1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/sort.h> 49 #include <linux/fs.h> 50 #include <linux/seq_file.h> 51 #include <linux/vmalloc.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include "internal.h" 58 #include <net/sock.h> 59 #include <net/ip.h> 60 #include <net/tcp_memcontrol.h> 61 62 #include <asm/uaccess.h> 63 64 #include <trace/events/vmscan.h> 65 66 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 67 EXPORT_SYMBOL(mem_cgroup_subsys); 68 69 #define MEM_CGROUP_RECLAIM_RETRIES 5 70 static struct mem_cgroup *root_mem_cgroup __read_mostly; 71 72 #ifdef CONFIG_MEMCG_SWAP 73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 74 int do_swap_account __read_mostly; 75 76 /* for remember boot option*/ 77 #ifdef CONFIG_MEMCG_SWAP_ENABLED 78 static int really_do_swap_account __initdata = 1; 79 #else 80 static int really_do_swap_account __initdata = 0; 81 #endif 82 83 #else 84 #define do_swap_account 0 85 #endif 86 87 88 /* 89 * Statistics for memory cgroup. 90 */ 91 enum mem_cgroup_stat_index { 92 /* 93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 94 */ 95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 100 MEM_CGROUP_STAT_NSTATS, 101 }; 102 103 static const char * const mem_cgroup_stat_names[] = { 104 "cache", 105 "rss", 106 "rss_huge", 107 "mapped_file", 108 "swap", 109 }; 110 111 enum mem_cgroup_events_index { 112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 116 MEM_CGROUP_EVENTS_NSTATS, 117 }; 118 119 static const char * const mem_cgroup_events_names[] = { 120 "pgpgin", 121 "pgpgout", 122 "pgfault", 123 "pgmajfault", 124 }; 125 126 static const char * const mem_cgroup_lru_names[] = { 127 "inactive_anon", 128 "active_anon", 129 "inactive_file", 130 "active_file", 131 "unevictable", 132 }; 133 134 /* 135 * Per memcg event counter is incremented at every pagein/pageout. With THP, 136 * it will be incremated by the number of pages. This counter is used for 137 * for trigger some periodic events. This is straightforward and better 138 * than using jiffies etc. to handle periodic memcg event. 139 */ 140 enum mem_cgroup_events_target { 141 MEM_CGROUP_TARGET_THRESH, 142 MEM_CGROUP_TARGET_SOFTLIMIT, 143 MEM_CGROUP_TARGET_NUMAINFO, 144 MEM_CGROUP_NTARGETS, 145 }; 146 #define THRESHOLDS_EVENTS_TARGET 128 147 #define SOFTLIMIT_EVENTS_TARGET 1024 148 #define NUMAINFO_EVENTS_TARGET 1024 149 150 struct mem_cgroup_stat_cpu { 151 long count[MEM_CGROUP_STAT_NSTATS]; 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 153 unsigned long nr_page_events; 154 unsigned long targets[MEM_CGROUP_NTARGETS]; 155 }; 156 157 struct mem_cgroup_reclaim_iter { 158 /* 159 * last scanned hierarchy member. Valid only if last_dead_count 160 * matches memcg->dead_count of the hierarchy root group. 161 */ 162 struct mem_cgroup *last_visited; 163 unsigned long last_dead_count; 164 165 /* scan generation, increased every round-trip */ 166 unsigned int generation; 167 }; 168 169 /* 170 * per-zone information in memory controller. 171 */ 172 struct mem_cgroup_per_zone { 173 struct lruvec lruvec; 174 unsigned long lru_size[NR_LRU_LISTS]; 175 176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 177 178 struct rb_node tree_node; /* RB tree node */ 179 unsigned long long usage_in_excess;/* Set to the value by which */ 180 /* the soft limit is exceeded*/ 181 bool on_tree; 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 183 /* use container_of */ 184 }; 185 186 struct mem_cgroup_per_node { 187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 188 }; 189 190 struct mem_cgroup_lru_info { 191 struct mem_cgroup_per_node *nodeinfo[0]; 192 }; 193 194 /* 195 * Cgroups above their limits are maintained in a RB-Tree, independent of 196 * their hierarchy representation 197 */ 198 199 struct mem_cgroup_tree_per_zone { 200 struct rb_root rb_root; 201 spinlock_t lock; 202 }; 203 204 struct mem_cgroup_tree_per_node { 205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 206 }; 207 208 struct mem_cgroup_tree { 209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 210 }; 211 212 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 213 214 struct mem_cgroup_threshold { 215 struct eventfd_ctx *eventfd; 216 u64 threshold; 217 }; 218 219 /* For threshold */ 220 struct mem_cgroup_threshold_ary { 221 /* An array index points to threshold just below or equal to usage. */ 222 int current_threshold; 223 /* Size of entries[] */ 224 unsigned int size; 225 /* Array of thresholds */ 226 struct mem_cgroup_threshold entries[0]; 227 }; 228 229 struct mem_cgroup_thresholds { 230 /* Primary thresholds array */ 231 struct mem_cgroup_threshold_ary *primary; 232 /* 233 * Spare threshold array. 234 * This is needed to make mem_cgroup_unregister_event() "never fail". 235 * It must be able to store at least primary->size - 1 entries. 236 */ 237 struct mem_cgroup_threshold_ary *spare; 238 }; 239 240 /* for OOM */ 241 struct mem_cgroup_eventfd_list { 242 struct list_head list; 243 struct eventfd_ctx *eventfd; 244 }; 245 246 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 248 249 /* 250 * The memory controller data structure. The memory controller controls both 251 * page cache and RSS per cgroup. We would eventually like to provide 252 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 253 * to help the administrator determine what knobs to tune. 254 * 255 * TODO: Add a water mark for the memory controller. Reclaim will begin when 256 * we hit the water mark. May be even add a low water mark, such that 257 * no reclaim occurs from a cgroup at it's low water mark, this is 258 * a feature that will be implemented much later in the future. 259 */ 260 struct mem_cgroup { 261 struct cgroup_subsys_state css; 262 /* 263 * the counter to account for memory usage 264 */ 265 struct res_counter res; 266 267 /* vmpressure notifications */ 268 struct vmpressure vmpressure; 269 270 union { 271 /* 272 * the counter to account for mem+swap usage. 273 */ 274 struct res_counter memsw; 275 276 /* 277 * rcu_freeing is used only when freeing struct mem_cgroup, 278 * so put it into a union to avoid wasting more memory. 279 * It must be disjoint from the css field. It could be 280 * in a union with the res field, but res plays a much 281 * larger part in mem_cgroup life than memsw, and might 282 * be of interest, even at time of free, when debugging. 283 * So share rcu_head with the less interesting memsw. 284 */ 285 struct rcu_head rcu_freeing; 286 /* 287 * We also need some space for a worker in deferred freeing. 288 * By the time we call it, rcu_freeing is no longer in use. 289 */ 290 struct work_struct work_freeing; 291 }; 292 293 /* 294 * the counter to account for kernel memory usage. 295 */ 296 struct res_counter kmem; 297 /* 298 * Should the accounting and control be hierarchical, per subtree? 299 */ 300 bool use_hierarchy; 301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 302 303 bool oom_lock; 304 atomic_t under_oom; 305 306 atomic_t refcnt; 307 308 int swappiness; 309 /* OOM-Killer disable */ 310 int oom_kill_disable; 311 312 /* set when res.limit == memsw.limit */ 313 bool memsw_is_minimum; 314 315 /* protect arrays of thresholds */ 316 struct mutex thresholds_lock; 317 318 /* thresholds for memory usage. RCU-protected */ 319 struct mem_cgroup_thresholds thresholds; 320 321 /* thresholds for mem+swap usage. RCU-protected */ 322 struct mem_cgroup_thresholds memsw_thresholds; 323 324 /* For oom notifier event fd */ 325 struct list_head oom_notify; 326 327 /* 328 * Should we move charges of a task when a task is moved into this 329 * mem_cgroup ? And what type of charges should we move ? 330 */ 331 unsigned long move_charge_at_immigrate; 332 /* 333 * set > 0 if pages under this cgroup are moving to other cgroup. 334 */ 335 atomic_t moving_account; 336 /* taken only while moving_account > 0 */ 337 spinlock_t move_lock; 338 /* 339 * percpu counter. 340 */ 341 struct mem_cgroup_stat_cpu __percpu *stat; 342 /* 343 * used when a cpu is offlined or other synchronizations 344 * See mem_cgroup_read_stat(). 345 */ 346 struct mem_cgroup_stat_cpu nocpu_base; 347 spinlock_t pcp_counter_lock; 348 349 atomic_t dead_count; 350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 351 struct tcp_memcontrol tcp_mem; 352 #endif 353 #if defined(CONFIG_MEMCG_KMEM) 354 /* analogous to slab_common's slab_caches list. per-memcg */ 355 struct list_head memcg_slab_caches; 356 /* Not a spinlock, we can take a lot of time walking the list */ 357 struct mutex slab_caches_mutex; 358 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 359 int kmemcg_id; 360 #endif 361 362 int last_scanned_node; 363 #if MAX_NUMNODES > 1 364 nodemask_t scan_nodes; 365 atomic_t numainfo_events; 366 atomic_t numainfo_updating; 367 #endif 368 369 /* 370 * Per cgroup active and inactive list, similar to the 371 * per zone LRU lists. 372 * 373 * WARNING: This has to be the last element of the struct. Don't 374 * add new fields after this point. 375 */ 376 struct mem_cgroup_lru_info info; 377 }; 378 379 static size_t memcg_size(void) 380 { 381 return sizeof(struct mem_cgroup) + 382 nr_node_ids * sizeof(struct mem_cgroup_per_node); 383 } 384 385 /* internal only representation about the status of kmem accounting. */ 386 enum { 387 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 388 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 389 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 390 }; 391 392 /* We account when limit is on, but only after call sites are patched */ 393 #define KMEM_ACCOUNTED_MASK \ 394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 395 396 #ifdef CONFIG_MEMCG_KMEM 397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 398 { 399 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 400 } 401 402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 403 { 404 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 405 } 406 407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 408 { 409 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 410 } 411 412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 413 { 414 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 415 } 416 417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 418 { 419 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 420 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 421 } 422 423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 424 { 425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 426 &memcg->kmem_account_flags); 427 } 428 #endif 429 430 /* Stuffs for move charges at task migration. */ 431 /* 432 * Types of charges to be moved. "move_charge_at_immitgrate" and 433 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 434 */ 435 enum move_type { 436 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 437 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 438 NR_MOVE_TYPE, 439 }; 440 441 /* "mc" and its members are protected by cgroup_mutex */ 442 static struct move_charge_struct { 443 spinlock_t lock; /* for from, to */ 444 struct mem_cgroup *from; 445 struct mem_cgroup *to; 446 unsigned long immigrate_flags; 447 unsigned long precharge; 448 unsigned long moved_charge; 449 unsigned long moved_swap; 450 struct task_struct *moving_task; /* a task moving charges */ 451 wait_queue_head_t waitq; /* a waitq for other context */ 452 } mc = { 453 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 454 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 455 }; 456 457 static bool move_anon(void) 458 { 459 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 460 } 461 462 static bool move_file(void) 463 { 464 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 465 } 466 467 /* 468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 469 * limit reclaim to prevent infinite loops, if they ever occur. 470 */ 471 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 472 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 473 474 enum charge_type { 475 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 476 MEM_CGROUP_CHARGE_TYPE_ANON, 477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 478 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 479 NR_CHARGE_TYPE, 480 }; 481 482 /* for encoding cft->private value on file */ 483 enum res_type { 484 _MEM, 485 _MEMSWAP, 486 _OOM_TYPE, 487 _KMEM, 488 }; 489 490 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 491 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 492 #define MEMFILE_ATTR(val) ((val) & 0xffff) 493 /* Used for OOM nofiier */ 494 #define OOM_CONTROL (0) 495 496 /* 497 * Reclaim flags for mem_cgroup_hierarchical_reclaim 498 */ 499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 500 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 502 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 503 504 /* 505 * The memcg_create_mutex will be held whenever a new cgroup is created. 506 * As a consequence, any change that needs to protect against new child cgroups 507 * appearing has to hold it as well. 508 */ 509 static DEFINE_MUTEX(memcg_create_mutex); 510 511 static void mem_cgroup_get(struct mem_cgroup *memcg); 512 static void mem_cgroup_put(struct mem_cgroup *memcg); 513 514 static inline 515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 516 { 517 return container_of(s, struct mem_cgroup, css); 518 } 519 520 /* Some nice accessors for the vmpressure. */ 521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 522 { 523 if (!memcg) 524 memcg = root_mem_cgroup; 525 return &memcg->vmpressure; 526 } 527 528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 529 { 530 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 531 } 532 533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 534 { 535 return &mem_cgroup_from_css(css)->vmpressure; 536 } 537 538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 539 { 540 return (memcg == root_mem_cgroup); 541 } 542 543 /* Writing them here to avoid exposing memcg's inner layout */ 544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 545 546 void sock_update_memcg(struct sock *sk) 547 { 548 if (mem_cgroup_sockets_enabled) { 549 struct mem_cgroup *memcg; 550 struct cg_proto *cg_proto; 551 552 BUG_ON(!sk->sk_prot->proto_cgroup); 553 554 /* Socket cloning can throw us here with sk_cgrp already 555 * filled. It won't however, necessarily happen from 556 * process context. So the test for root memcg given 557 * the current task's memcg won't help us in this case. 558 * 559 * Respecting the original socket's memcg is a better 560 * decision in this case. 561 */ 562 if (sk->sk_cgrp) { 563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 564 mem_cgroup_get(sk->sk_cgrp->memcg); 565 return; 566 } 567 568 rcu_read_lock(); 569 memcg = mem_cgroup_from_task(current); 570 cg_proto = sk->sk_prot->proto_cgroup(memcg); 571 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 572 mem_cgroup_get(memcg); 573 sk->sk_cgrp = cg_proto; 574 } 575 rcu_read_unlock(); 576 } 577 } 578 EXPORT_SYMBOL(sock_update_memcg); 579 580 void sock_release_memcg(struct sock *sk) 581 { 582 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 583 struct mem_cgroup *memcg; 584 WARN_ON(!sk->sk_cgrp->memcg); 585 memcg = sk->sk_cgrp->memcg; 586 mem_cgroup_put(memcg); 587 } 588 } 589 590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 591 { 592 if (!memcg || mem_cgroup_is_root(memcg)) 593 return NULL; 594 595 return &memcg->tcp_mem.cg_proto; 596 } 597 EXPORT_SYMBOL(tcp_proto_cgroup); 598 599 static void disarm_sock_keys(struct mem_cgroup *memcg) 600 { 601 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 602 return; 603 static_key_slow_dec(&memcg_socket_limit_enabled); 604 } 605 #else 606 static void disarm_sock_keys(struct mem_cgroup *memcg) 607 { 608 } 609 #endif 610 611 #ifdef CONFIG_MEMCG_KMEM 612 /* 613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 614 * There are two main reasons for not using the css_id for this: 615 * 1) this works better in sparse environments, where we have a lot of memcgs, 616 * but only a few kmem-limited. Or also, if we have, for instance, 200 617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 618 * 200 entry array for that. 619 * 620 * 2) In order not to violate the cgroup API, we would like to do all memory 621 * allocation in ->create(). At that point, we haven't yet allocated the 622 * css_id. Having a separate index prevents us from messing with the cgroup 623 * core for this 624 * 625 * The current size of the caches array is stored in 626 * memcg_limited_groups_array_size. It will double each time we have to 627 * increase it. 628 */ 629 static DEFINE_IDA(kmem_limited_groups); 630 int memcg_limited_groups_array_size; 631 632 /* 633 * MIN_SIZE is different than 1, because we would like to avoid going through 634 * the alloc/free process all the time. In a small machine, 4 kmem-limited 635 * cgroups is a reasonable guess. In the future, it could be a parameter or 636 * tunable, but that is strictly not necessary. 637 * 638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 639 * this constant directly from cgroup, but it is understandable that this is 640 * better kept as an internal representation in cgroup.c. In any case, the 641 * css_id space is not getting any smaller, and we don't have to necessarily 642 * increase ours as well if it increases. 643 */ 644 #define MEMCG_CACHES_MIN_SIZE 4 645 #define MEMCG_CACHES_MAX_SIZE 65535 646 647 /* 648 * A lot of the calls to the cache allocation functions are expected to be 649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 650 * conditional to this static branch, we'll have to allow modules that does 651 * kmem_cache_alloc and the such to see this symbol as well 652 */ 653 struct static_key memcg_kmem_enabled_key; 654 EXPORT_SYMBOL(memcg_kmem_enabled_key); 655 656 static void disarm_kmem_keys(struct mem_cgroup *memcg) 657 { 658 if (memcg_kmem_is_active(memcg)) { 659 static_key_slow_dec(&memcg_kmem_enabled_key); 660 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 661 } 662 /* 663 * This check can't live in kmem destruction function, 664 * since the charges will outlive the cgroup 665 */ 666 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 667 } 668 #else 669 static void disarm_kmem_keys(struct mem_cgroup *memcg) 670 { 671 } 672 #endif /* CONFIG_MEMCG_KMEM */ 673 674 static void disarm_static_keys(struct mem_cgroup *memcg) 675 { 676 disarm_sock_keys(memcg); 677 disarm_kmem_keys(memcg); 678 } 679 680 static void drain_all_stock_async(struct mem_cgroup *memcg); 681 682 static struct mem_cgroup_per_zone * 683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 684 { 685 VM_BUG_ON((unsigned)nid >= nr_node_ids); 686 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 687 } 688 689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 690 { 691 return &memcg->css; 692 } 693 694 static struct mem_cgroup_per_zone * 695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 696 { 697 int nid = page_to_nid(page); 698 int zid = page_zonenum(page); 699 700 return mem_cgroup_zoneinfo(memcg, nid, zid); 701 } 702 703 static struct mem_cgroup_tree_per_zone * 704 soft_limit_tree_node_zone(int nid, int zid) 705 { 706 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 707 } 708 709 static struct mem_cgroup_tree_per_zone * 710 soft_limit_tree_from_page(struct page *page) 711 { 712 int nid = page_to_nid(page); 713 int zid = page_zonenum(page); 714 715 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 716 } 717 718 static void 719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 720 struct mem_cgroup_per_zone *mz, 721 struct mem_cgroup_tree_per_zone *mctz, 722 unsigned long long new_usage_in_excess) 723 { 724 struct rb_node **p = &mctz->rb_root.rb_node; 725 struct rb_node *parent = NULL; 726 struct mem_cgroup_per_zone *mz_node; 727 728 if (mz->on_tree) 729 return; 730 731 mz->usage_in_excess = new_usage_in_excess; 732 if (!mz->usage_in_excess) 733 return; 734 while (*p) { 735 parent = *p; 736 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 737 tree_node); 738 if (mz->usage_in_excess < mz_node->usage_in_excess) 739 p = &(*p)->rb_left; 740 /* 741 * We can't avoid mem cgroups that are over their soft 742 * limit by the same amount 743 */ 744 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 745 p = &(*p)->rb_right; 746 } 747 rb_link_node(&mz->tree_node, parent, p); 748 rb_insert_color(&mz->tree_node, &mctz->rb_root); 749 mz->on_tree = true; 750 } 751 752 static void 753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 754 struct mem_cgroup_per_zone *mz, 755 struct mem_cgroup_tree_per_zone *mctz) 756 { 757 if (!mz->on_tree) 758 return; 759 rb_erase(&mz->tree_node, &mctz->rb_root); 760 mz->on_tree = false; 761 } 762 763 static void 764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 765 struct mem_cgroup_per_zone *mz, 766 struct mem_cgroup_tree_per_zone *mctz) 767 { 768 spin_lock(&mctz->lock); 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 770 spin_unlock(&mctz->lock); 771 } 772 773 774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 775 { 776 unsigned long long excess; 777 struct mem_cgroup_per_zone *mz; 778 struct mem_cgroup_tree_per_zone *mctz; 779 int nid = page_to_nid(page); 780 int zid = page_zonenum(page); 781 mctz = soft_limit_tree_from_page(page); 782 783 /* 784 * Necessary to update all ancestors when hierarchy is used. 785 * because their event counter is not touched. 786 */ 787 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 788 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 789 excess = res_counter_soft_limit_excess(&memcg->res); 790 /* 791 * We have to update the tree if mz is on RB-tree or 792 * mem is over its softlimit. 793 */ 794 if (excess || mz->on_tree) { 795 spin_lock(&mctz->lock); 796 /* if on-tree, remove it */ 797 if (mz->on_tree) 798 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 799 /* 800 * Insert again. mz->usage_in_excess will be updated. 801 * If excess is 0, no tree ops. 802 */ 803 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 804 spin_unlock(&mctz->lock); 805 } 806 } 807 } 808 809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 810 { 811 int node, zone; 812 struct mem_cgroup_per_zone *mz; 813 struct mem_cgroup_tree_per_zone *mctz; 814 815 for_each_node(node) { 816 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 817 mz = mem_cgroup_zoneinfo(memcg, node, zone); 818 mctz = soft_limit_tree_node_zone(node, zone); 819 mem_cgroup_remove_exceeded(memcg, mz, mctz); 820 } 821 } 822 } 823 824 static struct mem_cgroup_per_zone * 825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 826 { 827 struct rb_node *rightmost = NULL; 828 struct mem_cgroup_per_zone *mz; 829 830 retry: 831 mz = NULL; 832 rightmost = rb_last(&mctz->rb_root); 833 if (!rightmost) 834 goto done; /* Nothing to reclaim from */ 835 836 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 837 /* 838 * Remove the node now but someone else can add it back, 839 * we will to add it back at the end of reclaim to its correct 840 * position in the tree. 841 */ 842 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 843 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 844 !css_tryget(&mz->memcg->css)) 845 goto retry; 846 done: 847 return mz; 848 } 849 850 static struct mem_cgroup_per_zone * 851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 852 { 853 struct mem_cgroup_per_zone *mz; 854 855 spin_lock(&mctz->lock); 856 mz = __mem_cgroup_largest_soft_limit_node(mctz); 857 spin_unlock(&mctz->lock); 858 return mz; 859 } 860 861 /* 862 * Implementation Note: reading percpu statistics for memcg. 863 * 864 * Both of vmstat[] and percpu_counter has threshold and do periodic 865 * synchronization to implement "quick" read. There are trade-off between 866 * reading cost and precision of value. Then, we may have a chance to implement 867 * a periodic synchronizion of counter in memcg's counter. 868 * 869 * But this _read() function is used for user interface now. The user accounts 870 * memory usage by memory cgroup and he _always_ requires exact value because 871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 872 * have to visit all online cpus and make sum. So, for now, unnecessary 873 * synchronization is not implemented. (just implemented for cpu hotplug) 874 * 875 * If there are kernel internal actions which can make use of some not-exact 876 * value, and reading all cpu value can be performance bottleneck in some 877 * common workload, threashold and synchonization as vmstat[] should be 878 * implemented. 879 */ 880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 881 enum mem_cgroup_stat_index idx) 882 { 883 long val = 0; 884 int cpu; 885 886 get_online_cpus(); 887 for_each_online_cpu(cpu) 888 val += per_cpu(memcg->stat->count[idx], cpu); 889 #ifdef CONFIG_HOTPLUG_CPU 890 spin_lock(&memcg->pcp_counter_lock); 891 val += memcg->nocpu_base.count[idx]; 892 spin_unlock(&memcg->pcp_counter_lock); 893 #endif 894 put_online_cpus(); 895 return val; 896 } 897 898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 899 bool charge) 900 { 901 int val = (charge) ? 1 : -1; 902 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 903 } 904 905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 906 enum mem_cgroup_events_index idx) 907 { 908 unsigned long val = 0; 909 int cpu; 910 911 for_each_online_cpu(cpu) 912 val += per_cpu(memcg->stat->events[idx], cpu); 913 #ifdef CONFIG_HOTPLUG_CPU 914 spin_lock(&memcg->pcp_counter_lock); 915 val += memcg->nocpu_base.events[idx]; 916 spin_unlock(&memcg->pcp_counter_lock); 917 #endif 918 return val; 919 } 920 921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 922 struct page *page, 923 bool anon, int nr_pages) 924 { 925 preempt_disable(); 926 927 /* 928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 929 * counted as CACHE even if it's on ANON LRU. 930 */ 931 if (anon) 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 933 nr_pages); 934 else 935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 936 nr_pages); 937 938 if (PageTransHuge(page)) 939 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 940 nr_pages); 941 942 /* pagein of a big page is an event. So, ignore page size */ 943 if (nr_pages > 0) 944 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 945 else { 946 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 947 nr_pages = -nr_pages; /* for event */ 948 } 949 950 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 951 952 preempt_enable(); 953 } 954 955 unsigned long 956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 957 { 958 struct mem_cgroup_per_zone *mz; 959 960 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 961 return mz->lru_size[lru]; 962 } 963 964 static unsigned long 965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 966 unsigned int lru_mask) 967 { 968 struct mem_cgroup_per_zone *mz; 969 enum lru_list lru; 970 unsigned long ret = 0; 971 972 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 973 974 for_each_lru(lru) { 975 if (BIT(lru) & lru_mask) 976 ret += mz->lru_size[lru]; 977 } 978 return ret; 979 } 980 981 static unsigned long 982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 983 int nid, unsigned int lru_mask) 984 { 985 u64 total = 0; 986 int zid; 987 988 for (zid = 0; zid < MAX_NR_ZONES; zid++) 989 total += mem_cgroup_zone_nr_lru_pages(memcg, 990 nid, zid, lru_mask); 991 992 return total; 993 } 994 995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 996 unsigned int lru_mask) 997 { 998 int nid; 999 u64 total = 0; 1000 1001 for_each_node_state(nid, N_MEMORY) 1002 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 1003 return total; 1004 } 1005 1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1007 enum mem_cgroup_events_target target) 1008 { 1009 unsigned long val, next; 1010 1011 val = __this_cpu_read(memcg->stat->nr_page_events); 1012 next = __this_cpu_read(memcg->stat->targets[target]); 1013 /* from time_after() in jiffies.h */ 1014 if ((long)next - (long)val < 0) { 1015 switch (target) { 1016 case MEM_CGROUP_TARGET_THRESH: 1017 next = val + THRESHOLDS_EVENTS_TARGET; 1018 break; 1019 case MEM_CGROUP_TARGET_SOFTLIMIT: 1020 next = val + SOFTLIMIT_EVENTS_TARGET; 1021 break; 1022 case MEM_CGROUP_TARGET_NUMAINFO: 1023 next = val + NUMAINFO_EVENTS_TARGET; 1024 break; 1025 default: 1026 break; 1027 } 1028 __this_cpu_write(memcg->stat->targets[target], next); 1029 return true; 1030 } 1031 return false; 1032 } 1033 1034 /* 1035 * Check events in order. 1036 * 1037 */ 1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1039 { 1040 preempt_disable(); 1041 /* threshold event is triggered in finer grain than soft limit */ 1042 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1043 MEM_CGROUP_TARGET_THRESH))) { 1044 bool do_softlimit; 1045 bool do_numainfo __maybe_unused; 1046 1047 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1048 MEM_CGROUP_TARGET_SOFTLIMIT); 1049 #if MAX_NUMNODES > 1 1050 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1051 MEM_CGROUP_TARGET_NUMAINFO); 1052 #endif 1053 preempt_enable(); 1054 1055 mem_cgroup_threshold(memcg); 1056 if (unlikely(do_softlimit)) 1057 mem_cgroup_update_tree(memcg, page); 1058 #if MAX_NUMNODES > 1 1059 if (unlikely(do_numainfo)) 1060 atomic_inc(&memcg->numainfo_events); 1061 #endif 1062 } else 1063 preempt_enable(); 1064 } 1065 1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 1067 { 1068 return mem_cgroup_from_css( 1069 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 1070 } 1071 1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1073 { 1074 /* 1075 * mm_update_next_owner() may clear mm->owner to NULL 1076 * if it races with swapoff, page migration, etc. 1077 * So this can be called with p == NULL. 1078 */ 1079 if (unlikely(!p)) 1080 return NULL; 1081 1082 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 1083 } 1084 1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 1086 { 1087 struct mem_cgroup *memcg = NULL; 1088 1089 if (!mm) 1090 return NULL; 1091 /* 1092 * Because we have no locks, mm->owner's may be being moved to other 1093 * cgroup. We use css_tryget() here even if this looks 1094 * pessimistic (rather than adding locks here). 1095 */ 1096 rcu_read_lock(); 1097 do { 1098 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1099 if (unlikely(!memcg)) 1100 break; 1101 } while (!css_tryget(&memcg->css)); 1102 rcu_read_unlock(); 1103 return memcg; 1104 } 1105 1106 /* 1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1108 * ref. count) or NULL if the whole root's subtree has been visited. 1109 * 1110 * helper function to be used by mem_cgroup_iter 1111 */ 1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1113 struct mem_cgroup *last_visited) 1114 { 1115 struct cgroup *prev_cgroup, *next_cgroup; 1116 1117 /* 1118 * Root is not visited by cgroup iterators so it needs an 1119 * explicit visit. 1120 */ 1121 if (!last_visited) 1122 return root; 1123 1124 prev_cgroup = (last_visited == root) ? NULL 1125 : last_visited->css.cgroup; 1126 skip_node: 1127 next_cgroup = cgroup_next_descendant_pre( 1128 prev_cgroup, root->css.cgroup); 1129 1130 /* 1131 * Even if we found a group we have to make sure it is 1132 * alive. css && !memcg means that the groups should be 1133 * skipped and we should continue the tree walk. 1134 * last_visited css is safe to use because it is 1135 * protected by css_get and the tree walk is rcu safe. 1136 */ 1137 if (next_cgroup) { 1138 struct mem_cgroup *mem = mem_cgroup_from_cont( 1139 next_cgroup); 1140 if (css_tryget(&mem->css)) 1141 return mem; 1142 else { 1143 prev_cgroup = next_cgroup; 1144 goto skip_node; 1145 } 1146 } 1147 1148 return NULL; 1149 } 1150 1151 /** 1152 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1153 * @root: hierarchy root 1154 * @prev: previously returned memcg, NULL on first invocation 1155 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1156 * 1157 * Returns references to children of the hierarchy below @root, or 1158 * @root itself, or %NULL after a full round-trip. 1159 * 1160 * Caller must pass the return value in @prev on subsequent 1161 * invocations for reference counting, or use mem_cgroup_iter_break() 1162 * to cancel a hierarchy walk before the round-trip is complete. 1163 * 1164 * Reclaimers can specify a zone and a priority level in @reclaim to 1165 * divide up the memcgs in the hierarchy among all concurrent 1166 * reclaimers operating on the same zone and priority. 1167 */ 1168 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1169 struct mem_cgroup *prev, 1170 struct mem_cgroup_reclaim_cookie *reclaim) 1171 { 1172 struct mem_cgroup *memcg = NULL; 1173 struct mem_cgroup *last_visited = NULL; 1174 unsigned long uninitialized_var(dead_count); 1175 1176 if (mem_cgroup_disabled()) 1177 return NULL; 1178 1179 if (!root) 1180 root = root_mem_cgroup; 1181 1182 if (prev && !reclaim) 1183 last_visited = prev; 1184 1185 if (!root->use_hierarchy && root != root_mem_cgroup) { 1186 if (prev) 1187 goto out_css_put; 1188 return root; 1189 } 1190 1191 rcu_read_lock(); 1192 while (!memcg) { 1193 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1194 1195 if (reclaim) { 1196 int nid = zone_to_nid(reclaim->zone); 1197 int zid = zone_idx(reclaim->zone); 1198 struct mem_cgroup_per_zone *mz; 1199 1200 mz = mem_cgroup_zoneinfo(root, nid, zid); 1201 iter = &mz->reclaim_iter[reclaim->priority]; 1202 if (prev && reclaim->generation != iter->generation) { 1203 iter->last_visited = NULL; 1204 goto out_unlock; 1205 } 1206 1207 /* 1208 * If the dead_count mismatches, a destruction 1209 * has happened or is happening concurrently. 1210 * If the dead_count matches, a destruction 1211 * might still happen concurrently, but since 1212 * we checked under RCU, that destruction 1213 * won't free the object until we release the 1214 * RCU reader lock. Thus, the dead_count 1215 * check verifies the pointer is still valid, 1216 * css_tryget() verifies the cgroup pointed to 1217 * is alive. 1218 */ 1219 dead_count = atomic_read(&root->dead_count); 1220 if (dead_count == iter->last_dead_count) { 1221 smp_rmb(); 1222 last_visited = iter->last_visited; 1223 if (last_visited && 1224 !css_tryget(&last_visited->css)) 1225 last_visited = NULL; 1226 } 1227 } 1228 1229 memcg = __mem_cgroup_iter_next(root, last_visited); 1230 1231 if (reclaim) { 1232 if (last_visited) 1233 css_put(&last_visited->css); 1234 1235 iter->last_visited = memcg; 1236 smp_wmb(); 1237 iter->last_dead_count = dead_count; 1238 1239 if (!memcg) 1240 iter->generation++; 1241 else if (!prev && memcg) 1242 reclaim->generation = iter->generation; 1243 } 1244 1245 if (prev && !memcg) 1246 goto out_unlock; 1247 } 1248 out_unlock: 1249 rcu_read_unlock(); 1250 out_css_put: 1251 if (prev && prev != root) 1252 css_put(&prev->css); 1253 1254 return memcg; 1255 } 1256 1257 /** 1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1259 * @root: hierarchy root 1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1261 */ 1262 void mem_cgroup_iter_break(struct mem_cgroup *root, 1263 struct mem_cgroup *prev) 1264 { 1265 if (!root) 1266 root = root_mem_cgroup; 1267 if (prev && prev != root) 1268 css_put(&prev->css); 1269 } 1270 1271 /* 1272 * Iteration constructs for visiting all cgroups (under a tree). If 1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1274 * be used for reference counting. 1275 */ 1276 #define for_each_mem_cgroup_tree(iter, root) \ 1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1278 iter != NULL; \ 1279 iter = mem_cgroup_iter(root, iter, NULL)) 1280 1281 #define for_each_mem_cgroup(iter) \ 1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1283 iter != NULL; \ 1284 iter = mem_cgroup_iter(NULL, iter, NULL)) 1285 1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1287 { 1288 struct mem_cgroup *memcg; 1289 1290 rcu_read_lock(); 1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1292 if (unlikely(!memcg)) 1293 goto out; 1294 1295 switch (idx) { 1296 case PGFAULT: 1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1298 break; 1299 case PGMAJFAULT: 1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1301 break; 1302 default: 1303 BUG(); 1304 } 1305 out: 1306 rcu_read_unlock(); 1307 } 1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1309 1310 /** 1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1312 * @zone: zone of the wanted lruvec 1313 * @memcg: memcg of the wanted lruvec 1314 * 1315 * Returns the lru list vector holding pages for the given @zone and 1316 * @mem. This can be the global zone lruvec, if the memory controller 1317 * is disabled. 1318 */ 1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1320 struct mem_cgroup *memcg) 1321 { 1322 struct mem_cgroup_per_zone *mz; 1323 struct lruvec *lruvec; 1324 1325 if (mem_cgroup_disabled()) { 1326 lruvec = &zone->lruvec; 1327 goto out; 1328 } 1329 1330 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1331 lruvec = &mz->lruvec; 1332 out: 1333 /* 1334 * Since a node can be onlined after the mem_cgroup was created, 1335 * we have to be prepared to initialize lruvec->zone here; 1336 * and if offlined then reonlined, we need to reinitialize it. 1337 */ 1338 if (unlikely(lruvec->zone != zone)) 1339 lruvec->zone = zone; 1340 return lruvec; 1341 } 1342 1343 /* 1344 * Following LRU functions are allowed to be used without PCG_LOCK. 1345 * Operations are called by routine of global LRU independently from memcg. 1346 * What we have to take care of here is validness of pc->mem_cgroup. 1347 * 1348 * Changes to pc->mem_cgroup happens when 1349 * 1. charge 1350 * 2. moving account 1351 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1352 * It is added to LRU before charge. 1353 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1354 * When moving account, the page is not on LRU. It's isolated. 1355 */ 1356 1357 /** 1358 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1359 * @page: the page 1360 * @zone: zone of the page 1361 */ 1362 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1363 { 1364 struct mem_cgroup_per_zone *mz; 1365 struct mem_cgroup *memcg; 1366 struct page_cgroup *pc; 1367 struct lruvec *lruvec; 1368 1369 if (mem_cgroup_disabled()) { 1370 lruvec = &zone->lruvec; 1371 goto out; 1372 } 1373 1374 pc = lookup_page_cgroup(page); 1375 memcg = pc->mem_cgroup; 1376 1377 /* 1378 * Surreptitiously switch any uncharged offlist page to root: 1379 * an uncharged page off lru does nothing to secure 1380 * its former mem_cgroup from sudden removal. 1381 * 1382 * Our caller holds lru_lock, and PageCgroupUsed is updated 1383 * under page_cgroup lock: between them, they make all uses 1384 * of pc->mem_cgroup safe. 1385 */ 1386 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1387 pc->mem_cgroup = memcg = root_mem_cgroup; 1388 1389 mz = page_cgroup_zoneinfo(memcg, page); 1390 lruvec = &mz->lruvec; 1391 out: 1392 /* 1393 * Since a node can be onlined after the mem_cgroup was created, 1394 * we have to be prepared to initialize lruvec->zone here; 1395 * and if offlined then reonlined, we need to reinitialize it. 1396 */ 1397 if (unlikely(lruvec->zone != zone)) 1398 lruvec->zone = zone; 1399 return lruvec; 1400 } 1401 1402 /** 1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1404 * @lruvec: mem_cgroup per zone lru vector 1405 * @lru: index of lru list the page is sitting on 1406 * @nr_pages: positive when adding or negative when removing 1407 * 1408 * This function must be called when a page is added to or removed from an 1409 * lru list. 1410 */ 1411 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1412 int nr_pages) 1413 { 1414 struct mem_cgroup_per_zone *mz; 1415 unsigned long *lru_size; 1416 1417 if (mem_cgroup_disabled()) 1418 return; 1419 1420 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1421 lru_size = mz->lru_size + lru; 1422 *lru_size += nr_pages; 1423 VM_BUG_ON((long)(*lru_size) < 0); 1424 } 1425 1426 /* 1427 * Checks whether given mem is same or in the root_mem_cgroup's 1428 * hierarchy subtree 1429 */ 1430 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1431 struct mem_cgroup *memcg) 1432 { 1433 if (root_memcg == memcg) 1434 return true; 1435 if (!root_memcg->use_hierarchy || !memcg) 1436 return false; 1437 return css_is_ancestor(&memcg->css, &root_memcg->css); 1438 } 1439 1440 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1441 struct mem_cgroup *memcg) 1442 { 1443 bool ret; 1444 1445 rcu_read_lock(); 1446 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1447 rcu_read_unlock(); 1448 return ret; 1449 } 1450 1451 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1452 { 1453 int ret; 1454 struct mem_cgroup *curr = NULL; 1455 struct task_struct *p; 1456 1457 p = find_lock_task_mm(task); 1458 if (p) { 1459 curr = try_get_mem_cgroup_from_mm(p->mm); 1460 task_unlock(p); 1461 } else { 1462 /* 1463 * All threads may have already detached their mm's, but the oom 1464 * killer still needs to detect if they have already been oom 1465 * killed to prevent needlessly killing additional tasks. 1466 */ 1467 task_lock(task); 1468 curr = mem_cgroup_from_task(task); 1469 if (curr) 1470 css_get(&curr->css); 1471 task_unlock(task); 1472 } 1473 if (!curr) 1474 return 0; 1475 /* 1476 * We should check use_hierarchy of "memcg" not "curr". Because checking 1477 * use_hierarchy of "curr" here make this function true if hierarchy is 1478 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1479 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1480 */ 1481 ret = mem_cgroup_same_or_subtree(memcg, curr); 1482 css_put(&curr->css); 1483 return ret; 1484 } 1485 1486 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1487 { 1488 unsigned long inactive_ratio; 1489 unsigned long inactive; 1490 unsigned long active; 1491 unsigned long gb; 1492 1493 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1494 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1495 1496 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1497 if (gb) 1498 inactive_ratio = int_sqrt(10 * gb); 1499 else 1500 inactive_ratio = 1; 1501 1502 return inactive * inactive_ratio < active; 1503 } 1504 1505 #define mem_cgroup_from_res_counter(counter, member) \ 1506 container_of(counter, struct mem_cgroup, member) 1507 1508 /** 1509 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1510 * @memcg: the memory cgroup 1511 * 1512 * Returns the maximum amount of memory @mem can be charged with, in 1513 * pages. 1514 */ 1515 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1516 { 1517 unsigned long long margin; 1518 1519 margin = res_counter_margin(&memcg->res); 1520 if (do_swap_account) 1521 margin = min(margin, res_counter_margin(&memcg->memsw)); 1522 return margin >> PAGE_SHIFT; 1523 } 1524 1525 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1526 { 1527 struct cgroup *cgrp = memcg->css.cgroup; 1528 1529 /* root ? */ 1530 if (cgrp->parent == NULL) 1531 return vm_swappiness; 1532 1533 return memcg->swappiness; 1534 } 1535 1536 /* 1537 * memcg->moving_account is used for checking possibility that some thread is 1538 * calling move_account(). When a thread on CPU-A starts moving pages under 1539 * a memcg, other threads should check memcg->moving_account under 1540 * rcu_read_lock(), like this: 1541 * 1542 * CPU-A CPU-B 1543 * rcu_read_lock() 1544 * memcg->moving_account+1 if (memcg->mocing_account) 1545 * take heavy locks. 1546 * synchronize_rcu() update something. 1547 * rcu_read_unlock() 1548 * start move here. 1549 */ 1550 1551 /* for quick checking without looking up memcg */ 1552 atomic_t memcg_moving __read_mostly; 1553 1554 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1555 { 1556 atomic_inc(&memcg_moving); 1557 atomic_inc(&memcg->moving_account); 1558 synchronize_rcu(); 1559 } 1560 1561 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1562 { 1563 /* 1564 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1565 * We check NULL in callee rather than caller. 1566 */ 1567 if (memcg) { 1568 atomic_dec(&memcg_moving); 1569 atomic_dec(&memcg->moving_account); 1570 } 1571 } 1572 1573 /* 1574 * 2 routines for checking "mem" is under move_account() or not. 1575 * 1576 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1577 * is used for avoiding races in accounting. If true, 1578 * pc->mem_cgroup may be overwritten. 1579 * 1580 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1581 * under hierarchy of moving cgroups. This is for 1582 * waiting at hith-memory prressure caused by "move". 1583 */ 1584 1585 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1586 { 1587 VM_BUG_ON(!rcu_read_lock_held()); 1588 return atomic_read(&memcg->moving_account) > 0; 1589 } 1590 1591 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1592 { 1593 struct mem_cgroup *from; 1594 struct mem_cgroup *to; 1595 bool ret = false; 1596 /* 1597 * Unlike task_move routines, we access mc.to, mc.from not under 1598 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1599 */ 1600 spin_lock(&mc.lock); 1601 from = mc.from; 1602 to = mc.to; 1603 if (!from) 1604 goto unlock; 1605 1606 ret = mem_cgroup_same_or_subtree(memcg, from) 1607 || mem_cgroup_same_or_subtree(memcg, to); 1608 unlock: 1609 spin_unlock(&mc.lock); 1610 return ret; 1611 } 1612 1613 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1614 { 1615 if (mc.moving_task && current != mc.moving_task) { 1616 if (mem_cgroup_under_move(memcg)) { 1617 DEFINE_WAIT(wait); 1618 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1619 /* moving charge context might have finished. */ 1620 if (mc.moving_task) 1621 schedule(); 1622 finish_wait(&mc.waitq, &wait); 1623 return true; 1624 } 1625 } 1626 return false; 1627 } 1628 1629 /* 1630 * Take this lock when 1631 * - a code tries to modify page's memcg while it's USED. 1632 * - a code tries to modify page state accounting in a memcg. 1633 * see mem_cgroup_stolen(), too. 1634 */ 1635 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1636 unsigned long *flags) 1637 { 1638 spin_lock_irqsave(&memcg->move_lock, *flags); 1639 } 1640 1641 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1642 unsigned long *flags) 1643 { 1644 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1645 } 1646 1647 #define K(x) ((x) << (PAGE_SHIFT-10)) 1648 /** 1649 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1650 * @memcg: The memory cgroup that went over limit 1651 * @p: Task that is going to be killed 1652 * 1653 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1654 * enabled 1655 */ 1656 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1657 { 1658 struct cgroup *task_cgrp; 1659 struct cgroup *mem_cgrp; 1660 /* 1661 * Need a buffer in BSS, can't rely on allocations. The code relies 1662 * on the assumption that OOM is serialized for memory controller. 1663 * If this assumption is broken, revisit this code. 1664 */ 1665 static char memcg_name[PATH_MAX]; 1666 int ret; 1667 struct mem_cgroup *iter; 1668 unsigned int i; 1669 1670 if (!p) 1671 return; 1672 1673 rcu_read_lock(); 1674 1675 mem_cgrp = memcg->css.cgroup; 1676 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1677 1678 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1679 if (ret < 0) { 1680 /* 1681 * Unfortunately, we are unable to convert to a useful name 1682 * But we'll still print out the usage information 1683 */ 1684 rcu_read_unlock(); 1685 goto done; 1686 } 1687 rcu_read_unlock(); 1688 1689 pr_info("Task in %s killed", memcg_name); 1690 1691 rcu_read_lock(); 1692 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1693 if (ret < 0) { 1694 rcu_read_unlock(); 1695 goto done; 1696 } 1697 rcu_read_unlock(); 1698 1699 /* 1700 * Continues from above, so we don't need an KERN_ level 1701 */ 1702 pr_cont(" as a result of limit of %s\n", memcg_name); 1703 done: 1704 1705 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1706 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1707 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1708 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1709 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1710 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1711 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1712 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1713 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1714 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1715 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1716 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1717 1718 for_each_mem_cgroup_tree(iter, memcg) { 1719 pr_info("Memory cgroup stats"); 1720 1721 rcu_read_lock(); 1722 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1723 if (!ret) 1724 pr_cont(" for %s", memcg_name); 1725 rcu_read_unlock(); 1726 pr_cont(":"); 1727 1728 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1729 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1730 continue; 1731 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1732 K(mem_cgroup_read_stat(iter, i))); 1733 } 1734 1735 for (i = 0; i < NR_LRU_LISTS; i++) 1736 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1737 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1738 1739 pr_cont("\n"); 1740 } 1741 } 1742 1743 /* 1744 * This function returns the number of memcg under hierarchy tree. Returns 1745 * 1(self count) if no children. 1746 */ 1747 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1748 { 1749 int num = 0; 1750 struct mem_cgroup *iter; 1751 1752 for_each_mem_cgroup_tree(iter, memcg) 1753 num++; 1754 return num; 1755 } 1756 1757 /* 1758 * Return the memory (and swap, if configured) limit for a memcg. 1759 */ 1760 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1761 { 1762 u64 limit; 1763 1764 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1765 1766 /* 1767 * Do not consider swap space if we cannot swap due to swappiness 1768 */ 1769 if (mem_cgroup_swappiness(memcg)) { 1770 u64 memsw; 1771 1772 limit += total_swap_pages << PAGE_SHIFT; 1773 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1774 1775 /* 1776 * If memsw is finite and limits the amount of swap space 1777 * available to this memcg, return that limit. 1778 */ 1779 limit = min(limit, memsw); 1780 } 1781 1782 return limit; 1783 } 1784 1785 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1786 int order) 1787 { 1788 struct mem_cgroup *iter; 1789 unsigned long chosen_points = 0; 1790 unsigned long totalpages; 1791 unsigned int points = 0; 1792 struct task_struct *chosen = NULL; 1793 1794 /* 1795 * If current has a pending SIGKILL or is exiting, then automatically 1796 * select it. The goal is to allow it to allocate so that it may 1797 * quickly exit and free its memory. 1798 */ 1799 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1800 set_thread_flag(TIF_MEMDIE); 1801 return; 1802 } 1803 1804 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1805 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1806 for_each_mem_cgroup_tree(iter, memcg) { 1807 struct cgroup *cgroup = iter->css.cgroup; 1808 struct cgroup_iter it; 1809 struct task_struct *task; 1810 1811 cgroup_iter_start(cgroup, &it); 1812 while ((task = cgroup_iter_next(cgroup, &it))) { 1813 switch (oom_scan_process_thread(task, totalpages, NULL, 1814 false)) { 1815 case OOM_SCAN_SELECT: 1816 if (chosen) 1817 put_task_struct(chosen); 1818 chosen = task; 1819 chosen_points = ULONG_MAX; 1820 get_task_struct(chosen); 1821 /* fall through */ 1822 case OOM_SCAN_CONTINUE: 1823 continue; 1824 case OOM_SCAN_ABORT: 1825 cgroup_iter_end(cgroup, &it); 1826 mem_cgroup_iter_break(memcg, iter); 1827 if (chosen) 1828 put_task_struct(chosen); 1829 return; 1830 case OOM_SCAN_OK: 1831 break; 1832 }; 1833 points = oom_badness(task, memcg, NULL, totalpages); 1834 if (points > chosen_points) { 1835 if (chosen) 1836 put_task_struct(chosen); 1837 chosen = task; 1838 chosen_points = points; 1839 get_task_struct(chosen); 1840 } 1841 } 1842 cgroup_iter_end(cgroup, &it); 1843 } 1844 1845 if (!chosen) 1846 return; 1847 points = chosen_points * 1000 / totalpages; 1848 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1849 NULL, "Memory cgroup out of memory"); 1850 } 1851 1852 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1853 gfp_t gfp_mask, 1854 unsigned long flags) 1855 { 1856 unsigned long total = 0; 1857 bool noswap = false; 1858 int loop; 1859 1860 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1861 noswap = true; 1862 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1863 noswap = true; 1864 1865 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1866 if (loop) 1867 drain_all_stock_async(memcg); 1868 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1869 /* 1870 * Allow limit shrinkers, which are triggered directly 1871 * by userspace, to catch signals and stop reclaim 1872 * after minimal progress, regardless of the margin. 1873 */ 1874 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1875 break; 1876 if (mem_cgroup_margin(memcg)) 1877 break; 1878 /* 1879 * If nothing was reclaimed after two attempts, there 1880 * may be no reclaimable pages in this hierarchy. 1881 */ 1882 if (loop && !total) 1883 break; 1884 } 1885 return total; 1886 } 1887 1888 /** 1889 * test_mem_cgroup_node_reclaimable 1890 * @memcg: the target memcg 1891 * @nid: the node ID to be checked. 1892 * @noswap : specify true here if the user wants flle only information. 1893 * 1894 * This function returns whether the specified memcg contains any 1895 * reclaimable pages on a node. Returns true if there are any reclaimable 1896 * pages in the node. 1897 */ 1898 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1899 int nid, bool noswap) 1900 { 1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1902 return true; 1903 if (noswap || !total_swap_pages) 1904 return false; 1905 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1906 return true; 1907 return false; 1908 1909 } 1910 #if MAX_NUMNODES > 1 1911 1912 /* 1913 * Always updating the nodemask is not very good - even if we have an empty 1914 * list or the wrong list here, we can start from some node and traverse all 1915 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1916 * 1917 */ 1918 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1919 { 1920 int nid; 1921 /* 1922 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1923 * pagein/pageout changes since the last update. 1924 */ 1925 if (!atomic_read(&memcg->numainfo_events)) 1926 return; 1927 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1928 return; 1929 1930 /* make a nodemask where this memcg uses memory from */ 1931 memcg->scan_nodes = node_states[N_MEMORY]; 1932 1933 for_each_node_mask(nid, node_states[N_MEMORY]) { 1934 1935 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1936 node_clear(nid, memcg->scan_nodes); 1937 } 1938 1939 atomic_set(&memcg->numainfo_events, 0); 1940 atomic_set(&memcg->numainfo_updating, 0); 1941 } 1942 1943 /* 1944 * Selecting a node where we start reclaim from. Because what we need is just 1945 * reducing usage counter, start from anywhere is O,K. Considering 1946 * memory reclaim from current node, there are pros. and cons. 1947 * 1948 * Freeing memory from current node means freeing memory from a node which 1949 * we'll use or we've used. So, it may make LRU bad. And if several threads 1950 * hit limits, it will see a contention on a node. But freeing from remote 1951 * node means more costs for memory reclaim because of memory latency. 1952 * 1953 * Now, we use round-robin. Better algorithm is welcomed. 1954 */ 1955 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1956 { 1957 int node; 1958 1959 mem_cgroup_may_update_nodemask(memcg); 1960 node = memcg->last_scanned_node; 1961 1962 node = next_node(node, memcg->scan_nodes); 1963 if (node == MAX_NUMNODES) 1964 node = first_node(memcg->scan_nodes); 1965 /* 1966 * We call this when we hit limit, not when pages are added to LRU. 1967 * No LRU may hold pages because all pages are UNEVICTABLE or 1968 * memcg is too small and all pages are not on LRU. In that case, 1969 * we use curret node. 1970 */ 1971 if (unlikely(node == MAX_NUMNODES)) 1972 node = numa_node_id(); 1973 1974 memcg->last_scanned_node = node; 1975 return node; 1976 } 1977 1978 /* 1979 * Check all nodes whether it contains reclaimable pages or not. 1980 * For quick scan, we make use of scan_nodes. This will allow us to skip 1981 * unused nodes. But scan_nodes is lazily updated and may not cotain 1982 * enough new information. We need to do double check. 1983 */ 1984 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1985 { 1986 int nid; 1987 1988 /* 1989 * quick check...making use of scan_node. 1990 * We can skip unused nodes. 1991 */ 1992 if (!nodes_empty(memcg->scan_nodes)) { 1993 for (nid = first_node(memcg->scan_nodes); 1994 nid < MAX_NUMNODES; 1995 nid = next_node(nid, memcg->scan_nodes)) { 1996 1997 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1998 return true; 1999 } 2000 } 2001 /* 2002 * Check rest of nodes. 2003 */ 2004 for_each_node_state(nid, N_MEMORY) { 2005 if (node_isset(nid, memcg->scan_nodes)) 2006 continue; 2007 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 2008 return true; 2009 } 2010 return false; 2011 } 2012 2013 #else 2014 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 2015 { 2016 return 0; 2017 } 2018 2019 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2020 { 2021 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2022 } 2023 #endif 2024 2025 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2026 struct zone *zone, 2027 gfp_t gfp_mask, 2028 unsigned long *total_scanned) 2029 { 2030 struct mem_cgroup *victim = NULL; 2031 int total = 0; 2032 int loop = 0; 2033 unsigned long excess; 2034 unsigned long nr_scanned; 2035 struct mem_cgroup_reclaim_cookie reclaim = { 2036 .zone = zone, 2037 .priority = 0, 2038 }; 2039 2040 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2041 2042 while (1) { 2043 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2044 if (!victim) { 2045 loop++; 2046 if (loop >= 2) { 2047 /* 2048 * If we have not been able to reclaim 2049 * anything, it might because there are 2050 * no reclaimable pages under this hierarchy 2051 */ 2052 if (!total) 2053 break; 2054 /* 2055 * We want to do more targeted reclaim. 2056 * excess >> 2 is not to excessive so as to 2057 * reclaim too much, nor too less that we keep 2058 * coming back to reclaim from this cgroup 2059 */ 2060 if (total >= (excess >> 2) || 2061 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2062 break; 2063 } 2064 continue; 2065 } 2066 if (!mem_cgroup_reclaimable(victim, false)) 2067 continue; 2068 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2069 zone, &nr_scanned); 2070 *total_scanned += nr_scanned; 2071 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2072 break; 2073 } 2074 mem_cgroup_iter_break(root_memcg, victim); 2075 return total; 2076 } 2077 2078 /* 2079 * Check OOM-Killer is already running under our hierarchy. 2080 * If someone is running, return false. 2081 * Has to be called with memcg_oom_lock 2082 */ 2083 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 2084 { 2085 struct mem_cgroup *iter, *failed = NULL; 2086 2087 for_each_mem_cgroup_tree(iter, memcg) { 2088 if (iter->oom_lock) { 2089 /* 2090 * this subtree of our hierarchy is already locked 2091 * so we cannot give a lock. 2092 */ 2093 failed = iter; 2094 mem_cgroup_iter_break(memcg, iter); 2095 break; 2096 } else 2097 iter->oom_lock = true; 2098 } 2099 2100 if (!failed) 2101 return true; 2102 2103 /* 2104 * OK, we failed to lock the whole subtree so we have to clean up 2105 * what we set up to the failing subtree 2106 */ 2107 for_each_mem_cgroup_tree(iter, memcg) { 2108 if (iter == failed) { 2109 mem_cgroup_iter_break(memcg, iter); 2110 break; 2111 } 2112 iter->oom_lock = false; 2113 } 2114 return false; 2115 } 2116 2117 /* 2118 * Has to be called with memcg_oom_lock 2119 */ 2120 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2121 { 2122 struct mem_cgroup *iter; 2123 2124 for_each_mem_cgroup_tree(iter, memcg) 2125 iter->oom_lock = false; 2126 return 0; 2127 } 2128 2129 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2130 { 2131 struct mem_cgroup *iter; 2132 2133 for_each_mem_cgroup_tree(iter, memcg) 2134 atomic_inc(&iter->under_oom); 2135 } 2136 2137 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2138 { 2139 struct mem_cgroup *iter; 2140 2141 /* 2142 * When a new child is created while the hierarchy is under oom, 2143 * mem_cgroup_oom_lock() may not be called. We have to use 2144 * atomic_add_unless() here. 2145 */ 2146 for_each_mem_cgroup_tree(iter, memcg) 2147 atomic_add_unless(&iter->under_oom, -1, 0); 2148 } 2149 2150 static DEFINE_SPINLOCK(memcg_oom_lock); 2151 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2152 2153 struct oom_wait_info { 2154 struct mem_cgroup *memcg; 2155 wait_queue_t wait; 2156 }; 2157 2158 static int memcg_oom_wake_function(wait_queue_t *wait, 2159 unsigned mode, int sync, void *arg) 2160 { 2161 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2162 struct mem_cgroup *oom_wait_memcg; 2163 struct oom_wait_info *oom_wait_info; 2164 2165 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2166 oom_wait_memcg = oom_wait_info->memcg; 2167 2168 /* 2169 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2170 * Then we can use css_is_ancestor without taking care of RCU. 2171 */ 2172 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2173 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2174 return 0; 2175 return autoremove_wake_function(wait, mode, sync, arg); 2176 } 2177 2178 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2179 { 2180 /* for filtering, pass "memcg" as argument. */ 2181 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2182 } 2183 2184 static void memcg_oom_recover(struct mem_cgroup *memcg) 2185 { 2186 if (memcg && atomic_read(&memcg->under_oom)) 2187 memcg_wakeup_oom(memcg); 2188 } 2189 2190 /* 2191 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 2192 */ 2193 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 2194 int order) 2195 { 2196 struct oom_wait_info owait; 2197 bool locked, need_to_kill; 2198 2199 owait.memcg = memcg; 2200 owait.wait.flags = 0; 2201 owait.wait.func = memcg_oom_wake_function; 2202 owait.wait.private = current; 2203 INIT_LIST_HEAD(&owait.wait.task_list); 2204 need_to_kill = true; 2205 mem_cgroup_mark_under_oom(memcg); 2206 2207 /* At first, try to OOM lock hierarchy under memcg.*/ 2208 spin_lock(&memcg_oom_lock); 2209 locked = mem_cgroup_oom_lock(memcg); 2210 /* 2211 * Even if signal_pending(), we can't quit charge() loop without 2212 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 2213 * under OOM is always welcomed, use TASK_KILLABLE here. 2214 */ 2215 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2216 if (!locked || memcg->oom_kill_disable) 2217 need_to_kill = false; 2218 if (locked) 2219 mem_cgroup_oom_notify(memcg); 2220 spin_unlock(&memcg_oom_lock); 2221 2222 if (need_to_kill) { 2223 finish_wait(&memcg_oom_waitq, &owait.wait); 2224 mem_cgroup_out_of_memory(memcg, mask, order); 2225 } else { 2226 schedule(); 2227 finish_wait(&memcg_oom_waitq, &owait.wait); 2228 } 2229 spin_lock(&memcg_oom_lock); 2230 if (locked) 2231 mem_cgroup_oom_unlock(memcg); 2232 memcg_wakeup_oom(memcg); 2233 spin_unlock(&memcg_oom_lock); 2234 2235 mem_cgroup_unmark_under_oom(memcg); 2236 2237 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2238 return false; 2239 /* Give chance to dying process */ 2240 schedule_timeout_uninterruptible(1); 2241 return true; 2242 } 2243 2244 /* 2245 * Currently used to update mapped file statistics, but the routine can be 2246 * generalized to update other statistics as well. 2247 * 2248 * Notes: Race condition 2249 * 2250 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2251 * it tends to be costly. But considering some conditions, we doesn't need 2252 * to do so _always_. 2253 * 2254 * Considering "charge", lock_page_cgroup() is not required because all 2255 * file-stat operations happen after a page is attached to radix-tree. There 2256 * are no race with "charge". 2257 * 2258 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2259 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2260 * if there are race with "uncharge". Statistics itself is properly handled 2261 * by flags. 2262 * 2263 * Considering "move", this is an only case we see a race. To make the race 2264 * small, we check mm->moving_account and detect there are possibility of race 2265 * If there is, we take a lock. 2266 */ 2267 2268 void __mem_cgroup_begin_update_page_stat(struct page *page, 2269 bool *locked, unsigned long *flags) 2270 { 2271 struct mem_cgroup *memcg; 2272 struct page_cgroup *pc; 2273 2274 pc = lookup_page_cgroup(page); 2275 again: 2276 memcg = pc->mem_cgroup; 2277 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2278 return; 2279 /* 2280 * If this memory cgroup is not under account moving, we don't 2281 * need to take move_lock_mem_cgroup(). Because we already hold 2282 * rcu_read_lock(), any calls to move_account will be delayed until 2283 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2284 */ 2285 if (!mem_cgroup_stolen(memcg)) 2286 return; 2287 2288 move_lock_mem_cgroup(memcg, flags); 2289 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2290 move_unlock_mem_cgroup(memcg, flags); 2291 goto again; 2292 } 2293 *locked = true; 2294 } 2295 2296 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2297 { 2298 struct page_cgroup *pc = lookup_page_cgroup(page); 2299 2300 /* 2301 * It's guaranteed that pc->mem_cgroup never changes while 2302 * lock is held because a routine modifies pc->mem_cgroup 2303 * should take move_lock_mem_cgroup(). 2304 */ 2305 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2306 } 2307 2308 void mem_cgroup_update_page_stat(struct page *page, 2309 enum mem_cgroup_page_stat_item idx, int val) 2310 { 2311 struct mem_cgroup *memcg; 2312 struct page_cgroup *pc = lookup_page_cgroup(page); 2313 unsigned long uninitialized_var(flags); 2314 2315 if (mem_cgroup_disabled()) 2316 return; 2317 2318 memcg = pc->mem_cgroup; 2319 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2320 return; 2321 2322 switch (idx) { 2323 case MEMCG_NR_FILE_MAPPED: 2324 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2325 break; 2326 default: 2327 BUG(); 2328 } 2329 2330 this_cpu_add(memcg->stat->count[idx], val); 2331 } 2332 2333 /* 2334 * size of first charge trial. "32" comes from vmscan.c's magic value. 2335 * TODO: maybe necessary to use big numbers in big irons. 2336 */ 2337 #define CHARGE_BATCH 32U 2338 struct memcg_stock_pcp { 2339 struct mem_cgroup *cached; /* this never be root cgroup */ 2340 unsigned int nr_pages; 2341 struct work_struct work; 2342 unsigned long flags; 2343 #define FLUSHING_CACHED_CHARGE 0 2344 }; 2345 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2346 static DEFINE_MUTEX(percpu_charge_mutex); 2347 2348 /** 2349 * consume_stock: Try to consume stocked charge on this cpu. 2350 * @memcg: memcg to consume from. 2351 * @nr_pages: how many pages to charge. 2352 * 2353 * The charges will only happen if @memcg matches the current cpu's memcg 2354 * stock, and at least @nr_pages are available in that stock. Failure to 2355 * service an allocation will refill the stock. 2356 * 2357 * returns true if successful, false otherwise. 2358 */ 2359 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2360 { 2361 struct memcg_stock_pcp *stock; 2362 bool ret = true; 2363 2364 if (nr_pages > CHARGE_BATCH) 2365 return false; 2366 2367 stock = &get_cpu_var(memcg_stock); 2368 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2369 stock->nr_pages -= nr_pages; 2370 else /* need to call res_counter_charge */ 2371 ret = false; 2372 put_cpu_var(memcg_stock); 2373 return ret; 2374 } 2375 2376 /* 2377 * Returns stocks cached in percpu to res_counter and reset cached information. 2378 */ 2379 static void drain_stock(struct memcg_stock_pcp *stock) 2380 { 2381 struct mem_cgroup *old = stock->cached; 2382 2383 if (stock->nr_pages) { 2384 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2385 2386 res_counter_uncharge(&old->res, bytes); 2387 if (do_swap_account) 2388 res_counter_uncharge(&old->memsw, bytes); 2389 stock->nr_pages = 0; 2390 } 2391 stock->cached = NULL; 2392 } 2393 2394 /* 2395 * This must be called under preempt disabled or must be called by 2396 * a thread which is pinned to local cpu. 2397 */ 2398 static void drain_local_stock(struct work_struct *dummy) 2399 { 2400 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2401 drain_stock(stock); 2402 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2403 } 2404 2405 static void __init memcg_stock_init(void) 2406 { 2407 int cpu; 2408 2409 for_each_possible_cpu(cpu) { 2410 struct memcg_stock_pcp *stock = 2411 &per_cpu(memcg_stock, cpu); 2412 INIT_WORK(&stock->work, drain_local_stock); 2413 } 2414 } 2415 2416 /* 2417 * Cache charges(val) which is from res_counter, to local per_cpu area. 2418 * This will be consumed by consume_stock() function, later. 2419 */ 2420 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2421 { 2422 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2423 2424 if (stock->cached != memcg) { /* reset if necessary */ 2425 drain_stock(stock); 2426 stock->cached = memcg; 2427 } 2428 stock->nr_pages += nr_pages; 2429 put_cpu_var(memcg_stock); 2430 } 2431 2432 /* 2433 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2434 * of the hierarchy under it. sync flag says whether we should block 2435 * until the work is done. 2436 */ 2437 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2438 { 2439 int cpu, curcpu; 2440 2441 /* Notify other cpus that system-wide "drain" is running */ 2442 get_online_cpus(); 2443 curcpu = get_cpu(); 2444 for_each_online_cpu(cpu) { 2445 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2446 struct mem_cgroup *memcg; 2447 2448 memcg = stock->cached; 2449 if (!memcg || !stock->nr_pages) 2450 continue; 2451 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2452 continue; 2453 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2454 if (cpu == curcpu) 2455 drain_local_stock(&stock->work); 2456 else 2457 schedule_work_on(cpu, &stock->work); 2458 } 2459 } 2460 put_cpu(); 2461 2462 if (!sync) 2463 goto out; 2464 2465 for_each_online_cpu(cpu) { 2466 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2467 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2468 flush_work(&stock->work); 2469 } 2470 out: 2471 put_online_cpus(); 2472 } 2473 2474 /* 2475 * Tries to drain stocked charges in other cpus. This function is asynchronous 2476 * and just put a work per cpu for draining localy on each cpu. Caller can 2477 * expects some charges will be back to res_counter later but cannot wait for 2478 * it. 2479 */ 2480 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2481 { 2482 /* 2483 * If someone calls draining, avoid adding more kworker runs. 2484 */ 2485 if (!mutex_trylock(&percpu_charge_mutex)) 2486 return; 2487 drain_all_stock(root_memcg, false); 2488 mutex_unlock(&percpu_charge_mutex); 2489 } 2490 2491 /* This is a synchronous drain interface. */ 2492 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2493 { 2494 /* called when force_empty is called */ 2495 mutex_lock(&percpu_charge_mutex); 2496 drain_all_stock(root_memcg, true); 2497 mutex_unlock(&percpu_charge_mutex); 2498 } 2499 2500 /* 2501 * This function drains percpu counter value from DEAD cpu and 2502 * move it to local cpu. Note that this function can be preempted. 2503 */ 2504 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2505 { 2506 int i; 2507 2508 spin_lock(&memcg->pcp_counter_lock); 2509 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2510 long x = per_cpu(memcg->stat->count[i], cpu); 2511 2512 per_cpu(memcg->stat->count[i], cpu) = 0; 2513 memcg->nocpu_base.count[i] += x; 2514 } 2515 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2516 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2517 2518 per_cpu(memcg->stat->events[i], cpu) = 0; 2519 memcg->nocpu_base.events[i] += x; 2520 } 2521 spin_unlock(&memcg->pcp_counter_lock); 2522 } 2523 2524 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2525 unsigned long action, 2526 void *hcpu) 2527 { 2528 int cpu = (unsigned long)hcpu; 2529 struct memcg_stock_pcp *stock; 2530 struct mem_cgroup *iter; 2531 2532 if (action == CPU_ONLINE) 2533 return NOTIFY_OK; 2534 2535 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2536 return NOTIFY_OK; 2537 2538 for_each_mem_cgroup(iter) 2539 mem_cgroup_drain_pcp_counter(iter, cpu); 2540 2541 stock = &per_cpu(memcg_stock, cpu); 2542 drain_stock(stock); 2543 return NOTIFY_OK; 2544 } 2545 2546 2547 /* See __mem_cgroup_try_charge() for details */ 2548 enum { 2549 CHARGE_OK, /* success */ 2550 CHARGE_RETRY, /* need to retry but retry is not bad */ 2551 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2552 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2553 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2554 }; 2555 2556 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2557 unsigned int nr_pages, unsigned int min_pages, 2558 bool oom_check) 2559 { 2560 unsigned long csize = nr_pages * PAGE_SIZE; 2561 struct mem_cgroup *mem_over_limit; 2562 struct res_counter *fail_res; 2563 unsigned long flags = 0; 2564 int ret; 2565 2566 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2567 2568 if (likely(!ret)) { 2569 if (!do_swap_account) 2570 return CHARGE_OK; 2571 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2572 if (likely(!ret)) 2573 return CHARGE_OK; 2574 2575 res_counter_uncharge(&memcg->res, csize); 2576 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2577 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2578 } else 2579 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2580 /* 2581 * Never reclaim on behalf of optional batching, retry with a 2582 * single page instead. 2583 */ 2584 if (nr_pages > min_pages) 2585 return CHARGE_RETRY; 2586 2587 if (!(gfp_mask & __GFP_WAIT)) 2588 return CHARGE_WOULDBLOCK; 2589 2590 if (gfp_mask & __GFP_NORETRY) 2591 return CHARGE_NOMEM; 2592 2593 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2594 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2595 return CHARGE_RETRY; 2596 /* 2597 * Even though the limit is exceeded at this point, reclaim 2598 * may have been able to free some pages. Retry the charge 2599 * before killing the task. 2600 * 2601 * Only for regular pages, though: huge pages are rather 2602 * unlikely to succeed so close to the limit, and we fall back 2603 * to regular pages anyway in case of failure. 2604 */ 2605 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2606 return CHARGE_RETRY; 2607 2608 /* 2609 * At task move, charge accounts can be doubly counted. So, it's 2610 * better to wait until the end of task_move if something is going on. 2611 */ 2612 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2613 return CHARGE_RETRY; 2614 2615 /* If we don't need to call oom-killer at el, return immediately */ 2616 if (!oom_check) 2617 return CHARGE_NOMEM; 2618 /* check OOM */ 2619 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2620 return CHARGE_OOM_DIE; 2621 2622 return CHARGE_RETRY; 2623 } 2624 2625 /* 2626 * __mem_cgroup_try_charge() does 2627 * 1. detect memcg to be charged against from passed *mm and *ptr, 2628 * 2. update res_counter 2629 * 3. call memory reclaim if necessary. 2630 * 2631 * In some special case, if the task is fatal, fatal_signal_pending() or 2632 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2633 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2634 * as possible without any hazards. 2: all pages should have a valid 2635 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2636 * pointer, that is treated as a charge to root_mem_cgroup. 2637 * 2638 * So __mem_cgroup_try_charge() will return 2639 * 0 ... on success, filling *ptr with a valid memcg pointer. 2640 * -ENOMEM ... charge failure because of resource limits. 2641 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2642 * 2643 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2644 * the oom-killer can be invoked. 2645 */ 2646 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2647 gfp_t gfp_mask, 2648 unsigned int nr_pages, 2649 struct mem_cgroup **ptr, 2650 bool oom) 2651 { 2652 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2653 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2654 struct mem_cgroup *memcg = NULL; 2655 int ret; 2656 2657 /* 2658 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2659 * in system level. So, allow to go ahead dying process in addition to 2660 * MEMDIE process. 2661 */ 2662 if (unlikely(test_thread_flag(TIF_MEMDIE) 2663 || fatal_signal_pending(current))) 2664 goto bypass; 2665 2666 /* 2667 * We always charge the cgroup the mm_struct belongs to. 2668 * The mm_struct's mem_cgroup changes on task migration if the 2669 * thread group leader migrates. It's possible that mm is not 2670 * set, if so charge the root memcg (happens for pagecache usage). 2671 */ 2672 if (!*ptr && !mm) 2673 *ptr = root_mem_cgroup; 2674 again: 2675 if (*ptr) { /* css should be a valid one */ 2676 memcg = *ptr; 2677 if (mem_cgroup_is_root(memcg)) 2678 goto done; 2679 if (consume_stock(memcg, nr_pages)) 2680 goto done; 2681 css_get(&memcg->css); 2682 } else { 2683 struct task_struct *p; 2684 2685 rcu_read_lock(); 2686 p = rcu_dereference(mm->owner); 2687 /* 2688 * Because we don't have task_lock(), "p" can exit. 2689 * In that case, "memcg" can point to root or p can be NULL with 2690 * race with swapoff. Then, we have small risk of mis-accouning. 2691 * But such kind of mis-account by race always happens because 2692 * we don't have cgroup_mutex(). It's overkill and we allo that 2693 * small race, here. 2694 * (*) swapoff at el will charge against mm-struct not against 2695 * task-struct. So, mm->owner can be NULL. 2696 */ 2697 memcg = mem_cgroup_from_task(p); 2698 if (!memcg) 2699 memcg = root_mem_cgroup; 2700 if (mem_cgroup_is_root(memcg)) { 2701 rcu_read_unlock(); 2702 goto done; 2703 } 2704 if (consume_stock(memcg, nr_pages)) { 2705 /* 2706 * It seems dagerous to access memcg without css_get(). 2707 * But considering how consume_stok works, it's not 2708 * necessary. If consume_stock success, some charges 2709 * from this memcg are cached on this cpu. So, we 2710 * don't need to call css_get()/css_tryget() before 2711 * calling consume_stock(). 2712 */ 2713 rcu_read_unlock(); 2714 goto done; 2715 } 2716 /* after here, we may be blocked. we need to get refcnt */ 2717 if (!css_tryget(&memcg->css)) { 2718 rcu_read_unlock(); 2719 goto again; 2720 } 2721 rcu_read_unlock(); 2722 } 2723 2724 do { 2725 bool oom_check; 2726 2727 /* If killed, bypass charge */ 2728 if (fatal_signal_pending(current)) { 2729 css_put(&memcg->css); 2730 goto bypass; 2731 } 2732 2733 oom_check = false; 2734 if (oom && !nr_oom_retries) { 2735 oom_check = true; 2736 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2737 } 2738 2739 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, 2740 oom_check); 2741 switch (ret) { 2742 case CHARGE_OK: 2743 break; 2744 case CHARGE_RETRY: /* not in OOM situation but retry */ 2745 batch = nr_pages; 2746 css_put(&memcg->css); 2747 memcg = NULL; 2748 goto again; 2749 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2750 css_put(&memcg->css); 2751 goto nomem; 2752 case CHARGE_NOMEM: /* OOM routine works */ 2753 if (!oom) { 2754 css_put(&memcg->css); 2755 goto nomem; 2756 } 2757 /* If oom, we never return -ENOMEM */ 2758 nr_oom_retries--; 2759 break; 2760 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2761 css_put(&memcg->css); 2762 goto bypass; 2763 } 2764 } while (ret != CHARGE_OK); 2765 2766 if (batch > nr_pages) 2767 refill_stock(memcg, batch - nr_pages); 2768 css_put(&memcg->css); 2769 done: 2770 *ptr = memcg; 2771 return 0; 2772 nomem: 2773 *ptr = NULL; 2774 return -ENOMEM; 2775 bypass: 2776 *ptr = root_mem_cgroup; 2777 return -EINTR; 2778 } 2779 2780 /* 2781 * Somemtimes we have to undo a charge we got by try_charge(). 2782 * This function is for that and do uncharge, put css's refcnt. 2783 * gotten by try_charge(). 2784 */ 2785 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2786 unsigned int nr_pages) 2787 { 2788 if (!mem_cgroup_is_root(memcg)) { 2789 unsigned long bytes = nr_pages * PAGE_SIZE; 2790 2791 res_counter_uncharge(&memcg->res, bytes); 2792 if (do_swap_account) 2793 res_counter_uncharge(&memcg->memsw, bytes); 2794 } 2795 } 2796 2797 /* 2798 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2799 * This is useful when moving usage to parent cgroup. 2800 */ 2801 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2802 unsigned int nr_pages) 2803 { 2804 unsigned long bytes = nr_pages * PAGE_SIZE; 2805 2806 if (mem_cgroup_is_root(memcg)) 2807 return; 2808 2809 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2810 if (do_swap_account) 2811 res_counter_uncharge_until(&memcg->memsw, 2812 memcg->memsw.parent, bytes); 2813 } 2814 2815 /* 2816 * A helper function to get mem_cgroup from ID. must be called under 2817 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2818 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2819 * called against removed memcg.) 2820 */ 2821 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2822 { 2823 struct cgroup_subsys_state *css; 2824 2825 /* ID 0 is unused ID */ 2826 if (!id) 2827 return NULL; 2828 css = css_lookup(&mem_cgroup_subsys, id); 2829 if (!css) 2830 return NULL; 2831 return mem_cgroup_from_css(css); 2832 } 2833 2834 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2835 { 2836 struct mem_cgroup *memcg = NULL; 2837 struct page_cgroup *pc; 2838 unsigned short id; 2839 swp_entry_t ent; 2840 2841 VM_BUG_ON(!PageLocked(page)); 2842 2843 pc = lookup_page_cgroup(page); 2844 lock_page_cgroup(pc); 2845 if (PageCgroupUsed(pc)) { 2846 memcg = pc->mem_cgroup; 2847 if (memcg && !css_tryget(&memcg->css)) 2848 memcg = NULL; 2849 } else if (PageSwapCache(page)) { 2850 ent.val = page_private(page); 2851 id = lookup_swap_cgroup_id(ent); 2852 rcu_read_lock(); 2853 memcg = mem_cgroup_lookup(id); 2854 if (memcg && !css_tryget(&memcg->css)) 2855 memcg = NULL; 2856 rcu_read_unlock(); 2857 } 2858 unlock_page_cgroup(pc); 2859 return memcg; 2860 } 2861 2862 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2863 struct page *page, 2864 unsigned int nr_pages, 2865 enum charge_type ctype, 2866 bool lrucare) 2867 { 2868 struct page_cgroup *pc = lookup_page_cgroup(page); 2869 struct zone *uninitialized_var(zone); 2870 struct lruvec *lruvec; 2871 bool was_on_lru = false; 2872 bool anon; 2873 2874 lock_page_cgroup(pc); 2875 VM_BUG_ON(PageCgroupUsed(pc)); 2876 /* 2877 * we don't need page_cgroup_lock about tail pages, becase they are not 2878 * accessed by any other context at this point. 2879 */ 2880 2881 /* 2882 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2883 * may already be on some other mem_cgroup's LRU. Take care of it. 2884 */ 2885 if (lrucare) { 2886 zone = page_zone(page); 2887 spin_lock_irq(&zone->lru_lock); 2888 if (PageLRU(page)) { 2889 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2890 ClearPageLRU(page); 2891 del_page_from_lru_list(page, lruvec, page_lru(page)); 2892 was_on_lru = true; 2893 } 2894 } 2895 2896 pc->mem_cgroup = memcg; 2897 /* 2898 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2899 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2900 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2901 * before USED bit, we need memory barrier here. 2902 * See mem_cgroup_add_lru_list(), etc. 2903 */ 2904 smp_wmb(); 2905 SetPageCgroupUsed(pc); 2906 2907 if (lrucare) { 2908 if (was_on_lru) { 2909 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2910 VM_BUG_ON(PageLRU(page)); 2911 SetPageLRU(page); 2912 add_page_to_lru_list(page, lruvec, page_lru(page)); 2913 } 2914 spin_unlock_irq(&zone->lru_lock); 2915 } 2916 2917 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2918 anon = true; 2919 else 2920 anon = false; 2921 2922 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2923 unlock_page_cgroup(pc); 2924 2925 /* 2926 * "charge_statistics" updated event counter. Then, check it. 2927 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2928 * if they exceeds softlimit. 2929 */ 2930 memcg_check_events(memcg, page); 2931 } 2932 2933 static DEFINE_MUTEX(set_limit_mutex); 2934 2935 #ifdef CONFIG_MEMCG_KMEM 2936 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2937 { 2938 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2939 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2940 } 2941 2942 /* 2943 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2944 * in the memcg_cache_params struct. 2945 */ 2946 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2947 { 2948 struct kmem_cache *cachep; 2949 2950 VM_BUG_ON(p->is_root_cache); 2951 cachep = p->root_cache; 2952 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2953 } 2954 2955 #ifdef CONFIG_SLABINFO 2956 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, 2957 struct seq_file *m) 2958 { 2959 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2960 struct memcg_cache_params *params; 2961 2962 if (!memcg_can_account_kmem(memcg)) 2963 return -EIO; 2964 2965 print_slabinfo_header(m); 2966 2967 mutex_lock(&memcg->slab_caches_mutex); 2968 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2969 cache_show(memcg_params_to_cache(params), m); 2970 mutex_unlock(&memcg->slab_caches_mutex); 2971 2972 return 0; 2973 } 2974 #endif 2975 2976 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2977 { 2978 struct res_counter *fail_res; 2979 struct mem_cgroup *_memcg; 2980 int ret = 0; 2981 bool may_oom; 2982 2983 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2984 if (ret) 2985 return ret; 2986 2987 /* 2988 * Conditions under which we can wait for the oom_killer. Those are 2989 * the same conditions tested by the core page allocator 2990 */ 2991 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2992 2993 _memcg = memcg; 2994 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2995 &_memcg, may_oom); 2996 2997 if (ret == -EINTR) { 2998 /* 2999 * __mem_cgroup_try_charge() chosed to bypass to root due to 3000 * OOM kill or fatal signal. Since our only options are to 3001 * either fail the allocation or charge it to this cgroup, do 3002 * it as a temporary condition. But we can't fail. From a 3003 * kmem/slab perspective, the cache has already been selected, 3004 * by mem_cgroup_kmem_get_cache(), so it is too late to change 3005 * our minds. 3006 * 3007 * This condition will only trigger if the task entered 3008 * memcg_charge_kmem in a sane state, but was OOM-killed during 3009 * __mem_cgroup_try_charge() above. Tasks that were already 3010 * dying when the allocation triggers should have been already 3011 * directed to the root cgroup in memcontrol.h 3012 */ 3013 res_counter_charge_nofail(&memcg->res, size, &fail_res); 3014 if (do_swap_account) 3015 res_counter_charge_nofail(&memcg->memsw, size, 3016 &fail_res); 3017 ret = 0; 3018 } else if (ret) 3019 res_counter_uncharge(&memcg->kmem, size); 3020 3021 return ret; 3022 } 3023 3024 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 3025 { 3026 res_counter_uncharge(&memcg->res, size); 3027 if (do_swap_account) 3028 res_counter_uncharge(&memcg->memsw, size); 3029 3030 /* Not down to 0 */ 3031 if (res_counter_uncharge(&memcg->kmem, size)) 3032 return; 3033 3034 if (memcg_kmem_test_and_clear_dead(memcg)) 3035 mem_cgroup_put(memcg); 3036 } 3037 3038 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 3039 { 3040 if (!memcg) 3041 return; 3042 3043 mutex_lock(&memcg->slab_caches_mutex); 3044 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3045 mutex_unlock(&memcg->slab_caches_mutex); 3046 } 3047 3048 /* 3049 * helper for acessing a memcg's index. It will be used as an index in the 3050 * child cache array in kmem_cache, and also to derive its name. This function 3051 * will return -1 when this is not a kmem-limited memcg. 3052 */ 3053 int memcg_cache_id(struct mem_cgroup *memcg) 3054 { 3055 return memcg ? memcg->kmemcg_id : -1; 3056 } 3057 3058 /* 3059 * This ends up being protected by the set_limit mutex, during normal 3060 * operation, because that is its main call site. 3061 * 3062 * But when we create a new cache, we can call this as well if its parent 3063 * is kmem-limited. That will have to hold set_limit_mutex as well. 3064 */ 3065 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 3066 { 3067 int num, ret; 3068 3069 num = ida_simple_get(&kmem_limited_groups, 3070 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 3071 if (num < 0) 3072 return num; 3073 /* 3074 * After this point, kmem_accounted (that we test atomically in 3075 * the beginning of this conditional), is no longer 0. This 3076 * guarantees only one process will set the following boolean 3077 * to true. We don't need test_and_set because we're protected 3078 * by the set_limit_mutex anyway. 3079 */ 3080 memcg_kmem_set_activated(memcg); 3081 3082 ret = memcg_update_all_caches(num+1); 3083 if (ret) { 3084 ida_simple_remove(&kmem_limited_groups, num); 3085 memcg_kmem_clear_activated(memcg); 3086 return ret; 3087 } 3088 3089 memcg->kmemcg_id = num; 3090 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 3091 mutex_init(&memcg->slab_caches_mutex); 3092 return 0; 3093 } 3094 3095 static size_t memcg_caches_array_size(int num_groups) 3096 { 3097 ssize_t size; 3098 if (num_groups <= 0) 3099 return 0; 3100 3101 size = 2 * num_groups; 3102 if (size < MEMCG_CACHES_MIN_SIZE) 3103 size = MEMCG_CACHES_MIN_SIZE; 3104 else if (size > MEMCG_CACHES_MAX_SIZE) 3105 size = MEMCG_CACHES_MAX_SIZE; 3106 3107 return size; 3108 } 3109 3110 /* 3111 * We should update the current array size iff all caches updates succeed. This 3112 * can only be done from the slab side. The slab mutex needs to be held when 3113 * calling this. 3114 */ 3115 void memcg_update_array_size(int num) 3116 { 3117 if (num > memcg_limited_groups_array_size) 3118 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3119 } 3120 3121 static void kmem_cache_destroy_work_func(struct work_struct *w); 3122 3123 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3124 { 3125 struct memcg_cache_params *cur_params = s->memcg_params; 3126 3127 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3128 3129 if (num_groups > memcg_limited_groups_array_size) { 3130 int i; 3131 ssize_t size = memcg_caches_array_size(num_groups); 3132 3133 size *= sizeof(void *); 3134 size += sizeof(struct memcg_cache_params); 3135 3136 s->memcg_params = kzalloc(size, GFP_KERNEL); 3137 if (!s->memcg_params) { 3138 s->memcg_params = cur_params; 3139 return -ENOMEM; 3140 } 3141 3142 s->memcg_params->is_root_cache = true; 3143 3144 /* 3145 * There is the chance it will be bigger than 3146 * memcg_limited_groups_array_size, if we failed an allocation 3147 * in a cache, in which case all caches updated before it, will 3148 * have a bigger array. 3149 * 3150 * But if that is the case, the data after 3151 * memcg_limited_groups_array_size is certainly unused 3152 */ 3153 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3154 if (!cur_params->memcg_caches[i]) 3155 continue; 3156 s->memcg_params->memcg_caches[i] = 3157 cur_params->memcg_caches[i]; 3158 } 3159 3160 /* 3161 * Ideally, we would wait until all caches succeed, and only 3162 * then free the old one. But this is not worth the extra 3163 * pointer per-cache we'd have to have for this. 3164 * 3165 * It is not a big deal if some caches are left with a size 3166 * bigger than the others. And all updates will reset this 3167 * anyway. 3168 */ 3169 kfree(cur_params); 3170 } 3171 return 0; 3172 } 3173 3174 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3175 struct kmem_cache *root_cache) 3176 { 3177 size_t size = sizeof(struct memcg_cache_params); 3178 3179 if (!memcg_kmem_enabled()) 3180 return 0; 3181 3182 if (!memcg) 3183 size += memcg_limited_groups_array_size * sizeof(void *); 3184 3185 s->memcg_params = kzalloc(size, GFP_KERNEL); 3186 if (!s->memcg_params) 3187 return -ENOMEM; 3188 3189 INIT_WORK(&s->memcg_params->destroy, 3190 kmem_cache_destroy_work_func); 3191 if (memcg) { 3192 s->memcg_params->memcg = memcg; 3193 s->memcg_params->root_cache = root_cache; 3194 } else 3195 s->memcg_params->is_root_cache = true; 3196 3197 return 0; 3198 } 3199 3200 void memcg_release_cache(struct kmem_cache *s) 3201 { 3202 struct kmem_cache *root; 3203 struct mem_cgroup *memcg; 3204 int id; 3205 3206 /* 3207 * This happens, for instance, when a root cache goes away before we 3208 * add any memcg. 3209 */ 3210 if (!s->memcg_params) 3211 return; 3212 3213 if (s->memcg_params->is_root_cache) 3214 goto out; 3215 3216 memcg = s->memcg_params->memcg; 3217 id = memcg_cache_id(memcg); 3218 3219 root = s->memcg_params->root_cache; 3220 root->memcg_params->memcg_caches[id] = NULL; 3221 3222 mutex_lock(&memcg->slab_caches_mutex); 3223 list_del(&s->memcg_params->list); 3224 mutex_unlock(&memcg->slab_caches_mutex); 3225 3226 mem_cgroup_put(memcg); 3227 out: 3228 kfree(s->memcg_params); 3229 } 3230 3231 /* 3232 * During the creation a new cache, we need to disable our accounting mechanism 3233 * altogether. This is true even if we are not creating, but rather just 3234 * enqueing new caches to be created. 3235 * 3236 * This is because that process will trigger allocations; some visible, like 3237 * explicit kmallocs to auxiliary data structures, name strings and internal 3238 * cache structures; some well concealed, like INIT_WORK() that can allocate 3239 * objects during debug. 3240 * 3241 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3242 * to it. This may not be a bounded recursion: since the first cache creation 3243 * failed to complete (waiting on the allocation), we'll just try to create the 3244 * cache again, failing at the same point. 3245 * 3246 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3247 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3248 * inside the following two functions. 3249 */ 3250 static inline void memcg_stop_kmem_account(void) 3251 { 3252 VM_BUG_ON(!current->mm); 3253 current->memcg_kmem_skip_account++; 3254 } 3255 3256 static inline void memcg_resume_kmem_account(void) 3257 { 3258 VM_BUG_ON(!current->mm); 3259 current->memcg_kmem_skip_account--; 3260 } 3261 3262 static void kmem_cache_destroy_work_func(struct work_struct *w) 3263 { 3264 struct kmem_cache *cachep; 3265 struct memcg_cache_params *p; 3266 3267 p = container_of(w, struct memcg_cache_params, destroy); 3268 3269 cachep = memcg_params_to_cache(p); 3270 3271 /* 3272 * If we get down to 0 after shrink, we could delete right away. 3273 * However, memcg_release_pages() already puts us back in the workqueue 3274 * in that case. If we proceed deleting, we'll get a dangling 3275 * reference, and removing the object from the workqueue in that case 3276 * is unnecessary complication. We are not a fast path. 3277 * 3278 * Note that this case is fundamentally different from racing with 3279 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3280 * kmem_cache_shrink, not only we would be reinserting a dead cache 3281 * into the queue, but doing so from inside the worker racing to 3282 * destroy it. 3283 * 3284 * So if we aren't down to zero, we'll just schedule a worker and try 3285 * again 3286 */ 3287 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3288 kmem_cache_shrink(cachep); 3289 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3290 return; 3291 } else 3292 kmem_cache_destroy(cachep); 3293 } 3294 3295 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3296 { 3297 if (!cachep->memcg_params->dead) 3298 return; 3299 3300 /* 3301 * There are many ways in which we can get here. 3302 * 3303 * We can get to a memory-pressure situation while the delayed work is 3304 * still pending to run. The vmscan shrinkers can then release all 3305 * cache memory and get us to destruction. If this is the case, we'll 3306 * be executed twice, which is a bug (the second time will execute over 3307 * bogus data). In this case, cancelling the work should be fine. 3308 * 3309 * But we can also get here from the worker itself, if 3310 * kmem_cache_shrink is enough to shake all the remaining objects and 3311 * get the page count to 0. In this case, we'll deadlock if we try to 3312 * cancel the work (the worker runs with an internal lock held, which 3313 * is the same lock we would hold for cancel_work_sync().) 3314 * 3315 * Since we can't possibly know who got us here, just refrain from 3316 * running if there is already work pending 3317 */ 3318 if (work_pending(&cachep->memcg_params->destroy)) 3319 return; 3320 /* 3321 * We have to defer the actual destroying to a workqueue, because 3322 * we might currently be in a context that cannot sleep. 3323 */ 3324 schedule_work(&cachep->memcg_params->destroy); 3325 } 3326 3327 /* 3328 * This lock protects updaters, not readers. We want readers to be as fast as 3329 * they can, and they will either see NULL or a valid cache value. Our model 3330 * allow them to see NULL, in which case the root memcg will be selected. 3331 * 3332 * We need this lock because multiple allocations to the same cache from a non 3333 * will span more than one worker. Only one of them can create the cache. 3334 */ 3335 static DEFINE_MUTEX(memcg_cache_mutex); 3336 3337 /* 3338 * Called with memcg_cache_mutex held 3339 */ 3340 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3341 struct kmem_cache *s) 3342 { 3343 struct kmem_cache *new; 3344 static char *tmp_name = NULL; 3345 3346 lockdep_assert_held(&memcg_cache_mutex); 3347 3348 /* 3349 * kmem_cache_create_memcg duplicates the given name and 3350 * cgroup_name for this name requires RCU context. 3351 * This static temporary buffer is used to prevent from 3352 * pointless shortliving allocation. 3353 */ 3354 if (!tmp_name) { 3355 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3356 if (!tmp_name) 3357 return NULL; 3358 } 3359 3360 rcu_read_lock(); 3361 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3362 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3363 rcu_read_unlock(); 3364 3365 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3366 (s->flags & ~SLAB_PANIC), s->ctor, s); 3367 3368 if (new) 3369 new->allocflags |= __GFP_KMEMCG; 3370 3371 return new; 3372 } 3373 3374 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3375 struct kmem_cache *cachep) 3376 { 3377 struct kmem_cache *new_cachep; 3378 int idx; 3379 3380 BUG_ON(!memcg_can_account_kmem(memcg)); 3381 3382 idx = memcg_cache_id(memcg); 3383 3384 mutex_lock(&memcg_cache_mutex); 3385 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3386 if (new_cachep) 3387 goto out; 3388 3389 new_cachep = kmem_cache_dup(memcg, cachep); 3390 if (new_cachep == NULL) { 3391 new_cachep = cachep; 3392 goto out; 3393 } 3394 3395 mem_cgroup_get(memcg); 3396 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3397 3398 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3399 /* 3400 * the readers won't lock, make sure everybody sees the updated value, 3401 * so they won't put stuff in the queue again for no reason 3402 */ 3403 wmb(); 3404 out: 3405 mutex_unlock(&memcg_cache_mutex); 3406 return new_cachep; 3407 } 3408 3409 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3410 { 3411 struct kmem_cache *c; 3412 int i; 3413 3414 if (!s->memcg_params) 3415 return; 3416 if (!s->memcg_params->is_root_cache) 3417 return; 3418 3419 /* 3420 * If the cache is being destroyed, we trust that there is no one else 3421 * requesting objects from it. Even if there are, the sanity checks in 3422 * kmem_cache_destroy should caught this ill-case. 3423 * 3424 * Still, we don't want anyone else freeing memcg_caches under our 3425 * noses, which can happen if a new memcg comes to life. As usual, 3426 * we'll take the set_limit_mutex to protect ourselves against this. 3427 */ 3428 mutex_lock(&set_limit_mutex); 3429 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3430 c = s->memcg_params->memcg_caches[i]; 3431 if (!c) 3432 continue; 3433 3434 /* 3435 * We will now manually delete the caches, so to avoid races 3436 * we need to cancel all pending destruction workers and 3437 * proceed with destruction ourselves. 3438 * 3439 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3440 * and that could spawn the workers again: it is likely that 3441 * the cache still have active pages until this very moment. 3442 * This would lead us back to mem_cgroup_destroy_cache. 3443 * 3444 * But that will not execute at all if the "dead" flag is not 3445 * set, so flip it down to guarantee we are in control. 3446 */ 3447 c->memcg_params->dead = false; 3448 cancel_work_sync(&c->memcg_params->destroy); 3449 kmem_cache_destroy(c); 3450 } 3451 mutex_unlock(&set_limit_mutex); 3452 } 3453 3454 struct create_work { 3455 struct mem_cgroup *memcg; 3456 struct kmem_cache *cachep; 3457 struct work_struct work; 3458 }; 3459 3460 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3461 { 3462 struct kmem_cache *cachep; 3463 struct memcg_cache_params *params; 3464 3465 if (!memcg_kmem_is_active(memcg)) 3466 return; 3467 3468 mutex_lock(&memcg->slab_caches_mutex); 3469 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3470 cachep = memcg_params_to_cache(params); 3471 cachep->memcg_params->dead = true; 3472 schedule_work(&cachep->memcg_params->destroy); 3473 } 3474 mutex_unlock(&memcg->slab_caches_mutex); 3475 } 3476 3477 static void memcg_create_cache_work_func(struct work_struct *w) 3478 { 3479 struct create_work *cw; 3480 3481 cw = container_of(w, struct create_work, work); 3482 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3483 /* Drop the reference gotten when we enqueued. */ 3484 css_put(&cw->memcg->css); 3485 kfree(cw); 3486 } 3487 3488 /* 3489 * Enqueue the creation of a per-memcg kmem_cache. 3490 */ 3491 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3492 struct kmem_cache *cachep) 3493 { 3494 struct create_work *cw; 3495 3496 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3497 if (cw == NULL) { 3498 css_put(&memcg->css); 3499 return; 3500 } 3501 3502 cw->memcg = memcg; 3503 cw->cachep = cachep; 3504 3505 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3506 schedule_work(&cw->work); 3507 } 3508 3509 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3510 struct kmem_cache *cachep) 3511 { 3512 /* 3513 * We need to stop accounting when we kmalloc, because if the 3514 * corresponding kmalloc cache is not yet created, the first allocation 3515 * in __memcg_create_cache_enqueue will recurse. 3516 * 3517 * However, it is better to enclose the whole function. Depending on 3518 * the debugging options enabled, INIT_WORK(), for instance, can 3519 * trigger an allocation. This too, will make us recurse. Because at 3520 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3521 * the safest choice is to do it like this, wrapping the whole function. 3522 */ 3523 memcg_stop_kmem_account(); 3524 __memcg_create_cache_enqueue(memcg, cachep); 3525 memcg_resume_kmem_account(); 3526 } 3527 /* 3528 * Return the kmem_cache we're supposed to use for a slab allocation. 3529 * We try to use the current memcg's version of the cache. 3530 * 3531 * If the cache does not exist yet, if we are the first user of it, 3532 * we either create it immediately, if possible, or create it asynchronously 3533 * in a workqueue. 3534 * In the latter case, we will let the current allocation go through with 3535 * the original cache. 3536 * 3537 * Can't be called in interrupt context or from kernel threads. 3538 * This function needs to be called with rcu_read_lock() held. 3539 */ 3540 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3541 gfp_t gfp) 3542 { 3543 struct mem_cgroup *memcg; 3544 int idx; 3545 3546 VM_BUG_ON(!cachep->memcg_params); 3547 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3548 3549 if (!current->mm || current->memcg_kmem_skip_account) 3550 return cachep; 3551 3552 rcu_read_lock(); 3553 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3554 3555 if (!memcg_can_account_kmem(memcg)) 3556 goto out; 3557 3558 idx = memcg_cache_id(memcg); 3559 3560 /* 3561 * barrier to mare sure we're always seeing the up to date value. The 3562 * code updating memcg_caches will issue a write barrier to match this. 3563 */ 3564 read_barrier_depends(); 3565 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3566 cachep = cachep->memcg_params->memcg_caches[idx]; 3567 goto out; 3568 } 3569 3570 /* The corresponding put will be done in the workqueue. */ 3571 if (!css_tryget(&memcg->css)) 3572 goto out; 3573 rcu_read_unlock(); 3574 3575 /* 3576 * If we are in a safe context (can wait, and not in interrupt 3577 * context), we could be be predictable and return right away. 3578 * This would guarantee that the allocation being performed 3579 * already belongs in the new cache. 3580 * 3581 * However, there are some clashes that can arrive from locking. 3582 * For instance, because we acquire the slab_mutex while doing 3583 * kmem_cache_dup, this means no further allocation could happen 3584 * with the slab_mutex held. 3585 * 3586 * Also, because cache creation issue get_online_cpus(), this 3587 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3588 * that ends up reversed during cpu hotplug. (cpuset allocates 3589 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3590 * better to defer everything. 3591 */ 3592 memcg_create_cache_enqueue(memcg, cachep); 3593 return cachep; 3594 out: 3595 rcu_read_unlock(); 3596 return cachep; 3597 } 3598 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3599 3600 /* 3601 * We need to verify if the allocation against current->mm->owner's memcg is 3602 * possible for the given order. But the page is not allocated yet, so we'll 3603 * need a further commit step to do the final arrangements. 3604 * 3605 * It is possible for the task to switch cgroups in this mean time, so at 3606 * commit time, we can't rely on task conversion any longer. We'll then use 3607 * the handle argument to return to the caller which cgroup we should commit 3608 * against. We could also return the memcg directly and avoid the pointer 3609 * passing, but a boolean return value gives better semantics considering 3610 * the compiled-out case as well. 3611 * 3612 * Returning true means the allocation is possible. 3613 */ 3614 bool 3615 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3616 { 3617 struct mem_cgroup *memcg; 3618 int ret; 3619 3620 *_memcg = NULL; 3621 memcg = try_get_mem_cgroup_from_mm(current->mm); 3622 3623 /* 3624 * very rare case described in mem_cgroup_from_task. Unfortunately there 3625 * isn't much we can do without complicating this too much, and it would 3626 * be gfp-dependent anyway. Just let it go 3627 */ 3628 if (unlikely(!memcg)) 3629 return true; 3630 3631 if (!memcg_can_account_kmem(memcg)) { 3632 css_put(&memcg->css); 3633 return true; 3634 } 3635 3636 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3637 if (!ret) 3638 *_memcg = memcg; 3639 3640 css_put(&memcg->css); 3641 return (ret == 0); 3642 } 3643 3644 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3645 int order) 3646 { 3647 struct page_cgroup *pc; 3648 3649 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3650 3651 /* The page allocation failed. Revert */ 3652 if (!page) { 3653 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3654 return; 3655 } 3656 3657 pc = lookup_page_cgroup(page); 3658 lock_page_cgroup(pc); 3659 pc->mem_cgroup = memcg; 3660 SetPageCgroupUsed(pc); 3661 unlock_page_cgroup(pc); 3662 } 3663 3664 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3665 { 3666 struct mem_cgroup *memcg = NULL; 3667 struct page_cgroup *pc; 3668 3669 3670 pc = lookup_page_cgroup(page); 3671 /* 3672 * Fast unlocked return. Theoretically might have changed, have to 3673 * check again after locking. 3674 */ 3675 if (!PageCgroupUsed(pc)) 3676 return; 3677 3678 lock_page_cgroup(pc); 3679 if (PageCgroupUsed(pc)) { 3680 memcg = pc->mem_cgroup; 3681 ClearPageCgroupUsed(pc); 3682 } 3683 unlock_page_cgroup(pc); 3684 3685 /* 3686 * We trust that only if there is a memcg associated with the page, it 3687 * is a valid allocation 3688 */ 3689 if (!memcg) 3690 return; 3691 3692 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3693 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3694 } 3695 #else 3696 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3697 { 3698 } 3699 #endif /* CONFIG_MEMCG_KMEM */ 3700 3701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3702 3703 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3704 /* 3705 * Because tail pages are not marked as "used", set it. We're under 3706 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3707 * charge/uncharge will be never happen and move_account() is done under 3708 * compound_lock(), so we don't have to take care of races. 3709 */ 3710 void mem_cgroup_split_huge_fixup(struct page *head) 3711 { 3712 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3713 struct page_cgroup *pc; 3714 struct mem_cgroup *memcg; 3715 int i; 3716 3717 if (mem_cgroup_disabled()) 3718 return; 3719 3720 memcg = head_pc->mem_cgroup; 3721 for (i = 1; i < HPAGE_PMD_NR; i++) { 3722 pc = head_pc + i; 3723 pc->mem_cgroup = memcg; 3724 smp_wmb();/* see __commit_charge() */ 3725 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3726 } 3727 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3728 HPAGE_PMD_NR); 3729 } 3730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3731 3732 /** 3733 * mem_cgroup_move_account - move account of the page 3734 * @page: the page 3735 * @nr_pages: number of regular pages (>1 for huge pages) 3736 * @pc: page_cgroup of the page. 3737 * @from: mem_cgroup which the page is moved from. 3738 * @to: mem_cgroup which the page is moved to. @from != @to. 3739 * 3740 * The caller must confirm following. 3741 * - page is not on LRU (isolate_page() is useful.) 3742 * - compound_lock is held when nr_pages > 1 3743 * 3744 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3745 * from old cgroup. 3746 */ 3747 static int mem_cgroup_move_account(struct page *page, 3748 unsigned int nr_pages, 3749 struct page_cgroup *pc, 3750 struct mem_cgroup *from, 3751 struct mem_cgroup *to) 3752 { 3753 unsigned long flags; 3754 int ret; 3755 bool anon = PageAnon(page); 3756 3757 VM_BUG_ON(from == to); 3758 VM_BUG_ON(PageLRU(page)); 3759 /* 3760 * The page is isolated from LRU. So, collapse function 3761 * will not handle this page. But page splitting can happen. 3762 * Do this check under compound_page_lock(). The caller should 3763 * hold it. 3764 */ 3765 ret = -EBUSY; 3766 if (nr_pages > 1 && !PageTransHuge(page)) 3767 goto out; 3768 3769 lock_page_cgroup(pc); 3770 3771 ret = -EINVAL; 3772 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3773 goto unlock; 3774 3775 move_lock_mem_cgroup(from, &flags); 3776 3777 if (!anon && page_mapped(page)) { 3778 /* Update mapped_file data for mem_cgroup */ 3779 preempt_disable(); 3780 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3781 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 3782 preempt_enable(); 3783 } 3784 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3785 3786 /* caller should have done css_get */ 3787 pc->mem_cgroup = to; 3788 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3789 move_unlock_mem_cgroup(from, &flags); 3790 ret = 0; 3791 unlock: 3792 unlock_page_cgroup(pc); 3793 /* 3794 * check events 3795 */ 3796 memcg_check_events(to, page); 3797 memcg_check_events(from, page); 3798 out: 3799 return ret; 3800 } 3801 3802 /** 3803 * mem_cgroup_move_parent - moves page to the parent group 3804 * @page: the page to move 3805 * @pc: page_cgroup of the page 3806 * @child: page's cgroup 3807 * 3808 * move charges to its parent or the root cgroup if the group has no 3809 * parent (aka use_hierarchy==0). 3810 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3811 * mem_cgroup_move_account fails) the failure is always temporary and 3812 * it signals a race with a page removal/uncharge or migration. In the 3813 * first case the page is on the way out and it will vanish from the LRU 3814 * on the next attempt and the call should be retried later. 3815 * Isolation from the LRU fails only if page has been isolated from 3816 * the LRU since we looked at it and that usually means either global 3817 * reclaim or migration going on. The page will either get back to the 3818 * LRU or vanish. 3819 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3820 * (!PageCgroupUsed) or moved to a different group. The page will 3821 * disappear in the next attempt. 3822 */ 3823 static int mem_cgroup_move_parent(struct page *page, 3824 struct page_cgroup *pc, 3825 struct mem_cgroup *child) 3826 { 3827 struct mem_cgroup *parent; 3828 unsigned int nr_pages; 3829 unsigned long uninitialized_var(flags); 3830 int ret; 3831 3832 VM_BUG_ON(mem_cgroup_is_root(child)); 3833 3834 ret = -EBUSY; 3835 if (!get_page_unless_zero(page)) 3836 goto out; 3837 if (isolate_lru_page(page)) 3838 goto put; 3839 3840 nr_pages = hpage_nr_pages(page); 3841 3842 parent = parent_mem_cgroup(child); 3843 /* 3844 * If no parent, move charges to root cgroup. 3845 */ 3846 if (!parent) 3847 parent = root_mem_cgroup; 3848 3849 if (nr_pages > 1) { 3850 VM_BUG_ON(!PageTransHuge(page)); 3851 flags = compound_lock_irqsave(page); 3852 } 3853 3854 ret = mem_cgroup_move_account(page, nr_pages, 3855 pc, child, parent); 3856 if (!ret) 3857 __mem_cgroup_cancel_local_charge(child, nr_pages); 3858 3859 if (nr_pages > 1) 3860 compound_unlock_irqrestore(page, flags); 3861 putback_lru_page(page); 3862 put: 3863 put_page(page); 3864 out: 3865 return ret; 3866 } 3867 3868 /* 3869 * Charge the memory controller for page usage. 3870 * Return 3871 * 0 if the charge was successful 3872 * < 0 if the cgroup is over its limit 3873 */ 3874 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3875 gfp_t gfp_mask, enum charge_type ctype) 3876 { 3877 struct mem_cgroup *memcg = NULL; 3878 unsigned int nr_pages = 1; 3879 bool oom = true; 3880 int ret; 3881 3882 if (PageTransHuge(page)) { 3883 nr_pages <<= compound_order(page); 3884 VM_BUG_ON(!PageTransHuge(page)); 3885 /* 3886 * Never OOM-kill a process for a huge page. The 3887 * fault handler will fall back to regular pages. 3888 */ 3889 oom = false; 3890 } 3891 3892 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3893 if (ret == -ENOMEM) 3894 return ret; 3895 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3896 return 0; 3897 } 3898 3899 int mem_cgroup_newpage_charge(struct page *page, 3900 struct mm_struct *mm, gfp_t gfp_mask) 3901 { 3902 if (mem_cgroup_disabled()) 3903 return 0; 3904 VM_BUG_ON(page_mapped(page)); 3905 VM_BUG_ON(page->mapping && !PageAnon(page)); 3906 VM_BUG_ON(!mm); 3907 return mem_cgroup_charge_common(page, mm, gfp_mask, 3908 MEM_CGROUP_CHARGE_TYPE_ANON); 3909 } 3910 3911 /* 3912 * While swap-in, try_charge -> commit or cancel, the page is locked. 3913 * And when try_charge() successfully returns, one refcnt to memcg without 3914 * struct page_cgroup is acquired. This refcnt will be consumed by 3915 * "commit()" or removed by "cancel()" 3916 */ 3917 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3918 struct page *page, 3919 gfp_t mask, 3920 struct mem_cgroup **memcgp) 3921 { 3922 struct mem_cgroup *memcg; 3923 struct page_cgroup *pc; 3924 int ret; 3925 3926 pc = lookup_page_cgroup(page); 3927 /* 3928 * Every swap fault against a single page tries to charge the 3929 * page, bail as early as possible. shmem_unuse() encounters 3930 * already charged pages, too. The USED bit is protected by 3931 * the page lock, which serializes swap cache removal, which 3932 * in turn serializes uncharging. 3933 */ 3934 if (PageCgroupUsed(pc)) 3935 return 0; 3936 if (!do_swap_account) 3937 goto charge_cur_mm; 3938 memcg = try_get_mem_cgroup_from_page(page); 3939 if (!memcg) 3940 goto charge_cur_mm; 3941 *memcgp = memcg; 3942 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3943 css_put(&memcg->css); 3944 if (ret == -EINTR) 3945 ret = 0; 3946 return ret; 3947 charge_cur_mm: 3948 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3949 if (ret == -EINTR) 3950 ret = 0; 3951 return ret; 3952 } 3953 3954 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3955 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3956 { 3957 *memcgp = NULL; 3958 if (mem_cgroup_disabled()) 3959 return 0; 3960 /* 3961 * A racing thread's fault, or swapoff, may have already 3962 * updated the pte, and even removed page from swap cache: in 3963 * those cases unuse_pte()'s pte_same() test will fail; but 3964 * there's also a KSM case which does need to charge the page. 3965 */ 3966 if (!PageSwapCache(page)) { 3967 int ret; 3968 3969 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3970 if (ret == -EINTR) 3971 ret = 0; 3972 return ret; 3973 } 3974 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3975 } 3976 3977 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3978 { 3979 if (mem_cgroup_disabled()) 3980 return; 3981 if (!memcg) 3982 return; 3983 __mem_cgroup_cancel_charge(memcg, 1); 3984 } 3985 3986 static void 3987 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3988 enum charge_type ctype) 3989 { 3990 if (mem_cgroup_disabled()) 3991 return; 3992 if (!memcg) 3993 return; 3994 3995 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3996 /* 3997 * Now swap is on-memory. This means this page may be 3998 * counted both as mem and swap....double count. 3999 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 4000 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 4001 * may call delete_from_swap_cache() before reach here. 4002 */ 4003 if (do_swap_account && PageSwapCache(page)) { 4004 swp_entry_t ent = {.val = page_private(page)}; 4005 mem_cgroup_uncharge_swap(ent); 4006 } 4007 } 4008 4009 void mem_cgroup_commit_charge_swapin(struct page *page, 4010 struct mem_cgroup *memcg) 4011 { 4012 __mem_cgroup_commit_charge_swapin(page, memcg, 4013 MEM_CGROUP_CHARGE_TYPE_ANON); 4014 } 4015 4016 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 4017 gfp_t gfp_mask) 4018 { 4019 struct mem_cgroup *memcg = NULL; 4020 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4021 int ret; 4022 4023 if (mem_cgroup_disabled()) 4024 return 0; 4025 if (PageCompound(page)) 4026 return 0; 4027 4028 if (!PageSwapCache(page)) 4029 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 4030 else { /* page is swapcache/shmem */ 4031 ret = __mem_cgroup_try_charge_swapin(mm, page, 4032 gfp_mask, &memcg); 4033 if (!ret) 4034 __mem_cgroup_commit_charge_swapin(page, memcg, type); 4035 } 4036 return ret; 4037 } 4038 4039 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 4040 unsigned int nr_pages, 4041 const enum charge_type ctype) 4042 { 4043 struct memcg_batch_info *batch = NULL; 4044 bool uncharge_memsw = true; 4045 4046 /* If swapout, usage of swap doesn't decrease */ 4047 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 4048 uncharge_memsw = false; 4049 4050 batch = ¤t->memcg_batch; 4051 /* 4052 * In usual, we do css_get() when we remember memcg pointer. 4053 * But in this case, we keep res->usage until end of a series of 4054 * uncharges. Then, it's ok to ignore memcg's refcnt. 4055 */ 4056 if (!batch->memcg) 4057 batch->memcg = memcg; 4058 /* 4059 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4060 * In those cases, all pages freed continuously can be expected to be in 4061 * the same cgroup and we have chance to coalesce uncharges. 4062 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4063 * because we want to do uncharge as soon as possible. 4064 */ 4065 4066 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4067 goto direct_uncharge; 4068 4069 if (nr_pages > 1) 4070 goto direct_uncharge; 4071 4072 /* 4073 * In typical case, batch->memcg == mem. This means we can 4074 * merge a series of uncharges to an uncharge of res_counter. 4075 * If not, we uncharge res_counter ony by one. 4076 */ 4077 if (batch->memcg != memcg) 4078 goto direct_uncharge; 4079 /* remember freed charge and uncharge it later */ 4080 batch->nr_pages++; 4081 if (uncharge_memsw) 4082 batch->memsw_nr_pages++; 4083 return; 4084 direct_uncharge: 4085 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4086 if (uncharge_memsw) 4087 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4088 if (unlikely(batch->memcg != memcg)) 4089 memcg_oom_recover(memcg); 4090 } 4091 4092 /* 4093 * uncharge if !page_mapped(page) 4094 */ 4095 static struct mem_cgroup * 4096 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4097 bool end_migration) 4098 { 4099 struct mem_cgroup *memcg = NULL; 4100 unsigned int nr_pages = 1; 4101 struct page_cgroup *pc; 4102 bool anon; 4103 4104 if (mem_cgroup_disabled()) 4105 return NULL; 4106 4107 if (PageTransHuge(page)) { 4108 nr_pages <<= compound_order(page); 4109 VM_BUG_ON(!PageTransHuge(page)); 4110 } 4111 /* 4112 * Check if our page_cgroup is valid 4113 */ 4114 pc = lookup_page_cgroup(page); 4115 if (unlikely(!PageCgroupUsed(pc))) 4116 return NULL; 4117 4118 lock_page_cgroup(pc); 4119 4120 memcg = pc->mem_cgroup; 4121 4122 if (!PageCgroupUsed(pc)) 4123 goto unlock_out; 4124 4125 anon = PageAnon(page); 4126 4127 switch (ctype) { 4128 case MEM_CGROUP_CHARGE_TYPE_ANON: 4129 /* 4130 * Generally PageAnon tells if it's the anon statistics to be 4131 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4132 * used before page reached the stage of being marked PageAnon. 4133 */ 4134 anon = true; 4135 /* fallthrough */ 4136 case MEM_CGROUP_CHARGE_TYPE_DROP: 4137 /* See mem_cgroup_prepare_migration() */ 4138 if (page_mapped(page)) 4139 goto unlock_out; 4140 /* 4141 * Pages under migration may not be uncharged. But 4142 * end_migration() /must/ be the one uncharging the 4143 * unused post-migration page and so it has to call 4144 * here with the migration bit still set. See the 4145 * res_counter handling below. 4146 */ 4147 if (!end_migration && PageCgroupMigration(pc)) 4148 goto unlock_out; 4149 break; 4150 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4151 if (!PageAnon(page)) { /* Shared memory */ 4152 if (page->mapping && !page_is_file_cache(page)) 4153 goto unlock_out; 4154 } else if (page_mapped(page)) /* Anon */ 4155 goto unlock_out; 4156 break; 4157 default: 4158 break; 4159 } 4160 4161 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4162 4163 ClearPageCgroupUsed(pc); 4164 /* 4165 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4166 * freed from LRU. This is safe because uncharged page is expected not 4167 * to be reused (freed soon). Exception is SwapCache, it's handled by 4168 * special functions. 4169 */ 4170 4171 unlock_page_cgroup(pc); 4172 /* 4173 * even after unlock, we have memcg->res.usage here and this memcg 4174 * will never be freed. 4175 */ 4176 memcg_check_events(memcg, page); 4177 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4178 mem_cgroup_swap_statistics(memcg, true); 4179 mem_cgroup_get(memcg); 4180 } 4181 /* 4182 * Migration does not charge the res_counter for the 4183 * replacement page, so leave it alone when phasing out the 4184 * page that is unused after the migration. 4185 */ 4186 if (!end_migration && !mem_cgroup_is_root(memcg)) 4187 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4188 4189 return memcg; 4190 4191 unlock_out: 4192 unlock_page_cgroup(pc); 4193 return NULL; 4194 } 4195 4196 void mem_cgroup_uncharge_page(struct page *page) 4197 { 4198 /* early check. */ 4199 if (page_mapped(page)) 4200 return; 4201 VM_BUG_ON(page->mapping && !PageAnon(page)); 4202 /* 4203 * If the page is in swap cache, uncharge should be deferred 4204 * to the swap path, which also properly accounts swap usage 4205 * and handles memcg lifetime. 4206 * 4207 * Note that this check is not stable and reclaim may add the 4208 * page to swap cache at any time after this. However, if the 4209 * page is not in swap cache by the time page->mapcount hits 4210 * 0, there won't be any page table references to the swap 4211 * slot, and reclaim will free it and not actually write the 4212 * page to disk. 4213 */ 4214 if (PageSwapCache(page)) 4215 return; 4216 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4217 } 4218 4219 void mem_cgroup_uncharge_cache_page(struct page *page) 4220 { 4221 VM_BUG_ON(page_mapped(page)); 4222 VM_BUG_ON(page->mapping); 4223 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4224 } 4225 4226 /* 4227 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4228 * In that cases, pages are freed continuously and we can expect pages 4229 * are in the same memcg. All these calls itself limits the number of 4230 * pages freed at once, then uncharge_start/end() is called properly. 4231 * This may be called prural(2) times in a context, 4232 */ 4233 4234 void mem_cgroup_uncharge_start(void) 4235 { 4236 current->memcg_batch.do_batch++; 4237 /* We can do nest. */ 4238 if (current->memcg_batch.do_batch == 1) { 4239 current->memcg_batch.memcg = NULL; 4240 current->memcg_batch.nr_pages = 0; 4241 current->memcg_batch.memsw_nr_pages = 0; 4242 } 4243 } 4244 4245 void mem_cgroup_uncharge_end(void) 4246 { 4247 struct memcg_batch_info *batch = ¤t->memcg_batch; 4248 4249 if (!batch->do_batch) 4250 return; 4251 4252 batch->do_batch--; 4253 if (batch->do_batch) /* If stacked, do nothing. */ 4254 return; 4255 4256 if (!batch->memcg) 4257 return; 4258 /* 4259 * This "batch->memcg" is valid without any css_get/put etc... 4260 * bacause we hide charges behind us. 4261 */ 4262 if (batch->nr_pages) 4263 res_counter_uncharge(&batch->memcg->res, 4264 batch->nr_pages * PAGE_SIZE); 4265 if (batch->memsw_nr_pages) 4266 res_counter_uncharge(&batch->memcg->memsw, 4267 batch->memsw_nr_pages * PAGE_SIZE); 4268 memcg_oom_recover(batch->memcg); 4269 /* forget this pointer (for sanity check) */ 4270 batch->memcg = NULL; 4271 } 4272 4273 #ifdef CONFIG_SWAP 4274 /* 4275 * called after __delete_from_swap_cache() and drop "page" account. 4276 * memcg information is recorded to swap_cgroup of "ent" 4277 */ 4278 void 4279 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4280 { 4281 struct mem_cgroup *memcg; 4282 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4283 4284 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4285 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4286 4287 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4288 4289 /* 4290 * record memcg information, if swapout && memcg != NULL, 4291 * mem_cgroup_get() was called in uncharge(). 4292 */ 4293 if (do_swap_account && swapout && memcg) 4294 swap_cgroup_record(ent, css_id(&memcg->css)); 4295 } 4296 #endif 4297 4298 #ifdef CONFIG_MEMCG_SWAP 4299 /* 4300 * called from swap_entry_free(). remove record in swap_cgroup and 4301 * uncharge "memsw" account. 4302 */ 4303 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4304 { 4305 struct mem_cgroup *memcg; 4306 unsigned short id; 4307 4308 if (!do_swap_account) 4309 return; 4310 4311 id = swap_cgroup_record(ent, 0); 4312 rcu_read_lock(); 4313 memcg = mem_cgroup_lookup(id); 4314 if (memcg) { 4315 /* 4316 * We uncharge this because swap is freed. 4317 * This memcg can be obsolete one. We avoid calling css_tryget 4318 */ 4319 if (!mem_cgroup_is_root(memcg)) 4320 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4321 mem_cgroup_swap_statistics(memcg, false); 4322 mem_cgroup_put(memcg); 4323 } 4324 rcu_read_unlock(); 4325 } 4326 4327 /** 4328 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4329 * @entry: swap entry to be moved 4330 * @from: mem_cgroup which the entry is moved from 4331 * @to: mem_cgroup which the entry is moved to 4332 * 4333 * It succeeds only when the swap_cgroup's record for this entry is the same 4334 * as the mem_cgroup's id of @from. 4335 * 4336 * Returns 0 on success, -EINVAL on failure. 4337 * 4338 * The caller must have charged to @to, IOW, called res_counter_charge() about 4339 * both res and memsw, and called css_get(). 4340 */ 4341 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4342 struct mem_cgroup *from, struct mem_cgroup *to) 4343 { 4344 unsigned short old_id, new_id; 4345 4346 old_id = css_id(&from->css); 4347 new_id = css_id(&to->css); 4348 4349 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4350 mem_cgroup_swap_statistics(from, false); 4351 mem_cgroup_swap_statistics(to, true); 4352 /* 4353 * This function is only called from task migration context now. 4354 * It postpones res_counter and refcount handling till the end 4355 * of task migration(mem_cgroup_clear_mc()) for performance 4356 * improvement. But we cannot postpone mem_cgroup_get(to) 4357 * because if the process that has been moved to @to does 4358 * swap-in, the refcount of @to might be decreased to 0. 4359 */ 4360 mem_cgroup_get(to); 4361 return 0; 4362 } 4363 return -EINVAL; 4364 } 4365 #else 4366 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4367 struct mem_cgroup *from, struct mem_cgroup *to) 4368 { 4369 return -EINVAL; 4370 } 4371 #endif 4372 4373 /* 4374 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4375 * page belongs to. 4376 */ 4377 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4378 struct mem_cgroup **memcgp) 4379 { 4380 struct mem_cgroup *memcg = NULL; 4381 unsigned int nr_pages = 1; 4382 struct page_cgroup *pc; 4383 enum charge_type ctype; 4384 4385 *memcgp = NULL; 4386 4387 if (mem_cgroup_disabled()) 4388 return; 4389 4390 if (PageTransHuge(page)) 4391 nr_pages <<= compound_order(page); 4392 4393 pc = lookup_page_cgroup(page); 4394 lock_page_cgroup(pc); 4395 if (PageCgroupUsed(pc)) { 4396 memcg = pc->mem_cgroup; 4397 css_get(&memcg->css); 4398 /* 4399 * At migrating an anonymous page, its mapcount goes down 4400 * to 0 and uncharge() will be called. But, even if it's fully 4401 * unmapped, migration may fail and this page has to be 4402 * charged again. We set MIGRATION flag here and delay uncharge 4403 * until end_migration() is called 4404 * 4405 * Corner Case Thinking 4406 * A) 4407 * When the old page was mapped as Anon and it's unmap-and-freed 4408 * while migration was ongoing. 4409 * If unmap finds the old page, uncharge() of it will be delayed 4410 * until end_migration(). If unmap finds a new page, it's 4411 * uncharged when it make mapcount to be 1->0. If unmap code 4412 * finds swap_migration_entry, the new page will not be mapped 4413 * and end_migration() will find it(mapcount==0). 4414 * 4415 * B) 4416 * When the old page was mapped but migraion fails, the kernel 4417 * remaps it. A charge for it is kept by MIGRATION flag even 4418 * if mapcount goes down to 0. We can do remap successfully 4419 * without charging it again. 4420 * 4421 * C) 4422 * The "old" page is under lock_page() until the end of 4423 * migration, so, the old page itself will not be swapped-out. 4424 * If the new page is swapped out before end_migraton, our 4425 * hook to usual swap-out path will catch the event. 4426 */ 4427 if (PageAnon(page)) 4428 SetPageCgroupMigration(pc); 4429 } 4430 unlock_page_cgroup(pc); 4431 /* 4432 * If the page is not charged at this point, 4433 * we return here. 4434 */ 4435 if (!memcg) 4436 return; 4437 4438 *memcgp = memcg; 4439 /* 4440 * We charge new page before it's used/mapped. So, even if unlock_page() 4441 * is called before end_migration, we can catch all events on this new 4442 * page. In the case new page is migrated but not remapped, new page's 4443 * mapcount will be finally 0 and we call uncharge in end_migration(). 4444 */ 4445 if (PageAnon(page)) 4446 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4447 else 4448 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4449 /* 4450 * The page is committed to the memcg, but it's not actually 4451 * charged to the res_counter since we plan on replacing the 4452 * old one and only one page is going to be left afterwards. 4453 */ 4454 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4455 } 4456 4457 /* remove redundant charge if migration failed*/ 4458 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4459 struct page *oldpage, struct page *newpage, bool migration_ok) 4460 { 4461 struct page *used, *unused; 4462 struct page_cgroup *pc; 4463 bool anon; 4464 4465 if (!memcg) 4466 return; 4467 4468 if (!migration_ok) { 4469 used = oldpage; 4470 unused = newpage; 4471 } else { 4472 used = newpage; 4473 unused = oldpage; 4474 } 4475 anon = PageAnon(used); 4476 __mem_cgroup_uncharge_common(unused, 4477 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4478 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4479 true); 4480 css_put(&memcg->css); 4481 /* 4482 * We disallowed uncharge of pages under migration because mapcount 4483 * of the page goes down to zero, temporarly. 4484 * Clear the flag and check the page should be charged. 4485 */ 4486 pc = lookup_page_cgroup(oldpage); 4487 lock_page_cgroup(pc); 4488 ClearPageCgroupMigration(pc); 4489 unlock_page_cgroup(pc); 4490 4491 /* 4492 * If a page is a file cache, radix-tree replacement is very atomic 4493 * and we can skip this check. When it was an Anon page, its mapcount 4494 * goes down to 0. But because we added MIGRATION flage, it's not 4495 * uncharged yet. There are several case but page->mapcount check 4496 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4497 * check. (see prepare_charge() also) 4498 */ 4499 if (anon) 4500 mem_cgroup_uncharge_page(used); 4501 } 4502 4503 /* 4504 * At replace page cache, newpage is not under any memcg but it's on 4505 * LRU. So, this function doesn't touch res_counter but handles LRU 4506 * in correct way. Both pages are locked so we cannot race with uncharge. 4507 */ 4508 void mem_cgroup_replace_page_cache(struct page *oldpage, 4509 struct page *newpage) 4510 { 4511 struct mem_cgroup *memcg = NULL; 4512 struct page_cgroup *pc; 4513 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4514 4515 if (mem_cgroup_disabled()) 4516 return; 4517 4518 pc = lookup_page_cgroup(oldpage); 4519 /* fix accounting on old pages */ 4520 lock_page_cgroup(pc); 4521 if (PageCgroupUsed(pc)) { 4522 memcg = pc->mem_cgroup; 4523 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4524 ClearPageCgroupUsed(pc); 4525 } 4526 unlock_page_cgroup(pc); 4527 4528 /* 4529 * When called from shmem_replace_page(), in some cases the 4530 * oldpage has already been charged, and in some cases not. 4531 */ 4532 if (!memcg) 4533 return; 4534 /* 4535 * Even if newpage->mapping was NULL before starting replacement, 4536 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4537 * LRU while we overwrite pc->mem_cgroup. 4538 */ 4539 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4540 } 4541 4542 #ifdef CONFIG_DEBUG_VM 4543 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4544 { 4545 struct page_cgroup *pc; 4546 4547 pc = lookup_page_cgroup(page); 4548 /* 4549 * Can be NULL while feeding pages into the page allocator for 4550 * the first time, i.e. during boot or memory hotplug; 4551 * or when mem_cgroup_disabled(). 4552 */ 4553 if (likely(pc) && PageCgroupUsed(pc)) 4554 return pc; 4555 return NULL; 4556 } 4557 4558 bool mem_cgroup_bad_page_check(struct page *page) 4559 { 4560 if (mem_cgroup_disabled()) 4561 return false; 4562 4563 return lookup_page_cgroup_used(page) != NULL; 4564 } 4565 4566 void mem_cgroup_print_bad_page(struct page *page) 4567 { 4568 struct page_cgroup *pc; 4569 4570 pc = lookup_page_cgroup_used(page); 4571 if (pc) { 4572 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4573 pc, pc->flags, pc->mem_cgroup); 4574 } 4575 } 4576 #endif 4577 4578 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4579 unsigned long long val) 4580 { 4581 int retry_count; 4582 u64 memswlimit, memlimit; 4583 int ret = 0; 4584 int children = mem_cgroup_count_children(memcg); 4585 u64 curusage, oldusage; 4586 int enlarge; 4587 4588 /* 4589 * For keeping hierarchical_reclaim simple, how long we should retry 4590 * is depends on callers. We set our retry-count to be function 4591 * of # of children which we should visit in this loop. 4592 */ 4593 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4594 4595 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4596 4597 enlarge = 0; 4598 while (retry_count) { 4599 if (signal_pending(current)) { 4600 ret = -EINTR; 4601 break; 4602 } 4603 /* 4604 * Rather than hide all in some function, I do this in 4605 * open coded manner. You see what this really does. 4606 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4607 */ 4608 mutex_lock(&set_limit_mutex); 4609 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4610 if (memswlimit < val) { 4611 ret = -EINVAL; 4612 mutex_unlock(&set_limit_mutex); 4613 break; 4614 } 4615 4616 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4617 if (memlimit < val) 4618 enlarge = 1; 4619 4620 ret = res_counter_set_limit(&memcg->res, val); 4621 if (!ret) { 4622 if (memswlimit == val) 4623 memcg->memsw_is_minimum = true; 4624 else 4625 memcg->memsw_is_minimum = false; 4626 } 4627 mutex_unlock(&set_limit_mutex); 4628 4629 if (!ret) 4630 break; 4631 4632 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4633 MEM_CGROUP_RECLAIM_SHRINK); 4634 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4635 /* Usage is reduced ? */ 4636 if (curusage >= oldusage) 4637 retry_count--; 4638 else 4639 oldusage = curusage; 4640 } 4641 if (!ret && enlarge) 4642 memcg_oom_recover(memcg); 4643 4644 return ret; 4645 } 4646 4647 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4648 unsigned long long val) 4649 { 4650 int retry_count; 4651 u64 memlimit, memswlimit, oldusage, curusage; 4652 int children = mem_cgroup_count_children(memcg); 4653 int ret = -EBUSY; 4654 int enlarge = 0; 4655 4656 /* see mem_cgroup_resize_res_limit */ 4657 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4658 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4659 while (retry_count) { 4660 if (signal_pending(current)) { 4661 ret = -EINTR; 4662 break; 4663 } 4664 /* 4665 * Rather than hide all in some function, I do this in 4666 * open coded manner. You see what this really does. 4667 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4668 */ 4669 mutex_lock(&set_limit_mutex); 4670 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4671 if (memlimit > val) { 4672 ret = -EINVAL; 4673 mutex_unlock(&set_limit_mutex); 4674 break; 4675 } 4676 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4677 if (memswlimit < val) 4678 enlarge = 1; 4679 ret = res_counter_set_limit(&memcg->memsw, val); 4680 if (!ret) { 4681 if (memlimit == val) 4682 memcg->memsw_is_minimum = true; 4683 else 4684 memcg->memsw_is_minimum = false; 4685 } 4686 mutex_unlock(&set_limit_mutex); 4687 4688 if (!ret) 4689 break; 4690 4691 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4692 MEM_CGROUP_RECLAIM_NOSWAP | 4693 MEM_CGROUP_RECLAIM_SHRINK); 4694 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4695 /* Usage is reduced ? */ 4696 if (curusage >= oldusage) 4697 retry_count--; 4698 else 4699 oldusage = curusage; 4700 } 4701 if (!ret && enlarge) 4702 memcg_oom_recover(memcg); 4703 return ret; 4704 } 4705 4706 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4707 gfp_t gfp_mask, 4708 unsigned long *total_scanned) 4709 { 4710 unsigned long nr_reclaimed = 0; 4711 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4712 unsigned long reclaimed; 4713 int loop = 0; 4714 struct mem_cgroup_tree_per_zone *mctz; 4715 unsigned long long excess; 4716 unsigned long nr_scanned; 4717 4718 if (order > 0) 4719 return 0; 4720 4721 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4722 /* 4723 * This loop can run a while, specially if mem_cgroup's continuously 4724 * keep exceeding their soft limit and putting the system under 4725 * pressure 4726 */ 4727 do { 4728 if (next_mz) 4729 mz = next_mz; 4730 else 4731 mz = mem_cgroup_largest_soft_limit_node(mctz); 4732 if (!mz) 4733 break; 4734 4735 nr_scanned = 0; 4736 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4737 gfp_mask, &nr_scanned); 4738 nr_reclaimed += reclaimed; 4739 *total_scanned += nr_scanned; 4740 spin_lock(&mctz->lock); 4741 4742 /* 4743 * If we failed to reclaim anything from this memory cgroup 4744 * it is time to move on to the next cgroup 4745 */ 4746 next_mz = NULL; 4747 if (!reclaimed) { 4748 do { 4749 /* 4750 * Loop until we find yet another one. 4751 * 4752 * By the time we get the soft_limit lock 4753 * again, someone might have aded the 4754 * group back on the RB tree. Iterate to 4755 * make sure we get a different mem. 4756 * mem_cgroup_largest_soft_limit_node returns 4757 * NULL if no other cgroup is present on 4758 * the tree 4759 */ 4760 next_mz = 4761 __mem_cgroup_largest_soft_limit_node(mctz); 4762 if (next_mz == mz) 4763 css_put(&next_mz->memcg->css); 4764 else /* next_mz == NULL or other memcg */ 4765 break; 4766 } while (1); 4767 } 4768 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4769 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4770 /* 4771 * One school of thought says that we should not add 4772 * back the node to the tree if reclaim returns 0. 4773 * But our reclaim could return 0, simply because due 4774 * to priority we are exposing a smaller subset of 4775 * memory to reclaim from. Consider this as a longer 4776 * term TODO. 4777 */ 4778 /* If excess == 0, no tree ops */ 4779 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4780 spin_unlock(&mctz->lock); 4781 css_put(&mz->memcg->css); 4782 loop++; 4783 /* 4784 * Could not reclaim anything and there are no more 4785 * mem cgroups to try or we seem to be looping without 4786 * reclaiming anything. 4787 */ 4788 if (!nr_reclaimed && 4789 (next_mz == NULL || 4790 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4791 break; 4792 } while (!nr_reclaimed); 4793 if (next_mz) 4794 css_put(&next_mz->memcg->css); 4795 return nr_reclaimed; 4796 } 4797 4798 /** 4799 * mem_cgroup_force_empty_list - clears LRU of a group 4800 * @memcg: group to clear 4801 * @node: NUMA node 4802 * @zid: zone id 4803 * @lru: lru to to clear 4804 * 4805 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4806 * reclaim the pages page themselves - pages are moved to the parent (or root) 4807 * group. 4808 */ 4809 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4810 int node, int zid, enum lru_list lru) 4811 { 4812 struct lruvec *lruvec; 4813 unsigned long flags; 4814 struct list_head *list; 4815 struct page *busy; 4816 struct zone *zone; 4817 4818 zone = &NODE_DATA(node)->node_zones[zid]; 4819 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4820 list = &lruvec->lists[lru]; 4821 4822 busy = NULL; 4823 do { 4824 struct page_cgroup *pc; 4825 struct page *page; 4826 4827 spin_lock_irqsave(&zone->lru_lock, flags); 4828 if (list_empty(list)) { 4829 spin_unlock_irqrestore(&zone->lru_lock, flags); 4830 break; 4831 } 4832 page = list_entry(list->prev, struct page, lru); 4833 if (busy == page) { 4834 list_move(&page->lru, list); 4835 busy = NULL; 4836 spin_unlock_irqrestore(&zone->lru_lock, flags); 4837 continue; 4838 } 4839 spin_unlock_irqrestore(&zone->lru_lock, flags); 4840 4841 pc = lookup_page_cgroup(page); 4842 4843 if (mem_cgroup_move_parent(page, pc, memcg)) { 4844 /* found lock contention or "pc" is obsolete. */ 4845 busy = page; 4846 cond_resched(); 4847 } else 4848 busy = NULL; 4849 } while (!list_empty(list)); 4850 } 4851 4852 /* 4853 * make mem_cgroup's charge to be 0 if there is no task by moving 4854 * all the charges and pages to the parent. 4855 * This enables deleting this mem_cgroup. 4856 * 4857 * Caller is responsible for holding css reference on the memcg. 4858 */ 4859 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4860 { 4861 int node, zid; 4862 u64 usage; 4863 4864 do { 4865 /* This is for making all *used* pages to be on LRU. */ 4866 lru_add_drain_all(); 4867 drain_all_stock_sync(memcg); 4868 mem_cgroup_start_move(memcg); 4869 for_each_node_state(node, N_MEMORY) { 4870 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4871 enum lru_list lru; 4872 for_each_lru(lru) { 4873 mem_cgroup_force_empty_list(memcg, 4874 node, zid, lru); 4875 } 4876 } 4877 } 4878 mem_cgroup_end_move(memcg); 4879 memcg_oom_recover(memcg); 4880 cond_resched(); 4881 4882 /* 4883 * Kernel memory may not necessarily be trackable to a specific 4884 * process. So they are not migrated, and therefore we can't 4885 * expect their value to drop to 0 here. 4886 * Having res filled up with kmem only is enough. 4887 * 4888 * This is a safety check because mem_cgroup_force_empty_list 4889 * could have raced with mem_cgroup_replace_page_cache callers 4890 * so the lru seemed empty but the page could have been added 4891 * right after the check. RES_USAGE should be safe as we always 4892 * charge before adding to the LRU. 4893 */ 4894 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4895 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4896 } while (usage > 0); 4897 } 4898 4899 /* 4900 * This mainly exists for tests during the setting of set of use_hierarchy. 4901 * Since this is the very setting we are changing, the current hierarchy value 4902 * is meaningless 4903 */ 4904 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4905 { 4906 struct cgroup *pos; 4907 4908 /* bounce at first found */ 4909 cgroup_for_each_child(pos, memcg->css.cgroup) 4910 return true; 4911 return false; 4912 } 4913 4914 /* 4915 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4916 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4917 * from mem_cgroup_count_children(), in the sense that we don't really care how 4918 * many children we have; we only need to know if we have any. It also counts 4919 * any memcg without hierarchy as infertile. 4920 */ 4921 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4922 { 4923 return memcg->use_hierarchy && __memcg_has_children(memcg); 4924 } 4925 4926 /* 4927 * Reclaims as many pages from the given memcg as possible and moves 4928 * the rest to the parent. 4929 * 4930 * Caller is responsible for holding css reference for memcg. 4931 */ 4932 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4933 { 4934 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4935 struct cgroup *cgrp = memcg->css.cgroup; 4936 4937 /* returns EBUSY if there is a task or if we come here twice. */ 4938 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4939 return -EBUSY; 4940 4941 /* we call try-to-free pages for make this cgroup empty */ 4942 lru_add_drain_all(); 4943 /* try to free all pages in this cgroup */ 4944 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4945 int progress; 4946 4947 if (signal_pending(current)) 4948 return -EINTR; 4949 4950 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4951 false); 4952 if (!progress) { 4953 nr_retries--; 4954 /* maybe some writeback is necessary */ 4955 congestion_wait(BLK_RW_ASYNC, HZ/10); 4956 } 4957 4958 } 4959 lru_add_drain(); 4960 mem_cgroup_reparent_charges(memcg); 4961 4962 return 0; 4963 } 4964 4965 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 4966 { 4967 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4968 int ret; 4969 4970 if (mem_cgroup_is_root(memcg)) 4971 return -EINVAL; 4972 css_get(&memcg->css); 4973 ret = mem_cgroup_force_empty(memcg); 4974 css_put(&memcg->css); 4975 4976 return ret; 4977 } 4978 4979 4980 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 4981 { 4982 return mem_cgroup_from_cont(cont)->use_hierarchy; 4983 } 4984 4985 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 4986 u64 val) 4987 { 4988 int retval = 0; 4989 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4990 struct cgroup *parent = cont->parent; 4991 struct mem_cgroup *parent_memcg = NULL; 4992 4993 if (parent) 4994 parent_memcg = mem_cgroup_from_cont(parent); 4995 4996 mutex_lock(&memcg_create_mutex); 4997 4998 if (memcg->use_hierarchy == val) 4999 goto out; 5000 5001 /* 5002 * If parent's use_hierarchy is set, we can't make any modifications 5003 * in the child subtrees. If it is unset, then the change can 5004 * occur, provided the current cgroup has no children. 5005 * 5006 * For the root cgroup, parent_mem is NULL, we allow value to be 5007 * set if there are no children. 5008 */ 5009 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 5010 (val == 1 || val == 0)) { 5011 if (!__memcg_has_children(memcg)) 5012 memcg->use_hierarchy = val; 5013 else 5014 retval = -EBUSY; 5015 } else 5016 retval = -EINVAL; 5017 5018 out: 5019 mutex_unlock(&memcg_create_mutex); 5020 5021 return retval; 5022 } 5023 5024 5025 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 5026 enum mem_cgroup_stat_index idx) 5027 { 5028 struct mem_cgroup *iter; 5029 long val = 0; 5030 5031 /* Per-cpu values can be negative, use a signed accumulator */ 5032 for_each_mem_cgroup_tree(iter, memcg) 5033 val += mem_cgroup_read_stat(iter, idx); 5034 5035 if (val < 0) /* race ? */ 5036 val = 0; 5037 return val; 5038 } 5039 5040 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 5041 { 5042 u64 val; 5043 5044 if (!mem_cgroup_is_root(memcg)) { 5045 if (!swap) 5046 return res_counter_read_u64(&memcg->res, RES_USAGE); 5047 else 5048 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 5049 } 5050 5051 /* 5052 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 5053 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 5054 */ 5055 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 5056 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 5057 5058 if (swap) 5059 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 5060 5061 return val << PAGE_SHIFT; 5062 } 5063 5064 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 5065 struct file *file, char __user *buf, 5066 size_t nbytes, loff_t *ppos) 5067 { 5068 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5069 char str[64]; 5070 u64 val; 5071 int name, len; 5072 enum res_type type; 5073 5074 type = MEMFILE_TYPE(cft->private); 5075 name = MEMFILE_ATTR(cft->private); 5076 5077 switch (type) { 5078 case _MEM: 5079 if (name == RES_USAGE) 5080 val = mem_cgroup_usage(memcg, false); 5081 else 5082 val = res_counter_read_u64(&memcg->res, name); 5083 break; 5084 case _MEMSWAP: 5085 if (name == RES_USAGE) 5086 val = mem_cgroup_usage(memcg, true); 5087 else 5088 val = res_counter_read_u64(&memcg->memsw, name); 5089 break; 5090 case _KMEM: 5091 val = res_counter_read_u64(&memcg->kmem, name); 5092 break; 5093 default: 5094 BUG(); 5095 } 5096 5097 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 5098 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 5099 } 5100 5101 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) 5102 { 5103 int ret = -EINVAL; 5104 #ifdef CONFIG_MEMCG_KMEM 5105 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5106 /* 5107 * For simplicity, we won't allow this to be disabled. It also can't 5108 * be changed if the cgroup has children already, or if tasks had 5109 * already joined. 5110 * 5111 * If tasks join before we set the limit, a person looking at 5112 * kmem.usage_in_bytes will have no way to determine when it took 5113 * place, which makes the value quite meaningless. 5114 * 5115 * After it first became limited, changes in the value of the limit are 5116 * of course permitted. 5117 */ 5118 mutex_lock(&memcg_create_mutex); 5119 mutex_lock(&set_limit_mutex); 5120 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { 5121 if (cgroup_task_count(cont) || memcg_has_children(memcg)) { 5122 ret = -EBUSY; 5123 goto out; 5124 } 5125 ret = res_counter_set_limit(&memcg->kmem, val); 5126 VM_BUG_ON(ret); 5127 5128 ret = memcg_update_cache_sizes(memcg); 5129 if (ret) { 5130 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); 5131 goto out; 5132 } 5133 static_key_slow_inc(&memcg_kmem_enabled_key); 5134 /* 5135 * setting the active bit after the inc will guarantee no one 5136 * starts accounting before all call sites are patched 5137 */ 5138 memcg_kmem_set_active(memcg); 5139 5140 /* 5141 * kmem charges can outlive the cgroup. In the case of slab 5142 * pages, for instance, a page contain objects from various 5143 * processes, so it is unfeasible to migrate them away. We 5144 * need to reference count the memcg because of that. 5145 */ 5146 mem_cgroup_get(memcg); 5147 } else 5148 ret = res_counter_set_limit(&memcg->kmem, val); 5149 out: 5150 mutex_unlock(&set_limit_mutex); 5151 mutex_unlock(&memcg_create_mutex); 5152 #endif 5153 return ret; 5154 } 5155 5156 #ifdef CONFIG_MEMCG_KMEM 5157 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5158 { 5159 int ret = 0; 5160 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5161 if (!parent) 5162 goto out; 5163 5164 memcg->kmem_account_flags = parent->kmem_account_flags; 5165 /* 5166 * When that happen, we need to disable the static branch only on those 5167 * memcgs that enabled it. To achieve this, we would be forced to 5168 * complicate the code by keeping track of which memcgs were the ones 5169 * that actually enabled limits, and which ones got it from its 5170 * parents. 5171 * 5172 * It is a lot simpler just to do static_key_slow_inc() on every child 5173 * that is accounted. 5174 */ 5175 if (!memcg_kmem_is_active(memcg)) 5176 goto out; 5177 5178 /* 5179 * destroy(), called if we fail, will issue static_key_slow_inc() and 5180 * mem_cgroup_put() if kmem is enabled. We have to either call them 5181 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find 5182 * this more consistent, since it always leads to the same destroy path 5183 */ 5184 mem_cgroup_get(memcg); 5185 static_key_slow_inc(&memcg_kmem_enabled_key); 5186 5187 mutex_lock(&set_limit_mutex); 5188 ret = memcg_update_cache_sizes(memcg); 5189 mutex_unlock(&set_limit_mutex); 5190 out: 5191 return ret; 5192 } 5193 #endif /* CONFIG_MEMCG_KMEM */ 5194 5195 /* 5196 * The user of this function is... 5197 * RES_LIMIT. 5198 */ 5199 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 5200 const char *buffer) 5201 { 5202 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5203 enum res_type type; 5204 int name; 5205 unsigned long long val; 5206 int ret; 5207 5208 type = MEMFILE_TYPE(cft->private); 5209 name = MEMFILE_ATTR(cft->private); 5210 5211 switch (name) { 5212 case RES_LIMIT: 5213 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5214 ret = -EINVAL; 5215 break; 5216 } 5217 /* This function does all necessary parse...reuse it */ 5218 ret = res_counter_memparse_write_strategy(buffer, &val); 5219 if (ret) 5220 break; 5221 if (type == _MEM) 5222 ret = mem_cgroup_resize_limit(memcg, val); 5223 else if (type == _MEMSWAP) 5224 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5225 else if (type == _KMEM) 5226 ret = memcg_update_kmem_limit(cont, val); 5227 else 5228 return -EINVAL; 5229 break; 5230 case RES_SOFT_LIMIT: 5231 ret = res_counter_memparse_write_strategy(buffer, &val); 5232 if (ret) 5233 break; 5234 /* 5235 * For memsw, soft limits are hard to implement in terms 5236 * of semantics, for now, we support soft limits for 5237 * control without swap 5238 */ 5239 if (type == _MEM) 5240 ret = res_counter_set_soft_limit(&memcg->res, val); 5241 else 5242 ret = -EINVAL; 5243 break; 5244 default: 5245 ret = -EINVAL; /* should be BUG() ? */ 5246 break; 5247 } 5248 return ret; 5249 } 5250 5251 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5252 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5253 { 5254 struct cgroup *cgroup; 5255 unsigned long long min_limit, min_memsw_limit, tmp; 5256 5257 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5258 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5259 cgroup = memcg->css.cgroup; 5260 if (!memcg->use_hierarchy) 5261 goto out; 5262 5263 while (cgroup->parent) { 5264 cgroup = cgroup->parent; 5265 memcg = mem_cgroup_from_cont(cgroup); 5266 if (!memcg->use_hierarchy) 5267 break; 5268 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5269 min_limit = min(min_limit, tmp); 5270 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5271 min_memsw_limit = min(min_memsw_limit, tmp); 5272 } 5273 out: 5274 *mem_limit = min_limit; 5275 *memsw_limit = min_memsw_limit; 5276 } 5277 5278 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 5279 { 5280 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5281 int name; 5282 enum res_type type; 5283 5284 type = MEMFILE_TYPE(event); 5285 name = MEMFILE_ATTR(event); 5286 5287 switch (name) { 5288 case RES_MAX_USAGE: 5289 if (type == _MEM) 5290 res_counter_reset_max(&memcg->res); 5291 else if (type == _MEMSWAP) 5292 res_counter_reset_max(&memcg->memsw); 5293 else if (type == _KMEM) 5294 res_counter_reset_max(&memcg->kmem); 5295 else 5296 return -EINVAL; 5297 break; 5298 case RES_FAILCNT: 5299 if (type == _MEM) 5300 res_counter_reset_failcnt(&memcg->res); 5301 else if (type == _MEMSWAP) 5302 res_counter_reset_failcnt(&memcg->memsw); 5303 else if (type == _KMEM) 5304 res_counter_reset_failcnt(&memcg->kmem); 5305 else 5306 return -EINVAL; 5307 break; 5308 } 5309 5310 return 0; 5311 } 5312 5313 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 5314 struct cftype *cft) 5315 { 5316 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 5317 } 5318 5319 #ifdef CONFIG_MMU 5320 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5321 struct cftype *cft, u64 val) 5322 { 5323 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5324 5325 if (val >= (1 << NR_MOVE_TYPE)) 5326 return -EINVAL; 5327 5328 /* 5329 * No kind of locking is needed in here, because ->can_attach() will 5330 * check this value once in the beginning of the process, and then carry 5331 * on with stale data. This means that changes to this value will only 5332 * affect task migrations starting after the change. 5333 */ 5334 memcg->move_charge_at_immigrate = val; 5335 return 0; 5336 } 5337 #else 5338 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 5339 struct cftype *cft, u64 val) 5340 { 5341 return -ENOSYS; 5342 } 5343 #endif 5344 5345 #ifdef CONFIG_NUMA 5346 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 5347 struct seq_file *m) 5348 { 5349 int nid; 5350 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5351 unsigned long node_nr; 5352 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5353 5354 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5355 seq_printf(m, "total=%lu", total_nr); 5356 for_each_node_state(nid, N_MEMORY) { 5357 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5358 seq_printf(m, " N%d=%lu", nid, node_nr); 5359 } 5360 seq_putc(m, '\n'); 5361 5362 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5363 seq_printf(m, "file=%lu", file_nr); 5364 for_each_node_state(nid, N_MEMORY) { 5365 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5366 LRU_ALL_FILE); 5367 seq_printf(m, " N%d=%lu", nid, node_nr); 5368 } 5369 seq_putc(m, '\n'); 5370 5371 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5372 seq_printf(m, "anon=%lu", anon_nr); 5373 for_each_node_state(nid, N_MEMORY) { 5374 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5375 LRU_ALL_ANON); 5376 seq_printf(m, " N%d=%lu", nid, node_nr); 5377 } 5378 seq_putc(m, '\n'); 5379 5380 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5381 seq_printf(m, "unevictable=%lu", unevictable_nr); 5382 for_each_node_state(nid, N_MEMORY) { 5383 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5384 BIT(LRU_UNEVICTABLE)); 5385 seq_printf(m, " N%d=%lu", nid, node_nr); 5386 } 5387 seq_putc(m, '\n'); 5388 return 0; 5389 } 5390 #endif /* CONFIG_NUMA */ 5391 5392 static inline void mem_cgroup_lru_names_not_uptodate(void) 5393 { 5394 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5395 } 5396 5397 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 5398 struct seq_file *m) 5399 { 5400 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5401 struct mem_cgroup *mi; 5402 unsigned int i; 5403 5404 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5405 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5406 continue; 5407 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5408 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5409 } 5410 5411 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5412 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5413 mem_cgroup_read_events(memcg, i)); 5414 5415 for (i = 0; i < NR_LRU_LISTS; i++) 5416 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5417 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5418 5419 /* Hierarchical information */ 5420 { 5421 unsigned long long limit, memsw_limit; 5422 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5423 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5424 if (do_swap_account) 5425 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5426 memsw_limit); 5427 } 5428 5429 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5430 long long val = 0; 5431 5432 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5433 continue; 5434 for_each_mem_cgroup_tree(mi, memcg) 5435 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5436 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5437 } 5438 5439 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5440 unsigned long long val = 0; 5441 5442 for_each_mem_cgroup_tree(mi, memcg) 5443 val += mem_cgroup_read_events(mi, i); 5444 seq_printf(m, "total_%s %llu\n", 5445 mem_cgroup_events_names[i], val); 5446 } 5447 5448 for (i = 0; i < NR_LRU_LISTS; i++) { 5449 unsigned long long val = 0; 5450 5451 for_each_mem_cgroup_tree(mi, memcg) 5452 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5453 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5454 } 5455 5456 #ifdef CONFIG_DEBUG_VM 5457 { 5458 int nid, zid; 5459 struct mem_cgroup_per_zone *mz; 5460 struct zone_reclaim_stat *rstat; 5461 unsigned long recent_rotated[2] = {0, 0}; 5462 unsigned long recent_scanned[2] = {0, 0}; 5463 5464 for_each_online_node(nid) 5465 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5466 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5467 rstat = &mz->lruvec.reclaim_stat; 5468 5469 recent_rotated[0] += rstat->recent_rotated[0]; 5470 recent_rotated[1] += rstat->recent_rotated[1]; 5471 recent_scanned[0] += rstat->recent_scanned[0]; 5472 recent_scanned[1] += rstat->recent_scanned[1]; 5473 } 5474 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5475 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5476 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5477 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5478 } 5479 #endif 5480 5481 return 0; 5482 } 5483 5484 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 5485 { 5486 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5487 5488 return mem_cgroup_swappiness(memcg); 5489 } 5490 5491 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 5492 u64 val) 5493 { 5494 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5495 struct mem_cgroup *parent; 5496 5497 if (val > 100) 5498 return -EINVAL; 5499 5500 if (cgrp->parent == NULL) 5501 return -EINVAL; 5502 5503 parent = mem_cgroup_from_cont(cgrp->parent); 5504 5505 mutex_lock(&memcg_create_mutex); 5506 5507 /* If under hierarchy, only empty-root can set this value */ 5508 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5509 mutex_unlock(&memcg_create_mutex); 5510 return -EINVAL; 5511 } 5512 5513 memcg->swappiness = val; 5514 5515 mutex_unlock(&memcg_create_mutex); 5516 5517 return 0; 5518 } 5519 5520 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5521 { 5522 struct mem_cgroup_threshold_ary *t; 5523 u64 usage; 5524 int i; 5525 5526 rcu_read_lock(); 5527 if (!swap) 5528 t = rcu_dereference(memcg->thresholds.primary); 5529 else 5530 t = rcu_dereference(memcg->memsw_thresholds.primary); 5531 5532 if (!t) 5533 goto unlock; 5534 5535 usage = mem_cgroup_usage(memcg, swap); 5536 5537 /* 5538 * current_threshold points to threshold just below or equal to usage. 5539 * If it's not true, a threshold was crossed after last 5540 * call of __mem_cgroup_threshold(). 5541 */ 5542 i = t->current_threshold; 5543 5544 /* 5545 * Iterate backward over array of thresholds starting from 5546 * current_threshold and check if a threshold is crossed. 5547 * If none of thresholds below usage is crossed, we read 5548 * only one element of the array here. 5549 */ 5550 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5551 eventfd_signal(t->entries[i].eventfd, 1); 5552 5553 /* i = current_threshold + 1 */ 5554 i++; 5555 5556 /* 5557 * Iterate forward over array of thresholds starting from 5558 * current_threshold+1 and check if a threshold is crossed. 5559 * If none of thresholds above usage is crossed, we read 5560 * only one element of the array here. 5561 */ 5562 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5563 eventfd_signal(t->entries[i].eventfd, 1); 5564 5565 /* Update current_threshold */ 5566 t->current_threshold = i - 1; 5567 unlock: 5568 rcu_read_unlock(); 5569 } 5570 5571 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5572 { 5573 while (memcg) { 5574 __mem_cgroup_threshold(memcg, false); 5575 if (do_swap_account) 5576 __mem_cgroup_threshold(memcg, true); 5577 5578 memcg = parent_mem_cgroup(memcg); 5579 } 5580 } 5581 5582 static int compare_thresholds(const void *a, const void *b) 5583 { 5584 const struct mem_cgroup_threshold *_a = a; 5585 const struct mem_cgroup_threshold *_b = b; 5586 5587 return _a->threshold - _b->threshold; 5588 } 5589 5590 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5591 { 5592 struct mem_cgroup_eventfd_list *ev; 5593 5594 list_for_each_entry(ev, &memcg->oom_notify, list) 5595 eventfd_signal(ev->eventfd, 1); 5596 return 0; 5597 } 5598 5599 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5600 { 5601 struct mem_cgroup *iter; 5602 5603 for_each_mem_cgroup_tree(iter, memcg) 5604 mem_cgroup_oom_notify_cb(iter); 5605 } 5606 5607 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 5608 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5609 { 5610 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5611 struct mem_cgroup_thresholds *thresholds; 5612 struct mem_cgroup_threshold_ary *new; 5613 enum res_type type = MEMFILE_TYPE(cft->private); 5614 u64 threshold, usage; 5615 int i, size, ret; 5616 5617 ret = res_counter_memparse_write_strategy(args, &threshold); 5618 if (ret) 5619 return ret; 5620 5621 mutex_lock(&memcg->thresholds_lock); 5622 5623 if (type == _MEM) 5624 thresholds = &memcg->thresholds; 5625 else if (type == _MEMSWAP) 5626 thresholds = &memcg->memsw_thresholds; 5627 else 5628 BUG(); 5629 5630 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5631 5632 /* Check if a threshold crossed before adding a new one */ 5633 if (thresholds->primary) 5634 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5635 5636 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5637 5638 /* Allocate memory for new array of thresholds */ 5639 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5640 GFP_KERNEL); 5641 if (!new) { 5642 ret = -ENOMEM; 5643 goto unlock; 5644 } 5645 new->size = size; 5646 5647 /* Copy thresholds (if any) to new array */ 5648 if (thresholds->primary) { 5649 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5650 sizeof(struct mem_cgroup_threshold)); 5651 } 5652 5653 /* Add new threshold */ 5654 new->entries[size - 1].eventfd = eventfd; 5655 new->entries[size - 1].threshold = threshold; 5656 5657 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5658 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5659 compare_thresholds, NULL); 5660 5661 /* Find current threshold */ 5662 new->current_threshold = -1; 5663 for (i = 0; i < size; i++) { 5664 if (new->entries[i].threshold <= usage) { 5665 /* 5666 * new->current_threshold will not be used until 5667 * rcu_assign_pointer(), so it's safe to increment 5668 * it here. 5669 */ 5670 ++new->current_threshold; 5671 } else 5672 break; 5673 } 5674 5675 /* Free old spare buffer and save old primary buffer as spare */ 5676 kfree(thresholds->spare); 5677 thresholds->spare = thresholds->primary; 5678 5679 rcu_assign_pointer(thresholds->primary, new); 5680 5681 /* To be sure that nobody uses thresholds */ 5682 synchronize_rcu(); 5683 5684 unlock: 5685 mutex_unlock(&memcg->thresholds_lock); 5686 5687 return ret; 5688 } 5689 5690 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 5691 struct cftype *cft, struct eventfd_ctx *eventfd) 5692 { 5693 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5694 struct mem_cgroup_thresholds *thresholds; 5695 struct mem_cgroup_threshold_ary *new; 5696 enum res_type type = MEMFILE_TYPE(cft->private); 5697 u64 usage; 5698 int i, j, size; 5699 5700 mutex_lock(&memcg->thresholds_lock); 5701 if (type == _MEM) 5702 thresholds = &memcg->thresholds; 5703 else if (type == _MEMSWAP) 5704 thresholds = &memcg->memsw_thresholds; 5705 else 5706 BUG(); 5707 5708 if (!thresholds->primary) 5709 goto unlock; 5710 5711 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5712 5713 /* Check if a threshold crossed before removing */ 5714 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5715 5716 /* Calculate new number of threshold */ 5717 size = 0; 5718 for (i = 0; i < thresholds->primary->size; i++) { 5719 if (thresholds->primary->entries[i].eventfd != eventfd) 5720 size++; 5721 } 5722 5723 new = thresholds->spare; 5724 5725 /* Set thresholds array to NULL if we don't have thresholds */ 5726 if (!size) { 5727 kfree(new); 5728 new = NULL; 5729 goto swap_buffers; 5730 } 5731 5732 new->size = size; 5733 5734 /* Copy thresholds and find current threshold */ 5735 new->current_threshold = -1; 5736 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5737 if (thresholds->primary->entries[i].eventfd == eventfd) 5738 continue; 5739 5740 new->entries[j] = thresholds->primary->entries[i]; 5741 if (new->entries[j].threshold <= usage) { 5742 /* 5743 * new->current_threshold will not be used 5744 * until rcu_assign_pointer(), so it's safe to increment 5745 * it here. 5746 */ 5747 ++new->current_threshold; 5748 } 5749 j++; 5750 } 5751 5752 swap_buffers: 5753 /* Swap primary and spare array */ 5754 thresholds->spare = thresholds->primary; 5755 /* If all events are unregistered, free the spare array */ 5756 if (!new) { 5757 kfree(thresholds->spare); 5758 thresholds->spare = NULL; 5759 } 5760 5761 rcu_assign_pointer(thresholds->primary, new); 5762 5763 /* To be sure that nobody uses thresholds */ 5764 synchronize_rcu(); 5765 unlock: 5766 mutex_unlock(&memcg->thresholds_lock); 5767 } 5768 5769 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 5770 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5771 { 5772 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5773 struct mem_cgroup_eventfd_list *event; 5774 enum res_type type = MEMFILE_TYPE(cft->private); 5775 5776 BUG_ON(type != _OOM_TYPE); 5777 event = kmalloc(sizeof(*event), GFP_KERNEL); 5778 if (!event) 5779 return -ENOMEM; 5780 5781 spin_lock(&memcg_oom_lock); 5782 5783 event->eventfd = eventfd; 5784 list_add(&event->list, &memcg->oom_notify); 5785 5786 /* already in OOM ? */ 5787 if (atomic_read(&memcg->under_oom)) 5788 eventfd_signal(eventfd, 1); 5789 spin_unlock(&memcg_oom_lock); 5790 5791 return 0; 5792 } 5793 5794 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 5795 struct cftype *cft, struct eventfd_ctx *eventfd) 5796 { 5797 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5798 struct mem_cgroup_eventfd_list *ev, *tmp; 5799 enum res_type type = MEMFILE_TYPE(cft->private); 5800 5801 BUG_ON(type != _OOM_TYPE); 5802 5803 spin_lock(&memcg_oom_lock); 5804 5805 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5806 if (ev->eventfd == eventfd) { 5807 list_del(&ev->list); 5808 kfree(ev); 5809 } 5810 } 5811 5812 spin_unlock(&memcg_oom_lock); 5813 } 5814 5815 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 5816 struct cftype *cft, struct cgroup_map_cb *cb) 5817 { 5818 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5819 5820 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5821 5822 if (atomic_read(&memcg->under_oom)) 5823 cb->fill(cb, "under_oom", 1); 5824 else 5825 cb->fill(cb, "under_oom", 0); 5826 return 0; 5827 } 5828 5829 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 5830 struct cftype *cft, u64 val) 5831 { 5832 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 5833 struct mem_cgroup *parent; 5834 5835 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5836 if (!cgrp->parent || !((val == 0) || (val == 1))) 5837 return -EINVAL; 5838 5839 parent = mem_cgroup_from_cont(cgrp->parent); 5840 5841 mutex_lock(&memcg_create_mutex); 5842 /* oom-kill-disable is a flag for subhierarchy. */ 5843 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5844 mutex_unlock(&memcg_create_mutex); 5845 return -EINVAL; 5846 } 5847 memcg->oom_kill_disable = val; 5848 if (!val) 5849 memcg_oom_recover(memcg); 5850 mutex_unlock(&memcg_create_mutex); 5851 return 0; 5852 } 5853 5854 #ifdef CONFIG_MEMCG_KMEM 5855 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5856 { 5857 int ret; 5858 5859 memcg->kmemcg_id = -1; 5860 ret = memcg_propagate_kmem(memcg); 5861 if (ret) 5862 return ret; 5863 5864 return mem_cgroup_sockets_init(memcg, ss); 5865 } 5866 5867 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5868 { 5869 mem_cgroup_sockets_destroy(memcg); 5870 5871 memcg_kmem_mark_dead(memcg); 5872 5873 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5874 return; 5875 5876 /* 5877 * Charges already down to 0, undo mem_cgroup_get() done in the charge 5878 * path here, being careful not to race with memcg_uncharge_kmem: it is 5879 * possible that the charges went down to 0 between mark_dead and the 5880 * res_counter read, so in that case, we don't need the put 5881 */ 5882 if (memcg_kmem_test_and_clear_dead(memcg)) 5883 mem_cgroup_put(memcg); 5884 } 5885 #else 5886 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5887 { 5888 return 0; 5889 } 5890 5891 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 5892 { 5893 } 5894 #endif 5895 5896 static struct cftype mem_cgroup_files[] = { 5897 { 5898 .name = "usage_in_bytes", 5899 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5900 .read = mem_cgroup_read, 5901 .register_event = mem_cgroup_usage_register_event, 5902 .unregister_event = mem_cgroup_usage_unregister_event, 5903 }, 5904 { 5905 .name = "max_usage_in_bytes", 5906 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5907 .trigger = mem_cgroup_reset, 5908 .read = mem_cgroup_read, 5909 }, 5910 { 5911 .name = "limit_in_bytes", 5912 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5913 .write_string = mem_cgroup_write, 5914 .read = mem_cgroup_read, 5915 }, 5916 { 5917 .name = "soft_limit_in_bytes", 5918 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5919 .write_string = mem_cgroup_write, 5920 .read = mem_cgroup_read, 5921 }, 5922 { 5923 .name = "failcnt", 5924 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5925 .trigger = mem_cgroup_reset, 5926 .read = mem_cgroup_read, 5927 }, 5928 { 5929 .name = "stat", 5930 .read_seq_string = memcg_stat_show, 5931 }, 5932 { 5933 .name = "force_empty", 5934 .trigger = mem_cgroup_force_empty_write, 5935 }, 5936 { 5937 .name = "use_hierarchy", 5938 .flags = CFTYPE_INSANE, 5939 .write_u64 = mem_cgroup_hierarchy_write, 5940 .read_u64 = mem_cgroup_hierarchy_read, 5941 }, 5942 { 5943 .name = "swappiness", 5944 .read_u64 = mem_cgroup_swappiness_read, 5945 .write_u64 = mem_cgroup_swappiness_write, 5946 }, 5947 { 5948 .name = "move_charge_at_immigrate", 5949 .read_u64 = mem_cgroup_move_charge_read, 5950 .write_u64 = mem_cgroup_move_charge_write, 5951 }, 5952 { 5953 .name = "oom_control", 5954 .read_map = mem_cgroup_oom_control_read, 5955 .write_u64 = mem_cgroup_oom_control_write, 5956 .register_event = mem_cgroup_oom_register_event, 5957 .unregister_event = mem_cgroup_oom_unregister_event, 5958 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5959 }, 5960 { 5961 .name = "pressure_level", 5962 .register_event = vmpressure_register_event, 5963 .unregister_event = vmpressure_unregister_event, 5964 }, 5965 #ifdef CONFIG_NUMA 5966 { 5967 .name = "numa_stat", 5968 .read_seq_string = memcg_numa_stat_show, 5969 }, 5970 #endif 5971 #ifdef CONFIG_MEMCG_KMEM 5972 { 5973 .name = "kmem.limit_in_bytes", 5974 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5975 .write_string = mem_cgroup_write, 5976 .read = mem_cgroup_read, 5977 }, 5978 { 5979 .name = "kmem.usage_in_bytes", 5980 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5981 .read = mem_cgroup_read, 5982 }, 5983 { 5984 .name = "kmem.failcnt", 5985 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5986 .trigger = mem_cgroup_reset, 5987 .read = mem_cgroup_read, 5988 }, 5989 { 5990 .name = "kmem.max_usage_in_bytes", 5991 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5992 .trigger = mem_cgroup_reset, 5993 .read = mem_cgroup_read, 5994 }, 5995 #ifdef CONFIG_SLABINFO 5996 { 5997 .name = "kmem.slabinfo", 5998 .read_seq_string = mem_cgroup_slabinfo_read, 5999 }, 6000 #endif 6001 #endif 6002 { }, /* terminate */ 6003 }; 6004 6005 #ifdef CONFIG_MEMCG_SWAP 6006 static struct cftype memsw_cgroup_files[] = { 6007 { 6008 .name = "memsw.usage_in_bytes", 6009 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6010 .read = mem_cgroup_read, 6011 .register_event = mem_cgroup_usage_register_event, 6012 .unregister_event = mem_cgroup_usage_unregister_event, 6013 }, 6014 { 6015 .name = "memsw.max_usage_in_bytes", 6016 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6017 .trigger = mem_cgroup_reset, 6018 .read = mem_cgroup_read, 6019 }, 6020 { 6021 .name = "memsw.limit_in_bytes", 6022 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6023 .write_string = mem_cgroup_write, 6024 .read = mem_cgroup_read, 6025 }, 6026 { 6027 .name = "memsw.failcnt", 6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6029 .trigger = mem_cgroup_reset, 6030 .read = mem_cgroup_read, 6031 }, 6032 { }, /* terminate */ 6033 }; 6034 #endif 6035 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6036 { 6037 struct mem_cgroup_per_node *pn; 6038 struct mem_cgroup_per_zone *mz; 6039 int zone, tmp = node; 6040 /* 6041 * This routine is called against possible nodes. 6042 * But it's BUG to call kmalloc() against offline node. 6043 * 6044 * TODO: this routine can waste much memory for nodes which will 6045 * never be onlined. It's better to use memory hotplug callback 6046 * function. 6047 */ 6048 if (!node_state(node, N_NORMAL_MEMORY)) 6049 tmp = -1; 6050 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6051 if (!pn) 6052 return 1; 6053 6054 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6055 mz = &pn->zoneinfo[zone]; 6056 lruvec_init(&mz->lruvec); 6057 mz->usage_in_excess = 0; 6058 mz->on_tree = false; 6059 mz->memcg = memcg; 6060 } 6061 memcg->info.nodeinfo[node] = pn; 6062 return 0; 6063 } 6064 6065 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6066 { 6067 kfree(memcg->info.nodeinfo[node]); 6068 } 6069 6070 static struct mem_cgroup *mem_cgroup_alloc(void) 6071 { 6072 struct mem_cgroup *memcg; 6073 size_t size = memcg_size(); 6074 6075 /* Can be very big if nr_node_ids is very big */ 6076 if (size < PAGE_SIZE) 6077 memcg = kzalloc(size, GFP_KERNEL); 6078 else 6079 memcg = vzalloc(size); 6080 6081 if (!memcg) 6082 return NULL; 6083 6084 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6085 if (!memcg->stat) 6086 goto out_free; 6087 spin_lock_init(&memcg->pcp_counter_lock); 6088 return memcg; 6089 6090 out_free: 6091 if (size < PAGE_SIZE) 6092 kfree(memcg); 6093 else 6094 vfree(memcg); 6095 return NULL; 6096 } 6097 6098 /* 6099 * At destroying mem_cgroup, references from swap_cgroup can remain. 6100 * (scanning all at force_empty is too costly...) 6101 * 6102 * Instead of clearing all references at force_empty, we remember 6103 * the number of reference from swap_cgroup and free mem_cgroup when 6104 * it goes down to 0. 6105 * 6106 * Removal of cgroup itself succeeds regardless of refs from swap. 6107 */ 6108 6109 static void __mem_cgroup_free(struct mem_cgroup *memcg) 6110 { 6111 int node; 6112 size_t size = memcg_size(); 6113 6114 mem_cgroup_remove_from_trees(memcg); 6115 free_css_id(&mem_cgroup_subsys, &memcg->css); 6116 6117 for_each_node(node) 6118 free_mem_cgroup_per_zone_info(memcg, node); 6119 6120 free_percpu(memcg->stat); 6121 6122 /* 6123 * We need to make sure that (at least for now), the jump label 6124 * destruction code runs outside of the cgroup lock. This is because 6125 * get_online_cpus(), which is called from the static_branch update, 6126 * can't be called inside the cgroup_lock. cpusets are the ones 6127 * enforcing this dependency, so if they ever change, we might as well. 6128 * 6129 * schedule_work() will guarantee this happens. Be careful if you need 6130 * to move this code around, and make sure it is outside 6131 * the cgroup_lock. 6132 */ 6133 disarm_static_keys(memcg); 6134 if (size < PAGE_SIZE) 6135 kfree(memcg); 6136 else 6137 vfree(memcg); 6138 } 6139 6140 6141 /* 6142 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 6143 * but in process context. The work_freeing structure is overlaid 6144 * on the rcu_freeing structure, which itself is overlaid on memsw. 6145 */ 6146 static void free_work(struct work_struct *work) 6147 { 6148 struct mem_cgroup *memcg; 6149 6150 memcg = container_of(work, struct mem_cgroup, work_freeing); 6151 __mem_cgroup_free(memcg); 6152 } 6153 6154 static void free_rcu(struct rcu_head *rcu_head) 6155 { 6156 struct mem_cgroup *memcg; 6157 6158 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 6159 INIT_WORK(&memcg->work_freeing, free_work); 6160 schedule_work(&memcg->work_freeing); 6161 } 6162 6163 static void mem_cgroup_get(struct mem_cgroup *memcg) 6164 { 6165 atomic_inc(&memcg->refcnt); 6166 } 6167 6168 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 6169 { 6170 if (atomic_sub_and_test(count, &memcg->refcnt)) { 6171 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 6172 call_rcu(&memcg->rcu_freeing, free_rcu); 6173 if (parent) 6174 mem_cgroup_put(parent); 6175 } 6176 } 6177 6178 static void mem_cgroup_put(struct mem_cgroup *memcg) 6179 { 6180 __mem_cgroup_put(memcg, 1); 6181 } 6182 6183 /* 6184 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6185 */ 6186 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6187 { 6188 if (!memcg->res.parent) 6189 return NULL; 6190 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6191 } 6192 EXPORT_SYMBOL(parent_mem_cgroup); 6193 6194 static void __init mem_cgroup_soft_limit_tree_init(void) 6195 { 6196 struct mem_cgroup_tree_per_node *rtpn; 6197 struct mem_cgroup_tree_per_zone *rtpz; 6198 int tmp, node, zone; 6199 6200 for_each_node(node) { 6201 tmp = node; 6202 if (!node_state(node, N_NORMAL_MEMORY)) 6203 tmp = -1; 6204 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6205 BUG_ON(!rtpn); 6206 6207 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6208 6209 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6210 rtpz = &rtpn->rb_tree_per_zone[zone]; 6211 rtpz->rb_root = RB_ROOT; 6212 spin_lock_init(&rtpz->lock); 6213 } 6214 } 6215 } 6216 6217 static struct cgroup_subsys_state * __ref 6218 mem_cgroup_css_alloc(struct cgroup *cont) 6219 { 6220 struct mem_cgroup *memcg; 6221 long error = -ENOMEM; 6222 int node; 6223 6224 memcg = mem_cgroup_alloc(); 6225 if (!memcg) 6226 return ERR_PTR(error); 6227 6228 for_each_node(node) 6229 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6230 goto free_out; 6231 6232 /* root ? */ 6233 if (cont->parent == NULL) { 6234 root_mem_cgroup = memcg; 6235 res_counter_init(&memcg->res, NULL); 6236 res_counter_init(&memcg->memsw, NULL); 6237 res_counter_init(&memcg->kmem, NULL); 6238 } 6239 6240 memcg->last_scanned_node = MAX_NUMNODES; 6241 INIT_LIST_HEAD(&memcg->oom_notify); 6242 atomic_set(&memcg->refcnt, 1); 6243 memcg->move_charge_at_immigrate = 0; 6244 mutex_init(&memcg->thresholds_lock); 6245 spin_lock_init(&memcg->move_lock); 6246 vmpressure_init(&memcg->vmpressure); 6247 6248 return &memcg->css; 6249 6250 free_out: 6251 __mem_cgroup_free(memcg); 6252 return ERR_PTR(error); 6253 } 6254 6255 static int 6256 mem_cgroup_css_online(struct cgroup *cont) 6257 { 6258 struct mem_cgroup *memcg, *parent; 6259 int error = 0; 6260 6261 if (!cont->parent) 6262 return 0; 6263 6264 mutex_lock(&memcg_create_mutex); 6265 memcg = mem_cgroup_from_cont(cont); 6266 parent = mem_cgroup_from_cont(cont->parent); 6267 6268 memcg->use_hierarchy = parent->use_hierarchy; 6269 memcg->oom_kill_disable = parent->oom_kill_disable; 6270 memcg->swappiness = mem_cgroup_swappiness(parent); 6271 6272 if (parent->use_hierarchy) { 6273 res_counter_init(&memcg->res, &parent->res); 6274 res_counter_init(&memcg->memsw, &parent->memsw); 6275 res_counter_init(&memcg->kmem, &parent->kmem); 6276 6277 /* 6278 * We increment refcnt of the parent to ensure that we can 6279 * safely access it on res_counter_charge/uncharge. 6280 * This refcnt will be decremented when freeing this 6281 * mem_cgroup(see mem_cgroup_put). 6282 */ 6283 mem_cgroup_get(parent); 6284 } else { 6285 res_counter_init(&memcg->res, NULL); 6286 res_counter_init(&memcg->memsw, NULL); 6287 res_counter_init(&memcg->kmem, NULL); 6288 /* 6289 * Deeper hierachy with use_hierarchy == false doesn't make 6290 * much sense so let cgroup subsystem know about this 6291 * unfortunate state in our controller. 6292 */ 6293 if (parent != root_mem_cgroup) 6294 mem_cgroup_subsys.broken_hierarchy = true; 6295 } 6296 6297 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6298 mutex_unlock(&memcg_create_mutex); 6299 if (error) { 6300 /* 6301 * We call put now because our (and parent's) refcnts 6302 * are already in place. mem_cgroup_put() will internally 6303 * call __mem_cgroup_free, so return directly 6304 */ 6305 mem_cgroup_put(memcg); 6306 if (parent->use_hierarchy) 6307 mem_cgroup_put(parent); 6308 } 6309 return error; 6310 } 6311 6312 /* 6313 * Announce all parents that a group from their hierarchy is gone. 6314 */ 6315 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6316 { 6317 struct mem_cgroup *parent = memcg; 6318 6319 while ((parent = parent_mem_cgroup(parent))) 6320 atomic_inc(&parent->dead_count); 6321 6322 /* 6323 * if the root memcg is not hierarchical we have to check it 6324 * explicitely. 6325 */ 6326 if (!root_mem_cgroup->use_hierarchy) 6327 atomic_inc(&root_mem_cgroup->dead_count); 6328 } 6329 6330 static void mem_cgroup_css_offline(struct cgroup *cont) 6331 { 6332 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6333 6334 mem_cgroup_invalidate_reclaim_iterators(memcg); 6335 mem_cgroup_reparent_charges(memcg); 6336 mem_cgroup_destroy_all_caches(memcg); 6337 } 6338 6339 static void mem_cgroup_css_free(struct cgroup *cont) 6340 { 6341 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 6342 6343 kmem_cgroup_destroy(memcg); 6344 6345 mem_cgroup_put(memcg); 6346 } 6347 6348 #ifdef CONFIG_MMU 6349 /* Handlers for move charge at task migration. */ 6350 #define PRECHARGE_COUNT_AT_ONCE 256 6351 static int mem_cgroup_do_precharge(unsigned long count) 6352 { 6353 int ret = 0; 6354 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6355 struct mem_cgroup *memcg = mc.to; 6356 6357 if (mem_cgroup_is_root(memcg)) { 6358 mc.precharge += count; 6359 /* we don't need css_get for root */ 6360 return ret; 6361 } 6362 /* try to charge at once */ 6363 if (count > 1) { 6364 struct res_counter *dummy; 6365 /* 6366 * "memcg" cannot be under rmdir() because we've already checked 6367 * by cgroup_lock_live_cgroup() that it is not removed and we 6368 * are still under the same cgroup_mutex. So we can postpone 6369 * css_get(). 6370 */ 6371 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6372 goto one_by_one; 6373 if (do_swap_account && res_counter_charge(&memcg->memsw, 6374 PAGE_SIZE * count, &dummy)) { 6375 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6376 goto one_by_one; 6377 } 6378 mc.precharge += count; 6379 return ret; 6380 } 6381 one_by_one: 6382 /* fall back to one by one charge */ 6383 while (count--) { 6384 if (signal_pending(current)) { 6385 ret = -EINTR; 6386 break; 6387 } 6388 if (!batch_count--) { 6389 batch_count = PRECHARGE_COUNT_AT_ONCE; 6390 cond_resched(); 6391 } 6392 ret = __mem_cgroup_try_charge(NULL, 6393 GFP_KERNEL, 1, &memcg, false); 6394 if (ret) 6395 /* mem_cgroup_clear_mc() will do uncharge later */ 6396 return ret; 6397 mc.precharge++; 6398 } 6399 return ret; 6400 } 6401 6402 /** 6403 * get_mctgt_type - get target type of moving charge 6404 * @vma: the vma the pte to be checked belongs 6405 * @addr: the address corresponding to the pte to be checked 6406 * @ptent: the pte to be checked 6407 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6408 * 6409 * Returns 6410 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6411 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6412 * move charge. if @target is not NULL, the page is stored in target->page 6413 * with extra refcnt got(Callers should handle it). 6414 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6415 * target for charge migration. if @target is not NULL, the entry is stored 6416 * in target->ent. 6417 * 6418 * Called with pte lock held. 6419 */ 6420 union mc_target { 6421 struct page *page; 6422 swp_entry_t ent; 6423 }; 6424 6425 enum mc_target_type { 6426 MC_TARGET_NONE = 0, 6427 MC_TARGET_PAGE, 6428 MC_TARGET_SWAP, 6429 }; 6430 6431 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6432 unsigned long addr, pte_t ptent) 6433 { 6434 struct page *page = vm_normal_page(vma, addr, ptent); 6435 6436 if (!page || !page_mapped(page)) 6437 return NULL; 6438 if (PageAnon(page)) { 6439 /* we don't move shared anon */ 6440 if (!move_anon()) 6441 return NULL; 6442 } else if (!move_file()) 6443 /* we ignore mapcount for file pages */ 6444 return NULL; 6445 if (!get_page_unless_zero(page)) 6446 return NULL; 6447 6448 return page; 6449 } 6450 6451 #ifdef CONFIG_SWAP 6452 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6453 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6454 { 6455 struct page *page = NULL; 6456 swp_entry_t ent = pte_to_swp_entry(ptent); 6457 6458 if (!move_anon() || non_swap_entry(ent)) 6459 return NULL; 6460 /* 6461 * Because lookup_swap_cache() updates some statistics counter, 6462 * we call find_get_page() with swapper_space directly. 6463 */ 6464 page = find_get_page(swap_address_space(ent), ent.val); 6465 if (do_swap_account) 6466 entry->val = ent.val; 6467 6468 return page; 6469 } 6470 #else 6471 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6472 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6473 { 6474 return NULL; 6475 } 6476 #endif 6477 6478 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6479 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6480 { 6481 struct page *page = NULL; 6482 struct address_space *mapping; 6483 pgoff_t pgoff; 6484 6485 if (!vma->vm_file) /* anonymous vma */ 6486 return NULL; 6487 if (!move_file()) 6488 return NULL; 6489 6490 mapping = vma->vm_file->f_mapping; 6491 if (pte_none(ptent)) 6492 pgoff = linear_page_index(vma, addr); 6493 else /* pte_file(ptent) is true */ 6494 pgoff = pte_to_pgoff(ptent); 6495 6496 /* page is moved even if it's not RSS of this task(page-faulted). */ 6497 page = find_get_page(mapping, pgoff); 6498 6499 #ifdef CONFIG_SWAP 6500 /* shmem/tmpfs may report page out on swap: account for that too. */ 6501 if (radix_tree_exceptional_entry(page)) { 6502 swp_entry_t swap = radix_to_swp_entry(page); 6503 if (do_swap_account) 6504 *entry = swap; 6505 page = find_get_page(swap_address_space(swap), swap.val); 6506 } 6507 #endif 6508 return page; 6509 } 6510 6511 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6512 unsigned long addr, pte_t ptent, union mc_target *target) 6513 { 6514 struct page *page = NULL; 6515 struct page_cgroup *pc; 6516 enum mc_target_type ret = MC_TARGET_NONE; 6517 swp_entry_t ent = { .val = 0 }; 6518 6519 if (pte_present(ptent)) 6520 page = mc_handle_present_pte(vma, addr, ptent); 6521 else if (is_swap_pte(ptent)) 6522 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6523 else if (pte_none(ptent) || pte_file(ptent)) 6524 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6525 6526 if (!page && !ent.val) 6527 return ret; 6528 if (page) { 6529 pc = lookup_page_cgroup(page); 6530 /* 6531 * Do only loose check w/o page_cgroup lock. 6532 * mem_cgroup_move_account() checks the pc is valid or not under 6533 * the lock. 6534 */ 6535 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6536 ret = MC_TARGET_PAGE; 6537 if (target) 6538 target->page = page; 6539 } 6540 if (!ret || !target) 6541 put_page(page); 6542 } 6543 /* There is a swap entry and a page doesn't exist or isn't charged */ 6544 if (ent.val && !ret && 6545 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6546 ret = MC_TARGET_SWAP; 6547 if (target) 6548 target->ent = ent; 6549 } 6550 return ret; 6551 } 6552 6553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6554 /* 6555 * We don't consider swapping or file mapped pages because THP does not 6556 * support them for now. 6557 * Caller should make sure that pmd_trans_huge(pmd) is true. 6558 */ 6559 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6560 unsigned long addr, pmd_t pmd, union mc_target *target) 6561 { 6562 struct page *page = NULL; 6563 struct page_cgroup *pc; 6564 enum mc_target_type ret = MC_TARGET_NONE; 6565 6566 page = pmd_page(pmd); 6567 VM_BUG_ON(!page || !PageHead(page)); 6568 if (!move_anon()) 6569 return ret; 6570 pc = lookup_page_cgroup(page); 6571 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6572 ret = MC_TARGET_PAGE; 6573 if (target) { 6574 get_page(page); 6575 target->page = page; 6576 } 6577 } 6578 return ret; 6579 } 6580 #else 6581 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6582 unsigned long addr, pmd_t pmd, union mc_target *target) 6583 { 6584 return MC_TARGET_NONE; 6585 } 6586 #endif 6587 6588 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6589 unsigned long addr, unsigned long end, 6590 struct mm_walk *walk) 6591 { 6592 struct vm_area_struct *vma = walk->private; 6593 pte_t *pte; 6594 spinlock_t *ptl; 6595 6596 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6597 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6598 mc.precharge += HPAGE_PMD_NR; 6599 spin_unlock(&vma->vm_mm->page_table_lock); 6600 return 0; 6601 } 6602 6603 if (pmd_trans_unstable(pmd)) 6604 return 0; 6605 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6606 for (; addr != end; pte++, addr += PAGE_SIZE) 6607 if (get_mctgt_type(vma, addr, *pte, NULL)) 6608 mc.precharge++; /* increment precharge temporarily */ 6609 pte_unmap_unlock(pte - 1, ptl); 6610 cond_resched(); 6611 6612 return 0; 6613 } 6614 6615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6616 { 6617 unsigned long precharge; 6618 struct vm_area_struct *vma; 6619 6620 down_read(&mm->mmap_sem); 6621 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6622 struct mm_walk mem_cgroup_count_precharge_walk = { 6623 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6624 .mm = mm, 6625 .private = vma, 6626 }; 6627 if (is_vm_hugetlb_page(vma)) 6628 continue; 6629 walk_page_range(vma->vm_start, vma->vm_end, 6630 &mem_cgroup_count_precharge_walk); 6631 } 6632 up_read(&mm->mmap_sem); 6633 6634 precharge = mc.precharge; 6635 mc.precharge = 0; 6636 6637 return precharge; 6638 } 6639 6640 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6641 { 6642 unsigned long precharge = mem_cgroup_count_precharge(mm); 6643 6644 VM_BUG_ON(mc.moving_task); 6645 mc.moving_task = current; 6646 return mem_cgroup_do_precharge(precharge); 6647 } 6648 6649 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6650 static void __mem_cgroup_clear_mc(void) 6651 { 6652 struct mem_cgroup *from = mc.from; 6653 struct mem_cgroup *to = mc.to; 6654 6655 /* we must uncharge all the leftover precharges from mc.to */ 6656 if (mc.precharge) { 6657 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6658 mc.precharge = 0; 6659 } 6660 /* 6661 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6662 * we must uncharge here. 6663 */ 6664 if (mc.moved_charge) { 6665 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6666 mc.moved_charge = 0; 6667 } 6668 /* we must fixup refcnts and charges */ 6669 if (mc.moved_swap) { 6670 /* uncharge swap account from the old cgroup */ 6671 if (!mem_cgroup_is_root(mc.from)) 6672 res_counter_uncharge(&mc.from->memsw, 6673 PAGE_SIZE * mc.moved_swap); 6674 __mem_cgroup_put(mc.from, mc.moved_swap); 6675 6676 if (!mem_cgroup_is_root(mc.to)) { 6677 /* 6678 * we charged both to->res and to->memsw, so we should 6679 * uncharge to->res. 6680 */ 6681 res_counter_uncharge(&mc.to->res, 6682 PAGE_SIZE * mc.moved_swap); 6683 } 6684 /* we've already done mem_cgroup_get(mc.to) */ 6685 mc.moved_swap = 0; 6686 } 6687 memcg_oom_recover(from); 6688 memcg_oom_recover(to); 6689 wake_up_all(&mc.waitq); 6690 } 6691 6692 static void mem_cgroup_clear_mc(void) 6693 { 6694 struct mem_cgroup *from = mc.from; 6695 6696 /* 6697 * we must clear moving_task before waking up waiters at the end of 6698 * task migration. 6699 */ 6700 mc.moving_task = NULL; 6701 __mem_cgroup_clear_mc(); 6702 spin_lock(&mc.lock); 6703 mc.from = NULL; 6704 mc.to = NULL; 6705 spin_unlock(&mc.lock); 6706 mem_cgroup_end_move(from); 6707 } 6708 6709 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6710 struct cgroup_taskset *tset) 6711 { 6712 struct task_struct *p = cgroup_taskset_first(tset); 6713 int ret = 0; 6714 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 6715 unsigned long move_charge_at_immigrate; 6716 6717 /* 6718 * We are now commited to this value whatever it is. Changes in this 6719 * tunable will only affect upcoming migrations, not the current one. 6720 * So we need to save it, and keep it going. 6721 */ 6722 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6723 if (move_charge_at_immigrate) { 6724 struct mm_struct *mm; 6725 struct mem_cgroup *from = mem_cgroup_from_task(p); 6726 6727 VM_BUG_ON(from == memcg); 6728 6729 mm = get_task_mm(p); 6730 if (!mm) 6731 return 0; 6732 /* We move charges only when we move a owner of the mm */ 6733 if (mm->owner == p) { 6734 VM_BUG_ON(mc.from); 6735 VM_BUG_ON(mc.to); 6736 VM_BUG_ON(mc.precharge); 6737 VM_BUG_ON(mc.moved_charge); 6738 VM_BUG_ON(mc.moved_swap); 6739 mem_cgroup_start_move(from); 6740 spin_lock(&mc.lock); 6741 mc.from = from; 6742 mc.to = memcg; 6743 mc.immigrate_flags = move_charge_at_immigrate; 6744 spin_unlock(&mc.lock); 6745 /* We set mc.moving_task later */ 6746 6747 ret = mem_cgroup_precharge_mc(mm); 6748 if (ret) 6749 mem_cgroup_clear_mc(); 6750 } 6751 mmput(mm); 6752 } 6753 return ret; 6754 } 6755 6756 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6757 struct cgroup_taskset *tset) 6758 { 6759 mem_cgroup_clear_mc(); 6760 } 6761 6762 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6763 unsigned long addr, unsigned long end, 6764 struct mm_walk *walk) 6765 { 6766 int ret = 0; 6767 struct vm_area_struct *vma = walk->private; 6768 pte_t *pte; 6769 spinlock_t *ptl; 6770 enum mc_target_type target_type; 6771 union mc_target target; 6772 struct page *page; 6773 struct page_cgroup *pc; 6774 6775 /* 6776 * We don't take compound_lock() here but no race with splitting thp 6777 * happens because: 6778 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6779 * under splitting, which means there's no concurrent thp split, 6780 * - if another thread runs into split_huge_page() just after we 6781 * entered this if-block, the thread must wait for page table lock 6782 * to be unlocked in __split_huge_page_splitting(), where the main 6783 * part of thp split is not executed yet. 6784 */ 6785 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6786 if (mc.precharge < HPAGE_PMD_NR) { 6787 spin_unlock(&vma->vm_mm->page_table_lock); 6788 return 0; 6789 } 6790 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6791 if (target_type == MC_TARGET_PAGE) { 6792 page = target.page; 6793 if (!isolate_lru_page(page)) { 6794 pc = lookup_page_cgroup(page); 6795 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6796 pc, mc.from, mc.to)) { 6797 mc.precharge -= HPAGE_PMD_NR; 6798 mc.moved_charge += HPAGE_PMD_NR; 6799 } 6800 putback_lru_page(page); 6801 } 6802 put_page(page); 6803 } 6804 spin_unlock(&vma->vm_mm->page_table_lock); 6805 return 0; 6806 } 6807 6808 if (pmd_trans_unstable(pmd)) 6809 return 0; 6810 retry: 6811 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6812 for (; addr != end; addr += PAGE_SIZE) { 6813 pte_t ptent = *(pte++); 6814 swp_entry_t ent; 6815 6816 if (!mc.precharge) 6817 break; 6818 6819 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6820 case MC_TARGET_PAGE: 6821 page = target.page; 6822 if (isolate_lru_page(page)) 6823 goto put; 6824 pc = lookup_page_cgroup(page); 6825 if (!mem_cgroup_move_account(page, 1, pc, 6826 mc.from, mc.to)) { 6827 mc.precharge--; 6828 /* we uncharge from mc.from later. */ 6829 mc.moved_charge++; 6830 } 6831 putback_lru_page(page); 6832 put: /* get_mctgt_type() gets the page */ 6833 put_page(page); 6834 break; 6835 case MC_TARGET_SWAP: 6836 ent = target.ent; 6837 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6838 mc.precharge--; 6839 /* we fixup refcnts and charges later. */ 6840 mc.moved_swap++; 6841 } 6842 break; 6843 default: 6844 break; 6845 } 6846 } 6847 pte_unmap_unlock(pte - 1, ptl); 6848 cond_resched(); 6849 6850 if (addr != end) { 6851 /* 6852 * We have consumed all precharges we got in can_attach(). 6853 * We try charge one by one, but don't do any additional 6854 * charges to mc.to if we have failed in charge once in attach() 6855 * phase. 6856 */ 6857 ret = mem_cgroup_do_precharge(1); 6858 if (!ret) 6859 goto retry; 6860 } 6861 6862 return ret; 6863 } 6864 6865 static void mem_cgroup_move_charge(struct mm_struct *mm) 6866 { 6867 struct vm_area_struct *vma; 6868 6869 lru_add_drain_all(); 6870 retry: 6871 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6872 /* 6873 * Someone who are holding the mmap_sem might be waiting in 6874 * waitq. So we cancel all extra charges, wake up all waiters, 6875 * and retry. Because we cancel precharges, we might not be able 6876 * to move enough charges, but moving charge is a best-effort 6877 * feature anyway, so it wouldn't be a big problem. 6878 */ 6879 __mem_cgroup_clear_mc(); 6880 cond_resched(); 6881 goto retry; 6882 } 6883 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6884 int ret; 6885 struct mm_walk mem_cgroup_move_charge_walk = { 6886 .pmd_entry = mem_cgroup_move_charge_pte_range, 6887 .mm = mm, 6888 .private = vma, 6889 }; 6890 if (is_vm_hugetlb_page(vma)) 6891 continue; 6892 ret = walk_page_range(vma->vm_start, vma->vm_end, 6893 &mem_cgroup_move_charge_walk); 6894 if (ret) 6895 /* 6896 * means we have consumed all precharges and failed in 6897 * doing additional charge. Just abandon here. 6898 */ 6899 break; 6900 } 6901 up_read(&mm->mmap_sem); 6902 } 6903 6904 static void mem_cgroup_move_task(struct cgroup *cont, 6905 struct cgroup_taskset *tset) 6906 { 6907 struct task_struct *p = cgroup_taskset_first(tset); 6908 struct mm_struct *mm = get_task_mm(p); 6909 6910 if (mm) { 6911 if (mc.to) 6912 mem_cgroup_move_charge(mm); 6913 mmput(mm); 6914 } 6915 if (mc.to) 6916 mem_cgroup_clear_mc(); 6917 } 6918 #else /* !CONFIG_MMU */ 6919 static int mem_cgroup_can_attach(struct cgroup *cgroup, 6920 struct cgroup_taskset *tset) 6921 { 6922 return 0; 6923 } 6924 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 6925 struct cgroup_taskset *tset) 6926 { 6927 } 6928 static void mem_cgroup_move_task(struct cgroup *cont, 6929 struct cgroup_taskset *tset) 6930 { 6931 } 6932 #endif 6933 6934 /* 6935 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6936 * to verify sane_behavior flag on each mount attempt. 6937 */ 6938 static void mem_cgroup_bind(struct cgroup *root) 6939 { 6940 /* 6941 * use_hierarchy is forced with sane_behavior. cgroup core 6942 * guarantees that @root doesn't have any children, so turning it 6943 * on for the root memcg is enough. 6944 */ 6945 if (cgroup_sane_behavior(root)) 6946 mem_cgroup_from_cont(root)->use_hierarchy = true; 6947 } 6948 6949 struct cgroup_subsys mem_cgroup_subsys = { 6950 .name = "memory", 6951 .subsys_id = mem_cgroup_subsys_id, 6952 .css_alloc = mem_cgroup_css_alloc, 6953 .css_online = mem_cgroup_css_online, 6954 .css_offline = mem_cgroup_css_offline, 6955 .css_free = mem_cgroup_css_free, 6956 .can_attach = mem_cgroup_can_attach, 6957 .cancel_attach = mem_cgroup_cancel_attach, 6958 .attach = mem_cgroup_move_task, 6959 .bind = mem_cgroup_bind, 6960 .base_cftypes = mem_cgroup_files, 6961 .early_init = 0, 6962 .use_id = 1, 6963 }; 6964 6965 #ifdef CONFIG_MEMCG_SWAP 6966 static int __init enable_swap_account(char *s) 6967 { 6968 /* consider enabled if no parameter or 1 is given */ 6969 if (!strcmp(s, "1")) 6970 really_do_swap_account = 1; 6971 else if (!strcmp(s, "0")) 6972 really_do_swap_account = 0; 6973 return 1; 6974 } 6975 __setup("swapaccount=", enable_swap_account); 6976 6977 static void __init memsw_file_init(void) 6978 { 6979 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6980 } 6981 6982 static void __init enable_swap_cgroup(void) 6983 { 6984 if (!mem_cgroup_disabled() && really_do_swap_account) { 6985 do_swap_account = 1; 6986 memsw_file_init(); 6987 } 6988 } 6989 6990 #else 6991 static void __init enable_swap_cgroup(void) 6992 { 6993 } 6994 #endif 6995 6996 /* 6997 * subsys_initcall() for memory controller. 6998 * 6999 * Some parts like hotcpu_notifier() have to be initialized from this context 7000 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7001 * everything that doesn't depend on a specific mem_cgroup structure should 7002 * be initialized from here. 7003 */ 7004 static int __init mem_cgroup_init(void) 7005 { 7006 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7007 enable_swap_cgroup(); 7008 mem_cgroup_soft_limit_tree_init(); 7009 memcg_stock_init(); 7010 return 0; 7011 } 7012 subsys_initcall(mem_cgroup_init); 7013