move enough charges, but moving charge is a best-effort
6877 		 * feature anyway, so it wouldn't be a big problem.
6878 		 */
6879 		__mem_cgroup_clear_mc();
6880 		cond_resched();
6881 		goto retry;
6882 	}
6883 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6884 		int ret;
6885 		struct mm_walk mem_cgroup_move_charge_walk = {
6886 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6887 			.mm = mm,
6888 			.private = vma,
6889 		};
6890 		if (is_vm_hugetlb_page(vma))
6891 			continue;
6892 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6893 						&mem_cgroup_move_charge_walk);
6894 		if (ret)
6895 			/*
6896 			 * means we have consumed all precharges and failed in
6897 			 * doing additional charge. Just abandon here.
6898 			 */
6899 			break;
6900 	}
6901 	up_read(&mm->mmap_sem);
6902 }
6903 
6904 static void mem_cgroup_move_task(struct cgroup *cont,
6905 				 struct cgroup_taskset *tset)
6906 {
6907 	struct task_struct *p = cgroup_taskset_first(tset);
6908 	struct mm_struct *mm = get_task_mm(p);
6909 
6910 	if (mm) {
6911 		if (mc.to)
6912 			mem_cgroup_move_charge(mm);
6913 		mmput(mm);
6914 	}
6915 	if (mc.to)
6916 		mem_cgroup_clear_mc();
6917 }
6918 #else	/* !CONFIG_MMU */
6919 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6920 				 struct cgroup_taskset *tset)
6921 {
6922 	return 0;
6923 }
6924 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6925 				     struct cgroup_taskset *tset)
6926 {
6927 }
6928 static void mem_cgroup_move_task(struct cgroup *cont,
6929 				 struct cgroup_taskset *tset)
6930 {
6931 }
6932 #endif
6933 
6934 /*
6935  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6936  * to verify sane_behavior flag on each mount attempt.
6937  */
6938 static void mem_cgroup_bind(struct cgroup *root)
6939 {
6940 	/*
6941 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6942 	 * guarantees that @root doesn't have any children, so turning it
6943 	 * on for the root memcg is enough.
6944 	 */
6945 	if (cgroup_sane_behavior(root))
6946 		mem_cgroup_from_cont(root)->use_hierarchy = true;
6947 }
6948 
6949 struct cgroup_subsys mem_cgroup_subsys = {
6950 	.name = "memory",
6951 	.subsys_id = mem_cgroup_subsys_id,
6952 	.css_alloc = mem_cgroup_css_alloc,
6953 	.css_online = mem_cgroup_css_online,
6954 	.css_offline = mem_cgroup_css_offline,
6955 	.css_free = mem_cgroup_css_free,
6956 	.can_attach = mem_cgroup_can_attach,
6957 	.cancel_attach = mem_cgroup_cancel_attach,
6958 	.attach = mem_cgroup_move_task,
6959 	.bind = mem_cgroup_bind,
6960 	.base_cftypes = mem_cgroup_files,
6961 	.early_init = 0,
6962 	.use_id = 1,
6963 };
6964 
6965 #ifdef CONFIG_MEMCG_SWAP
6966 static int __init enable_swap_account(char *s)
6967 {
6968 	/* consider enabled if no parameter or 1 is given */
6969 	if (!strcmp(s, "1"))
6970 		really_do_swap_account = 1;
6971 	else if (!strcmp(s, "0"))
6972 		really_do_swap_account = 0;
6973 	return 1;
6974 }
6975 __setup("swapaccount=", enable_swap_account);
6976 
6977 static void __init memsw_file_init(void)
6978 {
6979 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6980 }
6981 
6982 static void __init enable_swap_cgroup(void)
6983 {
6984 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6985 		do_swap_account = 1;
6986 		memsw_file_init();
6987 	}
6988 }
6989 
6990 #else
6991 static void __init enable_swap_cgroup(void)
6992 {
6993 }
6994 #endif
6995 
6996 /*
6997  * subsys_initcall() for memory controller.
6998  *
6999  * Some parts like hotcpu_notifier() have to be initialized from this context
7000  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7001  * everything that doesn't depend on a specific mem_cgroup structure should
7002  * be initialized from here.
7003  */
7004 static int __init mem_cgroup_init(void)
7005 {
7006 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7007 	enable_swap_cgroup();
7008 	mem_cgroup_soft_limit_tree_init();
7009 	memcg_stock_init();
7010 	return 0;
7011 }
7012 subsys_initcall(mem_cgroup_init);
7013