1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 /* Socket memory accounting disabled? */ 77 static bool cgroup_memory_nosocket; 78 79 /* Kernel memory accounting disabled? */ 80 static bool cgroup_memory_nokmem; 81 82 /* Whether the swap controller is active */ 83 #ifdef CONFIG_MEMCG_SWAP 84 bool cgroup_memory_noswap __read_mostly; 85 #else 86 #define cgroup_memory_noswap 1 87 #endif 88 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 91 #endif 92 93 /* Whether legacy memory+swap accounting is active */ 94 static bool do_memsw_account(void) 95 { 96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 97 } 98 99 #define THRESHOLDS_EVENTS_TARGET 128 100 #define SOFTLIMIT_EVENTS_TARGET 1024 101 102 /* 103 * Cgroups above their limits are maintained in a RB-Tree, independent of 104 * their hierarchy representation 105 */ 106 107 struct mem_cgroup_tree_per_node { 108 struct rb_root rb_root; 109 struct rb_node *rb_rightmost; 110 spinlock_t lock; 111 }; 112 113 struct mem_cgroup_tree { 114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 115 }; 116 117 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 118 119 /* for OOM */ 120 struct mem_cgroup_eventfd_list { 121 struct list_head list; 122 struct eventfd_ctx *eventfd; 123 }; 124 125 /* 126 * cgroup_event represents events which userspace want to receive. 127 */ 128 struct mem_cgroup_event { 129 /* 130 * memcg which the event belongs to. 131 */ 132 struct mem_cgroup *memcg; 133 /* 134 * eventfd to signal userspace about the event. 135 */ 136 struct eventfd_ctx *eventfd; 137 /* 138 * Each of these stored in a list by the cgroup. 139 */ 140 struct list_head list; 141 /* 142 * register_event() callback will be used to add new userspace 143 * waiter for changes related to this event. Use eventfd_signal() 144 * on eventfd to send notification to userspace. 145 */ 146 int (*register_event)(struct mem_cgroup *memcg, 147 struct eventfd_ctx *eventfd, const char *args); 148 /* 149 * unregister_event() callback will be called when userspace closes 150 * the eventfd or on cgroup removing. This callback must be set, 151 * if you want provide notification functionality. 152 */ 153 void (*unregister_event)(struct mem_cgroup *memcg, 154 struct eventfd_ctx *eventfd); 155 /* 156 * All fields below needed to unregister event when 157 * userspace closes eventfd. 158 */ 159 poll_table pt; 160 wait_queue_head_t *wqh; 161 wait_queue_entry_t wait; 162 struct work_struct remove; 163 }; 164 165 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 167 168 /* Stuffs for move charges at task migration. */ 169 /* 170 * Types of charges to be moved. 171 */ 172 #define MOVE_ANON 0x1U 173 #define MOVE_FILE 0x2U 174 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 175 176 /* "mc" and its members are protected by cgroup_mutex */ 177 static struct move_charge_struct { 178 spinlock_t lock; /* for from, to */ 179 struct mm_struct *mm; 180 struct mem_cgroup *from; 181 struct mem_cgroup *to; 182 unsigned long flags; 183 unsigned long precharge; 184 unsigned long moved_charge; 185 unsigned long moved_swap; 186 struct task_struct *moving_task; /* a task moving charges */ 187 wait_queue_head_t waitq; /* a waitq for other context */ 188 } mc = { 189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 191 }; 192 193 /* 194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 195 * limit reclaim to prevent infinite loops, if they ever occur. 196 */ 197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 199 200 enum charge_type { 201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 202 MEM_CGROUP_CHARGE_TYPE_ANON, 203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 205 NR_CHARGE_TYPE, 206 }; 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _OOM_TYPE, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 /* Used for OOM nofiier */ 221 #define OOM_CONTROL (0) 222 223 /* 224 * Iteration constructs for visiting all cgroups (under a tree). If 225 * loops are exited prematurely (break), mem_cgroup_iter_break() must 226 * be used for reference counting. 227 */ 228 #define for_each_mem_cgroup_tree(iter, root) \ 229 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 230 iter != NULL; \ 231 iter = mem_cgroup_iter(root, iter, NULL)) 232 233 #define for_each_mem_cgroup(iter) \ 234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 235 iter != NULL; \ 236 iter = mem_cgroup_iter(NULL, iter, NULL)) 237 238 static inline bool should_force_charge(void) 239 { 240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 241 (current->flags & PF_EXITING); 242 } 243 244 /* Some nice accessors for the vmpressure. */ 245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 246 { 247 if (!memcg) 248 memcg = root_mem_cgroup; 249 return &memcg->vmpressure; 250 } 251 252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 253 { 254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 255 } 256 257 #ifdef CONFIG_MEMCG_KMEM 258 extern spinlock_t css_set_lock; 259 260 static void obj_cgroup_release(struct percpu_ref *ref) 261 { 262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 263 struct mem_cgroup *memcg; 264 unsigned int nr_bytes; 265 unsigned int nr_pages; 266 unsigned long flags; 267 268 /* 269 * At this point all allocated objects are freed, and 270 * objcg->nr_charged_bytes can't have an arbitrary byte value. 271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 272 * 273 * The following sequence can lead to it: 274 * 1) CPU0: objcg == stock->cached_objcg 275 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 276 * PAGE_SIZE bytes are charged 277 * 3) CPU1: a process from another memcg is allocating something, 278 * the stock if flushed, 279 * objcg->nr_charged_bytes = PAGE_SIZE - 92 280 * 5) CPU0: we do release this object, 281 * 92 bytes are added to stock->nr_bytes 282 * 6) CPU0: stock is flushed, 283 * 92 bytes are added to objcg->nr_charged_bytes 284 * 285 * In the result, nr_charged_bytes == PAGE_SIZE. 286 * This page will be uncharged in obj_cgroup_release(). 287 */ 288 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 290 nr_pages = nr_bytes >> PAGE_SHIFT; 291 292 spin_lock_irqsave(&css_set_lock, flags); 293 memcg = obj_cgroup_memcg(objcg); 294 if (nr_pages) 295 __memcg_kmem_uncharge(memcg, nr_pages); 296 list_del(&objcg->list); 297 mem_cgroup_put(memcg); 298 spin_unlock_irqrestore(&css_set_lock, flags); 299 300 percpu_ref_exit(ref); 301 kfree_rcu(objcg, rcu); 302 } 303 304 static struct obj_cgroup *obj_cgroup_alloc(void) 305 { 306 struct obj_cgroup *objcg; 307 int ret; 308 309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 310 if (!objcg) 311 return NULL; 312 313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 314 GFP_KERNEL); 315 if (ret) { 316 kfree(objcg); 317 return NULL; 318 } 319 INIT_LIST_HEAD(&objcg->list); 320 return objcg; 321 } 322 323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 324 struct mem_cgroup *parent) 325 { 326 struct obj_cgroup *objcg, *iter; 327 328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 329 330 spin_lock_irq(&css_set_lock); 331 332 /* Move active objcg to the parent's list */ 333 xchg(&objcg->memcg, parent); 334 css_get(&parent->css); 335 list_add(&objcg->list, &parent->objcg_list); 336 337 /* Move already reparented objcgs to the parent's list */ 338 list_for_each_entry(iter, &memcg->objcg_list, list) { 339 css_get(&parent->css); 340 xchg(&iter->memcg, parent); 341 css_put(&memcg->css); 342 } 343 list_splice(&memcg->objcg_list, &parent->objcg_list); 344 345 spin_unlock_irq(&css_set_lock); 346 347 percpu_ref_kill(&objcg->refcnt); 348 } 349 350 /* 351 * This will be used as a shrinker list's index. 352 * The main reason for not using cgroup id for this: 353 * this works better in sparse environments, where we have a lot of memcgs, 354 * but only a few kmem-limited. Or also, if we have, for instance, 200 355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 356 * 200 entry array for that. 357 * 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It 359 * will double each time we have to increase it. 360 */ 361 static DEFINE_IDA(memcg_cache_ida); 362 int memcg_nr_cache_ids; 363 364 /* Protects memcg_nr_cache_ids */ 365 static DECLARE_RWSEM(memcg_cache_ids_sem); 366 367 void memcg_get_cache_ids(void) 368 { 369 down_read(&memcg_cache_ids_sem); 370 } 371 372 void memcg_put_cache_ids(void) 373 { 374 up_read(&memcg_cache_ids_sem); 375 } 376 377 /* 378 * MIN_SIZE is different than 1, because we would like to avoid going through 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited 380 * cgroups is a reasonable guess. In the future, it could be a parameter or 381 * tunable, but that is strictly not necessary. 382 * 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 384 * this constant directly from cgroup, but it is understandable that this is 385 * better kept as an internal representation in cgroup.c. In any case, the 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily 387 * increase ours as well if it increases. 388 */ 389 #define MEMCG_CACHES_MIN_SIZE 4 390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 391 392 /* 393 * A lot of the calls to the cache allocation functions are expected to be 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 395 * conditional to this static branch, we'll have to allow modules that does 396 * kmem_cache_alloc and the such to see this symbol as well 397 */ 398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 399 EXPORT_SYMBOL(memcg_kmem_enabled_key); 400 #endif 401 402 static int memcg_shrinker_map_size; 403 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 404 405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 406 { 407 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 408 } 409 410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 411 int size, int old_size) 412 { 413 struct memcg_shrinker_map *new, *old; 414 int nid; 415 416 lockdep_assert_held(&memcg_shrinker_map_mutex); 417 418 for_each_node(nid) { 419 old = rcu_dereference_protected( 420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 421 /* Not yet online memcg */ 422 if (!old) 423 return 0; 424 425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 426 if (!new) 427 return -ENOMEM; 428 429 /* Set all old bits, clear all new bits */ 430 memset(new->map, (int)0xff, old_size); 431 memset((void *)new->map + old_size, 0, size - old_size); 432 433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 435 } 436 437 return 0; 438 } 439 440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 441 { 442 struct mem_cgroup_per_node *pn; 443 struct memcg_shrinker_map *map; 444 int nid; 445 446 if (mem_cgroup_is_root(memcg)) 447 return; 448 449 for_each_node(nid) { 450 pn = mem_cgroup_nodeinfo(memcg, nid); 451 map = rcu_dereference_protected(pn->shrinker_map, true); 452 if (map) 453 kvfree(map); 454 rcu_assign_pointer(pn->shrinker_map, NULL); 455 } 456 } 457 458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 459 { 460 struct memcg_shrinker_map *map; 461 int nid, size, ret = 0; 462 463 if (mem_cgroup_is_root(memcg)) 464 return 0; 465 466 mutex_lock(&memcg_shrinker_map_mutex); 467 size = memcg_shrinker_map_size; 468 for_each_node(nid) { 469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 470 if (!map) { 471 memcg_free_shrinker_maps(memcg); 472 ret = -ENOMEM; 473 break; 474 } 475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 476 } 477 mutex_unlock(&memcg_shrinker_map_mutex); 478 479 return ret; 480 } 481 482 int memcg_expand_shrinker_maps(int new_id) 483 { 484 int size, old_size, ret = 0; 485 struct mem_cgroup *memcg; 486 487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 488 old_size = memcg_shrinker_map_size; 489 if (size <= old_size) 490 return 0; 491 492 mutex_lock(&memcg_shrinker_map_mutex); 493 if (!root_mem_cgroup) 494 goto unlock; 495 496 for_each_mem_cgroup(memcg) { 497 if (mem_cgroup_is_root(memcg)) 498 continue; 499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 500 if (ret) { 501 mem_cgroup_iter_break(NULL, memcg); 502 goto unlock; 503 } 504 } 505 unlock: 506 if (!ret) 507 memcg_shrinker_map_size = size; 508 mutex_unlock(&memcg_shrinker_map_mutex); 509 return ret; 510 } 511 512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 513 { 514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 515 struct memcg_shrinker_map *map; 516 517 rcu_read_lock(); 518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 519 /* Pairs with smp mb in shrink_slab() */ 520 smp_mb__before_atomic(); 521 set_bit(shrinker_id, map->map); 522 rcu_read_unlock(); 523 } 524 } 525 526 /** 527 * mem_cgroup_css_from_page - css of the memcg associated with a page 528 * @page: page of interest 529 * 530 * If memcg is bound to the default hierarchy, css of the memcg associated 531 * with @page is returned. The returned css remains associated with @page 532 * until it is released. 533 * 534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 535 * is returned. 536 */ 537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 538 { 539 struct mem_cgroup *memcg; 540 541 memcg = page->mem_cgroup; 542 543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 544 memcg = root_mem_cgroup; 545 546 return &memcg->css; 547 } 548 549 /** 550 * page_cgroup_ino - return inode number of the memcg a page is charged to 551 * @page: the page 552 * 553 * Look up the closest online ancestor of the memory cgroup @page is charged to 554 * and return its inode number or 0 if @page is not charged to any cgroup. It 555 * is safe to call this function without holding a reference to @page. 556 * 557 * Note, this function is inherently racy, because there is nothing to prevent 558 * the cgroup inode from getting torn down and potentially reallocated a moment 559 * after page_cgroup_ino() returns, so it only should be used by callers that 560 * do not care (such as procfs interfaces). 561 */ 562 ino_t page_cgroup_ino(struct page *page) 563 { 564 struct mem_cgroup *memcg; 565 unsigned long ino = 0; 566 567 rcu_read_lock(); 568 memcg = page->mem_cgroup; 569 570 /* 571 * The lowest bit set means that memcg isn't a valid 572 * memcg pointer, but a obj_cgroups pointer. 573 * In this case the page is shared and doesn't belong 574 * to any specific memory cgroup. 575 */ 576 if ((unsigned long) memcg & 0x1UL) 577 memcg = NULL; 578 579 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 580 memcg = parent_mem_cgroup(memcg); 581 if (memcg) 582 ino = cgroup_ino(memcg->css.cgroup); 583 rcu_read_unlock(); 584 return ino; 585 } 586 587 static struct mem_cgroup_per_node * 588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 589 { 590 int nid = page_to_nid(page); 591 592 return memcg->nodeinfo[nid]; 593 } 594 595 static struct mem_cgroup_tree_per_node * 596 soft_limit_tree_node(int nid) 597 { 598 return soft_limit_tree.rb_tree_per_node[nid]; 599 } 600 601 static struct mem_cgroup_tree_per_node * 602 soft_limit_tree_from_page(struct page *page) 603 { 604 int nid = page_to_nid(page); 605 606 return soft_limit_tree.rb_tree_per_node[nid]; 607 } 608 609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 610 struct mem_cgroup_tree_per_node *mctz, 611 unsigned long new_usage_in_excess) 612 { 613 struct rb_node **p = &mctz->rb_root.rb_node; 614 struct rb_node *parent = NULL; 615 struct mem_cgroup_per_node *mz_node; 616 bool rightmost = true; 617 618 if (mz->on_tree) 619 return; 620 621 mz->usage_in_excess = new_usage_in_excess; 622 if (!mz->usage_in_excess) 623 return; 624 while (*p) { 625 parent = *p; 626 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 627 tree_node); 628 if (mz->usage_in_excess < mz_node->usage_in_excess) { 629 p = &(*p)->rb_left; 630 rightmost = false; 631 } 632 633 /* 634 * We can't avoid mem cgroups that are over their soft 635 * limit by the same amount 636 */ 637 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 638 p = &(*p)->rb_right; 639 } 640 641 if (rightmost) 642 mctz->rb_rightmost = &mz->tree_node; 643 644 rb_link_node(&mz->tree_node, parent, p); 645 rb_insert_color(&mz->tree_node, &mctz->rb_root); 646 mz->on_tree = true; 647 } 648 649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 650 struct mem_cgroup_tree_per_node *mctz) 651 { 652 if (!mz->on_tree) 653 return; 654 655 if (&mz->tree_node == mctz->rb_rightmost) 656 mctz->rb_rightmost = rb_prev(&mz->tree_node); 657 658 rb_erase(&mz->tree_node, &mctz->rb_root); 659 mz->on_tree = false; 660 } 661 662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 663 struct mem_cgroup_tree_per_node *mctz) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&mctz->lock, flags); 668 __mem_cgroup_remove_exceeded(mz, mctz); 669 spin_unlock_irqrestore(&mctz->lock, flags); 670 } 671 672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 673 { 674 unsigned long nr_pages = page_counter_read(&memcg->memory); 675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 676 unsigned long excess = 0; 677 678 if (nr_pages > soft_limit) 679 excess = nr_pages - soft_limit; 680 681 return excess; 682 } 683 684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 685 { 686 unsigned long excess; 687 struct mem_cgroup_per_node *mz; 688 struct mem_cgroup_tree_per_node *mctz; 689 690 mctz = soft_limit_tree_from_page(page); 691 if (!mctz) 692 return; 693 /* 694 * Necessary to update all ancestors when hierarchy is used. 695 * because their event counter is not touched. 696 */ 697 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 698 mz = mem_cgroup_page_nodeinfo(memcg, page); 699 excess = soft_limit_excess(memcg); 700 /* 701 * We have to update the tree if mz is on RB-tree or 702 * mem is over its softlimit. 703 */ 704 if (excess || mz->on_tree) { 705 unsigned long flags; 706 707 spin_lock_irqsave(&mctz->lock, flags); 708 /* if on-tree, remove it */ 709 if (mz->on_tree) 710 __mem_cgroup_remove_exceeded(mz, mctz); 711 /* 712 * Insert again. mz->usage_in_excess will be updated. 713 * If excess is 0, no tree ops. 714 */ 715 __mem_cgroup_insert_exceeded(mz, mctz, excess); 716 spin_unlock_irqrestore(&mctz->lock, flags); 717 } 718 } 719 } 720 721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 722 { 723 struct mem_cgroup_tree_per_node *mctz; 724 struct mem_cgroup_per_node *mz; 725 int nid; 726 727 for_each_node(nid) { 728 mz = mem_cgroup_nodeinfo(memcg, nid); 729 mctz = soft_limit_tree_node(nid); 730 if (mctz) 731 mem_cgroup_remove_exceeded(mz, mctz); 732 } 733 } 734 735 static struct mem_cgroup_per_node * 736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 737 { 738 struct mem_cgroup_per_node *mz; 739 740 retry: 741 mz = NULL; 742 if (!mctz->rb_rightmost) 743 goto done; /* Nothing to reclaim from */ 744 745 mz = rb_entry(mctz->rb_rightmost, 746 struct mem_cgroup_per_node, tree_node); 747 /* 748 * Remove the node now but someone else can add it back, 749 * we will to add it back at the end of reclaim to its correct 750 * position in the tree. 751 */ 752 __mem_cgroup_remove_exceeded(mz, mctz); 753 if (!soft_limit_excess(mz->memcg) || 754 !css_tryget(&mz->memcg->css)) 755 goto retry; 756 done: 757 return mz; 758 } 759 760 static struct mem_cgroup_per_node * 761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 762 { 763 struct mem_cgroup_per_node *mz; 764 765 spin_lock_irq(&mctz->lock); 766 mz = __mem_cgroup_largest_soft_limit_node(mctz); 767 spin_unlock_irq(&mctz->lock); 768 return mz; 769 } 770 771 /** 772 * __mod_memcg_state - update cgroup memory statistics 773 * @memcg: the memory cgroup 774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 775 * @val: delta to add to the counter, can be negative 776 */ 777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 778 { 779 long x, threshold = MEMCG_CHARGE_BATCH; 780 781 if (mem_cgroup_disabled()) 782 return; 783 784 if (vmstat_item_in_bytes(idx)) 785 threshold <<= PAGE_SHIFT; 786 787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 788 if (unlikely(abs(x) > threshold)) { 789 struct mem_cgroup *mi; 790 791 /* 792 * Batch local counters to keep them in sync with 793 * the hierarchical ones. 794 */ 795 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 797 atomic_long_add(x, &mi->vmstats[idx]); 798 x = 0; 799 } 800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 801 } 802 803 static struct mem_cgroup_per_node * 804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 805 { 806 struct mem_cgroup *parent; 807 808 parent = parent_mem_cgroup(pn->memcg); 809 if (!parent) 810 return NULL; 811 return mem_cgroup_nodeinfo(parent, nid); 812 } 813 814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 815 int val) 816 { 817 struct mem_cgroup_per_node *pn; 818 struct mem_cgroup *memcg; 819 long x, threshold = MEMCG_CHARGE_BATCH; 820 821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 822 memcg = pn->memcg; 823 824 /* Update memcg */ 825 __mod_memcg_state(memcg, idx, val); 826 827 /* Update lruvec */ 828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 829 830 if (vmstat_item_in_bytes(idx)) 831 threshold <<= PAGE_SHIFT; 832 833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 834 if (unlikely(abs(x) > threshold)) { 835 pg_data_t *pgdat = lruvec_pgdat(lruvec); 836 struct mem_cgroup_per_node *pi; 837 838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 839 atomic_long_add(x, &pi->lruvec_stat[idx]); 840 x = 0; 841 } 842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 843 } 844 845 /** 846 * __mod_lruvec_state - update lruvec memory statistics 847 * @lruvec: the lruvec 848 * @idx: the stat item 849 * @val: delta to add to the counter, can be negative 850 * 851 * The lruvec is the intersection of the NUMA node and a cgroup. This 852 * function updates the all three counters that are affected by a 853 * change of state at this level: per-node, per-cgroup, per-lruvec. 854 */ 855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 856 int val) 857 { 858 /* Update node */ 859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 860 861 /* Update memcg and lruvec */ 862 if (!mem_cgroup_disabled()) 863 __mod_memcg_lruvec_state(lruvec, idx, val); 864 } 865 866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 867 { 868 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 869 struct mem_cgroup *memcg; 870 struct lruvec *lruvec; 871 872 rcu_read_lock(); 873 memcg = mem_cgroup_from_obj(p); 874 875 /* Untracked pages have no memcg, no lruvec. Update only the node */ 876 if (!memcg || memcg == root_mem_cgroup) { 877 __mod_node_page_state(pgdat, idx, val); 878 } else { 879 lruvec = mem_cgroup_lruvec(memcg, pgdat); 880 __mod_lruvec_state(lruvec, idx, val); 881 } 882 rcu_read_unlock(); 883 } 884 885 void mod_memcg_obj_state(void *p, int idx, int val) 886 { 887 struct mem_cgroup *memcg; 888 889 rcu_read_lock(); 890 memcg = mem_cgroup_from_obj(p); 891 if (memcg) 892 mod_memcg_state(memcg, idx, val); 893 rcu_read_unlock(); 894 } 895 896 /** 897 * __count_memcg_events - account VM events in a cgroup 898 * @memcg: the memory cgroup 899 * @idx: the event item 900 * @count: the number of events that occured 901 */ 902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 903 unsigned long count) 904 { 905 unsigned long x; 906 907 if (mem_cgroup_disabled()) 908 return; 909 910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 911 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 912 struct mem_cgroup *mi; 913 914 /* 915 * Batch local counters to keep them in sync with 916 * the hierarchical ones. 917 */ 918 __this_cpu_add(memcg->vmstats_local->events[idx], x); 919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 920 atomic_long_add(x, &mi->vmevents[idx]); 921 x = 0; 922 } 923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 924 } 925 926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 927 { 928 return atomic_long_read(&memcg->vmevents[event]); 929 } 930 931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 932 { 933 long x = 0; 934 int cpu; 935 936 for_each_possible_cpu(cpu) 937 x += per_cpu(memcg->vmstats_local->events[event], cpu); 938 return x; 939 } 940 941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 942 struct page *page, 943 int nr_pages) 944 { 945 /* pagein of a big page is an event. So, ignore page size */ 946 if (nr_pages > 0) 947 __count_memcg_events(memcg, PGPGIN, 1); 948 else { 949 __count_memcg_events(memcg, PGPGOUT, 1); 950 nr_pages = -nr_pages; /* for event */ 951 } 952 953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 954 } 955 956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 957 enum mem_cgroup_events_target target) 958 { 959 unsigned long val, next; 960 961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 963 /* from time_after() in jiffies.h */ 964 if ((long)(next - val) < 0) { 965 switch (target) { 966 case MEM_CGROUP_TARGET_THRESH: 967 next = val + THRESHOLDS_EVENTS_TARGET; 968 break; 969 case MEM_CGROUP_TARGET_SOFTLIMIT: 970 next = val + SOFTLIMIT_EVENTS_TARGET; 971 break; 972 default: 973 break; 974 } 975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 976 return true; 977 } 978 return false; 979 } 980 981 /* 982 * Check events in order. 983 * 984 */ 985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 986 { 987 /* threshold event is triggered in finer grain than soft limit */ 988 if (unlikely(mem_cgroup_event_ratelimit(memcg, 989 MEM_CGROUP_TARGET_THRESH))) { 990 bool do_softlimit; 991 992 do_softlimit = mem_cgroup_event_ratelimit(memcg, 993 MEM_CGROUP_TARGET_SOFTLIMIT); 994 mem_cgroup_threshold(memcg); 995 if (unlikely(do_softlimit)) 996 mem_cgroup_update_tree(memcg, page); 997 } 998 } 999 1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1001 { 1002 /* 1003 * mm_update_next_owner() may clear mm->owner to NULL 1004 * if it races with swapoff, page migration, etc. 1005 * So this can be called with p == NULL. 1006 */ 1007 if (unlikely(!p)) 1008 return NULL; 1009 1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1011 } 1012 EXPORT_SYMBOL(mem_cgroup_from_task); 1013 1014 /** 1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1016 * @mm: mm from which memcg should be extracted. It can be NULL. 1017 * 1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 1020 * returned. 1021 */ 1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1023 { 1024 struct mem_cgroup *memcg; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 rcu_read_lock(); 1030 do { 1031 /* 1032 * Page cache insertions can happen withou an 1033 * actual mm context, e.g. during disk probing 1034 * on boot, loopback IO, acct() writes etc. 1035 */ 1036 if (unlikely(!mm)) 1037 memcg = root_mem_cgroup; 1038 else { 1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1040 if (unlikely(!memcg)) 1041 memcg = root_mem_cgroup; 1042 } 1043 } while (!css_tryget(&memcg->css)); 1044 rcu_read_unlock(); 1045 return memcg; 1046 } 1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1048 1049 /** 1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 1051 * @page: page from which memcg should be extracted. 1052 * 1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise 1054 * root_mem_cgroup is returned. 1055 */ 1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1057 { 1058 struct mem_cgroup *memcg = page->mem_cgroup; 1059 1060 if (mem_cgroup_disabled()) 1061 return NULL; 1062 1063 rcu_read_lock(); 1064 /* Page should not get uncharged and freed memcg under us. */ 1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 1066 memcg = root_mem_cgroup; 1067 rcu_read_unlock(); 1068 return memcg; 1069 } 1070 EXPORT_SYMBOL(get_mem_cgroup_from_page); 1071 1072 /** 1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 1074 */ 1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1076 { 1077 if (unlikely(current->active_memcg)) { 1078 struct mem_cgroup *memcg; 1079 1080 rcu_read_lock(); 1081 /* current->active_memcg must hold a ref. */ 1082 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css))) 1083 memcg = root_mem_cgroup; 1084 else 1085 memcg = current->active_memcg; 1086 rcu_read_unlock(); 1087 return memcg; 1088 } 1089 return get_mem_cgroup_from_mm(current->mm); 1090 } 1091 1092 /** 1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1094 * @root: hierarchy root 1095 * @prev: previously returned memcg, NULL on first invocation 1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1097 * 1098 * Returns references to children of the hierarchy below @root, or 1099 * @root itself, or %NULL after a full round-trip. 1100 * 1101 * Caller must pass the return value in @prev on subsequent 1102 * invocations for reference counting, or use mem_cgroup_iter_break() 1103 * to cancel a hierarchy walk before the round-trip is complete. 1104 * 1105 * Reclaimers can specify a node and a priority level in @reclaim to 1106 * divide up the memcgs in the hierarchy among all concurrent 1107 * reclaimers operating on the same node and priority. 1108 */ 1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1110 struct mem_cgroup *prev, 1111 struct mem_cgroup_reclaim_cookie *reclaim) 1112 { 1113 struct mem_cgroup_reclaim_iter *iter; 1114 struct cgroup_subsys_state *css = NULL; 1115 struct mem_cgroup *memcg = NULL; 1116 struct mem_cgroup *pos = NULL; 1117 1118 if (mem_cgroup_disabled()) 1119 return NULL; 1120 1121 if (!root) 1122 root = root_mem_cgroup; 1123 1124 if (prev && !reclaim) 1125 pos = prev; 1126 1127 if (!root->use_hierarchy && root != root_mem_cgroup) { 1128 if (prev) 1129 goto out; 1130 return root; 1131 } 1132 1133 rcu_read_lock(); 1134 1135 if (reclaim) { 1136 struct mem_cgroup_per_node *mz; 1137 1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1139 iter = &mz->iter; 1140 1141 if (prev && reclaim->generation != iter->generation) 1142 goto out_unlock; 1143 1144 while (1) { 1145 pos = READ_ONCE(iter->position); 1146 if (!pos || css_tryget(&pos->css)) 1147 break; 1148 /* 1149 * css reference reached zero, so iter->position will 1150 * be cleared by ->css_released. However, we should not 1151 * rely on this happening soon, because ->css_released 1152 * is called from a work queue, and by busy-waiting we 1153 * might block it. So we clear iter->position right 1154 * away. 1155 */ 1156 (void)cmpxchg(&iter->position, pos, NULL); 1157 } 1158 } 1159 1160 if (pos) 1161 css = &pos->css; 1162 1163 for (;;) { 1164 css = css_next_descendant_pre(css, &root->css); 1165 if (!css) { 1166 /* 1167 * Reclaimers share the hierarchy walk, and a 1168 * new one might jump in right at the end of 1169 * the hierarchy - make sure they see at least 1170 * one group and restart from the beginning. 1171 */ 1172 if (!prev) 1173 continue; 1174 break; 1175 } 1176 1177 /* 1178 * Verify the css and acquire a reference. The root 1179 * is provided by the caller, so we know it's alive 1180 * and kicking, and don't take an extra reference. 1181 */ 1182 memcg = mem_cgroup_from_css(css); 1183 1184 if (css == &root->css) 1185 break; 1186 1187 if (css_tryget(css)) 1188 break; 1189 1190 memcg = NULL; 1191 } 1192 1193 if (reclaim) { 1194 /* 1195 * The position could have already been updated by a competing 1196 * thread, so check that the value hasn't changed since we read 1197 * it to avoid reclaiming from the same cgroup twice. 1198 */ 1199 (void)cmpxchg(&iter->position, pos, memcg); 1200 1201 if (pos) 1202 css_put(&pos->css); 1203 1204 if (!memcg) 1205 iter->generation++; 1206 else if (!prev) 1207 reclaim->generation = iter->generation; 1208 } 1209 1210 out_unlock: 1211 rcu_read_unlock(); 1212 out: 1213 if (prev && prev != root) 1214 css_put(&prev->css); 1215 1216 return memcg; 1217 } 1218 1219 /** 1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1221 * @root: hierarchy root 1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1223 */ 1224 void mem_cgroup_iter_break(struct mem_cgroup *root, 1225 struct mem_cgroup *prev) 1226 { 1227 if (!root) 1228 root = root_mem_cgroup; 1229 if (prev && prev != root) 1230 css_put(&prev->css); 1231 } 1232 1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1234 struct mem_cgroup *dead_memcg) 1235 { 1236 struct mem_cgroup_reclaim_iter *iter; 1237 struct mem_cgroup_per_node *mz; 1238 int nid; 1239 1240 for_each_node(nid) { 1241 mz = mem_cgroup_nodeinfo(from, nid); 1242 iter = &mz->iter; 1243 cmpxchg(&iter->position, dead_memcg, NULL); 1244 } 1245 } 1246 1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1248 { 1249 struct mem_cgroup *memcg = dead_memcg; 1250 struct mem_cgroup *last; 1251 1252 do { 1253 __invalidate_reclaim_iterators(memcg, dead_memcg); 1254 last = memcg; 1255 } while ((memcg = parent_mem_cgroup(memcg))); 1256 1257 /* 1258 * When cgruop1 non-hierarchy mode is used, 1259 * parent_mem_cgroup() does not walk all the way up to the 1260 * cgroup root (root_mem_cgroup). So we have to handle 1261 * dead_memcg from cgroup root separately. 1262 */ 1263 if (last != root_mem_cgroup) 1264 __invalidate_reclaim_iterators(root_mem_cgroup, 1265 dead_memcg); 1266 } 1267 1268 /** 1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1270 * @memcg: hierarchy root 1271 * @fn: function to call for each task 1272 * @arg: argument passed to @fn 1273 * 1274 * This function iterates over tasks attached to @memcg or to any of its 1275 * descendants and calls @fn for each task. If @fn returns a non-zero 1276 * value, the function breaks the iteration loop and returns the value. 1277 * Otherwise, it will iterate over all tasks and return 0. 1278 * 1279 * This function must not be called for the root memory cgroup. 1280 */ 1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1282 int (*fn)(struct task_struct *, void *), void *arg) 1283 { 1284 struct mem_cgroup *iter; 1285 int ret = 0; 1286 1287 BUG_ON(memcg == root_mem_cgroup); 1288 1289 for_each_mem_cgroup_tree(iter, memcg) { 1290 struct css_task_iter it; 1291 struct task_struct *task; 1292 1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1294 while (!ret && (task = css_task_iter_next(&it))) 1295 ret = fn(task, arg); 1296 css_task_iter_end(&it); 1297 if (ret) { 1298 mem_cgroup_iter_break(memcg, iter); 1299 break; 1300 } 1301 } 1302 return ret; 1303 } 1304 1305 /** 1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1307 * @page: the page 1308 * @pgdat: pgdat of the page 1309 * 1310 * This function relies on page->mem_cgroup being stable - see the 1311 * access rules in commit_charge(). 1312 */ 1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1314 { 1315 struct mem_cgroup_per_node *mz; 1316 struct mem_cgroup *memcg; 1317 struct lruvec *lruvec; 1318 1319 if (mem_cgroup_disabled()) { 1320 lruvec = &pgdat->__lruvec; 1321 goto out; 1322 } 1323 1324 memcg = page->mem_cgroup; 1325 /* 1326 * Swapcache readahead pages are added to the LRU - and 1327 * possibly migrated - before they are charged. 1328 */ 1329 if (!memcg) 1330 memcg = root_mem_cgroup; 1331 1332 mz = mem_cgroup_page_nodeinfo(memcg, page); 1333 lruvec = &mz->lruvec; 1334 out: 1335 /* 1336 * Since a node can be onlined after the mem_cgroup was created, 1337 * we have to be prepared to initialize lruvec->zone here; 1338 * and if offlined then reonlined, we need to reinitialize it. 1339 */ 1340 if (unlikely(lruvec->pgdat != pgdat)) 1341 lruvec->pgdat = pgdat; 1342 return lruvec; 1343 } 1344 1345 /** 1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1347 * @lruvec: mem_cgroup per zone lru vector 1348 * @lru: index of lru list the page is sitting on 1349 * @zid: zone id of the accounted pages 1350 * @nr_pages: positive when adding or negative when removing 1351 * 1352 * This function must be called under lru_lock, just before a page is added 1353 * to or just after a page is removed from an lru list (that ordering being 1354 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1355 */ 1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1357 int zid, int nr_pages) 1358 { 1359 struct mem_cgroup_per_node *mz; 1360 unsigned long *lru_size; 1361 long size; 1362 1363 if (mem_cgroup_disabled()) 1364 return; 1365 1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1367 lru_size = &mz->lru_zone_size[zid][lru]; 1368 1369 if (nr_pages < 0) 1370 *lru_size += nr_pages; 1371 1372 size = *lru_size; 1373 if (WARN_ONCE(size < 0, 1374 "%s(%p, %d, %d): lru_size %ld\n", 1375 __func__, lruvec, lru, nr_pages, size)) { 1376 VM_BUG_ON(1); 1377 *lru_size = 0; 1378 } 1379 1380 if (nr_pages > 0) 1381 *lru_size += nr_pages; 1382 } 1383 1384 /** 1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1386 * @memcg: the memory cgroup 1387 * 1388 * Returns the maximum amount of memory @mem can be charged with, in 1389 * pages. 1390 */ 1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1392 { 1393 unsigned long margin = 0; 1394 unsigned long count; 1395 unsigned long limit; 1396 1397 count = page_counter_read(&memcg->memory); 1398 limit = READ_ONCE(memcg->memory.max); 1399 if (count < limit) 1400 margin = limit - count; 1401 1402 if (do_memsw_account()) { 1403 count = page_counter_read(&memcg->memsw); 1404 limit = READ_ONCE(memcg->memsw.max); 1405 if (count < limit) 1406 margin = min(margin, limit - count); 1407 else 1408 margin = 0; 1409 } 1410 1411 return margin; 1412 } 1413 1414 /* 1415 * A routine for checking "mem" is under move_account() or not. 1416 * 1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1418 * moving cgroups. This is for waiting at high-memory pressure 1419 * caused by "move". 1420 */ 1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1422 { 1423 struct mem_cgroup *from; 1424 struct mem_cgroup *to; 1425 bool ret = false; 1426 /* 1427 * Unlike task_move routines, we access mc.to, mc.from not under 1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1429 */ 1430 spin_lock(&mc.lock); 1431 from = mc.from; 1432 to = mc.to; 1433 if (!from) 1434 goto unlock; 1435 1436 ret = mem_cgroup_is_descendant(from, memcg) || 1437 mem_cgroup_is_descendant(to, memcg); 1438 unlock: 1439 spin_unlock(&mc.lock); 1440 return ret; 1441 } 1442 1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1444 { 1445 if (mc.moving_task && current != mc.moving_task) { 1446 if (mem_cgroup_under_move(memcg)) { 1447 DEFINE_WAIT(wait); 1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1449 /* moving charge context might have finished. */ 1450 if (mc.moving_task) 1451 schedule(); 1452 finish_wait(&mc.waitq, &wait); 1453 return true; 1454 } 1455 } 1456 return false; 1457 } 1458 1459 static char *memory_stat_format(struct mem_cgroup *memcg) 1460 { 1461 struct seq_buf s; 1462 int i; 1463 1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1465 if (!s.buffer) 1466 return NULL; 1467 1468 /* 1469 * Provide statistics on the state of the memory subsystem as 1470 * well as cumulative event counters that show past behavior. 1471 * 1472 * This list is ordered following a combination of these gradients: 1473 * 1) generic big picture -> specifics and details 1474 * 2) reflecting userspace activity -> reflecting kernel heuristics 1475 * 1476 * Current memory state: 1477 */ 1478 1479 seq_buf_printf(&s, "anon %llu\n", 1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) * 1481 PAGE_SIZE); 1482 seq_buf_printf(&s, "file %llu\n", 1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) * 1484 PAGE_SIZE); 1485 seq_buf_printf(&s, "kernel_stack %llu\n", 1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) * 1487 1024); 1488 seq_buf_printf(&s, "slab %llu\n", 1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + 1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B))); 1491 seq_buf_printf(&s, "sock %llu\n", 1492 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1493 PAGE_SIZE); 1494 1495 seq_buf_printf(&s, "shmem %llu\n", 1496 (u64)memcg_page_state(memcg, NR_SHMEM) * 1497 PAGE_SIZE); 1498 seq_buf_printf(&s, "file_mapped %llu\n", 1499 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1500 PAGE_SIZE); 1501 seq_buf_printf(&s, "file_dirty %llu\n", 1502 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1503 PAGE_SIZE); 1504 seq_buf_printf(&s, "file_writeback %llu\n", 1505 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1506 PAGE_SIZE); 1507 1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1509 seq_buf_printf(&s, "anon_thp %llu\n", 1510 (u64)memcg_page_state(memcg, NR_ANON_THPS) * 1511 HPAGE_PMD_SIZE); 1512 #endif 1513 1514 for (i = 0; i < NR_LRU_LISTS; i++) 1515 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1516 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1517 PAGE_SIZE); 1518 1519 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1520 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B)); 1521 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1522 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)); 1523 1524 /* Accumulated memory events */ 1525 1526 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1527 memcg_events(memcg, PGFAULT)); 1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1529 memcg_events(memcg, PGMAJFAULT)); 1530 1531 seq_buf_printf(&s, "workingset_refault %lu\n", 1532 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1533 seq_buf_printf(&s, "workingset_activate %lu\n", 1534 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1535 seq_buf_printf(&s, "workingset_restore %lu\n", 1536 memcg_page_state(memcg, WORKINGSET_RESTORE)); 1537 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1538 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1539 1540 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1541 memcg_events(memcg, PGREFILL)); 1542 seq_buf_printf(&s, "pgscan %lu\n", 1543 memcg_events(memcg, PGSCAN_KSWAPD) + 1544 memcg_events(memcg, PGSCAN_DIRECT)); 1545 seq_buf_printf(&s, "pgsteal %lu\n", 1546 memcg_events(memcg, PGSTEAL_KSWAPD) + 1547 memcg_events(memcg, PGSTEAL_DIRECT)); 1548 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1549 memcg_events(memcg, PGACTIVATE)); 1550 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1551 memcg_events(memcg, PGDEACTIVATE)); 1552 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1553 memcg_events(memcg, PGLAZYFREE)); 1554 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1555 memcg_events(memcg, PGLAZYFREED)); 1556 1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1558 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1559 memcg_events(memcg, THP_FAULT_ALLOC)); 1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1561 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1563 1564 /* The above should easily fit into one page */ 1565 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1566 1567 return s.buffer; 1568 } 1569 1570 #define K(x) ((x) << (PAGE_SHIFT-10)) 1571 /** 1572 * mem_cgroup_print_oom_context: Print OOM information relevant to 1573 * memory controller. 1574 * @memcg: The memory cgroup that went over limit 1575 * @p: Task that is going to be killed 1576 * 1577 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1578 * enabled 1579 */ 1580 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1581 { 1582 rcu_read_lock(); 1583 1584 if (memcg) { 1585 pr_cont(",oom_memcg="); 1586 pr_cont_cgroup_path(memcg->css.cgroup); 1587 } else 1588 pr_cont(",global_oom"); 1589 if (p) { 1590 pr_cont(",task_memcg="); 1591 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1592 } 1593 rcu_read_unlock(); 1594 } 1595 1596 /** 1597 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1598 * memory controller. 1599 * @memcg: The memory cgroup that went over limit 1600 */ 1601 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1602 { 1603 char *buf; 1604 1605 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1606 K((u64)page_counter_read(&memcg->memory)), 1607 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1608 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1609 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1610 K((u64)page_counter_read(&memcg->swap)), 1611 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1612 else { 1613 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1614 K((u64)page_counter_read(&memcg->memsw)), 1615 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1616 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1617 K((u64)page_counter_read(&memcg->kmem)), 1618 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1619 } 1620 1621 pr_info("Memory cgroup stats for "); 1622 pr_cont_cgroup_path(memcg->css.cgroup); 1623 pr_cont(":"); 1624 buf = memory_stat_format(memcg); 1625 if (!buf) 1626 return; 1627 pr_info("%s", buf); 1628 kfree(buf); 1629 } 1630 1631 /* 1632 * Return the memory (and swap, if configured) limit for a memcg. 1633 */ 1634 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1635 { 1636 unsigned long max; 1637 1638 max = READ_ONCE(memcg->memory.max); 1639 if (mem_cgroup_swappiness(memcg)) { 1640 unsigned long memsw_max; 1641 unsigned long swap_max; 1642 1643 memsw_max = memcg->memsw.max; 1644 swap_max = READ_ONCE(memcg->swap.max); 1645 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1646 max = min(max + swap_max, memsw_max); 1647 } 1648 return max; 1649 } 1650 1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1652 { 1653 return page_counter_read(&memcg->memory); 1654 } 1655 1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1657 int order) 1658 { 1659 struct oom_control oc = { 1660 .zonelist = NULL, 1661 .nodemask = NULL, 1662 .memcg = memcg, 1663 .gfp_mask = gfp_mask, 1664 .order = order, 1665 }; 1666 bool ret = true; 1667 1668 if (mutex_lock_killable(&oom_lock)) 1669 return true; 1670 1671 if (mem_cgroup_margin(memcg) >= (1 << order)) 1672 goto unlock; 1673 1674 /* 1675 * A few threads which were not waiting at mutex_lock_killable() can 1676 * fail to bail out. Therefore, check again after holding oom_lock. 1677 */ 1678 ret = should_force_charge() || out_of_memory(&oc); 1679 1680 unlock: 1681 mutex_unlock(&oom_lock); 1682 return ret; 1683 } 1684 1685 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1686 pg_data_t *pgdat, 1687 gfp_t gfp_mask, 1688 unsigned long *total_scanned) 1689 { 1690 struct mem_cgroup *victim = NULL; 1691 int total = 0; 1692 int loop = 0; 1693 unsigned long excess; 1694 unsigned long nr_scanned; 1695 struct mem_cgroup_reclaim_cookie reclaim = { 1696 .pgdat = pgdat, 1697 }; 1698 1699 excess = soft_limit_excess(root_memcg); 1700 1701 while (1) { 1702 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1703 if (!victim) { 1704 loop++; 1705 if (loop >= 2) { 1706 /* 1707 * If we have not been able to reclaim 1708 * anything, it might because there are 1709 * no reclaimable pages under this hierarchy 1710 */ 1711 if (!total) 1712 break; 1713 /* 1714 * We want to do more targeted reclaim. 1715 * excess >> 2 is not to excessive so as to 1716 * reclaim too much, nor too less that we keep 1717 * coming back to reclaim from this cgroup 1718 */ 1719 if (total >= (excess >> 2) || 1720 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1721 break; 1722 } 1723 continue; 1724 } 1725 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1726 pgdat, &nr_scanned); 1727 *total_scanned += nr_scanned; 1728 if (!soft_limit_excess(root_memcg)) 1729 break; 1730 } 1731 mem_cgroup_iter_break(root_memcg, victim); 1732 return total; 1733 } 1734 1735 #ifdef CONFIG_LOCKDEP 1736 static struct lockdep_map memcg_oom_lock_dep_map = { 1737 .name = "memcg_oom_lock", 1738 }; 1739 #endif 1740 1741 static DEFINE_SPINLOCK(memcg_oom_lock); 1742 1743 /* 1744 * Check OOM-Killer is already running under our hierarchy. 1745 * If someone is running, return false. 1746 */ 1747 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1748 { 1749 struct mem_cgroup *iter, *failed = NULL; 1750 1751 spin_lock(&memcg_oom_lock); 1752 1753 for_each_mem_cgroup_tree(iter, memcg) { 1754 if (iter->oom_lock) { 1755 /* 1756 * this subtree of our hierarchy is already locked 1757 * so we cannot give a lock. 1758 */ 1759 failed = iter; 1760 mem_cgroup_iter_break(memcg, iter); 1761 break; 1762 } else 1763 iter->oom_lock = true; 1764 } 1765 1766 if (failed) { 1767 /* 1768 * OK, we failed to lock the whole subtree so we have 1769 * to clean up what we set up to the failing subtree 1770 */ 1771 for_each_mem_cgroup_tree(iter, memcg) { 1772 if (iter == failed) { 1773 mem_cgroup_iter_break(memcg, iter); 1774 break; 1775 } 1776 iter->oom_lock = false; 1777 } 1778 } else 1779 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1780 1781 spin_unlock(&memcg_oom_lock); 1782 1783 return !failed; 1784 } 1785 1786 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1787 { 1788 struct mem_cgroup *iter; 1789 1790 spin_lock(&memcg_oom_lock); 1791 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1792 for_each_mem_cgroup_tree(iter, memcg) 1793 iter->oom_lock = false; 1794 spin_unlock(&memcg_oom_lock); 1795 } 1796 1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1798 { 1799 struct mem_cgroup *iter; 1800 1801 spin_lock(&memcg_oom_lock); 1802 for_each_mem_cgroup_tree(iter, memcg) 1803 iter->under_oom++; 1804 spin_unlock(&memcg_oom_lock); 1805 } 1806 1807 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1808 { 1809 struct mem_cgroup *iter; 1810 1811 /* 1812 * When a new child is created while the hierarchy is under oom, 1813 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1814 */ 1815 spin_lock(&memcg_oom_lock); 1816 for_each_mem_cgroup_tree(iter, memcg) 1817 if (iter->under_oom > 0) 1818 iter->under_oom--; 1819 spin_unlock(&memcg_oom_lock); 1820 } 1821 1822 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1823 1824 struct oom_wait_info { 1825 struct mem_cgroup *memcg; 1826 wait_queue_entry_t wait; 1827 }; 1828 1829 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1830 unsigned mode, int sync, void *arg) 1831 { 1832 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1833 struct mem_cgroup *oom_wait_memcg; 1834 struct oom_wait_info *oom_wait_info; 1835 1836 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1837 oom_wait_memcg = oom_wait_info->memcg; 1838 1839 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1840 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1841 return 0; 1842 return autoremove_wake_function(wait, mode, sync, arg); 1843 } 1844 1845 static void memcg_oom_recover(struct mem_cgroup *memcg) 1846 { 1847 /* 1848 * For the following lockless ->under_oom test, the only required 1849 * guarantee is that it must see the state asserted by an OOM when 1850 * this function is called as a result of userland actions 1851 * triggered by the notification of the OOM. This is trivially 1852 * achieved by invoking mem_cgroup_mark_under_oom() before 1853 * triggering notification. 1854 */ 1855 if (memcg && memcg->under_oom) 1856 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1857 } 1858 1859 enum oom_status { 1860 OOM_SUCCESS, 1861 OOM_FAILED, 1862 OOM_ASYNC, 1863 OOM_SKIPPED 1864 }; 1865 1866 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1867 { 1868 enum oom_status ret; 1869 bool locked; 1870 1871 if (order > PAGE_ALLOC_COSTLY_ORDER) 1872 return OOM_SKIPPED; 1873 1874 memcg_memory_event(memcg, MEMCG_OOM); 1875 1876 /* 1877 * We are in the middle of the charge context here, so we 1878 * don't want to block when potentially sitting on a callstack 1879 * that holds all kinds of filesystem and mm locks. 1880 * 1881 * cgroup1 allows disabling the OOM killer and waiting for outside 1882 * handling until the charge can succeed; remember the context and put 1883 * the task to sleep at the end of the page fault when all locks are 1884 * released. 1885 * 1886 * On the other hand, in-kernel OOM killer allows for an async victim 1887 * memory reclaim (oom_reaper) and that means that we are not solely 1888 * relying on the oom victim to make a forward progress and we can 1889 * invoke the oom killer here. 1890 * 1891 * Please note that mem_cgroup_out_of_memory might fail to find a 1892 * victim and then we have to bail out from the charge path. 1893 */ 1894 if (memcg->oom_kill_disable) { 1895 if (!current->in_user_fault) 1896 return OOM_SKIPPED; 1897 css_get(&memcg->css); 1898 current->memcg_in_oom = memcg; 1899 current->memcg_oom_gfp_mask = mask; 1900 current->memcg_oom_order = order; 1901 1902 return OOM_ASYNC; 1903 } 1904 1905 mem_cgroup_mark_under_oom(memcg); 1906 1907 locked = mem_cgroup_oom_trylock(memcg); 1908 1909 if (locked) 1910 mem_cgroup_oom_notify(memcg); 1911 1912 mem_cgroup_unmark_under_oom(memcg); 1913 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1914 ret = OOM_SUCCESS; 1915 else 1916 ret = OOM_FAILED; 1917 1918 if (locked) 1919 mem_cgroup_oom_unlock(memcg); 1920 1921 return ret; 1922 } 1923 1924 /** 1925 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1926 * @handle: actually kill/wait or just clean up the OOM state 1927 * 1928 * This has to be called at the end of a page fault if the memcg OOM 1929 * handler was enabled. 1930 * 1931 * Memcg supports userspace OOM handling where failed allocations must 1932 * sleep on a waitqueue until the userspace task resolves the 1933 * situation. Sleeping directly in the charge context with all kinds 1934 * of locks held is not a good idea, instead we remember an OOM state 1935 * in the task and mem_cgroup_oom_synchronize() has to be called at 1936 * the end of the page fault to complete the OOM handling. 1937 * 1938 * Returns %true if an ongoing memcg OOM situation was detected and 1939 * completed, %false otherwise. 1940 */ 1941 bool mem_cgroup_oom_synchronize(bool handle) 1942 { 1943 struct mem_cgroup *memcg = current->memcg_in_oom; 1944 struct oom_wait_info owait; 1945 bool locked; 1946 1947 /* OOM is global, do not handle */ 1948 if (!memcg) 1949 return false; 1950 1951 if (!handle) 1952 goto cleanup; 1953 1954 owait.memcg = memcg; 1955 owait.wait.flags = 0; 1956 owait.wait.func = memcg_oom_wake_function; 1957 owait.wait.private = current; 1958 INIT_LIST_HEAD(&owait.wait.entry); 1959 1960 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1961 mem_cgroup_mark_under_oom(memcg); 1962 1963 locked = mem_cgroup_oom_trylock(memcg); 1964 1965 if (locked) 1966 mem_cgroup_oom_notify(memcg); 1967 1968 if (locked && !memcg->oom_kill_disable) { 1969 mem_cgroup_unmark_under_oom(memcg); 1970 finish_wait(&memcg_oom_waitq, &owait.wait); 1971 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1972 current->memcg_oom_order); 1973 } else { 1974 schedule(); 1975 mem_cgroup_unmark_under_oom(memcg); 1976 finish_wait(&memcg_oom_waitq, &owait.wait); 1977 } 1978 1979 if (locked) { 1980 mem_cgroup_oom_unlock(memcg); 1981 /* 1982 * There is no guarantee that an OOM-lock contender 1983 * sees the wakeups triggered by the OOM kill 1984 * uncharges. Wake any sleepers explicitely. 1985 */ 1986 memcg_oom_recover(memcg); 1987 } 1988 cleanup: 1989 current->memcg_in_oom = NULL; 1990 css_put(&memcg->css); 1991 return true; 1992 } 1993 1994 /** 1995 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1996 * @victim: task to be killed by the OOM killer 1997 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1998 * 1999 * Returns a pointer to a memory cgroup, which has to be cleaned up 2000 * by killing all belonging OOM-killable tasks. 2001 * 2002 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2003 */ 2004 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2005 struct mem_cgroup *oom_domain) 2006 { 2007 struct mem_cgroup *oom_group = NULL; 2008 struct mem_cgroup *memcg; 2009 2010 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2011 return NULL; 2012 2013 if (!oom_domain) 2014 oom_domain = root_mem_cgroup; 2015 2016 rcu_read_lock(); 2017 2018 memcg = mem_cgroup_from_task(victim); 2019 if (memcg == root_mem_cgroup) 2020 goto out; 2021 2022 /* 2023 * If the victim task has been asynchronously moved to a different 2024 * memory cgroup, we might end up killing tasks outside oom_domain. 2025 * In this case it's better to ignore memory.group.oom. 2026 */ 2027 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2028 goto out; 2029 2030 /* 2031 * Traverse the memory cgroup hierarchy from the victim task's 2032 * cgroup up to the OOMing cgroup (or root) to find the 2033 * highest-level memory cgroup with oom.group set. 2034 */ 2035 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2036 if (memcg->oom_group) 2037 oom_group = memcg; 2038 2039 if (memcg == oom_domain) 2040 break; 2041 } 2042 2043 if (oom_group) 2044 css_get(&oom_group->css); 2045 out: 2046 rcu_read_unlock(); 2047 2048 return oom_group; 2049 } 2050 2051 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2052 { 2053 pr_info("Tasks in "); 2054 pr_cont_cgroup_path(memcg->css.cgroup); 2055 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2056 } 2057 2058 /** 2059 * lock_page_memcg - lock a page->mem_cgroup binding 2060 * @page: the page 2061 * 2062 * This function protects unlocked LRU pages from being moved to 2063 * another cgroup. 2064 * 2065 * It ensures lifetime of the returned memcg. Caller is responsible 2066 * for the lifetime of the page; __unlock_page_memcg() is available 2067 * when @page might get freed inside the locked section. 2068 */ 2069 struct mem_cgroup *lock_page_memcg(struct page *page) 2070 { 2071 struct page *head = compound_head(page); /* rmap on tail pages */ 2072 struct mem_cgroup *memcg; 2073 unsigned long flags; 2074 2075 /* 2076 * The RCU lock is held throughout the transaction. The fast 2077 * path can get away without acquiring the memcg->move_lock 2078 * because page moving starts with an RCU grace period. 2079 * 2080 * The RCU lock also protects the memcg from being freed when 2081 * the page state that is going to change is the only thing 2082 * preventing the page itself from being freed. E.g. writeback 2083 * doesn't hold a page reference and relies on PG_writeback to 2084 * keep off truncation, migration and so forth. 2085 */ 2086 rcu_read_lock(); 2087 2088 if (mem_cgroup_disabled()) 2089 return NULL; 2090 again: 2091 memcg = head->mem_cgroup; 2092 if (unlikely(!memcg)) 2093 return NULL; 2094 2095 if (atomic_read(&memcg->moving_account) <= 0) 2096 return memcg; 2097 2098 spin_lock_irqsave(&memcg->move_lock, flags); 2099 if (memcg != head->mem_cgroup) { 2100 spin_unlock_irqrestore(&memcg->move_lock, flags); 2101 goto again; 2102 } 2103 2104 /* 2105 * When charge migration first begins, we can have locked and 2106 * unlocked page stat updates happening concurrently. Track 2107 * the task who has the lock for unlock_page_memcg(). 2108 */ 2109 memcg->move_lock_task = current; 2110 memcg->move_lock_flags = flags; 2111 2112 return memcg; 2113 } 2114 EXPORT_SYMBOL(lock_page_memcg); 2115 2116 /** 2117 * __unlock_page_memcg - unlock and unpin a memcg 2118 * @memcg: the memcg 2119 * 2120 * Unlock and unpin a memcg returned by lock_page_memcg(). 2121 */ 2122 void __unlock_page_memcg(struct mem_cgroup *memcg) 2123 { 2124 if (memcg && memcg->move_lock_task == current) { 2125 unsigned long flags = memcg->move_lock_flags; 2126 2127 memcg->move_lock_task = NULL; 2128 memcg->move_lock_flags = 0; 2129 2130 spin_unlock_irqrestore(&memcg->move_lock, flags); 2131 } 2132 2133 rcu_read_unlock(); 2134 } 2135 2136 /** 2137 * unlock_page_memcg - unlock a page->mem_cgroup binding 2138 * @page: the page 2139 */ 2140 void unlock_page_memcg(struct page *page) 2141 { 2142 struct page *head = compound_head(page); 2143 2144 __unlock_page_memcg(head->mem_cgroup); 2145 } 2146 EXPORT_SYMBOL(unlock_page_memcg); 2147 2148 struct memcg_stock_pcp { 2149 struct mem_cgroup *cached; /* this never be root cgroup */ 2150 unsigned int nr_pages; 2151 2152 #ifdef CONFIG_MEMCG_KMEM 2153 struct obj_cgroup *cached_objcg; 2154 unsigned int nr_bytes; 2155 #endif 2156 2157 struct work_struct work; 2158 unsigned long flags; 2159 #define FLUSHING_CACHED_CHARGE 0 2160 }; 2161 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2162 static DEFINE_MUTEX(percpu_charge_mutex); 2163 2164 #ifdef CONFIG_MEMCG_KMEM 2165 static void drain_obj_stock(struct memcg_stock_pcp *stock); 2166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2167 struct mem_cgroup *root_memcg); 2168 2169 #else 2170 static inline void drain_obj_stock(struct memcg_stock_pcp *stock) 2171 { 2172 } 2173 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2174 struct mem_cgroup *root_memcg) 2175 { 2176 return false; 2177 } 2178 #endif 2179 2180 /** 2181 * consume_stock: Try to consume stocked charge on this cpu. 2182 * @memcg: memcg to consume from. 2183 * @nr_pages: how many pages to charge. 2184 * 2185 * The charges will only happen if @memcg matches the current cpu's memcg 2186 * stock, and at least @nr_pages are available in that stock. Failure to 2187 * service an allocation will refill the stock. 2188 * 2189 * returns true if successful, false otherwise. 2190 */ 2191 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2192 { 2193 struct memcg_stock_pcp *stock; 2194 unsigned long flags; 2195 bool ret = false; 2196 2197 if (nr_pages > MEMCG_CHARGE_BATCH) 2198 return ret; 2199 2200 local_irq_save(flags); 2201 2202 stock = this_cpu_ptr(&memcg_stock); 2203 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2204 stock->nr_pages -= nr_pages; 2205 ret = true; 2206 } 2207 2208 local_irq_restore(flags); 2209 2210 return ret; 2211 } 2212 2213 /* 2214 * Returns stocks cached in percpu and reset cached information. 2215 */ 2216 static void drain_stock(struct memcg_stock_pcp *stock) 2217 { 2218 struct mem_cgroup *old = stock->cached; 2219 2220 if (!old) 2221 return; 2222 2223 if (stock->nr_pages) { 2224 page_counter_uncharge(&old->memory, stock->nr_pages); 2225 if (do_memsw_account()) 2226 page_counter_uncharge(&old->memsw, stock->nr_pages); 2227 stock->nr_pages = 0; 2228 } 2229 2230 css_put(&old->css); 2231 stock->cached = NULL; 2232 } 2233 2234 static void drain_local_stock(struct work_struct *dummy) 2235 { 2236 struct memcg_stock_pcp *stock; 2237 unsigned long flags; 2238 2239 /* 2240 * The only protection from memory hotplug vs. drain_stock races is 2241 * that we always operate on local CPU stock here with IRQ disabled 2242 */ 2243 local_irq_save(flags); 2244 2245 stock = this_cpu_ptr(&memcg_stock); 2246 drain_obj_stock(stock); 2247 drain_stock(stock); 2248 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2249 2250 local_irq_restore(flags); 2251 } 2252 2253 /* 2254 * Cache charges(val) to local per_cpu area. 2255 * This will be consumed by consume_stock() function, later. 2256 */ 2257 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2258 { 2259 struct memcg_stock_pcp *stock; 2260 unsigned long flags; 2261 2262 local_irq_save(flags); 2263 2264 stock = this_cpu_ptr(&memcg_stock); 2265 if (stock->cached != memcg) { /* reset if necessary */ 2266 drain_stock(stock); 2267 css_get(&memcg->css); 2268 stock->cached = memcg; 2269 } 2270 stock->nr_pages += nr_pages; 2271 2272 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2273 drain_stock(stock); 2274 2275 local_irq_restore(flags); 2276 } 2277 2278 /* 2279 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2280 * of the hierarchy under it. 2281 */ 2282 static void drain_all_stock(struct mem_cgroup *root_memcg) 2283 { 2284 int cpu, curcpu; 2285 2286 /* If someone's already draining, avoid adding running more workers. */ 2287 if (!mutex_trylock(&percpu_charge_mutex)) 2288 return; 2289 /* 2290 * Notify other cpus that system-wide "drain" is running 2291 * We do not care about races with the cpu hotplug because cpu down 2292 * as well as workers from this path always operate on the local 2293 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2294 */ 2295 curcpu = get_cpu(); 2296 for_each_online_cpu(cpu) { 2297 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2298 struct mem_cgroup *memcg; 2299 bool flush = false; 2300 2301 rcu_read_lock(); 2302 memcg = stock->cached; 2303 if (memcg && stock->nr_pages && 2304 mem_cgroup_is_descendant(memcg, root_memcg)) 2305 flush = true; 2306 if (obj_stock_flush_required(stock, root_memcg)) 2307 flush = true; 2308 rcu_read_unlock(); 2309 2310 if (flush && 2311 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2312 if (cpu == curcpu) 2313 drain_local_stock(&stock->work); 2314 else 2315 schedule_work_on(cpu, &stock->work); 2316 } 2317 } 2318 put_cpu(); 2319 mutex_unlock(&percpu_charge_mutex); 2320 } 2321 2322 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2323 { 2324 struct memcg_stock_pcp *stock; 2325 struct mem_cgroup *memcg, *mi; 2326 2327 stock = &per_cpu(memcg_stock, cpu); 2328 drain_stock(stock); 2329 2330 for_each_mem_cgroup(memcg) { 2331 int i; 2332 2333 for (i = 0; i < MEMCG_NR_STAT; i++) { 2334 int nid; 2335 long x; 2336 2337 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2338 if (x) 2339 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2340 atomic_long_add(x, &memcg->vmstats[i]); 2341 2342 if (i >= NR_VM_NODE_STAT_ITEMS) 2343 continue; 2344 2345 for_each_node(nid) { 2346 struct mem_cgroup_per_node *pn; 2347 2348 pn = mem_cgroup_nodeinfo(memcg, nid); 2349 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2350 if (x) 2351 do { 2352 atomic_long_add(x, &pn->lruvec_stat[i]); 2353 } while ((pn = parent_nodeinfo(pn, nid))); 2354 } 2355 } 2356 2357 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2358 long x; 2359 2360 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2361 if (x) 2362 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2363 atomic_long_add(x, &memcg->vmevents[i]); 2364 } 2365 } 2366 2367 return 0; 2368 } 2369 2370 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2371 unsigned int nr_pages, 2372 gfp_t gfp_mask) 2373 { 2374 unsigned long nr_reclaimed = 0; 2375 2376 do { 2377 unsigned long pflags; 2378 2379 if (page_counter_read(&memcg->memory) <= 2380 READ_ONCE(memcg->memory.high)) 2381 continue; 2382 2383 memcg_memory_event(memcg, MEMCG_HIGH); 2384 2385 psi_memstall_enter(&pflags); 2386 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2387 gfp_mask, true); 2388 psi_memstall_leave(&pflags); 2389 } while ((memcg = parent_mem_cgroup(memcg)) && 2390 !mem_cgroup_is_root(memcg)); 2391 2392 return nr_reclaimed; 2393 } 2394 2395 static void high_work_func(struct work_struct *work) 2396 { 2397 struct mem_cgroup *memcg; 2398 2399 memcg = container_of(work, struct mem_cgroup, high_work); 2400 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2401 } 2402 2403 /* 2404 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2405 * enough to still cause a significant slowdown in most cases, while still 2406 * allowing diagnostics and tracing to proceed without becoming stuck. 2407 */ 2408 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2409 2410 /* 2411 * When calculating the delay, we use these either side of the exponentiation to 2412 * maintain precision and scale to a reasonable number of jiffies (see the table 2413 * below. 2414 * 2415 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2416 * overage ratio to a delay. 2417 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2418 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2419 * to produce a reasonable delay curve. 2420 * 2421 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2422 * reasonable delay curve compared to precision-adjusted overage, not 2423 * penalising heavily at first, but still making sure that growth beyond the 2424 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2425 * example, with a high of 100 megabytes: 2426 * 2427 * +-------+------------------------+ 2428 * | usage | time to allocate in ms | 2429 * +-------+------------------------+ 2430 * | 100M | 0 | 2431 * | 101M | 6 | 2432 * | 102M | 25 | 2433 * | 103M | 57 | 2434 * | 104M | 102 | 2435 * | 105M | 159 | 2436 * | 106M | 230 | 2437 * | 107M | 313 | 2438 * | 108M | 409 | 2439 * | 109M | 518 | 2440 * | 110M | 639 | 2441 * | 111M | 774 | 2442 * | 112M | 921 | 2443 * | 113M | 1081 | 2444 * | 114M | 1254 | 2445 * | 115M | 1439 | 2446 * | 116M | 1638 | 2447 * | 117M | 1849 | 2448 * | 118M | 2000 | 2449 * | 119M | 2000 | 2450 * | 120M | 2000 | 2451 * +-------+------------------------+ 2452 */ 2453 #define MEMCG_DELAY_PRECISION_SHIFT 20 2454 #define MEMCG_DELAY_SCALING_SHIFT 14 2455 2456 static u64 calculate_overage(unsigned long usage, unsigned long high) 2457 { 2458 u64 overage; 2459 2460 if (usage <= high) 2461 return 0; 2462 2463 /* 2464 * Prevent division by 0 in overage calculation by acting as if 2465 * it was a threshold of 1 page 2466 */ 2467 high = max(high, 1UL); 2468 2469 overage = usage - high; 2470 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2471 return div64_u64(overage, high); 2472 } 2473 2474 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2475 { 2476 u64 overage, max_overage = 0; 2477 2478 do { 2479 overage = calculate_overage(page_counter_read(&memcg->memory), 2480 READ_ONCE(memcg->memory.high)); 2481 max_overage = max(overage, max_overage); 2482 } while ((memcg = parent_mem_cgroup(memcg)) && 2483 !mem_cgroup_is_root(memcg)); 2484 2485 return max_overage; 2486 } 2487 2488 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2489 { 2490 u64 overage, max_overage = 0; 2491 2492 do { 2493 overage = calculate_overage(page_counter_read(&memcg->swap), 2494 READ_ONCE(memcg->swap.high)); 2495 if (overage) 2496 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2497 max_overage = max(overage, max_overage); 2498 } while ((memcg = parent_mem_cgroup(memcg)) && 2499 !mem_cgroup_is_root(memcg)); 2500 2501 return max_overage; 2502 } 2503 2504 /* 2505 * Get the number of jiffies that we should penalise a mischievous cgroup which 2506 * is exceeding its memory.high by checking both it and its ancestors. 2507 */ 2508 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2509 unsigned int nr_pages, 2510 u64 max_overage) 2511 { 2512 unsigned long penalty_jiffies; 2513 2514 if (!max_overage) 2515 return 0; 2516 2517 /* 2518 * We use overage compared to memory.high to calculate the number of 2519 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2520 * fairly lenient on small overages, and increasingly harsh when the 2521 * memcg in question makes it clear that it has no intention of stopping 2522 * its crazy behaviour, so we exponentially increase the delay based on 2523 * overage amount. 2524 */ 2525 penalty_jiffies = max_overage * max_overage * HZ; 2526 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2527 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2528 2529 /* 2530 * Factor in the task's own contribution to the overage, such that four 2531 * N-sized allocations are throttled approximately the same as one 2532 * 4N-sized allocation. 2533 * 2534 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2535 * larger the current charge patch is than that. 2536 */ 2537 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2538 } 2539 2540 /* 2541 * Scheduled by try_charge() to be executed from the userland return path 2542 * and reclaims memory over the high limit. 2543 */ 2544 void mem_cgroup_handle_over_high(void) 2545 { 2546 unsigned long penalty_jiffies; 2547 unsigned long pflags; 2548 unsigned long nr_reclaimed; 2549 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2550 int nr_retries = MAX_RECLAIM_RETRIES; 2551 struct mem_cgroup *memcg; 2552 bool in_retry = false; 2553 2554 if (likely(!nr_pages)) 2555 return; 2556 2557 memcg = get_mem_cgroup_from_mm(current->mm); 2558 current->memcg_nr_pages_over_high = 0; 2559 2560 retry_reclaim: 2561 /* 2562 * The allocating task should reclaim at least the batch size, but for 2563 * subsequent retries we only want to do what's necessary to prevent oom 2564 * or breaching resource isolation. 2565 * 2566 * This is distinct from memory.max or page allocator behaviour because 2567 * memory.high is currently batched, whereas memory.max and the page 2568 * allocator run every time an allocation is made. 2569 */ 2570 nr_reclaimed = reclaim_high(memcg, 2571 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2572 GFP_KERNEL); 2573 2574 /* 2575 * memory.high is breached and reclaim is unable to keep up. Throttle 2576 * allocators proactively to slow down excessive growth. 2577 */ 2578 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2579 mem_find_max_overage(memcg)); 2580 2581 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2582 swap_find_max_overage(memcg)); 2583 2584 /* 2585 * Clamp the max delay per usermode return so as to still keep the 2586 * application moving forwards and also permit diagnostics, albeit 2587 * extremely slowly. 2588 */ 2589 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2590 2591 /* 2592 * Don't sleep if the amount of jiffies this memcg owes us is so low 2593 * that it's not even worth doing, in an attempt to be nice to those who 2594 * go only a small amount over their memory.high value and maybe haven't 2595 * been aggressively reclaimed enough yet. 2596 */ 2597 if (penalty_jiffies <= HZ / 100) 2598 goto out; 2599 2600 /* 2601 * If reclaim is making forward progress but we're still over 2602 * memory.high, we want to encourage that rather than doing allocator 2603 * throttling. 2604 */ 2605 if (nr_reclaimed || nr_retries--) { 2606 in_retry = true; 2607 goto retry_reclaim; 2608 } 2609 2610 /* 2611 * If we exit early, we're guaranteed to die (since 2612 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2613 * need to account for any ill-begotten jiffies to pay them off later. 2614 */ 2615 psi_memstall_enter(&pflags); 2616 schedule_timeout_killable(penalty_jiffies); 2617 psi_memstall_leave(&pflags); 2618 2619 out: 2620 css_put(&memcg->css); 2621 } 2622 2623 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2624 unsigned int nr_pages) 2625 { 2626 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2627 int nr_retries = MAX_RECLAIM_RETRIES; 2628 struct mem_cgroup *mem_over_limit; 2629 struct page_counter *counter; 2630 enum oom_status oom_status; 2631 unsigned long nr_reclaimed; 2632 bool may_swap = true; 2633 bool drained = false; 2634 unsigned long pflags; 2635 2636 if (mem_cgroup_is_root(memcg)) 2637 return 0; 2638 retry: 2639 if (consume_stock(memcg, nr_pages)) 2640 return 0; 2641 2642 if (!do_memsw_account() || 2643 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2644 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2645 goto done_restock; 2646 if (do_memsw_account()) 2647 page_counter_uncharge(&memcg->memsw, batch); 2648 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2649 } else { 2650 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2651 may_swap = false; 2652 } 2653 2654 if (batch > nr_pages) { 2655 batch = nr_pages; 2656 goto retry; 2657 } 2658 2659 /* 2660 * Memcg doesn't have a dedicated reserve for atomic 2661 * allocations. But like the global atomic pool, we need to 2662 * put the burden of reclaim on regular allocation requests 2663 * and let these go through as privileged allocations. 2664 */ 2665 if (gfp_mask & __GFP_ATOMIC) 2666 goto force; 2667 2668 /* 2669 * Unlike in global OOM situations, memcg is not in a physical 2670 * memory shortage. Allow dying and OOM-killed tasks to 2671 * bypass the last charges so that they can exit quickly and 2672 * free their memory. 2673 */ 2674 if (unlikely(should_force_charge())) 2675 goto force; 2676 2677 /* 2678 * Prevent unbounded recursion when reclaim operations need to 2679 * allocate memory. This might exceed the limits temporarily, 2680 * but we prefer facilitating memory reclaim and getting back 2681 * under the limit over triggering OOM kills in these cases. 2682 */ 2683 if (unlikely(current->flags & PF_MEMALLOC)) 2684 goto force; 2685 2686 if (unlikely(task_in_memcg_oom(current))) 2687 goto nomem; 2688 2689 if (!gfpflags_allow_blocking(gfp_mask)) 2690 goto nomem; 2691 2692 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2693 2694 psi_memstall_enter(&pflags); 2695 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2696 gfp_mask, may_swap); 2697 psi_memstall_leave(&pflags); 2698 2699 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2700 goto retry; 2701 2702 if (!drained) { 2703 drain_all_stock(mem_over_limit); 2704 drained = true; 2705 goto retry; 2706 } 2707 2708 if (gfp_mask & __GFP_NORETRY) 2709 goto nomem; 2710 /* 2711 * Even though the limit is exceeded at this point, reclaim 2712 * may have been able to free some pages. Retry the charge 2713 * before killing the task. 2714 * 2715 * Only for regular pages, though: huge pages are rather 2716 * unlikely to succeed so close to the limit, and we fall back 2717 * to regular pages anyway in case of failure. 2718 */ 2719 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2720 goto retry; 2721 /* 2722 * At task move, charge accounts can be doubly counted. So, it's 2723 * better to wait until the end of task_move if something is going on. 2724 */ 2725 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2726 goto retry; 2727 2728 if (nr_retries--) 2729 goto retry; 2730 2731 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2732 goto nomem; 2733 2734 if (gfp_mask & __GFP_NOFAIL) 2735 goto force; 2736 2737 if (fatal_signal_pending(current)) 2738 goto force; 2739 2740 /* 2741 * keep retrying as long as the memcg oom killer is able to make 2742 * a forward progress or bypass the charge if the oom killer 2743 * couldn't make any progress. 2744 */ 2745 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2746 get_order(nr_pages * PAGE_SIZE)); 2747 switch (oom_status) { 2748 case OOM_SUCCESS: 2749 nr_retries = MAX_RECLAIM_RETRIES; 2750 goto retry; 2751 case OOM_FAILED: 2752 goto force; 2753 default: 2754 goto nomem; 2755 } 2756 nomem: 2757 if (!(gfp_mask & __GFP_NOFAIL)) 2758 return -ENOMEM; 2759 force: 2760 /* 2761 * The allocation either can't fail or will lead to more memory 2762 * being freed very soon. Allow memory usage go over the limit 2763 * temporarily by force charging it. 2764 */ 2765 page_counter_charge(&memcg->memory, nr_pages); 2766 if (do_memsw_account()) 2767 page_counter_charge(&memcg->memsw, nr_pages); 2768 2769 return 0; 2770 2771 done_restock: 2772 if (batch > nr_pages) 2773 refill_stock(memcg, batch - nr_pages); 2774 2775 /* 2776 * If the hierarchy is above the normal consumption range, schedule 2777 * reclaim on returning to userland. We can perform reclaim here 2778 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2779 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2780 * not recorded as it most likely matches current's and won't 2781 * change in the meantime. As high limit is checked again before 2782 * reclaim, the cost of mismatch is negligible. 2783 */ 2784 do { 2785 bool mem_high, swap_high; 2786 2787 mem_high = page_counter_read(&memcg->memory) > 2788 READ_ONCE(memcg->memory.high); 2789 swap_high = page_counter_read(&memcg->swap) > 2790 READ_ONCE(memcg->swap.high); 2791 2792 /* Don't bother a random interrupted task */ 2793 if (in_interrupt()) { 2794 if (mem_high) { 2795 schedule_work(&memcg->high_work); 2796 break; 2797 } 2798 continue; 2799 } 2800 2801 if (mem_high || swap_high) { 2802 /* 2803 * The allocating tasks in this cgroup will need to do 2804 * reclaim or be throttled to prevent further growth 2805 * of the memory or swap footprints. 2806 * 2807 * Target some best-effort fairness between the tasks, 2808 * and distribute reclaim work and delay penalties 2809 * based on how much each task is actually allocating. 2810 */ 2811 current->memcg_nr_pages_over_high += batch; 2812 set_notify_resume(current); 2813 break; 2814 } 2815 } while ((memcg = parent_mem_cgroup(memcg))); 2816 2817 return 0; 2818 } 2819 2820 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2821 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2822 { 2823 if (mem_cgroup_is_root(memcg)) 2824 return; 2825 2826 page_counter_uncharge(&memcg->memory, nr_pages); 2827 if (do_memsw_account()) 2828 page_counter_uncharge(&memcg->memsw, nr_pages); 2829 } 2830 #endif 2831 2832 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2833 { 2834 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2835 /* 2836 * Any of the following ensures page->mem_cgroup stability: 2837 * 2838 * - the page lock 2839 * - LRU isolation 2840 * - lock_page_memcg() 2841 * - exclusive reference 2842 */ 2843 page->mem_cgroup = memcg; 2844 } 2845 2846 #ifdef CONFIG_MEMCG_KMEM 2847 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2848 gfp_t gfp) 2849 { 2850 unsigned int objects = objs_per_slab_page(s, page); 2851 void *vec; 2852 2853 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2854 page_to_nid(page)); 2855 if (!vec) 2856 return -ENOMEM; 2857 2858 if (cmpxchg(&page->obj_cgroups, NULL, 2859 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL))) 2860 kfree(vec); 2861 else 2862 kmemleak_not_leak(vec); 2863 2864 return 0; 2865 } 2866 2867 /* 2868 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2869 * 2870 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2871 * cgroup_mutex, etc. 2872 */ 2873 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2874 { 2875 struct page *page; 2876 2877 if (mem_cgroup_disabled()) 2878 return NULL; 2879 2880 page = virt_to_head_page(p); 2881 2882 /* 2883 * Slab objects are accounted individually, not per-page. 2884 * Memcg membership data for each individual object is saved in 2885 * the page->obj_cgroups. 2886 */ 2887 if (page_has_obj_cgroups(page)) { 2888 struct obj_cgroup *objcg; 2889 unsigned int off; 2890 2891 off = obj_to_index(page->slab_cache, page, p); 2892 objcg = page_obj_cgroups(page)[off]; 2893 if (objcg) 2894 return obj_cgroup_memcg(objcg); 2895 2896 return NULL; 2897 } 2898 2899 /* All other pages use page->mem_cgroup */ 2900 return page->mem_cgroup; 2901 } 2902 2903 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2904 { 2905 struct obj_cgroup *objcg = NULL; 2906 struct mem_cgroup *memcg; 2907 2908 if (unlikely(!current->mm && !current->active_memcg)) 2909 return NULL; 2910 2911 rcu_read_lock(); 2912 if (unlikely(current->active_memcg)) 2913 memcg = rcu_dereference(current->active_memcg); 2914 else 2915 memcg = mem_cgroup_from_task(current); 2916 2917 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2918 objcg = rcu_dereference(memcg->objcg); 2919 if (objcg && obj_cgroup_tryget(objcg)) 2920 break; 2921 } 2922 rcu_read_unlock(); 2923 2924 return objcg; 2925 } 2926 2927 static int memcg_alloc_cache_id(void) 2928 { 2929 int id, size; 2930 int err; 2931 2932 id = ida_simple_get(&memcg_cache_ida, 2933 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2934 if (id < 0) 2935 return id; 2936 2937 if (id < memcg_nr_cache_ids) 2938 return id; 2939 2940 /* 2941 * There's no space for the new id in memcg_caches arrays, 2942 * so we have to grow them. 2943 */ 2944 down_write(&memcg_cache_ids_sem); 2945 2946 size = 2 * (id + 1); 2947 if (size < MEMCG_CACHES_MIN_SIZE) 2948 size = MEMCG_CACHES_MIN_SIZE; 2949 else if (size > MEMCG_CACHES_MAX_SIZE) 2950 size = MEMCG_CACHES_MAX_SIZE; 2951 2952 err = memcg_update_all_list_lrus(size); 2953 if (!err) 2954 memcg_nr_cache_ids = size; 2955 2956 up_write(&memcg_cache_ids_sem); 2957 2958 if (err) { 2959 ida_simple_remove(&memcg_cache_ida, id); 2960 return err; 2961 } 2962 return id; 2963 } 2964 2965 static void memcg_free_cache_id(int id) 2966 { 2967 ida_simple_remove(&memcg_cache_ida, id); 2968 } 2969 2970 /** 2971 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 2972 * @memcg: memory cgroup to charge 2973 * @gfp: reclaim mode 2974 * @nr_pages: number of pages to charge 2975 * 2976 * Returns 0 on success, an error code on failure. 2977 */ 2978 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 2979 unsigned int nr_pages) 2980 { 2981 struct page_counter *counter; 2982 int ret; 2983 2984 ret = try_charge(memcg, gfp, nr_pages); 2985 if (ret) 2986 return ret; 2987 2988 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2989 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2990 2991 /* 2992 * Enforce __GFP_NOFAIL allocation because callers are not 2993 * prepared to see failures and likely do not have any failure 2994 * handling code. 2995 */ 2996 if (gfp & __GFP_NOFAIL) { 2997 page_counter_charge(&memcg->kmem, nr_pages); 2998 return 0; 2999 } 3000 cancel_charge(memcg, nr_pages); 3001 return -ENOMEM; 3002 } 3003 return 0; 3004 } 3005 3006 /** 3007 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 3008 * @memcg: memcg to uncharge 3009 * @nr_pages: number of pages to uncharge 3010 */ 3011 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 3012 { 3013 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 3014 page_counter_uncharge(&memcg->kmem, nr_pages); 3015 3016 page_counter_uncharge(&memcg->memory, nr_pages); 3017 if (do_memsw_account()) 3018 page_counter_uncharge(&memcg->memsw, nr_pages); 3019 } 3020 3021 /** 3022 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3023 * @page: page to charge 3024 * @gfp: reclaim mode 3025 * @order: allocation order 3026 * 3027 * Returns 0 on success, an error code on failure. 3028 */ 3029 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3030 { 3031 struct mem_cgroup *memcg; 3032 int ret = 0; 3033 3034 if (memcg_kmem_bypass()) 3035 return 0; 3036 3037 memcg = get_mem_cgroup_from_current(); 3038 if (!mem_cgroup_is_root(memcg)) { 3039 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 3040 if (!ret) { 3041 page->mem_cgroup = memcg; 3042 __SetPageKmemcg(page); 3043 return 0; 3044 } 3045 } 3046 css_put(&memcg->css); 3047 return ret; 3048 } 3049 3050 /** 3051 * __memcg_kmem_uncharge_page: uncharge a kmem page 3052 * @page: page to uncharge 3053 * @order: allocation order 3054 */ 3055 void __memcg_kmem_uncharge_page(struct page *page, int order) 3056 { 3057 struct mem_cgroup *memcg = page->mem_cgroup; 3058 unsigned int nr_pages = 1 << order; 3059 3060 if (!memcg) 3061 return; 3062 3063 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3064 __memcg_kmem_uncharge(memcg, nr_pages); 3065 page->mem_cgroup = NULL; 3066 css_put(&memcg->css); 3067 3068 /* slab pages do not have PageKmemcg flag set */ 3069 if (PageKmemcg(page)) 3070 __ClearPageKmemcg(page); 3071 } 3072 3073 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3074 { 3075 struct memcg_stock_pcp *stock; 3076 unsigned long flags; 3077 bool ret = false; 3078 3079 local_irq_save(flags); 3080 3081 stock = this_cpu_ptr(&memcg_stock); 3082 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3083 stock->nr_bytes -= nr_bytes; 3084 ret = true; 3085 } 3086 3087 local_irq_restore(flags); 3088 3089 return ret; 3090 } 3091 3092 static void drain_obj_stock(struct memcg_stock_pcp *stock) 3093 { 3094 struct obj_cgroup *old = stock->cached_objcg; 3095 3096 if (!old) 3097 return; 3098 3099 if (stock->nr_bytes) { 3100 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3101 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3102 3103 if (nr_pages) { 3104 rcu_read_lock(); 3105 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages); 3106 rcu_read_unlock(); 3107 } 3108 3109 /* 3110 * The leftover is flushed to the centralized per-memcg value. 3111 * On the next attempt to refill obj stock it will be moved 3112 * to a per-cpu stock (probably, on an other CPU), see 3113 * refill_obj_stock(). 3114 * 3115 * How often it's flushed is a trade-off between the memory 3116 * limit enforcement accuracy and potential CPU contention, 3117 * so it might be changed in the future. 3118 */ 3119 atomic_add(nr_bytes, &old->nr_charged_bytes); 3120 stock->nr_bytes = 0; 3121 } 3122 3123 obj_cgroup_put(old); 3124 stock->cached_objcg = NULL; 3125 } 3126 3127 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3128 struct mem_cgroup *root_memcg) 3129 { 3130 struct mem_cgroup *memcg; 3131 3132 if (stock->cached_objcg) { 3133 memcg = obj_cgroup_memcg(stock->cached_objcg); 3134 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3135 return true; 3136 } 3137 3138 return false; 3139 } 3140 3141 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3142 { 3143 struct memcg_stock_pcp *stock; 3144 unsigned long flags; 3145 3146 local_irq_save(flags); 3147 3148 stock = this_cpu_ptr(&memcg_stock); 3149 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3150 drain_obj_stock(stock); 3151 obj_cgroup_get(objcg); 3152 stock->cached_objcg = objcg; 3153 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0); 3154 } 3155 stock->nr_bytes += nr_bytes; 3156 3157 if (stock->nr_bytes > PAGE_SIZE) 3158 drain_obj_stock(stock); 3159 3160 local_irq_restore(flags); 3161 } 3162 3163 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3164 { 3165 struct mem_cgroup *memcg; 3166 unsigned int nr_pages, nr_bytes; 3167 int ret; 3168 3169 if (consume_obj_stock(objcg, size)) 3170 return 0; 3171 3172 /* 3173 * In theory, memcg->nr_charged_bytes can have enough 3174 * pre-charged bytes to satisfy the allocation. However, 3175 * flushing memcg->nr_charged_bytes requires two atomic 3176 * operations, and memcg->nr_charged_bytes can't be big, 3177 * so it's better to ignore it and try grab some new pages. 3178 * memcg->nr_charged_bytes will be flushed in 3179 * refill_obj_stock(), called from this function or 3180 * independently later. 3181 */ 3182 rcu_read_lock(); 3183 memcg = obj_cgroup_memcg(objcg); 3184 css_get(&memcg->css); 3185 rcu_read_unlock(); 3186 3187 nr_pages = size >> PAGE_SHIFT; 3188 nr_bytes = size & (PAGE_SIZE - 1); 3189 3190 if (nr_bytes) 3191 nr_pages += 1; 3192 3193 ret = __memcg_kmem_charge(memcg, gfp, nr_pages); 3194 if (!ret && nr_bytes) 3195 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes); 3196 3197 css_put(&memcg->css); 3198 return ret; 3199 } 3200 3201 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3202 { 3203 refill_obj_stock(objcg, size); 3204 } 3205 3206 #endif /* CONFIG_MEMCG_KMEM */ 3207 3208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3209 3210 /* 3211 * Because tail pages are not marked as "used", set it. We're under 3212 * pgdat->lru_lock and migration entries setup in all page mappings. 3213 */ 3214 void mem_cgroup_split_huge_fixup(struct page *head) 3215 { 3216 struct mem_cgroup *memcg = head->mem_cgroup; 3217 int i; 3218 3219 if (mem_cgroup_disabled()) 3220 return; 3221 3222 for (i = 1; i < HPAGE_PMD_NR; i++) { 3223 css_get(&memcg->css); 3224 head[i].mem_cgroup = memcg; 3225 } 3226 } 3227 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3228 3229 #ifdef CONFIG_MEMCG_SWAP 3230 /** 3231 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3232 * @entry: swap entry to be moved 3233 * @from: mem_cgroup which the entry is moved from 3234 * @to: mem_cgroup which the entry is moved to 3235 * 3236 * It succeeds only when the swap_cgroup's record for this entry is the same 3237 * as the mem_cgroup's id of @from. 3238 * 3239 * Returns 0 on success, -EINVAL on failure. 3240 * 3241 * The caller must have charged to @to, IOW, called page_counter_charge() about 3242 * both res and memsw, and called css_get(). 3243 */ 3244 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3245 struct mem_cgroup *from, struct mem_cgroup *to) 3246 { 3247 unsigned short old_id, new_id; 3248 3249 old_id = mem_cgroup_id(from); 3250 new_id = mem_cgroup_id(to); 3251 3252 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3253 mod_memcg_state(from, MEMCG_SWAP, -1); 3254 mod_memcg_state(to, MEMCG_SWAP, 1); 3255 return 0; 3256 } 3257 return -EINVAL; 3258 } 3259 #else 3260 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3261 struct mem_cgroup *from, struct mem_cgroup *to) 3262 { 3263 return -EINVAL; 3264 } 3265 #endif 3266 3267 static DEFINE_MUTEX(memcg_max_mutex); 3268 3269 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3270 unsigned long max, bool memsw) 3271 { 3272 bool enlarge = false; 3273 bool drained = false; 3274 int ret; 3275 bool limits_invariant; 3276 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3277 3278 do { 3279 if (signal_pending(current)) { 3280 ret = -EINTR; 3281 break; 3282 } 3283 3284 mutex_lock(&memcg_max_mutex); 3285 /* 3286 * Make sure that the new limit (memsw or memory limit) doesn't 3287 * break our basic invariant rule memory.max <= memsw.max. 3288 */ 3289 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3290 max <= memcg->memsw.max; 3291 if (!limits_invariant) { 3292 mutex_unlock(&memcg_max_mutex); 3293 ret = -EINVAL; 3294 break; 3295 } 3296 if (max > counter->max) 3297 enlarge = true; 3298 ret = page_counter_set_max(counter, max); 3299 mutex_unlock(&memcg_max_mutex); 3300 3301 if (!ret) 3302 break; 3303 3304 if (!drained) { 3305 drain_all_stock(memcg); 3306 drained = true; 3307 continue; 3308 } 3309 3310 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3311 GFP_KERNEL, !memsw)) { 3312 ret = -EBUSY; 3313 break; 3314 } 3315 } while (true); 3316 3317 if (!ret && enlarge) 3318 memcg_oom_recover(memcg); 3319 3320 return ret; 3321 } 3322 3323 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3324 gfp_t gfp_mask, 3325 unsigned long *total_scanned) 3326 { 3327 unsigned long nr_reclaimed = 0; 3328 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3329 unsigned long reclaimed; 3330 int loop = 0; 3331 struct mem_cgroup_tree_per_node *mctz; 3332 unsigned long excess; 3333 unsigned long nr_scanned; 3334 3335 if (order > 0) 3336 return 0; 3337 3338 mctz = soft_limit_tree_node(pgdat->node_id); 3339 3340 /* 3341 * Do not even bother to check the largest node if the root 3342 * is empty. Do it lockless to prevent lock bouncing. Races 3343 * are acceptable as soft limit is best effort anyway. 3344 */ 3345 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3346 return 0; 3347 3348 /* 3349 * This loop can run a while, specially if mem_cgroup's continuously 3350 * keep exceeding their soft limit and putting the system under 3351 * pressure 3352 */ 3353 do { 3354 if (next_mz) 3355 mz = next_mz; 3356 else 3357 mz = mem_cgroup_largest_soft_limit_node(mctz); 3358 if (!mz) 3359 break; 3360 3361 nr_scanned = 0; 3362 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3363 gfp_mask, &nr_scanned); 3364 nr_reclaimed += reclaimed; 3365 *total_scanned += nr_scanned; 3366 spin_lock_irq(&mctz->lock); 3367 __mem_cgroup_remove_exceeded(mz, mctz); 3368 3369 /* 3370 * If we failed to reclaim anything from this memory cgroup 3371 * it is time to move on to the next cgroup 3372 */ 3373 next_mz = NULL; 3374 if (!reclaimed) 3375 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3376 3377 excess = soft_limit_excess(mz->memcg); 3378 /* 3379 * One school of thought says that we should not add 3380 * back the node to the tree if reclaim returns 0. 3381 * But our reclaim could return 0, simply because due 3382 * to priority we are exposing a smaller subset of 3383 * memory to reclaim from. Consider this as a longer 3384 * term TODO. 3385 */ 3386 /* If excess == 0, no tree ops */ 3387 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3388 spin_unlock_irq(&mctz->lock); 3389 css_put(&mz->memcg->css); 3390 loop++; 3391 /* 3392 * Could not reclaim anything and there are no more 3393 * mem cgroups to try or we seem to be looping without 3394 * reclaiming anything. 3395 */ 3396 if (!nr_reclaimed && 3397 (next_mz == NULL || 3398 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3399 break; 3400 } while (!nr_reclaimed); 3401 if (next_mz) 3402 css_put(&next_mz->memcg->css); 3403 return nr_reclaimed; 3404 } 3405 3406 /* 3407 * Test whether @memcg has children, dead or alive. Note that this 3408 * function doesn't care whether @memcg has use_hierarchy enabled and 3409 * returns %true if there are child csses according to the cgroup 3410 * hierarchy. Testing use_hierarchy is the caller's responsibility. 3411 */ 3412 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3413 { 3414 bool ret; 3415 3416 rcu_read_lock(); 3417 ret = css_next_child(NULL, &memcg->css); 3418 rcu_read_unlock(); 3419 return ret; 3420 } 3421 3422 /* 3423 * Reclaims as many pages from the given memcg as possible. 3424 * 3425 * Caller is responsible for holding css reference for memcg. 3426 */ 3427 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3428 { 3429 int nr_retries = MAX_RECLAIM_RETRIES; 3430 3431 /* we call try-to-free pages for make this cgroup empty */ 3432 lru_add_drain_all(); 3433 3434 drain_all_stock(memcg); 3435 3436 /* try to free all pages in this cgroup */ 3437 while (nr_retries && page_counter_read(&memcg->memory)) { 3438 int progress; 3439 3440 if (signal_pending(current)) 3441 return -EINTR; 3442 3443 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3444 GFP_KERNEL, true); 3445 if (!progress) { 3446 nr_retries--; 3447 /* maybe some writeback is necessary */ 3448 congestion_wait(BLK_RW_ASYNC, HZ/10); 3449 } 3450 3451 } 3452 3453 return 0; 3454 } 3455 3456 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3457 char *buf, size_t nbytes, 3458 loff_t off) 3459 { 3460 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3461 3462 if (mem_cgroup_is_root(memcg)) 3463 return -EINVAL; 3464 return mem_cgroup_force_empty(memcg) ?: nbytes; 3465 } 3466 3467 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3468 struct cftype *cft) 3469 { 3470 return mem_cgroup_from_css(css)->use_hierarchy; 3471 } 3472 3473 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3474 struct cftype *cft, u64 val) 3475 { 3476 int retval = 0; 3477 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3478 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3479 3480 if (memcg->use_hierarchy == val) 3481 return 0; 3482 3483 /* 3484 * If parent's use_hierarchy is set, we can't make any modifications 3485 * in the child subtrees. If it is unset, then the change can 3486 * occur, provided the current cgroup has no children. 3487 * 3488 * For the root cgroup, parent_mem is NULL, we allow value to be 3489 * set if there are no children. 3490 */ 3491 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3492 (val == 1 || val == 0)) { 3493 if (!memcg_has_children(memcg)) 3494 memcg->use_hierarchy = val; 3495 else 3496 retval = -EBUSY; 3497 } else 3498 retval = -EINVAL; 3499 3500 return retval; 3501 } 3502 3503 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3504 { 3505 unsigned long val; 3506 3507 if (mem_cgroup_is_root(memcg)) { 3508 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3509 memcg_page_state(memcg, NR_ANON_MAPPED); 3510 if (swap) 3511 val += memcg_page_state(memcg, MEMCG_SWAP); 3512 } else { 3513 if (!swap) 3514 val = page_counter_read(&memcg->memory); 3515 else 3516 val = page_counter_read(&memcg->memsw); 3517 } 3518 return val; 3519 } 3520 3521 enum { 3522 RES_USAGE, 3523 RES_LIMIT, 3524 RES_MAX_USAGE, 3525 RES_FAILCNT, 3526 RES_SOFT_LIMIT, 3527 }; 3528 3529 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3530 struct cftype *cft) 3531 { 3532 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3533 struct page_counter *counter; 3534 3535 switch (MEMFILE_TYPE(cft->private)) { 3536 case _MEM: 3537 counter = &memcg->memory; 3538 break; 3539 case _MEMSWAP: 3540 counter = &memcg->memsw; 3541 break; 3542 case _KMEM: 3543 counter = &memcg->kmem; 3544 break; 3545 case _TCP: 3546 counter = &memcg->tcpmem; 3547 break; 3548 default: 3549 BUG(); 3550 } 3551 3552 switch (MEMFILE_ATTR(cft->private)) { 3553 case RES_USAGE: 3554 if (counter == &memcg->memory) 3555 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3556 if (counter == &memcg->memsw) 3557 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3558 return (u64)page_counter_read(counter) * PAGE_SIZE; 3559 case RES_LIMIT: 3560 return (u64)counter->max * PAGE_SIZE; 3561 case RES_MAX_USAGE: 3562 return (u64)counter->watermark * PAGE_SIZE; 3563 case RES_FAILCNT: 3564 return counter->failcnt; 3565 case RES_SOFT_LIMIT: 3566 return (u64)memcg->soft_limit * PAGE_SIZE; 3567 default: 3568 BUG(); 3569 } 3570 } 3571 3572 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3573 { 3574 unsigned long stat[MEMCG_NR_STAT] = {0}; 3575 struct mem_cgroup *mi; 3576 int node, cpu, i; 3577 3578 for_each_online_cpu(cpu) 3579 for (i = 0; i < MEMCG_NR_STAT; i++) 3580 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3581 3582 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3583 for (i = 0; i < MEMCG_NR_STAT; i++) 3584 atomic_long_add(stat[i], &mi->vmstats[i]); 3585 3586 for_each_node(node) { 3587 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3588 struct mem_cgroup_per_node *pi; 3589 3590 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3591 stat[i] = 0; 3592 3593 for_each_online_cpu(cpu) 3594 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3595 stat[i] += per_cpu( 3596 pn->lruvec_stat_cpu->count[i], cpu); 3597 3598 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3599 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3600 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3601 } 3602 } 3603 3604 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3605 { 3606 unsigned long events[NR_VM_EVENT_ITEMS]; 3607 struct mem_cgroup *mi; 3608 int cpu, i; 3609 3610 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3611 events[i] = 0; 3612 3613 for_each_online_cpu(cpu) 3614 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3615 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3616 cpu); 3617 3618 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3619 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3620 atomic_long_add(events[i], &mi->vmevents[i]); 3621 } 3622 3623 #ifdef CONFIG_MEMCG_KMEM 3624 static int memcg_online_kmem(struct mem_cgroup *memcg) 3625 { 3626 struct obj_cgroup *objcg; 3627 int memcg_id; 3628 3629 if (cgroup_memory_nokmem) 3630 return 0; 3631 3632 BUG_ON(memcg->kmemcg_id >= 0); 3633 BUG_ON(memcg->kmem_state); 3634 3635 memcg_id = memcg_alloc_cache_id(); 3636 if (memcg_id < 0) 3637 return memcg_id; 3638 3639 objcg = obj_cgroup_alloc(); 3640 if (!objcg) { 3641 memcg_free_cache_id(memcg_id); 3642 return -ENOMEM; 3643 } 3644 objcg->memcg = memcg; 3645 rcu_assign_pointer(memcg->objcg, objcg); 3646 3647 static_branch_enable(&memcg_kmem_enabled_key); 3648 3649 /* 3650 * A memory cgroup is considered kmem-online as soon as it gets 3651 * kmemcg_id. Setting the id after enabling static branching will 3652 * guarantee no one starts accounting before all call sites are 3653 * patched. 3654 */ 3655 memcg->kmemcg_id = memcg_id; 3656 memcg->kmem_state = KMEM_ONLINE; 3657 3658 return 0; 3659 } 3660 3661 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3662 { 3663 struct cgroup_subsys_state *css; 3664 struct mem_cgroup *parent, *child; 3665 int kmemcg_id; 3666 3667 if (memcg->kmem_state != KMEM_ONLINE) 3668 return; 3669 3670 memcg->kmem_state = KMEM_ALLOCATED; 3671 3672 parent = parent_mem_cgroup(memcg); 3673 if (!parent) 3674 parent = root_mem_cgroup; 3675 3676 memcg_reparent_objcgs(memcg, parent); 3677 3678 kmemcg_id = memcg->kmemcg_id; 3679 BUG_ON(kmemcg_id < 0); 3680 3681 /* 3682 * Change kmemcg_id of this cgroup and all its descendants to the 3683 * parent's id, and then move all entries from this cgroup's list_lrus 3684 * to ones of the parent. After we have finished, all list_lrus 3685 * corresponding to this cgroup are guaranteed to remain empty. The 3686 * ordering is imposed by list_lru_node->lock taken by 3687 * memcg_drain_all_list_lrus(). 3688 */ 3689 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3690 css_for_each_descendant_pre(css, &memcg->css) { 3691 child = mem_cgroup_from_css(css); 3692 BUG_ON(child->kmemcg_id != kmemcg_id); 3693 child->kmemcg_id = parent->kmemcg_id; 3694 if (!memcg->use_hierarchy) 3695 break; 3696 } 3697 rcu_read_unlock(); 3698 3699 memcg_drain_all_list_lrus(kmemcg_id, parent); 3700 3701 memcg_free_cache_id(kmemcg_id); 3702 } 3703 3704 static void memcg_free_kmem(struct mem_cgroup *memcg) 3705 { 3706 /* css_alloc() failed, offlining didn't happen */ 3707 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3708 memcg_offline_kmem(memcg); 3709 } 3710 #else 3711 static int memcg_online_kmem(struct mem_cgroup *memcg) 3712 { 3713 return 0; 3714 } 3715 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3716 { 3717 } 3718 static void memcg_free_kmem(struct mem_cgroup *memcg) 3719 { 3720 } 3721 #endif /* CONFIG_MEMCG_KMEM */ 3722 3723 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3724 unsigned long max) 3725 { 3726 int ret; 3727 3728 mutex_lock(&memcg_max_mutex); 3729 ret = page_counter_set_max(&memcg->kmem, max); 3730 mutex_unlock(&memcg_max_mutex); 3731 return ret; 3732 } 3733 3734 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3735 { 3736 int ret; 3737 3738 mutex_lock(&memcg_max_mutex); 3739 3740 ret = page_counter_set_max(&memcg->tcpmem, max); 3741 if (ret) 3742 goto out; 3743 3744 if (!memcg->tcpmem_active) { 3745 /* 3746 * The active flag needs to be written after the static_key 3747 * update. This is what guarantees that the socket activation 3748 * function is the last one to run. See mem_cgroup_sk_alloc() 3749 * for details, and note that we don't mark any socket as 3750 * belonging to this memcg until that flag is up. 3751 * 3752 * We need to do this, because static_keys will span multiple 3753 * sites, but we can't control their order. If we mark a socket 3754 * as accounted, but the accounting functions are not patched in 3755 * yet, we'll lose accounting. 3756 * 3757 * We never race with the readers in mem_cgroup_sk_alloc(), 3758 * because when this value change, the code to process it is not 3759 * patched in yet. 3760 */ 3761 static_branch_inc(&memcg_sockets_enabled_key); 3762 memcg->tcpmem_active = true; 3763 } 3764 out: 3765 mutex_unlock(&memcg_max_mutex); 3766 return ret; 3767 } 3768 3769 /* 3770 * The user of this function is... 3771 * RES_LIMIT. 3772 */ 3773 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3774 char *buf, size_t nbytes, loff_t off) 3775 { 3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3777 unsigned long nr_pages; 3778 int ret; 3779 3780 buf = strstrip(buf); 3781 ret = page_counter_memparse(buf, "-1", &nr_pages); 3782 if (ret) 3783 return ret; 3784 3785 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3786 case RES_LIMIT: 3787 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3788 ret = -EINVAL; 3789 break; 3790 } 3791 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3792 case _MEM: 3793 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3794 break; 3795 case _MEMSWAP: 3796 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3797 break; 3798 case _KMEM: 3799 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3800 "Please report your usecase to linux-mm@kvack.org if you " 3801 "depend on this functionality.\n"); 3802 ret = memcg_update_kmem_max(memcg, nr_pages); 3803 break; 3804 case _TCP: 3805 ret = memcg_update_tcp_max(memcg, nr_pages); 3806 break; 3807 } 3808 break; 3809 case RES_SOFT_LIMIT: 3810 memcg->soft_limit = nr_pages; 3811 ret = 0; 3812 break; 3813 } 3814 return ret ?: nbytes; 3815 } 3816 3817 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3818 size_t nbytes, loff_t off) 3819 { 3820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3821 struct page_counter *counter; 3822 3823 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3824 case _MEM: 3825 counter = &memcg->memory; 3826 break; 3827 case _MEMSWAP: 3828 counter = &memcg->memsw; 3829 break; 3830 case _KMEM: 3831 counter = &memcg->kmem; 3832 break; 3833 case _TCP: 3834 counter = &memcg->tcpmem; 3835 break; 3836 default: 3837 BUG(); 3838 } 3839 3840 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3841 case RES_MAX_USAGE: 3842 page_counter_reset_watermark(counter); 3843 break; 3844 case RES_FAILCNT: 3845 counter->failcnt = 0; 3846 break; 3847 default: 3848 BUG(); 3849 } 3850 3851 return nbytes; 3852 } 3853 3854 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3855 struct cftype *cft) 3856 { 3857 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3858 } 3859 3860 #ifdef CONFIG_MMU 3861 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3862 struct cftype *cft, u64 val) 3863 { 3864 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3865 3866 if (val & ~MOVE_MASK) 3867 return -EINVAL; 3868 3869 /* 3870 * No kind of locking is needed in here, because ->can_attach() will 3871 * check this value once in the beginning of the process, and then carry 3872 * on with stale data. This means that changes to this value will only 3873 * affect task migrations starting after the change. 3874 */ 3875 memcg->move_charge_at_immigrate = val; 3876 return 0; 3877 } 3878 #else 3879 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3880 struct cftype *cft, u64 val) 3881 { 3882 return -ENOSYS; 3883 } 3884 #endif 3885 3886 #ifdef CONFIG_NUMA 3887 3888 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3889 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3890 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3891 3892 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3893 int nid, unsigned int lru_mask, bool tree) 3894 { 3895 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3896 unsigned long nr = 0; 3897 enum lru_list lru; 3898 3899 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3900 3901 for_each_lru(lru) { 3902 if (!(BIT(lru) & lru_mask)) 3903 continue; 3904 if (tree) 3905 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3906 else 3907 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3908 } 3909 return nr; 3910 } 3911 3912 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3913 unsigned int lru_mask, 3914 bool tree) 3915 { 3916 unsigned long nr = 0; 3917 enum lru_list lru; 3918 3919 for_each_lru(lru) { 3920 if (!(BIT(lru) & lru_mask)) 3921 continue; 3922 if (tree) 3923 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3924 else 3925 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3926 } 3927 return nr; 3928 } 3929 3930 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3931 { 3932 struct numa_stat { 3933 const char *name; 3934 unsigned int lru_mask; 3935 }; 3936 3937 static const struct numa_stat stats[] = { 3938 { "total", LRU_ALL }, 3939 { "file", LRU_ALL_FILE }, 3940 { "anon", LRU_ALL_ANON }, 3941 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3942 }; 3943 const struct numa_stat *stat; 3944 int nid; 3945 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3946 3947 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3948 seq_printf(m, "%s=%lu", stat->name, 3949 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3950 false)); 3951 for_each_node_state(nid, N_MEMORY) 3952 seq_printf(m, " N%d=%lu", nid, 3953 mem_cgroup_node_nr_lru_pages(memcg, nid, 3954 stat->lru_mask, false)); 3955 seq_putc(m, '\n'); 3956 } 3957 3958 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3959 3960 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3961 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3962 true)); 3963 for_each_node_state(nid, N_MEMORY) 3964 seq_printf(m, " N%d=%lu", nid, 3965 mem_cgroup_node_nr_lru_pages(memcg, nid, 3966 stat->lru_mask, true)); 3967 seq_putc(m, '\n'); 3968 } 3969 3970 return 0; 3971 } 3972 #endif /* CONFIG_NUMA */ 3973 3974 static const unsigned int memcg1_stats[] = { 3975 NR_FILE_PAGES, 3976 NR_ANON_MAPPED, 3977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3978 NR_ANON_THPS, 3979 #endif 3980 NR_SHMEM, 3981 NR_FILE_MAPPED, 3982 NR_FILE_DIRTY, 3983 NR_WRITEBACK, 3984 MEMCG_SWAP, 3985 }; 3986 3987 static const char *const memcg1_stat_names[] = { 3988 "cache", 3989 "rss", 3990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3991 "rss_huge", 3992 #endif 3993 "shmem", 3994 "mapped_file", 3995 "dirty", 3996 "writeback", 3997 "swap", 3998 }; 3999 4000 /* Universal VM events cgroup1 shows, original sort order */ 4001 static const unsigned int memcg1_events[] = { 4002 PGPGIN, 4003 PGPGOUT, 4004 PGFAULT, 4005 PGMAJFAULT, 4006 }; 4007 4008 static int memcg_stat_show(struct seq_file *m, void *v) 4009 { 4010 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4011 unsigned long memory, memsw; 4012 struct mem_cgroup *mi; 4013 unsigned int i; 4014 4015 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4016 4017 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4018 unsigned long nr; 4019 4020 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4021 continue; 4022 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4024 if (memcg1_stats[i] == NR_ANON_THPS) 4025 nr *= HPAGE_PMD_NR; 4026 #endif 4027 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4028 } 4029 4030 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4031 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4032 memcg_events_local(memcg, memcg1_events[i])); 4033 4034 for (i = 0; i < NR_LRU_LISTS; i++) 4035 seq_printf(m, "%s %lu\n", lru_list_name(i), 4036 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4037 PAGE_SIZE); 4038 4039 /* Hierarchical information */ 4040 memory = memsw = PAGE_COUNTER_MAX; 4041 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4042 memory = min(memory, READ_ONCE(mi->memory.max)); 4043 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4044 } 4045 seq_printf(m, "hierarchical_memory_limit %llu\n", 4046 (u64)memory * PAGE_SIZE); 4047 if (do_memsw_account()) 4048 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4049 (u64)memsw * PAGE_SIZE); 4050 4051 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4052 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4053 continue; 4054 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4055 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 4056 PAGE_SIZE); 4057 } 4058 4059 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4060 seq_printf(m, "total_%s %llu\n", 4061 vm_event_name(memcg1_events[i]), 4062 (u64)memcg_events(memcg, memcg1_events[i])); 4063 4064 for (i = 0; i < NR_LRU_LISTS; i++) 4065 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4066 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4067 PAGE_SIZE); 4068 4069 #ifdef CONFIG_DEBUG_VM 4070 { 4071 pg_data_t *pgdat; 4072 struct mem_cgroup_per_node *mz; 4073 unsigned long anon_cost = 0; 4074 unsigned long file_cost = 0; 4075 4076 for_each_online_pgdat(pgdat) { 4077 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 4078 4079 anon_cost += mz->lruvec.anon_cost; 4080 file_cost += mz->lruvec.file_cost; 4081 } 4082 seq_printf(m, "anon_cost %lu\n", anon_cost); 4083 seq_printf(m, "file_cost %lu\n", file_cost); 4084 } 4085 #endif 4086 4087 return 0; 4088 } 4089 4090 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4091 struct cftype *cft) 4092 { 4093 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4094 4095 return mem_cgroup_swappiness(memcg); 4096 } 4097 4098 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4099 struct cftype *cft, u64 val) 4100 { 4101 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4102 4103 if (val > 100) 4104 return -EINVAL; 4105 4106 if (css->parent) 4107 memcg->swappiness = val; 4108 else 4109 vm_swappiness = val; 4110 4111 return 0; 4112 } 4113 4114 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4115 { 4116 struct mem_cgroup_threshold_ary *t; 4117 unsigned long usage; 4118 int i; 4119 4120 rcu_read_lock(); 4121 if (!swap) 4122 t = rcu_dereference(memcg->thresholds.primary); 4123 else 4124 t = rcu_dereference(memcg->memsw_thresholds.primary); 4125 4126 if (!t) 4127 goto unlock; 4128 4129 usage = mem_cgroup_usage(memcg, swap); 4130 4131 /* 4132 * current_threshold points to threshold just below or equal to usage. 4133 * If it's not true, a threshold was crossed after last 4134 * call of __mem_cgroup_threshold(). 4135 */ 4136 i = t->current_threshold; 4137 4138 /* 4139 * Iterate backward over array of thresholds starting from 4140 * current_threshold and check if a threshold is crossed. 4141 * If none of thresholds below usage is crossed, we read 4142 * only one element of the array here. 4143 */ 4144 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4145 eventfd_signal(t->entries[i].eventfd, 1); 4146 4147 /* i = current_threshold + 1 */ 4148 i++; 4149 4150 /* 4151 * Iterate forward over array of thresholds starting from 4152 * current_threshold+1 and check if a threshold is crossed. 4153 * If none of thresholds above usage is crossed, we read 4154 * only one element of the array here. 4155 */ 4156 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4157 eventfd_signal(t->entries[i].eventfd, 1); 4158 4159 /* Update current_threshold */ 4160 t->current_threshold = i - 1; 4161 unlock: 4162 rcu_read_unlock(); 4163 } 4164 4165 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4166 { 4167 while (memcg) { 4168 __mem_cgroup_threshold(memcg, false); 4169 if (do_memsw_account()) 4170 __mem_cgroup_threshold(memcg, true); 4171 4172 memcg = parent_mem_cgroup(memcg); 4173 } 4174 } 4175 4176 static int compare_thresholds(const void *a, const void *b) 4177 { 4178 const struct mem_cgroup_threshold *_a = a; 4179 const struct mem_cgroup_threshold *_b = b; 4180 4181 if (_a->threshold > _b->threshold) 4182 return 1; 4183 4184 if (_a->threshold < _b->threshold) 4185 return -1; 4186 4187 return 0; 4188 } 4189 4190 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4191 { 4192 struct mem_cgroup_eventfd_list *ev; 4193 4194 spin_lock(&memcg_oom_lock); 4195 4196 list_for_each_entry(ev, &memcg->oom_notify, list) 4197 eventfd_signal(ev->eventfd, 1); 4198 4199 spin_unlock(&memcg_oom_lock); 4200 return 0; 4201 } 4202 4203 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4204 { 4205 struct mem_cgroup *iter; 4206 4207 for_each_mem_cgroup_tree(iter, memcg) 4208 mem_cgroup_oom_notify_cb(iter); 4209 } 4210 4211 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4212 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4213 { 4214 struct mem_cgroup_thresholds *thresholds; 4215 struct mem_cgroup_threshold_ary *new; 4216 unsigned long threshold; 4217 unsigned long usage; 4218 int i, size, ret; 4219 4220 ret = page_counter_memparse(args, "-1", &threshold); 4221 if (ret) 4222 return ret; 4223 4224 mutex_lock(&memcg->thresholds_lock); 4225 4226 if (type == _MEM) { 4227 thresholds = &memcg->thresholds; 4228 usage = mem_cgroup_usage(memcg, false); 4229 } else if (type == _MEMSWAP) { 4230 thresholds = &memcg->memsw_thresholds; 4231 usage = mem_cgroup_usage(memcg, true); 4232 } else 4233 BUG(); 4234 4235 /* Check if a threshold crossed before adding a new one */ 4236 if (thresholds->primary) 4237 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4238 4239 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4240 4241 /* Allocate memory for new array of thresholds */ 4242 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4243 if (!new) { 4244 ret = -ENOMEM; 4245 goto unlock; 4246 } 4247 new->size = size; 4248 4249 /* Copy thresholds (if any) to new array */ 4250 if (thresholds->primary) { 4251 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4252 sizeof(struct mem_cgroup_threshold)); 4253 } 4254 4255 /* Add new threshold */ 4256 new->entries[size - 1].eventfd = eventfd; 4257 new->entries[size - 1].threshold = threshold; 4258 4259 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4260 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4261 compare_thresholds, NULL); 4262 4263 /* Find current threshold */ 4264 new->current_threshold = -1; 4265 for (i = 0; i < size; i++) { 4266 if (new->entries[i].threshold <= usage) { 4267 /* 4268 * new->current_threshold will not be used until 4269 * rcu_assign_pointer(), so it's safe to increment 4270 * it here. 4271 */ 4272 ++new->current_threshold; 4273 } else 4274 break; 4275 } 4276 4277 /* Free old spare buffer and save old primary buffer as spare */ 4278 kfree(thresholds->spare); 4279 thresholds->spare = thresholds->primary; 4280 4281 rcu_assign_pointer(thresholds->primary, new); 4282 4283 /* To be sure that nobody uses thresholds */ 4284 synchronize_rcu(); 4285 4286 unlock: 4287 mutex_unlock(&memcg->thresholds_lock); 4288 4289 return ret; 4290 } 4291 4292 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4293 struct eventfd_ctx *eventfd, const char *args) 4294 { 4295 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4296 } 4297 4298 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4299 struct eventfd_ctx *eventfd, const char *args) 4300 { 4301 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4302 } 4303 4304 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4305 struct eventfd_ctx *eventfd, enum res_type type) 4306 { 4307 struct mem_cgroup_thresholds *thresholds; 4308 struct mem_cgroup_threshold_ary *new; 4309 unsigned long usage; 4310 int i, j, size, entries; 4311 4312 mutex_lock(&memcg->thresholds_lock); 4313 4314 if (type == _MEM) { 4315 thresholds = &memcg->thresholds; 4316 usage = mem_cgroup_usage(memcg, false); 4317 } else if (type == _MEMSWAP) { 4318 thresholds = &memcg->memsw_thresholds; 4319 usage = mem_cgroup_usage(memcg, true); 4320 } else 4321 BUG(); 4322 4323 if (!thresholds->primary) 4324 goto unlock; 4325 4326 /* Check if a threshold crossed before removing */ 4327 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4328 4329 /* Calculate new number of threshold */ 4330 size = entries = 0; 4331 for (i = 0; i < thresholds->primary->size; i++) { 4332 if (thresholds->primary->entries[i].eventfd != eventfd) 4333 size++; 4334 else 4335 entries++; 4336 } 4337 4338 new = thresholds->spare; 4339 4340 /* If no items related to eventfd have been cleared, nothing to do */ 4341 if (!entries) 4342 goto unlock; 4343 4344 /* Set thresholds array to NULL if we don't have thresholds */ 4345 if (!size) { 4346 kfree(new); 4347 new = NULL; 4348 goto swap_buffers; 4349 } 4350 4351 new->size = size; 4352 4353 /* Copy thresholds and find current threshold */ 4354 new->current_threshold = -1; 4355 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4356 if (thresholds->primary->entries[i].eventfd == eventfd) 4357 continue; 4358 4359 new->entries[j] = thresholds->primary->entries[i]; 4360 if (new->entries[j].threshold <= usage) { 4361 /* 4362 * new->current_threshold will not be used 4363 * until rcu_assign_pointer(), so it's safe to increment 4364 * it here. 4365 */ 4366 ++new->current_threshold; 4367 } 4368 j++; 4369 } 4370 4371 swap_buffers: 4372 /* Swap primary and spare array */ 4373 thresholds->spare = thresholds->primary; 4374 4375 rcu_assign_pointer(thresholds->primary, new); 4376 4377 /* To be sure that nobody uses thresholds */ 4378 synchronize_rcu(); 4379 4380 /* If all events are unregistered, free the spare array */ 4381 if (!new) { 4382 kfree(thresholds->spare); 4383 thresholds->spare = NULL; 4384 } 4385 unlock: 4386 mutex_unlock(&memcg->thresholds_lock); 4387 } 4388 4389 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4390 struct eventfd_ctx *eventfd) 4391 { 4392 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4393 } 4394 4395 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4396 struct eventfd_ctx *eventfd) 4397 { 4398 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4399 } 4400 4401 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4402 struct eventfd_ctx *eventfd, const char *args) 4403 { 4404 struct mem_cgroup_eventfd_list *event; 4405 4406 event = kmalloc(sizeof(*event), GFP_KERNEL); 4407 if (!event) 4408 return -ENOMEM; 4409 4410 spin_lock(&memcg_oom_lock); 4411 4412 event->eventfd = eventfd; 4413 list_add(&event->list, &memcg->oom_notify); 4414 4415 /* already in OOM ? */ 4416 if (memcg->under_oom) 4417 eventfd_signal(eventfd, 1); 4418 spin_unlock(&memcg_oom_lock); 4419 4420 return 0; 4421 } 4422 4423 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4424 struct eventfd_ctx *eventfd) 4425 { 4426 struct mem_cgroup_eventfd_list *ev, *tmp; 4427 4428 spin_lock(&memcg_oom_lock); 4429 4430 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4431 if (ev->eventfd == eventfd) { 4432 list_del(&ev->list); 4433 kfree(ev); 4434 } 4435 } 4436 4437 spin_unlock(&memcg_oom_lock); 4438 } 4439 4440 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4441 { 4442 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4443 4444 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4445 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4446 seq_printf(sf, "oom_kill %lu\n", 4447 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4448 return 0; 4449 } 4450 4451 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4452 struct cftype *cft, u64 val) 4453 { 4454 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4455 4456 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4457 if (!css->parent || !((val == 0) || (val == 1))) 4458 return -EINVAL; 4459 4460 memcg->oom_kill_disable = val; 4461 if (!val) 4462 memcg_oom_recover(memcg); 4463 4464 return 0; 4465 } 4466 4467 #ifdef CONFIG_CGROUP_WRITEBACK 4468 4469 #include <trace/events/writeback.h> 4470 4471 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4472 { 4473 return wb_domain_init(&memcg->cgwb_domain, gfp); 4474 } 4475 4476 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4477 { 4478 wb_domain_exit(&memcg->cgwb_domain); 4479 } 4480 4481 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4482 { 4483 wb_domain_size_changed(&memcg->cgwb_domain); 4484 } 4485 4486 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4487 { 4488 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4489 4490 if (!memcg->css.parent) 4491 return NULL; 4492 4493 return &memcg->cgwb_domain; 4494 } 4495 4496 /* 4497 * idx can be of type enum memcg_stat_item or node_stat_item. 4498 * Keep in sync with memcg_exact_page(). 4499 */ 4500 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4501 { 4502 long x = atomic_long_read(&memcg->vmstats[idx]); 4503 int cpu; 4504 4505 for_each_online_cpu(cpu) 4506 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4507 if (x < 0) 4508 x = 0; 4509 return x; 4510 } 4511 4512 /** 4513 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4514 * @wb: bdi_writeback in question 4515 * @pfilepages: out parameter for number of file pages 4516 * @pheadroom: out parameter for number of allocatable pages according to memcg 4517 * @pdirty: out parameter for number of dirty pages 4518 * @pwriteback: out parameter for number of pages under writeback 4519 * 4520 * Determine the numbers of file, headroom, dirty, and writeback pages in 4521 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4522 * is a bit more involved. 4523 * 4524 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4525 * headroom is calculated as the lowest headroom of itself and the 4526 * ancestors. Note that this doesn't consider the actual amount of 4527 * available memory in the system. The caller should further cap 4528 * *@pheadroom accordingly. 4529 */ 4530 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4531 unsigned long *pheadroom, unsigned long *pdirty, 4532 unsigned long *pwriteback) 4533 { 4534 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4535 struct mem_cgroup *parent; 4536 4537 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4538 4539 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4540 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4541 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4542 *pheadroom = PAGE_COUNTER_MAX; 4543 4544 while ((parent = parent_mem_cgroup(memcg))) { 4545 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4546 READ_ONCE(memcg->memory.high)); 4547 unsigned long used = page_counter_read(&memcg->memory); 4548 4549 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4550 memcg = parent; 4551 } 4552 } 4553 4554 /* 4555 * Foreign dirty flushing 4556 * 4557 * There's an inherent mismatch between memcg and writeback. The former 4558 * trackes ownership per-page while the latter per-inode. This was a 4559 * deliberate design decision because honoring per-page ownership in the 4560 * writeback path is complicated, may lead to higher CPU and IO overheads 4561 * and deemed unnecessary given that write-sharing an inode across 4562 * different cgroups isn't a common use-case. 4563 * 4564 * Combined with inode majority-writer ownership switching, this works well 4565 * enough in most cases but there are some pathological cases. For 4566 * example, let's say there are two cgroups A and B which keep writing to 4567 * different but confined parts of the same inode. B owns the inode and 4568 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4570 * triggering background writeback. A will be slowed down without a way to 4571 * make writeback of the dirty pages happen. 4572 * 4573 * Conditions like the above can lead to a cgroup getting repatedly and 4574 * severely throttled after making some progress after each 4575 * dirty_expire_interval while the underyling IO device is almost 4576 * completely idle. 4577 * 4578 * Solving this problem completely requires matching the ownership tracking 4579 * granularities between memcg and writeback in either direction. However, 4580 * the more egregious behaviors can be avoided by simply remembering the 4581 * most recent foreign dirtying events and initiating remote flushes on 4582 * them when local writeback isn't enough to keep the memory clean enough. 4583 * 4584 * The following two functions implement such mechanism. When a foreign 4585 * page - a page whose memcg and writeback ownerships don't match - is 4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4587 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4590 * foreign bdi_writebacks which haven't expired. Both the numbers of 4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4592 * limited to MEMCG_CGWB_FRN_CNT. 4593 * 4594 * The mechanism only remembers IDs and doesn't hold any object references. 4595 * As being wrong occasionally doesn't matter, updates and accesses to the 4596 * records are lockless and racy. 4597 */ 4598 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4599 struct bdi_writeback *wb) 4600 { 4601 struct mem_cgroup *memcg = page->mem_cgroup; 4602 struct memcg_cgwb_frn *frn; 4603 u64 now = get_jiffies_64(); 4604 u64 oldest_at = now; 4605 int oldest = -1; 4606 int i; 4607 4608 trace_track_foreign_dirty(page, wb); 4609 4610 /* 4611 * Pick the slot to use. If there is already a slot for @wb, keep 4612 * using it. If not replace the oldest one which isn't being 4613 * written out. 4614 */ 4615 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4616 frn = &memcg->cgwb_frn[i]; 4617 if (frn->bdi_id == wb->bdi->id && 4618 frn->memcg_id == wb->memcg_css->id) 4619 break; 4620 if (time_before64(frn->at, oldest_at) && 4621 atomic_read(&frn->done.cnt) == 1) { 4622 oldest = i; 4623 oldest_at = frn->at; 4624 } 4625 } 4626 4627 if (i < MEMCG_CGWB_FRN_CNT) { 4628 /* 4629 * Re-using an existing one. Update timestamp lazily to 4630 * avoid making the cacheline hot. We want them to be 4631 * reasonably up-to-date and significantly shorter than 4632 * dirty_expire_interval as that's what expires the record. 4633 * Use the shorter of 1s and dirty_expire_interval / 8. 4634 */ 4635 unsigned long update_intv = 4636 min_t(unsigned long, HZ, 4637 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4638 4639 if (time_before64(frn->at, now - update_intv)) 4640 frn->at = now; 4641 } else if (oldest >= 0) { 4642 /* replace the oldest free one */ 4643 frn = &memcg->cgwb_frn[oldest]; 4644 frn->bdi_id = wb->bdi->id; 4645 frn->memcg_id = wb->memcg_css->id; 4646 frn->at = now; 4647 } 4648 } 4649 4650 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4651 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4652 { 4653 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4654 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4655 u64 now = jiffies_64; 4656 int i; 4657 4658 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4659 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4660 4661 /* 4662 * If the record is older than dirty_expire_interval, 4663 * writeback on it has already started. No need to kick it 4664 * off again. Also, don't start a new one if there's 4665 * already one in flight. 4666 */ 4667 if (time_after64(frn->at, now - intv) && 4668 atomic_read(&frn->done.cnt) == 1) { 4669 frn->at = 0; 4670 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4671 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4672 WB_REASON_FOREIGN_FLUSH, 4673 &frn->done); 4674 } 4675 } 4676 } 4677 4678 #else /* CONFIG_CGROUP_WRITEBACK */ 4679 4680 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4681 { 4682 return 0; 4683 } 4684 4685 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4686 { 4687 } 4688 4689 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4690 { 4691 } 4692 4693 #endif /* CONFIG_CGROUP_WRITEBACK */ 4694 4695 /* 4696 * DO NOT USE IN NEW FILES. 4697 * 4698 * "cgroup.event_control" implementation. 4699 * 4700 * This is way over-engineered. It tries to support fully configurable 4701 * events for each user. Such level of flexibility is completely 4702 * unnecessary especially in the light of the planned unified hierarchy. 4703 * 4704 * Please deprecate this and replace with something simpler if at all 4705 * possible. 4706 */ 4707 4708 /* 4709 * Unregister event and free resources. 4710 * 4711 * Gets called from workqueue. 4712 */ 4713 static void memcg_event_remove(struct work_struct *work) 4714 { 4715 struct mem_cgroup_event *event = 4716 container_of(work, struct mem_cgroup_event, remove); 4717 struct mem_cgroup *memcg = event->memcg; 4718 4719 remove_wait_queue(event->wqh, &event->wait); 4720 4721 event->unregister_event(memcg, event->eventfd); 4722 4723 /* Notify userspace the event is going away. */ 4724 eventfd_signal(event->eventfd, 1); 4725 4726 eventfd_ctx_put(event->eventfd); 4727 kfree(event); 4728 css_put(&memcg->css); 4729 } 4730 4731 /* 4732 * Gets called on EPOLLHUP on eventfd when user closes it. 4733 * 4734 * Called with wqh->lock held and interrupts disabled. 4735 */ 4736 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4737 int sync, void *key) 4738 { 4739 struct mem_cgroup_event *event = 4740 container_of(wait, struct mem_cgroup_event, wait); 4741 struct mem_cgroup *memcg = event->memcg; 4742 __poll_t flags = key_to_poll(key); 4743 4744 if (flags & EPOLLHUP) { 4745 /* 4746 * If the event has been detached at cgroup removal, we 4747 * can simply return knowing the other side will cleanup 4748 * for us. 4749 * 4750 * We can't race against event freeing since the other 4751 * side will require wqh->lock via remove_wait_queue(), 4752 * which we hold. 4753 */ 4754 spin_lock(&memcg->event_list_lock); 4755 if (!list_empty(&event->list)) { 4756 list_del_init(&event->list); 4757 /* 4758 * We are in atomic context, but cgroup_event_remove() 4759 * may sleep, so we have to call it in workqueue. 4760 */ 4761 schedule_work(&event->remove); 4762 } 4763 spin_unlock(&memcg->event_list_lock); 4764 } 4765 4766 return 0; 4767 } 4768 4769 static void memcg_event_ptable_queue_proc(struct file *file, 4770 wait_queue_head_t *wqh, poll_table *pt) 4771 { 4772 struct mem_cgroup_event *event = 4773 container_of(pt, struct mem_cgroup_event, pt); 4774 4775 event->wqh = wqh; 4776 add_wait_queue(wqh, &event->wait); 4777 } 4778 4779 /* 4780 * DO NOT USE IN NEW FILES. 4781 * 4782 * Parse input and register new cgroup event handler. 4783 * 4784 * Input must be in format '<event_fd> <control_fd> <args>'. 4785 * Interpretation of args is defined by control file implementation. 4786 */ 4787 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4788 char *buf, size_t nbytes, loff_t off) 4789 { 4790 struct cgroup_subsys_state *css = of_css(of); 4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4792 struct mem_cgroup_event *event; 4793 struct cgroup_subsys_state *cfile_css; 4794 unsigned int efd, cfd; 4795 struct fd efile; 4796 struct fd cfile; 4797 const char *name; 4798 char *endp; 4799 int ret; 4800 4801 buf = strstrip(buf); 4802 4803 efd = simple_strtoul(buf, &endp, 10); 4804 if (*endp != ' ') 4805 return -EINVAL; 4806 buf = endp + 1; 4807 4808 cfd = simple_strtoul(buf, &endp, 10); 4809 if ((*endp != ' ') && (*endp != '\0')) 4810 return -EINVAL; 4811 buf = endp + 1; 4812 4813 event = kzalloc(sizeof(*event), GFP_KERNEL); 4814 if (!event) 4815 return -ENOMEM; 4816 4817 event->memcg = memcg; 4818 INIT_LIST_HEAD(&event->list); 4819 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4820 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4821 INIT_WORK(&event->remove, memcg_event_remove); 4822 4823 efile = fdget(efd); 4824 if (!efile.file) { 4825 ret = -EBADF; 4826 goto out_kfree; 4827 } 4828 4829 event->eventfd = eventfd_ctx_fileget(efile.file); 4830 if (IS_ERR(event->eventfd)) { 4831 ret = PTR_ERR(event->eventfd); 4832 goto out_put_efile; 4833 } 4834 4835 cfile = fdget(cfd); 4836 if (!cfile.file) { 4837 ret = -EBADF; 4838 goto out_put_eventfd; 4839 } 4840 4841 /* the process need read permission on control file */ 4842 /* AV: shouldn't we check that it's been opened for read instead? */ 4843 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4844 if (ret < 0) 4845 goto out_put_cfile; 4846 4847 /* 4848 * Determine the event callbacks and set them in @event. This used 4849 * to be done via struct cftype but cgroup core no longer knows 4850 * about these events. The following is crude but the whole thing 4851 * is for compatibility anyway. 4852 * 4853 * DO NOT ADD NEW FILES. 4854 */ 4855 name = cfile.file->f_path.dentry->d_name.name; 4856 4857 if (!strcmp(name, "memory.usage_in_bytes")) { 4858 event->register_event = mem_cgroup_usage_register_event; 4859 event->unregister_event = mem_cgroup_usage_unregister_event; 4860 } else if (!strcmp(name, "memory.oom_control")) { 4861 event->register_event = mem_cgroup_oom_register_event; 4862 event->unregister_event = mem_cgroup_oom_unregister_event; 4863 } else if (!strcmp(name, "memory.pressure_level")) { 4864 event->register_event = vmpressure_register_event; 4865 event->unregister_event = vmpressure_unregister_event; 4866 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4867 event->register_event = memsw_cgroup_usage_register_event; 4868 event->unregister_event = memsw_cgroup_usage_unregister_event; 4869 } else { 4870 ret = -EINVAL; 4871 goto out_put_cfile; 4872 } 4873 4874 /* 4875 * Verify @cfile should belong to @css. Also, remaining events are 4876 * automatically removed on cgroup destruction but the removal is 4877 * asynchronous, so take an extra ref on @css. 4878 */ 4879 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4880 &memory_cgrp_subsys); 4881 ret = -EINVAL; 4882 if (IS_ERR(cfile_css)) 4883 goto out_put_cfile; 4884 if (cfile_css != css) { 4885 css_put(cfile_css); 4886 goto out_put_cfile; 4887 } 4888 4889 ret = event->register_event(memcg, event->eventfd, buf); 4890 if (ret) 4891 goto out_put_css; 4892 4893 vfs_poll(efile.file, &event->pt); 4894 4895 spin_lock(&memcg->event_list_lock); 4896 list_add(&event->list, &memcg->event_list); 4897 spin_unlock(&memcg->event_list_lock); 4898 4899 fdput(cfile); 4900 fdput(efile); 4901 4902 return nbytes; 4903 4904 out_put_css: 4905 css_put(css); 4906 out_put_cfile: 4907 fdput(cfile); 4908 out_put_eventfd: 4909 eventfd_ctx_put(event->eventfd); 4910 out_put_efile: 4911 fdput(efile); 4912 out_kfree: 4913 kfree(event); 4914 4915 return ret; 4916 } 4917 4918 static struct cftype mem_cgroup_legacy_files[] = { 4919 { 4920 .name = "usage_in_bytes", 4921 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4922 .read_u64 = mem_cgroup_read_u64, 4923 }, 4924 { 4925 .name = "max_usage_in_bytes", 4926 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4927 .write = mem_cgroup_reset, 4928 .read_u64 = mem_cgroup_read_u64, 4929 }, 4930 { 4931 .name = "limit_in_bytes", 4932 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4933 .write = mem_cgroup_write, 4934 .read_u64 = mem_cgroup_read_u64, 4935 }, 4936 { 4937 .name = "soft_limit_in_bytes", 4938 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4939 .write = mem_cgroup_write, 4940 .read_u64 = mem_cgroup_read_u64, 4941 }, 4942 { 4943 .name = "failcnt", 4944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4945 .write = mem_cgroup_reset, 4946 .read_u64 = mem_cgroup_read_u64, 4947 }, 4948 { 4949 .name = "stat", 4950 .seq_show = memcg_stat_show, 4951 }, 4952 { 4953 .name = "force_empty", 4954 .write = mem_cgroup_force_empty_write, 4955 }, 4956 { 4957 .name = "use_hierarchy", 4958 .write_u64 = mem_cgroup_hierarchy_write, 4959 .read_u64 = mem_cgroup_hierarchy_read, 4960 }, 4961 { 4962 .name = "cgroup.event_control", /* XXX: for compat */ 4963 .write = memcg_write_event_control, 4964 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4965 }, 4966 { 4967 .name = "swappiness", 4968 .read_u64 = mem_cgroup_swappiness_read, 4969 .write_u64 = mem_cgroup_swappiness_write, 4970 }, 4971 { 4972 .name = "move_charge_at_immigrate", 4973 .read_u64 = mem_cgroup_move_charge_read, 4974 .write_u64 = mem_cgroup_move_charge_write, 4975 }, 4976 { 4977 .name = "oom_control", 4978 .seq_show = mem_cgroup_oom_control_read, 4979 .write_u64 = mem_cgroup_oom_control_write, 4980 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4981 }, 4982 { 4983 .name = "pressure_level", 4984 }, 4985 #ifdef CONFIG_NUMA 4986 { 4987 .name = "numa_stat", 4988 .seq_show = memcg_numa_stat_show, 4989 }, 4990 #endif 4991 { 4992 .name = "kmem.limit_in_bytes", 4993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4994 .write = mem_cgroup_write, 4995 .read_u64 = mem_cgroup_read_u64, 4996 }, 4997 { 4998 .name = "kmem.usage_in_bytes", 4999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5000 .read_u64 = mem_cgroup_read_u64, 5001 }, 5002 { 5003 .name = "kmem.failcnt", 5004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5005 .write = mem_cgroup_reset, 5006 .read_u64 = mem_cgroup_read_u64, 5007 }, 5008 { 5009 .name = "kmem.max_usage_in_bytes", 5010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5011 .write = mem_cgroup_reset, 5012 .read_u64 = mem_cgroup_read_u64, 5013 }, 5014 #if defined(CONFIG_MEMCG_KMEM) && \ 5015 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5016 { 5017 .name = "kmem.slabinfo", 5018 .seq_show = memcg_slab_show, 5019 }, 5020 #endif 5021 { 5022 .name = "kmem.tcp.limit_in_bytes", 5023 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5024 .write = mem_cgroup_write, 5025 .read_u64 = mem_cgroup_read_u64, 5026 }, 5027 { 5028 .name = "kmem.tcp.usage_in_bytes", 5029 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5030 .read_u64 = mem_cgroup_read_u64, 5031 }, 5032 { 5033 .name = "kmem.tcp.failcnt", 5034 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5035 .write = mem_cgroup_reset, 5036 .read_u64 = mem_cgroup_read_u64, 5037 }, 5038 { 5039 .name = "kmem.tcp.max_usage_in_bytes", 5040 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5041 .write = mem_cgroup_reset, 5042 .read_u64 = mem_cgroup_read_u64, 5043 }, 5044 { }, /* terminate */ 5045 }; 5046 5047 /* 5048 * Private memory cgroup IDR 5049 * 5050 * Swap-out records and page cache shadow entries need to store memcg 5051 * references in constrained space, so we maintain an ID space that is 5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5053 * memory-controlled cgroups to 64k. 5054 * 5055 * However, there usually are many references to the offline CSS after 5056 * the cgroup has been destroyed, such as page cache or reclaimable 5057 * slab objects, that don't need to hang on to the ID. We want to keep 5058 * those dead CSS from occupying IDs, or we might quickly exhaust the 5059 * relatively small ID space and prevent the creation of new cgroups 5060 * even when there are much fewer than 64k cgroups - possibly none. 5061 * 5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5063 * be freed and recycled when it's no longer needed, which is usually 5064 * when the CSS is offlined. 5065 * 5066 * The only exception to that are records of swapped out tmpfs/shmem 5067 * pages that need to be attributed to live ancestors on swapin. But 5068 * those references are manageable from userspace. 5069 */ 5070 5071 static DEFINE_IDR(mem_cgroup_idr); 5072 5073 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5074 { 5075 if (memcg->id.id > 0) { 5076 idr_remove(&mem_cgroup_idr, memcg->id.id); 5077 memcg->id.id = 0; 5078 } 5079 } 5080 5081 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5082 unsigned int n) 5083 { 5084 refcount_add(n, &memcg->id.ref); 5085 } 5086 5087 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5088 { 5089 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5090 mem_cgroup_id_remove(memcg); 5091 5092 /* Memcg ID pins CSS */ 5093 css_put(&memcg->css); 5094 } 5095 } 5096 5097 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5098 { 5099 mem_cgroup_id_put_many(memcg, 1); 5100 } 5101 5102 /** 5103 * mem_cgroup_from_id - look up a memcg from a memcg id 5104 * @id: the memcg id to look up 5105 * 5106 * Caller must hold rcu_read_lock(). 5107 */ 5108 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5109 { 5110 WARN_ON_ONCE(!rcu_read_lock_held()); 5111 return idr_find(&mem_cgroup_idr, id); 5112 } 5113 5114 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5115 { 5116 struct mem_cgroup_per_node *pn; 5117 int tmp = node; 5118 /* 5119 * This routine is called against possible nodes. 5120 * But it's BUG to call kmalloc() against offline node. 5121 * 5122 * TODO: this routine can waste much memory for nodes which will 5123 * never be onlined. It's better to use memory hotplug callback 5124 * function. 5125 */ 5126 if (!node_state(node, N_NORMAL_MEMORY)) 5127 tmp = -1; 5128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5129 if (!pn) 5130 return 1; 5131 5132 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 5133 if (!pn->lruvec_stat_local) { 5134 kfree(pn); 5135 return 1; 5136 } 5137 5138 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 5139 if (!pn->lruvec_stat_cpu) { 5140 free_percpu(pn->lruvec_stat_local); 5141 kfree(pn); 5142 return 1; 5143 } 5144 5145 lruvec_init(&pn->lruvec); 5146 pn->usage_in_excess = 0; 5147 pn->on_tree = false; 5148 pn->memcg = memcg; 5149 5150 memcg->nodeinfo[node] = pn; 5151 return 0; 5152 } 5153 5154 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5155 { 5156 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5157 5158 if (!pn) 5159 return; 5160 5161 free_percpu(pn->lruvec_stat_cpu); 5162 free_percpu(pn->lruvec_stat_local); 5163 kfree(pn); 5164 } 5165 5166 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5167 { 5168 int node; 5169 5170 for_each_node(node) 5171 free_mem_cgroup_per_node_info(memcg, node); 5172 free_percpu(memcg->vmstats_percpu); 5173 free_percpu(memcg->vmstats_local); 5174 kfree(memcg); 5175 } 5176 5177 static void mem_cgroup_free(struct mem_cgroup *memcg) 5178 { 5179 memcg_wb_domain_exit(memcg); 5180 /* 5181 * Flush percpu vmstats and vmevents to guarantee the value correctness 5182 * on parent's and all ancestor levels. 5183 */ 5184 memcg_flush_percpu_vmstats(memcg); 5185 memcg_flush_percpu_vmevents(memcg); 5186 __mem_cgroup_free(memcg); 5187 } 5188 5189 static struct mem_cgroup *mem_cgroup_alloc(void) 5190 { 5191 struct mem_cgroup *memcg; 5192 unsigned int size; 5193 int node; 5194 int __maybe_unused i; 5195 long error = -ENOMEM; 5196 5197 size = sizeof(struct mem_cgroup); 5198 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5199 5200 memcg = kzalloc(size, GFP_KERNEL); 5201 if (!memcg) 5202 return ERR_PTR(error); 5203 5204 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5205 1, MEM_CGROUP_ID_MAX, 5206 GFP_KERNEL); 5207 if (memcg->id.id < 0) { 5208 error = memcg->id.id; 5209 goto fail; 5210 } 5211 5212 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5213 if (!memcg->vmstats_local) 5214 goto fail; 5215 5216 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5217 if (!memcg->vmstats_percpu) 5218 goto fail; 5219 5220 for_each_node(node) 5221 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5222 goto fail; 5223 5224 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5225 goto fail; 5226 5227 INIT_WORK(&memcg->high_work, high_work_func); 5228 INIT_LIST_HEAD(&memcg->oom_notify); 5229 mutex_init(&memcg->thresholds_lock); 5230 spin_lock_init(&memcg->move_lock); 5231 vmpressure_init(&memcg->vmpressure); 5232 INIT_LIST_HEAD(&memcg->event_list); 5233 spin_lock_init(&memcg->event_list_lock); 5234 memcg->socket_pressure = jiffies; 5235 #ifdef CONFIG_MEMCG_KMEM 5236 memcg->kmemcg_id = -1; 5237 INIT_LIST_HEAD(&memcg->objcg_list); 5238 #endif 5239 #ifdef CONFIG_CGROUP_WRITEBACK 5240 INIT_LIST_HEAD(&memcg->cgwb_list); 5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5242 memcg->cgwb_frn[i].done = 5243 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5244 #endif 5245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5246 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5247 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5248 memcg->deferred_split_queue.split_queue_len = 0; 5249 #endif 5250 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5251 return memcg; 5252 fail: 5253 mem_cgroup_id_remove(memcg); 5254 __mem_cgroup_free(memcg); 5255 return ERR_PTR(error); 5256 } 5257 5258 static struct cgroup_subsys_state * __ref 5259 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5260 { 5261 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5262 struct mem_cgroup *memcg; 5263 long error = -ENOMEM; 5264 5265 memcg = mem_cgroup_alloc(); 5266 if (IS_ERR(memcg)) 5267 return ERR_CAST(memcg); 5268 5269 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5270 memcg->soft_limit = PAGE_COUNTER_MAX; 5271 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5272 if (parent) { 5273 memcg->swappiness = mem_cgroup_swappiness(parent); 5274 memcg->oom_kill_disable = parent->oom_kill_disable; 5275 } 5276 if (parent && parent->use_hierarchy) { 5277 memcg->use_hierarchy = true; 5278 page_counter_init(&memcg->memory, &parent->memory); 5279 page_counter_init(&memcg->swap, &parent->swap); 5280 page_counter_init(&memcg->memsw, &parent->memsw); 5281 page_counter_init(&memcg->kmem, &parent->kmem); 5282 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5283 } else { 5284 page_counter_init(&memcg->memory, NULL); 5285 page_counter_init(&memcg->swap, NULL); 5286 page_counter_init(&memcg->memsw, NULL); 5287 page_counter_init(&memcg->kmem, NULL); 5288 page_counter_init(&memcg->tcpmem, NULL); 5289 /* 5290 * Deeper hierachy with use_hierarchy == false doesn't make 5291 * much sense so let cgroup subsystem know about this 5292 * unfortunate state in our controller. 5293 */ 5294 if (parent != root_mem_cgroup) 5295 memory_cgrp_subsys.broken_hierarchy = true; 5296 } 5297 5298 /* The following stuff does not apply to the root */ 5299 if (!parent) { 5300 root_mem_cgroup = memcg; 5301 return &memcg->css; 5302 } 5303 5304 error = memcg_online_kmem(memcg); 5305 if (error) 5306 goto fail; 5307 5308 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5309 static_branch_inc(&memcg_sockets_enabled_key); 5310 5311 return &memcg->css; 5312 fail: 5313 mem_cgroup_id_remove(memcg); 5314 mem_cgroup_free(memcg); 5315 return ERR_PTR(error); 5316 } 5317 5318 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5319 { 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5321 5322 /* 5323 * A memcg must be visible for memcg_expand_shrinker_maps() 5324 * by the time the maps are allocated. So, we allocate maps 5325 * here, when for_each_mem_cgroup() can't skip it. 5326 */ 5327 if (memcg_alloc_shrinker_maps(memcg)) { 5328 mem_cgroup_id_remove(memcg); 5329 return -ENOMEM; 5330 } 5331 5332 /* Online state pins memcg ID, memcg ID pins CSS */ 5333 refcount_set(&memcg->id.ref, 1); 5334 css_get(css); 5335 return 0; 5336 } 5337 5338 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5339 { 5340 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5341 struct mem_cgroup_event *event, *tmp; 5342 5343 /* 5344 * Unregister events and notify userspace. 5345 * Notify userspace about cgroup removing only after rmdir of cgroup 5346 * directory to avoid race between userspace and kernelspace. 5347 */ 5348 spin_lock(&memcg->event_list_lock); 5349 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5350 list_del_init(&event->list); 5351 schedule_work(&event->remove); 5352 } 5353 spin_unlock(&memcg->event_list_lock); 5354 5355 page_counter_set_min(&memcg->memory, 0); 5356 page_counter_set_low(&memcg->memory, 0); 5357 5358 memcg_offline_kmem(memcg); 5359 wb_memcg_offline(memcg); 5360 5361 drain_all_stock(memcg); 5362 5363 mem_cgroup_id_put(memcg); 5364 } 5365 5366 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5367 { 5368 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5369 5370 invalidate_reclaim_iterators(memcg); 5371 } 5372 5373 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5374 { 5375 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5376 int __maybe_unused i; 5377 5378 #ifdef CONFIG_CGROUP_WRITEBACK 5379 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5380 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5381 #endif 5382 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5383 static_branch_dec(&memcg_sockets_enabled_key); 5384 5385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5386 static_branch_dec(&memcg_sockets_enabled_key); 5387 5388 vmpressure_cleanup(&memcg->vmpressure); 5389 cancel_work_sync(&memcg->high_work); 5390 mem_cgroup_remove_from_trees(memcg); 5391 memcg_free_shrinker_maps(memcg); 5392 memcg_free_kmem(memcg); 5393 mem_cgroup_free(memcg); 5394 } 5395 5396 /** 5397 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5398 * @css: the target css 5399 * 5400 * Reset the states of the mem_cgroup associated with @css. This is 5401 * invoked when the userland requests disabling on the default hierarchy 5402 * but the memcg is pinned through dependency. The memcg should stop 5403 * applying policies and should revert to the vanilla state as it may be 5404 * made visible again. 5405 * 5406 * The current implementation only resets the essential configurations. 5407 * This needs to be expanded to cover all the visible parts. 5408 */ 5409 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5410 { 5411 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5412 5413 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5414 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5415 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5416 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5417 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5418 page_counter_set_min(&memcg->memory, 0); 5419 page_counter_set_low(&memcg->memory, 0); 5420 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5421 memcg->soft_limit = PAGE_COUNTER_MAX; 5422 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5423 memcg_wb_domain_size_changed(memcg); 5424 } 5425 5426 #ifdef CONFIG_MMU 5427 /* Handlers for move charge at task migration. */ 5428 static int mem_cgroup_do_precharge(unsigned long count) 5429 { 5430 int ret; 5431 5432 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5433 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5434 if (!ret) { 5435 mc.precharge += count; 5436 return ret; 5437 } 5438 5439 /* Try charges one by one with reclaim, but do not retry */ 5440 while (count--) { 5441 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5442 if (ret) 5443 return ret; 5444 mc.precharge++; 5445 cond_resched(); 5446 } 5447 return 0; 5448 } 5449 5450 union mc_target { 5451 struct page *page; 5452 swp_entry_t ent; 5453 }; 5454 5455 enum mc_target_type { 5456 MC_TARGET_NONE = 0, 5457 MC_TARGET_PAGE, 5458 MC_TARGET_SWAP, 5459 MC_TARGET_DEVICE, 5460 }; 5461 5462 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5463 unsigned long addr, pte_t ptent) 5464 { 5465 struct page *page = vm_normal_page(vma, addr, ptent); 5466 5467 if (!page || !page_mapped(page)) 5468 return NULL; 5469 if (PageAnon(page)) { 5470 if (!(mc.flags & MOVE_ANON)) 5471 return NULL; 5472 } else { 5473 if (!(mc.flags & MOVE_FILE)) 5474 return NULL; 5475 } 5476 if (!get_page_unless_zero(page)) 5477 return NULL; 5478 5479 return page; 5480 } 5481 5482 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5484 pte_t ptent, swp_entry_t *entry) 5485 { 5486 struct page *page = NULL; 5487 swp_entry_t ent = pte_to_swp_entry(ptent); 5488 5489 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5490 return NULL; 5491 5492 /* 5493 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5494 * a device and because they are not accessible by CPU they are store 5495 * as special swap entry in the CPU page table. 5496 */ 5497 if (is_device_private_entry(ent)) { 5498 page = device_private_entry_to_page(ent); 5499 /* 5500 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5501 * a refcount of 1 when free (unlike normal page) 5502 */ 5503 if (!page_ref_add_unless(page, 1, 1)) 5504 return NULL; 5505 return page; 5506 } 5507 5508 /* 5509 * Because lookup_swap_cache() updates some statistics counter, 5510 * we call find_get_page() with swapper_space directly. 5511 */ 5512 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5513 entry->val = ent.val; 5514 5515 return page; 5516 } 5517 #else 5518 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5519 pte_t ptent, swp_entry_t *entry) 5520 { 5521 return NULL; 5522 } 5523 #endif 5524 5525 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5526 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5527 { 5528 struct page *page = NULL; 5529 struct address_space *mapping; 5530 pgoff_t pgoff; 5531 5532 if (!vma->vm_file) /* anonymous vma */ 5533 return NULL; 5534 if (!(mc.flags & MOVE_FILE)) 5535 return NULL; 5536 5537 mapping = vma->vm_file->f_mapping; 5538 pgoff = linear_page_index(vma, addr); 5539 5540 /* page is moved even if it's not RSS of this task(page-faulted). */ 5541 #ifdef CONFIG_SWAP 5542 /* shmem/tmpfs may report page out on swap: account for that too. */ 5543 if (shmem_mapping(mapping)) { 5544 page = find_get_entry(mapping, pgoff); 5545 if (xa_is_value(page)) { 5546 swp_entry_t swp = radix_to_swp_entry(page); 5547 *entry = swp; 5548 page = find_get_page(swap_address_space(swp), 5549 swp_offset(swp)); 5550 } 5551 } else 5552 page = find_get_page(mapping, pgoff); 5553 #else 5554 page = find_get_page(mapping, pgoff); 5555 #endif 5556 return page; 5557 } 5558 5559 /** 5560 * mem_cgroup_move_account - move account of the page 5561 * @page: the page 5562 * @compound: charge the page as compound or small page 5563 * @from: mem_cgroup which the page is moved from. 5564 * @to: mem_cgroup which the page is moved to. @from != @to. 5565 * 5566 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5567 * 5568 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5569 * from old cgroup. 5570 */ 5571 static int mem_cgroup_move_account(struct page *page, 5572 bool compound, 5573 struct mem_cgroup *from, 5574 struct mem_cgroup *to) 5575 { 5576 struct lruvec *from_vec, *to_vec; 5577 struct pglist_data *pgdat; 5578 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5579 int ret; 5580 5581 VM_BUG_ON(from == to); 5582 VM_BUG_ON_PAGE(PageLRU(page), page); 5583 VM_BUG_ON(compound && !PageTransHuge(page)); 5584 5585 /* 5586 * Prevent mem_cgroup_migrate() from looking at 5587 * page->mem_cgroup of its source page while we change it. 5588 */ 5589 ret = -EBUSY; 5590 if (!trylock_page(page)) 5591 goto out; 5592 5593 ret = -EINVAL; 5594 if (page->mem_cgroup != from) 5595 goto out_unlock; 5596 5597 pgdat = page_pgdat(page); 5598 from_vec = mem_cgroup_lruvec(from, pgdat); 5599 to_vec = mem_cgroup_lruvec(to, pgdat); 5600 5601 lock_page_memcg(page); 5602 5603 if (PageAnon(page)) { 5604 if (page_mapped(page)) { 5605 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5606 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5607 if (PageTransHuge(page)) { 5608 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5609 -nr_pages); 5610 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5611 nr_pages); 5612 } 5613 5614 } 5615 } else { 5616 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5617 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5618 5619 if (PageSwapBacked(page)) { 5620 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5621 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5622 } 5623 5624 if (page_mapped(page)) { 5625 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5626 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5627 } 5628 5629 if (PageDirty(page)) { 5630 struct address_space *mapping = page_mapping(page); 5631 5632 if (mapping_cap_account_dirty(mapping)) { 5633 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5634 -nr_pages); 5635 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5636 nr_pages); 5637 } 5638 } 5639 } 5640 5641 if (PageWriteback(page)) { 5642 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5643 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5644 } 5645 5646 /* 5647 * All state has been migrated, let's switch to the new memcg. 5648 * 5649 * It is safe to change page->mem_cgroup here because the page 5650 * is referenced, charged, isolated, and locked: we can't race 5651 * with (un)charging, migration, LRU putback, or anything else 5652 * that would rely on a stable page->mem_cgroup. 5653 * 5654 * Note that lock_page_memcg is a memcg lock, not a page lock, 5655 * to save space. As soon as we switch page->mem_cgroup to a 5656 * new memcg that isn't locked, the above state can change 5657 * concurrently again. Make sure we're truly done with it. 5658 */ 5659 smp_mb(); 5660 5661 css_get(&to->css); 5662 css_put(&from->css); 5663 5664 page->mem_cgroup = to; 5665 5666 __unlock_page_memcg(from); 5667 5668 ret = 0; 5669 5670 local_irq_disable(); 5671 mem_cgroup_charge_statistics(to, page, nr_pages); 5672 memcg_check_events(to, page); 5673 mem_cgroup_charge_statistics(from, page, -nr_pages); 5674 memcg_check_events(from, page); 5675 local_irq_enable(); 5676 out_unlock: 5677 unlock_page(page); 5678 out: 5679 return ret; 5680 } 5681 5682 /** 5683 * get_mctgt_type - get target type of moving charge 5684 * @vma: the vma the pte to be checked belongs 5685 * @addr: the address corresponding to the pte to be checked 5686 * @ptent: the pte to be checked 5687 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5688 * 5689 * Returns 5690 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5691 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5692 * move charge. if @target is not NULL, the page is stored in target->page 5693 * with extra refcnt got(Callers should handle it). 5694 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5695 * target for charge migration. if @target is not NULL, the entry is stored 5696 * in target->ent. 5697 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5698 * (so ZONE_DEVICE page and thus not on the lru). 5699 * For now we such page is charge like a regular page would be as for all 5700 * intent and purposes it is just special memory taking the place of a 5701 * regular page. 5702 * 5703 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5704 * 5705 * Called with pte lock held. 5706 */ 5707 5708 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5709 unsigned long addr, pte_t ptent, union mc_target *target) 5710 { 5711 struct page *page = NULL; 5712 enum mc_target_type ret = MC_TARGET_NONE; 5713 swp_entry_t ent = { .val = 0 }; 5714 5715 if (pte_present(ptent)) 5716 page = mc_handle_present_pte(vma, addr, ptent); 5717 else if (is_swap_pte(ptent)) 5718 page = mc_handle_swap_pte(vma, ptent, &ent); 5719 else if (pte_none(ptent)) 5720 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5721 5722 if (!page && !ent.val) 5723 return ret; 5724 if (page) { 5725 /* 5726 * Do only loose check w/o serialization. 5727 * mem_cgroup_move_account() checks the page is valid or 5728 * not under LRU exclusion. 5729 */ 5730 if (page->mem_cgroup == mc.from) { 5731 ret = MC_TARGET_PAGE; 5732 if (is_device_private_page(page)) 5733 ret = MC_TARGET_DEVICE; 5734 if (target) 5735 target->page = page; 5736 } 5737 if (!ret || !target) 5738 put_page(page); 5739 } 5740 /* 5741 * There is a swap entry and a page doesn't exist or isn't charged. 5742 * But we cannot move a tail-page in a THP. 5743 */ 5744 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5745 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5746 ret = MC_TARGET_SWAP; 5747 if (target) 5748 target->ent = ent; 5749 } 5750 return ret; 5751 } 5752 5753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5754 /* 5755 * We don't consider PMD mapped swapping or file mapped pages because THP does 5756 * not support them for now. 5757 * Caller should make sure that pmd_trans_huge(pmd) is true. 5758 */ 5759 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5760 unsigned long addr, pmd_t pmd, union mc_target *target) 5761 { 5762 struct page *page = NULL; 5763 enum mc_target_type ret = MC_TARGET_NONE; 5764 5765 if (unlikely(is_swap_pmd(pmd))) { 5766 VM_BUG_ON(thp_migration_supported() && 5767 !is_pmd_migration_entry(pmd)); 5768 return ret; 5769 } 5770 page = pmd_page(pmd); 5771 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5772 if (!(mc.flags & MOVE_ANON)) 5773 return ret; 5774 if (page->mem_cgroup == mc.from) { 5775 ret = MC_TARGET_PAGE; 5776 if (target) { 5777 get_page(page); 5778 target->page = page; 5779 } 5780 } 5781 return ret; 5782 } 5783 #else 5784 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5785 unsigned long addr, pmd_t pmd, union mc_target *target) 5786 { 5787 return MC_TARGET_NONE; 5788 } 5789 #endif 5790 5791 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5792 unsigned long addr, unsigned long end, 5793 struct mm_walk *walk) 5794 { 5795 struct vm_area_struct *vma = walk->vma; 5796 pte_t *pte; 5797 spinlock_t *ptl; 5798 5799 ptl = pmd_trans_huge_lock(pmd, vma); 5800 if (ptl) { 5801 /* 5802 * Note their can not be MC_TARGET_DEVICE for now as we do not 5803 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5804 * this might change. 5805 */ 5806 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5807 mc.precharge += HPAGE_PMD_NR; 5808 spin_unlock(ptl); 5809 return 0; 5810 } 5811 5812 if (pmd_trans_unstable(pmd)) 5813 return 0; 5814 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5815 for (; addr != end; pte++, addr += PAGE_SIZE) 5816 if (get_mctgt_type(vma, addr, *pte, NULL)) 5817 mc.precharge++; /* increment precharge temporarily */ 5818 pte_unmap_unlock(pte - 1, ptl); 5819 cond_resched(); 5820 5821 return 0; 5822 } 5823 5824 static const struct mm_walk_ops precharge_walk_ops = { 5825 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5826 }; 5827 5828 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5829 { 5830 unsigned long precharge; 5831 5832 mmap_read_lock(mm); 5833 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5834 mmap_read_unlock(mm); 5835 5836 precharge = mc.precharge; 5837 mc.precharge = 0; 5838 5839 return precharge; 5840 } 5841 5842 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5843 { 5844 unsigned long precharge = mem_cgroup_count_precharge(mm); 5845 5846 VM_BUG_ON(mc.moving_task); 5847 mc.moving_task = current; 5848 return mem_cgroup_do_precharge(precharge); 5849 } 5850 5851 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5852 static void __mem_cgroup_clear_mc(void) 5853 { 5854 struct mem_cgroup *from = mc.from; 5855 struct mem_cgroup *to = mc.to; 5856 5857 /* we must uncharge all the leftover precharges from mc.to */ 5858 if (mc.precharge) { 5859 cancel_charge(mc.to, mc.precharge); 5860 mc.precharge = 0; 5861 } 5862 /* 5863 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5864 * we must uncharge here. 5865 */ 5866 if (mc.moved_charge) { 5867 cancel_charge(mc.from, mc.moved_charge); 5868 mc.moved_charge = 0; 5869 } 5870 /* we must fixup refcnts and charges */ 5871 if (mc.moved_swap) { 5872 /* uncharge swap account from the old cgroup */ 5873 if (!mem_cgroup_is_root(mc.from)) 5874 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5875 5876 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5877 5878 /* 5879 * we charged both to->memory and to->memsw, so we 5880 * should uncharge to->memory. 5881 */ 5882 if (!mem_cgroup_is_root(mc.to)) 5883 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5884 5885 mc.moved_swap = 0; 5886 } 5887 memcg_oom_recover(from); 5888 memcg_oom_recover(to); 5889 wake_up_all(&mc.waitq); 5890 } 5891 5892 static void mem_cgroup_clear_mc(void) 5893 { 5894 struct mm_struct *mm = mc.mm; 5895 5896 /* 5897 * we must clear moving_task before waking up waiters at the end of 5898 * task migration. 5899 */ 5900 mc.moving_task = NULL; 5901 __mem_cgroup_clear_mc(); 5902 spin_lock(&mc.lock); 5903 mc.from = NULL; 5904 mc.to = NULL; 5905 mc.mm = NULL; 5906 spin_unlock(&mc.lock); 5907 5908 mmput(mm); 5909 } 5910 5911 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5912 { 5913 struct cgroup_subsys_state *css; 5914 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5915 struct mem_cgroup *from; 5916 struct task_struct *leader, *p; 5917 struct mm_struct *mm; 5918 unsigned long move_flags; 5919 int ret = 0; 5920 5921 /* charge immigration isn't supported on the default hierarchy */ 5922 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5923 return 0; 5924 5925 /* 5926 * Multi-process migrations only happen on the default hierarchy 5927 * where charge immigration is not used. Perform charge 5928 * immigration if @tset contains a leader and whine if there are 5929 * multiple. 5930 */ 5931 p = NULL; 5932 cgroup_taskset_for_each_leader(leader, css, tset) { 5933 WARN_ON_ONCE(p); 5934 p = leader; 5935 memcg = mem_cgroup_from_css(css); 5936 } 5937 if (!p) 5938 return 0; 5939 5940 /* 5941 * We are now commited to this value whatever it is. Changes in this 5942 * tunable will only affect upcoming migrations, not the current one. 5943 * So we need to save it, and keep it going. 5944 */ 5945 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5946 if (!move_flags) 5947 return 0; 5948 5949 from = mem_cgroup_from_task(p); 5950 5951 VM_BUG_ON(from == memcg); 5952 5953 mm = get_task_mm(p); 5954 if (!mm) 5955 return 0; 5956 /* We move charges only when we move a owner of the mm */ 5957 if (mm->owner == p) { 5958 VM_BUG_ON(mc.from); 5959 VM_BUG_ON(mc.to); 5960 VM_BUG_ON(mc.precharge); 5961 VM_BUG_ON(mc.moved_charge); 5962 VM_BUG_ON(mc.moved_swap); 5963 5964 spin_lock(&mc.lock); 5965 mc.mm = mm; 5966 mc.from = from; 5967 mc.to = memcg; 5968 mc.flags = move_flags; 5969 spin_unlock(&mc.lock); 5970 /* We set mc.moving_task later */ 5971 5972 ret = mem_cgroup_precharge_mc(mm); 5973 if (ret) 5974 mem_cgroup_clear_mc(); 5975 } else { 5976 mmput(mm); 5977 } 5978 return ret; 5979 } 5980 5981 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5982 { 5983 if (mc.to) 5984 mem_cgroup_clear_mc(); 5985 } 5986 5987 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5988 unsigned long addr, unsigned long end, 5989 struct mm_walk *walk) 5990 { 5991 int ret = 0; 5992 struct vm_area_struct *vma = walk->vma; 5993 pte_t *pte; 5994 spinlock_t *ptl; 5995 enum mc_target_type target_type; 5996 union mc_target target; 5997 struct page *page; 5998 5999 ptl = pmd_trans_huge_lock(pmd, vma); 6000 if (ptl) { 6001 if (mc.precharge < HPAGE_PMD_NR) { 6002 spin_unlock(ptl); 6003 return 0; 6004 } 6005 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6006 if (target_type == MC_TARGET_PAGE) { 6007 page = target.page; 6008 if (!isolate_lru_page(page)) { 6009 if (!mem_cgroup_move_account(page, true, 6010 mc.from, mc.to)) { 6011 mc.precharge -= HPAGE_PMD_NR; 6012 mc.moved_charge += HPAGE_PMD_NR; 6013 } 6014 putback_lru_page(page); 6015 } 6016 put_page(page); 6017 } else if (target_type == MC_TARGET_DEVICE) { 6018 page = target.page; 6019 if (!mem_cgroup_move_account(page, true, 6020 mc.from, mc.to)) { 6021 mc.precharge -= HPAGE_PMD_NR; 6022 mc.moved_charge += HPAGE_PMD_NR; 6023 } 6024 put_page(page); 6025 } 6026 spin_unlock(ptl); 6027 return 0; 6028 } 6029 6030 if (pmd_trans_unstable(pmd)) 6031 return 0; 6032 retry: 6033 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6034 for (; addr != end; addr += PAGE_SIZE) { 6035 pte_t ptent = *(pte++); 6036 bool device = false; 6037 swp_entry_t ent; 6038 6039 if (!mc.precharge) 6040 break; 6041 6042 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6043 case MC_TARGET_DEVICE: 6044 device = true; 6045 fallthrough; 6046 case MC_TARGET_PAGE: 6047 page = target.page; 6048 /* 6049 * We can have a part of the split pmd here. Moving it 6050 * can be done but it would be too convoluted so simply 6051 * ignore such a partial THP and keep it in original 6052 * memcg. There should be somebody mapping the head. 6053 */ 6054 if (PageTransCompound(page)) 6055 goto put; 6056 if (!device && isolate_lru_page(page)) 6057 goto put; 6058 if (!mem_cgroup_move_account(page, false, 6059 mc.from, mc.to)) { 6060 mc.precharge--; 6061 /* we uncharge from mc.from later. */ 6062 mc.moved_charge++; 6063 } 6064 if (!device) 6065 putback_lru_page(page); 6066 put: /* get_mctgt_type() gets the page */ 6067 put_page(page); 6068 break; 6069 case MC_TARGET_SWAP: 6070 ent = target.ent; 6071 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6072 mc.precharge--; 6073 mem_cgroup_id_get_many(mc.to, 1); 6074 /* we fixup other refcnts and charges later. */ 6075 mc.moved_swap++; 6076 } 6077 break; 6078 default: 6079 break; 6080 } 6081 } 6082 pte_unmap_unlock(pte - 1, ptl); 6083 cond_resched(); 6084 6085 if (addr != end) { 6086 /* 6087 * We have consumed all precharges we got in can_attach(). 6088 * We try charge one by one, but don't do any additional 6089 * charges to mc.to if we have failed in charge once in attach() 6090 * phase. 6091 */ 6092 ret = mem_cgroup_do_precharge(1); 6093 if (!ret) 6094 goto retry; 6095 } 6096 6097 return ret; 6098 } 6099 6100 static const struct mm_walk_ops charge_walk_ops = { 6101 .pmd_entry = mem_cgroup_move_charge_pte_range, 6102 }; 6103 6104 static void mem_cgroup_move_charge(void) 6105 { 6106 lru_add_drain_all(); 6107 /* 6108 * Signal lock_page_memcg() to take the memcg's move_lock 6109 * while we're moving its pages to another memcg. Then wait 6110 * for already started RCU-only updates to finish. 6111 */ 6112 atomic_inc(&mc.from->moving_account); 6113 synchronize_rcu(); 6114 retry: 6115 if (unlikely(!mmap_read_trylock(mc.mm))) { 6116 /* 6117 * Someone who are holding the mmap_lock might be waiting in 6118 * waitq. So we cancel all extra charges, wake up all waiters, 6119 * and retry. Because we cancel precharges, we might not be able 6120 * to move enough charges, but moving charge is a best-effort 6121 * feature anyway, so it wouldn't be a big problem. 6122 */ 6123 __mem_cgroup_clear_mc(); 6124 cond_resched(); 6125 goto retry; 6126 } 6127 /* 6128 * When we have consumed all precharges and failed in doing 6129 * additional charge, the page walk just aborts. 6130 */ 6131 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6132 NULL); 6133 6134 mmap_read_unlock(mc.mm); 6135 atomic_dec(&mc.from->moving_account); 6136 } 6137 6138 static void mem_cgroup_move_task(void) 6139 { 6140 if (mc.to) { 6141 mem_cgroup_move_charge(); 6142 mem_cgroup_clear_mc(); 6143 } 6144 } 6145 #else /* !CONFIG_MMU */ 6146 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6147 { 6148 return 0; 6149 } 6150 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6151 { 6152 } 6153 static void mem_cgroup_move_task(void) 6154 { 6155 } 6156 #endif 6157 6158 /* 6159 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6160 * to verify whether we're attached to the default hierarchy on each mount 6161 * attempt. 6162 */ 6163 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6164 { 6165 /* 6166 * use_hierarchy is forced on the default hierarchy. cgroup core 6167 * guarantees that @root doesn't have any children, so turning it 6168 * on for the root memcg is enough. 6169 */ 6170 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6171 root_mem_cgroup->use_hierarchy = true; 6172 else 6173 root_mem_cgroup->use_hierarchy = false; 6174 } 6175 6176 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6177 { 6178 if (value == PAGE_COUNTER_MAX) 6179 seq_puts(m, "max\n"); 6180 else 6181 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6182 6183 return 0; 6184 } 6185 6186 static u64 memory_current_read(struct cgroup_subsys_state *css, 6187 struct cftype *cft) 6188 { 6189 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6190 6191 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6192 } 6193 6194 static int memory_min_show(struct seq_file *m, void *v) 6195 { 6196 return seq_puts_memcg_tunable(m, 6197 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6198 } 6199 6200 static ssize_t memory_min_write(struct kernfs_open_file *of, 6201 char *buf, size_t nbytes, loff_t off) 6202 { 6203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6204 unsigned long min; 6205 int err; 6206 6207 buf = strstrip(buf); 6208 err = page_counter_memparse(buf, "max", &min); 6209 if (err) 6210 return err; 6211 6212 page_counter_set_min(&memcg->memory, min); 6213 6214 return nbytes; 6215 } 6216 6217 static int memory_low_show(struct seq_file *m, void *v) 6218 { 6219 return seq_puts_memcg_tunable(m, 6220 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6221 } 6222 6223 static ssize_t memory_low_write(struct kernfs_open_file *of, 6224 char *buf, size_t nbytes, loff_t off) 6225 { 6226 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6227 unsigned long low; 6228 int err; 6229 6230 buf = strstrip(buf); 6231 err = page_counter_memparse(buf, "max", &low); 6232 if (err) 6233 return err; 6234 6235 page_counter_set_low(&memcg->memory, low); 6236 6237 return nbytes; 6238 } 6239 6240 static int memory_high_show(struct seq_file *m, void *v) 6241 { 6242 return seq_puts_memcg_tunable(m, 6243 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6244 } 6245 6246 static ssize_t memory_high_write(struct kernfs_open_file *of, 6247 char *buf, size_t nbytes, loff_t off) 6248 { 6249 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6250 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6251 bool drained = false; 6252 unsigned long high; 6253 int err; 6254 6255 buf = strstrip(buf); 6256 err = page_counter_memparse(buf, "max", &high); 6257 if (err) 6258 return err; 6259 6260 for (;;) { 6261 unsigned long nr_pages = page_counter_read(&memcg->memory); 6262 unsigned long reclaimed; 6263 6264 if (nr_pages <= high) 6265 break; 6266 6267 if (signal_pending(current)) 6268 break; 6269 6270 if (!drained) { 6271 drain_all_stock(memcg); 6272 drained = true; 6273 continue; 6274 } 6275 6276 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6277 GFP_KERNEL, true); 6278 6279 if (!reclaimed && !nr_retries--) 6280 break; 6281 } 6282 6283 page_counter_set_high(&memcg->memory, high); 6284 6285 memcg_wb_domain_size_changed(memcg); 6286 6287 return nbytes; 6288 } 6289 6290 static int memory_max_show(struct seq_file *m, void *v) 6291 { 6292 return seq_puts_memcg_tunable(m, 6293 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6294 } 6295 6296 static ssize_t memory_max_write(struct kernfs_open_file *of, 6297 char *buf, size_t nbytes, loff_t off) 6298 { 6299 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6300 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6301 bool drained = false; 6302 unsigned long max; 6303 int err; 6304 6305 buf = strstrip(buf); 6306 err = page_counter_memparse(buf, "max", &max); 6307 if (err) 6308 return err; 6309 6310 xchg(&memcg->memory.max, max); 6311 6312 for (;;) { 6313 unsigned long nr_pages = page_counter_read(&memcg->memory); 6314 6315 if (nr_pages <= max) 6316 break; 6317 6318 if (signal_pending(current)) 6319 break; 6320 6321 if (!drained) { 6322 drain_all_stock(memcg); 6323 drained = true; 6324 continue; 6325 } 6326 6327 if (nr_reclaims) { 6328 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6329 GFP_KERNEL, true)) 6330 nr_reclaims--; 6331 continue; 6332 } 6333 6334 memcg_memory_event(memcg, MEMCG_OOM); 6335 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6336 break; 6337 } 6338 6339 memcg_wb_domain_size_changed(memcg); 6340 return nbytes; 6341 } 6342 6343 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6344 { 6345 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6346 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6347 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6348 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6349 seq_printf(m, "oom_kill %lu\n", 6350 atomic_long_read(&events[MEMCG_OOM_KILL])); 6351 } 6352 6353 static int memory_events_show(struct seq_file *m, void *v) 6354 { 6355 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6356 6357 __memory_events_show(m, memcg->memory_events); 6358 return 0; 6359 } 6360 6361 static int memory_events_local_show(struct seq_file *m, void *v) 6362 { 6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6364 6365 __memory_events_show(m, memcg->memory_events_local); 6366 return 0; 6367 } 6368 6369 static int memory_stat_show(struct seq_file *m, void *v) 6370 { 6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6372 char *buf; 6373 6374 buf = memory_stat_format(memcg); 6375 if (!buf) 6376 return -ENOMEM; 6377 seq_puts(m, buf); 6378 kfree(buf); 6379 return 0; 6380 } 6381 6382 static int memory_oom_group_show(struct seq_file *m, void *v) 6383 { 6384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6385 6386 seq_printf(m, "%d\n", memcg->oom_group); 6387 6388 return 0; 6389 } 6390 6391 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6392 char *buf, size_t nbytes, loff_t off) 6393 { 6394 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6395 int ret, oom_group; 6396 6397 buf = strstrip(buf); 6398 if (!buf) 6399 return -EINVAL; 6400 6401 ret = kstrtoint(buf, 0, &oom_group); 6402 if (ret) 6403 return ret; 6404 6405 if (oom_group != 0 && oom_group != 1) 6406 return -EINVAL; 6407 6408 memcg->oom_group = oom_group; 6409 6410 return nbytes; 6411 } 6412 6413 static struct cftype memory_files[] = { 6414 { 6415 .name = "current", 6416 .flags = CFTYPE_NOT_ON_ROOT, 6417 .read_u64 = memory_current_read, 6418 }, 6419 { 6420 .name = "min", 6421 .flags = CFTYPE_NOT_ON_ROOT, 6422 .seq_show = memory_min_show, 6423 .write = memory_min_write, 6424 }, 6425 { 6426 .name = "low", 6427 .flags = CFTYPE_NOT_ON_ROOT, 6428 .seq_show = memory_low_show, 6429 .write = memory_low_write, 6430 }, 6431 { 6432 .name = "high", 6433 .flags = CFTYPE_NOT_ON_ROOT, 6434 .seq_show = memory_high_show, 6435 .write = memory_high_write, 6436 }, 6437 { 6438 .name = "max", 6439 .flags = CFTYPE_NOT_ON_ROOT, 6440 .seq_show = memory_max_show, 6441 .write = memory_max_write, 6442 }, 6443 { 6444 .name = "events", 6445 .flags = CFTYPE_NOT_ON_ROOT, 6446 .file_offset = offsetof(struct mem_cgroup, events_file), 6447 .seq_show = memory_events_show, 6448 }, 6449 { 6450 .name = "events.local", 6451 .flags = CFTYPE_NOT_ON_ROOT, 6452 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6453 .seq_show = memory_events_local_show, 6454 }, 6455 { 6456 .name = "stat", 6457 .seq_show = memory_stat_show, 6458 }, 6459 { 6460 .name = "oom.group", 6461 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6462 .seq_show = memory_oom_group_show, 6463 .write = memory_oom_group_write, 6464 }, 6465 { } /* terminate */ 6466 }; 6467 6468 struct cgroup_subsys memory_cgrp_subsys = { 6469 .css_alloc = mem_cgroup_css_alloc, 6470 .css_online = mem_cgroup_css_online, 6471 .css_offline = mem_cgroup_css_offline, 6472 .css_released = mem_cgroup_css_released, 6473 .css_free = mem_cgroup_css_free, 6474 .css_reset = mem_cgroup_css_reset, 6475 .can_attach = mem_cgroup_can_attach, 6476 .cancel_attach = mem_cgroup_cancel_attach, 6477 .post_attach = mem_cgroup_move_task, 6478 .bind = mem_cgroup_bind, 6479 .dfl_cftypes = memory_files, 6480 .legacy_cftypes = mem_cgroup_legacy_files, 6481 .early_init = 0, 6482 }; 6483 6484 /* 6485 * This function calculates an individual cgroup's effective 6486 * protection which is derived from its own memory.min/low, its 6487 * parent's and siblings' settings, as well as the actual memory 6488 * distribution in the tree. 6489 * 6490 * The following rules apply to the effective protection values: 6491 * 6492 * 1. At the first level of reclaim, effective protection is equal to 6493 * the declared protection in memory.min and memory.low. 6494 * 6495 * 2. To enable safe delegation of the protection configuration, at 6496 * subsequent levels the effective protection is capped to the 6497 * parent's effective protection. 6498 * 6499 * 3. To make complex and dynamic subtrees easier to configure, the 6500 * user is allowed to overcommit the declared protection at a given 6501 * level. If that is the case, the parent's effective protection is 6502 * distributed to the children in proportion to how much protection 6503 * they have declared and how much of it they are utilizing. 6504 * 6505 * This makes distribution proportional, but also work-conserving: 6506 * if one cgroup claims much more protection than it uses memory, 6507 * the unused remainder is available to its siblings. 6508 * 6509 * 4. Conversely, when the declared protection is undercommitted at a 6510 * given level, the distribution of the larger parental protection 6511 * budget is NOT proportional. A cgroup's protection from a sibling 6512 * is capped to its own memory.min/low setting. 6513 * 6514 * 5. However, to allow protecting recursive subtrees from each other 6515 * without having to declare each individual cgroup's fixed share 6516 * of the ancestor's claim to protection, any unutilized - 6517 * "floating" - protection from up the tree is distributed in 6518 * proportion to each cgroup's *usage*. This makes the protection 6519 * neutral wrt sibling cgroups and lets them compete freely over 6520 * the shared parental protection budget, but it protects the 6521 * subtree as a whole from neighboring subtrees. 6522 * 6523 * Note that 4. and 5. are not in conflict: 4. is about protecting 6524 * against immediate siblings whereas 5. is about protecting against 6525 * neighboring subtrees. 6526 */ 6527 static unsigned long effective_protection(unsigned long usage, 6528 unsigned long parent_usage, 6529 unsigned long setting, 6530 unsigned long parent_effective, 6531 unsigned long siblings_protected) 6532 { 6533 unsigned long protected; 6534 unsigned long ep; 6535 6536 protected = min(usage, setting); 6537 /* 6538 * If all cgroups at this level combined claim and use more 6539 * protection then what the parent affords them, distribute 6540 * shares in proportion to utilization. 6541 * 6542 * We are using actual utilization rather than the statically 6543 * claimed protection in order to be work-conserving: claimed 6544 * but unused protection is available to siblings that would 6545 * otherwise get a smaller chunk than what they claimed. 6546 */ 6547 if (siblings_protected > parent_effective) 6548 return protected * parent_effective / siblings_protected; 6549 6550 /* 6551 * Ok, utilized protection of all children is within what the 6552 * parent affords them, so we know whatever this child claims 6553 * and utilizes is effectively protected. 6554 * 6555 * If there is unprotected usage beyond this value, reclaim 6556 * will apply pressure in proportion to that amount. 6557 * 6558 * If there is unutilized protection, the cgroup will be fully 6559 * shielded from reclaim, but we do return a smaller value for 6560 * protection than what the group could enjoy in theory. This 6561 * is okay. With the overcommit distribution above, effective 6562 * protection is always dependent on how memory is actually 6563 * consumed among the siblings anyway. 6564 */ 6565 ep = protected; 6566 6567 /* 6568 * If the children aren't claiming (all of) the protection 6569 * afforded to them by the parent, distribute the remainder in 6570 * proportion to the (unprotected) memory of each cgroup. That 6571 * way, cgroups that aren't explicitly prioritized wrt each 6572 * other compete freely over the allowance, but they are 6573 * collectively protected from neighboring trees. 6574 * 6575 * We're using unprotected memory for the weight so that if 6576 * some cgroups DO claim explicit protection, we don't protect 6577 * the same bytes twice. 6578 * 6579 * Check both usage and parent_usage against the respective 6580 * protected values. One should imply the other, but they 6581 * aren't read atomically - make sure the division is sane. 6582 */ 6583 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6584 return ep; 6585 if (parent_effective > siblings_protected && 6586 parent_usage > siblings_protected && 6587 usage > protected) { 6588 unsigned long unclaimed; 6589 6590 unclaimed = parent_effective - siblings_protected; 6591 unclaimed *= usage - protected; 6592 unclaimed /= parent_usage - siblings_protected; 6593 6594 ep += unclaimed; 6595 } 6596 6597 return ep; 6598 } 6599 6600 /** 6601 * mem_cgroup_protected - check if memory consumption is in the normal range 6602 * @root: the top ancestor of the sub-tree being checked 6603 * @memcg: the memory cgroup to check 6604 * 6605 * WARNING: This function is not stateless! It can only be used as part 6606 * of a top-down tree iteration, not for isolated queries. 6607 */ 6608 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6609 struct mem_cgroup *memcg) 6610 { 6611 unsigned long usage, parent_usage; 6612 struct mem_cgroup *parent; 6613 6614 if (mem_cgroup_disabled()) 6615 return; 6616 6617 if (!root) 6618 root = root_mem_cgroup; 6619 6620 /* 6621 * Effective values of the reclaim targets are ignored so they 6622 * can be stale. Have a look at mem_cgroup_protection for more 6623 * details. 6624 * TODO: calculation should be more robust so that we do not need 6625 * that special casing. 6626 */ 6627 if (memcg == root) 6628 return; 6629 6630 usage = page_counter_read(&memcg->memory); 6631 if (!usage) 6632 return; 6633 6634 parent = parent_mem_cgroup(memcg); 6635 /* No parent means a non-hierarchical mode on v1 memcg */ 6636 if (!parent) 6637 return; 6638 6639 if (parent == root) { 6640 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6641 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6642 return; 6643 } 6644 6645 parent_usage = page_counter_read(&parent->memory); 6646 6647 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6648 READ_ONCE(memcg->memory.min), 6649 READ_ONCE(parent->memory.emin), 6650 atomic_long_read(&parent->memory.children_min_usage))); 6651 6652 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6653 READ_ONCE(memcg->memory.low), 6654 READ_ONCE(parent->memory.elow), 6655 atomic_long_read(&parent->memory.children_low_usage))); 6656 } 6657 6658 /** 6659 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6660 * @page: page to charge 6661 * @mm: mm context of the victim 6662 * @gfp_mask: reclaim mode 6663 * 6664 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6665 * pages according to @gfp_mask if necessary. 6666 * 6667 * Returns 0 on success. Otherwise, an error code is returned. 6668 */ 6669 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6670 { 6671 unsigned int nr_pages = hpage_nr_pages(page); 6672 struct mem_cgroup *memcg = NULL; 6673 int ret = 0; 6674 6675 if (mem_cgroup_disabled()) 6676 goto out; 6677 6678 if (PageSwapCache(page)) { 6679 swp_entry_t ent = { .val = page_private(page), }; 6680 unsigned short id; 6681 6682 /* 6683 * Every swap fault against a single page tries to charge the 6684 * page, bail as early as possible. shmem_unuse() encounters 6685 * already charged pages, too. page->mem_cgroup is protected 6686 * by the page lock, which serializes swap cache removal, which 6687 * in turn serializes uncharging. 6688 */ 6689 VM_BUG_ON_PAGE(!PageLocked(page), page); 6690 if (compound_head(page)->mem_cgroup) 6691 goto out; 6692 6693 id = lookup_swap_cgroup_id(ent); 6694 rcu_read_lock(); 6695 memcg = mem_cgroup_from_id(id); 6696 if (memcg && !css_tryget_online(&memcg->css)) 6697 memcg = NULL; 6698 rcu_read_unlock(); 6699 } 6700 6701 if (!memcg) 6702 memcg = get_mem_cgroup_from_mm(mm); 6703 6704 ret = try_charge(memcg, gfp_mask, nr_pages); 6705 if (ret) 6706 goto out_put; 6707 6708 css_get(&memcg->css); 6709 commit_charge(page, memcg); 6710 6711 local_irq_disable(); 6712 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6713 memcg_check_events(memcg, page); 6714 local_irq_enable(); 6715 6716 if (PageSwapCache(page)) { 6717 swp_entry_t entry = { .val = page_private(page) }; 6718 /* 6719 * The swap entry might not get freed for a long time, 6720 * let's not wait for it. The page already received a 6721 * memory+swap charge, drop the swap entry duplicate. 6722 */ 6723 mem_cgroup_uncharge_swap(entry, nr_pages); 6724 } 6725 6726 out_put: 6727 css_put(&memcg->css); 6728 out: 6729 return ret; 6730 } 6731 6732 struct uncharge_gather { 6733 struct mem_cgroup *memcg; 6734 unsigned long nr_pages; 6735 unsigned long pgpgout; 6736 unsigned long nr_kmem; 6737 struct page *dummy_page; 6738 }; 6739 6740 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6741 { 6742 memset(ug, 0, sizeof(*ug)); 6743 } 6744 6745 static void uncharge_batch(const struct uncharge_gather *ug) 6746 { 6747 unsigned long flags; 6748 6749 if (!mem_cgroup_is_root(ug->memcg)) { 6750 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6751 if (do_memsw_account()) 6752 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6753 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6754 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6755 memcg_oom_recover(ug->memcg); 6756 } 6757 6758 local_irq_save(flags); 6759 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6760 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6761 memcg_check_events(ug->memcg, ug->dummy_page); 6762 local_irq_restore(flags); 6763 } 6764 6765 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6766 { 6767 unsigned long nr_pages; 6768 6769 VM_BUG_ON_PAGE(PageLRU(page), page); 6770 6771 if (!page->mem_cgroup) 6772 return; 6773 6774 /* 6775 * Nobody should be changing or seriously looking at 6776 * page->mem_cgroup at this point, we have fully 6777 * exclusive access to the page. 6778 */ 6779 6780 if (ug->memcg != page->mem_cgroup) { 6781 if (ug->memcg) { 6782 uncharge_batch(ug); 6783 uncharge_gather_clear(ug); 6784 } 6785 ug->memcg = page->mem_cgroup; 6786 } 6787 6788 nr_pages = compound_nr(page); 6789 ug->nr_pages += nr_pages; 6790 6791 if (!PageKmemcg(page)) { 6792 ug->pgpgout++; 6793 } else { 6794 ug->nr_kmem += nr_pages; 6795 __ClearPageKmemcg(page); 6796 } 6797 6798 ug->dummy_page = page; 6799 page->mem_cgroup = NULL; 6800 css_put(&ug->memcg->css); 6801 } 6802 6803 static void uncharge_list(struct list_head *page_list) 6804 { 6805 struct uncharge_gather ug; 6806 struct list_head *next; 6807 6808 uncharge_gather_clear(&ug); 6809 6810 /* 6811 * Note that the list can be a single page->lru; hence the 6812 * do-while loop instead of a simple list_for_each_entry(). 6813 */ 6814 next = page_list->next; 6815 do { 6816 struct page *page; 6817 6818 page = list_entry(next, struct page, lru); 6819 next = page->lru.next; 6820 6821 uncharge_page(page, &ug); 6822 } while (next != page_list); 6823 6824 if (ug.memcg) 6825 uncharge_batch(&ug); 6826 } 6827 6828 /** 6829 * mem_cgroup_uncharge - uncharge a page 6830 * @page: page to uncharge 6831 * 6832 * Uncharge a page previously charged with mem_cgroup_charge(). 6833 */ 6834 void mem_cgroup_uncharge(struct page *page) 6835 { 6836 struct uncharge_gather ug; 6837 6838 if (mem_cgroup_disabled()) 6839 return; 6840 6841 /* Don't touch page->lru of any random page, pre-check: */ 6842 if (!page->mem_cgroup) 6843 return; 6844 6845 uncharge_gather_clear(&ug); 6846 uncharge_page(page, &ug); 6847 uncharge_batch(&ug); 6848 } 6849 6850 /** 6851 * mem_cgroup_uncharge_list - uncharge a list of page 6852 * @page_list: list of pages to uncharge 6853 * 6854 * Uncharge a list of pages previously charged with 6855 * mem_cgroup_charge(). 6856 */ 6857 void mem_cgroup_uncharge_list(struct list_head *page_list) 6858 { 6859 if (mem_cgroup_disabled()) 6860 return; 6861 6862 if (!list_empty(page_list)) 6863 uncharge_list(page_list); 6864 } 6865 6866 /** 6867 * mem_cgroup_migrate - charge a page's replacement 6868 * @oldpage: currently circulating page 6869 * @newpage: replacement page 6870 * 6871 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6872 * be uncharged upon free. 6873 * 6874 * Both pages must be locked, @newpage->mapping must be set up. 6875 */ 6876 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6877 { 6878 struct mem_cgroup *memcg; 6879 unsigned int nr_pages; 6880 unsigned long flags; 6881 6882 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6883 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6884 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6885 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6886 newpage); 6887 6888 if (mem_cgroup_disabled()) 6889 return; 6890 6891 /* Page cache replacement: new page already charged? */ 6892 if (newpage->mem_cgroup) 6893 return; 6894 6895 /* Swapcache readahead pages can get replaced before being charged */ 6896 memcg = oldpage->mem_cgroup; 6897 if (!memcg) 6898 return; 6899 6900 /* Force-charge the new page. The old one will be freed soon */ 6901 nr_pages = hpage_nr_pages(newpage); 6902 6903 page_counter_charge(&memcg->memory, nr_pages); 6904 if (do_memsw_account()) 6905 page_counter_charge(&memcg->memsw, nr_pages); 6906 6907 css_get(&memcg->css); 6908 commit_charge(newpage, memcg); 6909 6910 local_irq_save(flags); 6911 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6912 memcg_check_events(memcg, newpage); 6913 local_irq_restore(flags); 6914 } 6915 6916 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6917 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6918 6919 void mem_cgroup_sk_alloc(struct sock *sk) 6920 { 6921 struct mem_cgroup *memcg; 6922 6923 if (!mem_cgroup_sockets_enabled) 6924 return; 6925 6926 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6927 if (in_interrupt()) 6928 return; 6929 6930 rcu_read_lock(); 6931 memcg = mem_cgroup_from_task(current); 6932 if (memcg == root_mem_cgroup) 6933 goto out; 6934 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6935 goto out; 6936 if (css_tryget(&memcg->css)) 6937 sk->sk_memcg = memcg; 6938 out: 6939 rcu_read_unlock(); 6940 } 6941 6942 void mem_cgroup_sk_free(struct sock *sk) 6943 { 6944 if (sk->sk_memcg) 6945 css_put(&sk->sk_memcg->css); 6946 } 6947 6948 /** 6949 * mem_cgroup_charge_skmem - charge socket memory 6950 * @memcg: memcg to charge 6951 * @nr_pages: number of pages to charge 6952 * 6953 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6954 * @memcg's configured limit, %false if the charge had to be forced. 6955 */ 6956 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6957 { 6958 gfp_t gfp_mask = GFP_KERNEL; 6959 6960 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6961 struct page_counter *fail; 6962 6963 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6964 memcg->tcpmem_pressure = 0; 6965 return true; 6966 } 6967 page_counter_charge(&memcg->tcpmem, nr_pages); 6968 memcg->tcpmem_pressure = 1; 6969 return false; 6970 } 6971 6972 /* Don't block in the packet receive path */ 6973 if (in_softirq()) 6974 gfp_mask = GFP_NOWAIT; 6975 6976 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6977 6978 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6979 return true; 6980 6981 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6982 return false; 6983 } 6984 6985 /** 6986 * mem_cgroup_uncharge_skmem - uncharge socket memory 6987 * @memcg: memcg to uncharge 6988 * @nr_pages: number of pages to uncharge 6989 */ 6990 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6991 { 6992 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6993 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6994 return; 6995 } 6996 6997 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6998 6999 refill_stock(memcg, nr_pages); 7000 } 7001 7002 static int __init cgroup_memory(char *s) 7003 { 7004 char *token; 7005 7006 while ((token = strsep(&s, ",")) != NULL) { 7007 if (!*token) 7008 continue; 7009 if (!strcmp(token, "nosocket")) 7010 cgroup_memory_nosocket = true; 7011 if (!strcmp(token, "nokmem")) 7012 cgroup_memory_nokmem = true; 7013 } 7014 return 0; 7015 } 7016 __setup("cgroup.memory=", cgroup_memory); 7017 7018 /* 7019 * subsys_initcall() for memory controller. 7020 * 7021 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7022 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7023 * basically everything that doesn't depend on a specific mem_cgroup structure 7024 * should be initialized from here. 7025 */ 7026 static int __init mem_cgroup_init(void) 7027 { 7028 int cpu, node; 7029 7030 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7031 memcg_hotplug_cpu_dead); 7032 7033 for_each_possible_cpu(cpu) 7034 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7035 drain_local_stock); 7036 7037 for_each_node(node) { 7038 struct mem_cgroup_tree_per_node *rtpn; 7039 7040 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7041 node_online(node) ? node : NUMA_NO_NODE); 7042 7043 rtpn->rb_root = RB_ROOT; 7044 rtpn->rb_rightmost = NULL; 7045 spin_lock_init(&rtpn->lock); 7046 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7047 } 7048 7049 return 0; 7050 } 7051 subsys_initcall(mem_cgroup_init); 7052 7053 #ifdef CONFIG_MEMCG_SWAP 7054 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7055 { 7056 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7057 /* 7058 * The root cgroup cannot be destroyed, so it's refcount must 7059 * always be >= 1. 7060 */ 7061 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7062 VM_BUG_ON(1); 7063 break; 7064 } 7065 memcg = parent_mem_cgroup(memcg); 7066 if (!memcg) 7067 memcg = root_mem_cgroup; 7068 } 7069 return memcg; 7070 } 7071 7072 /** 7073 * mem_cgroup_swapout - transfer a memsw charge to swap 7074 * @page: page whose memsw charge to transfer 7075 * @entry: swap entry to move the charge to 7076 * 7077 * Transfer the memsw charge of @page to @entry. 7078 */ 7079 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7080 { 7081 struct mem_cgroup *memcg, *swap_memcg; 7082 unsigned int nr_entries; 7083 unsigned short oldid; 7084 7085 VM_BUG_ON_PAGE(PageLRU(page), page); 7086 VM_BUG_ON_PAGE(page_count(page), page); 7087 7088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7089 return; 7090 7091 memcg = page->mem_cgroup; 7092 7093 /* Readahead page, never charged */ 7094 if (!memcg) 7095 return; 7096 7097 /* 7098 * In case the memcg owning these pages has been offlined and doesn't 7099 * have an ID allocated to it anymore, charge the closest online 7100 * ancestor for the swap instead and transfer the memory+swap charge. 7101 */ 7102 swap_memcg = mem_cgroup_id_get_online(memcg); 7103 nr_entries = hpage_nr_pages(page); 7104 /* Get references for the tail pages, too */ 7105 if (nr_entries > 1) 7106 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7107 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7108 nr_entries); 7109 VM_BUG_ON_PAGE(oldid, page); 7110 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7111 7112 page->mem_cgroup = NULL; 7113 7114 if (!mem_cgroup_is_root(memcg)) 7115 page_counter_uncharge(&memcg->memory, nr_entries); 7116 7117 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7118 if (!mem_cgroup_is_root(swap_memcg)) 7119 page_counter_charge(&swap_memcg->memsw, nr_entries); 7120 page_counter_uncharge(&memcg->memsw, nr_entries); 7121 } 7122 7123 /* 7124 * Interrupts should be disabled here because the caller holds the 7125 * i_pages lock which is taken with interrupts-off. It is 7126 * important here to have the interrupts disabled because it is the 7127 * only synchronisation we have for updating the per-CPU variables. 7128 */ 7129 VM_BUG_ON(!irqs_disabled()); 7130 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7131 memcg_check_events(memcg, page); 7132 7133 css_put(&memcg->css); 7134 } 7135 7136 /** 7137 * mem_cgroup_try_charge_swap - try charging swap space for a page 7138 * @page: page being added to swap 7139 * @entry: swap entry to charge 7140 * 7141 * Try to charge @page's memcg for the swap space at @entry. 7142 * 7143 * Returns 0 on success, -ENOMEM on failure. 7144 */ 7145 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7146 { 7147 unsigned int nr_pages = hpage_nr_pages(page); 7148 struct page_counter *counter; 7149 struct mem_cgroup *memcg; 7150 unsigned short oldid; 7151 7152 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7153 return 0; 7154 7155 memcg = page->mem_cgroup; 7156 7157 /* Readahead page, never charged */ 7158 if (!memcg) 7159 return 0; 7160 7161 if (!entry.val) { 7162 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7163 return 0; 7164 } 7165 7166 memcg = mem_cgroup_id_get_online(memcg); 7167 7168 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7169 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7170 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7171 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7172 mem_cgroup_id_put(memcg); 7173 return -ENOMEM; 7174 } 7175 7176 /* Get references for the tail pages, too */ 7177 if (nr_pages > 1) 7178 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7179 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7180 VM_BUG_ON_PAGE(oldid, page); 7181 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7182 7183 return 0; 7184 } 7185 7186 /** 7187 * mem_cgroup_uncharge_swap - uncharge swap space 7188 * @entry: swap entry to uncharge 7189 * @nr_pages: the amount of swap space to uncharge 7190 */ 7191 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7192 { 7193 struct mem_cgroup *memcg; 7194 unsigned short id; 7195 7196 id = swap_cgroup_record(entry, 0, nr_pages); 7197 rcu_read_lock(); 7198 memcg = mem_cgroup_from_id(id); 7199 if (memcg) { 7200 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7201 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7202 page_counter_uncharge(&memcg->swap, nr_pages); 7203 else 7204 page_counter_uncharge(&memcg->memsw, nr_pages); 7205 } 7206 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7207 mem_cgroup_id_put_many(memcg, nr_pages); 7208 } 7209 rcu_read_unlock(); 7210 } 7211 7212 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7213 { 7214 long nr_swap_pages = get_nr_swap_pages(); 7215 7216 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7217 return nr_swap_pages; 7218 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7219 nr_swap_pages = min_t(long, nr_swap_pages, 7220 READ_ONCE(memcg->swap.max) - 7221 page_counter_read(&memcg->swap)); 7222 return nr_swap_pages; 7223 } 7224 7225 bool mem_cgroup_swap_full(struct page *page) 7226 { 7227 struct mem_cgroup *memcg; 7228 7229 VM_BUG_ON_PAGE(!PageLocked(page), page); 7230 7231 if (vm_swap_full()) 7232 return true; 7233 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7234 return false; 7235 7236 memcg = page->mem_cgroup; 7237 if (!memcg) 7238 return false; 7239 7240 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7241 unsigned long usage = page_counter_read(&memcg->swap); 7242 7243 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7244 usage * 2 >= READ_ONCE(memcg->swap.max)) 7245 return true; 7246 } 7247 7248 return false; 7249 } 7250 7251 static int __init setup_swap_account(char *s) 7252 { 7253 if (!strcmp(s, "1")) 7254 cgroup_memory_noswap = 0; 7255 else if (!strcmp(s, "0")) 7256 cgroup_memory_noswap = 1; 7257 return 1; 7258 } 7259 __setup("swapaccount=", setup_swap_account); 7260 7261 static u64 swap_current_read(struct cgroup_subsys_state *css, 7262 struct cftype *cft) 7263 { 7264 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7265 7266 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7267 } 7268 7269 static int swap_high_show(struct seq_file *m, void *v) 7270 { 7271 return seq_puts_memcg_tunable(m, 7272 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7273 } 7274 7275 static ssize_t swap_high_write(struct kernfs_open_file *of, 7276 char *buf, size_t nbytes, loff_t off) 7277 { 7278 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7279 unsigned long high; 7280 int err; 7281 7282 buf = strstrip(buf); 7283 err = page_counter_memparse(buf, "max", &high); 7284 if (err) 7285 return err; 7286 7287 page_counter_set_high(&memcg->swap, high); 7288 7289 return nbytes; 7290 } 7291 7292 static int swap_max_show(struct seq_file *m, void *v) 7293 { 7294 return seq_puts_memcg_tunable(m, 7295 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7296 } 7297 7298 static ssize_t swap_max_write(struct kernfs_open_file *of, 7299 char *buf, size_t nbytes, loff_t off) 7300 { 7301 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7302 unsigned long max; 7303 int err; 7304 7305 buf = strstrip(buf); 7306 err = page_counter_memparse(buf, "max", &max); 7307 if (err) 7308 return err; 7309 7310 xchg(&memcg->swap.max, max); 7311 7312 return nbytes; 7313 } 7314 7315 static int swap_events_show(struct seq_file *m, void *v) 7316 { 7317 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7318 7319 seq_printf(m, "high %lu\n", 7320 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7321 seq_printf(m, "max %lu\n", 7322 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7323 seq_printf(m, "fail %lu\n", 7324 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7325 7326 return 0; 7327 } 7328 7329 static struct cftype swap_files[] = { 7330 { 7331 .name = "swap.current", 7332 .flags = CFTYPE_NOT_ON_ROOT, 7333 .read_u64 = swap_current_read, 7334 }, 7335 { 7336 .name = "swap.high", 7337 .flags = CFTYPE_NOT_ON_ROOT, 7338 .seq_show = swap_high_show, 7339 .write = swap_high_write, 7340 }, 7341 { 7342 .name = "swap.max", 7343 .flags = CFTYPE_NOT_ON_ROOT, 7344 .seq_show = swap_max_show, 7345 .write = swap_max_write, 7346 }, 7347 { 7348 .name = "swap.events", 7349 .flags = CFTYPE_NOT_ON_ROOT, 7350 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7351 .seq_show = swap_events_show, 7352 }, 7353 { } /* terminate */ 7354 }; 7355 7356 static struct cftype memsw_files[] = { 7357 { 7358 .name = "memsw.usage_in_bytes", 7359 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7360 .read_u64 = mem_cgroup_read_u64, 7361 }, 7362 { 7363 .name = "memsw.max_usage_in_bytes", 7364 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7365 .write = mem_cgroup_reset, 7366 .read_u64 = mem_cgroup_read_u64, 7367 }, 7368 { 7369 .name = "memsw.limit_in_bytes", 7370 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7371 .write = mem_cgroup_write, 7372 .read_u64 = mem_cgroup_read_u64, 7373 }, 7374 { 7375 .name = "memsw.failcnt", 7376 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7377 .write = mem_cgroup_reset, 7378 .read_u64 = mem_cgroup_read_u64, 7379 }, 7380 { }, /* terminate */ 7381 }; 7382 7383 /* 7384 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7385 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7386 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7387 * boot parameter. This may result in premature OOPS inside 7388 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7389 */ 7390 static int __init mem_cgroup_swap_init(void) 7391 { 7392 /* No memory control -> no swap control */ 7393 if (mem_cgroup_disabled()) 7394 cgroup_memory_noswap = true; 7395 7396 if (cgroup_memory_noswap) 7397 return 0; 7398 7399 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7400 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7401 7402 return 0; 7403 } 7404 core_initcall(mem_cgroup_swap_init); 7405 7406 #endif /* CONFIG_MEMCG_SWAP */ 7407