1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 133 unsigned int nr_pages); 134 135 static void obj_cgroup_release(struct percpu_ref *ref) 136 { 137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 138 unsigned int nr_bytes; 139 unsigned int nr_pages; 140 unsigned long flags; 141 142 /* 143 * At this point all allocated objects are freed, and 144 * objcg->nr_charged_bytes can't have an arbitrary byte value. 145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 146 * 147 * The following sequence can lead to it: 148 * 1) CPU0: objcg == stock->cached_objcg 149 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 150 * PAGE_SIZE bytes are charged 151 * 3) CPU1: a process from another memcg is allocating something, 152 * the stock if flushed, 153 * objcg->nr_charged_bytes = PAGE_SIZE - 92 154 * 5) CPU0: we do release this object, 155 * 92 bytes are added to stock->nr_bytes 156 * 6) CPU0: stock is flushed, 157 * 92 bytes are added to objcg->nr_charged_bytes 158 * 159 * In the result, nr_charged_bytes == PAGE_SIZE. 160 * This page will be uncharged in obj_cgroup_release(). 161 */ 162 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 164 nr_pages = nr_bytes >> PAGE_SHIFT; 165 166 if (nr_pages) 167 obj_cgroup_uncharge_pages(objcg, nr_pages); 168 169 spin_lock_irqsave(&objcg_lock, flags); 170 list_del(&objcg->list); 171 spin_unlock_irqrestore(&objcg_lock, flags); 172 173 percpu_ref_exit(ref); 174 kfree_rcu(objcg, rcu); 175 } 176 177 static struct obj_cgroup *obj_cgroup_alloc(void) 178 { 179 struct obj_cgroup *objcg; 180 int ret; 181 182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 183 if (!objcg) 184 return NULL; 185 186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 187 GFP_KERNEL); 188 if (ret) { 189 kfree(objcg); 190 return NULL; 191 } 192 INIT_LIST_HEAD(&objcg->list); 193 return objcg; 194 } 195 196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 197 struct mem_cgroup *parent) 198 { 199 struct obj_cgroup *objcg, *iter; 200 201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 202 203 spin_lock_irq(&objcg_lock); 204 205 /* 1) Ready to reparent active objcg. */ 206 list_add(&objcg->list, &memcg->objcg_list); 207 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 208 list_for_each_entry(iter, &memcg->objcg_list, list) 209 WRITE_ONCE(iter->memcg, parent); 210 /* 3) Move already reparented objcgs to the parent's list */ 211 list_splice(&memcg->objcg_list, &parent->objcg_list); 212 213 spin_unlock_irq(&objcg_lock); 214 215 percpu_ref_kill(&objcg->refcnt); 216 } 217 218 /* 219 * A lot of the calls to the cache allocation functions are expected to be 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 221 * conditional to this static branch, we'll have to allow modules that does 222 * kmem_cache_alloc and the such to see this symbol as well 223 */ 224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 225 EXPORT_SYMBOL(memcg_kmem_online_key); 226 227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 228 EXPORT_SYMBOL(memcg_bpf_enabled_key); 229 230 /** 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 232 * @folio: folio of interest 233 * 234 * If memcg is bound to the default hierarchy, css of the memcg associated 235 * with @folio is returned. The returned css remains associated with @folio 236 * until it is released. 237 * 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 239 * is returned. 240 */ 241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 242 { 243 struct mem_cgroup *memcg = folio_memcg(folio); 244 245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 246 memcg = root_mem_cgroup; 247 248 return &memcg->css; 249 } 250 251 /** 252 * page_cgroup_ino - return inode number of the memcg a page is charged to 253 * @page: the page 254 * 255 * Look up the closest online ancestor of the memory cgroup @page is charged to 256 * and return its inode number or 0 if @page is not charged to any cgroup. It 257 * is safe to call this function without holding a reference to @page. 258 * 259 * Note, this function is inherently racy, because there is nothing to prevent 260 * the cgroup inode from getting torn down and potentially reallocated a moment 261 * after page_cgroup_ino() returns, so it only should be used by callers that 262 * do not care (such as procfs interfaces). 263 */ 264 ino_t page_cgroup_ino(struct page *page) 265 { 266 struct mem_cgroup *memcg; 267 unsigned long ino = 0; 268 269 rcu_read_lock(); 270 /* page_folio() is racy here, but the entire function is racy anyway */ 271 memcg = folio_memcg_check(page_folio(page)); 272 273 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 274 memcg = parent_mem_cgroup(memcg); 275 if (memcg) 276 ino = cgroup_ino(memcg->css.cgroup); 277 rcu_read_unlock(); 278 return ino; 279 } 280 281 /* Subset of node_stat_item for memcg stats */ 282 static const unsigned int memcg_node_stat_items[] = { 283 NR_INACTIVE_ANON, 284 NR_ACTIVE_ANON, 285 NR_INACTIVE_FILE, 286 NR_ACTIVE_FILE, 287 NR_UNEVICTABLE, 288 NR_SLAB_RECLAIMABLE_B, 289 NR_SLAB_UNRECLAIMABLE_B, 290 WORKINGSET_REFAULT_ANON, 291 WORKINGSET_REFAULT_FILE, 292 WORKINGSET_ACTIVATE_ANON, 293 WORKINGSET_ACTIVATE_FILE, 294 WORKINGSET_RESTORE_ANON, 295 WORKINGSET_RESTORE_FILE, 296 WORKINGSET_NODERECLAIM, 297 NR_ANON_MAPPED, 298 NR_FILE_MAPPED, 299 NR_FILE_PAGES, 300 NR_FILE_DIRTY, 301 NR_WRITEBACK, 302 NR_SHMEM, 303 NR_SHMEM_THPS, 304 NR_FILE_THPS, 305 NR_ANON_THPS, 306 NR_KERNEL_STACK_KB, 307 NR_PAGETABLE, 308 NR_SECONDARY_PAGETABLE, 309 #ifdef CONFIG_SWAP 310 NR_SWAPCACHE, 311 #endif 312 #ifdef CONFIG_NUMA_BALANCING 313 PGPROMOTE_SUCCESS, 314 #endif 315 PGDEMOTE_KSWAPD, 316 PGDEMOTE_DIRECT, 317 PGDEMOTE_KHUGEPAGED, 318 PGDEMOTE_PROACTIVE, 319 #ifdef CONFIG_HUGETLB_PAGE 320 NR_HUGETLB, 321 #endif 322 }; 323 324 static const unsigned int memcg_stat_items[] = { 325 MEMCG_SWAP, 326 MEMCG_SOCK, 327 MEMCG_PERCPU_B, 328 MEMCG_VMALLOC, 329 MEMCG_KMEM, 330 MEMCG_ZSWAP_B, 331 MEMCG_ZSWAPPED, 332 }; 333 334 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 335 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 336 ARRAY_SIZE(memcg_stat_items)) 337 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 338 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 339 340 static void init_memcg_stats(void) 341 { 342 u8 i, j = 0; 343 344 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 345 346 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 347 348 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 349 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 350 351 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 352 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 353 } 354 355 static inline int memcg_stats_index(int idx) 356 { 357 return mem_cgroup_stats_index[idx]; 358 } 359 360 struct lruvec_stats_percpu { 361 /* Local (CPU and cgroup) state */ 362 long state[NR_MEMCG_NODE_STAT_ITEMS]; 363 364 /* Delta calculation for lockless upward propagation */ 365 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 366 }; 367 368 struct lruvec_stats { 369 /* Aggregated (CPU and subtree) state */ 370 long state[NR_MEMCG_NODE_STAT_ITEMS]; 371 372 /* Non-hierarchical (CPU aggregated) state */ 373 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Pending child counts during tree propagation */ 376 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 380 { 381 struct mem_cgroup_per_node *pn; 382 long x; 383 int i; 384 385 if (mem_cgroup_disabled()) 386 return node_page_state(lruvec_pgdat(lruvec), idx); 387 388 i = memcg_stats_index(idx); 389 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 390 return 0; 391 392 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 393 x = READ_ONCE(pn->lruvec_stats->state[i]); 394 #ifdef CONFIG_SMP 395 if (x < 0) 396 x = 0; 397 #endif 398 return x; 399 } 400 401 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 402 enum node_stat_item idx) 403 { 404 struct mem_cgroup_per_node *pn; 405 long x; 406 int i; 407 408 if (mem_cgroup_disabled()) 409 return node_page_state(lruvec_pgdat(lruvec), idx); 410 411 i = memcg_stats_index(idx); 412 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 413 return 0; 414 415 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 416 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 417 #ifdef CONFIG_SMP 418 if (x < 0) 419 x = 0; 420 #endif 421 return x; 422 } 423 424 /* Subset of vm_event_item to report for memcg event stats */ 425 static const unsigned int memcg_vm_event_stat[] = { 426 #ifdef CONFIG_MEMCG_V1 427 PGPGIN, 428 PGPGOUT, 429 #endif 430 PSWPIN, 431 PSWPOUT, 432 PGSCAN_KSWAPD, 433 PGSCAN_DIRECT, 434 PGSCAN_KHUGEPAGED, 435 PGSCAN_PROACTIVE, 436 PGSTEAL_KSWAPD, 437 PGSTEAL_DIRECT, 438 PGSTEAL_KHUGEPAGED, 439 PGSTEAL_PROACTIVE, 440 PGFAULT, 441 PGMAJFAULT, 442 PGREFILL, 443 PGACTIVATE, 444 PGDEACTIVATE, 445 PGLAZYFREE, 446 PGLAZYFREED, 447 #ifdef CONFIG_SWAP 448 SWPIN_ZERO, 449 SWPOUT_ZERO, 450 #endif 451 #ifdef CONFIG_ZSWAP 452 ZSWPIN, 453 ZSWPOUT, 454 ZSWPWB, 455 #endif 456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 457 THP_FAULT_ALLOC, 458 THP_COLLAPSE_ALLOC, 459 THP_SWPOUT, 460 THP_SWPOUT_FALLBACK, 461 #endif 462 #ifdef CONFIG_NUMA_BALANCING 463 NUMA_PAGE_MIGRATE, 464 NUMA_PTE_UPDATES, 465 NUMA_HINT_FAULTS, 466 #endif 467 }; 468 469 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 470 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 471 472 static void init_memcg_events(void) 473 { 474 u8 i; 475 476 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 477 478 memset(mem_cgroup_events_index, U8_MAX, 479 sizeof(mem_cgroup_events_index)); 480 481 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 482 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 483 } 484 485 static inline int memcg_events_index(enum vm_event_item idx) 486 { 487 return mem_cgroup_events_index[idx]; 488 } 489 490 struct memcg_vmstats_percpu { 491 /* Stats updates since the last flush */ 492 unsigned int stats_updates; 493 494 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 495 struct memcg_vmstats_percpu *parent; 496 struct memcg_vmstats *vmstats; 497 498 /* The above should fit a single cacheline for memcg_rstat_updated() */ 499 500 /* Local (CPU and cgroup) page state & events */ 501 long state[MEMCG_VMSTAT_SIZE]; 502 unsigned long events[NR_MEMCG_EVENTS]; 503 504 /* Delta calculation for lockless upward propagation */ 505 long state_prev[MEMCG_VMSTAT_SIZE]; 506 unsigned long events_prev[NR_MEMCG_EVENTS]; 507 } ____cacheline_aligned; 508 509 struct memcg_vmstats { 510 /* Aggregated (CPU and subtree) page state & events */ 511 long state[MEMCG_VMSTAT_SIZE]; 512 unsigned long events[NR_MEMCG_EVENTS]; 513 514 /* Non-hierarchical (CPU aggregated) page state & events */ 515 long state_local[MEMCG_VMSTAT_SIZE]; 516 unsigned long events_local[NR_MEMCG_EVENTS]; 517 518 /* Pending child counts during tree propagation */ 519 long state_pending[MEMCG_VMSTAT_SIZE]; 520 unsigned long events_pending[NR_MEMCG_EVENTS]; 521 522 /* Stats updates since the last flush */ 523 atomic64_t stats_updates; 524 }; 525 526 /* 527 * memcg and lruvec stats flushing 528 * 529 * Many codepaths leading to stats update or read are performance sensitive and 530 * adding stats flushing in such codepaths is not desirable. So, to optimize the 531 * flushing the kernel does: 532 * 533 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 534 * rstat update tree grow unbounded. 535 * 536 * 2) Flush the stats synchronously on reader side only when there are more than 537 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 538 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 539 * only for 2 seconds due to (1). 540 */ 541 static void flush_memcg_stats_dwork(struct work_struct *w); 542 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 543 static u64 flush_last_time; 544 545 #define FLUSH_TIME (2UL*HZ) 546 547 /* 548 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 549 * not rely on this as part of an acquired spinlock_t lock. These functions are 550 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 551 * is sufficient. 552 */ 553 static void memcg_stats_lock(void) 554 { 555 preempt_disable_nested(); 556 VM_WARN_ON_IRQS_ENABLED(); 557 } 558 559 static void __memcg_stats_lock(void) 560 { 561 preempt_disable_nested(); 562 } 563 564 static void memcg_stats_unlock(void) 565 { 566 preempt_enable_nested(); 567 } 568 569 570 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 571 { 572 return atomic64_read(&vmstats->stats_updates) > 573 MEMCG_CHARGE_BATCH * num_online_cpus(); 574 } 575 576 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 577 { 578 struct memcg_vmstats_percpu *statc; 579 int cpu = smp_processor_id(); 580 unsigned int stats_updates; 581 582 if (!val) 583 return; 584 585 cgroup_rstat_updated(memcg->css.cgroup, cpu); 586 statc = this_cpu_ptr(memcg->vmstats_percpu); 587 for (; statc; statc = statc->parent) { 588 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 589 WRITE_ONCE(statc->stats_updates, stats_updates); 590 if (stats_updates < MEMCG_CHARGE_BATCH) 591 continue; 592 593 /* 594 * If @memcg is already flush-able, increasing stats_updates is 595 * redundant. Avoid the overhead of the atomic update. 596 */ 597 if (!memcg_vmstats_needs_flush(statc->vmstats)) 598 atomic64_add(stats_updates, 599 &statc->vmstats->stats_updates); 600 WRITE_ONCE(statc->stats_updates, 0); 601 } 602 } 603 604 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 605 { 606 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 607 608 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 609 force, needs_flush); 610 611 if (!force && !needs_flush) 612 return; 613 614 if (mem_cgroup_is_root(memcg)) 615 WRITE_ONCE(flush_last_time, jiffies_64); 616 617 cgroup_rstat_flush(memcg->css.cgroup); 618 } 619 620 /* 621 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 622 * @memcg: root of the subtree to flush 623 * 624 * Flushing is serialized by the underlying global rstat lock. There is also a 625 * minimum amount of work to be done even if there are no stat updates to flush. 626 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 627 * avoids unnecessary work and contention on the underlying lock. 628 */ 629 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 630 { 631 if (mem_cgroup_disabled()) 632 return; 633 634 if (!memcg) 635 memcg = root_mem_cgroup; 636 637 __mem_cgroup_flush_stats(memcg, false); 638 } 639 640 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 641 { 642 /* Only flush if the periodic flusher is one full cycle late */ 643 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 644 mem_cgroup_flush_stats(memcg); 645 } 646 647 static void flush_memcg_stats_dwork(struct work_struct *w) 648 { 649 /* 650 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 651 * in latency-sensitive paths is as cheap as possible. 652 */ 653 __mem_cgroup_flush_stats(root_mem_cgroup, true); 654 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 655 } 656 657 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 658 { 659 long x; 660 int i = memcg_stats_index(idx); 661 662 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 663 return 0; 664 665 x = READ_ONCE(memcg->vmstats->state[i]); 666 #ifdef CONFIG_SMP 667 if (x < 0) 668 x = 0; 669 #endif 670 return x; 671 } 672 673 static int memcg_page_state_unit(int item); 674 675 /* 676 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 677 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 678 */ 679 static int memcg_state_val_in_pages(int idx, int val) 680 { 681 int unit = memcg_page_state_unit(idx); 682 683 if (!val || unit == PAGE_SIZE) 684 return val; 685 else 686 return max(val * unit / PAGE_SIZE, 1UL); 687 } 688 689 /** 690 * __mod_memcg_state - update cgroup memory statistics 691 * @memcg: the memory cgroup 692 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 693 * @val: delta to add to the counter, can be negative 694 */ 695 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 696 int val) 697 { 698 int i = memcg_stats_index(idx); 699 700 if (mem_cgroup_disabled()) 701 return; 702 703 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 704 return; 705 706 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 707 val = memcg_state_val_in_pages(idx, val); 708 memcg_rstat_updated(memcg, val); 709 trace_mod_memcg_state(memcg, idx, val); 710 } 711 712 #ifdef CONFIG_MEMCG_V1 713 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 714 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 715 { 716 long x; 717 int i = memcg_stats_index(idx); 718 719 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 720 return 0; 721 722 x = READ_ONCE(memcg->vmstats->state_local[i]); 723 #ifdef CONFIG_SMP 724 if (x < 0) 725 x = 0; 726 #endif 727 return x; 728 } 729 #endif 730 731 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 732 enum node_stat_item idx, 733 int val) 734 { 735 struct mem_cgroup_per_node *pn; 736 struct mem_cgroup *memcg; 737 int i = memcg_stats_index(idx); 738 739 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 740 return; 741 742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 743 memcg = pn->memcg; 744 745 /* 746 * The caller from rmap relies on disabled preemption because they never 747 * update their counter from in-interrupt context. For these two 748 * counters we check that the update is never performed from an 749 * interrupt context while other caller need to have disabled interrupt. 750 */ 751 __memcg_stats_lock(); 752 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 753 switch (idx) { 754 case NR_ANON_MAPPED: 755 case NR_FILE_MAPPED: 756 case NR_ANON_THPS: 757 WARN_ON_ONCE(!in_task()); 758 break; 759 default: 760 VM_WARN_ON_IRQS_ENABLED(); 761 } 762 } 763 764 /* Update memcg */ 765 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 766 767 /* Update lruvec */ 768 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 769 770 val = memcg_state_val_in_pages(idx, val); 771 memcg_rstat_updated(memcg, val); 772 trace_mod_memcg_lruvec_state(memcg, idx, val); 773 memcg_stats_unlock(); 774 } 775 776 /** 777 * __mod_lruvec_state - update lruvec memory statistics 778 * @lruvec: the lruvec 779 * @idx: the stat item 780 * @val: delta to add to the counter, can be negative 781 * 782 * The lruvec is the intersection of the NUMA node and a cgroup. This 783 * function updates the all three counters that are affected by a 784 * change of state at this level: per-node, per-cgroup, per-lruvec. 785 */ 786 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 787 int val) 788 { 789 /* Update node */ 790 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 791 792 /* Update memcg and lruvec */ 793 if (!mem_cgroup_disabled()) 794 __mod_memcg_lruvec_state(lruvec, idx, val); 795 } 796 797 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 798 int val) 799 { 800 struct mem_cgroup *memcg; 801 pg_data_t *pgdat = folio_pgdat(folio); 802 struct lruvec *lruvec; 803 804 rcu_read_lock(); 805 memcg = folio_memcg(folio); 806 /* Untracked pages have no memcg, no lruvec. Update only the node */ 807 if (!memcg) { 808 rcu_read_unlock(); 809 __mod_node_page_state(pgdat, idx, val); 810 return; 811 } 812 813 lruvec = mem_cgroup_lruvec(memcg, pgdat); 814 __mod_lruvec_state(lruvec, idx, val); 815 rcu_read_unlock(); 816 } 817 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 818 819 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 820 { 821 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 822 struct mem_cgroup *memcg; 823 struct lruvec *lruvec; 824 825 rcu_read_lock(); 826 memcg = mem_cgroup_from_slab_obj(p); 827 828 /* 829 * Untracked pages have no memcg, no lruvec. Update only the 830 * node. If we reparent the slab objects to the root memcg, 831 * when we free the slab object, we need to update the per-memcg 832 * vmstats to keep it correct for the root memcg. 833 */ 834 if (!memcg) { 835 __mod_node_page_state(pgdat, idx, val); 836 } else { 837 lruvec = mem_cgroup_lruvec(memcg, pgdat); 838 __mod_lruvec_state(lruvec, idx, val); 839 } 840 rcu_read_unlock(); 841 } 842 843 /** 844 * __count_memcg_events - account VM events in a cgroup 845 * @memcg: the memory cgroup 846 * @idx: the event item 847 * @count: the number of events that occurred 848 */ 849 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 850 unsigned long count) 851 { 852 int i = memcg_events_index(idx); 853 854 if (mem_cgroup_disabled()) 855 return; 856 857 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 858 return; 859 860 memcg_stats_lock(); 861 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 862 memcg_rstat_updated(memcg, count); 863 trace_count_memcg_events(memcg, idx, count); 864 memcg_stats_unlock(); 865 } 866 867 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 868 { 869 int i = memcg_events_index(event); 870 871 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 872 return 0; 873 874 return READ_ONCE(memcg->vmstats->events[i]); 875 } 876 877 #ifdef CONFIG_MEMCG_V1 878 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 879 { 880 int i = memcg_events_index(event); 881 882 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 883 return 0; 884 885 return READ_ONCE(memcg->vmstats->events_local[i]); 886 } 887 #endif 888 889 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 890 { 891 /* 892 * mm_update_next_owner() may clear mm->owner to NULL 893 * if it races with swapoff, page migration, etc. 894 * So this can be called with p == NULL. 895 */ 896 if (unlikely(!p)) 897 return NULL; 898 899 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 900 } 901 EXPORT_SYMBOL(mem_cgroup_from_task); 902 903 static __always_inline struct mem_cgroup *active_memcg(void) 904 { 905 if (!in_task()) 906 return this_cpu_read(int_active_memcg); 907 else 908 return current->active_memcg; 909 } 910 911 /** 912 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 913 * @mm: mm from which memcg should be extracted. It can be NULL. 914 * 915 * Obtain a reference on mm->memcg and returns it if successful. If mm 916 * is NULL, then the memcg is chosen as follows: 917 * 1) The active memcg, if set. 918 * 2) current->mm->memcg, if available 919 * 3) root memcg 920 * If mem_cgroup is disabled, NULL is returned. 921 */ 922 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 923 { 924 struct mem_cgroup *memcg; 925 926 if (mem_cgroup_disabled()) 927 return NULL; 928 929 /* 930 * Page cache insertions can happen without an 931 * actual mm context, e.g. during disk probing 932 * on boot, loopback IO, acct() writes etc. 933 * 934 * No need to css_get on root memcg as the reference 935 * counting is disabled on the root level in the 936 * cgroup core. See CSS_NO_REF. 937 */ 938 if (unlikely(!mm)) { 939 memcg = active_memcg(); 940 if (unlikely(memcg)) { 941 /* remote memcg must hold a ref */ 942 css_get(&memcg->css); 943 return memcg; 944 } 945 mm = current->mm; 946 if (unlikely(!mm)) 947 return root_mem_cgroup; 948 } 949 950 rcu_read_lock(); 951 do { 952 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 953 if (unlikely(!memcg)) 954 memcg = root_mem_cgroup; 955 } while (!css_tryget(&memcg->css)); 956 rcu_read_unlock(); 957 return memcg; 958 } 959 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 960 961 /** 962 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 963 */ 964 struct mem_cgroup *get_mem_cgroup_from_current(void) 965 { 966 struct mem_cgroup *memcg; 967 968 if (mem_cgroup_disabled()) 969 return NULL; 970 971 again: 972 rcu_read_lock(); 973 memcg = mem_cgroup_from_task(current); 974 if (!css_tryget(&memcg->css)) { 975 rcu_read_unlock(); 976 goto again; 977 } 978 rcu_read_unlock(); 979 return memcg; 980 } 981 982 /** 983 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 984 * @folio: folio from which memcg should be extracted. 985 */ 986 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 987 { 988 struct mem_cgroup *memcg = folio_memcg(folio); 989 990 if (mem_cgroup_disabled()) 991 return NULL; 992 993 rcu_read_lock(); 994 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 995 memcg = root_mem_cgroup; 996 rcu_read_unlock(); 997 return memcg; 998 } 999 1000 /** 1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1002 * @root: hierarchy root 1003 * @prev: previously returned memcg, NULL on first invocation 1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1005 * 1006 * Returns references to children of the hierarchy below @root, or 1007 * @root itself, or %NULL after a full round-trip. 1008 * 1009 * Caller must pass the return value in @prev on subsequent 1010 * invocations for reference counting, or use mem_cgroup_iter_break() 1011 * to cancel a hierarchy walk before the round-trip is complete. 1012 * 1013 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1014 * in the hierarchy among all concurrent reclaimers operating on the 1015 * same node. 1016 */ 1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1018 struct mem_cgroup *prev, 1019 struct mem_cgroup_reclaim_cookie *reclaim) 1020 { 1021 struct mem_cgroup_reclaim_iter *iter; 1022 struct cgroup_subsys_state *css; 1023 struct mem_cgroup *pos; 1024 struct mem_cgroup *next; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 if (!root) 1030 root = root_mem_cgroup; 1031 1032 rcu_read_lock(); 1033 restart: 1034 next = NULL; 1035 1036 if (reclaim) { 1037 int gen; 1038 int nid = reclaim->pgdat->node_id; 1039 1040 iter = &root->nodeinfo[nid]->iter; 1041 gen = atomic_read(&iter->generation); 1042 1043 /* 1044 * On start, join the current reclaim iteration cycle. 1045 * Exit when a concurrent walker completes it. 1046 */ 1047 if (!prev) 1048 reclaim->generation = gen; 1049 else if (reclaim->generation != gen) 1050 goto out_unlock; 1051 1052 pos = READ_ONCE(iter->position); 1053 } else 1054 pos = prev; 1055 1056 css = pos ? &pos->css : NULL; 1057 1058 while ((css = css_next_descendant_pre(css, &root->css))) { 1059 /* 1060 * Verify the css and acquire a reference. The root 1061 * is provided by the caller, so we know it's alive 1062 * and kicking, and don't take an extra reference. 1063 */ 1064 if (css == &root->css || css_tryget(css)) 1065 break; 1066 } 1067 1068 next = mem_cgroup_from_css(css); 1069 1070 if (reclaim) { 1071 /* 1072 * The position could have already been updated by a competing 1073 * thread, so check that the value hasn't changed since we read 1074 * it to avoid reclaiming from the same cgroup twice. 1075 */ 1076 if (cmpxchg(&iter->position, pos, next) != pos) { 1077 if (css && css != &root->css) 1078 css_put(css); 1079 goto restart; 1080 } 1081 1082 if (!next) { 1083 atomic_inc(&iter->generation); 1084 1085 /* 1086 * Reclaimers share the hierarchy walk, and a 1087 * new one might jump in right at the end of 1088 * the hierarchy - make sure they see at least 1089 * one group and restart from the beginning. 1090 */ 1091 if (!prev) 1092 goto restart; 1093 } 1094 } 1095 1096 out_unlock: 1097 rcu_read_unlock(); 1098 if (prev && prev != root) 1099 css_put(&prev->css); 1100 1101 return next; 1102 } 1103 1104 /** 1105 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1106 * @root: hierarchy root 1107 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1108 */ 1109 void mem_cgroup_iter_break(struct mem_cgroup *root, 1110 struct mem_cgroup *prev) 1111 { 1112 if (!root) 1113 root = root_mem_cgroup; 1114 if (prev && prev != root) 1115 css_put(&prev->css); 1116 } 1117 1118 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1119 struct mem_cgroup *dead_memcg) 1120 { 1121 struct mem_cgroup_reclaim_iter *iter; 1122 struct mem_cgroup_per_node *mz; 1123 int nid; 1124 1125 for_each_node(nid) { 1126 mz = from->nodeinfo[nid]; 1127 iter = &mz->iter; 1128 cmpxchg(&iter->position, dead_memcg, NULL); 1129 } 1130 } 1131 1132 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1133 { 1134 struct mem_cgroup *memcg = dead_memcg; 1135 struct mem_cgroup *last; 1136 1137 do { 1138 __invalidate_reclaim_iterators(memcg, dead_memcg); 1139 last = memcg; 1140 } while ((memcg = parent_mem_cgroup(memcg))); 1141 1142 /* 1143 * When cgroup1 non-hierarchy mode is used, 1144 * parent_mem_cgroup() does not walk all the way up to the 1145 * cgroup root (root_mem_cgroup). So we have to handle 1146 * dead_memcg from cgroup root separately. 1147 */ 1148 if (!mem_cgroup_is_root(last)) 1149 __invalidate_reclaim_iterators(root_mem_cgroup, 1150 dead_memcg); 1151 } 1152 1153 /** 1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1155 * @memcg: hierarchy root 1156 * @fn: function to call for each task 1157 * @arg: argument passed to @fn 1158 * 1159 * This function iterates over tasks attached to @memcg or to any of its 1160 * descendants and calls @fn for each task. If @fn returns a non-zero 1161 * value, the function breaks the iteration loop. Otherwise, it will iterate 1162 * over all tasks and return 0. 1163 * 1164 * This function must not be called for the root memory cgroup. 1165 */ 1166 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1167 int (*fn)(struct task_struct *, void *), void *arg) 1168 { 1169 struct mem_cgroup *iter; 1170 int ret = 0; 1171 int i = 0; 1172 1173 BUG_ON(mem_cgroup_is_root(memcg)); 1174 1175 for_each_mem_cgroup_tree(iter, memcg) { 1176 struct css_task_iter it; 1177 struct task_struct *task; 1178 1179 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1180 while (!ret && (task = css_task_iter_next(&it))) { 1181 /* Avoid potential softlockup warning */ 1182 if ((++i & 1023) == 0) 1183 cond_resched(); 1184 ret = fn(task, arg); 1185 } 1186 css_task_iter_end(&it); 1187 if (ret) { 1188 mem_cgroup_iter_break(memcg, iter); 1189 break; 1190 } 1191 } 1192 } 1193 1194 #ifdef CONFIG_DEBUG_VM 1195 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1196 { 1197 struct mem_cgroup *memcg; 1198 1199 if (mem_cgroup_disabled()) 1200 return; 1201 1202 memcg = folio_memcg(folio); 1203 1204 if (!memcg) 1205 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1206 else 1207 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1208 } 1209 #endif 1210 1211 /** 1212 * folio_lruvec_lock - Lock the lruvec for a folio. 1213 * @folio: Pointer to the folio. 1214 * 1215 * These functions are safe to use under any of the following conditions: 1216 * - folio locked 1217 * - folio_test_lru false 1218 * - folio frozen (refcount of 0) 1219 * 1220 * Return: The lruvec this folio is on with its lock held. 1221 */ 1222 struct lruvec *folio_lruvec_lock(struct folio *folio) 1223 { 1224 struct lruvec *lruvec = folio_lruvec(folio); 1225 1226 spin_lock(&lruvec->lru_lock); 1227 lruvec_memcg_debug(lruvec, folio); 1228 1229 return lruvec; 1230 } 1231 1232 /** 1233 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1234 * @folio: Pointer to the folio. 1235 * 1236 * These functions are safe to use under any of the following conditions: 1237 * - folio locked 1238 * - folio_test_lru false 1239 * - folio frozen (refcount of 0) 1240 * 1241 * Return: The lruvec this folio is on with its lock held and interrupts 1242 * disabled. 1243 */ 1244 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1245 { 1246 struct lruvec *lruvec = folio_lruvec(folio); 1247 1248 spin_lock_irq(&lruvec->lru_lock); 1249 lruvec_memcg_debug(lruvec, folio); 1250 1251 return lruvec; 1252 } 1253 1254 /** 1255 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1256 * @folio: Pointer to the folio. 1257 * @flags: Pointer to irqsave flags. 1258 * 1259 * These functions are safe to use under any of the following conditions: 1260 * - folio locked 1261 * - folio_test_lru false 1262 * - folio frozen (refcount of 0) 1263 * 1264 * Return: The lruvec this folio is on with its lock held and interrupts 1265 * disabled. 1266 */ 1267 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1268 unsigned long *flags) 1269 { 1270 struct lruvec *lruvec = folio_lruvec(folio); 1271 1272 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1273 lruvec_memcg_debug(lruvec, folio); 1274 1275 return lruvec; 1276 } 1277 1278 /** 1279 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1280 * @lruvec: mem_cgroup per zone lru vector 1281 * @lru: index of lru list the page is sitting on 1282 * @zid: zone id of the accounted pages 1283 * @nr_pages: positive when adding or negative when removing 1284 * 1285 * This function must be called under lru_lock, just before a page is added 1286 * to or just after a page is removed from an lru list. 1287 */ 1288 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1289 int zid, int nr_pages) 1290 { 1291 struct mem_cgroup_per_node *mz; 1292 unsigned long *lru_size; 1293 long size; 1294 1295 if (mem_cgroup_disabled()) 1296 return; 1297 1298 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1299 lru_size = &mz->lru_zone_size[zid][lru]; 1300 1301 if (nr_pages < 0) 1302 *lru_size += nr_pages; 1303 1304 size = *lru_size; 1305 if (WARN_ONCE(size < 0, 1306 "%s(%p, %d, %d): lru_size %ld\n", 1307 __func__, lruvec, lru, nr_pages, size)) { 1308 VM_BUG_ON(1); 1309 *lru_size = 0; 1310 } 1311 1312 if (nr_pages > 0) 1313 *lru_size += nr_pages; 1314 } 1315 1316 /** 1317 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1318 * @memcg: the memory cgroup 1319 * 1320 * Returns the maximum amount of memory @mem can be charged with, in 1321 * pages. 1322 */ 1323 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1324 { 1325 unsigned long margin = 0; 1326 unsigned long count; 1327 unsigned long limit; 1328 1329 count = page_counter_read(&memcg->memory); 1330 limit = READ_ONCE(memcg->memory.max); 1331 if (count < limit) 1332 margin = limit - count; 1333 1334 if (do_memsw_account()) { 1335 count = page_counter_read(&memcg->memsw); 1336 limit = READ_ONCE(memcg->memsw.max); 1337 if (count < limit) 1338 margin = min(margin, limit - count); 1339 else 1340 margin = 0; 1341 } 1342 1343 return margin; 1344 } 1345 1346 struct memory_stat { 1347 const char *name; 1348 unsigned int idx; 1349 }; 1350 1351 static const struct memory_stat memory_stats[] = { 1352 { "anon", NR_ANON_MAPPED }, 1353 { "file", NR_FILE_PAGES }, 1354 { "kernel", MEMCG_KMEM }, 1355 { "kernel_stack", NR_KERNEL_STACK_KB }, 1356 { "pagetables", NR_PAGETABLE }, 1357 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1358 { "percpu", MEMCG_PERCPU_B }, 1359 { "sock", MEMCG_SOCK }, 1360 { "vmalloc", MEMCG_VMALLOC }, 1361 { "shmem", NR_SHMEM }, 1362 #ifdef CONFIG_ZSWAP 1363 { "zswap", MEMCG_ZSWAP_B }, 1364 { "zswapped", MEMCG_ZSWAPPED }, 1365 #endif 1366 { "file_mapped", NR_FILE_MAPPED }, 1367 { "file_dirty", NR_FILE_DIRTY }, 1368 { "file_writeback", NR_WRITEBACK }, 1369 #ifdef CONFIG_SWAP 1370 { "swapcached", NR_SWAPCACHE }, 1371 #endif 1372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1373 { "anon_thp", NR_ANON_THPS }, 1374 { "file_thp", NR_FILE_THPS }, 1375 { "shmem_thp", NR_SHMEM_THPS }, 1376 #endif 1377 { "inactive_anon", NR_INACTIVE_ANON }, 1378 { "active_anon", NR_ACTIVE_ANON }, 1379 { "inactive_file", NR_INACTIVE_FILE }, 1380 { "active_file", NR_ACTIVE_FILE }, 1381 { "unevictable", NR_UNEVICTABLE }, 1382 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1383 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1384 #ifdef CONFIG_HUGETLB_PAGE 1385 { "hugetlb", NR_HUGETLB }, 1386 #endif 1387 1388 /* The memory events */ 1389 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1390 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1391 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1392 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1393 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1394 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1395 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1396 1397 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1398 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1399 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1400 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1401 #ifdef CONFIG_NUMA_BALANCING 1402 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1403 #endif 1404 }; 1405 1406 /* The actual unit of the state item, not the same as the output unit */ 1407 static int memcg_page_state_unit(int item) 1408 { 1409 switch (item) { 1410 case MEMCG_PERCPU_B: 1411 case MEMCG_ZSWAP_B: 1412 case NR_SLAB_RECLAIMABLE_B: 1413 case NR_SLAB_UNRECLAIMABLE_B: 1414 return 1; 1415 case NR_KERNEL_STACK_KB: 1416 return SZ_1K; 1417 default: 1418 return PAGE_SIZE; 1419 } 1420 } 1421 1422 /* Translate stat items to the correct unit for memory.stat output */ 1423 static int memcg_page_state_output_unit(int item) 1424 { 1425 /* 1426 * Workingset state is actually in pages, but we export it to userspace 1427 * as a scalar count of events, so special case it here. 1428 * 1429 * Demotion and promotion activities are exported in pages, consistent 1430 * with their global counterparts. 1431 */ 1432 switch (item) { 1433 case WORKINGSET_REFAULT_ANON: 1434 case WORKINGSET_REFAULT_FILE: 1435 case WORKINGSET_ACTIVATE_ANON: 1436 case WORKINGSET_ACTIVATE_FILE: 1437 case WORKINGSET_RESTORE_ANON: 1438 case WORKINGSET_RESTORE_FILE: 1439 case WORKINGSET_NODERECLAIM: 1440 case PGDEMOTE_KSWAPD: 1441 case PGDEMOTE_DIRECT: 1442 case PGDEMOTE_KHUGEPAGED: 1443 case PGDEMOTE_PROACTIVE: 1444 #ifdef CONFIG_NUMA_BALANCING 1445 case PGPROMOTE_SUCCESS: 1446 #endif 1447 return 1; 1448 default: 1449 return memcg_page_state_unit(item); 1450 } 1451 } 1452 1453 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1454 { 1455 return memcg_page_state(memcg, item) * 1456 memcg_page_state_output_unit(item); 1457 } 1458 1459 #ifdef CONFIG_MEMCG_V1 1460 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1461 { 1462 return memcg_page_state_local(memcg, item) * 1463 memcg_page_state_output_unit(item); 1464 } 1465 #endif 1466 1467 #ifdef CONFIG_HUGETLB_PAGE 1468 static bool memcg_accounts_hugetlb(void) 1469 { 1470 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1471 } 1472 #else /* CONFIG_HUGETLB_PAGE */ 1473 static bool memcg_accounts_hugetlb(void) 1474 { 1475 return false; 1476 } 1477 #endif /* CONFIG_HUGETLB_PAGE */ 1478 1479 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1480 { 1481 int i; 1482 1483 /* 1484 * Provide statistics on the state of the memory subsystem as 1485 * well as cumulative event counters that show past behavior. 1486 * 1487 * This list is ordered following a combination of these gradients: 1488 * 1) generic big picture -> specifics and details 1489 * 2) reflecting userspace activity -> reflecting kernel heuristics 1490 * 1491 * Current memory state: 1492 */ 1493 mem_cgroup_flush_stats(memcg); 1494 1495 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1496 u64 size; 1497 1498 #ifdef CONFIG_HUGETLB_PAGE 1499 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1500 !memcg_accounts_hugetlb()) 1501 continue; 1502 #endif 1503 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1504 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1505 1506 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1507 size += memcg_page_state_output(memcg, 1508 NR_SLAB_RECLAIMABLE_B); 1509 seq_buf_printf(s, "slab %llu\n", size); 1510 } 1511 } 1512 1513 /* Accumulated memory events */ 1514 seq_buf_printf(s, "pgscan %lu\n", 1515 memcg_events(memcg, PGSCAN_KSWAPD) + 1516 memcg_events(memcg, PGSCAN_DIRECT) + 1517 memcg_events(memcg, PGSCAN_PROACTIVE) + 1518 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1519 seq_buf_printf(s, "pgsteal %lu\n", 1520 memcg_events(memcg, PGSTEAL_KSWAPD) + 1521 memcg_events(memcg, PGSTEAL_DIRECT) + 1522 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1523 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1524 1525 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1526 #ifdef CONFIG_MEMCG_V1 1527 if (memcg_vm_event_stat[i] == PGPGIN || 1528 memcg_vm_event_stat[i] == PGPGOUT) 1529 continue; 1530 #endif 1531 seq_buf_printf(s, "%s %lu\n", 1532 vm_event_name(memcg_vm_event_stat[i]), 1533 memcg_events(memcg, memcg_vm_event_stat[i])); 1534 } 1535 } 1536 1537 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1538 { 1539 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1540 memcg_stat_format(memcg, s); 1541 else 1542 memcg1_stat_format(memcg, s); 1543 if (seq_buf_has_overflowed(s)) 1544 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1545 } 1546 1547 /** 1548 * mem_cgroup_print_oom_context: Print OOM information relevant to 1549 * memory controller. 1550 * @memcg: The memory cgroup that went over limit 1551 * @p: Task that is going to be killed 1552 * 1553 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1554 * enabled 1555 */ 1556 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1557 { 1558 rcu_read_lock(); 1559 1560 if (memcg) { 1561 pr_cont(",oom_memcg="); 1562 pr_cont_cgroup_path(memcg->css.cgroup); 1563 } else 1564 pr_cont(",global_oom"); 1565 if (p) { 1566 pr_cont(",task_memcg="); 1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1568 } 1569 rcu_read_unlock(); 1570 } 1571 1572 /** 1573 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1574 * memory controller. 1575 * @memcg: The memory cgroup that went over limit 1576 */ 1577 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1578 { 1579 /* Use static buffer, for the caller is holding oom_lock. */ 1580 static char buf[SEQ_BUF_SIZE]; 1581 struct seq_buf s; 1582 unsigned long memory_failcnt; 1583 1584 lockdep_assert_held(&oom_lock); 1585 1586 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1587 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1588 else 1589 memory_failcnt = memcg->memory.failcnt; 1590 1591 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1592 K((u64)page_counter_read(&memcg->memory)), 1593 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1594 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1595 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1596 K((u64)page_counter_read(&memcg->swap)), 1597 K((u64)READ_ONCE(memcg->swap.max)), 1598 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1599 #ifdef CONFIG_MEMCG_V1 1600 else { 1601 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1602 K((u64)page_counter_read(&memcg->memsw)), 1603 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1604 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1605 K((u64)page_counter_read(&memcg->kmem)), 1606 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1607 } 1608 #endif 1609 1610 pr_info("Memory cgroup stats for "); 1611 pr_cont_cgroup_path(memcg->css.cgroup); 1612 pr_cont(":"); 1613 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1614 memory_stat_format(memcg, &s); 1615 seq_buf_do_printk(&s, KERN_INFO); 1616 } 1617 1618 /* 1619 * Return the memory (and swap, if configured) limit for a memcg. 1620 */ 1621 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1622 { 1623 unsigned long max = READ_ONCE(memcg->memory.max); 1624 1625 if (do_memsw_account()) { 1626 if (mem_cgroup_swappiness(memcg)) { 1627 /* Calculate swap excess capacity from memsw limit */ 1628 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1629 1630 max += min(swap, (unsigned long)total_swap_pages); 1631 } 1632 } else { 1633 if (mem_cgroup_swappiness(memcg)) 1634 max += min(READ_ONCE(memcg->swap.max), 1635 (unsigned long)total_swap_pages); 1636 } 1637 return max; 1638 } 1639 1640 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1641 { 1642 return page_counter_read(&memcg->memory); 1643 } 1644 1645 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1646 int order) 1647 { 1648 struct oom_control oc = { 1649 .zonelist = NULL, 1650 .nodemask = NULL, 1651 .memcg = memcg, 1652 .gfp_mask = gfp_mask, 1653 .order = order, 1654 }; 1655 bool ret = true; 1656 1657 if (mutex_lock_killable(&oom_lock)) 1658 return true; 1659 1660 if (mem_cgroup_margin(memcg) >= (1 << order)) 1661 goto unlock; 1662 1663 /* 1664 * A few threads which were not waiting at mutex_lock_killable() can 1665 * fail to bail out. Therefore, check again after holding oom_lock. 1666 */ 1667 ret = task_is_dying() || out_of_memory(&oc); 1668 1669 unlock: 1670 mutex_unlock(&oom_lock); 1671 return ret; 1672 } 1673 1674 /* 1675 * Returns true if successfully killed one or more processes. Though in some 1676 * corner cases it can return true even without killing any process. 1677 */ 1678 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1679 { 1680 bool locked, ret; 1681 1682 if (order > PAGE_ALLOC_COSTLY_ORDER) 1683 return false; 1684 1685 memcg_memory_event(memcg, MEMCG_OOM); 1686 1687 if (!memcg1_oom_prepare(memcg, &locked)) 1688 return false; 1689 1690 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1691 1692 memcg1_oom_finish(memcg, locked); 1693 1694 return ret; 1695 } 1696 1697 /** 1698 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1699 * @victim: task to be killed by the OOM killer 1700 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1701 * 1702 * Returns a pointer to a memory cgroup, which has to be cleaned up 1703 * by killing all belonging OOM-killable tasks. 1704 * 1705 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1706 */ 1707 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1708 struct mem_cgroup *oom_domain) 1709 { 1710 struct mem_cgroup *oom_group = NULL; 1711 struct mem_cgroup *memcg; 1712 1713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1714 return NULL; 1715 1716 if (!oom_domain) 1717 oom_domain = root_mem_cgroup; 1718 1719 rcu_read_lock(); 1720 1721 memcg = mem_cgroup_from_task(victim); 1722 if (mem_cgroup_is_root(memcg)) 1723 goto out; 1724 1725 /* 1726 * If the victim task has been asynchronously moved to a different 1727 * memory cgroup, we might end up killing tasks outside oom_domain. 1728 * In this case it's better to ignore memory.group.oom. 1729 */ 1730 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1731 goto out; 1732 1733 /* 1734 * Traverse the memory cgroup hierarchy from the victim task's 1735 * cgroup up to the OOMing cgroup (or root) to find the 1736 * highest-level memory cgroup with oom.group set. 1737 */ 1738 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1739 if (READ_ONCE(memcg->oom_group)) 1740 oom_group = memcg; 1741 1742 if (memcg == oom_domain) 1743 break; 1744 } 1745 1746 if (oom_group) 1747 css_get(&oom_group->css); 1748 out: 1749 rcu_read_unlock(); 1750 1751 return oom_group; 1752 } 1753 1754 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1755 { 1756 pr_info("Tasks in "); 1757 pr_cont_cgroup_path(memcg->css.cgroup); 1758 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1759 } 1760 1761 struct memcg_stock_pcp { 1762 local_trylock_t stock_lock; 1763 struct mem_cgroup *cached; /* this never be root cgroup */ 1764 unsigned int nr_pages; 1765 1766 struct obj_cgroup *cached_objcg; 1767 struct pglist_data *cached_pgdat; 1768 unsigned int nr_bytes; 1769 int nr_slab_reclaimable_b; 1770 int nr_slab_unreclaimable_b; 1771 1772 struct work_struct work; 1773 unsigned long flags; 1774 #define FLUSHING_CACHED_CHARGE 0 1775 }; 1776 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1777 .stock_lock = INIT_LOCAL_TRYLOCK(stock_lock), 1778 }; 1779 static DEFINE_MUTEX(percpu_charge_mutex); 1780 1781 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1782 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1783 struct mem_cgroup *root_memcg); 1784 1785 /** 1786 * consume_stock: Try to consume stocked charge on this cpu. 1787 * @memcg: memcg to consume from. 1788 * @nr_pages: how many pages to charge. 1789 * @gfp_mask: allocation mask. 1790 * 1791 * The charges will only happen if @memcg matches the current cpu's memcg 1792 * stock, and at least @nr_pages are available in that stock. Failure to 1793 * service an allocation will refill the stock. 1794 * 1795 * returns true if successful, false otherwise. 1796 */ 1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1798 gfp_t gfp_mask) 1799 { 1800 struct memcg_stock_pcp *stock; 1801 unsigned int stock_pages; 1802 unsigned long flags; 1803 bool ret = false; 1804 1805 if (nr_pages > MEMCG_CHARGE_BATCH) 1806 return ret; 1807 1808 if (gfpflags_allow_spinning(gfp_mask)) 1809 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1810 else if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) 1811 return ret; 1812 1813 stock = this_cpu_ptr(&memcg_stock); 1814 stock_pages = READ_ONCE(stock->nr_pages); 1815 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1816 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1817 ret = true; 1818 } 1819 1820 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1821 1822 return ret; 1823 } 1824 1825 /* 1826 * Returns stocks cached in percpu and reset cached information. 1827 */ 1828 static void drain_stock(struct memcg_stock_pcp *stock) 1829 { 1830 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1831 struct mem_cgroup *old = READ_ONCE(stock->cached); 1832 1833 if (!old) 1834 return; 1835 1836 if (stock_pages) { 1837 page_counter_uncharge(&old->memory, stock_pages); 1838 if (do_memsw_account()) 1839 page_counter_uncharge(&old->memsw, stock_pages); 1840 1841 WRITE_ONCE(stock->nr_pages, 0); 1842 } 1843 1844 css_put(&old->css); 1845 WRITE_ONCE(stock->cached, NULL); 1846 } 1847 1848 static void drain_local_stock(struct work_struct *dummy) 1849 { 1850 struct memcg_stock_pcp *stock; 1851 struct obj_cgroup *old = NULL; 1852 unsigned long flags; 1853 1854 /* 1855 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1856 * drain_stock races is that we always operate on local CPU stock 1857 * here with IRQ disabled 1858 */ 1859 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1860 1861 stock = this_cpu_ptr(&memcg_stock); 1862 old = drain_obj_stock(stock); 1863 drain_stock(stock); 1864 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1865 1866 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1867 obj_cgroup_put(old); 1868 } 1869 1870 /* 1871 * Cache charges(val) to local per_cpu area. 1872 * This will be consumed by consume_stock() function, later. 1873 */ 1874 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1875 { 1876 struct memcg_stock_pcp *stock; 1877 unsigned int stock_pages; 1878 1879 stock = this_cpu_ptr(&memcg_stock); 1880 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1881 drain_stock(stock); 1882 css_get(&memcg->css); 1883 WRITE_ONCE(stock->cached, memcg); 1884 } 1885 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1886 WRITE_ONCE(stock->nr_pages, stock_pages); 1887 1888 if (stock_pages > MEMCG_CHARGE_BATCH) 1889 drain_stock(stock); 1890 } 1891 1892 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1893 { 1894 unsigned long flags; 1895 1896 if (!local_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1897 /* 1898 * In case of unlikely failure to lock percpu stock_lock 1899 * uncharge memcg directly. 1900 */ 1901 if (mem_cgroup_is_root(memcg)) 1902 return; 1903 page_counter_uncharge(&memcg->memory, nr_pages); 1904 if (do_memsw_account()) 1905 page_counter_uncharge(&memcg->memsw, nr_pages); 1906 return; 1907 } 1908 __refill_stock(memcg, nr_pages); 1909 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1910 } 1911 1912 /* 1913 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1914 * of the hierarchy under it. 1915 */ 1916 void drain_all_stock(struct mem_cgroup *root_memcg) 1917 { 1918 int cpu, curcpu; 1919 1920 /* If someone's already draining, avoid adding running more workers. */ 1921 if (!mutex_trylock(&percpu_charge_mutex)) 1922 return; 1923 /* 1924 * Notify other cpus that system-wide "drain" is running 1925 * We do not care about races with the cpu hotplug because cpu down 1926 * as well as workers from this path always operate on the local 1927 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1928 */ 1929 migrate_disable(); 1930 curcpu = smp_processor_id(); 1931 for_each_online_cpu(cpu) { 1932 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1933 struct mem_cgroup *memcg; 1934 bool flush = false; 1935 1936 rcu_read_lock(); 1937 memcg = READ_ONCE(stock->cached); 1938 if (memcg && READ_ONCE(stock->nr_pages) && 1939 mem_cgroup_is_descendant(memcg, root_memcg)) 1940 flush = true; 1941 else if (obj_stock_flush_required(stock, root_memcg)) 1942 flush = true; 1943 rcu_read_unlock(); 1944 1945 if (flush && 1946 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1947 if (cpu == curcpu) 1948 drain_local_stock(&stock->work); 1949 else if (!cpu_is_isolated(cpu)) 1950 schedule_work_on(cpu, &stock->work); 1951 } 1952 } 1953 migrate_enable(); 1954 mutex_unlock(&percpu_charge_mutex); 1955 } 1956 1957 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1958 { 1959 struct memcg_stock_pcp *stock; 1960 struct obj_cgroup *old; 1961 unsigned long flags; 1962 1963 stock = &per_cpu(memcg_stock, cpu); 1964 1965 /* drain_obj_stock requires stock_lock */ 1966 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1967 old = drain_obj_stock(stock); 1968 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1969 1970 drain_stock(stock); 1971 obj_cgroup_put(old); 1972 1973 return 0; 1974 } 1975 1976 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1977 unsigned int nr_pages, 1978 gfp_t gfp_mask) 1979 { 1980 unsigned long nr_reclaimed = 0; 1981 1982 do { 1983 unsigned long pflags; 1984 1985 if (page_counter_read(&memcg->memory) <= 1986 READ_ONCE(memcg->memory.high)) 1987 continue; 1988 1989 memcg_memory_event(memcg, MEMCG_HIGH); 1990 1991 psi_memstall_enter(&pflags); 1992 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1993 gfp_mask, 1994 MEMCG_RECLAIM_MAY_SWAP, 1995 NULL); 1996 psi_memstall_leave(&pflags); 1997 } while ((memcg = parent_mem_cgroup(memcg)) && 1998 !mem_cgroup_is_root(memcg)); 1999 2000 return nr_reclaimed; 2001 } 2002 2003 static void high_work_func(struct work_struct *work) 2004 { 2005 struct mem_cgroup *memcg; 2006 2007 memcg = container_of(work, struct mem_cgroup, high_work); 2008 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2009 } 2010 2011 /* 2012 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2013 * enough to still cause a significant slowdown in most cases, while still 2014 * allowing diagnostics and tracing to proceed without becoming stuck. 2015 */ 2016 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2017 2018 /* 2019 * When calculating the delay, we use these either side of the exponentiation to 2020 * maintain precision and scale to a reasonable number of jiffies (see the table 2021 * below. 2022 * 2023 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2024 * overage ratio to a delay. 2025 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2026 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2027 * to produce a reasonable delay curve. 2028 * 2029 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2030 * reasonable delay curve compared to precision-adjusted overage, not 2031 * penalising heavily at first, but still making sure that growth beyond the 2032 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2033 * example, with a high of 100 megabytes: 2034 * 2035 * +-------+------------------------+ 2036 * | usage | time to allocate in ms | 2037 * +-------+------------------------+ 2038 * | 100M | 0 | 2039 * | 101M | 6 | 2040 * | 102M | 25 | 2041 * | 103M | 57 | 2042 * | 104M | 102 | 2043 * | 105M | 159 | 2044 * | 106M | 230 | 2045 * | 107M | 313 | 2046 * | 108M | 409 | 2047 * | 109M | 518 | 2048 * | 110M | 639 | 2049 * | 111M | 774 | 2050 * | 112M | 921 | 2051 * | 113M | 1081 | 2052 * | 114M | 1254 | 2053 * | 115M | 1439 | 2054 * | 116M | 1638 | 2055 * | 117M | 1849 | 2056 * | 118M | 2000 | 2057 * | 119M | 2000 | 2058 * | 120M | 2000 | 2059 * +-------+------------------------+ 2060 */ 2061 #define MEMCG_DELAY_PRECISION_SHIFT 20 2062 #define MEMCG_DELAY_SCALING_SHIFT 14 2063 2064 static u64 calculate_overage(unsigned long usage, unsigned long high) 2065 { 2066 u64 overage; 2067 2068 if (usage <= high) 2069 return 0; 2070 2071 /* 2072 * Prevent division by 0 in overage calculation by acting as if 2073 * it was a threshold of 1 page 2074 */ 2075 high = max(high, 1UL); 2076 2077 overage = usage - high; 2078 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2079 return div64_u64(overage, high); 2080 } 2081 2082 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2083 { 2084 u64 overage, max_overage = 0; 2085 2086 do { 2087 overage = calculate_overage(page_counter_read(&memcg->memory), 2088 READ_ONCE(memcg->memory.high)); 2089 max_overage = max(overage, max_overage); 2090 } while ((memcg = parent_mem_cgroup(memcg)) && 2091 !mem_cgroup_is_root(memcg)); 2092 2093 return max_overage; 2094 } 2095 2096 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2097 { 2098 u64 overage, max_overage = 0; 2099 2100 do { 2101 overage = calculate_overage(page_counter_read(&memcg->swap), 2102 READ_ONCE(memcg->swap.high)); 2103 if (overage) 2104 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2105 max_overage = max(overage, max_overage); 2106 } while ((memcg = parent_mem_cgroup(memcg)) && 2107 !mem_cgroup_is_root(memcg)); 2108 2109 return max_overage; 2110 } 2111 2112 /* 2113 * Get the number of jiffies that we should penalise a mischievous cgroup which 2114 * is exceeding its memory.high by checking both it and its ancestors. 2115 */ 2116 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2117 unsigned int nr_pages, 2118 u64 max_overage) 2119 { 2120 unsigned long penalty_jiffies; 2121 2122 if (!max_overage) 2123 return 0; 2124 2125 /* 2126 * We use overage compared to memory.high to calculate the number of 2127 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2128 * fairly lenient on small overages, and increasingly harsh when the 2129 * memcg in question makes it clear that it has no intention of stopping 2130 * its crazy behaviour, so we exponentially increase the delay based on 2131 * overage amount. 2132 */ 2133 penalty_jiffies = max_overage * max_overage * HZ; 2134 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2135 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2136 2137 /* 2138 * Factor in the task's own contribution to the overage, such that four 2139 * N-sized allocations are throttled approximately the same as one 2140 * 4N-sized allocation. 2141 * 2142 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2143 * larger the current charge patch is than that. 2144 */ 2145 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2146 } 2147 2148 /* 2149 * Reclaims memory over the high limit. Called directly from 2150 * try_charge() (context permitting), as well as from the userland 2151 * return path where reclaim is always able to block. 2152 */ 2153 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2154 { 2155 unsigned long penalty_jiffies; 2156 unsigned long pflags; 2157 unsigned long nr_reclaimed; 2158 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2159 int nr_retries = MAX_RECLAIM_RETRIES; 2160 struct mem_cgroup *memcg; 2161 bool in_retry = false; 2162 2163 if (likely(!nr_pages)) 2164 return; 2165 2166 memcg = get_mem_cgroup_from_mm(current->mm); 2167 current->memcg_nr_pages_over_high = 0; 2168 2169 retry_reclaim: 2170 /* 2171 * Bail if the task is already exiting. Unlike memory.max, 2172 * memory.high enforcement isn't as strict, and there is no 2173 * OOM killer involved, which means the excess could already 2174 * be much bigger (and still growing) than it could for 2175 * memory.max; the dying task could get stuck in fruitless 2176 * reclaim for a long time, which isn't desirable. 2177 */ 2178 if (task_is_dying()) 2179 goto out; 2180 2181 /* 2182 * The allocating task should reclaim at least the batch size, but for 2183 * subsequent retries we only want to do what's necessary to prevent oom 2184 * or breaching resource isolation. 2185 * 2186 * This is distinct from memory.max or page allocator behaviour because 2187 * memory.high is currently batched, whereas memory.max and the page 2188 * allocator run every time an allocation is made. 2189 */ 2190 nr_reclaimed = reclaim_high(memcg, 2191 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2192 gfp_mask); 2193 2194 /* 2195 * memory.high is breached and reclaim is unable to keep up. Throttle 2196 * allocators proactively to slow down excessive growth. 2197 */ 2198 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2199 mem_find_max_overage(memcg)); 2200 2201 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2202 swap_find_max_overage(memcg)); 2203 2204 /* 2205 * Clamp the max delay per usermode return so as to still keep the 2206 * application moving forwards and also permit diagnostics, albeit 2207 * extremely slowly. 2208 */ 2209 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2210 2211 /* 2212 * Don't sleep if the amount of jiffies this memcg owes us is so low 2213 * that it's not even worth doing, in an attempt to be nice to those who 2214 * go only a small amount over their memory.high value and maybe haven't 2215 * been aggressively reclaimed enough yet. 2216 */ 2217 if (penalty_jiffies <= HZ / 100) 2218 goto out; 2219 2220 /* 2221 * If reclaim is making forward progress but we're still over 2222 * memory.high, we want to encourage that rather than doing allocator 2223 * throttling. 2224 */ 2225 if (nr_reclaimed || nr_retries--) { 2226 in_retry = true; 2227 goto retry_reclaim; 2228 } 2229 2230 /* 2231 * Reclaim didn't manage to push usage below the limit, slow 2232 * this allocating task down. 2233 * 2234 * If we exit early, we're guaranteed to die (since 2235 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2236 * need to account for any ill-begotten jiffies to pay them off later. 2237 */ 2238 psi_memstall_enter(&pflags); 2239 schedule_timeout_killable(penalty_jiffies); 2240 psi_memstall_leave(&pflags); 2241 2242 out: 2243 css_put(&memcg->css); 2244 } 2245 2246 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2247 unsigned int nr_pages) 2248 { 2249 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2250 int nr_retries = MAX_RECLAIM_RETRIES; 2251 struct mem_cgroup *mem_over_limit; 2252 struct page_counter *counter; 2253 unsigned long nr_reclaimed; 2254 bool passed_oom = false; 2255 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2256 bool drained = false; 2257 bool raised_max_event = false; 2258 unsigned long pflags; 2259 2260 retry: 2261 if (consume_stock(memcg, nr_pages, gfp_mask)) 2262 return 0; 2263 2264 if (!gfpflags_allow_spinning(gfp_mask)) 2265 /* Avoid the refill and flush of the older stock */ 2266 batch = nr_pages; 2267 2268 if (!do_memsw_account() || 2269 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2270 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2271 goto done_restock; 2272 if (do_memsw_account()) 2273 page_counter_uncharge(&memcg->memsw, batch); 2274 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2275 } else { 2276 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2277 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2278 } 2279 2280 if (batch > nr_pages) { 2281 batch = nr_pages; 2282 goto retry; 2283 } 2284 2285 /* 2286 * Prevent unbounded recursion when reclaim operations need to 2287 * allocate memory. This might exceed the limits temporarily, 2288 * but we prefer facilitating memory reclaim and getting back 2289 * under the limit over triggering OOM kills in these cases. 2290 */ 2291 if (unlikely(current->flags & PF_MEMALLOC)) 2292 goto force; 2293 2294 if (unlikely(task_in_memcg_oom(current))) 2295 goto nomem; 2296 2297 if (!gfpflags_allow_blocking(gfp_mask)) 2298 goto nomem; 2299 2300 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2301 raised_max_event = true; 2302 2303 psi_memstall_enter(&pflags); 2304 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2305 gfp_mask, reclaim_options, NULL); 2306 psi_memstall_leave(&pflags); 2307 2308 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2309 goto retry; 2310 2311 if (!drained) { 2312 drain_all_stock(mem_over_limit); 2313 drained = true; 2314 goto retry; 2315 } 2316 2317 if (gfp_mask & __GFP_NORETRY) 2318 goto nomem; 2319 /* 2320 * Even though the limit is exceeded at this point, reclaim 2321 * may have been able to free some pages. Retry the charge 2322 * before killing the task. 2323 * 2324 * Only for regular pages, though: huge pages are rather 2325 * unlikely to succeed so close to the limit, and we fall back 2326 * to regular pages anyway in case of failure. 2327 */ 2328 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2329 goto retry; 2330 2331 if (nr_retries--) 2332 goto retry; 2333 2334 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2335 goto nomem; 2336 2337 /* Avoid endless loop for tasks bypassed by the oom killer */ 2338 if (passed_oom && task_is_dying()) 2339 goto nomem; 2340 2341 /* 2342 * keep retrying as long as the memcg oom killer is able to make 2343 * a forward progress or bypass the charge if the oom killer 2344 * couldn't make any progress. 2345 */ 2346 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2347 get_order(nr_pages * PAGE_SIZE))) { 2348 passed_oom = true; 2349 nr_retries = MAX_RECLAIM_RETRIES; 2350 goto retry; 2351 } 2352 nomem: 2353 /* 2354 * Memcg doesn't have a dedicated reserve for atomic 2355 * allocations. But like the global atomic pool, we need to 2356 * put the burden of reclaim on regular allocation requests 2357 * and let these go through as privileged allocations. 2358 */ 2359 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2360 return -ENOMEM; 2361 force: 2362 /* 2363 * If the allocation has to be enforced, don't forget to raise 2364 * a MEMCG_MAX event. 2365 */ 2366 if (!raised_max_event) 2367 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2368 2369 /* 2370 * The allocation either can't fail or will lead to more memory 2371 * being freed very soon. Allow memory usage go over the limit 2372 * temporarily by force charging it. 2373 */ 2374 page_counter_charge(&memcg->memory, nr_pages); 2375 if (do_memsw_account()) 2376 page_counter_charge(&memcg->memsw, nr_pages); 2377 2378 return 0; 2379 2380 done_restock: 2381 if (batch > nr_pages) 2382 refill_stock(memcg, batch - nr_pages); 2383 2384 /* 2385 * If the hierarchy is above the normal consumption range, schedule 2386 * reclaim on returning to userland. We can perform reclaim here 2387 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2388 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2389 * not recorded as it most likely matches current's and won't 2390 * change in the meantime. As high limit is checked again before 2391 * reclaim, the cost of mismatch is negligible. 2392 */ 2393 do { 2394 bool mem_high, swap_high; 2395 2396 mem_high = page_counter_read(&memcg->memory) > 2397 READ_ONCE(memcg->memory.high); 2398 swap_high = page_counter_read(&memcg->swap) > 2399 READ_ONCE(memcg->swap.high); 2400 2401 /* Don't bother a random interrupted task */ 2402 if (!in_task()) { 2403 if (mem_high) { 2404 schedule_work(&memcg->high_work); 2405 break; 2406 } 2407 continue; 2408 } 2409 2410 if (mem_high || swap_high) { 2411 /* 2412 * The allocating tasks in this cgroup will need to do 2413 * reclaim or be throttled to prevent further growth 2414 * of the memory or swap footprints. 2415 * 2416 * Target some best-effort fairness between the tasks, 2417 * and distribute reclaim work and delay penalties 2418 * based on how much each task is actually allocating. 2419 */ 2420 current->memcg_nr_pages_over_high += batch; 2421 set_notify_resume(current); 2422 break; 2423 } 2424 } while ((memcg = parent_mem_cgroup(memcg))); 2425 2426 /* 2427 * Reclaim is set up above to be called from the userland 2428 * return path. But also attempt synchronous reclaim to avoid 2429 * excessive overrun while the task is still inside the 2430 * kernel. If this is successful, the return path will see it 2431 * when it rechecks the overage and simply bail out. 2432 */ 2433 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2434 !(current->flags & PF_MEMALLOC) && 2435 gfpflags_allow_blocking(gfp_mask)) 2436 mem_cgroup_handle_over_high(gfp_mask); 2437 return 0; 2438 } 2439 2440 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2441 unsigned int nr_pages) 2442 { 2443 if (mem_cgroup_is_root(memcg)) 2444 return 0; 2445 2446 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2447 } 2448 2449 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2450 { 2451 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2452 /* 2453 * Any of the following ensures page's memcg stability: 2454 * 2455 * - the page lock 2456 * - LRU isolation 2457 * - exclusive reference 2458 */ 2459 folio->memcg_data = (unsigned long)memcg; 2460 } 2461 2462 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2463 struct pglist_data *pgdat, 2464 enum node_stat_item idx, int nr) 2465 { 2466 struct mem_cgroup *memcg; 2467 struct lruvec *lruvec; 2468 2469 rcu_read_lock(); 2470 memcg = obj_cgroup_memcg(objcg); 2471 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2472 __mod_memcg_lruvec_state(lruvec, idx, nr); 2473 rcu_read_unlock(); 2474 } 2475 2476 static __always_inline 2477 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2478 { 2479 /* 2480 * Slab objects are accounted individually, not per-page. 2481 * Memcg membership data for each individual object is saved in 2482 * slab->obj_exts. 2483 */ 2484 if (folio_test_slab(folio)) { 2485 struct slabobj_ext *obj_exts; 2486 struct slab *slab; 2487 unsigned int off; 2488 2489 slab = folio_slab(folio); 2490 obj_exts = slab_obj_exts(slab); 2491 if (!obj_exts) 2492 return NULL; 2493 2494 off = obj_to_index(slab->slab_cache, slab, p); 2495 if (obj_exts[off].objcg) 2496 return obj_cgroup_memcg(obj_exts[off].objcg); 2497 2498 return NULL; 2499 } 2500 2501 /* 2502 * folio_memcg_check() is used here, because in theory we can encounter 2503 * a folio where the slab flag has been cleared already, but 2504 * slab->obj_exts has not been freed yet 2505 * folio_memcg_check() will guarantee that a proper memory 2506 * cgroup pointer or NULL will be returned. 2507 */ 2508 return folio_memcg_check(folio); 2509 } 2510 2511 /* 2512 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2513 * It is not suitable for objects allocated using vmalloc(). 2514 * 2515 * A passed kernel object must be a slab object or a generic kernel page. 2516 * 2517 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2518 * cgroup_mutex, etc. 2519 */ 2520 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2521 { 2522 if (mem_cgroup_disabled()) 2523 return NULL; 2524 2525 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2526 } 2527 2528 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2529 { 2530 struct obj_cgroup *objcg = NULL; 2531 2532 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2533 objcg = rcu_dereference(memcg->objcg); 2534 if (likely(objcg && obj_cgroup_tryget(objcg))) 2535 break; 2536 objcg = NULL; 2537 } 2538 return objcg; 2539 } 2540 2541 static struct obj_cgroup *current_objcg_update(void) 2542 { 2543 struct mem_cgroup *memcg; 2544 struct obj_cgroup *old, *objcg = NULL; 2545 2546 do { 2547 /* Atomically drop the update bit. */ 2548 old = xchg(¤t->objcg, NULL); 2549 if (old) { 2550 old = (struct obj_cgroup *) 2551 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2552 obj_cgroup_put(old); 2553 2554 old = NULL; 2555 } 2556 2557 /* If new objcg is NULL, no reason for the second atomic update. */ 2558 if (!current->mm || (current->flags & PF_KTHREAD)) 2559 return NULL; 2560 2561 /* 2562 * Release the objcg pointer from the previous iteration, 2563 * if try_cmpxcg() below fails. 2564 */ 2565 if (unlikely(objcg)) { 2566 obj_cgroup_put(objcg); 2567 objcg = NULL; 2568 } 2569 2570 /* 2571 * Obtain the new objcg pointer. The current task can be 2572 * asynchronously moved to another memcg and the previous 2573 * memcg can be offlined. So let's get the memcg pointer 2574 * and try get a reference to objcg under a rcu read lock. 2575 */ 2576 2577 rcu_read_lock(); 2578 memcg = mem_cgroup_from_task(current); 2579 objcg = __get_obj_cgroup_from_memcg(memcg); 2580 rcu_read_unlock(); 2581 2582 /* 2583 * Try set up a new objcg pointer atomically. If it 2584 * fails, it means the update flag was set concurrently, so 2585 * the whole procedure should be repeated. 2586 */ 2587 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2588 2589 return objcg; 2590 } 2591 2592 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2593 { 2594 struct mem_cgroup *memcg; 2595 struct obj_cgroup *objcg; 2596 2597 if (in_task()) { 2598 memcg = current->active_memcg; 2599 if (unlikely(memcg)) 2600 goto from_memcg; 2601 2602 objcg = READ_ONCE(current->objcg); 2603 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2604 objcg = current_objcg_update(); 2605 /* 2606 * Objcg reference is kept by the task, so it's safe 2607 * to use the objcg by the current task. 2608 */ 2609 return objcg; 2610 } 2611 2612 memcg = this_cpu_read(int_active_memcg); 2613 if (unlikely(memcg)) 2614 goto from_memcg; 2615 2616 return NULL; 2617 2618 from_memcg: 2619 objcg = NULL; 2620 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2621 /* 2622 * Memcg pointer is protected by scope (see set_active_memcg()) 2623 * and is pinning the corresponding objcg, so objcg can't go 2624 * away and can be used within the scope without any additional 2625 * protection. 2626 */ 2627 objcg = rcu_dereference_check(memcg->objcg, 1); 2628 if (likely(objcg)) 2629 break; 2630 } 2631 2632 return objcg; 2633 } 2634 2635 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2636 { 2637 struct obj_cgroup *objcg; 2638 2639 if (!memcg_kmem_online()) 2640 return NULL; 2641 2642 if (folio_memcg_kmem(folio)) { 2643 objcg = __folio_objcg(folio); 2644 obj_cgroup_get(objcg); 2645 } else { 2646 struct mem_cgroup *memcg; 2647 2648 rcu_read_lock(); 2649 memcg = __folio_memcg(folio); 2650 if (memcg) 2651 objcg = __get_obj_cgroup_from_memcg(memcg); 2652 else 2653 objcg = NULL; 2654 rcu_read_unlock(); 2655 } 2656 return objcg; 2657 } 2658 2659 /* 2660 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2661 * @objcg: object cgroup to uncharge 2662 * @nr_pages: number of pages to uncharge 2663 */ 2664 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2665 unsigned int nr_pages) 2666 { 2667 struct mem_cgroup *memcg; 2668 2669 memcg = get_mem_cgroup_from_objcg(objcg); 2670 2671 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2672 memcg1_account_kmem(memcg, -nr_pages); 2673 if (!mem_cgroup_is_root(memcg)) 2674 refill_stock(memcg, nr_pages); 2675 2676 css_put(&memcg->css); 2677 } 2678 2679 /* 2680 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2681 * @objcg: object cgroup to charge 2682 * @gfp: reclaim mode 2683 * @nr_pages: number of pages to charge 2684 * 2685 * Returns 0 on success, an error code on failure. 2686 */ 2687 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2688 unsigned int nr_pages) 2689 { 2690 struct mem_cgroup *memcg; 2691 int ret; 2692 2693 memcg = get_mem_cgroup_from_objcg(objcg); 2694 2695 ret = try_charge_memcg(memcg, gfp, nr_pages); 2696 if (ret) 2697 goto out; 2698 2699 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2700 memcg1_account_kmem(memcg, nr_pages); 2701 out: 2702 css_put(&memcg->css); 2703 2704 return ret; 2705 } 2706 2707 static struct obj_cgroup *page_objcg(const struct page *page) 2708 { 2709 unsigned long memcg_data = page->memcg_data; 2710 2711 if (mem_cgroup_disabled() || !memcg_data) 2712 return NULL; 2713 2714 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2715 page); 2716 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2717 } 2718 2719 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2720 { 2721 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2722 } 2723 2724 /** 2725 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2726 * @page: page to charge 2727 * @gfp: reclaim mode 2728 * @order: allocation order 2729 * 2730 * Returns 0 on success, an error code on failure. 2731 */ 2732 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2733 { 2734 struct obj_cgroup *objcg; 2735 int ret = 0; 2736 2737 objcg = current_obj_cgroup(); 2738 if (objcg) { 2739 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2740 if (!ret) { 2741 obj_cgroup_get(objcg); 2742 page_set_objcg(page, objcg); 2743 return 0; 2744 } 2745 } 2746 return ret; 2747 } 2748 2749 /** 2750 * __memcg_kmem_uncharge_page: uncharge a kmem page 2751 * @page: page to uncharge 2752 * @order: allocation order 2753 */ 2754 void __memcg_kmem_uncharge_page(struct page *page, int order) 2755 { 2756 struct obj_cgroup *objcg = page_objcg(page); 2757 unsigned int nr_pages = 1 << order; 2758 2759 if (!objcg) 2760 return; 2761 2762 obj_cgroup_uncharge_pages(objcg, nr_pages); 2763 page->memcg_data = 0; 2764 obj_cgroup_put(objcg); 2765 } 2766 2767 /* Replace the stock objcg with objcg, return the old objcg */ 2768 static struct obj_cgroup *replace_stock_objcg(struct memcg_stock_pcp *stock, 2769 struct obj_cgroup *objcg) 2770 { 2771 struct obj_cgroup *old = NULL; 2772 2773 old = drain_obj_stock(stock); 2774 obj_cgroup_get(objcg); 2775 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2776 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2777 WRITE_ONCE(stock->cached_objcg, objcg); 2778 return old; 2779 } 2780 2781 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2782 enum node_stat_item idx, int nr) 2783 { 2784 struct memcg_stock_pcp *stock; 2785 struct obj_cgroup *old = NULL; 2786 unsigned long flags; 2787 int *bytes; 2788 2789 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2790 stock = this_cpu_ptr(&memcg_stock); 2791 2792 /* 2793 * Save vmstat data in stock and skip vmstat array update unless 2794 * accumulating over a page of vmstat data or when pgdat or idx 2795 * changes. 2796 */ 2797 if (READ_ONCE(stock->cached_objcg) != objcg) { 2798 old = replace_stock_objcg(stock, objcg); 2799 stock->cached_pgdat = pgdat; 2800 } else if (stock->cached_pgdat != pgdat) { 2801 /* Flush the existing cached vmstat data */ 2802 struct pglist_data *oldpg = stock->cached_pgdat; 2803 2804 if (stock->nr_slab_reclaimable_b) { 2805 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2806 stock->nr_slab_reclaimable_b); 2807 stock->nr_slab_reclaimable_b = 0; 2808 } 2809 if (stock->nr_slab_unreclaimable_b) { 2810 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2811 stock->nr_slab_unreclaimable_b); 2812 stock->nr_slab_unreclaimable_b = 0; 2813 } 2814 stock->cached_pgdat = pgdat; 2815 } 2816 2817 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2818 : &stock->nr_slab_unreclaimable_b; 2819 /* 2820 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2821 * cached locally at least once before pushing it out. 2822 */ 2823 if (!*bytes) { 2824 *bytes = nr; 2825 nr = 0; 2826 } else { 2827 *bytes += nr; 2828 if (abs(*bytes) > PAGE_SIZE) { 2829 nr = *bytes; 2830 *bytes = 0; 2831 } else { 2832 nr = 0; 2833 } 2834 } 2835 if (nr) 2836 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2837 2838 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2839 obj_cgroup_put(old); 2840 } 2841 2842 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2843 { 2844 struct memcg_stock_pcp *stock; 2845 unsigned long flags; 2846 bool ret = false; 2847 2848 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2849 2850 stock = this_cpu_ptr(&memcg_stock); 2851 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2852 stock->nr_bytes -= nr_bytes; 2853 ret = true; 2854 } 2855 2856 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2857 2858 return ret; 2859 } 2860 2861 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2862 { 2863 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2864 2865 if (!old) 2866 return NULL; 2867 2868 if (stock->nr_bytes) { 2869 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2870 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2871 2872 if (nr_pages) { 2873 struct mem_cgroup *memcg; 2874 2875 memcg = get_mem_cgroup_from_objcg(old); 2876 2877 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2878 memcg1_account_kmem(memcg, -nr_pages); 2879 __refill_stock(memcg, nr_pages); 2880 2881 css_put(&memcg->css); 2882 } 2883 2884 /* 2885 * The leftover is flushed to the centralized per-memcg value. 2886 * On the next attempt to refill obj stock it will be moved 2887 * to a per-cpu stock (probably, on an other CPU), see 2888 * refill_obj_stock(). 2889 * 2890 * How often it's flushed is a trade-off between the memory 2891 * limit enforcement accuracy and potential CPU contention, 2892 * so it might be changed in the future. 2893 */ 2894 atomic_add(nr_bytes, &old->nr_charged_bytes); 2895 stock->nr_bytes = 0; 2896 } 2897 2898 /* 2899 * Flush the vmstat data in current stock 2900 */ 2901 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2902 if (stock->nr_slab_reclaimable_b) { 2903 __mod_objcg_mlstate(old, stock->cached_pgdat, 2904 NR_SLAB_RECLAIMABLE_B, 2905 stock->nr_slab_reclaimable_b); 2906 stock->nr_slab_reclaimable_b = 0; 2907 } 2908 if (stock->nr_slab_unreclaimable_b) { 2909 __mod_objcg_mlstate(old, stock->cached_pgdat, 2910 NR_SLAB_UNRECLAIMABLE_B, 2911 stock->nr_slab_unreclaimable_b); 2912 stock->nr_slab_unreclaimable_b = 0; 2913 } 2914 stock->cached_pgdat = NULL; 2915 } 2916 2917 WRITE_ONCE(stock->cached_objcg, NULL); 2918 /* 2919 * The `old' objects needs to be released by the caller via 2920 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2921 */ 2922 return old; 2923 } 2924 2925 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2926 struct mem_cgroup *root_memcg) 2927 { 2928 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2929 struct mem_cgroup *memcg; 2930 2931 if (objcg) { 2932 memcg = obj_cgroup_memcg(objcg); 2933 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2934 return true; 2935 } 2936 2937 return false; 2938 } 2939 2940 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2941 bool allow_uncharge) 2942 { 2943 struct memcg_stock_pcp *stock; 2944 struct obj_cgroup *old = NULL; 2945 unsigned long flags; 2946 unsigned int nr_pages = 0; 2947 2948 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2949 2950 stock = this_cpu_ptr(&memcg_stock); 2951 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2952 old = replace_stock_objcg(stock, objcg); 2953 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2954 } 2955 stock->nr_bytes += nr_bytes; 2956 2957 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2958 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2959 stock->nr_bytes &= (PAGE_SIZE - 1); 2960 } 2961 2962 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2963 obj_cgroup_put(old); 2964 2965 if (nr_pages) 2966 obj_cgroup_uncharge_pages(objcg, nr_pages); 2967 } 2968 2969 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2970 { 2971 unsigned int nr_pages, nr_bytes; 2972 int ret; 2973 2974 if (consume_obj_stock(objcg, size)) 2975 return 0; 2976 2977 /* 2978 * In theory, objcg->nr_charged_bytes can have enough 2979 * pre-charged bytes to satisfy the allocation. However, 2980 * flushing objcg->nr_charged_bytes requires two atomic 2981 * operations, and objcg->nr_charged_bytes can't be big. 2982 * The shared objcg->nr_charged_bytes can also become a 2983 * performance bottleneck if all tasks of the same memcg are 2984 * trying to update it. So it's better to ignore it and try 2985 * grab some new pages. The stock's nr_bytes will be flushed to 2986 * objcg->nr_charged_bytes later on when objcg changes. 2987 * 2988 * The stock's nr_bytes may contain enough pre-charged bytes 2989 * to allow one less page from being charged, but we can't rely 2990 * on the pre-charged bytes not being changed outside of 2991 * consume_obj_stock() or refill_obj_stock(). So ignore those 2992 * pre-charged bytes as well when charging pages. To avoid a 2993 * page uncharge right after a page charge, we set the 2994 * allow_uncharge flag to false when calling refill_obj_stock() 2995 * to temporarily allow the pre-charged bytes to exceed the page 2996 * size limit. The maximum reachable value of the pre-charged 2997 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2998 * race. 2999 */ 3000 nr_pages = size >> PAGE_SHIFT; 3001 nr_bytes = size & (PAGE_SIZE - 1); 3002 3003 if (nr_bytes) 3004 nr_pages += 1; 3005 3006 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3007 if (!ret && nr_bytes) 3008 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3009 3010 return ret; 3011 } 3012 3013 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3014 { 3015 refill_obj_stock(objcg, size, true); 3016 } 3017 3018 static inline size_t obj_full_size(struct kmem_cache *s) 3019 { 3020 /* 3021 * For each accounted object there is an extra space which is used 3022 * to store obj_cgroup membership. Charge it too. 3023 */ 3024 return s->size + sizeof(struct obj_cgroup *); 3025 } 3026 3027 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3028 gfp_t flags, size_t size, void **p) 3029 { 3030 struct obj_cgroup *objcg; 3031 struct slab *slab; 3032 unsigned long off; 3033 size_t i; 3034 3035 /* 3036 * The obtained objcg pointer is safe to use within the current scope, 3037 * defined by current task or set_active_memcg() pair. 3038 * obj_cgroup_get() is used to get a permanent reference. 3039 */ 3040 objcg = current_obj_cgroup(); 3041 if (!objcg) 3042 return true; 3043 3044 /* 3045 * slab_alloc_node() avoids the NULL check, so we might be called with a 3046 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3047 * the whole requested size. 3048 * return success as there's nothing to free back 3049 */ 3050 if (unlikely(*p == NULL)) 3051 return true; 3052 3053 flags &= gfp_allowed_mask; 3054 3055 if (lru) { 3056 int ret; 3057 struct mem_cgroup *memcg; 3058 3059 memcg = get_mem_cgroup_from_objcg(objcg); 3060 ret = memcg_list_lru_alloc(memcg, lru, flags); 3061 css_put(&memcg->css); 3062 3063 if (ret) 3064 return false; 3065 } 3066 3067 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 3068 return false; 3069 3070 for (i = 0; i < size; i++) { 3071 slab = virt_to_slab(p[i]); 3072 3073 if (!slab_obj_exts(slab) && 3074 alloc_slab_obj_exts(slab, s, flags, false)) { 3075 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3076 continue; 3077 } 3078 3079 off = obj_to_index(s, slab, p[i]); 3080 obj_cgroup_get(objcg); 3081 slab_obj_exts(slab)[off].objcg = objcg; 3082 mod_objcg_state(objcg, slab_pgdat(slab), 3083 cache_vmstat_idx(s), obj_full_size(s)); 3084 } 3085 3086 return true; 3087 } 3088 3089 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3090 void **p, int objects, struct slabobj_ext *obj_exts) 3091 { 3092 for (int i = 0; i < objects; i++) { 3093 struct obj_cgroup *objcg; 3094 unsigned int off; 3095 3096 off = obj_to_index(s, slab, p[i]); 3097 objcg = obj_exts[off].objcg; 3098 if (!objcg) 3099 continue; 3100 3101 obj_exts[off].objcg = NULL; 3102 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3103 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3104 -obj_full_size(s)); 3105 obj_cgroup_put(objcg); 3106 } 3107 } 3108 3109 /* 3110 * The objcg is only set on the first page, so transfer it to all the 3111 * other pages. 3112 */ 3113 void split_page_memcg(struct page *page, unsigned order) 3114 { 3115 struct obj_cgroup *objcg = page_objcg(page); 3116 unsigned int i, nr = 1 << order; 3117 3118 if (!objcg) 3119 return; 3120 3121 for (i = 1; i < nr; i++) 3122 page_set_objcg(&page[i], objcg); 3123 3124 obj_cgroup_get_many(objcg, nr - 1); 3125 } 3126 3127 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3128 unsigned new_order) 3129 { 3130 unsigned new_refs; 3131 3132 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3133 return; 3134 3135 new_refs = (1 << (old_order - new_order)) - 1; 3136 css_get_many(&__folio_memcg(folio)->css, new_refs); 3137 } 3138 3139 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3140 { 3141 unsigned long val; 3142 3143 if (mem_cgroup_is_root(memcg)) { 3144 /* 3145 * Approximate root's usage from global state. This isn't 3146 * perfect, but the root usage was always an approximation. 3147 */ 3148 val = global_node_page_state(NR_FILE_PAGES) + 3149 global_node_page_state(NR_ANON_MAPPED); 3150 if (swap) 3151 val += total_swap_pages - get_nr_swap_pages(); 3152 } else { 3153 if (!swap) 3154 val = page_counter_read(&memcg->memory); 3155 else 3156 val = page_counter_read(&memcg->memsw); 3157 } 3158 return val; 3159 } 3160 3161 static int memcg_online_kmem(struct mem_cgroup *memcg) 3162 { 3163 struct obj_cgroup *objcg; 3164 3165 if (mem_cgroup_kmem_disabled()) 3166 return 0; 3167 3168 if (unlikely(mem_cgroup_is_root(memcg))) 3169 return 0; 3170 3171 objcg = obj_cgroup_alloc(); 3172 if (!objcg) 3173 return -ENOMEM; 3174 3175 objcg->memcg = memcg; 3176 rcu_assign_pointer(memcg->objcg, objcg); 3177 obj_cgroup_get(objcg); 3178 memcg->orig_objcg = objcg; 3179 3180 static_branch_enable(&memcg_kmem_online_key); 3181 3182 memcg->kmemcg_id = memcg->id.id; 3183 3184 return 0; 3185 } 3186 3187 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3188 { 3189 struct mem_cgroup *parent; 3190 3191 if (mem_cgroup_kmem_disabled()) 3192 return; 3193 3194 if (unlikely(mem_cgroup_is_root(memcg))) 3195 return; 3196 3197 parent = parent_mem_cgroup(memcg); 3198 if (!parent) 3199 parent = root_mem_cgroup; 3200 3201 memcg_reparent_list_lrus(memcg, parent); 3202 3203 /* 3204 * Objcg's reparenting must be after list_lru's, make sure list_lru 3205 * helpers won't use parent's list_lru until child is drained. 3206 */ 3207 memcg_reparent_objcgs(memcg, parent); 3208 } 3209 3210 #ifdef CONFIG_CGROUP_WRITEBACK 3211 3212 #include <trace/events/writeback.h> 3213 3214 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3215 { 3216 return wb_domain_init(&memcg->cgwb_domain, gfp); 3217 } 3218 3219 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3220 { 3221 wb_domain_exit(&memcg->cgwb_domain); 3222 } 3223 3224 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3225 { 3226 wb_domain_size_changed(&memcg->cgwb_domain); 3227 } 3228 3229 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3230 { 3231 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3232 3233 if (!memcg->css.parent) 3234 return NULL; 3235 3236 return &memcg->cgwb_domain; 3237 } 3238 3239 /** 3240 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3241 * @wb: bdi_writeback in question 3242 * @pfilepages: out parameter for number of file pages 3243 * @pheadroom: out parameter for number of allocatable pages according to memcg 3244 * @pdirty: out parameter for number of dirty pages 3245 * @pwriteback: out parameter for number of pages under writeback 3246 * 3247 * Determine the numbers of file, headroom, dirty, and writeback pages in 3248 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3249 * is a bit more involved. 3250 * 3251 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3252 * headroom is calculated as the lowest headroom of itself and the 3253 * ancestors. Note that this doesn't consider the actual amount of 3254 * available memory in the system. The caller should further cap 3255 * *@pheadroom accordingly. 3256 */ 3257 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3258 unsigned long *pheadroom, unsigned long *pdirty, 3259 unsigned long *pwriteback) 3260 { 3261 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3262 struct mem_cgroup *parent; 3263 3264 mem_cgroup_flush_stats_ratelimited(memcg); 3265 3266 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3267 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3268 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3269 memcg_page_state(memcg, NR_ACTIVE_FILE); 3270 3271 *pheadroom = PAGE_COUNTER_MAX; 3272 while ((parent = parent_mem_cgroup(memcg))) { 3273 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3274 READ_ONCE(memcg->memory.high)); 3275 unsigned long used = page_counter_read(&memcg->memory); 3276 3277 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3278 memcg = parent; 3279 } 3280 } 3281 3282 /* 3283 * Foreign dirty flushing 3284 * 3285 * There's an inherent mismatch between memcg and writeback. The former 3286 * tracks ownership per-page while the latter per-inode. This was a 3287 * deliberate design decision because honoring per-page ownership in the 3288 * writeback path is complicated, may lead to higher CPU and IO overheads 3289 * and deemed unnecessary given that write-sharing an inode across 3290 * different cgroups isn't a common use-case. 3291 * 3292 * Combined with inode majority-writer ownership switching, this works well 3293 * enough in most cases but there are some pathological cases. For 3294 * example, let's say there are two cgroups A and B which keep writing to 3295 * different but confined parts of the same inode. B owns the inode and 3296 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3297 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3298 * triggering background writeback. A will be slowed down without a way to 3299 * make writeback of the dirty pages happen. 3300 * 3301 * Conditions like the above can lead to a cgroup getting repeatedly and 3302 * severely throttled after making some progress after each 3303 * dirty_expire_interval while the underlying IO device is almost 3304 * completely idle. 3305 * 3306 * Solving this problem completely requires matching the ownership tracking 3307 * granularities between memcg and writeback in either direction. However, 3308 * the more egregious behaviors can be avoided by simply remembering the 3309 * most recent foreign dirtying events and initiating remote flushes on 3310 * them when local writeback isn't enough to keep the memory clean enough. 3311 * 3312 * The following two functions implement such mechanism. When a foreign 3313 * page - a page whose memcg and writeback ownerships don't match - is 3314 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3315 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3316 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3317 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3318 * foreign bdi_writebacks which haven't expired. Both the numbers of 3319 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3320 * limited to MEMCG_CGWB_FRN_CNT. 3321 * 3322 * The mechanism only remembers IDs and doesn't hold any object references. 3323 * As being wrong occasionally doesn't matter, updates and accesses to the 3324 * records are lockless and racy. 3325 */ 3326 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3327 struct bdi_writeback *wb) 3328 { 3329 struct mem_cgroup *memcg = folio_memcg(folio); 3330 struct memcg_cgwb_frn *frn; 3331 u64 now = get_jiffies_64(); 3332 u64 oldest_at = now; 3333 int oldest = -1; 3334 int i; 3335 3336 trace_track_foreign_dirty(folio, wb); 3337 3338 /* 3339 * Pick the slot to use. If there is already a slot for @wb, keep 3340 * using it. If not replace the oldest one which isn't being 3341 * written out. 3342 */ 3343 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3344 frn = &memcg->cgwb_frn[i]; 3345 if (frn->bdi_id == wb->bdi->id && 3346 frn->memcg_id == wb->memcg_css->id) 3347 break; 3348 if (time_before64(frn->at, oldest_at) && 3349 atomic_read(&frn->done.cnt) == 1) { 3350 oldest = i; 3351 oldest_at = frn->at; 3352 } 3353 } 3354 3355 if (i < MEMCG_CGWB_FRN_CNT) { 3356 /* 3357 * Re-using an existing one. Update timestamp lazily to 3358 * avoid making the cacheline hot. We want them to be 3359 * reasonably up-to-date and significantly shorter than 3360 * dirty_expire_interval as that's what expires the record. 3361 * Use the shorter of 1s and dirty_expire_interval / 8. 3362 */ 3363 unsigned long update_intv = 3364 min_t(unsigned long, HZ, 3365 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3366 3367 if (time_before64(frn->at, now - update_intv)) 3368 frn->at = now; 3369 } else if (oldest >= 0) { 3370 /* replace the oldest free one */ 3371 frn = &memcg->cgwb_frn[oldest]; 3372 frn->bdi_id = wb->bdi->id; 3373 frn->memcg_id = wb->memcg_css->id; 3374 frn->at = now; 3375 } 3376 } 3377 3378 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3379 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3380 { 3381 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3382 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3383 u64 now = jiffies_64; 3384 int i; 3385 3386 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3387 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3388 3389 /* 3390 * If the record is older than dirty_expire_interval, 3391 * writeback on it has already started. No need to kick it 3392 * off again. Also, don't start a new one if there's 3393 * already one in flight. 3394 */ 3395 if (time_after64(frn->at, now - intv) && 3396 atomic_read(&frn->done.cnt) == 1) { 3397 frn->at = 0; 3398 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3399 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3400 WB_REASON_FOREIGN_FLUSH, 3401 &frn->done); 3402 } 3403 } 3404 } 3405 3406 #else /* CONFIG_CGROUP_WRITEBACK */ 3407 3408 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3409 { 3410 return 0; 3411 } 3412 3413 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3414 { 3415 } 3416 3417 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3418 { 3419 } 3420 3421 #endif /* CONFIG_CGROUP_WRITEBACK */ 3422 3423 /* 3424 * Private memory cgroup IDR 3425 * 3426 * Swap-out records and page cache shadow entries need to store memcg 3427 * references in constrained space, so we maintain an ID space that is 3428 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3429 * memory-controlled cgroups to 64k. 3430 * 3431 * However, there usually are many references to the offline CSS after 3432 * the cgroup has been destroyed, such as page cache or reclaimable 3433 * slab objects, that don't need to hang on to the ID. We want to keep 3434 * those dead CSS from occupying IDs, or we might quickly exhaust the 3435 * relatively small ID space and prevent the creation of new cgroups 3436 * even when there are much fewer than 64k cgroups - possibly none. 3437 * 3438 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3439 * be freed and recycled when it's no longer needed, which is usually 3440 * when the CSS is offlined. 3441 * 3442 * The only exception to that are records of swapped out tmpfs/shmem 3443 * pages that need to be attributed to live ancestors on swapin. But 3444 * those references are manageable from userspace. 3445 */ 3446 3447 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3448 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3449 3450 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3451 { 3452 if (memcg->id.id > 0) { 3453 xa_erase(&mem_cgroup_ids, memcg->id.id); 3454 memcg->id.id = 0; 3455 } 3456 } 3457 3458 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3459 unsigned int n) 3460 { 3461 refcount_add(n, &memcg->id.ref); 3462 } 3463 3464 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3465 { 3466 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3467 mem_cgroup_id_remove(memcg); 3468 3469 /* Memcg ID pins CSS */ 3470 css_put(&memcg->css); 3471 } 3472 } 3473 3474 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3475 { 3476 mem_cgroup_id_put_many(memcg, 1); 3477 } 3478 3479 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3480 { 3481 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3482 /* 3483 * The root cgroup cannot be destroyed, so it's refcount must 3484 * always be >= 1. 3485 */ 3486 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3487 VM_BUG_ON(1); 3488 break; 3489 } 3490 memcg = parent_mem_cgroup(memcg); 3491 if (!memcg) 3492 memcg = root_mem_cgroup; 3493 } 3494 return memcg; 3495 } 3496 3497 /** 3498 * mem_cgroup_from_id - look up a memcg from a memcg id 3499 * @id: the memcg id to look up 3500 * 3501 * Caller must hold rcu_read_lock(). 3502 */ 3503 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3504 { 3505 WARN_ON_ONCE(!rcu_read_lock_held()); 3506 return xa_load(&mem_cgroup_ids, id); 3507 } 3508 3509 #ifdef CONFIG_SHRINKER_DEBUG 3510 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3511 { 3512 struct cgroup *cgrp; 3513 struct cgroup_subsys_state *css; 3514 struct mem_cgroup *memcg; 3515 3516 cgrp = cgroup_get_from_id(ino); 3517 if (IS_ERR(cgrp)) 3518 return ERR_CAST(cgrp); 3519 3520 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3521 if (css) 3522 memcg = container_of(css, struct mem_cgroup, css); 3523 else 3524 memcg = ERR_PTR(-ENOENT); 3525 3526 cgroup_put(cgrp); 3527 3528 return memcg; 3529 } 3530 #endif 3531 3532 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3533 { 3534 if (!pn) 3535 return; 3536 3537 free_percpu(pn->lruvec_stats_percpu); 3538 kfree(pn->lruvec_stats); 3539 kfree(pn); 3540 } 3541 3542 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3543 { 3544 struct mem_cgroup_per_node *pn; 3545 3546 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3547 if (!pn) 3548 return false; 3549 3550 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3551 GFP_KERNEL_ACCOUNT, node); 3552 if (!pn->lruvec_stats) 3553 goto fail; 3554 3555 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3556 GFP_KERNEL_ACCOUNT); 3557 if (!pn->lruvec_stats_percpu) 3558 goto fail; 3559 3560 lruvec_init(&pn->lruvec); 3561 pn->memcg = memcg; 3562 3563 memcg->nodeinfo[node] = pn; 3564 return true; 3565 fail: 3566 free_mem_cgroup_per_node_info(pn); 3567 return false; 3568 } 3569 3570 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3571 { 3572 int node; 3573 3574 obj_cgroup_put(memcg->orig_objcg); 3575 3576 for_each_node(node) 3577 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3578 memcg1_free_events(memcg); 3579 kfree(memcg->vmstats); 3580 free_percpu(memcg->vmstats_percpu); 3581 kfree(memcg); 3582 } 3583 3584 static void mem_cgroup_free(struct mem_cgroup *memcg) 3585 { 3586 lru_gen_exit_memcg(memcg); 3587 memcg_wb_domain_exit(memcg); 3588 __mem_cgroup_free(memcg); 3589 } 3590 3591 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3592 { 3593 struct memcg_vmstats_percpu *statc, *pstatc; 3594 struct mem_cgroup *memcg; 3595 int node, cpu; 3596 int __maybe_unused i; 3597 long error; 3598 3599 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3600 if (!memcg) 3601 return ERR_PTR(-ENOMEM); 3602 3603 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3604 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3605 if (error) 3606 goto fail; 3607 error = -ENOMEM; 3608 3609 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3610 GFP_KERNEL_ACCOUNT); 3611 if (!memcg->vmstats) 3612 goto fail; 3613 3614 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3615 GFP_KERNEL_ACCOUNT); 3616 if (!memcg->vmstats_percpu) 3617 goto fail; 3618 3619 if (!memcg1_alloc_events(memcg)) 3620 goto fail; 3621 3622 for_each_possible_cpu(cpu) { 3623 if (parent) 3624 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3625 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3626 statc->parent = parent ? pstatc : NULL; 3627 statc->vmstats = memcg->vmstats; 3628 } 3629 3630 for_each_node(node) 3631 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3632 goto fail; 3633 3634 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3635 goto fail; 3636 3637 INIT_WORK(&memcg->high_work, high_work_func); 3638 vmpressure_init(&memcg->vmpressure); 3639 INIT_LIST_HEAD(&memcg->memory_peaks); 3640 INIT_LIST_HEAD(&memcg->swap_peaks); 3641 spin_lock_init(&memcg->peaks_lock); 3642 memcg->socket_pressure = jiffies; 3643 memcg1_memcg_init(memcg); 3644 memcg->kmemcg_id = -1; 3645 INIT_LIST_HEAD(&memcg->objcg_list); 3646 #ifdef CONFIG_CGROUP_WRITEBACK 3647 INIT_LIST_HEAD(&memcg->cgwb_list); 3648 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3649 memcg->cgwb_frn[i].done = 3650 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3651 #endif 3652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3653 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3654 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3655 memcg->deferred_split_queue.split_queue_len = 0; 3656 #endif 3657 lru_gen_init_memcg(memcg); 3658 return memcg; 3659 fail: 3660 mem_cgroup_id_remove(memcg); 3661 __mem_cgroup_free(memcg); 3662 return ERR_PTR(error); 3663 } 3664 3665 static struct cgroup_subsys_state * __ref 3666 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3667 { 3668 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3669 struct mem_cgroup *memcg, *old_memcg; 3670 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3671 3672 old_memcg = set_active_memcg(parent); 3673 memcg = mem_cgroup_alloc(parent); 3674 set_active_memcg(old_memcg); 3675 if (IS_ERR(memcg)) 3676 return ERR_CAST(memcg); 3677 3678 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3679 memcg1_soft_limit_reset(memcg); 3680 #ifdef CONFIG_ZSWAP 3681 memcg->zswap_max = PAGE_COUNTER_MAX; 3682 WRITE_ONCE(memcg->zswap_writeback, true); 3683 #endif 3684 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3685 if (parent) { 3686 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3687 3688 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3689 page_counter_init(&memcg->swap, &parent->swap, false); 3690 #ifdef CONFIG_MEMCG_V1 3691 memcg->memory.track_failcnt = !memcg_on_dfl; 3692 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3693 page_counter_init(&memcg->kmem, &parent->kmem, false); 3694 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3695 #endif 3696 } else { 3697 init_memcg_stats(); 3698 init_memcg_events(); 3699 page_counter_init(&memcg->memory, NULL, true); 3700 page_counter_init(&memcg->swap, NULL, false); 3701 #ifdef CONFIG_MEMCG_V1 3702 page_counter_init(&memcg->kmem, NULL, false); 3703 page_counter_init(&memcg->tcpmem, NULL, false); 3704 #endif 3705 root_mem_cgroup = memcg; 3706 return &memcg->css; 3707 } 3708 3709 if (memcg_on_dfl && !cgroup_memory_nosocket) 3710 static_branch_inc(&memcg_sockets_enabled_key); 3711 3712 if (!cgroup_memory_nobpf) 3713 static_branch_inc(&memcg_bpf_enabled_key); 3714 3715 return &memcg->css; 3716 } 3717 3718 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3719 { 3720 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3721 3722 if (memcg_online_kmem(memcg)) 3723 goto remove_id; 3724 3725 /* 3726 * A memcg must be visible for expand_shrinker_info() 3727 * by the time the maps are allocated. So, we allocate maps 3728 * here, when for_each_mem_cgroup() can't skip it. 3729 */ 3730 if (alloc_shrinker_info(memcg)) 3731 goto offline_kmem; 3732 3733 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3734 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3735 FLUSH_TIME); 3736 lru_gen_online_memcg(memcg); 3737 3738 /* Online state pins memcg ID, memcg ID pins CSS */ 3739 refcount_set(&memcg->id.ref, 1); 3740 css_get(css); 3741 3742 /* 3743 * Ensure mem_cgroup_from_id() works once we're fully online. 3744 * 3745 * We could do this earlier and require callers to filter with 3746 * css_tryget_online(). But right now there are no users that 3747 * need earlier access, and the workingset code relies on the 3748 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3749 * publish it here at the end of onlining. This matches the 3750 * regular ID destruction during offlining. 3751 */ 3752 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3753 3754 return 0; 3755 offline_kmem: 3756 memcg_offline_kmem(memcg); 3757 remove_id: 3758 mem_cgroup_id_remove(memcg); 3759 return -ENOMEM; 3760 } 3761 3762 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3763 { 3764 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3765 3766 memcg1_css_offline(memcg); 3767 3768 page_counter_set_min(&memcg->memory, 0); 3769 page_counter_set_low(&memcg->memory, 0); 3770 3771 zswap_memcg_offline_cleanup(memcg); 3772 3773 memcg_offline_kmem(memcg); 3774 reparent_shrinker_deferred(memcg); 3775 wb_memcg_offline(memcg); 3776 lru_gen_offline_memcg(memcg); 3777 3778 drain_all_stock(memcg); 3779 3780 mem_cgroup_id_put(memcg); 3781 } 3782 3783 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3784 { 3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3786 3787 invalidate_reclaim_iterators(memcg); 3788 lru_gen_release_memcg(memcg); 3789 } 3790 3791 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3792 { 3793 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3794 int __maybe_unused i; 3795 3796 #ifdef CONFIG_CGROUP_WRITEBACK 3797 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3798 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3799 #endif 3800 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3801 static_branch_dec(&memcg_sockets_enabled_key); 3802 3803 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3804 static_branch_dec(&memcg_sockets_enabled_key); 3805 3806 if (!cgroup_memory_nobpf) 3807 static_branch_dec(&memcg_bpf_enabled_key); 3808 3809 vmpressure_cleanup(&memcg->vmpressure); 3810 cancel_work_sync(&memcg->high_work); 3811 memcg1_remove_from_trees(memcg); 3812 free_shrinker_info(memcg); 3813 mem_cgroup_free(memcg); 3814 } 3815 3816 /** 3817 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3818 * @css: the target css 3819 * 3820 * Reset the states of the mem_cgroup associated with @css. This is 3821 * invoked when the userland requests disabling on the default hierarchy 3822 * but the memcg is pinned through dependency. The memcg should stop 3823 * applying policies and should revert to the vanilla state as it may be 3824 * made visible again. 3825 * 3826 * The current implementation only resets the essential configurations. 3827 * This needs to be expanded to cover all the visible parts. 3828 */ 3829 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3830 { 3831 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3832 3833 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3834 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3835 #ifdef CONFIG_MEMCG_V1 3836 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3837 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3838 #endif 3839 page_counter_set_min(&memcg->memory, 0); 3840 page_counter_set_low(&memcg->memory, 0); 3841 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3842 memcg1_soft_limit_reset(memcg); 3843 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3844 memcg_wb_domain_size_changed(memcg); 3845 } 3846 3847 struct aggregate_control { 3848 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3849 long *aggregate; 3850 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3851 long *local; 3852 /* pointer to the pending child counters during tree propagation */ 3853 long *pending; 3854 /* pointer to the parent's pending counters, could be NULL */ 3855 long *ppending; 3856 /* pointer to the percpu counters to be aggregated */ 3857 long *cstat; 3858 /* pointer to the percpu counters of the last aggregation*/ 3859 long *cstat_prev; 3860 /* size of the above counters */ 3861 int size; 3862 }; 3863 3864 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3865 { 3866 int i; 3867 long delta, delta_cpu, v; 3868 3869 for (i = 0; i < ac->size; i++) { 3870 /* 3871 * Collect the aggregated propagation counts of groups 3872 * below us. We're in a per-cpu loop here and this is 3873 * a global counter, so the first cycle will get them. 3874 */ 3875 delta = ac->pending[i]; 3876 if (delta) 3877 ac->pending[i] = 0; 3878 3879 /* Add CPU changes on this level since the last flush */ 3880 delta_cpu = 0; 3881 v = READ_ONCE(ac->cstat[i]); 3882 if (v != ac->cstat_prev[i]) { 3883 delta_cpu = v - ac->cstat_prev[i]; 3884 delta += delta_cpu; 3885 ac->cstat_prev[i] = v; 3886 } 3887 3888 /* Aggregate counts on this level and propagate upwards */ 3889 if (delta_cpu) 3890 ac->local[i] += delta_cpu; 3891 3892 if (delta) { 3893 ac->aggregate[i] += delta; 3894 if (ac->ppending) 3895 ac->ppending[i] += delta; 3896 } 3897 } 3898 } 3899 3900 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3901 { 3902 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3903 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3904 struct memcg_vmstats_percpu *statc; 3905 struct aggregate_control ac; 3906 int nid; 3907 3908 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3909 3910 ac = (struct aggregate_control) { 3911 .aggregate = memcg->vmstats->state, 3912 .local = memcg->vmstats->state_local, 3913 .pending = memcg->vmstats->state_pending, 3914 .ppending = parent ? parent->vmstats->state_pending : NULL, 3915 .cstat = statc->state, 3916 .cstat_prev = statc->state_prev, 3917 .size = MEMCG_VMSTAT_SIZE, 3918 }; 3919 mem_cgroup_stat_aggregate(&ac); 3920 3921 ac = (struct aggregate_control) { 3922 .aggregate = memcg->vmstats->events, 3923 .local = memcg->vmstats->events_local, 3924 .pending = memcg->vmstats->events_pending, 3925 .ppending = parent ? parent->vmstats->events_pending : NULL, 3926 .cstat = statc->events, 3927 .cstat_prev = statc->events_prev, 3928 .size = NR_MEMCG_EVENTS, 3929 }; 3930 mem_cgroup_stat_aggregate(&ac); 3931 3932 for_each_node_state(nid, N_MEMORY) { 3933 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3934 struct lruvec_stats *lstats = pn->lruvec_stats; 3935 struct lruvec_stats *plstats = NULL; 3936 struct lruvec_stats_percpu *lstatc; 3937 3938 if (parent) 3939 plstats = parent->nodeinfo[nid]->lruvec_stats; 3940 3941 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3942 3943 ac = (struct aggregate_control) { 3944 .aggregate = lstats->state, 3945 .local = lstats->state_local, 3946 .pending = lstats->state_pending, 3947 .ppending = plstats ? plstats->state_pending : NULL, 3948 .cstat = lstatc->state, 3949 .cstat_prev = lstatc->state_prev, 3950 .size = NR_MEMCG_NODE_STAT_ITEMS, 3951 }; 3952 mem_cgroup_stat_aggregate(&ac); 3953 3954 } 3955 WRITE_ONCE(statc->stats_updates, 0); 3956 /* We are in a per-cpu loop here, only do the atomic write once */ 3957 if (atomic64_read(&memcg->vmstats->stats_updates)) 3958 atomic64_set(&memcg->vmstats->stats_updates, 0); 3959 } 3960 3961 static void mem_cgroup_fork(struct task_struct *task) 3962 { 3963 /* 3964 * Set the update flag to cause task->objcg to be initialized lazily 3965 * on the first allocation. It can be done without any synchronization 3966 * because it's always performed on the current task, so does 3967 * current_objcg_update(). 3968 */ 3969 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3970 } 3971 3972 static void mem_cgroup_exit(struct task_struct *task) 3973 { 3974 struct obj_cgroup *objcg = task->objcg; 3975 3976 objcg = (struct obj_cgroup *) 3977 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3978 obj_cgroup_put(objcg); 3979 3980 /* 3981 * Some kernel allocations can happen after this point, 3982 * but let's ignore them. It can be done without any synchronization 3983 * because it's always performed on the current task, so does 3984 * current_objcg_update(). 3985 */ 3986 task->objcg = NULL; 3987 } 3988 3989 #ifdef CONFIG_LRU_GEN 3990 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3991 { 3992 struct task_struct *task; 3993 struct cgroup_subsys_state *css; 3994 3995 /* find the first leader if there is any */ 3996 cgroup_taskset_for_each_leader(task, css, tset) 3997 break; 3998 3999 if (!task) 4000 return; 4001 4002 task_lock(task); 4003 if (task->mm && READ_ONCE(task->mm->owner) == task) 4004 lru_gen_migrate_mm(task->mm); 4005 task_unlock(task); 4006 } 4007 #else 4008 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4009 #endif /* CONFIG_LRU_GEN */ 4010 4011 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4012 { 4013 struct task_struct *task; 4014 struct cgroup_subsys_state *css; 4015 4016 cgroup_taskset_for_each(task, css, tset) { 4017 /* atomically set the update bit */ 4018 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4019 } 4020 } 4021 4022 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4023 { 4024 mem_cgroup_lru_gen_attach(tset); 4025 mem_cgroup_kmem_attach(tset); 4026 } 4027 4028 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4029 { 4030 if (value == PAGE_COUNTER_MAX) 4031 seq_puts(m, "max\n"); 4032 else 4033 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4034 4035 return 0; 4036 } 4037 4038 static u64 memory_current_read(struct cgroup_subsys_state *css, 4039 struct cftype *cft) 4040 { 4041 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4042 4043 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4044 } 4045 4046 #define OFP_PEAK_UNSET (((-1UL))) 4047 4048 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4049 { 4050 struct cgroup_of_peak *ofp = of_peak(sf->private); 4051 u64 fd_peak = READ_ONCE(ofp->value), peak; 4052 4053 /* User wants global or local peak? */ 4054 if (fd_peak == OFP_PEAK_UNSET) 4055 peak = pc->watermark; 4056 else 4057 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4058 4059 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4060 return 0; 4061 } 4062 4063 static int memory_peak_show(struct seq_file *sf, void *v) 4064 { 4065 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4066 4067 return peak_show(sf, v, &memcg->memory); 4068 } 4069 4070 static int peak_open(struct kernfs_open_file *of) 4071 { 4072 struct cgroup_of_peak *ofp = of_peak(of); 4073 4074 ofp->value = OFP_PEAK_UNSET; 4075 return 0; 4076 } 4077 4078 static void peak_release(struct kernfs_open_file *of) 4079 { 4080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4081 struct cgroup_of_peak *ofp = of_peak(of); 4082 4083 if (ofp->value == OFP_PEAK_UNSET) { 4084 /* fast path (no writes on this fd) */ 4085 return; 4086 } 4087 spin_lock(&memcg->peaks_lock); 4088 list_del(&ofp->list); 4089 spin_unlock(&memcg->peaks_lock); 4090 } 4091 4092 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4093 loff_t off, struct page_counter *pc, 4094 struct list_head *watchers) 4095 { 4096 unsigned long usage; 4097 struct cgroup_of_peak *peer_ctx; 4098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4099 struct cgroup_of_peak *ofp = of_peak(of); 4100 4101 spin_lock(&memcg->peaks_lock); 4102 4103 usage = page_counter_read(pc); 4104 WRITE_ONCE(pc->local_watermark, usage); 4105 4106 list_for_each_entry(peer_ctx, watchers, list) 4107 if (usage > peer_ctx->value) 4108 WRITE_ONCE(peer_ctx->value, usage); 4109 4110 /* initial write, register watcher */ 4111 if (ofp->value == OFP_PEAK_UNSET) 4112 list_add(&ofp->list, watchers); 4113 4114 WRITE_ONCE(ofp->value, usage); 4115 spin_unlock(&memcg->peaks_lock); 4116 4117 return nbytes; 4118 } 4119 4120 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4121 size_t nbytes, loff_t off) 4122 { 4123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4124 4125 return peak_write(of, buf, nbytes, off, &memcg->memory, 4126 &memcg->memory_peaks); 4127 } 4128 4129 #undef OFP_PEAK_UNSET 4130 4131 static int memory_min_show(struct seq_file *m, void *v) 4132 { 4133 return seq_puts_memcg_tunable(m, 4134 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4135 } 4136 4137 static ssize_t memory_min_write(struct kernfs_open_file *of, 4138 char *buf, size_t nbytes, loff_t off) 4139 { 4140 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4141 unsigned long min; 4142 int err; 4143 4144 buf = strstrip(buf); 4145 err = page_counter_memparse(buf, "max", &min); 4146 if (err) 4147 return err; 4148 4149 page_counter_set_min(&memcg->memory, min); 4150 4151 return nbytes; 4152 } 4153 4154 static int memory_low_show(struct seq_file *m, void *v) 4155 { 4156 return seq_puts_memcg_tunable(m, 4157 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4158 } 4159 4160 static ssize_t memory_low_write(struct kernfs_open_file *of, 4161 char *buf, size_t nbytes, loff_t off) 4162 { 4163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4164 unsigned long low; 4165 int err; 4166 4167 buf = strstrip(buf); 4168 err = page_counter_memparse(buf, "max", &low); 4169 if (err) 4170 return err; 4171 4172 page_counter_set_low(&memcg->memory, low); 4173 4174 return nbytes; 4175 } 4176 4177 static int memory_high_show(struct seq_file *m, void *v) 4178 { 4179 return seq_puts_memcg_tunable(m, 4180 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4181 } 4182 4183 static ssize_t memory_high_write(struct kernfs_open_file *of, 4184 char *buf, size_t nbytes, loff_t off) 4185 { 4186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4187 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4188 bool drained = false; 4189 unsigned long high; 4190 int err; 4191 4192 buf = strstrip(buf); 4193 err = page_counter_memparse(buf, "max", &high); 4194 if (err) 4195 return err; 4196 4197 page_counter_set_high(&memcg->memory, high); 4198 4199 for (;;) { 4200 unsigned long nr_pages = page_counter_read(&memcg->memory); 4201 unsigned long reclaimed; 4202 4203 if (nr_pages <= high) 4204 break; 4205 4206 if (signal_pending(current)) 4207 break; 4208 4209 if (!drained) { 4210 drain_all_stock(memcg); 4211 drained = true; 4212 continue; 4213 } 4214 4215 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4216 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4217 4218 if (!reclaimed && !nr_retries--) 4219 break; 4220 } 4221 4222 memcg_wb_domain_size_changed(memcg); 4223 return nbytes; 4224 } 4225 4226 static int memory_max_show(struct seq_file *m, void *v) 4227 { 4228 return seq_puts_memcg_tunable(m, 4229 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4230 } 4231 4232 static ssize_t memory_max_write(struct kernfs_open_file *of, 4233 char *buf, size_t nbytes, loff_t off) 4234 { 4235 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4236 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4237 bool drained = false; 4238 unsigned long max; 4239 int err; 4240 4241 buf = strstrip(buf); 4242 err = page_counter_memparse(buf, "max", &max); 4243 if (err) 4244 return err; 4245 4246 xchg(&memcg->memory.max, max); 4247 4248 for (;;) { 4249 unsigned long nr_pages = page_counter_read(&memcg->memory); 4250 4251 if (nr_pages <= max) 4252 break; 4253 4254 if (signal_pending(current)) 4255 break; 4256 4257 if (!drained) { 4258 drain_all_stock(memcg); 4259 drained = true; 4260 continue; 4261 } 4262 4263 if (nr_reclaims) { 4264 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4265 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4266 nr_reclaims--; 4267 continue; 4268 } 4269 4270 memcg_memory_event(memcg, MEMCG_OOM); 4271 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4272 break; 4273 cond_resched(); 4274 } 4275 4276 memcg_wb_domain_size_changed(memcg); 4277 return nbytes; 4278 } 4279 4280 /* 4281 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4282 * if any new events become available. 4283 */ 4284 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4285 { 4286 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4287 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4288 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4289 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4290 seq_printf(m, "oom_kill %lu\n", 4291 atomic_long_read(&events[MEMCG_OOM_KILL])); 4292 seq_printf(m, "oom_group_kill %lu\n", 4293 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4294 } 4295 4296 static int memory_events_show(struct seq_file *m, void *v) 4297 { 4298 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4299 4300 __memory_events_show(m, memcg->memory_events); 4301 return 0; 4302 } 4303 4304 static int memory_events_local_show(struct seq_file *m, void *v) 4305 { 4306 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4307 4308 __memory_events_show(m, memcg->memory_events_local); 4309 return 0; 4310 } 4311 4312 int memory_stat_show(struct seq_file *m, void *v) 4313 { 4314 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4315 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4316 struct seq_buf s; 4317 4318 if (!buf) 4319 return -ENOMEM; 4320 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4321 memory_stat_format(memcg, &s); 4322 seq_puts(m, buf); 4323 kfree(buf); 4324 return 0; 4325 } 4326 4327 #ifdef CONFIG_NUMA 4328 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4329 int item) 4330 { 4331 return lruvec_page_state(lruvec, item) * 4332 memcg_page_state_output_unit(item); 4333 } 4334 4335 static int memory_numa_stat_show(struct seq_file *m, void *v) 4336 { 4337 int i; 4338 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4339 4340 mem_cgroup_flush_stats(memcg); 4341 4342 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4343 int nid; 4344 4345 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4346 continue; 4347 4348 seq_printf(m, "%s", memory_stats[i].name); 4349 for_each_node_state(nid, N_MEMORY) { 4350 u64 size; 4351 struct lruvec *lruvec; 4352 4353 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4354 size = lruvec_page_state_output(lruvec, 4355 memory_stats[i].idx); 4356 seq_printf(m, " N%d=%llu", nid, size); 4357 } 4358 seq_putc(m, '\n'); 4359 } 4360 4361 return 0; 4362 } 4363 #endif 4364 4365 static int memory_oom_group_show(struct seq_file *m, void *v) 4366 { 4367 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4368 4369 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4370 4371 return 0; 4372 } 4373 4374 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4375 char *buf, size_t nbytes, loff_t off) 4376 { 4377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4378 int ret, oom_group; 4379 4380 buf = strstrip(buf); 4381 if (!buf) 4382 return -EINVAL; 4383 4384 ret = kstrtoint(buf, 0, &oom_group); 4385 if (ret) 4386 return ret; 4387 4388 if (oom_group != 0 && oom_group != 1) 4389 return -EINVAL; 4390 4391 WRITE_ONCE(memcg->oom_group, oom_group); 4392 4393 return nbytes; 4394 } 4395 4396 enum { 4397 MEMORY_RECLAIM_SWAPPINESS = 0, 4398 MEMORY_RECLAIM_NULL, 4399 }; 4400 4401 static const match_table_t tokens = { 4402 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4403 { MEMORY_RECLAIM_NULL, NULL }, 4404 }; 4405 4406 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4407 size_t nbytes, loff_t off) 4408 { 4409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4410 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4411 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4412 int swappiness = -1; 4413 unsigned int reclaim_options; 4414 char *old_buf, *start; 4415 substring_t args[MAX_OPT_ARGS]; 4416 4417 buf = strstrip(buf); 4418 4419 old_buf = buf; 4420 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4421 if (buf == old_buf) 4422 return -EINVAL; 4423 4424 buf = strstrip(buf); 4425 4426 while ((start = strsep(&buf, " ")) != NULL) { 4427 if (!strlen(start)) 4428 continue; 4429 switch (match_token(start, tokens, args)) { 4430 case MEMORY_RECLAIM_SWAPPINESS: 4431 if (match_int(&args[0], &swappiness)) 4432 return -EINVAL; 4433 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4434 return -EINVAL; 4435 break; 4436 default: 4437 return -EINVAL; 4438 } 4439 } 4440 4441 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4442 while (nr_reclaimed < nr_to_reclaim) { 4443 /* Will converge on zero, but reclaim enforces a minimum */ 4444 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4445 unsigned long reclaimed; 4446 4447 if (signal_pending(current)) 4448 return -EINTR; 4449 4450 /* 4451 * This is the final attempt, drain percpu lru caches in the 4452 * hope of introducing more evictable pages for 4453 * try_to_free_mem_cgroup_pages(). 4454 */ 4455 if (!nr_retries) 4456 lru_add_drain_all(); 4457 4458 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4459 batch_size, GFP_KERNEL, 4460 reclaim_options, 4461 swappiness == -1 ? NULL : &swappiness); 4462 4463 if (!reclaimed && !nr_retries--) 4464 return -EAGAIN; 4465 4466 nr_reclaimed += reclaimed; 4467 } 4468 4469 return nbytes; 4470 } 4471 4472 static struct cftype memory_files[] = { 4473 { 4474 .name = "current", 4475 .flags = CFTYPE_NOT_ON_ROOT, 4476 .read_u64 = memory_current_read, 4477 }, 4478 { 4479 .name = "peak", 4480 .flags = CFTYPE_NOT_ON_ROOT, 4481 .open = peak_open, 4482 .release = peak_release, 4483 .seq_show = memory_peak_show, 4484 .write = memory_peak_write, 4485 }, 4486 { 4487 .name = "min", 4488 .flags = CFTYPE_NOT_ON_ROOT, 4489 .seq_show = memory_min_show, 4490 .write = memory_min_write, 4491 }, 4492 { 4493 .name = "low", 4494 .flags = CFTYPE_NOT_ON_ROOT, 4495 .seq_show = memory_low_show, 4496 .write = memory_low_write, 4497 }, 4498 { 4499 .name = "high", 4500 .flags = CFTYPE_NOT_ON_ROOT, 4501 .seq_show = memory_high_show, 4502 .write = memory_high_write, 4503 }, 4504 { 4505 .name = "max", 4506 .flags = CFTYPE_NOT_ON_ROOT, 4507 .seq_show = memory_max_show, 4508 .write = memory_max_write, 4509 }, 4510 { 4511 .name = "events", 4512 .flags = CFTYPE_NOT_ON_ROOT, 4513 .file_offset = offsetof(struct mem_cgroup, events_file), 4514 .seq_show = memory_events_show, 4515 }, 4516 { 4517 .name = "events.local", 4518 .flags = CFTYPE_NOT_ON_ROOT, 4519 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4520 .seq_show = memory_events_local_show, 4521 }, 4522 { 4523 .name = "stat", 4524 .seq_show = memory_stat_show, 4525 }, 4526 #ifdef CONFIG_NUMA 4527 { 4528 .name = "numa_stat", 4529 .seq_show = memory_numa_stat_show, 4530 }, 4531 #endif 4532 { 4533 .name = "oom.group", 4534 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4535 .seq_show = memory_oom_group_show, 4536 .write = memory_oom_group_write, 4537 }, 4538 { 4539 .name = "reclaim", 4540 .flags = CFTYPE_NS_DELEGATABLE, 4541 .write = memory_reclaim, 4542 }, 4543 { } /* terminate */ 4544 }; 4545 4546 struct cgroup_subsys memory_cgrp_subsys = { 4547 .css_alloc = mem_cgroup_css_alloc, 4548 .css_online = mem_cgroup_css_online, 4549 .css_offline = mem_cgroup_css_offline, 4550 .css_released = mem_cgroup_css_released, 4551 .css_free = mem_cgroup_css_free, 4552 .css_reset = mem_cgroup_css_reset, 4553 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4554 .attach = mem_cgroup_attach, 4555 .fork = mem_cgroup_fork, 4556 .exit = mem_cgroup_exit, 4557 .dfl_cftypes = memory_files, 4558 #ifdef CONFIG_MEMCG_V1 4559 .legacy_cftypes = mem_cgroup_legacy_files, 4560 #endif 4561 .early_init = 0, 4562 }; 4563 4564 /** 4565 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4566 * @root: the top ancestor of the sub-tree being checked 4567 * @memcg: the memory cgroup to check 4568 * 4569 * WARNING: This function is not stateless! It can only be used as part 4570 * of a top-down tree iteration, not for isolated queries. 4571 */ 4572 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4573 struct mem_cgroup *memcg) 4574 { 4575 bool recursive_protection = 4576 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4577 4578 if (mem_cgroup_disabled()) 4579 return; 4580 4581 if (!root) 4582 root = root_mem_cgroup; 4583 4584 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4585 } 4586 4587 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4588 gfp_t gfp) 4589 { 4590 int ret; 4591 4592 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4593 if (ret) 4594 goto out; 4595 4596 css_get(&memcg->css); 4597 commit_charge(folio, memcg); 4598 memcg1_commit_charge(folio, memcg); 4599 out: 4600 return ret; 4601 } 4602 4603 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4604 { 4605 struct mem_cgroup *memcg; 4606 int ret; 4607 4608 memcg = get_mem_cgroup_from_mm(mm); 4609 ret = charge_memcg(folio, memcg, gfp); 4610 css_put(&memcg->css); 4611 4612 return ret; 4613 } 4614 4615 /** 4616 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4617 * @folio: folio being charged 4618 * @gfp: reclaim mode 4619 * 4620 * This function is called when allocating a huge page folio, after the page has 4621 * already been obtained and charged to the appropriate hugetlb cgroup 4622 * controller (if it is enabled). 4623 * 4624 * Returns ENOMEM if the memcg is already full. 4625 * Returns 0 if either the charge was successful, or if we skip the charging. 4626 */ 4627 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4628 { 4629 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4630 int ret = 0; 4631 4632 /* 4633 * Even memcg does not account for hugetlb, we still want to update 4634 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4635 * charging the memcg. 4636 */ 4637 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4638 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4639 goto out; 4640 4641 if (charge_memcg(folio, memcg, gfp)) 4642 ret = -ENOMEM; 4643 4644 out: 4645 mem_cgroup_put(memcg); 4646 return ret; 4647 } 4648 4649 /** 4650 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4651 * @folio: folio to charge. 4652 * @mm: mm context of the victim 4653 * @gfp: reclaim mode 4654 * @entry: swap entry for which the folio is allocated 4655 * 4656 * This function charges a folio allocated for swapin. Please call this before 4657 * adding the folio to the swapcache. 4658 * 4659 * Returns 0 on success. Otherwise, an error code is returned. 4660 */ 4661 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4662 gfp_t gfp, swp_entry_t entry) 4663 { 4664 struct mem_cgroup *memcg; 4665 unsigned short id; 4666 int ret; 4667 4668 if (mem_cgroup_disabled()) 4669 return 0; 4670 4671 id = lookup_swap_cgroup_id(entry); 4672 rcu_read_lock(); 4673 memcg = mem_cgroup_from_id(id); 4674 if (!memcg || !css_tryget_online(&memcg->css)) 4675 memcg = get_mem_cgroup_from_mm(mm); 4676 rcu_read_unlock(); 4677 4678 ret = charge_memcg(folio, memcg, gfp); 4679 4680 css_put(&memcg->css); 4681 return ret; 4682 } 4683 4684 struct uncharge_gather { 4685 struct mem_cgroup *memcg; 4686 unsigned long nr_memory; 4687 unsigned long pgpgout; 4688 unsigned long nr_kmem; 4689 int nid; 4690 }; 4691 4692 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4693 { 4694 memset(ug, 0, sizeof(*ug)); 4695 } 4696 4697 static void uncharge_batch(const struct uncharge_gather *ug) 4698 { 4699 if (ug->nr_memory) { 4700 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4701 if (do_memsw_account()) 4702 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4703 if (ug->nr_kmem) { 4704 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4705 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4706 } 4707 memcg1_oom_recover(ug->memcg); 4708 } 4709 4710 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4711 4712 /* drop reference from uncharge_folio */ 4713 css_put(&ug->memcg->css); 4714 } 4715 4716 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4717 { 4718 long nr_pages; 4719 struct mem_cgroup *memcg; 4720 struct obj_cgroup *objcg; 4721 4722 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4723 4724 /* 4725 * Nobody should be changing or seriously looking at 4726 * folio memcg or objcg at this point, we have fully 4727 * exclusive access to the folio. 4728 */ 4729 if (folio_memcg_kmem(folio)) { 4730 objcg = __folio_objcg(folio); 4731 /* 4732 * This get matches the put at the end of the function and 4733 * kmem pages do not hold memcg references anymore. 4734 */ 4735 memcg = get_mem_cgroup_from_objcg(objcg); 4736 } else { 4737 memcg = __folio_memcg(folio); 4738 } 4739 4740 if (!memcg) 4741 return; 4742 4743 if (ug->memcg != memcg) { 4744 if (ug->memcg) { 4745 uncharge_batch(ug); 4746 uncharge_gather_clear(ug); 4747 } 4748 ug->memcg = memcg; 4749 ug->nid = folio_nid(folio); 4750 4751 /* pairs with css_put in uncharge_batch */ 4752 css_get(&memcg->css); 4753 } 4754 4755 nr_pages = folio_nr_pages(folio); 4756 4757 if (folio_memcg_kmem(folio)) { 4758 ug->nr_memory += nr_pages; 4759 ug->nr_kmem += nr_pages; 4760 4761 folio->memcg_data = 0; 4762 obj_cgroup_put(objcg); 4763 } else { 4764 /* LRU pages aren't accounted at the root level */ 4765 if (!mem_cgroup_is_root(memcg)) 4766 ug->nr_memory += nr_pages; 4767 ug->pgpgout++; 4768 4769 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4770 folio->memcg_data = 0; 4771 } 4772 4773 css_put(&memcg->css); 4774 } 4775 4776 void __mem_cgroup_uncharge(struct folio *folio) 4777 { 4778 struct uncharge_gather ug; 4779 4780 /* Don't touch folio->lru of any random page, pre-check: */ 4781 if (!folio_memcg_charged(folio)) 4782 return; 4783 4784 uncharge_gather_clear(&ug); 4785 uncharge_folio(folio, &ug); 4786 uncharge_batch(&ug); 4787 } 4788 4789 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4790 { 4791 struct uncharge_gather ug; 4792 unsigned int i; 4793 4794 uncharge_gather_clear(&ug); 4795 for (i = 0; i < folios->nr; i++) 4796 uncharge_folio(folios->folios[i], &ug); 4797 if (ug.memcg) 4798 uncharge_batch(&ug); 4799 } 4800 4801 /** 4802 * mem_cgroup_replace_folio - Charge a folio's replacement. 4803 * @old: Currently circulating folio. 4804 * @new: Replacement folio. 4805 * 4806 * Charge @new as a replacement folio for @old. @old will 4807 * be uncharged upon free. 4808 * 4809 * Both folios must be locked, @new->mapping must be set up. 4810 */ 4811 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4812 { 4813 struct mem_cgroup *memcg; 4814 long nr_pages = folio_nr_pages(new); 4815 4816 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4817 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4818 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4819 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4820 4821 if (mem_cgroup_disabled()) 4822 return; 4823 4824 /* Page cache replacement: new folio already charged? */ 4825 if (folio_memcg_charged(new)) 4826 return; 4827 4828 memcg = folio_memcg(old); 4829 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4830 if (!memcg) 4831 return; 4832 4833 /* Force-charge the new page. The old one will be freed soon */ 4834 if (!mem_cgroup_is_root(memcg)) { 4835 page_counter_charge(&memcg->memory, nr_pages); 4836 if (do_memsw_account()) 4837 page_counter_charge(&memcg->memsw, nr_pages); 4838 } 4839 4840 css_get(&memcg->css); 4841 commit_charge(new, memcg); 4842 memcg1_commit_charge(new, memcg); 4843 } 4844 4845 /** 4846 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4847 * @old: Currently circulating folio. 4848 * @new: Replacement folio. 4849 * 4850 * Transfer the memcg data from the old folio to the new folio for migration. 4851 * The old folio's data info will be cleared. Note that the memory counters 4852 * will remain unchanged throughout the process. 4853 * 4854 * Both folios must be locked, @new->mapping must be set up. 4855 */ 4856 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4857 { 4858 struct mem_cgroup *memcg; 4859 4860 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4861 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4862 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4863 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4864 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4865 4866 if (mem_cgroup_disabled()) 4867 return; 4868 4869 memcg = folio_memcg(old); 4870 /* 4871 * Note that it is normal to see !memcg for a hugetlb folio. 4872 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4873 * was not selected. 4874 */ 4875 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4876 if (!memcg) 4877 return; 4878 4879 /* Transfer the charge and the css ref */ 4880 commit_charge(new, memcg); 4881 4882 /* Warning should never happen, so don't worry about refcount non-0 */ 4883 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4884 old->memcg_data = 0; 4885 } 4886 4887 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4888 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4889 4890 void mem_cgroup_sk_alloc(struct sock *sk) 4891 { 4892 struct mem_cgroup *memcg; 4893 4894 if (!mem_cgroup_sockets_enabled) 4895 return; 4896 4897 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4898 if (!in_task()) 4899 return; 4900 4901 rcu_read_lock(); 4902 memcg = mem_cgroup_from_task(current); 4903 if (mem_cgroup_is_root(memcg)) 4904 goto out; 4905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4906 goto out; 4907 if (css_tryget(&memcg->css)) 4908 sk->sk_memcg = memcg; 4909 out: 4910 rcu_read_unlock(); 4911 } 4912 4913 void mem_cgroup_sk_free(struct sock *sk) 4914 { 4915 if (sk->sk_memcg) 4916 css_put(&sk->sk_memcg->css); 4917 } 4918 4919 /** 4920 * mem_cgroup_charge_skmem - charge socket memory 4921 * @memcg: memcg to charge 4922 * @nr_pages: number of pages to charge 4923 * @gfp_mask: reclaim mode 4924 * 4925 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4926 * @memcg's configured limit, %false if it doesn't. 4927 */ 4928 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4929 gfp_t gfp_mask) 4930 { 4931 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4932 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4933 4934 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 4935 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4936 return true; 4937 } 4938 4939 return false; 4940 } 4941 4942 /** 4943 * mem_cgroup_uncharge_skmem - uncharge socket memory 4944 * @memcg: memcg to uncharge 4945 * @nr_pages: number of pages to uncharge 4946 */ 4947 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4948 { 4949 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4950 memcg1_uncharge_skmem(memcg, nr_pages); 4951 return; 4952 } 4953 4954 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4955 4956 refill_stock(memcg, nr_pages); 4957 } 4958 4959 static int __init cgroup_memory(char *s) 4960 { 4961 char *token; 4962 4963 while ((token = strsep(&s, ",")) != NULL) { 4964 if (!*token) 4965 continue; 4966 if (!strcmp(token, "nosocket")) 4967 cgroup_memory_nosocket = true; 4968 if (!strcmp(token, "nokmem")) 4969 cgroup_memory_nokmem = true; 4970 if (!strcmp(token, "nobpf")) 4971 cgroup_memory_nobpf = true; 4972 } 4973 return 1; 4974 } 4975 __setup("cgroup.memory=", cgroup_memory); 4976 4977 /* 4978 * subsys_initcall() for memory controller. 4979 * 4980 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4981 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4982 * basically everything that doesn't depend on a specific mem_cgroup structure 4983 * should be initialized from here. 4984 */ 4985 static int __init mem_cgroup_init(void) 4986 { 4987 int cpu; 4988 4989 /* 4990 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4991 * used for per-memcg-per-cpu caching of per-node statistics. In order 4992 * to work fine, we should make sure that the overfill threshold can't 4993 * exceed S32_MAX / PAGE_SIZE. 4994 */ 4995 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4996 4997 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4998 memcg_hotplug_cpu_dead); 4999 5000 for_each_possible_cpu(cpu) 5001 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5002 drain_local_stock); 5003 5004 return 0; 5005 } 5006 subsys_initcall(mem_cgroup_init); 5007 5008 #ifdef CONFIG_SWAP 5009 /** 5010 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5011 * @folio: folio being added to swap 5012 * @entry: swap entry to charge 5013 * 5014 * Try to charge @folio's memcg for the swap space at @entry. 5015 * 5016 * Returns 0 on success, -ENOMEM on failure. 5017 */ 5018 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5019 { 5020 unsigned int nr_pages = folio_nr_pages(folio); 5021 struct page_counter *counter; 5022 struct mem_cgroup *memcg; 5023 5024 if (do_memsw_account()) 5025 return 0; 5026 5027 memcg = folio_memcg(folio); 5028 5029 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5030 if (!memcg) 5031 return 0; 5032 5033 if (!entry.val) { 5034 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5035 return 0; 5036 } 5037 5038 memcg = mem_cgroup_id_get_online(memcg); 5039 5040 if (!mem_cgroup_is_root(memcg) && 5041 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5042 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5043 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5044 mem_cgroup_id_put(memcg); 5045 return -ENOMEM; 5046 } 5047 5048 /* Get references for the tail pages, too */ 5049 if (nr_pages > 1) 5050 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5051 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5052 5053 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5054 5055 return 0; 5056 } 5057 5058 /** 5059 * __mem_cgroup_uncharge_swap - uncharge swap space 5060 * @entry: swap entry to uncharge 5061 * @nr_pages: the amount of swap space to uncharge 5062 */ 5063 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5064 { 5065 struct mem_cgroup *memcg; 5066 unsigned short id; 5067 5068 id = swap_cgroup_clear(entry, nr_pages); 5069 rcu_read_lock(); 5070 memcg = mem_cgroup_from_id(id); 5071 if (memcg) { 5072 if (!mem_cgroup_is_root(memcg)) { 5073 if (do_memsw_account()) 5074 page_counter_uncharge(&memcg->memsw, nr_pages); 5075 else 5076 page_counter_uncharge(&memcg->swap, nr_pages); 5077 } 5078 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5079 mem_cgroup_id_put_many(memcg, nr_pages); 5080 } 5081 rcu_read_unlock(); 5082 } 5083 5084 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5085 { 5086 long nr_swap_pages = get_nr_swap_pages(); 5087 5088 if (mem_cgroup_disabled() || do_memsw_account()) 5089 return nr_swap_pages; 5090 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5091 nr_swap_pages = min_t(long, nr_swap_pages, 5092 READ_ONCE(memcg->swap.max) - 5093 page_counter_read(&memcg->swap)); 5094 return nr_swap_pages; 5095 } 5096 5097 bool mem_cgroup_swap_full(struct folio *folio) 5098 { 5099 struct mem_cgroup *memcg; 5100 5101 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5102 5103 if (vm_swap_full()) 5104 return true; 5105 if (do_memsw_account()) 5106 return false; 5107 5108 memcg = folio_memcg(folio); 5109 if (!memcg) 5110 return false; 5111 5112 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5113 unsigned long usage = page_counter_read(&memcg->swap); 5114 5115 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5116 usage * 2 >= READ_ONCE(memcg->swap.max)) 5117 return true; 5118 } 5119 5120 return false; 5121 } 5122 5123 static int __init setup_swap_account(char *s) 5124 { 5125 bool res; 5126 5127 if (!kstrtobool(s, &res) && !res) 5128 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5129 "in favor of configuring swap control via cgroupfs. " 5130 "Please report your usecase to linux-mm@kvack.org if you " 5131 "depend on this functionality.\n"); 5132 return 1; 5133 } 5134 __setup("swapaccount=", setup_swap_account); 5135 5136 static u64 swap_current_read(struct cgroup_subsys_state *css, 5137 struct cftype *cft) 5138 { 5139 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5140 5141 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5142 } 5143 5144 static int swap_peak_show(struct seq_file *sf, void *v) 5145 { 5146 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5147 5148 return peak_show(sf, v, &memcg->swap); 5149 } 5150 5151 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5152 size_t nbytes, loff_t off) 5153 { 5154 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5155 5156 return peak_write(of, buf, nbytes, off, &memcg->swap, 5157 &memcg->swap_peaks); 5158 } 5159 5160 static int swap_high_show(struct seq_file *m, void *v) 5161 { 5162 return seq_puts_memcg_tunable(m, 5163 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5164 } 5165 5166 static ssize_t swap_high_write(struct kernfs_open_file *of, 5167 char *buf, size_t nbytes, loff_t off) 5168 { 5169 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5170 unsigned long high; 5171 int err; 5172 5173 buf = strstrip(buf); 5174 err = page_counter_memparse(buf, "max", &high); 5175 if (err) 5176 return err; 5177 5178 page_counter_set_high(&memcg->swap, high); 5179 5180 return nbytes; 5181 } 5182 5183 static int swap_max_show(struct seq_file *m, void *v) 5184 { 5185 return seq_puts_memcg_tunable(m, 5186 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5187 } 5188 5189 static ssize_t swap_max_write(struct kernfs_open_file *of, 5190 char *buf, size_t nbytes, loff_t off) 5191 { 5192 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5193 unsigned long max; 5194 int err; 5195 5196 buf = strstrip(buf); 5197 err = page_counter_memparse(buf, "max", &max); 5198 if (err) 5199 return err; 5200 5201 xchg(&memcg->swap.max, max); 5202 5203 return nbytes; 5204 } 5205 5206 static int swap_events_show(struct seq_file *m, void *v) 5207 { 5208 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5209 5210 seq_printf(m, "high %lu\n", 5211 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5212 seq_printf(m, "max %lu\n", 5213 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5214 seq_printf(m, "fail %lu\n", 5215 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5216 5217 return 0; 5218 } 5219 5220 static struct cftype swap_files[] = { 5221 { 5222 .name = "swap.current", 5223 .flags = CFTYPE_NOT_ON_ROOT, 5224 .read_u64 = swap_current_read, 5225 }, 5226 { 5227 .name = "swap.high", 5228 .flags = CFTYPE_NOT_ON_ROOT, 5229 .seq_show = swap_high_show, 5230 .write = swap_high_write, 5231 }, 5232 { 5233 .name = "swap.max", 5234 .flags = CFTYPE_NOT_ON_ROOT, 5235 .seq_show = swap_max_show, 5236 .write = swap_max_write, 5237 }, 5238 { 5239 .name = "swap.peak", 5240 .flags = CFTYPE_NOT_ON_ROOT, 5241 .open = peak_open, 5242 .release = peak_release, 5243 .seq_show = swap_peak_show, 5244 .write = swap_peak_write, 5245 }, 5246 { 5247 .name = "swap.events", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5250 .seq_show = swap_events_show, 5251 }, 5252 { } /* terminate */ 5253 }; 5254 5255 #ifdef CONFIG_ZSWAP 5256 /** 5257 * obj_cgroup_may_zswap - check if this cgroup can zswap 5258 * @objcg: the object cgroup 5259 * 5260 * Check if the hierarchical zswap limit has been reached. 5261 * 5262 * This doesn't check for specific headroom, and it is not atomic 5263 * either. But with zswap, the size of the allocation is only known 5264 * once compression has occurred, and this optimistic pre-check avoids 5265 * spending cycles on compression when there is already no room left 5266 * or zswap is disabled altogether somewhere in the hierarchy. 5267 */ 5268 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5269 { 5270 struct mem_cgroup *memcg, *original_memcg; 5271 bool ret = true; 5272 5273 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5274 return true; 5275 5276 original_memcg = get_mem_cgroup_from_objcg(objcg); 5277 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5278 memcg = parent_mem_cgroup(memcg)) { 5279 unsigned long max = READ_ONCE(memcg->zswap_max); 5280 unsigned long pages; 5281 5282 if (max == PAGE_COUNTER_MAX) 5283 continue; 5284 if (max == 0) { 5285 ret = false; 5286 break; 5287 } 5288 5289 /* Force flush to get accurate stats for charging */ 5290 __mem_cgroup_flush_stats(memcg, true); 5291 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5292 if (pages < max) 5293 continue; 5294 ret = false; 5295 break; 5296 } 5297 mem_cgroup_put(original_memcg); 5298 return ret; 5299 } 5300 5301 /** 5302 * obj_cgroup_charge_zswap - charge compression backend memory 5303 * @objcg: the object cgroup 5304 * @size: size of compressed object 5305 * 5306 * This forces the charge after obj_cgroup_may_zswap() allowed 5307 * compression and storage in zwap for this cgroup to go ahead. 5308 */ 5309 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5310 { 5311 struct mem_cgroup *memcg; 5312 5313 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5314 return; 5315 5316 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5317 5318 /* PF_MEMALLOC context, charging must succeed */ 5319 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5320 VM_WARN_ON_ONCE(1); 5321 5322 rcu_read_lock(); 5323 memcg = obj_cgroup_memcg(objcg); 5324 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5325 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5326 rcu_read_unlock(); 5327 } 5328 5329 /** 5330 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5331 * @objcg: the object cgroup 5332 * @size: size of compressed object 5333 * 5334 * Uncharges zswap memory on page in. 5335 */ 5336 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5337 { 5338 struct mem_cgroup *memcg; 5339 5340 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5341 return; 5342 5343 obj_cgroup_uncharge(objcg, size); 5344 5345 rcu_read_lock(); 5346 memcg = obj_cgroup_memcg(objcg); 5347 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5348 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5349 rcu_read_unlock(); 5350 } 5351 5352 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5353 { 5354 /* if zswap is disabled, do not block pages going to the swapping device */ 5355 if (!zswap_is_enabled()) 5356 return true; 5357 5358 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5359 if (!READ_ONCE(memcg->zswap_writeback)) 5360 return false; 5361 5362 return true; 5363 } 5364 5365 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5366 struct cftype *cft) 5367 { 5368 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5369 5370 mem_cgroup_flush_stats(memcg); 5371 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5372 } 5373 5374 static int zswap_max_show(struct seq_file *m, void *v) 5375 { 5376 return seq_puts_memcg_tunable(m, 5377 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5378 } 5379 5380 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5381 char *buf, size_t nbytes, loff_t off) 5382 { 5383 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5384 unsigned long max; 5385 int err; 5386 5387 buf = strstrip(buf); 5388 err = page_counter_memparse(buf, "max", &max); 5389 if (err) 5390 return err; 5391 5392 xchg(&memcg->zswap_max, max); 5393 5394 return nbytes; 5395 } 5396 5397 static int zswap_writeback_show(struct seq_file *m, void *v) 5398 { 5399 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5400 5401 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5402 return 0; 5403 } 5404 5405 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5406 char *buf, size_t nbytes, loff_t off) 5407 { 5408 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5409 int zswap_writeback; 5410 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5411 5412 if (parse_ret) 5413 return parse_ret; 5414 5415 if (zswap_writeback != 0 && zswap_writeback != 1) 5416 return -EINVAL; 5417 5418 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5419 return nbytes; 5420 } 5421 5422 static struct cftype zswap_files[] = { 5423 { 5424 .name = "zswap.current", 5425 .flags = CFTYPE_NOT_ON_ROOT, 5426 .read_u64 = zswap_current_read, 5427 }, 5428 { 5429 .name = "zswap.max", 5430 .flags = CFTYPE_NOT_ON_ROOT, 5431 .seq_show = zswap_max_show, 5432 .write = zswap_max_write, 5433 }, 5434 { 5435 .name = "zswap.writeback", 5436 .seq_show = zswap_writeback_show, 5437 .write = zswap_writeback_write, 5438 }, 5439 { } /* terminate */ 5440 }; 5441 #endif /* CONFIG_ZSWAP */ 5442 5443 static int __init mem_cgroup_swap_init(void) 5444 { 5445 if (mem_cgroup_disabled()) 5446 return 0; 5447 5448 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5449 #ifdef CONFIG_MEMCG_V1 5450 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5451 #endif 5452 #ifdef CONFIG_ZSWAP 5453 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5454 #endif 5455 return 0; 5456 } 5457 subsys_initcall(mem_cgroup_swap_init); 5458 5459 #endif /* CONFIG_SWAP */ 5460