xref: /linux/mm/memcontrol.c (revision 7c43185138cf523b0810ffd2c9e18e2ecb356730)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81 	/*
82 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 	 */
84 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 	MEM_CGROUP_STAT_NSTATS,
91 };
92 
93 enum mem_cgroup_events_index {
94 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
98 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 	MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108 	MEM_CGROUP_TARGET_THRESH,
109 	MEM_CGROUP_TARGET_SOFTLIMIT,
110 	MEM_CGROUP_TARGET_NUMAINFO,
111 	MEM_CGROUP_NTARGETS,
112 };
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET	(1024)
116 
117 struct mem_cgroup_stat_cpu {
118 	long count[MEM_CGROUP_STAT_NSTATS];
119 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 	unsigned long targets[MEM_CGROUP_NTARGETS];
121 };
122 
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_zone {
127 	/*
128 	 * spin_lock to protect the per cgroup LRU
129 	 */
130 	struct list_head	lists[NR_LRU_LISTS];
131 	unsigned long		count[NR_LRU_LISTS];
132 
133 	struct zone_reclaim_stat reclaim_stat;
134 	struct rb_node		tree_node;	/* RB tree node */
135 	unsigned long long	usage_in_excess;/* Set to the value by which */
136 						/* the soft limit is exceeded*/
137 	bool			on_tree;
138 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
139 						/* use container_of	   */
140 };
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
143 
144 struct mem_cgroup_per_node {
145 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146 };
147 
148 struct mem_cgroup_lru_info {
149 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150 };
151 
152 /*
153  * Cgroups above their limits are maintained in a RB-Tree, independent of
154  * their hierarchy representation
155  */
156 
157 struct mem_cgroup_tree_per_zone {
158 	struct rb_root rb_root;
159 	spinlock_t lock;
160 };
161 
162 struct mem_cgroup_tree_per_node {
163 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164 };
165 
166 struct mem_cgroup_tree {
167 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168 };
169 
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171 
172 struct mem_cgroup_threshold {
173 	struct eventfd_ctx *eventfd;
174 	u64 threshold;
175 };
176 
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179 	/* An array index points to threshold just below usage. */
180 	int current_threshold;
181 	/* Size of entries[] */
182 	unsigned int size;
183 	/* Array of thresholds */
184 	struct mem_cgroup_threshold entries[0];
185 };
186 
187 struct mem_cgroup_thresholds {
188 	/* Primary thresholds array */
189 	struct mem_cgroup_threshold_ary *primary;
190 	/*
191 	 * Spare threshold array.
192 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 	 * It must be able to store at least primary->size - 1 entries.
194 	 */
195 	struct mem_cgroup_threshold_ary *spare;
196 };
197 
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200 	struct list_head list;
201 	struct eventfd_ctx *eventfd;
202 };
203 
204 static void mem_cgroup_threshold(struct mem_cgroup *mem);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206 
207 enum {
208 	SCAN_BY_LIMIT,
209 	SCAN_BY_SYSTEM,
210 	NR_SCAN_CONTEXT,
211 	SCAN_BY_SHRINK,	/* not recorded now */
212 };
213 
214 enum {
215 	SCAN,
216 	SCAN_ANON,
217 	SCAN_FILE,
218 	ROTATE,
219 	ROTATE_ANON,
220 	ROTATE_FILE,
221 	FREED,
222 	FREED_ANON,
223 	FREED_FILE,
224 	ELAPSED,
225 	NR_SCANSTATS,
226 };
227 
228 struct scanstat {
229 	spinlock_t	lock;
230 	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
231 	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232 };
233 
234 const char *scanstat_string[NR_SCANSTATS] = {
235 	"scanned_pages",
236 	"scanned_anon_pages",
237 	"scanned_file_pages",
238 	"rotated_pages",
239 	"rotated_anon_pages",
240 	"rotated_file_pages",
241 	"freed_pages",
242 	"freed_anon_pages",
243 	"freed_file_pages",
244 	"elapsed_ns",
245 };
246 #define SCANSTAT_WORD_LIMIT	"_by_limit"
247 #define SCANSTAT_WORD_SYSTEM	"_by_system"
248 #define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"
249 
250 
251 /*
252  * The memory controller data structure. The memory controller controls both
253  * page cache and RSS per cgroup. We would eventually like to provide
254  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255  * to help the administrator determine what knobs to tune.
256  *
257  * TODO: Add a water mark for the memory controller. Reclaim will begin when
258  * we hit the water mark. May be even add a low water mark, such that
259  * no reclaim occurs from a cgroup at it's low water mark, this is
260  * a feature that will be implemented much later in the future.
261  */
262 struct mem_cgroup {
263 	struct cgroup_subsys_state css;
264 	/*
265 	 * the counter to account for memory usage
266 	 */
267 	struct res_counter res;
268 	/*
269 	 * the counter to account for mem+swap usage.
270 	 */
271 	struct res_counter memsw;
272 	/*
273 	 * Per cgroup active and inactive list, similar to the
274 	 * per zone LRU lists.
275 	 */
276 	struct mem_cgroup_lru_info info;
277 	/*
278 	 * While reclaiming in a hierarchy, we cache the last child we
279 	 * reclaimed from.
280 	 */
281 	int last_scanned_child;
282 	int last_scanned_node;
283 #if MAX_NUMNODES > 1
284 	nodemask_t	scan_nodes;
285 	atomic_t	numainfo_events;
286 	atomic_t	numainfo_updating;
287 #endif
288 	/*
289 	 * Should the accounting and control be hierarchical, per subtree?
290 	 */
291 	bool use_hierarchy;
292 
293 	bool		oom_lock;
294 	atomic_t	under_oom;
295 
296 	atomic_t	refcnt;
297 
298 	int	swappiness;
299 	/* OOM-Killer disable */
300 	int		oom_kill_disable;
301 
302 	/* set when res.limit == memsw.limit */
303 	bool		memsw_is_minimum;
304 
305 	/* protect arrays of thresholds */
306 	struct mutex thresholds_lock;
307 
308 	/* thresholds for memory usage. RCU-protected */
309 	struct mem_cgroup_thresholds thresholds;
310 
311 	/* thresholds for mem+swap usage. RCU-protected */
312 	struct mem_cgroup_thresholds memsw_thresholds;
313 
314 	/* For oom notifier event fd */
315 	struct list_head oom_notify;
316 	/* For recording LRU-scan statistics */
317 	struct scanstat scanstat;
318 	/*
319 	 * Should we move charges of a task when a task is moved into this
320 	 * mem_cgroup ? And what type of charges should we move ?
321 	 */
322 	unsigned long 	move_charge_at_immigrate;
323 	/*
324 	 * percpu counter.
325 	 */
326 	struct mem_cgroup_stat_cpu *stat;
327 	/*
328 	 * used when a cpu is offlined or other synchronizations
329 	 * See mem_cgroup_read_stat().
330 	 */
331 	struct mem_cgroup_stat_cpu nocpu_base;
332 	spinlock_t pcp_counter_lock;
333 };
334 
335 /* Stuffs for move charges at task migration. */
336 /*
337  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338  * left-shifted bitmap of these types.
339  */
340 enum move_type {
341 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 	NR_MOVE_TYPE,
344 };
345 
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 	spinlock_t	  lock; /* for from, to */
349 	struct mem_cgroup *from;
350 	struct mem_cgroup *to;
351 	unsigned long precharge;
352 	unsigned long moved_charge;
353 	unsigned long moved_swap;
354 	struct task_struct *moving_task;	/* a task moving charges */
355 	wait_queue_head_t waitq;		/* a waitq for other context */
356 } mc = {
357 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360 
361 static bool move_anon(void)
362 {
363 	return test_bit(MOVE_CHARGE_TYPE_ANON,
364 					&mc.to->move_charge_at_immigrate);
365 }
366 
367 static bool move_file(void)
368 {
369 	return test_bit(MOVE_CHARGE_TYPE_FILE,
370 					&mc.to->move_charge_at_immigrate);
371 }
372 
373 /*
374  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375  * limit reclaim to prevent infinite loops, if they ever occur.
376  */
377 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
378 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
379 
380 enum charge_type {
381 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
383 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
384 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
385 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
386 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387 	NR_CHARGE_TYPE,
388 };
389 
390 /* for encoding cft->private value on file */
391 #define _MEM			(0)
392 #define _MEMSWAP		(1)
393 #define _OOM_TYPE		(2)
394 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
395 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
396 #define MEMFILE_ATTR(val)	((val) & 0xffff)
397 /* Used for OOM nofiier */
398 #define OOM_CONTROL		(0)
399 
400 /*
401  * Reclaim flags for mem_cgroup_hierarchical_reclaim
402  */
403 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
404 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
406 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
408 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
409 
410 static void mem_cgroup_get(struct mem_cgroup *mem);
411 static void mem_cgroup_put(struct mem_cgroup *mem);
412 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
413 static void drain_all_stock_async(struct mem_cgroup *mem);
414 
415 static struct mem_cgroup_per_zone *
416 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
417 {
418 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
419 }
420 
421 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
422 {
423 	return &mem->css;
424 }
425 
426 static struct mem_cgroup_per_zone *
427 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
428 {
429 	int nid = page_to_nid(page);
430 	int zid = page_zonenum(page);
431 
432 	return mem_cgroup_zoneinfo(mem, nid, zid);
433 }
434 
435 static struct mem_cgroup_tree_per_zone *
436 soft_limit_tree_node_zone(int nid, int zid)
437 {
438 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439 }
440 
441 static struct mem_cgroup_tree_per_zone *
442 soft_limit_tree_from_page(struct page *page)
443 {
444 	int nid = page_to_nid(page);
445 	int zid = page_zonenum(page);
446 
447 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
448 }
449 
450 static void
451 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
452 				struct mem_cgroup_per_zone *mz,
453 				struct mem_cgroup_tree_per_zone *mctz,
454 				unsigned long long new_usage_in_excess)
455 {
456 	struct rb_node **p = &mctz->rb_root.rb_node;
457 	struct rb_node *parent = NULL;
458 	struct mem_cgroup_per_zone *mz_node;
459 
460 	if (mz->on_tree)
461 		return;
462 
463 	mz->usage_in_excess = new_usage_in_excess;
464 	if (!mz->usage_in_excess)
465 		return;
466 	while (*p) {
467 		parent = *p;
468 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
469 					tree_node);
470 		if (mz->usage_in_excess < mz_node->usage_in_excess)
471 			p = &(*p)->rb_left;
472 		/*
473 		 * We can't avoid mem cgroups that are over their soft
474 		 * limit by the same amount
475 		 */
476 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
477 			p = &(*p)->rb_right;
478 	}
479 	rb_link_node(&mz->tree_node, parent, p);
480 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
481 	mz->on_tree = true;
482 }
483 
484 static void
485 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
486 				struct mem_cgroup_per_zone *mz,
487 				struct mem_cgroup_tree_per_zone *mctz)
488 {
489 	if (!mz->on_tree)
490 		return;
491 	rb_erase(&mz->tree_node, &mctz->rb_root);
492 	mz->on_tree = false;
493 }
494 
495 static void
496 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
497 				struct mem_cgroup_per_zone *mz,
498 				struct mem_cgroup_tree_per_zone *mctz)
499 {
500 	spin_lock(&mctz->lock);
501 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
502 	spin_unlock(&mctz->lock);
503 }
504 
505 
506 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
507 {
508 	unsigned long long excess;
509 	struct mem_cgroup_per_zone *mz;
510 	struct mem_cgroup_tree_per_zone *mctz;
511 	int nid = page_to_nid(page);
512 	int zid = page_zonenum(page);
513 	mctz = soft_limit_tree_from_page(page);
514 
515 	/*
516 	 * Necessary to update all ancestors when hierarchy is used.
517 	 * because their event counter is not touched.
518 	 */
519 	for (; mem; mem = parent_mem_cgroup(mem)) {
520 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
521 		excess = res_counter_soft_limit_excess(&mem->res);
522 		/*
523 		 * We have to update the tree if mz is on RB-tree or
524 		 * mem is over its softlimit.
525 		 */
526 		if (excess || mz->on_tree) {
527 			spin_lock(&mctz->lock);
528 			/* if on-tree, remove it */
529 			if (mz->on_tree)
530 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
531 			/*
532 			 * Insert again. mz->usage_in_excess will be updated.
533 			 * If excess is 0, no tree ops.
534 			 */
535 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
536 			spin_unlock(&mctz->lock);
537 		}
538 	}
539 }
540 
541 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
542 {
543 	int node, zone;
544 	struct mem_cgroup_per_zone *mz;
545 	struct mem_cgroup_tree_per_zone *mctz;
546 
547 	for_each_node_state(node, N_POSSIBLE) {
548 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
549 			mz = mem_cgroup_zoneinfo(mem, node, zone);
550 			mctz = soft_limit_tree_node_zone(node, zone);
551 			mem_cgroup_remove_exceeded(mem, mz, mctz);
552 		}
553 	}
554 }
555 
556 static struct mem_cgroup_per_zone *
557 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
558 {
559 	struct rb_node *rightmost = NULL;
560 	struct mem_cgroup_per_zone *mz;
561 
562 retry:
563 	mz = NULL;
564 	rightmost = rb_last(&mctz->rb_root);
565 	if (!rightmost)
566 		goto done;		/* Nothing to reclaim from */
567 
568 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
569 	/*
570 	 * Remove the node now but someone else can add it back,
571 	 * we will to add it back at the end of reclaim to its correct
572 	 * position in the tree.
573 	 */
574 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
575 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
576 		!css_tryget(&mz->mem->css))
577 		goto retry;
578 done:
579 	return mz;
580 }
581 
582 static struct mem_cgroup_per_zone *
583 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584 {
585 	struct mem_cgroup_per_zone *mz;
586 
587 	spin_lock(&mctz->lock);
588 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
589 	spin_unlock(&mctz->lock);
590 	return mz;
591 }
592 
593 /*
594  * Implementation Note: reading percpu statistics for memcg.
595  *
596  * Both of vmstat[] and percpu_counter has threshold and do periodic
597  * synchronization to implement "quick" read. There are trade-off between
598  * reading cost and precision of value. Then, we may have a chance to implement
599  * a periodic synchronizion of counter in memcg's counter.
600  *
601  * But this _read() function is used for user interface now. The user accounts
602  * memory usage by memory cgroup and he _always_ requires exact value because
603  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604  * have to visit all online cpus and make sum. So, for now, unnecessary
605  * synchronization is not implemented. (just implemented for cpu hotplug)
606  *
607  * If there are kernel internal actions which can make use of some not-exact
608  * value, and reading all cpu value can be performance bottleneck in some
609  * common workload, threashold and synchonization as vmstat[] should be
610  * implemented.
611  */
612 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
613 				 enum mem_cgroup_stat_index idx)
614 {
615 	long val = 0;
616 	int cpu;
617 
618 	get_online_cpus();
619 	for_each_online_cpu(cpu)
620 		val += per_cpu(mem->stat->count[idx], cpu);
621 #ifdef CONFIG_HOTPLUG_CPU
622 	spin_lock(&mem->pcp_counter_lock);
623 	val += mem->nocpu_base.count[idx];
624 	spin_unlock(&mem->pcp_counter_lock);
625 #endif
626 	put_online_cpus();
627 	return val;
628 }
629 
630 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
631 					 bool charge)
632 {
633 	int val = (charge) ? 1 : -1;
634 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
635 }
636 
637 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
638 {
639 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
640 }
641 
642 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
643 {
644 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
645 }
646 
647 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
648 					    enum mem_cgroup_events_index idx)
649 {
650 	unsigned long val = 0;
651 	int cpu;
652 
653 	for_each_online_cpu(cpu)
654 		val += per_cpu(mem->stat->events[idx], cpu);
655 #ifdef CONFIG_HOTPLUG_CPU
656 	spin_lock(&mem->pcp_counter_lock);
657 	val += mem->nocpu_base.events[idx];
658 	spin_unlock(&mem->pcp_counter_lock);
659 #endif
660 	return val;
661 }
662 
663 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
664 					 bool file, int nr_pages)
665 {
666 	preempt_disable();
667 
668 	if (file)
669 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
670 	else
671 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
672 
673 	/* pagein of a big page is an event. So, ignore page size */
674 	if (nr_pages > 0)
675 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
676 	else {
677 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
678 		nr_pages = -nr_pages; /* for event */
679 	}
680 
681 	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
682 
683 	preempt_enable();
684 }
685 
686 unsigned long
687 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
688 			unsigned int lru_mask)
689 {
690 	struct mem_cgroup_per_zone *mz;
691 	enum lru_list l;
692 	unsigned long ret = 0;
693 
694 	mz = mem_cgroup_zoneinfo(mem, nid, zid);
695 
696 	for_each_lru(l) {
697 		if (BIT(l) & lru_mask)
698 			ret += MEM_CGROUP_ZSTAT(mz, l);
699 	}
700 	return ret;
701 }
702 
703 static unsigned long
704 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
705 			int nid, unsigned int lru_mask)
706 {
707 	u64 total = 0;
708 	int zid;
709 
710 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
711 		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
712 
713 	return total;
714 }
715 
716 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
717 			unsigned int lru_mask)
718 {
719 	int nid;
720 	u64 total = 0;
721 
722 	for_each_node_state(nid, N_HIGH_MEMORY)
723 		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
724 	return total;
725 }
726 
727 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
728 {
729 	unsigned long val, next;
730 
731 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
732 	next = this_cpu_read(mem->stat->targets[target]);
733 	/* from time_after() in jiffies.h */
734 	return ((long)next - (long)val < 0);
735 }
736 
737 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
738 {
739 	unsigned long val, next;
740 
741 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
742 
743 	switch (target) {
744 	case MEM_CGROUP_TARGET_THRESH:
745 		next = val + THRESHOLDS_EVENTS_TARGET;
746 		break;
747 	case MEM_CGROUP_TARGET_SOFTLIMIT:
748 		next = val + SOFTLIMIT_EVENTS_TARGET;
749 		break;
750 	case MEM_CGROUP_TARGET_NUMAINFO:
751 		next = val + NUMAINFO_EVENTS_TARGET;
752 		break;
753 	default:
754 		return;
755 	}
756 
757 	this_cpu_write(mem->stat->targets[target], next);
758 }
759 
760 /*
761  * Check events in order.
762  *
763  */
764 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
765 {
766 	/* threshold event is triggered in finer grain than soft limit */
767 	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
768 		mem_cgroup_threshold(mem);
769 		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
770 		if (unlikely(__memcg_event_check(mem,
771 			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
772 			mem_cgroup_update_tree(mem, page);
773 			__mem_cgroup_target_update(mem,
774 						   MEM_CGROUP_TARGET_SOFTLIMIT);
775 		}
776 #if MAX_NUMNODES > 1
777 		if (unlikely(__memcg_event_check(mem,
778 			MEM_CGROUP_TARGET_NUMAINFO))) {
779 			atomic_inc(&mem->numainfo_events);
780 			__mem_cgroup_target_update(mem,
781 				MEM_CGROUP_TARGET_NUMAINFO);
782 		}
783 #endif
784 	}
785 }
786 
787 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
788 {
789 	return container_of(cgroup_subsys_state(cont,
790 				mem_cgroup_subsys_id), struct mem_cgroup,
791 				css);
792 }
793 
794 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
795 {
796 	/*
797 	 * mm_update_next_owner() may clear mm->owner to NULL
798 	 * if it races with swapoff, page migration, etc.
799 	 * So this can be called with p == NULL.
800 	 */
801 	if (unlikely(!p))
802 		return NULL;
803 
804 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
805 				struct mem_cgroup, css);
806 }
807 
808 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
809 {
810 	struct mem_cgroup *mem = NULL;
811 
812 	if (!mm)
813 		return NULL;
814 	/*
815 	 * Because we have no locks, mm->owner's may be being moved to other
816 	 * cgroup. We use css_tryget() here even if this looks
817 	 * pessimistic (rather than adding locks here).
818 	 */
819 	rcu_read_lock();
820 	do {
821 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
822 		if (unlikely(!mem))
823 			break;
824 	} while (!css_tryget(&mem->css));
825 	rcu_read_unlock();
826 	return mem;
827 }
828 
829 /* The caller has to guarantee "mem" exists before calling this */
830 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
831 {
832 	struct cgroup_subsys_state *css;
833 	int found;
834 
835 	if (!mem) /* ROOT cgroup has the smallest ID */
836 		return root_mem_cgroup; /*css_put/get against root is ignored*/
837 	if (!mem->use_hierarchy) {
838 		if (css_tryget(&mem->css))
839 			return mem;
840 		return NULL;
841 	}
842 	rcu_read_lock();
843 	/*
844 	 * searching a memory cgroup which has the smallest ID under given
845 	 * ROOT cgroup. (ID >= 1)
846 	 */
847 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
848 	if (css && css_tryget(css))
849 		mem = container_of(css, struct mem_cgroup, css);
850 	else
851 		mem = NULL;
852 	rcu_read_unlock();
853 	return mem;
854 }
855 
856 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
857 					struct mem_cgroup *root,
858 					bool cond)
859 {
860 	int nextid = css_id(&iter->css) + 1;
861 	int found;
862 	int hierarchy_used;
863 	struct cgroup_subsys_state *css;
864 
865 	hierarchy_used = iter->use_hierarchy;
866 
867 	css_put(&iter->css);
868 	/* If no ROOT, walk all, ignore hierarchy */
869 	if (!cond || (root && !hierarchy_used))
870 		return NULL;
871 
872 	if (!root)
873 		root = root_mem_cgroup;
874 
875 	do {
876 		iter = NULL;
877 		rcu_read_lock();
878 
879 		css = css_get_next(&mem_cgroup_subsys, nextid,
880 				&root->css, &found);
881 		if (css && css_tryget(css))
882 			iter = container_of(css, struct mem_cgroup, css);
883 		rcu_read_unlock();
884 		/* If css is NULL, no more cgroups will be found */
885 		nextid = found + 1;
886 	} while (css && !iter);
887 
888 	return iter;
889 }
890 /*
891  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
892  * be careful that "break" loop is not allowed. We have reference count.
893  * Instead of that modify "cond" to be false and "continue" to exit the loop.
894  */
895 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
896 	for (iter = mem_cgroup_start_loop(root);\
897 	     iter != NULL;\
898 	     iter = mem_cgroup_get_next(iter, root, cond))
899 
900 #define for_each_mem_cgroup_tree(iter, root) \
901 	for_each_mem_cgroup_tree_cond(iter, root, true)
902 
903 #define for_each_mem_cgroup_all(iter) \
904 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
905 
906 
907 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
908 {
909 	return (mem == root_mem_cgroup);
910 }
911 
912 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
913 {
914 	struct mem_cgroup *mem;
915 
916 	if (!mm)
917 		return;
918 
919 	rcu_read_lock();
920 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
921 	if (unlikely(!mem))
922 		goto out;
923 
924 	switch (idx) {
925 	case PGMAJFAULT:
926 		mem_cgroup_pgmajfault(mem, 1);
927 		break;
928 	case PGFAULT:
929 		mem_cgroup_pgfault(mem, 1);
930 		break;
931 	default:
932 		BUG();
933 	}
934 out:
935 	rcu_read_unlock();
936 }
937 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
938 
939 /*
940  * Following LRU functions are allowed to be used without PCG_LOCK.
941  * Operations are called by routine of global LRU independently from memcg.
942  * What we have to take care of here is validness of pc->mem_cgroup.
943  *
944  * Changes to pc->mem_cgroup happens when
945  * 1. charge
946  * 2. moving account
947  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
948  * It is added to LRU before charge.
949  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
950  * When moving account, the page is not on LRU. It's isolated.
951  */
952 
953 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
954 {
955 	struct page_cgroup *pc;
956 	struct mem_cgroup_per_zone *mz;
957 
958 	if (mem_cgroup_disabled())
959 		return;
960 	pc = lookup_page_cgroup(page);
961 	/* can happen while we handle swapcache. */
962 	if (!TestClearPageCgroupAcctLRU(pc))
963 		return;
964 	VM_BUG_ON(!pc->mem_cgroup);
965 	/*
966 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
967 	 * removed from global LRU.
968 	 */
969 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
970 	/* huge page split is done under lru_lock. so, we have no races. */
971 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
972 	if (mem_cgroup_is_root(pc->mem_cgroup))
973 		return;
974 	VM_BUG_ON(list_empty(&pc->lru));
975 	list_del_init(&pc->lru);
976 }
977 
978 void mem_cgroup_del_lru(struct page *page)
979 {
980 	mem_cgroup_del_lru_list(page, page_lru(page));
981 }
982 
983 /*
984  * Writeback is about to end against a page which has been marked for immediate
985  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
986  * inactive list.
987  */
988 void mem_cgroup_rotate_reclaimable_page(struct page *page)
989 {
990 	struct mem_cgroup_per_zone *mz;
991 	struct page_cgroup *pc;
992 	enum lru_list lru = page_lru(page);
993 
994 	if (mem_cgroup_disabled())
995 		return;
996 
997 	pc = lookup_page_cgroup(page);
998 	/* unused or root page is not rotated. */
999 	if (!PageCgroupUsed(pc))
1000 		return;
1001 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1002 	smp_rmb();
1003 	if (mem_cgroup_is_root(pc->mem_cgroup))
1004 		return;
1005 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1006 	list_move_tail(&pc->lru, &mz->lists[lru]);
1007 }
1008 
1009 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1010 {
1011 	struct mem_cgroup_per_zone *mz;
1012 	struct page_cgroup *pc;
1013 
1014 	if (mem_cgroup_disabled())
1015 		return;
1016 
1017 	pc = lookup_page_cgroup(page);
1018 	/* unused or root page is not rotated. */
1019 	if (!PageCgroupUsed(pc))
1020 		return;
1021 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1022 	smp_rmb();
1023 	if (mem_cgroup_is_root(pc->mem_cgroup))
1024 		return;
1025 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1026 	list_move(&pc->lru, &mz->lists[lru]);
1027 }
1028 
1029 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1030 {
1031 	struct page_cgroup *pc;
1032 	struct mem_cgroup_per_zone *mz;
1033 
1034 	if (mem_cgroup_disabled())
1035 		return;
1036 	pc = lookup_page_cgroup(page);
1037 	VM_BUG_ON(PageCgroupAcctLRU(pc));
1038 	if (!PageCgroupUsed(pc))
1039 		return;
1040 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041 	smp_rmb();
1042 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1043 	/* huge page split is done under lru_lock. so, we have no races. */
1044 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1045 	SetPageCgroupAcctLRU(pc);
1046 	if (mem_cgroup_is_root(pc->mem_cgroup))
1047 		return;
1048 	list_add(&pc->lru, &mz->lists[lru]);
1049 }
1050 
1051 /*
1052  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1053  * while it's linked to lru because the page may be reused after it's fully
1054  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1055  * It's done under lock_page and expected that zone->lru_lock isnever held.
1056  */
1057 static void mem_cgroup_lru_del_before_commit(struct page *page)
1058 {
1059 	unsigned long flags;
1060 	struct zone *zone = page_zone(page);
1061 	struct page_cgroup *pc = lookup_page_cgroup(page);
1062 
1063 	/*
1064 	 * Doing this check without taking ->lru_lock seems wrong but this
1065 	 * is safe. Because if page_cgroup's USED bit is unset, the page
1066 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1067 	 * set, the commit after this will fail, anyway.
1068 	 * This all charge/uncharge is done under some mutual execustion.
1069 	 * So, we don't need to taking care of changes in USED bit.
1070 	 */
1071 	if (likely(!PageLRU(page)))
1072 		return;
1073 
1074 	spin_lock_irqsave(&zone->lru_lock, flags);
1075 	/*
1076 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1077 	 * is guarded by lock_page() because the page is SwapCache.
1078 	 */
1079 	if (!PageCgroupUsed(pc))
1080 		mem_cgroup_del_lru_list(page, page_lru(page));
1081 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1082 }
1083 
1084 static void mem_cgroup_lru_add_after_commit(struct page *page)
1085 {
1086 	unsigned long flags;
1087 	struct zone *zone = page_zone(page);
1088 	struct page_cgroup *pc = lookup_page_cgroup(page);
1089 
1090 	/* taking care of that the page is added to LRU while we commit it */
1091 	if (likely(!PageLRU(page)))
1092 		return;
1093 	spin_lock_irqsave(&zone->lru_lock, flags);
1094 	/* link when the page is linked to LRU but page_cgroup isn't */
1095 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1096 		mem_cgroup_add_lru_list(page, page_lru(page));
1097 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1098 }
1099 
1100 
1101 void mem_cgroup_move_lists(struct page *page,
1102 			   enum lru_list from, enum lru_list to)
1103 {
1104 	if (mem_cgroup_disabled())
1105 		return;
1106 	mem_cgroup_del_lru_list(page, from);
1107 	mem_cgroup_add_lru_list(page, to);
1108 }
1109 
1110 /*
1111  * Checks whether given mem is same or in the root_mem's
1112  * hierarchy subtree
1113  */
1114 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1115 		struct mem_cgroup *mem)
1116 {
1117 	if (root_mem != mem) {
1118 		return (root_mem->use_hierarchy &&
1119 			css_is_ancestor(&mem->css, &root_mem->css));
1120 	}
1121 
1122 	return true;
1123 }
1124 
1125 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1126 {
1127 	int ret;
1128 	struct mem_cgroup *curr = NULL;
1129 	struct task_struct *p;
1130 
1131 	p = find_lock_task_mm(task);
1132 	if (!p)
1133 		return 0;
1134 	curr = try_get_mem_cgroup_from_mm(p->mm);
1135 	task_unlock(p);
1136 	if (!curr)
1137 		return 0;
1138 	/*
1139 	 * We should check use_hierarchy of "mem" not "curr". Because checking
1140 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1141 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1142 	 * hierarchy(even if use_hierarchy is disabled in "mem").
1143 	 */
1144 	ret = mem_cgroup_same_or_subtree(mem, curr);
1145 	css_put(&curr->css);
1146 	return ret;
1147 }
1148 
1149 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1150 {
1151 	unsigned long active;
1152 	unsigned long inactive;
1153 	unsigned long gb;
1154 	unsigned long inactive_ratio;
1155 
1156 	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1157 	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1158 
1159 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1160 	if (gb)
1161 		inactive_ratio = int_sqrt(10 * gb);
1162 	else
1163 		inactive_ratio = 1;
1164 
1165 	if (present_pages) {
1166 		present_pages[0] = inactive;
1167 		present_pages[1] = active;
1168 	}
1169 
1170 	return inactive_ratio;
1171 }
1172 
1173 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1174 {
1175 	unsigned long active;
1176 	unsigned long inactive;
1177 	unsigned long present_pages[2];
1178 	unsigned long inactive_ratio;
1179 
1180 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1181 
1182 	inactive = present_pages[0];
1183 	active = present_pages[1];
1184 
1185 	if (inactive * inactive_ratio < active)
1186 		return 1;
1187 
1188 	return 0;
1189 }
1190 
1191 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1192 {
1193 	unsigned long active;
1194 	unsigned long inactive;
1195 
1196 	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1197 	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1198 
1199 	return (active > inactive);
1200 }
1201 
1202 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1203 						      struct zone *zone)
1204 {
1205 	int nid = zone_to_nid(zone);
1206 	int zid = zone_idx(zone);
1207 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1208 
1209 	return &mz->reclaim_stat;
1210 }
1211 
1212 struct zone_reclaim_stat *
1213 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1214 {
1215 	struct page_cgroup *pc;
1216 	struct mem_cgroup_per_zone *mz;
1217 
1218 	if (mem_cgroup_disabled())
1219 		return NULL;
1220 
1221 	pc = lookup_page_cgroup(page);
1222 	if (!PageCgroupUsed(pc))
1223 		return NULL;
1224 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1225 	smp_rmb();
1226 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1227 	return &mz->reclaim_stat;
1228 }
1229 
1230 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1231 					struct list_head *dst,
1232 					unsigned long *scanned, int order,
1233 					int mode, struct zone *z,
1234 					struct mem_cgroup *mem_cont,
1235 					int active, int file)
1236 {
1237 	unsigned long nr_taken = 0;
1238 	struct page *page;
1239 	unsigned long scan;
1240 	LIST_HEAD(pc_list);
1241 	struct list_head *src;
1242 	struct page_cgroup *pc, *tmp;
1243 	int nid = zone_to_nid(z);
1244 	int zid = zone_idx(z);
1245 	struct mem_cgroup_per_zone *mz;
1246 	int lru = LRU_FILE * file + active;
1247 	int ret;
1248 
1249 	BUG_ON(!mem_cont);
1250 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1251 	src = &mz->lists[lru];
1252 
1253 	scan = 0;
1254 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1255 		if (scan >= nr_to_scan)
1256 			break;
1257 
1258 		if (unlikely(!PageCgroupUsed(pc)))
1259 			continue;
1260 
1261 		page = lookup_cgroup_page(pc);
1262 
1263 		if (unlikely(!PageLRU(page)))
1264 			continue;
1265 
1266 		scan++;
1267 		ret = __isolate_lru_page(page, mode, file);
1268 		switch (ret) {
1269 		case 0:
1270 			list_move(&page->lru, dst);
1271 			mem_cgroup_del_lru(page);
1272 			nr_taken += hpage_nr_pages(page);
1273 			break;
1274 		case -EBUSY:
1275 			/* we don't affect global LRU but rotate in our LRU */
1276 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1277 			break;
1278 		default:
1279 			break;
1280 		}
1281 	}
1282 
1283 	*scanned = scan;
1284 
1285 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1286 				      0, 0, 0, mode);
1287 
1288 	return nr_taken;
1289 }
1290 
1291 #define mem_cgroup_from_res_counter(counter, member)	\
1292 	container_of(counter, struct mem_cgroup, member)
1293 
1294 /**
1295  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1296  * @mem: the memory cgroup
1297  *
1298  * Returns the maximum amount of memory @mem can be charged with, in
1299  * pages.
1300  */
1301 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1302 {
1303 	unsigned long long margin;
1304 
1305 	margin = res_counter_margin(&mem->res);
1306 	if (do_swap_account)
1307 		margin = min(margin, res_counter_margin(&mem->memsw));
1308 	return margin >> PAGE_SHIFT;
1309 }
1310 
1311 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1312 {
1313 	struct cgroup *cgrp = memcg->css.cgroup;
1314 
1315 	/* root ? */
1316 	if (cgrp->parent == NULL)
1317 		return vm_swappiness;
1318 
1319 	return memcg->swappiness;
1320 }
1321 
1322 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1323 {
1324 	int cpu;
1325 
1326 	get_online_cpus();
1327 	spin_lock(&mem->pcp_counter_lock);
1328 	for_each_online_cpu(cpu)
1329 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1330 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1331 	spin_unlock(&mem->pcp_counter_lock);
1332 	put_online_cpus();
1333 
1334 	synchronize_rcu();
1335 }
1336 
1337 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1338 {
1339 	int cpu;
1340 
1341 	if (!mem)
1342 		return;
1343 	get_online_cpus();
1344 	spin_lock(&mem->pcp_counter_lock);
1345 	for_each_online_cpu(cpu)
1346 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1347 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1348 	spin_unlock(&mem->pcp_counter_lock);
1349 	put_online_cpus();
1350 }
1351 /*
1352  * 2 routines for checking "mem" is under move_account() or not.
1353  *
1354  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1355  *			  for avoiding race in accounting. If true,
1356  *			  pc->mem_cgroup may be overwritten.
1357  *
1358  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1359  *			  under hierarchy of moving cgroups. This is for
1360  *			  waiting at hith-memory prressure caused by "move".
1361  */
1362 
1363 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1364 {
1365 	VM_BUG_ON(!rcu_read_lock_held());
1366 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1367 }
1368 
1369 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1370 {
1371 	struct mem_cgroup *from;
1372 	struct mem_cgroup *to;
1373 	bool ret = false;
1374 	/*
1375 	 * Unlike task_move routines, we access mc.to, mc.from not under
1376 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1377 	 */
1378 	spin_lock(&mc.lock);
1379 	from = mc.from;
1380 	to = mc.to;
1381 	if (!from)
1382 		goto unlock;
1383 
1384 	ret = mem_cgroup_same_or_subtree(mem, from)
1385 		|| mem_cgroup_same_or_subtree(mem, to);
1386 unlock:
1387 	spin_unlock(&mc.lock);
1388 	return ret;
1389 }
1390 
1391 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1392 {
1393 	if (mc.moving_task && current != mc.moving_task) {
1394 		if (mem_cgroup_under_move(mem)) {
1395 			DEFINE_WAIT(wait);
1396 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1397 			/* moving charge context might have finished. */
1398 			if (mc.moving_task)
1399 				schedule();
1400 			finish_wait(&mc.waitq, &wait);
1401 			return true;
1402 		}
1403 	}
1404 	return false;
1405 }
1406 
1407 /**
1408  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1409  * @memcg: The memory cgroup that went over limit
1410  * @p: Task that is going to be killed
1411  *
1412  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1413  * enabled
1414  */
1415 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1416 {
1417 	struct cgroup *task_cgrp;
1418 	struct cgroup *mem_cgrp;
1419 	/*
1420 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1421 	 * on the assumption that OOM is serialized for memory controller.
1422 	 * If this assumption is broken, revisit this code.
1423 	 */
1424 	static char memcg_name[PATH_MAX];
1425 	int ret;
1426 
1427 	if (!memcg || !p)
1428 		return;
1429 
1430 
1431 	rcu_read_lock();
1432 
1433 	mem_cgrp = memcg->css.cgroup;
1434 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1435 
1436 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1437 	if (ret < 0) {
1438 		/*
1439 		 * Unfortunately, we are unable to convert to a useful name
1440 		 * But we'll still print out the usage information
1441 		 */
1442 		rcu_read_unlock();
1443 		goto done;
1444 	}
1445 	rcu_read_unlock();
1446 
1447 	printk(KERN_INFO "Task in %s killed", memcg_name);
1448 
1449 	rcu_read_lock();
1450 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1451 	if (ret < 0) {
1452 		rcu_read_unlock();
1453 		goto done;
1454 	}
1455 	rcu_read_unlock();
1456 
1457 	/*
1458 	 * Continues from above, so we don't need an KERN_ level
1459 	 */
1460 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1461 done:
1462 
1463 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1464 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1465 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1466 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1467 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1468 		"failcnt %llu\n",
1469 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1470 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1471 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1472 }
1473 
1474 /*
1475  * This function returns the number of memcg under hierarchy tree. Returns
1476  * 1(self count) if no children.
1477  */
1478 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1479 {
1480 	int num = 0;
1481 	struct mem_cgroup *iter;
1482 
1483 	for_each_mem_cgroup_tree(iter, mem)
1484 		num++;
1485 	return num;
1486 }
1487 
1488 /*
1489  * Return the memory (and swap, if configured) limit for a memcg.
1490  */
1491 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1492 {
1493 	u64 limit;
1494 	u64 memsw;
1495 
1496 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1497 	limit += total_swap_pages << PAGE_SHIFT;
1498 
1499 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1500 	/*
1501 	 * If memsw is finite and limits the amount of swap space available
1502 	 * to this memcg, return that limit.
1503 	 */
1504 	return min(limit, memsw);
1505 }
1506 
1507 /*
1508  * Visit the first child (need not be the first child as per the ordering
1509  * of the cgroup list, since we track last_scanned_child) of @mem and use
1510  * that to reclaim free pages from.
1511  */
1512 static struct mem_cgroup *
1513 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1514 {
1515 	struct mem_cgroup *ret = NULL;
1516 	struct cgroup_subsys_state *css;
1517 	int nextid, found;
1518 
1519 	if (!root_mem->use_hierarchy) {
1520 		css_get(&root_mem->css);
1521 		ret = root_mem;
1522 	}
1523 
1524 	while (!ret) {
1525 		rcu_read_lock();
1526 		nextid = root_mem->last_scanned_child + 1;
1527 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1528 				   &found);
1529 		if (css && css_tryget(css))
1530 			ret = container_of(css, struct mem_cgroup, css);
1531 
1532 		rcu_read_unlock();
1533 		/* Updates scanning parameter */
1534 		if (!css) {
1535 			/* this means start scan from ID:1 */
1536 			root_mem->last_scanned_child = 0;
1537 		} else
1538 			root_mem->last_scanned_child = found;
1539 	}
1540 
1541 	return ret;
1542 }
1543 
1544 /**
1545  * test_mem_cgroup_node_reclaimable
1546  * @mem: the target memcg
1547  * @nid: the node ID to be checked.
1548  * @noswap : specify true here if the user wants flle only information.
1549  *
1550  * This function returns whether the specified memcg contains any
1551  * reclaimable pages on a node. Returns true if there are any reclaimable
1552  * pages in the node.
1553  */
1554 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1555 		int nid, bool noswap)
1556 {
1557 	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1558 		return true;
1559 	if (noswap || !total_swap_pages)
1560 		return false;
1561 	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1562 		return true;
1563 	return false;
1564 
1565 }
1566 #if MAX_NUMNODES > 1
1567 
1568 /*
1569  * Always updating the nodemask is not very good - even if we have an empty
1570  * list or the wrong list here, we can start from some node and traverse all
1571  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1572  *
1573  */
1574 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1575 {
1576 	int nid;
1577 	/*
1578 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579 	 * pagein/pageout changes since the last update.
1580 	 */
1581 	if (!atomic_read(&mem->numainfo_events))
1582 		return;
1583 	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1584 		return;
1585 
1586 	/* make a nodemask where this memcg uses memory from */
1587 	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1588 
1589 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1590 
1591 		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1592 			node_clear(nid, mem->scan_nodes);
1593 	}
1594 
1595 	atomic_set(&mem->numainfo_events, 0);
1596 	atomic_set(&mem->numainfo_updating, 0);
1597 }
1598 
1599 /*
1600  * Selecting a node where we start reclaim from. Because what we need is just
1601  * reducing usage counter, start from anywhere is O,K. Considering
1602  * memory reclaim from current node, there are pros. and cons.
1603  *
1604  * Freeing memory from current node means freeing memory from a node which
1605  * we'll use or we've used. So, it may make LRU bad. And if several threads
1606  * hit limits, it will see a contention on a node. But freeing from remote
1607  * node means more costs for memory reclaim because of memory latency.
1608  *
1609  * Now, we use round-robin. Better algorithm is welcomed.
1610  */
1611 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1612 {
1613 	int node;
1614 
1615 	mem_cgroup_may_update_nodemask(mem);
1616 	node = mem->last_scanned_node;
1617 
1618 	node = next_node(node, mem->scan_nodes);
1619 	if (node == MAX_NUMNODES)
1620 		node = first_node(mem->scan_nodes);
1621 	/*
1622 	 * We call this when we hit limit, not when pages are added to LRU.
1623 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1624 	 * memcg is too small and all pages are not on LRU. In that case,
1625 	 * we use curret node.
1626 	 */
1627 	if (unlikely(node == MAX_NUMNODES))
1628 		node = numa_node_id();
1629 
1630 	mem->last_scanned_node = node;
1631 	return node;
1632 }
1633 
1634 /*
1635  * Check all nodes whether it contains reclaimable pages or not.
1636  * For quick scan, we make use of scan_nodes. This will allow us to skip
1637  * unused nodes. But scan_nodes is lazily updated and may not cotain
1638  * enough new information. We need to do double check.
1639  */
1640 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1641 {
1642 	int nid;
1643 
1644 	/*
1645 	 * quick check...making use of scan_node.
1646 	 * We can skip unused nodes.
1647 	 */
1648 	if (!nodes_empty(mem->scan_nodes)) {
1649 		for (nid = first_node(mem->scan_nodes);
1650 		     nid < MAX_NUMNODES;
1651 		     nid = next_node(nid, mem->scan_nodes)) {
1652 
1653 			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 				return true;
1655 		}
1656 	}
1657 	/*
1658 	 * Check rest of nodes.
1659 	 */
1660 	for_each_node_state(nid, N_HIGH_MEMORY) {
1661 		if (node_isset(nid, mem->scan_nodes))
1662 			continue;
1663 		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1664 			return true;
1665 	}
1666 	return false;
1667 }
1668 
1669 #else
1670 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1671 {
1672 	return 0;
1673 }
1674 
1675 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1676 {
1677 	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1678 }
1679 #endif
1680 
1681 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1682 			   struct memcg_scanrecord *rec)
1683 {
1684 
1685 	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1686 	stats[SCAN_ANON] += rec->nr_scanned[0];
1687 	stats[SCAN_FILE] += rec->nr_scanned[1];
1688 
1689 	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1690 	stats[ROTATE_ANON] += rec->nr_rotated[0];
1691 	stats[ROTATE_FILE] += rec->nr_rotated[1];
1692 
1693 	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1694 	stats[FREED_ANON] += rec->nr_freed[0];
1695 	stats[FREED_FILE] += rec->nr_freed[1];
1696 
1697 	stats[ELAPSED] += rec->elapsed;
1698 }
1699 
1700 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1701 {
1702 	struct mem_cgroup *mem;
1703 	int context = rec->context;
1704 
1705 	if (context >= NR_SCAN_CONTEXT)
1706 		return;
1707 
1708 	mem = rec->mem;
1709 	spin_lock(&mem->scanstat.lock);
1710 	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1711 	spin_unlock(&mem->scanstat.lock);
1712 
1713 	mem = rec->root;
1714 	spin_lock(&mem->scanstat.lock);
1715 	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1716 	spin_unlock(&mem->scanstat.lock);
1717 }
1718 
1719 /*
1720  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1721  * we reclaimed from, so that we don't end up penalizing one child extensively
1722  * based on its position in the children list.
1723  *
1724  * root_mem is the original ancestor that we've been reclaim from.
1725  *
1726  * We give up and return to the caller when we visit root_mem twice.
1727  * (other groups can be removed while we're walking....)
1728  *
1729  * If shrink==true, for avoiding to free too much, this returns immedieately.
1730  */
1731 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1732 						struct zone *zone,
1733 						gfp_t gfp_mask,
1734 						unsigned long reclaim_options,
1735 						unsigned long *total_scanned)
1736 {
1737 	struct mem_cgroup *victim;
1738 	int ret, total = 0;
1739 	int loop = 0;
1740 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1741 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1742 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1743 	struct memcg_scanrecord rec;
1744 	unsigned long excess;
1745 	unsigned long scanned;
1746 
1747 	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1748 
1749 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1750 	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1751 		noswap = true;
1752 
1753 	if (shrink)
1754 		rec.context = SCAN_BY_SHRINK;
1755 	else if (check_soft)
1756 		rec.context = SCAN_BY_SYSTEM;
1757 	else
1758 		rec.context = SCAN_BY_LIMIT;
1759 
1760 	rec.root = root_mem;
1761 
1762 	while (1) {
1763 		victim = mem_cgroup_select_victim(root_mem);
1764 		if (victim == root_mem) {
1765 			loop++;
1766 			/*
1767 			 * We are not draining per cpu cached charges during
1768 			 * soft limit reclaim  because global reclaim doesn't
1769 			 * care about charges. It tries to free some memory and
1770 			 * charges will not give any.
1771 			 */
1772 			if (!check_soft && loop >= 1)
1773 				drain_all_stock_async(root_mem);
1774 			if (loop >= 2) {
1775 				/*
1776 				 * If we have not been able to reclaim
1777 				 * anything, it might because there are
1778 				 * no reclaimable pages under this hierarchy
1779 				 */
1780 				if (!check_soft || !total) {
1781 					css_put(&victim->css);
1782 					break;
1783 				}
1784 				/*
1785 				 * We want to do more targeted reclaim.
1786 				 * excess >> 2 is not to excessive so as to
1787 				 * reclaim too much, nor too less that we keep
1788 				 * coming back to reclaim from this cgroup
1789 				 */
1790 				if (total >= (excess >> 2) ||
1791 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1792 					css_put(&victim->css);
1793 					break;
1794 				}
1795 			}
1796 		}
1797 		if (!mem_cgroup_reclaimable(victim, noswap)) {
1798 			/* this cgroup's local usage == 0 */
1799 			css_put(&victim->css);
1800 			continue;
1801 		}
1802 		rec.mem = victim;
1803 		rec.nr_scanned[0] = 0;
1804 		rec.nr_scanned[1] = 0;
1805 		rec.nr_rotated[0] = 0;
1806 		rec.nr_rotated[1] = 0;
1807 		rec.nr_freed[0] = 0;
1808 		rec.nr_freed[1] = 0;
1809 		rec.elapsed = 0;
1810 		/* we use swappiness of local cgroup */
1811 		if (check_soft) {
1812 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1813 				noswap, zone, &rec, &scanned);
1814 			*total_scanned += scanned;
1815 		} else
1816 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1817 						noswap, &rec);
1818 		mem_cgroup_record_scanstat(&rec);
1819 		css_put(&victim->css);
1820 		/*
1821 		 * At shrinking usage, we can't check we should stop here or
1822 		 * reclaim more. It's depends on callers. last_scanned_child
1823 		 * will work enough for keeping fairness under tree.
1824 		 */
1825 		if (shrink)
1826 			return ret;
1827 		total += ret;
1828 		if (check_soft) {
1829 			if (!res_counter_soft_limit_excess(&root_mem->res))
1830 				return total;
1831 		} else if (mem_cgroup_margin(root_mem))
1832 			return total;
1833 	}
1834 	return total;
1835 }
1836 
1837 /*
1838  * Check OOM-Killer is already running under our hierarchy.
1839  * If someone is running, return false.
1840  * Has to be called with memcg_oom_lock
1841  */
1842 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1843 {
1844 	int lock_count = -1;
1845 	struct mem_cgroup *iter, *failed = NULL;
1846 	bool cond = true;
1847 
1848 	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1849 		bool locked = iter->oom_lock;
1850 
1851 		iter->oom_lock = true;
1852 		if (lock_count == -1)
1853 			lock_count = iter->oom_lock;
1854 		else if (lock_count != locked) {
1855 			/*
1856 			 * this subtree of our hierarchy is already locked
1857 			 * so we cannot give a lock.
1858 			 */
1859 			lock_count = 0;
1860 			failed = iter;
1861 			cond = false;
1862 		}
1863 	}
1864 
1865 	if (!failed)
1866 		goto done;
1867 
1868 	/*
1869 	 * OK, we failed to lock the whole subtree so we have to clean up
1870 	 * what we set up to the failing subtree
1871 	 */
1872 	cond = true;
1873 	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1874 		if (iter == failed) {
1875 			cond = false;
1876 			continue;
1877 		}
1878 		iter->oom_lock = false;
1879 	}
1880 done:
1881 	return lock_count;
1882 }
1883 
1884 /*
1885  * Has to be called with memcg_oom_lock
1886  */
1887 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1888 {
1889 	struct mem_cgroup *iter;
1890 
1891 	for_each_mem_cgroup_tree(iter, mem)
1892 		iter->oom_lock = false;
1893 	return 0;
1894 }
1895 
1896 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1897 {
1898 	struct mem_cgroup *iter;
1899 
1900 	for_each_mem_cgroup_tree(iter, mem)
1901 		atomic_inc(&iter->under_oom);
1902 }
1903 
1904 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1905 {
1906 	struct mem_cgroup *iter;
1907 
1908 	/*
1909 	 * When a new child is created while the hierarchy is under oom,
1910 	 * mem_cgroup_oom_lock() may not be called. We have to use
1911 	 * atomic_add_unless() here.
1912 	 */
1913 	for_each_mem_cgroup_tree(iter, mem)
1914 		atomic_add_unless(&iter->under_oom, -1, 0);
1915 }
1916 
1917 static DEFINE_SPINLOCK(memcg_oom_lock);
1918 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1919 
1920 struct oom_wait_info {
1921 	struct mem_cgroup *mem;
1922 	wait_queue_t	wait;
1923 };
1924 
1925 static int memcg_oom_wake_function(wait_queue_t *wait,
1926 	unsigned mode, int sync, void *arg)
1927 {
1928 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1929 			  *oom_wait_mem;
1930 	struct oom_wait_info *oom_wait_info;
1931 
1932 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1933 	oom_wait_mem = oom_wait_info->mem;
1934 
1935 	/*
1936 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1937 	 * Then we can use css_is_ancestor without taking care of RCU.
1938 	 */
1939 	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1940 			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1941 		return 0;
1942 	return autoremove_wake_function(wait, mode, sync, arg);
1943 }
1944 
1945 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1946 {
1947 	/* for filtering, pass "mem" as argument. */
1948 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1949 }
1950 
1951 static void memcg_oom_recover(struct mem_cgroup *mem)
1952 {
1953 	if (mem && atomic_read(&mem->under_oom))
1954 		memcg_wakeup_oom(mem);
1955 }
1956 
1957 /*
1958  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1959  */
1960 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1961 {
1962 	struct oom_wait_info owait;
1963 	bool locked, need_to_kill;
1964 
1965 	owait.mem = mem;
1966 	owait.wait.flags = 0;
1967 	owait.wait.func = memcg_oom_wake_function;
1968 	owait.wait.private = current;
1969 	INIT_LIST_HEAD(&owait.wait.task_list);
1970 	need_to_kill = true;
1971 	mem_cgroup_mark_under_oom(mem);
1972 
1973 	/* At first, try to OOM lock hierarchy under mem.*/
1974 	spin_lock(&memcg_oom_lock);
1975 	locked = mem_cgroup_oom_lock(mem);
1976 	/*
1977 	 * Even if signal_pending(), we can't quit charge() loop without
1978 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1979 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1980 	 */
1981 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1982 	if (!locked || mem->oom_kill_disable)
1983 		need_to_kill = false;
1984 	if (locked)
1985 		mem_cgroup_oom_notify(mem);
1986 	spin_unlock(&memcg_oom_lock);
1987 
1988 	if (need_to_kill) {
1989 		finish_wait(&memcg_oom_waitq, &owait.wait);
1990 		mem_cgroup_out_of_memory(mem, mask);
1991 	} else {
1992 		schedule();
1993 		finish_wait(&memcg_oom_waitq, &owait.wait);
1994 	}
1995 	spin_lock(&memcg_oom_lock);
1996 	if (locked)
1997 		mem_cgroup_oom_unlock(mem);
1998 	memcg_wakeup_oom(mem);
1999 	spin_unlock(&memcg_oom_lock);
2000 
2001 	mem_cgroup_unmark_under_oom(mem);
2002 
2003 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2004 		return false;
2005 	/* Give chance to dying process */
2006 	schedule_timeout(1);
2007 	return true;
2008 }
2009 
2010 /*
2011  * Currently used to update mapped file statistics, but the routine can be
2012  * generalized to update other statistics as well.
2013  *
2014  * Notes: Race condition
2015  *
2016  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2017  * it tends to be costly. But considering some conditions, we doesn't need
2018  * to do so _always_.
2019  *
2020  * Considering "charge", lock_page_cgroup() is not required because all
2021  * file-stat operations happen after a page is attached to radix-tree. There
2022  * are no race with "charge".
2023  *
2024  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2025  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2026  * if there are race with "uncharge". Statistics itself is properly handled
2027  * by flags.
2028  *
2029  * Considering "move", this is an only case we see a race. To make the race
2030  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2031  * possibility of race condition. If there is, we take a lock.
2032  */
2033 
2034 void mem_cgroup_update_page_stat(struct page *page,
2035 				 enum mem_cgroup_page_stat_item idx, int val)
2036 {
2037 	struct mem_cgroup *mem;
2038 	struct page_cgroup *pc = lookup_page_cgroup(page);
2039 	bool need_unlock = false;
2040 	unsigned long uninitialized_var(flags);
2041 
2042 	if (unlikely(!pc))
2043 		return;
2044 
2045 	rcu_read_lock();
2046 	mem = pc->mem_cgroup;
2047 	if (unlikely(!mem || !PageCgroupUsed(pc)))
2048 		goto out;
2049 	/* pc->mem_cgroup is unstable ? */
2050 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2051 		/* take a lock against to access pc->mem_cgroup */
2052 		move_lock_page_cgroup(pc, &flags);
2053 		need_unlock = true;
2054 		mem = pc->mem_cgroup;
2055 		if (!mem || !PageCgroupUsed(pc))
2056 			goto out;
2057 	}
2058 
2059 	switch (idx) {
2060 	case MEMCG_NR_FILE_MAPPED:
2061 		if (val > 0)
2062 			SetPageCgroupFileMapped(pc);
2063 		else if (!page_mapped(page))
2064 			ClearPageCgroupFileMapped(pc);
2065 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2066 		break;
2067 	default:
2068 		BUG();
2069 	}
2070 
2071 	this_cpu_add(mem->stat->count[idx], val);
2072 
2073 out:
2074 	if (unlikely(need_unlock))
2075 		move_unlock_page_cgroup(pc, &flags);
2076 	rcu_read_unlock();
2077 	return;
2078 }
2079 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2080 
2081 /*
2082  * size of first charge trial. "32" comes from vmscan.c's magic value.
2083  * TODO: maybe necessary to use big numbers in big irons.
2084  */
2085 #define CHARGE_BATCH	32U
2086 struct memcg_stock_pcp {
2087 	struct mem_cgroup *cached; /* this never be root cgroup */
2088 	unsigned int nr_pages;
2089 	struct work_struct work;
2090 	unsigned long flags;
2091 #define FLUSHING_CACHED_CHARGE	(0)
2092 };
2093 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2094 
2095 /*
2096  * Try to consume stocked charge on this cpu. If success, one page is consumed
2097  * from local stock and true is returned. If the stock is 0 or charges from a
2098  * cgroup which is not current target, returns false. This stock will be
2099  * refilled.
2100  */
2101 static bool consume_stock(struct mem_cgroup *mem)
2102 {
2103 	struct memcg_stock_pcp *stock;
2104 	bool ret = true;
2105 
2106 	stock = &get_cpu_var(memcg_stock);
2107 	if (mem == stock->cached && stock->nr_pages)
2108 		stock->nr_pages--;
2109 	else /* need to call res_counter_charge */
2110 		ret = false;
2111 	put_cpu_var(memcg_stock);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Returns stocks cached in percpu to res_counter and reset cached information.
2117  */
2118 static void drain_stock(struct memcg_stock_pcp *stock)
2119 {
2120 	struct mem_cgroup *old = stock->cached;
2121 
2122 	if (stock->nr_pages) {
2123 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2124 
2125 		res_counter_uncharge(&old->res, bytes);
2126 		if (do_swap_account)
2127 			res_counter_uncharge(&old->memsw, bytes);
2128 		stock->nr_pages = 0;
2129 	}
2130 	stock->cached = NULL;
2131 }
2132 
2133 /*
2134  * This must be called under preempt disabled or must be called by
2135  * a thread which is pinned to local cpu.
2136  */
2137 static void drain_local_stock(struct work_struct *dummy)
2138 {
2139 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2140 	drain_stock(stock);
2141 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2142 }
2143 
2144 /*
2145  * Cache charges(val) which is from res_counter, to local per_cpu area.
2146  * This will be consumed by consume_stock() function, later.
2147  */
2148 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2149 {
2150 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2151 
2152 	if (stock->cached != mem) { /* reset if necessary */
2153 		drain_stock(stock);
2154 		stock->cached = mem;
2155 	}
2156 	stock->nr_pages += nr_pages;
2157 	put_cpu_var(memcg_stock);
2158 }
2159 
2160 /*
2161  * Drains all per-CPU charge caches for given root_mem resp. subtree
2162  * of the hierarchy under it. sync flag says whether we should block
2163  * until the work is done.
2164  */
2165 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2166 {
2167 	int cpu, curcpu;
2168 
2169 	/* Notify other cpus that system-wide "drain" is running */
2170 	get_online_cpus();
2171 	/*
2172 	 * Get a hint for avoiding draining charges on the current cpu,
2173 	 * which must be exhausted by our charging.  It is not required that
2174 	 * this be a precise check, so we use raw_smp_processor_id() instead of
2175 	 * getcpu()/putcpu().
2176 	 */
2177 	curcpu = raw_smp_processor_id();
2178 	for_each_online_cpu(cpu) {
2179 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2180 		struct mem_cgroup *mem;
2181 
2182 		mem = stock->cached;
2183 		if (!mem || !stock->nr_pages)
2184 			continue;
2185 		if (!mem_cgroup_same_or_subtree(root_mem, mem))
2186 			continue;
2187 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2188 			if (cpu == curcpu)
2189 				drain_local_stock(&stock->work);
2190 			else
2191 				schedule_work_on(cpu, &stock->work);
2192 		}
2193 	}
2194 
2195 	if (!sync)
2196 		goto out;
2197 
2198 	for_each_online_cpu(cpu) {
2199 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2200 		if (mem_cgroup_same_or_subtree(root_mem, stock->cached) &&
2201 				test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2202 			flush_work(&stock->work);
2203 	}
2204 out:
2205  	put_online_cpus();
2206 }
2207 
2208 /*
2209  * Tries to drain stocked charges in other cpus. This function is asynchronous
2210  * and just put a work per cpu for draining localy on each cpu. Caller can
2211  * expects some charges will be back to res_counter later but cannot wait for
2212  * it.
2213  */
2214 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2215 {
2216 	drain_all_stock(root_mem, false);
2217 }
2218 
2219 /* This is a synchronous drain interface. */
2220 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2221 {
2222 	/* called when force_empty is called */
2223 	drain_all_stock(root_mem, true);
2224 }
2225 
2226 /*
2227  * This function drains percpu counter value from DEAD cpu and
2228  * move it to local cpu. Note that this function can be preempted.
2229  */
2230 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2231 {
2232 	int i;
2233 
2234 	spin_lock(&mem->pcp_counter_lock);
2235 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2236 		long x = per_cpu(mem->stat->count[i], cpu);
2237 
2238 		per_cpu(mem->stat->count[i], cpu) = 0;
2239 		mem->nocpu_base.count[i] += x;
2240 	}
2241 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2242 		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2243 
2244 		per_cpu(mem->stat->events[i], cpu) = 0;
2245 		mem->nocpu_base.events[i] += x;
2246 	}
2247 	/* need to clear ON_MOVE value, works as a kind of lock. */
2248 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2249 	spin_unlock(&mem->pcp_counter_lock);
2250 }
2251 
2252 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2253 {
2254 	int idx = MEM_CGROUP_ON_MOVE;
2255 
2256 	spin_lock(&mem->pcp_counter_lock);
2257 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2258 	spin_unlock(&mem->pcp_counter_lock);
2259 }
2260 
2261 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2262 					unsigned long action,
2263 					void *hcpu)
2264 {
2265 	int cpu = (unsigned long)hcpu;
2266 	struct memcg_stock_pcp *stock;
2267 	struct mem_cgroup *iter;
2268 
2269 	if ((action == CPU_ONLINE)) {
2270 		for_each_mem_cgroup_all(iter)
2271 			synchronize_mem_cgroup_on_move(iter, cpu);
2272 		return NOTIFY_OK;
2273 	}
2274 
2275 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2276 		return NOTIFY_OK;
2277 
2278 	for_each_mem_cgroup_all(iter)
2279 		mem_cgroup_drain_pcp_counter(iter, cpu);
2280 
2281 	stock = &per_cpu(memcg_stock, cpu);
2282 	drain_stock(stock);
2283 	return NOTIFY_OK;
2284 }
2285 
2286 
2287 /* See __mem_cgroup_try_charge() for details */
2288 enum {
2289 	CHARGE_OK,		/* success */
2290 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2291 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2292 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2293 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2294 };
2295 
2296 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2297 				unsigned int nr_pages, bool oom_check)
2298 {
2299 	unsigned long csize = nr_pages * PAGE_SIZE;
2300 	struct mem_cgroup *mem_over_limit;
2301 	struct res_counter *fail_res;
2302 	unsigned long flags = 0;
2303 	int ret;
2304 
2305 	ret = res_counter_charge(&mem->res, csize, &fail_res);
2306 
2307 	if (likely(!ret)) {
2308 		if (!do_swap_account)
2309 			return CHARGE_OK;
2310 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2311 		if (likely(!ret))
2312 			return CHARGE_OK;
2313 
2314 		res_counter_uncharge(&mem->res, csize);
2315 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2316 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2317 	} else
2318 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2319 	/*
2320 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2321 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2322 	 *
2323 	 * Never reclaim on behalf of optional batching, retry with a
2324 	 * single page instead.
2325 	 */
2326 	if (nr_pages == CHARGE_BATCH)
2327 		return CHARGE_RETRY;
2328 
2329 	if (!(gfp_mask & __GFP_WAIT))
2330 		return CHARGE_WOULDBLOCK;
2331 
2332 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2333 					      gfp_mask, flags, NULL);
2334 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2335 		return CHARGE_RETRY;
2336 	/*
2337 	 * Even though the limit is exceeded at this point, reclaim
2338 	 * may have been able to free some pages.  Retry the charge
2339 	 * before killing the task.
2340 	 *
2341 	 * Only for regular pages, though: huge pages are rather
2342 	 * unlikely to succeed so close to the limit, and we fall back
2343 	 * to regular pages anyway in case of failure.
2344 	 */
2345 	if (nr_pages == 1 && ret)
2346 		return CHARGE_RETRY;
2347 
2348 	/*
2349 	 * At task move, charge accounts can be doubly counted. So, it's
2350 	 * better to wait until the end of task_move if something is going on.
2351 	 */
2352 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2353 		return CHARGE_RETRY;
2354 
2355 	/* If we don't need to call oom-killer at el, return immediately */
2356 	if (!oom_check)
2357 		return CHARGE_NOMEM;
2358 	/* check OOM */
2359 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2360 		return CHARGE_OOM_DIE;
2361 
2362 	return CHARGE_RETRY;
2363 }
2364 
2365 /*
2366  * Unlike exported interface, "oom" parameter is added. if oom==true,
2367  * oom-killer can be invoked.
2368  */
2369 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2370 				   gfp_t gfp_mask,
2371 				   unsigned int nr_pages,
2372 				   struct mem_cgroup **memcg,
2373 				   bool oom)
2374 {
2375 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2376 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2377 	struct mem_cgroup *mem = NULL;
2378 	int ret;
2379 
2380 	/*
2381 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2382 	 * in system level. So, allow to go ahead dying process in addition to
2383 	 * MEMDIE process.
2384 	 */
2385 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2386 		     || fatal_signal_pending(current)))
2387 		goto bypass;
2388 
2389 	/*
2390 	 * We always charge the cgroup the mm_struct belongs to.
2391 	 * The mm_struct's mem_cgroup changes on task migration if the
2392 	 * thread group leader migrates. It's possible that mm is not
2393 	 * set, if so charge the init_mm (happens for pagecache usage).
2394 	 */
2395 	if (!*memcg && !mm)
2396 		goto bypass;
2397 again:
2398 	if (*memcg) { /* css should be a valid one */
2399 		mem = *memcg;
2400 		VM_BUG_ON(css_is_removed(&mem->css));
2401 		if (mem_cgroup_is_root(mem))
2402 			goto done;
2403 		if (nr_pages == 1 && consume_stock(mem))
2404 			goto done;
2405 		css_get(&mem->css);
2406 	} else {
2407 		struct task_struct *p;
2408 
2409 		rcu_read_lock();
2410 		p = rcu_dereference(mm->owner);
2411 		/*
2412 		 * Because we don't have task_lock(), "p" can exit.
2413 		 * In that case, "mem" can point to root or p can be NULL with
2414 		 * race with swapoff. Then, we have small risk of mis-accouning.
2415 		 * But such kind of mis-account by race always happens because
2416 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2417 		 * small race, here.
2418 		 * (*) swapoff at el will charge against mm-struct not against
2419 		 * task-struct. So, mm->owner can be NULL.
2420 		 */
2421 		mem = mem_cgroup_from_task(p);
2422 		if (!mem || mem_cgroup_is_root(mem)) {
2423 			rcu_read_unlock();
2424 			goto done;
2425 		}
2426 		if (nr_pages == 1 && consume_stock(mem)) {
2427 			/*
2428 			 * It seems dagerous to access memcg without css_get().
2429 			 * But considering how consume_stok works, it's not
2430 			 * necessary. If consume_stock success, some charges
2431 			 * from this memcg are cached on this cpu. So, we
2432 			 * don't need to call css_get()/css_tryget() before
2433 			 * calling consume_stock().
2434 			 */
2435 			rcu_read_unlock();
2436 			goto done;
2437 		}
2438 		/* after here, we may be blocked. we need to get refcnt */
2439 		if (!css_tryget(&mem->css)) {
2440 			rcu_read_unlock();
2441 			goto again;
2442 		}
2443 		rcu_read_unlock();
2444 	}
2445 
2446 	do {
2447 		bool oom_check;
2448 
2449 		/* If killed, bypass charge */
2450 		if (fatal_signal_pending(current)) {
2451 			css_put(&mem->css);
2452 			goto bypass;
2453 		}
2454 
2455 		oom_check = false;
2456 		if (oom && !nr_oom_retries) {
2457 			oom_check = true;
2458 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2459 		}
2460 
2461 		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2462 		switch (ret) {
2463 		case CHARGE_OK:
2464 			break;
2465 		case CHARGE_RETRY: /* not in OOM situation but retry */
2466 			batch = nr_pages;
2467 			css_put(&mem->css);
2468 			mem = NULL;
2469 			goto again;
2470 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2471 			css_put(&mem->css);
2472 			goto nomem;
2473 		case CHARGE_NOMEM: /* OOM routine works */
2474 			if (!oom) {
2475 				css_put(&mem->css);
2476 				goto nomem;
2477 			}
2478 			/* If oom, we never return -ENOMEM */
2479 			nr_oom_retries--;
2480 			break;
2481 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2482 			css_put(&mem->css);
2483 			goto bypass;
2484 		}
2485 	} while (ret != CHARGE_OK);
2486 
2487 	if (batch > nr_pages)
2488 		refill_stock(mem, batch - nr_pages);
2489 	css_put(&mem->css);
2490 done:
2491 	*memcg = mem;
2492 	return 0;
2493 nomem:
2494 	*memcg = NULL;
2495 	return -ENOMEM;
2496 bypass:
2497 	*memcg = NULL;
2498 	return 0;
2499 }
2500 
2501 /*
2502  * Somemtimes we have to undo a charge we got by try_charge().
2503  * This function is for that and do uncharge, put css's refcnt.
2504  * gotten by try_charge().
2505  */
2506 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2507 				       unsigned int nr_pages)
2508 {
2509 	if (!mem_cgroup_is_root(mem)) {
2510 		unsigned long bytes = nr_pages * PAGE_SIZE;
2511 
2512 		res_counter_uncharge(&mem->res, bytes);
2513 		if (do_swap_account)
2514 			res_counter_uncharge(&mem->memsw, bytes);
2515 	}
2516 }
2517 
2518 /*
2519  * A helper function to get mem_cgroup from ID. must be called under
2520  * rcu_read_lock(). The caller must check css_is_removed() or some if
2521  * it's concern. (dropping refcnt from swap can be called against removed
2522  * memcg.)
2523  */
2524 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2525 {
2526 	struct cgroup_subsys_state *css;
2527 
2528 	/* ID 0 is unused ID */
2529 	if (!id)
2530 		return NULL;
2531 	css = css_lookup(&mem_cgroup_subsys, id);
2532 	if (!css)
2533 		return NULL;
2534 	return container_of(css, struct mem_cgroup, css);
2535 }
2536 
2537 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2538 {
2539 	struct mem_cgroup *mem = NULL;
2540 	struct page_cgroup *pc;
2541 	unsigned short id;
2542 	swp_entry_t ent;
2543 
2544 	VM_BUG_ON(!PageLocked(page));
2545 
2546 	pc = lookup_page_cgroup(page);
2547 	lock_page_cgroup(pc);
2548 	if (PageCgroupUsed(pc)) {
2549 		mem = pc->mem_cgroup;
2550 		if (mem && !css_tryget(&mem->css))
2551 			mem = NULL;
2552 	} else if (PageSwapCache(page)) {
2553 		ent.val = page_private(page);
2554 		id = lookup_swap_cgroup(ent);
2555 		rcu_read_lock();
2556 		mem = mem_cgroup_lookup(id);
2557 		if (mem && !css_tryget(&mem->css))
2558 			mem = NULL;
2559 		rcu_read_unlock();
2560 	}
2561 	unlock_page_cgroup(pc);
2562 	return mem;
2563 }
2564 
2565 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2566 				       struct page *page,
2567 				       unsigned int nr_pages,
2568 				       struct page_cgroup *pc,
2569 				       enum charge_type ctype)
2570 {
2571 	lock_page_cgroup(pc);
2572 	if (unlikely(PageCgroupUsed(pc))) {
2573 		unlock_page_cgroup(pc);
2574 		__mem_cgroup_cancel_charge(mem, nr_pages);
2575 		return;
2576 	}
2577 	/*
2578 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2579 	 * accessed by any other context at this point.
2580 	 */
2581 	pc->mem_cgroup = mem;
2582 	/*
2583 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2584 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2585 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2586 	 * before USED bit, we need memory barrier here.
2587 	 * See mem_cgroup_add_lru_list(), etc.
2588  	 */
2589 	smp_wmb();
2590 	switch (ctype) {
2591 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2592 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2593 		SetPageCgroupCache(pc);
2594 		SetPageCgroupUsed(pc);
2595 		break;
2596 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2597 		ClearPageCgroupCache(pc);
2598 		SetPageCgroupUsed(pc);
2599 		break;
2600 	default:
2601 		break;
2602 	}
2603 
2604 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2605 	unlock_page_cgroup(pc);
2606 	/*
2607 	 * "charge_statistics" updated event counter. Then, check it.
2608 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2609 	 * if they exceeds softlimit.
2610 	 */
2611 	memcg_check_events(mem, page);
2612 }
2613 
2614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2615 
2616 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2617 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2618 /*
2619  * Because tail pages are not marked as "used", set it. We're under
2620  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2621  */
2622 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2623 {
2624 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2625 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2626 	unsigned long flags;
2627 
2628 	if (mem_cgroup_disabled())
2629 		return;
2630 	/*
2631 	 * We have no races with charge/uncharge but will have races with
2632 	 * page state accounting.
2633 	 */
2634 	move_lock_page_cgroup(head_pc, &flags);
2635 
2636 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2637 	smp_wmb(); /* see __commit_charge() */
2638 	if (PageCgroupAcctLRU(head_pc)) {
2639 		enum lru_list lru;
2640 		struct mem_cgroup_per_zone *mz;
2641 
2642 		/*
2643 		 * LRU flags cannot be copied because we need to add tail
2644 		 *.page to LRU by generic call and our hook will be called.
2645 		 * We hold lru_lock, then, reduce counter directly.
2646 		 */
2647 		lru = page_lru(head);
2648 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2649 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2650 	}
2651 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2652 	move_unlock_page_cgroup(head_pc, &flags);
2653 }
2654 #endif
2655 
2656 /**
2657  * mem_cgroup_move_account - move account of the page
2658  * @page: the page
2659  * @nr_pages: number of regular pages (>1 for huge pages)
2660  * @pc:	page_cgroup of the page.
2661  * @from: mem_cgroup which the page is moved from.
2662  * @to:	mem_cgroup which the page is moved to. @from != @to.
2663  * @uncharge: whether we should call uncharge and css_put against @from.
2664  *
2665  * The caller must confirm following.
2666  * - page is not on LRU (isolate_page() is useful.)
2667  * - compound_lock is held when nr_pages > 1
2668  *
2669  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2670  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2671  * true, this function does "uncharge" from old cgroup, but it doesn't if
2672  * @uncharge is false, so a caller should do "uncharge".
2673  */
2674 static int mem_cgroup_move_account(struct page *page,
2675 				   unsigned int nr_pages,
2676 				   struct page_cgroup *pc,
2677 				   struct mem_cgroup *from,
2678 				   struct mem_cgroup *to,
2679 				   bool uncharge)
2680 {
2681 	unsigned long flags;
2682 	int ret;
2683 
2684 	VM_BUG_ON(from == to);
2685 	VM_BUG_ON(PageLRU(page));
2686 	/*
2687 	 * The page is isolated from LRU. So, collapse function
2688 	 * will not handle this page. But page splitting can happen.
2689 	 * Do this check under compound_page_lock(). The caller should
2690 	 * hold it.
2691 	 */
2692 	ret = -EBUSY;
2693 	if (nr_pages > 1 && !PageTransHuge(page))
2694 		goto out;
2695 
2696 	lock_page_cgroup(pc);
2697 
2698 	ret = -EINVAL;
2699 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2700 		goto unlock;
2701 
2702 	move_lock_page_cgroup(pc, &flags);
2703 
2704 	if (PageCgroupFileMapped(pc)) {
2705 		/* Update mapped_file data for mem_cgroup */
2706 		preempt_disable();
2707 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2708 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2709 		preempt_enable();
2710 	}
2711 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2712 	if (uncharge)
2713 		/* This is not "cancel", but cancel_charge does all we need. */
2714 		__mem_cgroup_cancel_charge(from, nr_pages);
2715 
2716 	/* caller should have done css_get */
2717 	pc->mem_cgroup = to;
2718 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2719 	/*
2720 	 * We charges against "to" which may not have any tasks. Then, "to"
2721 	 * can be under rmdir(). But in current implementation, caller of
2722 	 * this function is just force_empty() and move charge, so it's
2723 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2724 	 * status here.
2725 	 */
2726 	move_unlock_page_cgroup(pc, &flags);
2727 	ret = 0;
2728 unlock:
2729 	unlock_page_cgroup(pc);
2730 	/*
2731 	 * check events
2732 	 */
2733 	memcg_check_events(to, page);
2734 	memcg_check_events(from, page);
2735 out:
2736 	return ret;
2737 }
2738 
2739 /*
2740  * move charges to its parent.
2741  */
2742 
2743 static int mem_cgroup_move_parent(struct page *page,
2744 				  struct page_cgroup *pc,
2745 				  struct mem_cgroup *child,
2746 				  gfp_t gfp_mask)
2747 {
2748 	struct cgroup *cg = child->css.cgroup;
2749 	struct cgroup *pcg = cg->parent;
2750 	struct mem_cgroup *parent;
2751 	unsigned int nr_pages;
2752 	unsigned long uninitialized_var(flags);
2753 	int ret;
2754 
2755 	/* Is ROOT ? */
2756 	if (!pcg)
2757 		return -EINVAL;
2758 
2759 	ret = -EBUSY;
2760 	if (!get_page_unless_zero(page))
2761 		goto out;
2762 	if (isolate_lru_page(page))
2763 		goto put;
2764 
2765 	nr_pages = hpage_nr_pages(page);
2766 
2767 	parent = mem_cgroup_from_cont(pcg);
2768 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2769 	if (ret || !parent)
2770 		goto put_back;
2771 
2772 	if (nr_pages > 1)
2773 		flags = compound_lock_irqsave(page);
2774 
2775 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2776 	if (ret)
2777 		__mem_cgroup_cancel_charge(parent, nr_pages);
2778 
2779 	if (nr_pages > 1)
2780 		compound_unlock_irqrestore(page, flags);
2781 put_back:
2782 	putback_lru_page(page);
2783 put:
2784 	put_page(page);
2785 out:
2786 	return ret;
2787 }
2788 
2789 /*
2790  * Charge the memory controller for page usage.
2791  * Return
2792  * 0 if the charge was successful
2793  * < 0 if the cgroup is over its limit
2794  */
2795 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2796 				gfp_t gfp_mask, enum charge_type ctype)
2797 {
2798 	struct mem_cgroup *mem = NULL;
2799 	unsigned int nr_pages = 1;
2800 	struct page_cgroup *pc;
2801 	bool oom = true;
2802 	int ret;
2803 
2804 	if (PageTransHuge(page)) {
2805 		nr_pages <<= compound_order(page);
2806 		VM_BUG_ON(!PageTransHuge(page));
2807 		/*
2808 		 * Never OOM-kill a process for a huge page.  The
2809 		 * fault handler will fall back to regular pages.
2810 		 */
2811 		oom = false;
2812 	}
2813 
2814 	pc = lookup_page_cgroup(page);
2815 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2816 
2817 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2818 	if (ret || !mem)
2819 		return ret;
2820 
2821 	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2822 	return 0;
2823 }
2824 
2825 int mem_cgroup_newpage_charge(struct page *page,
2826 			      struct mm_struct *mm, gfp_t gfp_mask)
2827 {
2828 	if (mem_cgroup_disabled())
2829 		return 0;
2830 	/*
2831 	 * If already mapped, we don't have to account.
2832 	 * If page cache, page->mapping has address_space.
2833 	 * But page->mapping may have out-of-use anon_vma pointer,
2834 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2835 	 * is NULL.
2836   	 */
2837 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2838 		return 0;
2839 	if (unlikely(!mm))
2840 		mm = &init_mm;
2841 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2842 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2843 }
2844 
2845 static void
2846 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2847 					enum charge_type ctype);
2848 
2849 static void
2850 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2851 					enum charge_type ctype)
2852 {
2853 	struct page_cgroup *pc = lookup_page_cgroup(page);
2854 	/*
2855 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2856 	 * is already on LRU. It means the page may on some other page_cgroup's
2857 	 * LRU. Take care of it.
2858 	 */
2859 	mem_cgroup_lru_del_before_commit(page);
2860 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2861 	mem_cgroup_lru_add_after_commit(page);
2862 	return;
2863 }
2864 
2865 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2866 				gfp_t gfp_mask)
2867 {
2868 	struct mem_cgroup *mem = NULL;
2869 	int ret;
2870 
2871 	if (mem_cgroup_disabled())
2872 		return 0;
2873 	if (PageCompound(page))
2874 		return 0;
2875 
2876 	if (unlikely(!mm))
2877 		mm = &init_mm;
2878 
2879 	if (page_is_file_cache(page)) {
2880 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2881 		if (ret || !mem)
2882 			return ret;
2883 
2884 		/*
2885 		 * FUSE reuses pages without going through the final
2886 		 * put that would remove them from the LRU list, make
2887 		 * sure that they get relinked properly.
2888 		 */
2889 		__mem_cgroup_commit_charge_lrucare(page, mem,
2890 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2891 		return ret;
2892 	}
2893 	/* shmem */
2894 	if (PageSwapCache(page)) {
2895 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2896 		if (!ret)
2897 			__mem_cgroup_commit_charge_swapin(page, mem,
2898 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2899 	} else
2900 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2901 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2902 
2903 	return ret;
2904 }
2905 
2906 /*
2907  * While swap-in, try_charge -> commit or cancel, the page is locked.
2908  * And when try_charge() successfully returns, one refcnt to memcg without
2909  * struct page_cgroup is acquired. This refcnt will be consumed by
2910  * "commit()" or removed by "cancel()"
2911  */
2912 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2913 				 struct page *page,
2914 				 gfp_t mask, struct mem_cgroup **ptr)
2915 {
2916 	struct mem_cgroup *mem;
2917 	int ret;
2918 
2919 	*ptr = NULL;
2920 
2921 	if (mem_cgroup_disabled())
2922 		return 0;
2923 
2924 	if (!do_swap_account)
2925 		goto charge_cur_mm;
2926 	/*
2927 	 * A racing thread's fault, or swapoff, may have already updated
2928 	 * the pte, and even removed page from swap cache: in those cases
2929 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2930 	 * KSM case which does need to charge the page.
2931 	 */
2932 	if (!PageSwapCache(page))
2933 		goto charge_cur_mm;
2934 	mem = try_get_mem_cgroup_from_page(page);
2935 	if (!mem)
2936 		goto charge_cur_mm;
2937 	*ptr = mem;
2938 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2939 	css_put(&mem->css);
2940 	return ret;
2941 charge_cur_mm:
2942 	if (unlikely(!mm))
2943 		mm = &init_mm;
2944 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2945 }
2946 
2947 static void
2948 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2949 					enum charge_type ctype)
2950 {
2951 	if (mem_cgroup_disabled())
2952 		return;
2953 	if (!ptr)
2954 		return;
2955 	cgroup_exclude_rmdir(&ptr->css);
2956 
2957 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2958 	/*
2959 	 * Now swap is on-memory. This means this page may be
2960 	 * counted both as mem and swap....double count.
2961 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2962 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2963 	 * may call delete_from_swap_cache() before reach here.
2964 	 */
2965 	if (do_swap_account && PageSwapCache(page)) {
2966 		swp_entry_t ent = {.val = page_private(page)};
2967 		unsigned short id;
2968 		struct mem_cgroup *memcg;
2969 
2970 		id = swap_cgroup_record(ent, 0);
2971 		rcu_read_lock();
2972 		memcg = mem_cgroup_lookup(id);
2973 		if (memcg) {
2974 			/*
2975 			 * This recorded memcg can be obsolete one. So, avoid
2976 			 * calling css_tryget
2977 			 */
2978 			if (!mem_cgroup_is_root(memcg))
2979 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2980 			mem_cgroup_swap_statistics(memcg, false);
2981 			mem_cgroup_put(memcg);
2982 		}
2983 		rcu_read_unlock();
2984 	}
2985 	/*
2986 	 * At swapin, we may charge account against cgroup which has no tasks.
2987 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2988 	 * In that case, we need to call pre_destroy() again. check it here.
2989 	 */
2990 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2991 }
2992 
2993 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2994 {
2995 	__mem_cgroup_commit_charge_swapin(page, ptr,
2996 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2997 }
2998 
2999 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3000 {
3001 	if (mem_cgroup_disabled())
3002 		return;
3003 	if (!mem)
3004 		return;
3005 	__mem_cgroup_cancel_charge(mem, 1);
3006 }
3007 
3008 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3009 				   unsigned int nr_pages,
3010 				   const enum charge_type ctype)
3011 {
3012 	struct memcg_batch_info *batch = NULL;
3013 	bool uncharge_memsw = true;
3014 
3015 	/* If swapout, usage of swap doesn't decrease */
3016 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3017 		uncharge_memsw = false;
3018 
3019 	batch = &current->memcg_batch;
3020 	/*
3021 	 * In usual, we do css_get() when we remember memcg pointer.
3022 	 * But in this case, we keep res->usage until end of a series of
3023 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
3024 	 */
3025 	if (!batch->memcg)
3026 		batch->memcg = mem;
3027 	/*
3028 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3029 	 * In those cases, all pages freed continuously can be expected to be in
3030 	 * the same cgroup and we have chance to coalesce uncharges.
3031 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3032 	 * because we want to do uncharge as soon as possible.
3033 	 */
3034 
3035 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3036 		goto direct_uncharge;
3037 
3038 	if (nr_pages > 1)
3039 		goto direct_uncharge;
3040 
3041 	/*
3042 	 * In typical case, batch->memcg == mem. This means we can
3043 	 * merge a series of uncharges to an uncharge of res_counter.
3044 	 * If not, we uncharge res_counter ony by one.
3045 	 */
3046 	if (batch->memcg != mem)
3047 		goto direct_uncharge;
3048 	/* remember freed charge and uncharge it later */
3049 	batch->nr_pages++;
3050 	if (uncharge_memsw)
3051 		batch->memsw_nr_pages++;
3052 	return;
3053 direct_uncharge:
3054 	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3055 	if (uncharge_memsw)
3056 		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3057 	if (unlikely(batch->memcg != mem))
3058 		memcg_oom_recover(mem);
3059 	return;
3060 }
3061 
3062 /*
3063  * uncharge if !page_mapped(page)
3064  */
3065 static struct mem_cgroup *
3066 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3067 {
3068 	struct mem_cgroup *mem = NULL;
3069 	unsigned int nr_pages = 1;
3070 	struct page_cgroup *pc;
3071 
3072 	if (mem_cgroup_disabled())
3073 		return NULL;
3074 
3075 	if (PageSwapCache(page))
3076 		return NULL;
3077 
3078 	if (PageTransHuge(page)) {
3079 		nr_pages <<= compound_order(page);
3080 		VM_BUG_ON(!PageTransHuge(page));
3081 	}
3082 	/*
3083 	 * Check if our page_cgroup is valid
3084 	 */
3085 	pc = lookup_page_cgroup(page);
3086 	if (unlikely(!pc || !PageCgroupUsed(pc)))
3087 		return NULL;
3088 
3089 	lock_page_cgroup(pc);
3090 
3091 	mem = pc->mem_cgroup;
3092 
3093 	if (!PageCgroupUsed(pc))
3094 		goto unlock_out;
3095 
3096 	switch (ctype) {
3097 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3098 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3099 		/* See mem_cgroup_prepare_migration() */
3100 		if (page_mapped(page) || PageCgroupMigration(pc))
3101 			goto unlock_out;
3102 		break;
3103 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3104 		if (!PageAnon(page)) {	/* Shared memory */
3105 			if (page->mapping && !page_is_file_cache(page))
3106 				goto unlock_out;
3107 		} else if (page_mapped(page)) /* Anon */
3108 				goto unlock_out;
3109 		break;
3110 	default:
3111 		break;
3112 	}
3113 
3114 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3115 
3116 	ClearPageCgroupUsed(pc);
3117 	/*
3118 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3119 	 * freed from LRU. This is safe because uncharged page is expected not
3120 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3121 	 * special functions.
3122 	 */
3123 
3124 	unlock_page_cgroup(pc);
3125 	/*
3126 	 * even after unlock, we have mem->res.usage here and this memcg
3127 	 * will never be freed.
3128 	 */
3129 	memcg_check_events(mem, page);
3130 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3131 		mem_cgroup_swap_statistics(mem, true);
3132 		mem_cgroup_get(mem);
3133 	}
3134 	if (!mem_cgroup_is_root(mem))
3135 		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3136 
3137 	return mem;
3138 
3139 unlock_out:
3140 	unlock_page_cgroup(pc);
3141 	return NULL;
3142 }
3143 
3144 void mem_cgroup_uncharge_page(struct page *page)
3145 {
3146 	/* early check. */
3147 	if (page_mapped(page))
3148 		return;
3149 	if (page->mapping && !PageAnon(page))
3150 		return;
3151 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3152 }
3153 
3154 void mem_cgroup_uncharge_cache_page(struct page *page)
3155 {
3156 	VM_BUG_ON(page_mapped(page));
3157 	VM_BUG_ON(page->mapping);
3158 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3159 }
3160 
3161 /*
3162  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3163  * In that cases, pages are freed continuously and we can expect pages
3164  * are in the same memcg. All these calls itself limits the number of
3165  * pages freed at once, then uncharge_start/end() is called properly.
3166  * This may be called prural(2) times in a context,
3167  */
3168 
3169 void mem_cgroup_uncharge_start(void)
3170 {
3171 	current->memcg_batch.do_batch++;
3172 	/* We can do nest. */
3173 	if (current->memcg_batch.do_batch == 1) {
3174 		current->memcg_batch.memcg = NULL;
3175 		current->memcg_batch.nr_pages = 0;
3176 		current->memcg_batch.memsw_nr_pages = 0;
3177 	}
3178 }
3179 
3180 void mem_cgroup_uncharge_end(void)
3181 {
3182 	struct memcg_batch_info *batch = &current->memcg_batch;
3183 
3184 	if (!batch->do_batch)
3185 		return;
3186 
3187 	batch->do_batch--;
3188 	if (batch->do_batch) /* If stacked, do nothing. */
3189 		return;
3190 
3191 	if (!batch->memcg)
3192 		return;
3193 	/*
3194 	 * This "batch->memcg" is valid without any css_get/put etc...
3195 	 * bacause we hide charges behind us.
3196 	 */
3197 	if (batch->nr_pages)
3198 		res_counter_uncharge(&batch->memcg->res,
3199 				     batch->nr_pages * PAGE_SIZE);
3200 	if (batch->memsw_nr_pages)
3201 		res_counter_uncharge(&batch->memcg->memsw,
3202 				     batch->memsw_nr_pages * PAGE_SIZE);
3203 	memcg_oom_recover(batch->memcg);
3204 	/* forget this pointer (for sanity check) */
3205 	batch->memcg = NULL;
3206 }
3207 
3208 #ifdef CONFIG_SWAP
3209 /*
3210  * called after __delete_from_swap_cache() and drop "page" account.
3211  * memcg information is recorded to swap_cgroup of "ent"
3212  */
3213 void
3214 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3215 {
3216 	struct mem_cgroup *memcg;
3217 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3218 
3219 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3220 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3221 
3222 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3223 
3224 	/*
3225 	 * record memcg information,  if swapout && memcg != NULL,
3226 	 * mem_cgroup_get() was called in uncharge().
3227 	 */
3228 	if (do_swap_account && swapout && memcg)
3229 		swap_cgroup_record(ent, css_id(&memcg->css));
3230 }
3231 #endif
3232 
3233 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3234 /*
3235  * called from swap_entry_free(). remove record in swap_cgroup and
3236  * uncharge "memsw" account.
3237  */
3238 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3239 {
3240 	struct mem_cgroup *memcg;
3241 	unsigned short id;
3242 
3243 	if (!do_swap_account)
3244 		return;
3245 
3246 	id = swap_cgroup_record(ent, 0);
3247 	rcu_read_lock();
3248 	memcg = mem_cgroup_lookup(id);
3249 	if (memcg) {
3250 		/*
3251 		 * We uncharge this because swap is freed.
3252 		 * This memcg can be obsolete one. We avoid calling css_tryget
3253 		 */
3254 		if (!mem_cgroup_is_root(memcg))
3255 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3256 		mem_cgroup_swap_statistics(memcg, false);
3257 		mem_cgroup_put(memcg);
3258 	}
3259 	rcu_read_unlock();
3260 }
3261 
3262 /**
3263  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3264  * @entry: swap entry to be moved
3265  * @from:  mem_cgroup which the entry is moved from
3266  * @to:  mem_cgroup which the entry is moved to
3267  * @need_fixup: whether we should fixup res_counters and refcounts.
3268  *
3269  * It succeeds only when the swap_cgroup's record for this entry is the same
3270  * as the mem_cgroup's id of @from.
3271  *
3272  * Returns 0 on success, -EINVAL on failure.
3273  *
3274  * The caller must have charged to @to, IOW, called res_counter_charge() about
3275  * both res and memsw, and called css_get().
3276  */
3277 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3278 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3279 {
3280 	unsigned short old_id, new_id;
3281 
3282 	old_id = css_id(&from->css);
3283 	new_id = css_id(&to->css);
3284 
3285 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3286 		mem_cgroup_swap_statistics(from, false);
3287 		mem_cgroup_swap_statistics(to, true);
3288 		/*
3289 		 * This function is only called from task migration context now.
3290 		 * It postpones res_counter and refcount handling till the end
3291 		 * of task migration(mem_cgroup_clear_mc()) for performance
3292 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3293 		 * because if the process that has been moved to @to does
3294 		 * swap-in, the refcount of @to might be decreased to 0.
3295 		 */
3296 		mem_cgroup_get(to);
3297 		if (need_fixup) {
3298 			if (!mem_cgroup_is_root(from))
3299 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3300 			mem_cgroup_put(from);
3301 			/*
3302 			 * we charged both to->res and to->memsw, so we should
3303 			 * uncharge to->res.
3304 			 */
3305 			if (!mem_cgroup_is_root(to))
3306 				res_counter_uncharge(&to->res, PAGE_SIZE);
3307 		}
3308 		return 0;
3309 	}
3310 	return -EINVAL;
3311 }
3312 #else
3313 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3314 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3315 {
3316 	return -EINVAL;
3317 }
3318 #endif
3319 
3320 /*
3321  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3322  * page belongs to.
3323  */
3324 int mem_cgroup_prepare_migration(struct page *page,
3325 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3326 {
3327 	struct mem_cgroup *mem = NULL;
3328 	struct page_cgroup *pc;
3329 	enum charge_type ctype;
3330 	int ret = 0;
3331 
3332 	*ptr = NULL;
3333 
3334 	VM_BUG_ON(PageTransHuge(page));
3335 	if (mem_cgroup_disabled())
3336 		return 0;
3337 
3338 	pc = lookup_page_cgroup(page);
3339 	lock_page_cgroup(pc);
3340 	if (PageCgroupUsed(pc)) {
3341 		mem = pc->mem_cgroup;
3342 		css_get(&mem->css);
3343 		/*
3344 		 * At migrating an anonymous page, its mapcount goes down
3345 		 * to 0 and uncharge() will be called. But, even if it's fully
3346 		 * unmapped, migration may fail and this page has to be
3347 		 * charged again. We set MIGRATION flag here and delay uncharge
3348 		 * until end_migration() is called
3349 		 *
3350 		 * Corner Case Thinking
3351 		 * A)
3352 		 * When the old page was mapped as Anon and it's unmap-and-freed
3353 		 * while migration was ongoing.
3354 		 * If unmap finds the old page, uncharge() of it will be delayed
3355 		 * until end_migration(). If unmap finds a new page, it's
3356 		 * uncharged when it make mapcount to be 1->0. If unmap code
3357 		 * finds swap_migration_entry, the new page will not be mapped
3358 		 * and end_migration() will find it(mapcount==0).
3359 		 *
3360 		 * B)
3361 		 * When the old page was mapped but migraion fails, the kernel
3362 		 * remaps it. A charge for it is kept by MIGRATION flag even
3363 		 * if mapcount goes down to 0. We can do remap successfully
3364 		 * without charging it again.
3365 		 *
3366 		 * C)
3367 		 * The "old" page is under lock_page() until the end of
3368 		 * migration, so, the old page itself will not be swapped-out.
3369 		 * If the new page is swapped out before end_migraton, our
3370 		 * hook to usual swap-out path will catch the event.
3371 		 */
3372 		if (PageAnon(page))
3373 			SetPageCgroupMigration(pc);
3374 	}
3375 	unlock_page_cgroup(pc);
3376 	/*
3377 	 * If the page is not charged at this point,
3378 	 * we return here.
3379 	 */
3380 	if (!mem)
3381 		return 0;
3382 
3383 	*ptr = mem;
3384 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3385 	css_put(&mem->css);/* drop extra refcnt */
3386 	if (ret || *ptr == NULL) {
3387 		if (PageAnon(page)) {
3388 			lock_page_cgroup(pc);
3389 			ClearPageCgroupMigration(pc);
3390 			unlock_page_cgroup(pc);
3391 			/*
3392 			 * The old page may be fully unmapped while we kept it.
3393 			 */
3394 			mem_cgroup_uncharge_page(page);
3395 		}
3396 		return -ENOMEM;
3397 	}
3398 	/*
3399 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3400 	 * is called before end_migration, we can catch all events on this new
3401 	 * page. In the case new page is migrated but not remapped, new page's
3402 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3403 	 */
3404 	pc = lookup_page_cgroup(newpage);
3405 	if (PageAnon(page))
3406 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3407 	else if (page_is_file_cache(page))
3408 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3409 	else
3410 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3411 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3412 	return ret;
3413 }
3414 
3415 /* remove redundant charge if migration failed*/
3416 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3417 	struct page *oldpage, struct page *newpage, bool migration_ok)
3418 {
3419 	struct page *used, *unused;
3420 	struct page_cgroup *pc;
3421 
3422 	if (!mem)
3423 		return;
3424 	/* blocks rmdir() */
3425 	cgroup_exclude_rmdir(&mem->css);
3426 	if (!migration_ok) {
3427 		used = oldpage;
3428 		unused = newpage;
3429 	} else {
3430 		used = newpage;
3431 		unused = oldpage;
3432 	}
3433 	/*
3434 	 * We disallowed uncharge of pages under migration because mapcount
3435 	 * of the page goes down to zero, temporarly.
3436 	 * Clear the flag and check the page should be charged.
3437 	 */
3438 	pc = lookup_page_cgroup(oldpage);
3439 	lock_page_cgroup(pc);
3440 	ClearPageCgroupMigration(pc);
3441 	unlock_page_cgroup(pc);
3442 
3443 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3444 
3445 	/*
3446 	 * If a page is a file cache, radix-tree replacement is very atomic
3447 	 * and we can skip this check. When it was an Anon page, its mapcount
3448 	 * goes down to 0. But because we added MIGRATION flage, it's not
3449 	 * uncharged yet. There are several case but page->mapcount check
3450 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3451 	 * check. (see prepare_charge() also)
3452 	 */
3453 	if (PageAnon(used))
3454 		mem_cgroup_uncharge_page(used);
3455 	/*
3456 	 * At migration, we may charge account against cgroup which has no
3457 	 * tasks.
3458 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3459 	 * In that case, we need to call pre_destroy() again. check it here.
3460 	 */
3461 	cgroup_release_and_wakeup_rmdir(&mem->css);
3462 }
3463 
3464 #ifdef CONFIG_DEBUG_VM
3465 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3466 {
3467 	struct page_cgroup *pc;
3468 
3469 	pc = lookup_page_cgroup(page);
3470 	if (likely(pc) && PageCgroupUsed(pc))
3471 		return pc;
3472 	return NULL;
3473 }
3474 
3475 bool mem_cgroup_bad_page_check(struct page *page)
3476 {
3477 	if (mem_cgroup_disabled())
3478 		return false;
3479 
3480 	return lookup_page_cgroup_used(page) != NULL;
3481 }
3482 
3483 void mem_cgroup_print_bad_page(struct page *page)
3484 {
3485 	struct page_cgroup *pc;
3486 
3487 	pc = lookup_page_cgroup_used(page);
3488 	if (pc) {
3489 		int ret = -1;
3490 		char *path;
3491 
3492 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3493 		       pc, pc->flags, pc->mem_cgroup);
3494 
3495 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3496 		if (path) {
3497 			rcu_read_lock();
3498 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3499 							path, PATH_MAX);
3500 			rcu_read_unlock();
3501 		}
3502 
3503 		printk(KERN_CONT "(%s)\n",
3504 				(ret < 0) ? "cannot get the path" : path);
3505 		kfree(path);
3506 	}
3507 }
3508 #endif
3509 
3510 static DEFINE_MUTEX(set_limit_mutex);
3511 
3512 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3513 				unsigned long long val)
3514 {
3515 	int retry_count;
3516 	u64 memswlimit, memlimit;
3517 	int ret = 0;
3518 	int children = mem_cgroup_count_children(memcg);
3519 	u64 curusage, oldusage;
3520 	int enlarge;
3521 
3522 	/*
3523 	 * For keeping hierarchical_reclaim simple, how long we should retry
3524 	 * is depends on callers. We set our retry-count to be function
3525 	 * of # of children which we should visit in this loop.
3526 	 */
3527 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3528 
3529 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3530 
3531 	enlarge = 0;
3532 	while (retry_count) {
3533 		if (signal_pending(current)) {
3534 			ret = -EINTR;
3535 			break;
3536 		}
3537 		/*
3538 		 * Rather than hide all in some function, I do this in
3539 		 * open coded manner. You see what this really does.
3540 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3541 		 */
3542 		mutex_lock(&set_limit_mutex);
3543 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3544 		if (memswlimit < val) {
3545 			ret = -EINVAL;
3546 			mutex_unlock(&set_limit_mutex);
3547 			break;
3548 		}
3549 
3550 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3551 		if (memlimit < val)
3552 			enlarge = 1;
3553 
3554 		ret = res_counter_set_limit(&memcg->res, val);
3555 		if (!ret) {
3556 			if (memswlimit == val)
3557 				memcg->memsw_is_minimum = true;
3558 			else
3559 				memcg->memsw_is_minimum = false;
3560 		}
3561 		mutex_unlock(&set_limit_mutex);
3562 
3563 		if (!ret)
3564 			break;
3565 
3566 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3567 						MEM_CGROUP_RECLAIM_SHRINK,
3568 						NULL);
3569 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3570 		/* Usage is reduced ? */
3571   		if (curusage >= oldusage)
3572 			retry_count--;
3573 		else
3574 			oldusage = curusage;
3575 	}
3576 	if (!ret && enlarge)
3577 		memcg_oom_recover(memcg);
3578 
3579 	return ret;
3580 }
3581 
3582 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3583 					unsigned long long val)
3584 {
3585 	int retry_count;
3586 	u64 memlimit, memswlimit, oldusage, curusage;
3587 	int children = mem_cgroup_count_children(memcg);
3588 	int ret = -EBUSY;
3589 	int enlarge = 0;
3590 
3591 	/* see mem_cgroup_resize_res_limit */
3592  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3593 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3594 	while (retry_count) {
3595 		if (signal_pending(current)) {
3596 			ret = -EINTR;
3597 			break;
3598 		}
3599 		/*
3600 		 * Rather than hide all in some function, I do this in
3601 		 * open coded manner. You see what this really does.
3602 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3603 		 */
3604 		mutex_lock(&set_limit_mutex);
3605 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3606 		if (memlimit > val) {
3607 			ret = -EINVAL;
3608 			mutex_unlock(&set_limit_mutex);
3609 			break;
3610 		}
3611 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3612 		if (memswlimit < val)
3613 			enlarge = 1;
3614 		ret = res_counter_set_limit(&memcg->memsw, val);
3615 		if (!ret) {
3616 			if (memlimit == val)
3617 				memcg->memsw_is_minimum = true;
3618 			else
3619 				memcg->memsw_is_minimum = false;
3620 		}
3621 		mutex_unlock(&set_limit_mutex);
3622 
3623 		if (!ret)
3624 			break;
3625 
3626 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3627 						MEM_CGROUP_RECLAIM_NOSWAP |
3628 						MEM_CGROUP_RECLAIM_SHRINK,
3629 						NULL);
3630 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3631 		/* Usage is reduced ? */
3632 		if (curusage >= oldusage)
3633 			retry_count--;
3634 		else
3635 			oldusage = curusage;
3636 	}
3637 	if (!ret && enlarge)
3638 		memcg_oom_recover(memcg);
3639 	return ret;
3640 }
3641 
3642 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3643 					    gfp_t gfp_mask,
3644 					    unsigned long *total_scanned)
3645 {
3646 	unsigned long nr_reclaimed = 0;
3647 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3648 	unsigned long reclaimed;
3649 	int loop = 0;
3650 	struct mem_cgroup_tree_per_zone *mctz;
3651 	unsigned long long excess;
3652 	unsigned long nr_scanned;
3653 
3654 	if (order > 0)
3655 		return 0;
3656 
3657 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3658 	/*
3659 	 * This loop can run a while, specially if mem_cgroup's continuously
3660 	 * keep exceeding their soft limit and putting the system under
3661 	 * pressure
3662 	 */
3663 	do {
3664 		if (next_mz)
3665 			mz = next_mz;
3666 		else
3667 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3668 		if (!mz)
3669 			break;
3670 
3671 		nr_scanned = 0;
3672 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3673 						gfp_mask,
3674 						MEM_CGROUP_RECLAIM_SOFT,
3675 						&nr_scanned);
3676 		nr_reclaimed += reclaimed;
3677 		*total_scanned += nr_scanned;
3678 		spin_lock(&mctz->lock);
3679 
3680 		/*
3681 		 * If we failed to reclaim anything from this memory cgroup
3682 		 * it is time to move on to the next cgroup
3683 		 */
3684 		next_mz = NULL;
3685 		if (!reclaimed) {
3686 			do {
3687 				/*
3688 				 * Loop until we find yet another one.
3689 				 *
3690 				 * By the time we get the soft_limit lock
3691 				 * again, someone might have aded the
3692 				 * group back on the RB tree. Iterate to
3693 				 * make sure we get a different mem.
3694 				 * mem_cgroup_largest_soft_limit_node returns
3695 				 * NULL if no other cgroup is present on
3696 				 * the tree
3697 				 */
3698 				next_mz =
3699 				__mem_cgroup_largest_soft_limit_node(mctz);
3700 				if (next_mz == mz)
3701 					css_put(&next_mz->mem->css);
3702 				else /* next_mz == NULL or other memcg */
3703 					break;
3704 			} while (1);
3705 		}
3706 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3707 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3708 		/*
3709 		 * One school of thought says that we should not add
3710 		 * back the node to the tree if reclaim returns 0.
3711 		 * But our reclaim could return 0, simply because due
3712 		 * to priority we are exposing a smaller subset of
3713 		 * memory to reclaim from. Consider this as a longer
3714 		 * term TODO.
3715 		 */
3716 		/* If excess == 0, no tree ops */
3717 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3718 		spin_unlock(&mctz->lock);
3719 		css_put(&mz->mem->css);
3720 		loop++;
3721 		/*
3722 		 * Could not reclaim anything and there are no more
3723 		 * mem cgroups to try or we seem to be looping without
3724 		 * reclaiming anything.
3725 		 */
3726 		if (!nr_reclaimed &&
3727 			(next_mz == NULL ||
3728 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3729 			break;
3730 	} while (!nr_reclaimed);
3731 	if (next_mz)
3732 		css_put(&next_mz->mem->css);
3733 	return nr_reclaimed;
3734 }
3735 
3736 /*
3737  * This routine traverse page_cgroup in given list and drop them all.
3738  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3739  */
3740 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3741 				int node, int zid, enum lru_list lru)
3742 {
3743 	struct zone *zone;
3744 	struct mem_cgroup_per_zone *mz;
3745 	struct page_cgroup *pc, *busy;
3746 	unsigned long flags, loop;
3747 	struct list_head *list;
3748 	int ret = 0;
3749 
3750 	zone = &NODE_DATA(node)->node_zones[zid];
3751 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3752 	list = &mz->lists[lru];
3753 
3754 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3755 	/* give some margin against EBUSY etc...*/
3756 	loop += 256;
3757 	busy = NULL;
3758 	while (loop--) {
3759 		struct page *page;
3760 
3761 		ret = 0;
3762 		spin_lock_irqsave(&zone->lru_lock, flags);
3763 		if (list_empty(list)) {
3764 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3765 			break;
3766 		}
3767 		pc = list_entry(list->prev, struct page_cgroup, lru);
3768 		if (busy == pc) {
3769 			list_move(&pc->lru, list);
3770 			busy = NULL;
3771 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3772 			continue;
3773 		}
3774 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3775 
3776 		page = lookup_cgroup_page(pc);
3777 
3778 		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3779 		if (ret == -ENOMEM)
3780 			break;
3781 
3782 		if (ret == -EBUSY || ret == -EINVAL) {
3783 			/* found lock contention or "pc" is obsolete. */
3784 			busy = pc;
3785 			cond_resched();
3786 		} else
3787 			busy = NULL;
3788 	}
3789 
3790 	if (!ret && !list_empty(list))
3791 		return -EBUSY;
3792 	return ret;
3793 }
3794 
3795 /*
3796  * make mem_cgroup's charge to be 0 if there is no task.
3797  * This enables deleting this mem_cgroup.
3798  */
3799 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3800 {
3801 	int ret;
3802 	int node, zid, shrink;
3803 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3804 	struct cgroup *cgrp = mem->css.cgroup;
3805 
3806 	css_get(&mem->css);
3807 
3808 	shrink = 0;
3809 	/* should free all ? */
3810 	if (free_all)
3811 		goto try_to_free;
3812 move_account:
3813 	do {
3814 		ret = -EBUSY;
3815 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3816 			goto out;
3817 		ret = -EINTR;
3818 		if (signal_pending(current))
3819 			goto out;
3820 		/* This is for making all *used* pages to be on LRU. */
3821 		lru_add_drain_all();
3822 		drain_all_stock_sync(mem);
3823 		ret = 0;
3824 		mem_cgroup_start_move(mem);
3825 		for_each_node_state(node, N_HIGH_MEMORY) {
3826 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3827 				enum lru_list l;
3828 				for_each_lru(l) {
3829 					ret = mem_cgroup_force_empty_list(mem,
3830 							node, zid, l);
3831 					if (ret)
3832 						break;
3833 				}
3834 			}
3835 			if (ret)
3836 				break;
3837 		}
3838 		mem_cgroup_end_move(mem);
3839 		memcg_oom_recover(mem);
3840 		/* it seems parent cgroup doesn't have enough mem */
3841 		if (ret == -ENOMEM)
3842 			goto try_to_free;
3843 		cond_resched();
3844 	/* "ret" should also be checked to ensure all lists are empty. */
3845 	} while (mem->res.usage > 0 || ret);
3846 out:
3847 	css_put(&mem->css);
3848 	return ret;
3849 
3850 try_to_free:
3851 	/* returns EBUSY if there is a task or if we come here twice. */
3852 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3853 		ret = -EBUSY;
3854 		goto out;
3855 	}
3856 	/* we call try-to-free pages for make this cgroup empty */
3857 	lru_add_drain_all();
3858 	/* try to free all pages in this cgroup */
3859 	shrink = 1;
3860 	while (nr_retries && mem->res.usage > 0) {
3861 		struct memcg_scanrecord rec;
3862 		int progress;
3863 
3864 		if (signal_pending(current)) {
3865 			ret = -EINTR;
3866 			goto out;
3867 		}
3868 		rec.context = SCAN_BY_SHRINK;
3869 		rec.mem = mem;
3870 		rec.root = mem;
3871 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3872 						false, &rec);
3873 		if (!progress) {
3874 			nr_retries--;
3875 			/* maybe some writeback is necessary */
3876 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3877 		}
3878 
3879 	}
3880 	lru_add_drain();
3881 	/* try move_account...there may be some *locked* pages. */
3882 	goto move_account;
3883 }
3884 
3885 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3886 {
3887 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3888 }
3889 
3890 
3891 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3892 {
3893 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3894 }
3895 
3896 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3897 					u64 val)
3898 {
3899 	int retval = 0;
3900 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3901 	struct cgroup *parent = cont->parent;
3902 	struct mem_cgroup *parent_mem = NULL;
3903 
3904 	if (parent)
3905 		parent_mem = mem_cgroup_from_cont(parent);
3906 
3907 	cgroup_lock();
3908 	/*
3909 	 * If parent's use_hierarchy is set, we can't make any modifications
3910 	 * in the child subtrees. If it is unset, then the change can
3911 	 * occur, provided the current cgroup has no children.
3912 	 *
3913 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3914 	 * set if there are no children.
3915 	 */
3916 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3917 				(val == 1 || val == 0)) {
3918 		if (list_empty(&cont->children))
3919 			mem->use_hierarchy = val;
3920 		else
3921 			retval = -EBUSY;
3922 	} else
3923 		retval = -EINVAL;
3924 	cgroup_unlock();
3925 
3926 	return retval;
3927 }
3928 
3929 
3930 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3931 					       enum mem_cgroup_stat_index idx)
3932 {
3933 	struct mem_cgroup *iter;
3934 	long val = 0;
3935 
3936 	/* Per-cpu values can be negative, use a signed accumulator */
3937 	for_each_mem_cgroup_tree(iter, mem)
3938 		val += mem_cgroup_read_stat(iter, idx);
3939 
3940 	if (val < 0) /* race ? */
3941 		val = 0;
3942 	return val;
3943 }
3944 
3945 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3946 {
3947 	u64 val;
3948 
3949 	if (!mem_cgroup_is_root(mem)) {
3950 		if (!swap)
3951 			return res_counter_read_u64(&mem->res, RES_USAGE);
3952 		else
3953 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3954 	}
3955 
3956 	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3957 	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3958 
3959 	if (swap)
3960 		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3961 
3962 	return val << PAGE_SHIFT;
3963 }
3964 
3965 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3966 {
3967 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3968 	u64 val;
3969 	int type, name;
3970 
3971 	type = MEMFILE_TYPE(cft->private);
3972 	name = MEMFILE_ATTR(cft->private);
3973 	switch (type) {
3974 	case _MEM:
3975 		if (name == RES_USAGE)
3976 			val = mem_cgroup_usage(mem, false);
3977 		else
3978 			val = res_counter_read_u64(&mem->res, name);
3979 		break;
3980 	case _MEMSWAP:
3981 		if (name == RES_USAGE)
3982 			val = mem_cgroup_usage(mem, true);
3983 		else
3984 			val = res_counter_read_u64(&mem->memsw, name);
3985 		break;
3986 	default:
3987 		BUG();
3988 		break;
3989 	}
3990 	return val;
3991 }
3992 /*
3993  * The user of this function is...
3994  * RES_LIMIT.
3995  */
3996 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3997 			    const char *buffer)
3998 {
3999 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4000 	int type, name;
4001 	unsigned long long val;
4002 	int ret;
4003 
4004 	type = MEMFILE_TYPE(cft->private);
4005 	name = MEMFILE_ATTR(cft->private);
4006 	switch (name) {
4007 	case RES_LIMIT:
4008 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4009 			ret = -EINVAL;
4010 			break;
4011 		}
4012 		/* This function does all necessary parse...reuse it */
4013 		ret = res_counter_memparse_write_strategy(buffer, &val);
4014 		if (ret)
4015 			break;
4016 		if (type == _MEM)
4017 			ret = mem_cgroup_resize_limit(memcg, val);
4018 		else
4019 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4020 		break;
4021 	case RES_SOFT_LIMIT:
4022 		ret = res_counter_memparse_write_strategy(buffer, &val);
4023 		if (ret)
4024 			break;
4025 		/*
4026 		 * For memsw, soft limits are hard to implement in terms
4027 		 * of semantics, for now, we support soft limits for
4028 		 * control without swap
4029 		 */
4030 		if (type == _MEM)
4031 			ret = res_counter_set_soft_limit(&memcg->res, val);
4032 		else
4033 			ret = -EINVAL;
4034 		break;
4035 	default:
4036 		ret = -EINVAL; /* should be BUG() ? */
4037 		break;
4038 	}
4039 	return ret;
4040 }
4041 
4042 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4043 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4044 {
4045 	struct cgroup *cgroup;
4046 	unsigned long long min_limit, min_memsw_limit, tmp;
4047 
4048 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4049 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4050 	cgroup = memcg->css.cgroup;
4051 	if (!memcg->use_hierarchy)
4052 		goto out;
4053 
4054 	while (cgroup->parent) {
4055 		cgroup = cgroup->parent;
4056 		memcg = mem_cgroup_from_cont(cgroup);
4057 		if (!memcg->use_hierarchy)
4058 			break;
4059 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4060 		min_limit = min(min_limit, tmp);
4061 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4062 		min_memsw_limit = min(min_memsw_limit, tmp);
4063 	}
4064 out:
4065 	*mem_limit = min_limit;
4066 	*memsw_limit = min_memsw_limit;
4067 	return;
4068 }
4069 
4070 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4071 {
4072 	struct mem_cgroup *mem;
4073 	int type, name;
4074 
4075 	mem = mem_cgroup_from_cont(cont);
4076 	type = MEMFILE_TYPE(event);
4077 	name = MEMFILE_ATTR(event);
4078 	switch (name) {
4079 	case RES_MAX_USAGE:
4080 		if (type == _MEM)
4081 			res_counter_reset_max(&mem->res);
4082 		else
4083 			res_counter_reset_max(&mem->memsw);
4084 		break;
4085 	case RES_FAILCNT:
4086 		if (type == _MEM)
4087 			res_counter_reset_failcnt(&mem->res);
4088 		else
4089 			res_counter_reset_failcnt(&mem->memsw);
4090 		break;
4091 	}
4092 
4093 	return 0;
4094 }
4095 
4096 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4097 					struct cftype *cft)
4098 {
4099 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4100 }
4101 
4102 #ifdef CONFIG_MMU
4103 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4104 					struct cftype *cft, u64 val)
4105 {
4106 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4107 
4108 	if (val >= (1 << NR_MOVE_TYPE))
4109 		return -EINVAL;
4110 	/*
4111 	 * We check this value several times in both in can_attach() and
4112 	 * attach(), so we need cgroup lock to prevent this value from being
4113 	 * inconsistent.
4114 	 */
4115 	cgroup_lock();
4116 	mem->move_charge_at_immigrate = val;
4117 	cgroup_unlock();
4118 
4119 	return 0;
4120 }
4121 #else
4122 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4123 					struct cftype *cft, u64 val)
4124 {
4125 	return -ENOSYS;
4126 }
4127 #endif
4128 
4129 
4130 /* For read statistics */
4131 enum {
4132 	MCS_CACHE,
4133 	MCS_RSS,
4134 	MCS_FILE_MAPPED,
4135 	MCS_PGPGIN,
4136 	MCS_PGPGOUT,
4137 	MCS_SWAP,
4138 	MCS_PGFAULT,
4139 	MCS_PGMAJFAULT,
4140 	MCS_INACTIVE_ANON,
4141 	MCS_ACTIVE_ANON,
4142 	MCS_INACTIVE_FILE,
4143 	MCS_ACTIVE_FILE,
4144 	MCS_UNEVICTABLE,
4145 	NR_MCS_STAT,
4146 };
4147 
4148 struct mcs_total_stat {
4149 	s64 stat[NR_MCS_STAT];
4150 };
4151 
4152 struct {
4153 	char *local_name;
4154 	char *total_name;
4155 } memcg_stat_strings[NR_MCS_STAT] = {
4156 	{"cache", "total_cache"},
4157 	{"rss", "total_rss"},
4158 	{"mapped_file", "total_mapped_file"},
4159 	{"pgpgin", "total_pgpgin"},
4160 	{"pgpgout", "total_pgpgout"},
4161 	{"swap", "total_swap"},
4162 	{"pgfault", "total_pgfault"},
4163 	{"pgmajfault", "total_pgmajfault"},
4164 	{"inactive_anon", "total_inactive_anon"},
4165 	{"active_anon", "total_active_anon"},
4166 	{"inactive_file", "total_inactive_file"},
4167 	{"active_file", "total_active_file"},
4168 	{"unevictable", "total_unevictable"}
4169 };
4170 
4171 
4172 static void
4173 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4174 {
4175 	s64 val;
4176 
4177 	/* per cpu stat */
4178 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4179 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4180 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4181 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4182 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4183 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4184 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4185 	s->stat[MCS_PGPGIN] += val;
4186 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4187 	s->stat[MCS_PGPGOUT] += val;
4188 	if (do_swap_account) {
4189 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4190 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4191 	}
4192 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4193 	s->stat[MCS_PGFAULT] += val;
4194 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4195 	s->stat[MCS_PGMAJFAULT] += val;
4196 
4197 	/* per zone stat */
4198 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4199 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4200 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4201 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4202 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4203 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4204 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4205 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4206 	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4207 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4208 }
4209 
4210 static void
4211 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4212 {
4213 	struct mem_cgroup *iter;
4214 
4215 	for_each_mem_cgroup_tree(iter, mem)
4216 		mem_cgroup_get_local_stat(iter, s);
4217 }
4218 
4219 #ifdef CONFIG_NUMA
4220 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4221 {
4222 	int nid;
4223 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4224 	unsigned long node_nr;
4225 	struct cgroup *cont = m->private;
4226 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4227 
4228 	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4229 	seq_printf(m, "total=%lu", total_nr);
4230 	for_each_node_state(nid, N_HIGH_MEMORY) {
4231 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4232 		seq_printf(m, " N%d=%lu", nid, node_nr);
4233 	}
4234 	seq_putc(m, '\n');
4235 
4236 	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4237 	seq_printf(m, "file=%lu", file_nr);
4238 	for_each_node_state(nid, N_HIGH_MEMORY) {
4239 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4240 				LRU_ALL_FILE);
4241 		seq_printf(m, " N%d=%lu", nid, node_nr);
4242 	}
4243 	seq_putc(m, '\n');
4244 
4245 	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4246 	seq_printf(m, "anon=%lu", anon_nr);
4247 	for_each_node_state(nid, N_HIGH_MEMORY) {
4248 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4249 				LRU_ALL_ANON);
4250 		seq_printf(m, " N%d=%lu", nid, node_nr);
4251 	}
4252 	seq_putc(m, '\n');
4253 
4254 	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4255 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4256 	for_each_node_state(nid, N_HIGH_MEMORY) {
4257 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4258 				BIT(LRU_UNEVICTABLE));
4259 		seq_printf(m, " N%d=%lu", nid, node_nr);
4260 	}
4261 	seq_putc(m, '\n');
4262 	return 0;
4263 }
4264 #endif /* CONFIG_NUMA */
4265 
4266 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4267 				 struct cgroup_map_cb *cb)
4268 {
4269 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4270 	struct mcs_total_stat mystat;
4271 	int i;
4272 
4273 	memset(&mystat, 0, sizeof(mystat));
4274 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4275 
4276 
4277 	for (i = 0; i < NR_MCS_STAT; i++) {
4278 		if (i == MCS_SWAP && !do_swap_account)
4279 			continue;
4280 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4281 	}
4282 
4283 	/* Hierarchical information */
4284 	{
4285 		unsigned long long limit, memsw_limit;
4286 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4287 		cb->fill(cb, "hierarchical_memory_limit", limit);
4288 		if (do_swap_account)
4289 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4290 	}
4291 
4292 	memset(&mystat, 0, sizeof(mystat));
4293 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4294 	for (i = 0; i < NR_MCS_STAT; i++) {
4295 		if (i == MCS_SWAP && !do_swap_account)
4296 			continue;
4297 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4298 	}
4299 
4300 #ifdef CONFIG_DEBUG_VM
4301 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4302 
4303 	{
4304 		int nid, zid;
4305 		struct mem_cgroup_per_zone *mz;
4306 		unsigned long recent_rotated[2] = {0, 0};
4307 		unsigned long recent_scanned[2] = {0, 0};
4308 
4309 		for_each_online_node(nid)
4310 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4311 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4312 
4313 				recent_rotated[0] +=
4314 					mz->reclaim_stat.recent_rotated[0];
4315 				recent_rotated[1] +=
4316 					mz->reclaim_stat.recent_rotated[1];
4317 				recent_scanned[0] +=
4318 					mz->reclaim_stat.recent_scanned[0];
4319 				recent_scanned[1] +=
4320 					mz->reclaim_stat.recent_scanned[1];
4321 			}
4322 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4323 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4324 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4325 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4326 	}
4327 #endif
4328 
4329 	return 0;
4330 }
4331 
4332 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4333 {
4334 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4335 
4336 	return mem_cgroup_swappiness(memcg);
4337 }
4338 
4339 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4340 				       u64 val)
4341 {
4342 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4343 	struct mem_cgroup *parent;
4344 
4345 	if (val > 100)
4346 		return -EINVAL;
4347 
4348 	if (cgrp->parent == NULL)
4349 		return -EINVAL;
4350 
4351 	parent = mem_cgroup_from_cont(cgrp->parent);
4352 
4353 	cgroup_lock();
4354 
4355 	/* If under hierarchy, only empty-root can set this value */
4356 	if ((parent->use_hierarchy) ||
4357 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4358 		cgroup_unlock();
4359 		return -EINVAL;
4360 	}
4361 
4362 	memcg->swappiness = val;
4363 
4364 	cgroup_unlock();
4365 
4366 	return 0;
4367 }
4368 
4369 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4370 {
4371 	struct mem_cgroup_threshold_ary *t;
4372 	u64 usage;
4373 	int i;
4374 
4375 	rcu_read_lock();
4376 	if (!swap)
4377 		t = rcu_dereference(memcg->thresholds.primary);
4378 	else
4379 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4380 
4381 	if (!t)
4382 		goto unlock;
4383 
4384 	usage = mem_cgroup_usage(memcg, swap);
4385 
4386 	/*
4387 	 * current_threshold points to threshold just below usage.
4388 	 * If it's not true, a threshold was crossed after last
4389 	 * call of __mem_cgroup_threshold().
4390 	 */
4391 	i = t->current_threshold;
4392 
4393 	/*
4394 	 * Iterate backward over array of thresholds starting from
4395 	 * current_threshold and check if a threshold is crossed.
4396 	 * If none of thresholds below usage is crossed, we read
4397 	 * only one element of the array here.
4398 	 */
4399 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4400 		eventfd_signal(t->entries[i].eventfd, 1);
4401 
4402 	/* i = current_threshold + 1 */
4403 	i++;
4404 
4405 	/*
4406 	 * Iterate forward over array of thresholds starting from
4407 	 * current_threshold+1 and check if a threshold is crossed.
4408 	 * If none of thresholds above usage is crossed, we read
4409 	 * only one element of the array here.
4410 	 */
4411 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4412 		eventfd_signal(t->entries[i].eventfd, 1);
4413 
4414 	/* Update current_threshold */
4415 	t->current_threshold = i - 1;
4416 unlock:
4417 	rcu_read_unlock();
4418 }
4419 
4420 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4421 {
4422 	while (memcg) {
4423 		__mem_cgroup_threshold(memcg, false);
4424 		if (do_swap_account)
4425 			__mem_cgroup_threshold(memcg, true);
4426 
4427 		memcg = parent_mem_cgroup(memcg);
4428 	}
4429 }
4430 
4431 static int compare_thresholds(const void *a, const void *b)
4432 {
4433 	const struct mem_cgroup_threshold *_a = a;
4434 	const struct mem_cgroup_threshold *_b = b;
4435 
4436 	return _a->threshold - _b->threshold;
4437 }
4438 
4439 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4440 {
4441 	struct mem_cgroup_eventfd_list *ev;
4442 
4443 	list_for_each_entry(ev, &mem->oom_notify, list)
4444 		eventfd_signal(ev->eventfd, 1);
4445 	return 0;
4446 }
4447 
4448 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4449 {
4450 	struct mem_cgroup *iter;
4451 
4452 	for_each_mem_cgroup_tree(iter, mem)
4453 		mem_cgroup_oom_notify_cb(iter);
4454 }
4455 
4456 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4457 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4458 {
4459 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4460 	struct mem_cgroup_thresholds *thresholds;
4461 	struct mem_cgroup_threshold_ary *new;
4462 	int type = MEMFILE_TYPE(cft->private);
4463 	u64 threshold, usage;
4464 	int i, size, ret;
4465 
4466 	ret = res_counter_memparse_write_strategy(args, &threshold);
4467 	if (ret)
4468 		return ret;
4469 
4470 	mutex_lock(&memcg->thresholds_lock);
4471 
4472 	if (type == _MEM)
4473 		thresholds = &memcg->thresholds;
4474 	else if (type == _MEMSWAP)
4475 		thresholds = &memcg->memsw_thresholds;
4476 	else
4477 		BUG();
4478 
4479 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4480 
4481 	/* Check if a threshold crossed before adding a new one */
4482 	if (thresholds->primary)
4483 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4484 
4485 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4486 
4487 	/* Allocate memory for new array of thresholds */
4488 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4489 			GFP_KERNEL);
4490 	if (!new) {
4491 		ret = -ENOMEM;
4492 		goto unlock;
4493 	}
4494 	new->size = size;
4495 
4496 	/* Copy thresholds (if any) to new array */
4497 	if (thresholds->primary) {
4498 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4499 				sizeof(struct mem_cgroup_threshold));
4500 	}
4501 
4502 	/* Add new threshold */
4503 	new->entries[size - 1].eventfd = eventfd;
4504 	new->entries[size - 1].threshold = threshold;
4505 
4506 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4507 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4508 			compare_thresholds, NULL);
4509 
4510 	/* Find current threshold */
4511 	new->current_threshold = -1;
4512 	for (i = 0; i < size; i++) {
4513 		if (new->entries[i].threshold < usage) {
4514 			/*
4515 			 * new->current_threshold will not be used until
4516 			 * rcu_assign_pointer(), so it's safe to increment
4517 			 * it here.
4518 			 */
4519 			++new->current_threshold;
4520 		}
4521 	}
4522 
4523 	/* Free old spare buffer and save old primary buffer as spare */
4524 	kfree(thresholds->spare);
4525 	thresholds->spare = thresholds->primary;
4526 
4527 	rcu_assign_pointer(thresholds->primary, new);
4528 
4529 	/* To be sure that nobody uses thresholds */
4530 	synchronize_rcu();
4531 
4532 unlock:
4533 	mutex_unlock(&memcg->thresholds_lock);
4534 
4535 	return ret;
4536 }
4537 
4538 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4539 	struct cftype *cft, struct eventfd_ctx *eventfd)
4540 {
4541 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4542 	struct mem_cgroup_thresholds *thresholds;
4543 	struct mem_cgroup_threshold_ary *new;
4544 	int type = MEMFILE_TYPE(cft->private);
4545 	u64 usage;
4546 	int i, j, size;
4547 
4548 	mutex_lock(&memcg->thresholds_lock);
4549 	if (type == _MEM)
4550 		thresholds = &memcg->thresholds;
4551 	else if (type == _MEMSWAP)
4552 		thresholds = &memcg->memsw_thresholds;
4553 	else
4554 		BUG();
4555 
4556 	/*
4557 	 * Something went wrong if we trying to unregister a threshold
4558 	 * if we don't have thresholds
4559 	 */
4560 	BUG_ON(!thresholds);
4561 
4562 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4563 
4564 	/* Check if a threshold crossed before removing */
4565 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4566 
4567 	/* Calculate new number of threshold */
4568 	size = 0;
4569 	for (i = 0; i < thresholds->primary->size; i++) {
4570 		if (thresholds->primary->entries[i].eventfd != eventfd)
4571 			size++;
4572 	}
4573 
4574 	new = thresholds->spare;
4575 
4576 	/* Set thresholds array to NULL if we don't have thresholds */
4577 	if (!size) {
4578 		kfree(new);
4579 		new = NULL;
4580 		goto swap_buffers;
4581 	}
4582 
4583 	new->size = size;
4584 
4585 	/* Copy thresholds and find current threshold */
4586 	new->current_threshold = -1;
4587 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4588 		if (thresholds->primary->entries[i].eventfd == eventfd)
4589 			continue;
4590 
4591 		new->entries[j] = thresholds->primary->entries[i];
4592 		if (new->entries[j].threshold < usage) {
4593 			/*
4594 			 * new->current_threshold will not be used
4595 			 * until rcu_assign_pointer(), so it's safe to increment
4596 			 * it here.
4597 			 */
4598 			++new->current_threshold;
4599 		}
4600 		j++;
4601 	}
4602 
4603 swap_buffers:
4604 	/* Swap primary and spare array */
4605 	thresholds->spare = thresholds->primary;
4606 	rcu_assign_pointer(thresholds->primary, new);
4607 
4608 	/* To be sure that nobody uses thresholds */
4609 	synchronize_rcu();
4610 
4611 	mutex_unlock(&memcg->thresholds_lock);
4612 }
4613 
4614 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4615 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4616 {
4617 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4618 	struct mem_cgroup_eventfd_list *event;
4619 	int type = MEMFILE_TYPE(cft->private);
4620 
4621 	BUG_ON(type != _OOM_TYPE);
4622 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4623 	if (!event)
4624 		return -ENOMEM;
4625 
4626 	spin_lock(&memcg_oom_lock);
4627 
4628 	event->eventfd = eventfd;
4629 	list_add(&event->list, &memcg->oom_notify);
4630 
4631 	/* already in OOM ? */
4632 	if (atomic_read(&memcg->under_oom))
4633 		eventfd_signal(eventfd, 1);
4634 	spin_unlock(&memcg_oom_lock);
4635 
4636 	return 0;
4637 }
4638 
4639 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4640 	struct cftype *cft, struct eventfd_ctx *eventfd)
4641 {
4642 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4643 	struct mem_cgroup_eventfd_list *ev, *tmp;
4644 	int type = MEMFILE_TYPE(cft->private);
4645 
4646 	BUG_ON(type != _OOM_TYPE);
4647 
4648 	spin_lock(&memcg_oom_lock);
4649 
4650 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4651 		if (ev->eventfd == eventfd) {
4652 			list_del(&ev->list);
4653 			kfree(ev);
4654 		}
4655 	}
4656 
4657 	spin_unlock(&memcg_oom_lock);
4658 }
4659 
4660 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4661 	struct cftype *cft,  struct cgroup_map_cb *cb)
4662 {
4663 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4664 
4665 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4666 
4667 	if (atomic_read(&mem->under_oom))
4668 		cb->fill(cb, "under_oom", 1);
4669 	else
4670 		cb->fill(cb, "under_oom", 0);
4671 	return 0;
4672 }
4673 
4674 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4675 	struct cftype *cft, u64 val)
4676 {
4677 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4678 	struct mem_cgroup *parent;
4679 
4680 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4681 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4682 		return -EINVAL;
4683 
4684 	parent = mem_cgroup_from_cont(cgrp->parent);
4685 
4686 	cgroup_lock();
4687 	/* oom-kill-disable is a flag for subhierarchy. */
4688 	if ((parent->use_hierarchy) ||
4689 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4690 		cgroup_unlock();
4691 		return -EINVAL;
4692 	}
4693 	mem->oom_kill_disable = val;
4694 	if (!val)
4695 		memcg_oom_recover(mem);
4696 	cgroup_unlock();
4697 	return 0;
4698 }
4699 
4700 #ifdef CONFIG_NUMA
4701 static const struct file_operations mem_control_numa_stat_file_operations = {
4702 	.read = seq_read,
4703 	.llseek = seq_lseek,
4704 	.release = single_release,
4705 };
4706 
4707 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4708 {
4709 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4710 
4711 	file->f_op = &mem_control_numa_stat_file_operations;
4712 	return single_open(file, mem_control_numa_stat_show, cont);
4713 }
4714 #endif /* CONFIG_NUMA */
4715 
4716 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4717 				struct cftype *cft,
4718 				struct cgroup_map_cb *cb)
4719 {
4720 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4721 	char string[64];
4722 	int i;
4723 
4724 	for (i = 0; i < NR_SCANSTATS; i++) {
4725 		strcpy(string, scanstat_string[i]);
4726 		strcat(string, SCANSTAT_WORD_LIMIT);
4727 		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4728 	}
4729 
4730 	for (i = 0; i < NR_SCANSTATS; i++) {
4731 		strcpy(string, scanstat_string[i]);
4732 		strcat(string, SCANSTAT_WORD_SYSTEM);
4733 		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4734 	}
4735 
4736 	for (i = 0; i < NR_SCANSTATS; i++) {
4737 		strcpy(string, scanstat_string[i]);
4738 		strcat(string, SCANSTAT_WORD_LIMIT);
4739 		strcat(string, SCANSTAT_WORD_HIERARCHY);
4740 		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4741 	}
4742 	for (i = 0; i < NR_SCANSTATS; i++) {
4743 		strcpy(string, scanstat_string[i]);
4744 		strcat(string, SCANSTAT_WORD_SYSTEM);
4745 		strcat(string, SCANSTAT_WORD_HIERARCHY);
4746 		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4747 	}
4748 	return 0;
4749 }
4750 
4751 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4752 				unsigned int event)
4753 {
4754 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4755 
4756 	spin_lock(&mem->scanstat.lock);
4757 	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4758 	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4759 	spin_unlock(&mem->scanstat.lock);
4760 	return 0;
4761 }
4762 
4763 
4764 static struct cftype mem_cgroup_files[] = {
4765 	{
4766 		.name = "usage_in_bytes",
4767 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4768 		.read_u64 = mem_cgroup_read,
4769 		.register_event = mem_cgroup_usage_register_event,
4770 		.unregister_event = mem_cgroup_usage_unregister_event,
4771 	},
4772 	{
4773 		.name = "max_usage_in_bytes",
4774 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4775 		.trigger = mem_cgroup_reset,
4776 		.read_u64 = mem_cgroup_read,
4777 	},
4778 	{
4779 		.name = "limit_in_bytes",
4780 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4781 		.write_string = mem_cgroup_write,
4782 		.read_u64 = mem_cgroup_read,
4783 	},
4784 	{
4785 		.name = "soft_limit_in_bytes",
4786 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4787 		.write_string = mem_cgroup_write,
4788 		.read_u64 = mem_cgroup_read,
4789 	},
4790 	{
4791 		.name = "failcnt",
4792 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4793 		.trigger = mem_cgroup_reset,
4794 		.read_u64 = mem_cgroup_read,
4795 	},
4796 	{
4797 		.name = "stat",
4798 		.read_map = mem_control_stat_show,
4799 	},
4800 	{
4801 		.name = "force_empty",
4802 		.trigger = mem_cgroup_force_empty_write,
4803 	},
4804 	{
4805 		.name = "use_hierarchy",
4806 		.write_u64 = mem_cgroup_hierarchy_write,
4807 		.read_u64 = mem_cgroup_hierarchy_read,
4808 	},
4809 	{
4810 		.name = "swappiness",
4811 		.read_u64 = mem_cgroup_swappiness_read,
4812 		.write_u64 = mem_cgroup_swappiness_write,
4813 	},
4814 	{
4815 		.name = "move_charge_at_immigrate",
4816 		.read_u64 = mem_cgroup_move_charge_read,
4817 		.write_u64 = mem_cgroup_move_charge_write,
4818 	},
4819 	{
4820 		.name = "oom_control",
4821 		.read_map = mem_cgroup_oom_control_read,
4822 		.write_u64 = mem_cgroup_oom_control_write,
4823 		.register_event = mem_cgroup_oom_register_event,
4824 		.unregister_event = mem_cgroup_oom_unregister_event,
4825 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4826 	},
4827 #ifdef CONFIG_NUMA
4828 	{
4829 		.name = "numa_stat",
4830 		.open = mem_control_numa_stat_open,
4831 		.mode = S_IRUGO,
4832 	},
4833 #endif
4834 	{
4835 		.name = "vmscan_stat",
4836 		.read_map = mem_cgroup_vmscan_stat_read,
4837 		.trigger = mem_cgroup_reset_vmscan_stat,
4838 	},
4839 };
4840 
4841 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4842 static struct cftype memsw_cgroup_files[] = {
4843 	{
4844 		.name = "memsw.usage_in_bytes",
4845 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4846 		.read_u64 = mem_cgroup_read,
4847 		.register_event = mem_cgroup_usage_register_event,
4848 		.unregister_event = mem_cgroup_usage_unregister_event,
4849 	},
4850 	{
4851 		.name = "memsw.max_usage_in_bytes",
4852 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4853 		.trigger = mem_cgroup_reset,
4854 		.read_u64 = mem_cgroup_read,
4855 	},
4856 	{
4857 		.name = "memsw.limit_in_bytes",
4858 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4859 		.write_string = mem_cgroup_write,
4860 		.read_u64 = mem_cgroup_read,
4861 	},
4862 	{
4863 		.name = "memsw.failcnt",
4864 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4865 		.trigger = mem_cgroup_reset,
4866 		.read_u64 = mem_cgroup_read,
4867 	},
4868 };
4869 
4870 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4871 {
4872 	if (!do_swap_account)
4873 		return 0;
4874 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4875 				ARRAY_SIZE(memsw_cgroup_files));
4876 };
4877 #else
4878 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4879 {
4880 	return 0;
4881 }
4882 #endif
4883 
4884 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4885 {
4886 	struct mem_cgroup_per_node *pn;
4887 	struct mem_cgroup_per_zone *mz;
4888 	enum lru_list l;
4889 	int zone, tmp = node;
4890 	/*
4891 	 * This routine is called against possible nodes.
4892 	 * But it's BUG to call kmalloc() against offline node.
4893 	 *
4894 	 * TODO: this routine can waste much memory for nodes which will
4895 	 *       never be onlined. It's better to use memory hotplug callback
4896 	 *       function.
4897 	 */
4898 	if (!node_state(node, N_NORMAL_MEMORY))
4899 		tmp = -1;
4900 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4901 	if (!pn)
4902 		return 1;
4903 
4904 	mem->info.nodeinfo[node] = pn;
4905 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4906 		mz = &pn->zoneinfo[zone];
4907 		for_each_lru(l)
4908 			INIT_LIST_HEAD(&mz->lists[l]);
4909 		mz->usage_in_excess = 0;
4910 		mz->on_tree = false;
4911 		mz->mem = mem;
4912 	}
4913 	return 0;
4914 }
4915 
4916 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4917 {
4918 	kfree(mem->info.nodeinfo[node]);
4919 }
4920 
4921 static struct mem_cgroup *mem_cgroup_alloc(void)
4922 {
4923 	struct mem_cgroup *mem;
4924 	int size = sizeof(struct mem_cgroup);
4925 
4926 	/* Can be very big if MAX_NUMNODES is very big */
4927 	if (size < PAGE_SIZE)
4928 		mem = kzalloc(size, GFP_KERNEL);
4929 	else
4930 		mem = vzalloc(size);
4931 
4932 	if (!mem)
4933 		return NULL;
4934 
4935 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4936 	if (!mem->stat)
4937 		goto out_free;
4938 	spin_lock_init(&mem->pcp_counter_lock);
4939 	return mem;
4940 
4941 out_free:
4942 	if (size < PAGE_SIZE)
4943 		kfree(mem);
4944 	else
4945 		vfree(mem);
4946 	return NULL;
4947 }
4948 
4949 /*
4950  * At destroying mem_cgroup, references from swap_cgroup can remain.
4951  * (scanning all at force_empty is too costly...)
4952  *
4953  * Instead of clearing all references at force_empty, we remember
4954  * the number of reference from swap_cgroup and free mem_cgroup when
4955  * it goes down to 0.
4956  *
4957  * Removal of cgroup itself succeeds regardless of refs from swap.
4958  */
4959 
4960 static void __mem_cgroup_free(struct mem_cgroup *mem)
4961 {
4962 	int node;
4963 
4964 	mem_cgroup_remove_from_trees(mem);
4965 	free_css_id(&mem_cgroup_subsys, &mem->css);
4966 
4967 	for_each_node_state(node, N_POSSIBLE)
4968 		free_mem_cgroup_per_zone_info(mem, node);
4969 
4970 	free_percpu(mem->stat);
4971 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4972 		kfree(mem);
4973 	else
4974 		vfree(mem);
4975 }
4976 
4977 static void mem_cgroup_get(struct mem_cgroup *mem)
4978 {
4979 	atomic_inc(&mem->refcnt);
4980 }
4981 
4982 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4983 {
4984 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4985 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4986 		__mem_cgroup_free(mem);
4987 		if (parent)
4988 			mem_cgroup_put(parent);
4989 	}
4990 }
4991 
4992 static void mem_cgroup_put(struct mem_cgroup *mem)
4993 {
4994 	__mem_cgroup_put(mem, 1);
4995 }
4996 
4997 /*
4998  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4999  */
5000 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5001 {
5002 	if (!mem->res.parent)
5003 		return NULL;
5004 	return mem_cgroup_from_res_counter(mem->res.parent, res);
5005 }
5006 
5007 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5008 static void __init enable_swap_cgroup(void)
5009 {
5010 	if (!mem_cgroup_disabled() && really_do_swap_account)
5011 		do_swap_account = 1;
5012 }
5013 #else
5014 static void __init enable_swap_cgroup(void)
5015 {
5016 }
5017 #endif
5018 
5019 static int mem_cgroup_soft_limit_tree_init(void)
5020 {
5021 	struct mem_cgroup_tree_per_node *rtpn;
5022 	struct mem_cgroup_tree_per_zone *rtpz;
5023 	int tmp, node, zone;
5024 
5025 	for_each_node_state(node, N_POSSIBLE) {
5026 		tmp = node;
5027 		if (!node_state(node, N_NORMAL_MEMORY))
5028 			tmp = -1;
5029 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5030 		if (!rtpn)
5031 			return 1;
5032 
5033 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5034 
5035 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5036 			rtpz = &rtpn->rb_tree_per_zone[zone];
5037 			rtpz->rb_root = RB_ROOT;
5038 			spin_lock_init(&rtpz->lock);
5039 		}
5040 	}
5041 	return 0;
5042 }
5043 
5044 static struct cgroup_subsys_state * __ref
5045 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5046 {
5047 	struct mem_cgroup *mem, *parent;
5048 	long error = -ENOMEM;
5049 	int node;
5050 
5051 	mem = mem_cgroup_alloc();
5052 	if (!mem)
5053 		return ERR_PTR(error);
5054 
5055 	for_each_node_state(node, N_POSSIBLE)
5056 		if (alloc_mem_cgroup_per_zone_info(mem, node))
5057 			goto free_out;
5058 
5059 	/* root ? */
5060 	if (cont->parent == NULL) {
5061 		int cpu;
5062 		enable_swap_cgroup();
5063 		parent = NULL;
5064 		root_mem_cgroup = mem;
5065 		if (mem_cgroup_soft_limit_tree_init())
5066 			goto free_out;
5067 		for_each_possible_cpu(cpu) {
5068 			struct memcg_stock_pcp *stock =
5069 						&per_cpu(memcg_stock, cpu);
5070 			INIT_WORK(&stock->work, drain_local_stock);
5071 		}
5072 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5073 	} else {
5074 		parent = mem_cgroup_from_cont(cont->parent);
5075 		mem->use_hierarchy = parent->use_hierarchy;
5076 		mem->oom_kill_disable = parent->oom_kill_disable;
5077 	}
5078 
5079 	if (parent && parent->use_hierarchy) {
5080 		res_counter_init(&mem->res, &parent->res);
5081 		res_counter_init(&mem->memsw, &parent->memsw);
5082 		/*
5083 		 * We increment refcnt of the parent to ensure that we can
5084 		 * safely access it on res_counter_charge/uncharge.
5085 		 * This refcnt will be decremented when freeing this
5086 		 * mem_cgroup(see mem_cgroup_put).
5087 		 */
5088 		mem_cgroup_get(parent);
5089 	} else {
5090 		res_counter_init(&mem->res, NULL);
5091 		res_counter_init(&mem->memsw, NULL);
5092 	}
5093 	mem->last_scanned_child = 0;
5094 	mem->last_scanned_node = MAX_NUMNODES;
5095 	INIT_LIST_HEAD(&mem->oom_notify);
5096 
5097 	if (parent)
5098 		mem->swappiness = mem_cgroup_swappiness(parent);
5099 	atomic_set(&mem->refcnt, 1);
5100 	mem->move_charge_at_immigrate = 0;
5101 	mutex_init(&mem->thresholds_lock);
5102 	spin_lock_init(&mem->scanstat.lock);
5103 	return &mem->css;
5104 free_out:
5105 	__mem_cgroup_free(mem);
5106 	root_mem_cgroup = NULL;
5107 	return ERR_PTR(error);
5108 }
5109 
5110 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5111 					struct cgroup *cont)
5112 {
5113 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5114 
5115 	return mem_cgroup_force_empty(mem, false);
5116 }
5117 
5118 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5119 				struct cgroup *cont)
5120 {
5121 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5122 
5123 	mem_cgroup_put(mem);
5124 }
5125 
5126 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5127 				struct cgroup *cont)
5128 {
5129 	int ret;
5130 
5131 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5132 				ARRAY_SIZE(mem_cgroup_files));
5133 
5134 	if (!ret)
5135 		ret = register_memsw_files(cont, ss);
5136 	return ret;
5137 }
5138 
5139 #ifdef CONFIG_MMU
5140 /* Handlers for move charge at task migration. */
5141 #define PRECHARGE_COUNT_AT_ONCE	256
5142 static int mem_cgroup_do_precharge(unsigned long count)
5143 {
5144 	int ret = 0;
5145 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5146 	struct mem_cgroup *mem = mc.to;
5147 
5148 	if (mem_cgroup_is_root(mem)) {
5149 		mc.precharge += count;
5150 		/* we don't need css_get for root */
5151 		return ret;
5152 	}
5153 	/* try to charge at once */
5154 	if (count > 1) {
5155 		struct res_counter *dummy;
5156 		/*
5157 		 * "mem" cannot be under rmdir() because we've already checked
5158 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5159 		 * are still under the same cgroup_mutex. So we can postpone
5160 		 * css_get().
5161 		 */
5162 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5163 			goto one_by_one;
5164 		if (do_swap_account && res_counter_charge(&mem->memsw,
5165 						PAGE_SIZE * count, &dummy)) {
5166 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5167 			goto one_by_one;
5168 		}
5169 		mc.precharge += count;
5170 		return ret;
5171 	}
5172 one_by_one:
5173 	/* fall back to one by one charge */
5174 	while (count--) {
5175 		if (signal_pending(current)) {
5176 			ret = -EINTR;
5177 			break;
5178 		}
5179 		if (!batch_count--) {
5180 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5181 			cond_resched();
5182 		}
5183 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5184 		if (ret || !mem)
5185 			/* mem_cgroup_clear_mc() will do uncharge later */
5186 			return -ENOMEM;
5187 		mc.precharge++;
5188 	}
5189 	return ret;
5190 }
5191 
5192 /**
5193  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5194  * @vma: the vma the pte to be checked belongs
5195  * @addr: the address corresponding to the pte to be checked
5196  * @ptent: the pte to be checked
5197  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5198  *
5199  * Returns
5200  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5201  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5202  *     move charge. if @target is not NULL, the page is stored in target->page
5203  *     with extra refcnt got(Callers should handle it).
5204  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5205  *     target for charge migration. if @target is not NULL, the entry is stored
5206  *     in target->ent.
5207  *
5208  * Called with pte lock held.
5209  */
5210 union mc_target {
5211 	struct page	*page;
5212 	swp_entry_t	ent;
5213 };
5214 
5215 enum mc_target_type {
5216 	MC_TARGET_NONE,	/* not used */
5217 	MC_TARGET_PAGE,
5218 	MC_TARGET_SWAP,
5219 };
5220 
5221 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5222 						unsigned long addr, pte_t ptent)
5223 {
5224 	struct page *page = vm_normal_page(vma, addr, ptent);
5225 
5226 	if (!page || !page_mapped(page))
5227 		return NULL;
5228 	if (PageAnon(page)) {
5229 		/* we don't move shared anon */
5230 		if (!move_anon() || page_mapcount(page) > 2)
5231 			return NULL;
5232 	} else if (!move_file())
5233 		/* we ignore mapcount for file pages */
5234 		return NULL;
5235 	if (!get_page_unless_zero(page))
5236 		return NULL;
5237 
5238 	return page;
5239 }
5240 
5241 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5242 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5243 {
5244 	int usage_count;
5245 	struct page *page = NULL;
5246 	swp_entry_t ent = pte_to_swp_entry(ptent);
5247 
5248 	if (!move_anon() || non_swap_entry(ent))
5249 		return NULL;
5250 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5251 	if (usage_count > 1) { /* we don't move shared anon */
5252 		if (page)
5253 			put_page(page);
5254 		return NULL;
5255 	}
5256 	if (do_swap_account)
5257 		entry->val = ent.val;
5258 
5259 	return page;
5260 }
5261 
5262 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5263 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5264 {
5265 	struct page *page = NULL;
5266 	struct inode *inode;
5267 	struct address_space *mapping;
5268 	pgoff_t pgoff;
5269 
5270 	if (!vma->vm_file) /* anonymous vma */
5271 		return NULL;
5272 	if (!move_file())
5273 		return NULL;
5274 
5275 	inode = vma->vm_file->f_path.dentry->d_inode;
5276 	mapping = vma->vm_file->f_mapping;
5277 	if (pte_none(ptent))
5278 		pgoff = linear_page_index(vma, addr);
5279 	else /* pte_file(ptent) is true */
5280 		pgoff = pte_to_pgoff(ptent);
5281 
5282 	/* page is moved even if it's not RSS of this task(page-faulted). */
5283 	page = find_get_page(mapping, pgoff);
5284 
5285 #ifdef CONFIG_SWAP
5286 	/* shmem/tmpfs may report page out on swap: account for that too. */
5287 	if (radix_tree_exceptional_entry(page)) {
5288 		swp_entry_t swap = radix_to_swp_entry(page);
5289 		if (do_swap_account)
5290 			*entry = swap;
5291 		page = find_get_page(&swapper_space, swap.val);
5292 	}
5293 #endif
5294 	return page;
5295 }
5296 
5297 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5298 		unsigned long addr, pte_t ptent, union mc_target *target)
5299 {
5300 	struct page *page = NULL;
5301 	struct page_cgroup *pc;
5302 	int ret = 0;
5303 	swp_entry_t ent = { .val = 0 };
5304 
5305 	if (pte_present(ptent))
5306 		page = mc_handle_present_pte(vma, addr, ptent);
5307 	else if (is_swap_pte(ptent))
5308 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5309 	else if (pte_none(ptent) || pte_file(ptent))
5310 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5311 
5312 	if (!page && !ent.val)
5313 		return 0;
5314 	if (page) {
5315 		pc = lookup_page_cgroup(page);
5316 		/*
5317 		 * Do only loose check w/o page_cgroup lock.
5318 		 * mem_cgroup_move_account() checks the pc is valid or not under
5319 		 * the lock.
5320 		 */
5321 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5322 			ret = MC_TARGET_PAGE;
5323 			if (target)
5324 				target->page = page;
5325 		}
5326 		if (!ret || !target)
5327 			put_page(page);
5328 	}
5329 	/* There is a swap entry and a page doesn't exist or isn't charged */
5330 	if (ent.val && !ret &&
5331 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5332 		ret = MC_TARGET_SWAP;
5333 		if (target)
5334 			target->ent = ent;
5335 	}
5336 	return ret;
5337 }
5338 
5339 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5340 					unsigned long addr, unsigned long end,
5341 					struct mm_walk *walk)
5342 {
5343 	struct vm_area_struct *vma = walk->private;
5344 	pte_t *pte;
5345 	spinlock_t *ptl;
5346 
5347 	split_huge_page_pmd(walk->mm, pmd);
5348 
5349 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5350 	for (; addr != end; pte++, addr += PAGE_SIZE)
5351 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5352 			mc.precharge++;	/* increment precharge temporarily */
5353 	pte_unmap_unlock(pte - 1, ptl);
5354 	cond_resched();
5355 
5356 	return 0;
5357 }
5358 
5359 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5360 {
5361 	unsigned long precharge;
5362 	struct vm_area_struct *vma;
5363 
5364 	down_read(&mm->mmap_sem);
5365 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5366 		struct mm_walk mem_cgroup_count_precharge_walk = {
5367 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5368 			.mm = mm,
5369 			.private = vma,
5370 		};
5371 		if (is_vm_hugetlb_page(vma))
5372 			continue;
5373 		walk_page_range(vma->vm_start, vma->vm_end,
5374 					&mem_cgroup_count_precharge_walk);
5375 	}
5376 	up_read(&mm->mmap_sem);
5377 
5378 	precharge = mc.precharge;
5379 	mc.precharge = 0;
5380 
5381 	return precharge;
5382 }
5383 
5384 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5385 {
5386 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5387 
5388 	VM_BUG_ON(mc.moving_task);
5389 	mc.moving_task = current;
5390 	return mem_cgroup_do_precharge(precharge);
5391 }
5392 
5393 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5394 static void __mem_cgroup_clear_mc(void)
5395 {
5396 	struct mem_cgroup *from = mc.from;
5397 	struct mem_cgroup *to = mc.to;
5398 
5399 	/* we must uncharge all the leftover precharges from mc.to */
5400 	if (mc.precharge) {
5401 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5402 		mc.precharge = 0;
5403 	}
5404 	/*
5405 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5406 	 * we must uncharge here.
5407 	 */
5408 	if (mc.moved_charge) {
5409 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5410 		mc.moved_charge = 0;
5411 	}
5412 	/* we must fixup refcnts and charges */
5413 	if (mc.moved_swap) {
5414 		/* uncharge swap account from the old cgroup */
5415 		if (!mem_cgroup_is_root(mc.from))
5416 			res_counter_uncharge(&mc.from->memsw,
5417 						PAGE_SIZE * mc.moved_swap);
5418 		__mem_cgroup_put(mc.from, mc.moved_swap);
5419 
5420 		if (!mem_cgroup_is_root(mc.to)) {
5421 			/*
5422 			 * we charged both to->res and to->memsw, so we should
5423 			 * uncharge to->res.
5424 			 */
5425 			res_counter_uncharge(&mc.to->res,
5426 						PAGE_SIZE * mc.moved_swap);
5427 		}
5428 		/* we've already done mem_cgroup_get(mc.to) */
5429 		mc.moved_swap = 0;
5430 	}
5431 	memcg_oom_recover(from);
5432 	memcg_oom_recover(to);
5433 	wake_up_all(&mc.waitq);
5434 }
5435 
5436 static void mem_cgroup_clear_mc(void)
5437 {
5438 	struct mem_cgroup *from = mc.from;
5439 
5440 	/*
5441 	 * we must clear moving_task before waking up waiters at the end of
5442 	 * task migration.
5443 	 */
5444 	mc.moving_task = NULL;
5445 	__mem_cgroup_clear_mc();
5446 	spin_lock(&mc.lock);
5447 	mc.from = NULL;
5448 	mc.to = NULL;
5449 	spin_unlock(&mc.lock);
5450 	mem_cgroup_end_move(from);
5451 }
5452 
5453 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5454 				struct cgroup *cgroup,
5455 				struct task_struct *p)
5456 {
5457 	int ret = 0;
5458 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5459 
5460 	if (mem->move_charge_at_immigrate) {
5461 		struct mm_struct *mm;
5462 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5463 
5464 		VM_BUG_ON(from == mem);
5465 
5466 		mm = get_task_mm(p);
5467 		if (!mm)
5468 			return 0;
5469 		/* We move charges only when we move a owner of the mm */
5470 		if (mm->owner == p) {
5471 			VM_BUG_ON(mc.from);
5472 			VM_BUG_ON(mc.to);
5473 			VM_BUG_ON(mc.precharge);
5474 			VM_BUG_ON(mc.moved_charge);
5475 			VM_BUG_ON(mc.moved_swap);
5476 			mem_cgroup_start_move(from);
5477 			spin_lock(&mc.lock);
5478 			mc.from = from;
5479 			mc.to = mem;
5480 			spin_unlock(&mc.lock);
5481 			/* We set mc.moving_task later */
5482 
5483 			ret = mem_cgroup_precharge_mc(mm);
5484 			if (ret)
5485 				mem_cgroup_clear_mc();
5486 		}
5487 		mmput(mm);
5488 	}
5489 	return ret;
5490 }
5491 
5492 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5493 				struct cgroup *cgroup,
5494 				struct task_struct *p)
5495 {
5496 	mem_cgroup_clear_mc();
5497 }
5498 
5499 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5500 				unsigned long addr, unsigned long end,
5501 				struct mm_walk *walk)
5502 {
5503 	int ret = 0;
5504 	struct vm_area_struct *vma = walk->private;
5505 	pte_t *pte;
5506 	spinlock_t *ptl;
5507 
5508 	split_huge_page_pmd(walk->mm, pmd);
5509 retry:
5510 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5511 	for (; addr != end; addr += PAGE_SIZE) {
5512 		pte_t ptent = *(pte++);
5513 		union mc_target target;
5514 		int type;
5515 		struct page *page;
5516 		struct page_cgroup *pc;
5517 		swp_entry_t ent;
5518 
5519 		if (!mc.precharge)
5520 			break;
5521 
5522 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5523 		switch (type) {
5524 		case MC_TARGET_PAGE:
5525 			page = target.page;
5526 			if (isolate_lru_page(page))
5527 				goto put;
5528 			pc = lookup_page_cgroup(page);
5529 			if (!mem_cgroup_move_account(page, 1, pc,
5530 						     mc.from, mc.to, false)) {
5531 				mc.precharge--;
5532 				/* we uncharge from mc.from later. */
5533 				mc.moved_charge++;
5534 			}
5535 			putback_lru_page(page);
5536 put:			/* is_target_pte_for_mc() gets the page */
5537 			put_page(page);
5538 			break;
5539 		case MC_TARGET_SWAP:
5540 			ent = target.ent;
5541 			if (!mem_cgroup_move_swap_account(ent,
5542 						mc.from, mc.to, false)) {
5543 				mc.precharge--;
5544 				/* we fixup refcnts and charges later. */
5545 				mc.moved_swap++;
5546 			}
5547 			break;
5548 		default:
5549 			break;
5550 		}
5551 	}
5552 	pte_unmap_unlock(pte - 1, ptl);
5553 	cond_resched();
5554 
5555 	if (addr != end) {
5556 		/*
5557 		 * We have consumed all precharges we got in can_attach().
5558 		 * We try charge one by one, but don't do any additional
5559 		 * charges to mc.to if we have failed in charge once in attach()
5560 		 * phase.
5561 		 */
5562 		ret = mem_cgroup_do_precharge(1);
5563 		if (!ret)
5564 			goto retry;
5565 	}
5566 
5567 	return ret;
5568 }
5569 
5570 static void mem_cgroup_move_charge(struct mm_struct *mm)
5571 {
5572 	struct vm_area_struct *vma;
5573 
5574 	lru_add_drain_all();
5575 retry:
5576 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5577 		/*
5578 		 * Someone who are holding the mmap_sem might be waiting in
5579 		 * waitq. So we cancel all extra charges, wake up all waiters,
5580 		 * and retry. Because we cancel precharges, we might not be able
5581 		 * to move enough charges, but moving charge is a best-effort
5582 		 * feature anyway, so it wouldn't be a big problem.
5583 		 */
5584 		__mem_cgroup_clear_mc();
5585 		cond_resched();
5586 		goto retry;
5587 	}
5588 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5589 		int ret;
5590 		struct mm_walk mem_cgroup_move_charge_walk = {
5591 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5592 			.mm = mm,
5593 			.private = vma,
5594 		};
5595 		if (is_vm_hugetlb_page(vma))
5596 			continue;
5597 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5598 						&mem_cgroup_move_charge_walk);
5599 		if (ret)
5600 			/*
5601 			 * means we have consumed all precharges and failed in
5602 			 * doing additional charge. Just abandon here.
5603 			 */
5604 			break;
5605 	}
5606 	up_read(&mm->mmap_sem);
5607 }
5608 
5609 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5610 				struct cgroup *cont,
5611 				struct cgroup *old_cont,
5612 				struct task_struct *p)
5613 {
5614 	struct mm_struct *mm = get_task_mm(p);
5615 
5616 	if (mm) {
5617 		if (mc.to)
5618 			mem_cgroup_move_charge(mm);
5619 		put_swap_token(mm);
5620 		mmput(mm);
5621 	}
5622 	if (mc.to)
5623 		mem_cgroup_clear_mc();
5624 }
5625 #else	/* !CONFIG_MMU */
5626 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5627 				struct cgroup *cgroup,
5628 				struct task_struct *p)
5629 {
5630 	return 0;
5631 }
5632 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5633 				struct cgroup *cgroup,
5634 				struct task_struct *p)
5635 {
5636 }
5637 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5638 				struct cgroup *cont,
5639 				struct cgroup *old_cont,
5640 				struct task_struct *p)
5641 {
5642 }
5643 #endif
5644 
5645 struct cgroup_subsys mem_cgroup_subsys = {
5646 	.name = "memory",
5647 	.subsys_id = mem_cgroup_subsys_id,
5648 	.create = mem_cgroup_create,
5649 	.pre_destroy = mem_cgroup_pre_destroy,
5650 	.destroy = mem_cgroup_destroy,
5651 	.populate = mem_cgroup_populate,
5652 	.can_attach = mem_cgroup_can_attach,
5653 	.cancel_attach = mem_cgroup_cancel_attach,
5654 	.attach = mem_cgroup_move_task,
5655 	.early_init = 0,
5656 	.use_id = 1,
5657 };
5658 
5659 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5660 static int __init enable_swap_account(char *s)
5661 {
5662 	/* consider enabled if no parameter or 1 is given */
5663 	if (!strcmp(s, "1"))
5664 		really_do_swap_account = 1;
5665 	else if (!strcmp(s, "0"))
5666 		really_do_swap_account = 0;
5667 	return 1;
5668 }
5669 __setup("swapaccount=", enable_swap_account);
5670 
5671 #endif
5672